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Introduction

W 
elcome to Biophysics For Dummies. Biophysics is a fascinating field of 
science that combines the study of the laws of physics with the study 

of systems involving living organisms (biology). The combination of these two 
fields makes biophysics interdisciplinary, which means biophysicists work 
side by side with people from many different backgrounds. Biophysics is a 
very diverse and interesting field; even if you spend your entire life studying 
biophysics, you can still discover new and interesting pieces of information.

About This Book
Biophysics For Dummies lays down the foundations for the fields of biophys-
ics, including neurophysics, medical physics, health physics, and related 
fields that overlap with biophysics, presented in an easy-to-access manner. 
This reference book presents biophysics in plain English, so you can easily 
find what you’re looking for. When you’re reading, you don’t have to begin 
at the beginning. You can go directly to the chapter or section that interests 
you and start reading. Of course, I prefer that you read it from cover to cover, 
but then again, I am a bit biased. If you’re strapped for time and only want to 
read what you need to know, even when you’re reading the chapter or sec-
tion of interest to you, you can skip the sidebars and the paragraphs marked 
with the Technical Stuff icon without losing any of the essential info.

This book is unique in that the majority of the material is at the introductory 
level, but the material presented is at an advanced enough level that you can 
use the book as a stepping stone in your biophysics studies. This book also 
lays out in a clear step-by-step procedure how to apply concepts in physics 
to problems in biophysics and the life sciences. The book introduces topics 
in the five fundamental areas of physics: mechanics, fluids, thermodynamics, 
electromagnetism, and nuclear physics.



2 Biophysics For Dummies 

You may notice while reading the book that I have done a few things that I 
hope make your reading and search of information easier:

 ✓ I avoid using URLs. These URLs can change over time, so I have placed 
only the more important ones that probably won’t change on the online 
Cheat Sheet. You can find all the important links in a single place for 
easy access with a single click at www.dummies.com/cheatsheet/
biophysics. 

 ✓ I italicize all the variables used in mathematical formulas, so you can 
easily identify them. I also italicize words when I define them. Many 
words in biophysics have special meanings, and understanding the ter-
minology is an important step toward comprehending the subject. 

 ✓ I use certain symbols differently than do some other biophysics books. 
The symbols are as follows:

	 •	N for the torque instead of τ (tau), which is used in many introduc-
tory books. (Many engineering books use M.) Some more advanced 
physics books use N for torque and in addition, τ looks very simi-
lar to t (time), T (period), and T (half-life). I would have too many 
physical quantities using similar symbols. 

	 •	P(a) for absolute pressure, P(g) for gauge pressure, and P for power. 
I have too many sections where I use power and pressure at the 
same time, so I distinguish them this way. 

	 •	E represents energy and F represents force. I distinguish between 
the different energies and forces by using subscripts. Some books 
use T or K for the kinetic energy and some use U or V for the 
potential energy. I use EK and EP instead for kinetic energy and 
potential energy.

Foolish Assumptions
As I write this book, I assume you, my dear reader, fall into at least one of the 
following groups:

 ✓ You’re in college and taking an introductory biophysics course.

 ✓ You’re interested in studying biophysics or some related field where 
knowledge of biophysics is useful.

 ✓ You’re involved with the sciences and want to expand your knowledge 
base in biophysics.

 ✓ You have already taken algebra, geometry, and a science course in 
either biology, chemistry, or physics.

http://www.dummies.com/cheatsheet/biophysics
http://www.dummies.com/cheatsheet/biophysics


3 Introduction

Icons Used in This Book
I use a few icons as markers in the margins. These markers are useful for 
helping you locate material or skip over material, depending on what you’re 
searching for. I use them to indicate what I think is important for you to 
notice. These icons can help you navigate through the material. 

 When I present helpful information that can make your life a bit easier when 
studying biophysics, I use this icon. 

 This icon highlights important pieces of information that I suggest you store 
away because you’ll probably use them on a regular basis.

 This icon highlights common mistakes or errors that I see time after time from 
people who are taking a biophysics course. 

 This icon indicates in-depth examples. Try solving the problem and continue 
reading to see how to solve the problem. 

 This icon requires nonessential information, usually at least at a calculus back-
ground level. If you have a math phobia, then you may want to avoid reading 
these paragraphs. If you enjoy biophysics and mathematics, then I encourage 
you to read these paragraphs.

Beyond This Book
In addition to the material in Biophysics For Dummies, I also provide a free 
Cheat Sheet online at www.dummies.com/cheatsheet/biophysics. The 
Cheat Sheet adds a few extra tidbits that you will find interesting, such as 
solving biomechanical problems. You can also find other interesting bits of 
additional information online at www.dummies.com/extras/biophysics. 

After reading the Cheat Sheet and online information, you may decide to 
pursue biophysics more in-depth, so I include URLs to the biophysical soci-
ety, the association of medical physicists, and the health physics society. 
These links are a great starting point in search of answers to your biophysi-
cal questions. 

http://www.dummies.com/cheatsheet/biophysics
http://www.dummies.com/extras/biophysics
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Where to Go from Here
Science is about being curious and exploring, which is what attracted me to 
biophysics. As you read this book, feel free to jump around and start with the 
chapters and sections that interest you the most. If you need a particular sec-
tion for your science course, such as kinematics or biomechanics, you can 
go straight there. You can also look in the index or the table of contents to 
find a topic that interests you. No matter what you decide to read, enjoy your 
adventure into the world of biophysics.



Part I
Getting Started with 

Biophysics

 Go to www.dummies.com/cheatsheet/biophysics to discover some more 
informative Dummies content online about biophysics.

http://www.dummies.com/cheatsheet/biophysics


In this part . . .
 ✓ Get a thorough overview of what biophysics is, including its 

diverse fields, such as biomechanics, fluids, waves and sound, 
the electromagnetic force, and medical physics, so you can 
fully appreciate how it affects your daily life.

 ✓ Discover where you can find biophysics. You may be surprised 
to know who biophysicists are and where biophysics is 
used.

 ✓ Tackle mathematics, most of which should be a review for you 
if you’ve already taken a chemistry, physics, or calculus class. 
Biophysics does use mathematics, so having a decent grasp of 
the basic formulas and equations is important when you study 
biophysics.

 ✓ Comprehend some of the basics of biophysics, such as notation 
and terminology, that aren’t used in everyday life and clear up 
a few common myths.

 ✓ Make the distinction between experimental and theoretical 
biophysics. Biophysics isn’t mathematics, but mathematics is a 
tool used by both experimental and theoretical 
biophysicists. 



Chapter 1

Welcoming You to the  
World of Biophysics

In This Chapter 
▶ Mentioning mechanics
▶ Flowing with fluids
▶ Riding the waves
▶ Identifying biophysics in the every day

B 
iophysics is the study of biology and all sciences connected to the bio-
logical sciences using the principles and laws of physics. It’s the ulti-

mate interdisciplinary science combining biology, chemistry, and physics. If 
you love science, then biophysics is for you. The field touches on all aspects 
of all the natural sciences.

This chapter gives you the bird’s-eye view of biophysics and what you’ll find 
in this book. In this chapter, I explain the general features of biomechanics, 
the motion of fluids, waves and sounds, and electromagnetic force as well as 
radiation and radioactivity. 

Getting the Lowdown on What 
Biophysics Really Is

No matter if you’re stuck taking a biophysics course to meet your science 
course requirements or you’re taking your first of many biophysics courses, 
you need to make sure you understand what you’re studying. Just break 
down the word biophysics. Bio means life and physics means nature, so bio-
physics is the study of living matter, its motion, and its interaction with the 
natural universe. Chapter 2 expands on the explanation of what biophysics is, 
and Chapter 3 covers some of the basic terminology used in biophysics. 
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The following clarifies what biophysics really means:

 ✓ Biophysics uses techniques and methods from physics, mathematics, 
biology, and chemistry to study living organisms.

 ✓ Biophysicists design experiments or do computational calculations in 
order to understand biological processes. A few examples of these bio-
logical processes are

	 •	Photosynthesis

	 •	The	on-off	switching	of	genes

	 •	Memory	and	brain	processes

	 •	Muscle	control

 ✓ Biophysicists study how the senses work.

 ✓ Biophysicists try to understand why things behave the way they do in 
sports and improve the performance of athletes.

 ✓ Biophysicists study how molecules enter cells and how they interact.

 ✓ Biophysicists study how cells move, divide, and respond to the 
 environment.

As you can see, biophysics is all of this and everything that deals with living 
organisms. Biophysics plays an essential role in medicine, sports, engineer-
ing, physics, biology, biochemistry, and environmental science to mention 
a few areas. Whenever you’re considering something that involves a living 
organism and its interaction with its surroundings, you’re using biophysics.

Grasping the Mechanics of Biomechanics
Biomechanics is an important part of biophysics. Bio means life, and mechan-
ics is the study of the interaction of a physical object with its surroundings. 
Therefore, biomechanics is the study of a living object’s interaction with its 
surroundings, which also includes the study of how living organisms move 
and the causes of this motion. 

These sections explain a bit more about what biomechanics is. I discuss rules 
because biophysicists love rules, explain what happens when forces try to 
change an object’s motion, and look at the motion of an object. 
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Surveying the rules
Biomechanics has many rules because things don’t happen randomly or 
by chance. Things happen because of actions, and these rules tell you what 
the consequences of an action are. These rules are usually called laws, 
which can’t be broken.

Some important laws in biomechanics are

 ✓ Newton’s first law of motion, the law of inertia: This law tells you 
objects are lazy, and you have to force them to change their motion.

 ✓ Newton’s second law of motion, the law of acceleration: If you force an 
object to change its motion, then this law tells you how the motion will 
change.

 ✓ Newton’s third law of motion, the law of action and reaction: This 
law states that if one object applies a force to a second object, then the 
second object will apply the opposite force back on the first object.

 ✓ (Law of) conservation of momentum: This law tells you that the total 
momentum of an isolated system doesn’t change even if the objects 
within the system are bouncing off each other.

 ✓ (Law of) conservation of energy: The law tells you that you can’t create 
or destroy energy; you can only change it from one form to another.

 ✓ The work-energy theorem: If you want to change an object’s kinetic 
energy, then you must do work on the object.

Chapter 4 introduces these rules of physics that are applicable to biomechan-
ics. This chapter also explains what a force is and what energy is as well as 
the connection between forces and energy.

Focusing on statics
Statics, the situation when a biological system isn’t moving, even if under the 
influence of forces, is another important part of biophysics. The physics of 
biological systems that aren’t moving can be very complex. Chapter 5 lays 
out the procedure for solving problems in translational equilibrium, then 
problems in rotational equilibrium. Finally, it combines the two, which is 
called static equilibrium. 
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Meanwhile, Chapter 6 includes the following:

 ✓ Calculating the center of mass of a biological system

 ✓ Determining the effective weight of a biological organism

 ✓ Viewing biological organisms as machines and levers

 ✓ Examining different ways that biological organisms can be deformed

 ✓ Eyeing different properties of the organism when it’s enlarged or shrunk.

Going the dynamic route
Biomechanics looks at the motion of biological organisms and the forces that 
act on them. Chapter 7 identifies what causes the forces that generate the 
motion. Two main types of motion are as follows:

 ✓ Linear motion: This type includes situations where the net force is one-
dimensional such as in skydiving. You can study this type of motion by 
using forces or looking at the energy of the system.

 ✓ Circular motion: This type includes torques and rotational energy. It’s 
useful in situations, such as in diving competitions or certain gymnastics 
events where the athlete is spinning and twisting.

Moving around with kinematics
Kinematics is the study of how biological organisms move without worrying about 
why. All you need to know is the acceleration, velocity, and position to describe 
an object’s motion or a system of objects’ motions. Chapter 7 is the “why” objects 
move, and Chapter 8 is the “how” objects move. Chapter 8 starts with describing 
the linear motion of objects and then switches to circular motion. 

Eyeing the Physics of Fluids
Fluids are a collection of objects (usually molecules) that stick together as a 
group, but the objects move about randomly relative to each other, unlike 
solids where molecules will be fixed and not travel from one side to another 
side. Fluids play a key role in biophysics, such as blood transporting oxygen 
to the cells or the motion of sap in a plant. 

These sections examine how fluids influence the world around them. I begin 
with the rules and forces in fluids, discuss the flow of different types of fluids, 
and finish with discussing how material enters and leaves our bodies. 
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Understanding fluid’s mechanics  
and cohesive forces
Fluids obey rules and this section goes over some of the foundational rules. 
Some of these ideals are

 ✓ Pascal’s principle: A (incompressible) fluid at rest will transmit a change 
in pressure to all points in the fluid equally. For example, fill a balloon up 
with water and then squeeze the top of the balloon. The water in the bal-
loon will increase in pressure everywhere within the balloon.

 ✓ Archimedes’s principle: Any object wholly or partially immersed in a 
fluid (or gas) has a force exerted on it by the fluid (or gas) called the buoy-
ant force, which is equal to the weight of the fluid displaced by the object.

 ✓ Conservation of mass: The total mass of the fluid doesn’t change unless 
you add or remove fluid from the system.

 ✓ Bernoulli’s equation: The equation shows how the speed of the fluid 
will change from forces acting on the fluid. For example, if you pour a 
fluid out of your glass, it will pick up speed as it flows toward the floor.

 ✓ Cohesive force: It’s the attractive force between molecules. This force 
keeps a water drop together and gives rise to surface tension. The force 
is called adhesion when it’s between molecules that are different, say the 
fluid and the container. 

Chapter 9 expands on these ideas and concepts related to fluids.

Tackling fluid dynamics
Fluid dynamics is the study of moving fluids. The properties of fluids are very 
important in many fields of biophysics. For example, you may be interested in 
how blood flows through restricted channels, how to throw a ball to maximize 
its curve, or how to optimize an irrigation system in environmental science.

 Viscosity is a measure of a fluids resistance to change. For example, maple 
syrup is more viscous than water. Fluids can be split into two main groups: 

 ✓ Nonviscous fluids: The first case corresponds to situations where the 
viscosity can be ignored

 ✓ Viscous fluids: In these fluids, the viscosity plays an important role and 
can’t be ignored.

In the case of viscous fluids, you need to consider what type of fluid you have 
and the type of flow:
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 ✓ Newtonian fluids: In a Newtonian fluid, the ratio of the stress to the 
strain is a constant, which is the viscosity.

 ✓ Non-Newtonian fluids: If a fluid is not Newtonian, then it’s non- 
Newtonian. Water is Newtonian, whereas ketchup is non-Newtonian.

 ✓ Laminar flow: A viscous fluid flowing at low speeds will form layers with 
different speeds and little mixing between the layers. The layer closest 
to a boundary will try to match the boundary’s speed.

 ✓ Turbulent flow: A viscous fluid flowing in an unpredictable manner with 
rapidly changing properties. The smoke rising from a campfire is a turbu-
lent flow (except the smoke closest to the flame, which is laminar flow).

Chapter 10 looks more closely at the dynamics of fluids. 

Moving through membranes  
and porous materials
Porous materials allow fluids to flow through them, such as water flowing 
through sand. Membranes are boundaries within biological organisms that 
separate two fluids. Membranes are usually very thin and play different roles 
in a biological system. For example, the eardrum (tympanic membrane) has 
air on both sides and vibrates when sound waves hit it, whereas the mem-
brane within the lungs is semi-permeable, allowing oxygen molecules to go 
from the air into the blood and carbon dioxide to move from the blood into 
the air. These materials play a very important role in biological organisms 
and are an important area of biophysics.

You have probably noticed that perfume lingers in the air for a long time 
after it has been sprayed into the air. It takes the perfume a long time to 
dissipate unless you turn on a fan. This concept, called diffusion, is impor-
tant in understanding how materials within a fluid are transported and how 
the material moves through a membrane. Chapter 11 starts with diffusion. 
Chapter 11 then discusses more about membranes and porous materials, 
including human metabolism, the conversion of food into energy, and the 
elimination of molecules from the human body.

Comprehending Waves and Sound
Waves are a means by which energy is transferred from one region of space 
to another region. As the wave propagates through space, it’s usually asso-
ciated with the temporary disruption of the material in that region. (You 
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can think of the crest of a water wave as it moves across the surface of the 
water.) Sound is a pressure wave that causes the molecules in the gas, liquid, 
or solid to temporarily vibrate. They’re important to the study of biophysics 
because biological systems need energy to do work. Music and communica-
tion between animals are very important. 

The following sections break it up a little more. These sections mention how 
the wave disrupts the material as the wave propagates through the material, 
explains how sound is made, followed by how the ear hears those sounds, 
and discusses some applications of sound waves.

Disturbing the material
A wave propagating through a material will usually cause the material to be 
disturbed from its rest position. After the wave has passed, then everything 
usually returns to normal. In some cases, the energy in the wave will cause 
irreparable damage to the material, and it can’t return back to its original 
state. Think of a sonic boom shattering a window. 

Related to this is harmonic motion, where the material bounces back and forth 
or up and down. Water waves at the beach cause the water to go up and down 
in a repeating pattern. In many situations, the harmonic motion obeys Hooke’s 
law, which states that the farther the material is distorted from its rest position, 
the stronger the force to restore the material back to its normal position. Many 
applications of waves and harmonic motion exist in biophysics. For example, 
you can use harmonic motion (Hooke’s law) to find the weight of a virus.

 The different types of waves include the following:

 ✓ Longitudinal waves: These types of waves have the material vibrate 
back and forth in the direction parallel to the wave’s motion.

 ✓ Transverse waves: These types of waves have the material vibrate back 
and forth in a perpendicular direction to the wave’s motion.

 ✓ Electromagnetic radiation: These are transverse waves, which are 
unique in that they do not need a medium to propagate through.

 ✓ Sound waves: These are longitudinal pressure waves.

 ✓ Water waves: Water waves can be of different types, but the ones that 
people are the most familiar with are the surface water waves that propa-
gate toward the shore.

Chapter 12 takes a closer look at these types of waves and how waves inter-
act with other waves of the same kind and how the waves interact with their 
surroundings.
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Knowing how animals and instruments 
make sound waves
Sound is pressure waves that are created by the vibration of an object, such 
as the vocal folds in a human or the skin on a drum. The resonance of air 
within a cavity, such as a flute, can also create sound. A few properties of 
sounds include the following: 

 ✓ Sound needs the vibration of matter for the sound to propagate. 
Unfortunately, science fiction movies show sound waves propagating 
through space, which is wrong. 

 ✓ Sound waves are longitudinal pressure waves in gasses, but they can be 
longitudinal and transverse in a solid.

 ✓ Sound travels at approximately 1,130 feet per second (344 meters per 
second) in air near sea level. The speed of sound depends on many fac-
tors including the temperature and density of the air.

 ✓ The speed of sound is equal to the wavelength (the distance from one 
crest to the next) times the frequency (the number of crests that pass by 
per second).

 ✓ Interference: Sound waves interacting with other sound waves interact 
either constructively (with enhanced amplitude) or destructively (with 
decreased amplitude).

 ✓ Resonance: Sound waves trapped between boundaries interact with 
their echo. At specific frequencies they will have constructive interfer-
ence, which is called resonance. For example, blowing across the open-
ing of an empty bottle makes a loud noise.

Chapter 13 discusses these properties in greater depth and looks at similari-
ties and differences between a guitar and the human voice, as well as other 
instruments such as the clarinet and flute.

Hearing sound waves
Hearing is a very complex phenomenon and an important subject in biophys-
ics. In addition, comprehending how hearing works can give an understand-
ing of how biological systems work and how information is sent to the brain 
and processed. When sound waves hit the human body, the majority of the 
sound bounces off the body and travels elsewhere. You wouldn’t be able to 
hear the sound except for the fact you have ears. 
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 The ear is a clever device that takes the sound wave in air and converts it to an 
electrical signal that the brain can understand. The outer ear channels the sound 
wave to the eardrum, which vibrates with the frequency of the sound. The motion 
of the eardrum causes the ossicles (the three small bones in the middle ear) to 
vibrate, which in turn cause the oval window (which is a membrane between the 
middle ear and the inner ear) to vibrate. The vibration of the oval window causes 
the fluid in the inner ear to vibrate. The motion of the fluid is detected by hair 
cells, which are the ends of the nerves that transmit the signal to the brain.

Check out Chapter 14 for more information about how humans hear and how 
sound waves traveling through the air are changed into electrical signals that 
are sent to the brain and why sound waves have a limited range.

Applying sound waves
Waves are a method of transmitting energy, and so sound waves allow ani-
mals to interact with their surroundings. Three different applications of that 
transmission of energy are

 ✓ Doppler effect: When the source of a sound wave and the listener are 
moving relative to each other, then the frequency according to the lis-
tener is different than what the source emitted the sound at. 

 ✓ Echolocation: Some nocturnal animals use sound to find their way 
around in the dark by emitting a sound and listening to the echo dubbed 
echolocation.

 ✓ Ultrasound imaging: Imaging that uses pressure waves with very high 
frequencies. The waves’ speed varies depending on the density of the 
material. The changes in speeds can be used to detect the boundaries 
between different materials and produce an image. Ultrasound imaging 
is one of the safest imaging methods used in medicine today.

Refer to Chapter 15 for more about these three and some of their applica-
tions and limitations. 

Forcing Biophysics onto the World
Force is a method to quantify the interaction between objects. If there were 
no forces, then objects in the universe wouldn’t interact, hence meaning no 
life. Through forces you know that the universe exists around you. 
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The following sections discuss the electromagnetic force, introduce radio-
activity and radiation, which occurs within the nucleus of an atom when it’s 
unstable, look at applications of radiation, and examine medical physics as 
an application of biophysics in medicine.

Binding with the electromagnetic force
The electromagnetic force is the force between charged particles. The proton 
and electron have charge, which is a fundamental physical property of these 
particles. Charges produce electric fields, and moving charges create mag-
netic fields. If the charged particles are accelerating, they create electromag-
netic radiation. 

Another way electromagnetic radiation is created is by the annihilation of 
a particle with its antimatter counterpart. The electromagnetic force is the 
most important force in biophysics, chemistry, and society. The electro-
magnetic force is what keeps molecules together, causes electrical pulses to 
travel down the nerves, allows you to see, produces friction between your 
feet and the ground, and a lot more. 

A few important laws related to the electromagnetic force are

 ✓ Gauss’s law: Gauss’s law states that charges produce electric fields. 
The electric fields start at positive charges and end at negative charges. 
A version of this law does exist for magnetic fields. It states that no mag-
netic charges exist and all magnetic phenomena are a consequence of 
moving electric charge.

 ✓ Maxwell-Ampere law: The Maxwell-Ampere law states that moving 
charges create magnetic fields and electric fields that are changing in 
time create magnetic fields.

 ✓ Faraday’s law: This law states that magnetic fields that change in time 
produce an electric field. This law is the foundation of the electric gen-
erator, the electric guitar, and magnetic resonating imagers (MRIs) to 
name just three of a multitude of applications.

 ✓ Lorentz force: The electromagnetic force is the interaction between 
charged particles. These electric and magnetic fields produced by elec-
tric charges propagate through space and come into contact with other 
charged particles. The Lorentz force explains how these fields exert a 
force on the other charged particles.

Chapter 16 discusses these laws in greater depth and different electrical 
power sources, electrical circuits, energy, and the transformation of energy 
from one type to another. 
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Getting a hold on radiation  
and how it battles cancer
Radioactivity is when an atom changes into a new atom and emits radiation. 
Some of the different kinds of decay are

 ✓ Alpha decay: The atom ejects an alpha particle (helium nucleus), losing 
two protons and two neutrons.

 ✓ Beta decay: In beta decay, a proton changes into a neutron (positive 
beta decay) or a neutron changes into a proton (negative beta decay).

 ✓ Electron capture: An electron is captured by the nucleus, changing a 
proton into a neutron.

 ✓ Fission decay: The atom splits into two new atoms.

 ✓ Proton decay: The atom ejects a proton, becoming a new element with 
the same number of neutrons and one less proton.

 ✓ Neutron decay: The atom ejects a neutron, becoming a new isotope with 
the same number of protons and one less neutron.

 Radiation is a means by which energy is emitted through space. Radiation 
comes in two forms: electromagnetic radiation and particles. A few of the dif-
ferent forms of radiation are

 ✓ Non-ionizing electromagnetic radiation: Most types of electromagnetic 
radiation fall in this category. It includes radio waves, microwaves, infra-
red radiation, light, and low-energy ultraviolet radiation. The low-energy 
ultraviolet radiations (UVA, UVB, and UVC) are more like ionizing radia-
tion than non-ionizing radiation.

 ✓ Ionizing electromagnetic radiation: This electromagnetic radiation 
has sufficient energy to eject an electron from an atom or molecule. It 
includes high-energy ultraviolet radiation, X-rays, and gamma radiation.

 ✓ Alpha particle: This is the nucleus of a helium atom. 

 ✓ Beta-negative particle: This is an electron, but it was ejected from the 
nucleus.

 ✓ Beta-positive particle: This is a positron ejected from the nucleus.

 ✓ Cosmic rays: These are actually charged particles entering the atmo-
sphere from space. The majority of the particles are hydrogen nuclei, 
helium nuclei, and beta-negative particles.

 ✓ Neutron radiation: Free neutrons are unstable with a half-life of ten min-
utes, and when atoms absorb the neutrons, it makes the atom unstable. 

Chapter 17 discusses radioactivity and radiation in more detail. It also high-
lights some of the benefits and applications of radiation.
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Working with radiation
Radiation is bad because it causes damage to the cells in the body. At high 
radiation doses, the cells die quickly and the effects are immediate. A lot of 
damage happens to the cells at moderate radiation doses. The body can’t 
keep up in repairing the cells, and some are repaired incorrectly. In time, the 
mutant cells become cancerous. 

Radiation is everywhere, which is called the natural background radiation. The 
world’s average natural background radiation is 2.4 millisieverts per year, 
whereas in the United States it is 3.1 millisieverts per year. The natural back-
ground radiation does change a lot from one location to the next. In addition, 
radiation exists from medical visits, such as X-rays at the dentist. The average 
amount of radiation from medical sources for most counties is very low, but 
in the United States, it’s 3.0 millisieverts per year, so the average person in the 
United States receives 6.1 millisieverts per year of radiation. 

Chapter 18 examines the biological effects of radiation in more detail. It also 
highlights a few misconceptions about radiation and one cancer that is mostly 
preventable.

Using biophysics in medicine
A large field related to biophysics is medical physics and health physics. One 
part of medical physics is using radiation in medicine, which has more ben-
efits than drawbacks. Some of the ways that medicine uses radiation include 
the following:

 ✓ Nuclear medicine: In nuclear medicine, radionuclides are produced 
for placement within the body or to form part of a radiopharmaceutical 
drug. These radioactive compounds are then used for both diagnosis 
and treatment. 

 ✓ X-rays and computed tomography (CT) scans: Dentists and doctors 
use X-rays to image the body. CT scans use multiple high-energy doses 
of X-rays to obtain detail images of soft tissue. 

 ✓ Positron emission tomography (PET) scans: A radionuclide is placed 
inside the body, which decays by emitting positrons. The positrons 
annihilate with the electrons inside the body to produce gamma rays, 
which leave the body and are detected. The gamma rays allow for a 
three-dimensional image to be produced.

Chapter 19 delves deeper into these methods and how they work. The chap-
ter also outlines the benefits that outweigh the dangers.



Chapter 2

Interrogating Biophysics:  
The Five Ws and One H

In This Chapter 
▶ Identifying what biophysics is
▶ Clarifying where biophysics occurs
▶ Realizing why biophysics is important
▶ Knowing when biophysics is noteworthy
▶ Naming the who in biophysics
▶ Specifying how biophysics plays a role 

I 
f you ask most people when they take their first college or university 
physics course what physics is, many don’t know. The situation is far 

worse when you ask people to explain biophysics. The purpose of this chap-
ter is to help you answer this question, and go beyond. This chapter opens 
your eyes a bit, so you see that biophysics is everywhere, and no matter 
what you do in life, biophysics will play a role.

This chapter answers the hard five Ws (what, where, why, when, and who) 
questions and the one H (how) question about biophysics. Here I explain 
what biophysics really is, where you can use biophysics (I usually tell people 
you can use it everywhere, but I ease up and give you an easier answer), why 
biophysics is important, when you may need biophysics in life, who needs 
this knowledge after an entry-level college course (you may be surprised) 
and how biophysics may pop up in a career path that interests you. 

Figuring Out What Biophysics Is
Biophysics is a natural science and the study of living matter, its motion, and 
its interaction with the natural universe. Bio comes from the Greek word for 
“life,” whereas physics comes from the Greek work for “natural” or “nature.” 
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Therefore, biophysics involves the study and application of the laws of the 
physical universe when living organisms are involved. An understanding of 
these laws will indicate how and why living organisms behave the way they do.

Objects that have self-sustaining processes are considered alive, so the cell 
is considered the basic building block of living organisms. Living organisms 
respond to stimuli, reproduce, and maintain some type of homeostasis. 
Homeostasis is the ability to maintain a constant stable condition. For exam-
ple, people maintain a constant internal body temperature of 98.6 degrees 
Fahrenheit (37 degrees Celsius) when healthy.

Biophysics deals with small things, such as understanding the interaction 
between molecules within cells, comprehending the interaction of molecules 
within cells with external sources of energy such as radiation, decipher-
ing the metabolism of molecules, and explaining the diffusion of molecules 
across a membrane. Biophysics is applicable at all length scales from mol-
ecules to the influence of forces on populations or the mechanics involved 
within sports or the environment.

Locating Biophysics: The Where
Biophysicists ask the fundamental questions and build the foundations for 
many different disciplines. Any natural science involved in the study of bio-
logical systems is connected to biophysics. In other words, everywhere you 
have living organisms you have biophysics. 

The interdisciplinary nature of biophysics means that it’s usually hard to find 
a cluster or group of biophysicists in their own department. Instead you can 
find them working within other departments or in the private sector. You can 
basically find biophysicists everywhere. 

 You can find biophysicists in the following fields:

 ✓ Biochemistry: The fields of biochemistry and biophysics are so closely 
related that the boundary between the two is very blurred. Many bio-
chemists use biophysics in their research, or their research can be con-
sidered biophysical. In many cases, a biochemist can easily be referred 
to as a biophysicist and vice versa. 

 ✓ Bioengineering and biomedical engineering: Engineers use the con-
cepts and ideals from the natural sciences to devise and build tools, 
structures, and processes for use in society. These two disciplines use 
concepts from the three sciences: biology, chemistry, and physics. 
Bioengineering and biomedical engineering are large and rapidly grow-
ing fields. Some aspects of these fields that closely connect them to 
biophysics are that they mimic biological systems to create products, 
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create devices to control biological systems, and modify the genetics of 
organisms (such as foods) to enhance a trait within the organism (for 
example, make it resistant to disease).

 ✓ Biology: Biophysics explains how and why things work the way they 
do within biology. For example, physics has only five types of funda-
mental energy (not including dark energy). Energy can’t be created or 
destroyed, only changed from one form to another. Living organisms 
consume, transform, and use energy. The forms of energy and how 
they’re transformed are biophysical processes. The mechanisms behind 
homeostasis are biophysical. Biophysics is involved from the small, 
such as molecular biology, to the biomechanics of large animal motion.

 ✓ Environmental science: Environmental science is a multidisciplinary 
field with contributions from biophysics, physics, biology, chemistry, 
geology, and soil science. Environmental science deals with energy sys-
tems, pollution problems and solutions, climate changes, agriculture, 
and natural resources.

 ✓ Kinesiology: Kinesiology is the study of human (and animal) motion, 
which includes biomechanics, a part of biophysics (check out the chap-
ters in Part II for more information). The study of biomechanics includes 
things such as understanding how the body moves, how the nerves 
send signals to the brain, how the brain sends electrical signals to the 
muscles so they twitch (contract), and other physiological functions.

 ✓ Medicine: In hospitals, clinics, and research labs you’ll usually find 
medical physicists, health physicists, and biophysicists. The biophysi-
cists are more involved with the basic research that has the potential 
for medical applications.

 ✓ Neuroscience: Neurophysics is a branch of biophysics that deals with 
the nervous system. It covers a large range of scales from interactions at 
the molecular scale to the brain’s function. The biophysicists are usually 
part of the neuroscience group, which is the interdisciplinary study of 
the nervous system. The field of neuroscience consists of researchers 
from biophysics, biology, biochemistry, chemistry, medicine, and psy-
chology to mention a few.

 ✓ Pharmacology: Pharmacology is the study of the interaction of drugs with 
living organisms. Biophysicists are involved with pharmaceuticals, which 
are drugs with medicinal properties, and radiopharmaceuticals, which are 
drugs containing a radioactive isotope. The field includes the study of 
natural drugs and the synthesis of artificial drugs, their composition and 
properties, and their interactions with the body. The study of the interac-
tions with living tissue is usually split into two areas:

	 •	Pharmacokinetics: The study of the body’s ability to absorb, dis-
tribute, metabolize, and excrete the drug

	 •	Pharmacodynamics: The study of how the drug causes changes to 
the cells and the drug’s physiological effects
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Understanding Why Biophysics 
Is Important

Biophysics deals with how the laws of the natural universe work when the 
laws are applied to systems involving living organisms. An understanding of 
these laws explains why and how biological organisms behave the way they 
do. Having knowledge of these laws and the understanding of their applica-
tions in the natural sciences and medicine is important for the advancement 
of society. 

Even the everyday person has some knowledge of biophysics: Biophysics is 
everywhere. For example, by understanding these laws, a person knows not 
to stick her finger into an open light socket when the power is on. Another 
example is a person knows that eating plutonium instead of his vegetables 
is bad, only if he knew that plutonium is radioactive and not very nutritious, 
and he understands the dangers of radioactivity.

 The laws of biophysics tell you how cells interact with radiation, how the 
nerves work, how molecules are metabolized, and how to minimize energy 
expenditure or increase performance in sports. The better you understand the 
laws, the better you can use them to achieve your goal. Scientists throughout 
all the natural sciences and the other life sciences and engineers use biophys-
ics all the time to guide them in their research, focus, and development of 
devices and applications. 

Determining When Biophysics 
Is Relevant

Biophysics is always relevant and important. You need biophysics to under-
stand the laws of nature. You need biophysics to understand why things are 
behaving the way they are. You need biophysics to understand how biologi-
cal systems will behave under certain conditions.

A person driving his car doesn’t really care how things work as long as the car 
works the way it’s supposed to, but a mechanic needs to understand how a car 
works and knows the answer why, when something doesn’t work the way it’s 
supposed to. The mechanic is trained to use tools that make it possible to fix 
the car. The same is true for biophysics. Biophysics gives scientists and engi-
neers the tools and knowledge to do their job and understand the problem. 
Without it, society would be similar to the Dark Ages with many of the things 
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that everyone takes for granted being nonexistent. For example, nuclear mag-
netic resonance (NMR) was developed during World War II and then used in 
physics. It was then applied in the fields of chemistry and biochemistry, and 
eventually in medicine where it’s called magnetic resonance imaging (MRI).

Finding Out Who Are Biophysicists
Biophysics isn’t a secret society, and the members are usually proud to talk 
about biophysics. Biophysical society exists in many nations, and the mem-
bers consist of biophysicists, biologists, chemists, physicists, and engineers. 
The people come from all over, such as universities, colleges, government 
research labs, and medical institutes to name a few. In addition, some univer-
sities even have a student biophysics society or club.

Organizations and societies for biophysics have been in existence for more 
than half a century. According to the Biophysical Society, a person can join 
many subgroups within their society. Remember, there is a lot of overlap 
between biophysics, biochemistry, and biology, so many of these subgroups 
can also be associated with biochemistry and biology. A few of these groups 
are as follows:

 ✓ Bioenergetics: People involved with bioenergetics are interested in how 
energy is used by biological systems. They look at processes that lead 
to the production and utilization of energy at the molecular and cellular 
level. Chapters 4, 9, and 11 examine energy at a closer level. 

 ✓ Biological fluorescence: People involved in biological fluorescence use 
the technique as a nondestructive method of analyzing molecules within 
biological organisms. Fluorescence is the ability of molecules to absorb 
electromagnetic radiation and then emit electromagnetic radiation 
(usually at a lower frequency). I discuss electromagnetic radiation and 
absorption in Chapters 16 and 17.

 ✓ Membrane biophysics: People involved in membrane biophysics are 
interested in the mechanisms of ion transport across biological mem-
branes. Chapters 9 and 11 look more closely at membranes.

 ✓ Membrane structure and assembly: People involved in membrane structure 
and assembly are interested in the biophysical properties of lipids, lipid 
assemblies, membrane proteins, and lipid-protein interactions relevant to 
membranes. Check out Chapter 11 for more insight into membranes.

 ✓ Nanoscale biophysics: People involved in nanoscale biophysics are 
interested in the study and control of biological, bio-compatible, or 
bio-inspired matter on the scale of atoms and molecules. Refer to 
Chapters 4, 6, 9, and 11 for more information. 



24 Part I: Getting Started with Biophysics 

 ✓ Permeation and transport: People involved in permeation and transport 
are interested in the study of biophysical mechanisms of permeation 
and transport of small molecules and biopolymers through cell mem-
branes. Refer to Chapters 9 and 11 for relevant information.

Answering the Hows of Biophysics
Many questions focused on the how exist in biophysics. For example, two 
are “How do I perform biophysics?” and “How do I become a biophysicist?” 
The first one comes with experience; you apply the methodologies and tech-
niques of physics to answer questions involving biological organisms. All sci-
ences apply the scientific method, which can be summarized by these four:

 ✓ Observations: You observe or become aware of some event or 
 phenomenon.

 ✓ Hypotheses: You propose theories to explain your observations.

 ✓ Predictions: Your theories have consequences, which you can predict.

 ✓ Experiments: You perform experiments to test the observations, 
hypotheses, and predictions. If any are found in error, then you have to 
repeat them. The experiments can be empirical in the lab or theoretical 
calculations.

The second question is interesting. Several universities do offer different 
levels of degrees in biophysics, ranging from bachelor of science all the way 
up to doctorates. At the undergraduate level, you have to take several phys-
ics, biology, chemistry, and biochemistry courses. At the graduate level 
you’ll do research in a specific area of biophysics, so make sure you do some 
background research and pick something you’re really interested in. 

In addition to the biophysics programs, you can also choose from medical 
physics and health physics programs. They usually require graduate school, so 
you can’t stop after four years, but who would want to stop doing biophysics?



Chapter 3

Speaking Physics: The Basics 
for All Areas of Biophysics

In This Chapter
▶ Defining physical dimensions with units
▶ Locating where you are in space and time with maps
▶ Using mathematics in physics

I 
f you want to know biophysics, then you need to know that many words in 
everyday speech come from physics. In physics though, these words have 

specific meanings that are blurred in everyday speech. For example, people 
have a tendency to interchange the words mass and weight to mean the same 
thing, but they’re very different things in physics. Physics also likes to use 
mathematics for a few reasons. 

This chapter provides an overview to the language of biophysics, including 
how your everyday words fit in the language. This chapter also explains the 
shorthand notation (mathematics) of biophysics, dealing specifically with the 
physics concepts that apply to all areas of biophysics.

 When working through problems, I suggest you also write your own dictionary 
of each mathematical symbol and what the symbol means. Doing so is espe-
cially helpful if you’re reading from more than one biophysics book (such as 
this book and your biophysics textbook). If you have a math phobia, then think 
of the math as shorthand notation for long-winded sentences or paragraphs. 

A detailed review of this math is beyond this book’s scope, so if you 
need a refresher on that math, I suggest you check out Physics I For 
Dummies, Physics II For Dummies, or Physics Workbook For Dummies all by 
Steven Holzner (John Wiley & Sons, Inc.).
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Stretching Out in All Physical 
Dimensions with Units

Physical entities in biophysics have dimensions in addition to a numerical 
value and possibly direction too. Dimension refers to a physical property. 
For example, suppose I write 3 + 4 = 7. This is a purely mathematical expres-
sion with no connection to anything physical. However, if I wrote 3 feet (0.91 
meters) + 4 feet (1.22 meters) = 7 feet (2.13 meters), then the physical dimen-
sion of length is associated with this expression. 

 Physics has five fundamental dimensions. In addition, a set of standards, 
called units, is required to make quantifiable use of these dimensions. The two 
common sets of standards are the

 ✓ Système International (SI): The SI system is based on the metric system. 
It’s a decimal system with a single standard for each physical dimension. 
SI units are the most common set of standards used in global commerce 
and in universities and government scientific labs today. Organizations 
such as the National Institute of Standards and Technology (NIST) are 
always refining the standards, making them more accurate. In the follow-
ing sections, I mention the standard for each of the physical dimensions.

 ✓ United States Customary Units: The United States commerce and general 
public use a set of units similar to the old British imperial units, both of 
which are based on the old English unit system. The standards for these 
units are now defined in terms of the SI unit standards. United States 
units are used in everyday life and in most of industry within the United 
States, although government labs and universities in the United States 
use the SI units. One of the roles of the National Institute of Standards 
and Technology (NIST) is to help industry within the United States to 
 voluntarily switch to the SI units so they’re more competitive globally.

 The five fundamental physical dimensions and their units are as follows:

 ✓ Length: Length is the perception of extension to the spatial universe. 
The standard is the meter, and it’s defined as the length light will travel 
in a vacuum during a time interval of 1/(299792458) of a second. The 
conversion between the set of units mentioned is 1 meter = 3.281 feet 
or 1 foot = 0.3048 meters. Length helps you know the location of objects 
and events around you. 

 ✓ Time: Time is the perception of a sequence to events. The standard unit 
in both systems is the second. The second is defined as 9,192,631,770 
times the period of the electromagnetic radiation emitted from 
Caesium-133.
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 ✓ Mass: Mass is an intrinsic property of the object to resist acceleration 
by forces. The standard unit is the kilogram in SI units and the slug in 
United States customary units, so 1 kilogram = 0.06854 slugs or 1 slug = 
14.59 kilograms. 

  Many people, even some “experts” are confused about mass and weight. 
In fact, I once saw a science book for 12- and 13-year-old children say 
mass was the weight of the object, which is wrong. Weight is the gravita-
tional force between the object and a very massive object like the Earth. 
Chapter 4 discusses weight in more detail. (By the way, the standard unit 
for force and weight is the newton in SI units and the pound in US custom-
ary units, so 1 newton = 0.2248 pounds or 1 pound = 4.448 newtons.) 

  Density is the mass of an object divided by the volume it occupies. This 
means that density has the dimension of mass divided by cubic length, 
and it’s not a fundamental dimension. In biophysics, when working with 
fluids and gasses, it’s more convenient to work with density rather than 
mass. The mathematical formula for density is as follows:

 ✓ Temperature: Temperature is a measure of the thermal (heat) energy per 
particle (matter or photon) in an object. The standard unit is the kelvin 
in SI units. A temperature of zero kelvin means the object has no thermal 
energy. In most situations the Celsius scale is used, with the only differ-
ence being at what temperature the zero degree is set. Another common 
unit used in the United States, outside of science, is the Fahrenheit. The 
conversions are as follows:

	 •	Z kelvin = Y degrees Celsius + 273.15. For example, 30 degrees 
Celsius + 273.15 = 303 kelvin

	 •	Y degrees Celsius = Z kelvin – 273.15.

	 •	X degrees Fahrenheit = (Y degrees Celsius) 9⁄5 + 32. For example, 
(30 degrees Celsius) 9⁄5 + 32 = 86 degrees Fahrenheit.

	 •	Y degrees Celsius = (X degrees Fahrenheit) 5⁄9 – 17.78. For example, 
(70 degrees Fahrenheit) 5⁄9 – 17.78 = 21 degrees Celsius.

 ✓ Charge: Charge is a property of objects that allows the object to interact 
with other objects through the electromagnetic force. The standard unit 
is the ampere in SI units, which is actually the unit for electric current. 
The unit for charge is the coulomb, which is equal to one ampere times 
one second.
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Looking back: The changing concept of mass
Mass seems to be an easy thing to understand, 
but the idea of what mass is has changed over 
the years. For example, Aristotle believed that 
heavier objects fell faster than light objects. 
Then about 2,000 years later, Sir Isaac Newton 
proposed two types of masses in his Principia:

 ✓ Inertial mass is a physical property of 
an object that allows the object to resist 
changes to its motion caused by external 
forces. For example, you would probably 
have no problem rolling a watermelon down 
your apartment hallway, but you would 
have trouble pushing a train car down the 
train tracks. The mass of the watermelon is 
much smaller than the train car’s mass.

 ✓ Gravitational mass is a physical property 
of an object that allows the object to be 

attracted to other objects that have gravi-
tational mass. For example, the attraction 
between the earth and the moon is from 
their gravitational mass.

In the early 20th century, Albert Einstein pro-
posed that mass is a form of energy and the 
two masses were equivalent. This proposal has 
been verified experimentally since then, and led 
to the idea of nuclear power — changing mass 
energy into other forms of energy. A half a cen-
tury later a particle was proposed and came 
to be known as the Higgs boson. This particle 
gave other elementary particles their mass and 
was experimentally verified to exist in 2012.

 Standards make communicating easier. For example, suppose I made my own 
set of units and told you my home is 1,000 klumpens from my office and it 
takes me 20 humilings to walk home. You’d have no clue what I was talking 
about. You still don’t know how far my home is from the office and how long it 
takes me to get home, but if I told you my home is 2 miles (3.2 kilometers) 
from the office, and it takes me 40 minutes to walk home, then you know 
exactly what I mean, which is why standards are needed. 

Grasping Scalars, Vectors,  
and Their Properties

Scalars and vectors are very important in biophysics because most physical 
quantity in biophysics is either a scalar or a vector. The following explains 
what the two are

 ✓ Scalar: A scalar is a quantity with only magnitude, but has no direction. 
An example is the temperature in a room. The temperature has a value 
of 68 degrees Fahrenheit (20 degrees Celsius), which is the magnitude. 
No matter whether you’re facing north or south or standing or lying 
down, the temperature is the same value. 
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 ✓ Vector: A vector is a quantity with both magnitude and direction. For 
vectors, the direction is as important as the magnitude, even though 
some books give the impression that the direction isn’t as important. 
For example, you throw a paper airplane at a friend sitting across the 
room. The velocity of the paper airplane is 3 feet per second (0.9144 
meters per second) southward, which is a vector. The 3 feet per second 
is the magnitude of the vector and southward is the direction.

 Vectors and scalars need a map. A map is called a frame of reference, and it 
gives the location of objects and events relative to some fixed point called the 
origin. These maps have a few extra things compared to what you’re used to 
seeing; the map must have a coordinate system that labels all points in space 
relative to the origin.

In other words, people use a frame of reference, such as global positioning 
satellites (GPS) compasses, Internet maps, GPS apps, paper road maps, and 
other means, when finding their location on the earth and figuring out how to 
get to their destination from their current location (origin). The coordinate 
system labels the location of everything relative to your current location, so 
you know the distance and direction to different locations.

Instead of using north, south, east, and west, I use the following mathematical 
shorthand for my directions called unit vectors:

As long as you remember that the letters with hats are just directions and 
nothing else, then you’ll be fine.

The following are some properties of scalars and vectors. Here I restrict my 
discussion to two-dimensional vectors for convenience (refer to Figure 3-1 for 
an example).

 

Figure 3-1: 
A two-

dimensional 
vector.
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 ✓ Describing a two-dimensional vector: You need two parameters to do 
so. A vector has both magnitude and direction, so one of the param-
eters is the vector’s magnitude and the other parameter is the angle the 
vector makes relative to the +x-axis. Mathematically, these two param-
eters are represented (A, θ).

 ✓ Writing two-dimensional vectors: You can do so in Cartesian compo-
nent form. Cartesian component form means any vector can be expressed 
as the sum of two vectors: one vector parallel to the x-axis and one 
vector parallel to the y-axis. Because the x-axis and y-axis give the direc-
tions, all you need are the magnitudes of the two vectors, which are rep-
resented by Ax and Ay. 

 ✓ Switching two-dimensional vectors between the two forms: If you 
know the magnitude and direction, then you can find the Cartesian 
components. Mathematically, the two Cartesian components are 
related to the magnitude and direction (A, θ) by the formulas: 

. If you know the Cartesian components  
of the vector, you can go the other way and find the magnitude and 
direction. Mathematically, the formulas are

  If you’re asked to calculate the angle when given the Cartesian compo-
nents (Ax, Ay), then you must be careful. Your calculator can’t tell which 
quadrant you’re in and it may give you the wrong answer. In the arctan 
formula for θ, your calculator assumes Ax is positive. For example, your 
calculator gives the same angle for the vectors (2,4), θ = arctan (4/2) = 
63.4 degrees, and (–2,–4), θ = arctan(–4/(–2)) = 63.4 degrees. The correct 
answer for the vector (–2,–4) is 180 + 63.4 = 243.4 degrees. You need to 
add an extra 180 degrees if Ax is negative.

 ✓ Expressing two-dimensional vectors in the two forms: You can write 
the vector as:

  which has both magnitude and direction.

 ✓ Adding and subtracting vectors: You can add or subtract only the 
Cartesian components of vectors that are parallel. For example, the up 
and down direction components of vectors add together, the north and 
south direction components of vectors add together, and the east and 
west direction components of vectors add together. Mathematically, it 
looks like:
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 ✓ Multiplying a scalar with a vector: The scalar has to multiply each com-
ponent of the vector. Mathematically:

  This expression shows that a scalar can change only the magnitude, 
which changes from A to c A, and not the direction of a vector. Note: A 
negative constant will change the direction of the vector by 180 degrees.

 ✓ Multiplying a vector with another vector (the dot product): The multi-
plication of a vector with another vector produces a scalar. Consider the 
two vectors shown in Figure 3-2. 

  The dot product of the two vectors in Figure 3-2 can be calculated using 
these formulas

  The first line of this formula is useful if you know the Cartesian compo-
nents of both vectors. The second line corresponds to the geometric 
method of calculating the dot product in Figure 3-2a. The third line cor-
responds to the geometric method of calculating the dot product illus-
trated in Figures 3-2b and 3-2c. This type of multiplication arises when 
calculating the work done on an object by external forces. 

 ✓ Multiplying a vector with another vector (the cross product): The mul-
tiplication of a vector with another vector produces a vector. Consider 
the two vectors shown in Figure 3-2a. The cross product is

  The formula shows how to calculate the cross product. 

  Use the first line of this formula if you know the Cartesian compo-
nents of both vectors.

  The second line corresponds to a geometric method of calculating 
the cross product and corresponds to Figure 3-2a.

  The third line corresponds to a geometric method of calculating 
the cross product and corresponds to Figures 3-2b and 3-2c. 

  The expressions in the formula give the magnitude and the direction. 
Notice that the direction is perpendicular to the plane formed by the 
two vectors. You can use the preceding formula to calculate the magni-
tude and determine the direction with the right-hand rule. 
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Figure 3-2: 
The dot 

product of 
two vec-
tors with 

the vectors 
in terms 
of their 

directional 
angle (a). 
The vec-
tors with 

one vector 
expressed 

in com-
ponents 

parallel and 
perpen-

dicular to 
the second 

vector (b) 
and (c). 

 

  The right-hand rule gives the direction of the cross product (resultant 
vector) by following these three steps:

 1. Place the wrist of your right hand on the origin in Figure 3-2a.

 2. Stretch your right hand and fingers in the direction of the first 
vector.

 3. Curl your fingers toward the second vector.

  If you’re double jointed, then you want to curl your fingers toward 
the palm of your hand.

  Note which way your thumb is pointing, perpendicular to the plane 
formed by the two vectors, and that is the direction of the resul-
tant vector. 

  Try the two vectors in Figure 3-2a. My thumb is pointing into the 
page.

  The cross product is the type of multiplication that arises when calculat-
ing the angular momentum of an object, the torque acting on an object 
by an external force, and the force acting on a charged particle moving 
through a magnetic field to mention a few applications.
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Defining Physical Quantities
Several words in everyday use have very specific meanings in biophysics. For 
example, you can’t use kilograms as a unit for weight or pound can’t be used 
as a unit of mass. 

These sections identify some important terms you need to know when study-
ing biophysics and give the mathematical notation for each physical quantity. 
Describing scientific experiments or situations in biophysics can get long-
winded if written out, so using mathematics as shorthand notation is helpful 
to keep things concise. Using mathematical shorthand also allows you to 
have a quantitative description and make predictions.

Plotting the position
The position is a vector with both magnitude and direction. It maps the loca-
tion of all objects and events relative to some reference point. Creating a map 
is important to know where objects are located in space. For example, you’re 
reading Biophysics For Dummies and suppose you’re holding it 1 foot (30.48 
centimeters) from your face. The magnitude of the position vector is 1 foot 
(30.48 centimeters), and in front of your face is the direction of the position 
vector. The mathematical description of the position is

The position is a very important concept in biomechanics, where you need to 
know where things and objects are located. Refer to the chapters in Part II for 
more information.

Rotating to an angular position
The angular position is a vector with both magnitude and direction. The angu-
lar position vector gives the angle between the object (or event) relative to 
some reference direction (zero radians). It maps the location of all the objects 
and events lying in a circle. The angular position has units of radians instead 
of degrees. The direction of the angular position is perpendicular to the plane 
of the circle. The reason for this choice of the direction will make more sense 
later. (See the later section on angular velocity for more information.)
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 To change between radians and degrees: π radians equals 180 degrees. 
Calculators usually have a function key that allows you to switch between the 
two. Also, you can set your calculator to work in either radians or in degrees. 
The following sections are related to position and angular position:

Changing position: Displacement
Displacement is the change in position: final position minus the initial posi-
tion. The displacement is a vector with both magnitude and direction. For 
example, the displacement of my head as I stand up from my chair is 2 feet 
(61 centimeters) upwards (unless I hit my head on the overhead light again).

The mathematical description of the displacement is

Figure 3-3 shows an example of the displacement of an object from its initial 
position to its final position. Notice the displacement vector doesn’t care what 
path the object had taken, just the location of the initial and final positions.

 

Figure 3-3: 
The dis-

placement 
of a moving 

object.
 

Altering the angle: Angular displacement 
Angular displacement is the change in angle: the final angular position minus 
the initial angular position. The angular displacement is a vector with the 
direction perpendicular to the plane of the circular rotation. The angular 
displacement (Δθ) is positive if the final angular position is counter-clockwise 
relative to the initial angular position, and it’s negative if the final angular 
position is clockwise relative to the initial angular position.
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The mathematical description of the angular displacement for the motion in 
Figure 3-3 is

If the object is moving in a circle, then the distance traveled along the circle 
by the object is Δs = r Δθ, where r is the radius of the circle.

Going the distance 
Distance is the length of a route and is a scalar. This is what the odometer in 
a car measures. For example, I go to the car dealership and take a car for a 
test drive. When I get back from the test drive, I park in the exact same spot 
I started from. My displacement is zero because my final position equals my 
initial position, but the distance traveled by the car isn’t zero and shows on 
the odometer. The distance doesn’t equal the displacement.

 The difference between distance and displacement is very important, so the 
two words can’t be exchanged in casual conversation anymore. 

Timing the change: Velocity
Velocity, also referred to as instantaneous velocity, is the time rate of change 
of the position, which means it measures how fast the position is changing 
at any given moment in time. Change of the position vector means a change 
in the magnitude of the position, a change in the direction of the position, 
or both.

 The velocity is a vector because it’s measuring how the position is changing, 
which is a vector. For example, you’re driving a sports car 200 miles per hour 
(322 kilometers per hour), which is the magnitude, south on the freeway, 
which is the direction. 

The mathematical shorthand notation for the velocity is

Figure 3-4 describes the motion of a person bouncing on a trampoline. 
Figure 3-4a shows the position versus time graph of the person. The slope 
(which is the rise divided by the run) of the curve at the point p is equal 
to the velocity of the person at that time. If you calculate the slope of the 
curve at each point in Figure 3-4a and plot those values, you would obtain 
Figure 3-4b, which is the velocity versus time graph of the person. 
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You’re probably wondering whether you can do the calculation in reverse. 
The answer is yes. If you calculate the area between the velocity versus time 
curve and the horizontal axis (time axis) from some initial time to some final 
time, this area is equal to the displacement during this elapsed time (final 
time minus initial time). The shaded area of Figure 3-4b illustrates the area. 
Remember that the area above the horizontal (time) axis is positive whereas 
the area below the horizontal (time) axis is negative. Figure 3-4b shows a 
negative area from time tinitial to tfinal.

 

Figure 3-4: 
The position 
versus time 

graph (a). 
The velocity 
versus time 

curve (b).
 

 If you love calculus or your biophysics course is calculus-based, then this is 
for you. In calculus the relationships between velocity, position, and displace-
ment are

Scoping out speed
Speed is distance the object travels divided by the elapsed time it takes the 
object to move from the initial position to the final position. Speed depends 
on the path taken just like the distance. Another way to look at the speed: it 
is the magnitude of the instantaneous velocity vector.

Focusing on angular velocity
Angular velocity, also referred to as instantaneous angular velocity, is the time 
rate of change of the angular position, which means it measures how fast the 
angular position is changing at any given moment in time. Angular velocity is 
a vector with both magnitude and direction. The magnitude has units of radi-
ans per second where π radians = 180 degrees.
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The mathematical description of angular velocity is

In the case when the object is moving in a circle, the speed of the object is 
related to the magnitude of the angular velocity, v = rω, where r is the radius 
of the circle.

Figure 3-4 represents the relationships for linear motion. This figure is also 
applicable to angular motion. In Figure 3-4, replace the position, x, with the 
angular position, θ, and replace velocity, vx, with angular velocity, ω.

Figure 3-4a becomes the angular position versus time graph. The slope of the 
curve at the point p is equal to the angular velocity. Figure 3-4b is the angu-
lar velocity versus time graph (see the shaded area in Figure 3-4b). The area 
between the angular velocity versus time curve and the horizontal axis (time 
axis) from some initial time to some final time, it’s equal to the angular dis-
placement during this elapsed time. 

 Angular velocity points perpendicular to the plane the object is rotating in. 
In many biophysical situations the angular velocity is one-dimensional. An 
example where that isn’t true is in diving when a diver does a forward roll 
combined with a twist. The diver has two axes of rotation when he is spinning 
around as he falls from the platform to the pool.

 For you calculus lovers, check out this formula. In calculus the relationships 
between angular velocity, angular position, and angular displacement are as 
follows:

Examining the direction  
of angular  variables
The direction of angular variables is perpendicular to the plane of rotation. 
Suppose you’re sitting on a wooden horse on a carousel and it’s traveling in 
a circle at 0.2 radians per second. (You have to make sacrifices when you’re 
studying biophysics.) At one moment you’re traveling toward the north, then 
toward the west, then toward the south, then toward the east, and on and on. 
So how do you pick a direction in the plane of rotation? The direction is con-
stantly changing. The only direction not changing while you spin around is 
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up (and down), which is the direction perpendicular to the plane. Therefore, 
you would say your angular velocity is 0.2 radians per second up.

The following sections are related to the velocities.

Figuring out average velocity
The average velocity is defined as the displacement of the object divided by 
the elapsed time it takes the object to move from the initial position to the 
final position. 

 Many people are more comfortable thinking in terms of miles per hour or 
kilometers per hour. In biophysics the use of meters per second or feet per 
second is conventional (and convenient in most situations). The conversions 
between the different units are

 ✓ 1 foot per second = 0.3048 meters per second = 0.6820 miles per hour = 
1.097 kilometers per hour

 ✓ 1 meter per second = 3.281 feet per second = 2.237 miles per hour = 3.600 
kilometers per hour

The mathematical description for average velocity is

The bar above the arrow in this equation indicates this is the average veloc-
ity and not the (instantaneous) velocity.

Uncovering average angular velocity
The average angular velocity is the angular displacement of the object divided 
by the elapsed time. The mathematical description for the average angular 
velocity is

Measuring acceleration
Acceleration, also referred to as instantaneous acceleration, is the time rate of 
change of the velocity and measures how fast the magnitude and or the direc-
tion of the velocity is changing at any given moment in time. 
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The mathematical description of acceleration is

Figures 3-4 and 3-5 represent with the motion of a person bouncing on a tram-
poline. Figure 3-4b shows the velocity versus time graph of the person. The 
slope of the curve at the point P is equal to the acceleration of the person at 
that time. If you calculate the slope of the curve at each point in Figure 3-4b 
and plot those values, you’d obtain Figure 3-5, which is the acceleration 
versus time graph of the person. 

 

Figure 3-5:  
The accel-

eration 
versus time 

graph.
 

In Figure 3-5, if you calculate the area between the acceleration versus time 
curve and the horizontal axis (time axis) from some initial time to some final 
time, it’s equal to the change in the velocity. The shaded region in Figure 3-5 
represents it. 

 For you calculus lovers, here is the relationship between acceleration and 
velocity:

Comprehending angular acceleration
Angular acceleration, also called instantaneous angular acceleration, is the 
time rate of change of the angular velocity and measures how fast the angular 
velocity changes at any given moment in time. The angular acceleration is a 
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vector with both magnitude and direction perpendicular to the plane of rota-
tion. The units of the angular acceleration are radians per second squared. 
The mathematical description of angular acceleration is

The graphical representation between the angular acceleration and the 
angular velocity is exactly the same as the graphical representation between 
acceleration and velocity. You can use Figures 3-4 and 3-5 as an example of 
how the angular variables are related.

In the case of an object moving in a circle’s radius, you can split the accelera-
tion into two parts:

 ✓ The radial acceleration is a measure of the change in the direction of the 
object’s velocity. Its direction is toward the center of the circle.

 ✓ The tangential acceleration is a measure of the change in the magnitude 
of the object’s velocity. Its direction is the same as the velocity (or 
opposite).

The mathematical descriptions of the magnitudes of the radial acceleration (ar) 
and tangential acceleration (aT) are

 Here is more calculus for the lovers of fine mathematics. The relationships 
between angular velocity and angular acceleration are as follows:

Grasping average acceleration
The average acceleration is the change in an object’s velocity divided by the 
elapsed time it takes the object’s velocity to change from the initial velocity 
to the final velocity. The average acceleration is a vector with both magnitude 
and direction. The mathematical description for average acceleration is

For example, a very fast acceleration for any animal on rough ground is 
about 1 g (g is the acceleration due to gravity, which is 32.2 feet per second 
squared (9.81 meters per second squared)). To help give you a feel for what 
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1 g is, consider a car going from 0 to 100 miles per hour (161 kilometers per 
hour = 147 feet per second = 44.7 meters per second) in three seconds, the 
average acceleration is 48.9 feet per second squared (14.9 meters per second 
squared). This car has an average acceleration of 1.5 g’s, which is fast. 

Understanding average angular acceleration
The average angular acceleration is the change in the angular velocity of the 
object divided by the elapsed time. The average angular acceleration is a 
vector with both magnitude and the direction that is perpendicular to the 
plane of rotation.

The mathematical description for average angular acceleration is

Describing momentum
Momentum is the quantity that describes the motion of the object. Sir Isaac 
Newton determined that the momentum equals the mass times the velocity. 
The mathematical description for momentum is .

Interacting with others: Force
A force is how an object interacts with other objects. Forces allow you to 
quantify how the surroundings interact with an object and attempts to 
change the object’s momentum. If an object didn’t create forces on other 
objects, then the other objects wouldn’t know it existed.

For example, consider a person singing (screaming) a song in the shower. 
Her voice produces a sound wave (noise) that propagates through space and 
hits your eardrum. The sound wave produces a force on the eardrum that 
causes it to vibrate and you hear the sound (noise).

The mathematical description for force is .

You can recognize specific forces as an uppercase F with an arrow and a sub-
script. The subscript tells you what type of force it is. For example, the sub-
script g here refers to the gravitational force and weight. Chapter 4 discusses 
the different forces. 
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Spreading force over an area: Pressure
Pressure is the force divided by the cross-sectional area. The cross-sectional 
area is the area over which the force is spread. For example, suppose you’re 
going to push open the door. If you place your fingertip against the door and 
push, then the cross-sectional area is the area of your fingertip. But if you put 
your open hand against the door and push, then the cross- sectional area is 
the area of your hand. When the force is spread over an area, it’s more con-
venient to talk about the pressure instead of the force.

The mathematical description for pressure is

Notice the superscript on the symbol, P, for pressure. I use a superscript for 
two important reasons:

 ✓ It helps distinguish pressure from the power, which has the symbol P 
as well.

 ✓ There are two types of pressure

	 •	Absolute pressure measures the force per unit area.

	 •	Gauge pressure is equal to the absolute pressure minus the atmo-
spheric pressure. 

  I extensively use absolute and gauge pressures in Chapters 9 to 15.

Going ’round and ’round: Axis of rotation
The axis of rotation is the axis the object is rotating around. For example, the 
axis of rotation of the earth is the line from the South Pole to the North Pole. 
If you live on the equator, then you’re making a big circle every 24 hours at 
an angular speed of 7.29 × 10–5 radians per second, whereas if you’re stand-
ing at the South Pole, your angular speed is the same, but your speed is zero. 
This angular speed seems slow, but if you’re at the equator, this corresponds 
to a speed of 1,040 miles per hour (1,674 kilometers per hour).
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Distributing mass: Moment of inertia
The moment of inertia depends on how the mass of the object is distributed 
around the axis of rotation. It’s proportional to the mass of the object and the 
radius of the object squared. In other words, it’s a physical property of the 
object that allows the object to resist change to its angular motion caused by 
external torques. I discuss torque in the “Tackling torque” section later in this 
chapter.

For example, you would probably have no problem lifting a child and spin-
ning the child in a circle around your body, but you would probably have 
trouble lifting a sumo wrestler and spinning the wrestler in a circle because 
of the large mass. However, if you place the sumo wrestler at the center of a 
carousel, you could probably spin the wrestler because most of the mass is 
at the axis of rotation.

 The formal definition of the moment of inertia involves calculus. Assume my 
axis of rotation is parallel to the z-axis then:

Here dm is the amount of mass located at the point (x, y, z). ρ is the mass 
density (mass per unit volume).

Quantifying motion: Angular momentum
The angular momentum is the quantity that describes an object’s rotational 
motion. The angular momentum equals the momentum of inertia times the 
angular velocity. The mathematical description for angular momentum is

The first expression for the angular momentum is for an object with a 
moment of inertia I, while the second expression is the magnitude for a par-
ticle (small object). The vector  is the shortest displacement vector from the 
axis of rotation to the particle and the vector  is the momentum of the par-
ticle. For example, the earth is very large with billions of people on it; how-
ever, compared to the size of the solar system, the earth is a speck of dust. 
You would use the first line to calculate the earth’s angular momentum from 
spinning around its axis each day and the second line to calculate the angular 
momentum of the earth as it rotates around the sun.
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Tackling torque
A torque is the rotational analogue of a force. It quantifies how the surround-
ings attempt to change the object’s angular momentum. The torque is equal 
to the displacement from the axis of rotation to the object times the force 
acting on the object (cross product). 

The mathematical description for the magnitude of the torque is

Torque uses the symbol N. You’re probably wondering why. Some books use 
the Greek letter tau (τ) because it looks like the Latin letter T and t for torque. 
However, t is used for time and T is used for half-life, period, and tempera-
ture. I use the letter t (for time) and T a lot in this book, so here I use N for 
torque. Refer to the section “Grasping Scalars, Vectors, and Their Properties” 
earlier in this chapter. 

Working with work
Work is tied more closely to energy, but it’s also related to force. You use 
energy to do work on an object. The work done on an object is related to the 
interaction (force) on the object. 

Forces can possibly do work on moving objects by changing the object’s 
motion. The work done on an object by a force is equal to the force times the 
displacement parallel to the force (dot product).

The mathematical description of the work done is

I have written the work as ΔW instead of the usual W because the amount 
of work done changes depending on the force and the displacement of the 
object.

 The force may change over the path followed by the object (called the trajec-
tory), in which case calculus must be used and the work is:
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Perusing power
Power is a measure of how fast a force is doing work on an object. Power is 
equal to the work divided by the elapsed time. The mathematical description is

This expression for the power takes the total work done divided by the 
elapsed time, which is an average, so this expression for the power is some-
times referred to as the average power. Note that the expression uses the 
average velocity, which is the displacement divided by the elapsed time.

 You can calculate the instantaneous power, using the calculus expression for 
the work done. The instantaneous power is

Eyeing energy
Energy is a physical dimension that can’t be directly observed; however, 
changes in the energy can be measured (or observed). Biophysics and other 
sciences discuss many different forms of energy, but only five fundamental 
forms of energy exist. The five fundamental energies and two other energies 
I discuss in this book are

 ✓ Heat energy: Heat is the energy associated with the random disorga-
nized motion of atoms and molecules. Chapter 10 provides the math-
ematical formula for heat energy.

 ✓ Kinetic energy: The kinetic energy is the energy associated with an 
object’s motion. The kinetic energy is equal to half the mass times the 
magnitude of the velocity squared. The mathematical description for 
kinetic energy is

 ✓ Mass energy: An object’s mass is a form of energy, which can be con-
verted to other forms of energy. The mass energy equals the mass times 
the speed of light squared.
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 ✓ Potential energy: Potential energy is associated with a conservative 
force. It’s a measure of the potential of a force to do work on an object. 
I discuss several different potential energies in this book and explain 
each one in depth when I mention it. 

 ✓ Radiation energy: Radiation energy is the energy within electromagnetic 
radiation such as light and X-rays. The energy of a photon is equal to the 
frequency of the electromagnetic radiation times Planck’s constant.

 ✓ Mechanical energy: The mechanical energy of a system is the sum of all 
the kinetic energies and potential energies of all the objects contained 
within the biological system.

 ✓ Total energy: The total energy of the system is the sum of all the heat 
energy, kinetic energies, mass energies, potential energies, and radiation 
energy.



Part II
Calling the Mechanics to Fix 
Your Bio — Biomechanics

 Visit www.dummies.com/extras/biophysics for more great Dummies 
 content online.
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In this part . . .
 ✓ Understand the laws of physics relevant to biomechanics so 

you can use the ideals of forces and motion to study many  
biophysical systems.

 ✓ Familiarize yourself with rigid bodies, in particular combined 
with static equilibrium, and all the related principles. 

 ✓ Find out about energy, work, and power, and the many  
biomechanical applications when these concepts are  
combined with conservation laws.

 ✓ Discover many physical principles that have applications in 
many fields of science, find out the limits on how large animals 
and plants can get, and visualize the human body as a 
machine.

 ✓ Grasp the dynamics and related physical properties of  
biomechanics to improve performances.

 ✓ See how kinematics, the study of motion, plays an important 
role in biomechanics, which applies to many areas from sports 
to bioengineering.



Chapter 4

Bullying Biomechanics with  
the Laws of Physics

In This Chapter 
▶ Identifying Newton’s three laws
▶ Working with conservative and nonconservative forces
▶ Plugging into the power
▶ Conserving all physics
▶ Bouncing bodies

N 
othing in the universe can break the laws of physics. In this chapter 
I introduce the fundamental laws of physics and explain how they’re 

relevant to biological systems and biomechanics. Biomechanics is the study 
of forces acting on biological organisms. Biomechanics is relevant from the 
study of ions moving within an organism to the study of the motion of animals.

This chapter focuses on Newton’s three laws of motion as well as the  
work-energy concept. These laws describe how objects move, based on  
their interactions with their surroundings. This chapter also describes  
conservative forces such as gravity. A conservative force will work against 
you in one direction, but going back in the opposite direction, the force will 
work with you. I also discuss nonconservative forces, such as friction, and 
explain work, power, and energy from a biophysics perspective. 

Recognizing That the Force Is Always 
with You: Newton’s Laws

The trick to Newton’s laws is to remember and understand the words –– free 
your words and your math will follow. The three Newton’s laws are none 
other than a list of three commonsense sayings. (I use commonsense loosely 
in this case.) Unfortunately, this version of common sense isn’t natural for 
many humans. 
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For example, it took thousands of years before people realized and accepted 
the fact that the earth wasn’t flat or the earth moved around the sun and 
not the sun moving around the earth. Being able to appreciate these sayings 
takes time, so don’t worry. I trust that you’ll need less than thousands of 
years. In these sections I state the laws and explain what each law means.

Moving with inertia — Newton’s  
first law of motion
Newton’s first law of motion, the law of inertia, says that every object continues 
in a state of rest, or of uniform motion in a straight line, unless it’s compelled 
to change that state by forces acting on it. Okay, that’s not too bad; it’s only 
one sentence after all. However, peel back the layers because many concepts 
and ideas are hidden in this one sentence:

 ✓ Rest: An object at rest stays at the same position with zero velocity and 
zero acceleration. (Velocity tells you how fast the position is changing, 
and the acceleration tells you how fast the velocity is changing.) 

 ✓ Uniform motion: An object moving with uniform motion has no  
acceleration, which means the magnitude and direction of the velocity 
don’t change. The object moves in a straight line at constant speed.

 ✓ Forces: Forces is how to describe objects interacting with other objects; 
this interaction causes accelerations. For example, I smash a tennis ball 
with the racket, so you can say the racket applied a force to the tennis 
ball, causing it to accelerate.

 Newton’s law of inertia tells you that an object likes to be at rest or in uni-
form motion. The only way to change an object’s uniform motion (or rest) is 
through interactions with its surroundings (force). An object can’t change its 
motion by itself; it needs to interact with its surroundings.

Stopping requires force — Newton’s 
second law of motion
Newton’s second law is a tad more complex, so I divide it into two sections. 
This law is especially important and used throughout biophysics, engineering, 
and physics. Become one with the law and embrace it. The first section is 
the original law of acceleration and the second subsection is Newton’s law of 
acceleration adapted for rotating systems.
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Going straight — the original law
Newton’s second law of motion, the law of acceleration, means the time rate of 
change of the momentum of an object is equal to the net external force acting 
on the object from the surroundings. 

 Here are the concepts in this law, broken down in plain English:

 ✓ External: The external in Newton’s law means only forces from sources 
that aren’t the objects. 

 ✓ Net: Net means you have to consider all the forces from all the external 
sources. Newton’s law states that this net external force is how fast the 
momentum of the object will change. 

  Suppose Corby is running down the field with the football. Licking his 
lips while running is an internal force and it won’t change his momentum. 
However if Dean from the other team runs into Corby, then this collision 
is an external force on Corby, and it will cause his momentum to change.

 ✓ Net external force: The net external force is the vector sum of all the 
forces from the surroundings acting on the object. The mathematical 
description for net external force is as follows:

Figure 4-1 demonstrates Newton’s law of acceleration. Figure 4-1a shows a 
momentum versus time graph. The slope of the graph at a single point P is 
equal to the net external force acting on the object at that moment of time. If 
you calculate the slope of the curve between two points, the slope is equal to 
the average net external force acting on the object over that time interval. 

Figure 4-1b shows a net force versus time graph. The area between the curve 
and the horizontal axis (the shaded region) is equal to the change in the 
momentum over that interval of time.

 If you want to work some advanced math, the calculus definition of Newton’s 
second law of motion, the law of acceleration, is as follows:

 In other words, the net force tells you how fast the momentum is chang-
ing, and the momentum of an object is equal to the object’s mass times the 
object’s velocity.
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Figure 4-1:  
A momen-

tum versus 
time 

graph (a).  
A net exter-

nal force 
versus time 

graph (b).
 

If the mass is a constant, then the time rate of change of the momentum is 
equal to the mass times the time rate of change of the velocity. Acceleration 
by definition is the time rate of change of the velocity. Therefore, the mass 
times the acceleration equals the net external force acting on the object 
when the mass is a constant. The mathematical description of Newton’s 
second law of motion, the law of acceleration, is

Going around the bend — circular motion
The version of Newton’s second law in the preceding section is the starting 
point, but it can be modified for when an object is going around in a circle. 
When an object is going in a circle, the torque is what’s interesting. Torque 
is the rotational analogue of a force. It tries to make the object spin faster or 
slower.

Newton’s second law of motion, the law of angular acceleration, states the 
time rate of change of the angular momentum of an object is equal to the net 
external torque acting on the object from the surroundings. In other words, 
the net external torque acting on an object is a measure of how fast the 
angular momentum will change. Take Figure 4-1 and replace momentum with 
angular momentum and net force with net torque to get an idea how this law 
looks. 
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  is the symbol for the angular momentum of the object, which is equal to the 
moment of inertia (I) times the angular velocity ( ). Don’t forget that the  
angular momentum and the angular velocity are vectors. If the moment of 
inertia is a constant, then the moment of inertia (I) times the angular accelera-
tion ( ) equals the net external torque acting on the object. The mathematical 
description is

Newton’s second law gives a relationship between the angular acceleration 
of an object and the net external torque acting on the object. The net external 
torque is the vector sum of all the torques produced by all the external forces 
from the surroundings acting on the object. The mathematical description is

 If you’re keen to do more math (who isn’t?), the calculus definition of 
Newton’s law of angular acceleration is as follows:

Figure 4-2 provides a graphical interpretation of Newton’s law of accelera-
tion. Figure 4-2a shows the velocity versus time graph, demonstrating the 
connection to the net force through Newton’s second law. The slope of the 
graph at a single point is equal to the acceleration, which is equal to the net 
external force acting on the object divided by the mass (m), which is a con-
stant. Figure 4-2b shows the graph of angular velocity versus time graph for a 
rotational system with a constant moment of inertia, showing the connection 
to the net torque through Newton’s second law. The slope of the graph at 
a single point is equal to the angular acceleration, which is equal to the net 
external torque acting on the object divided by the moment of inertia (I).

 The unit for torque in SI units is newton-meter and not joule even though 
both are a kilogram-meter squared divided by second squared in fundamen-
tal units. The reason you use joule is because it’s associated with work and 
energy, whereas newton is the unit of force and torque is the rotational ana-
logue of a force, so newton-meter is used.
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Figure 4-2: 
A velocity 

versus time 
graph (a). 

An angular 
velocity 

versus time 
graph (b).

 

You may be thinking how Newton’s first two laws relate to biophysics and 
biomechanics in particular. For example, suppose you’re hired to analyze 
the motion of Fred, a discus thrower, and the discus. To begin, according 
to Newton’s first law of motion, the law of inertia, the discus will travel in a 
straight line unless Fred applies a force to the discus to keep it moving in a 
circle. Fred must also apply a torque to the discus so the discus spins faster 
according to Newton’s second law of motion, the law of acceleration. After 
spinning around, Fred releases the discus, and according to Newton’s first 
law of motion, the law of inertia, the discus now wants to travel in a straight 
line. The discus’s angular momentum now becomes linear momentum as 
the discus flies off in a straight line. The discus won’t travel in a straight line 
through the air because of gravity. This force causes the discus to have an 
acceleration toward the earth.

Interacting takes two — forces and 
Newton’s third law of motion
This section examines Newton’s third law of motion, which looks at how two 
objects interact. I introduce two forces that are common when two objects 
interact: the contact force and the normal force. (No abnormal force exists in 
nature.) These sections examine this law more closely.
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Acting and reacting to Newton’s third law of motion
Newton’s third law of motion, the law of action and reaction, states if an object 
exerts a force on a second object, then the second object exerts a force on 
the first object that is equal in magnitude but in the opposite direction. This 
law of motion is different from Newton’s first two laws. This law describes 
what happens when two objects interact with each other. 

This law isn’t obvious. Consider the following example. I ask Gemma to clasp 
hands with a sumo wrestler and ask her to push as hard as she can against 
the sumo wrestler’s hands. Neither Gemma nor the sumo wrestler is moving, 
even though they’re pushing against each other. Most people say the wres-
tler is pushing with more force, which is incorrect. Newton’s third law, the 
law of action and reaction, states the magnitude of the force produced by the 
wrestler on Gemma’s hands is equal to the magnitude of the force applied by 
Gemma on the wrestler’s hands. 

To help you see this, place a piece of paper between Gemma’s hands and the 
wrestler’s hands, and have them push. The paper doesn’t move, so its veloc-
ity is zero and its acceleration is zero. Newton’s second law of motion, the 
law of acceleration, tells you the net external force must be zero because the 
acceleration is zero. Gemma is pushing on the paper one way and the wres-
tler is pushing on the paper in the opposite direction, and the forces must 
cancel, so the forces are equal in magnitude and in the opposite directions.

Bumping with the contact force
The contact force is the force between two objects when they’re in contact. 
Contact forces are everywhere and play an important role in biophysics. 
Look around you and everywhere you see two objects touching there is a 
contact force. For example, you hold your biophysics book with your hands, 
joggers push off the ground, people hold hands, a virus attaches to a cell, or 
a molecule attaches to an enzyme. Even your own body has many contact 
forces. The contact forces arise in the ligaments connecting one bone to 
another, tendons connecting muscles to bone, and the cartilage connecting 
the bones in the joints. In biophysics, the fundamental force that produces 
the contact force is the electromagnetic force between the protons and 
 electrons within the two objects.

You may be wondering about gravity. You’re in contact with the earth right 
now (unless you like to read your biophysics book while skydiving), but 
gravity isn’t a contact force because it pulls on you independent of whether 
you’re touching the ground or skydiving. On the other hand, the previous 
example where Gemma is trying to push the sumo wrestler over is a contact 
force. The force between Gemma’s hands and the sumo wrestler’s hands 
stops as soon as Gemma breaks contact.
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Pointing in a specific direction — the  
normal force and tangential force
A contact force that is present in many biomechanical situations is the con-
tact between an object and a surface. In many applications of biomechanics, 
splitting the contact force with a surface into its components is convenient. 
The two components are

 ✓ A normal force perpendicular to the surface: The normal force is the 
part of this contact force that points perpendicular to the surface. It pre-
vents gravity and other forces from sucking the object into the (surface) 
ground. For example, if Harry jumps off the top of his kitchen table, grav-
ity accelerates him downwards until he hits the ground, and then the 
normal force produced by contact with the ground stops his downward 
motion. Remember: Normal means perpendicular.

 ✓ A tangential force parallel to the surface: The tangential force plays 
an important role in biomechanics as well, from everyday activities to 
sports. For example, runners, sprinters, joggers, and power walkers 
push the ground backwards, and according to Newton’s third law of 
motion, the law of action and reaction, the ground is pushing them for-
ward. Yes, everyone walks by using the reaction force from the ground. 
The tangential force in the case of these athletes is static friction between 
their feet and the ground, which allows them to move forward.

Meeting Conservative Forces —  
No Tea Party Folks Here

A conservative force is path independent, which means that if the force does 
work on an object moving it from some point to another, then you must do 
the same amount of work against that force to move it back to the original 
point. For example, if Isha’s biophysics book slips out of her hands, gravity 
will pull the book downwards and it will fall onto the table. Isha has to reach 
down and lift the book up against gravity to bring it back to its starting  
position. 

The force does work, and this work can be associated with a change in 
energy. Potential energy is the potential of a conservative force to do work on 
an object. Every conservative force has a corresponding potential energy.  
To continue Isha’s example, the book has a large amount of gravitational 
potential when she is holding it, but the book loses potential energy as  
gravity does work pulling the book down toward the table. The book regains 
its gravitational potential energy as Isha lifts it back up.
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These sections discuss two conservative forces: the force of a spring 
(Hooke’s law) and the force of gravity (Newton’s universal law of gravity) 
along with their corresponding potential energies. 

Hooking into Hooke’s Law
Hooke’s law describes the force of a spring. If you were to take a spring 
and compress it, the spring would push back against you. Also, if you pull 
the spring and stretch it, it would fight back and pull in the opposite direc-
tion. Springs like to be a specific length and don’t want to be compressed 
or stretched. 

 The force of a spring equals the displacement times the spring constant. The 
force is in the direction opposite to the displacement from equilibrium. The 
mathematical expression for the force in Hooke’s law is 

 is the force applied to an object by the spring, kH is the spring constant,  is 
the position of the object in contact with the spring, and  is the equilibrium 
position, which is where the object needs to be for the spring to produce no 
force on the object. Hooke’s spring constant is a measure of the spring’s stiff-
ness. In other words, the larger the Hooke’s spring constant becomes, the 
more force is required to move it from its equilibrium position.

Meanwhile, the potential energy equals the magnitude of the displacement 
squared times half the spring constant. The mathematical expression for the 
potential energy in Hooke’s law is

In this formula, EP,H is the potential energy of the spring, kH is the spring con-
stant,  is the position of the object in contact with the spring, and  is the 
equilibrium position, which is where the object needs to be for the spring to 
produce no force on the object. 

 Most scales that measure weight work on a spring. When you step on the 
scale, your weight compresses the scale and the spring inside the scale sup-
plies a countering force (this is Newton’s third law of motion, the law of action 
and reaction). This countering force is what you measure on the scale.
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For example, suppose James weighs 150 pounds (667 newtons) and the bath-
room scale compresses 0.25 inches (0.64 centimeters) when he stands on it. 
What is the value of the spring constant? What is the potential energy stored 
in the spring while he is standing on it?

You can find the spring constant from Hooke’s law. You know the force of the 
spring equals the force of James’s weight. (The acceleration is zero, so the 
net force is zero from Newton’s second law, the law of acceleration.) You also 
know the displacement, so Hooke’s spring constant is

Now that you have Hooke’s spring constant, you can find the potential energy:

Getting heavy with the effect of gravity
Weight is the force of gravity between an object and the earth, and gravity is 
the force that causes you to hit the floor when you fall out of bed. Gravity 
keeps you stuck to the earth so you don’t fly off into space. The force of 
gravity keeps the earth orbiting the sun. The force of gravity is an impor-
tant force in some biophysical situations, such as cliff diving and skydiving. 
Also, weightlessness in space is very hard on the human body; your body is 
designed to live in a world with gravity.

 The force of gravity is an attractive force between two objects with mass. The 
force is equal to Newton’s gravitational constant times the mass of the first 
object times the mass of the second object divided by the distance between 
the objects squared. Newton’s gravitational constant is G = 3.44 × 10–8 pound 
feet squared/slug squared (6.67 × 10–11 newton meters squared/kilogram 
squared). The mathematical expression for the force acting on the second 
mass (M2) is

In this formula,  is the position of the first mass (M1) and  is the position 
of the second mass (M2). I include the force acting on the first mass because 
Newton’s third law of motion, the law of action and reaction, states that the 
force on mass 1 is equal and opposite.
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The force of gravity is a conservative force, so the work done by grav-
ity can be associated with a change in the potential energy. The potential 
energy of gravity equals Newton’s gravitational constant times the mass of 
the first object times the mass of the second object divided by the distance 
between the objects. Newton’s gravitational constant is G = 3.44 × 10–8 foot 
pounds squared/slug squared (6.67 × 10–11 newton meters squared/kilogram 
squared). The mathematical expression for the potential energy is

For example, suppose Merlin with a mass of 5.5 slugs (80.2 kilograms) is 
dancing with Kaitlin whose mass is 4.5 slugs (65.7 kilograms), and they’re 
separated by a distance of 1 foot (0.305 meters). The force of gravitational 
attraction between them is pulling them towards each other, so what is the 
magnitude of this force?

You can find the answer by substituting these numbers into the equation for 
the gravitational force:

This is an extremely small force, so in biophysics, you can ignore the gravita-
tional force between the objects except with the earth, which has a very large 
mass. The gravitational force between an object and the earth is called the 
weight of the object. At the earth’s surface, the weight of an object is

In this formula, g is the magnitude of acceleration due to gravity and is 
equal to G times the mass of the earth divided by the radius of the earth 
squared. The direction of the force is straight down toward the center of the 
earth. The average value of g is 32.2 feet per second squared (9.81 meters per 
second squared).

The gravitational potential energy close to the surface of the earth is

The magnitude of the weight of Merlin is 177 pounds (788 newtons) and of 
Kaitlin is 145 pounds (645 newtons), by using mg, which means the force of 
attraction between them (8.51 x 10–7 pounds = 3.79 × 10–6 newtons) is about a 
billion times smaller than their weights. 
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Knowing the difference between weight and mass
Mass is a physical property of an object; it 
depends only on the object. Weight is the 
gravitational force of attraction between the 
object and the earth, which depends on the 
location on the Earth and the altitude.

Many people talk about weight and mass in 
terms of pounds or kilograms. You very rarely 
hear the terms slugs or newtons when talking 
about the mass or weight of objects. The reason 
is the slug is very insensitive to change with a 
mass of 1 slug having a weight of 32 pounds. 
The newton is the opposite; it’s too sensitive of 
a scale for the weight of everyday objects. 

For instance, an object with a weight of 1 
newton has a mass of 0.102 kilograms. If you 
drink a cup of water, then your weight has 
suddenly increased by 2.45 newtons. The 
human body can fluctuate a few pounds 
during a 24-hour period. An athlete can lose 
several pounds during a competition. Saying a 
person’s weight is 788 newtons doesn’t make 
much sense when his or her weight could be 
775 newtons in the morning and 800 newtons 
just 12 hours later. Instead of using kilograms 
for weight (which isn’t wise), I like to think of 
it in terms of dekanewtons (daN); so an object 
with a mass of 1 kilogram has a weight of 0.981 
daN or 2.20 pounds.

The weight of an object depends on where it’s 
located on earth because the mass inside the 
earth isn’t distributed uniformly, and the earth 
looks like a ball that someone has sat on. The 
earth’s diameter from the North Pole to the 
South Pole is 7,901 miles (12,714 kilometers), 
and the acceleration due to gravity at the poles 
is 32.26 feet per second squared (9.832 meters 
per second squared). The earth’s average 
diameter at the equator is 7,928 miles (12,756 
kilometers), and the acceleration due to gravity 
at the equator is 32.20 feet per second squared 
(9.814 meters per second squared). If you went 
to the equator and weighed yourself, you would 
find the effective acceleration due to gravity of 
32.09 feet per second squared (9.781 meters 
per second squared). If you’re interested in 
effective weight, check out Chapter 6.

The easiest weight-loss program is to move 
closer to the earth’s equator or move to higher 
altitudes. If you have the money to visit the 
international space station, then you would 
lose all your effective weight (and some of 
your weight). Of course, doing so would have 
no effect on your mass. Weight-loss programs 
should actually be called mass-loss programs. 

Recognizing the Nonconservative Forces: 
No Bleeding Hearts Here

A nonconservative force is a force that is path dependent, which means 
that the amount of work done by the force on an object while moving the 
object from some point to another depends on how the object moves 
between the two points. Dissipative forces (friction) and applied forces are 
nonconservative forces.
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 You can’t describe nonconservative forces with a potential energy. Only  
conservative forces have a potential energy. These sections discuss a few non-
conservative forces that arise in biomechanics.

Walking in the park — static friction
Static friction is a contact force between two objects that aren’t moving rela-
tive to each other and prevents the two surfaces from sliding apart. The 
magnitude of the static friction is between zero and some maximum value 
depending on the applied forces. 

 If an applied force exceeds the maximum magnitude of the static friction, then 
the two surfaces will break apart and slide. The maximum static friction is in 
the direction opposite to the direction the object is trying to move in, and the 
magnitude of the maximum static friction is equal to the coefficient of static 
friction times the magnitude of the normal force. The mathematical descrip-
tion for the magnitude of the maximum static friction is

Allow me to analyze the activities of walking, jogging, and running as an 
example. If I’m standing still on flat ground, there is no static friction; other-
wise, the friction force would make me accelerate across the ground. If I’m 
standing on a hill, then static friction is holding me up; otherwise, I would 
start to slip down the hill. If the hill has wet grass or mud, then I could still 
slide downwards because of the insufficient amount of friction between my 
shoes and the ground. This example tells me that the coefficient of static 
friction depends on the type of shoes I’m wearing and the type of ground I’m 
standing on. The easiest method for me to find a numerical value for the coef-
ficient of static friction between my shoes and the ground is to perform an 
experiment. 

I’m walking on flat ground, so I lift a foot and bring it forward while pushing 
backwards on the ground with the other foot. Newton’s third law of motion, 
the law of action and reaction, says the reaction force from the earth pushes 
on my foot. The contact force between my foot and the ground has two parts:

 ✓ The normal force pushing the ground downward: The normal force is 
pushing the foot (and my body) upward.

 ✓ The tangential (static friction) force is pushing the earth backward: 
The static friction is pushing my foot and body forward.
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Notice the static friction is the reaction force that is pushing my body for-
ward. When you’re walking, you’re trying to make your foot move backward, 
and static friction prevents your foot from sliding backward. Static friction 
also prevents your front foot from sliding forward when you step down. If 
you make too big of a step in shoes with a slippery heel, you’ll end up doing 
the splits.

The acceleration of a body is limited by the maximum value of the static 
friction, which is why it’s so hard to run on slippery surfaces like ice. Most 
animals have a maximum horizontal acceleration that is less than the accel-
eration of gravity, g = 32.2 feet per second squared (9.81 meters per second 
squared), even on rough surfaces.

Hurting in the joints when  
moving — kinetic friction
Kinetic friction is a contact force between two objects that are sliding against 
each other. The kinetic friction is in the direction opposite to the direc-
tion the object is moving in, and the magnitude is equal to the coefficient of 
kinetic friction times the magnitude of the normal force. The mathematical 
description for the magnitude of the kinetic friction is

 The electromagnetic force is trying to bind the two objects together and the 
roughness of the surfaces (ridges and valleys on both surfaces) rub together 
and act like brakes stopping the sliding motion. The kinetic friction is convert-
ing the object’s mechanical energy into heat energy. 

The coefficient of kinetic friction is usually less than the coefficient of static 
friction, which is why it’s harder to get an object to start moving than to keep 
it moving. 

In many situations within biophysics the kinetic friction force is an unwanted 
force that is working against the system, but nature is smart in reducing this 
friction. For example, in synovial joints, such as the knee, shoulder, and hip, 
the two bones don’t rub against each other; they’re separated by cartilage 
and synovial fluid. In normal joints, the coefficient of static friction is about 
0.01, whereas the coefficient of kinetic friction can be as low as 0.003. A 
normal joint has very little friction, which means the joints don’t heat that 
much during activities. In an arthritic joint, the coefficient of kinetic friction 
can be 100 times larger, which can generate a lot more heat and pain. 
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Identifying other nonconservative forces
Other nonconservative forces play a role in biomechanics, especially in 
sports activities. I briefly mention three in these sections.

Rolling with rolling resistance
If you push a wheel and let it roll along a flat surface, it will eventually stop 
because of the rolling resistance. The mathematical description for this force is

The mathematical form is similar to the frictional forces that I discuss in this 
chapter. The coefficient of rolling resistance depends on many factors and 
properties of the road and the rolling object. Reducing this type of force is 
important for the fuel economy of your vehicle and in many sports such as 
bike races. You aren’t going to win the Tour de France if your bike has a large 
rolling resistance.

Resisting is futile — fluid resistance
Fluid resistance on an object moving through a liquid and air resistance on 
small particles floating in the air, such as dust, is linearly dependent upon 
the speed of the object. Fluid resistance is also known as the drag force and 
the motion of objects through fluids with high viscosity (see Chapter 10). The 
mathematical description for fluid resistance is

The fluid resistance is an important force in swimming competitions. Many 
international competitions are won by a few hundredths of a second, and 
fluid drag force can make all the difference in a race. One way swimmers 
reduce drag is by covering their head or shaving it bald. Males and females 
also remove the rest of their body hair to reduce drag. Technological swim-
wear also has reduced fluid drag.

Skydiving — air resistance is a good thing
Air and other gases aren’t as dense as fluids, so their resistance isn’t depen-
dent upon the speed but is dependent on the speed squared. The mathemati-
cal description of air resistance is
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In this formula, D is the drag coefficient, ρ is the air density, A is the frontal 
cross-sectional area, and v is the speed. The drag coefficient is a measure of 
how aerodynamic the object is. For example, a person skydiving will wear 
regular clothes that will flap in the air and create a large amount of drag, 
whereas a cliff diver will wear a swimming suit that will create very little drag. 

The frontal cross-sectional is the area of the object that is pushing against 
the air. The cliff diver does a beautiful swan dive, and only the head and 
shoulders push against the air; the cliff diver has a very small cross-sectional 
area. On the other hand, the skydiver does a belly flop, and the air pushes 
against his face, chest, midsection, and legs. The frontal cross-section in 
this case is the entire body, which is very large. The weight density of air is 
0.0749 pounds per cubic foot at a temperature of 70 degrees Fahrenheit and 
14.70 pounds per square inch atmospheric pressure. The mass density of air 
is 1.2041 kilograms per cubic meter at a temperature of 20 degrees Celsius 
and 1 atmosphere (101325 Pascals). (You can get these values in the CRC 
Handbook of Chemistry and Physics.)

In biomechanics, air resistance can be a good thing or a hindrance. Skydivers 
and base jumpers appreciate air resistance. Many other sports, such as auto 
racing and downhill skiing, focus a lot of training on reducing air resistance. 
On the other hand, birds and aircraft need the air for lift, but the air drag 
wastes a lot of energy. 

Thinking Green — Conservation Is Good; 
So Is Energy, Work, and Power

Work is related to force, and the change in the energy is related to the work, 
and power is related to work as well. Studying work, energy, and power tells 
you a lot about a system’s biomechanics. It’s equivalent to using forces and 
Newton’s laws of motion. In addition, conservation laws tell you what does 
not change in time. The concepts of energy, work, power, and conservation 
laws are very important in biophysics. Some situations in biophysics can be 
solved easier using energy and work as opposed to Newton’s laws and forces. 
Also, knowing what doesn’t change in a biological system is very important 
to understanding the system. The following sections introduce these con-
cepts and discuss some of the applications to biomechanics.

Conserving momentum
Including all interacting objects within your system makes the total momen-
tum of the system a constant over time. According to Newton’s second law of 
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motion, the law of acceleration, the total momentum of the system changes 
over time when the system interacts with external sources, which means that 
the total momentum of the universe is conserved and doesn’t change for the 
entire life span of the universe (the universe is an isolated system), unless 
the universe interacts with other universes.

Strictly speaking, everything within the universe is interacting with your bio-
logical system, but most of those interactions can be ignored. For example, if 
you’re studying a person doing the high jump, you don’t need to consider the 
gravitational attraction of the high jumper with the sports announcer sitting 
in the top balcony of the stadium.

The next two sections look at conservation of linear momentum and conser-
vation of angular momentum. 

Conservation of linear momentum
The total linear momentum of the biological system is conserved for all 
time if the net external force acting on the system is zero. In plain English, 
it means the momentum is a constant as long as there is no net force acting 
on the object according to Newton’s second law of motion, the law of accel-
eration. The mathematical condition from Newton’s second law of motion, 
the law of acceleration, is

The force in each direction must be zero. As a consequence, the total 
momentum in each direction is a constant, and the mathematical formula for 
total linear momentum is

Conservation of angular momentum
The total angular momentum of the biological system is conserved for all time 
if the net external torque acting on the system is zero. The mathematical con-
dition from Newton’s second law of motion, the law of acceleration, is
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The angular momentum ( ) is equal to the moment of inertia (I) times the 
angular velocity ( ), and the total angular momentum is

For example, consider Omar diving off the 10-meter platform into the swim-
ming pool below. As Omar jumps off the edge of the platform in an upright 
position, he starts spinning his body, so his body has angular momentum. 
(His body will spin while he drops toward the water.)

In order to spin faster, Omar has to pull his body into a tuck position because 
of conservation of angular momentum. When Omar goes into the tuck posi-
tion, he has decreased the moment of inertia of his body, which causes his 
angular velocity to increase so the angular momentum doesn’t change.

The reason angular momentum is conserved is because the net torque acting 
on Omar is zero. Air resistance can be ignored, and the only force acting 
on him is gravity, which is pulling his body downward. The force of gravity 
doesn’t produce any torque on Omar, so the net torque is zero and his angu-
lar momentum is conserved.

 Calculate Omar’s initial angular velocity and estimate his minimum speed off 
the platform in order to do 2.5 rotations before hitting the water. Before Omar 
climbs the ladder to the diving board, you make some measurements. He 
weighs 175 pounds (778 newtons) or his mass is 5.43 slugs (79.3 kilograms), 
and he is 6 feet (1.83 meters) tall while in the upright position. When he is 
diving in a tuck position, he has a radius of 1.5 feet (0.457 meter). During his 
dive, he is timed to take 1.50 seconds to hit the water after leaving the plat-
form, and he’s in the tuck position for 1.30 seconds.

Follow these steps to solve this problem: 

 1. Determine the physics of the problem and the formulas needed.

  Remember, average angular velocity equals angular displacement divided 
by elapsed time. You know how long it takes (elapsed time) Omar to do 
his rotations while in the tuck position (angular displacement).

  Omar has conservation of angular momentum (Linitial = Lfinal) while falling. 
The angular momentum is L = I ω, where L is the angular momentum,  
I is the moment of inertia, and ω is the angular velocity, so you can  
find ωinitial from conservation of angular momentum once you know the 
other three. I ignore the vector arrow on the angular variables because 
they’re one-dimensional.
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  Omar’s speed is equal to his initial angular velocity times half the length 
of his body. The problem asks you to estimate Omar’s speed off the plat-
form. At the moment Omar jumps off the platform, his feet are momen-
tarily stationary with respect to the platform and his center of mass is 
moving with his body speed. (The center of mass of the human body is 
slightly above the hips.) According to the center of mass, his feet and 
the platform are moving backwards with the speed of his body. Chapter 
6 discusses center of mass more. 

 2. Find the numbers necessary to calculate Omar’s final angular velocity.

  You know you need the time and angular displacement:

  The elapsed time to do the rotations is Δt = 1.30 seconds.

  The angular displacement is Δθ = (2.5 revolutions)(2π radians per 1 
revolution) = 5π radians.

 3. Calculate Omar’s final angular velocity.

  The magnitude of the final angular velocity is 

 4. Find the numbers so you can calculate Omar’s initial angular velocity.

  You need to use conservation of angular momentum to calculate the ini-
tial angular velocity, so you need to find numbers for the initial moment 
of inertia and final moment of inertia and the final angular velocity:

  Omar is an athletic diver, so he looks more like a 6-foot pole instead 
of a sphere or disk rotating around his center as he jumps off the plat-
form. His initial moment of inertia is approximately that of a rod, so 
look up the formula for the moment of inertia of a rod: Iinitial = mL2/12 = 
(5.43 slugs)(6 feet)2/12 = 16.3 slug feet squared (22.1 kilogram meters 
squared).

  When Omar is in a tucked position, he looks like a rotating disk. His final 
moment of inertia is approximately that of a disk, so look up the for-
mula for the moment of inertia of a disk: Iinitial = mR2/2 = (5.43 slugs)(1.50 
feet)2/2 = 6.11 slug feet squared (8.29 kilogram meters squared).

  The final angular velocity from Step No. 3 is ωfinal = 12.1 radians per 
second.

 5. Apply the conservation of angular momentum formula and solve for 
the initial angular velocity.
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 6. Find the numbers, so you can calculate Omar’s initial speed.

  You know Omar’s initial angular velocity is ωinitial = 4.54 radians per 
second.

  You know half his height is R = 3.00 feet (0.914 meters).

 7. Calculate the initial speed.

  vinitial = R ωinitial = (3 ft)(4.54 rads/s) = 13.6 feet per second (4.14 meters 
per second).

Moving energy and work
This section illustrates the concepts of energy, work, and their relationship 
to each other. They’re very powerful concepts in biophysics and physics. 
Understanding these concepts is critical to understanding biomechanics and 
bioenergetics. Here I show how the two are connected, their importance in 
conservation laws, and how they’re used in biomechanics. Chapter 3 includes 
a more detailed definition of the two (energy and work). 

Examining the work-energy theorem
The work-energy theorem states the change in the total kinetic energy of a 
biological system is equal to the net work done on that system by external 
forces. In other words, a force acting on a moving object does work on the 
object. When you add up all the work done on the object, it equals the net 
work done on the object. The change in the object’s kinetic energy is equal 
to this net work done on the object. The mathematical expression for this 
theorem is

For example, when you strike a baseball with a bat, the bat first does work, 
stopping the ball going over the plate, and then it does more work, giving the 
ball kinetic energy so it flies into the field. 

Conservation of mechanical energy
Another way of interpreting the work-energy theorem is the change in the 
total mechanical energy of a biological system is equal to the work done by 
nonconservative forces such as applied forces and friction. Conservation of 
total mechanical energy means the total kinetic energy plus the total potential 
energy doesn’t change in time. This means that the total work done by non-
conservative forces is zero.
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The mathematical expression for the work-energy theorem written in terms 
of the kinetic energy, potential energy, and the work done by dissipative 
forces is

In this expression, ΔEM is the change in the total mechanical energy of the 
biological system, ΔEK is the change in the total kinetic energy of the biologi-
cal system, ΔEP is the change in the total potential energy of the biological 
system, and WNCF is the work done against nonconservative forces.

For example, Paige is riding a bike along a flat, horizontal road at constant 
velocity. The velocity is constant, so the kinetic energy isn’t changing (ΔEK 
= 0), and she is riding along a horizontal road, so the gravitational potential 
energy isn’t changing (ΔEP = 0), so the total mechanical energy of the system 
is conserved (ΔEM = 0). However, Paige is doing work against the dissipative 
forces, so the total work done by nonconservative forces is zero (WNCF = 0). 
Yes, Paige’s muscles are a nonconservative force according to the bike. The 
dissipative forces she is doing work against are friction in the bike’s bearings, 
rolling resistance, and air resistance.

 When the net work done by nonconservative forces is zero and the potential 
energy is proportional to the mass, such as the gravitational potential energy, 
then the equation becomes independent of the mass. The mathematical for-
mula for conservation of mechanical energy and the gravitational potential 
energy is

 The conservation of mechanical energy combined with the gravitational 
potential energy formula is very useful in biomechanics. It gives the minimum 
speed (v) necessary to achieve a certain vertical height (h) against gravity, 
which is important in several sports such as basketball. The formula for this 
specific situation is

A 3-foot (0.914 meter) vertical jump requires an initial vertical velocity of 9.48 
miles per hour (15.2 kilometers per hour) upward.
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Here is an example.

 The outdoor world record for the pole vault is 20.1 feet (6.14 meters). 
What was the minimum horizontal speed the athlete required to make 
this jump? 

In this event, the athlete runs horizontally and then sticks the pole in 
the ground. The athlete changes his kinetic energy into work on the 
pole, which is stored as potential energy within the pole as it bends. 
This potential energy is converted back into work on the athlete, which 
changes the athlete’s kinetic energy, but now in the vertical direction. 
This kinetic energy does work against gravity, and the energy is con-
verted into gravitational potential energy within the athlete as the athlete 
moves vertically upwards.

To solve this problem, follow these steps:

 1. Determine the physics of the problem and the formulas needed.

  The formula needed is the change in the mechanical energy equals the 
work done by nonconservative forces.

  The minimum amount of kinetic energy required corresponds to the 
situation when there are no nonconservative forces present, which is 
equivalent to saying the pole vaulter has conservation of mechanical 
energy. 

 2. Find the numbers needed to solve the problem.

  All the mechanical energy is kinetic energy just prior to the pole hitting 
the ground, so yinitial = 0 feet (0 meters).

  At the highest height all the mechanical energy is gravitational potential 
energy, so vfinal = 0 feet per second (0 meters per second), and yfinal = 20.1 
feet (6.14 meters).

 3. Solve the problem using conservation of mechanical energy.

  Rearrange the conservation of mechanical energy equation and  
solve for vinitial :
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Working with energy and power
Energy, work, and power are very powerful tools in biomechanics. You may 
encounter five types of energy (six if you include dark energy), which are 
kinetic energy, potential energy, heat energy, radiation energy, and mass 
energy. These sections show you how to use concept of conservation com-
bined with energy, work, and power to study many different situations in 
biomechanics. 

Conservation of total energy
Conservation of total energy means you can’t create or destroy energy; you 
can only change it from one form to another. In other words, the sum of all 
the kinetic energies, potential energies, heat energy, radiation energy, and 
mass energies within an isolated biological system is a constant. If the bio-
logical system isn’t isolated, the change in this total energy of the system is 
equal to the amount of heat energy entering the system plus the work done 
on the system by external sources. (The heat energy is negative if it’s flowing 
out of the system, and work done is negative if the biological system is doing 
work on its surroundings.)

 You can only convert energy from one form to another, which is true on all 
levels, including the cellular level with the transport of energy, the interac-
tion of the sun with life on earth through photosynthesis, and even athletes 
 competing.

Conservation of power and work
Conservation of total energy is always true, but sometimes in biomechanics 
it’s better to think of the problem in terms of the work (power) and energy 
put into the system and the work (power) and energy output by the system. 
They have to be the same unless the biological system is storing the energy 
or using internal energy that was already stored in the system.

For example, suppose Quintin is riding his bike. The power from his pedaling 
is transferred into the pedals, through the chain, and then to the back wheel, 
which pushes the ground backward with the same amount of power that 
Quintin puts into pedaling. Newton’s third law states that this force is equal 
to the force the earth pushes back on the bike with and propels the bike for-
ward. Three things can happen: 

 ✓ The pedaling does work (power in equals work in divided by time) 
which is greater than the work done against dissipative forces (power 
out equals work out divided by time), and the excess work in does work 
on the ground and accelerates the bike forward.
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 ✓ The pedaling does work (power in equals work in divided by time), 
which is the same as the work done against dissipative forces (power 
out equals work out divided by time), and the bike moves at a constant 
speed.

 ✓ Quintin’s pedaling does work (power in equals work in divided by time), 
which is less than the work done against dissipative forces (power out 
equals work out divided by time), and the bike slows down. The bike 
is using kinetic energy to do work against the dissipative forces. The 
kinetic energy comes from the linear forward motion of the bike plus the 
rotational kinetic energy of the wheels.

In all three cases, the power in equals the power out and nothing is lost. You 
may have a couple of questions pop into your mind, such as:

 ✓ What are the dissipative forces?

  The wheels, the pedals, the sprockets, and the derailleur (gear 
changer) have frictional force within their bearings.

  Rolling resistance depends on the tires and the type of surface 
Quintin is riding on.

  Air resistance can play an important role (try riding a bicycle 
through a hurricane), depending on how fast he is riding, his 
 sitting position, and the type of bike he is riding.

  Gravity if Quintin is going uphill. If he is going downhill, then it can 
help him. (This is not a real dissipative force.)

 ✓ Why is it easier to pedal in certain gears?

To answer this question, follow these steps to see how work is transferred 
through the bike:

 1. Find the work done on the pedal by Quintin.

  Quinton’s feet do work on the pedals, which in mathematical notation is 
Wfoot = Nfoot Δθfront = Ffoot rpedal Δθfront. 

  Nfoot is the torque his foot produces on the pedal. Ffoot is the force he 
applies to the pedal. rpedal is the distance from the center of the front 
sprocket to his foot. Δθfront is the angle he moved the pedal and the front 
sprocket.

 2. Use the conservation of mechanical energy between the pedal and the 
chain.

  The work Quintin does on the pedal is equal to the work the front 
sprocket does on the chain. In terms of mathematical notation, it’s  
Wfront = Wfoot (Ffront rfront Δθfront = Ffoot rpedal Δθfront). 
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  Ffront is the force applied to the chain by the front sprocket. rfront is the 
distance from the center of the front sprocket to the chain. Δθfront is the 
angle he moved the pedal and the front sprocket.

 3. Find the motion of the chain across both sprockets.

  The chain moves both sprockets the same amount. The chain is a  
solid loop, and the amount the chain moves at the back must equal  
the amount it moves at the front. Mathematically the condition is  
rfront Δθfront = rback Δθback.

 4. Use the conservation of mechanical energy between the back sprocket 
and the chain.

  The work the chain does on the back sprocket is the same amount of 
work the front sprocket does on the chain. (Wback = Wfront) In terms of 
mathematical notation: Fback rback Δθback = Ffront rfront Δθfront = Ffoot rpedal Δθfront.

  Fback is the force applied to the back sprocket by the chain. rback is the 
distance from the center of the back sprocket to the chain. Δθback is the 
angle the back sprocket and back tire move.

 5. Find the conservation of mechanical energy between the back 
sprocket and the tire on the road.

  The work done on the back sprocket is the same amount of work done 
on the road by the tire (Wtire = Wback). In terms of mathematical notation: 
Froad rtire Δθback = Fback rback Δθback = Ffront rfront Δθfront = Ffoot rpedal Δθfront.

  Froad is the static friction applied to the road by the back tire. rtire is the 
distance from the center of the back sprocket to the road. Δθback is the 
angle the back sprocket and back tire move.

 6. Realize that the work done by Quintin is the same as the work done 
by the tire on the road (conservation of mechanical energy).

  All the works calculated are the same, so match the first and last expres-
sion for the work (Froad rtire Δθback = Ffoot rpedal Δθfront), and use the expres-
sion for the chain movement (rfront Δθfront = rback Δθback) to obtain:

	 •	The	chain	moves	the	back	sprocket	the	same	amount	as	the	front	
sprocket: Δθfront = Δθback (rback/ rfront)

	 •	The	work	done	by	Quintin	on	the	pedal	equals	the	work	done	by	
the back tire on the road: Ffoot = Froad (rtire/ rpedal)(rfront/ rback)

  These two equations are based on conservation of energy and 
work and tell you a couple of interesting things:

  The ratio (rfront/rback) is the gear ratio. Each link in the chain is the 
same length, so the distance between the teeth on the sprockets 
must be the same. Therefore, the number of teeth on a sprocket 
tells you the size (and radius) of the sprocket.



74 Part II: Calling the Mechanics to Fix Your Bio — Biomechanics 

  If the front sprocket is large and the back sprocket is small, then to 
maintain a certain amount of force on the road requires more force 
from Quintin’s feet, but the pedals move less; whereas if the front 
sprocket is small and the back sprocket is large, then the force 
required is smaller but the pedals need to move a lot. The first 
situation is good for flat roads at high speeds, and the second situ-
ation is good for hills or rough terrain.

The bike is one of the most energy-efficient forms of transportation with 
almost all of your energy going into your pedals, which reaches the road  
propelling you forward. You can travel very large distances without much 
expenditure of energy.

Colliding objects
The conservation of momentum is the key to understanding collisions. 
Objects are always colliding in biomechanics, especially within the body and 
in sports.

In the “Stopping me requires force — Newton’s second law of motion” sec-
tion earlier in this chapter, I discuss Newton’s second law, the law of accel-
eration. Even though the internal forces and torques during a collision can be 
quite large, if the external forces or external torques are zero (or small along 
with the elapsed time being small, then they can be ignored), and you can 
use conservation of momentum with the velocities of the objects just prior to 
the collision and just after the collision. In the case when the external forces 
or external torques are small (and the elapsed time is small), using conserva-
tion of momentum is a reasonable approximation during the collision.

The total energy is always conserved, but keeping track of all the different 
forms of energy during a collision can be difficult. Instead, the collisions are 
split into two different kinds depending on the kinetic energy.

Inelastic collisions
If kinetic energy is lost during the collision, it’s said to be inelastic. The great-
est loss of kinetic energy occurs when the two objects stick together, which 
is called a completely inelastic collision. Most collisions in biomechanics fall 
in this category. If the motion is linear, then you need to use conservation of 
linear momentum. The mathematical formula for two objects colliding is

If the motion is circular, then you need to use conservation of angular 
momentum. The mathematical formula for two objects colliding is
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Elastic collisions
If kinetic energy is conserved during the collision, then the collision is said to 
be elastic. A few collisions in biomechanics can be approximated as an elastic 
collision. The classic example is the collision between pucks on an air hockey 
table.

In the case of linear motion, you have conservation of linear momentum and 
conservation of kinetic energy. The two conservation laws for two particles 
colliding are mathematically, represents by:

In the case of circular motion, you have conservation of angular momentum 
and conservation of kinetic energy. The mathematical representation of these 
two laws for two particles colliding is

 If a problem doesn’t state what type of collision you have to solve for, then 
assume it’s inelastic, which is the most common type of collision in biophys-
ics. The problem should state whether the collision is completely inelastic or 
whether the collision is elastic.

 The mathematical expressions for the momenta and energies are

Raj passes a soccer ball to Sarah, who then kicks it back towards Raj with-
out stopping the ball first. Assume the ball is initially moving in the negative 
x-axis direction before the collision, the collision is elastic, and all the motion 
is one-dimensional. Find the motion of Sarah’s foot and the ball’s motion after 
the kick. Ignore the spin (rotational kinetic energy) of the soccer ball. 

The mathematical representation of conservation of momentum and conser-
vation of kinetic energy is
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The first line in this formula is the conservation of momentum in the direc-
tion of the ball’s motion. The second line is the conservation of kinetic 
energy. Sarah’s initial momentum is positive representing the motion to the 
right, whereas the ball’s initial momentum is negative representing its motion 
to the left. The final momenta will either be negative (left traveling) or posi-
tive (right traveling), depending on the solution to these equations and the 
numerical values.

Sarah’s final speed isn’t important here, so solve the momentum equation 
for her final speed, substitute it into the kinetic energy equation, and solve 
for the ball’s final speed. There are two different solutions; the first solution 
will correspond to Sarah’s missing the ball and both Sarah and the ball keep 
moving at their initial velocities. (Sarah is a better soccer player than that, 
so the second solution is the desired solution.) The second solution is where 
she makes contact with the ball. My solution to the equations is

Even though these solutions are for an elastic collision, they are still a good 
approximation for kicking a soccer ball (football). One thing to note from 
these solutions is the ball will have a much larger final velocity and travel far-
ther if it is moving towards Sarah rather then sitting on the pitch stationary 
when she kicks it. As a comment, mfoot isn’t just the mass of the foot. Good 
soccer players are able to transfer a lot more momentum to the ball than the 
mass of the foot times the foot’s speed.

 I have left the formulas in terms of symbols instead of using numbers because 
they’re important. The first formula by itself is the solution for any one-
dimensional inelastic collision with conservation of linear momentum. The two 
formulas combined are the solution for any one-dimensional elastic collision 
with conservation of linear momentum and conservation of kinetic energy. 
Remember the directions I had selected for the initial velocities. In two dimen-
sions, the formulas change, but you now know how to solve these problems.



Chapter 5

Sitting with Couch Potatoes –– 
Static Equilibrium

In This Chapter
▶ Talking translational equilibrium
▶ Ruminating on rotational equilibrium
▶ Forming static equilibrium of rigid bodies

A 
 static object isn’t moving — it has no linear velocity and no angular 
velocity. An object in static equilibrium has no linear acceleration, no 

angular acceleration, and no motion. For example, while you’re reading this 
biophysics book, your head isn’t moving and it’s in static equilibrium. Even 
though your head isn’t moving, several interesting biophysical things are 
going on, such as a multitude of electrical signals is going into the brain from 
your five senses, thoughts are racing through your brain as you think, a mul-
titude of signals is leaving your brain to control your body, blood is flowing 
through your brain supplying energy, and forces are pulling your head in 
different directions so you can balance it on your neck and keep it in static 
equilibrium.

In this chapter, I discuss the static equilibrium of biological systems com-
posed of rigid bodies, meaning the objects in the biological system won’t 
break or deform under the forces acting on them. For example, my kitchen 
table is a rigid body. If I place food, plates, and utensils on the table, these 
applied forces don’t change the table’s shape. However, even rigid bodies 
have limits, and if I place an elephant on my table, the table will change its 
shape. (Luckily, I don’t have an elephant hiding in my fridge, and I consider 
only forces that don’t change the object’s shape.) I show you how to solve 
problems of rigid biological systems in static equilibrium. The rigid biological 
systems usually consist of a combination of animals and inorganic objects, 
such as duct-taping your friend to the ceiling (c’mon, you’ve all been there).
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Static equilibrium can be split into static translational equilibrium and static 
rotational equilibrium. The fact that stationary biological systems are in 
static translational equilibrium and static rotational equilibrium isn’t boring, 
contrary to what you may think. These balances provide a lot of information 
about the biological system in addition to the fact that the velocity, angular 
velocity, acceleration, and angular acceleration are all zero. You may be sur-
prised how important static equilibrium is. By the end of this chapter, you’ll 
be a pro at static equilibrium!

Understanding Static Translational 
Equilibrium

A biological system in static equilibrium is in static translational equilibrium, 
which means that the linear acceleration and the linear velocity of the bio-
logical system are both zero. According to Newton’s second law of motion, 
the law of acceleration, the net external force acting on the system must be 
zero if the acceleration is zero. For an example of zero net force, think of your 
car at a traffic light. Your car isn’t in static translational equilibrium when 
the traffic light turns from red to green and you step on the gas pedal. At that 
precise moment, the car isn’t moving (so it’s static), but it has an accelera-
tion forward. But if you step on the brake and the gas at the same time and 
do a brake-stand, then the car’s velocity and acceleration are zero, and it’s 
in static translational equilibrium. The engine is trying to make the car move 
forward and the brakes are preventing the car from moving, so forces are 
acting on the car, but the net force is zero.

Meanwhile, net force means you have to add all the forces together. Forces 
are vectors with both direction and magnitude, so you need to use a compass 
(coordinate system) and add the forces together in each of the three direc-
tions (width, depth, and height) separately.

In the next sections, I discuss how to solve a static translational equilibrium 
problem, explain the free-body diagram, and examine the applications that 
illustrate how to put all the pieces together and apply them to biological  
systems.
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Solving static translational  
equilibrium problems
Solving translational equilibrium problems involves satisfying these three 
equations. It sounds simple enough. The mathematical formulas for transla-
tional equilibrium are

 Before you solve a static translational equilibrium problem, you need to know 
two things:

 ✓ The direction of the force is just as important as its magnitude. You 
can’t add forces as if they’re scalars. (A scalar has only magnitude and is 
just a number with possibly physical dimensions (units) too.) Chapter 3 
discusses scalars.

 ✓ You don’t need to consider the internal forces of the biological system 
when you’re calculating the net force. 

  Newton’s third law of motion says that the action-reaction pair of forces 
cancels out for a pair of internal forces. For example, if you pull a trailer 
with your car, the car pulls the trailer with a force and the trailer pulls 
back on the car with the same force. When you treat the car and trailer 
as a single object, these forces cancel out and your trailer doesn’t fly off 
from the car in some random direction (good thing too!).

By following these steps, you can solve any static translational equilibrium 
problem: 

 1. Draw a free-body diagram of the biological system. 

  I explain how to do these diagrams in the next section. This is the most 
important step but the one people often ignore.

 2. Calculate each of the external forces, using your free-body diagram as 
a guide.

 3. Use this formula, which adds all the scalar components of the forces 
together in each direction and sets them equal to zero.
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  These three equations remind you that you must split up the forces into 
scalar components parallel to the x-axis (East–West direction), the y-axis 
(North–South direction), and the z-axis (Up–Down direction), and then 
add each set of components together as scalars.

 4. Solve for the unknown forces acting on your biological system.

Drawing free-body diagrams
A free-body diagram is a picture of an object with all the surrounding objects 
removed and all the external forces acting on the biological system added. 
For example, suppose you’re sitting in your favorite chair, reading your favor-
ite biophysics book, and holding the book in the air with both hands. The 
free-body diagram for the book shows only the book with three forces acting 
on it — the force of gravity, the contact force of your left hand, and the con-
tact force of your right hand.

 Drawing a free-body diagram is the most important part of understanding and 
solving problems with static translational equilibrium for a couple of reasons:

 ✓ It contains all the information about the system.

 ✓ It lets you visualize what’s going on. A picture is worth a thousand 
words after all! 

Despite these advantages, a free-body drawing is the part everybody wants 
to skip over. I make it easy for you by splitting the free-body diagrams into 
easy-to-follow steps:

 1. Draw a diagram of the biological system as if you have taken a picture 
of it.

  Figure 5-1a shows a diagram of a person lying on a table on a slope.

 

Figure 5-1: 
A person 

lying on an 
inclined 

table over a 
swimming 

pool (a) and 
a free-body 

diagram  
of that  

person (b).
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 2. Draw a free-body diagram that includes all the external forces acting 
on the system without the other objects in the picture.

  Take your time with the free-body diagram to get it right. Be sure to 
include all the forces and their directions. If the free body diagram has 
errors, then there’s a high probability you’ll incorrectly solve the prob-
lem. Continuously ask yourself if the diagram matches the biological 
system and the information given.

  Pick a point of view that shows all the forces most clearly. If you’re in 
doubt about the correct perspective, draw three pictures: one from 
above, one from the side, and one from the front.

  Figure 5-1b is the free-body diagram of the sample sloping person from 
Step 1. I use a side view because that’s the best view of the external 
forces acting on the person:

	 •	Gravity	(obviously)

	 •	The	normal	force

	 •	The	static	friction	between	the	person	and	the	table

  You usually need to split the contact force between the biological 
system and an object (such as the table) into a normal force and a tan-
gential force. (Normal force is the force required to prevent the object 
from falling through the surface [in this case, the table]; the tangential 
force is trying to accelerate or decelerate the object along the surface.) 
For example, suppose you’re at a water park on the waterslide. The 
force between you and the slide is a contact force, which you can split 
into the normal force (the slide holding you up) and the kinetic friction 
(tangential force) trying to pull your swimming suit over your head.

  The direction an external force is acting on a rigid biological system is 
very important for static translational equilibrium. In order to calculate 
the forces, you need to know the direction it’s applied relative to some 
reference.

 3. Draw a compass on your free-body diagram, which shows your direc-
tions for the axes, as in Figure 5-1b.

  The compass is very important because the forces split into compo-
nents parallel to each axis given by the compass. You then add force 
components together that are parallel to each other.

  Usually, you want to choose one of the axes in the direction of an 
unknown force to simplify the problem.
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  This choice of axes defines your coordinate system for the problem. I 
show the x-axis and y-axis in Figure 5-1b. The z-axis isn’t shown and 
sticks straight out of the figure toward you. You can think of the positive 
x-axis as being north, the negative x-axis as being south, the positive 
y-axis as being up, and the negative y-axis as being down. This choice 
then makes the positive z-axis east and the negative z-axis west. 

When you finish your free-body diagram, you’re ready to solve your transla-
tional equilibrium problem for the unknown forces.

Finding forces with static  
translational equilibrium
This section provides information on how you apply static translational equi-
librium to biophysical problems. If you want to use static translational equi-
librium to study forces in a static biological system, read on.

 In typical biophysical problems dealing with static translation equilibrium, 
usually the only thing that changes from one problem to the next is the word-
ing and the numbers. Textbooks usually give the solution as a formula, and 
students substitute the numbers into the formula without understanding 
where the formula came from because they don’t understand the problem. I’m 
here to see that this doesn’t happen to you.

You need to understand when formulas are valid and how they’re derived. To 
help you do so, I present two similar problems and their solutions. The setup 
is the same for each problem:

 You’re hosting your weekly Saturday biophysics party and a friend invites 
a non-biophysics friend to the party (Larry the lawyer). He assumed 
the party involved alcohol, came very intoxicated (c’mon, you’ve all 
been there), and shortly after arriving passes out on a table. You and 
your physics friends immediately think of a biophysics experiment: You 
want to calculate the coefficient of static friction between the table and 
Larry’s polyester suit. (I discuss static friction in Chapter 4.) You mea-
sure Larry’s weight as 145 pounds (65.8 kilogram mass) on the bathroom 
scale. You notice that the top of your balcony is 15 feet (4.57 meters) 
above a swimming pool, so you and your friends move the table to the 
balcony and start to tip it over. At an angle of 35 degrees above the hori-
zontal, Larry slides off the table and down into the swimming pool (don’t 
worry, he wakes up then and knows how to swim).
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At this point you’re probably saying, “This problem is hard! How do I 
solve it without the Internet or formulas?” A problem like this usually 
contains important facts that aren’t explicitly stated, which is what 
makes them interesting. In this problem, the four facts not stated explic-
itly are as follows:

 ✓ You need to figure out what physics rules are needed to solve the  
problem. 

  Note that if the angle is less than or equal to 35 degrees, then Larry con-
tinues to lie on the table and doesn’t move, which means he is in static 
equilibrium, and you can use static translational equilibrium. (At any 
angle greater than 35 degrees, he’ll slide off the table, which is what you 
want him to do.)

 ✓ At 35 degrees, the magnitude of the static friction is at its maximum 
value (the coefficient of static friction times the magnitude of the normal 
force). 

 ✓ You should choose the direction negative x-axis parallel to the static 
friction in the free-body diagram. 

  You want to solve for the coefficient of static friction, and this choice 
makes it easier to isolate the friction force and solve.

 ✓ The height of the balcony is irrelevant for this problem. 

  You can solve the problem without having Larry slide off the table.  
Of course, you’ll want to make him slide off the table as part of the 
experiment.

You’re ready to solve the problem:

 1. Draw your picture.

  Check out Figure 5-1a for my picture.

 2. Draw your free-body diagram.

  This is the important part. Figure 5-1b is my free-body diagram. How 
does my diagram compare to yours? 

  The angle θ in Figure 5-1b is 35 degrees. The force  is Larry’s weight 
(mg),  is the static friction, and  is the normal force.

 3. Draw a compass on your free-body diagram, which shows your direc-
tions for the axes, as in Figure 5-1b.
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 4. Calculate each of the forces, using the free-body diagram.

  A force is a vector with both magnitude and direction. It’s represented 
by a symbol with an arrow on top. The magnitude of a force doesn’t 
have an arrow. The weight always points toward the center of the earth, 
and the normal force points away from the surface and is perpendicular 
to it.

  The free-body diagram (refer to Figure 5-1b) helps you to rewrite the 
forces parallel to the x-axis and the y-axis:

 5. Solve for static translational equilibrium with the formula:

  You substitute the three forces into these equations. I obtained the fol-
lowing equations:

 1. Solve for the normal force in the y-axis equation. 

 Why start with the y-axis? You want to solve for the coefficient of 
static friction and it appears only in the x-axis equation, but you 
don’t know the normal force yet, so you use the y-axis equation to 
find the normal force.

 

  A common mistake students typically make is using this formula 
to calculate the normal force no matter what the problem is. This 
equation is valid only if no other forces are in the direction perpen-
dicular to the surface. Always start with the free-body diagram.

 2. Find the coefficient of static friction, using the x-axis equation:
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  The coefficient of static friction between Larry’s suit and the table 
is 0.700.

  To help you understand why you should start with the diagrams 
and not the formulas, I change the problem to make the two previ-
ous formulas invalid:

  You and your biophysics friends notice that the top of your bal-
cony is 15 feet (4.57 meters) above a swimming pool, so you and 
your friends move the table to the balcony and tip the table to 
an angle of 10 degrees above the horizontal. You tie a rope to 
Larry’s body and bring the free end of the rope to a friend’s bal-
cony directly across the swimming pool so that they can pull the 
rope horizontally across the pool. Figure 5-2 shows this scenario. 
Larry’s weight is still 145 pounds (65.8 kilogram mass). You mea-
sure the tension (force) in the rope to be 67.5 pounds (300 new-
tons) just prior to Larry’s sliding off the table and into the pool. 
Your mission is to find the coefficient of static friction between the 
table and Larry’s polyester suit.

 

Figure 5-2: 
Larry the 
passed-

out lawyer 
being pulled 

off a table 
into a swim-

ming pool.
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The problem sounds similar to the one in which you slide Larry off the table, 
but it also sounds a lot harder because the problem has an extra force (the 
rope). You can solve it though, if you follow the steps for solving for static 
translational equilibrium — you just don’t use the formulas. You’re ready to 
solve the problem, so just follow these steps:

 1. Draw your picture.

  Figure 5-2 shows a picture of my interpretation of the problem.

 2. Draw your free-body diagram.

  From the picture, you can draw a free-body diagram; mine is shown in 
Figure 5-3. How does your figure compare?

  The angle θ is 10 degrees. The force  is Larry’s weight (mg),  is the 
static friction,  is the normal force, and  is the tension in the rope.

 

Figure 5-3: 
Free-body 
diagram of 
Larry being 
pulled off a 

table. 
 

 3. Draw a compass on your free-body diagram, which shows your direc-
tions for the axes.

  My choice is shown in Figure 5-3. I chose the direction parallel to the 
table surface as my x-axis and the perpendicular direction as my y-axis. 
This is because I want to isolate for the static friction.

 4. Calculate each of the forces using the free-body diagram in Figure 5-3.

You may have noticed that the forces look the same except for an extra 
line for the rope’s tension (force).
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 5. Solve for static translational equilibrium with the formula:

 1. You substitute the four forces into these equations:

 

  You can see why the formulas in the previous problem don’t work. 
The problems look very similar and the steps used to solve the 
problems are the same, but the formulas are different.

 2. Solve for the normal force in the y-axis equation. 

 

  Note that the rope reduces the magnitude of the normal force. 
The table doesn’t need to apply as much force to hold Larry up 
because the rope is partially holding up Larry. This is the same as 
people who hang from a bar over their head and slowly lower their 
body onto the bathroom scale and stop dropping when they get to 
the weight they want to be.

 3. Find the coefficient of static friction, using the x-axis equation:

  The coefficient of static friction between Larry’s suit and the table is still 
about 0.7 (0.699). 

If your friends produce a tension greater than 67.5 pounds (300 newtons) in 
the rope, then Larry will slide off the table and fall into the swimming pool 
below. A 10-pound fishing line wouldn’t work, so hopefully you have a bigger 
rope in your home.

 Static systems are in static translational equilibrium. No matter how differ-
ent a problem may look from the solutions in this section, if a system is in 
static translational equilibrium, then the biophysics is the same and the steps 
involved in solving it are the same.
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Turning to Static Rotational Equilibrium 
A biological system that’s in static equilibrium, in addition to not moving 
and being in static translational equilibrium (which I discuss in the previous 
section), is also in static rotational equilibrium. Static rotational equilibrium 
means that the angular acceleration of the biological system is zero, and 
according to Newton’s second law, the net torque acting on the system must 
be zero.

Think of changing a flat tire: You place the tire wrench on the lug nut and 
pull, producing a torque on the lug nut. (Torque tries to make an object spin 
faster or slower — see Chapter 4 for a complete discussion.) Unfortunately, 
the lug nut has rusted to the hub, and the friction force produces a counter-
ing torque in the opposite direction. The two torques add up to zero, and the 
lug nut doesn’t move.

An example of a stationary object not in rotational equilibrium is you on a 
swing moving back and forth. When the swing reaches its highest position, you 
stop momentarily. You and the swing are stationary, but gravity is producing a 
torque, which causes you to start swinging in the opposite direction.

Solving rotational equilibriums
Solving static rotational equilibrium problems also involves satisfying these 
three equations. The mathematical formula for static rotational equilibrium is

 Some facts about static rotational equilibrium to keep in mind are

 ✓ Torques are vectors with both direction and magnitude, so you need to 
add the components of the torques together in each of the three direc-
tions (width, depth, and height).

 ✓ Here I discuss biological systems in static rotational equilibrium that are 
rigid. Rigid means the system doesn’t deform from the torques applied 
to it. If the system weren’t rigid, it would bend, twist, or fold from the 
applied torques.

 ✓ All static equilibrium systems are in both static rotational equilibrium 
and static translational equilibrium, and this is always true. 

  This isn’t the case for moving objects in equilibrium, such as the hands 
on a grandfather or wall clock, which are in dynamical rotational equi-
librium (angular velocity is not zero) but not in dynamical translational 
equilibrium.
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 The main steps involved in solving problems with static rotational equilibrium 
are as follows:

 1. Draw a picture of the system.

  A picture is worth a thousand words and helps with the second step.

 2. Draw a free-body diagram of the biological system showing where all 
the external forces are acting on it.

  This step is the most important step.

 3. Draw an axis of rotation and a compass on your free-body diagram, 
which shows your directions for the axes.

 4. Calculate each of the external forces and their corresponding torques 
using the free-body diagram.

  The direction of the torque is given by the right-hand rule. I discuss the 
direction of the torque in Chapter 4, which involves three simple steps: 

 1. Place your right-hand wrist at the axis of rotation.

 2. Point your right hand toward the location where the force is being 
applied (without moving your wrist).

 3. Curl your fingers in the direction the force is pointing. The right-
hand thumb is pointing in the same direction as the torque.

  The magnitude of the torque is calculated using the formula:

  N is the magnitude of the torque, r is the distance from the axis of rota-
tion to where the force F is applied, and θ is the angle between them.  
is the component of  perpendicular to , and  is the component of  
perpendicular to .

  The right-hand rule and the formula for calculating the magnitude of the 
torque can be combined by the cross-product formula:

 5. Add all the components of the torques together and set the sums 
equal to zero, using the formulas:

 6. Solve for the unknown torque acting on your system. 
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Doing static rotational free-body diagrams
The most important part of understanding and solving problems with static 
rotational equilibrium is the free-body diagram because it helps you calculate 
the torque produced by a force. Just follow these three steps:

 1. Draw a picture of the biological system.

 2. Draw a free-body diagram of the object only, showing where all the 
external forces are acting on it.

  The location where an external force acts on a rigid biological system is 
very important as well as the direction of the force. In order to calculate 
the torque, you need to know where the force is relative to the axis of 
rotation.

 3. Select a location for the axis of rotation.

  The axis of rotation is the axis an object rotates around. An axis of rota-
tion can be real, such as the axis of a bike wheel, or it can be virtual, 
such as a ballerina spinning in a circle whose axis of rotation is the line 
of molecules in the body that don’t move while the rest of her body 
moves in a circle around these molecules. The earth’s axis of rotation is 
a line that goes from the North Pole to the South Pole.

  The object isn’t moving so it doesn’t matter where you place the axis of 
rotation, so put it where there are many unknown forces. 

  Suppose your problem has several unknown forces. The magnitude of 
the torque is proportional to the force times the distance from the axis 
of rotation to where the force is applied. If you place the axis of rotation 
where the unknown forces are applied, then their torques will be zero, 
which makes the problem simple to solve.

  Many people have a hard time choosing an axis of rotation, especially 
if the biological system has a natural axis. As an example, consider a 
person standing still with her feet in contact with the ground and an  
arm stretched out horizontally holding onto a pole — it could be a bal-
lerina that was spinning on her toes and used the pole to stop spinning, 
or it could be a child who used his feet to stop spinning around the pole. 
As long as the person is stationary, you don’t know which situation is 
correct and what is the true axis of rotation. It doesn’t matter as long as 
it is static.
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Bending to the will of static  
rotational equilibrium
In this section, I go through the steps of applying static rotational equilibrium 
to biophysical problems — specifically to a human’s spinal muscles. Try to 
solve this problem:

 You and your biophysics friends are shopping for supplies for your weekly 
Saturday biophysics party when a colleague, Allie, sees you approach. She has 
just purchased new shoes and shorts and wants to show them off. She bends 
over with her legs vertical and her back horizontal and attempts to lift a box 
that weighs 48.2 pounds (21.9 kilogram mass) as shown in Figure 5-4. You and 
your friends see Allie and get really excited, drop everything you’re carrying, 
pull out your notebooks, and do some biophysics calculations. You want to 
calculate the increase in the tension of the spinal muscles.

 

Figure 5-4: 
Allie lifting a 

box.
 

First, you and your friends must estimate some of her physical properties 
while she’s bent over. (I will help with this part.) The four forces acting on a 
person’s back in this posture are:

 ✓ The weight of the upper body is . This is her total weight minus 
the weight of her legs and feet (about 30 percent of her total weight). 
You assume the magnitude to be 140 – 42 = 98 pounds. (A mass of 
44.5 kilograms.)

 ✓ The weight of the box being lifted is . In this case, its magnitude is 
48.2 pounds. (A mass of 21.9 kilograms.)
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 ✓ The tension in the spinal muscles is .

 ✓ The strain in the sacroiliac joints is .

  You and your friends assume her upper body’s center of mass is located 
approximately xSU = 10 inches (25 centimeters) horizontally from the 
sacrum. The box is located a horizontal distance of xSL = 30 inches (76 
centimeters) from the sacrum. The spinal muscles are holding the body 
up and are attached to the back approximately xST = 15 inches (37.5 cen-
timeters) from the sacrum. In this position, the spinal muscles are pull-
ing toward the sacrum at an angle of approximately θ = 12 degrees above 
the horizontal. (In a normal problem, all this information is usually given 
to you.)

 The sacrum is the triangular bone at the bottom of the spine. It connects 
to the hip bones (iliac bones) at the sacroiliac joint. The tip of the triangle 
is the tail bone (coccyx).

Second, you solve the problem by following the steps list at the beginning of 
the section, which is applicable to any object in static rotational equilibrium:

 1. Draw a picture of the biological system.

  My picture is shown in Figure 5-4.

 2. Draw the free-body diagram of the back and show all the forces acting 
on the back.

  The spinal muscles are an internal force within the body, so to use static 
rotational equilibrium, you have to remove the legs (only virtually) as 
shown in Figure 5-5. Doing so creates two new external forces in the free-
body diagram: the contact force between the hips and upper body at the 
sacrum and the tension in the spinal muscles.

 

Figure 5-5: 
Free-body 
diagram of 

Allie lifting a 
box.
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 3. Select a location for the axis of rotation.

  Your best choice for the axis of rotation is the sacrum. Choosing a different 
axis of rotation means you need to consider static translational equilibrium 
and the strain in the sacrum as well. Plus, you need to choose a coordinate 
system (compass) for the force calculations. This makes the problem a lot 
harder than it needs to be. My advice: Stick with the sacrum.

  My free-body diagram is shown in Figure 5-5. AR marks the point (circle) 
where my axis of rotation cuts through the sacrum.

 4. Draw a compass on your free-body diagram, which shows your direc-
tions for the axes.

 5. Calculate each of the external forces and their corresponding torques 
using the free-body diagram.

  In this problem, the torques are one-dimensional vectors perpendicular 
to the plane of Figure 5-5, the z-axis. (Don’t forget your right-hand rule.)

  Forces that try to produce counterclockwise rotations around the axis of 
rotation are positive torques, and forces that try to produce clockwise 
rotations are negative torques.

 6. Add all the components of the torques together and set equal to zero 
using the formulas.

  Substitute the torques into these equations. All the torques are parallel 
to the z-axis, so the first two equations are 0=0. We are left with only one 
equation:

 7. Solve for the unknown torque that is acting on your system.

  The tension in the spinal muscles is

  FT = 314 pounds (1,398 newtons) if there is no box 

  or

  FT = 776 pounds (3,452 newtons) if you include the box.

  The tension in the spinal muscles has to increase by 462 pounds (2,055 
newtons) or 147 percent in order to lift a 48.2 pound (21.9 kilogram 
mass) box.
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Breaking Rigid Bodies with  
Static Equilibrium

A biological system in static equilibrium is in both static translational equilib-
rium and static rotational equilibrium. In the previous two sections I focused 
on how to solve a problem with just static translational equilibrium or static 
rotational equilibrium. In this section, I put it all together and outline the 
steps involved in solving problems involving static equilibrium.

 1. Determine what forces or distances you want to calculate. 

  This is the “setting it up” and “understanding what’s going on” part of 
the problem when you determine what you know and what information 
you need.

 2. Draw your picture.

  Most people find visualizing the problem very helpful.

 3. Draw your free-body diagrams.

  If you have to calculate internal forces, distances, or torques, then you 
need to split up your biological system. Note: You may still have to 
break up the biological system in some problems where all the forces 
you want to calculate are external. Don’t be afraid to split up the system, 
especially if you know the relative positions of the forces.

 4. Solve with static rotational equilibrium. 

  This requires knowing the relative positions of the forces so you can cal-
culate the torques.

 5. Solve any remaining forces with static translational equilibrium.

In the following sections, I apply these steps to solve two problems.

Applying static translational equilibrium 
multiple times — break a leg
Larry the lawyer who ended up in the swimming pool in earlier sections 
awakens upon impact with the water and swims to the side. He wants 
revenge on the biophysicists, so in anger, he runs along the wet deck, slips, 
and breaks a leg. You rush him to the hospital where they put the leg in a 
cast and traction.
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 The leg has a weight of 27.5 pounds (12.5 kilogram mass). The doctor elevates 
the leg to an angle of 20 degrees above the horizontal. The leg is pulled length-
wise toward the foot with a force of 6 pounds (26.7 newtons) by a pulley 
system to keep the parts of the bone straight and aligned while the bone 
mends. Figure 5-6 shows the leg and pulley system.

 

Figure 5-6: 
Larry the 
lawyer’s 

broken leg 
in traction.

 

You want to figure out what tension and direction the rod connecting the 
foot to the pulley system must have. What tension is needed in the cable 
and what angle θ is required to hold the leg in place? Assume the cable 
and pulleys are massless and frictionless.

Follow these steps to solve:

 1. Determine what forces or distances you want to calculate. 

  Your first step is to figure out what’s going on so that you can set up  
the problem. Facts to consider include

	 •	The	leg	isn’t	moving,	so	the	hip	is	pulling	back	with	a	force	of	 
FH = 6.00 pounds (26.7 newtons) along the length of the leg.

	 •	The	leg	has	a	weight	of	Fg = 27.5 pounds (12.5 kilogram mass) 
straight downwards.

	 •	The	leg	makes	an	angle	of	20	degrees	relative	to	the	horizontal.

	 •	You	need	to	find	the	tension	in	the	cable,	FT, and the angle, θ. The 
magnitude of the tension in the cable is the same on both the right 
side and left side of the pulley because the pulley is massless and 
frictionless.

	 •	You	have	to	split	the	system	apart	because	the	contact	force,	 ,  
is an internal force and we need it to be an external force.
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 2. Draw your picture.

  Figure 5-6 shows my picture. 

 3. Draw your free-body diagrams.

  Figures 5-7 and 5-8 show mine. I made one for the leg and one for 
the pulley. I don’t need to make one for the pulley and leg combined 
because the two diagrams allow me to solve for all the unknown quanti-
ties. You can also use the leg plus pulley in Figure 5-6 as a free-body dia-
gram. The only difference between Figure 5-6 and Figure 5-8 is that the 
hip force and weight of the leg replaces the contact force.

  In Figure 5-7:  is the force applied to the leg by the hip,  is the 
weight of the leg, and  is the contact force between the leg and the 
pulley.

  In Figure 5-8:  is the force of the left-side cable pulling the pulley 
upwards,  is the force of the right-side cable pulling the pulley 
upwards and to the right, and  is the contact force between the leg 
and the pulley.

 

Figure 5-7:  
The free-

body 
diagram for 
Larry’s leg.

 

 4. Try using static rotational equilibrium,

  Static rotational equilibrium requires calculating the torques, but you 
don’t know the location of the forces relative to the axis of rotation, so 
you need to use static translational equilibrium instead.

 5. Solve any remaining forces with static translational equilibrium:



97 Chapter 5: Sitting with Couch Potatoes –– Static Equilibrium

 

Figure 5-8:  
The free-

body 
diagram for 

the pulley.
 

 1. Calculate the forces. I have drawn a compass in Figure 5-7:

 

 2. Substitute into the static translational equilibrium equations:

 

 3. Solve for ϕ.

 

  The contact force makes an angle of 79.2 degrees relative to the  
horizontal. 

 4. Substitute the angle of 79.2 degrees into the x-axis equation and 
solve for Fc = 30.1 pounds (134 newtons).

 5. You need to repeat the calculations for the tension in the cable. I 
have drawn a compass in Figure 5-8. You should have one in yours 
as well. The forces from Figure 5-8 using my compass are
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 6. Substitute the forces into the static translational equilibrium  
equations, 

 

 7. Combine these equations and solve for FT:

 

  I use the identity cos2 + sin2 = 1, and I can solve for FT.

  The tension in the cable is

  Substitute the tension into the x-axis equation and solve for the angle:

  The angle is θ = 68.4 degrees.

The rod has to hold up the leg plus provide 6.00 pounds (26.7 newtons) of 
force along the length of the leg, which is why the rope has a tension of 30.1 
pounds (134 newtons) and is pulling upwards at an angle of 79.2 degrees 
above the horizontal. The cable is pulling the pulley and rod. The cable is 
pulling on both sides of the pulley and shares the force between the cable 
on the left and right sides of the pulley. This makes the tension in the cable 
much smaller at only 15.3 pounds (68.1 newtons). The right cable is set an 
angle of 68.4 degrees above the horizontal. This will allow Larry’s leg to heal 
properly so he can chase biophysicists in the future.

 For biophysical problems like this you need to recognize that you can’t use static 
rotational equilibrium unless you’re given the locations of the forces or you need 
to find the location where the force is being applied. When dealing with internal 
forces, you need to split up the system to figure out what forces are involved.

Applying static rotational and static 
translational equilibrium — the iron cross
The problem in this section is a combination of all aspects of static equilib-
rium biomechanics and illustrates how to implement the steps given at the 
beginning of the “Breaking Rigid Bodies with Static Equilibrium” section. 
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Because static equilibrium objects are in both static translational and static 
rotational equilibrium, you need to solve for both of them as well as you usu-
ally have to split the system apart (like Larry, his leg, and the pulley). 

The iron cross is a gymnastic exercise on the rings that requires a lot of strength. 
The gymnast hangs on a set of rings with her arms held out horizontally from her 
body. In this case, here I switch things around and have the person upside down.

 Figure 5-9 shows Helga of the women’s Olympic Team who weighs Fg,B = 220 
pounds (100 kilogram mass) performing an upside-down iron cross. The del-
toid muscles (located at the top of the shoulder) hold her entire body in the 
air. The problem is to calculate the tension in her deltoid muscle and the 
strain in her shoulder joint. 

 

Figure 5-9:  
Helga 

performing 
an upside 
down Iron 

Cross on the 
rings.

 

 For biophysical problems like this, the trick is to know how to break the 
system apart and figure out what forces are involved. In biological systems, 
the main forces in these types of problems are the muscles, the contact forces 
in the joints, and gravity.

 1. Determine what forces or distances you need for the calculations and 
what you want to calculate. 

  To calculate the tension in the deltoid muscle, you need to know what 
external forces are acting on Helga’s arm:

  The strain in the shoulder joint is . You don’t know the magnitude or 
the direction of this force, but it’s located at the shoulder joint.

  The tension in the deltoid muscle is . The deltoid muscle is attached 
to the humerus bone xSD = 6 inches (0.152 meters) horizontally from the 
shoulder joint. The force is directed toward the body at an angle of 20 
degrees below the horizontal.
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  The weight of the upper arm is . It has a magnitude of 6 pounds 
(mass of 2.72 kilograms) and is located at xSU = 5.25 inches (0.133 
meters) horizontally from the shoulder joint. The force is directed down-
wards toward the center of the earth.

  The weight of the lower arm and hand is . It has a magnitude of 4.75 
pounds (mass of 2.16 kilograms) and is located at xSL = 16.5 inches (0.419 
meters) horizontally from the shoulder joint. The force is directed down-
wards toward the center of the earth.

  The tensions in the ropes are  and . The ring in the hand is 
located at xSR = 26.0 inches (0.660 meters) horizontally from the shoul-
der joint. The force is directed upwards and 10 degrees toward the 
center of the body.

  The external forces acting on Helga’s body are

  The weight of the body is .

  The tension in the right rope is .

  The tension in the left rope is .

 2. Draw your free-body diagrams. 

  Figure 5-10 shows my free-body diagrams for Helga’s body and arm. 
Figure 5-10a is the free-body diagram for Helga’s body. Figure 5-10b is 
the free-body diagram for Helga’s arm.

 

Figure 5-10:  
The free-

body 
diagrams 

of Helga’s 
body (a) and 
her arm (b).
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 3. Solve the tension in the deltoid with static rotational equilibrium on 
the arm.

  Figure 5-10b shows three unknown forces acting on Helga’s body (del-
toid muscle, strain in the shoulder joint, and the tension in the rope). 
You have to find one of these three forces some other way before you 
can solve this problem. Luckily, you can find the tension in the ropes by 
considering the whole system (Helga’s body). You don’t know the rela-
tive locations of the ropes and her center of mass, so you need to use 
static translational equilibrium instead of rotational equilibrium. 

 4. Solving for the tension in the rope using static translational equilib-
rium on the whole body.

 1. Calculate the forces acting on the body. 

  In Figure 5-10a, I show the three forces and my compass (+y-axis is 
up and +x-axis is north):

 

 2. Substitute into the static translational equilibrium equations

 

  These equations are solved by the tension in the ropes. The x-axis 
 equation shows that the magnitude of the two forces must be the same. 
The tension in each of the ropes from the y-axis equation is

You can now find the tension in Helga’s deltoid and the strain in her shoulder 
joint by solving the static equilibrium problem for the arm. You start with 
static rotational equilibrium:



102 Part II: Calling the Mechanics to Fix Your Bio — Biomechanics 

 1. Choose an axis of rotation for the torque calculations.

  My free-body diagram is shown in Figure 5-10b, where AR marks the 
point where the axis of rotation cuts through the figure. I picked my axis 
of rotation to pass through the shoulder joint.

  Your best choice for the axis of rotation is the shoulder joint because 
the torque produced by the strain in the shoulder joint is zero. Choosing 
a different axis of rotation means you need to consider static transla-
tional equilibrium and the strain in the shoulder joint simultaneously 
with the tension in the deltoid. This makes the problem a lot harder than 
it needs to be. My advice: Stick with the AR at the shoulder joint.

 2. Calculate the torques.

  (Don’t forget your right-hand rule.) You can use the Figure 5-10a com-
pass for Figure 5-10b too.

 3. Add all the torques together and set equal to zero.

 4. Solve for the unknown torque that is acting on your system.

  Substitute the torques into these equations (there is only one non-
zero equation):

 

  Solve for the tension in the deltoid muscle:

 

 5. Solve any remaining force with static translational equilibrium.
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  The only force left to solve for is the strain in the shoulder joint.

 1. Calculate the forces in Figure 5-10b. My compass shows the x-axis 
(north–south) and the y-axis (up–down).

 

 2. Substitute into the static translational equilibrium equations.

 

 3. Solve for the strain in the shoulder joint.

 

  and

 

In biophysics, you usually need to calculate the magnitude of the force and 
the direction (angle). The magnitude of the strain and the angle are calculated 
from these forces using Pythagoras’ theorem and trigonometric properties. 

  and

You see that Helga is very strong. Each of her deltoid muscles is producing 
a force of 1,340 pounds (5,980 newtons) at an angle of 20 degrees below the 
horizontal. The strain in her shoulder joint has a magnitude of 1,330 pounds 
(5,920 newtons) at an angle of 15.7 degrees above the horizontal.
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Chapter 6

Building the Mechanics of the 
Human Body and Animals

In This Chapter 
▶ Balancing and stability
▶ Riding the roller coaster and other accelerating rides
▶ Moving machines
▶ Bending, stretching, and twisting
▶ Growing and shrinking in biophysics

T 
here are many situations in biophysics when studying the setup is just 
as interesting and important as studying the motion of the objects. This 

chapter focuses on understanding some of the biomechanics without worry-
ing about if the system is moving or not. An example is the stability of an ath-
lete on the balance beam. It doesn’t matter if she’s moving along the beam or 
stationary; the principle of not falling off the balance beam is the same.

You discover more about statics in this chapter, specifically the center of 
mass and stability and how well the body holds up to accelerations and 
forces. You also find out about the six basic machines and the mechanical 
advantage and applications within your body. In addition, objects aren’t 
perfectly rigid but can bend and twist, so I introduce the concepts of stress 
and strain. The last section of this chapter is about scaling and dimensional 
analysis, and I discuss their importance in biophysics.
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Getting Down with Gravity
Gravity is a force biological organisms can’t escape. Most people don’t think 
about it, but it plays an important role with all life on the planet. People who 
have it foremost on their mind are probably skydivers when they jump out 
of a plane and mountaineers when climbing a cliff. Gravity is important in 
sports and animal mechanics, so that is the focus of this section.

I focus on the concept of center of mass, which is a special point in objects 
where gravity thinks all the mass is located. I also discuss stability, which is a 
pretty important concept in life too. I show when you should expect someone 
to be stable or whether the person will fall on his or her face.

Shifting to the center of mass
Gravity thinks all the mass in your body is located at a single point called the 
center of mass. The location of your center of mass plays a critical role in bio-
mechanics, such as in many sports from surfing to skateboarding to wrestling 
to biking and so on. You can add almost any sport you can think of to this 
list. (Center of mass isn’t too critical in checkers though.)

To understand the center of mass, take a uniformly proportioned stick and 
balance it on one finger at each end. If you remove the left hand finger, the 
stick will rotate around the right hand finger and fall down. Now, place your 
right hand finger in the center of the stick, and you should be able to hold up 
the stick with a single finger. You can think of there being the same amount 
of mass on both sides of the finger, or you can think of all the mass within 
the stick as being located at a single point, which is above your finger. The 
external forces acting on the stick are gravity and the normal force from your 
finger. According to Newton’s second law, the law of acceleration, the two 
forces must add to zero so there’s no acceleration. The two forces must be 
located at the same place as well, so the net torque is also zero, and there’s 
no angular acceleration.

You can calculate and use the idea of center of mass with single objects such 
as the stick or with multiple objects. An example where you may be inter-
ested in the location of the center of mass of multiple objects is the tightrope 
walker. The system consists of multiple objects: a long pole to help with sta-
bility, the mass of each lower leg, the mass of each upper leg, the mass of the 
torso, the mass of each forearm, the mass of each upper arm, and the mass of 
the head. In this example, you want to know where the center of mass of the 
entire system is as the person swings a leg in a semi-circle to bring the leg 
from behind the other leg to in front of it. 
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The formula for calculating center of mass is

If you multiply this equation by the acceleration due to gravity, g, which 
equals 32.2 feet per second squared (9.81 meters per second squared), 
this changes the masses to the magnitude of the weights and the equations 
become the formula for calculating the center of gravity. 

 Think of the formula for center of gravity as the sum of the torques produced 
by the individual objects’ weight equal to the torque produced by the total 
weight located at the center of gravity.

 The previous equation is for a collection of discrete objects. When the object 
is continuous, the formula uses calculus:

Here  is the position vector and dm is an element of mass located at this 
position, which equals the mass density times a volume element.

 It’s Saturday night and you’re having a biophysics party. You want to 
calculate the location of your body’s center of mass. I don’t know your 
dimensions, so I use Sam’s numbers instead. When you’re looking over 
my calculations, you should substitute your own body’s numbers into 
the calculations. It’s more fun knowing your own center of mass.

Follow along in these steps:

 1. Set up the experiment and measure the center of mass/gravity of the 
table.

  Ask some of your closest biophysics friends to bring their bathroom 
scales to the party. You also need to use a couple of broom handles and 
your kitchen table. Then, follow these steps:

 1. Place the scales on the kitchen floor.

 2. Place the broom handles on the scales.

 3. Flip your kitchen table upside down and place it on the broom 
handles.
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 4. Measure the readings on the bathroom scales and the distance 
from the end of the table to each of the broom handles. 

  I have made measurements on my kitchen table: 

  Figure 6-1 illustrates the kitchen setup. Does your setup look similar? 
The figure also shows what I mean by x1 and x2.

 

Figure 6-1:  
A diagram 

for the 
kitchen 

table and 
scales 

showing 
the forces 
 acting on 
the table.

 

  Three forces act on my table: the gravitational force (weight) and the 
normal force at each broom handle. The table isn’t moving so the accel-
eration of the table is zero and according to Newton’s second law, the 
law of acceleration, the net force acting on the table must be zero. This 
means the weight of the table cancels the normal forces pushing the 
table up as such:

 2. Calculate the center of mass/gravity of the table.

  You can find the center of gravity (mass) by using either the weights or 
the normal forces because the normal forces are countering the weight 
and the forces and torques of the system must balance:
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 3. Measure the center of mass/gravity of the table with you on it.

  You now know where the center of gravity of the table is and can cal-
culate Sam’s center of mass (gravity). You can calculate your center of 
mass (gravity) using your numbers. Lie down on the table and have a 
biophysics friend measure the location of your feet and the force on the 
bathroom scales. Sam’s values are

  Figure 6-2 illustrates the setup in my kitchen of the table with Sam lying 
on it. Does your setup look similar?

 

Figure 6-2:  
The  

free-body 
diagram for 
the kitchen 

table and 
Sam.

 

  The reason you want to measure the location of your feet is very simple. 
Suppose you’re walking down the street and a stranger asks you, 
“Where’s the location of your center of mass?” You can immediately 
respond that your center of mass is so many inches above the ground 
instead of “I don’t know.”

  Four forces are acting on the system: the gravitational force acting on 
the table, the gravitational force acting on Sam, and the normal force 
at each broom handle. The table and Sam aren’t moving so the accel-
eration of the table is zero, and according to Newton’s second law of 
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motion, the law of acceleration, the net force acting on them must be 
zero. This means Sam’s weight plus the table’s weight must cancel the 
normal forces pushing the table up. You now know Sam’s weight:

 4. Calculate your center of mass/gravity.

  You can find your center of mass (gravity) by using this formula  
(I calculate Sam’s center of mass):

  Sam’s center of mass (gravity) is located at 4.40 – 1.5 = 2.90 feet (0.883 
meters) above his feet.

 Women typically find their center of mass at hip level whereas men find their 
center of mass to be slightly above the hips. The lower center of mass in the 
female body makes it more stable than the male body, but I discuss stability in 
the next section.

Staying stable and balanced
An animal or object is stable when its center of mass is over its base. The 
base is the area on the ground enclosed by the locations of the normal 
forces. If the center of mass of an object isn’t over the base, then the object 
will fall over. For example, a three-legged table can have normal forces at the 
three legs and the base is a triangle enclosed by the three-legs. For a human 
standing on his feet, the base is from the toes to the heels and from the outer 
edge of the right foot to the outer edge of the left foot. As long as the person’s 
center of mass (gravity) is over that base, he won’t fall over.

As an example, Sam’s center of mass is located 2 feet 11 inches (88 meters) 
above his feet, half way between the left foot and right foot and approxi-
mately half way between the heel and ball of the foot. Now suppose Sam puts 
on an extra 100 pounds (445 newtons) of weight (45.3 kilogram mass). For 
many humans, excess fat builds up on the torso and mostly on the front. How 
far has Sam’s center of mass shifted forward if the center of mass of the fat is 
8 inches (20 centimeters) in front of the original center of mass?
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Use this formula to solve the problem:

Sam’s new center of mass is located 3 inches (7.62 centimeters) in front of 
the original center of mass. This means Sam has to arch his back backward 
so his new center of mass is shifted backward 3 inches (7.62 centimeters) 
and remains over his feet (base). This arching isn’t natural and can lead to 
back problems and discomfort for people that are obese. This can also occur 
for pregnant women.

Feeling the Effects of Acceleration
The human body is designed for a gravitational force (mass times accelera-
tion) due to gravity (g = 32.2 feet per square second = 9.81 meters per square 
second) and small accelerations. (Acceleration is a measure of how fast the 
velocity is changing. Hitting a brick wall at 100 miles per hour [160 kilometers 
per hour] definitely isn’t a small acceleration.) The development of technol-
ogy has made it easier for the human body to undergo extreme accelerations. 
These sections look at some of the effects of these accelerations on the 
human body.

Noticing the physiological  
effects of acceleration
Newton’s second law of motion, the law of acceleration, states that the 
acceleration equals the net external force divided by the mass of the object. 
Therefore, the larger the acceleration, the larger the net force is for a given 
mass. A larger force means more potential to damage the biological system. 
Four primary factors are key to determining the danger of the net force acting 
on a biological system:

 ✓ The type of biological system: It’s suggested that bacteria can survive 
huge forces and extreme conditions to the point that they can survive 
interstellar travel between planets. Experimental measurements have 
shown that fleas, ticks, and other bugs of this type can subject their own 
bodies to accelerations that could kill a human.
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 ✓ The magnitude of force being applied to the biological system: 
Dropping your biophysics book on your foot isn’t too bad, but having a 
bus drive over your foot really hurts.

 ✓ The duration of force being applied to the biological system: During 
a car accident, a person hitting the windshield stops in a couple of 
milli seconds, and depending on the car’s initial speed may not survive. 
Another person in the car wearing a seatbelt takes about 100 times 
longer to stop and has a much smaller average acceleration. The seat 
belted person has a much greater chance of survival.

  An airbag in a car subjects the occupant to an acceleration of up to 
about 60g but only for about 1/30 of a second; whereas a trained jet 
pilot can withstand an acceleration of 5g for several seconds before 
passing out. Serious health risks exist if the duration and/or force were 
increased.

 ✓ The pressure or more precisely the area over which the force is being 
applied: In the example of the car accident and the person without a 
seatbelt, a very large force is needed to stop the person in a couple of 
milliseconds. In addition, the force is applied to just the small area of the 
forehead, which creates a pressure (force divided by area) large enough 
to fracture the bone (skull).

Gaining a hold of effective weight — 
blackouts and redouts
Blackouts occur when you are accelerating upwards. An upward acceleration 
means the effective weight is larger and the heart has to work harder. At an 
acceleration of about 3g (Fg,eff = 4mg), the body starts to experience black-
out effects. The retina in the eye starts to become oxygen deprived and the 
vision blackouts. Jet pilots are trained to withstand this blackout, and even 
at 5g (Fg,eff = 6mg), they can hold it off for several seconds with proper equip-
ment. At an acceleration of 6g (Fg,eff = 7mg), the pilot will completely black out 
(become unconscious) from the reduced supply of blood to the brain. Note: 
An upward acceleration of 5g is equivalent to 161 feet per second squared 
(49.1 meters per second squared). 

Redouts are the opposite of blackouts, which means that the heart can’t effec-
tively pump the blood out of the brain and replace it with oxygen rich blood. 
In this case, the acceleration causes too much blood to flow into the head. 
This forces the blood vessels to enlarge and the body then reduces the activ-
ity of the heart, which in turn reduces the oxygen supply to the retina and 
brain. The buildup of blood in the retina causes the vision to turn red, and 
you’ll shortly pass out afterwards from a lack of oxygen. You start to experi-
ence a redout with a downward acceleration of –3g (Fg,eff = 2mg upside down).
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A person’s effective weight is expressed as

This formula states that your weight changes if you’re accelerating. To verify 
this, take your bathroom scale to a high speed elevator, stand on the scale 
in the elevator, and press a few buttons. If you’re stationary, the scale reads 
your weight. If you’re accelerating upwards, it feels like your stomach is in 
your shoes and the scale reads a force greater than your weight. The reason 
is the scale is providing the normal force, which is countering your weight 
and providing the force necessary to accelerate you upwards. The bathroom 
scale is measuring the normal force.

The common experiences of effective weight that people notice occur in 
elevators, cars, and amusement parks when it feels like your stomach has 
moved into your toes or throat. However, everybody is experiencing an  
effective weight because of the rotation of earth, but no one notices it 
because it’s a very small effect compared to gravity. 

For example, suppose Tabitha has a mass of m = 3.75 slugs (54.7 kilograms). 
The average acceleration of gravity on earth is g = 32.2 feet per second 
squared (9.81 meters per second squared). The magnitude of Tabitha’s nomi-
nal weight is m g = 121 pounds (537 newtons). Suppose Tabitha moves to the 
equator. The average acceleration due to gravity at the equator is 32.20 feet 
per second squared (9.814 meters per second squared), which gives Tabitha 
a weight that’s the same as the nominal weight. 

 Mass has units of slugs (kilograms) where 1 slug = 1 pound square second per 
foot. 1 slug = 14.59 kilograms. The magnitude of the weight has units of pounds 
(newtons) where 1 newton = 1 kilogram meter per square second. 1 pound = 
4.448 newtons. Personally, I think we should all use dekanewtons (daN) for 
weight, and then Tabitha would have a weight of 53.7 daNs.

But at the equator, Tabitha is traveling in a big circle every 23 hours and 56 
minutes and according to Newton’s first law of motion, the law of inertia, 
objects travel in straight lines unless subjected to a net external force. If 
Tabitha has a net force acting on her, there must be an acceleration accord-
ing to Newton’s second law of motion, the law of acceleration. When stand-
ing, smelling the roses, you don’t think of your body as having acceleration, 
but it does. 

The radial (centripetal) acceleration is the acceleration needed to travel in a 
circle. The radial acceleration at the equator is



114 Part II: Calling the Mechanics to Fix Your Bio — Biomechanics 

The acceleration, ar, is the radial (centripetal) acceleration, and it’s directed 
toward the center of the circle. The subscript on the a is to remind you that 
this is the radial acceleration, which has the special form shown in the equa-
tion. The r is the circle’s radius, which is the radius of earth at the equator 
in this case. The earth’s average radius at the equator is 7,928 miles (12,756 
kilometers) or 4.19 × 107 feet (1.28 × 107 meters). ω is the angular velocity.

In this example, the angular velocity is approximately a constant, and you 
can use the average angular velocity, which is the angular displacement 
divided by the elapsed time. The person travels in a full circle (2π radians) in 
23 hours 56 minutes, which is 8.616 × 104 seconds. (Earth is orbiting the sun, 
so it takes the earth an extra four minutes of spinning to bring the sun to the 
same point in the sky, which is why the day is 24 hours.)

I can now calculate Tabitha’s effective weight by the following equation:

The effective acceleration due to gravity is geff. = 32.0 feet per second squared 
(9.75 meters per second squared) downward, and the magnitude of Tabitha’s 
effective weight is 120 pounds (533 newtons). If Tabitha originally lived at 
the South Pole and then moved to the equator, she would’ve lost 1.1 pounds 
(4.7 newtons) of weight just by moving — the quickest weight-loss program 
around. Of course, there was zero mass lost in the process.

Perceiving angular momentum  
and balance
The ear does more than let you hear. The inner ear plays an important role in 
balance. The inner ear is a bony labyrinth of hollow cavities within the tem-
poral bone of the skull. The bony labyrinth can be split into three parts:

 ✓ Cochlea: The part of the ear dedicated to hearing (covered in more 
detail in Chapter 15)

 ✓ Semicircular canals: Parts of the ear dedicated to the detection of 
motion and balance

  The human inner ear has three semicircular canals:

	 •	Lateral semicircular canal (or the horizontal semicircular canal): 
This semicircular canal is for the detection of yaw rotation. This 
corresponds to sitting on a chair that rotates and you start spin-
ning around in circles.
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	 •	Anterior semicircular canal (or the superior semicircular canal): 
This semicircular canal is for the detection of pitch rotation. This 
corresponds to bending over to tie your shoes.

	 •	Posterior semicircular canal: This semicircular canal is for the 
detection of roll rotation. This corresponds to sitting in a canoe 
and tipping over.

 ✓ Vestibule: The central part of the inner ear close to the cochlea and 
where the semicircular canals connect; works with the semicircular 
canals to detect motion and help with balance; also works with eyes to 
help you focus on objects while in motion.

Look at your coffee cup and start spinning the cup (not the coffee). What 
happens if you don’t spill the coffee? At first there’s an angular acceleration 
and then constant angular velocity. During the initial angular acceleration, 
the coffee can’t keep up with the cup, but as you continue to spin the coffee 
cup at a constant angular velocity, the coffee eventually catches up and spins 
at the same angular velocity.

The semicircular canals are filled with a fluid called endolymph. When you 
suddenly move your head, it’s the same as when you start spinning the 
coffee cup. The endolymph doesn’t move in the canal and applies pressure 
to the cupula, within the ampulla, in the opposite direction. (The ampulla 
is an enlarged part of the semicircular canal near the vestibule. The nerve 
cells end in hair cells that are connected to the cupula [a gelatinous material] 
within the ampulla. A signal is sent to the brain when the fluid changes the 
pressure applied to the cupula.)

After the head stops accelerating, it takes the endolymph about a second to 
catch up with the semicircular canal’s motion. It then takes the cupula about 
a third of a minute to relax after that. After the cupula relaxes, the inner ear 
can’t detect the motion. 

The signal from the cupula to the brain not only tells you that your head is 
accelerating, but also it triggers the nystagmus reflex in the eye. This is a flick-
ing of the eyes from one object to the next. The eyes focus on an object for 
a moment and then fix on another object, focus, and then move to the next. 
This reflex stops as soon as the cupula stops sending signals to the brain. A 
lot people then see the objects streaking past and lose their balance.

Test the nystagmus reflex by placing a chair in the middle of the room that 
can spin freely. Before you begin, make sure there’s nothing close to the 
chair in case someone flies off the chair. The first victim sits on the chair, and 
you spin it for a minute. A constant angular velocity of 2π radians per second 
should be fine. You want to avoid any angular acceleration so the cupula can 
relax. After one minute, you bring it to an abrupt stop and have the person 
immediately walk across the room to the other side and pick up a glass of 
water. Now, you and the rest of your friends can try it.
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Your observations include the following:

 ✓ Was she losing her balance and turning green while in motion? People 
can train their eyes not to see the streaking motion and maintain  
balance.

 ✓ Was she staggering when she left the chair and walking toward the glass 
of water? During the stopping motion, the nystagmus reflex is making 
the eye focus on the moving objects and treating the stationary objects 
as if they were moving. If the stopping and walking are done quickly, the 
brain has trouble making the adjustment and hence the unbalance and 
staggering.

Floating in space and the  
effects of weightlessness
Weightlessness occurs when the effective weight is zero. There is a force of 
gravity everywhere, but you can have a zero effective weight. For example, 
even on the International Space Station, the acceleration due to gravity is 
28.7 feet per square second (8.73 meters per square second), so a person 
who weighs 150 pounds (667 newtons) on earth will weigh 134 pounds (594 
newtons) on the International Space Station.

The effective weight is zero when the net force acting on the object is equal 
to the weight. This is indeed the case for the people on the International 
Space Station. They’re falling toward the center of the earth due to a net 
force equal to their weight. The only reason they don’t crash into the earth 
is because the tangential velocity is too large, and they keep missing the 
ground. Falling and missing the ground is usually referred to as being in orbit.

 The human body is designed for an effective weight equal to the weight of the 
body at the surface of earth and not approximately zero, so one out of every 
two astronauts will get space sickness, which includes nausea, vomiting, 
vertigo, and headaches. Space sickness is a short-term illness, which lasts up 
to three days. Long-term effects can occur, as well, and can be split into three 
categories: severe, moderate, and light. Some of the worst problems that arise 
from long-term weightlessness include the following:

 ✓ Severe

	 •	Muscle atrophy: The muscles are always at work, holding the body 
in place against the forces acting on it. In weightlessness, muscles 
aren’t needed for standing, running, or lifting heavy objects and 
other similar activities. The muscles start to shrink, and the body’s 
muscles mass drops.
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	 •	Osteopenia: The skeleton no longer has to work against gravity to 
maintain the body’s shape, and bone mass is lost. 

 ✓ Moderate

	 •	Balancing	problems

	 •	A	weaker	immune	system

	 •	A	reduced	red	blood	cell	count

	 •	A	slowing	of	the	cardiovascular	system

Rising of the Machines —  
The Bio-Terminator

There are six kinds of basic machines, which are important in understanding 
the biomechanics of animal motion. In this section, I define the mechanical 
advantage, which measures the amount of applied force required against a 
load force. You also get the six different machines and discover the human 
body in terms of these machines.

Marching to the mechanical advantage
With machines, you apply a force to the machine, and the machine applies a 
force to some load. The mechanical advantage of a machine is defined as the 
magnitude of the output (load) force divided by the magnitude of the input 
(applied) force. Mathematically, mechanical advantage’s formula is

The mechanical advantage is used with conservation of energy to determine 
forces, displacements, or speeds. Of course, in real machines, including 
animal bodies, there’s energy lost through dissipative forces, such as friction. 
The efficiency (η) of the machine is defined as the power out (Pout) divided by 
the power in (Pin):
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Machines do work, but they need energy to do the work. The formula tells 
you how good the machine is at using the energy to do work on its surround-
ings. The efficiency of a realistic machine is between 0 and 1. If the efficiency 
is one, the machine is perfect, and it obeys conservation of energy, which 
means work in is equal to work out, or power in is equal to power out. You 
can view the human body as a machine where you use energy to do work on 
your surroundings. For most activities, the human body has an efficiency less 
than 10 percent (η = 0.10). The body is good at a few things. For example, 
with walking the human body has an efficiency around 0.2 (20 percent). The 
total efficiency of a system with multiple machines connected in a sequence is 
the product of the efficiencies:

Combining mechanical advantage with conservation of energy and the  
definition of work gives you the following useful relationships for the ideal 
system:

Δx is the displacement parallel to the force, the Δθ is the angular displacement 
vector parallel to the torque, the  is the component of the displacement from 
the axis of rotation (think of the line from the earth’s North Pole to the South 
Pole) to the location where the force is applied, which is perpendicular to the 
force and the direction of the axis, and  times F is the torque (N). 

Suppose you’re doing arm curls with 50 pound (222 newton) weights in each 
hand. With your biceps muscle in the vertical direction and your forearm 
horizontal, what’s the force supplied by your biceps muscles, and what’s the 
mechanical advantage? 

The distance from the elbow joint to where your biceps muscle is attached to 
the forearm is 2.0 inches (5.1 centimeters), and the distance from the elbow 
joint to the weight is 13.0 inches (33.0 centimeters). Δθ is the same for both 
the biceps muscle and the weight. Substitution into the equation for the  
rotational mechanical advantage above gives the following:
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The force in each biceps muscle is 325 pounds (1,450 newtons). The mechani-
cal advantage of the arm is 0.154. A mechanical advantage less than 1 means 
more force is needed for a given output load, but the load will move farther. 
If the mechanical advantage is greater than 1, then the input force is less than 
the output force.

 Pulleys and levers are the most common applications of mechanical advantage.

Perusing the machines  
within biomechanics
Welcome to the machines. A machine is a device that changes the direction 
and/or magnitude of a force. It has a mechanical advantage. Machines,  
including your entire body, can be decomposed into six basic types of 
machines, which these sections discuss.

Slipping on slopes — the inclined plane
The inclined plane is a flat surface that allows you to change the rate at 
which vertical displacement changes relative to the horizontal displacement. 
A couple of examples include the following: 

 ✓ The stairs in an apartment building: It’s a lot easier to climb the stairs 
to the third flood than to scale the outside of the building to the third 
floor balcony.

 ✓ A wheelchair ramp: For the disabled, a ramp reduces the incline so the 
chair can make it up and down the change in the vertical distance.

Dividing things — the wedge
A wedge is a triangular shaped tool used to separate two objects, to split a 
single object into two pieces, or to hold two objects together. For example, 
a wood axe is used to split firewood. Also, metal or wooden wedges can be 
driven into the axe handle to make the handle wider and hold the axe head in 
place.

Rolling — the wheel and axle
The wheel and axle allows a force applied to one to be transferred to the 
other so it can do work. An example would be the engine and transmission in 
a car or the chain on a bike turning the axle, which in turn moves the wheel. 
Alternatively, a force can rotate the wheel such as in a windmill, watermill, 
wind turbine, and water turbine. The wheel then turns the axis, which then 
does work.
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Screwing — the screw
A screw converts torque into force and rotational motion into linear motion. 
Some screws have threads such as wood screws. The threads drive the 
wood screw linearly into the object. A tire jack uses a screw mechanism with 
threads as well. As you turn the screw, the threads pull the ends of the jack 
together, and it lifts the car. Other screws use a helical motion, such as a 
corkscrew, instead of threads.

Pulling — the pulley
The pulley is used to transfer power, change the direction of a force, and 
reduce the force needed to counter a load. The pulley consists of an axle 
with wheels attached to the axle that are free to rotate. A cable is then placed 
around the wheel. In Figure 6-3, you see some pulleys with mechanical advan-
tages of 1, 2, 3, 4, and 5 lifting a box labeled W. If you notice, there’s a pattern 
for the pulleys and the mechanical advantage. The mechanical advantage 
equals the number of times the rope passes between the pulleys. The pulleys 
for mechanical advantages of 6 and higher follow this same pattern.

 If you want to determine the mechanical advantage of a pulley for yourself, 
follow these steps: 

 1. Draw a free-body diagram of the pulleys with the load when it is  
stationary.

  For example, consider the pulley system in Figure 6-3 that has a mechan-
ical advantage of 3. Try drawing its free-body diagram. After you’re 
finished, you can compare it to my free-body diagram. My free-body 
diagram in Figure 6-4 shows the bottom group of pulleys (1 pulley in this 
problem). Notice my free-body diagram has a compass included to help 
with directions.

 2. Calculate the forces in the free-body diagram with the help of  
compass.

  The four forces in the example are 

  FT is the tension in the rope, and W is the load on the pulley (the  
magnitude of the load force).

 3. Apply Newton’s second law of motion, the law of acceleration.

  Assume the acceleration of the system is zero, so the net force is zero, 
which gives a relationship between the input force and the output force 
and hence the mechanical advantage.
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  In the example shown in Figure 6-4, this gives 3FT – W = 0, and the 
mechanical advantage is W divided by FT, which is 3.

 

Figure 6-3: 
Pulleys 
with a 

mechanical 
advantage 
of 1, 2, 3, 4, 

and 5.
 

 

Figure 6-4: 
A free-body 
diagram of 

the lower 
part of a 

pulley  
system.
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As an example, suppose you want to lift your 1,000-pound (453-kilogram 
mass) piano from the ground up to your third floor apartment balcony 
because it doesn’t fit through the front doors. You’re supervising so your 
friends have to lift the piano 27 feet (8.23 meters). The advantages of using 
pulleys are

 ✓ You can transfer the power from your friends’ muscles to power lifting 
the piano against gravity.

 ✓ The pulleys change the direction of the force so your friends can stand 
on the ground beside the piano as they lift it up instead of standing on 
the roof of the apartment building; and you can set up the pulleys so 
your friends don’t feel the full weight of the piano. 

If you use a pulley system with a mechanical advantage of 5, how much force 
must your friends apply and how far do they need to pull the rope?

In the section, “Marching to the mechanical advantage,” I mention the rela-
tionship between mechanical advantage, the ratio of the forces, and the 
ratio of the displacements. If you use the pulley system in Figure 6-3 with a 
mechanical advantage of 5, your friends have to lift a weight of only Fin = Fout/
MA = 1,000 lbs/5 = 200 lbs (890 newtons). On the down side, your friends have 
to pull xin = MA xout = 5 (27 ft) = 135 feet (41.1 meters) of rope to lift the piano 
27 feet (8.23 meters).

Lifting — the lever (Class I, II, and III)
The last machine is the lever, which is very important in biomechanics. 
Levers consist of a fulcrum, an applied (input) force, and a load (output force). 
The fulcrum is the point around which the lever rotates. It can be a ball in a 
socket like the elbow joint or the axis of rotation, such as the axis of a wheel-
barrow or a teeter-totter. The orientation of the fulcrum and the two forces 
places the lever into one of three types:

 ✓ Class I lever: The fulcrum is in the middle with the two forces on either 
side.

 ✓ Class II lever: The output force is in the middle with the input force and 
fulcrum on the outsides.

 ✓ Class III lever: The input force is in the middle with the output force and 
fulcrum on the outsides.

The three levers are shown in Figure 6-5.
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Figure 6-5: 
The three 
classes of 

levers.
 

Working with your body
The body is loaded with machines such as the following:

 ✓ The wheel and axle: The spinal column

 ✓ Screw: The biceps (biceps brachii) muscle when it rotates the forearm 
and hand

 ✓ Pulley system: The trochlea and the superior oblique muscle

  The trochlea is a cartilaginous pulley, and the superior oblique muscle 
starts behind the eye, goes through the trochlea, and turns sharply 
to attach to the eye. The muscle pulls the eye downwards and toward 
middle.

 ✓ Class I lever: Your head while reading your biophysics book with the 
weight pulling downwards and the muscles holding your head up

 ✓ Class II lever: The foot when you stand up on your toes

  The weight of the body is pushing downward on the anklebone and the 
Achilles’ tendon is pulling the foot upward.

 ✓ Class III lever: The lower jaw when chewing food, the spine when you’re 
bent over, and the forearm when you’re performing biceps muscle curls.

Responding to Biological System’s Forces
Apply sufficient force to anything and the object will bend, twist, stretch, 
compress, or break. There’s always some limit to what can be done to a 
biological system before it changes its shape. The limit varies depending on 
what the biological system is and how the force is being applied. For exam-
ple, some objects can withstand a large linear force but can’t withstand twist-
ing forces such as the twist-off caps on some types of bottles.
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In this section, you look at the concepts of elasticity, stress, and strain and 
how biological systems behave to linear forces. I also cover the response of 
biological systems to torques.

Grasping elasticity, stress, and strain
If you pull the skin on your cheek, it will stretch, and when you let go, it will 
bounce back in place. You can do the same thing with a rubber band, except 
the rubber band will probably stretch farther than your cheek. Everything 
is elastic to some extent and each object will behave differently to stresses. 
Stresses are forces (interactions) that cause an object to change its shape. 
The amount of change is the strain. This section introduces and defines the 
concepts of elasticity, stress, and strain. 

Here are some clear definitions in plain English that can help you understand 
the following sections:

Elasticity is the ability of solid objects to change shape without becoming 
permanently changed or broken. The force must be sufficiently small and 
depends on the material. For example, if I hit my front door with a pillow, I 
won’t notice the deformation to the door, but if I use a hammer on the door, 
there will be a permanent deformation to the door.

The elastic limit or limit point is the maximum amount of force that can be 
applied to the object and the object will return to its original form after 
the force is removed. The range of forces from zero to this maximum value is  
known as the elastic range, whereas forces beyond this maximum value 
is known as the plastic range. If the force is in the plastic range, the material 
undergoes plastic deformation.

Fatigue is when the forces binding the material together weaken. It occurs 
when the forces that cause plastic deformation go through many cycles. As 
an example, take one of your spoons and bend it; now bend it back; bend it 
again; bend it back; and keep repeating. Eventually your spoon will break.

Stressing out over force
Stress is defined as the total force divided by the area of the object over 
which the force is applied as shown in Figure 6-6. In Figure 6-6a and 6-6b, the 
area is the side of the box where the force is applied, whereas in Figure 6-6c, 
it’s the top of the box. Mathematically, the stress is written as

σ is the symbol for stress, F is the magnitude of the force, and A is the area of 
the surface over which the force is applied.
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To understand the formula and what it means, consider the following exam-
ple. Suppose you’re shooting peas across a cafeteria with an elastic band. If 
you pull on an elastic band with a certain amount of force, it will stretch a 
given amount. If you now place a second identical elastic band on top of the 
first elastic band and pull both of them at the same time, the stress σ hasn’t 
changed because this is a property of the material. But, the area A has dou-
bled. Therefore, you’ll need twice as much force to stretch the elastic bands 
the same distance as before. The area A and the magnitude of the force F 
both doubled but the stress remains unchanged.

Three kinds of stress include the following:

 ✓ Tensile (tension) stress, σT: This is the stress in the object when the 
force is trying to pull the object apart as shown in Figure 6-6a. L is the 
width and the area is the depth times the height of the box in Figure 6-6a. 
The force has caused the object to stretch by a distance ΔL.

 ✓ Compressive (compression) stress, σC: This is the stress in the object 
when the force is trying to crush the object as shown in Figure 6-6b. L is 
the width and the area is the depth times the height of the box in Figure 
6-6b. The force has caused the object to be compressed by a distance ΔL.

 ✓ Shear stress, σS: This is the stress in the object when the force acts like 
scissors on the object — for example, when someone comes and rips my 
elastic band in two as shown in Figure 6-6c. L is the height and the area 
is the depth times the width of the box in Figure 6-6c.

Materials have an elastic range and for larger stresses they have a plastic 
range. The size of these ranges depends on the properties of the material. 
You can classify materials depending on these ranges. Three classifications 
for materials are

 ✓ Brittle materials have a very short range of force beyond the elastic limit 
before the object breaks.

 ✓ Ductile materials deform in the plastic range for a large range of tensile 
stress.

 ✓ Malleable materials deform in the plastic range for a large range of com-
pression stress.

Straining and deforming
Strain is a measure of the amount of deformation that occurs within the mate-
rial, and it’s defined as the change in the length divided by the total length of 
the object. Mathematically, it’s written as
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ε is the strain in the material caused by a stress, ΔL is the amount the mate-
rial moves because of the stress, and L is the original length of the material. 

 

Figure 6-6: 
The three 

kinds of 
stresses 

and strains: 
tensile (a), 
compres-

sive (b), and 
shear (c).

 

 The three kinds of strain are

 ✓ Tensile (tension) strain, εT: This is the strain in the object when the 
length of the object is increased by ΔL as shown in Figure 6-6a.

 ✓ Compressive (compression) strain, εC: This is the strain in the object 
when the length of the object is decreased by ΔL, as shown in Figure 6-6b.

 ✓ Shear strain, εS: This is the strain in the object when the length of the 
object is shifted as a function of height as shown in Figure 6-6c.

Seeing the link between stresses and strains
Stresses cause strains and the relationship between the two is very complicated. 
Some general properties do exist for different types of material. I want to  
discuss some of the general features of the stresses and strains for ductile 
and brittle materials.
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Figure 6-7a shows the tensile stress versus strain curve for a balloon, which 
is an example of ductile material. In Figure 6-7a, from the origin to No. 1, the 
stress is directly proportional to the strain. This corresponds to the linear 
limit of the elastic range. No. 2 in Figure 6-7a is the elastic limit. If you blow 
only a little bit of air into a balloon and then let it out, the balloon will con-
tract back to its original shape. If you blow too much air into the balloon and 
let it out, the balloon won’t deflate to its original shape, which means you 
have passed the elastic limit and entered the plastic range. As you continue 
to blow up the balloon, you notice that it becomes easier to blow it up. You 
have passed the maximum or ultimate tensile strength (the No. 3 in Figure 
6-7a). Now blowing up the balloon is easier; it keeps getting larger and larger 
until it bursts in your face (which is the No. 4 in Figure 6-7a).

 

Figure 6-7: 
The rela-
tionship 

between 
stress and 
strain for a 
balloon (a) 

and a  
bone (b).

 

Figure 6-7b shows the tensile (right of the vertical axis) and compressive (left 
of the vertical axis) stress versus strain curve for a bone, which is an exam-
ple of a brittle material. The No. 1 corresponds to the linear limit of the elas-
tic range. From the origin to these points the stress is directly proportional 
to the strain. No. 2 is the elastic limit where the curve passes from the elastic 
range to the plastic range. No. 3 is the point at which the bone breaks.
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Bending, buckling, and compressing
If you’re standing on the end of the spring diving board, you’ll notice that it 
has bent under your weight. If you rotate the board on its side and walk on it, 
it won’t bend but buckle to the side. If you replace the board with a wooden 
beam, it will still compress a little as you walk on it. Nothing in biophysics 
is rigid, so this has applications in all areas of biophysics and is the focus of 
this section. To start this section though, I need to introduce several defini-
tions so you understand them more clearly.

Young’s modulus is the ratio of the stress divided by the strain in the linear 
region of the elastic range. It measures the amount of force needed to cause a 
change in the length of the object. The mathematical expression is

E is Young’s modulus, σ is the stress, and ε is the strain. The slope of the 
stress versus strain curve at any arbitrary point is called the tangent modulus 
and is equal to Young’s modulus in the linear region. In both Figure 6-7a and 
6-7b, the Young’s modulus is the slope of the curve from the origin to the 
No. 1. Young’s modulus is one of the moduli of elasticity or elastic moduli. Two 
other common elastic moduli are the shear modulus and the bulk modulus. 
The bulk modulus is similar to Young’s modulus, except the force is applied 
uniformly from all directions instead of along a single direction.

In the elastic range, the material will return to its original shape after the 
stress is removed, which is similar to a spring, which means Hooke’s law is 
obeyed in the linear region of the elastic range. Hooke’s law states that the 
force applied to a mass by a spring is proportional to the displacement from 
the equilibrium position. The mathematical expression for the ratio of the 
applied force divided by the deformation becomes

This formula starts on the left with the applied force divided by the deforma-
tion. By definition, the applied force is equal to the stress times the area and 
the deformation is equal to the strain times the length L, but the definition 
of stress divided by the strain is Young’s modulus, which is the far right 
term. Hooke’s law states that the force divided by the deformation is equal 
to Hooke’s spring constant. Based on the expression in the formula, this is 
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Hooke’s law with Hooke’s spring constant kH = EA/L. (For more information 
on Hooke’s law, see Chapter 5.)

You can use these concepts for this example problem.

 Calculate the change in length of the femur subjected to a 10-pound 
(44.5 newton) tensile force and then the compressive force. The mini-
mum cross-sectional area of a femur is 0.9 square inches (6 × 10–4 square 
meters) and its length is 1.5 feet (0.46 meters). Along the axis of a bone, 
the tensile Young’s modulus is ET = 2.32 × 106 pounds per square inch 
(1.60 × 1010 newtons per square meter) while the compressive Young’s 
modulus is EC = 1.3 × 106 pounds per square inch (0.90 × 1010 newtons per 
square meter).

This problem has multiple steps:

 1. Solve for the stress.

  Substitute the numbers into the equation for stress.

 2. Calculate the corresponding strains using Young’s modulus and the 
stress.

 

 3. You now know the length and the strain, so calculate the change in 
the length of the femur.

 

The calculations are in the linear region of the elastic range. The change in 
the bone’s length is very small. If the force is too large, the bones will break 
because they have a maximum (ultimate) strength before they snap. Along 
the axis of the bone, the maximum (ultimate) tensile strength is σT = 1.7 × 104 
pounds per square inch (2.4 × 106 pounds per square foot = 1.2 × 108 newtons 
per square meter) and the maximum (ultimate) compressive strength is σC = 
2.5 × 104 pounds per square inch (3.6 × 106 pounds per square foot = 1.7 × 108 
newtons per square meter).
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Based on the maximum strengths of bones along the axis, how much  
force is required to break the femur? The problem told me the minimum 
cross-sectional area of the femur is 0.9 square inches (6.3 × 10–3 square feet 
= 5.8 × 10–4 square meters). Now use the formula for stress to calculate the 
force required to break the femur:

The tensile (tension) force required to break the femur is 1.5 × 104 pounds 
(6.7 × 104 newtons), and the compressive force required to break the femur is 
2.2 × 104 pounds (9.8 × 104 newtons). This is a huge force! 

Your bones are very strong along the axis and well designed to hold up your 
body, but what about force perpendicular to the length? Bending occurs 
when the object is subjected to a directional force, which is zero at one 
or more points and is countered by the internal forces within the object 
throughout the rest of the object. An example is your balcony sticking out of 
the apartment wall with gravity trying to pull it downward. The balcony has 
a very slight bend to it, which you may not be able to notice. In one place I 
lived, the balcony had a very noticeable bend to it, especially when I stood 
on the end. 

Bending strength is defined as the torque from the internal forces to counter 
an external force trying to bend the object. Mathematically, the net torque is

E is Young’s modulus, R is the radius of curvature, and IA is the area moment of 
inertia. 

The area moment of inertia is a measure of the object’s ability to resist a 
force, which is trying to cause the object to bend. If you draw the bent object 
in a full circle, the radius of that circle is called the radius of curvature. When 
an object bends, part of it is being compressed and the other part is under 
tension. The boundary between the two regions is undergoing no change in 
length and is called the neutral surface. Figure 6-8 shows the radius of curva-
ture and the neutral surface.

Three area moments of inertia that are common in biophysics include the  
following: 
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Figure 6-8: 
The neutral 

surface and 
radius of 

curvature 
for a bent 

object.
 

The two r’s for the rectangular object are the two thicknesses of the bar; the 
thickness ( ) parallel to the radius of curvature (R) shown in Figure 6-8, and 
the thickness perpendicular ( ), which is sticking out of the page in Figure 6-8.

 Strictly speaking, calculus is needed to couple the torque to the area moment 
of inertia, even if E and R are constants. Let x be the position relative to the 
neutral surface and parallel to R shown in Figure 6-8. The torque is as follows:

N is the magnitude of the torque, E is Young’s modulus, R is the radius of 
curvature, dA means an integral over the cross-sectional area of the beam 
(or bone), and x is the distance from the neutral surface parallel to R.

Bending usually occurs when the stress is perpendicular to the long axis of 
the material. In the case of forces parallel to the long axis there is another 
possibility. Buckling occurs when the object is subjected to a compression 
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(compressive) force, and it can’t be compressed anymore. The buckling 
occurs when there’s structural failure in the object. 

Buckling can also occur from a bending force if the object is too thin in the 
perpendicular direction. A competition exists between the bending and the 
buckling, which arises in biophysics, physics, and engineering. To see this, 
suppose you purchased a 12-foot long 1-inch by 10-inch wooden board so 
you can practice your balance beam routine. You place the board on two 
supports, one support at each end, and the rest of the board is in the air with 
the 1 inch thickness in the vertical direction and the 10 inch width being the 
width of the board. As soon as you walk on the board, you notice the board 
has a very large bend in it. To prevent the board from bending, you flip the 
board on its side so the 10-inch width is the vertical height and the 1-inch 
thickness is the width. As soon as you step on it you notice the board hardly 
bends at all, but it has a tendency to twist to the side (buckle).

Hollow objects are better at withstanding perpendicular forces compared to 
a solid object if they have the same length and weight. But this weakens the 
object’s ability to withstand buckling. In animals, bones are approximately 
hollow because they’re stiffer than solid bones for the same amount of 
weight. The human femur, for example has an outer radius that is twice the 
inner radius. Bird bones are very thinned-walled to reduce the bird’s weight. 
The inner radius of the bone in a bird can be as high as 90 percent the outer 
radius. The bones are still very strong against tensile and compressive types 
of break. You have to fall from a very large height to cause a break this way. 
The majority of the breaks in bones are caused by torques and twists.

Shearing and twisting
A force parallel to the surface produces shear stress on an object. The force 
can produce a torque and twisting motion of the object, such as turning 
a round-handle doorknob. Figure 6-6c shows the distortion of the object 
caused by the tangential force. The shear stress is equal to the tangential 
force divided by the area. The deformation caused by the tangential force is 
the shear strain, which is related to the shear angle (twisting angle):

εS is the shear strain, ΔL/L is the deformation per unit length, and αS is the 
shear angle. The easiest way to see this relationship is to look at Figure 6-6c, 
where you can see the tangential force, the deformation, and the shear angle 
αS. The shear modulus is
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G is the shear modulus, σS is the shear stress, and εS is the shear strain. In the 
linear elastic range, the amount of strain is linearly proportional to the shear 
stress, and as soon as the stress is removed, the material goes back to its 
original shape. Hooke’s law describes a linear relationship between force and 
linear displacement; therefore, Hooke’s law for a shear force is

F is the shear force, σS is the shear stress, AS is the area over which the force 
is applied, G is the shear modulus, εS is the shear strain, ΔL is the amount 
of deformation per unit length, and αS is the shear angle. Comparison with 
Hooke’s law shows that the Hooke’s constant is kH = G AS/L. Shear forces 
occur in many areas of biophysics. Examples within the body are the forces 
acting on joints and the vertebrae of the spine.

Another example of shear stresses in biophysics is most broken legs in skiing 
sports. These types of breaks occur when different parts of the legs have 
forces going in different directions. A couple is a pair of forces with equal 
magnitude but that act on different locations of an object in opposite direc-
tions. Examples of couples include turning the steering wheel with both 
hands, turning a round-door handle, moving the driveshaft in a car, or the 
forces acting on your limbs in many sports. Couples produce no net force; 
they’re shear forces like in Figure 6-6c. If the forces are localized to one part 
of the object, they produce a net twisting torque on the object. The twisting 
torque is

Ip is the polar moment of inertia and is a measure of the object’s ability to 
resist a twisting torque. L is the distance along the object from where it’s not 
twisted to where is has been twisted by an angle of αS.

For example, suppose Vicky is downhill skiing and falls causing her leg to 
twist, and she breaks her tibia. What twisting angle was produced on her leg 
just as it broke? 

Some information about Vicky’s tibia you need includes the following: 

 ✓ The torque needed to break the tibia is 73.8 pound foot (100 newton 
meters). 

 ✓ The length of the tibia is 1 foot (0.3048 meters). 

 ✓ The shear modulus of bone is G = 1.5 × 106 pounds per square inch  
(2.15 × 108 pounds per square foot = 1.0 × 1010 newtons per square meter). 

 ✓ The polar moment of inertia is Ip = 0.11 inches to the fourth power  
(4.4 × 10–8 meters to the fourth power).
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Vicky’s tibia broke when it was twisted by an angle of

The angle is 0.064 radians = 3.7 degrees. It doesn’t take much to break a leg 
by twisting it.

Defining Scaling: No Scales Required
Scaling is a technique where dimensional analysis is used to study charac-
teristics that change with size. It assumes the characteristics change in a 
simple way where the size of the biological system can be labeled by a simple 
parameter. Scaling was started when Galileo noticed that bones didn’t scale 
at the same rate as the size of the animal. Scaling has been used in studying 
many aspects of animal physiology. In this chapter, I introduce the scaling 
length and explain why trees and animals can get only so big and apply the 
concepts of scaling to properties and situations within the human body.

Growing cows and trees
A scaling length is a parameter that tells you how a quality will differ when 
you vary the spatial dimension. Trees can grow only so large before their 
weight is too large to support. The scaling comes from the following: mass 
(density times volume) of the tree must be proportional to the cross-
sectional area of the tree trunk (support against buckling). The volume (L3) 
scales as the area (r2) or L ~ r2/3. This indicates that the tree trunk must grow 
faster in width than in height. The maximum height a tree can grow is propor-
tional to this scaling:

c is a constant and r is the radius of the tree. 

A few interesting things about c in the equation include

 ✓ If the column is assumed to be uniform (cylinder) and it’s bending 
slightly under its own weight, then
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  E is Young’s modulus for the material, g is the acceleration due to grav-
ity, and ρ is the mass density of the material. If the cylinder exceeds 
Hmax, then it will buckle under its own weight.

 ✓ c = 34.9 is the best-fit experimental value for trees.

 ✓ None of the experimental heights of trees reaches the maximum height if 
c is calculated for a tapered column. The ideal situation can’t be attained 
in real life.

This relationship can be used for the scaling of animal sizes as well; except 
now, r is the radius of the leg, and H becomes L, a scaling length for the size 
of the animal. The relationship is

This scaling relationship shows that the size of an animal’s legs must grow 
faster than the characteristic length of its body, which means there’s a limit 
to how large an animal can be. You may be thinking, “Why are humans not as 
tall as trees then?” (I was thinking it.) A few reasons include

 ✓ Humans walk, jog, and run with usually one leg in the air. Combined with 
the impact with the ground and motion, the normal force on a single leg 
is usually much greater than the weight of the body.

 ✓ As the animal gets bigger, the mass of the animal’s bones scales faster 
than the animal’s total mass. If the animal becomes large enough, it 
becomes all bone with no organs or skin, which puts a limit on how 
large an animal can become. Galileo first noticed it in the bones of large 
animals compared to small animals and lead to him developing the  
scaling method.

 ✓ The power output required to walk and do activities doesn’t scale lin-
early. The work done to walk will eventually become greater than the 
amount of power produced by the muscles.

Scaling in the body
An introduction to scaling in biophysics usually assumes that each dimen-
sion scales as the characteristic length to the first power. This isn’t always 
the case. There are many examples in biophysics and nonlinear physics 
where the exponent isn’t 1. In fact, in the preceding section, I use an example 
where the scaling exponent was 2⁄3 because of the buckling strength required 
in the animal’s leg or in a tree’s trunk. If I assume that animals are a collec-
tion of cylinders (legs, torso, arms) and the cylinders are restricted by the 
buckling strength, then this will introduce a different scaling instead of the 
exponent 1. 



136 Part II: Calling the Mechanics to Fix Your Bio — Biomechanics 

I present the scaling of different quantities for the body with both assump-
tions: 1-to-1 (the first scale) and the buckling strength scale of 2⁄3 (in square 
brackets).

A few scaling rules that apply to the physical properties of the body are

 ✓ Volume: V ~ R2L ~ L3 [L4]

  For specific shapes the volumes are L3 for a cube, π L R2 ~L3 for a cylin-
der, and 4⁄3 π R3 ~L3 for a sphere. All of them scale as the length cubed. 
[The volume of a cylinder is π R2 L ~ (L3/2)2 L = L4 ]

 ✓ Body surface area: Asur ~ RL ~ L2 [L5/2]

 ✓ Cross-sectional area: Acsa ~ R2 ~ L2 [L3]

 ✓ Density: ρ ~ constant [constant]

  People are mostly water, carbon, and air, and the density is approxi-
mately a constant at about 80 percent of the density of water.

 ✓ Mass: M = ρ V ~ L3 [L4]

  A common scaling parameter is the mass of the animal, so the previous 
quantities become

  Length: L ~ M1/3 [M1/4]

  Width: R ~ M1/3[ ~L3/2 ~ M3/8 ]

  Volume: V ~ L3 [L4] ~ M [M]

  Body surface area: Asur ~ L2 ~ M2/3 [~ RL ~ L5/2 ~ M5/8]

  Cross-sectional area: Acsa ~ R2 ~ L2 ~ M2/3 [~ R2 ~ L3 ~ M3/4]

  A log-log plot of the body surface area of mammals as a function of their 
mass is approximately a straight line with a slope of 0.63. Note that the 
body surface area above gives 2/3 = 0.667 and 5/8 = 0.625, which are 
both close to the experimental value for animals.

 ✓ Muscle stress: σ ~ constant [constant]

  The force per unit area is the same in all muscles in all mammals. The 
maximum stress is approximately 60 pounds per square inch (40 new-
tons per square centimeter).

 ✓ Muscle force: FM = σ Acsa ~ R2 ~ L2 ~ M2/3 [~ L3 ~ M3/4]

  If a weightlifter has muscles with twice the radius of your muscles, you 
would expect that the weightlifter can lift (2)2 = 4 times as much weight 
as you can.

 ✓ Muscle power: PM = FMv = σ Acsa v ~ R2 ~ L2 ~ M2/3 [~ L3 ~ M3/4]

  The velocity, v, of voluntary muscle fiber contraction is the same for all 
muscles in all mammals.
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 ✓ Bones: ~ Acsa ~ R2 ~ L2 ~ M2/3 [~ L3 ~ M3/4]

  The weight a bone can support is proportional to the cross-sectional 
area of the bone.

 ✓ Limbs: ~ L.

  Limbs act like levers, which scale as their length.

Here are four physiological applications of scaling that build on the previous 
list:

 ✓ Drug dosage ~ mass of the body: The drug is absorbed by the body 
and spreads throughout the volume. The effectiveness of medication is 
proportional to its concentration, so the dosage of the drug scales as the 
volume, which scales as the mass of the person.

  You want the medicine to be effective, but you don’t want to take too 
much, which is harmful to the body. This is important for children 
whose weight changes a lot as they grow up. If you look at the directions 
for children’s medicines, some of them state to take a specified amount 
per unit of weight. Adult prescriptions drugs are sometimes prescribed 
per unit of weight as well.

 ✓ Jumping: Energy output per muscle mass ~ constant: If you jump up 
to dunk a basketball, then your muscles have to do work: W = F Δx = 
σ Acsa Δx ~ R2 L ~ L3 [L4] ~ M. Therefore, the energy per unit mass is a 
constant, which is about the same for all mammals. If this work goes 
mostly into kinetic energy and very little is lost to dissipative forces and 
gravitational potential energy (M g Δx), the kinetic energy will equal the 
gravitational potential energy (mgh) at the top of the jump. This means 
the work done by your muscles (W) scales as the mass (M) equals M g h; 
therefore, the height you jumped is approximately independent of M and 
L, which means all mammals of the same type will jump approximately 
to the same height.

 ✓ Walking: Energy output per muscle mass ~ constant: If you’re walking, 
your muscles have to do work: WM = F Δx = σ Acsa Δx ~ R2 L ~ L3 [L4] ~ M. 
To move, you have to do work that’s approximately equal to your weight 
times the distance. For one step, Wstep = F L ~ M L ~ M4/3 [M5/4].

  In order for you or any animal to move, its muscles must be capable of 
moving its body. The work done for one step divided by work done by 
the muscles is: Wstep/WM ~ M1/3 [M1/4]. Therefore, cows can get only so 
big before they can’t move and become trees because the work done to 
take a step grows faster than the work your muscles can do as the mass 
increases.

 ✓ Metabolic properties of the body: The muscle power output is  
PM ~ M2/3 [M3/4]. The heat production of the body is proportional to 
the power output and the rate of metabolic heat generation ~ M2/3 [M3/4]. 
Experimentally, the heat production of mammals scales as M0.75.
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  The heart muscle power output is PM ~ M2/3 [M3/4] and does work Wheart =  
PM Δt ~ M2/3 [M3/4]. The blood flowing through the lungs is absorbing 
oxygen, so the surface area in the lungs should scale as ~ M2/3 [M3/4]. 
Experimentally, the surface area of the lungs in mammals scales as M0.75.

  The volume of blood pumped through the heart times the pulse rate is 
proportional to the power output of the heart. Therefore, the pulse rate 
scales as ~ M2/3/V [M3/4/V] ~ M–1/3 [M–1/4]. This means that larger animals 
have a slow pulse rate.



Chapter 7

Making The World Go Round  
with Physics –– Dynamics

In This Chapter 
▶ Understanding motion in a straight line 
▶ Grasping circular motion

D 
ynamics means to study the causes of motion and changes in the motion. 
The focus is to study how forces combine to create a net external force 

and/or a net torque acting on a biological system. In dynamics, you’re also 
asking why did the things move or why did their motion change? For exam-
ple, a figure skater standing in one spot and spinning can change the speed at 
which she is spinning. This chapter tries to figure out how that happens. Or 
you may be interested in sports, so how does a baseball curve to the right or 
left? Dynamics deals with the why. 

This chapter starts with one-dimensional linear motion; you may be interested 
in the motion of birds, fish, or mammals. If you’re interested in linear motion 
in two or three-dimensions, then don’t worry. This chapter also focuses on 
motion in a circle. This motion is two dimensional, but you can treat circular 
motion as one-dimensional motion if you look at the motion in terms of the 
angle (angular position). (The radius of the circle is a constant.) The centri-
fuge involves circular motion as well as the figure skater spinning in a circle.

Reducing Motion to a Straight Line
In many situations within biomechanics, you can ignore the activity in two 
directions, focusing your analysis of the motion in a straight line. Consider 
a sprinter. All the motion is in a straight line from the starting blocks to the 
finish line. In some situations, it’s necessary to consider the forces perpen-
dicular to the motion, such as the sprinter’s weight and the normal force 
acting on the sprinter’s feet, but the motion is still in a straight line. A straight 
line means the direction of the acceleration and the direction of the velocity 
are constants that don’t change.



140 Part II: Calling the Mechanics to Fix Your Bio — Biomechanics 

In dynamics, answering the why is important, so understanding the motion of 
biological systems and how the motion changes are the focus of this section. 
The understanding involves several ordered steps, which I lay out for you. If 
you follow these steps for each dynamical problem given to you, you should 
have no problems:

 1. Determine all forces acting on the biological system and all sources of 
energy within the system.

 2. Draw a free-body diagram. 

  Visualizing what’s going on is important to solving many problems. The 
free-body diagram includes the biological system and all external forces 
acting on it. I like to include a compass in my free-body diagram so I 
know my directions. (This is a common source of error for most people.) 
I also like to show the direction of the acceleration. When I do a vector 
sum of all the forces, it has to produce a net force that points in the 
same direction as the acceleration; if it doesn’t, then there’s a mistake 
somewhere.

  It’s necessary to split the biological system into multiple parts within 
the free-body diagram when you need to consider the internal forces.

 3. Calculate the forces by using the free-body diagram as a guide.

 4. Apply the laws of physics.

  Chapter 5 discusses the laws to consider. The hard part is to figure out, 
which law is the best one to use. For example, you need to ask yourself, 
should I use Newton’s laws of motion, the work-energy theorem, or con-
servation of energy?

Reading steps is easy. The big question is how do you apply them to real 
problems? This section illustrates how to apply these steps.

Riding my bike
Imagine you want to study the biomechanics of riding your bike down the 
road. (If you don’t ride a bike, then you can think of me on my bike or some-
one in a bike race like the Tour de France. All you have to change is the 
numbers to the appropriate values. Be creative and have fun — I promise 
biophysics can be fun.) 

The road has an incline of 4.50 degrees (5 percent grade), and you want to 
calculate your maximum acceleration up the hill. In addition, you can calcu-
late the maximum speed you can ride your bike up the hill. The maximum 
speed exists because you’re including air resistance, which is proportional 
to the speed squared. If you don’t include a dissipative force that is speed 
dependent (air resistance), there’s no maximum speed. The maximum speed 
is called terminal velocity. 
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The following example shows the steps involved in solving these types of 
problems, as well as the power of these concepts and how to use them in any 
biomechanical problem.

Step No. 1: Determine the forces and sources of energy
You can feel your muscles work as you ride your bike up the hill. Your mus-
cles are one of the sources of energy. Some sources are going to do work on 
the system and supply it with mechanical energy (muscles); other sources 
are going to work against the system and change the mechanical energy into 
heat energy (friction — dissipative forces).

To help you with this step, keep the sources of the forces acting on the bike 
organized. I find the easiest way of doing that is by making a list. The follow-
ing is my list:

 ✓ When riding your bike, your muscles work on the system to make the 
bike go forward.

 ✓ You have to do work against gravity because you’re going up a hill at an 
angle of 4.50 degrees. Include your weight and the bike’s weight. If you 
don’t know the bike’s weight, it’s usually much smaller than your body 
weight, so you can ignore it. The total weight of my bike and me is 198 
pounds (881 newtons) downwards, and the total mass is 6.15 slugs (90.0 
kilograms). (Notice I add the direction downward to the weight because 
it’s a force that has both direction and magnitude.)

 ✓ The normal force is holding you and the bike up and is pointing perpen-
dicular to the road. The amount of normal force on the back wheel and 
front wheel is important and depends on your riding position. People 
usually sit with most of the weight over the back wheel. You can do a 
measurement or calculation to determine your weight distribution or 
you can guess. In my case, two-thirds of my weight (including the bike’s 
weight) is over the back wheel and one-third is over the front wheel. 
These are related to the two normal forces acting on the bike wheels.

 ✓ The rolling resistance force is a dissipative force, which is equal to the 
coefficient of rolling resistance times the total normal force. You can 
estimate your rolling resistance by making a few measurements of how 
fast you slow down. My coefficient of rolling resistance is 0.01.

 ✓ The back wheel pushes the earth backwards with the static friction 
force and the reaction force pushes the bike forward. The coefficient 
of static friction between my back wheel and the road is 0.80. The 
maximum force you can apply with your muscles between the tire and 
the road is the coefficient of static friction times the magnitude of the 
normal force on the back wheel. If you pedal harder so you apply a force 
to the ground greater than the static friction, then the back wheel will 
spin on the ground.
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 ✓ Air resistance can play an important role, especially if you like to ride a 
bike through a hurricane. This force is also dissipative, which is sucking 
energy out of the system. You will have to make some measurements 
and estimate your drag coefficient and frontal cross-sectional area (the 
area of your body pushing against the wind.) My drag coefficient is 0.8 
and I am sitting upright, so the wind is pushing against my face, upper 
torso and the front of my legs, so my frontal cross-sectional area is 6.46 
square feet (0.600 square meters). The frontal cross-sectional area of 
most bikes is very small and can be ignored. The weight density of air 
is 0.0749 pounds per cubic foot (11.8 newtons per cubic meter) and the 
mass density of air is 0.00233 slugs per cubic foot (1.2041 kilograms per 
cubic meter). The mathematical formula for air resistance is covered in 
Chapter 5, but here is the formula for you:

  Faf is the magnitude of the air resistance force, D is the drag coefficient, 
ρ is the density of air, and v is the speed of you and the bike.

Step No. 2: Draw a free-body diagram
In this step, you draw a free-body diagram that shows the forces acting on 
you and the bike. The diagram should also include a compass that shows 
directions.

Figure 7-1 shows a free-body diagram of myself. In the figure, I also show the 
external forces, my compass, and the direction of the maximum acceleration. 
I ignore the internal forces, such as me pushing on the pedal and the pedal 
pushing back on my foot. In the first step, I list the important external forces 
that will influence the motion, which are the forces shown in Figure 7-1. For 
my compass, I use x and y instead of up, down, north, and south. Also, I 
select x parallel to the plane, so the acceleration and velocity are in only one 
direction. (Notice that the forces are in two-dimensions, but the acceleration 
and velocity are in a straight line — one-dimensional motion.) In this figure, 
I ignore some external forces that aren’t important, such as the gravitational 
attraction of the moon on me.

Step No. 3: Calculate the forces
In the third step, you want to calculate the expressions for the forces in 
Figure 7-1. The purpose of this list is to split the magnitudes and directions 
apart for the vectors. I have also added the velocity and acceleration to the 
list and start with them. Tip: Place the free-body diagram right beside you 
when you make the list, so you don’t miss anything. 
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Here are the line entries on the list:

 ✓ Velocity: It has a magnitude v, and your bike is moving up the hill in the 
+x-axis direction. 

 ✓ Acceleration: It has a magnitude a, and your bike is accelerating up the 
hill in the +x-axis direction.

 ✓ Applied force: The third line is the force pushing your bike up the hill 
against all the other forces. In this problem, it’s the maximum static 
friction between the tire and the road, and the force is up the hill in the 
+x-axis direction. 

 ✓ Rolling resistance: This represents the rolling resistance forces of the 
wheels against the road. The resistance is trying to stop the bike so the 
rolling resistance forces are pointing down the hill in the –x-axis direction. 

 ✓ Normal forces: They’re the sixth and seventh lines. These forces are 
preventing the bike from accelerating into the road. The normal forces 
are perpendicular to the surface, so they are in the +y-axis direction.

 ✓ Air resistance force: This force, which is the eighth line, is always oppo-
site to the direction of the velocity. 

 ✓ Weight: This represents your weight and your bike’s weight, which 
always points toward the center of the earth. (Don’t forget to replace my 
numbers with your own numbers.)
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Here is the list:

Step No. 4: Apply the laws of physics
You have to calculate the forces and acceleration acting on you and your 
bike, so you should use Newton’s laws of motion. Newton’s second law of 
motion, the law of acceleration, states that the acceleration is equal to the 
net external force divided by the mass, which for this example looks like this 
(just copy the list in step No. 3):

You have three unknowns: the acceleration and the two normal forces. The 
first line gives you an answer for the acceleration if you know the normal 
forces. You need to solve for the normal forces first. You can achieve this 
step by solving the y-axis equation first. (Remember to use your weight distri-
bution over the tires.) The solution is as follows:

You can write the normal forces as a number because you have your weight 
and the angle of the hill. I’m not going to because I want to discuss several 
things about the acceleration and that would be hard with the numbers. You 
can find the acceleration by substituting these expressions for the normal 
forces into the x-axis equation:
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The equation for the maximum acceleration has several interesting pieces of 
information:

 ✓ The first term on the right-hand side of the equality is your contribu-
tion to the acceleration. The “max” is the best you can do because if 
you try to add more power, then the back wheel will start to spin and 
slip. The coefficient of kinetic friction is less than the coefficient of 
static friction, so if the bike wheel starts to slip, then the bike will have 
a smaller maximum acceleration.

  You can substitute your numbers into the expression to see what your 
best value is. I obtained with my numbers 2gμscos(θ)/3 = 2(32.2 ft/s2) 
(0.8)cos(4.5°)/3 = 17.1 feet per square second (5.22 meters per square 
second).

 ✓ The second term on the right hand side of the equality is the rolling 
resistance. This depends a lot on what type of surface you’re riding on 
and the type of tires on your bike. Calculate the number for my bike, 
–gμrcos(θ)= (–32.2 ft/s2) (0.01)cos(4.5°) = –0.321 feet per square second 
(–0.0978 meters per square second).

 ✓ The third term on the right hand side of the equality is the air resis-
tance, which will have an important impact at high speeds or if you’re 
out riding in a strong wind. In the formula, v is your speed relative to air, 
so if you have a tail wind (a wind blowing on your back), it will actually 
help you accelerate up the hill. In this problem you can ignore the wind.

 ✓ The fourth term on the right hand side of the equality represents the 
work you have to do against gravity. Fortunately, gravity is a conserva-
tive force, so this work is being stored as gravitational potential energy, 
which you’ll be able to use when you come back down the hill. You 
can calculate the contribution to the acceleration. Here I do it for my 
numbers: –g sin(θ)= (–32.2 ft/s2) sin(4.5°) = –2.53 feet per square second 
(–0.770 meters per square second).

 ✓ Because you’re out for a bike ride with no wind, the maximum accelera-
tion will occur when you’re just starting out (speed is zero). You can 
calculate your maximum acceleration when the speed is zero. Similarly, 
I can calculate my maximum acceleration with zero speed by adding the 
numbers calculated together, or from:

  The maximum acceleration is 14.3 feet per square second (4.35 meters 
per square second), but decreases rapidly as the speed increases 
because of the air resistance.



146 Part II: Calling the Mechanics to Fix Your Bio — Biomechanics 

 ✓ Eventually, the acceleration will be zero when you reach the terminal 
velocity. This is the fastest you can go. You can calculate your terminal 
velocity by solving the amax equation with amax = 0. I help you rearrange 
the formula, so you can calculate your terminal speed. In addition, I find 
my terminal speed using the same formula in the second line:

  How fast can you go up the hill on your bike? My maximum speed up the 
hill is 121 feet per second (36.8 meters per second), which is equivalent 
to 82.4 miles per hour (133 kilometers per hour). I can’t pedal that fast, 
so I would definitely need to attach a motor to my bike to achieve this 
speed.

 ✓ The source of power to move your bike is your muscles. It would be 
interesting to see if your muscles can produce enough power to reach 
the maximum speed. Remember, the power output is equal to the aver-
age force times the average velocity. To achieve the terminal speed, the 
minimum power output you would require is

  The minimum power output I would need is 2(0.8)(198 lb)(121 ft/s)
cos(4.5°) = 1.27 × 104 foot pounds per second (1.73 x 104 watts = 23.1 
horsepower (hp)). A typical human can put out about 1⁄3 horsepower 
over a long period, so I would definitely need a motor in order to 
achieve a speed of 82.4 miles per hour (133 kilometers per hour). Going 
downhill with a tailwind would help too.

Racing the horses
Biophysics changed horse racing forever. In the 1890s, jockeys changed their 
posture from sitting straight up in the saddle to a standing crouch in the stir-
rups with their heads forward almost touching the horse’s neck. This change 
caused a 7 percent improvement in race times — the biggest single improve-
ment in the history of the sport.
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To help you understand what caused this improvement, suppose Wayne 
is a retired jockey and has put on a couple of extra pounds. You take some 
measurements of Wayne’s body: He has a weight of 97 pounds (431 newtons) 
or a mass of 3.01 slugs (44.0 kilograms), a frontal cross-sectional area of 3.0 
square feet (0.28 square meters) while sitting and a frontal cross-sectional 
area of 1.5 square feet (0.14 square meters) while in the standing crouch.

You want to look at the change in the rider’s posture because it’s the only 
thing that changed and caused a huge improvement in the race times. You 
can ignore the horse except for providing a force on Wayne. The steps to fig-
uring out this change are as follows:

 1. Determine all forces acting on the biological system and all sources of 
energy within the system.

  Three forces are the primary external forces acting on Wayne:

	 •	Wayne’s	weight	is	acting	straight	downwards	and	it’s	located	at	
his center of mass. The center of mass is a special point within the 
body (or object) where the gravitational force thinks all the mass 
is located.

	 •	The	horse	is	running	fast	enough	that	air	resistance	could	play	
a role. This is an approximately horizontal force opposing his 
motion.

	 •	The	contact	force	between	Wayne	and	the	horse.	The	horse	is	
holding Wayne up against gravity and pushing his body forward 
against the air resistance.

 2. Draw a free-body diagram.

  You need to draw a free-body diagram of Wayne showing all the forces 
acting on his body. Figure 7-2 shows an example. How does your free-
body diagram compare to mine? I include a few extras in my free-body 
diagram in Figure 7-2. I show Wayne, the forces acting on Wayne’s body 
based on the forces in Step No. 1, a compass, and the trajectory of 
Wayne’s body (actually, the center of mass).

  In Figure 7-2a the acceleration is constantly changing as Wayne bounces 
up and down, and in Figure 7-2b the acceleration is zero if the horse is 
running at a constant velocity. Instead of Wayne’s acceleration, I include 
the trajectory (the path the object follows through space) of his center of 
mass in Figure 7-2. The tangent to this line is the direction of the veloc-
ity, which is also shown in Figure 7-2.
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  Visualizing what’s going on is important to solving this problem.  
Figure 7-2 has two parts: 

	 •	In	Figure	7-2a,	Wayne	experiences	air	resistance,	contact	forces	
with the horse, and weight. Wayne is continuously changing accel-
eration as his body is bounced up and down, shown by the dashed 
line.

	 •	In	Figure	7-2b,	Wayne	experiences	essentially	the	same	forces:	air	
resistance, contact forces with the horse, and weight, but only the 
weight stays the same compared with Figure 7-2a. The other major 
change with Figure 7-2a is the direction of the velocity doesn’t 
change. If the horse is running in a straight line at maximum 
velocity, then Wayne’s acceleration is zero and the velocity is a 
constant. Wayne uses his legs as shock absorbers so he doesn’t 
bounce with the horse.
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 3. Calculate the external forces by using the free-body diagram as a 
guide.

  The three external forces for both sitting and crouching are

	 •	 , Wayne’s weight.

	 •	 , the air resistance acting on Wayne while he is  
sitting.

	 •	 , the air resistance acting on Wayne while he is 
crouching.

	 •	 , the contact force between Wayne and 
the horse while he is sitting.

	 •	 , the contact force between Wayne and the 
horse while he is crouching.

 4. Apply the laws of physics.

  Figure 7-2 has two major differences between the two postures: the force 
of air resistance and Wayne’s trajectory. Take a look at each of these 
separately:

	 •	Air resistance: The difference in the magnitude of the air resis-
tance force at the same speed is

 

  You can assume the drag coefficient is 0.4 and doesn’t change with 
posture.

  You measured Wayne’s cross-sectional areas as 1.5 square feet 
(0.14 square meters) when crouching and 3.0 square feet (0.28 
square meters) when sitting upright.

  The weight density of air is 0.0749 pounds per cubic foot (11.8 new-
tons per cubic meter) or the mass density of air is 0.00233 slugs 
per cubic foot (1.2041 kilograms per cubic meter).

  The horse is moving at 59.2 feet per second (18.1 meters per 
second), which is equivalent to 40.4 miles per hour (65.0 kilome-
ters per hour).

  If you substitute these numbers into the equation and do the cal-
culation, you find the change in the force is –2.47 pounds (–11 new-
tons). The change in the force is negative, so the sitting position 
has a larger force.

  The work done equals the force times the displacement, so the 
total energy saved by the horse during a one-mile race having 
Wayne in the crouch position is ΔW = ΔF Δx = (–2.47 pounds) (5,280 
feet) = –13,000 foot pounds (–1.77 × 104 joules).
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 •	Wayne’s	trajectory:	In both cases the horse is pushing Wayne for-
ward, but in the first case the horse is also pushing Wayne upward 
whenever it pushes off the ground. If you’re an inexperienced 
horse rider and go for a long horse ride, you know what this feels 
like and walking is a challenge for the next few days. The horse’s 
muscles must do work against gravity lifting Wayne up.

  You need to estimate the amount of work the horse does against 
gravity. I looked at some typical racehorses and you can assume 
the horse lifts Wayne’s center of mass a distance of 1 foot (30.48 
centimeters) 550 times during the one-mile race. The total energy 
saved by the horse during the one-mile race having Wayne in the 
crouch position and keeping his center of mass horizontal is ΔW = 
ΔF Δx = –mg Δx = (–97 pounds) (1 foot × 550) = –53,400 foot pounds 
(–7.23 × 104 joules).

The one-mile race takes the horse 1.5 minutes to complete at 40 miles per 
hour (65 kilometers per hour), and Wayne can save the horse 66,400 foot 
pounds (9.00 × 104 joules) of energy during that time. If the horse isn’t wast-
ing its energy on the jockey, it can use the energy to run faster. This amount 
of reduced energy consumption is a huge savings of energy, and this calcula-
tion shows that both Wayne’s trajectory and his air resistance play an impor-
tant role in the horse’s speed improvement with 70 percent of the savings 
coming from the change in Wayne’s trajectory.

Simplifying the dynamics of  
multiple objects in contact
Usually, the quickest and easiest method to solve a multi-object system is to 
treat it as a single system. However, in some situations it may be better to 
treat each object separately. This is something you have to decide depending 
on the problem. Also, if you need to find specific internal forces such as con-
tact forces or tension in a muscle, then you’ll need to split the system apart 
into the individual objects and apply the steps to each object.

 If you split a biological system apart into the individual objects, then it’s 
easier to figure out what forces are involved. If you’re not sure what forces are 
involved and how they interact with the biological system, then this is the way 
to go. The problem with this method is you have to apply Newton’s laws to 
each individual object, so there are many mathematical equations. The alter-
native approach is to combine all the objects together into one. This method 
has the advantage of having only one object and therefore one set of equa-
tions from Newton’s laws. The disadvantage is that it’s a lot easier to miss a 
force or get the direction or magnitude of a force wrong.
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This section looks at biological systems with multiple objects. 

 You live on the second story of an apartment and you have your biophys-
ics friends over for your Saturday night biophysics party. Abby from mar-
keting lives across the hallway and has her friends over for their party. 
Abby ordered a 15.5 US gallon (58.66 liter) keg of beer for her party; but 
the delivery person wouldn’t carry it up the stairs because it weighs 170 
pounds (77.1 kilogram mass), so he left it beside the back door. Abby 
asks you for help. To help, you and your friends think up the following 
biophysics home experiment.

You lay planks on the stairs so you have a smooth ramp that makes an 
angle of 40 degrees relative to the horizontal. At the top of the ramp 
(stairs), Abby sits on a skateboard and a rope is tied to the back of the 
skateboard. You have a frictionless pulley, which you’ve fastened to the 
windowsill. The moment of inertia of the pulley I = 0.884 slug square foot 
(1.20 kilogram square meter) and the radius of the pulley is 12.2 inches 
(1.02 feet = 0.310 meters). (Yes, this is a big pulley.) You take the rope 
from the skateboard throw it over the pulley and out the window. Your 
friends tie the other end of the rope to the keg. After the rope is tied to 
the keg, you jump on the skateboard with Abby and give the skateboard a 
push down the stairs. The combined weight of you, Abby, and the  
skateboard is 300 pounds (1,330 newtons) or the mass is 9.32 slugs (136 
kilogram mass). The rope doesn’t slip on the pulley. What’s Abby’s  
acceleration?

The steps needed to solve the problem are listed right before the problem, so 
follow these steps:

 1. Determine all forces acting on the biological system and all sources of 
energy within the system.

  You can assume there are no dissipative forces (friction) in the system, 
so the system has conservation of mechanical energy.

  The forces acting on you, Abby, and the skateboard (no dissipative 
forces) are gravity, normal force, and the tension in the rope. (I call this 
force: tension inside.)

  The forces acting on the Pulley (no dissipative forces) are

	 •	Tension	in	the	rope	trying	to	rotate	the	pulley	toward	the	skate-
board. (I call this force: tension inside. This is the same contact 
force that is acting on you, Abby, and the skateboard.)

	 •	Tension	in	the	rope	trying	to	rotate	it	toward	the	keg.	(I	call	this	
force: tension outside. This is the same contact force as that acting 
on the keg.)
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  The forces acting on the keg (no dissipative forces) include gravity and 
tension in the rope pulling the keg up to the window. (I call this force: 
tension outside.)

  The external forces are gravity, which is conservative, and the normal 
force, which is perpendicular to the motion and does no work. (It keeps 
you and Abby from falling through the stairs.) The rest of the forces are 
the tension in the rope, which you can ignore if you treat everything as 
a single system. Therefore, you can use conservation of energy to solve 
this problem.

 2. Draw a free-body diagram.

  Figure 7-3 shows my free-body diagrams. In my figures, I include com-
passes and the direction of the accelerations. Figure 7-3a is a combina-
tion of Figures 7-3b, 7-3c, and 7-3d. Figure 7-3a is the one you need for 
this problem, if you combine all the objects together to form a single 
object; but if the problem wanted you to find the tensions, you would 
need to use figures 7-3b, 7-3c, and 7-3d. I show only Abby in Figure 7-3b, 
so you need to add yourself to the figure.

  To combine Figures 7-3b, 7-3c, and 7-3d to make Figure 7-3a, start with 
one figure, say Figure 7-3b and begin with the acceleration. It’s easiest 
to start with the acceleration and place it on the object in Figure 7-3a. 
Now add all the forces from Figure 7-3b to Figure 7-3a; the directions 
will be fixed relative to the acceleration. You can now add the forces 
from Figure 7-3c and Figure 7-3d. At this point you’ll get more forces 
than I have in Figure 7-3a because you’ll have all the internal forces. For 
example, from Abby in Figure 7-3b you have the inside tension pointing 
in the +x-axis direction and then from the pulley in Figure 7-3c you will 
have the inside tension pointing in the –x-axis direction. The two have 
the same magnitude but opposite direction so they cancel out in Figure 
7-3a (the action-reaction pair).

  The rope doesn’t slip, so there’s a relationship between the pulley’s 
motion and the motion of Abby and the keg — namely, the rope has to 
move the same amount, must have the same speed, and must have the 
same acceleration at the three locations: Abby, the pulley, and the keg. 
Otherwise, the rope will break. Mathematically, the rope (three objects) 
having the same motion means that the angular variables of the pulley 
are: α = aT/R = a/R, ω = vT/R = v/R and Δθ = Δs/R = Δy/R.

  Figure 7-3a is easy to work with in the next step, but going from Figures 
7-3b, 7-3c, and 7-3d to Figure 7-3a takes practice. The trick here is to real-
ize that all three objects have the same acceleration (and same speed), 
so you put them together with all their accelerations pointing in the 
same direction. For the pulley, you think of the circular motion in the 
direction of the acceleration as linear motion, Δs = R Δθ.
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 3. Calculate the forces by using the free-body diagram(s) as a guide.

  Use Figure 7-3a because it’s quicker and the same without the internal 
forces, shown here:
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 4. Apply the laws of physics.

  Use Newton’s second law of motion, the law of acceleration, because 
you want to calculate the acceleration and you know the forces. The 
mathematical formula of Newton’s second law, the law of acceleration is

  To calculate Abby’s and your acceleration, you need to know the total 
effective mass of the system. The total mass is Abby’s mass, your mass, 
the skateboard’s mass, the keg’s mass, and the pulley’s effective mass. 
To calculate the pulley’s effective mass, divide the moment of inertia 
by the radius squared (center of the pulley to the rope). Solving for the 
acceleration in the x-axis equation:

  Abby’s acceleration down the stairs is 1.48 feet per square second (0.450 
meters per square second).

Discovering Forces and Torques  
Involved with Circular Motion

Objects moving in circles are always experiencing a net force and therefore 
an acceleration. Recall Newton’s first law of motion — the law of inertia, 
which states that objects travel in straight lines at constant velocity unless 
forced to change their motion. This is important to remember because it  
can have important consequences such as in sports that involve motion in 
circular paths.
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The motion in a circle can be split into radial motion and tangential motion. 
The radial direction is the direction toward (and away from) the center of the 
circle. For circular motion the distance r from the center is a constant; the 
radial velocity is zero and the magnitude of the radial (centripetal) accelera-
tion is ar = r ω2, where ω is the angular speed. (As long as you have sufficient 
force in the radial to produce this acceleration, the object will go in a circle.) 
The tangential direction is the motion around the center of the circle, which 
can be completely described by the angle when the radius r is a constant. The 
motion is described by the magnitude of the angular position θ, the magnitude 
of the angular velocity ω, and the magnitude of the angular acceleration α.

 Understanding the motion of biological systems and how the motion changes 
involves five steps:

 1. Determine all forces acting on the biological system and all sources of 
energy within the system.

 2. Draw free-body diagrams.

  The free-body diagram includes the object and the all external forces 
acting on the object. For circular motion, I like to draw two free-body 
diagrams: one from the top looking down the axis of rotation of the 
object and one from the side that gives the clearest picture of the forces. 
It’s also helpful to include the acceleration in the diagrams because 
there usually is both a radial (centripetal) acceleration and a tangential 
acceleration.

  In addition, I like to include a compass in my free-body diagram so I 
know my directions. When I do a vector sum of all the forces, it has to 
point in the same direction as the acceleration; if it doesn’t, there’s a 
mistake somewhere.

 3. Calculate the forces in the radial direction by using the free-body dia-
grams as a guide.

 4. Calculate the forces and torques in the tangential direction by using 
the free-body diagrams as a guide.

 5. Apply the laws of physics to solve the problem.

This section illustrates how to apply these five steps. You discover why it 
can be important to consider what’s going on in the radial direction, when 
you look at motion around the circle.
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Racing on a circular track —  
forces and acceleration
This section looks at the forces in the radial direction and the radial (centrip-
etal) acceleration. I consider an example that illustrates an important aspect 
of biomechanics, which has application in many different sports that require 
the athlete to travel in a circle at least part of the time. You need sufficient 
force in the radial direction to make the turn.

 Every day after work, Bob thinks he is in a Formula 1 race on the high-
way. During a rainstorm, the coefficient of static friction between the 
road and his car tires is 0.3. What’s the maximum speed Bob can take a 
turn if the road is banked at 2.5 degrees? (The path in many summer and 
winter sports are banked so the normal force is partially applied in the 
radial direction and helps the athlete make the turn at a faster speed.)  
In this case, the radius of curvature is 820 feet (250 meters) and the car 
has a weight of 2,750 pounds (12,200 newtons) or a mass of 85.4 slugs 
(1,240 kilograms).

The steps involved in solving for the speed are as follows:

 1. Determine all forces acting on the biological system and all sources of 
energy within the system that you believe are relevant.

  Bob is traveling around a bend at a constant speed. If he goes any faster 
he will fly off the road. Three forces are acting on Bob’s car:

	 •	Gravity,	which	pulls	the	car	straight	down

	 •	Normal	force,	which	pushes	the	car	perpendicular	to	the	road’s	
surface

	 •	Static	friction,	which	is	parallel	to	the	road’s	surface	and	keeping	
the car on the road. The magnitude of the static friction is at its 
maximum value, which is the coefficient of static friction times the 
magnitude of the normal force. A small portion of the static friction 
is in the tangential direction to counter the rolling resistance of the 
tires on the road and maintain a constant speed. (For convenience, 
I assume no rolling resistance and hence no static friction in the 
tangential direction.)

  You can ignore the other dissipative forces. 

 2. Draw free-body diagrams for Bob’s car.

  After you draw your diagrams, you can look at my free-body diagrams 
for Bob’s car as shown in Figure 7-4. Figure 7-4a shows the car from 
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above, whereas Figure 7-4b shows the front of the car as it comes 
toward you. How does your diagram compare with mine?

  A common error arises in the choice of the direction of the radial accel-
eration. It’s always toward the center of the circle. For example, if I 
asked you the direction of your radial (centripetal) acceleration because 
of the earth’s rotation, many people would say it’s toward the center of 
the earth. This is only true for people living at the equator. For everyone 
else, the circle is the plane of constant latitude. 

  Another common error is to get the direction of the normal force or the 
direction of the weight wrong because people get in the habit of placing 
the normal force opposite to the weight.

 

Figure 7-4: 
Free-body 
diagrams 

of Bob’s 
car viewed 
from above 
(a) and the 

front (b).
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 3. Calculate the forces in the radial direction by using the free-body dia-
grams as a guide.

  The radial direction for Bob’s car is parallel to the x-axis according to 
Figure 7-4b. The forces in the radial direction are

 4. Calculate the forces and/or torques in the tangential directions by 
using the free-body diagram as a guide.

  Space is three-dimensional and there’s one radial direction. This means 
two dimensions are tangential. In the case of Bob’s car, I show the two 
tangential directions in Figures 7-4a and 7-4b. The forces in these direc-
tions are

 5. Apply the laws of biophysics to solve for the normal force acting on 
Bob’s car.

  You can solve this step by using Newton’s laws of motion. Apply 
Newton’s second law, the law of acceleration:

  You know everything for this formula except the normal force. Solve for 
the normal force:

  The normal force acting on the car is 2,790 pounds (12,400 newtons). 
The normal force is greater than the weight because the normal force is 
countering the weight and providing part of the acceleration around the 
corner.

 6. Apply the laws of biophysics to find the maximum speed Bob’s car can 
make the turn.

  Now, apply Newton’s second law, the law of acceleration, to the radial 
direction and solve for the maximum speed.

  The maximum speed Bob can make the corner at is 95.9 feet/second 
(29.2 meters per second = 65.4 miles per hour = 105 kilometers per 
hour). Bob better slow down if he wants to make the turn.
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Accelerating around the corner —  
torques and forces
This section is about biological systems that don’t have a net force always 
pointing in the same direction (linear motion) or a net force that always 
points toward the center of the circle. This section deals with situations 
where the net force can be split into two parts: a part toward the center of 
the circle (radial or centripetal force) and a part tangential (perpendicular to 
the radial component). I restrict the discussion to objects moving in circles 
and the object speeding up or slowing down. 

 An object speeding up or slowing down as it goes in a circle can be analyzed 
using the net tangential force, or by analyzing the net torque acting on the 
object. Do not forget the radial (centripetal) force is always there.

When forces cause the object to accelerate or decelerate in the tangential 
direction while moving in a circle then the net acceleration is a combination 
of both the radial acceleration and the tangential acceleration. The magni-
tude of the net acceleration is

The first term is the magnitude of the net acceleration, the second set of terms 
is the magnitude of the acceleration in terms of its radial and tangential compo-
nents, the third set of terms has the radial acceleration replaced by the speed 
squared divided by the radius of the circle, and the last set of terms expresses 
the acceleration in terms of the radius of the circle, the angular velocity, and 
the angular acceleration. The magnitudes of the corresponding net force and 
net torque from Newton’s second law, the law of acceleration, are

All the expressions are in terms of magnitudes, but they start from vectors, 
which have direction. The vectors with subscript r point toward the center of 
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the circle whereas vectors with a subscript T point tangentially to the circle. 
The net torque ( ), the angular acceleration ( ) and the angular velocity ( ) 
all point perpendicular to the plane of rotation formed by the radial and tan-
gential acceleration.

The expressions for the net force, the net torque, and accelerations are the 
starting point for any problem where the object is speeding up or slowing 
down as it goes in a circle. If you’re involved with a sport such as bike or car 
racing around a circular track, the forces providing the acceleration are the 
static friction between the tires and the road, the normal force, and the gravi-
tational force. 

Gravity can play a role if there’s a vertical change in position such as in long 
distance road races, mountain bike races, and bike races in the velodromes. 
Gravity is usually used as a linear force or as a tangential force. It isn’t usu-
ally used as a radial force except in amusement park rides.

The normal force is usually used as a radial force in banked turns, which 
allows the racer to use more of the static friction force for linear and tangen-
tial motion instead of in the radial direction. In fact, if a banked turn is done 
at the correct speed, then the amount of static friction needed to make the 
turn is zero and all of it can be used for tangential acceleration, which has a 
maximum value equal to the coefficient of static friction times the magnitude 
of the normal force. 

This section is an application of these concepts in combination with 
Newton’s laws and energy-work concepts. To illustrate these concepts I want 
you to work through an example with me.

 Fred is practicing at the local velodrome. He goes into the turn that 
has a radius of curvature of 26.0 feet (7.92 meters) and is banked at 
40.0 degrees. The bike’s speed is 27.5 feet per second (8.38 meters per 
second). Fred and the bike weigh 190 pounds (845 newtons) or a mass of 
5.90 slugs (86.1 kilograms). Fred maintains a constant acceleration over 
the next 70.0 feet (21.3 meters) and doubles his speed to 55.0 feet per 
second (16.8 meters per second) at which point the static friction has 
reached its maximum value. His bike starts to go into a skid at this point. 
What’s the coefficient of static friction between Fred’s tires and the track?

The steps involved in solving this problem are similar to the other sections of 
this chapter. Follow these steps:

 1. Determine all forces acting on the biological system and all sources of 
energy within the system that you believe are relevant.
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  You need to realize that Fred is accelerating around a bend. Three 
forces are acting on Fred and his bike:

	 •	Gravity,	which	pulls	Fred	and	the	bike	straight	down

	 •	Normal	force,	which	pushes	the	bike	perpendicular	to	the	track’s	
surface

	 •	Static	frictional	force,	which	contributes	to	the	radial	net	force	
and the tangential net force. The combination of the radial static 
frictional force (Fsf,r) and the tangential static frictional force (Fsf,T) 
gives the total static frictional force.

	 •	The	other	dissipative	forces	such	as	the	rolling	resistance	and	the	
air resistance will be ignored.

 2. Draw free-body diagrams for Fred and his bike.

  After you draw your free-body diagrams, look at mine. I draw two free-
body diagrams so you can see all the forces and accelerations acting on 
Fred, as well as their directions. Refer to Figure 7-5. 

  Figure 7-5a shows Fred from above. It shows the velocity in the tangen-
tial direction, the change in the arclength along the track (Δs), the radius 
of the circle (R), the radial (centripetal) acceleration (ar), the tangential 
acceleration (aT), and the static frictional force split into both a tangen-
tial and radial component.

  Figure 7-5b shows Fred from behind. It shows the radial (centripetal) 
acceleration, the radial component of the static frictional force, the force 
of gravity, and the normal force. Notice I have drawn my compass to be 
parallel and perpendicular to the surface, which makes it easier to solve 
for the static friction and the normal force.

 3. Calculate the forces and/or torques by using the free-body diagrams 
as a guide.

  The accelerations and forces can be written in terms of the unit vectors, 
using Figure 7-5 as a guide:

 4. Apply the laws of biophysics to solve the problem.

  Break down everything. You need to find the coefficient of static friction, 
so you need to find the static friction when at its maximum value, which 
happens when Fred is moving at his final speed of 55.0 feet per second 
(16.8 meters per second). In other words, you need to find the magni-
tude of the normal force and hence the static friction at the end of the 
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acceleration period. In Figure 7-5a, you see the static friction has both a 
radial component and a tangential component, so that is what you want 
to find.

 

Figure 7-5: 
A free-body 
diagram of 

Fred viewed 
from above 

(a) and 
behind (b).

 

  You can find the tangential static friction by solving the work-energy 
theorem in the tangential direction. The reason is the problem tells you 
both the initial and final speeds and you know work equals force times 
displacement. The work-energy theorem gives

  The tangential static frictional force is 95.6 pounds (425 newtons). 
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  Newton’s second law of motion, the law of acceleration, can be used to 
find the radial static friction because you know the radial acceleration.

  Newton’s second law of motion, the law of acceleration, for this  
problem is

  The z-axis equation gives a solution for the tangential acceleration, 
but you don’t need it. 

  The y-axis equation gives a solution for the normal force:

  The normal force is 587 pounds (2,610 newtons).

  The x-axis equation gives a solution for the radial component of 
the static friction:

  The radial component of the static friction is 404 pounds (1800 
newtons).

  You can now find the coefficient of static friction:

  The tires on Fred’s bike have a coefficient of static friction of 0.707 with 
the track.

Notice that the tires must share the static friction between the radial direc-
tion and the tangential direction. If you think you’re going to go in a skid 
going around the corner and can’t slow down in time, then just take your foot 
off the brake and off the gas and coast around the corner. Doing so can put 
the entire static friction force in the radial direction and maximize the speed, 
so that you can make the corner. Furthermore, this problem is considered 
a very hard problem, but notice it’s still the same steps used in every other 
problem in this chapter. If you can master this problem and as long as you 
follow the steps of setting up the problem and drawing the free-body dia-
grams, you should have no trouble.
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Chapter 8

Looking at Where Moving  
Objects Go –– Kinematics

In This Chapter 
▶ Examining linear one-dimensional motion
▶ Focusing on circles and motion
▶ Tackling two-dimensional motion

T 
his chapter stands by itself on the subject of biomechanics. Here the 
main focus is to understand how objects move without worry about what 

causes the motion. Kinematics means mechanics of objects in motion. This 
branch of biomechanics is important in fields that need to understand the 
motion of objects.

To completely describe the motion of an object in a biological system, all 
you need to know is the acceleration, velocity, and position of the object. 
Understanding biological system’s motion and how the motion changes 
involves a few steps:

 1. Make a table(s) of the quantities of motion at key moments in time. 

  Key moments depend on the problem but can include moments when 
the forces acting on the system change (and hence the acceleration).

 2. Draw the corresponding graph(s). 

  Velocity versus time graphs are the best, but sometimes you’ll need to 
make acceleration versus time and position versus time graphs.

 3. Solve the problem using the graphs and or formulas.

This chapter focuses on describing the motion of objects as they move 
through space by looking at different types of motion, including linear one-
dimensional motion, circular motion (and how to treat the two-dimensional 
circular motion as one-dimensional motion), and noncircular two-dimensional 
motion.
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Grasping One-Dimensional Motion
The easiest way to describe one-dimensional motion of an object is by using 
a velocity versus time graph. Figure 8-1 shows the velocity of my bike while I’m 
riding on a mountain bike trail over a period of time. The graph conveys all 
the information you need to know about my bike to completely describe its 
motion. Some of the information contained in this graph tells you

 ✓ Velocity: Also known as instantaneous velocity. At any given moment in 
time you know the value of the velocity.

 ✓ Acceleration: Also known as instantaneous acceleration. If you calculate 
the slope at any moment in time, it’s the acceleration at that moment.

 ✓ Average acceleration: If you calculate the slope between two times, say 
tinitial and tfinal, then the slope equals the average acceleration between 
these two times. In Figure 8-1, the curve is a straight line between times 
tinitial and tfinal, which means the slope is a constant and the instanta-
neous acceleration is equal to the average acceleration between these 
times.

 ✓ Displacement: The area between the velocity curve and the time axis is 
equal to the displacement. In Figure 8-1, the displacement of the object 
from time tinitial to time tfinal is equal to the shaded area. If the shaded 
region is below the time axis then the displacement is negative.

 

Figure 8-1: 
The velocity 

of my bike 
while riding.

 

Knowing the displacement, velocity, and acceleration completely describes 
the motion of the object. But you may be thinking, “I want formulas.” The for-
mulas are hidden within Figure 8-1. When there’s a straight line in a velocity 
versus time graph the acceleration is a constant, such as from tinitial to tfinal, 
then the equations are algebraic. 
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The formulas when the acceleration is constant are as follows:

This chart includes a lot of information (just like Figure 8-1 has a lot of informa-
tion). These formulas show how the physical quantities of motion (velocity and 
position) change over some time interval. Here are the mathematical symbols 
explained in plain English: tinitial is the initial time you’re interested in, tfinal is 
the final time, Δt = tfinal – tinitial is the elapsed time, xinitial = x(tinitial) is the position 
at the initial time (also called the initial position), xfinal = x(tfinal) is the position 
at the final time (also called the final position), Δx = xfinal – xinitial is the displace-
ment, vinitial = v(tinitial) is the velocity at the initial time (also called the initial 
velocity), vfinal = v(tfinal) is the velocity at the final time (also called the final 
velocity), and a is the acceleration, which is a constant that doesn’t change 
over the time interval. 

In addition to the list of formulas, here are a few things worth noting about 
the chart:

 ✓ The motion of an object is described by only five physical quantities: 
elapsed time (Δt), the displacement (Δx), the initial velocity (vinitial), the 
final velocity (vfinal), and the (constant) acceleration (a). Each formula 
contains only four of the five quantities, so as long as you know three 
quantities, you can find the other two by using the correct formulas. The 
third column tells you what quantities are in the formula and the last 
column in the chart helps you select the correct formula to use by tell-
ing you which quantity is missing from the formula.

 ✓ The first column tells you where the formula came from. The first equa-
tion is the formula for the slope of the curve in Figure 8-1. The second 
equation is the formula for the area under the curve in Figure 8-1.
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 ✓ You can obtain the third equation by multiplying the area equation 
and the slope equation together. You can also obtain it from the work-
energy theorem plus the definition of work plus Newton’s second law of 
motion, the law of acceleration (refer to Chapter 6 for more information).

 ✓ You can get the fourth and fifth equations by combining the area equa-
tion with the slope equation to eliminate one of the velocities by adding 
(or subtracting) the equations together.

 ✓ The sixth formula shows the relationship between the average velocity 
(equals displacement divided by elapsed time), final velocity, and initial 
velocity when the acceleration is a constant.

 Be very careful with the fourth and fifth formulas. They look very similar and 
are easy to mix up. There is a different sign in front of a, and the velocities are 
different, so be careful.

Remember, the velocity versus time graph and the equations are equivalent, 
so use whichever is easier. These sections look at applications of Figure 8-1 
and the formulas. 

Analyzing sprinters’ run —  
the 100-meter dash
In 2009, Usain Bolt set several sprinting world records. Two of the records 
were the 100-meter (328 feet) race in 9.58 seconds and the 200-meter (656 
feet) race in 19.19 seconds. In addition, in 2009, he ran in the 150-meter (492 
feet) race and finished the last 100-meters in 8.70 seconds. Try analyzing his 
running feats with a few reasonable assumptions:

 ✓ Bolt’s motion is the same for the 100-meter and 200-meter races. Only 
the distance has changed.

 ✓ Bolt’s maximum speed is the same for all three races.

 ✓ Bolt’s acceleration out of the blocks is the same for the 100-meter and 
200-meter races.

 ✓ Bolt’s acceleration out of the blocks is a constant.

You can use the 100-meter and 150-meter race results to calculate his maxi-
mum speed, his acceleration out of the blocks, and how long he accelerated 
for. Finally, test the assumptions by using the 200-meter result.
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You can solve the problem by using these steps:

 1. Make a table(s) of the five quantities of motion at key moments in 
time. 

  You can make a table indicating what the quantities are at each impor-
tant moment of time. After you have completed your table, you can com-
pare it to mine. My quantities are in Table 8-1.

  One important piece of information I didn’t place in the table is that the 
last 100 meters (328 feet) of the 150-meter race was completed in 8.70 
seconds.

Table 8-1 The Quantities of Motion Describing Bolt’s Races
Time 
(second)

Position 
(ft) 
(m)

Velocity 
(ft/s) 
(m/s)

Acceleration 
(ft/s2) 
(m/s2)

Comments

0 0 0 a Start of the race
ta xa vmax a → 0 Maximum speed reached
9.58 328 

(100)
vmax 0 End of 100-meter race

t150 492 
(150)

vmax 0 End of 150-meter race

19.19 656 
(200)

vmax 0 End of 200-meter race

 2. Make the corresponding graph(s). 

  Sketch a velocity versus time graph. Include the assumptions listed in 
Table 8-1 in your graph. After you’ve drawn your graph, have a look at 
mine in Figure 8-2.

 

Figure 8-2: 
The velocity 
of Bolt from 

his three 
2009 races.

 

velocity

vMAX

9.58 19.19
time
(seconds)ta t150



170 Part II: Calling the Mechanics to Fix Your Bio — Biomechanics 

 3. Solve the problem by using the graphs and or the formulas.

  You have listed all the important information in step No. 1 and you visu-
alize the motion from the graph in step No. 2. The problem wants you 
to find vmax, a, and ta. You’re now ready to solve the problem for these 
three quantities.

  You can use the kinematic equations, but remember the equations are 
valid only for constant acceleration. This problem has two accelera-
tions, so you have to keep the time interval in the range 0 to ta (constant 
acceleration of a), and in the range ta to 19.19 seconds (constant accel-
eration of 0) when using the kinematic equations. Alternatively, you can 
use the information in Figure 8-2, and the formulas for area under the 
curve and the slope of curve to solve this problem. 

  I use the graph in Figure 8-2, and the formulas for area under the curve 
and the slope of the curve to solve this problem.

 If you’re going to use the graphical technique, then the area under a velocity 
versus time graph is equal to the displacement and the slope is equal to the 
acceleration.

You want to calculate the maximum velocity first, the acceleration time inter-
val (ta) second, and then you can find the acceleration. The solutions for the 
three quantities are

 ✓ The maximum velocity: Figure 8-2 shows that he is running at a con-
stant velocity after time ta. Therefore, during the last 328 feet (100 
meters) of the 150-meter race he is running at his maximum speed and 
you can use the area equation, which states displacement equals the 
(average) velocity times elapsed time. Mathematically, it looks like this:

  The maximum speed is fast, which in common terms is 25.7 miles per 
hour (41.4 kilometers per hour). Bolt would get a speeding ticket run-
ning through certain speed zones within cities.

 ✓ The acceleration time: From Figure 8-2, you know the area under the 
curve from the time of 0 seconds to 9.58 seconds is equal to the dis-
placement of 328 feet (100 meters). The area from 0 seconds to ta is a 
right-angle triangle and the area from ta to 9.58 seconds is a rectangle. 
The solution is (displacement equals area)

  The time over which the acceleration is occurring is 1.76 seconds.
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 ✓ The acceleration: You can calculate his acceleration from the slope 
of the curve in Figure 8-2 because you now know vmax and ta. Remember, 
the slope (acceleration) equals rise (change in the velocity) over run 
(change in time):

  The acceleration is 21.4 feet per square second (6.53 meters per square 
second).

You’ve now calculated everything about Bolt’s 100-meter race. From this 
information, you can calculate how long it would take him to run the 150-
meter race and the 200-meter race: 

 ✓ tDx = t100 + (Δx – 100 meters)/vmax

 ✓ t150 = 9.58 second + 164 feet/(37.7 feet per second) = 13.93 seconds

 ✓ t200 = 9.58 second + 328 feet/(37.7 feet per second) = 18.28 seconds

In reality, his 150-meter time was 14.35 seconds and his 200-meter time was 
19.19 seconds, which are 0.42 seconds and 0.91 seconds slower than what 
we calculated, respectively. His initial 50 meters was slower in the 150-meter 
race than in the 100 meter race, and it was his last 100 meters in the 200-
meter race that was a little slower. Your approximations are reasonable, 
though, and he deserves a speeding ticket.

Dunking the basketball — people  
and animals’ jumping abilities
If you’re studying motion and you don’t care about time, the work-energy 
theorem and the conservation laws are the way to go, but you still follow the 
steps to get things right. To illustrate this, in this section, you analyze the 
vertical jumping motion of a human (Harry) dunking a basketball and the  
philaenus spumarius. The philaenus spumarius (linnaeus) is commonly 
known as the froghopper or the spittle bug. I have included the froghopper for 
comparison with humans. You’ll find the maximum velocity and the take-off 
acceleration of both the froghopper and Harry. Strictly speaking, the  
froghopper jumps at about 58 degrees, so you have to take that into account 
when calculating the vertical take-off velocity.

Vertical jumping has two accelerations: 

 ✓ Take-off acceleration: When the animal is pushing off the ground

 ✓ A second acceleration while in the air, which is the acceleration due to 
gravity, g = 32.2 feet per square second (9.81 meters per square second)
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 Four quantities are usually of interest: 

 ✓ Displacement while pushing off the ground

 ✓ Acceleration while pushing off the ground (take-off acceleration)

 ✓ Take-off velocity, which is the velocity right as the animal leaves the 
ground

 ✓ Maximum height reached above the ground

 Normally, it’s easier to experimentally measure the pushing displacement 
and the maximum height reached, so you would measure those two and then 
calculate the take-off acceleration and the take-off velocity. Assume you have 
already made the measurements, so you want to solve for the acceleration 
and velocity; use the steps listed in these sections.

Step No. 1: Make a table(s) 
In this stage, you make a table of the four quantities of motion (time, posi-
tion, velocity, and acceleration) at key moments in time. This step is impor-
tant and actually a little more than filling in a table. You figure out what’s 
going on from a biophysical point of view. As you figure it out, you can fill in 
your table indicating what the quantities are at each important moment of 
time. Table 8-2 shows you my table for comparison.

To start the table, the animal squats down so the starting position is –d 
below its normal vertical height. In the case of Harry, d = 1.75 feet (0.533 
meters), whereas d = 6.6 × 10–3 feet (2.0 × 10–3 meters) for the froghopper. 

The animal now pushes off the ground with a take-off acceleration of aT. 
Assume that the acceleration is constant because the duration of the take-off 
is very short (less than 0.001 seconds for the froghopper). 

At the take-off time, tT, the animal has extended its legs and feet, and can no 
longer push against the ground. The acceleration has changed from aT to –g 
(which is the acceleration of gravity), and the animal has reached its maxi-
mum vertical velocity. The animal is now moving through the air and will 
continue to rise until it stops. I call this time tmax. At this time the animal will 
reach a maximum height h. Harry’s maximum height was measured to be h = 
4.00 feet (1.22 meters), whereas h = 1.93 feet (0.588 meters) for the froghop-
per. The animal falls back toward the ground until time tg, at which point the 
animal hits the Earth. Table 8-2 summarizes all the physical quantities during 
this motion.
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Table 8-2 The Quantities of Motion Describing  
 an Animal Jumping
Time 
(second)

Position 
(ft) 
(m)

Velocity 
(ft/s) 
(m/s)

Acceleration 
(ft/s2) 
(m/s2)

Comments

0 –d 0 aT The animal is in the crouch 
and starts the jump.

tT 0 vmax aT → –g The animal has reached  
maximum speed.

tmax h 0 –g The animal has reached  
maximum height.

tg 0 –vmax –g The animal is back on the 
ground.

Step No. 2: Make the corresponding graph(s)
You have enough information (from the preceding section) to sketch a veloc-
ity versus time graph. After you draw your graph, have a look at mine in 
Figure 8-3.

 

Figure 8-3: 
The veloc-

ity of the 
animal while 

jumping  
vertically.

 

velocity

vmax

–vmax

time
tmax tg

tT

The slope of the curve in Figure 8-3 from time 0 to tT is equal to the take-off 
acceleration and the slope from time tT on is equal to –g; the acceleration 
due to gravity. The area under the curve in Figure 8-3 from time 0 to tT is 
equal to the displacement d, the area under the curve from time tT to tmax is 
equal to the displacement h, and the area under the curve from time tmax to tg 
is equal to the displacement –h.

The restriction on the slope (acceleration) and the area under the curve (dis-
placement) places further restrictions on the motion. The velocity at impact 
with the ground must be –vmax, and tg = 2 tmax – tT.
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Step No. 3: Solve the problem 
Use the graphs and the formulas to solve the problem. You don’t know the 
times, so you need to use the work-energy theorem (or conservation of 
mechanical energy because there are no dissipative forces). When the animal 
is in the air, the only thing you don’t know is the maximum velocity at take-
off. Use the information in Table 8-2 from time tT to tmax (and the conservation 
of energy equation in the preceding section) to solve for vmax.

You now have a formula to find vmax, so you can calculate some values. 
Remember, g = 32.2 feet per second squared (9.81 meters per second 
squared). Harry’s maximum height was 4.00 feet (1.22 meters), so the take-
off velocity is vmax = 16.0 feet per second (4.89 meters per second). On the 
other hand, the froghopper’s maximum height was 1.93 feet (0.588 meters), 
so his vertical take-off velocity is vmax,y = 11.1 feet per second (3.40 meters per 
second). You aren’t finished with the froghopper though. Remember it left 
the ground at an angle of 58 degrees, so the froghopper’s maximum speed is 
vmax,y/sin(58) = 13.1 feet per second (4.01 meters per second). 

The take-off speed of both Harry and the froghopper are very close to being 
the same, which illustrates an interesting fact about jumping. The maximum 
height attained by the animal depends only on the vertical take-off velocity of 
the animal; it doesn’t care how heavy the animal is, how big the animal is, or 
any other characteristic about the animal.

In addition to the time, which I’m not interested in at the moment, you have 
only the take-off acceleration to calculate. Use the information in Table 8-2 
from time 0 to tT (and the conservation of energy equation in the preceding 
section) to solve for amax.

The take-off acceleration is calculated by using the work-energy theorem 
during the time interval from 0 to tT.

You know vmax for both Harry and the froghopper. From the problem, you 
know the value of d for both Harry and the froghopper, so you can now cal-
culate the value of the take-off acceleration. After doing the calculations, 
Harry’s take-off acceleration is 73.1 feet per square second (22.4 meters per 
square second), whereas the froghopper’s take-off acceleration is 13,000 feet 
per square second (3,960 meters per square second)!
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To put the froghopper’s take-off acceleration into perspective, it is 404 times 
larger than the acceleration due to gravity, whereas an airbag deploying 
during a car accident has an acceleration of about 60 times the acceleration 
due to gravity. If Harry jumped with the same take-off acceleration as the 
froghopper, then Harry would jump to a height of: 

Substitute Harry’s value of d into the equation, and the height is 707 feet (215 
meters), or more than the length of two football fields straight up! That is 
why the froghopper is ranked one of the best jumpers in the animal kingdom.

Skydiving and non-uniform acceleration
In October 2012, Felix Baumgartner skydived from an altitude of 24.4 miles 
(39.2 kilometers), and he broke the sound barrier as he fell. During an event 
like this the displacement is so large that forces acting on the body are 
changing and so is the acceleration. The mathematical tools needed to solve 
a body falling from this altitude is beyond the scope of this book, but by 
using graphs you can still qualitatively analyze what’s going on.

This section serves two purposes: analyzing very complex systems by using 
graphs and correcting a myth some people have about skydiving from watch-
ing TV. If I ask people to sketch the velocity versus time curve of a skydiver, 
many people get it wrong. In biophysics, there can be abrupt changes in the 
acceleration caused by sudden changes in the forces acting on the biological 
system. On the other hand, the velocity and position change smoothly, but 
they can change rapidly.

In cases where the acceleration is changing in time, it’s usually better to draw 
an acceleration versus time graph before drawing a velocity versus time 
graph. To illustrate the importance of including the acceleration versus time 
graph, consider the following example. A person jumps out of a plane, falls 
for awhile and reaches terminal speed, opens the parachute, and then floats 
the rest of the way down at a new terminal speed. Sketch the acceleration 
versus time and the velocity versus time graphs for this motion.

You want to draw the acceleration versus time graph and remember the 
forces acting on the person, which are the gravitational force and air resis-
tance. At first, gravity is the dominant force and then air resistance kicks in 
and increases until the forces balance and the net force is zero. The para-
chute is opened and the air resistance becomes greater than gravity. This 
causes a deceleration and the person slows down until reaching a new termi-
nal velocity. You can now sketch your acceleration versus time curve; I have 
drawn mine in Figure 8-4. How does your graph compare to mine?
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Figure 8-4: 
The accel-

eration 
versus time 

curve of a 
skydiver.

 

You know what the acceleration looks like as a function of time from Figure 8-4. 
The change in the velocity is equal to the area under the curve, so you can 
use Figure 8-4 to draw the velocity versus time graph. After you’ve drawn 
your velocity versus time graph, have a look at mine in Figure 8-5.

On TV when you see someone skydiving and the person opens her para-
chute, she appears to fly upward. In reality, she doesn’t shoot upward, but 
she does decelerate while the cameraperson continues falling at the original 
terminal speed. Notice from Figure 8-5 that the velocity is always negative, 
which means the person continues to fall downward and doesn’t shoot 
upward with a positive velocity.

 

Figure 8-5: 
The velocity 
versus time 

curve of a 
skydiver.

 

The terminal velocity shown in Figure 8-5 is represented mathematically by 
the following equation:

Here m is the mass of the skydiver, g is the acceleration due to gravity, so 
mg is the weight of the skydiver, D is the drag coefficient, ρ is the air’s mass 
density, and A is the frontal cross-sectional area. The frontal cross-sectional 
area of a parachute is a lot larger than your body, so the terminal velocity 
is smaller when the parachute is open. A typical parachute has a cross-
sectional area proportional to the weight of the person, 0.6 to 0.7 pounds per 
square foot (or 2.9 to 3.0 kilograms per square meter). 
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You now know how to make the graphs and calculate the terminal velocity, 
so when you go skydiving, you can also calculate and analyze your fall. You 
can also calculate how large a parachute you need.

Spinning In Circles
When objects move in circles, they’re moving in two dimensions, but the dis-
tance from the center of the circle doesn’t change. Only the angle is changing 
in time, which you can think of as one-dimensional motion.

 The easiest way to describe the motion of an object is using an angular veloc-
ity versus time graph similar to what you did for linear motion in Figure 8-1. The 
figure conveys all the information you need about the object’s circular motion. 
Some of the information contained in this graph tells you the following:

 ✓ Angular velocity (ω): At any given moment in time you know the value 
of the angular velocity directly from the graph.

 ✓ Tangential speed (vT): The angular velocity also gives you the speed at 
which the object is traveling around the circle, vT = R ω. R is the distance 
from the center of the circle to the object.

 ✓ Instantaneous angular acceleration (α): If you calculate the slope at any 
moment in time, that value is the angular acceleration.

 ✓ Tangential acceleration (aT): The angular acceleration also gives you 
the tangential acceleration of the object as it travels around the circle. 
The magnitude of the tangential acceleration is aT = R α. R is the dis-
tance from the center of the circle to the object.

 ✓ Radial acceleration (ar): The radial acceleration is related to how fast 
the object is moving around the circle. The magnitude of the radial (cen-
tripetal) acceleration is ar = R ω2. R is the distance from the center of the 
circle to the object.

 ✓ Average angular acceleration: If you calculate the slope between two 
times, say tinitial and tfinal, the slope equals the average angular accelera-
tion between these two times.

 ✓ Angular displacement (Δθ): The area between the angular velocity 
curve and the time axis is equal to the angular displacement, which is 
the change in the object’s angle.

 ✓ Arclength (Δs): The distance the object moves around the circle is the 
arclength. The arclength is Δs = R Δθ.
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Algebraic equations exist if the angular acceleration is constant. The motion 
of an object is described by five quantities: 

 ✓ Elapsed time (Δt)

 ✓ Angular displacement (Δθ)

 ✓ Initial angular velocity (ωinitial)

 ✓ Final angular velocity (ωfinal)

 ✓ Constant angular acceleration (α)

Each formula contains four of the five quantities, so as long as you know 
three quantities, you can find the other two using the correct formulas. The 
formulas from an angular velocity versus time graph with constant angular 
acceleration are

The first column tells you where the formula comes from when the angular 
acceleration is a constant. The first formula is the slope of the curve in angu-
lar velocity versus time graph. The second formula is the area under the 
curve in angular velocity versus time graph. You can obtain the third equa-
tion by multiplying the slope equation with the area equation. You can also 
obtain it by combining the work-energy theorem plus the definition of the 
work plus Newton’s second law of motion, the law of acceleration. You can 
obtain the fourth and fifth equations by adding and subtracting the slope and 
area equations.

 The fourth and fifth formulas look very similar; it’s easy to mix them up, so be 
careful.
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 Analyze the discus throwing sport by using the concepts of circular 
motion. During the discus throw, the athlete spins with the discus held in 
an outstretched arm. After spinning around in a circle for two revolu-
tions, the discus is released, and it flies through the air. In men’s discus, 
the discus weighs 4.41 pounds (19.6 newtons) corresponding to a mass of 
0.137 slugs (2.00 kilograms), and the world-record distance was achieved 
when it was thrown with a speed of approximately 85.6 feet per second 
(27.0 meters per second). The discus during the spin was approximately 
3.00 feet (0.914 meters) from the center of the circle. Calculate three 
quantities: 

 ✓ The average angular acceleration

 ✓ The time of the spin 

 ✓ The work done on the discus by the athlete

For you to calculate these quantities, follow these steps outlined:

 1. Make a table(s) of the five quantities of motion at key moments in 
time. 

  The table needs to indicate what the quantities are at each important 
moment in time. (Hint: You get this information at the beginning and 
end of the spin.) Check out Table 8-3 for comparison.

  Don’t forget to change the tangential speed to the angular velocity  
(ωfinal) = vT/R = 85.6 feet per second/3.00 feet = 28.5 radians per second.

Table 8-3  The Quantities of Motion Describing a Discus Throw
Time(s) Angular Position 

(Radians)
Angular 
Velocity 
(Radians/s)

Angular 
Acceleration 
(Radians/s2)

Comments

0 0 0 α Start of the spin
tfinal 4π 28.5 α End of the spin

 2. Make the corresponding graph(s).

  Sketch the angular velocity versus time graph. Your graph should look 
similar to Figure 8-6.
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Figure 8-6: 
The angular 

velocity of 
the discus 

spin.
 

  You can solve the problem by using either the formulas or the graph. This 
time, use the formulas and find the average angular acceleration without 
knowing the time. From the formulas, look for the one missing time:

  The angular acceleration is 32.4 radians per square second. The tangen-
tial acceleration (equals the radius times the angular acceleration) is 
97.0 feet per square second (29.6 meters per square second).

  The next quantity you want to calculate is the time of the spin. You 
know everything else so you can use the graph or any of the formulas.

  If you have a choice, try to avoid using calculated numbers and use 
those given to you in the problem. I use the formula that doesn’t contain 
the angular acceleration:

  The time of the spin was 0.881 seconds.

  You can calculate the amount of work done by the discus thrower on the 
discus by using the work-energy theorem. First calculate the moment 
of inertia of the discus (mass times radius squared). You also need to 
remember the kinetic energy equals half the moment of inertia times the 
angular velocity squared:

  The work done by the thrower on the discus is 502 foot-pounds  
(680 joules).
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Moving With Noncircular  
Two-Dimensional Motion

Motion in each direction for most biophysical systems doesn’t depend on the 
motion in the other directions (air resistance is an exception). You can treat 
each direction independent of the other. You just have to repeat the first sec-
tion for each spatial dimension following the steps listed here:

 1. Make table(s) of the quantities of motion at key moments in time.

  I find making a separate table for each direction helpful. This way I don’t 
mix and match the wrong variables, and it keeps the directions separate. 
The time columns of your table allow you to connect the motion in each 
direction.

 2. Make the corresponding graph(s).

  Make a velocity versus time graph for each direction. If it doesn’t make 
the graph confusing, you can put all the velocity curves on the same 
graph. Sometimes you need to make acceleration versus time and posi-
tion versus time graphs, but keep these to a minimum.

  A trajectory graph is another graph that’s helpful. This graph is a map 
showing the path (trajectory) of the object moving through space. This 
is the same as using a map app and typing in the starting location and 
destination.

 3. Solve the problem by using the graphs and formulas.

  The formulas for constant acceleration are the same as in the first sec-
tion, but they’re now vectors:
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Serving in tennis — projectile motion
Projectiles are any objects where the dominant force acting on them is the 
gravitational force and the other forces such as air resistance can be ignored. 
Objects that are thrown straight up in the air, dropped, or thrown horizon-
tally are all projectiles. The only difference is the horizontal component of 
the velocity.

For projectile motion close to the earth, the kinematic equations (equations 
of motion) simplify to the following set of equations with the y-axis being the 
vertical direction and the x-axis being the horizontal direction:

Note these equations are only valid for close to the surface of the Earth, and 
for large vertical altitude changes these equations do not hold because g isn’t 
constant and air resistance will be a factor.

 If the acceleration is uniform (constant magnitude and constant direction), 
select one of the axis directions parallel to the acceleration. This makes the 
acceleration in the other direction (x-axis above) zero. Instead of having ten 
equations in two dimensions (15 equations in three dimensions), you have 
only six equations in two dimensions (seven equations in three dimensions).

Try this example: 

 Mark is a tennis player, and he can serve the tennis ball at 40 miles 
per hour (64.4 kilometers per hour). He hits the ball during the serve 
at a height of 8.0 feet (2.44 meters) above the ground and an angle of 
5 degrees above the horizontal. He’s standing at the edge of the court, 
which is 39 feet (11.9 meters) from the net. The net is 3 feet (0.914 
meters) high at the center and the service line is 21 feet (6.4 meters) 
beyond the net. Do you think his ball will clear the net? In other words, 
you want to find the vertical height of the ball when it’s at the net.
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To solve the problem, follow these steps:

 1. Make tables of the quantities of motion at key moments in time.

  Tables 8-4 and 8-5 show my tables. I used the initial speed (vinitial) and 
the angle relative to the horizontal to calculate the component form of 
the initial velocity. In the vertical direction, vinitial,y = 58.7 ft/s (17.9 m/s) 
sin(5°) = 5.11 feet per second (1.56 meters per second) and in the hori-
zontal direction, vinitial = 58.7 ft/s (17.9 m/s) cos(5°) = 58.4 feet per second 
(17.8 meters per second).

Table 8-4 The Quantities Describing the Vertical  
 Motion of Mark’s Serve
Time(s) Position (ft) (m) Velocity 

(ft/s) (m/s)
Acceleration 
(ft/s2) (m/s2)

Comments

0 8.0 (2.44) 5.11 (1.56) –g Mark has just  
finished hitting the 
ball.

tmax ymax 0 –g The ball has reached 
its maximum vertical 
height.

tnet ynet vy,net –g The ball just clears 
the net — maybe.

Table 8-5 The Quantities Describing the Horizontal  
 Motion of Mark’s Serve
Time(s) Position (ft) (m) Velocity 

(ft/s) (m/s)
Acceleration 
(ft/s2) (m/s2)

Comments

0 0 58.4 (17.8) 0 Mark has just  
finished hitting the 
ball.

tmax xmax 58.4 (17.8) 0 The ball has reached 
its maximum vertical 
height.

tnet 39 (11.9) 58.4 (17.8) 0 The ball just clears 
the net.
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 2. Draw the graphs.

  Draw both a trajectory graph and a velocity versus time graph. Figure 8-7 
shows my trajectory graph with the ball leaving the racket, reaching a 
maximum height, and dropping over the net. Figure 8-8 shows my veloc-
ity versus time graph with both the horizontal velocity and the vertical 
velocity shown. Remember, the slope is equal to the acceleration, and 
the area under the curve equals the displacement.

 

Figure 8-7: 
The trajec-
tory of the 
tennis ball 

as it travels 
from Mark 
to the net.

 

vertical

θyinitial

ynet

ymax

horizontal
Xmax Xnet

 

Figure 8-8: 
The velocity 
versus time 
graph of the 

tennis ball 
as it travels 
from Mark 
to the net.

 

 3. Solve the problem by using the graphs and formulas.

  The formulas for constant acceleration and independent motion in each 
direction have time in all the equations except the work-energy theorem. 
In many projectile motion problems in biomechanics, you aren’t inter-
ested in the time, such as in this problem. If you eliminate the time from 
the formulas, they become



185 Chapter 8: Looking at Where Moving Objects Go –– Kinematics

  You want to find ynet, which is hidden in Δy. Looking at the tables, you 
notice that you know everything else except vy,net, which is your vy,final. 
In the list of equations, every equation has vy,final except the second to 
last one:

  The vertical height of the ball at the net is ynet = yinitial + Δy = 8.0 ft + (–3.77 
ft) = 4.23 feet (1.29 meters). The net is 3 feet high, so the tennis ball will 
clear the net by 1.23 feet (0.38 meters).

The angle of the hit in the serve is very important as is the vertical height at 
which the ball is hit. The higher the hit the lower the initial angle can be, so 
taller players don’t have to lob the ball as much as shorter players. Also, the 
angle the ball can be served at depends on the speed of the serve; the slower 
the serve, the larger the initial angle must be. But, the lower the initial angle 
the shorter the time of flight to the other court and the less time your oppo-
nent has to react to the serve. Professional tennis players can serve the ball 
at speeds up to 160 miles per hour (257 kilometers per hour).

Pouncing on prey — combining  
jumping and projectile motion
In projectile motion, there are two quantities that are usually of interest: the 
range (R) the projectile will travel, and the maximum height (H) the projectile 
will reach. Mathematically, the equations are
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These formulas are very useful if you don’t care about the time. Also, you 
may have noticed that the range formula doesn’t look the same as what’s 
usually found in a textbook. This formula allows for a cougar to leap out of a 
tree onto its prey; whereas the formula in the textbooks usually assumes no 
overall change in the vertical height — that is Δy = 0.

If you set Δy = 0, then the range formula changes to

You can use these formulas to study animal projectile motion.
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Making Your Blood Boil — 

The Physics of Fluids
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http://www.dummies.com/extras/biophysics


In this part . . .
 ✓ Become acquainted with the laws of fluids, some of which 

have been around since Archimedes shouted eureka, and how 
they’re applied in biophysics. 

 ✓ Discover why some objects float, how sap gets to the top of the 
tallest trees, how oxygen gets into the blood, and how some 
bugs can walk on water.

 ✓ Find about the ins and outs of Newtonian and non-Newtonian 
fluid, as well as when you need to consider viscosity or not. 

 ✓ Look at different aspects of the human body, such as how the 
body maintains a constant temperature, how the heart works, 
and how blood moves in the body.

 ✓ Grasp how molecules diffuse and are able to cross membranes, 
as well as the process by which the body metabolizes and 
eliminates molecules from the body. 

 ✓ Uncover how the human body conserves energy and the  
contribution of oxygen and food to supply energy to the body 
and where that energy is used.



Chapter 9

Understanding the Mechanics of 
Fluids and Cohesive Forces

In This Chapter 
▶ Comprehending pressure and fluids
▶ Focusing on the Archimedes principle
▶ Conserving energy and the amount of fluid
▶ Becoming more cohesive

M 
any situations in biophysics involve biological systems that are fluid 
and need something to contain them. For instance, take your morning 

cup of coffee. Could you drink it (and enjoy it) without a cup to contain it? 
Organisms need fluids for the transportation of nutrients and waste within 
the system (because solids aren’t very good at doing that).

This chapter discusses the forces and energy involved with the mechanics 
of fluids and their application to biophysics. Here I introduce the concepts of 
pressure, density, and Pascal’s principle; discuss Archimedes’ principle and 
the buoyant force; cover the conservation laws, so you can understand that 
what doesn’t change is just as important as what does change; and examine 
cohesive forces and some of their applications in biophysics.

Pushing On Fluids —  
Pressure and Density

The big difference between solids and fluids is solids don’t need a container 
to help the solid maintain its shape when under the influence of forces, 
whereas fluids need a container to maintain their shape or else they’ll deform 
under the influence of forces. Calculating the force on individual molecules in 
a fluid and studying the motion of each molecule individually is very difficult 
especially considering fluids can deform and change shape. 
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In many biophysical situations, it’s easier to discuss how many molecules 
you have in a given region of space, which is called density. Also, it’s easier 
to understand the biophysics if the average force placed on the molecules 
is considered instead of the force on each individual molecule. For example, 
when you shake hands with a friend, the force applied to each molecule 
doesn’t matter; what matters is the overall average force over the surface of 
the hand, which is called pressure. Your body is mostly water and biological 
organisms are mostly fluid, so understanding fluids is important to under-
standing the biophysics of biological systems.

In this section, you discover the concepts of pressure and density, which 
make it easier to analyze fluids. I also discuss how heavy air and fluids can 
weigh and what’s involved with your blood pressure.

Squeezing atoms together —  
density and pressure
In biophysics, density and pressure are two of the most important concepts. 
This is because biological organisms are mostly fluid and pressure is a mea-
sure of a fluid’s interaction with its surroundings. When people say “density,” 
they’re usually referring to mass density. But when speaking in biophysics, 
they should say “mass density” because there are many different densities, 
such as mass density, weight density, energy density, number density, and 
molar density . . . just to mention a few.

Mass density (ρm) is defined as the mass divided by the volume. Density tells 
you how much of the fluid has been squeezed together in that region of 
space. Mathematically, the relationship is as follows:

Specific gravity is defined as the density of the object divided by the density 
of water. This is a convenient method of measuring density because it’s a 
dimensionless quantity, which is the same in all systems of units.

 A useful property of fluids is the density of fluids in biological systems don’t 
change that much and can usually be treated as a constant. Treating the den-
sity as constant makes many problems in biophysics a lot easier to solve. For 
example, water at 32 degrees Fahrenheit (0 degrees Celsius) has a density of 
ρm = 1.94 slugs per cubic feet (1,000 kilograms per cubic meter) while at 212 
degrees Fahrenheit (100 degrees Celsius) water has a density of ρm = 1.86 slugs 
per cubic feet (958 kilograms per cubic meter), which is only a 4.2 percent 
change over the entire range of temperatures from freezing to boiling. This 
makes density a convenient quantity for some applications in biophysics.
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In biophysics, most things are fluids with approximately constant density. 
The next thing you need to know is how fluids interact with their surround-
ings. Force is the quantity used in physics to describe the interaction of an 
object with its surroundings. Force is a local quantity, but it’s more beneficial 
to discuss forces over a region, especially when dealing with fluids. Pressure 
is the magnitude of the normal force (the force perpendicular to the surface) 
divided by the surface area over which the force is applied. Mathematically, 
the equation looks like this:

The superscript (a) indicates that this is the absolute pressure. 

The forces acting on a fluid can be split into two types: 

 ✓ Body forces: A force (like gravity) that acts throughout the system.

 ✓ Surface forces: Contact forces between the fluid and the surroundings. 
Contact forces can be split into two types.

	 •	Tangential forces: The tangential forces are parallel to the surface 
like friction.

	 •	Normal forces: The normal force pushes into the fluid. The normal 
force is related to pressure.

You should be aware that many different units are used for pressure, and 
the type of unit used depends on the specific field of application. The more 
common units in everyday use and in scientific research are 1 pound per 
square inch (psi) = 144 pounds per square foot (lb/ft2) = 6,895 pascals (Pa) = 
0.06805 atmospheres = 0.06895 bars = 51.73 torrs = 51.73 millimeters of mer-
cury (mm Hg).

When pressure is applied to most fluids in biophysics, they won’t shrink, and 
they maintain a constant density. The fluid is said to be incompressible in 
that case. Humans are mostly water and water is approximately incompress-
ible, but it does compress a little under extremely high pressures such as 
in the deepest depths of Mariana Trench. At the bottom of Mariana Trench, 
6.833 miles (10.99 kilometers) below sea level, the density of water increases 
by only 5 percent with a hydrostatic pressure of 1,071 atmospheres (15,700 
pounds per square inch = 1.09 × 108 pascals)! I discuss hydrostatic pressure 
more in the next section.

Gases on the other hand are compressible so they obey Boyle’s law. Boyle’s 
law states that at constant temperature, the product of the absolute pressure 
and volume of a compressible gas (fluid) is constant. Mathematically it looks 
like this: 
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Weighing air and fluids —  
Pascal’s principle
Fluids interact with their surrounding through pressure, and it can go both 
ways. A fluid can exert a pressure on the surroundings and the surroundings 
can exert a pressure on the fluid. Pascal’s law states what happens when an 
external pressure is exerted on an incompressible fluid. The second part of 
this section flips things around and introduces the hydrostatic pressure, which 
is a measure of how much the weight of the fluid is pushing down.

Pascal’s law (principle) states that the pressure applied anywhere in an 
enclosed incompressible fluid is transmitted equally throughout the fluid. If 
the surroundings apply a pressure to a fluid, then the fluid will try to squeeze 
into the fluid on the other side of the pressure. But if the fluid is incompress-
ible, then it can’t get any closer, which means the neighboring fluid will try to 
move away and create a pressure on the fluid on the other side of this fluid. 
The fluid eventually transfers the pressure throughout the fluid because the 
molecules within the fluid push on the neighboring fluid with the same pressure. 

 When a person goes for an eye examination, they test for glaucoma, which is 
often caused by excessive pressure on the retina and optical nerve. Pascal’s 
law means that the pressure on the retina and optical nerve is the same as 
within the eye, so by measuring the pressure on the front of the eye they know 
what the pressure is on the nerve.

Pascal’s law deals with the surroundings applying a pressure on the fluid, 
now I look at the fluid applying a pressure on the surroundings. One of the 
forces on the earth is gravity, which gives everything weight, including fluids. 
Also, everything is immersed in fluid be it water or air. Therefore, if you 
change your vertical height, then you change the amount of fluid above you 
pushing down on your body.

The hydrostatic pressure is the change in pressure between two points in a 
column of fluid, and it’s equal to the density of the fluid times the accelera-
tion due to gravity times the change in vertical height. This is a measure 
of the change in the weight of the fluid pushing down. Mathematically, this 
looks like the following equation:

Most people don’t think about it, but the column of air stretching from space 
down to the surface of the earth is very heavy. The atmospheric pressure is 
Patm = 1 atmosphere = 14.7 pounds per square inch =1.013 × 105 pascals = 
1.013 bars = 760 torr.
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If you’re a swimmer, you’ll notice that the pressure squeezing on your body 
increases as you go deeper in the water. This is represented by the minus 
sign in the mathematical formula. Your body has the atmospheric pressure 
applied to it plus the weight of the water above pushing down on your body. 
A typical swimming pool in the diving section is 20 feet (6.1 meters) deep. At 
the bottom of the pool the hydrostatic pressure relative to the surface will be

The pressure on your body will be 1.6 times greater than at the surface.

Gauging blood pressure
When working with pressure, it’s always good practice to figure out if the 
data you have is gauge pressure or absolute pressure, and which one you 
need for your calculations. Here are their definitions:

 ✓ Absolute pressure (P(a)) is the total pressure exerted on fluid.

 ✓ Gauge pressure (P(g)= P(a) – Patm) is the relative pressure and it’s equal 
to the absolute pressure minus the atmospheric pressure. The atmo-
spheric pressure is all around you, so you usually think in terms of 
gauge pressure. For example, when you blow up a balloon, the pressure 
that expands the balloon is the gauge pressure.

The heart doesn’t pump blood at constant pressure, but, instead, it fluctu-
ates between a maximum and a minimum pressure. A sphygmomanometer 
measures that blood pressure. It consists of an inflatable pressure sleeve 
called a cuff that’s wrapped around a part of the body, which is at the same 
vertical elevation as the heart (don’t place it around the neck) because the 
blood pressure changes with vertical elevation. Attached to the cuff is a 
manometer that measures the gauge pressure in the cuff. The pressure in the 
cuff is increased until it causes the artery to collapse and prevents the blood 
from flowing through the cuff. The pressure in the cuff is slowly decreased 
and when the blood starts to squirt through the artery again, a measurement 
is taken from the manometer. This measurement is called the systolic pres-
sure, the maximum pressure. The pressure in the cuff is reduced further, and 
when the blood is flowing through the artery continuously, a second reading 
is taken called the diastolic pressure, the minimum pressure. 
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 Hospitals measure blood pressure in torr (1 torr = 1 millimeter of mercury 
(mm Hg)), and a normal reading for humans is 120 over 80 (120 torrs = 2.32 
pounds per square inch = 1.60 × 104 pascals and 80 torrs = 1.55 pounds per 
square inch = 1.07 × 104 pascals). Your blood pressure is considered okay if 
it’s in the range (100 to 140) over (65 to 90) with 120 over 80 being ideal.

Examining Why Things Float
This section is all about density and some of the important consequences 
of objects having different densities. The different densities allow you to 
image objects (for example, X-rays and ultrasound), float in hot-air balloons, 
explore shipwrecks in submarines, and other applications.

In this section, you discover Archimedes’ principle and the buoyant force. 
This is based on switching a fluid with a given density by an object with a 
different density. Also, I discuss some applications of the buoyant force and 
how you can calculate your body density. I show you how to calculate the 
weight capacity of a boat based on the buoyant force acting on it.

Floating in fluid — Archimedes’ principle 
and the buoyant force
Archimedes’ principle states any object, wholly or partially immersed in a 
fluid (or gas), has a force exerted on it by the fluid called the buoyant force. 
The magnitude of the buoyant force is equal to the weight of the displaced 
fluid and the direction is upwards against gravity. Archimedes also realized 
that the volume of the displaced fluid equals the volume occupied by the por-
tion of the object submerged in the fluid.

As an example, consider a crown that is supposed to be made of gold. You 
place the crown in water and measure the volume of displaced water. You 
then take a bar of gold (equal mass to the crown) and place it in the water 
and measure the volume of displaced water. You compare the volumes of 
displaced water, which are equal to the volumes of the objects placed in the 
water (remember the gold bar and the crown have the same mass):

If the crown was made of pure gold, it would have the same density as the 
gold bar, and therefore occupy the same volume as the gold bar. Gold has a 
mass density of 37.6 slugs per cubic foot (19,320 kilograms per cubic meter) 
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and silver has a mass density of 20.4 slugs per cubic foot (10,500 kilograms per 
cubic meter). If the crown were pure silver (painted gold), the volume of the 
crown would be 1.84 times larger than the gold bar.

As a supplement, Archimedes proposed that a floating object will displace its 
own weight of fluid. In the case of floating objects, their density must be less 
than the density of the fluid because the forces are being balanced (buoyant 
force = force of gravity (weight)). Mathematically, the relationship is

Note the ρ is the mass density and ρg is the weight density. 

If an object floats, it means its volume can’t fit into the volume of the dis-
placed fluid and the part that won’t fit sticks into the air above the fluid. The 
equation for floating objects can be rewritten as

If this ratio is greater than 1 instead of less than 1, then the object will sink.

 The buoyant force is always opposite to the effective weight (the effective 
weight equals the weight minus the net external force acting on the object) 
and not the gravitational force. Air produces a buoyant force, which is why 
hot air balloons and helium balloons float.

Suppose you and a friend are hired to go fishing on some lakes to test the fish 
for mercury poisoning. On the lake, the two of you have a flat-bottom boat 
that is 20 feet (6.10 meters) long and 2 feet wide (1.22 meters). The combined 
weight of the boat and the two of you is 500 pounds (227 kilogram mass); 
how deep does this boat sink into the water with both of you on board?

You can calculate how far into the water the boat sinks by using this ratio 
(and the volume (V) equals the height (h) times the area (A)):

The boat will sink 2.4 inches (6.1 centimeters) into the water.
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Measuring the density of the human body
The preceding section shows that density plays an important role in the 
interaction of objects with fluids, so here you can calculate the density of 
your body. I calculate the density of Peter’s body because I don’t know your 
dimensions. To calculate the density, you need to know your weight (or 
mass), and you can calculate your volume (or you can experimentally mea-
sure your volume). Peter’s weight is 225 pounds (1000 newtons) and his mass 
is 6.99 slugs (102 kilograms). You can determine your volume by following 
these steps and splitting the body into sections:

 1. Calculate the volume of a leg by assuming a cylindrical shape. 

  Peter’s leg is about 3 feet long (0.914 meter) and an average of 0.5 feet 
(0.152 meters) across. The volume of Peter’s leg is Vleg = π (0.25 ft)2 (3 ft) 
= 0.589 cubic feet (0.0167 cubic meters).

 2. Calculate the volume of your torso by assuming a box shape.

  Peter’s torso is about 2 feet (0.61 meters) long, 1.33 feet (0.405 meters) 
wide, and 1 foot (0.305 meters) deep. The volume of Peter’s torso is 
Vtorso = (2 ft) (1.33 ft) (1.00 ft) = 2.66 cubic feet (0.0753 cubic meters).

 3. Calculate the volume of an arm by assuming a cylindrical shape just 
like the leg. 

  Peter’s arm is about 2 feet long (0.61 meters) and an average of 0.35 feet 
(0.107 meters) across. The volume of Peter’s arm is Varm = π (0.175 ft)2 (2 
ft) = 0.192 cubic feet (5.45 × 10–3 cubic meters).

 4. Calculate the volume of the head by assuming a spherical shape. 

  Peter’s head has an average diameter of 7 inches. The volume of Peter’s 
head is Vhead = (4/3)π (3.5 in)3 = 0.104 cubic feet (2.94 × 10–3 cubic 
meters).

  Peter’s total volume is VPeter = 2 (0.589 ft3) + 2.66 ft3 + 2 (0.192 ft3) + 0.104 
ft3 = 4.33 cubic feet (0.123 cubic meters).

You can now calculate your density by taking your mass divided by the 
volume. In Peter’s case, his weight density is 52.0 pounds per cubic foot 
(8,130 newtons per cubic meter) and his mass density is 1.61 slugs per cubic 
foot (829 kilograms per cubic meter). Recall that water has a weight density 
of 62.5 pounds per cubic foot (9,810 newtons per cubic meter) or a mass 
density of 1.94 slugs per cubic foot (1,000 kilograms per cubic meter), so only 
about 83 percent of Peter’s body would be underwater while he’s floating. 
Your density should be close to Peter’s density.
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Solving Conservation Laws
Conservation laws are important in all areas of biophysics. Knowing what 
doesn’t change is as important as knowing what does change. The proper-
ties of the material differ, depending on what is conserved and what isn’t 
conserved. For example, blood is an incompressible fluid, so it has a constant 
density, whereas air is a compressible fluid, so its density can change.

This section covers some of the things in fluids that don’t change. It dis-
cusses the consequences of the mass of the fluid not changing as the fluid 
flows through restricted regions. You also look at systems with no dissipative 
forces; in other words, the mechanical energy doesn’t change. You finally see 
an application of Bernoulli’s equation when the fluid isn’t moving.

Grasping the continuity equation
A continuity equation is a mathematical expression that shows how a property 
doesn’t change even if things are in motion. For example, if I pour water into 
a sink with the drain open, then the amount of water flowing out the drain 
equals the amount I pour into the sink. In this section I look at a few proper-
ties of fluids that don’t change even though things are changing, like pouring 
water down the drain. To begin, an incompressible fluid has constant density 
that equals mass divided by volume. The property of constant density gives 
the first conservation law.

 The conservation of mass for an incompressible fluid states that the mass 
of the fluid can’t be destroyed or created, so the amount of fluid within 
a given volume doesn’t change and what flows in equals what flows out. 
Mathematically, this is represented by the continuity equation: ρ Q = constant. 

ρ is the mass density of the fluid, which is a constant for an incompressible 
fluid, so Q = constant. 

Q is called the flow rate. Q = A v is the rate at which the total fluid flows past 
some point. It’s equal to the speed (v) of the fluid times the cross-sectional 
area (A). When the flow rate (Q) is multiplied by the mass density (ρ), it gives 
the amount of mass of the fluid per unit of time flowing past a specific point.

If you go down to the river and watch the water flow, the water flows slowly 
where the river is wide and much faster where the river is narrow. This is 
because the flow rate is a constant and when the cross-sectional area (A) 
becomes small the speed must become large. The amount of fluid (mass) 
must flow at the same rate everywhere.
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Understanding Bernoulli’s equation
A fluid doesn’t move unless some pressure (force per unit area) does work 
on the fluid. Whenever you see a fluid moving, something has done work on 
the fluid. For example, in the case of water starting on a mountain and flow-
ing down to the ocean, gravity is doing the work. 

Remember the work-energy theorem, which states that the net work done 
on an object is equal to the change in the object’s kinetic energy. Bernoulli’s 
equation is the work-energy theorem for a fluid with a few reasonable 
assumptions.

Bernoulli’s equation is as follows: 

To understand the connection with the work-energy theorem, take into 
account the following points:

 ✓ The equation on the left side of the equality is the change in the fluid’s 
kinetic energy per unit volume. The kinetic energy of a fluid is

 ✓ The first set of terms on the right hand side of the equality are the work 
done per unit volume by gravity on the fluid. The work done by gravity is

 ✓ The last two terms on the right hand side of Bernoulli’s equation is the 
work done per unit volume by the applied pressure (force) acting on the 
fluid. The work done by external sources is

Bernoulli’s equation has a few assumptions:

 ✓ The fluid has a steady flow (steady state), which means the velocity 
doesn’t suddenly change at any given point in space. The velocity can 
be different at different points in space but not at the same point at dif-
ferent times.

 ✓ The fluid is incompressible so the density is a constant. 

 ✓ The fluid is nonviscous (no viscosity), which means there’s no friction 
between the fluid and objects (and barriers) it’s in contact with. Refer to 
Chapter 10 for more on nonviscous fluids.
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 ✓ The fluid is streamline and not turbulent. Streamline flow is also called 
laminar flow. This type of flow is very orderly and predictable where the 
fluid follows trajectories. For example, suppose water is flowing down 
a smooth channel at a slow speed, and I place a stick in the water. The 
water carries the stick down the channel. I then place a second stick in 
the water at the same location as the first stick. The two sticks follow 
the exact same path down the channel.

  Turbulent flow (turbulence) is chaotic motion and the path of the flow 
can’t be predicted. Suppose I place my two sticks in a creek that has 
rocks sticking out of the water and waterfalls as well. The swirling 
motion and the mixing of the streamlines cause the two sticks to follow 
different paths even though they start at the same position but at differ-
ent times.

Applying Bernoulli’s equation  
to static fluids
Bernoulli’s equation is very useful in many biophysical situations. One of 
those situations is taking blood pressure.

Consider this example: Olivia is 6 feet (1.83 meters) tall, and her systolic 
pressure is 130 torrs (= 2.51 pounds per square inch = 1.73 × 104 pascals). 
What’s the maximum blood pressure in her feet? In order for you to answer 
this question, you need a few extra pieces of biophysical information:

 ✓ Olivia’s heart is approximately 4.75 feet (1.45 meters) above her feet.

 ✓ The mass density of whole blood is 6 percent greater than pure water, 
2.0554 slugs per cubic foot (1059.5 kilograms per cubic meter). The 
weight density of whole blood is 66.2 pounds per cubic foot (1.04 × 104 
newtons per cubic meter).

 ✓ The viscosity (friction) of blood in the body is small and can be ignored 
for this calculation. This means you can use Bernoulli’s equation. 

 ✓ The kinetic energy of the blood is approximately the same and small 
throughout the body.

You can now apply Bernoulli’s equation to solve the problem:

The pressure in the feet of 4.69 pounds per square inch (= 243 torrs = 3.24 × 
104 pascals) is almost double the pressure at the heart.
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Sticking Together — Cohesive Forces
You may have noticed that pure solids don’t make good biological organisms 
because nothing moves and pure gases don’t make good biological organ-
isms because they fly apart. Fluids are the perfect compromise by sticking 
together but still being able to move around. Fluids are fundamental to all 
biological organisms and are very important in biophysics. This section 
looks at the forces involved with fluids. The cohesive force keeps the fluid 
from flying apart. It’s the collective attraction between the molecules making 
up the fluid. The molecules like being part of the collective because of the 
cohesive force, and this has several consequences. I also tell you about 
the adhesion or the adhesive force, which is the same as the cohesive force 
except between molecules of different types. I talk about these forces and the 
boundary of the fluid. These are the molecules living on the edge. You also 
discover the surface in contact with flat surfaces and inside tubes, Laplace’s 
law, and membranes.

Fighting surface tension
If you’ve ever looked at the surface of a pond, you’ve noticed bugs sitting on 
the surface of the water without sinking or even breaking the surface. The 
molecules stick together because of the cohesive force, so when you get to 
the molecules at the surface, they have a cohesive force only in one direc-
tion. This effective force toward the rest of the fluid produces a tension in the 
surface called the surface tension.

The surface tension (γ) is defined as the amount of work required to change 
the surface area of a fluid divided by the amount of change in the surface 
area. Work is equal to the applied force times the displacement, so the sur-
face tension can be defined as the applied force per unit length: 

 In the case of bubbles and membranes with two surfaces, γ needs to have a 
factor of two in front of it.

 Water striders (insects that walk on water) spread their weight over the 
surface of the water. The bugs are covered in hydrophobic microhairs to 
keep their bodies dry and not gain weight from water clinging to their 
bodies. The legs don’t break the surface and only cause small indenta-
tions in the water as the surface tension holds them up. You notice a 
water strider has six legs, and the length of the leg in contact with the 
water is L = 0.25 inches (6.4 millimeters) and the width of each leg is in 
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contact with the water is w = 0.060 inches (1.5 millimeters). The water is 
indented to a depth of d = 0.020 inches (0.51 millimeters) by the bug. 
Figure 9-1 shows the indentation looking down the length of the leg so it’s 
easier to see d and w. I haven’t shown the bug’s leg and foot, but it’s 
what’s causing the indentation. Figure 9-1 also shows the surface tension 
force and the weight of the bug divided by six. I have indicated the radius 
of curvature, the angle of the arc, and the arclength in Figure 9-1. These 
quantities are needed to calculate the area of the indentation. Calculate 
the weight of the water strider.

 

Figure 9-1: 
The indenta-

tion of the 
water by a 

water strid-
er’s leg.

 

You can calculate the weight of the bug by following these steps:

 1. Understand the biophysics of the problem.

  You want to figure out the bug’s weight. The bug is standing on the 
water and not moving so the net force acting on the bug is zero. 
Therefore, the surface tension must provide sufficient force to equal 
the weight of the bug. If you find the force of surface tension, then you’ll 
know the weight of the bug.

  To find the force of surface tension, it equals the surface tension times 
the change in the surface area. You now know what to find.

 2. Draw a figure.

  Visualizing the problem can really help. Figure 9-1 shows my figure of 
the water being bent by the bug’s leg. It also shows the forces.

 3. Finding the numbers.

  You can look up the number for the surface tension. You will find the 
surface tension of water at room temperature is 0.00499 pounds per foot 
(0.0728 newtons per meter).

  The lake is originally flat, so the old surface area of the water is a  
rectangle:

  Aold = Lw
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  The bug pushes the water downward so the new surface area of the 
water is part of a cylinder:

  Anew = Ls = Lrθ

  I ignore the areas at the ends of the cylinders because they’re very small, 
but if you want to include them, you have to add an extra [r2 θ – w (r – d)].

  In the formula for area, you need to use radians and not degrees.

  You now have all the numbers you need.

 4. Find the numbers to calculate the change in the area.

  You can calculate the radius of curvature and the angle by using the 
geometry in Figure 9-1. They are

  From this you can see that the radius of curvature is r = 0.0325 inches 
(0.826 millimeters) and the angle is θ = 135 degrees = 2.35 radians. 

 5. Substitute everything into the surface tension formula and solve for 
the weight.

  You have to remember several formulas to get the answer. The  
first formula is the force of the weight of the bug divided by 6, the 
second formula is the force times displacement equals the work done, 
the third formula is the work done on a fluid’s surface is equal to the 
surface tension times the change in the area, and the fourth formula is 
the change in the area that is the new area minus the old area given in 
the third step. You can now put all four formulas together to solve the 
problem:

You find that the weight of this water strider is 5.11 × 10–4 pounds (2.27 × 10–3 
newtons) or it has a mass of 1.59 × 10–5 slugs (2.32 × 10–4 kilograms).
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Making contact with capillarity  
and contact angles
Have ever looked at the water in your drinking glass and wondered why the 
surface looks different and is curved? The previous section discusses the 
cohesive force as the bonding between the molecules within the fluid. These 
molecules also bind with molecules within other materials such as the drink-
ing glass (container). The meniscus is the name of the curvature of the upper 
surface of a fluid near the edge of the container or surface of an object. This 
is caused by the surface tension and a competition between the cohesion 
within the fluid and the adhesion of the fluid to the container or object.

Again, take a look at the water in your drinking glass (not plastic). You’ll 
notice the surface of the water in contact with the glass is higher than the 
surface of the water in the middle; it’s concave. This means the adhesive 
force between glass and water is strong, and it pulls the water up the glass 
walls. Some fluids and materials bend this way whereas others bend the 
other way. The contact angle determines this distinction.

Contact angle θ is defined as the angle from the container’s surface inside the 
fluid to the meniscus. A concave meniscus, like the water in your glass, has an 
angle between 0 degrees and 90 degrees. The fluid is said to “wet” the glass. 
On the other hand, a bead of water sitting on a waxed car hood has a convex 
meniscus and has a contact angle between 90 degrees and 180 degrees. The 
water in this case does “not wet” the car.

You may probably be thinking that this attraction (adhesive force) that pulls 
water up the glass can be used to our advantage. You’re correct. Capillarity 
or capillary action is the rise or fall of a fluid in a narrow tube as the tube is 
stuck into a large container of the fluid. 

If you stick a narrow straw into your glass of water, it will rise up the straw 
higher than the water in the surrounding glass; whereas if you stick your 
straw into mercury, the meniscus is convex and the mercury inside the tube 
will be lower than the mercury surrounding the straw on the outside.

The height of the capillary rise is calculated by the following equation:

The parts of the equation stand for the following:

 ✓ h is the height of the center of the meniscus.

 ✓ γ is the surface tension of the fluid.
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 ✓ θ is the contact angle.

 ✓ ρ is the density of the fluid.

 ✓ g is the acceleration due to gravity.

 ✓ R is the radius of your tube.

You see from this formula fluids that “wet” a surface rise up the capillary 
because the contact angle is between 0 degrees and 90 degrees, which has a 
positive cosine, whereas fluids that don’t wet a surface drop down a capillary 
because the contact angle is between 90 degrees and 180 degrees, which has 
a negative cosine.

 To derive this equation, you have to balance the vertical component of the 
surface tension at the container (Fvertical =Fapplied cos(θ) = γ L cos(θ) = γ 2πR 
cos(θ)) with the weight of the fluid it’s holding above the surrounding fluid  
(m g = ρ π  R2 h g). L is the circumference of the tube, R is the radius of the 
tube, m is the mass of the fluid lifted above the flat surface, and h is the height 
it was lifted. 

In the formula you may have noticed that the narrower the tube, the higher 
the fluid will go up the tube. You can calculate the height the water rises 
in your drinking glass or you can calculate the capillary rise of sap in your 
friend’s roses instead.

Blocking fluids with Laplace’s law
Fluids need to be contained and biological systems do so with membranes. 
Some membranes are solid barriers (such as the skin of your water balloon), 
whereas others are semi-permeable, such as cell walls. 

Suppose the membrane is solid to the fluid. You can think of the balloon 
filled with water or air. The pressure of the fluid inside the balloon is greater 
than the outside pressure and the balloon expands until the force produced 
by the surface tension in the balloon matches the force produced by the dif-
ference in the pressures. This example illustrates Laplace’s law.

Laplace’s law states the internal pressure inside a membrane is

Here, r1 and r2 are the principal radii of curvature of the membrane, γ is the 
surface tension, and Pout is the pressure on the outside of the membrane. 
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If I go back to the balloon, the surface tension is the force in your balloon’s 
skin trying to bring it back to its original shape. Also, you know the pressures 
within and outside the balloon are the forces exerted by the fluids on the bal-
loon wall divided by the surface area of the balloon. A balloon has only one 
radius, so r1 = r2 = r. An example of something with two radii is an egg, which 
has a short radius and a long radius.

A few special cases are

 ✓ A spherical membrane or a solid ball of fluid: r1 = r2 = r, the radius of 
the sphere. For the solid ball of fluid, the surface tension and the exter-
nal pressure are squeezing the drop, and the force countering it is the 
outward force of the internal molecules, preventing the surface mol-
ecules from getting closer to the center.

 ✓ A soap bubble with two surfaces: γ needs to have an extra factor of two 
in front of it.

 ✓ A capillary tube: r1 = r2 = r, is the radius of curvature of the meniscus, 
which is equal to R/cos(θ), the radius of the tube divided by the cosine 
of the contact angle.

 ✓ A cylindrical membrane: r1 = r, the radius of the cylinder. r2 = ∞ 
because the wall of the cylinder doesn’t curve or bend.

 Laplace’s law is also known as the Young-Laplace equation. I call it Laplace’s 
law so there’s no confusion with Young’s equation and Laplace’s equation, 
which are completely different.

Sneaking oxygen into the body
One of the most interesting devices in humans is the lungs, where the body 
allows gases to pass between the air and the blood. The role of the lungs is 
to exchange oxygen molecules with other gas molecules in the blood, mostly 
carbon dioxide. In this section, I discuss the application of Laplace’s law to 
the lungs, but some general biophysical information is needed:

 ✓ The smallest blood vessels are called capillaries with a diameter of 5 
microns. They connect the arterioles to the venules.

 ✓ The capillaries in the lungs are right beside the gas and the only thing 
preventing the blood from leaking into the lungs or the gas from forming 
air bubbles in the blood is a membrane two cells thick, plus a “basement 
membrane” between the two cells that is less than a micron thick. This 
membrane is permeable to the gas molecules but not to the cells in the 
blood.
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 ✓ The alveoli are small air sacs (cavities) that can be approximated as 
spheres. The pressure inside the alveoli is Pa

(a).

 ✓ Surrounding the lungs is the fluid in the pleural cavity, which has a  
pressure Pp

(a).

 ✓ The membrane inside the alveoli is covered with a liquid containing sur-
factant, which is a lipoprotein.

The body covers your lungs with surfactant because in your lungs, the mem-
brane is the same as a balloon, and it would be easy to either rupture your 
lungs if you inhaled too much or cause a lung to collapse if you exhaled too 
much air. The surfactant is nature’s answer to this problem. These long chain 
lipoproteins resist the expansion of the alveoli during inhalation by increas-
ing the surface tension during expansion. During exhalation the alveoli 
contract, compressing the surfactant together and decreasing the surface 
tension so the alveoli don’t collapse. 

A more technical explanation begins with Laplace’s law for a sphere, namely

From Laplace’s law: If r is small then a large pressure difference is needed 
to overcome the surface tension in the balloon, but for a large radius, r, the 
pressure difference doesn’t need to be as large. (This is assuming the surface 
tension is a constant.)

The importance of the surfactant can’t be overstated, without it animals 
would be in trouble. You should try this problem assuming no surfactant: 
Without the surfactant, the membrane has a wall tension of 0.0034 pounds 
per foot (0.05 newtons per meter). During an exhalation the gauge pressure 
of the air within the alveoli is –8 pounds per square foot (–383 pascals = 
–0.056 psi), and the gauge pressure of the pleural cavity is –12 pounds per 
square foot (–575 pascals = –0.083 psi). The radius of the alveoli is 1.75 × 10–4 
feet (5.3 × 10–5 m). What’s the percentage of the surface (wall) tension in the 
alveoli compared to the wall tension without the surfactant?

You can use Laplace’s law to find the wall (surface) tension and then the  
percentage:

I obtain a value of γ = 3.5 × 10–4 pounds per foot (5.09 × 10–3 newtons per 
meter), which is only 10.2 percent of the membrane’s wall tension. The 
reduction in the wall tension by 90 percent is because of the surfactant, 
which prevents the lung from collapsing during an exhalation.
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Looking into negative pressure  
in water columns
How do trees get so tall? The top of the tree must receive water and nutrients 
through the xylem, which is achieved through negative pressure. A compres-
sive force (compression) produces a positive pressure on a fluid as it tries to 
squeeze the fluid together, but a tensile force (tension) produces a negative 
pressure on a fluid as it tries to pull the fluid apart.

To understand how to produce a negative pressure, you can perform a bio-
physics experiment. Consider a capillary with water in it. Stick a plunger 
(piston) down the top of the capillary and remove all the gas so the water is 
in contact with every surface. Now slowly pull the plunger (piston) upward 
and measure the force. The adhesive force between the water and the 
plunger pulls the water upward while the cohesive force tries to prevent the 
water from being ripped apart. You should be able to measure a downward 
force on the plunger as you try to stretch the water. Negative pressures as 
large as –635,000 pounds per square foot (–3.04 × 107 pascals) have been 
measured for water! This is an absolutely huge number.

The Pseudotsuga menziesii (Douglas Fir) and Sequoia sempervirens (Redwood) 
trees along the Pacific Coast of North America can reach heights of 325 feet 
(100 meters) to 350 feet (110 meters). What negative pressure is needed for a 
400-foot (122-meter) tree?

To solve this problem, use Bernoulli’s equation:

I can help you figure out what the values are for each of the quantities.

 ✓ The sap in the xylem is mostly water so you can use the density of 
water. The mass density of water is 1.94 slugs per cubic foot (1,000 kilo-
grams per cubic meter).

 ✓ You can assume the sap isn’t moving so the speed is zero.

 ✓ g is the acceleration due to gravity of 32.2 feet per square second (9.81 
meters per square second).

 ✓ The vertical change in height is 400 feet (122 meter).

 ✓ You can assume the pressure at ground level is equal to the atmo-
spheric pressure, 2,117 pounds per square foot (1.013 × 105 pascals).



208 Part III: Making Your Blood Boil — The Physics of Fluids 

You are now ready to solve the problem. I rearrange the formula to isolate for 
the pressure: 

The negative pressure at the leaf is –22,900 pounds per square foot (–1.10 ×  
106 pascals), which is only 3.6 percent of the maximum negative pressure 
measured experimentally for water in the piston. This is a reasonable method 
for getting sap to the top of the tallest trees on the Earth.

You’re probably thinking that negative pressure is good in a lab, but how 
does a tree produce negative pressure? The negative pressure is caused by 
the process called transpiration, which is basically the tree sweating. The 
xylems travel from the roots up into the tree’s leaves, and the sap diffuses 
amongst the cells in the leaves. The leaves have stomata (pores), which the 
guard cells close at night and open during the day. When the stomata are 
open, the water leaks from the leaves and evaporates creating a negative 
pressure within the leaves. Current estimates place the negative pressure 
within the leaves at the same order of magnitude as what you calculated for 
the 400-foot tall tree.



Chapter 10

Going with the Fluid Flow —  
Fluid Dynamics

In This Chapter 
▶ Distinguishing different fluids
▶ Staying in the air
▶ Fighting the viscosity
▶ Spinning in a centrifuge

F 
luid dynamics is the study of flowing fluids. All liquids and gases are con-
sidered fluids, so fluid dynamics plays an important role in many areas 

of biophysics. An understanding of fluid dynamics is particularly important 
in the study of blood flow in the body and in airflow in the lungs, the flight of 
birds, weather patterns in meteorology, and environmental science. 

All fluids have internal friction between the molecules and also friction with 
the boundaries containing the fluid. Friction is the force that resists motion 
and arises from the electromagnetic force between the molecules of the fluid 
and between the molecules of the fluid with the atoms and molecules form-
ing the container. The frictional force within a fluid is called viscosity. (Think 
of maple syrup, which has a high viscosity compared to water, which has a 
low viscosity.) This chapter focuses on two situations: nonviscous fluids and 
viscous fluids. 

Ignoring Friction Nonviscous Fluids
Nonviscous fluids (also known as inviscid fluids) have no friction. This section 
is about fluids where external forces are more dominant than the viscosity, 
so the fluid can be treated as nonviscous. Many different situations in bio-
physics allow you to ignore the viscosity of the fluid; such as air flow when 
the boundaries are not important. Gases for the most part can be treated as 
nonviscous fluids. The bottom line: The following sections examine biological 
systems where you can’t ignore friction.
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Conserving energy with  
Bernoulli’s equation
Bernoulli’s equation is the work-energy theorem (conservation of energy) for 
fluids under a few reasonable assumptions. Here I apply Bernoulli’s equation 
to dynamic (moving) nonviscous (frictionless) fluids. The work-energy theorem 
states that the change in the kinetic energy is equal to the net work done by 
external forces acting on the system. In addition to Bernoulli’s equation, the 
fluid is assumed to have no sources or sinks, so the total mass of the fluid 
doesn’t change, which is called conservation of mass. 

These two important laws can be represented mathematically. The conser-
vation of mass equation depends on if the fluid is compressible (like air) or 
incompressible (like water under reasonable pressures). The three important 
equations for nonviscous fluids are as follows. Check out Chapter 9 for more 
information.

 ✓ Bernoulli’s equation: It states that the kinetic energy of the fluid plus 
the gravitational potential energy plus the pressure acting on the fluid is 
a constant. This equation reads as follows:

  It shows that the pressure drops the faster the fluid flows or the higher 
its vertical elevation. The initial pressure minus the final pressure is the 
work done per unit volume by applied forces on the fluid. The change 
in the vertical height is the work done by gravity on the fluid per unit 
volume, where ρ is the mass density of the fluid, g is the acceleration 
due to gravity constant = 32.2 feet per second squared = 9.81 meters per 
second squared, and y is the vertical position of the fluid. The difference 
of the terms with the speed squared is the change in the kinetic energy 
per unit volume, where v is the speed of the fluid.

 ✓ Conservation of the total flow rate: This is the conservation of mass for 
an incompressible fluid.

  The conservation of the total flow rate, Q, is a consequence of the fluid 
being incompressible combined with conservation of mass, ρ = constant, 
so the amount of fluid flowing into a region must equal the amount of 
fluid flowing out of a region.

 ✓ Continuity equation: It generalizes the conservation of total flow to con-
servation of mass flow when the fluid is compressible (ρ isn’t a constant):
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You can apply these equations to solve many problems in biophysics. For 
example, a person in environmental science can find these equations useful 
in planning an irrigation system. Go ahead and work this problem.

 Suppose you’re renting a room in a house with several other renters. 
You’re getting tired of the shower wars and most of the other renters are 
night owl students, so you decide to have your shower at 5 a.m. when no 
one else is using water. Your shower is on the top floor, which is 30 feet 
(9.14 meters) above where the water comes into the house. Now that you 
have the water to yourself, what is the speed of the water coming out of 
the showerhead?

To figure out the problem, follow these steps:

 1. Determine the appropriate physical law(s) to use.

  Here you need Bernoulli’s equation because you want to find the speed 
of the water. The water has to rise vertically up through the house. Hint: 
The water has to do work against gravity to go up, which can remind 
you of the work-energy theorem (or conservation of energy).

  You need the conservation of the total flow rate: Bernoulli’s equa-
tion has two different speeds, so you need a relationship between the 
speeds. Water is approximately incompressible at atmospheric pres-
sures, so you need the conservation of the total flow rate.

 2. Find the numbers needed in the conservation of the total flow rate.

  A typical water pipe coming into a house has a diameter of 1 inch (2.54 
centimeter).

  The diameter of a typical pipe in the showerhead is 0.5 inch (1.27 
centimeters).

  The pipes are cylindrical, so the cross-sectional area is A = π r2.

 3. Calculate the ratio of speed of the water coming into the house 
divided by the speed at the showerhead:

  You can now use the conservation of the total flow rate:

 4. Find the numbers needed for Bernoulli’s equation.

  Pressure (in): The typical pressure of water entering a house is 
40 psi (40 pounds per square inch, which equals 5,760 pounds per 
square foot or 2.76 × 105 pascals).
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  Pressure (shower): The water coming out of the shower will be at 
atmospheric pressure 14.7 pounds per square inch = 2,117 pounds 
per square foot (1.013 × 105 pascals). 

  The change in the vertical height of the fluid (water) is 30 feet (9.14 
meters).

  The mass density of the fluid (water) is ρ = 1.94 slugs per cubic 
foot (1,000 kilograms per cubic meter). 

 5. Solve Bernoulli’s equation for the speed.

  You have all the numbers except the speed of the water coming out 
of the shower, so you can solve by substituting the numbers into 
Bernoulli’s equation:

  You’re very happy that you have hot water and more than a trickle of 
water coming out of the shower.

Flowing air — wind, birds,  
planes, and baseball
Bernoulli’s equation shows that the pressure of a gas decreases as the speed 
increases. Biophysicists in some fields such as environmental science need 
to keep this under consideration. This property can cause dangers such as 
during hurricanes and tornados because of the risk of windows being blown 
out. Suppose you have a barrier with an area A separating the flowing fluid 
(gas or liquid). The force applied to the barrier by the fluid is

During your Saturday night biophysics party, you decide to test Bernoulli’s 
equation. You take two pieces of paper and hold one sheet in each and hand. 
You then hold them up to your mouth and blow between the two sheets of 
paper. The result is that the two pieces of paper move together. Bernoulli’s 
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equation tells you that the faster the fluid (liquid or gas) is moving, the lower 
its pressure. In the case of the two pieces of paper, the air is moving faster 
between the sheets of paper and has a lower pressure, so the higher air pres-
sure on the outside pushes the paper together. You can estimate how fast 
you’re blowing the air by making a few reasonable assumptions. Go ahead 
and try during your next biophysics party.

 Viscous fluids have an effect in sports. Bernoulli’s equation isn’t the whole 
story in many ball sports when the spin of the ball is important. An important 
effect is known as the magnus effect. All normal fluids including air are viscous 
fluids. (Remember, viscosity means the fluid has frictional forces.) Normally, 
air can be treated as a nonviscous fluid but when it’s in contact with a solid 
object, it forms a small boundary layer (a layer of air that is stationary relative 
to the object). When the object is spinning, the air in contact with the object 
wants to spin with the object, which causes the speed of the air on the oppo-
site sides of the ball to change, creating a difference in the pressures on the 
ball and hence a force to the side.

For example, in baseball the pitcher can put a spin on the ball. The faster the 
spin, the more it will curve. The side of the ball spinning toward the batter 
is moving through the air faster than the other side and tries to drag the 
air backwards causing a higher air pressure on that side of the ball, which 
causes the ball to curve in the opposite direction. A riser is a fastball with 
backspin. The top of the baseball is spinning away from the batter, causing 
the air to be dragged over the top of the ball, which reduces the acceleration 
in the vertical direction so the ball doesn’t drop as fast as you expect. (No, it 
doesn’t actually move upwards.)

 Be careful when applying Bernoulli’s equation to fluid (liquid or gas) flows. 
You can run into problems if the kinetic energy of the fluid isn’t obvious. 
Bernoulli’s equation doesn’t work for planes and birds or at least it isn’t the 
complete story. To understand, look at Figure 10-1, which shows the air flow-
ing around a wing. This figure also shows the four forces acting on the plane 
and its wings: the thrust, the lift, the drag, and weight. The angle of attack in 
this figure is θ. (When a plane flies through the air, the wing doesn’t line up 
with the airflow, but it makes an angle called the angle of attack.) Normally 
the angle of attack is small to reduce the force of drag. A clue that Bernoulli’s 
equation isn’t the whole story comes from the fact that it doesn’t matter if the 
thick part of a wing is at the front, center, or back of the wing, only that the 
speed vtop is different to vbottom. In reality though, you need the thick part of the 
wing at the front to create the lift necessary to fly.
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Figure 10-1: 
The airflow 

around a 
plane wing.

 

You are probably thinking, why does Bernoulli’s equation not work? The 
problem is in the assumptions. I have implicitly assumed in Figure 10-1 that 
the speed of the air changes as soon as it’s in contact with the wing. Why 
can’t ? There are no giant lips blowing the air above the wing 
nor is the wing spinning like a baseball creating different speeds.

To understand how a plane or bird stays in the air, remember Newton’s third 
law of motion — the law of action and reaction. If an object creates a force 
on a second object, then the second object creates a force on the first object 
that is equal in magnitude but in the opposite direction. The air striking the 
wing is forced downwards and there is an overall change in the momentum 
of the air downwards; the reaction force on the wing is pushing the wing 
upwards and creating an overall lift to the wing. It’s the changing of the air’s 
momentum that generates the lift force on the wing.

Regulating temperature in warm-blooded 
animals — conservation of heat energy
Heat is a form of energy, and it isn’t usually thought of as a fluid. However, 
heat does flow from hot regions to cold regions, and warm-blooded animals 
are hot. The human body is always creating heat, so it’s continuously get-
ting rid of heat in order to maintain a constant temperature. To maintain a 
constant temperature, the body obeys conservation of heat energy; the heat 
flowing from the body equals the heat being created by the body.

Before I can introduce the ways in which the body expels heat, let me explain 
what all these terms mean: 
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 ✓ Heat energy: It’s one of the five fundamental types of energy. It’s  
associated with the disordered motion of the molecules and atoms 
within an object. Alternatively, heat is the amount of energy entering (or 
leaving) an object when it’s brought into contact with another object 
that is at a different temperature. Common sets of units used for energy 
when dealing with heat energy and food energy are 1 Calorie (food  
calorie = Cal) = 1,000 calorie (energy calorie = cal) = 3,086 foot pound  
(ft lb) = 4,184 joules (J). Note two different types of calories exist.

 ✓ Temperature: It’s a measure of the heat energy per particle. The tem-
perature of an object is proportional to the average kinetic energy of the 
atoms and molecules within the object.

 ✓ Temperature and heat: An object’s heat energy and temperature are 
connected through the formula: ΔQTOTAL = m c ΔT. In this formula, 
ΔQTOTAL is the change in an object’s heat energy, m is the mass of the 
object, c is the specific heat capacity of the object, and ΔT is the change 
in temperature. T is measured in kelvin (0 kelvin = –459.67 degrees 
Fahrenheit = –273.15 degrees Celsius), which is the absolute tempera-
ture scale. 0 kelvin means there is no heat energy, and the specific heat 
capacity is a property of the material. Different types of material require 
a different amount of heat energy to change the temperature by 1 kelvin. 
Specific heat capacity is a measure of how hard it is to heat a material. 

  The mass times the specific heat capacity is equal to the heat capacity, 
which you may sometimes see in the books. The heat capacity depends 
on both the size of the object and the material the object is made of.

 ✓ Different temperature scales: They are as follows:

  X kelvin = Y degrees Celsius + 273.15

  Y degrees Celsius = X kelvin – 273.15

  X kelvin = 5 (Z degrees Fahrenheit)/9 + 255.37

  Z degrees Fahrenheit = 9(X kelvin)/5 – 459.67

  Y degrees Celsius = 5 (Z degrees Fahrenheit)/9 – 17.78

  Z degrees Fahrenheit = 9(Y degrees Celsius)/5 + 32

 ✓ Conservation of heat energy within a warm-blooded animal: Warm-
blooded animals maintain a constant body temperature, which means 
ΔT = 0. The heat-temperature relation above means that the change in 
the total heat energy within the body is ΔQTOTAL = 0. Therefore, to main-
tain a constant temperature in the body, the body relies on the conserva-
tion of heat energy (constant total heat energy), which means the rate 
that heat is lost must equal the rate that heat is produced. The math-
ematical representation of conservation of heat energy is:

  Hm = HHC + Hcon + Hrad + Hl + Hs
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  Here Hm is the rate heat is generated by the body through metabolism 
of the food, HHC is the rate heat is lost by the body through heat conduc-
tion, Hcon is the rate heat is lost by the body through convection, Hrad 
is the rate heat is lost by the body through electromagnetic radiation, 
Hl is the rate heat is lost by the body through evaporation of moisture 
in the lungs, and Hs is the rate heat is lost by the body through sweating.

 The brain’s hypothalamus is the body’s thermostat and maintains a constant 
temperature by measuring the blood’s temperature. Flesh has a low thermal 
conductivity and is a good insulator, so the body controls the amount of 
blood flowing to the skin’s surface to help regulate the rate of heat lost. The 
limbs and skin are usually several degrees cooler than the core, depending on 
the air temperature.

Chapter 11 discusses in detail the metabolism of food within the human body 
and the fact half of the initial energy absorbed is converted directly into heat. 
Eventually, almost all the energy becomes heat energy with very little energy 
used in doing work on the surroundings. Therefore, in the following sections 
I take a closer look at the three of the five methods how the body can lose 
heat. 

Flowing from hot to cold — heat conduction
Heat conduction is the rate at which heat flows from hot regions to cold 
regions. The formula is as follows:

HHC is the heat flow rate by conduction and is a measure of how fast the heat 
is flowing from the hot region to the cold region, kT is the thermal conductiv-
ity, A is the cross-sectional area that the heat is flowing through. The length 
L is the distance from the hot region to the cold region. (Note: ΔQT is the 
change in the heat energy and Δt is the elapsed time.)

For example, think of a window in your home on a hot summer day. The out-
side air is very hot and the air inside your home is cool. A is the size of the 
window and L is the thickness of your window. Air is an excellent thermal 
insulator, which is why high quality windows are double or triple paned. 
The air pockets between the panes slow the flow of heat. Skin is also a good 
thermal insulator, whereas metals are very bad thermal insulators. The ther-
mal conductivity of air is kT = 0.0054 pound per (second kelvin) (0.024 watts 
per (meter kelvin)) and for muscle and fat it is kT = 0.045 pound per (second 
kelvin) (0.2 watts per (meter kelvin)).
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Creating currents with heat convection
Hcon is the heat flow rate by convection and is a measure of how fast a hot 
surface in contact with a cool fluid will cool due to convection of the fluid. 
The formula associated with convection is

Hcon = qT A (Thot – Tcold)

As the fluid close to the surface heats, it moves away from the hot surface 
and is replaced by cooler fluid. This cooler fluid heats, and it moves away 
repeating the cycle. qT is the convective heat transfer constant, and A is the 
area of the surface. The Tcold is the fluid’s temperature far from the hot sur-
face, which has a temperature of Thot. 

Many apartment heaters work this way. The radiator heats the air in one part 
of a room. The air then rises to the ceiling and flows to the other side of the 
room, down the far wall, and back to the radiator across the floor. The con-
vective heat transfer constant for a naked human is qT = 0.49 pound per (foot 
second kelvin) (7.1 watts per (square meter kelvin)).

Glowing with heat through electromagnetic radiation — Stefan’s law
Stefan’s law is the rate at which heat energy is converted into electromag-
netic radiation, which is then emitted from the body. The mathematical for-
mula for Stefan’s law is

Hrad is the heat flow rate by electromagnetic radiation being emitted by the 
body minus the heat flow rate into the body by absorption of electromag-
netic radiation. Hout is the heat flow rate out of the body and is a measure of 
how fast heat is leaving the body through electromagnetic radiation. Hin is 
the heat flow rate into the body and is a measure of how fast heat is entering 
the body through electromagnetic radiation. eR is the emissivity of the body 
and is a measure of how much of that type of radiation can enter or leave the 
body. σS is Stefan’s constant. (Stefan’s constant is the number σS = 3.89 × 10–9 
pound per [second foot kelvin to the fourth power] = 5.67 × 10–8 watts per 
[square meter kelvin to the fourth power].) A is the surface area of the body 
that the radiation is coming out of. Tsurface is the surface temperature of the 
body and Toutside is the temperature of the surroundings.

Objects at a nonzero kelvin temperature emit and absorb electromagnetic 
radiation. The heat energy is being converted into electromagnetic radia-
tion within the body, and electromagnetic radiation absorbed by the body is 
being converted into heat energy. This is how the sun heats your body. The 
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human body is too cold to glow in visible light, so if you were to stand in a 
pitch dark cave, no one would be able to see you; however, if people could 
see in the infrared range of the electromagnetic spectrum, then you would 
look like a very bright light bulb glowing in the dark. Chapter 16 examines 
electromagnetic radiation.

eR is the emissivity of the object and is a measure of how much of the radia-
tion can escape or be absorbed by the object through its surface. For human 
skin the emissivity varies from eR = 0.65 (lightest skin) to eR = 0.82 (darkest 
skin) for visible light, but the emissivity is almost 1 for all human skin in the 
infrared. A perfect absorber (and emitter) has an emissivity of 1 while a per-
fect barrier that allows no radiation through has an emissivity of 0.

Wien’s displacement law gives the wavelength (and frequency) of the electro-
magnetic radiation with the maximum intensity. If you look at the distribution 
of the radiation as a function of wavelength, it forms a curve with a peak at a 
specific wavelength (λ) and frequency (f). The Wien displacement law gives 
the wavelength where the peak is located. The mathematical formula for 
Wien’s displacement law is

λ is the wavelength and f is the frequency of the electromagnetic radiation at 
the peak. The speed of light (electromagnetic radiation) is c = 9.84 × 108 feet 
per second = 3.00 × 108 meters per second. The Wien displacement constant 
is BW = 9.51 × 10–3 feet kelvin = 2.898 × 10–3 meter kelvin. 

The human body has a temperature of 310.2 kelvin (98.6 degrees Fahrenheit = 
37.0 degrees Celsius). The peak intensity of the electromagnetic radiation 
produced by the human body is at a frequency of 3.21 × 1013 hertz, which is 
infrared radiation. This is why thermal cameras work in the infrared range. 
Humans glow in the infrared while hotter objects glow in visible light.

Applying the heat formulas to biophysics
Now you can use the information in the preceding sections to solve this  
problem.

 Todd weighs 154 pounds (70 kilogram mass), has a surface area of 18.8 
square feet (1.75 square meters), and at rest generates heat through 
metabolism at a rate of 59 foot pounds per second (80 watts). Todd has 
just returned from a jog and is lying on the floor in only his jogging shorts. 
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(Assume one-quarter of his skin is touching the floor and three-quarters of 
his skin is in contact with the air, ignoring his shorts.) Calculate each of 
his heat loss flow rates assuming his metabolic rate is currently 885 foot 
pounds per second (1,200 watts), his outer skin temperature is 95 degrees 
Fahrenheit (35 degrees Celsius, or 308 kelvin), his breathing is back to 
normal, and the room air and floor are at 70 degrees Fahrenheit (21 degrees 
Celsius, or 294 kelvin).

In the problem and in the previous section I give you numbers and formulas 
to calculate the heat flow rates, except for sweating. However, for sweating, 
you can use conservation of heat energy after you know the rest. To solve 
this problem, follow these steps:

 1. Calculate Hm, the rate the body generates heat.

  The metabolic rate of heat generation is Hm = 885 foot pound per second 
(1,200 watts).

 2. Calculate HHC, the rate the body loses heat through heat conduction.

  You are told to assume that three-quarters of his skin is in contact with 
air (kT for air is 0.0054 pound per (second kelvin) = 0.024 watts per 
(meter kelvin)) and a quarter of his skin is in contact with the stone 
floor. (kT for stone is 0.18 pound per (second kelvin) = 0.8 watts per 
(meter kelvin).) 

  You can make the reasonable assumption that the effective length 
between the temperatures is L = 0.5 inch (= 0.0417 feet = 0.0127 meters) 
for both the floor and the air. The problem tells you the temperatures 
and Todd’s body surface area.

  The heat flow from conduction is 310 foot pounds per second (420 
watts) with 92 percent of the heat flowing into the floor even though 
three-quarters of the skin is in contact with the air. Air is a very poor 
thermal conductor. If Todd were standing, the heat flow rate would be 
only 34 foot pounds per second (46 watts).

 3. Calculate the convective heat flow rate, Hcon, the rate the body loses 
heat through convection.



220 Part III: Making Your Blood Boil — The Physics of Fluids 

  You need the convective heat transfer constant. Look up this value in a 
reference source or measure it experimentally, because it depends on 
the person’s shape and orientation (and the clothing worn). For exam-
ple, the convective heat transfer constant is large for a naked person 
lying on their back: the convective heat transfer for Todd is 0.49 pound 
per (foot second Kelvin) (7.1 watts per (square meter Kelvin)). 

 4. Calculate the radiation heat flow rate, Hrad, the rate the body loses 
heat through electromagnetic radiation.

  For humans, almost all the electromagnetic radiation emitted is in the 
infrared spectrum. The emissivity of the human body at these frequen-
cies is approximately 1. This problem tells you Todd’s surface area and 
the temperatures. You know Stefan’s constant from the previous section.

 

 5. Estimate the evaporation in the lungs’ heat flow rate, Hl, the rate the 
body loses heat through evaporation of moisture in the lungs.

  The heat flow rate for evaporation in the lungs varies from person to 
person and depends on how heavily he or she is breathing. An average 
person breathing normally loses heat energy at a rate of approximately 
8 foot pounds per second (10 watts). You can assume Todd is average, 
and the problem tells you that he’s breathing normally.

 6. Calculate the sweat heat flow rate, Hs, the rate the body loses heat 
through sweating.

  You know that the body is maintaining a constant temperature, so it’s 
obeying conservation of heat energy. Therefore, the formula for conser-
vation of heat energy is the equation for the heat flow rate for evapora-
tion of sweat, which gives you: 

  Todd is losing heat at a rate of 326 foot-pounds per second (442 watts) 
through sweat.
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Fighting the Drag — Viscous Flow
All fluids (liquids and gases) have viscosity (frictional forces) except super-
fluids (which have an exactly zero viscosity, such as liquid helium when it’s 
close to zero kelvin). Therefore, all dynamical fluids in biophysics are viscous 
flows. Fluids play an important role in most area of biophysics. 

The following sections take a closer look at the properties and applications of 
viscous fluid flows. These sections examine what is (and isn’t) a fluid, discuss 
different fluid flows and their interaction with boundaries, and apply the dis-
cussion on blood flow in the human body.

Stressing out with viscous fluids
The internal frictional forces within a fluid are called viscosity, which is a 
measure of the resistance of a fluid to stress. A fluid with a large (stress) 
viscosity will have a small strain from a given stress compared to a fluid 
with a small (stress) viscosity. For example, water has low (stress) viscosity 
whereas honey has high (stress) viscosity. 

All fluids have (stress) viscosity except superfluids. I refer to these fluids as 
viscous fluids. (Note that some people only refer to fluids with a viscosity 
greater than water as viscous fluids.) I put the word “stress” in parentheses 
because it’s a common practice to call the stress viscosity just the viscosity. 
Stress viscosity is also known as the dynamic (stress) viscosity or the shear 
viscosity. I drop the stress because it should be clear if I’m talking about 
stress viscosity or the viscosity between the fluid and other objects such as a 
container. 

Allow me to define and clear up a few terms related to stress. Stresses are 
applied forces that deform a material. Three types of stress are

 ✓ Tensile stress is a force that stretches the material.

 ✓ Compressive stress is a force that compresses the material.

 ✓ Shear stress is a tangential force that tries to rip the material. (Think of 
rubbing your hand across sandpaper.)

For each of the three stresses a corresponding strain, which is the amount of 
deformation that occurs to the material when a stress is applied. Chapter 6 
discusses the stresses and strains when applied to solids.
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Classifying viscous fluids — Newtonian 
and non-Newtonian fluids
A stress causes a strain in a fluid, and how that fluid responds to the stress 
and deforms (strain) tells you a lot about that fluid’s properties. The behavior 
of fluids under stress allows you to place the fluids into one of two categories: 

 ✓ Newtonian fluid: The Newtonian fluids have the property that the 
stresses are directly proportional to the strain rates. In other words, if 
a graph of the stress as a function of the strain rate produces a linear 
curve with the slope equal to the viscosity then the fluid is Newtonian. 
Water and air (gases) are good examples of Newtonian fluids having a 
small constant viscosity.

 ✓ Non-Newtonian fluid: If the curve is nonlinear, then the fluid is non-
Newtonian. The strain rate is a measure of how the velocity of the 
fluid changes in space, so you can think of it as the rate of deformation 
(change in the velocity divided by the displacement). Meanwhile some 
non-Newtonian fluids include the following:

	 •	Shear thinning fluids: The viscosity of the fluid decreases with an 
increasing rate of shear stress. An example is ketchup and synovial 
fluid.

	 •	Bingham plastic: The plastic is solid at low stresses and becomes 
a viscous fluid with large stresses. A plastic squeeze bottle is a 
good example.

	 •	Thixotropic materials: They become less viscous over time when 
shaken, agitated, or otherwise stressed. Yogurt is an example. You 
have to stir for a while before it’s in a liquid form. 

	 •	Shear thickening fluids: The viscosity of the fluid increases with 
the rate of shear strain. These fluids are also known as dilatant 
fluids. The combination of cornstarch and water is the classic 
example.

	 •	Rheopectic materials: The material becomes more viscous over 
time when shaken, agitated, or otherwise stressed. An example is 
kids’ slime.

	 •	Magnetorheological fluids and ferrofluids: The viscosity of these 
fluids increases in the presence of a magnetic field. The magne-
torheological fluids have magnetic particles that have a diameter 
around a micron whereas the ferrofluids use magnetic nanoparti-
cles. The fluid is poured into the cavity and then a permanent mag-
netic is turned on and the fluid becomes a solid, sealing the cavity.
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Flowing slowly at the edge — laminar 
flow and Poiseuille’s law
Streamline flow is when the fluid is flowing in an organized manner with no 
disorganized motion or sideways mixing. If you look at the smoke rising from 
a fire very close to the flames, you’ll notice the streams of smokes are rising 
side by side without any swirling. This initial flow of the smoke is a stream-
line flow.

Laminar flow is a layered viscous fluid where each layer is a streamline 
flow with a different speed. Strictly speaking, the layers aren’t distinct and 
the speed changes continuously across the layers. For example, consider a 
straight section of a slow moving river where the bottom of the river isn’t 
a factor on the flow of the surface water. All the water will be flowing in the 
same direction (streamline flow) and the water in the middle of the river will 
be moving the fastest. The closer you go to the shore, the slower the speed 
of the water. 

The velocity of the fluid in contact with a boundary is traveling at the same 
speed as the boundary. The velocity changes in magnitude as you move away 
from the boundary in a perpendicular direction. In the case of my river exam-
ple, the water touching the shore isn’t moving.

You probably want to see how this works in the human body. The synovial 
fluid, which is a non-Newtonian shear thinning fluid, fills the synovial cavity 
in many joints in your body, such as the knee joint. Synovial fluid forms lami-
nar flow when your bones are moving. The articular cartilage covers the ends 
of the bones in the synovial joint, which are kept separated by the synovial 
fluid. The synovial fluid against each articular cartilage is moving with the 
same speed as the cartilage, so as you move from one cartilage to the other, 
the fluid’s velocity changes continuously from one speed to the other speed, 
forming speed layers, hence the name laminar flow. Figure 10-2 shows the 
synovial fluid’s velocity in a synovial joint.

 

Figure 10-2: 
Laminar 
flow in a 
synovial 

joint.
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 An important application in biophysics is the flow of air in the alveoli or blood 
flow within the body. These applications are described by Poiseuille’s law, 
which states how the pressure of an incompressible, viscous fluid will drop in 
a laminar flow through a long horizontal pipe (of length L) that has a constant 
radius R. R is assumed to be much smaller than L. The mathematical expres-
sion of Poiseuille’s law for the pressure drop of an incompressible viscous 
fluid in a pipe (tube) is

Here, R is the radius of the pipe, L is the length of the pipe from the location 
of the initial pressure to the location of the final pressure, η is the fluid’s vis-
cosity, and Q is the total fluid flow rate. 

The total fluid flow rate, Q, is related to the velocity of the fluid, where vavg 
is the average speed of the fluid from the center to the edge against the pipe 
wall, and vcenter is the maximum speed of the fluid, which at the center of the 
cylindrical pipe:

Poiseuille’s law shows the pressure is dropping as the fluid moves through 
the pipe, which means the fluid is losing energy due to viscosity (frictional 
forces). In Chapter 4 I talked about the relationship between power, work 
and force. The power lost to the system is equal to the force times the aver-
age velocity. The force is related to the pressure and the average velocity is 
related to the total fluid flow rate. The power loss within the fluid is given by 
the formula:

The two pressures and the total fluid flow rate on the right-hand side are the 
same quantities as in Poiseuille’s law. 

You can use the preceding formulas to solve this type of problem you may 
encounter in your biophysics course.

 Venus has a partially clogged artery from plaque buildup. The flow rate of 
the blood is 3.5 × 10–5 cubic feet per second (9.9 × 10–7 cubic meters per 
second). The plaque buildup is 0.08 feet (2.4 centimeters) long and has 
closed the artery to a radius of 6.5 × 10–4 feet (2.0 × 10–4 m). What is the 
pressure drop across the plaque and the corresponding power loss?
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To solve this problem, follow these steps:

 1. Determine what physical principles or laws you need.

  The problem wants you to find the drop in the pressure across the 
clogged artery, so you need Poiseuille’s law.

  The problem also wants you to calculate the power loss. You have the 
formula relating the power loss to the flow rate and pressure change.

 2. Find the numbers needed for Poiseuille’s law.

  The problem says that the total flow rate is Q = 3.5 × 10–5 cubic feet per 
second (9.9 × 10–7 cubic meters per second).

  You’re told the length of the partially clogged artery is L = 0.08 feet (2.4 cen-
timeters) and the radius of the opening is R = 6.5 × 10–4 feet (2.0 × 10–4 m).

  You know everything in Poiseuille’s law to solve the problem except 
the viscosity of the blood. You have to search for this number (use a 
medical resource book or website for this information.) or perform an 
experiment. To save you some time, I give you the number. Whole blood 
at 98.6 Fahrenheit (37 degrees Celsius) has a viscosity of η = 4.353 × 10–5 
pound second per square foot (2.084 × 10–3 pascals second).

 3. Solve for the change in the pressure by solving Poiseuille’s law.

  The change in the pressure across the length of the plaque is 1.74 × 103 
pounds per square foot (8.33 × 104 pascals). 

 4. Solve for the power loss along the partially clogged artery.

  The formula states that the power lost is equal to the pressure drop 
time the total fluid flow rate: Plost = ΔP(a) Q = (1.74 × 103 lb ft–2) (3.5 × 10–5 
ft3 s–1) = 0.0609 foot pound per second (0.0825 watts). This lost energy is 
being converted into heat energy. 

Flowing of the blood and flow resistance
You can view the blood’s circulatory system in the same way as an electrical 
DC circuit with a battery being the heart, the current being the total flow rate, 
and the resistance being the flow resistance. 
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This flow resistance is a measure of the work the fluid has to do against the 
viscosity. Use the following formula for measuring flow resistance:

Poiseuille’s law is the blood version (ΔP(a) = Q Rf) of Ohm’s law (V = I R), and 
the equation in the previous section for power lost (Plost = ΔP(a) Q) is just 
the blood version for the Joule losses, namely P = V I. (I discuss circuits and 
Ohm’s law in Chapter 16.) If you’re more familiar with electrical circuits and 
adding resistance together, then you can understand how this law works 
because the same rules apply here for fluids.

 In addition, when considering multiple paths for the blood to flow through, 
you need to consider the following:

 ✓ Flow resistances in parallel: When the blood has several parallel paths 
to choose from, then

	 •	The	conservation	law	states	that	the	pressure	at	the	beginning	and	
at the end must be the same, independent of which path is taken 
by the blood.

	 •	The	rule	states	that	the	sum	of	the	blood	flow	rates	through	all	the	
paths must equal the total blood flow rate Q. (You can’t create or 
destroy blood. Other parts of the body are doing that.)

  The combination of the conservation law and the rule gives the following 
formula for the flow resistances of blood through several parallel paths:

  The left side of the formula is the total effective flow resistance of all the 
paths combined together. The right side has all the individual flow resis-
tances for each separate path.

 ✓ Flow resistances in series: When the blood has only one path to flow 
through then:

	 •	The	conservation	law	states	that	the	total	blood	flow	rate	is	the	
same through each organ (only one route for the blood to go).

	 •	The	rule	states	that	the	sum	of	the	pressure	drops	across	each	
organ must equal the total pressure drop across all of them 
 combined.

  The combination of the conservation law and the rule gives the follow-
ing formula for the flow resistances:
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 Different channels in parallel have the same pressure difference across them 
and different flow resistances in series have the same flow rate through them. 
The two rules are: the amount of fluid (blood) flowing in must equal the 
amount of fluid (blood) flowing out.

Use these formulas to solve this problem.

 In the human body, some of the arteries branch off and go to the hepatic 
artery, spleen, small bowel, and large bowel. The four combine and then 
flow through the liver before traveling through a main vein to the vena 
cava and back into the heart. Assume in Walen’s body the blood’s flow 
rate through the liver is Qliver = 8.8 × 10–4 cubic feet per second (2.5 × 10–5 
cubic meter per second). What is the change in the blood pressure and 
the blood flow rate through all five paths just mentioned?

To solve this problem, follow along with these steps:

 1. Draw a diagram of the blood flow from the heart through the organs 
and back to the heart.

  A figure can help visualize what is going on here. Figure 10-3 shows the 
figure I drew for this problem. In the figure, HA is the hepatic artery, SP 
is the spleen, SB is the small bowel, and LB is the large bowel.

 

Figure 10-3: 
Blood flow 

through part 
of Walen’s 

body.
 

P1
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 2. Find the five flow resistances.

  Here I help you and look up the numbers for the five flow resistances:

	 •	The	HA	branches	into	the	arterioles,	then	the	capillaries,	and	then	
the venules with an overall flow resistance of Rf,HA = 1.3 × 106 pound 
second per fifth power of foot (2.2 × 109 pascal seconds per cubic 
meter).

	 •	The	arterioles,	capillaries,	and	venules	for	the	SP	have	an	overall	
flow resistance of Rf,SP = 7.7 × 105 pound second per fifth power of 
foot (1.3 × 109 pascal seconds per cubic meter).

	 •	The	arterioles,	capillaries,	and	venules	for	the	SB	have	an	overall	
flow resistance of Rf,SB = 7.1 × 105 pound second per fifth power of 
foot (1.2 × 109 pascal seconds per cubic meter).

	 •	The	arterioles,	capillaries,	and	venules	for	the	LB	have	an	overall	
flow resistance of Rf,LB = 2.2 × 106 pound second per fifth power of 
foot (3.7 × 109 pascal seconds per cubic meter).

	 •	The	liver	has	an	overall	flow	resistance	of	Rf,liver = 2.4 × 104 pound 
second per fifth power of foot (4.1 × 107 pascal seconds per cubic 
meter). 

 3. Find the pressure drop across the liver.

  For the liver you know the flow rate and the flow resistance, so all you 
need to find for the liver is the pressure drop using Poiseuille’s law:

 4. Find the effective flow resistance across HA, SP, SB, and LB.

  You know the four individual flow resistances and the rule for blood 
flows in parallel:

  The effective flow resistance is 2.54 × 105 pound second per fifth power 
of foot (4.3 × 108 pascal seconds per cubic meter).

 5. Find the pressure drop across HA, SP, SB, and LB.

  Figure 11-3 shows the blood flow is parallel. The conservation law is QHA 
+ QSP + QSB + QLB = Qliver = 8.8 × 10–4 cubic feet per second (2.5 × 10–5 cubic 
meter per second). This law states the pressure drop across all four is 



229 Chapter 10: Going with the Fluid Flow — Fluid Dynamics

the same, which means that the pressure drop equals the total blood 
flow rate (Qliver) times the effective flow resistance.

 6. Find the flow rate through HA, SP, SB, and LB.

  You now know the pressure drop and the flow resistance, so calculate 
the flow rates:

  Notice that QHA + QSP + QSB + QLB = 8.80 × 10–4 cubic feet per second (25 × 
10–6 cubic meters per second) = Qliver, which is what was expected. Also, 
the total drop in pressure is ΔP(a)

eff + ΔP(a) 
liver = P(a)

in – P(a)
out = 245 pounds 

per square foot (1.17 × 104 pascals).

Pumping of the heart —  
making the blood move
The heart is one of the most marvelous machines (it’s also a pump). It’s 
designed to work nonstop for decades and pump more than 145,000 cubic 
feet (4,100 cubic meters) of blood every year. You can use concepts in this 
chapter and Chapter 9 to estimate how much energy you need to keep your 
heart pumping each day. 

Xi has volunteered for me to calculate her heart’s energy consumption. The 
heart needs to do work against three primary forces (frictional forces within 
the heart, applied force pushing the blood, and wall [surface] tension in the 
heart muscle). The rest of the forces can be ignored for now, because their 
contribution is very small.
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To figure out her heart’s energy consumption, follow these steps to deter-
mine how much work needs to be done in one day for these three forces.

 1. Find the energy dissipated as heat in a day.

  Unfortunately, the problem did not give me any numbers so I will have 
to look up the numbers. The rate of heat production for an average 
human’s heart while resting is 1.50 foot pound per second (2.03 watts). 
(At rest Xi’s entire body rate of heat production is about 59 foot pound 
per second [80 watts] of heat. See Chapter 11 for more information.)

  I estimate Xi’s rate of heat production in the heart is 2.25 foot pound per 
second (3.05 watts) during her eight-hour work shift.

  You can assume your heart produces the same amount of heat. Also, 
in Chapter 4, I discuss the relationship between power, work, and time. 
(Work equals power times elapsed time.) I now know the power and the 
time in this case is 16 hours of rest and 8 hours of work. The work done 
producing heat for 1 day is

  The energy lost to heat in a day is 1.51 × 105 foot pound (2.05 ×  
105 joules = 49.0 Calories).

 2. Find the energy used pumping blood through the body all day.

  Unfortunately, the problem doesn’t give you any numbers again, so you 
have to search for some numbers. Before you search for numbers, you 
need to know what numbers you need:

  Work equals the power times the elapsed time, so you need to find the 
power. The elapsed time is 16 hours of rest and 8 hours of work. The 
previous two sections explain that the power is equal to the flow rate 
times the pressure drop. 

  The flow rate at rest, the flow rate at work, the pressure change at rest, 
and the pressure change at work are the four numbers you need to cal-
culate the power and hence the work:

  Xi’s heart pumps blood at a flow rate of 3.5 × 10–3 cubic feet per 
second (9.9 × 10–4 cubic meters per second) while resting.

  Xi’s heart pumps blood at a flow rate of 7.0 × 10–3 cubic feet per 
second (2.0 × 10–3 cubic meters per second) during her work.

  Xi’s blood’s average pressure in the arteries near the aorta is 270 
pounds per square foot (1.29 × 104 pascals) and 22 pounds per 
square foot (1.05 × 103 pascals) in the veins near the vena cava 
while resting. 
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  While at work, Xi’s blood’s average pressure in the arteries near 
the aorta is 300 pounds per square foot (1.44 × 104 pascals) and 22 
pounds per square foot (1.05 × 103 pascals) in the veins near the 
vena cava.

  You now have all your numbers, so you can first calculate the power 
and then calculate the work done by the heart pumping blood through 
the body against the viscosity all day:

  The work done in a day to pump blood through the body is 1.06 × 105 
foot pounds (1.44 × 105 joules = 34.4 Calories).

 3. Find the formula for the work done keeping the heart muscle tense all 
day.

  You have to figure out what formula you need to calculate the work 
done. To do so, you need to look at the physics of the problem:

  Xi’s heart is a pump that squeezes and then expands continuously, 
pushing the blood through the body. The heart muscles form a 
wall around the chambers, which can’t expand too far or contract 
too much, so the surface (wall) tension in the wall (muscle) must 
be continuously maintained. If you think of a balloon and you fill 
the balloon with air or water, then the balloon is very tense. When 
you open the balloon’s end, the surface tension in the balloon 
squeezes the air or water out of the balloon. 

  This calculation needs surface tension and Laplace’s law, which I dis-
cuss in Chapter 9. If I assume the left ventricle is a sphere with a con-
tracted radius rin and an expanded radius rout , then the work done during 
a half beat is

  Wtension is the work done by changing the radius of the sphere and chang-
ing the pressure, γ is the surface tension, ΔA is the change in the surface 
area, ΔP(g) is the change in the blood’s gauge pressure (remember, the 
gauge pressure equals the absolute pressure minus the atmospheric 
pressure), and r is the radius of the sphere.
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  The previous equation requires a few reasonable assumptions combined 
with a little bit of knowledge about calculus in order to derive it. A small 
amount of work is dW = F dr (refer to Chapter 3). In this problem, I 
assume the left ventricle is a sphere and from Laplace’s law (check out 
Chapter 9), the force due to the surface tension in a sphere is F = 2π r γ =  
π r2 P(g), where r is the radius of the sphere and P(g) is the gauge pres-
sure. You can now assume the gauge pressure is approximately constant 
at the low value during the expansion of the heart and approximately a 
constant at the high value during contraction. To find the work done (W) 
during a beat, you need to integrate the force (F) over the displacement 
(dr) for a full beat. The work for a full beat with half a heart appears in 
the previous equation. The total work done by the whole heart during a 
full beat is twice this value. Therefore, you can think of the preceding 
equation as the work done by the whole heart for half a beat.

 4. Find the numbers to calculate the work done keeping the heart mus-
cles tense all day.

  You need to find the change in the blood pressure within the heart. You 
also need to find the maximum and minimum radii of Xi’s left ventricle. 
In addition, calculate the work done for one day and not for one beat.

  Xi’s change in the blood’s gauge pressure is 130 torr (362 pounds 
per square foot = 1.73 × 104 pascals) during a half beat. 

  The heart is beating at 70 beats per minutes.

  The left ventricle has a contracted radius of 2 inches (0.167 feet = 
0.0508 meters).

  The left ventricle expansion causes the radius to change by 10 percent.

 5. Solve for the work done by keeping the heart muscles tense all day.

  Substitution of the numbers into the equation gives

  The preceding shows the work done for half a beat, so you need to 
 convert it to the amount of work done in a day: WT = Wtension × 140 half 
beats per minute × 1440 minutes in a day = 1.17 × 105 foot pound (1.59 × 
105 joules = 37.9 Calories).

Xi’s heart needs a total of 49.0+34.4+37.9 = 121 Calories (1.21 × 105 energy 
calories) to operate each day.
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Turning in the turbulence — turbulent flow
A viscous fluid flowing at slow speeds has 
streamlines producing laminar flow. However, 
when the speed becomes too large, then the 
streamlines start to mix and the fluid motion 
becomes chaotic. This chaotic fluid motion is 
call turbulent flow. Turbulence is very complex 
and well beyond the scope of this book. The 
work done on turbulence is either done in an 
experimental lab or with computer simulations. 

Reynolds’ number is defined as the inertial 
forces acting on the fluid divided by the vis-
cous forces. Reynolds’ number and its specific 

mathematical formula will change, depending 
on the system under consideration. The crite-
rion for turbulence is that when the Reynolds’ 
number is small, the viscous fluid will have 
laminar flow. When the Reynolds’ number is 
large, the viscous fluid will have turbulent flow. 
The specific numbers vary depending on the 
system under consideration.

Remember, you need your fluid to have laminar 
flow to apply the laws and information in this 
chapter, so check the Reynolds’ number before 
doing any calculations.
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Chapter 11

Breaking through to the Other 
Side — Transport, Membranes, 

and Porous Material
In This Chapter 
▶ Failing to contain the fluid
▶ Sneaking through the membrane
▶ Eating too much and metabolism
▶ Eliminating the excess

T 
he ability of living organisms to absorb materials through membranes 
and transport it to cells is an important area of biophysics. This ability 

allows organisms to absorb materials and use the energy to continue living. 
Have you every wondered how your body uses food for energy to keep your 
body functioning? Or how fast a drug is eliminated from your body? This 
chapter answers these questions and more.

Here I take a closer look at diffusion, specifically focusing on the flow of fluids 
through other materials, such as other fluids, animals, plants, and porous 
materials. This chapter describes Fick’s law on how fluids flow through mate-
rials, examines how the body absorbs food and metabolizes it into energy for 
the body, and deals with what goes in must come out and how fast it leaves.

Examining the Ins and Outs of Diffusion 
Diffusion is the process of particulates, gas or fluid, to slowly spread out 
from regions of high concentration to regions of low concentration. Many dif-
ferent examples of diffusion exist in biophysics. For example, when you eat 
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your dinner, your body absorbs the food and the blood diffuses the nutrients 
throughout the body, or when you add some salt to water, it dissolves and 
diffuses throughout the water. 

These sections define the diffusion coefficient and Fick’s law. They also explain 
osmosis, what osmotic pressure is, and where it can arise in biophysics.

Defining the diffusion coefficient
The diffusion coefficient is a measure of how long it would take molecules or 
particulates to travel a distance through a gas or fluid. The larger the diffu-
sion coefficient means the faster the molecules will diffuse. Mathematically, 
the diffusion coefficient is

In the formula, Δs2 is the average of the squared displacement and Δt is the 
elapsed time needed for this displacement. With this information, try this 
problem.

 You step into an empty elevator and smell the strong fragrance (odor) 
of perfume from a previous passenger. A high concentration of perfume 
molecules is still present in the air and is causing your eyes to water. The 
molecules didn’t disappear as soon as the person left the elevator, but 
they linger there to cause you pain. You leave the elevator and use the 
stairs instead. How long should you wait before returning to the elevator? 

The fan in the elevator is broken, so you have to block the elevator door 
in the open position and let diffusion do its job (or have victims run in 
and out of the elevator to stir the air). To solve this problem you can use 
the diffusion coefficient equation. You need to estimate or find the two 
variables in the equation:

To solve this problem, follow these steps:

 1. Estimate the average of the squared displacement.

  The gas needs to diffuse 1 square foot (0.0929 square meters).

 2. Look up the diffusion coefficient for the perfume molecules in room 
temperature air.

  I give you this information for this problem. The value of the diffusion 
coefficient for the perfume molecules in air is 2.25 × 10–5 square feet per 
second (2.09 × 10–6 square meters per second).
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 3. Rearrange the equation for the unknown (time) and solve.

You should use the stairs because 2.22 × 104 seconds = 6.2 hours is a long 
wait for the elevator. Actually, you don’t have to wait that long because you 
won’t be able to smell the perfume after the concentration has dropped 
below some threshold level, which depends on the individual.

Flowing through materials — Fick’s law
Fick’s (first) law states that the diffusion coefficient times the change in the 
concentration from one region to another region, divided by the distance 
between the two regions is equal to the negative of the flux. (The flux is equal 
to the rate particles passing through a cross-sectional area divided by the 
cross-sectional area.) 

Fick’s law is useful for studying the flow of particulates and molecules across 
membranes, such as oxygen from the lungs into the blood, the diffusion 
within the red blood cells, and the diffusion from the red blood cells into the 
muscle.

Mathematically Fick’s law looks like this:

In this formula, D is the diffusion coefficient, ΔC is the change in the concen-
tration from region 1 to region 2, and Δx is the displacement from region 1 to 
region 2. Jflux is the flux across the cross-sectional area, usually a membrane. 
The minus sign reminds you that the molecules or particulates are flowing 
from the region with high concentration to a region with low concentration. 

 Another way to consider flux: The flux times the cross-sectional area is equal 
to the rate at which particles flow through the area. To help you understand, 
think about water pouring out of a tap and you holding an empty glass. If you 
hold the glass sideways, then none of the water will enter the cup. If you now 
hold the cup upright with the lip halfway into the stream, then your cup will 
slowly fill. Finally, if you stick the cup right underneath the water stream, then 
all the water goes into the cup, and you’ll fill it up rapidly. In all three cases, 
the water flow hasn’t changed and the cup hasn’t changed, but the flow of 
water into the cup has changed because the cross-sectional area of the water 
over the cup’s opening has changed. In the first case the cross-sectional area 
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is zero, in the second case it’s half the area of the water stream, and in the 
third case the cross-sectional area equals the cross-sectional area of the water 
stream. Mathematically, flux is expressed as

Jflux is the flux, ΔN is the number of particles going through area A in the 
elapsed time Δt.

You can use the preceding information to solve this problem:

 Estimate the time it takes an oxygen molecule to diffuse across the mem-
brane from an alveolus into a capillary within your body. Also, estimate 
the flux of oxygen molecules from an alveolus into your blood and the 
rate of the number of oxygen molecules flowing from an alveolus into 
your blood.

To solve this problem, follow these steps:

 1. Draw a diagram.

  It’s helpful to visualize what is going on; however, I forego a diagram at 
this time, but go ahead and draw one. 

 2. Figure out what the problem wants.

  This step is usually the hard part. This problem wants you to find the 
time of diffusion, the flux across the membrane, and the rate of flow. 
Lucky you; these three quantities appear in the previous three formulas.

 3. Find the numbers needed to solve for the time.

  You need some numbers to solve this problem. The problem usually 
supplies the numbers, but not always. The diffusion coefficient equation 
gives you the time, if you can find the diffusion coefficient for the mem-
brane and the thickness of the membrane. The numbers for this prob-
lem are as follows:

  Look up the number (in the appropriate reference book or online) 
and you’ll find that the thickness of the membrane is 2.46 × 10–6 
feet (7.50 × 10–7 meters). These membranes can be up to one-third 
times smaller.

  I assume the diffusion coefficient for an oxygen molecule through 
the membrane is the same as diffusion in water, which is 1.08 × 10–8 
square feet per second (1 × 10–9 square meters per second).

 4. Solve for the time using the diffusion coefficient equation.
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  You obtain the time of diffusion by rearranging the formula for the diffu-
sion coefficient:

  This formula shows you in this problem that an oxygen molecule takes 
about a third of a millisecond to diffuse across the membrane. 

 5. Find the numbers to solve for the flux across the membrane.

  The flux of oxygen molecules into the blood needs according to Fick’s law: 
the diffusion coefficient (see step No. 3), the thickness of the membrane 
(see step No. 3), and the change in the concentration of oxygen molecules 
across the membrane. You need to find the two concentrations:

  I assume the concentration of oxygen in the blood to be zero. The 
average concentration of oxygen molecules in the air within the 
alveolus is the mass divided by the volume, which I assume to 
be average air with 21 percent of the air being oxygen.

  A volume of 35.31 cubic foot (1 cubic meter) of air has a mass of 
0.0822 slugs (1.20 kilograms). The corresponding mass of oxygen 
molecules is 0.0173 slugs (0.252 kilograms). Therefore, the corre-
sponding mass concentration is 0.0173 slugs/(35.31 ft3) = 0.000490 
slugs per cubic foot (0.252 kilograms per cubic meter).

  You aren’t finished. Working in moles, which is the number of mol-
ecules, is more convenient to work with. Luckily, you know the molar 
mass of oxygen (the mass of 1 mole of oxygen), so you can change units. 
The molar mass of oxygen molecule is 0.00219 slugs per mole (0.032 kilo-
grams per mole). The molar concentration is 0.000490/0.00219 = 0.223 
moles per cubic foot (7.88 moles per cubic meter).

  1 mole of any substance contains 6.022 × 1023 particles. The number is 
called Avogadro’s number. The concentration of oxygen molecules in 
the air can be expressed as 1.34 × 1023 molecules per cubic foot (4.74 × 
1024 molecules per cubic meter) instead of in terms of moles.

 6. Solve for the flux using the Fick’s first law equation.

  The flux is 9.07 × 10–4 moles per (square foot second) (0.0105 moles 
per (square meter second)), which corresponds to a flux of 5.46 × 1020 
oxygen molecules per (square foot second) (6.32 × 1021 oxygen mol-
ecules per (square meter second)).
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 7. Find the numbers needed to solve for the flow rate using the flux 
equation.

  The rate that oxygen molecules are flowing into the blood from the alve-
olus needs the flux (see step No. 6) and the cross-sectional area. You 
need to find the cross-sectional area.

  I will assume the alveolus is completely covered in membrane and is 
approximately spherical in shape, so the surface area can be approxi-
mated as 4 π R2.

  Finally, the average radius of the alveolus is 3.3 × 10–4 feet (1.0 × 10–4 
meters).

 8. Solve for the flow rate using the flux equation.

  The rate that oxygen molecules are flowing into the blood from the 
 alveolus is

  The rate oxygen molecules are flowing into the blood from a typical 
alveolus is 1.2 × 10–9 moles per second = 7.5 × 1014 oxygen molecules per 
second.

 The advanced forms of Fick’s first and second laws are differential equations 
describing the motion of the molecules. The first law states that the current 
density of the particles is proportional to the gradient of the concentration, 
where the proportionality constant is the diffusion coefficient. The version 
given above is for the average flux. The second law is the continuity equation, 
which is the law of conservation of mass. You can’t create or destroy mass. 
The mathematical form of Fick’s first law is

Restricting what passes through the 
 barrier — osmosis and osmosis pressure
Osmosis is the movement of solvent (usually water) from a hypotonic solution 
(a solution with a lower solute concentration) to a hypertonic solution (a solu-
tion with a higher solute concentration) across a semipermeable membrane. 
The membrane is permeable to the solvent and is impermeable to the solute. 
Osmosis and the osmotic pressure are very important concepts in biological 
systems involving the membranes within animals and plants. For example, 
the walls of cells are membranes that are permeable to small molecules such 
as water, oxygen, and carbon dioxide while being impermeable to large mol-
ecules and ions.



241 Chapter 11: Breaking through to the Other Side

 As the solvent flows from the hypotonic solution, it increases the solute’s con-
centration. As the solvent flows into the hypertonic solution, it decreases the 
solute’s concentration. The solvent will attempt to continue flowing across the 
membrane until the concentrations are balanced or it’s countered with an 
opposing force. 

The pressure built up in the hypertonic solution that stops the motion of the 
solvent across the membrane and maintains equilibrium is called the osmotic 
pressure. In the case of no solute in the hypotonic solution and a very dilute 
concentration of solute in the hypertonic solution, the mathematical formula 
for the osmotic pressure is

In this formula, C is the concentration of the solute in the hypertonic solu-
tion, R equals 6.1328 foot pound per (kelvin mole) (8.3145 joules per (kelvin 
mole)) and is the gas constant, and T is the temperature in kelvin.

Use this information from this section to solve this problem:

 Consider the albumin protein group in the blood plasma. What is the 
osmotic pressure with a mass concentration of 8.7 × 10–8 slugs per cubic 
foot (4.5 × 10–5 kilograms per cubic meter)?

To solve this problem, follow along in these steps:

 1. Determine the equation needed to calculate the osmotic pressure.

  The problem doesn’t specify, but you can assume no solute (albumin 
protein) in the hypotonic solution and a very dilute concentration of 
solute in the hypertonic solution (blood plasma). You can then use the 
mathematical formula given to find the osmotic pressure.

 2. Find the respective numbers.

  The formula requires three pieces of information: C, R, and T: R is a 
constant and you know the value of it. R equals 6.1328 foot-pound per 
(kelvin mole) (8.3145 joules per (kelvin mole)) 

  The body’s temperature (T) is 310 kelvin (98.6 degrees Fahrenheit = 
37 degrees Celsius).

  You are given the mass concentration, 8.7 × 10–8 slugs per cubic foot 
(4.5 × 10–5 kilograms per cubic meter). Unfortunately, the formula needs 
the molar concentration.

  To convert units you need the molar mass. You can find the molar mass 
by either looking it up in a reference source, or by looking up the chemi-
cal composition of the albumin protein and then calculating the molar 
mass. I will help you with this. The average molar mass for the albumin 
protein group is 4.7 slugs per mole (69 kilograms per mole). Therefore, 
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the molar concentration is 8.7 × 10–8/(4.7) = 1.85 × 10–8 moles per cubic 
foot (4.5 × 10–5/(69) = 6.52 × 10–7 moles per cubic meter).

 3. Solve for the osmotic pressure.

  You now know everything and can calculate the osmotic pressure. 

Understanding Human Metabolism
Metabolism refers to the chemical reactions that occur within living organisms. 
It’s the study of energy and work within living organisms. Living organisms 
need energy to live, grow, change, and do work.

For example, you eat some food and the body digests the food by breaking it 
down into its constituents. The blood absorbs them, and some of the chemicals 
travel to the liver. Enzymes in the liver act as catalysts, changing the chemical 
compound into a new chemical compound, which then is transported to a dif-
ferent part of the body before entering a cell. It then has a chemical reaction 
within the cell. The path the chemical takes through the body is referred to as a 
metabolic pathway. Each step along this pathway is a metabolic process.

These sections look at metabolism in the human body on the large scale, 
including energy consumption and the efficiency of the body to do mechani-
cal work. 

Eating — balancing your energy
Energy is what makes things go. The most important law in biophysics is 
conservation of total energy, which states you can’t create or destroy energy, 
only change it from one form to another. The first law of thermodynamics is 
another way of stating the conservation of energy law.

 The first law of thermodynamics states that the change in the internal energy of 
a biological organism is equal to the change in the heat energy minus the work 
done by the organism on its surroundings. Mathematically it looks like this:

Humans are constantly losing heat to their surrounding and doing work. 
(Breathing is important after all.) The consumption of food and the intake of 
oxygen replenish the energy so there is an overall balance and conservation  
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of energy. This process never stops for living organisms, so it’s usual to con-
sider the power instead. Recall power is equal to the work divided by the 
elapsed time.

 Many different sets of units are used in analyzing the energy and power 
 consumption of organisms. The relationship between these different set of 
units are

1 (food) Calorie (Cal) = 1 kilocalorie (kcal) = 1,000 (energy) calories 
(cal) = 4,184.5 joules (J) = 3,086 foot pound (ft lb) = 3.970 British thermal 
unit (BTU).

1 kilocalorie per day (kcal/d) = 4,184.5 joules per day (J/d) = 0.04843 
watts (W) = 0.03572 foot pound per second (ft lb/s) = 6.495 × 10–5 horse-
power (hp).

Basal metabolic rate (BMR) is the bare minimum power required to keep the 
body functioning while awake and resting (no stimuli — watching paint dry is 
okay). This energy is needed to keep the body at 98.6 degrees Fahrenheit (37 
degrees Celsius) and keep all the vital organs operating. The most accurate 
method of determining your BMR is by measuring how much oxygen your 
body consumes. The metabolism of the food requires oxygen; the human 
body will produce 1 kilocalorie of energy from food with every 7.31 × 10–3 
cubic feet (0.207 liters = 2.07 × 10–4 cubic meters) of oxygen absorbed. You 
can see how problems may arise if there is insufficient oxygen present to 
produce the energy needed for your body to function properly, such as can 
happen at the top of tall mountains.

You can obtain a quick estimate of your BMR by using the Harris-Benedict 
equation:

 The BMR is slightly different for males and females, which explains the two 
formulas. In addition, I have written the equation for each gender in two lines: 
the first line is in United States customary units and the second line is in SI 
units. In the equations: M is the person’s weight (or mass), H is the person’s 
height in inches (or meters), and A is the person’s age in years. At the end of 
each line are the units for your final answer.
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 Al is lying on the couch watching the Saturday morning cartoons in a veg-
etative state. What is his BMR assuming Al is 5 foot, 8 inches (68 inches = 
1.73 meters), 180 pounds (81.6 kilogram mass), and 21 years old?

I have already converted Al’s numbers to the correct units within the brack-
ets, so you can substitute these numbers into the previous equation to find 
Al’s BMR like this:

Al is using 1,890 kilocalories per day (7,920 kilojoules per day = 91.6 watts) of 
power while watching the Saturday morning cartoons.

 These equations are averages; every person will have a slightly different BMR 
and different metabolic rates during the same activity. For example, you can 
take two males (or females) with the same weight, height, age, and physical fit-
ness, and they’ll have different basal metabolic rates.

 Al decides to go for a one-hour jog. In addition to his BMR, Al is using 
93.6 kilocalories per (day-pound) (which equals 10 watts per kilogram) 
of power during his jog. Remember Al is 5 foot, 8 inches (which equals 
68 inches or 1.73 meters), 180 pounds (81.6 kilogram mass), and 21 years 
old. What is his energy consumption during this hour? How much car-
bohydrates or protein or fat does Al need to eat to replenish his body’s 
energy reserves?

To solve this problem, follow these steps:

 1. Set up the problem and decide which information you need to solve 
the problem.

  The Harris-Benedict equation was already used to find Al’s BMR. You 
know that power output is additive. You know the relationship between 
power, work (energy), and time, which allows you to find the energy 
consumption. Finally, you need to find out how much energy Al’s body 
can obtain from different foods.

 2. Find Al’s power output during the jog.

	 •	Al’s	BMR	is	1,890	kilocalories	per	day	(7,920	kilojoules	per	day	=	
91.6 watts).

	 •	Al’s	excess	power	use	per	pound	(kilogram)	is	93.6	kilocalories	
per (day-pound) (10 watts per kilogram). You need to multiply this 
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number by Al’s weight (or mass) to find his total power output: 
93.6 × 180 = 16,850 kilocalories per day (10 × 81.6 = 816 watts).

	 •	Take	the	sum	of	these	two	to	find	his	total	power	output:	18,740	
kilocalories per day (908 watts).

 3. Find Al’s energy requirements (output) during the jog.

  You now know Al’s total power output and the elapsed time (1 hour = 
3600 seconds = 1/24 days). The energy output is 18,740 divided by 24 = 
781 kilocalories (908 × 3,600 = 3,270 kilojoules).

 4. Calculate Al’s energy intake.

	 •	Carbohydrates,	on	average,	provide	1,850	kilocalories	per	pound	
(17,100 kilojoules per kilogram) of energy. Al would need to absorb 
781 divided by 1850, which equals 0.422 pounds (0.191 kilograms) 
of maple syrup to replace his energy.

	 •	Proteins,	on	average,	provide	1,900	kilocalories	per	pound	(17,500	
kilojoules per kilogram) of energy. Al would need to absorb 781 
divided by 1,900, which equals 0.411 pounds (0.186 kilograms) of 
peanut butter.

	 •	Fats,	on	average,	provide	4,200	kilocalories	per	pound	(38,750	
kilojoules per kilogram) of energy. Al would need to absorb 781 
divided by 4,200, which equals 0.186 pounds (0.0843 kilograms) of 
fast food.

Searching for efficiency of food energy
Determining the amount of food you should eat so the power in equals the 
power out is difficult and varies from one person to another. However, con-
sider these general properties when determining the efficiency of the food:

 ✓ Consider the ability of the body to absorb the food. For example, if you 
take vitamins or other supplements, then the amount absorbed by your 
body will depend on the pills’ casing. The chalky pills dissolve very rap-
idly, and the body absorbs the majority of the drug, whereas the easy 
swallowing plastic pills pass through the body quickly before the body 
absorbs the drug. Usually, most foods aren’t as extreme, but the amount 
of nutrients absorbed will depend on the individual person’s body.

 ✓ The food is broken down into its nutrients, which are absorbed, and some 
of the nutrients need enzymes to metabolize. The amount of enzyme 
changes from person to person and from one ethnic group of people to 
another. For example, lactase is the enzyme that metabolizes lactose into 
glucose and galactose. In some regions of Africa, almost the entire adult 
population has a deficiency of lactase and they’re lactose intolerant, 



246 Part III: Making Your Blood Boil — The Physics of Fluids 

whereas in northern Europe the opposite situation is true, allowing the 
northern European adults the ability to consume milk products.

  The nutrients, such as sugar interact with oxygen within the cells to 
produce materials such as adenosine-5’-triphosphate (ATP). The energy 
involved in this process is split almost in two with about half going into 
heat and the other half stored in the ATP. The ATP is the workhorse of 
biological systems. Whenever energy needs to be transported within a 
cell or work needs to be done, the ATP does the job.

 ✓ Only 50 percent of the energy is now available for doing work. When 
doing more than lying in a vegetative state, the body must do mechani-
cal work, but it also must do internal work, such as maintaining correct 
posture, breathing harder, making faces, biting your tongue, and so on. 

  You can quantify the efficiency of doing mechanical work with this 
 formula:

  In this formula, Pwork is the power needed to do the mechanical work, Pint 
is the total power output while doing the mechanical work, and PBMR is 
the basal metabolic rate.

 You want to estimate Al’s efficiency during his one-hour jog. You’ll need 
some numbers in order to calculate the efficiency:

  I made some measurements of Al, and found that Al is 5 foot, 8 inches (68 
inches = 1.73 meters), 180 pounds (81.6 kilogram mass), and 21 years old.

  I was able to calculate Al’s BMR to be 1,890 kilocalories per day (7,920 
kilojoules per day = 91.6 watts). (See the previous section.)

  I measured Al used an extra 93.6 kilocalorie per (day-pound) (which 
equals 10 watts per kilogram) of power during his jog. This means Al’s 
total power output during his 1-hour jog is 18,740 kilocalories per day 
(908 watts). (See the previous section.)

  Al jogs at an average speed of 5 miles per hour (8.05 kilometers per hour, 
which is 7.33 feet per second or 2.23 meters per second). 

  To calculate Al’s mechanical power output: I will assume the coefficient 
of static friction between Al’s shoes and the ground is 0.8 and he is using 
only 10% of his maximum static friction while he is jogging. In addition, 
I noticed that Al’s center of mass remains approximately horizontal 
while he is jogging so the work done against gravity zero. Therefore, the 
mechanical power output is

  The mechanical power output by Al is Pwork = 106 foot pound per 
second = 143 watts = 2,950 kilocalories per day.
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Solve the problem following these steps:

 1. Determine the equation needed and understand the problem to calcu-
late Al’s efficiency.

  I give the formula you need to calculate the efficiency just before the 
problem. To calculate the efficiency you need to find –– Al’s BMR –– 
(which I have given in the problem), Al’s total power output (which I 
have given in the problem), and the mechanical power output (which 
I have also given in the problem). Therefore, you know everything to 
find Al’s efficiency.

 2.  List the numbers given.

  Making a list eases finding the numbers when you need them:

  Al’s BMR is PBMR = 1,890 kilocalories per day (91.6 watts).

  Al’s total power output is Pint = 18,740 kilocalories per day (908 watts).

  Al’s mechanical power output is Pwork = 106 foot pound per second = 143 
watts = 2,950 kilocalories per day.

 3. Calculate the efficiency.

  You know all three powers, so you can calculate the efficiency by sub-
stituting the numbers into the earlier formula. Note you have to be care-
ful you use the powers with the same set of units. I give you all three 
powers in kilocalories per day and in watts. Feel free to use either set in 
your calculation. For fun, I convert the first two powers to units of foot-
pound per second. Al’s efficiency of converting energy into mechanical 
work while jogging is as follows:

Eliminating Product from the Body
The body is constantly recycling –– in with the new and out with the old. For 
example, on average the human body has about 0.5 pounds (0.23 kilograms) 
of ATP at any given moment, but during a 24-hour period, the body will use 
its weight in ATP. These sections deal with enzyme kinetics, which is the 
study of the reaction rate of an enzyme in metabolizing a material (a chemi-
cal or drug). Here I introduce the concept of the decay constant and half-life 
and look at when the dosages are large and saturation occurs, which means 
the body can’t eliminate the compound fast enough and drug overdoses can 
occur.
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Keeping doses low — classical kinetics
The simplest model used for modeling the elimination of material from the 
body is known as classical kinetics. The model assumes that after a given 
amount of time, called the half-time, half the material is eliminated. This half-
time is assumed to be a constant.

A random decay process can be modeled by the two formulae (which are 
equivalent):

In the two equations Ninitial is the initial number of molecules (particles) 
within the body, and after an elapsed time Δt, the body has Nfinal molecules 
(particles) left. λ is called the decay constant, which tells you how fast the 
molecules (particles) are disappearing from the body. The two equations are 
the same equation, but written slightly differently. The equation on the left 
is convenient for finding Ninitial or Nfinal; whereas the equation on the right is 
convenient for λ or Δt.

Meanwhile a half-life is how long you have to wait before half the molecules 
(particles) have disappeared. It’s related to the decay constant as this for-
mula shows:

Use the preceding material in this section to solve this problem.

 If you don’t eat or drink, then half of the carbon in your body will be gone 
after 35 days. Suppose you fast with no liquids for 24 hours, what per-
centage of carbon will your body lose?

 1. Determine the equation and understand the problem so you can find 
the ratio of Nfinal divided by Ninitial. 

  The percentage lost is another way of saying the problem wants you to 
calculate the ration of Nfinal divided by Ninitial. This means you need to use 
the left formula, and you have to find the numbers for the decay con-
stant and the elapsed time.

 2. Find the numbers for the decay constant and the elapsed time.

  The problem states half the carbon in your body will be gone in 35 days, 
this is the half-life: T1/2 = 35 days

  The problem states you are fasting for 1 day, so the elapsed time is 1 day.
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 3. Calculate the decay constant from the half-life.

  The decay constant can be calculated from the half-life: λ = ln(2)/T1/2 = 
0.0198 per day

 4. Calculate the ratio of the numbers from the decay process formula 
and the percentage lost.

  You know enough to use the random decay process formula to calculate 
the ratio of Nfinal divided by Ninitial and hence find the percentage lost of 
carbon in your body:

  Your body will lose 1.96% of its carbon after one day.

You can apply this decay process to the enzyme kinetics. The rate at which a 
type of molecule is being metabolized by enzymes is:

In this formula, Cs is the concentration of the molecules being metabolized 
by the enzymes. A molecule bound to an enzyme is called a substrate, hence 
the subscript s. λs is the decay constant of the molecules being metabolized 
by the enzyme. ΔCs divided by the Δt is the rate at which the concentration 
of the substrate is being changed by the enzyme. The negative sign indicates 
the substrate is being eliminated by the body. The term on the left-hand side 
is the rate at which the product is being produced by the metabolizing of the 
substrate. The np is present because there isn’t necessarily a one-to-one cor-
respondence between the amount of product produced and the amount of 
substrate being eliminated. For example, if you take a single glucose molecule 
and metabolize it, the molecule can produce up to forty ATPs. (It takes two 
ATPs to start the process so the maximum yield is 38 ATPs.)

If the substrate’s decay constant doesn’t change in time, then this equation 
takes on the following form (using calculus):

Remember exp[x] = ex = (2.718282…)x.
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Indulging too much — Michaelis-Menten 
kinetics
One problem with the previous set of equations for classical kinetics is the 
assumption that your body has an unlimited supply of enzymes to metabo-
lize the molecules. The larger the concentration of molecules means the 
faster the rate at which they’re metabolized. The Michaelis-Menten kinetics is 
a model that takes into account the limited amount of enzymes and enforces 
a finite maximum rate at which the molecules are metabolized, which the fol-
lowing formula demonstrates:

The formula is left of the arrow. The right side of the arrow shows what hap-
pens to the right side of the formula in special limiting cases. In this formula, 
vmax is the maximum rate at which the enzyme can metabolize the molecules 
and Km is the substrate concentration at which the rate of metabolization is 
half the maximum value.

The last part of the formula after the arrow shows what happens to the 
Michaelis-Menten equation in limiting cases. In the case of very low concen-
trations, the metabolic rate looks the same as in the previous section, but 
with two new parameters: vmax and Km instead of a single decay constant. 
In the case of very large concentration the metabolic rate in the Michaelis-
Menten equation is a constant as shown by the bottom expression in the 
bracket. Figure 11-1 shows the concentration rate of the product as a func-
tion of the concentration of the substrate for the Michaelis-Menten model 
(solid line) and compares it to the classical kinetics result (dashed line).
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In this figure, the dashed line is the classical model from the previous sub-
section and the solid line is the Michaelis-Menten model. If vmax and Km are 
constants, then you can write a relationship between the concentration and 
time as:

The elimination of alcohol that has been consumed obeys the Michaelis-
Menten kinetics rather than the classical kinetics in the previous section. 
Approximately 5 percent of the alcohol consumed will be excreted through 
urine, feces, breath, and sweat, and the rest is eliminated through hepatic 
metabolism by the alcohol dehydrogenase enzymes. These enzymes reach 
saturation very rapidly even by normal alcohol consumption, so the rate of 
conversion of the ethanol into acetaldehyde, which is then metabolized into 
acetic acid by the acetaldehyde dehydrogenase enzyme, occurs at a constant 
rate of vmax. Unfortunately, the value of vmax varies vastly amongst humans, 
even when you take into consideration the person’s ethnic background, 
gender, and age.

Use the preceding information in this section to solve this problem.

 Barney went to the bar with some friends and had a few too many drinks. 
Barney has his own kit and tested his blood-alcohol level before driving. 
The test stated his blood-alcohol level was 0.12 percent (by volume). 
How long does Barney have to wait for his blood level concentration 
to drop to 0.05 percent (by volume)? Luckily, Barney has recently con-
ducted some tests and determined the parameters describing his body’s 
ability to metabolize alcohol are: vmax = 3.5 millimoles per (liter hour) and 
Km = 2.0 millimoles per liter.

To figure out this problem, follow these steps:

 1. Determine what equation you need and understanding the problem.

  You know the amount of alcohol in a person’s body obeys the Michaelis-
Menten kinetics, so use this formula for this problem. You’re asked to 
find the time given the initial and final concentrations of the alcohol in 
the blood. You’re also given vmax and Km.

 2. Find the numbers for the concentrations and the parameters.

  You’re told the concentrations in a standard form of measurement, but 
that information doesn’t help, so the units need to be changed. I can 
help you change the units:
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	 •	0.12	percent	(by	volume)	=	26.1	millimoles	per	liter	=	0.428	milli-
moles per cubic inch

	 •	0.05	percent	(by	volume)	=	10.9	millimoles	per	liter	=	0.179	milli-
moles per cubic inch

	 •	Barney	said	his	body’s	maximum	rate	at	which	the	enzyme	can	
metabolize the alcohol is vmax = 3.5 millimoles per (liter hour)

	 •	Also,	Barney	said	his	body’s	other	parameter	is	Km = 2.0 millimoles 
per liter.

 3. Substitute the numbers into the formula and solve.

  I help by rearranging the Michaelis-Menten kinetics equation using the 
properties of logarithms and isolate for time:

  Barney’s blood-alcohol level will be down to a legal level in 4.84 hours. 
Barney should call a taxi.



Part IV
Playing the Music Too  

Loud — Sound and Waves

 Visit www.dummies.com/extras/biophysics for more informative Dummies 
content online about biophysics.

Important formulas to remember  
in this part

When working with sound and waves in biophysics, these formulas are a few that play an 
important role. Master them to help you solve different problems you may encounter:

 ✓ Diffusion coefficient: 

 ✓ Fick’s law: 

 ✓ Flux: 

 ✓ An object’s position in harmonic motion: 

 ✓ An object’s velocity in harmonic motion: 

 ✓ An object’s acceleration in harmonic motion: 

http://www.dummies.com/extras/biophysics


In this part . . .
 ✓ Discover what harmonic motion is and the physical properties 

of harmonic oscillators and why they’re important in 
biophysics.

 ✓ Grasp how sound waves are produced and what the different 
physical properties of sound waves are and how they combine 
to form interesting sounds.

 ✓ Know how to identify the different types of waves and all their 
interesting properties and see how waves interact with other 
waves and with objects, both living and inanimate.

 ✓ Explore the physics of musical instruments, including how they 
produce specific notes that are pleasant to hear instead of a 
collection of tuning forks.

 ✓ See how the Doppler Effect works when the source of the 
wave and the listener are different and understand how  
nocturnal animals use the Doppler Effect.

 ✓ Examine the applications of sound, such as the different ways 
that animals use echolocation or how ultrasound imaging 
works. 

 ✓ Delve into the importance of your ears and uncover the functions 
and properties of the inner ear, middle ear, and outer ear. 



Chapter 12

Examining the Physics  
of Waves and Sound

In This Chapter 
▶ Tackling harmonic motion
▶ Describing waves and their properties
▶ Bouncing waves off walls 

W 
aves and harmonic motion (such as a swinging pendulum) play an 
important role in biophysics. Waves and particles are how objects 

interact with biological systems. For example, suppose Charles wants to tor-
ture you; he can either throw water balloons (particles) at you or he can sing 
(waves). Many aspects of biophysics depend on the properties of waves. You 
need to understand waves before you can understand hearing, sound, ultra-
sound imaging, or echolocation. 

So what is a wave? A wave is a physical disturbance that transfers energy 
through space, whereas harmonic motion is a motion that repeats itself over 
some finite period. The definition for harmonic motion seems easy to grasp, 
but the wave definition doesn’t seem that helpful; however, it will make sense 
if you read on. 

This chapter explains what waves and harmonic motion are and some of 
their properties. This chapter also looks at what happens to a wave when 
it hits a boundary. Understanding this information can help you grasp how 
sound travels through walls (and keeps your neighbors awake), how light 
propagates through windows, and how light bounces off a mirror.
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Comprehending Harmonic Motion
Harmonic motion is a repeating motion, such as a beating heart or the first 
few bounces after bungee jumping off a bridge and then the swinging motion 
afterwards. Harmonic motion is also the swinging motion of gymnasts on the 
high bar or the swing of the arm or leg while walking. These examples are 
just a few of the situations where harmonic motion plays a role. Many areas 
of biophysics use harmonic motion, so this information not only can help in 
your biophysics course, but also in your future endeavors. The following sec-
tions look at how you can describe repeating motions and apply harmonic 
motion in biophysics. 

Explaining harmonic motion in action
The easiest way to describe harmonic motion is to realize that an object in 
harmonic motion has an equilibrium position (xeq) that the object oscillates 
around. In some situations, knowing the position of an object undergoing 
harmonic motion is important. For example, two trapeze artists need to know 
the position of each other when doing stunts. The mathematical description 
of the object’s position is as follows:

In this formula, x is the position of the object at time t, xeq is the equilibrium 
position of the object if it weren’t bouncing back and forth, A is the amplitude 
of the oscillations (how far the object will move from the equilibrium posi-
tion), f is the frequency of the oscillation (refer to the next section for more 
on frequency), and δ is the phase shift. The most common phase shifts are 
δ = 0 radians and δ = π/2 radians (90 degrees).

 Meanwhile the velocity is a measure of how fast the object’s position is chang-
ing. In the case of harmonic motion, the velocity of the object is represented 
by this formula:

In this formula, v is the velocity of the object at time t, and the rest are the 
same as in the expression for position. Notice that the maximum speed of 
the object is vmax = 2 π f A and it occurs when the object is at its equilibrium 
position. 
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Similarly, the acceleration is a measure of how fast the object’s velocity is 
changing. According to Newton’s second law of motion, the law of accelera-
tion (refer to Chapter 6 for more information about this law), the acceleration 
equals the net force divided by the mass. In the case of harmonic motion, this 
formula represents the acceleration of the object:

Here FNET is the net force acting on the object, m is the mass of the object, a 
is the acceleration of the object at time t, and the rest are the same as in the 
expression for the position and velocity. Notice that the maximum accelera-
tion of the object is amax = 2 π f vmax = (2 π f)2 A and it occurs when the object 
is farthest from its equilibrium position. This makes sense that the farther 
from equilibrium the greater the force trying to bring the object back to 
 equilibrium.

 The force, acceleration, velocity, and position are all vectors and should have 
arrows above them in these three equations. (Refer to Chapter 3 for more 
information about vectors.) Hence the amplitude, A, is also a vector. I’ve writ-
ten the physical quantities as scalars because in most biophysical harmonic 
motion situations, they’re either one-dimensional motion or circular motion. 
In addition, circular motion can be consider one-dimensional motion if studied 
in terms of the angle.

Weighing a virus: Applying Hooke’s law 
and harmonic motion
Suppose you have a spring that obeys Hooke’s law with a weight on the end. 
Hooke’s law states that the force is proportional to the displacement from 
equilibrium. In other words, if you pull the weight away from equilibrium and 
let go, then the weight will bounce back and forth around the equilibrium 
with harmonic motion. Mathematically, Hooke’s law is as follows:

FHooke is the force acting on the harmonic oscillator, kH is Hooke’s constant, 
x is the position of the mass at time t, xeq is the equilibrium position of the 
mass where there is no force acting on the mass, A is the amplitude of the 
oscillations in the position, f is the frequency, and δ is the phase shift.

The formula for Hooke’s law can be compared to the force equation for 
 harmonic motion in the previous section. The comparison shows that f (the 
frequency) is fixed to a specific value: (2π f)2 = kH/m by setting Fnet = FHooke. 
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The time it takes the weight to make one full oscillation is called the 
period (T), and it’s related to the frequency (f):

You can use Hooke’s law to weigh a virus. In 2012, scientists were able to 
weigh a single hemoglobin cell for the first time. They used a device called 
a nanoelectromechanical resonator, which was capable of measuring the 
weight of nanoparticles and human antibody molecules. This resonator used 
the same principles as strumming a guitar string to produce a specific note 
and then pressing down on the string to change the note played. (Chapter 13 
takes a closer look at the acoustic guitar.) Here I discuss a different tech-
nique used to measure the weight of a virus.

A cantilever vibrates with a certain frequency. If you place a mass on the end 
of the cantilever, it vibrates with a different frequency. By measuring the 
change in the frequency, you can calculate how much mass was added to the 
cantilever. Because a virus is so small, you need a cantilever that is also small.

To help you visualize, picture a swimming pool and a diving board. The 
board bounces at a different frequency when no one is standing on it com-
pared to when a diver is standing on the end of the diving board. The diving 
board is the cantilever and the diver the virus. 

 You’re given a virus and asked to calculate the mass and weight of the 
virus. In addition, you’re told the weight of the cantilever is 4.5 × 10–19 
pounds (2.00 × 10–19 newtons) or the mass is 1.40 × 10–20 slugs (2.04 × 10–19 
kilograms). You go to the lab and perform the experiment to collect the 
data: You start the cantilever oscillating and measure a frequency of  
2.0 × 1015 Hertz without the virus. You then stop the cantilever and place 
the virus on it and then start it vibrating again. This time you measure 
the frequency of the oscillations to be 3.0 × 1014 Hertz. 

To solve this problem, stick to these steps:

 1. Understand the physics in the problem.

  Think of the cantilever as a spring tied to the ceiling with a mass 
attached to the bottom of the spring. The spring is allowed to bounce up 
and down. This is a harmonic oscillator, and the relationship between 
the frequency, mass, and Hooke’s constant is given in the last formula. 
You need to use this formula twice: once with the mass being just the 
mass of the cantilever and once with the mass equal to the mass of the 
cantilever plus the mass of the virus. 

  In addition, Hooke’s constant doesn’t change when the virus is added to 
the cantilever.
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 2. Find the numbers before the virus is placed on the cantilever.

  The formula has three variables: kH, m, and f:

  You’re given the weight of the cantilever as 4.5 × 10–19 pounds (2.00 × 
10–19 newtons) and the mass of 1.40 × 10–20 slugs (2.04 × 10–19 kg).

  The frequency of oscillation without the virus is 2.0 × 1015 Hertz.

 3. Solve for Hooke’s constant.

 4. Find the numbers after the virus is placed on the cantilever.

  You just found Hooke’s constant to be 2.21 × 1012 slugs per second 
squared (3.22 × 1013 kilograms per second squared).

  You measured the frequency of oscillation with the virus to be 3.0 × 1014 
Hertz.

 5. Solve for the weight of the virus.

  Rearrange the formula for Hooke’s constant like this:

  To find the corresponding weight, remember that weight equals mass 
times g, where g = 32.2 feet per second squared (9.81 meters per second 
squared) is the acceleration due to gravity constant. The weight of the 
virus is 1.96 × 10–17 pounds (8.69 × 10–17 newtons).

Swinging in a swing: Applying  
gravity and harmonic motion
Another type of harmonic motion is the pendulum or swinging motion, such 
as your arms and legs swinging back and forth relative to the body as you 
walk. Although the swinging motion is a two-dimensional motion, you can 
describe the motion using the one-dimensional equations from the previous 
section. The trick is to describe the motion by using the angular variables. 
You can do so by switching the linear variables to angular variables in the 
formulas for harmonic motion. The formulas for harmonic motion become:
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 ✓ The angular position for swinging motion is

 ✓ The angular velocity for swinging motion is

 ✓ The angular acceleration for swinging motion is

The rest of this section focuses on swings and pendulums that are moving 
under the influence of gravity. Normally, the gravitational force is a constant 
in most biophysical applications. (An astronaut going into space is an excep-
tion.) However, if an object is doing harmonic motion, then the net force 
needs to look like the force in Hooke’s law. Therefore, if an object is swinging 
and it looks like harmonic motion, there must be more forces than gravity 
acting on it. Figure 12-1 shows a free-body diagram of an object swinging, 
assuming conservation of energy (no dissipative forces). This figure shows 
there are actually two forces acting on the person and the swing: the tension 
in the rod and the force of gravity. I assume the maximum angle made rela-
tive to the vertical direction is small. 

 

Figure 12-1:  
The free-

body 
diagram 

for a swing 
under the 

influence of 
gravity.

 

In order to solve this, use Newton’s second law, the law of acceleration, 
which states that the tension in the rod will hold the object in a circular path 
around the center, and the tangential acceleration is equal to the tangential 
component of the net force divided by the mass. (Refer to Chapter 4 for more 
information about this law.) Applying Newton’s second law to Figure 12-1, 
I obtain the first equation in the following formula for the angular accelera-
tion. (Note that if the angle, θ, is small then sin(θ) is approximately equal to 
θ in radian units not degrees.) The second equation is Hooke’s law from the 
previous section converted to angular variables.
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Here α is the angular acceleration, aT is the tangential component of the 
acceleration (see Chapter 4), L is the length of the rod, Ftan is the tangential 
component of the net force, m is the mass, Fg is the weight, θ is the angular 
position, NHooke is the torque from Hooke’s law, I is the moment of inertia (I = 
m L2 in this case), kH is Hooke’s constant, and θeq is the equilibrium angular 
position (θeq = 0 radians in this case).

You can see that the tangential component of Newton’s second law is in 
agreement with Hooke’s law if the angular position is always small. Also, 
Hooke’s constant is: kH = g I/L = g m L. 

If you use the equations for the angular acceleration and angular position, then 
for harmonic motion α = –(2 π f)2 (θ – θeq). You obtain the frequency by compar-
ing the tangential equation with this expression for the angular acceleration:

 I have two warnings: The first warning is that this formula is an approximation 
for when the angular position is small. The second warning is that in reality, 
the pole will have a mass, which may play an important role. The formula for 
the frequency assumes the pole has a small mass compared to the weight 
of an object located at L. If the pole has significant mass, then the pole and 
object will give a combined moment of inertia I, and a center of mass located 
at Lcm to give you the following:

These mathematical equations are useful if you want to know the physical 
quantities as a function of time. If you don’t care about the specific time 
dependence, then you should use conservation of energy:

In this formula, Emech is the mechanical energy, the middle set of terms 
between the two equalities is the final kinetic energy plus the final potential 
energy, and the terms to the right of the equalities is the initial kinetic energy 
plus the initial potential energy. m is the mass, L is the length of the pole 
(radius of the circle), ωfinal is the final angular velocity, f is the frequency, θfinal 
is the final angular position, ωinitial is the initial angular velocity, and θinitial is 
the initial angular position.

You have seen a lot of theory so far with no examples of how to apply these 
concepts. Use these formulas to solve a problem.
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 Assume you and a friend are swinging back and forth on a swing for two. 
Assume the length of the poles holding the swing up is 35 feet long 
(10.7 meters) and the total weight of the seat and the two of you is 
500 pounds (2,224 newtons) or a total mass of 15.5 slugs (227 kilograms). 
Assume the swing starts from rest at an angle of 5.0 degrees from the ver-
tical. What is the mechanical energy of the system? How long does it take 
the swing to go through one complete cycle? What is the maximum speed 
at which you’re moving?

To solve this problem, follow along with these steps:

 1. Draw a figure.

  Figure 12-1 shows my figure. Remember, a figure helps to visualize what 
is going on and helps you solve the problem.

 2. List the numbers given.

  The problem gives you a lot of numbers, and it’s easy to lose numbers 
and information when so much is given within the problem, which can 
be just as bad as when the problem doesn’t give you enough numbers 
and you have to go looking for information. The numbers given are

  The weight is m g = 500 pounds (2,224 newtons). The mass is m = 
15.5 slugs (227 kilograms). Remember g = 32.2 feet per second 
squared (9.81 meters per second squared).

  The length is L = 35 feet (10.7 meters).

  The initial angular velocity is ωinital = 0 radians per second.

  The initial angular position is θinitial = 5.0 degrees (0.0873 radians). 
Remember 180 degrees = π radians.

 3. Understand what physics and formulas are relevant.

  The problem asked you to find the mechanical energy. The mechanical 
energy is the last formula given, so you need the mass (m) (given), the 
length (L) of the pole (given), the frequency (f) (not given), the angular 
velocity (ωinital) (given), and the angular position (θinital) (given). Find the 
frequency first.

  The problem asked you find the time it will take to make one complete 
swing. That is the period (T) of the harmonic motion, which is equal to 
one divided by the frequency (f) (not given). Find the frequency first.

  The problem asked you to find the maximum speed of the swingers. (For 
circular motion, v = R ω from Chapter 4.) In this problem, vmax = L ωmax. 
Using the harmonic motion equations, you need the length (L) of the 
pole (given), the amplitude (A) (not given), and the frequency (f) (not 
given). Find the frequency and amplitude first.
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 4. Solve for the frequency.

  All three questions need the frequency, so you need to solve for that 
first. Use the formula for frequency. The frequency is

 5. Solve for the mechanical energy.

  You now have the frequency and the rest of the numbers you need. In 
addition, use the formula for the mechanical energy, so you have every-
thing. In this case, the mechanical energy is

  Solving this formula, you can see that the two swingers are swinging 
back and forth and have a constant mechanical energy of 2.63 × 103 foot 
pound (3.56 × 103 joules).

 6. Solve for the period.

  You now have the frequency and you know the relationship between the 
period and the frequency. The time of one full swing is the period:

  This is a fast swing, but they’re swinging over a maximum angle of only 
10 degrees. 

 7. Solve for the amplitude.

  The amplitude (A) of the harmonic oscillations is equal to the angular 
position when the angular velocity is 0 radians per second. Therefore, 
A = θinitial = 5.0 degrees = 0.0873 radians.

 8. Solve for the maximum speed.

  You’ll reach a maximum speed at the bottom of the swing, where the 
angular position is zero:

  Your maximum speed is 18.4 feet per second (5.61 meters per second = 
12.5 miles per hour = 20.2 kilometers per hour). They could probably 
use seat beats, especially if they’re focused on the sights and not the 
swinging. 
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Comprehending Waves  
and Their Properties

Objects in the universe have particle properties and wave properties. For 
instance, the water waves lapping on the shore are a good example of waves 
and their properties. Waves are a disturbance that transfers energy and 
allows objects to do work on other objects. This section helps you understand 
how this energy propagates through space and some wave properties.

A disturbance is anything that will cause things in that area of space to not 
be in their relaxed (lowest energy) condition. For example, a water wave will 
cause the water to move up the shore higher than it normally would. Or if 
you tap the table, it causes the molecules and atoms to move from the rest-
ing place.

These sections characterize some different types of waves and their proper-
ties, including what happens when waves hit each other. 

Dealing with all types of waves
Some waves are bad, such as your roommate singing out of key, whereas 
other waves are good, such as the person across the room that you want to 
meet waving at you. In biophysics, you’ll encounter all kinds of waves. Here 
I focus on just the physical waves (no hand waving here). An understanding 
of waves is important in all areas of life (and jobs) from music (recordings), 
to singing (microphones), to sight (glasses), to hearing (hearing aids), to all 
areas of scientific and engineering research. 

The following are some types of waves you may encounter:

 ✓ Longitudinal waves: They have a disturbance parallel to the direction of 
motion. 

	 •	Mechanical vibrations: They’re an oscillation back and forth of the 
material in the direction of wave propagation. Examples include 
tapping the table and pushing the atoms and molecules to oscillate 
in the direction of the wave’s propagation into the table; a coiled 
spring where the spring is made to oscillate in the direction of 
the coils; and elastic materials such as a bungee cord that is tied 
around your ankles when you jump off a bridge.
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	 •	Pressure waves in a gas: The compression zone has a high density 
of air molecules and a rarefaction has a low density of air mol-
ecules. A high pressure zone occurs in front of a compression zone 
and behind a rarefaction zone. A low pressure zone occurs behind 
a compression zone and in front of a rarefaction zone. Sound 
waves are longitudinal pressure waves propagating through air, 
so sound doesn’t travel through space (vacuum), contrary to what 
sci-fi movies tell you.

	 •	Shock waves: A star exploding is a blast of material moving in the 
direction of the wave. An earthquake generates seismic waves and 
some of these waves are longitudinal.

 ✓ Transverse waves: They have the disturbance perpendicular to the 
direction of motion. Here are three examples of transverse waves:

	 •	Vibrating string: Even though the strings in musical instruments 
are producing longitudinal waves (sound), the string has a trans-
verse wave moving through the string. Examples include guitar 
strings, piano strings, harp strings, and violin strings.

	 •	Surface water waves: The wave is propagating toward shore while 
the disturbance is lifting the water vertically upwards.

	 •	Electromagnetic radiation in free space: The different types of 
electromagnetic radiation include from low energy photons to 
high energy photons: radio waves, microwaves, radar, far infrared, 
infrared radiation, visible light, ultraviolet radiation, X-rays, and 
gamma rays.

 ✓ Single pulse waves: They have a single disturbance that propagates 
through space. They’re usually a single antinode. (An antinode is the 
location in space where the disturbance is a maximum.) Some examples 
include the following:

	 •	Rogue waves: They’re single crest ocean surface waves that have 
an amplitude more than double the background waves. 

	 •	Sonic booms: These are the initial shock waves created by an 
object moving through air faster than the speed of sound. 

 ✓ Continuous periodic waves: They have a continuous sequence of dis-
turbances over a long period of time propagating through space. Some 
examples include the following:

	 •	Surface water waves: Surface water waves lap onto the shore. 

	 •	Sunlight: All types of electromagnetic radiation from the sun are 
continuously propagating through space toward the earth.
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Grasping physical properties of waves
Physical properties are characteristics of the phenomenon or object that 
you expect it to have. For example, if I let go of my pen, it will fall toward the 
ground, whereas if I let go of a helium balloon, I will expect it to float up into 
the air. Waves have characteristics, which explain how they’ll behave in a 
certain manner. Biophysics is about understanding these properties so you 
can manipulate waves and use them to your advantage. Here are some of 
those physical properties.

Medium
Waves require a medium (no psychics here) for the disturbance to travel 
through, with the exception of electromagnetic waves. A medium is the sub-
stance that is being disturbed by the wave, and the wave needs the medium 
in order to exist. For example, fluid waves need a fluid to travel through 
(water waves stop at the beach). In addition, the medium doesn’t propagate 
with the wave. For example with surface water waves, a huge wall of water 
would build up on the shore if the water moved with the waves. Instead, the 
water makes a circular motion, going up and forward with the crest and then 
down and backwards with the trough. This motion creates undertows that 
can be very dangerous.

Amplitude
The amplitude (A) is the maximum magnitude of the disturbance. Different 
types of waves will have different types of amplitudes. The amplitude does 
not have to correspond to an actual displacement of the matter. For example, 
the amplitude has units of feet (meters) in the case of surface water waves; 
whereas it has units of pounds per square foot (pascals) in the case of sound.

 ✓ Nodes are places in the wave where the disturbance is zero. If you 
looked at a node, you wouldn’t be able to tell a wave was present.

 ✓ Antinodes are the locations in space where the disturbance is a maxi-
mum, which means the disturbance has a value of +A or –A. (A is the 
magnitude of the maximum disturbance.)

 ✓ Crests are antinodes of transverse waves with a disturbance of +A.

 ✓ Troughs are antinodes of transverse waves with a disturbance of –A.

Physical measurements of the wave
These are physical properties of waves related to space and time. 

 ✓ The wavelength (λ) is the distance between two successive crests (or 
compressions) or twice the distance between two successive nodes. The 
wavelength can be very short (gamma rays) or very long (radio waves).
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 ✓ The period (T) is the time you have to wait between two successive 
crests (or compressions) or twice the time between two successive 
nodes. Suppose you place a float or cork on the water (that can’t move 
horizontally) and you watch it go up and down as the waves pass. When 
the float is at its highest position, start timing while it drops and when 
it reaches its highest position again stop timing. That time span is the 
period.

 ✓ The frequency (f = 1/T) is the inverse of the period, and it measures how 
many crests (or compressions) pass a point every second. The units are 
Hertz (Hz), which equals cycles per second. The cycle is added because 
the period measures the time it takes a full wave to go by, whereas fre-
quency measures how many waves (or cycles) will pass through every 
second.

 ✓ The wavenumber (k = 2π/λ) is proportional to the inverse wavelength. 
It’s a measure of the number of waves that will fit in a given length, 
hence the name wavenumber. More specifically, the wavenumber (k) 
times some length divided by 2π gives the number of waves that will fit 
in that length. The units of the wavenumber are radians per foot (radi-
ans per meter), but the radians are usually dropped because radians are 
dimensionless.

 ✓ The angular frequency is ω = 2π f. The angular frequency (ω) times a 
period of time divided by 2 π will tell you how many waves you’ll see in 
that time. The units are radians per second.

Speed
Waves have an acceleration of zero, which means they move with a constant 
speed. The speed is a measure of how fast the disturbance is changing its 
position. (I talk in detail about the relationship between position, velocity, 
and acceleration in Chapter 3.) This property of waves means that the wave-
length and the frequency aren’t independent. The relationship between the 
speed of the wave and the space-time properties is v = λ f = ω/k. Note that 
some books use c for the speed of the wave because it is a constant.

 The speed of a wave depends on the type of wave and the material it’s moving 
through. Check out these examples:

 ✓ Light in air: v = 9.84 × 108 feet per second (3.00 × 108 meters per 
second = 6.71 × 108 miles per hour = 1.08 × 109 kilometers per hour)

 ✓ Light in glass: v = 6.56 × 108 feet per second (2.00 × 108 meters per 
second)

 ✓ Sound in air: v = 1,130 feet per second (344 meters per second = 761 
miles per hour = 1,220 kilometers per hour)

 ✓ Sound in metal: v = 16,500 feet per second (5,000 meters per second)
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 Two important properties of waves to remember: First, different waves of the 
same type have the same speed in the same medium. Humans can hear sound 
waves with frequencies from 20 Hertz up to 20,000 Hertz. All sound waves in 
air have a speed of 1,130 feet per second (344 meters per second) no matter 
what the frequency. Second, a wave traveling from one medium into another 
medium doesn’t change frequency. The speed and wavelength change from 
one medium to the other.

Going the math route with waves
Four mathematical models of waves exist. They are as follows: 

 ✓ Stationary: This wave doesn’t change in time. It’s represented by y(x) = 
A sin(k x + δ).

 ✓ Right-traveling: This wave moves toward the right when you look at it 
from the side. It’s represented by y(x,t) = A sin(k x – ωt + δ).

 ✓ Left-traveling: This wave moves toward the left when you look at it from 
the side. It’s represented by y(x,t) = A sin(k x + ωt + δ).

 ✓ Standing: This wave has nodes that don’t move in time. It’s represented 
by y(x,t) = A cos(ωt) sin(k x + δ).

In these formulas, y is the strength of the disturbance at the position x and 
time t. A is the amplitude of the wave, k is the wavenumber, ω is the angular 
frequency, and δ is the phase shift.

Adding linear superposition  
and interference
The linear superposition principle states that the net wave is the sum of all the 
waves present. Only the net amplitude changes with no other changes to the 
wave’s characteristics.

If you have a speaker playing music and turn on a second speaker, then the 
music gets louder — the amplitude of the two sound waves combine to give 
a larger amplitude. Similarly, if you’re reading Biophysics For Dummies by a 
single light, then you can increase the amplitude of the light wave by turning 
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on a second light. In both cases, the amplitudes are combined to increase the 
net amplitude of the wave.

Additionally this principle states that no other characteristics will change. To 
understand, look at your friend’s face. The light waves come in through the 
window, bounce off your friend’s face, and then travel to your eyes. As the light 
waves travel toward your eyes, they pass through other light waves coming 
in through the window. The waves don’t interact; if these waves did interact 
with each other as they pass through each other, then your friend’s face would 
change color or become fuzzy, possibly disappearing every once in a while. 

The resultant (net) wave is the combination of many waves. From the linear 
superposition principle, this means the resultant (net) wave is the sum of all 
the different waves’ strengths, y(x,t), at that point in space. Two possibilities 
can occur when the waves combine and interfere with each other: 

 ✓ Constructive interference occurs when the waves combine to increase the 
amplitude of the resultant (net) wave.

 ✓ Destructive interference occurs when the waves combine to decrease the 
amplitude of the resultant (net) wave.

Consider the following example. Two stationary waves are interacting. The 
waves are described by the parameters:

 ✓ The amplitudes are A1 = A2 = 1.

 ✓ The wavelengths are λ1 = 1 foot (or 1 meter) and λ2 = 2 feet (or 2 meters).

 ✓ The wave vectors are k1 = 2π radians per foot (or 2π radians per meter) 
and k2 = π radians per foot (or π radians per meter).

 ✓ The phases are δ1 = δ2 = π/2 radians. 

The resultant wave is

Figure 12-2 shows the resultant wave. The two waves have constructive inter-
ference at x = 0 feet (or 0 meters) and x = 2 feet (or 2 meters). The two waves 
have antinodes at x = 1 foot (or 1 meter), but they’re destructively interfering 
with each other and the resultant wave has an amplitude of zero.
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Figure 12-2:  
The resul-
tant wave 

of two 
interfering 
stationary 

waves.
 

Seeing the Effect of Boundaries  
on the Wave

Investigating the effects of the boundaries on waves is very important in 
biophysics because waves are almost always interacting with something, 
such as listening to the music or ultrasound imaging. These sections look at 
a wave traveling from one medium into another medium, at open and closed 
boundaries, and at the concept of resonance. 

Traveling from a medium  
into a denser medium
This section looks at the type of boundary when the wave travels from one 
medium into a denser medium. You can think of light or sound traveling from 
air into glass. Before I go into the effects of these boundaries, you should note 
the following: Denser medium is in regards to properties of the medium that 
are relevant to the specific wave, and it doesn’t necessarily mean the mass 
density. In the case of the light hitting a glass window, most of the light travels 
through the window, but I can take a wall that has the same mass density as 
my window and shine light on it; if so, none of the light will make it through.



271 Chapter 12: Examining the Physics of Waves and Sound

When a wave strikes a boundary, part of the wave bounces back and part of the 
wave goes into the second material. You can think of this interaction with the 
boundary as three waves that are connected and dependent upon each other. 
The three waves and the connection of their properties to each other are

 ✓ Incident wave is the wave you started with that is traveling along and 
then strikes the boundary.

 ✓ Reflected wave is the portion of the wave that bounces back from the 
boundary. The speed, frequency, and wavelength of the reflected wave 
are the same as that for the incident wave. The only difference between 
the two waves is the direction of their motion, and the phase shift is 
almost π radians shifted from the incident wave.

  The reason for the phase shift difference is so the amplitude of the 
reflected wave is inverted relative to the incident wave at the boundary 
and the waves destructively interfere with each other at the boundary. 
The second material is denser, so most of the wave is reflected and little 
of the wave is transmitted. If the incident and reflected wave are phase 
shifted by exactly π radians, then there is a node at the boundary and 
no disturbance will enter the second material and the entire wave is 
reflected. 

 ✓ Transmitted wave is the portion of the wave that moves into the denser 
material. The frequency of the transmitted wave is the same as the fre-
quency of incident wave. The phase shift is almost the same as the inci-
dent wave phase.

Traveling from a medium into  
a less dense medium
This section looks at the type of boundary when the wave travels from one 
medium into a less dense medium. You can think of light traveling from 
water into air. When a wave (the incident wave) strikes the boundary, part of 
the wave bounces back (reflected wave) and part of the wave goes into the 
second material (transmitted wave). Most of the properties are the same as 
the previous section, the big difference is this:

The reflected wave is the portion of the wave that bounces back from the 
boundary. The speed, frequency, and wavelength of the reflected wave are 
the same as the speed, frequency, and wavelength of the incident wave. 
Unlike the previous section, the phase shift is almost the same as the inci-
dent wave phase, so the amplitude of the reflected wave is reduced and it’s 
not inverted relative to the incident wave. This allows more of the wave to be 
transmitted into the second medium.
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Going to extremes: Open and  
closed boundaries
This section takes the boundaries to the extreme. The more dense material 
becomes infinitely dense (the wave can’t disturb the material) and the less 
dense material becomes a vacuum. Essentially, these are the cases where the 
wave can’t travel into the second material. Many examples and applications 
of these types of boundaries occur in biophysics. For example, in the case 
of a mirror, all of the light is reflected off it. In the case of a guitar string, the 
wave in the string travels to the end of the string then bounces off the end 
and goes back down the string. 

A closed boundary forces the wave to have a node at that point in space. 
The phase shift of the reflected wave is exactly π radians shifted relative to 
the incident wave’s phase shift, δr = δi + π, which is sometimes referred to 
as π-reflection. The reflected wave causes destructive interference with the 
incident wave at the boundary. An example is the vibrating string wave on a 
guitar string when the wave hits the tied down ends or when light strikes a 
mirror. 

Meanwhile, an open boundary forces the wave to have an antinode at that 
point in space. The phase of the reflected wave isn’t shifted relative to the 
incident wave (δr = δi). The reflected wave causes constructive interference 
with the incident wave. An example is a sound wave hitting the closed end of 
a clarinet.

Resonating with resonance
Resonant frequencies are special frequencies where a wave trapped between 
two (open and/or closed) boundaries bounces back and forth and interferes 
constructively with itself. The two boundaries restrict the value of the phase 
shift (δ) and the frequency (f/ω). The value of the wavelength (λ = v/f) and 
wavenumber (k = ω/v) are also fixed. If the boundaries are separated by a dis-
tance of L, the resonant frequencies are as follows:

In both equations n = 1, 2, 3 . . . , but in most cases n is small. f1 (n = 1) is 
called the fundamental frequency or fundamental harmonic.
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 You can easily remember the frequency formulas if you keep in mind one 
simple rule. If the two boundaries are the same type, then you must have an 
integer number of half-wavelengths between the two boundaries, whereas if 
the two boundaries are different, then you must have an integer number of 
half-wavelengths plus one-quarter of a wavelength between the two boundar-
ies. In addition, the resultant wave between the boundaries is a standing wave.

Use this information to solve the following problem.

 You and your roommate are standing in a stairwell with concrete walls 
when your roommate starts singing. Assume the entire sound wave 
bounces back and forth between the walls. If the stairwell is 5.00 feet 
(1.52 meters) across, what is the fundamental resonant frequency? What 
does the mathematical sine wave look like if one wall is at x = 0 feet 
(0 meters)? The speed of sound is 1,120 feet per second (341 meters per 
second).

To figure out this problem, follow these steps:

 1. Draw a diagram.

  Here your diagram should focus on the resonance of waves. Check out 
Chapter 13 for more details about the resonance of sound waves.

 2. Understand the physics and find the relevant formulas.

  The first question wants you to find the fundamental frequency when 
you have two boundaries of the same type. (The walls act as two closed 
boundaries for the air molecules’ harmonic displacement and have 
nodes at the walls.) You need the speed of the wave, the length between 
the two boundaries, and the integer n.

  Use the standing wave formula to find the angular frequency, the wave-
number, and the phase shift.

 3. Find the numbers for the fundamental frequency.

  The speed of sound is v = 1,120 feet per second (341 meters per second).

  The distance between the boundaries is L = 5.00 feet (1.52 meters).

  The integer n = 1 for the fundamental resonant frequency.

 4. Solve for the fundamental resonant frequency.

  Mathematically, fill in the numbers to the equation for resonance such as

  If your roommate has a loud voice and the walls are good at reflecting 
sound waves, then you’re in trouble.
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 5. Find the numbers for the mathematical sine wave.

  The problem tells you that one of the walls is located at x = 0 feet 
(0 meters), which must be a node, which means sin(δ) equals 0, which 
is satisfied if the phase δ equals 0 radians.

  The angular frequency is ω1 = 2 π f1 = 2π (112 Hz) = 704 radians per 
second.

  The wavenumber is k1 = ω1/v = (704 rads/s)/(1120 ft/s) = 0.628 radians 
per foot (2.06 radians per meter).

 6. Solve for the mathematical sine wave.

  The mathematical formula for the sinusoidal standing wave describing 
the air molecules’ displacement is

The wave is always zero at x = 0 and at x = L = 5.00 feet (1.52 meters). At x = 
L/2 = 2.50 feet (0.762 meters), this wave has an antinode. (You obtain the 
sound wave by switching the sine to a cosine. See Chapter 13 for more info.)



Chapter 13

Grasping How Animals and 
Instruments Produce  

Sound Waves
In This Chapter 
▶ Probing the properties of noise
▶ Vibrating with the sound: Resonance
▶ Making sweet music with cords 

A 
nimals use sound for different functions, such as mating and echo-
location. The range of sounds produced by humans is amazing. Most 

animals actually have a very limited range of sounds, but some like the crow 
can produce more than 50 distinct sounds, whereas the human species uses 
sounds for communication and entertainment. 

Sound waves are pressure waves that propagate through material, which 
allows a person to transmit energy to another person. The energy interacts 
with the other person’s ear and produces a signal, which the brain interprets. 
Hearing is one of the five senses, and how to produce sounds and music as 
opposed to noise is an important concept in biophysics.

This chapter focuses on longitudinal pressure waves, which most people 
refer to as sound. Here I look at the properties of sound waves and discuss 
the properties of making music and singing. I also discuss resonance in musi-
cal instruments and then focus on how the guitar and the human voice make 
sound. 
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Knowing the Nature of Sound  
and the Speed of Sound 

You may have noticed that the sounds produced by people and animals 
sound different. This section discusses the properties of sound that make 
noises sound different and the physical properties of sound that remain the 
same between different sounds. 

Vibrating the air and pressure waves
Sound waves within air are longitudinal pressure waves, which means that 
the air molecules are vibrating back and forth in the direction the wave is 
moving. This is contrary to water waves where the water moves up and down 
in the vertical direction as the waves move horizontally towards the shore. 

These waves form alternating compression and rarefaction zones of the 
air molecules. A compression zone is a region where there are more air 
molecules than you would expect, and a rarefaction zone is a region with a 
shortage of air molecules. If you have a compression zone with too many air 
molecules, then the air molecules want to spread out creating a pressure 
(force per unit area). 

The following mathematical models describe these pressure waves:

In these models, P(a) is the net pressure with the superscript a meaning 
absolute pressure, and Patm is the atmospheric pressure if no sound wave is 
traveling through the air. P(g) = P(a) – Patm is the gauge pressure. The standard 
is Patm = 1 atmosphere = 14.69 pounds per square inch = 2,116 pounds per 
square foot = 101,300 pascals.

 The sound wave propagates through space, but the air molecules vibrate 
with harmonic motion. Harmonic motion means motion that repeats over and 
over, such as a weight attached to a spring bouncing up and down. The air 
molecules move back and forth. Many properties of this harmonic motion are 
related to the pressure wave properties, because the harmonic motion of the 
air molecules are creating the pressure wave:
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 ✓ The wavenumber (k) of the harmonic motion of the air molecules is the 
same as the wavenumber (k) of the sound (pressure) wave.

 ✓ The angular frequency (ω) of the harmonic motion of the air molecules is 
the same as the angular frequency (ω) of the sound (pressure) wave.

 ✓ The harmonic motion of the air molecules is a quarter wavelength ahead 
of the sound (pressure) wave. The phase shift is

  To understand this shift, consider a single air molecule in the middle 
of a compression zone. An equal density of air molecules exists on 
both sides and the pressure (force) will balance. In the case of an air 
molecule in front of the compression zone, the density of air molecules 
behind the air molecule is greater than the density in front of it, so the 
air molecule will feel a net pressure (force) forward. An air molecule 
behind a compression zone will feel a net pressure (force) backwards 
because the density of air molecules in front is greater than the density 
of air molecules behind it. The situation for a rarefaction is reversed.

 ✓ The average amplitude of the harmonic motion of the air molecules is 
related to the amplitude of the sound (pressure) wave:

  Δx is the average amplitude of the harmonic motion of air molecules, ΔP 
is the amplitude of the pressure (sound) wave, f is the frequency, v is 
the speed of the wave, and ρ is the mass density of the air.

For example, a 1,000 hertz sound wave will cause the eardrum to rupture 
if the pressure wave has an amplitude ΔP = 0.60 pounds per square foot 
(29 pascals) or the air molecules have a harmonic oscillation amplitude 
of 3.36 × 10–7 feet (1.11 × 10–7 meters). The amplitude of the air molecules’ 
 harmonic motion is approximately one thousand times smaller than the 
diameter of a human hair. 

Speeding ticket for sound
The speed of sound depends on the properties of the material and the tem-
perature. These sections examine the relationship between the speed and the 
properties of the material and the relationship between the speed of sound in 
air and the temperature of the air.
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Identifying the speed of sound in different materials
Knowing the speed of sound is important in different areas of biophysics. For 
example, for animals that use a frequency modulated echolocation, know-
ing the speed of sound allows them to estimate the distance to an object if 
they know the time lapse between the chirp and the echo. (Humans estimate 
distances by triangulating with their eyes.) In addition, the speed of sound 
through objects provides a lot of information about the properties of the 
material.

The speed of sound in a material is as follows:

Here v is the speed and ρ is the density of the material. For liquids and gasses 
K is the adiabatic bulk modulus. The adiabatic bulk modulus is a measure of 
how easy it is to compress the material. In the case of solids, the situation 
can be more complicated. The sound wave can be a longitudinal wave or it 
can be a transverse wave like a water wave. If the motion is longitudinal and 
there is no transverse vibration of the solid, then K is replaced with Young’s 
modulus and you can ignore the shear modulus. I discuss Young’s modulus 
and the shear modulus in Chapter 6.

Focusing on the speed of sound at different temperatures
Degree Fahrenheit (degree Celsius) is usually used instead of kelvin when 
talking about everyday temperatures, but for the speed of sound, which 
depends on the temperature, you need to use kelvin units. In air, use this fol-
lowing formula:

Here, γ is the ratio of the specific heat at constant pressure divided by the 
specific heat at constant volume, R is the ideal gas constant, M is the molecu-
lar mass, and TK is the temperature in kelvin. I provide the conversions 
from degree Celsius and degree Fahrenheit to kelvin. TC is the temperature 
in degree Celsius and TF is the temperature in degree Fahrenheit. On a hot 
Texas day, TF = 130° Fahrenheit (TC = 54° Celsius) and the speed of sound is 
v = 1,193 feet per second (364 meters per second); whereas on a cold Siberian 
day, TF = –58° Fahrenheit (TC = –50° Celsius) and the speed of sound is v = 985 
feet per second (300 meters per second).
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Exploring the physical properties of sound
The power, intensity, and intensity level are physical properties of sound 
that allow you to quantify the sound instead of just having a qualitative 
description.

The intensity of a sound wave is a measure of the wave’s potential to do work 
(for example, making the eardrum vibrate). The larger the intensity, the 
larger the pressure and the more work it can do on the eardrum. The inten-
sity (I) is defined as

Here, ΔP is the amplitude of the pressure wave, ρ is the density of the 
medium, and v is the speed of the wave. 

The intensity of sound waves can vary a lot, and it’s surprising how large a 
range of intensities animals can hear. For example, humans can hear sound 
waves with an intensity less than 6.855 × 10–14 pounds per (second foot) (10–12 
watts per square meter) up to sound waves with an intensity greater than 
6.855 × 10–2 pounds per (second foot) (1 watt per square meter). Therefore, 
using a logarithmic scale is more convenient, which is called the intensity 
level. Intensity level (β) is defined as

dB is short for decibels, which is a dimensionless set of units similar to radi-
ans used in angle measurements. β is the intensity level, I is the intensity, and 
the reference intensity Io = 6.855 × 10–14 pounds per (second foot) (10–12 watts 
per square meter) is a constant, which is equal to the human threshold of 
hearing at 1000 hertz.

Remember, the power is the work divided by the time. For sound waves, the 
power is also known as the acoustic power. The sound wave can do work 
moving the eardrum back and forth. Also, the power is related to the inten-
sity; the intensity is a measure of the amount of power in the wave per unit 
cross-sectional area. The power is

Here P is the power, I is the intensity, and A is the cross-sectional area.
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In many problems, you can assume that the sound wave conserves energy, 
which means that the medium (air molecules) doesn’t absorb any of the 
wave’s energy. Therefore, the power is a constant that doesn’t change, which 
gives a condition on how intensity (and intensity level) changes as a func-
tion of the area. The mathematical relationship for conservation of (sound) 
energy is

Here I is the intensity, β is the intensity level, A is the cross-sectional area, 
and R is the distance from the sound wave source.

 Suppose your family is at a concert. A speaker is producing sound waves 
in a hemispherical shape that has an intensity level of 120 decibels at 1 
foot (0.3048 meters). What are the intensity, power, and the amplitude of 
the sound wave at this distance? Suppose your family is standing 100 feet 
(30.48 meters) from the speaker. What are the intensity level, intensity, 
power, and the amplitude of the sound wave at this location?

To solve this problem, follow these steps:

 1. Understand what the problem wants you to solve.

  The equations you need give relationships between the power (P), the 
intensity (I), the intensity level (β), the area (A), the amplitude of the 
pressure wave (ΔP), and the amplitude of the air molecules’ harmonic 
motion (Δx). You also need the speed of sound and the density of air.

  You need to use conservation of energy, so that the total power at 100 
feet is equal to the total power at 1 foot.

 2. Find the numbers you need to solve the problem.

  The density of air is ρ = 0.00232 slugs per cubic foot (1.20 kilograms per 
cubic meter).

  The speed of sound is v = 1,130 feet per second (344 meters per second).

  A hemispherical area is A = 2πR2 (half a sphere).

  β1 = 120 decibels at R1 = 1 foot (0.3048 meters).

 3. Solve the problem at 1 foot.

  First, you can use the intensity level to find the intensity. After you know 
the intensity and the area, you can find the power and the pressure 
wave amplitude.
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 4. Solve the problem at 100 feet.

  Using conservation of energy, the sound waves beating on your family’s 
ears are described by the following properties:

The power hasn’t changed; the intensity is 10,000 times smaller, the inten-
sity level is 80 decibels, which is still loud (normal conversation is between 
65 and 70 decibels), and the amplitude of the pressure wave is 100 times 
smaller.

Resonating with Vibrations  
and Resonance

Consider a sound wave trapped between two boundaries. The sound will 
bounce back and forth, reflecting off boundaries and interfere with itself. 
Usually, the waves work against each other and reduce the amplitude of the 
resultant wave, which is called destructive interference. However, at certain 
frequencies, the sound will reflect off the boundaries and work together to 
enhance the amplitude, which is called constructive interference. These fre-
quencies are called resonant frequencies (resonance). 
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Changing the radius of the instrument can alter the timbre of a musical 
instrument. Timbre is the ability to tell the difference of a B-note being pro-
duced by a tuning fork, flute, and a clarinet. You can determine the timbre 
from two factors:

 ✓ Spectrum: The set of harmonics activated by the instrument.

 ✓ Envelope: The shape of the waveform created by the harmonics with 
differing amplitudes.

 The air molecules’ vibrations inside the musical instrument aren’t a perfect 
harmonic oscillator, but a damped harmonic oscillator losing energy through 
viscosity with the pipe walls. When the instrument’s radius is large, a very 
small percentage of the air is in contact with the walls so little energy is lost 
and only those frequencies close to the resonance condition will make it 
through the instrument. 

As the radius shrinks, a larger percentage of the air molecules are in con-
tact with walls, so more energy is lost to viscosity, which means that the 
amplitude of the sound making it through drops, but the range of frequen-
cies, around each of the resonance frequencies, increases. In addition, the 
amplitude of fundamental frequency and the lower frequency overtones 
drop faster than the higher frequency overtones, giving an overall higher 
 frequency sound when the radius is smaller.

The following sections introduce the concepts of resonance as applied to 
musical instruments. I focus on instruments with one open end and one 
closed end, such as single reed instruments like a clarinet. I then discuss 
instruments with both ends open, such as the pipe organ and flutes. 

Resonating with a clarinet
The clarinet is part of a large group of the single-reed instruments with about 
a dozen different types and capable of playing frequency ranges of up to 
4 octaves. (An octave is 12 semitones and is equal to double or half of the 
original frequency.) The most common clarinet is the B-flat soprano clarinet, 
which is the one people are usually talking about when they say “clarinet.”

The resonance condition for a pipe with one open end and one closed end is

In this formula, v is the speed of sound, L is the length of the cylinder from 
the open end to the closed end, and R is the radius of the cylinder. This con-
dition is based on fitting an integer number of half wavelengths plus an extra 



283 Chapter 13: Grasping How Animals and Instruments Produce Sound Waves

quarter wavelength within the clarinet, which I have assumed to be cylindri-
cal in shape. The first harmonic (n = 1) is called the fundamental frequency or 
the fundamental harmonic. The second harmonic (n = 2) and higher are called 
the overtones.

 Many sources replace 2n–1 with n and assume you know that n has to be odd. 
Writing it as 2n–1 and letting n = 1, 2, 3… is easier so you don’t have to remem-
ber to skip the even integers.

 Be careful when looking at the location of the nodes and antinodes of musical 
instruments because the nodes and antinodes of the air molecules’ harmonic 
vibrations are out of phase to the sound waves nodes and antinodes. Some 
sources draw nodes for the air molecules’ vibrations, whereas other sources 
have antinodes for the sound wave at that the same location. Both views are 
correct, so be careful which wave you’re drawing. 

The closed (reed) end of the clarinet is essentially a closed boundary for the 
air molecules’ vibrations. Because the air molecules can’t vibrate through 
a wall, it’s a node, which means the reed end is an open boundary (an anti-
node) for the sound wave. 

The open (bell) end of the clarinet is exposed to the outside air, so it’s 
approximately fixed at atmospheric pressure. It’s a node (closed boundary) 
for the sound wave, which means it’s an open boundary (an antinode) for the 
air molecules’ vibrations. 

By opening the holes in the clarinet, you’re forcing nodes in the sound wave 
or antinodes for the air molecules’ vibrations at those locations. The location 
of these open holes will damp out those harmonics that had sound wave anti-
nodes at those locations.

 What is the length of your clarinet if the fundamental frequency is E3 = 
164.81 hertz (Set R = 0)? What are the first four allowed harmonics? If you 
open a hole a distance 0.979 feet (0.299 meters) from the reed, which har-
monics are affected the most? If you set R = 0.3 inches (0.75 centimeters), 
how much does the fundamental frequency change by?

This problem has many questions. The easiest way to solve this problem is 
to solve each question individually in the order given. To solve this problem, 
follow these steps:

 1. Understand what the first question wants you to solve.

  The first question is what is the length of your clarinet if the fundamen-
tal frequency is E3 = 164.81 hertz (Set R = 0)? 
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  All the information you need is here even though it isn’t obvious. You 
need to look up the speed of sound. Use the following:

  R = 0

  n = 1 for the fundamental frequency.

  f1 = 164.81 hertz

  v = 1130 feet per second (344 meters per second).

 2. Solve the first question to find the length of your clarinet (L).

 3. Solve the second question that asks to calculate the first four 
 harmonics.

  The harmonics are an integer times the fundamental frequency, f2n–1 = 
(2n–1) f1:

 4. Solve the next question. 

  If you open a hole 0.979 feet (0.299 meters) from the reed, the harmonics 
affected the most are those that would be very close to having a sound 
wave antinode at 0.979 feet (0.299 meters) from the reed when the hole 
is closed. Opening the hole would dampen these frequencies. 

  Find the harmonics with half-integer wavelengths because the sound 
waves affected have an antinode at the reed and an antinode where the 
hole is being opened:

  Compare these frequencies with the four preceding frequencies. 
Opening the hold won’t significantly affect the first three frequencies, 
but the third overtone will be eliminated. If you compare this expression 
for the frequency with those of the clarinet, you can obtain an expres-
sion for the integers of the overtones that are affected:



285 Chapter 13: Grasping How Animals and Instruments Produce Sound Waves

 5. Determine the fundamental change.

  If you set R = 0.3 inches (0.75 centimeters), how much does the funda-
mental frequency change by?

  To solve, substitute the new value for R into the equation:

  This is only a 100 (1–163.3/164.81) = 0.919 percent change in the funda-
mental frequency.

Vibrating air in a flute
The pipe organs (except stopped pipes) and flutes have both ends open. The 
air molecules’ vibrations have antinodes at both ends and the sound wave 
has nodes at both ends. The resonance condition for a pipe with both ends 
open is

In this formula, v is the speed of sound, L is the length of the cylinder from 
one open end to the other open end, and R is the inner radius of the cylinder. 
The first harmonic (n = 1) is called the fundamental frequency or the fun-
damental harmonic. The second harmonic (n = 2) and higher are called the 
overtones.

The flute has many holes, which allows the player to adjust the flute’s fre-
quency. Organs can’t adjust their frequency, so a pipe organ needs many dif-
ferent pipes. A small pipe organ has a couple dozen pipes whereas the large 
organs can have tens of thousands.

 Both ends of a pipe are at approximately atmospheric pressure and correspond 
to nodes for the sound wave, which means that the air molecules’ vibrations 
have maximum displacement (antinodes) at the ends. Therefore, depending 
on the source, you may see the waves drawn in an open-ended pipe with either 
antinodes or nodes at the ends depending on what they’re representing.

If you want to practice using the formula for resonance, you can use the 
problem in the clarinet section. The only difference is both ends are now 
open and you need to use this formula for the resonance condition.
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Combining Cords: The Human Voice  
and Musical Instruments

The human voice is a very complex musical instrument, used for communica-
tion and singing. Understanding how humans control their body to produce 
these sounds is a very interesting area of biophysics. Here I highlight the sim-
ilarities and differences between the human voice and different instruments.

These sections look at the case when a vibrating solid, such as a string or 
percussion, produces the initial sound wave. Here I focus on strings, such 
as in harps, pianos, and guitars and discuss how the waves on the string 
are translated into sound waves, what body resonance is and why it can be 
important, and what cavity resonance is.

Tying down the strings and cords
An object tied down at the ends, such as a guitar string, will vibrate at only 
certain frequencies because the waves propagate to the ends, bounce off, 
and come back, interfering with the initial wave. The interference is destruc-
tive except at certain frequencies. These sections examine the vibration of 
a string and its properties and the resonance condition of a vibrating string. 
I also look at vocal folds and the human voice.

Speeding waves on a string
The string tied to both ends of a guitar, piano, or harp, is made to vibrate. 
However, it vibrates only when the right-traveling and left-traveling waves 
combine constructively to form a standing wave on the string. The length of 
the string and hence the wavelength of the wave is fixed. 

The only way to change the frequency of the wave is to change the speed. 
Remember the relationship between the frequency, wavelength, and the 
speed is: f = v/λ.

The speed of a wave on a string is

The magnitude of the force is the tension in the string and μstring is the mass 
(mstring) per unit length (L) of the string.



287 Chapter 13: Grasping How Animals and Instruments Produce Sound Waves

 The heavier the string means the lower the speed of the wave on it and hence 
the lower the frequency. You may have noticed the bass strings on a guitar 
are thick and heavy so they can produce the lower frequencies. The more ten-
sion you add to the string, the greater the speed of the wave and hence the 
greater the frequency. The tension in the string allows a person to tune a 
guitar to the desired frequencies without having to change the length or mass 
of the strings.

The string’s length and the wave’s speed on the string don’t have a direct 
relation to the wavelength and speed of the sound wave produced. But they 
do determine the frequency of the wave on the string, and the frequency of 
the string’s vibration is equal to the frequency of the sound wave produced 
by the vibrating string, which is especially true for the electric instruments 
that use pickups. Pickups are an application of Faraday’s law (see Chapter 16). 
The pickups are a permanent magnet wrapped by copper wire in a coil. The 
magnet magnetizes the steel string and the vibrating magnetized steel string 
induces an alternating current in the coil. The current has the same frequen-
cies as the harmonics of the string.

Measuring an oscillating guitar string’s resonance
The string is tied at both ends, which means the waves must have nodes at 
those points. Therefore the string’s length must equal an integer multiple of 
half a wavelength:

The resonance frequencies (harmonics) of the standing waves on the string are

The fundamental frequency corresponds to n = 1, and the instrument has 
been tuned to the correct frequency by selecting the correct tension in the 
string for the choice of string mass. Normally, the string will vibrate at this 
set of frequencies, but touching the string at certain locations can modify the 
harmonics. The touching of the string dampens the harmonics that would 
normally have an antinode close to that position, thereby changing the 
sound. On the other hand, if you press the string firmly then that location 
becomes the new boundary condition (creating a new shorter L) and the fre-
quencies are shifted upwards. Alternatively, instead of using your finger, you 
can use a capo (clamp) to hold down the string.

 A 2.5-foot (0.762-meter) long guitar string has a weight per unit length 
of 2 × 10–3 pounds per foot (mass per unit length of 2.98 × 10–3 kilograms 
per meter). You tune the string to a fundamental frequency of an A2 note 
(110 hertz). What are the properties of the waves on the string? 
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 1. Understand the question that the problem wants you to solve.

  You need to figure out the properties of the waves on the string. These 
waves satisfy resonance, so you want to know what the resonance con-
dition is, and the properties of waves include wavelength, frequency, 
and speed. Also, the string needs to be tuned, so you want to find the 
tension in the string. The numbers you need are

  The length of the string is L = 2.5-foot (0.762-meter)

  The mass per unit length is μstring = 6.00 × 10–5 slugs per foot (2.87 × 
10–3 kilograms per meter)

  The fundamental frequency (n = 1) is f1 = 110 hertz

 2. Solve the resonant conditions and the tension in the string.

  You know the frequency, so all you have left to find is the wavelength 
from the resonant condition and the speed of the wave.

  The wavelength for n = 1 is

 

  The speed of the waves on the string is

 

  The tension in string is

 

  The resonant condition gives the harmonics of the string

 

Vibrating vocal cords – speaking frequency range
The human voice starts with the glottis (the vocal folds and the space 
between the folds). Similar to a vibrating guitar string, the vocal folds vibrate, 
producing several harmonics:

The average fundamental frequency for a male is 125 hertz, whereas it’s 200 
hertz for the average female. The number of harmonics excited in the human 
vocal folds is around 20 to 25 (n = 1, 2, 3… 25). The harmonics in the range 
from the fundamental frequency (which can be as low as approximately 50 
hertz) to approximately 3,000 hertz are excited.
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When a person prepares to make a noise, he closes the vocal folds and makes 
them tense. Air pressure builds up in the larynx and causes the vocal folds to 
open, the opening allows the air to escape past the vocal folds. The air pres-
sure drops because of the moving air (Bernoulli’s equation, which shows that 
the faster the air moves the lower the air pressure drops; you can read about 
it in Chapter 9), and the vocal folds close. The air pressure builds up and the 
cycle repeats. This opening and closing cycle is repeated several times every 
second and forms the initial sound wave, which is part of the answer of how 
humans can make so many different sounds.

 With a vibrating string the speed of the wave is proportional to the square 
root of the tension. The length of the string is fixed, so the fundamental fre-
quency is proportional to the square root of the tension. Similarly, people can 
change their fundamental frequency by how tense they make the vocal folds. 

Checking body resonance  
in an acoustic guitar
Body resonance is very important for acoustic instruments because the 
energy within the vibration is used to increase the amplitude of the sound 
wave. Body resonance is simply the frequencies that an object will vibrate 
at easily. A body won’t vibrate for long at most frequencies, but at certain 
frequencies it will vibrate while losing energy at a very slow rate. Here I take 
a closer look at resonance with the acoustic guitar (which is applicable to all 
string acoustic instruments).

A vibrating string produces sound at an intensity that can’t be heard so a 
soundboard is added. The vibrating string forces the soundboard to vibrate at 
the same frequencies via a bridge that connects the string to the soundboard. 
The large surface area of the soundboard pushes more air back and forth 
creating a high amplitude wave. A person hears the soundboard and not 
the vibrating string. In the case of the acoustic guitar, the soundboard is the 
front cover of the box.

The soundboard vibrates at only a few of the string’s harmonics and the 
other frequencies are damped. A high quality soundboard has resonance at 
the frequencies of the strings of the instrument, whereas a poorly designed 
soundboard won’t have the correct resonances. Remember, an object 
doesn’t like to vibrate unless it’s vibrating at resonance; the vibrations are 
damped very rapidly at frequencies that aren’t at resonance. The poorly 
designed soundboard produces distorted sounds, damping out the frequen-
cies the player wants.
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In addition, vibrating at the string’s frequency, the soundboard has character-
istic resonant frequencies (harmonics) of its own, which depends on the type 
of material, shape, size, and other physical parameters. These characteristic 
resonant frequencies add timbre to the sound wave. For example, an A note at 
the same amplitude from a guitar, violin, and a piano all sound different.

The energy required to drive the soundboard comes from the vibrating 
string, so the string won’t vibrate for very long and needs to be plucked at 
regular intervals to keep the instrument producing the sound wave.

Collapsing cavities
The body resonance is the most important contribution in string instru-
ments, but cavity resonance does play a role in the acoustic guitar as well. 
Cavity resonance is when the sound can travel through the cavity with little 
loss of amplitude. Cavity resonance occurs at specific frequencies, such as 
when you blow across the top of an empty bottle.

The following sections examine some different aspects of cavity resonance, 
one with guitars and one within the human body.

Seeing inside an acoustic guitar
A Helmholtz resonator is a container filled with air, which has a neck that is 
open to the atmospheric air (think of an open wine or beer bottle). When the 
outside air blows across the opening, the air inside the chamber vibrates 
with a characteristic frequency. The characteristic frequency is

In this formula, A is the area of the opening, v is the speed of sound, L is the 
length of the neck, and V is the volume of the cavity.

 Try this experiment with a beer bottle at your next Saturday night biophysics 
gathering. When a lawyer has drunk a quarter of their beer, blow across the 
top. It will make a loud low-frequency hum. Repeat when the lawyer’s beer 
bottle is half-full, quarter full, and empty. The bottle will hum at a new lower 
frequency each time. 

When the soundboard of an acoustic guitar vibrates, it pushes the air in and 
out of the box. The box acts similar to a Helmholtz resonator, and it enhances 
certain low-end frequencies if it combines with the soundboard wave construc-
tively. If the wave from the cavity interacts with the soundboard’s wave destruc-
tively, it will decrease the overall amplitude of the corresponding frequency. 
This addition and subtraction from the amplitudes add to the guitar’s timbre.
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Looking for cavities — no dentist required
The problem with vibrating vocal folds is they don’t explain how humans can 
communicate with such a vast collection of sounds. The cavities within the 
human body allow people to control which harmonics are damped and which 
harmonics pass through. 

The human voice is more like the clarinet (refer to the section, “Resonating 
with a clarinet” earlier in this chapter for more information). The vocal folds 
vibrate like the reed and the sound propagates down a long tube and out a 
big opening (in this case, the mouth). The vocal folds vibrate at a set of har-
monics with them all having approximately the same amplitude. By varying 
the tension in the vocal folds, the fundamental frequency can vary over a 
range of frequencies from about 50 hertz to 200 hertz for a male. The sound 
wave travels through the body, the two most important cavities being the 
mouth cavity and the nasal cavity. The cavities have resonant frequencies, 
which are called formants. The harmonics close to the formants will travel 
through the cavities unimpeded, whereas the harmonics far from the for-
mants will be damped out and go unheard. Changing the shape of the cavities 
changes the formants, allowing humans to make different sounds or sing dif-
ferent notes.

The range of speech (300 hertz to 3000 hertz) usually has three formants in 
this frequency range. Consider a sword-swallower with his or her throat and 
mouth all in a straight line, which resembles a stopped organ pipe. As an 
example, suppose the sword-swallower makes a 6-inch (0.152-meter) long and 
1-inch (2.54-centimeter) diameter pipe. If so, then the resonant frequencies 
using v = 1,130 feet per second (344 meters per second) are

The harmonics in the correct range of frequencies are f1 = 530 hertz, f3 = 1590 
hertz, and f5 = 2650 hertz.

If the sword-swallower is a male with an average fundamental frequency of 
125 hertz, then the frequencies (fn = n f1) that will pass through most easily 
will be f4 = 500 hertz, f13 = 1,625 hertz, and f21 = 2,625 hertz. All three are within 
35 hertz and easily will pass out of the body.

If the sword-swallower is a female with an average fundamental frequency of 
200 hertz, then the frequencies (fn = n f1) that will pass through most easily 
will be f3 = 600 hertz, f8 = 1,600 hertz, and f13 = 2,600 hertz. The harmonic f8 is 
very close, but the other two are more than 50 hertz off and will be partially 
damped.
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Chapter 14

Detecting Sound Waves  
with the Ear

In This Chapter 
▶ Hanging things from the ear and more
▶ Powering the eardrum
▶ Understanding how important hearing is

H 
ow humans and other animals hear is very complex. Understanding the 
entire process from the sound waves entering the auditory canal to the 

processing of the electrical signals is important to know. In addition, the ear 
is extremely sensitive to sound waves. Humans can hear over an enormous 
range of intensities and over a very large range of frequencies. Hearing is an 
important area of biophysics with many applications in research and in soci-
ety. For example, with an increased understanding of the ear, scientists can 
develop improvements in repairing people with damaged hearing.

This chapter examines the ear and one of its primary functions — hearing — 
discusses the power within a sound wave and its transfer to the ear, and 
explains different applications, such as complex waves and beats.

Understanding Hearing and the Ear
One of the primary functions of the ear is to convert energy from one form 
(sound waves) to another form (electrical impulses, which are transmitted 
to the brain). The human ear doesn’t just convert the energy; it also tells the 
brain the frequency of the sound wave and the direction the sound is coming 
from and allows the brain to distinguish specific sounds within a noisy envi-
ronment. (Your brain is good at listening to your friend talking while standing 
beside a very busy street.) The following sections look at the three parts of 
the ear.
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Outer ear
The outer ear is the first of three parts of the ear. The outer ear consists of 
three parts: 

 ✓ The pinna is the part of the ear that sticks off the head. It has become 
common practice in some cultures to stick pieces of metal or wood into 
it or puncture it with holes.

 ✓ The auditory canal (ear canal) looks like a stopped organ pipe. It’s a 
round circular tube with one end open and one end closed.

 ✓ The eardrum (more technically referred to as the tympanic membrane) 
is the closed end of the auditory canal. The eardrum typically is the 
boundary between the outer ear and the middle ear.

 The primary functions of the outer ear are to channel sound toward the ear-
drum and to amplify sounds within a certain frequency range. The greatest 
amplification occurs at the resonance frequencies of the outer ear canal. (The 
resonance frequencies are the special frequencies where a wave and its reflec-
tions off a pair of boundaries interfere constructively, thereby enhancing the 
amplitude of the wave.) The boundaries for the outer ear are the eardrum and 
the pinna. 

To calculate the resonant frequencies, assume the eardrum is solid so it’s 
a node for air displacement (antinode for sound waves) and the open end 
of the auditory canal is an antinode for air displacement (node for sound 
waves). I need some numbers, so I called Carrie over and measured her audi-
tory canal and found:

 ✓ It had a length L = 1 inch (0.08 feet = 0.0244 meters).

 ✓ It had a radius R = 8.50 × 10–3 feet (0.00259 meters).

Remember, the speed of sound is 1,130 feet per second (344 meters per 
second). You can then look in Chapter 13 and find the formula for resonant 
frequencies with one open boundary and one closed boundary. The reso-
nance frequencies for Carrie are as follows:

The resonant frequencies for Carrie’s ear in the audible range are f1 = 3,250 
hertz, f3 = 9,760, and f5 = 16,300 hertz. These frequencies cause the sound 
wave to resonate within the auditory canal. The typical adult human ear is 
most sensitive to sound waves in the range of 3,000 to 4,000 hertz, which 
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 corresponds to the fundamental resonant frequency of the outer ear. Note that 
the 88-key piano works in the frequency range 27 hertz to 4,200 hertz, so the 
upper four white keys are in the range of a human’s most sensitive hearing.

Middle ear
The second area of the ear is the middle ear. The outer ear is filled with air at 
atmospheric pressure. The inner ear is filled with fluid. The middle ear and 
the eardrum separate the outer ear from the inner ear, allowing the human 
ear to hear and preventing the sound waves from bouncing off. The purpose 
of the middle ear is to transfer sound waves from air to the perilymph fluid 
within the inner ear.

The parts of the middle ear are as follows:

 ✓ The eardrum (tympanic membrane) is the barrier between the outer ear 
and the middle ear.

 ✓ The oval window is the barrier between the middle ear and the inner ear.

 ✓ The tympanic cavity is a cavity behind the tympanic membrane that is 
ventilated through the nose via the eustachian tube.

 ✓ The malleus is one of the three auditory ossicles within the middle ear. 
It connects to the eardrum.

 ✓ The stapes is one of the three auditory ossicles within the middle ear. 
It connects to the oval window.

 ✓ The incus is one of the three auditory ossicles within the middle ear. 
It connects the malleus to the stapes.

The tympanic cavity is necessary so the membrane will vibrate with the 
frequency of the incoming sound wave. The three auditory ossicles transfer 
the vibrations of the eardrum to the oval window. The mechanical advantage 
(the magnitude of the load force divided by the magnitude of the applied 
force [refer to Chapter 6], which in this case is the force on the oval window 
divided by the force of the eardrum on the malleus) of the auditory ossicles 
is approximately 2, and the surface area of the eardrum is 30 times larger 
than the surface area of the oval window, which means the ratio of the pres-
sure at the oval window to the pressure at the eardrum is

A factor of 60 amplifies the sound wave in this setup. The body fortunately 
is designed to protect the ear against loud sounds using the muscles of the 
middle ear. 
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The eardrum is very weak. A pressure difference between the auditory canal 
and the tympanic cavity of 4.1 × 10–3 pounds per square inch (0.60 pounds 
per square foot = 29 pascals) is sufficient to rupture the eardrum, whereas 
atmospheric pressure is 14.69 pounds per square inch (2,116 pounds per 
square foot = 1.013 x 105 pascals).

Inner ear
The third part of the ear is the inner ear, which plays an important part in 
human biophysics (biomechanics). The parts of the inner ear are as follows:

 ✓ The three semicircular canals detect the motion of the head and help 
with balance.

 ✓ The vestibule is the middle portion of the inner ear, which is connected 
to the semicircular canals and the cochlea. It helps with balance, 
motion, direction (gravity), and hearing.

 ✓ The cochlea houses the nerves required for hearing that send signals to 
the brain.

The middle ear is in contact with the vestibule with the stapes touching the 
oval window. The cochlea has two canals; as the oval window is pushed in 
and out, it creates a sound wave within the perilymph fluid. The fluid moves 
down one canal of the cochlea to the end and then down the other canal to 
the vestibule, where the round window is pushed in and out in sync with the 
oval window. The fluid is incompressible, and the pair of windows allows for 
the volume to remain constant.

The motion of the fluid in the cochlea causes the cochlear partition to vibrate 
at different locations depending on the frequency of the sound wave. The 
partition’s motion causes the stereocilia (nerve hair cells) to bend and send a 
signal (nerve impulse) to the brain. The brain then processes the signal.

Realizing How Sensitive the Human  
Ear Is — the Power of Sound Waves

The human ear is most sensitive to sound in the 3,000 to 4,000 hertz fre-
quency range. Outside this frequency range, the sound wave needs to be 
more intense for the average adult human to hear it. So, not only does the 
frequency of the sound have to be in the range of 20 to 20,000 hertz, but it 
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also must have a minimum intensity to be heard. In these sections I introduce 
power and intensity, and the conversion to intensity level. I also discuss the 
reasons sound waves have a limited range. 

Taking a closer look at ear power 
A sound wave is a pressure wave, and the amplitude of the wave is related to 
the power of the wave. In addition, the amount of power available to move 
the eardrum decreases as the source moves away because a sound wave 
spreads out the power over a bigger area as it moves away from the source. 

These sections focus on the intensity, intensity level, power, and pressure 
amplitude of sound waves. These sections allow you to quantify your analy-
sis of sound waves interacting with the ear. If a sound wave doesn’t have 
enough power, it won’t be able to move the eardrum. If it has too much 
power, it will cause the eardrum to rupture. 

Tuning into a sound wave
The intensity (I) of a sound wave is related to the power (P) in the sound wave 
and the amplitude of the sound wave:

Here I is the intensity of the sound with units of pounds per (foot second) (or 
watts per square meter), P is the power with units foot pounds per second 
(or watts), A is the cross-sectional area of the wave with units of square feet 
(or square meters), ΔP(g) is the amplitude of the pressure wave with units of 
pounds per square foot (or newtons per square meter), ρ is the density of air 
with units of slugs per cubic foot (or kilograms per cubic meter), and v is the 
speed of sound with units of feet per second (or meters per second).

 At a frequency of 1,000 hertz, an average adult human can hear sound 
waves with an intensity of 0.000000000000069 pound per (foot second) 
(0.000000000001 watts per square meter) or greater. This intensity is called 
the threshold of hearing. As the intensity increases, the sound wave will even-
tually become painful, which is called the threshold of pain. The threshold of 
pain is achieved at an intensity of 0.069 pound per (foot second) (1 watt per 
square meter) when the frequency is 1,000 hertz. 
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Sound waves at this intensity can cause permanent damage to the person’s 
hearing. (Also, a person can have permanent damage done to his or her hear-
ing at lower intensities if exposed to elevated noise levels over a long period 
of time.) The change in the intensities from the threshold of hearing to the 
threshold of pain is massive, so instead the intensity level (β) is used and it’s 
related to the intensity (I):

β is the intensity level with units of decibels (dB) and I is the intensity. In this 
formula, Io = 6.855 × 10–14 pound per (foot second) (10–12 watts per square 
meter) is the reference intensity, which is a constant. It’s the threshold of 
hearing for the average adult human at a frequency of 1,000 hertz. 

An average human hears sound waves in the range of intensity levels, at a 
frequency of 1,000 hertz, starting at 0 decibels and increasing up to 120 deci-
bels. People can’t hear most sounds at 0 decibels. The threshold of hearing 
is a function of frequency. The threshold of hearing intensity level for an 
average adult increases as the frequency moves away from the 3,000 to 4,000 
hertz range. A few examples of the threshold of hearing are βthreshold (50Hz) = 
55 dB, βthreshold (100Hz) = 40 dB, βthreshold (500Hz) = 5 dB, βthreshold (700Hz to 
1500Hz) = 0 dB and βthreshold (3,000Hz to 4,000Hz) = –10 dB.

Grasping the eardrum and limit range
Even if you assume conservation of energy, you can’t hear someone from a 
long distance away. This section looks at the reason why sound waves have a 
limit range. 

To begin, you need to know how sound waves travel through the air. A 
machine such as a plane generates noise that spreads out in a sphere; the 
noise goes in all directions. If you follow one of the sound wave’s compres-
sion zones (a compression zone is a region of space where more air molecules 
are packed into it than there are supposed to be present), it covers an area 
called the cross-sectional area, which is spherical in this case. In the case of 
an acoustic speaker, the sound waves usually travel only in one direction, so 
the cross-sectional area is a hemisphere. The cross-sectional area for sound 
waves produced by humans and animals is usually in a specific direction, 
which is less than hemispherical. You can test it by going to an open field 
and having someone speak normally while you stand behind her staring at 
her back. She’s hard to hear when facing away from you because most of the 
sound wave is going in the opposite direction. 
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The formula for calculating the cross-sectional area of a sound cone is

A is the spherical surface area of the cone (think of the cone as part of a 
sphere) with units of square feet (square meters), R is the distance from the 
cone’s apex to its base (the radius of the sphere) with units of feet (meters), 
Ω is called the solid angle with units of steradians (this is a dimensionless 
unit similar to radians), and θ is the polar angle with units of radians (or 
degrees). Consider the earth, and you can think of the cone starting at the 
center of the earth and going to the surface with the North Pole the center 
of the cone. R is the radius of the earth, and θ is the angle between the North 
Pole and the edge of the cone, so the total angle across the cone is 2 θ. 

For example, a machine will usually spread sound out in all directions, which 
has a polar angle θ = π radians. Substitution of this angle into the area for-
mula gives A = 4 π R2, which is the surface area of a sphere. In the case of 
the sound speaker, the sound will usually spread out with a polar angle, θ = 
π/2. Substitution of this angle into the area formula gives A = 2 π R2, which 
is the surface area of a hemisphere. An animal, such as a bat, can produce a 
focused sound wave that spreads out in a tight cone (θ is about 10 degrees). 

 If you assume no energy in the sound wave is lost to the air or the surround-
ings, then the sound wave keeps propagating, but the energy is spread over a 
larger surface as it moves outward. The intensity will eventually drop below 
the threshold of hearing, and a human won’t be able to hear the sound. The 
maximum range is (assuming conservation of energy) as follows:

The formulas look complicated, but that is because the expression has four 
equations. The sound is produced and spreads out in a cone. When it has 
traveled a distance Rstart, the intensity (Istart) and intensity level (βstart) are 
measured. The sound wave continues traveling outward in a cone until you 
can’t hear it anymore. The distance from the source where this occurs is 
Rmax, and the threshold of hearing has an intensity Ithreshold and intensity level 
βthreshold. The first line in the formula allows you to calculate the maximum dis-
tance if you know the starting distance and the intensities (middle term) or 
intensity levels (right-side term). The second line allows you to calculate the 
starting intensity or starting intensity level if you know the starting distance, 
the maximum distance, and the threshold of hearing intensity or intensity 
level.
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 This formula is valid for any two distances and the corresponding intensities 
or intensities level. The formula does assume conservation of (acoustic) 
energy.

To solve this problem, use the previous formula and follow these steps:

 Connie, a collie dog, lives on the balcony across from your place, and the 
sound waves from her mouth make a polar angle of 30 degrees when she 
barks. At 3 a.m. you measure her bark to have a frequency of 200 hertz 
and an intensity level of 70 decibels at 1.0 feet (0.3048 meters) from her 
mouth. How much power is in her bark? How far away do you have to be 
before you can’t hear her bark?

To solve this problem, use the previous formula and follow these steps:

 1. Draw a diagram.

  To save on space, I don’t draw a diagram, but you should because doing 
so does help. In your diagram, include the dog, the cone 1 foot (0.3048 
meters) away with the intensity level, and a second cross-sectional area 
for the cone farther from the dog. The second area is at Rmax, Ithreshold, 
and βthreshold.

 2. Find the formulas.

  The first question in the problem asks you to find power. The previous 
section, “Tuning into a sound wave,” tells you the relationship power 
equals intensity times the cross-sectional area of the cone. Therefore, 
you need to find the intensity and area first.

  You know the intensity level at 1.0 foot, so you can find the intensity.

  You know the polar angle at 1.0 foot, so you can calculate the area.

  The formula for maximum range requires you to know the starting dis-
tance, the starting intensity level, and the threshold of hearing.

 3. Find the numbers for the intensity at 1.0 foot.

  The problem tells you that the intensity level is βstart = 70 decibels at 
Rstart = 1.0 foot (0.3048 meters).

 4. Solve for the intensity at 1.0 foot.

  Istart = Io βstart/10 = (6.855 × 10–14 pound per (foot second)) 1070/10 =  
6.855 × 10–7 pound per (foot second) (10–5 watts per square meter).

 5. Find the numbers for the area at 1.0 foot.

  The problem tells you that Rstart = 1.0 foot (0.3048 meters), and θ = 
30 degrees.
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 6. Solve for the area of the cone at 1.0 foot.

 7. Solve for the power in the bark.

  Substitute the area and intensity into the formula for the power:

 8. Find the threshold of hearing at 200 hertz.

  The problem tells you the intensity level is βstart = 70 decibels and that 
Rstart = 1.0 foot (0.3048 meters). The problem also says that the bark is at 
a frequency of 200 hertz, but it doesn’t state what the threshold of hear-
ing intensity level is at that frequency. Refer to the previous section to 
see that the βthreshold = 25 decibels at 200 hertz.

 9. Solve for the maximum range.

Grasping How Amazing Hearing Is 
The ear is amazing at picking up different sounds. You can sit in a very noisy 
environment, and your brain will pick out the sounds you’re interested in. 
This section looks at how hard a task that is, which your brain performs with-
out any difficulty. These sections discuss how you can mathematically com-
bine waves and introduce the beat frequency and how tuning by ear works.

Interacting complex waves
Waves are usually the combination of multiple waves. The linear superposi-
tion principle tells you the resultant wave is a linear sum of all the waves 
present. Figure 14-1 shows an example of a complex wave, which is the com-
bination of three sound waves. This figure also includes an envelope curve, 
which shows how the three waves combine constructively sometimes and 
destructively at other times. Figure 14-1 shows the resultant of combining 
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the following three single frequency sinusoidal sound waves, with the same 
amplitude, together as they enter a microphone: 20.1 hertz, 22.0 hertz, and 
29.9 hertz.

You can do this for any kind of wave. In Chapter 12, I discuss the different 
mathematical functions that represent the different waves.

 

Figure 14-1: 
A complex 

wave 
formed by 
the linear 

superposi-
tion of three 

sinusoidal 
waves.

 

 The reverse is also true where complex waves can be studied as a linear 
superposition of simpler waves. You can use a Fourier series when you know 
the length (or duration) of periodicity or if the region of space is finite in size. 
The harmonic waves associated with the resonant frequencies are an example 
of a Fourier series. The technique can be expanded to Fourier integrals, which 
allows you to analyze general complex waves. Unfortunately, the methods of 
Fourier series and Fourier integrals are beyond the scope of this book.

Beating beats and tuning a guitar
The human ear is very sensitive and can detect changes in the intensity level 
as small as 0.5 decibels. This section is about how two waves sometimes 
interfere constructively and sometimes destructively. Suppose two standing 
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sound waves have the same amplitude, then they can be combined together 
to form a single wave as the following demonstrates

P(a)(t) is the absolute pressure, Patm is the atmospheric pressure, ΔP(g) is 
the amplitude of the sound (pressure) wave, the second set of terms is the 
combination of two sinusoidal waves, and the third set of terms (on the right-
hand side) is the two sinusoidal waves rewritten with the help of a trigono-
metric identity. In the sine function, the average phase shift and the average 
angular frequency (ω1 + ω2)/2 are being used. For example, if you have a red 
light and a yellow light and combine them, the average frequency corre-
sponds to orange light. The same thing happens with sound waves when they 
combine together.

 The sine function is the sinusoidal pressure wave, while the cosine function 
combines with the ΔP to give an effective amplitude that varies slowly in time 
if the frequencies are close to the same value. The cosine causes the waves to 
combine constructively for a while, then destructively, then constructively, 
and so on. The cosine is the envelope of the wave, and it has antinodes (con-
structive interference) and nodes (destructive interference) with a slow varia-
tion in time (small frequency) as shown in Figure 14-1. Remember, a node is a 
place where the wave causes no disturbance (equilibrium), and an antinode 
is the location of maximum disturbance from equilibrium. This slow variation 
in time is called the beat frequency, which must produce at least a 0.5 decibel 
variation in the amplitude for the human ear to hear it.

The following formula shows the beat frequency:

It’s twice the frequency of the envelope. People who are good at tuning musi-
cal instruments can hear the beat frequency between two instruments play-
ing the same note and adjust one of the notes until the beat is gone. 

Consider this example: Doug is tuning a friend’s guitar using his guitar as 
a reference. He vibrates his A3 string (220 hertz) and then the A3 string 
on his friend’s guitar. He notices the volume gets quiet (nodes) five times 
every second, so the envelope frequency is 5⁄2 hertz. Figure 14-2a shows 
how the two waves combine constructively and then combine destructively 
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to form a beat frequency. The two individual sound waves, the resultant 
wave, and the envelope are shown for time t = 0.05 seconds to 0.10 seconds. 
Figure 14-2b shows the resultant wave along with the envelope for time t = 0.0 
seconds to 0.5 seconds, which clearly shows the beat. 

Doug concludes that the beat frequency is 5 hertz (twice the envelope) and the 
guitar string is tuned to either 225 hertz or 215 hertz. In this case, the guitar 
is tuned to 225 hertz. If Doug increases the tension in the string, then the beat 
frequency increases. If he decreases the tension in the string, then the beat fre-
quency gets smaller and will vanish when the strings are in tune.

 

Figure 14-2: 
A 220 hertz 

sound wave 
combined 

with an 
unknown 

sound wave 
for time t = 

0.05 sec-
onds to 0.10 
seconds in 
(a) and for 
time t = 0.0 
seconds to 

0.5 seconds 
in (b).

 



Chapter 15

Listening to Sound — Doppler 
Effect, Echolocation, and Imaging

In This Chapter
▶ Dancing with Doppler
▶ Finding the range of echolocation
▶ Sounding the inside with ultrasound

S 
ound is one of the main methods animals use to interact with their sur-
roundings and allows the animals to understand what is going on around 

them, especially nocturnal animals. Animals use sound for communication, 
navigation, and tracking. These applications of sound make the understand-
ing of sound and its applications an important field within biophysics. 

This chapter discusses some very interesting applications of sound waves, 
including the Doppler Effect, the echolocation technique, and ultrasound 
imaging. 

Forecasting with the Doppler Effect
The Doppler Effect is the name given to the phenomenon of the frequency of 
a wave changing when the source of the wave or the observer is in motion. 
Imagine you’re at the beach. If you’re just standing in the water, the crests of 
waves will hit you with some frequency, but if you’re walking into the waves, 
they’ll hit you at a faster rate. Many fields of science including biophysics use 
the Doppler Effect; even some animals have evolved to take advantage of it.

The following sections explain why the Doppler Effect occurs by first look-
ing at the listener moving, then the source moving, and finally when both 
the source and the listener are moving. These sections also introduce the 
Doppler Effect for electromagnetic radiation (light) because the behavior is 
slightly different for light. 
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Moving on the receiver’s end
If the source of the wave is stationary and the receiver is moving (vreceiver), 
then the frequency at the receiver (freceiver) will change relative to the fre-
quency originally produced (fsource):

The minus sign is if the receiver is moving away from the source, and the 
plus sign is for when the receiver is moving toward the source. This modi-
fication to the frequency occurs because the distance between the crests 
(the wavelength) is unchanged, but because the receiver is moving, it will 
take longer (if it’s moving away from the source) or less time (if it’s moving 
toward the source) for each crest to reach the receiver.

Moving on the source’s end
If the source of the wave is moving (vsource) and the receiver is stationary, 
then the frequency received (freceiver) will change relative to the frequency 
originally produced (fsource) as such:

The plus sign is if the source is moving away from the receiver, and the minus 
sign is for when the source is moving toward the receiver. This modification 
to the frequency occurs because the distance between the crests is shrunk in 
the direction the source is moving, whereas the distance between the crests is 
stretched in the direction opposite to the direction the source is moving.

Moving sources and receiver
In other cases, both the source of the wave is moving and the receiver is 
moving. I assume one-dimensional motion, where they’re either moving 
toward or away from each other. The frequency received (freceiver) changes 
relative to the frequency originally produced (fsource) as such:
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The –vreceiver is for when the receiver is moving away from the source, the 
+vreceiver is for when the receiver is moving toward the source, the +vsource is 
for when the source is moving away from the receiver, and the –vsource is for 
when the source is moving toward the receiver.

 The easiest way to remember the signs in the equation is to remember that an 
object moving toward another causes the frequency to increase, whereas an 
object moving away causes the frequency to decrease.

 Erin is walking toward you at 3 miles per hour (4.40 feet per second = 1.34 
meters per second) while playing her out-of-tune violin. You run away in 
terror. She tries to play an A4 note, but the frequency is 450 hertz. How 
fast do you have to run so the note sounds in tune (440 hertz)?

To solve this problem, follow these simple steps:

 1. Find the correct formula and determine what you need to find.

  You want to find your speed, which you can find by using the formula 
for the Doppler Effect when both the receiver and source are moving. 
You need to find several numbers for different variables in this formula.

 2. Find the numbers for the two frequencies, speed of sound, and Erin’s 
speed.

  The source of the sound is the violin, and it’s moving toward you at 
Erin’s speed. You’re the listener (receiver), and you’re moving away 
from the source. You’re given

  fsource = fviolin = 450 hertz

  freceiver = flistener = 440 hertz

  vsource = 4.40 feet per second (1.34 meters per second). Use the negative 
sign in front of the source’s speed.

  You have to look up the speed of sound, and you find it is vwave = vsound = 
1,130 feet per second (344 meters per second).

  You’re running away from Erin, so you need to use the negative sign in 
front of the receiver’s speed in the Doppler Effect formula.

 3. Solve the Doppler Effect formula for the receiver’s speed.

  Rearrange the Doppler Effect formula (both signs are negative) and 
solve for vreceiver:
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Doing the calculation, you see you have to be running at 29.4 feet per second 
(8.97 meters per second) for the violin to sound in tune. Changing units, this 
corresponds to running at 20.1 miles per hour (32.3 kilometers per hour).

Considering the special case — light
All waves require a medium to move through, and the Doppler Effect is the 
same for all waves with the exception of light. Light doesn’t need a medium 
and has other strange properties, which makes the Doppler Effect different 
relative to other waves. You can’t tell if the receiver or the source is moving. 
This motion is relative, and the Doppler Effect in this case is

vrelative is positive if the objects are moving apart, which lowers the frequency 
(red shifted), and vrelative is negative if the objects are moving together, which 
increases the frequency (blue shifted). Light goes from red (low frequency) 
to blue (high frequency). (The light from all the distant galaxies is shifted 
toward the red [red shifted], which is how scientists know the universe is 
expanding.)

Finding Your Way in the Dark — 
Echolocation

All mammals use their ears to locate the source of sound waves, but bats, 
porpoises, and a few other animals create a noise and use the echo to locate 
objects, prey, and predators. This concept is called echolocation. These sec-
tions take a closer look at echolocation and discuss how some animals use a 
constant frequency sound wave combined with the Doppler Effect for echo-
location. I also discuss how some animals use a frequency modulated sound 
wave for echolocation and why echolocation has a limited range even when 
you assume conservation of (acoustic) energy.

Echolocating with constant frequency 
sound waves and the Doppler Effect
Some animals, when avoiding objects and doing a general search for food, 
emit a long chirp at a constant frequency. This frequency-shifted echo, 
because of the Doppler Effect, is as follows:
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In the equation, I assume the bat is flying toward its supper and the supper 
is trying to get away. If the bat is flying away from the insect, then vbat is 
negative, and if the insect is flying toward the bat, then vinsect is negative. 
There are two sets of speeds in the formula because the sound wave leaves 
the bat’s mouth and travels to the insect. The sound wave hitting the insect 
has the frequency shifted because of the Doppler Effect. This new frequency 
sound wave then bounces off the insect and travels back to the bat. The 
reflected wave traveling to the bat has its frequency shifted because of the 
Doppler Effect as well. In the first part, the bat’s mouth is the source, and the 
insect is the receiver. In the second part, the bat’s ear is the receiver, and the 
insect is the source. Note that I call the source of the sound and the receiver 
of the echo a bat, but it’s true for any animal that uses echolocation.

 The C. parnelli bat uses this form of echolocation. It has a threshold of 
hearing between 30 and 40 decibels from 25 kilohertz to 75 kilohertz with 
one exception. At a frequency of 61.8 kilohertz, the bat has a threshold of 
hearing of 0 decibels. What is the bat’s typical flying speed assuming the 
bat emits chirps at a frequency of 60.0 kilohertz?

To solve this problem, follow these steps:

 1. Understand the problem by finding the appropriate equation.

  You want to find the bat’s speed, so you need to use the echolocation 
equation. You need to find both frequencies, the speed of sound, and 
the speed of the object the sound bounces off of.

 2. Finding the numbers for both frequencies, the speed of the object the 
sound bounces off of, and the speed of sound.

	 •	You’re	told	the	frequency	the	bat	emits	sound	at:	fchirp = 60000 hertz

	 •	You’re	told	the	frequency	of	the	echo	the	bat	hears:	fheard = 61800 
hertz

	 •	Most	objects	don’t	move,	so	you	can	assume	a	speed	of	zero	for	
the insect: vinsect = 0 feet per second (0 meters per second)

	 •	You	can	look	up	the	speed	of	sound:	vsound = 1,130 feet per second 
(344 meters per second)

 3. Substitute the numbers into the formula after rearranging it for vbat.
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The C. parnelli bat has an average flying speed of 16.7 feet per second (5.09 
meters per second), which is 11.4 miles per hour (18.3 kilometers per hour). 
At this speed the echo off stationary objects will be at a frequency the bat’s 
hearing is most sensitive to. 

You can only see small objects to a certain size before they become too small. 
In the case of waves, any object smaller than half a wavelength is invisible to 
the wave, which is called the diffraction-limit. This means for the C. parnelli 
bat the insect must be bigger than a diameter equaling wavelength/2 = v/(2f) = 
(1130 ft/s)/(60,000 Hz) = 0.0188 feet = 0.113 inches (2.87 millimeters) in order 
for the bat to detect the insect.

Triangulating with frequency modulated 
sound — echolocation
Humans rely on their eyes to find objects and judge the distance. In fact, the 
brain is very good at using the two eyes to triangulate on an object and esti-
mate the distance, which helps a lot when reaching for your glass. How does 
your brain triangulate on an object: Your two eyes combine with the object 
to form a triangle. Using the angles and the distance between your eyes, your 
brain can calculate the distance to the object.

Animals can use sound to do the same thing. To begin, refer to the equation 
in the previous section about the diffraction-limit. If I calculate the diffraction-
limit for the human head assuming a wavelength equal to the size of a human 
head (crest at each ear), I obtain the following:

For frequencies below 1,700 hertz (longer wavelength), the sound wave 
doesn’t notice the head and travels around it. The brain picks up the lag in 
the crests reaching one ear compared to the other ear, allowing the brain to 
determine the direction of the source of the sound. When the frequency is 
greater than 1,700 hertz (shorter wavelength), the head acts like a brick wall 
reflecting sound waves and preventing the sound waves from reaching the 
ear on the backside. The difference in the volume of the sound allows the 
brain to determine the direction of the source of the sound wave. 1,700 hertz 
is an arbitrary frequency because every head is slightly different and sounds 
don’t come directly from the side. The brain uses both techniques for sound 
between 1,000 hertz and 4,000 hertz. 
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This technique is applicable to mammals in general, but the frequency range 
changes for each animal. Therefore, animals can determine the direction 
of the source of the sound. Animals that use frequency modulated echoloca-
tion go beyond this and use the echo to estimate the direction and distance. 
Their ears tell them the direction the echo is coming back from, and the brain 
estimates the distance by knowing the time delay between the chirp from the 
mouth and the echo reaching the ear:

The factor of 2 is present because the chirp has to leave the animal’s mouth, 
travel to the object (prey), bounce off the object (prey), and travel back to the 
animal’s ears.

Understanding the Limited  
Range of Echolocation

When an animal is using sound waves to locate dinner, the echo needs 
enough power to drive the eardrum, which means the echolocation tech-
nique has limited range. Here I discuss a bat, although it’s true for any animal 
using echolocation. To understand this limited range, a few reasonable 
assumptions are necessary:

 ✓ The bat’s mouth is shaped to produce a small sound wave cone with a 
cross-sectional area:

  θ is the polar angle. R is the distance from the hungry bat to the bug 
(the bat’s dinner). Ω is typically about 0.1 for a bat. Awave is the area over 
which the compression of a sound wave is spread out.

 ✓ The cross-sectional area of the bug is Abug.

 ✓ All the power in the sound wave striking the bug goes into the echo, 
and none of the energy is lost. Conservation of sound energy occurs for 
the entire event from the time the wave leaves the bat’s mouth until the 
echo reaches the bat’s ears. The power in the sound wave leaving the 
bat’s mouth is Pinitial.

 ✓ The echo leaves the bug in a uniform hemispherical wave.
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The intensity of the echo at the bat’s ears is

which must be greater than the threshold of hearing. Notice that the intensity 
drops off as the inverse of the separation to the fourth power. This is a very 
rapid drop-off, making echolocation a very short-range technique, especially 
considering how small the typical bug is.

 Suppose a bat produces a 10–3 foot-pound-per-second (1.36 milliwatts) 
chirp. The solid angle of the sound wave cone is Ω = 0.1. What is the maxi-
mum distance that can be between the bat and the bug if the bat is to find 
its dinner? The bug has a cross-sectional area of 10–4 square feet (0.0144 
square inches = 9.29 square millimeters). The bat’s threshold of hearing is 
6.86 × 10–14 pound per (foot second) (10–12 watts per square meter).

To figure out this problem, stick to these steps:

 1. Examine the problem to see what you need.

  The problem wants you to find the maximum distance between the 
bat and dinner, which means you need to use the preceding formula. 
Looking at the formula, you need: I (given), P (given), Ω (given), and Abug 
(given). Therefore, you know everything.

 2. Find the numbers.

  Iheard = 6.86 × 10–14 pound per (foot second) (10–12 watts per square 
meter)

  Pinitial = 10–3 foot pound per second (1.36 × 10–3 watts)

  Adinner = 10–4 square feet (0.0144 square inches = 9.29 × 10–6 square 
meters)

  Ω = 0.1

 3. Substitute the numbers into the formula and solve.



313 Chapter 15: Listening to Sound — Doppler Effect, Echolocation, and Imaging

Seeing the Unseen: Ultrasound Imaging
Sound (pressure) waves are typically split into three regions based on the 
human hearing: 

 ✓ Infrasound (or infrasonic): For frequencies less than 20 hertz

 ✓ Sound (or acoustic or sonic): For frequencies between 20 hertz and 
20,000 hertz

 ✓ Ultrasound (or ultrasonic): For frequencies greater than 20,000 hertz

The diffraction-limit shows that objects half a wavelength and larger can be 
imaged using waves, which means ultrasound waves can be used to image 
very small objects; usually frequencies between 106 hertz and 1010 hertz are 
used. Ultrasound waves have been used for more than half a century in indus-
try, the sciences, and the medical field to image objects. The technique is 
referred to as acoustic microscopy in industry and the sciences, whereas it  
is referred to as sonography (or medical sonography) in the medical profes-
sion. One of the most important features is low-intensity ultrasound waves 
have no apparent harmful effects.

 When a wave strikes a boundary, some of the wave is reflected and some of 
the wave is transmitted, so objects even with little difference in their densities 
will reflect some of the incident sound wave. (Think of your roommate singing 
in the shower. Some of the sound wave travels through the wall.) The intensity 
of the reflected wave at normal incidence is

Normal incidence means the incident wave and reflected wave travel per-
pendicular to the surface. In this equation, Ireflected is the intensity of the 
reflected sound wave, Iincident is the intensity of the incident sound wave, ρ1 is 
the weight (or mass) density of medium 1, ρ2 is the weight (or mass) density 
of medium 2, v1 is the speed of sound in medium 1, v2 is the speed of sound 
in medium 2, medium 1 is the material the incident sound wave and the 
reflected sound wave are traveling through, and medium 2 is the material the 
transmitted sound wave is traveling through.

 You’re at the beach with your MP3 player. The music leaves the speaker, 
travels through the air, and strikes Frank’s smooth, bare stomach. What 
ratio of the sound waves is reflected from Frank’s stomach?
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To solve this problem, follow these steps:

 1. Examine the problem to see what you need.

  The problem wants you to find how much of a sound wave bounces off 
Frank’s stomach. You know which formula to use, which is the easy part. 
The hard part is that problem doesn’t give any numbers, so you need to 
find the numbers. 

 2. Find the numbers for the density of air, the speed of sound in air, the 
density of human skin, and the speed of sound in human skin.

  You have to look up these numbers in your favorite reference source. 
I help by giving you the numbers:

	 •	The	sound	is	traveling	through	air,	so	ρ1 is the weight density of air 
is 0.0752 pounds per cubic foot (the mass density of air is 1.2041 
kilograms per cubic meter).

	 •	The	speed	of	sound	in	air	is	v1 = 1,126 feet per second (343.2 
meters per second).

	 •	The	sound	strikes	skin,	which	has	a	density	slightly	greater	than	
water, so ρ2 is the weight density is 65.40 pounds per cubic foot 
(the mass density is 1,047 kilograms per cubic meter).

	 •	The	speed	of	sound	in	skin	is	v2 = 5,151 feet per second (1,570 
meters per second).

 3. Substitute these numbers into the equation and solve for the ratio of 
the intensities.

  You know everything except the two intensities, so you can solve using 
the earlier formula:

  The formula shows that almost the entire wave is reflected when the 
sound wave travels between air and a liquid (or a solid); hence in medi-
cal clinics the paddle is kept in contact with the skin so the densities 
and speeds are closer to each other with less reflection. This is also the 
reason for the middle ear in your body.

 One danger of ultrasonic sound waves is that the wavelength is smaller than a 
cell and will cause stresses on the cell. If the intensity is too great, it will cause 
the cell to rupture. 
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In this part . . .
 ✓ Discover the electromagnetic force, why it’s the dominant 

force in biophysics, and how the force binds matter together to 
form organisms. 

 ✓ Learn how to build electrical circuits, as well as uncover how 
to store energy in electrical and magnetic fields. You can also 
see the advantages and disadvantages of alternating and 
direct circuits.

 ✓ Find out why electromagnetic radiation can be split into non-
ionizing radiation and ionizing radiation and all the interesting 
applications and benefits of both types.

 ✓ Grasp the ideals of radioactivity, how elements decay, and the 
applications in biophysics such as carbon dating (and how it 
works and what its limitations are). 

 ✓ Explore why radiation is dangerous to biological systems, both 
the short-term and long-term effects, and discover how to  
estimate the danger of the radiation and if you should be 
concerned. 

 ✓ Discover how biophysics is applied in the medical profession 
through medical physics by discovering what nuclear medi-
cine is, how diagnostic images are made, and what radio-
therapy is.



Chapter 16

Charging Matter: The Laws  
of Physics for Electricity, 

Magnetism, and Electromagnetism
In This Chapter 
▶ Interacting objects via electric and magnetic fields
▶ Supplying power and energy to the system
▶ Building electrical circuits

T 
he electromagnetic force is the primary force in biophysics, and it’s the 
force that makes biological systems work and binds them together. Only 

four fundamental forces exist in nature: the strong force, the weak force, the 
electromagnetic force, and the gravitational force. Most things are based on 
the electromagnetic force, from signals in nerves, thoughts in the brain, to 
a muscle contracting, to the binding of atoms to form molecules. This force 
forms and controls biological organisms. 

This chapter allows you to understand electricity, magnetism, and electro-
magnetism, and how they interact with matter. These sections describe the 
laws of electromagnetism and how charge, electric fields, and magnetic fields 
interact; power, energy, and the storage of energy; and circuits and neural 
networks.

 You may have notice that the same symbols keep coming up but with different 
subscripts. The symbols are shorthand, and the same symbols keep being 
used, so you must be careful when reading different sources. Usually, the 
meaning of the symbol is clear in the discussion. 
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Forcing Matter in Biological  
Systems to Interact

Forces are the quantitative description of the interaction between particles. 
Biological systems are formed by molecules, which are formed by atoms that 
are made of electrons, protons, and neutrons. These particles create electric 
fields, magnetic fields, and electromagnetic radiation. In addition, electric 
and magnetic fields create forces on other particles. 

The following sections introduce the laws that describe how charged par-
ticles, electric fields, and magnetic fields interact with each other, includ-
ing the Lorentz force, Coulomb’s law, Gauss’ law, the Biot-Savart law, the 
Maxwell-Ampere law, and Faraday’s law.

 The four laws, Gauss’ law for electric fields, Gauss’ law for magnetic fields, the 
Maxwell-Ampere law, and Faraday’s law, are known as Maxwell’s equations, 
and combined with the Lorentz force are a complete description of electricity, 
magnetism, and electromagnetism (electromagnetic radiation) and the foun-
dation of optics and electrical circuits.

Describing matter by their properties:  
The Lorentz force
You can classify materials by how they behave in electric, magnetic, and elec-
tromagnetic fields. The Lorentz force states that electric fields and magnetic 
fields will produce forces on charged particles such as electrons and protons. 

The magnitude of the force is equal to the strength of the electric field times 
the magnitude of the particle’s charge. The electric field forces positively 
charged particles (protons) in the same direction as that of the electric field, 
and forces negatively charged particles (electrons) in the opposite direction 
of the electric field’s direction. 

The magnetic field produces a force on moving charges. The magnitude of 
the force is equal to the magnitude of the charge times the speed times the 
magnitude of the magnetic field. The direction of the force is perpendicular 
to the magnetic field and perpendicular to the direction of the charged par-
ticle’s velocity.

 The charge of a neutron is Qn = 0 coulombs, the charge of a proton is Qp = +e = 
1.602177 × 10–19 coulombs, and the charge of an electron is Qe = –e = –1.602177 ×  
10–19 coulombs. The mathematical representation of the Lorentz force acting on 
a charged particle from an electric field and magnetic field is
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The particle has charge Q and velocity , and it feels a force  from an elec-
tric field  and magnetic field . The  is the cross product. It has a mag-
nitude of .

In this formula, θ is the angle between the direction of the velocity and the 
direction of the magnetic field. The direction of the cross product is deter-
mined by the right-hand rule. (The right-hand points in the direction of the 
velocity, the fingers (or palm) point in the direction of the magnetic field, and 
the thumb points in the direction of the cross-product.) 

 The standard unit is the ampere in SI units, which is actually the unit for electric 
current. The unit for charge is the coulomb, which is equal to one ampere times 
one second. Other common units in electromagnetism are 1 volt = 1 joule per 
coulomb = 0.7376 foot pound per coulomb. The electric field has the units of 
1 volt per meter (= 1 newton per coulomb) or 1 volt per foot (= 0.7376 pounds 
per coulomb). The magnetic field has the unit tesla where 1 tesla = 104 Gauss = 
1 kilogram per (coulomb second) = 0.06852 slugs per (coulomb second). 

All matter is made up of charged particles (electrons and protons), and mate-
rials can be classified depending on how they behave under the influence of 
electric and magnetic fields. Some types of materials include the following:

 ✓ Electrical conductors: Some of the charged particles within the mate-
rial are bonded weakly to the atoms through the Lorentz force. When an 
external electric field is placed on these types of materials, the Lorentz 
force is sufficient to cause electrical charge to move even with a very 
small electric field. Two examples are

	 •	Superconductors: Superconductors have no electrical resistivity, 
so the charged particles (electrons) begin to move with any kind of 
electric field. 

	 •	Metals: Good metals, such as copper and silver, have very small 
electrical resistivity, ρE,Cu = 5.51 × 10–8 ohm feet (1.68 × 10–8 ohm 
meters) and ρE,Ag = 5.22 × 10–8 ohm feet (1.59 × 10–8 ohm meters).

  Electrical resistivity is a measure of how much a material doesn’t 
like having charged particles flowing through the material, and the 
material is trying to stop them from moving. The electrical resis-
tivity arises because most particles in a material don’t move; only 
a very small fraction of the charge particles are moving. All the 
stationary particles are creating electric and magnetic fields inside 
the material and through the Lorentz force are trying to stop the 
moving charges.
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 ✓ Electrical semiconductors: This group of materials is sometimes split 
into semi-metals and semi-insulators, depending on whether the mate-
rial is more like a conductor or an insulator. These materials require 
more force than the conductors to move the charge carriers. The resis-
tivity of semiconductors varies quite a bit: Saltwater is ρE = 0.14 ohm feet 
(0.044 ohm meters), wet skin is ρE = 3,000 ohm feet (103 ohm meters), 
and silicon is ρE = 8,200 ohm feet (2,500 ohm meters). Semiconductors 
are the foundation of electronics. A few examples of where these materi-
als are used include transistors, integrated computer chips (IC chip), 
and diodes (LED TV).

 ✓ Electrical insulator: Materials that are electrical insulators don’t like to 
conduct electricity. No material is a perfect insulator, but some materi-
als such as air and glass are examples of very good electrical insulators. 
The resistivities of a few insulators are as follows: Pure water is ρE = 8.2 ×  
105 ohm feet (2.5 × 105 ohm meters), dry skin is ρE = 3.3 × 105 ohm feet 
(105 ohm meters), and glass is ρE = 8.2 × 1012 ohm feet (1012 ohm meters). 
If you apply a strong enough force, anything will conduct. 

  Note that dry skin is 1013 times more resistant than a good metal. Old 
cars were made of metal and not plastic, which is why they’re one of the 
safest places to be during a lightning storm. Even if a lightning bolt hits 
the car, it will travel through the metal and not through your body. This 
is referred to as a Faraday cage.

 ✓ Dielectrics: They’re materials where an electric field will polarize the 
molecules within an insulator. The polarization of the material reduces 
the strength of the electric field.

  A polarized material produces an electric field because it has the  
molecules within the material rotated and aligned with the external  
electric field. Some molecules have an uneven distribution of charges 
(like water where the oxygen atom has a negative charge and the two 
hydrogen atoms have positive charge). These molecules shift to align 
their charges with the electric field.

  The dielectric strength is the strongest electric field the dielectric can 
withstand before it becomes a conductor. The dielectric strength for 
air is 9 × 105 volts per foot (= 76 volts per mil = 3 × 106 volts per meter). 
This can occur when static charge has built up on an object or person. 
For example, if someone tries to give you a kiss on the cheek, instead of 
receiving lips touching your cheek, you get a lightning bolt piercing your 
cheek.

 ✓ Ferroelectric materials: They’re materials that acquire a spontaneous 
polarization below a certain temperature dubbed the Curie temperature, 
which will produce an electric field.

 ✓ Piezoelectric materials: They’re materials that change their size in an 
electric field or become polarized from an external stress. Bones, some 
proteins, and DNA are piezoelectric materials.
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 ✓ Ferrimagnetic materials: They’re permanent magnets. Lodestone is  
the classic example of a ferrimagnet (ferrites) and has been known for 
several thousand years.

 ✓ Ferromagnetic materials: They’re materials that are magnetized (the 
electrons, proton, and neutrons within the material are aligned to pro-
duce a magnetic field). Ferromagnets are permanent magnets, but usu-
ally different parts of the material are magnetized in different directions. 
An external magnetic field will align all the domains in the same direc-
tion. In the 1980s, neodymium rare-earth magnets were developed and 
can now produce magnetic fields up to 1.5 teslas.

 ✓ Paramagnetic materials: They’re materials that acquire a magnetization 
parallel to an external magnetic field and enhance the magnetic field. 
Metal coins are an example of paramagnetic materials.

 ✓ Diamagnetic materials: These materials acquire a magnetization that 
opposes the external magnetic field. The magnetic effects of most mate-
rials are small. Biological systems are also diamagnetic. In fact, it was 
experimentally shown that frogs will float in air if placed in a strong 
enough magnetic field. Superconductors are perfect diamagnetic materi-
als (no magnetic field enters a superconductor) because the material 
produces a magnetic field that exactly cancels out the external magnetic 
field inside the material.

Sticking balloons on the wall: Coulomb’s 
law and static charge
Coulomb’s law tells you how two static (stationary) charged objects interact 
with each other. The law states

 ✓ There are only two kinds of charge: positive and negative.

 ✓ Two like charges will repel each other and two opposite charges will 
attract each other.

 ✓ The direction of the force lies along the line between the two charges.

 ✓ The magnitude of the force between two static (stationary) charges is

  In this formula, kE (which equals 2.18 × 1010 pounds square foot per 
square coulomb = 9.0 × 109 newtons square meters per square coulomb) 
is the electric constant, Q1 is the charge of object 1, Q2 is the charge of 
object 2, and R1,2 is the shortest distance between objects 1 and 2.
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When you rub a balloon on your hair, some electrons are transferred 
between your hair and the balloon, leaving hair positively charged and the 
balloon negatively charged. The rubber of the balloon is an insulator so the 
charge doesn’t move or dissipate from the balloon. As you move the balloon 
toward the wall, the like charges in the wall are repelled and the opposite 
charges are attracted, leaving a net amount of opposite charge in the wall 
close to the balloon. The charges attract each other and hold the balloon in 
place against the force of gravity.

Producing electric fields
The Lorentz force states the electric field will produce a force on a charge 
particle. You can use this statement to define the electric field. If I take a 
test charge (inside my testing equipment) and measure the force acting on 
my charge, then the electric field is equal to the force divided by the charge 
of my test charge. Every charged particle produces an electric field and the 
electric field my test charge measures is the vector sum of all the individual 
electric fields.

Finding the electric field from Coulomb’s law
You can arrange the Lorentz force to give the electric field in terms of the 
force, and Coulomb’s law gives the force between two stationary charges, so I 
can combine them to define the electric field of a static (stationary) charge Q:

In this formula, kE (= 2.18 × 1010 pounds square foot per square coulomb = 
9.0 × 109 newtons square meters per square coulomb) is the electric constant, 
Q is the charge of the object, and R is the distance from the object to the 
location where you’re measuring the electric field. 

 The electric field points away from an object with charge Q if the charge Q is 
positive (proton), and the electric field points toward an object with charge Q 
if the charge Q is negative (electron). The total electric field at any given point 
in space is the vector sum of all the contributing electric fields. 

Figure 16-1a shows an electric field for a single positive charge. If the 
charge was negative, the electric field lines would point toward the charge. 
Figure 16-1b shows the net electric field for two charges (equal magnitudes 
but opposite signs). The Lorentz force states that the force is equal to the 
charge times the electric field, so if you place a charge on a net electric field 
line (either the lines in Figure 16-1a or Figure 16-1b), then the charge will feel 
a force in the direction of the line and will want to follow that line. Remember, 
a positive charge will move in the direction of the electric field line, and a 
negative charge will move in the direction opposite to the electric field line. 
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Figure 16-1: 
The elec-

tric field 
of a single 

charge (a). 
The net 

electric field 
of a positive 
charge and 
a negative 
charge (b).

 

Creating electric fields using Gauss’ law
In biophysics, the biological systems have many charges, so the formula for 
calculating the electric field for each individual charge may not be the best 
approach. In that case, it is usually better to use Gauss’ law, which gives the 
relationship between the electric flux (a measure of the amount of electric 
field passing through an area [A]) and the total charge enclosed (which is the 
sum of all the charges [electrons and protons] within the volume surrounded 
by the area A):

In this formula, kE, which is equal to 2.18 × 1010 pounds square foot per 
square coulomb (9.0 x 109 newtons square meters per square coulomb) is 
known as the electric constant. (The electric constant is a number that is 
related to the speed of light.) Qenc is the total charge enclosed by the closed 
surface. ΦE is the electric flux, where the superscript (o) means the surface is 
closed. Closed means you can’t get from one side of the surface to the other 
side without passing through the surface, such as an inflated balloon or a box 
with a closed lid. An open surface would be like the page in a book.

The permittivity of free space (εo), also known as the vacuum permittivity, is 
related to the electric constant by the following relationship: kE = 1/(4πεo) = 
8,987,551,787.368176 newtons square meters per square coulomb. 

 Gauss’ law states that the charges within the volume produce the electric flux. 
Also, electric flux is related to the electric field, and from the Lorentz force the 
electric field is related to the force acting on other charged particles. The two 
relationships, Gauss’ law and Lorentz force, tell you how charged particles 
create forces on other charged particles.

You know the relationship between the force and the electric field and you 
know the relationship between the electric flux and the charges creating it; 
all you need now to complete the connection is the relationship between the 
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electric flux and the electric field. If the electric field is a constant over the 
surface enclosing the charges, then the electric flux is

In this formula, | | is the magnitude of area of the surface, | | is the magni-
tude of electric field and ΦE is the electric flux. The vector area has a direc-
tion normal to the surface. The angle θ is the angle between the direction of 
the electric field and the direction of the area.

 A nice feature of Gauss’ law is that the surface can have any shape so you can 
always pick a shape that works best for the problem. You can use the symme-
try of the problem to make your life easier. 

In Figure 16-1a, you can draw a box or a sphere around the charge. In either 
case the flux is equal to 4πkEQ. However, in Figure 16-1a, you can see the elec-
tric field is spherically symmetrical, which means if you choose the surface to 
be a sphere of radius R, then the electric field has a constant magnitude on 
the sphere. The area of a sphere A equals 4πR2 and Gauss’ law gives E4πR2 = 
ΦE = 4πkEQ, which gives the magnitude of the electric field for a point charge: 
E = kEQ R–2.

Figure 16-1b has one negative charge and one positive charge. If you enclose 
the two charges in any closed surface, then the total charge enclosed is zero 
and the total electric flux must be zero according to Gauss’ law. This means 
the amount of electric field flowing out through the surface is equal to the 
amount of electric field flowing in through the surface, which is true for any 
surface containing both charges.

Understanding the electric potential
Conservative forces have a corresponding potential energy. (Chapter 4 dis-
cusses potential energy.) Similarly, the electric field (the means by which a 
charged particle creates a force on another charged particle) has a corre-
sponding electric potential (the potential of an electric field to do work on a 
charge particle). The electric potential difference is defined as the change in 
the electric potential energy divided the charge (q) of a test particle that is 
moved from the initial location to the final location. Remember, the change in 
the potential energy is equal to the negative of the work done on the particle, 
the definition of the work done is it equals the displacement times the force 
parallel to the displacement, and from the Lorentz force the force is equal to 
the charge of the particle times the electric field. All these relationships can 
be combined into a single mathematical expression:
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In this formula, ΔV is the electric potential difference and ΔEp is the change in 
the potential energy, W the work done on the particle, F is the force, Δs is the 
displacement, and E is the electric field. The unit for the electric potential dif-
ference is volts. You can use this expression in Gauss’s law to find the electric 
flux and the enclosed charge from the electric potential.

The electric potential difference measures the change in the potential energy 
in space. Related to this is the work that is needed to move the charges. 
The electromotive force (emf) is defined as the external work per unit charge 
(W/Q). The emf is the power source in a circuit, such as batteries (electro-
chemical cells), solar cells, piezoelectrical materials under stress, or electri-
cal generators.

 The relationship between the electric potential and the electric field is the 
same as the relation between the potential energy and the conservative force. 
The average strength of the electric field is equal to the electric potential dif-
ference divided by the displacement. A couple of consequences of this are as 
follows:

 ✓ The electric field points in the direction of maximum decrease in the 
electric potential. 

 ✓ A surface of constant electric potential (called an equipotential) has an 
electric field pointing perpendicular to the surface.

 ✓ A metal with no current flowing in it is an equipotential with no electric 
field inside. Any excess charge in a conductor will be located on the sur-
face. If there were excess charge inside a conductor, it would create an 
electric field that will force charge to move.

 ✓ Fish produce an electric field to help them navigate. Objects cause 
changes to the electric field that the fish can detect.

 ✓ Sharks are very sensitive to the electric fields produced by animals, 
which explains how they track fish and other sea life, even if they’re 
hidden under rocks or sand.

Producing magnetic fields  
and the Biot-Savart law
Charges create electric fields, and the motion of charges creates magnetic 
fields, which the symbol B denotes. The average current is defined as the 
amount of charge flowing through a cross-sectional area divided by the time 
elapsed over which you measured the amount of charge:
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The current flows in the direction of positive charge. In good metals like 
copper, the charge carriers are electrons, which flow in the direction oppo-
site to I because they have negative charge.

 Electric field lines start at positive charges and end at negative charges. 
Magnetic field lines have no beginning or end but form circles around cur-
rents. The direction of the magnetic field lines are determined by the right-
hand rule. Figure 16-2 shows a wire with current flowing upwards. If you place 
the thumb of your right hand in the direction of the current, then your fingers 
curl around the wire in the same direction as the magnetic field.

 

Figure 16-2: 
The mag-
netic field 

lines around 
a current 
carrying 

wire.
 

In the case of magnets with no current flowing through them, the electrons 
in the atoms are orbiting the nuclei and create a small magnetic field around 
each atom. To help visualize this, take the wire in Figure 16-2 and connect the 
top to the bottom. The magnetic field can combine with the magnetic fields of 
the other atoms to give the material a net magnetic field. The magnetic field 
comes out of the material at what is called the North (Magnetic) Pole, circles 
around, and goes back into the material at the South (Magnetic) Pole.

The earth also creates a magnetic field. The South (Magnetic) Pole was 
located in Canada from at least the 1800s until the early part of the 21st 
century. Recently, the South (Magnetic) Pole has been moving and is now 
located in the Arctic Ocean, moving toward Siberia. Many animals such as 
the salmon and sea turtles use the earth’s magnetic field. The effects of the 
earth’s magnetic poles shifting could have consequences on the animals that 
use the earth’s magnetic field.
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The magnetic version of Gauss’ law gives this expression:

ΦB is the magnetic flux, where the superscript (o) means the surface is 
closed. This law states that the number of magnetic field lines flowing out 
a surface equals the number of magnetic field lines flowing into the closed 
surface. This just reiterates what I said earlier that magnetic field lines don’t 
start or end, but go in circles.

The magnetic flux is a measure of the amount of magnetic field passing through 
the surface. If the magnetic field is a constant over a surface, then the magnetic 
flux is defined as

In this formula, ΦB is the magnetic flux,  is the magnetic field,  is the area of 
the surface. The vector area has a direction normal to the surface. The angle 
θ is the angle between the direction of the magnetic field and the direction of 
the area.

The Biot-Savart law is a formula for calculating the magnetic field due to a 
straight piece of current carrying wire of length L. The right-hand rule gives 
the direction of the magnetic field. The magnitude of the magnetic field is as 
follows:

In this formula, B is the magnitude of the magnetic field at a point in space a 
distance R from the wire, kB is the magnetic constant which equals 10–7 tesla 
meter per ampere = 2.25 × 10–8 pounds per square ampere, I is the current 
in the wire of length L, and θ is the angle between the direction of R and the 
direction of L.

 Three special applications of the Biot-Savart law are 

 ✓ The magnetic field produced by a current I in an infinitely long straight 
wire is as this formula shows

  R is the perpendicular distance from the wire.
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 ✓ The magnetic field along the axis perpendicular to a loop of wire with 
current I and radius d is as follows:

  R is the perpendicular distance from the plane of the loop. R = 0 is the 
center of the loop.

 ✓ The magnetic field inside a long thin solenoid (many loops all connected 
and stacked one beside the other) is as follows:

  In this formula, B is the magnitude of the magnetic field, kB is the mag-
netic constant, I is the current within the solenoid, n is the number of 
loops per unit length. This result is exact for an infinitely long solenoid 
and is a good approximation near the center of a long thin solenoid.

Changing electric fields create magnet 
fields: Maxwell-Ampere law
Current is convenient when studying currents in thin wires. When you have 
charge flowing through a material, using the current density is more conve-
nient. Current density is the amount of current per cross-sectional area flow-
ing through a material. The current can be expressed in terms of the current 
density times the cross-sectional area that the charge is flowing through as 
this expression shows: 

The Maxwell-Ampere law states that the rate charge flows through an area 
(A) plus the rate of change in the electric field through the same area (A) is 
proportional to the magnetic field times the circumference of the area (Δd) as 
this expression shows:

In this formula, vlight = 186,282 miles per second = 983,571,056 feet per 
second = 299,792,458 meters per second is the speed that light travels at. 
The Maxwell-Ampere law shows that moving charges (current density) and 
changing electric fields create a magnetic field.
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Creating electric fields: Faraday’s law
Faraday’s law states that the average electromagnetic force (emf) (ε) (the 
external work done per unit charge) induced in a circuit is equal to the 
negative of the average rate of change in the magnetic flux (the measure of 
the magnetic field passing through an area (A)). In other words, a changing 
current will produce a changing (time dependent) magnetic field, or a chang-
ing magnetic field will produce a current in the material. You can write this 
expression as

The emf is proportional to the electric field along the circumference (Δd) of 
the area the magnetic field is going through. If the area is a constant and the 
magnetic field is the same throughout the area, then Faraday’s law can be 
written as

The negative sign in Faraday’s law is a consequence of Lenz’s law. Lenz’s law 
states the induced current always opposes the change in the magnetic flux. 
For example, suppose the magnetic flux is increasing, then the induced cur-
rent in the circuit is flowing such that the magnetic field created by the cur-
rent opposes the magnetic field within the area. Faraday’s law is the principle 
of electrical generators and led to Faraday making the first generator.

In biological systems, electricity, magnetism, and electromagnetism are 
fundamental to all forms of energy production and storage. This form of 
energy is what makes biological organisms work. A few examples of electrical 
energy, currents, and the storage of energy include the electrical impulses  
in the muscles, the nerves sending electrical pulses to the brain, and  
photosynthesis. 

Resisting AC/DC — the resistance of the 
human body and other resistors
The electrical resistivity (ρE) is a measure of a material’s ability to resist the 
flow of electrical charge through it. The larger the resistivity, the quicker the 
electrical energy is converted into heat energy. The electrical conductivity (a 
measure of how easy it is for charge to flow through the material) is equal to 
one divided by the resistivity (σE = 1/ρE). Metals have a very small resistivity, 
which means a very large conductivity, whereas insulators have a very large 
resistivity. 
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Resistance is related to the resistivity of the material combined with the 
shape and size of the object. The resistance of a material gives a measure of 
the amount of electrical energy lost by passing a current through the object 
and it’s expressed this way:

In this formula, ΔV is the electrical potential difference across the material. 
I is the current passing through the material. The unit of the resistance RE is 
ohm, which equals volt per ampere. Note: Measuring your body’s resistance 
by passing a current through your body isn’t a good idea! (Just think of what 
a taser does to a person.)

 Materials with a constant resistance RE are called ohmic. Metals are ohmic 
materials with very small resistance RE. Ohmic materials with large resistance 
RE are called resistors. Diodes are an example of nonohmic devices where the 
resistance isn’t a constant. In the case of a cylindrical object of length L and 
cross-sectional area A, the resistance parallel to the axis of the cylinder is 
expressed as such:

Plants and animals are constantly generating electrical currents throughout 
their biological systems. Depending on where an external source is produc-
ing a current within the biological system, it will have a different resistance 
and different effect. 

In the human body, the resistivity of wet skin is 3,000 ohm feet (103 ohm 
meters), the resistivity of dry skin is 3.3 × 105 ohm feet (105 ohm meters), and 
the body has an average internal resistivity of 15 ohm feet (4.6 ohm meters). 
This difference is because things such as body fluids are good electrical con-
ductors with a resistivity of 0.50 ohm feet (0.15 ohm meters). The human skin 
is a protective blanket to protect muscles and organs from external sources 
of electrical currents. 

During a lightning storm, hiding inside a metal car is smart because if the car 
gets struck by lightning or an electrical power line is lying across the car, 
then the current flows through the metal (low resistance). Your body is the 
opposite; as soon as the current gets through your skin (high resistance), it 
wants to travel inside your body (low resistance). Open wounds and wet skin 
aren’t good to have around electrical devices.

Your body sends electrical pulses to the muscles, which cause them to con-
tract. Turning on and off the electrical pulses allows you to control your mus-
cles. If an external current of less than 0.01 amperes enters the body, then 
you still have control over the muscle; however, if the current is greater than 
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0.02 amperes, then the muscle contracts and you have no control. That is 
why you can’t let go when you’re getting a shock. If the current is increased 
to around 0.05 amperes, then it causes serious damage inside the body. The 
heart is a massive muscle and there is a chance it will go into ventricular 
fibrillation for currents above 0.03 amperes. The most dangerous currents 
are around 0.1 amperes because at this current the heart has the greatest 
chance of going into ventricular fibrillation, which means it won’t pump suf-
ficient blood to the body. 

If the heart does go into ventricular fibrillation, then a defibrillator may be 
needed. A defibrillator actually does the opposite of what most people think. 
The device cranks up the juice (more than 0.3 amperes), which makes the 
heart completely contract and stop beating (flat-line). The heart then starts 
beating in a regular rhythm again when the current stops flowing through it. 
The new defibrillators have a better than 95 percent success rate of fixing 
ventricular fibrillation on the first zap. 

Storing energy with charge: Capacitors
Capacitors are devices that store energy within an electric field by having two 
oppositely charged conductors within the device. A measure of the amount 
of charge a capacitor can hold is the capacitance. The capacitance is the 
amount of charge on each conductor within the device divided by the poten-
tial difference between the plates. It’s expressed as:

Capacitors are two conductors not in contact, with one conductor having 
a charge Q and the other conductor having a charge –Q. ΔV is the electric 
potential difference between the two conductors. The unit of the capacitance 
is the farad or in most real capacitors microfarad = 10–6 farads or picofarad = 
10–12 farads.

Meanwhile, dielectrics are materials that are insulators and become polarized 
in an electric field. A dielectric is usually placed between the conductors in a 
capacitor, which increases the capacitance of the capacitor. Dielectrics make 
the following two changes to the laws of electromagnetism:

K is called the dielectric constant or relative permittivity. It’s a measure of the 
effect of the polarization of the dielectric material. These two changes in the 
equations mean the electric field is smaller in a dielectric material by a factor 
of 1/K, light travels slower through a dielectric material by a factor of 1/K1⁄2 
and the capacitance increases by a factor of K (K > 1). 
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Here are a few useful values of the dielectric constant K that arise in biophys-
ics: 1 in a vacuum, 1.00054 in air at 68° F (20° C), 80.1 in water at 68° F (20o C), 
78 in water at 77° F (25o C) and 8 for an unmyelinated axon membrane at 
98.6o F (37o C). 

Myelin is a dielectric material that forms a protective insulating boundary  
between the axon and the surroundings. The presence of the myelin 
increases the electrical resistance of the membrane and decreases its  
capacitance.

Capacitors store energy that can be used in electrical circuits. The potential 
energy of a capacitor (the energy that can be used to do work) is:

In this equation, Q is the total charge on one of the two conductors and ΔV is 
the electric potential difference.

Anything can be made into a capacitor as long as you can keep the charge 
separated. The simplest capacitor is two conducting plates that are parallel 
with a gap between them, called a parallel-plate capacitor. A parallel-plate 
capacitor has the following electrical properties between the two plates:

The plates have an area A and a distance Δx between the plates. The direction 
of the electric field (E) is normal to the conducting plates from the positive 
plate to the negative plate. ΔV is the electric potential difference across the 
plates, EP is the electric potential energy, Q is the charge on a plate (–Q on the 
other), and K is the relative permittivity of the dielectric between the plates.

For example, Harold has graciously volunteered to give us an unmyelinated 
axon membrane to experiment with during your Saturday biophysics party. 
This party will be held in the lab because the experiment needs some special-
ized equipment. You want to calculate the electric field, the capacitance, the 
charge, and the potential energy. 
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You meet your biophysics friends at the local biophysics lab. You take 
Harold’s unmyelinated axon membrane and spread it flat, so it looks like a 
parallel-plate capacitor. You and your friends pull out the equipment and 
make some measurements.

The results of those measurements are:

 ✓ You measure the electric potential difference ΔV = 0.1 volts.

 ✓ You measure the relative permittivity (dielectric constant) K = 8.

 ✓ You measure the thickness of the membrane Δx = 4.0 × 10–7 inches  
(3.3 × 10–8 feet = 1.0 × 10–8 meters). 

 ✓ You measure the area of the membrane A = 2.0 × 10–3 square inches  
(1.4 × 10–5 square feet = 1.3 × 10–6 square meters).

  You can now substitute these measurements into the formulas for a 
parallel plate capacitor and determine the unmyelinated axon’s physical 
properties:

If you thought the electric field is large, then you’re correct. This is the same 
size of electric field needed for air to go from being an insulator to a conduc-
tor, and a spark could travel through the air. In addition, the stored energy 
may seem small, but you have to remember how small the membrane is.

Connecting Electric Circuits
A large area of biophysics is involved with studying electrical circuits within 
biological organisms, which are all around (and in you). Humans and animals 
are made up of electrical circuits throughout the body. 



334 Part V: Interacting Subatomic Particles’ Influence on Biological Organisms 

Biophysicists are interested in the electrical nerve pulses between the senses 
and the brain, or when the brain sends electrical signals to a muscle and 
causes it to contract. In fact, the brain is a large complex computer with elec-
trical signals traveling throughout it, so biophysicists are interested in the 
electrical wiring (circuitry) of the brain (neural networks).

You can use the information from this chapter to form the properties of elec-
trical circuits with applications to neural networks or other aspects of bio-
physics. In these sections, I discuss Ohm’s law, energy, and power; illustrate 
how to draw and read electrical schematics; and peruse the conservation 
laws of complex electrical circuits with devices in parallel and series.

Conserving energy: Ohm’s law and  
the power dissipation of devices
Any biophysical system always has some sort of energy or work (power) put 
into the system and energy or work (power) has to come out. You always 
need to ask, where did the energy go and what did it do. In electrical systems 
within the body or in a circuit, something is supplying emf (work/power) and 
then the body or the devices use the electrical potential energy (charge times 
electrical potential). Ohm’s law states how much the electrical potential 
decreases across a device when a current flows through the device.

The electrical potential difference (ΔV) across a device is equal to the direct 
current (I) flowing through the device times the resistance (RE) of the device. 
Mathematically, Ohm’s law is ΔV = I RE. A device is said to be ohmic if the 
resistance (RE) is a constant and nonohmic otherwise.

Remember, the power supplied by an electrical power source is equal to the 
emf times the current. Mathematically, Pinput = ε I. Now, the power dissipated 
by an electrical device is: Poutput = RE I2 (ohmic) or Poutput = ΔV I (nonohmic). The 
power expressions combined with Ohm’s law should be your starting point 
for any circuit problem.

Drawing road maps for electrons:  
Circuits and circuit diagrams
Current flows in neural networks and in wires (usually copper) to the devices 
connected in a circuit to a power supply. These wires are like roadways for 
the electricity, and if you have roadways, then having a map is nice. You may 
be required to draw your own map or read a map, so this section introduces 
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the symbol conventions used for the devices and power supplies. Figure 16-3 
shows an example of a circuit schematic with the common symbols. 

 

Figure 16-3: 
A schematic 

drawing of 
an electrical 

circuit.
 

The symbols in Figure 16-3 are as follows:

 ✓ Straight lines: The straight lines are the conducting wires connecting 
the devices. The resistance of the wires for copper (ρE = 5.51 × 10–8 ohm-
foot = 1.68 × 10–8 ohm meters) is expressed as:

  An L = 100 feet, 14-gauge copper wire has a resistance of 0.253 ohms, 
which is very small. Your skin has a resistivity of ρE = 3.3 × 105 ohm-feet 
(105 ohm-meters) when dry, which is 1013 times larger than copper! The 
body fluids within your body have a resistivity of approximately ρE = 
0.50 ohm-feet (0.15 ohm-meters), which is 107 times larger than copper 
but 10–6 times smaller than your skin. In circuits where the devices 
are connected with copper wires, you can ignore the resistance of the 
copper because the resistance is so small compared to the devices. The 
wires are just pathways for the current.

 ✓ Switches: The switches are S1 and S2. Both switches are shown in the 
open position so no current is flowing through the circuit. Closed 
switches have the bar touching both poles.

 ✓ Ammeters: The ammeters are uppercase A’s with a circle around them. 
These devices measure the current flowing through the circuit and must 
be placed in series with the device. Figure 16-3 shows two:

	 •	Ammeter	A1 is measuring the current passing through RE,1 and RE,2.

	 •	Ammeter	A2 is measuring the current passing through CE,4 and CE,5.
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 ✓ Voltmeters: The voltmeters are upper case V’s with a circle around them. 
These devices measure the electric potential difference across devices 
and must be placed in parallel with the device. Figure 16-3 has two:

	 •		Voltmeter	V1 is measuring the electric potential difference  
across RE,2.

	 •	Voltmeter	V2 is measuring the electric potential difference across 
both RE,3 and RE,4.

 ✓ DC emf power source: The DC emf power source is ε1 in Figure 16-3. The 
symbol consists of two parallel lines of unequal length:

	 •	The	long	line	represents	the	positive	pole	that	the	current	comes	
out of.

	 •	The	short	line	represents	the	negative	pole	where	the	current	
flows back into the power source. 

  The positive and negative sign are usually added to help distinguish it 
from the capacitor. Remember the electrons flow opposite to the cur-
rent, which represents positive charge flow.

 ✓ AC emf power source: The AC emf power source is ε2 in Figure 16-3. It’s a 
circle with a wave inside. The wave indicates that the current is oscillat-
ing back and forth: ε2 = ε0 cos(2 π f t), where ε0 is the emf amplitude, f is 
the frequency, and t is the time.

 ✓ Resistor: Figure 16-3 denotes the resistor by a jagged line. RE,1, RE,2, RE,3, 
and RE,4 are resistors. For a single resistor connected to an emf power 
source (nothing else in the circuit except a single loop of wire with a 
switch), the following is true:

  DC emf: ε1, RE,1, ΔV = I RE and ε1 – ΔV = 0.

  AC emf: ε2 = ε0 cos(2 π f t), Zrms = XR = RE,1 and I2 = (ε0/Zrms) cos(2 π f 
t). Zrms is the root mean square (rms) impedance of the circuit. The 
impedance is a measure of the device’s resistance to the current. 
Many devices have impedance that depends on the resistance, 
capacitance, and inductance of the device. These quantities don’t 
add together, but combine in a complicated manner. The root 
mean square impedance is the magnitude of the impedance. XR is 
the reactance of the resistor. Note XR is usually ignored because it 
is equivalent to RE.

 ✓ Capacitor: Two straight parallel lines denote the capacitor. The parallel 
lines represent the simplest capacitor, two parallel conducting plates 
with an insulating gap between them. CE,1, CE,2, CE,3, CE,4, and CE,5 in  
Figure 16-3 are capacitors. For a single capacitor connected to an emf 
power source, the following is true:

  DC emf with the switch S1 closed at time 0: In Figure 16-4, con-
sider the circuit C1 and R1 and everything else removed: ε1, CE,1, 
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RE,1, and I(t) = (ε1/RE,1) exp[t/(RE,1CE,1)]. [Remember, exp(x) = ex = 
(2.7182818…)x.] The capacitor initially acts like a wire, but after a 
long time it behaves like a broken wire because as time goes on, 
the charge builds up in the capacitor, which repels further current 
from flowing into the capacitor.

  AC emf: In Figure 16-3, consider the circuit CE,1 and everything else 
removed: ε2 = ε0 cos(2 π f t), Zrms = XC = 1/(2 π f CE,1), I2 = –(ε0/Zrms) 
sin(2 π f t). XC is the reactance of the capacitor (called the capaci-
tive reactance), which is the effective resistance of the capacitor. 
The reactance is dependent on the frequency of the AC emf power 
source.

 ✓ Inductor: A looping wire denotes the inductor. The looping wire repre-
sents the solenoid. LE,1 in Figure 16-3 is the inductor. For a single induc-
tor connected to an emf power source, the following is true:

  DC emf with the switch S1 closed at time 0: In Figure 16-3, con-
sider a single loop of wire with LE,1 and RE,1 and everything else 
removed: ε1, LE,1, RE,1 and I(t) = (ε 1/RE,1) (1 – exp[–t RE,1/LE,1]). The 
inductor acts initially like a broken wire, but after a long time it 
behaves like a piece of wire.

  AC emf: In Figure 16-3, consider the circuit LE,1 and everything else 
removed: ε2 = ε0 cos(2 π f t), Zrms = XL = 2 π f LE,1, I2 = (ε0/Zrms) sin(2 
π f t). XL is the reactance of the inductor (called the inductive reac-
tance), which is the effective resistance of the inductor. The reac-
tance is dependent on the frequency of the AC emf power source.

Conserving energy and charge within  
a circuit: Kirchhoff’s laws
In any biophysical system (or physical systems) you look at how the energy 
and work don’t change, but only change form. This section is about power 
in equals power out combined with particles (mass and charge) in equals 
particles (mass and charge) out. This section is about how these things don’t 
change in a neural network and electrical circuit. They’re called Kirchhoff’s 
laws. Here are Kirchhoff’s laws and what they mean:

 ✓ Kirchhoff’s first law: The current flowing into any point of a circuit is 
equal to the amount of current flowing out. Kirchhoff’s first law is stating 
conservation of charged particles. The number of charged particles in an 
electrical circuit can’t change. In Figure 16-3, the current flowing through 
inductor LE,1 is equal to the sum of the currents flowing RE,1, RE,3, and RE,4. 
Alternatively, the sum of the currents flowing into a junction must equal 
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the sum of the currents flowing out of the junction. (A junction is where 
many wires come together — see Figure 16-3.)

 ✓ Kirchhoff’s second law: The sum of the electrical potential differences 
around any closed path (loop) in a circuit must be zero. To add up the 
electrical potential difference around a closed circuit you take

	 •	The	emf	of	a	power	supply	as	positive	if	going	in	the	direction	of	
the current and negative if going in the direction opposite to the 
current.

	 •	The electrical potential difference across a device is negative if 
going in the direction of the current and positive if going against 
the current.

  Kirchhoff’s second law is the conservation of the electrical potential dif-
ference (and the conservation of electrical potential energy). The elec-
trical potential difference is related to the electrical potential energy, 
which is related to the conservative force. All conservative forces are 
path independent, so the change in the electrical potential difference 
around any closed circuit must be zero. 

  Alternatively, you can look at Kirchhoff’s second law as the conservation 
of power (energy), which is a very important concept in the study electri-
cal systems. Remember, the electrical potential energy (EP) is equal to the 
charge (Q) times the electrical potential (V). You can’t create or destroy 
energy, so the power put into a circuit must equal what comes out. 



Chapter 17

Tapping into the  
Physics of Radiation

In This Chapter 
▶ Getting the lowdown on nuclear physics and radioactivity
▶ Tackling common myths about radioactivity
▶ Looking at radioactivity in biological systems

S 
ome materials emit radiation and others are efficient at absorbing 
certain types of radiation. These properties are of interest to people 

involved in medical physics, health physics, and some areas of biophysics. 
Radiation can have harmful effects on the body, but there are also many  
benefits of radiation. 

This chapter examines nuclear physics, radioactivity, and the different types 
of radiation. The chapter explores how radiation is produced, the different 
types of electromagnetic radiation and the pros and cons of this radiation, 
and radioactive material inside people and organic material.

Understanding What Nuclear  
Physics and Radioactivity Are

Radioactivity is a natural process with many benefits in society, but most 
people unfortunately think of cancer and nuclear weapons whenever  
radiation and nuclear physics are mentioned. 

Nuclear physics deals with the study of the nucleus of atoms. I am not interested 
in the specific details within the nucleons (the particles within the nucleus) 
or the nucleus (the central core of the atom where most of the mass and all 
the positive charge reside) in general except for the consequence of what 
is going on has on biological organisms or molecules. The nucleons are 
called protons and neutrons. For our purposes, the protons are the positively 
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charged particles within the nucleus with a mass approximately 1,800 times 
larger than an electron’s mass. The neutrons have no charge and have a mass 
approximately the same as a proton’s.

In most of biophysics, the electromagnetic force is the primary force, but 
nuclear physics does play an important role in some areas of biophysics. 
Nuclear physics considers three primary forces within the nucleus: 

 ✓ Strong force: This force keeps the neutrons and protons together.

 ✓ Electromagnetic force: This force causes the protons to repel each 
other. (See Chapter 16 for a more detailed discussion.)

 ✓ Weak force: This force is responsible for beta decay and beta radiation. 
I discuss beta decay and beta radiation in more detail in the following  
section.

These sections explain nuclear physics and radioactivity and dispel some of 
the myths and fears surrounding these terms.

Explaining radioactivity
Radioactivity is everywhere and is relevant to everyone. This section dis-
cusses what radioactivity is and what the consequences are for matter. I also 
introduce the most common forms of radioactive decay that you will find 
important in biophysics. 

If you take any organic or inorganic material and break it apart (break apart 
the molecules too), you will discover atoms composed of a nucleus with pro-
tons and neutrons surrounded by electrons. An atom with a specific number 
of protons is called an element, because the number of protons in the nucleus 
determines the physical properties of the atom. The atomic number Z is the 
number of protons in the element’s nucleus. For example, the element hydro-
gen has one proton, so its atomic number is one (Z = 1), the element carbon 
has six protons (Z = 6), and the element oxygen has eight protons (Z = 8).

 The atomic mass A of an element is equal to the total number of protons plus 
neutrons in the nucleus. Elements with a small atomic number have approxi-
mately the same number of neutrons as protons, but as the atomic number 
grows, then the number of neutrons grows faster than the number of pro-
tons so that uranium has approximately 1.6 neutrons for every proton in the 
nucleus. The mass of the proton is 1,836 times greater than the mass of an 
electron, and the mass of the neutron is 1,839 times greater than the mass of 
an electron, which means you can ignore the mass of the electrons when cal-
culating the mass of an atom. 
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The mass of an atom is M = A u, where u = 1.138 × 10–28 slugs (1.661 × 10–27  
kilograms) is the atomic mass unit and A is the atomic mass.

The number of neutrons in the nucleus isn’t as important for the physical 
properties of the element (except for the mass of the element and its stabil-
ity). An element can have a different number of neutrons, which are called 
isotopes. The number of neutrons equals the atomic mass (A) minus the 
atomic number (Z). The three most common elements in biophysics are

 ✓ Hydrogen (Z = 1): Hydrogen-1, (also known as Hydrogen or Protium) has 
the symbol H or 1H (A = 1), Hydrogen-2 (also known as Heavy Hydrogen 
or Deuterium) has the symbol D or 2H (A = 2), and Hydrogen-3 (also 
known as Tritium) has the symbol T or 3H (A = 3).

 ✓ Carbon (Z = 6): The symbol is AC, where Carbon-12 or 12C (A = 12) is the 
most abundant isotope. Carbon-13 and Carbon-14 are also common in 
nature. The carbon isotopes vary from A = 9 to A = 17.

 ✓ Oxygen (Z = 8): The symbol is AO, where Oxygen-16 or 16O (A = 16) is the 
most abundant isotope. Oxygen-17 and Oxygen-18 are also relatively 
stable. The oxygen isotopes vary from A = 13 to A = 21.

Elements like to have a certain combination of protons and neutrons. If there 
are too many or too few neutrons within the nucleus (or too many protons), 
then the element is unstable. Radioactivity is the process by which unstable 
isotopes of elements change into different elements in an attempt to become 
stable. Several quantities must be preserved during the process of radio-
activity: conservation of energy, conservation of momentum, conservation 
of charge, and conservation of nucleons. As a result, radioactivity can be 
restricted to a few different radioactive processes:

 ✓ Positive beta decay: If the isotope has not enough neutrons (or too 
many protons), then it will change a proton into a neutron by positive 
beta decay. The radioactive process is

  In the first line, p is the symbol for the proton, n is the symbol for the 
neutron, the β is the positive beta, and the ν is the symbol for a neu-
trino. The β+ is a positron that has been emitted from the nucleus. A 
positron is an antielectron, which is exactly like an electron except it 
has the opposite charge. The neutrino is a fundamental particle of the 
universe, which means it isn’t made up of smaller particles. It has no 
charge and its mass is almost zero. The superscripts and subscript on 
the beta particle are usually dropped and the beta particle is written 
as β+. The second line shows how an element is changed into a new ele-
ment through beta-positive decay. An example of this type of decay is 
Nitrogen-12 decaying into Carbon-12.
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 ✓ Negative beta decay: If the isotope has too many neutrons (or not 
enough protons), then it will change a neutron into a proton by negative 
beta decay. The radioactive process is

  In the first line, the n is the symbol for the neutron, the p is the symbol 
for the proton, the β– is an electron that has been emitted from the 
nucleus, and the ν-bar is the symbol for an antineutrino. The antineu-
trino is a fundamental particle, and it’s the anti-particle of the neutrino. 
Their properties are very similar except they’ll annihilate each other 
when they come into contact. The superscripts and subscript on the 
beta particle are usually dropped and the beta particle is written as β–. 
The second line shows how an element is changed into a new element 
through beta-negative decay. An example of this type of decay would be 
a Carbon-14 decaying into Nitrogen-14. 

  Note the first line shows a neutron changing into a proton. Neutrons 
like being in a nucleus; they don’t like being free. A neutron outside the 
nucleus (a free neutron) will decay into a proton with a half-life of 882 
seconds (14.7 minutes). 

 ✓ Alpha decay: If the element has more protons than bismuth (Z = 83), 
then the nucleus is too big and it is unstable. In this case a chunk of the 
nucleus usually breaks off, which is called alpha decay. An α particle is a 
Helium-4 nucleus consisting of two protons and two neutrons. The  
radioactive process is

  The superscripts and the subscripts are usually dropped off the alpha 
particle, because the numbers are always 4 and 2.

 ✓ Gamma decay: If the nucleus of the element is in an excited state (high 
energy state), then it will lose the excess energy through gamma decay. 
A γ particle is a high energy photon, and the radioactive process is

  The * superscript indicates the nucleus is in an excited state, and no 
superscript * indicates the nucleus is in its ground state. 

  An example of this type of decay would be the decay of Caesium-137. 
Ninety-five percent of the β– decays produce Barium-137 in an excited 
state (137Cs becomes 137Ba* + β– + ν-bar). The Barium-137 changes into 
the lowest energy state (ground state energy) by emitting a gamma par-
ticle with an energy of 661.7 kiloelectron volts (7.819 × 10–14 foot pound = 
1.06 × 10–13 joules). 137Ba* becomes 137Ba + γ. The energy of this single 
gamma photon doesn’t seem like much, but the energy is about 250,000 
times larger than the energy of a single blue-light photon.
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Decaying of elements –  
the physical half-life
An unstable isotope is called a radionuclide. If you have a material with radio-
nuclides within, it’s important to be able to predict how many of the radio-
nuclides are remaining at any given moment. This section also shows the 
relationship between the number of radionuclides and how fast the unstable 
material is decaying (activity). 

The number of radionuclides present drops by half in a time called the physi-
cal half-life. In the mathematical relationships, working with the decay con-
stant, which is equal to the natural logarithm of 2 divided by the half-life, is 
more convenient. The activity is the rate that the number of atoms is decay-
ing, which has units of becquerel (Bq) (1 becquerel equals 1 disintegration 
per second = 2.70 × 10–11 curies (Ci)). Mathematically, the number of radionu-
clides and the activity as a function of time are as follows. I also provide the 
mathematical relationship between the decay constant and the half-life.

 Several sources on nuclear radioactivity introduce a second time scale called 
the mean time. Don’t confuse mean time with the half-life. The mean time is 
the inverse of the decay constant; the mean time is equal to the half-life times 
1.44. The mean time is the average time it takes a radionuclide to decay, 
whereas the half-life is the time it takes half of the radionuclides to decay. The 
mathematical relationship between the mean time, the decay constant, and 
the half-life is

For example, Caesium-137 has a half-life, T1⁄2, of 30 years and the decay con-
stant, λ, is 0.023 per year, which means that all the Caesium-137 had radioac-
tively decayed before life formed on the planet. Therefore, humanity made all 
the Caesium-137 currently on the planet. The Chernobyl nuclear reactor in 
April 1986 was one of the worst nuclear accidents where the initial activity of 
the Caesium-137 released into the air was estimated to be 8.5 × 1016 becquer-
els, which corresponds to Ninitial = Ainitial/λ = 8.5 × 1016 becquerels × (3.156 × 107 
seconds per year)/0.023 per year = 1.17 × 1026 Caesium-137 atoms ejected into 
the atmosphere. 
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Identifying the three types of isotopes
Radionuclides (or radioactive isotopes) emit radiation, which comes in 
four types: alpha (α) particles, positive and negative beta (β) particles, and 
gamma (γ) rays (a type of electromagnetic radiation). They’re the most 
common forms of radiation from radionuclides that you’ll encounter in 
biophysics. (Other types of radiation that you will see in biophysics are 
non-ionizing electromagnetic radiation, ionizing electromagnetic radiation 
[ultraviolet and X-rays], and neutrons.)

The following sections examine alpha particles, beta particles, and gamma 
rays. Many materials around you have the potential to be radioactive, and 
the type of radiation coming off the material will be one or more of these 
types of radiation.

Examining alpha particles
When a specific isotope decays by emitting an alpha particle, the alpha  
particle will have the same amount of energy (monoenergetic). This means 
that all the alpha particles will travel approximately the same distance into  
a material plus or minus a few percent before stopping. Alpha (α) particles 
have a mass of 4 u (4.55 × 10–28 slugs = 6.64 × 10–27 kilograms) and a charge  
of 2 e (3.20 × 10–19 coulombs). In other words, alpha particles have a large 
mass and a large charge, plowing through material like a bulldozer. 

Note that the atomic mass unit u is 1.138 × 10–28 slugs (1.661 × 10–27 kilograms) 
and each nucleon in a nucleus is assigned a mass of 1 u. Also, all electrical 
charge comes in discrete units of e (1.60 × 10–19 coulombs) with the proton 
having a charge of +1 e, the neutron has a charge of 0 e, and the electron has 
a charge of –1 e. (I ignore the fractional charge of the quarks.) 

To get a feel for this bull in a china shop, consider the following example. 
High energy alpha particles with an energy of 4.0 × 107 electron volts (4.73 × 
10–12 foot pound = 6.41 × 10–12 joules) will travel about 3.25 feet (0.99 meters) 
in air and about 3.5 × 10–3 feet (1.1 × 10–3 meters) in skin. Most alpha particles 
have a much lower energy than this.

Understanding beta particles
In elements with less than 84 protons (Polonium), the most common type of 
decay is beta decay in radionuclide with too many or too few neutrons. In 
this section, I briefly mention the ability of beta radiation to penetrate the 
human body. 
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Beta particles share their energy with neutrinos (or antineutrinos), so they 
don’t have a fixed energy when coming out of a specific radionuclide, con-
trary to alpha particles that have the same energy when emitted from the 
same radionuclide. An example of the penetration depth for beta particles 
with an energy of 4.0 × 107 electron volts (4.73 × 10–12 foot pound = 6.41 × 10–12 
joules): they’ll travel about 0.66 feet (0.20 meters) in skin. These beta  
particles would travel about 0.5 inches (1.27 centimeters) into lead.

You probably noticed that alpha particles are stopped by air and can’t pen-
etrate skin. If you stand a yard (meter) from an alpha source, then you’ll be 
safe. On the other hand, air has very little effect on beta particles, and they 
will travel a long distance. Even in skin, which has a lot higher density, the 
beta particles are traveling 10 to 1,000 times farther than the alpha particles.

The two types of beta particles are as follows:

 ✓ The beta-negative (β–) particles are electrons, but they’re called beta 
particles because they’re created through the weak force inside the 
nucleus. They have a mass of 6.24 × 10–32 slugs (9.11 × 10–31 kilograms) 
and have a charge –e = –1.60 × 10–19 coulombs.

 ✓ The beta-positive (β+) particles are positrons, which are anti-electrons. 
They have a mass of 6.24 × 10–32 slugs (9.11 × 10–31 kilograms) and have a 
charge e =1.60 × 10–19 coulombs. 

Comprehending gamma rays
The gamma (γ) rays are electromagnetic radiation. They’re similar to X-rays, 
but X-rays are produced through atomic processes whereas gamma rays 
are produced within the nucleus. Usually gamma rays have more energy 
than X-rays. Just like X-rays, the majority of the gamma rays will pass right 
through your body. The photons that do interact with the body can be split 
into three categories:

 ✓ The photons with an energy below 105 electron volts (1.18 × 10–14 foot 
pound = 1.60 × 10–14 joules) will interact with the body through the pho-
toelectric effect. The photoelectric effect is where the atom absorbs the 
photon and the excess energy causes an electron to be ejected.

 ✓ The photons with an energy between 105 electron volts (1.18 × 10–14 
foot pound = 1.60 × 10–14 joules) and 107 electron volts (1.18 × 10–12 foot 
pound = 1.60 × 10–12 joules) will interact with the body through Compton  
scattering. Compton scattering is when the photon scatters with an 
electron. The photon loses some energy, which is transferred to the 
electron, which is ejected from the atom. Note that gamma rays in this 
energy range usually interact with matter through the Compton scat-
tering, but some interact by the photoelectric effect and some interact 
through pair production.
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 ✓ The photons with an energy greater than 107 electron volts (1.18 × 10–12 
foot pound = 1.60 × 10–12 joules) will interact with the body primarily 
through pair production. With pair production, the nucleus absorbs the 
photon, creating an electron-positron pair, and ejects the pair. 

 The intensity of the gamma radiation drops off exponentially as a function of 
the thickness of the material that the radiation is traveling through. The math-
ematical formula for intensity of the radiation as a function of the penetration 
into the material is

In this formula, Iinitial is the intensity of the radiation at the surface of the 
material, Δx is the displacement into the material, and α is the absorption 
coefficient of the material. Similar to half-life, a half-intensity length can be 
defined as ln(2)/α. The half-intensity length is sometimes called the half value 
layer or the halving thickness because the intensity of the radiation is half the 
initial value at this depth.

 Be careful when looking up values for the absorption coefficient and make 
sure you know what you’re reading. Here are three things to keep in mind:

 ✓ Some sources will provide numbers for the absorption coefficient 
whereas others provide numbers for the half-intensity length. 
Sometimes they aren’t clear on what numbers they are providing, so be 
careful.

 ✓ The absorption coefficient is a measure of the amount of radiation 
absorbed by the material, whereas the attenuation coefficient (and the 
skin depth, δ) is a measure of the total drop in the intensity caused by 
absorption and scattering of the radiation. They aren’t the same thing.

 ✓ The sources use one of two common sets of units for the absorption 
coefficient

	 •	Length: The absorption coefficient has units of per length, which 
is per foot (per meter) or something related, such as per inch. My 
formula is written for this set of units.

	 •	Mass per unit length: Some sources make the distinction and call 
this the mass absorption coefficient. The conversion to the length 
units is: mass absorption coefficient equals the absorption coeffi-
cient (α) divided by the mass density (ρ) of the material.
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Debunking Misconceptions about 
Electromagnetic Radiation

Many misconceptions about electromagnetic radiation exist. Electromagnetic 
radiation continuously bathes humans. This radiation propagates through 
space in clumps of energy called photons. 

 Electromagnetic radiation can be split into two categories: 

 ✓ Non-ionizing radiation: This radiation has low energy photons.

 ✓ Ionizing radiation: This radiation has high energy photons. Ionizing 
radiation has photons with sufficient energy that when a molecule 
absorbs a photon, an electron is ejected from it leaving the molecule 
ionized. For most molecules the minimum energy required for ionization 
is 5 electronvolts, which is ultraviolet radiation. 

Blocking out electromagnetic radiation
A common shield used to protect people from 
electromagnetic radiation is lead. A property 
of electromagnetic radiation is the fact that the 
energy is proportional to the frequency, so the 
higher the energy of the photon, the shorter its 
wavelength will be. This means that X-rays and 
gamma rays have a wavelength shorter than 
the distance between the atoms. These pho-
tons see matter as mostly empty space. Lead 
is an effective shield of X-rays and gamma rays 
because it has a high atomic mass and high 
density. The chance of the radiation hitting an 
atom and being absorbed is much greater than 
with other materials. The following numbers 
show the difference between air, skin, and lead:

 ✓ Lead’s absorption coefficient α = 20 per foot 
(67 per meter). The mass density of lead is 
22.1 slugs per cubic foot (11,400 kilograms 
per cubic meter) and the weight density of 

lead is 712 pounds per cubic foot (112,000 
newtons per cubic meter).

 ✓ Air’s absorption coefficient α = 0.0014 per 
foot (0.0046 per meter). The mass density 
of air is 0.0023 slugs per cubic foot (1.20 
kilograms per cubic meter) and the weight 
density of air 0.075 pounds per cubic foot 
(11.8 newtons per cubic meter).

 ✓ Human skin’s absorption coefficient α = 1.2 
per foot (3.9 per meter).

To help you get a feel for these numbers, sup-
pose you have some gamma rays and they 
travel 3 feet (0.914 meters) through a material, 
the gamma rays’ intensity will be 8.8 x 10–25% 
~ 0% (in lead), 99.6% (in air), 2.7% (in skin) its 
original intensity. Essentially, gamma rays and 
x-rays will not penetrate a lead wall that thick.
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 The energy of a photon is related to the other physical parameters of the  
electromagnetic radiation with this formula:

Here the photon energy is Ee/m, the frequency is f, the wavelength is λ, the 
speed of light is vlight = 9.8357 × 108 feet per second (299792458 meters per 
second), and Planck’s constant is h = 4.1357 × 10–15 electronvolt second 
(4.8875 x 10–34 foot pound second = 6.6262 × 10–34 joule second). Note that 1 
electronvolt (eV) = 1.181 × 10–19 foot pounds (ft lb) = 1.602 × 10–19 joules (J).

These sections dispel some myths related to electromagnetic radiation and 
highlight some benefits associated with it.

Understanding non-ionizing radiation
With non-ionizing radiation, the photons don’t have enough energy to ionize 
a molecule by causing an electron to escape. The photons either scatter off 
the molecules or they are absorbed and excite the molecule, but they can’t 
ionize the molecule.

The main types of non-ionizing radiation include the following:

 ✓ Radio waves: The lowest energy photons from 0 electronvolts to 5 × 10–6 
electronvolts are called radio waves because AM, FM, and TV signals are 
transmitted at these frequencies through the air.

 ✓ Microwaves: The next range of energies from 5 × 10–6 electronvolts to 
10–3 electronvolts is called microwaves. 

 ✓ Terahertz radiation: The next range of energies from 10–3 electronvolts 
to 10–2 electronvolts is called terahertz radiation. 

 ✓ Infrared radiation: Photons with energies between 10–2 electronvolts 
and 1 electronvolt are called infrared radiation. 

 ✓ Light: Photons with energies between 1 electronvolt and 3.1 electron-
volts are called light. The specific colors are: 1.6 electronvolts (red), 
2.0 electronvolts (orange), 2.1 electronvolts (yellow), 2.3 electronvolts 
(green), 2.7 electronvolts (blue), 3.1 electronvolts (violet).

 ✓ Near ultraviolet radiation: Photons with energies between 3.1 elec-
tronvolts and 3.9 electronvolts are called UVA radiation. Photons with 
energies between 3.9 electronvolts and 4.4 electronvolts are called UVB 
radiation. UVA and UVB combined are known as near ultraviolet radiation. 
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I include near ultraviolet because many animals such as honeybees see in 
the near ultraviolet. I give discrete values for the mean energies of the light 
colors, but in reality, the energies vary over a continuous range of energies 
around these values.

The importance of electromagnetic radiation can’t be understated. In fact, it’s 
one of the four fundamental forces in the universe (along with strong force, 
weak force, and gravitational force) and the most important one in biological 
systems. The list of uses of non-ionizing radiation in biological systems and in 
society could go on for many pages, so I only mention a few:

 ✓ Light: One of the five senses, sight, depends on the interaction of light 
with your eyes. Producing red, yellow, and green lights at traffic inter-
sections and lighting your home are a few examples.

 ✓ Laser surgery: It has become a very important tool in the medical field, 
especially in correcting a person’s vision.

 ✓ Magnetic Resonance Imaging (MRI): It has become a very important 
tool in medical diagnostics with its ability to image soft tissue. The MRI 
is based on nuclear magnetic resonance (NMR) and uses magnetic fields 
and radio frequency (RF) electromagnetic radiation (10–6 electronvolts).

 ✓ Temperature control: One of the methods the human body uses to 
control its temperature is to emit infrared radiation to dissipate heat 
energy. Infrared radiation is also used for heating and cooking.

 ✓ Remote controls: They’re very important during those major sporting 
events or when you don’t want to watch commercials.

 ✓ Radar: It tracks weather storms and air traffic.

 ✓ Microwave ovens: They’re a convenient and quick way to cook foods. 
Microwave photons with an energy of 1.03 × 10–5 electronvolts are used 
in microwave ovens because water molecules have an absorption band 
at this energy, which, means that the molecule can easily convert the 
electromagnetic radiation energy into heat energy.

 ✓ Cellphones and WiFi: They use microwave radiation. In fact, there are 
more cellphones on earth than humans.

 ✓ Radio and television: Society relies on them for daily communication.

Comprehending ionizing radiation
Ionizing radiation is radiation that leaves a path of charged molecules and 
atoms in its path. The molecules in the path of the radiation lose electrons 
and are all electrically charged, which makes them interact strongly with 
their surroundings. As a result, they can cause severe damage to living cells. 
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Ionizing radiation includes not only ultraviolet, X-rays, and gamma rays (elec-
tromagnetic radiation with photon energies greater than light), but also alpha 
particles, beta particles, and neutrons. Here I break down these types: 

 ✓ Electromagnetic radiation: Electromagnetic radiation with high energy 
photons can cause ionization of the molecules within animals. The 
photons have sufficient energy that electrons in the molecules can be 
ejected. This type of radiation includes ultraviolet radiation, X-rays and 
gamma rays. Atomic processes generate ultraviolet radiation and X-rays, 
whereas nuclear processes within the nucleus produce gamma rays. 

  Near ultraviolet radiation (UVA and UVB) don’t ionize molecules, but 
they do break chemical bonds. Animals are composed mostly of water 
so the radiation can produce H and OH (free radicals), which are highly 
reactive with the other molecules within the cell. The World Health 
Organization (WHO) classifies this type of radiation as carcinogenic.

  Middle ultraviolet radiation (UVC), far ultraviolet radiation, and low 
energy X-rays interact with atoms through the photoelectric effect 
where an atom absorbs the photon and then the atom ejects an electron 
with the excess energy. 

  For high-energy X-rays, photons, and low- to mid-energy gamma pho-
tons, the primary process is Compton scattering. These photons keep 
some of their energy and transfer some energy to the atoms, which eject 
their electrons. 

  The high energy gamma rays enter the atom’s nucleus and create an 
electron-positron pair that escapes the nucleus. This is called electron-
positron pair production.

 ✓ Alpha particles: These positive ions entering the body have lots of 
energy and scatter off atoms, transferring some energy and momentum 
to the atomic electrons. The energy transferred to the electron can be 
sufficient to eject the electron from the atom. These collisions continue 
until the ions have lost their excess energy and then interact with the 
local molecules.

 ✓ Beta particles: Similarly, the beta particles (electrons and positrons) 
scatter off the atoms, causing the atom to become excited or ionized 
if an electron escapes the atom. The beta particle’s mass is small, so 
the rate of energy loss during each collision is small and the particles 
travel much farther into the animal. In the case of the positron, when the 
energy becomes low enough, it will collide with an electron and the two 
will be annihilated, creating gamma radiation.

 ✓ Neutrons: Neutrons have no charge, but they do have a magnetic dipole 
field and mass, which means that neutrons will travel deep into the 
animal, and they don’t ionize the molecules directly but only bounce 
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(scatter) off the molecules. Eventually, the neutrons do lose a sufficient 
amount of energy and then they will be absorbed within a nucleus. The 
change in the element’s isotope usually makes it unstable, and leaves 
the nucleus in an excited state as well, so a gamma ray is emitted shortly 
after absorption. If the new isotope is unstable, then the isotope will 
undergo beta-decay creating a new element. In addition, free neutrons 
have a half-life of 11 minutes, so each free neutron can decay into a 
proton, a negative-beta particle, and an antineutrino.

Ionizing radiation is harmful to living cells, but if treated with care, it has 
many benefits to humans. A few examples include the following:

 ✓ Safety devices: Smoke detectors use ionizing radiation. They use an 
alpha-emitter because alpha particles can’t penetrate the detector’s 
casing. The alpha particles easily interact and ionize the air within the 
detector. The ionized air is attracted to charged plates, which completes 
the circuit. Smoke particles interact with the alpha particles, reducing 
the amount of ionized air and lowering the current in the circuit and  
setting off the alarm.

 ✓ Food preservation: Food is treated with ionizing radiation (food  
irradiation). The ionizing radiation damages the DNA within cells, killing 
microorganisms, bacteria, and viruses, and slowing down enzyme  
processes, which delays ripening. Typical forms of radiation used with 
food preservation are X-rays, gamma rays, and electrons (beta par-
ticles). The beta particles don’t penetrate very far into the food and are 
effective for surface sterilization.

 ✓ Insect control: This method is related to food preservation. The irradia-
tion of the food kills insects, such as fruit flies and other organisms on 
the food, without cooking the food. 

 ✓ Instrument sterilization: This technique is ideal for sterilizing instru-
ments, such as those used in operating rooms.

 ✓ Medical diagnoses: Making diagnoses with ionizing radiation has two 
different approaches: 

	 •	Diagnostic	radiology involves using an external source of ionizing 
radiation (usually X-rays) and studying the radiation intensity that 
comes out the other end.

	 •	Nuclear	medicine involves producing radionuclides for medical pur-
poses, which are intended for placing inside the body. Radionuclides 
are radioactive isotopes usually with a short half-life. As a diagnostic 
tool, the detectors surrounding the body detect the emission of the 
ionizing radiation.
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 ✓ Medical treatment: This method is similar to medical diagnoses, but the 
dosages are higher. 

	 •	External	beam	radiotherapy uses several beams of ionizing radia-
tion; all the beams meet at a specific point within the body, pro-
ducing a very high intensity source at that point (cancer tumor), 
killing the cells.

	 •	In brachytherapy, pharmaceuticals bind to radionuclides that then 
transport the radionuclides to the target cells. A large intensity of 
radiation is then produced at the target cells.

Seeing How Radioactivity Interacts  
with Biological Systems 

The interaction of radioactive materials with biological organisms is an 
important area of biophysics, medical physics, and health physics. Many 
applications and uses exist in many different fields of science. As a biophysi-
cist, you want to understand this interaction. These sections look at how 
radioactivity interacts within biological systems. These sections focus on the 
Carbon-14 death date technique, discuss the elimination of radioactive mate-
rial within a living animal, and estimate how radioactive the human body is.

Finding a date in archaeology —  
call Carbon-14
Carbon-14 has a half-life of 5,730 years and under goes β– decay. Only 10 
carbon atoms out of every 1013 is a Carbon-14 isotope when a biological 
system dies and 5,730 years after its death only 5 carbon atoms out of every 
1013 are Carbon-14 atoms. The ratio drops to zero the older the object gets 
because no new Carbon-14 is being put into the material to replenish the 
Carbon-14. Knowing the half-life of Carbon-14 and the ratio of Carbon-14 in an 
organic material allows you to calculate how long it has been since the  
organism died.

Mathematically, the half-life is T1/2 = 5,730 years and the inverse of the decay 
constant is 1/λ = T1/2/ln(2) = 8,270 years. The formula for calculating how long 
it has been since an organic material has died is
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 In September 2011, the body of King Richard III was discovered. (Many 
authors including William Shakespeare have written about him.) In 2012, 
Carbon-14 dating was done on the body and his death date was deter-
mined to be between 1455 and 1540. King Richard III died during battle in 
1485, what was the ratio of Carbon-14 to Carbon-12 in his bones in 2012?

Use these steps to help you solve this problem.

 1. Determine the formula and understand the problem.

  The problem gives the time and wants you to find the final number, Nfinal. 
You need to rearrange the formula and isolate for Nfinal, which means 
you need to find numbers for the decay constant, the elapsed time, and 
the initial number of Carbon-14 to Carbon-12 ratio.

 2. Search for the numbers you need.

  I stated before the problem that the decay constant for Carbon-14 is λ = 
ln(2)/(5730 years) = 1.21 × 10–4 per year.

  The time of death and the time of the Carbon-14 test are given in the 
problem, so the elapsed time is Δt = 2012 – 1485 = 527 years.

  The long-term average ratio of Carbon-14 to Carbon-12, or the initial ratio 
is Ninitial = 1 ppt (parts-per-trillion) = 1000 ppq (parts-per-quadrillion) =  
1 Carbon-14 to 1012 Carbon-12.

 3. Solve the problem.

  Rearrange the formula and substitute the numbers into the formula and 
solve.

The ratio of Carbon-14 to Carbon-12 has dropped from 1000 ppq to 938 ppq, 
or dropped by 6.2 percent in the 527 years. The number of Carbon-14 com-
pared to Carbon-12 is very small, and this is a small change, which is why the 
uncertainty is so large in Carbon-14 dating.

 Keep the following issues in mind as you solve this problem:

 ✓ Carbon-14 dating is only good for dating organic material that has died 
in the last 60,000 to 70,000 years. Note that 12 half-lives is equal to 68,760 
years and 2–12 = 2.4 × 10–4 is the fraction of the original Carbon-14 left. 
When starting with only 1 part-per-trillion, that is a very small number.

 ✓ Carbon-14 undergoes negative beta-decay to Nitrogen-14, and the activ-
ity is less than the background radiation for the small sample sizes, 
which makes detection very difficult.
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 ✓ After 4.5 billion years, no natural Carbon-14 is left within the planet, only 
the stable isotopes Carbon-12 (98.9 percent) and Carbon-13 (1.1 per-
cent). All the natural Carbon-14 present today comes from cosmic rays 
interacting with the atmosphere. The atmosphere is 78 percent nitrogen, 
and a nitrogen atom can capture a neutron changing into Carbon-14 plus 
a proton. The Carbon-14 reacts with oxygen gas to form carbon dioxide. 
Plants then absorb the carbon dioxide.

 ✓ Calibration is needed for accurate dating because the amount of cosmic 
radiation entering the atmosphere is fluctuating and therefore the 
amount of Carbon-14 entering organisms is not a constant. To calibrate 
means that the measurements are adjusted to a standard. Tree rings 
are an excellent standard for calibrating dates, because when the tree 
was born and died are well known and provide information about the 
amount of Carbon-14 in the atmosphere during different ages, which 
extends back in time several thousands of years.

 ✓ Humans have been disrupting the Carbon-14 ratio. In the 1800s, the 
burning of coal lowered the Carbon-14 ratio by a few percentages and 
then atmospheric nuclear tests in the 20th century increased the ratio. 
By the mid 1960s, the Carbon-14 ratio was double at 2 parts per trillion. 
Today, the ratio has dropped and is only a few percentage points above 
the historical average.

Eliminating radioactive material within 
the body — biological half-life
The human body will remove half of the carbon within fat in 35 days, which is 
called the biological half-life (Tb). The human body doesn’t care if the carbon 
is Carbon-11, Carbon-12, Carbon-13, or Carbon-14. However, Carbon-11 and 
Carbon-14 are radioactive and decay with a half-life called the physical half-
life (Tp). The physical half-life is a property of the isotope and doesn’t care 
about the biological system, whereas the biological half-life depends on the 
type of element (not the isotope) and the type of biological system.

The combination of the biological half-life and the physical half-life gives the 
decay constant (λ) and the effective half-life (Teff):
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As an example of how you would apply this, consider the following biophysical 
application. Iron-59 is used to test blood disorders. You place Iron-59 with an 
activity of 104 becquerels (2.70 × 10–7 curies) in a vial and you give a patient 
the same amount of Iron-59. After exactly 30 days, you measure the activity 
in the vial as 6,267 becquerels (1.69 × 10–7 curies), and in the patient you mea-
sure the activity as 4,551 becquerels (1.23 × 10–7 curies). You want to deter-
mine the physical and biological half-life of Iron-59.

Earlier in the “Decaying of elements – the physical half-life” section, I provide 
the relationship between activity, decay constant, and time. This formula 
provides the relationship between the decay constant and the effective half-
life. In addition, it provides the relation between the physical half-life, the 
biological half-life, and the effective half-life. 

The activity in the vial is determined solely by the physical half-life, which 
means you can find the physical decay constant and the physical half-life 
from this data.

In the patient, the decay is the combination of the physical half-life and the 
biological half-life, so you can find the decay constant and the effective half-
life. After you know the effective half-life and the physical half-life from the 
vial, you can find the biological half-life. 

The solutions are

The effective half-life of Iron-59 within a human is 26.4 days, which is almost 
half the physical half-life. This means that after 26.4 days, half the Iron-59 
is gone from the body with approximately one quarter being excreted from 
the body and another quarter radioactively decaying through negative beta-
decay into Cobalt-59, which is a stable isotope of Cobalt. In addition, notice 
that the effective half-life is less than the physical half-life and the biological 
half-life. In fact, the effective half-life is always smaller than the smaller of the 
physical half-life and the biological half-life.
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Determining how radioactive humans are
Everything is radioactive to some extent, which is why there is a constant 
background radiation. To illustrate, I calculate how radioactive the human 
body is by examining Mike. 

Mike isn’t a Baby Boomer and didn’t live during the atmospheric atomic tests 
of the 1950s and 1960s and so didn’t ingest radioactive Strontium-90 when he 
drank his milk. In addition, Mike wasn’t in the area affected by the Chernobyl 
accident in April 1986 or near the Fukushima nuclear accident in March 2011. 
Therefore, I assume Mike doesn’t have excess amounts of radionuclides from 
human sources and that all the radionuclides in his body are from natural 
sources. Mike weighs 200 pounds (890 newtons). His mass is 6.21 slugs  
(90.7 kilograms).

Approximately 1028 atoms are present in the human body with the majority 
being water. Mike’s mass in terms of elements is as follows:

 ✓ Oxygen makes up 65 percent of the body’s weight. The weight of the 
oxygen in Mike’s body is 130 pounds. (The mass is 59.0 kilograms.) The 
relative abundance of each isotope is 99.76 percent Oxygen-16, 0.04  
percent Oxygen-17, and 0.20 percent Oxygen-18. All three isotopes are 
stable.

 ✓ Carbon makes up 18 percent of the body’s weight. The weight of the 
carbon in Mike’s body is 36.0 pounds. (The mass is 16.3 kilograms.) The 
relative abundance of each isotope is 98.89 percent Carbon-12 and 1.11 
percent Carbon-13. These two isotopes are stable. In addition, there is 1 
part per trillion (weight is 3.60 × 10–11 pounds and the mass is 1.63 × 10–11 
kilograms) of Carbon-14, which undergoes negative beta decay with a 
half-life of 5,730 years.

 ✓ Hydrogen makes up 10 percent of the body’s weight. The weight of the 
hydrogen in Mike’s body is 20.0 pounds. (The mass is 9.07 kilograms.) 
The relative abundance of each isotope is 99.985 percent Hydrogen-1 
and 0.015 percent Hydrogen-2. These two isotopes are stable.

 ✓ Nitrogen makes up 3 percent of the body’s weight. The weight of the 
nitrogen in Mike’s body is 6.00 pounds. (The mass is 2.72 kilograms.) 
The relative abundance of each isotope is 99.63 percent Nitrogen-14 and 
0.37 percent Nitrogen-15. These two isotopes are stable.

 ✓ Calcium makes up 1.5 percent of the body’s weight. The weight of the 
calcium in Mike’s body is 3.00 pounds. (The mass is 1.36 kilograms.) The 
relative abundance of each isotope is 96.941 percent Calcium-40, 0.647 
percent Calcium-42, 0.135 percent Calcium-43, 2.086 percent Calcium-44, 
0.004 percent Calcium-46, and 0.187 percent Calcium-48. All the calcium 
isotopes are stable with the exception of Calcium-48, which has a half-
life of 4.4 × 1019 years. 
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  Calcium-48 has a very large half-life because it decays through a double 
beta-decay, which is rare. The double beta-decay process consists of 
two neutrons being converted into two protons and two β– particles 
without antineutrinos.

 ✓ Phosphorus makes up 1.2 percent of the body’s weight. The weight of 
the phosphorus in Mike’s body is 2.40 pounds. (The mass is 1.09 kilo-
grams.) One hundred percent of the abundance is the stable isotope 
Phosphorus-31.

 ✓ Potassium makes up 0.2 percent of the body’s weight. The weight of 
the phosphorus in Mike’s body is 0.400 pounds. (The mass is 0.181 
kilograms.) The relative abundance of each isotope is 93.258 per-
cent Potassium-39, 0.012 percent Potassium-40, and 6.730 percent 
Potassium-41. The only unstable isotope is Potassium-40 (40K) with 
a half-life of 1.28 × 109 years. Eighty-nine percent of the decays have 
Potassium-40 changing into Calcium-40, a β– particle, and an antineu-
trino. The other 11 percent of the decays have Potassium-40 changing 
into Argon-40, a β+ particle and a neutrino.

 ✓ Sulfur, chlorine, and sodium each make up 0.2 percent of the body’s 
weight. The weight of each of these elements in Mike’s body is 0.400 
pounds (0.181 kilograms mass). All the isotopes for these three elements 
are stable. The relative abundance of sulfur’s isotopes is 95.02 percent 
Sulfur-32, 0.75 percent Sulfur-33, 4.21 percent Sulfur-34, and 0.02 percent 
Sulfur-36. The relative abundance of chlorine’s isotopes is 75.77 percent 
is Chlorine-35 and 24.23 percent is Chlorine-37. Sodium-23 is the only 
stable sodium isotope.

 ✓ The last 0.5 percent of Mike’s mass is made up of trace elements.

The total internal activity within Mike’s body can be calculated for Carbon-
14, Calcium-48, and Potasium-40 by using the formula in the “Decaying of ele-
ments – the physical half-life” section earlier in this chapter that states that 
the activity is equal to the decay constant times the number of particles. This 
example gives the mass and the abundance fraction. You can find the average 
atomic mass in the periodic table to find the number (N) and then the activity:
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Mike’s radiation output here is a minimum value, and it’s probably larger 
because of other sources of radioactivity that have entered into the food 
chain. In addition, the amount of Carbon-14 in the food chain is still higher 
than the historic average. Note that this radiation is referred to as internal 
radiation, which accounts for approximately 10 percent of the natural back-
ground radiation the human body receives.



Chapter 18

Fighting the Big C –– But Not  
All Radiation Is Bad

In This Chapter 
▶ Taking a closer look at radiation
▶ Seeing the effects of radiation on the body

R 
adiation is a word that incites fear in people, but many people don’t 
understand why and how it can be dangerous to living organisms. As 

a budding biophysicist, you need to be able to explain to people when they 
should be concerned about the radiation and when the radiation level is safe. 

This chapter focuses on quantifying radiation and exploring the harmful 
effects of radiation on biological systems. Here I examine organisms being 
exposed to and absorbing radiation, as well as the effect upon the  
organism and quantifying the health effects of the radiation.

Investigating Radiation within  
Biological Systems

The primary types of radiation that interact with biological systems are elec-
tromagnetic radiation, alpha particles, and beta particles. The alpha and beta 
particles are produced during the radioactive decay of unstable nuclides 
(radionuclides). Here I introduce the activity of these radionuclides. 

The radionuclides change to new nuclides in an attempt to become stable. The  
majority of them decay by emitting alpha and beta particles. The radiation 
activity from a radionuclide is a measure of the rate that alpha and beta 
particles are being produced. The activity is also related to the number of 
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radionuclides present. The number of radionuclides and the activity can be 
described mathematically by:

The formula in the first line contains four symbols: Nfinal is the final number 
of radionuclides, Ninitial is the initial number of radionuclides, λ is the decay 
constant, and Δt is the elapsed time between Ninitial and Nfinal. The formula in 
the second line contains: A is the activity, λ is the decay constant, and N is 
the number of radionuclides. In this formula, N has units of particles and not 
moles. Remember to convert from moles to particles you have to multiply 
by Avogadro’s number (1 mole = 6.022142 × 1023 particles). The units of the 
activity in this formula are becquerels (Bq), but sometimes using curies (Ci) 
is more convenient (1 curie = 3.7 × 1010 becquerels = 3.7 × 1010 disintegrations 
per second). The formula in the third line shows you how to calculate the 
decay constant and the effective half-life of a radionuclide. The symbols in 
the formula are: λ is the decay constant, Teff is the effective half-life, Tp is the 
physical half-life, and Tb is the biological half-life.

 To clarify some terms for you, here are some easy definitions to remember:

 ✓ Physical half-life, Tp, is the time it takes half of the radionuclides to decay 
into new nuclides.

 ✓ Biological half-life, Tb, is the time it takes a biological organism to remove 
half of the nuclides from its body through natural processes. The body 
doesn’t care if the nuclide is radioactive or not. For example, the human 
body treats all types of carbon the same.

 ✓ Effective half-life, Teff, is the combination of the physical half-life and the 
biological half-life. It’s the time it takes a biological organism to remove 
half of the radionuclides within its body through radioactive decay and 
natural processes.

 ✓ Decay constant is equal to the natural logarithm of 2 divided by the  
effective half-life, so it’s a measure of how fast the radionuclide will 
decay. The larger the number, the faster the material decays.

 ✓ N is the number of radionuclides. Ninitial is the number of radionuclides 
you start with, and Nfinal is the final number of radionuclides at the end. 
The units are either moles or particles and Avogadro’s number, NA = 
6.022142 × 1023 particles/mole, is the conversion between the two sets of 
units.
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 ✓ Elapsed time, Δt, is the time it takes from the start to the finish.

 ✓ Activity, A, is the speed that the nuclides are disappearing. The units are 
becquerel = disintegration per second, or curie.

The following sections discuss how to measure the interaction of radiation 
with a biological organism and how to measure the harmful effects of the 
radiation on the biological organism. Refer to Chapter 17 for more informa-
tion about the basic parts of radiation.

Interacting radiation with matter
The interaction of radiation with biological systems is stochastic in nature, 
which means the interaction is random. You can’t predict what it will do, but 
you can describe all the radiation interacting with the biological system using 
probabilities. For example, an X-ray photon may pass through an organism 
without doing anything or an atom may absorb it, and the organism repairs 
the damage or the damage can’t be repaired. Each event has a certain proba-
bility of occurring. When the biological organism is exposed to a large dosage 
of radiation, the effects of the radiation become more deterministic.

 Radiation has energy and when matter absorbs it, the matter gains that 
energy. A couple of common methods of quantifying the energy absorbed are 
as follows:

 ✓ Exposure: Exposure (X) is a measure of the amount of X-ray or gamma 
ray radiation entering an object. It measures the amount of ionization 
that will occur in the material; it’s restricted to photon energies between 
40 electron volts (4.7 × 10–18 foot pound = 6.4 × 10–18 joules) and 3 × 106 
electron volts (3.5 × 10–13 foot pound = 4.8 × 10–13 joules). These photons 
interact with matter through the photoelectric effect and Compton scat-
tering. (Photoelectric effect means an atom absorbs the photon and then 
the atom emits an electron, whereas the Compton scattering means the 
atom absorbs the photon and the atom emits both an electron and a 
photon with a smaller frequency; refer to Chapter 17 for more information.) 

  The S.I. unit of measurement for exposure is the coulomb per kilogram. 
The older unit of measure is 1 roentgen (R) = 3.76 × 10–3 coulomb per 
slug = 2.58 × 10–4 coulomb per kilogram. The exposure is a property of 
the X-rays and gamma rays and has nothing to do with the material the 
radiation is striking. The exposure states that 1 roentgen of X-rays pro-
duces –2.58 × 10–4 coulombs of negatively charged ions and 2.58 × 10–4 
coulombs of positively charged ions within 2.2 pounds (1 kilogram) of 
material.
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 ✓ Absorbed dose: Absorbed dose (D) is the amount of energy from the 
radiation that is absorbed by the material per unit mass. The unit for the 
absorbed dose is 1 gray (Gy) = 1 joule per kilogram = 10.76 foot pound 
per slug. Another unit for the absorbed dose is the rad, where 1 rad = 
0.01 grays. The absorbed dose is used for all types of radiation unlike 
exposure, which is used only for X-rays and gamma rays.

  To help you get a feel for these units: a 1 roentgen exposure of X-rays on 
soft tissue produces an absorbed dose of approximately 0.01 gray = 1 
rad, and 100 grays (10,000 rads) of radiation completely destroys living 
tissue.

 Some books introduce the kinetic energy of radiation absorbed per unit mass 
(Kerma), which is very similar to the absorbed dose, and it’s used only for 
uncharged radiations, such as photons and neutrons. Calculating it is easier 
than calculating the absorbed dose, but I don’t calculate the Kerma. 

Hurting cells with radiation —  
mechanisms of cell damage
Cells are mostly water. When water is ionized, it becomes H and OH free  
radicals that are highly reactive. The other ionized molecules can also 
become highly reactive within the cell. Some of the free radicals interact with 
chromosomes, damaging them; and some of the radiation directly damages 
chromosomes. Recent research has also shown that an absorbed dose of 1 
gray will cause 35 breaks of the deoxyribonucleic acid (DNA) in each cell. A 
break means both strands of the double helix have been completely sepa-
rated. These double-strand breaks are the most dangerous and the probabil-
ity of the repair being incorrect is greater. The cells that are badly damaged 
will die, but the cells that were repaired incorrectly could possibly be func-
tional and pass on mutations to future generations, which can lead to cancer.

Meteors are a perfect example of how radiation works. Think of the 
Tunguska, Siberia, Russia meteor in 1908 or the Chelyabinsk, Russia meteor 
in 2013. The 2013 meteor exploded over the city of Chelyabinsk and injured 
1,500 people. It had a weight of 7,000 tons (a mass of 6,350 tonnes), a diam-
eter of 50 feet (15 meters), and an energy release of 500 kilotons of TNT 
(1.543 × 1015 foot pounds = 2.092 × 1015 joules). If this energy was spread 
uniformly over the entire surface of the Earth, then the energy per unit area 
would be 0.280 pounds per foot (4.09 joules per square meter). You wouldn’t 
even notice this flux of energy. Instead, the energy was mostly localized in 
a circular region with a radius of approximately 50 miles (80 kilometers), so 
the energy per unit area was actually 7,050 pounds per foot (1.03 × 105 joules 
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per square meter) over the city. The real amount of energy per unit area in 
Chelyabinsk, Russia was 25,180 greater than if the energy had been spread 
over the entire surface of the earth!

 Radiation is like the meteor with all the energy focused in a small region. The 
non-ionizing ultraviolet radiation does have sufficient energy to cause some 
ionization and break chemical bonds in molecules. Therefore, low energy 
ultraviolet radiation has the same carcinogenic mechanism as ionizing  
radiation.

Use the preceding information in this section and the previous section to 
solve this problem.

 The previous subsection states that 100 grays of radiation will kill living 
tissue. If all the energy is converted to heat energy, what is the tempera-
ture rise in the tissue?

To solve this problem, follow these steps:

 1. Determine which formula is needed to solve the problem.

  The problem tells you that the radiation energy is converted into heat 
energy and causes a rise in the temperature. The relationship between 
the temperature and heat energy is ΔQ = m c ΔT. (Refer to Chapter 10 for 
additional information.)

 2. Determine the numbers needed, which are given in the problem.

  The problem states that the energy per unit mass is 

 3. Find the remaining numbers you need to solve the problem.

  You need the specific heat. You can look for the number in a reference 
source that has the number. (I can help here.) Assume the specific heat 
of soft tissue is the same as water. I found the value for the specific heat 
to be: ctissue = cwater = 25,000 foot pound per (slug degree Fahrenheit) = 
4,180 joules per (kilogram kelvin).

 4. Substitute the numbers into the equation and solve.

 

  The energy spread over the tissue causes an insignificant rise in the 
temperature, so what kills the tissue? The answer is: Radiation behaves 
like particles. The massive particles are alpha radiation, beta radiation, 
neutron radiation, and cosmic radiation. Similarly, the electromagnetic 
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radiation (X-rays and gamma rays) behaves as particles as well, called 
photons. These particles strike the cell at specific locations and trans-
fer all the energy to specific atoms. The energy is localized and large 
enough that the radiation can do damage by ionizing the atom that 
absorbs the radiation, similar to the meteor example previously  
mentioned.

Exposing the Body to Radiation
Radiation affects humans, although the process to quantify the radiation’s 
effects is a difficult process because different types of radiation act differ-
ently on the body even if the energies are the same. Also, different tissues 
react differently to the radiation. The location where the interaction between 
the radiation and the tissue takes place is important as well. For example, 
10 grays of radiation through my finger would be bad for my finger, but my 
body as a whole should be fine, whereas 10 grays of radiation through all my 
organs could be very bad for my overall health.

In these sections, I introduce some of the quantities needed to describe the 
effects of radiation, quantify some of the negative effects of radiation, discuss 
the fact that there is radiation everywhere, and examine a preventable cancer.

Estimating the effects from radiation
Comparing the effects of different types of radiation on different parts of the 
body is important to help you determine the health risk in different situations, 
given the absorbed dose of each type of radiation on each part of the body. 

The equivalent dose (HT) is defined as

Here the subscript T represents the tissue or organ being irradiated, the R 
represents the type of radiation, the large sigma means you have to sum over 
all types of radiation irradiating the tissue, wR is called the radiation-weighting 
factor (It measures the damage to the tissue by the radiation. For example, 1 
gray of X-rays will cause a different amount of damage than 1 gray of alpha 
particles. The radiation-weighting factor is independent of the type of tissue 
or organ.), and DR,T is the absorbed dose of radiation R in tissue T and gives 
the amount of energy transferred to the tissue or organ. 
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The equivalent dose has units of sievert (Sv) or rem (old unit), where 1 
sievert = 100 rem. The radiation weighting factor has units of sievert per gray 
(or rem per rad). Typical radiation-weighting factors are 1 sievert per gray for 
X-rays, gamma rays, and beta particles; 5 sieverts per gray for protons;  
20 sieverts per gray for alpha particles and heavy nuclei; and 5 to 20 sieverts 
per gray for neutrons. The neutrons’ radiation-weighting factor varies 
depending on the kinetic energy of the neutron with the peak of 20 sievert 
per gray for 106 electron volt neutrons. 

Meanwhile, the effective dose (ε) is defined as

Here the subscript T represents the sum over all tissues and organs being 
irradiated and wT is the tissue-weighting factor. The effective dose is an 
equivalent whole-body equivalent dose, so you can compare the biological 
damage done by different radiation events.

The tissue-weighting factor is independent of the type of radiation. The 
sum of all the tissue-weighting factors is 1, so if the entire body is exposed 
to the equivalent dose, then the effective dose is equal to the equivalent 
dose. The individual factors are being updated on a regular basis as data 
becomes available. For example in the case of breasts, wbreast = 0.05 in 1990 
and was changed to wbreast = 0.12 in 2007. The International Commission on 
Radiological Protection (ICRP) (www.icrp.org) has up-to-date values for the 
tissue-weighting factor. 

 Suppose Nancy is being exposed to 1 gray of gamma radiation over the 
entire body and 1 gray of alpha particles from an external source. What is 
the effective dose?

To figure out this problem, follow these steps:

 1. Figure out what equations you need.

  The problem tells you the type of radiation present and the absorbed 
doses, so you need to calculate the equivalent doses first. After you 
know the equivalent doses, then you can calculate the effective dose.

 2. Find the numbers for the equivalent dose calculation.

  The gamma radiation is in all the organs and tissues, so Dgamma,body = 1 
gray.

  The radiation-weighting factor for X-rays, gamma rays, and beta  
particles is wgamma = 1 sievert per gray.

http://www.icrp.org


366 Part V: Interacting Subatomic Particles’ Influence on Biological Organisms 

  The alpha particles can only reach the skin. Remember, alpha particles 
can’t penetrate the skin, so Dalpha,skin = 1 gray and Dalpha,rest = 0 gray.

  The radiation-weighting factor for alpha particles is walpha = 20 sievert 
per gray.

 3. Calculate the equivalent dose.

  Find the equivalent dose in the skin and the remainder of the body  
separately. The reason is that the gamma radiation is throughout the 
body whereas the alpha is only in the skin.

  The equivalent doses are

 4. Find the numbers for the effective dose calculation.

  The equivalent doses are known, so now you can calculate the effective 
dose once you know the tissue weighting factors:

  The tissue weighting factor for skin is wskin = 0.01.

  The tissue weighting factor for the rest of the body is wrest = 1 – wskin = 0.99.

 5. Calculate the effective dose.

  The effective dose is

  The alpha particles are nasty, but the gamma rays cause more damage 
because the alpha particles can’t get through the skin to the organs 
inside the body.

Measuring the unhealthy  
effects of radiation
Having a firm understanding of what the numbers mean in the formulas I 
present in the previous section is important. At high dosages the radiation is 
deterministic. For example, 100 grays of radiation kills living tissue. At mod-
erate dosages you need to consider probabilities. At low dosages you need 
to consider statistical averages over a population. For example, the regular 
use of a tanning salon before the age of 30 increases the chances of getting 
melanoma by 75 percent. Like smoking, it depends on the person. These 
results are based on a collection of studies of populations. It’s a general aver-
age based on people who never use tanning beds versus one-timers to weekly 
users. 
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In addition, the formulas in the previous section didn’t take time into 
account. For example, is an absorbed dose of 1 gray of gamma radiation over 
one hour the same as an absorbed dose of 1 gray of gamma radiation over 
ten hours? The time over which the exposure to the radiation occurs plays 
an important role in the affects of radiation on the body. At low rates of  
exposure, the body can repair most of the damage, whereas at high rates of 
exposure the body can’t repair the damage fast enough.

Walking into a high dose of radiation
A high dose of ionizing radiation will have immediate effects on the body 
(within one day) and is known as radiation poisoning, radiation sickness, 
radiation toxicity, or acute radiation syndrome. This situation occurs when 
the person received a whole body absorbed dose of radiation between 0.25 
grays and 500 grays at a rate greater than 0.1 grays per hour. A single blast of 
100 grays kills living tissue, and a whole body absorbed dose of 500 grays is 
immediate death. 

 The radiation poisoning has four stages:

Keeping track of older terminology
The terminology has changed over the years 
and some of the older terms are still in use 
so I should bring some of these terms to your 
attention:

 ✓ Relative Biological Effectiveness (RBE) is 
defined as

  

  Here DX,T is the absorbed dose of 250 
kiloelectron-volt X-rays in the tissue or 
organ T (the X-rays are the reference 
radiation) and DR,T is the absorbed dose 
of radiation R in the same tissue or organ 
T that will produce the same effect as the 
X-rays. 

  The relative biological effectiveness isn’t 
really old terminology because it’s still used. 
You can usually experimentally determine 
this quantity; it takes into account all 
factors affecting the biological system.

 ✓ Dose equivalent (H) (notice the order of the 
words is changed from equivalent dose) is 
defined as the quality factor (QF) times the 
absorbed dose (D). The dose equivalent 
was introduced for the development of a 
set of standards for radiation risk.

 ✓ The quality factor (QF) is the predecessor 
for the radiation-weighting factor (wR). The 
absorbed dose was taken at a specific point 
in space and multiplied by the quality factor 
at that point to give the dose equivalent 
at that point in space. The quality factor 
is then defined for a specific radiation 
in terms of the stopping power or linear 
energy transfer (LET).

 ✓ The effective dose equivalent is the 
predecessor of the effective dose. It’s 
the sum similar to the effective dose after 
averaging the dose equivalent over each 
tissue or organ.
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 ✓ Prodromal stage: This stage starts within minutes to a few hours after 
exposure and will last less than 48 hours. The prodromal stage typically 
includes nausea and vomiting, fatigue, fever, and headaches. 

 ✓ Latent stage: The time duration of the latent stage depends upon the 
dosage and can be several weeks long for a whole body dosage less than 
one gray, whereas at high dosages it doesn’t occur.

 ✓ Manifest illness stage: This stage can be split into three syndromes: 

	 •	The	hematopoietic symptoms occur from exposure of the blood 
forming cells. The symptoms are a drop in the white blood cell 
count, the red cell count, and platelets. 

	 •	The	gastrointestinal symptoms occur from exposure of the intes-
tines. The symptoms include nausea, vomiting, diarrhea, cramps, 
salivation, and dehydration.

	 •	The	neuromuscular symptoms occur from brain exposure. The 
symptoms include fatigue, apathy, sweating, fever, headache, 
hypotension, and hypotensive shock.

 ✓ Recovery stage: The body is repairing the damage. At high dosages, this 
stage doesn’t occur. If the person survives the first eight weeks, then the 
chances of recovery are very good. 

The symptoms vary depending on the whole body absorbed dose (Dbody):

 ✓ Dbody < 0.25 grays: There appears to be no short-term effects.

 ✓ 0.25 grays < Dbody < 1 gray: Hematopoietic symptoms.

 ✓ 1 gray < Dbody < 2 grays: Hematopoietic symptoms and mild gastrointesti-
nal symptoms. 0 to 1 out of 20 people will die within eight weeks.

 ✓ 2 grays < Dbody < 6 grays: Hematopoietic symptoms, moderate gastroin-
testinal symptoms, and mild neuromuscular symptoms. 1 to 20 out of 
20 people will die within six weeks. (The odds of mortality drop by half 
with medical treatment.)

 ✓ 6 grays < Dbody < 8 grays: Hematopoietic symptoms, severe gastrointesti-
nal symptoms, and moderate neuromuscular symptoms. 19 to 20 out of 
20 people will die within four weeks. (10 to 20 out of 20 people will die 
even with immediate medical treatment.)

 ✓ 8 grays < Dbody < 40 grays: Hematopoietic symptoms, severe gastrointes-
tinal symptoms, and severe neuromuscular symptoms. Approximately 
two weeks to live at 8 grays, and by 40 grays, the person dies in less 
than two days. 

 ✓ 40 grays < Dbody: Death occurs within minutes from neurological or car-
diovascular failure.
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This list doesn’t include rates. Quantifying is harder, but it does influence 
the boundaries in the list. For example, 4 grays of radiation have a 50 percent 
mortality rate within six weeks if the radiation is spread over four hours. If 
the person is subjected to the radiation over half an hour, then the mortal-
ity rate jumps to approximately 75 percent. If the person is subjected to the 
radiation over a day, then the mortality rate drops to approximately 25 per-
cent. Note that at very low total dosages and very high total dosages the rate 
doesn’t play that great of a role. Only in the intermediate range from 2 to 6 
grays is the rate important.

Living with radiation – long-term effects
Exposure to moderate to high doses of ionizing radiation over a long period 
of time is known as chronic radiation syndrome. The symptoms don’t show for 
a long time, but they’re similar to acute radiation syndrome (which I discuss 
in the previous section) and vary from gastrointestinal to low blood counts 
to neurological effects and death. Chronic radiation syndrome can also lead 
to other diseases such as the different types of cancer. In the case of acute 
radiation syndrome, most people will survive a dose between 1 gray and 4 
grays. However, the probability of these people dying from cancer during 
their lifetime has doubled.

 The effects of radiation are cumulative and the doses need to be added, so 
the longer a person lives, the greater the chance of acquiring cancer. The 
cumulative whole body absorbed dose is the sum of all the contributions to the 
whole body absorbed dose over the years. The cumulative effective dose is the 
sum of all the contributions to the effective dose over the years. The cumula-
tive equivalent dose is the sum of all the contributions to the equivalent dose 
over the years. These quantities are useful for predicting the long term risk of 
cancer.

When a large population is involved, then the collective dose is more useful 
for determining statistical averages. The collective effective dose is defined as

The N is the number of people and  is the average effective dose. The units 
are person-sieverts (or person-rem). Here are a couple of examples:

 ✓ A collective effective dose of 100 person-sieverts causes one premature 
cancer death. The linear no threshold hypothesis states that any amount 
of radiation is harmful. (I discuss this hypothesis in more detail in the 
next section.) If you assume the linear no threshold hypothesis is cor-
rect, then you can calculate the number of premature deaths from 
the background radiation. The average background global radiation 
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is 0.0024 sieverts per year, so the number of premature cancer deaths 
each year caused by the background radiation is (0.0024 sieverts) × (7 × 
109 persons) / (100 person sieverts per death) = 1.68 × 105 deaths. Based 
on this hypothesis, there are 168,000 premature deaths each year from 
the background natural radiation.

 ✓ The collective effective dose of a collective equivalent dose of 10,000 
person-sieverts from Iodine-131 causes approximately 60 latent thyroid 
cancers. Iodine-131 collects within the thyroid and has a very short half-
life of 8.04 days. The risk is very low, and Iodine-131 isn’t found in nature 
because of the short half-life. Iodine-131 is a useful radionuclide for 
nuclear medicine.

Glowing walls — all matter  
is radioactively decaying
All organic material has carbon, and one part in a trillion of carbon is carbon-
14, which means all organic material is radioactive. Of course, the amount 
of carbon that is carbon-14 is very small, so the radiation level is small. This 
section is about low-level radiation or the level of radiation you’re more than 
likely to be exposed to. I discuss background radiation and the different 
models proposed for low dose radiation. 

Looking at background radiation around the world
In the United States, the 2006 population was exposed to an average radiation 
of approximately 6.2 millisieverts per year. Fifty percent was from natural 
sources, 48 percent was from medical sources, and 2 percent from consumer 
products, occupational exposure, industrial exposure, and nuclear power  
stations.

3.1 millisieverts per year was from natural sources. Elements with more 
protons than bismuth, which has 83 protons, are unstable. The two heaviest 
elements that are abundant in the soil are uranium and thorium. Uranium-238 
is the most abundant isotope of uranium with a half-life of 4.468 × 109 years. 
This is the same as the age of the planet, so there is only half the uranium left 
on the planet compared to when the planet formed.

Uranium and thorium and their decay products are in the soil. These elements 
along with Carbon-14, Calcium-28, and Potassium-40 are ingested with food 
and water and are producing radiation within everyone’s bodies. In the 
United States the average internal radiation is about 0.38 millisieverts per 
year. 
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When uranium decays, one of the daughter products is radon, which is 
a gas. Radon-220 has a half-life of 55.6 seconds, so it usually decays into 
Polonium-216 before escaping the ground but some does escape; however, 
Radon-222 has a half-life of 3.8235 days before decaying into Polonium-218. 
Radon-222 has plenty of time to escape the soil and enter the air. The amount 
of Radon-222 in the air at the earth’s surface is approximately 0.14 becquerels 
per cubic foot (5 becquerels per cubic meter), which humans breathe into 
their lungs. The background radiation (alpha particles) from radon gas in the 
United States is 2.28 millisieverts per year. This is two-thirds of the natural 
background radiation in the United States. The natural background radiation 
in the United States is 3.1 millisieverts per year, whereas the world average is 
2.4 millisieverts per year.

The rest of the natural background radiation varies a lot depending on the 
location. The first source is the cosmogenic radionuclides produced by 
cosmic rays, which includes Hydrogen-3, Beryllium-7, and Carbon-14, for 
example. The average in the United States is 0.33 millisieverts per year and 
a world average of 0.39 millisieverts per year. In Honolulu, Hawaii (sea level) 
the cosmic radiation is approximately 0.2 millisieverts per year whereas in 
Colorado Springs, Colorado, it’s 0.7 millisieverts per year. Florida as a whole 
state has the lowest amount of cosmic radiation within the continental 
United States, whereas at 35,000 feet (10,700 meters) in a passenger airline, 
the cosmic radiation is about 0.008 millisieverts per hour.

The terrestrial background radiation varies due to the amount of thorium 
and uranium in the soil. The average US terrestrial background radiation is 
0.21 millisieverts per year. The world average is 0.48 millisieverts per year. 
The last 10 percent of the background radiation comes from the uranium, 
thorium, potassium, and carbon (plus others) inside your own body through 
the ingestion of food and water.

The variation in the rock and soil can have a significant effect upon the total 
natural background radiation. For example, the background radiation in 
Finland is four times greater than in the United Kingdom (2 millisieverts per 
year). Also, the thorium and uranium concentration is extremely high in the 
monazite sand on the coast near Guarapari, Brazil, where the natural back-
ground radiation is 175 millisieverts per year. Monazite is a stone containing 
high concentrations of thorium and uranium. Along ancient coast lines, such 
as near Guarapari, Brazil, and Kerala, India, (70 millisieverts per year), the 
ocean has had time to break the monazite down into highly radioactive sand.

Searching for zero radiation – linear no threshold hypothesis
Understanding the short-term and long-term effects of radiation-induced 
cancer as a function of the dose and the rate of absorption is a nontrivial 
problem. By the end of the 1950s, governments and people knew high doses 
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of radiation were very harmful, but what level was safe was unknown. Also, it 
was unknown if different types of radiation were just as harmful. For example, 
in the 1950s, companies could purchase X-ray machines as a gimmick to 
attract clients. By 1960, governments were interested in low-dose radiation 
and the biological effects of radiation. Around this time several models had 
been proposed:

 ✓ The linear no threshold model was proposed, and it states that any 
amount of radiation is harmful and an increase in dose (both short term 
and cumulative) will increase the chance of cancer. This model reads as 
risk(ε) = A ε, where ε is the effective dose and risk is the probability of 
getting cancer. The A is a proportionality constant that depends on the 
type of cancer. The model works very well at high doses where lots of 
data exists to support a linear relationship between the dosage and the 
risk of cancer. However, at low doses it’s hard to acquire statistically 
meaningful data, and even after more than 50 years the jury is still out. 

  Supporters of the model argue that biological repair mechanisms aren’t 
perfect; therefore, any damage will leave behind some badly repaired 
cells. The National Academy of Sciences’ Biological Effects of Ionizing 
Radiation committee (BEIR) has published many reports on the health 
risks of exposure to low doses of radiation. The 1970 report fully sup-
ported the LNT model, but in the 1970s, studies of people living in 
regions with high levels of background radiation showed no increased 
levels of cancer. The 1980 BEIR report stated that the LNT was prob-
ably an overestimate of the effects of low dose radiation. The 2006 BEIR 
report has gone back to fully supporting the LNT model.

 ✓ The nonlinear no threshold model states that any amount of radiation is 
harmful; this model is similar to the linear no threshold model. The risk 
of cancer is risk(ε) = A ε + B ε2 + . . . , where ε is the effective dose. This 
modification allows for a better quantitative fit to experimental data at 
moderate doses. At moderate dosages the risk of cancer appears linear, 
but in the case of high dosages of Iodine-131, the risk is reversed. Iodine-
131 collects in the thyroid, and at moderate dosages it damages the 
cells and not all the DNA is repaired properly, producing mutagens and 
leading to cancer. However, at high dosages the radiation kills the cells 
instead of allowing them to be repaired incorrectly, so the risk of cancer 
plateaus.

 ✓ The nonlinear threshold model states that the radiation is harmful only 
above a certain level of radiation. This model reads risk(ε) = 0 if ε < 
εcut-off or Risk(ε) = A + B ε + C ε 2 + . . . , if ε > ε cut-off. The cut-off is close to 
the average background radiation level; below this level the body can 
repair any damage to the cells caused by the radiation. Studies of people 
living in regions with high amounts of natural background radiation 
haven’t shown an increased rate of cancer. The United Nations Scientific 
Committee on the Effects of Atomic Radiation has supported the linear 
no threshold model, but in 2012 submitted a white paper indicating it 
may not be correct at low doses.
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 ✓ The radiation hormesis model (also known as radiation homeostasis) is 
similar to the nonlinear model, but it states that low dosages of radiation 
near the background radiation level are beneficial, and the dose must 
increase above a certain level before it becomes harmful. This model 
reads as risk(ε) = –A ε + B ε 2 + . . . A recent study has shown very suc-
cessful DNA repair with no flaws at very low dosages, but the DNA repair 
mechanisms become saturated at higher dosages.

Looking closer at lung cancer
Lung cancer in the industrial nations can be considered a preventable dis-
ease. The No. 1 cause of lung cancer is cigarette smoking, whereas the No. 2 
cause is a person’s home. Among nonsmokers, the home is actually the No. 
1 cause of lung cancer. In fact, smoking and the home cause 95 percent of 
lung cancer. (Smoking causes 80 to 85 percent of all lung cancer, whereas a 
person’s home causes 10 to 15 percent of all lung cancer.) Air pollution and 
all other sources contribute only 5 percent toward all the lung cancer cases. 
In other words, if everyone stopped smoking and people’s homes were fixed, 
then lung cancer cases would drop by at least a factor of 20. 

Prior to the 20th century, lung cancer was an uncommon disease. Now, more 
than 1 million people die each year from lung cancer with the highest rates in 
the industrial and developing nations. The good news is recent studies have 
shown that if a person quits smoking before the age of 40, then the lungs are 
back to essentially those of a nonsmoker within 15 to 20 years.

In a home, the biggest source of natural background radiation is radon gas. 
It seeps from the soil into the home and gets trapped there. People then 
breathe in the radon gas where it alpha decays into polonium. The alpha 
particles travel into the tissue and shred the cells with a radiation weighting 
factor of 20. Until the 1980s, radon wasn’t considered a concern. The outside 
air radon concentration varies between 0.14 becquerels per cubic foot (5 
becquerels per cubic meter) and 0.42 becquerels per cubic foot (15 becquer-
els per cubic meter). The radon concentration above the oceans is approxi-
mately 0.0014 becquerels per cubic foot (0.05 becquerels per cubic meter). 

In the early 1980s, it was discovered that some homes had radon concen-
trations as high as 2,800 becquerels per cubic foot (100,000 becquerels per 
cubic meter). A 1991 study in the United States found an average radon con-
centration of 1.3 becquerels per cubic foot (45 becquerels per cubic meter) in 
the living spaces of the homes, which is about ten times larger than the out-
door air radon concentration. Most countries now have regulations that set a 
maximum radon concentration level of 200 to 400 becquerels per cubic meter 
for the home. In addition, many places are putting radon prevention into the 
building codes, especially where the outdoor air radon concentration is high. 
The new homes in these areas of high radon concentration must have radon 
preventative measures built into them.
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Radon gas appears to produce a linear risk of cancer. There is a 16 percent 
increase in the risk of lung cancer for every 2.8 becquerels per cubic foot 
(100 becquerels per cubic meter) concentration of radon gas. Smoking and 
radon combined together is a very bad combination with the risk for the 
smoker typically ten times worse than that of the nonsmoker’s risk.



Chapter 19

Seeing Good Biophysics  
in the Medical Field

In This Chapter 
▶ Glowing in the doctor’s office
▶ Petting cats and non-animal CATs
▶ Looking for non-organic PETs

B 
iophysics has many applications in many different fields, such as in 
medicine and in two other subfields of physics: medical physics and 

health physics. Medical physics is the application of physics in medicine and 
includes three primary branches: radiation therapy physics, nuclear medi-
cine, and diagnostic imaging physics. Health physics deals with health and 
safety with radiation, and protection from radiation. 

This chapter focuses on how radioactivity and radionuclides are used in 
medicine. I focus on three applications: the first is radioactivity and nuclear 
medicine, the second is the use of computerized axial tomography (CAT) 
scanners (also known as computed tomography (CT) scanners), which 
allows doctors to image the human body using X-rays, and the third  
application I discuss is positron emission tomography (PET) scanners, 
which is a technique for imaging processes within the body. 

This chapter doesn’t address ultrasound imaging, magnetic resonance  
imaging (MRI), and functional magnetic resonance imaging (fMRI). Although 
MRI is based on nuclear magnetic resonance (NMR), it has nothing to do with 
radioactivity and radionuclides even though it has nuclear in the name. (NMR 
is based on Faraday’s law, which I discuss in Chapter 16.)
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Identifying Radiation at  
Work in Medicine

The application of radioactivity and radionuclides in medicine can be split 
into two concentrations: nuclear medicine and radiology. Here I discuss  
radiology and nuclear medicine in greater depth.

Arming dentists and doctors  
with X-ray machines
Radiologists use the radionuclides and radiation for both therapy and  
diagnostics. In the case of therapy, it’s known as radiotherapy, radiation  
therapy, or radiation oncology. The three different methods of radiotherapy 
are as follows: 

 ✓ Radionuclide therapy: Radionuclide therapy involves using radionuclides 
with pharmaceutical drugs to produce radiopharmaceutical drugs. The 
drugs are designed to target certain parts of the body thereby deliver-
ing a high dose of radioactivity to the target. This therapy is used for 
both curative and palliative purposes. Depending on the target within 
the body, some radionuclides will cluster at the target without any drug, 
and other radionuclides only need to be bound to a molecule.

 ✓ Brachytherapy: Brachytherapy involves the direct implantation of the 
radionuclides into the tumor. This method guarantees a high dose of 
radioactivity within the target, which works well for localized tumors. 

 ✓ Teletherapy: Teletherapy involves ionizing radiation in the form of 
a beam being shot at the patient’s tumor. In order to maximize the 
absorbed dose at the tumor while reducing the amount of damage to 
healthy tissue within the body, the beams of radiation are fired from 
several different directions with all the beams converging at the tumor. 
Any form of ionizing radiation can be used, but the most common forms 
of radiation are X-rays and electrons (β– particles). The use of gamma 
radiation isn’t as common as the X-rays. The rest of the radiation falls 
under the category of hadron therapy, which includes the particles:  
protons, neutrons, alpha particles, and heavy nuclei. 

You’re probably wondering how something that can cause cancer can also 
be used to cure cancer. Certain cancer cells are very susceptible to radiation 
whereas others are quite resistant. The more localized and susceptible a 
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cancer is to radiation, the more successful the radiotherapy will be. Usually, 
radiotherapy needs to be combined with other techniques, such as surgery 
and or chemotherapy, in order for it to be successful at curing the cancer. 
Typical doses of radiation will vary between 10 to 80 grays (100 grays will kill 
living tissue) spread over several cycles. The cycle’s duration depends on 
several factors related to the patient’s health. An absorbed dose is a measure 
of the amount of energy from the radiation that is absorbed by the tissue per 
unit mass. The units are 1 gray = 1 joule per kilogram = 100 rad = 10.76 foot 
pound per slug. 

The other medical application of radiation is imaging. Imaging can be split 
into the following two categories.

X-ray imaging
X-ray imaging is one of the most popular methods of imaging the body in 
a noninvasive manner. X-ray imaging creates X-rays outside the body and 
passes them through the body. The denser the material (such as bone) 
the more X-rays that are absorbed by the material and less X-rays will pass 
through to the detector on the other side.

Both the medical and dental professions use X-rays. In the medical field, 
X-rays give the medical professionals an immediate view of what’s going on 
inside the body. They also have a low cost and are noninvasive. On the down-
side, X-rays are ionizing electromagnetic radiation, which kills some cells 
and damages other cells. If the cell is repaired incorrectly, it can become a 
mutant and possibly cancerous. Check out the later section, “Focusing Your 
X-Ray Vision — Computer Tomography (CT) Scans” for more information.

In the dental field, the dose of radiation is small and focused only on the jaw. 
The dental bitewing exam produces an effective dose of 0.005 millisieverts. 
(The effective dose is a means by which to estimate the cancer danger from 
different types of radiation irradiating different parts of the body. Check out 
Chapter 18.) In comparison, the average natural background radiation on 
the planet is 2.4 millisieverts per year. You would need more than 600 visits 
to the dentist to equal the background radiation the average person in the 
United States receives in one year. The panoramic X-ray images are a little 
more than double the radiation of a bitewing. The average person in the 
United States receives 3.1 millisieverts of radiation from natural sources and 
3.1 millisieverts from medical examination each year. The dental examina-
tions are insignificant in comparison and don’t have an impact.

Radionuclide imaging
The radionuclide imaging devices place radionuclides, called tracers, within 
the body. The three types of imaging include the following:



378 Part V: Interacting Subatomic Particles’ Influence on Biological Organisms 

 ✓ Single photon emission computed tomography (SPECT): SPECT uses a 
radionuclide with usually a very short half-life. (The half-life is the time 
it takes half the radionuclides to decay and emit radiation.) The radio-
nuclide decays and emits a gamma ray with a certain amount of energy. 
The detectors, called gamma cameras or Anger cameras, absorb the 
gamma rays, allowing the doctor to determine the location within the 
body from which they were emitted.

 ✓ Radioimmunoassay (RIA): RIA is an interesting and highly sensitive 
technique developed to determine the concentration of molecules 
within the body using radionuclides. For example, in the case of measur-
ing the concentration of an antigen within the body, a known quantity of 
an antigen is labeled with a radionuclide and mixed with the unlabeled 
antigens within a serum or in the body. The antibody protein molecules 
you’re interested in will attach to both the labeled and unlabeled anti-
gens. These complex structures can be separated out from the other 
material and the radioactivity in the separated complex structure will 
determine the concentration of unlabeled antigens within the body.

 ✓ Positron emission tomography (PET): PET uses a radionuclide or a 
radiopharmaceutical drug that targets a specific item of the body (a 
tumor for example). The radionuclide uses decays by emitting positrons, 
which are anti-electrons. The body has a huge number of electrons and 
one of them is annihilated by the positron and produces gamma radia-
tion, which is emitted from the body and detected. Check out the later 
section, “Posing For Pictures — Positron Emission Tomography (PET)” 
for more information about PET.

Producing radionuclides and  
radiopharmaceuticals —  
nuclear medicine
People involved with nuclear medicine combine radionuclides with other 
elements or with pharmaceutical drugs to form radioactive chemicals or 
radiopharmaceutical drugs. For example, the nuclear facilities in Chalk River, 
Ontario, Canada produce one-third of the North American supply of  
radionuclides and the generators, which produce the radionuclides. 

Generators are radionuclides with a longer half-life. Molybdenum-99 is a 
common generator because it has a half-life of 65.94 hours and emits beta 
particles when it decays into Technetium-99m, which is the most common 
radionuclide used in nuclear medicine. 
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Technetium-99m is used in more than two-dozen different radiopharma-
ceuticals. Technetium-99m usually emits a 140.5 kiloelectron volt gamma 
particle with a half-life of 6.01 hours while relaxing into its ground state 
Technetium-99. Technetium-99 has a half-life of 211,000 years, which is 
relatively stable. Gamma cameras, SPECT machines, and PET machines can 
detect the gamma radiation and produce an image. When Technetium-99m 
is combined with molecules to form radiochemicals or with pharmaceuticals 
to form radiopharmaceuticals, then it will concentrate in specific locations 
in the body or within specific ailments, such as cancer producing a targeted 
image and map.

The next most common radionuclides (called diagnostic radiotracers) are 
Iodine-123 (13.2 hours half-life), Iodine-125 (60.14 days half-life), and Iodine-
131 (8.04 days). Iodine by itself collects in the thyroid, which makes it well 
suited for detecting things such as Graves’ disease. In addition to being 
useful as a radiotracer in diagnostics and imaging, iodine can be used in 
radiotherapy as well. Higher doses of iodine (usually Iodine-131) can be 
ingested or injected into the body, and the concentrated radiation will kill 
thyroid disease such as thyroid cancer. 

Different elements collect in different spots of the body. For example, 
Yttrium-90 (half-life of 64.0 hours) is used for synovial disease and 
Strontium-89 (half-life of 50.5 days) for metastatic bone cancer. Alternatively, 
any radionuclide can be used in brachytherapy because the element is inside 
a container, which is placed inside the tumor or in the vicinity of it.

Focusing Your X-Ray Vision — Computer 
Tomography (CT) Scans

Computer tomography (CT) machines or scanners are one of the most popu-
lar ways to perform noninvasive images of the internal human body. CT 
scans also go by several other names, including X-ray computed tomography 
(X-ray CT) scan, X-ray computerized axial tomography (X-ray CAT) scan, com-
puted tomography (CT) scan, and computerized axial tomography (CAT) scan. 

CT machine uses X-rays but they need higher doses of radiation than a regu-
lar X-ray image used for broken bones because they’re imaging different 
soft tissues. Because most X-rays pass through a body (about 99.7 percent), 
a higher dose of radiation is needed to more easily measure the absolute 
change in the intensity. For example, if 1,000 photons enter the person, then 
997 photons will come out the other side. If 1,000,000 photons are used, then 
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997,000 photons will come out the other side. The missing 3,000 photons 
are easier to detect than the 3 missing photons in the first case. This higher 
dosage of radiation increases the resolution of the image.

CT scans are popular even though they use X-rays. The benefits outweigh the 
hazards and they help save lives. I explain the machine’s name to help you 
understand how it works. I then explain what the machine is used for, and 
finish with the scanner’s benefits and hazards. I hope you can understand 
why and when the benefits outweigh the hazards. 

Zapping the body — how CT works
The CT scanner goes far beyond a regular X-ray image by changing two very 
important features. First, the resolution is improved by increasing the  
intensity of the X-rays passing through the patient’s body. Second, a two-
dimensional image is created by combining multiple shots of X-rays through 
the body from different angles. A CT scanner can give doctors a clearer  
picture of the tissue they’re examining. 

Here is what happens when a patient gets a CT scan. A CT scanner usually 
consists of a giant ring with the source of X-rays being the X-ray tube inside 
the ring on one side of the body and an X-ray detector placed inside the ring 
on the other side.

 1. The patient lies down upon a bed, which is slid into the center of a 
large ring.

  The portion of the body to be imaged is aligned with the ring. Inside 
the ring, X-rays are produced and aimed at the patient. The X-rays pass 
through the patient and enter the ring on the opposite side. In this part 
of the ring are detectors that measure the X-ray intensity.

  The medical personnel can’t determine where along the path within 
the patient’s body the X-rays were absorbed, only just how much X-ray 
radiation was absorbed along the path. 

 2. The direction of the X-ray source and the detector is rotated about 
an axis, and a new measurement of the X-rays passing through the 
patient’s body is made. 

  A complete circle of data (rotation of 180 degrees) gives enough infor-
mation that the amount of X-rays absorbed at each point in the plane 
can be determined. This produces a two-dimensional image (slice) of the 
patient. The details of how the image is constructed from this data are 
very involved and complicated, but computers make it possible. 
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 3. The patient is then moved further into the ring containing the X-ray 
source and detector, and another slice is created.

  This is repeated until the entire volume is covered and a full three-
dimensional image is created. Unfortunately, it means each part of the 
patient is exposed to a relatively high dose of X-rays several times.

Looking inside the body —  
what CT is used for
A CT scan can be used to see the different soft tissues within the body. It’s 
possible to reduce the X-ray dosages and still obtain high-resolution image 
by using a contrast agent. The contrast agent readily absorbs X-rays and 
changes the intensity of the X-rays passing through, which helps with the 
resolution of the image. Barium and iodine are popular contrast agents in CT 
scans.

Examining the evolution of the CT scan
The name X-ray computerized axial tomography 
tells you everything this machine does. Just 
break it down, word by word:

 ✓ X-ray: This word says the machine 
(obviously) uses X-rays, which is ionizing 
electromagnetic radiation. 

 ✓ Computerized: The X-ray machine is 
connected to a computer, which makes it 
computerized. Being computerized helps in 
detecting small changes in the intensity of 
the X-ray beam after the beam has passed 
through the patient. Computerized has been 
changed to computed in CT scan. 

 ✓ Axial: This part of the name comes from 
the image being slices of the patient 

perpendicular to an axis. (The X-ray 
generator and detectors usually form a ring 
to create the two-dimensional slice, and 
the patient is moved up or down the axis 
of the ring when a new slice is to be made.) 
New software and computers allow for the 
combination of the slices so a full three-
dimensional image can be formed. Hence 
the axial has been dropped from the name. 

 ✓ Tomography: This word means imaging 
an object by sectioning it with the use of 
penetrating waves such as X-rays from 
different angles. 

So, the X-ray CAT has become simply CT.
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 New CT machines can image any part of the body, but the dose varies quite a 
bit depending on what needs to be imaged. For example, the brain requires a 
higher dose because it’s encased in bone so a head CT scan will produce an 
effective dose of 2 millisieverts (but the absorbed dose is about four times 
larger than that for the chest CT scan). A chest CT scan produces an effective 
dose of 7 millisieverts (300 times greater than a regular chest X-ray). A whole-
body CT scan produces an effective dose of 10 millisieverts. (The same as 
three years of natural background radiation.) Chapter 18 discusses how to 
compare different types of radiation on different parts of the body. 

Staying away — who should  
avoid CT scans
The effects of a single CT scan usually aren’t harmful in adults, but the effects 
of the radiation are cumulative and multiple scans can be a problem later in 
life. (The amount of absorbed energy in a scan can reach 0.08 grays.) Each 
scan does have a small chance of producing cancer or some ill effect, but 
generally the need and benefits outweigh the risk. Patients should avoid 
unnecessary scans because the radiation causes some damage to the cells 
each time.

 Pregnant women are an exception. Pregnant women should avoid CT scans 
or any ionizing radiation while pregnant if at all possible. The fetus is very 
susceptible to radiation, especially during the first trimester. CT scans that 
don’t directly target the fetus are relatively safe with caution, but an abdomen 
CT scan has the potential of causing severe harm. In all cases with pregnant 
women, the potential hazard to the fetus needs to be weighed against the need 
of the CT scan.

Posing For Pictures — Positron  
Emission Tomography (PET)

Positron emission tomography (PET) is a very powerful imaging tool used 
for analyzing functional processes within the body and medical diagnosis. In 
the 1990s, PET scans were combined with CT scans and MRI scans. The other 
techniques provided anatomical information, which is lacking from the PET 
scan. The geometric registration of the PET scan with one of the others gives 
a very detailed image combined with its anatomical location. These sections 
describe how the PET machine works and discuss its applications.
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Setting up the PET — how does it work
PET scans are very interesting in the way they work. The ability of a PET 
scanner to target specific functions or objects (such as a tumor) makes it 
a very powerful tool in noninvasive medical imaging and diagnostics. The 
process involves using radionuclides, so PET scanners aren’t available at all 
hospitals, clinics, and medical institutes. 

Here is what happens when a patient gets a PET scan:

 1. A nuclear medicine technician prepares the radionuclides or  
radiopharmaceutical drug.

  PET scans use the following radionuclides: Carbon-11 (20.5-minute half-
life), Nitrogen-13 (9.97-minute half-life), Oxygen-15 (2.03-minute half-life), 
and Fluorine-18 (110-minute half-life). The half-lifes of these radio-
nuclides are very short so they need to be prepared shortly before use.

 2. A technician puts the radionuclides/radiopharmaceutical drug into 
the patient’s body.

  The radionuclides/radiopharmaceuticals travel within the body and col-
lect at the target.

 3. A positive beta particle is emitted when the radionuclide/radiophar-
maceutical drug radioactively decays.

  A positive beta particle is a positron emitted from the nucleus, and a 
positron is an anti-electron.

 4. The beta particle can’t travel far in the body and usually stops within 
a distance less than 0.02 inches (0.5 millimeters) from where it was 
emitted.

  The majority of the positrons used in a PET scan have a mean energy 
of 250 kiloelectron volts (2.954 × 10–14 foot pound = 4 × 10–14 joules), and 
they usually stop moving quickly. This length scale sets a lower limit 
on the resolution of a PET scan to about 0.04 inches (1 millimeter).

 5. The positrons usually stop moving before annihilating with an 
 electron.

  The positron is an anti-electron, and it will annihilate with a local electron. 

 6. The annihilation of the electron-positron pair creates two gamma  
particles that fly off in opposite directions.

  The two gamma photons both have an energy of 511 kiloelectron volts 
(6.037 × 10–14 foot pound = 8.186 × 10–14 joules), which is the rest mass 
energy of the electron (and the positron as well).
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 7. The gamma detectors surround the patient in a ring and record a 
signal whenever a pair of gamma photons simultaneously hit the 
detectors.

  A line of response connects two detectors that record signals from the 
two gamma photons. After the measurements are completed, all the 
lines of response are put together, showing where there is a high  
concentration of radionuclides within the body.

Picturing the body — what is PET used for
The radionuclides that are used in a PET scan as part of radiopharmaceuticals 
work best when used for imaging certain physiological properties. Combined 
with a CT scan or an MRI, a PET scan is good for locating things such as 
tumors. In fact, a PET scan can light up for the brain, the kidneys, and any 
cancer in the body be it lung cancer, lymphoma, or something else so  
doctors can better examine and make a diagnosis.

Besides specific targets, the radionuclides can be attached to molecules, 
such as, say glucose. These molecules would circulate within the human 
body and metabolize, providing information about activity within the body. 

A PET scan can work with any biologically active molecule. The most 
common radionuclide is Fluorine-18. One of the radiopharmaceuticals is 
2-fluoro-2-deoxy-d-glucose, more commonly called fluorodeoxyglucose (FDG). 
These radiopharmaceuticals are also known as radiotracers because they 
bind to specific receptors or drug action sites within the body. FDG, which is 
a positron-emitting glucose analog, is well suited for detecting cancers and 
determining the progress of any treatment of the cancer. 

Cells, such as brain cells, kidney cells, and cancer cells that require large 
amounts of glucose, absorb FDG as well. These three types of cells prevent 
glucose from escaping the cell once absorbed. FDG is missing the 2’hydroxyl, 
which prevents it from being metabolized within the cell. Therefore, the FDG 
sits in the cell until it decays and emits a positron. FDG PET scans allow for 
the imaging of the body where there is a high demand for glucose. It’s useful 
not only in medicine, but also in research, such as within biology and  
neuroscience. 
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 Enjoy additional information about biophysics at www.dummies.com/extras/
biophysics. 

http://www.dummies.com/extras/biophysics
http://www.dummies.com/extras/biophysics


In this part . . . 
 ✓ Uncover ten important tips that can help you study better and 

perform better on quizzes and tests, which ultimately can get 
you a higher grade in your biophysics course.

 ✓ Be exposed to the many exciting careers in biophysics and 
related fields such as medical physics and health physics. 
No matter where your talents lie, there is an exciting career in 
biophysics for you.

 ✓ Discover many benefits of radiation, radioactivity, and nuclear 
physics in a bonus POT chapter found at www.dummies.
com/extras/biophysics.

http://www.dummies.com/extras/biophysics
http://www.dummies.com/extras/biophysics


Chapter 20

Ten (or So) Tips to Help You 
Master Your Biophysics Course

In This Chapter
▶ Visualizing things
▶ Understanding what’s going on
▶ Looking at the trees before seeing the forest

M 
any people have a phobia about biophysics and mathematics, and 
they’re very frightened when they take their biophysics courses. This 

chapter strives to help alleviate some of your fears with some helpful tips to 
make your biophysics course a tad easier (or less painful). Unfortunately this 
chapter doesn’t give you the answers to the questions on your exams. 

Drawing Diagrams and Figures
When working problems in your biophysics course, always draw figures, dia-
grams, and graphs. Even if you have a figure to look at, draw your own figure. 
Doing so can help you visualize what’s going on with the problem. 

 Even if you encounter time constraints, don’t try and cut corners and not 
draw your figures and diagrams. Students are tempted to not draw the dia-
grams because they think they know what is going on and they think they’re 
wasting time by drawing the diagram. However, it’s usually the opposite. They 
end up wasting more time because they don’t have the diagram and haven’t 
correctly visualized the problem. 

Obeying the Rules
Biophysics is a set of rules, but many people in their first biophysics course 
think of biophysics as a cookbook with recipes. They think all problems of 
a certain type should use the same steps and formulas in the same order. 
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Unfortunately it’s not the case. However, whatever approach you take is 
okay, as long you don’t break the laws of the physical universe. 

 In any problem, spend the time setting up the problem and determining what 
physical principles you need to use before seeking a formula to use. The steps 
are as follows:

 1. List everything you know.

 2. Draw diagrams, figures, and graphs.

 3. Decide what physical principle you need to apply.

  Ask yourself which physical rules are relevant.

 4. After you decide what rules are relevant for the problem, you can select 
the appropriate equations you need to use in order to solve the problem. 

  For example, do you need kinematic equations, Newton’s laws of motion, 
work-energy theorem, Hooke’s law, or some other principle?

Creating Your Own Dictionary
You should create your own personalized dictionary, especially if you’re plan-
ning on continuing on in biophysics, medical physics, or some related field. Your 
own dictionary gives you a quick source to remind you of ideals and concepts.

 In your dictionary, include concepts, definitions, physical laws, mathemati-
cal symbols, and mathematical formulas. Having your own dictionary is also 
important if you’re using more than one source. Each source typically has its 
own set of symbols, so different sources will use different symbols to repre-
sent the same thing. For example, within a source, it may use the symbol T, 
K, or EK to represent the kinetic energy. Another problem is that sources may 
use the same symbol to represent different things. For example, the symbol T 
has been used to represent kinetic energy, temperature, period, and half-life. 
Keeping your symbols and their meaning straight is very important for making 
it through your course and your dictionary can help you do so.

Understanding the Concepts
A concept is an understanding of something formed by mentally combining 
all its characteristics or particulars. In a biophysics course, the concepts are 
more important than the mathematical formulas. (The mathematical formu-
las are a shorthand representation of the concepts.) If your biophysics text-
book has concept problems, then you should work through all of them to get 
a better understanding of the concepts. If you understand the concepts, then 
the mathematical formulas become a lot easier to understand and use.
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For example, consider Newton’s second law of motion, which is the law of 
angular acceleration. Lots of physical concepts are contained within this law, 
which aren’t evident by just looking at the mathematical formula, FNET = m a. 
The mathematical formula makes sense if you understand the concepts, but 
the concepts aren’t evident if you start with the formula.

Not Fearing the Mathematics
In a biophysics course, chances are you’ll encounter your fair share of math. 
To do well, don’t fear the math. Make friends with the math; it’s meant to 
help you. The mathematics serves three purposes:

 ✓ Mathematics serves as another language, which can help you under-
stand the concept and describe it.

 ✓ Mathematics is a shorthand writing of physical relationships or physical 
quantities. For example, instead of writing “gravitational potential energy” 
every time, I can just write “EP”. I also can write the phrase “gravitational 
potential energy is equal to the mass of the object times the gravitational 
constant times the vertical position,” or I can write the formula “EP = m g y”. 
They mean the same thing, but the second is much quicker to write and 
read if you understand what the mathematical formula means.

 ✓ Mathematics allows you to describe things in a quantitative manner as 
well. 

Work toward feeling comfortable with the mathematics. To do so, you can 
start by writing things out longhand and then using the mathematics to write 
it in shorthand. Adding it to your dictionary can also be helpful. (See the ear-
lier section, “Creating Your Own Dictionary” for more information.)

Applying the Knowledge in Your Field
In a typical introductory biophysics course, the students have very different 
backgrounds and different interests. Because biophysics is an interdisciplin-
ary subject with applications in many different fields, the chances the discus-
sion and or examples are directly related to what you’re interested in are 
slim. Hence, when studying a specific topic in biophysics, try to figure out 
how you can apply it to your field of interest. 

Doing so is a fun exercise and makes the material easier and more interesting 
to learn. For example, a neuroscience student can think about how electrical 
circuits can be applied to modeling the neurons in the brain, whereas a bio-
engineer can think about how to build electrical circuits that can be applied 
to building a mechanical device.
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Networking with Your Classmates
Working with your fellow students is an important method of mastering the 
material and making it through your class. Each person usually picks up 
something different from the classes and the textbook, so by combining infor-
mation with your classmates, you can form a more complete picture. Also, 
you may have understood something that can help your classmates while 
they may have understood something that can help you.

 If you meet and network with your classmates, you must do some preliminary 
studying and work prior to the meeting. You need to have a clear picture in 
your mind of what you know and where you’re struggling. If you don’t, then 
you’ll meet up with them, listen to what they have to say, and never really 
learn the material. To understand what I mean, suppose you find an assign-
ment question worked out in detail online. You copy the solution and submit 
it. You’ll probably get a good grade, but you haven’t learned anything and you 
won’t be prepared for your exam.

Surfing the Internet
Several excellent biophysics websites exist online that are excellent 
resources of information. You may discover some helpful information to 
supplement your course text. Just know that many of these online sites focus 
on a specific area of biophysics though, which is usually related to the type 
of biophysics research they’re doing. 

 Don’t use the Internet to find the solution of assignment questions. Instead go 
online for help in understanding the general concepts and ideas. You can also 
use the Internet to see how biophysical concepts are applied in your area of 
interest. If you use it to look up solutions, the only person you’re hurting is 
yourself because you aren’t learning and understanding the concepts and ideas.

Chatting with Biophysicists
Biophysicists are very passionate about their research and biophysics in 
general. They love talking about their research. To help you do better in 
your biophysics class, take time to talk to them about biophysics and their 
research because they’re a great resource of information. They’ll usually pro-
vide important information that can help you understand the concepts and 
ideas in your course. 



Chapter 21

Ten Careers for People  
Studying Biophysics

In This Chapter 
▶ Considering academia
▶ Eyeing jobs in industry
▶ Working in hospitals and clinics

T 
his chapter mentions a few types of jobs available to people interested in 
biophysics, medical physics, and health physics. A career in these fields 

can take place in academia, governments, hospitals and clinics, and in the 
private sector. This list isn’t exhaustive; I keep it general enough to cover a 
large percentage of the jobs. Consider which ones you might be interested in 
pursuing if biophysics is your passion.

Experimental Biophysicist in Academia
An experimental biophysicist uses the tools and instruments from physics, 
biology, chemistry, and mathematics to study biological systems. A biological 
system can be anything from the membrane of a cell to a large environmental 
system with multiple living organisms. 

In addition to knowing how to use instruments, such as a nuclear magnetic 
resonance machine in experiments, these professionals also need a work-
ing knowledge of computers for data collection and analysis. Experimental 
biophysicists work in a wide variety of university departments, including 
biochemistry, bioengineering, biology, dentistry, kinesiology, medicine, neu-
roscience, and physics. 
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Theoretical Biophysicist in Academia
A theoretical biophysicist uses tools from physics, mathematics, computer 
science, biology, and chemistry to study biological systems. They work 
on problems from neural networks to the environmental impact of climate 
change. 

Computers play an important role in modeling, simulation, and visualization 
of the processes being studied. Theoretical biophysicists work in a wide vari-
ety of university departments, such as biochemistry, bioengineering, biology, 
dentistry, kinesiology, medicine, neuroscience, and physics. 

Biophysicists outside Academia
Biophysicists also work in private research labs, industry labs, and govern-
ment labs. These careers are usually research focused within an interdis-
ciplinary setting, where the person collaborates with people from other 
backgrounds, such as chemists, biologists, medical doctors, and pharma-
cists. Depending on where the person is working, the focus of the work can 
be very different. For example, their research may be focused on molecular 
biophysics, membrane biophysics, pharmaceuticals, or bioenergetics to  
mention a few.

Nuclear Power Reactor Health Physicist
The nuclear power reactor health physicist works at a nuclear reactor site 
and is responsible for all aspects of radiation protection. The professional 
has multifaceted responsibilities: He or she keeps track of all radiation pro-
tection equipment, trains all the plant workers, and monitors and analyzes 
the radiation data (radiation dosimetry). 

Governmental Health Physicist
A governmental health physicist focuses on regulatory enforcement and 
occupational safety. Many government agencies hire health physicists; the 
list is extensive. A couple of examples include the US Department of Energy 
and the Consumer Product Safety Commission.
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This professional ensures the protection of people and the environment from 
radiation sources by guaranteeing that all safety regulations and procedures 
are being followed in the manufacture, use, and disposal of the radioactive 
material.

Environmental Health Physicist
An environmental health physicist focuses on protecting people and the envi-
ronment from unnecessary man-made radiation problems. They also work on 
natural sources of radioactivity. Many agencies’ companies hire health physi-
cists, such as the Environmental Protection Agency (EPA). For example, an 
environmental health physicist would measure for radon gas in homes, high 
radon and radium concentrations in ground water, and highly radioactive 
soil and rock.

Medical Health Physicist
A medical health physicist focuses on protecting people and the environment 
from potential radiation problems from devices that use radiation. This pro-
fessional works in hospitals, clinics, and other major medical centers that use 
radiation sources in radiology, nuclear medicine, or radiation therapy depart-
ments. The medical health physicist is usually the radiation safety officer and 
monitors radiation exposure of patients, staff, and visitors to the facility. The 
person also reviews all scientific research that involves radiation in these 
facilities.

Radiation Therapy Medical Physicist
This branch of medical physics involves using radiation in the treatment 
of cancers. Hence this field also goes by the names radiotherapy and radia-
tion oncology. A radiation therapy medical physicist requires working with 
radiation oncologists to design treatment plans (teletherapy, brachytherapy, 
or systemic radioisotope), and monitors the equipment and procedures. This 
professional also measures and characterizes the radiation and ensures accu-
rate patient dosimetry.
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Diagnostic Imaging Medical Physicist
This branch of medical physics involves developing and improving instru-
ments used in imaging the body. These physicists work in many different  
surroundings with some in clinics and hospitals, some in research hospitals 
or institutes, and some in research departments at universities. 

Some of the machines these medical physicists work with are used for:  
ultrasound imaging, magnetic resonance imaging (MRI), positron emission 
tomography (PET) scans, computed tomography (CT) scans, combined  
PET/MR imaging, combined PET/CT imaging, fluoroscopy, angiography, and 
mammography.

Nuclear Medicine Medical Physicist
A nuclear medicine medical physicist closely collaborates with physicians 
to determine the best treatment for patients. This branch of medical physics 
involves combining radionuclides with chemical compounds or pharmaceuti-
cal drugs for both diagnostic and therapeutic applications. The radiopharma-
ceuticals produced bind to specific organs or cellular receptors within the 
patient to allow for diagnosis or radiotherapy. Refer to Chapter 19 for more 
information on radionuclides.
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absolute pressure
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AC emf power source, circuit schematic, 336
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average angular, 41
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non-uniform, 175–177
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perceiving angular momentum and 
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projectile motion, 182–185
skydiving, 175–176
sprinters’ run, 170–171
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weightlessness, 116–117
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175–176

acoustic (sonic) sound waves, 311–312
acoustic guitar

body resonance, 289–290
cavity resonance, 290–291
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acoustic microscopy, 313
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physical half-life, 343

acute radiation syndrome (radiation 
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manifest illness stage, 368
prodromal stage, 368
recovery stage, 368
symptoms, 368–369
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contact angles and, 203
defined, 11

air
absorption coefficient, 347
thermal conductivity, 216

air flow
angle of attack, 213–214
boundary layer, 213
magnus effect, 213

alpha (α) particles, 344
alpha decay, 17, 342
alpha particle radiation

defined, 17
ionizing radiation, 350

alveoli, lung, 206
ammeters, circuit schematic, 335
amperes, 27, 319
amplitude, sound waves, 266, 277
ampulla, inner ear, 115
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angle of attack, air flow, 213–214
angular acceleration, 39–40
angular displacement

angular position, 34–35
circular motion, 177

angular frequency, sound waves, 267, 277
angular momentum, 43, 65–68
angular position

angular displacement, 34–35
defined, 33
displacement, 34
distance, 35
radians, 33–34

angular variables
average angular velocity, 38
average velocity, 38
overview, 37–38

angular velocity (instantaneous angular 
velocity)

circular motion, 177
defined, 36–37

angular velocity versus time graph, 
circular motion, 177–180

anterior (superior) semicircular canal, 
inner ear, 115

antineutrinos, 342
antinodes, 303
applied (input) force, levers, 122
applying sound waves, 15
Archimedes’ principle, 11, 194–195
arclength, circular motion, 177
Aristotle, 28
atmospheric pressure, 192–193
atomic mass (A), 340–341
atomic mass unit u, alpha (α) particles, 344
atomic number (Z), 340
ATP (adenosine-5’-triphosphate), 246, 247
attenuation coefficient, gamma rays, 346
auditory canal (ear canal), outer ear, 294
auditory ossicles, middle ear

incus, 295
malleus, 295
mechanical advantage, 295
stapes, 295

average acceleration
defined, 40–41
linear one-dimensional motion, 166

average angular acceleration
circular motion, 177
defined, 41

average angular velocity, angular  
variables, 38

average velocity, angular variables, 38
Avogadro’s number, 360
axis of rotation

defined, 42
static rotational free-body diagrams  

and, 90

• B •
background radiation, 18, 358, 370–371
balance, 110–111
basal metabolic rate (BMR), 243
Baumgartner, Felix, 175
beat frequency, 303–304
becquerels (Bq), physical half-life, 343
BEIR (Biological Effects of Ionizing 

Radiation) committee, 372
bending, 130
bending strength, 130
Bernoulli’s equation

applying to static fluids, 199
defined, 198
fluids, 11
negative pressure in water columns, 

207–208
nonviscous fluids, 198
steady flow (steady state), 198
streamline (laminar) flow, fluids, 199
turbulent flow (turbulence), fluids, 199

beta (β) particles
electrons, 345
ionizing radiation, 350
overview, 344–345
positrons, 345

beta decay, 17
beta-negative (β–) particle radiation, 17, 345
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beta-positive (β+) particle radiation, 17, 345
bicycle riding

calculating forces, 142–144
forces and sources of energy, 141–142
free-body diagram, 142
Newton’s laws of motion, 144–146
terminal velocity, 140

Bingham plastic, 222
biochemistry, 20
bioenergetics, 23
bioengineering, 20–21
Biological Effects of Ionizing Radiation 

(BEIR) committee, 372
biological fluorescence, 23
biological half-life, 354–355, 360
biological systems, interaction of 

radioactivity with
biological half-life, 354–355
Carbon-14 dating, 352–354
radioactivity of humans, 356

biology, biophysics and, 21
biomechanics. See also kinematics; static 

equilibrium; straight line motion
acceleration, 111–117
bending, 130
buckling, 131–132
collisions, 74–76
compressing, 131–132
conservative forces, 56–59
defined, 49
elasticity, 124
energy and power, 71–74
energy and work, 68–70
gravity, 106–111
kinematics, 10
laws, 9
machines, 117–123
momentum, 64–68
motion, 10
Newton’s laws, 49–56
nonconservative forces, 60–64
overview, 8
scaling, 134–138
shearing, 132–133

statics, 9–10
strain, 125–127
stress, 124–127
twisting, 133–134
Young’s modulus, 128–132

biomedical engineering, 20–21
biophysicists

experimental, 391
overview, 23–24
theoretical, 392

biophysics. See also biomechanics
acceleration, 38–41
angular momentum, 43
angular position, 33–35
angular variables, 37–38
angular velocity, 36–37
axis of rotation, 42
biomechanics, 8–10
biophysicists, 23–24
defined, 7–8
energy, 45–46
fluids, 10–12
force, 15–18, 41
importance of, 22
interdisciplinary nature of, 20–21
moment of inertia, 43
momentum, 41
overview, 19–20
physical dimensions, 26–28
position, 33
power, 45
pressure, 42
relevancy of, 22–23
scalars, 28–31
scientific method, 24
speed, 36
torque, 44
vectors, 29–32
velocity, 35–36
waves and sound, 12–15
work, 44

Biot-Savart law, 327–328
blackouts, 112
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blood
calculating heart energy consumption, 

229–232
flow resistance, 225–229

blood pressure
absolute pressure, 193
diastolic pressure, 193
gauge pressure, 193
manometer, 193
normal reading, 194
sphygmomanometer, 193
systolic pressure, 193
using Bernoulli’s equation when taking, 199

BMR (basal metabolic rate), 243
body forces, fluids, 191
body resonance, acoustic guitar, 289–290
body surface area, scaling in human  

body, 136
bones, scaling in human body, 137
boundaries, effect on waves

closed boundaries, 272
open boundaries, 272
resonant frequencies, 272–274
waves traveling from medium into denser 

medium, 270–271
waves traveling from medium into less 

dense medium, 271
boundary layer, air, 213
Bq (becquerel), physical half-life, 343
brachytherapy, 352, 376
Brainteaser icon, 3
bridge, acoustic guitar, 289
brittle materials, stress, 125
buckling, 131–132
bulk modulus, 128
buoyant force, 11, 194–195

• C •
calcium, percentage of human body 

weight, 356–357
calibration, Carbon-14 dating, 352–354
cantilever, 258
capacitance, 331

capacitors
circuit diagrams, 336–337
defined, 331–333

capillaries, lung, 205
capillarity (capillary action), fluids, 203–204
car racing, forces and acceleration, 156–158
carbon

Carbon-14 dating, 352–354
isotopes, 341
percentage of human body weight, 356

carcinogenic radiation, 350
careers, biophysics

diagnostic imaging medical physicists, 394
environmental health physicists, 393
experimental biophysicists, 391
governmental health physicists, 392–393
nuclear medicine medical physicists, 394
nuclear power reactor health  

physicists, 392
radiation therapy medical physicists, 393
theoretical biophysicists, 392

Cartesian component form, vectors, 30
CAT (computerized axial tomography) 

scans
defined, 18
overview, 379–381
used for, 381–382
when to avoid, 382

cavity resonance, acoustic guitar, 290–291
cell damage, radiation, 362–364
cellphones, 349
Celsius scale, 27
center of gravity, 106–110
center of mass, gravity, 106–110
centripetal (radial) acceleration, 113–114, 

155, 177
characteristic frequency, 290
charge, defined, 27
Cheat Sheet, 3
chlorine, percentage of human body 

weight, 357
chronic radiation syndrome, 369–370
Ci (curies), physical half-life, 343



399399 Index

circuit diagrams
AC emf power source, 336
ammeters, 335
capacitors, 336–337
DC emf power source, 336
inductors, 337
resistors, 336
straight lines, 335
switches, 335
voltmeters, 336

circuit schematic, 335
circuits

conserving energy and charge within, 
337–338

root mean square impedance, 336
circular motion

angular velocity versus time graph, 
177–180

defined, 10
forces and acceleration, 156–158
overview, 154–155
torques and forces, 159–163

clarinet, resonant frequencies, 282–285
Class I levers, 122–123
Class II levers, 122–123
Class III levers, 122–123
classical kinetics

half-life, 248–249
substrate, 249

closed boundaries, effect on sound  
waves, 272

cochlea, inner ear
defined, 114
oval window, 296
round window, 296
stereocilia (nerve hair cells), 296

cohesive forces, fluids
capillarity (capillary action), 203–204
contact angles, 203–204
defined, 11
Laplace’s law, 204–206
meniscus, 203
negative pressure in water columns, 

207–208
overview, 200
surface tension, 200–202

collective effective dose, radiation, 369–370
collisions

elastic, 75–76
inelastic, 74
overview, 74

completely inelastic collision, 74
complex waves, 301–302
compressibility

fluids, 191
gases, 191

compression zones, sound waves, 276, 
298–301

compressive strain, 126
compressive stress, 221
Compton scattering, 345, 350
computer tomography (CT) scans

defined, 18
overview, 379–381
used for, 381–382
when to avoid, 382

concave meniscus, fluids, 203
concepts, understanding, 388–389
conservation laws, fluids

Bernoulli’s equation, 198–199
continuity equation, 197
overview, 197

conservation of heat energy
applying heat formulas, 218–220
heat conduction, 216
heat convection, 217
heat energy, defined, 215
hypothalamus, 216
mathematical representation of, 215–216
overview, 214–215
Stefan’s law, 217–218
temperature, 215
temperature scales, 215

conservation of mass equation
fluids, 11
nonviscous fluids, 210

conservation of mechanical energy, 68–70
conservation of total energy law, 242
conservative forces

gravity, 58–59
Hooke’s law, 57–58
overview, 56–57
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constructive interference
sound waves (longitudinal pressure 

waves), 281
waves and sound, 269

contact angles, fluids, 203–204
contact force

defined, 55
normal force component, 56
tangential force component, 56

continuity equation
conservation laws, fluids, 197
nonviscous fluids, 210

continuous periodic waves
sunlight, 265
surface water waves, 265

convex meniscus, fluids, 203
cosine function, 303
cosmic rays, 17
coulombs, 27, 319
Coulomb’s law, 321–322
cross product, vectors, 31–32
cross-sectional area

pressure, 42
scaling in human body, 136
sound waves, 298–301

CT (computer tomography) scans
defined, 18
overview, 379–381
used for, 381–382
when to avoid, 382

cuff, sphygmomanometer, 193
cumulative effective dose, radiation, 369
cupula, inner ear, 115
Curie temperature, 320
curies (Ci), physical half-life, 343

• D •
D (absorbed dose), radiation, 362
dB (decibels), 279, 298
DC emf power source, circuit schematic, 336
decay constant

defined, 360
physical half-life, 343

decaying of elements
mean time, 343
radionuclides, 343

decibels (dB), 279, 298
defibrillators, 331
density

defined, 27, 190
fluids, mass density, 190
fluids, pressure and, 191
fluids, specific gravity, 190
human body, 136, 196

destructive interference, sound waves,  
269, 281

diagnostic imaging medical physicists, 394
diagnostic radiology, 351
diagnostic radiotracers, 379
diagrams

circuit, AC emf power source, 336
circuit, ammeters, 335
circuit, capacitors, 336–337
circuit, DC emf power source, 336
circuit, inductors, 337
circuit, resistors, 336
circuit, straight lines, 335
circuit, switches, 335
circuit, voltmeters, 336
free-body, 80–82, 90
importance of, 387

diamagnetic materials, as electrical 
conductors, 321

diastolic pressure, 193
dictionary, personal, 388
dielectric constant (relative permittivity), 

331–332
dielectric strength, 320
dielectrics, as electrical conductors, 320
diffraction-limit

Doppler Effect, 310
ultrasound imaging, 313

diffusion
defined, 12
diffusion coefficient, 236–237
enzyme kinetics, 247–252
Fick’s law, 237–240
metabolism (human), 242–247
osmosis, 240–241
osmosis pressure, 241–242
overview, 235–236

diffusion coefficient, 236–237
dilatant fluids (shear thickening fluids), 222
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discus throw, quantities of motion 
describing, 179–180

displacement
angular position, 34
linear one-dimensional motion, 166

dissipative forces, 60
distance, angular position, 35
Doppler Effect

defined, 15, 305
light, 308
moving sources and receiver, 306–308
receiver’s end, 306
source’s end, 306

dose equivalent (H), radiation, 367
dot product, vectors, 31–32
Douglas Fir (Pseudotsuga menziesii), 207
drag coefficient, air resistance, 64
drug dosage, scaling in human body, 137
ductile materials, stress, 125
dynamic (stress) viscosity (shear 

viscosity), 221
dynamic nonviscous fluids, 210
dynamics, 139, 150–154. See also circular 

motion; fluid dynamics

• E •
ear. See also inner ear

antinode, 303
beat frequency, 303
cosine function, 303
eardrum, 12, 294, 295, 298–301
hearing sound waves, 14–15
inner ear, 114–115, 296
intensity (threshold of hearing), 297
intensity level, 298
interacting complex waves, 301–302
middle ear, 295–296
node, 303
outer ear, 294–295
primary function of, 293
sine function, 302
threshold of pain, 297–298

eardrum (tympanic membrane), 12, 294, 
295, 298–301

echolocation
defined, 15, 308
frequency-shifted echo, 308–310
limited range of, 311–312
triangulating with frequency modulated 

sound, 310–311
effective dose (ε), radiation

defined, 365
dental bitewing exam, 377

effective dose equivalent, radiation, 367
effective half-life, 360
effective weight

blackouts, 112
radial (centripetal) acceleration, 113–114
redouts, 112

Einstein, Albert, 28
elapsed time, radiation, 361
elastic collisions, 75–76
elastic moduli

bulk modulus, 128
shear modulus, 128
Young’s modulus, 128

elasticity, 124. See also Young’s modulus
electric circuits, connecting, 333–338
electric fields

creating, 329
creating magnet fields, 328
electric potential, 324–325
producing, 322–325

electric potential, 324–325
electric potential difference, 324–325
electrical charge, alpha (α) particles, 344
electrical conductivity, defined, 329
electrical conductors

diamagnetic materials, 321
dielectrics, 320
ferrimagnetic materials, 321
ferroelectric materials, 320
ferromagnetic materials, 321
insulators, 320
metals, 319
paramagnetic materials, 321
piezoelectric materials, 320
semiconductors, 320
superconductors, 319
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electrical resistivity
defined, 319
matter, 329–331

electromagnetic force
defined, 340
Faraday’s law, 16
Gauss’s law, 16
Lorentz force, 16
Maxwell-Ampere law, 16

electromagnetic radiation
blocking, 347
defined, 13
ionizing, 17, 349–352
non-ionizing, 17, 348–349
overview, 347–348
Stefan’s law, 217–218
transverse waves, 265

electromotive force (emf), 325
electron capture, 17
elements. See also names of specific 

elements
carbon, 341
decaying of, 343
defined, 340
hydrogen, 341
oxygen, 341

emf (electromotive force), 325
endolymph, inner ear, 115
energy

defined, 45
heat, 45
kinetic, 45
mass, 45
mechanical, 46
potential, 46
radiation, 46
symbol for, 2
total, 46

energy and power
conservation of power and work, 71–74
conservation of total energy, 71

energy and work
conservation of mechanical energy, 68–70
work-energy theorem, 68

envelope curve, 302

environmental health physicists, 393
environmental science, 21
enzyme kinetics

classical kinetics, 248–249
Michaelis-Menten kinetics, 250–252
overview, 247

equilibrium position of object, harmonic 
motion, 256

equipotential, 325
equivalent dose (HT), radiation, 364–365
excited state, nucleus, 342
experimental biophysicists, 391
experiments, scientific method, 24
exposure, radiation, 361–362
external beam radiotherapy, 352
eye

blackouts, 112
nystagmus reflex, 115–116
redouts, 112

• F •
Fahrenheit scale, 27
farad, capacitance, 331
Faraday cage, 320
Faraday’s law, 16, 329
fat, thermal conductivity, 216
FDG (fluorodeoxyglucose), 384
ferrimagnetic materials, as electrical 

conductors, 321
ferroelectric materials, as electrical 

conductors, 320
ferrofluids, 222
ferromagnetic materials, as electrical 

conductors, 321
Fick’s law, 237–240
figures, drawing, 387
first law of thermodynamics, 242
fission decay, 17
floating in fluids

Archimedes’ principle, 194–195
measuring density of human body, 196
overview, 194

flow resistance, blood, 225–229
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fluid dynamics
defined, 11–12, 209
nonviscous fluids, 209–220
viscous fluids, 221–233

fluids. See also diffusion; fluid dynamics
Archimedes’ principle, 11
Bernoulli’s equation, 11
cohesive forces, 11, 200–208
conservation laws, 197–199
conservation of mass, 11
density, 190–191
float, 194–196
gauging blood pressure, 193–194
incompressibility, 191, 197
moving through membranes and porous 

materials, 12
nonviscous, 11, 209–220
overview, 10, 189–190
Pascal’s principle, 11, 192–193
pressure, 190–191
viscous, 11–12, 221–225, 229–232

fluorescence, 23
fluorodeoxyglucose (FDG), 384
flute, resonant frequencies, 285
flux, fluids, 237–240
food energy, determining efficiency of, 

245–247
food irradiation, 351
forces

circular motion, acceleration and, 156–158
circular motion, torques and, 159–163
contact, 55–56
defined, 41
dissipative, 60
electromagnetic force, 16, 340
electromotive, 325
finding with static translational 

equilibrium, 82–87
fluid, body forces, 191
fluid, cohesive forces, 11, 200–208
fluid, normal forces, 191
fluid, surface forces, 191
law of inertia, 50
medical physics, 18
nonconservative, 60–64

overview, 15–16
radiation, 17–18
radioactivity, 17
strong force, 340
symbol for, 2
weak force, 340

formants, 291
Fourier integrals, 298–301
Fourier series, 302
frame of reference

scalars, 29
vectors, 29

free neutrons, 342
free radicals, 350
free-body diagrams

static rotational equilibrium, 90
static translational equilibrium, 80–82

frequency
defined, 14
waves and sound, 267

froghopper, vertical jumping, 172–175
frontal cross-sectional, air resistance, 64
fulcrum, levers, 122
fundamental harmonic, 283

• G •
gamma (γ) rays, 345–346
gamma cameras, 379
gamma decay, 342
gastrointestinal symptoms, radiation 

poisoning, 368
gauge pressure

blood pressure, 193–194
defined, 42
symbol for, 2

Gauss’ law
creating electric fields, 323–324
electromagnetic force, 16

glottis, 288
governmental health physicists, 392–393
gravitational mass, 28
gravity

balance, 110–111
center of mass, 106–110



404 Biophysics For Dummies 

gravity (continued)
defined, 106
harmonic motion and, 259–263
overview, 58–59
stability, 110–111

guitar
body resonance, 289–290
cavity resonance, 290–291
measuring oscillating string’s resonance, 

287–288
soundboard, 289

• H •
H (dose equivalent), radiation, 367
hadron therapy, 376
half-intensity length (half value layer; 

halving thickness), gamma rays, 346
half-life, classical kinetics, 248–249
harmonic motion

acceleration and, 257
defined, 13, 256
equilibrium position of object, 256
gravity and, 259–263
Hooke’s law and, 257–259
sound waves, 276
velocity and, 256

harmonic waves, 298–301
Harris-Benedict equation, 243
health physics, 375. See also medical 

physics
hearing sound waves, 14–15
heart, calculating energy consumption, 

229–232
heat (thermal) energy, 27, 45, 215. See also 

conservation of heat energy
heat conduction, 216
heat convection, 217
Helmholtz resonator, 290
hematopoietic symptoms, radiation 

poisoning, 368
Higgs boson particle, 28
homeostasis, 20
Hooke’s law

defined, 13
harmonic motion and, 257–259

overview, 57–58
Young’s modulus, 128–129

horizontal (lateral) semicircular canal, 
inner ear, 114

horizontal motion, projectile motion, 183
horse racing, 146–150
HT (equivalent dose), radiation, 364–365
humans (human body)

calcium, as percentage of weight, 356–357
carbon, as percentage of weight, 356
chlorine, as percentage of weight, 357
hydrogen, as percentage of weight, 356
metabolism, defined, 12
metabolism, determining efficiency of 

food energy, 245–247
metabolism, eating, 242–245
metabolism, overview, 242
radioactivity of, 356
resistance of, 329–331
vertical jumping, 172–175

hydrogen
percentage of human body weight, 356
radioactivity and, 341

hydrostatic pressure, 192
hypertonic solution, 240–241
hypothalamus, 216
hypotheses, scientific method, 24
hypotonic solution, 240–241

• I •
ICRP (International Commission on 

Radiological Protection), 365
incident waves, 271
inclined planes, 119
inductors, circuit diagrams, 337
inelastic collisions, 74
inertial mass, 28
infrared radiation, 218, 348
infrasound (infrasonic) sound waves, 

311–312
inner ear

ampulla, 115
cochlea, 114, 296
cupula, 115
endolymph, 115
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semicircular canals, 114–115, 296
vestibule, 115, 296

input (applied) force, levers, 122
insect control, use of ionizing radiation  

in, 351
instantaneous acceleration (acceleration)

angular, 39–40
average, 40–41
average angular, 41
circular motion forces, 156–158
effective weight, 112–114
harmonic motion and, 257
linear one-dimensional motion, 166–167
non-uniform, 175–177
overview, 38–39
perceiving angular momentum and 

balance, 114–116
physiological effects of, 111–112
projectile motion, 182–185
skydiving, 175–176
sprinters’ run, 170–171
vertical jumping, 171–175
weightlessness, 116–117

instantaneous angular acceleration, 
circular motion, 177

instantaneous angular velocity (angular 
velocity)

circular motion, 177
defined, 36–37

instantaneous power, 45
instantaneous velocity (velocity)

defined, 35–36
harmonic motion and, 256
linear one-dimensional motion, 166, 

176–177
projectile motion, 182–185
sprinters’ run, 169–170
vertical jumping, 172–174

instrument sterilization, with ionizing 
radiation, 351

insulators, as electrical conductors, 320
intensity, sound waves, 279–281, 297
intensity level, sound waves, 279–281, 298
interacting complex waves, 301–302
internal radiation, 358

International Commission on Radiological 
Protection (ICRP), 365

Internet, as resource, 390
inviscid (nonviscous) fluids

air flow, 213–214
Bernoulli’s equation, 198, 210–214
conservation of heat energy, 214–220
conservation of mass equation, 210
continuity equation, 210
defined, 11
work-energy theorem, 210–214

iodine, 379
ionizing radiation

alpha particles, 350
beta particles, 350
carcinogenic radiation, 350
decaying of, 17
defined, 347
free radicals, 350
near ultraviolet radiation, 350
neutrons, 350–351
overview, 349–350
use in food preservation, 351
use in insect control, 351
use in instrument sterilization, 351
use in medical diagnoses, 351
use in medical treatment, 352
use in safety devices, 351
X-rays, 350

isotopes
defined, 341
radionuclides, 343, 344–346

• J •
jumping, 137

• K •
kelvin, 27
Kerma, 362
kilogram, 27
kinematics

circular motion, 177–180
defined, 10
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kinematics (continued)
linear one-dimensional motion, 166–177
noncircular two-dimensional motion, 

181–186
overview, 165

kinesiology, 21
kinetic energy, 45
kinetic friction, 81
Kirchhoff’s laws

first law, 337–338
second law, 338

• L •
laminar (streamline) flow, fluids

Bernoulli’s equation, 199
viscous fluids, 12, 223

Laplace’s law (Young-Laplace equation), 
204–206

laser surgery, 349
latent stage, radiation poisoning, 368
lateral (horizontal) semicircular canal, 

inner ear, 114
law of acceleration

defined, 9
overview, 51–52
static translational equilibrium and, 78

law of action and reaction, 9, 55–56
law of angular acceleration, 52–54
law of conservation of energy, 9
law of conservation of momentum, 9
law of inertia, 9, 50
lead, absorption coefficient, 347
left-traveling mathematical model,  

waves, 268
length

absorption coefficient, 346
defined, 26

Lenz’s law, 329
levers, 122–123
light, 348
limbs, scaling in human body, 137
limit point, elasticity, 124
linear momentum, 65
linear motion, 10

linear no threshold hypothesis, radiation, 
371–373

linear one-dimensional motion
100-meter dash, 168–171
skydiving, 175–177
velocity versus time graph, 166–168
vertical jumping, 171–175

linear superposition principle, 268–269, 301
living organisms, 20
load (output force), levers, 122
longitudinal pressure waves. See also 

sound waves
amplitude, 277
angular frequency, 277
body resonance, 289–290
cavity resonance, 290–291
compression zone, 276
defined, 13
in gas, 265
harmonic motion, 276
intensity, 279–281
intensity level, 279–281
mechanical vibrations, 264
phase shift, 277
power, 279–281
rarefaction zone, 276
resonant frequencies, 281–285
shock waves, 265
speed of sound, 277–278
vibrating string, 286–288
vocal cords, 288–289
wavenumber, 277

Lorentz force, 16, 318–321
lungs

application of Laplace’s law to, 205–206
lung cancer, 373–374

• M •
machines

in human body, 123
inclined planes, 119
levers, 122–123
mechanical advantage, 117–119
pulleys, 120–122
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screws, 120
wedges, 119
wheels and axles, 119

magnetic dipole, neutrons, 350–351
magnetic resonance imaging (MRI), 23, 349
magnetism

creating magnet fields, 328
diamagnetic materials, 321
ferrimagnetic materials, 321
ferrofluids, 321
ferromagnetic materials, 321
magnetic flux, 329
magnetorheological fluids, 321
paramagnetic materials, 321

magnetorheological fluids, 222
magnus effect, 213
malleable materials, stress, 125
manifest illness stage, radiation  

poisoning, 368
manometer, sphygmomanometer, 193
mass

defined, 27
gravitational, 28
inertial, 28
scaling in human body, 136
versus weight, 60

mass density, 190
mass energy, 45
mass per unit length, absorption 

coefficient, 346
mathematics

importance in biophysics, 389
mathematical models of waves, 268, 276

matter
Biot-Savart law, 327–328
capacitors, 331–333
connecting electric circuits, 333–338
Coulomb’s law, 321–322
electric fields, creating magnet fields,  

328, 329
electric fields, producing, 322–325
electrical conductivity, 329–331
electrical resistivity, 329–331
Faraday’s law, 329
interacting with radiation, 361–362

Lorentz force, 318–321
magnetic fields, producing, 325–327
Maxwell-Ampere law, 328
resistance of human body, 329–331
static charge, 321–322

Maxwell-Ampere law, 16, 328
mean time, 343
mechanical advantage

auditory ossicles, 295
machines, 117–119, 120–122

mechanical energy, 46
mechanical vibrations, longitudinal  

waves, 264
medical diagnoses, use of ionizing 

radiation in, 351
medical physics

biophysics and, 21
computer tomography, 379–382
nuclear medicine, 378–379
overview, 18, 375
positron emission tomography, 382–384
radiotherapy, 376–378

medical treatment, use of ionizing 
radiation in, 352

medium
defined, 266
waves traveling into denser medium 

from, 270–271
waves traveling into less dense medium 

from, 271
membrane biophysics, 23
membrane structure and assembly, 23
membranes, fluids moving through, 12
meniscus, fluids, 203
metabolic pathway, 242–247
metabolic properties, scaling in human 

body, 137–138
metabolism (human)

defined, 12
determining efficiency of food energy, 

245–247
eating, 242–245
overview, 242

metals, as electrical conductors, 319
meter, 26
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Michaelis-Menten kinetics, 250–252
microwaves, 348, 349
middle ear

auditory ossicles, 295
eardrum, 295
eustachian tube, 295
incus, 295
malleus, 295
oval window, 295
stapes, 295
tympanic cavity, 295

Molybdenum-99, 378
moment of inertia, 43
momentum

angular, 65–68
defined, 41
linear, 65
overview, 64–65

monazite, 371
monoenergetic alpha (α) particles, 344
motion. See also Newton’s laws of motion

circular, 10, 154–163, 177–180
harmonic, 13, 256–263, 276
linear, 10
linear one-dimensional, 166–177
noncircular two-dimensional, 181–186
projectile, 182–186
straight line, bicycle riding, 140–146
straight line, horse racing, 146–150
straight line, overview, 139–140
straight line, simplifying dynamics of 

multiple objects in contact, 150–154
MRI (magnetic resonance imaging), 23, 349
multiplying vectors, 31
muscles

atrophy due to weightlessness, 116
scaling in human body, 136
thermal conductivity, 216

myelin, 332

• N •
nanoelectromechanical resonator, 258
nanoscale biophysics, 23
National Institute of Standards and 

Technology (NIST), 26

natural background radiation, 18, 358
near ultraviolet radiation, 348
negative beta decay, 342
negative pressure in water columns, 

207–208
nerve hair cells (stereocilia), 296
net (resultant) waves, 269–270
net external force, law of acceleration, 

51–52
net external torque, 53
networking classmates, 390
neuromuscular symptoms, radiation 

poisoning, 368
neurophysics, 21
neutral surface, 130–131
neutrinos, 341
neutron decay, 17
neutron radiation, 17
neutrons

free, 342
magnetic dipole, 350–351

Newton, Isaac, 28
Newtonian fluids, 12, 222
newton-meter unit, torque, 53
newtons, 27, 60
Newton’s laws of motion

law of acceleration, 51–52
law of action and reaction, 55–56
law of angular acceleration, 52–54
law of inertia, 50
overview, 9, 49–50

NIST (National Institute of Standards and 
Technology), 26

nitrogen, percentage of human body 
weight, 356

NMR (nuclear magnetic resonance), 23, 349
nodes, 303
noncircular two-dimensional motion, 

181–186
overview, 181
projectile motion, jumping and, 185–186
projectile motion, overview, 182–185

nonconservative forces
air resistance, 63–64
dissipative forces, 60
fluid resistance, 63
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kinetic friction, 62
overview, 60–61
rolling resistance, 63
static friction, 61–62

non-ionizing radiation
defined, 17, 347
infrared radiation, 348
light, 348
microwaves, 348
near ultraviolet radiation, 348
radio waves, 348
terahertz radiation, 348
uses of, 349

non-Newtonian fluids
Bingham plastic, 222
defined, 12
ferrofluids, 222
magnetorheological fluids, 222
rheopectic materials, 222
shear thickening fluids (dilatant fluids), 222
shear thinning fluids, 222
thixotropic materials, 222

non-uniform acceleration, 175–177
nonviscous (inviscid) fluids

air flow, 213–214
Bernoulli’s equation, 198, 210–214
conservation of heat energy, 214–220
conservation of mass equation, 210
continuity equation, 210
defined, 11
work-energy theorem, 210–214

normal force component, contact force, 
55–56

normal forces
fluids, 191
static translational equilibrium, 81

nuclear magnetic resonance (NMR), 23, 349
nuclear medicine, 18, 351, 378–379
nuclear medicine medical physicists, 394
nuclear physics. See also radioactivity

defined, 339
electromagnetic force, 340
neutrons, 340
nucleons, 339
nucleus, 339
protons, 339–340

strong force, 340
weak force, 340

nuclear power, 28
nuclear power reactor health physicists, 392
nucleons, 339
nucleus, 339
nystagmus reflex, eye, 115–116

• O •
observations, scientific method, 24
ohmic materials, 330
Ohm’s law, 334
open boundaries, effect on sound waves, 272
osmosis, 240–241
osmosis pressure, 241–242
ossicles, ear, 14–15
osteopenia, due to weightlessness, 117
outer ear

auditory canal, 294
eardrum, 294
overview, 15
pinna, 294–295

output force (load), levers, 122
oval window, ear, 14–15
overtones, 283
oxygen, 341, 356

• P •
pair production, 346
parallel-plate capacitor, 332
paramagnetic materials, as electrical 

conductors, 321
Pascal’s principle, 11, 192–193
period, waves and sound, 267
permeation and transport, 24
PET (positron emission tomography) scans

defined, 18
overview, 382–384
radionuclide imaging, 378
setting up, 383–384
used for, 384

pharmaceuticals, 21
pharmacodynamics, 21
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pharmacokinetics, 21
pharmacology, 21
phase shift, sound waves, 277
phosphorus, percentage of human body 

weight, 357
photoelectric effect, 345
photons. See also electromagnetic 

radiation
Compton scattering, 345
pair production, 346
photoelectric effect, 345

physical dimensions
charge, 27
length, 26
mass, 27
standards (units), 26, 28
temperature, 27
time, 26

physical half-life, 343, 360
physical properties, of waves and sound

amplitude, 266
angular frequency, 267
frequency, 267
medium, 266
overview, 266
period, 267
speed, 267–268
wavelength, 266
wavenumber, 267

pickups, 287
piezoelectric materials, as electrical 

conductors, 320
pinna, outer ear, 294–295
pleural cavity, lung, 206
Poiseuille’s law, 224–225
polarized material, 320
Polonium, 344
porous materials, fluids moving through, 12
position, defined, 33
positive beta decay, 341
positron emission tomography, PET scans
posterior semicircular canal, inner ear, 115
potassium, percentage of human body 

weight, 357
potential energy, 46
pound, defined, 27

power
defined, 45
sound waves (longitudinal pressure 

waves), 279–281
symbol for, 2

power loss, fluids, 224
predictions, scientific method, 24
pressure

absolute, 42
defined, 42
fluids, blood pressure, 193–194
fluids, body forces, 191
fluids, defined, 190
fluids, Pascal’s principle, 192–193
fluids, surface forces, 191
gauge, 42

pressure waves, 265. See also longitudinal 
pressure waves

prodromal stage, radiation poisoning, 368
projectile motion

horizontal motion, 183
jumping, 185–186
overview, 182–185
vertical motion, 183

proton decay, 17
protons, 339–340
Pseudotsuga menziesii (Douglas Fir), 207
pulleys, 120–122

• Q •
quality factor (QF), radiation, 367

• R •
radar, 349
radial (centripetal) acceleration, 113–114, 

155, 177
radial motion, circular motion, 155
radians, 33–34
radiation. See also ionizing radiation; 

medical physics; non-ionizing 
radiation; radioactivity

activity, 360
alpha particles, 17
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Avogadro’s number, 360
background radiation, 18, 358, 370–371
beta-negative particles, 17
beta-positive particles, 17
biological half-life, 354–355, 360
cell damage, 362–364
cosmic rays, 17
decay constant, 360
defined, 17
effective half-life, 360
elapsed time, 361
human body, estimating effects on, 

364–366
human body, measuring unhealthy effects 

on, 366–370
interacting with matter, 361–362
linear no threshold hypothesis, 371–373
lung cancer, 373–374
natural background, 18
neutrons, 17
physical half-life, 360

radiation energy, 46
radiation hormesis model (radiation 

homeostasis), 373
radiation oncology (radiotherapy; 

radiation therapy)
brachytherapy, 376
hadron therapy, 376
radionuclide imaging, 377–378
radionuclide therapy, 376
teletherapy, 376
X-ray imaging, 377

radiation poisoning (radiation sickness; 
radiation toxicity; acute radiation 
syndrome)

defined, 367
latent stage, 368
manifest illness stage, 368
prodromal stage, 368
recovery stage, 368
symptoms, 368–369

radiation therapy medical physicists, 393
radiation therapy (radiotherapy; radiation 

oncology)
brachytherapy, 376
hadron therapy, 376

radionuclide imaging, 377–378
radionuclide therapy, 376
teletherapy, 376
X-ray imaging, 377

radio waves, 348, 349
radioactive isotopes (radionuclides)

alpha particles, 344
beta particles, 344–345
defined, 343
diagnostic radiotracers, 379
gamma rays, 345–346
generators, 378–379
use in nuclear medicine, 351

radioactivity
alpha decay, 17, 342
atomic mass (A), 340–341
atomic number (Z), 340
atoms, 340
beta decay, 17
carbon, 341
decaying of elements, 343
defined, 17
electromagnetic radiation, 347–352
electron capture, 17
elements, 340
fission decay, 17
gamma decay, 342
hydrogen, 341
interacting with biological systems, 

352–358
isotopes, 341, 344–346
negative beta decay, 342
neutron decay, 17
overview, 340–342
oxygen, 341
positive beta decay, 341
proton decay, 17

radioimmunoassay (RIA), 378
radionuclide imaging

positron emission tomography, 378
radioimmunoassay, 378
single photon emission computed 

tomography, 378
tracers, 377

radionuclide therapy, 376
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radionuclides (radioactive isotopes)
alpha particles, 344
beta particles, 344–345
defined, 343
diagnostic radiotracers, 379
gamma rays, 345–346
generators, 378–379
use in nuclear medicine, 351

radiopharmaceuticals, 21, 378–379
radiotherapy (radiation therapy; radiation 

oncology)
brachytherapy, 376
hadron therapy, 376
radionuclide imaging, 377–378
radionuclide therapy, 376
teletherapy, 376
X-ray imaging, 377

radius of curvature, 130–131
radon, 371, 373–374
rarefaction zone, sound waves, 276
RBE (Relative Biological Effectiveness), 

radiation, 367
recovery stage, radiation poisoning, 368
redouts, 112
Redwood (Sequoia sempervirens), 207
reflected waves, 271
Relative Biological Effectiveness (RBE), 

radiation, 367
relative permittivity (dielectric constant), 

331–332
Remember icon, 3
remote controls, 349
resistance of human body, 329–331
resistivity, electrical, 319
resistors, 330, 336
resonant frequencies (resonance)

clarinet, 282–285
defined, 294
effect on waves, 272–274
flute, 285
overview, 281–282

rest, law of inertia, 50
resultant (net) waves, 269–270
Reynolds’ number, 233
rheopectic materials, 222

RIA (radioimmunoassay), 378
right-traveling mathematical model,  

waves, 268
rigid biological systems, 77, 88
rigid bodies

breaking with static equilibrium, 94–103
defined, 77

rogue waves, single pulse waves, 265
root mean square (rms) impedance, 

circuit, 336

• S •
safety devices, use of ionizing radiation  

in, 351
scalars

defined, 28
frame of reference, 29
multiplying vector with, 31
properties of, 29–30

scaling
defined, 134
in human body, 135–138
scaling length, 134–135

scientific method, biophysics
experiments, 24
hypotheses, 24
observations, 24
predictions, 24

screws, 120
seconds, defined, 26
self-sustaining processes, 20
semicircular canals, inner ear

anterior, 115
defined, 296
endolymph, 115
lateral, 114
posterior, 115

semiconductors, 320
Sequoia sempervirens (Redwood), 207
shear modulus, 128
shear strain, 126
shear stress, viscous fluids, 221
shear thickening fluids (dilatant fluids), 222
shear thinning fluids, 222
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shearing
shear angle, 133
shear stress, 132–133

shock waves, 265
SI (Système International), 26
sine function, 302
single photon emission computed 

tomography (SPECT), 378
single pulse waves, 265
sinusoidal sound waves, 302
skin, absorption coefficient, 347
skydiving, 175–177
slugs, 27, 60
sodium, percentage of human body  

weight, 357
sonic (acoustic) sound waves, 311–312
sonic booms, 265
sonography, 313
sound. See also waves and sound

defined, 13
Doppler Effect, 305–308
echolocation, 308–312
interference, 14
resonance, 14
ultrasound imaging, 313–314

sound waves. See also ear
acoustic (sonic), 311–312
amplitude, 277
angular frequency, 277
body resonance, 289–290
cavity resonance, 290–291
compression zone, 276
defined, 13
harmonic motion, 276
intensity, 279–281
intensity level, 279–281
phase shift, 277
power, 279–281
rarefaction zone, 276
resonant frequencies, 281–285
speed of sound, 277–278
vibrating string, 286–288
vocal cords, 288–289
wavenumber, 277

soundboard, acoustic guitar, 289

space sickness, 116–117
specific gravity, 190
SPECT (single photon emission computed 

tomography), 378
speed

defined, 36
waves and sound, 267–268

speed of sound, 14
in different materials, 278
at different temperatures, 278

sphygmomanometer, 193
stability, 110–111
standards

role in communication, 28
Système International (SI), 26
United States Customary Units, 26

standing mathematical model, waves, 268
static charge, 321–322
static equilibrium

breaking rigid bodies with, 94–103
defined, 9
overview, 77–78
static rotational equilibrium, 88–93
static translational equilibrium, 78–87

static fluids, applying Bernoulli’s equation 
to, 199

static rotational equilibrium
applying to biophysical problems, 91–93
free-body diagrams, 90
overview, 88
solving problems, 88–89

static translational equilibrium
finding forces with, 82–87
free-body diagrams, 80–82
overview, 78
solving problems, 79–80

statics, 9–10
stationary mathematical model, waves, 268
Stefan’s constant, 217
Stefan’s law, 217–218
steradians, 299
stereocilia (nerve hair cells), 296
straight line motion

bicycle riding, 140–146
horse racing, 146–150
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straight line motion (continued)
overview, 139–140
simplifying dynamics of multiple objects 

in contact, 150–154
straight lines, circuit schematic, 335
strain. See also Young’s modulus

compressive, 126
defined, 125
shear, 126
stresses and, 126–127
tensile, 126
viscous fluids, 221

streamline (laminar) flow, fluids
Bernoulli’s equation, 199
viscous fluids, 12, 223

stress. See also Young’s modulus
brittle materials, 125
compressive, 125
defined, 124
ductile materials, 125
malleable materials, 125
shear, 125
strain and, 126–127
tensile, 125

strong force, 340
Strontium-89, 379
substrate, 249
subtracting, vectors, 30
sulfur, percentage of human body  

weight, 357
sunlight, continuous periodic waves, 265
superconductors, 319
superfluids, 221
superior (anterior) semicircular canal, 

inner ear, 115
surface forces, fluids

normal, 191
tangential, 191

surface tension, fluids, 200–202
surface water waves

continuous periodic waves, 265
transverse waves, 265

surfactant, lung, 206
switches, circuit schematic, 335

symbols
absolute pressure, 2
energy, 2
force, 2
gauge pressure, 2
power, 2
torque, 2

synovial fluid, 223
Système International (SI), 26
systolic pressure, 193

• T •
take-off acceleration. See acceleration 

(instantaneous acceleration)
take-off velocity. See velocity 

(instantaneous velocity)
tangent modulus, 128
tangential acceleration, circular motion, 177
tangential force component, contact  

force, 56
tangential forces

fluids, 191
static translational equilibrium, 81

tangential motion, circular motion, 155
tangential speed, circular motion, 177
Technetium-99m, 378–379
Technical stuff icon, 3
teletherapy, 376
temperature

conservation of heat energy, 215
defined, 27
speed of sound and, 278

temperature scales, 215
tensile strain, 126
tensile stress, 221
terahertz radiation, 348
terminal velocity, 140
terrestrial background radiation, 371
theoretical biophysicists, 392
thermal (heat) energy, 27, 45, 215. See also 

conservation of heat energy
thermodynamics, 242
thixotropic materials, 222
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thorium, 371
threshold of pain, ear, 297–298
timbre, 282
time, defined, 26
Tip icon, 3
tissue-weighting factors, radiation, 365
torque

circular motion forces, 159–163
defined, 44
static rotational equilibrium, 88
symbol for, 2
Young’s modulus, 130

total energy, 46
trace elements, percentage of human body 

weight, 357
tracers, radionuclide imaging, 377
trajectory graph, noncircular two-

dimensional motion, 181
transmitted waves, 271
transpiration process, 208
transverse waves

defined, 13
electromagnetic radiation, 265
surface water waves, 265
vibrating string, 265

turbulent flow (turbulence), fluids
Bernoulli’s equation, 199
viscous fluids, 12, 233

twisting, 133–134
two-dimensional vectors, 30
tympanic membrane (eardrum), 12, 294, 

295, 298–301

• U •
ultrasound imaging, 15, 313–314
uniform motion, law of inertia, 50
United States Customary Units, 26
units

role in communication, 28
Système International, 26
United States Customary Units, 26

uranium, 370–371
UVA radiation, 348
UVB radiation, 348

• V •
vectors

adding and subtracting, 30
Cartesian component form, 30
defined, 29
frame of reference, 29
multiplying, 31
multiplying scalars with, 31
properties of, 29–31
right-hand rule, 32
two-dimensional, 30

velocity (instantaneous velocity)
defined, 35–36
harmonic motion and, 256
linear one-dimensional motion, 166, 

176–177
projectile motion, 182–185
sprinters’ run, 169–170
vertical jumping, 172–174

velocity versus time graph
linear one-dimensional motion, bicycle 

riding, 166–168
linear one-dimensional motion,  

skydiving, 176
linear one-dimensional motion, sprinters’ 

run, 169–170
linear one-dimensional motion, vertical 

jumping, 173
noncircular two-dimensional motion, 181
tennis, 184

vertical motion, projectile motion, 183
vestibule, inner ear, 115, 296
vibrating string, transverse waves, 265
viscosity, 11–12, 209
viscous fluids

calculating heart energy consumption, 
229–232

defined, 11
dynamic (stress) viscosity, 221
flow resistance, 225–226
laminar flow, 12, 223
Newtonian, 12, 222
non-Newtonian, 12, 222
overview, 221
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viscous fluids (continued)
Poiseuille’s law, 224–225
streamline flow, 223
turbulent flow, 12, 233

vocal cords, sound waves, 288–289
voltmeters, circuit schematic, 336
volts, electric potential difference, 325
volume, scaling in human body, 136

• W •
walking, scaling in human body, 137
Warning icon, 3
water waves, 13
wavelength

defined, 14
waves and sound, 266

wavenumber, sound waves, 267, 277
waves and sound. See also longitudinal 

pressure waves; sound waves
continuous periodic waves, 265
disturbance, 264
disturbing material, 13
effects of boundaries on waves, 270–274
electromagnetic radiation, 13
harmonic motion, 256–263
interference, 269–270
linear superposition principle, 268–269
mathematical models of waves, 268
overview, 12–13
physical properties of, 266–268
single pulse waves, 265
transverse waves, 13, 265
types, 264–266
water waves, 13
waves, defined, 255

weak force, 340
wedges, 119
weight

defined, 58
versus mass, 60

weightlessness, 116–117
wheels and axles, 119
Wien’s displacement law, 218
WiFi, 349
work, defined, 44
work done, defined, 44
work-energy theorem

Bernoulli’s equation, 198–199
calculating take-off acceleration of 

vertical jumping, 174–175
calculating work done by discus thrower 

on discus, 180
defined, 9
nonviscous (inviscid) fluids, 210–214
overview, 68

• X •
X-ray CT (X-ray computed tomography) 

scans, 379–382
X-ray imaging, 18, 350, 377

• Y •
Young-Laplace equation (Laplace’s law), 

204–206
Young’s modulus, 128–132

bending, 130
buckling, 131–132
defined, 128
elastic moduli, 128
Hooke’s law, 128–129
tangent modulus, 128
torque, 130

Yttrium-90, 379

• Z •
Z (atomic number), 340
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