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Introduction to Molecular Dynamics: Theory
and Applications in Biomolecular Modeling

Yi Wang and J. Andrew McCammon

1 Introduction

Since the first molecular dynamics (MD) simulation of a protein was performed over

30 years ago [87], MD has been used to study a variety of biomolecular systems,

including proteins, nucleotides, lipid bilayers, and carbohydrates [16, 64, 88, 101].

Today, the problems tackled by MD range from large conformational changes

in proteins to free energy differences associated with subtle modifications in

ligands [46, 62, 65, 127]. Since the high spatial and temporal resolution of MD is

rarely achieved in conventional experimental techniques, MD is increasingly used in

combination with various experimental methods to provide a multiscale description

of the structure, dynamics, and function of a biomolecule.

In a nutshell, MD is a method to integrate the classical (Newtonian) equations of

motion for a set of particles [5, 38]. The result is a trajectory of the system over a

certain period of time, usually tens to hundreds of nanoseconds. Various structural

and dynamic properties of the system can then be calculated from the trajectory,

some of which may be directly compared with experimental results. In Fig. 1, we

have shown a typical simulation system, consisting of a protein surrounded by

solvent water molecules. The system is used to study the enzyme neuraminidase

from the avian influenza virus H5N1 and was simulated for 100 ns [78]. At each

step of this 100-ns simulation, the force “felt” by every atom is calculated according

to a predefined potential energy function. It is then used to solve the equations of
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4 Y. Wang and J.A. McCammon

Fig. 1 The simulation
system of the neuraminidase
tetramer from the avian
influenza virus H5N1. The
four monomers of the
neuraminidase are colored
blue, yellow, pink and green,
respectively. Water molecules
are shown as gray dots, and
the boundaries of the
simulation box are
highlighted. Figure was
created using structures from
Lawrenz et al. [78]

motion and generate the new velocity and position of the atom for the next step. The

100-ns trajectory is obtained by repeating the above calculation 5 � 107 times. We

will discuss these calculations in more detail in Sect. 3.

Theory and development of MD are deeply rooted in the principles of statistical

mechanics. Although users today normally do not need to write their own MD code,

it is still very helpful to understand these principles, which can be essential to ensure

the proper applications of the method on various complex biomolecular systems. In

this chapter, we will introduce the basic statistical mechanics background of MD,

the various components of a potential energy function, and the algorithm used to

integrate the equations of motion. We will then give some practical examples of

MD, followed by a few tips on how to avoid common pitfalls in the preparation of a

simulation. In the last section, we will briefly introduce some advanced simulation

techniques, such as free energy calculation and enhanced sampling methods. Our

goal is to give an overview of MD, rather than discussing any specific aspect of the

method in great detail. Therefore, we will provide references to important theories

and applications throughout the text for readers to further explore the corresponding

topics.

2 Statistical Mechanics Background

MD simulations can generate a very detailed picture of the system under study, i.e.,

they allow the calculation of microscopic properties, such as positions and velocities

of each individual atom in the system. These microscopic properties, however, are
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often of less interest or practical value to us than the macroscopic properties of

a system, which are the only properties that most experiments can measure. For

instance, knowing the exact locations of individual water molecules in a simulation

box may be less interesting or important than knowing the average rate at which

they are conducted by a channel protein across a lipid membrane [55, 120].

The relationship between microscopic and macroscopic properties of a system is

the subject of statistical mechanics. On this topic, many excellent reference books

are available [22, 68, 89], including some that offered discussions in the specific

context of computer simulations and biomolecular systems [5, 34, 38]. Below, we

will give a brief overview of some of the key concepts, and we encourage the readers

to the aforementioned books for more information.

2.1 Microstates and the Ensemble Theory

A microscopic state of a system is specified by the positions and momenta of all

particles in the system. For a system withN particles, we may write its Hamiltonian

H as a sum of the kinetic energyK and the potential energy V , which are functions

of the Cartesian momentum pi and coordinate ri of each particle i , respectively:

r D .r1; r2; :::; rN /; (1)

p D .p1;p2; :::;pN /; (2)

H.r;p/ D K.p/C V.r/: (3)

Usually, the kinetic energy takes the familiar quadratic form:

K D

N
X

iD1

1

2mi

.p2ix C p2iy C p2iz/; (4)

where mi is the mass of particle i , and pix , piy , piz are the x, y, and z components

of its momentum pi . The potential energy V has a much more complicated form and

will be discussed in more detail later. For now, it suffices to say that once the form

of V is determined, the time evolution of the system, governed by the Hamiltonian

H , can be determined by solving the equations of motion in a MD simulation. If

we think of the positions and momenta of all particles in the system as coordinates

in a 6N -dimension space, which we refer to as the phase space, then at any given

time, the system corresponds to a point in this multidimensional space. The time

evolution of the system, thereby, corresponds to a trajectory in the phase space.

As mentioned earlier, we are interested in calculating certain macroscopic

properties of the system. Instead of following the trajectory of a single system in the

phase space, the conventional approach used in statistical mechanics is to consider,

at any given time, a collection of systems with the same macroscopic properties,
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e.g., number of particles N , volume V , energy E, temperature T , or pressure P .

These systems have the same Hamiltonian, and, therefore, can be considered as

replicas of each other. Each of them corresponds to a point in the phase space, and

the collection of these points constitutes a statistical ensemble. We can calculate an

observableA by averaging its values in all the members of the ensemble,

Aobs D hAiens; (5)

where hAiens is called an ensemble average of A.

In the rest of this section, we will introduce the equations used to calculate

ensemble averages. Although the derivations of these equations are beyond the

scope of this chapter, it is probably worthwhile to mention, albeit very briefly, a key

assumption behind them. In general, at any given time, there will be many different

microscopic states corresponding to a particular set of macroscopic conditions. In

other words, the collection of systems with the same macroscopic properties will

form a hypersurface in the 6N -dimension phase space. As an example, if we specify

that the total energy of the system is E , there are multiple ways we can distribute E

to theN particles in the system. If we do not specify any other conditions, we should

be able to perform such distributions in any possible way, i.e., there is no reason to

prefer one distribution scheme over another. Likewise, a fundamental assumption

in statistical mechanics is that when there are no other constraints, the system is

equally likely to be in any one of the microstates corresponding to a macrostate. This

“equal a priori probabilities” postulate forms the backbone of statistical mechanics,

and many powerful equations can be derived from this simple but highly nontrivial

assumption.

2.2 The Ensemble Average

We will use the canonical (NVT) ensemble to demonstrate how the ensemble

average of an observable can be calculated. Treatment of other statistical ensembles,

such as the microcanonical (NVE), the isothermal–isobaric (NPT), and the grand

canonical (�V T ) ensemble, can be found in the reference books mentioned earlier.

The quantities in parentheses represent the thermodynamic properties kept constant

in an ensemble, with N , V , E , T , and P defined earlier, and � standing for the

chemical potential of a given species of particles.

A key concept in statistical mechanics is the partition functionQ, which has the

following form in the canonical ensemble

QNVT D
X

r;p

exp.�ˇH.r;p//; (6)

where ˇ D 1=kBT and kB stands for the Boltzmann constant. The term exp.�ˇH

.r;p// is called the “Boltzmann factor,” which is related to the probability P.r;p/
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that a certain microstate can be visited in a canonical ensemble. The partition

function is a sum of the Boltzmann factors from all microstates, and is used as a

normalization factor to give the formula of P.r;p/

P.r;p/ D
exp.�ˇH.r;p//

QNVT

: (7)

In practice, because the Hamiltonian is a sum of the kinetic energy, which

only depends on p, and the potential energy, which only depends on r, the

partition function Q can be expressed as a product of the kinetic (ideal gas)

contribution Qid
NVT and the potential (excess) contribution Qex

NVT [5]. The former

can be integrated analytically, leaving the latter our main target of calculation. In

reality, instead of Qex
NVT, we often use the configurational partition function

ZNVT D
X

r

exp.�ˇ V.r//: (8)

Correspondingly, the probability of visiting a configurational microstate r is

P.r/ D
exp.�ˇ V.r//

ZNVT

: (9)

With (9), we can now calculate the ensemble average of any observable A:

hAiNVT D
X

r

A.r/ P.r/ D
X

r

A.r/ exp.�ˇ V.r//

ZNVT

: (10)

One goal of an MD simulation is to generate the proper phase space distribution

according to (9), from which the ensemble average of various observables can be

calculated using (10). A somewhat subtle point is that once we have generated the

correct phase space distribution, we will be able to calculate an observable A as a

time average from a simulation trajectory,

Aobs D hAitime: (11)

The equivalence of (11) and (5) relies on the so-called “ergodic assumption.”

Interested readers can find more on this topic in the book by Allen and Tildesley [5].

Before we move on to the next section, where we will discuss how to generate

the desired phase space distribution in a MD simulation, we should say a few more

words about (8). As the partition function ZNVT contains all the information about

the microstates of a system, it’s very tempting to evaluate it directly according to

(8). However, this remains a daunting task for most biomolecular systems. The

reason is that there are too many microstates for a typical biomolecular system,

which makes the direct evaluation of (8) unfeasible. To expedite the sampling of the

configurational space, various enhanced sampling methods have been developed,

and we will discuss some of these methods in Sect. 6.
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3 Molecular Dynamics: The Theory

Let’s go back to the HamiltonianH defined in (3), which governs the time evolution

of a system. We have shown that the kinetic part of H usually has a simple

quadratic form (4). Now it’s time to look at the more complicated potential part

of H . Unfortunately, the actual form of the potential energy V is so complicated

that even with the power of modern computers, some approximations are needed

before we can calculate it efficiently. In this section, we will first go through these

approximations, and then discuss how to use MD simulations to generate the desired

phase space distribution of a statistical ensemble.

3.1 The Force Field

In MD, the specific form of the potential energy function V is given as a force field,

where V is broken down into terms characterizing different types of interactions in

a bimolecular system. Examples of some of the most commonly used force fields

are AMBER [54,117], CHARMM [69,79–81], GROMOS [92,102], and OPLS [29,

63, 96]. Although these force fields were initially developed by different groups,

most of them have similar functional forms, i.e., the potential energy V is divided

into bonded and nonbonded terms, the former of which includes the bond, angle,

dihedral, and improper interaction terms, while the latter includes the Van der Waals

(vdW) and electrostatic interaction terms. As an example, energy functions from the

CHARMM force field are shown below:

V D Vbond C Vangle C Vdihedral C Vimproper C Vvdw C Velec; (12)

Vbond D Kb.b � b0/
2; (13)

Vangle D K� .� � �0/
2; (14)

Vdihedral D K�

�

1C cos.n� � ı/
�

; (15)

Vimproper D K . �  0/
2; (16)

Vvdw D "
h �

Rij

rij

�12

� 2

�
Rij

rij

�6 i

; (17)

Velec D
qiqj

4�"0rij
: (18)

In Fig. 2, we have given the schematic representation of each energy term listed

above, along with a plot showing the corresponding energy value for certain selected

atom types. While the bond and angle terms are rather straightforward to understand,

the rest of the terms may require some explanation. Mathematically, a dihedral and

an improper both involve four atoms, and are defined as the angle between the
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Fig. 2 Potential energy terms in a force field. Schematic representations are shown for the bond,
angle, dihedral, improper, vdW and electrostatic interactions. The corresponding energy values
for selected atom types in the CHARMM force field are plotted, including the C–O bond, the
CA–C–O angle, the CA–C–N–CA (˚) dihedral and the C–CA–N–O (peptide bond) improper. To

demonstrate the nonbonded interactions, we also plotted the vdW and electrostatic energy values
for a pair of C–O atoms. The atom names used here are consistent with the naming convention of
protein data bank, where CA represents the C˛ atom of the protein backbone

plane containing the first three atoms and the plane containing the last three atoms.

A dihedral controls the rotation about the bond between the second and the third

atom, while an improper controls the “planarity” of the four atoms. For instance,

the ˚–� backbone dihedrals of proteins are primarily controlled by dihedral terms,

whereas the planarity of a peptide bond (–C(DO)NH–) is controlled by an improper

term. As for the nonbonded interactions, the electrostatic term describes the familiar

Coulombic interactions between two charged atoms, while the vdW term describes

interactions arising from induced dipoles and excluded volumes of pairs of atoms.

The vdW potential is attractive at long distance, but quickly becomes repulsive at

very short distance between two atoms, the latter of which has the effect of a “hard

core” potential and prevents atoms from overlapping with each other.

Among the bonded interactions, the bond, angle and improper terms all have

the form of a harmonic potential. Their corresponding spring constants are usually

quite large, which means that small changes in the above quantities can result in

a huge difference in the corresponding energy. For instance, increasing the length
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of the C–O bond in a protein backbone by only 0.5Å from its equilibrium value

will increase the bond energy by 155 kcal/mol. Such a drastic change in energy

is highly unfavorable in an MD simulation. As a result, the bonds, angles, and

most impropers of a system are often found to be very close to their equilibrium

values. In comparison, the dihedral potential (and some improper potential) is much

“softer”. As shown in Fig. 2, the protein backbone dihedral ˚ is governed by an

energy function in the range of 0–7 kcal/mol. This soft potential allows the backbone

dihedral to adopt a broad range of values, and, therefore, gives biomolecules the

flexibility to undergo large conformational changes.

3.2 Long-Range Interactions

In most MD simulations, the bonded interaction terms can be calculated rather

efficiently, since they only involve atoms connected by one to three covalent bonds.

Meanwhile, the nonbonded interactions, which occur between every pair of atoms in

a system, are much more expensive to calculate. A closer look at (17) and (18) tells

us that the vdW and electrostatic potential functions have different dependence on r .

Generally, a potential is considered to be a short-range interaction if it decays faster

than r�d, where d is the dimensionality of the system [5]. Under this criterion, the

vdW potential is a short-range interaction, since it decays as r�6 at long distances,

while the electrostatic potential, which decays as r�1, is a long-range interaction.

For the short-range vdW interaction, we can use a cutoff scheme to perform the

calculation efficiently: interactions between atoms within the cutoff distance are

calculated, while interactions between atoms separated by a distance longer than

the cutoff are simply neglected. Typical cutoff distances used in MD simulations

are in the range of 8–12Å. The associated approximation is acceptable because a

short-range interaction rapidly decays to zero as the distance increases. For instance,

the vdW interaction energy between a carbon and an oxygen atom (C–O) is only

�0.0002 kcal/mol when they are 12Å apart. Such a small value allows us to truncate

the vdW potential at the cutoff distance.

In practice, the simple truncation scheme described above is replaced by a

slightly more complicated algorithm, which is needed to avoid a sudden change

in the vdW forces caused by the discontinuity in the derivative of the vdW potential

at the cutoff distance. In many MD softwares, it is also possible to add a “correction

term” to the final result, in order to approximate the neglected vdW potential energy

beyond the cutoff distance. We’ll leave interested readers to explore these more

advanced topics by themselves.

Usually, we cannot calculate the long-range electrostatic potential using the same

cutoff scheme described above. This can be seen from the example mentioned

earlier—when the C–O atoms are 12Å apart, their Coulombic interaction energy

is still �7.2 kcal/mol. This value is four orders of magnitude greater than the

vdW energy at the same distance. As a result, we may introduce substantial errors
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Fig. 3 The periodic boundary conditions. The original simulation box in the center is replicated
throughout space to form an infinite lattice. For clarity, only eight replicas are shown in the figure

into the simulation results if we simply truncate the electrostatic potential at the

cutoff distance. To solve the problem, several methods have been proposed, and

a commonly used method is the Ewald summation [5, 38]. The basic idea of the

method is to introduce a neutralizing charge distribution for every point charge in

the system. The resulting electrostatic potential, which decays much faster than r�1,

can then be calculated using a cutoff scheme. Of course, we have to calculate the

electrostatic potential of the neutralizing charge distribution and remove it from

the final result. Due to the slowly varying nature of this potential, this part of the

calculation can be performed in the reciprocal space via Fourier transform, where

we can use the cutoff scheme once again.

The application of the Ewald summation requires the periodic boundary con-

ditions (PBC), i.e., the cubic box containing the original simulation system is

replicated throughout space to form an infinite lattice, and atoms leaving the box

from one side will enter from the opposite side (Fig. 3). Apart from enabling the

Ewald calculation, the PBC have many advantages. For instance, the surface effect

of a finite-sized system is eliminated, since no atom is on the surface of an infinite

lattice. However, the artificial periodicity introduced by PBC inhibits the occurrence

of long-wavelength fluctuations [5], and has been found to reduce the magnitude
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of ionic solvation energy [56]. Despite these artifacts, the PBC are generally

considered to have little impact on the equilibrium thermodynamic properties of

a system [5], and are routinely used in MD simulations of biomolecules.

3.3 Equations of Motion

Now that we have discussed the various components of V and outlined the

procedure of their calculation, the next step is to derive the time evolution of

our system by integrating the equations of motion. The goal is to calculate, at

timestep nC 1, the coordinatesXnC1, velocities VnC1 and forces FnC1 of all atoms,

given the corresponding values of these quantities at the previous timestep n. The

Verlet algorithm [114], which belongs to the class of finite difference methods, is

commonly used to perform such calculations. In practice, we often use the velocity

form of the Verlet algorithm [110], which has improved numerical accuracy over

the original method. This algorithm contains the following equations,

VnC 1
2

D Vn C
�t

2
M�1Fn; (19)

XnC1 D Xn C�tVnC 1
2
; (20)

FnC1 D F.XnC1/; (21)

VnC1 D VnC 1
2

C
�t

2
M�1FnC1: (22)

As shown above, the velocity of the system at step nC 1
2

is first calculated, followed

by the calculation of the coordinates at step n C 1. Based on the new coordinates,

the potential energy function is evaluated and new forces are obtained. The velocity

is then advanced by another half a timestep to produce the new value at nC 1.

A key parameter in the above equations is the timestep �t , which determines

how frequently we perform the integration. Ideally, we would like to use a timestep

as large as possible to minimize the computational cost. In reality, we are often

limited to a timestep that is rather small, e.g., 1 fs (10�15 s), because the timestep

must be small enough to allow for accurate evaluation of the fastest motion in

a system, which is the vibration of the bond length between two atoms. Using

constraint methods, such as the SHAKE algorithm [99], we can fix the bond

lengths and increase the timestep from 1 fs to 2 fs. Even with these algorithms,

however, the timescale we can routinely access with MD is currently limited to the

submicrosecond range. Compared with most experimental techniques, the limited

timescale accessible by MD remains a bottleneck of the method.

In (19)–(22), we have used the Verlet algorithm to integrate the Newtonian

equations of motion. Since these equations conserve the total energy of a system,

the phase space distribution generated above is that of a microcanonical (NVE)

ensemble. In order to simulate other statistical ensembles, such as the canonical
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(NVT) and the isothermal-isobaric (NPT) ensembles, the Newtonian equations of

motion must be modified. Many techniques are available for this purpose [5, 38],

almost all of which can be found in some commonly used MD simulation packages,

such as AMBER [18], CHARMM [15], GROMACS [107], NAMD [94], and

DESMOND [14]. Regardless of the details of these methods, most of them rely

on the Verlet algorithm described above to perform the integration of the modified

Newtonian equations of motion.

4 Applications of MD: A Few Examples

So far, we have concentrated on the theoretical aspects of MD: its statistical

mechanics background, the functional form of the potential energy, and how to

integrate the equations of motion. In this section, we will use a few examples

to showcase the applications of MD in biomolecular modeling. Due to space

limitations, we cannot hope to be comprehensive on this subject, hence, we refer the

readers to recent review articles for more application examples of MD [1,66,71,98].

4.1 Calculation of Water Diffusion

As discussed earlier, we can calculate various macroscopic properties of the system

from a MD simulation. One such macroscopic property often calculated is the

diffusion coefficient of water (D), which describes the mobility of the solvent

molecules in the system. It can be calculated from a simulation trajectory in one

of the two following ways:

D D
1

3

Z 1

0

dthvi.t/ � vi .0/i; (23)

D D
1

6t
hjri .t/� ri .0/j

2i; (24)

where vi.t/ and ri .t/ are the velocity and coordinates of a single water molecule at

time t , respectively. Equation (24) is derived from (23) via the “Einstein relation,”

which also holds for other transport coefficients, such as the shear viscosity. These

transport coefficients can be calculated from a simulation with equations similar to

(23) and (24) [5].

To reduce the usage of disk space, the velocity trajectory is usually not saved in

a simulation, and (24) is used in the calculation of D. Here, we should emphasize

that (24) is only valid at long time intervals compared with the correlation time of r.

This calculation is performed for all the water molecules in the system and the

results are averaged to improve the statistical precision. Another commonly used
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Fig. 4 Calculation of water diffusion coefficient. The simulation system is a 35Å by 35Å by
35Å box, containing 1,437 water molecules. The mean square displacement MSD of water is
plotted with respect to the time interval t

trick is to shift the time origin t D 0 along the simulation trajectory, in order to

make use of all data points. For instance, jri.500/�ri.0/j
2 and jri.600/�ri.100/j

2

are both included in the mean square displacement (MSD) calculation for the time

interval 500 (the unit of the time interval depends on how frequently the simulation

trajectory is written). In Fig. 4, we have plotted the MSD with respect to the time

interval t in a 10-ns simulation of 1,437 water molecules. The diffusion coefficient,

obtained as 1/6 of the slope of the line, is 3.4�10�5 cm2/s.

Although the above example is a very simple application of MD, the methods

used here provide the basis to study more complicated biomolecular systems. For

instance, a family of channel proteins called aquaporins (AQPs) are responsible

for the rapid conduction of water across a lipid membrane [2]. Using MD simu-

lations, the dynamics and selectivity of these channel proteins have been studied

extensively [21, 33, 44, 111]. Based on (24) and theories from nonequilibrium

statistical mechanics, we can obtain the water permeability coefficient (pf) through

AQPs from relatively short equilibrium MD simulations [128]. This result allows

the comparison of water conduction rate in various AQPs to be performed under

conditions similar to those used in experiments [51].

4.2 Characterization of Receptor Flexibility in Virtual

Screening

In recent years, computer-aided drug design (CADD) has become an indispensable

part of the modern drug design process [61]. A widely used technique in CADD
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is virtual screening (VS) [67, 70], where a library of compounds are docked into

the active site of a protein receptor to identify those molecules with a high binding

affinity. The target protein is often an enzyme from a pathogenic organism, and

the goal is to identify inhibitors that can block the active site of the enzyme,

and, thereby, kill the pathogen. The identified inhibitors can be tested experimen-

tally, and active compounds can be further optimized and developed into new

drugs.

Traditionally, VS is performed using only the crystal structure of a protein, which

is usually kept rigid during the docking process. The drawback of this scheme

is that the protein flexibility is not included in the modeling of receptor-ligand

binding. This is now recognized as one of the major issues with the method, since

a receptor may adapt to the shape of a specific ligand, e.g., through an “induced

fit” mechanism [73], and the resulting complex may not be identified using a rigid

protein model [37, 105, 112]. Over the past few years, MD simulations have been

successfully applied to provide a description of the receptor flexibility [17,123]. The

relaxed complex scheme (RCS) [6, 7], for instance, is a protocol that combines MD

with VS.

In RCS, an MD simulation is used to generate an ensemble of structures for

the receptor. Using either RMSD [24] or QR factorization [8] based clustering

analysis method, a representative subset of this ensemble is created and then used in

subsequent VS. The RCS method offers an efficient approach to incorporate receptor

flexibility in VS. Compared with a static crystal structure used in traditional VS, the

subset of structures extracted from a NVT or NPT ensemble allow us to have a

comprehensive understanding of the receptor active site. For instance, in the VS of

HIV-1 integrase, a 2 ns MD simulation revealed a new binding “trench” next to the

original active site [100]. This study demonstrates that integrase inhibitors may bind

with different orientations in the active site, which proved to be invaluable to the

design of new inhibitors with unique resistance profiles [52]. Later, these findings

contributed to the discovery of raltegravir [109], the first HIV-integrase inhibitor

approved by FDA for treatment of HIV infection.

Another example of RCS is the neuraminidase enzyme from the avian in-

fluenza virus H5N1 [24]. In this study, a 40-ns simulation was performed on

the neuraminidase tetramer, and RMSD-based clustering was used to extract

�15 structures representing the ensemble generated in the MD simulation. These

structures revealed a new “opening” in the neuraminidase active site (Fig. 5),

which is completely occluded in the crystal structure. Based on the simulation

results, �1,400 compounds were screened and 25 identified inhibitors were tested

experimentally. Out of the 10 confirmed active compounds, 7 were only selected

using the MD-generated structures. These potential drug candidates would have

been missed if only the crystal structure was used in the VS. For more detailed

discussions of the RCS and related methods, we refer the readers to a recent review

on this subject [7].



16 Y. Wang and J.A. McCammon

Fig. 5 Receptor flexibility revealed by MD simulations. (a) The neuraminidase active site in the
crystal structure. (b) Representative snapshot from a 40 ns MD simulation. (c) The two structures
are overlapped to highlight the difference in their active site conformations. Residues from the
crystal structure are shown in green stick representation. Figure was created using structures from
Cheng et al. [24]

5 Running a Simulation: Preparations and Precautions

As shown in the previous section, MD simulations can provide great detail and

valuable insight into the biomolecular system under investigation. However, one

should use great caution when setting up and analyzing a simulation, especially

since MD programs generally have only limited ability to check the “soundness”

of simulation results. Hence, an MD simulation may finish without any error after

hundreds of CPU hours have been spent, but the result will be of little use if the

initial conditions, such as protonation states of residues in an enzymatic site, are not

set properly. It is up to the users to take the necessary precautions and avoid such

“garbage-in-garbage-out” scenarios. Below, we briefly go over the preparation of an

MD simulation and discuss some common pitfalls in this process. The examples we

choose are based on simulations of proteins, although most of the principles should

apply equally well to simulations of other biomolecules such as nucleotides.

5.1 System Preparation

5.1.1 Choosing Initial Structures

The majority of MD simulations performed today start with an atomic-resolution

structure of the biomolecule under investigation. When multiple structures are

available for the same biomolecule, the structure best representing the system under

investigation, e.g., wild type vs. mutant, should be chosen, and structures with

higher resolutions are often preferred over lower-resolution ones. When no structure

is available, homology modeling may be used to construct a protein structure based

on its similarity to other proteins with known structures. However, a relatively
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high sequence identity (>30%) between the reference and target protein is usually

required to ensure good quality of the homology model [85], and some expertise

may be needed in the refinement of the model [19].

5.1.2 pKa Calculation

Once a protein structure is chosen, the next step is to determine the protonation state

of each titratable protein residue. The protonation state of a residue, characterized by

its pKa value, is influenced by hydrogen bonding, desolvation effect and Coulombic

interactions in its local environment, and, therefore, can be very different from the

corresponding standard amino acid [32]. Many good programs are available for

predicting and assigning protonation states of protein residues, such as MCCE [3,4],

MEAD [10], PROPKA [9], and UHBD [82]. Performing pKa calculation using

at least one of these programs should become a routine in the preparation of a

simulation system.

5.1.3 Adding Water and Ions

Currently, the majority of MD simulations are performed using explicit water

molecules, although implicit solvent simulations have proven very useful in the

study of certain biomolecular systems [23, 36, 41]. In an explicit water simulation,

the number of water molecules needed is determined by the size of the simulation

box. As discussed in Sect. 3, PBC are usually used to avoid the surface effect of

a finite-sized system. In these simulations, a rule of thumb is that the biomolecule

should never “see” its periodic image. This means that the simulation box has to be

large enough so that two neighboring periodic images of the molecule are separated

by at least the cutoff distance. In practice, a layer of water at least 10–15Å wide

is often added to each side of the protein. However, if the protein is expected to

undergo large conformational changes, such as unfolding, the simulation box should

be chosen large enough to accommodate the changes.

Apart from water, the buffer solution used in most biological experiments contain

various ions. Due to the limited availability of force field parameters, we cannot

hope to reproduce the exact experimental conditions in simulations. Nevertheless,

it is desirable to include ions, such as NaC, Cl�, or KC in a system, to provide

a similar ionic strength in the simulation box as in the experiments. The added

ions should neutralize the net charge of the biomolecule, so that the total charge

of the simulation box is zero. However, the Ewald summation method described in

Sect. 3 introduces, by design, a homogeneous neutralizing background charge to the

system [56]. As a result, systems with nonzero net charges can be simulated without

any apparent error. Despite this result, it’s generally considered a good practice to

keep the simulation system neutral, unless the goal is to simulate a charged system,

such as in the calculation of ionic solvation energy.
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5.2 Simulation Conditions

5.2.1 Designing Simulation Protocols

Prior to any production MD runs, the system prepared above is put through a short

energy minimization run, which removes any large steric clashes or close contacts

within the system. Following the minimization, a short simulation with restraints on

protein atom positions may be desirable to gradually bring the system to the target

conditions, e.g., the desired temperature and pressure. The hope is to introduce as

little perturbation to the structure as possible at this stage of the simulation, while

allowing the environment to relax around the biomolecule. Although many protocols

are used in various simulation studies, for a small protein (<500 aa), a 500-ps run

is usually considered sufficient, during which water molecules travel on average

�30Å, giving them enough time to relax in the immediate vicinity of the protein.

The ensembles used in a MD simulation should be chosen according to the nature

of the biomolecular system under investigation. The microcanonical (NVE) ensem-

ble, where the total energy of the system is kept constant, is mostly used to examine

the energy conservation performance of a MD program, while the canonical (NVT)

and the isothermal-isobaric (NPT) ensembles, which better resemble experimental

conditions, are often preferred. However, once the system is brought to equilibrium,

calculations of thermodynamic properties based on different ensembles can produce

very similar results [5]. Therefore, one can start the simulation in the NPT ensemble,

bring the system to the equilibrium temperature and pressure, and then continue the

production run in either the NVT or the NPT ensemble.

At this stage, a natural question one may ask is how long a simulation should last.

This question would become trivial if there is no limitation to our computational

resources. Unfortunately, most researchers won’t have this luxury, and the answer

to the above question will depend closely on the purpose of the study. Diffusion of

water and side chain reorientation of protein residues usually take place in tens to

hundreds of picoseconds, while large-scale conformational changes, such as folding

and unfolding, could take hundreds of nanoseconds, microseconds, to milliseconds.

Most simulations performed today are in the nanosecond to microsecond range.

Therefore, the user should decide the simulation time based on the target problem.

If, for instance, large conformational changes are the goal, which may not occur in

a 10-ns simulation, the computational resources may be better spent on enhanced

sampling methods, where advanced simulation techniques are used to force the

biomolecule to undergo certain structural changes. We will discuss some of these

techniques in the next section.

A question related to the simulation length is whether one should run a single

long simulation or several short ones, given the same amount of computational

resources. This topic remains an interesting and active area of research. Recent

simulations and free energy calculation studies have suggested that in certain cases

short multiple runs can better capture the dynamics of the protein than a single long

run [20, 77].
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5.2.2 Dealing with Errors

New users of any MD program will likely encounter some errors in their first few

simulation runs. Although no solution can be given without knowing the specific

errors, it is possible to offer general guidance: one of the most error-prone steps in

an MD simulation is the system preparation. Any small mistake at this stage could

cause the simulation to crash within the first few picoseconds or render its result

invalid. For instance, a new residue or ligand may have been introduced without the

corresponding force field parameters. The transformation matrix used to generate

an oligomer of the protein may have been entered in the wrong order, and the

resulting protein monomers may be placed too close to each other. In such cases, one

must go back to the system preparation step and fix any problems with the starting

structure. Missing force field parameters may be obtained using tools provided by

the corresponding MD package or force field [113,118,119]; and the transformation

matrix can be checked against the initial pdb file.

The cause of some errors may be more difficult to decipher, an example of

which is the common error message “atom moving too fast,” given by the MD

program NAMD [94]. This error means that a certain atom, the index of which is

given along with the error message, has a velocity greater than the maximum value

defined by the program. Since the maximum value is set to be much higher than the

velocities from any realistic MD simulation, this error usually indicates structural

defects in the system. For instance, two atoms may be placed right on top of each

other and the resulting vdW force, which is repulsive at very short distance, will

cause the two atoms to “fly away” at a very high speed. Usually, the minimization

step described earlier can eliminate these close contacts effectively. However, some

structural defects may be too great to be completely removed by minimization, in

which case manual correction of the initial structure is required. It is also likely

that only a small part of the initial structure is incorrect, which tends to be the case

when new residues or ligands are involved. In these cases, the problematic region

in the structure can be difficult to spot, since the majority of the system will behave

normally. Often, when one couldn’t locate the problematic structure, it is useful to

repeat the simulation with the trajectory written every step. Such a “slow motion”

picture of the system could help to pinpoint the exact cause of the problem.

6 Advanced Simulation Techniques

In this section, we will briefly introduce some advanced simulation techniques,

including enhanced sampling and free energy calculation methods. As the calcu-

lation of free energy often requires enhanced sampling to be performed along a

specific reaction coordinate, the distinction between these two types of methods is

not always clear. Therefore, in the following discussions, we will not attempt a strict

classification, but will focus on a few commonly used techniques and their specific
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features. Due to space limitations, our accounts of these methods are by no means

comprehensive. Therefore, we refer readers to the many review articles and books

on these topics for more detailed discussions [13, 25, 27, 40, 72, 86, 95, 124].

6.1 Accelerated Molecular Dynamics

As discussed in Sect. 2, the direct evaluation ofZNVT in a canonical ensemble is not

feasible using regular MD simulations. Since the microstates are sampled according

to a Boltzmann distribution in the canonical ensemble, the basic idea of enhanced

sampling methods is to escape from this distribution and sample the configurational

space in a “non-Boltzmann” way. Some examples of enhanced sampling methods

are accelerated molecular dynamics (aMD) [49], conformational flooding [45, 76]

and hyperdynamics [115,116]. Here, we will use the aMD method as an example to

illustrate the principles behind enhanced sampling methods.

In the original aMD method [49], when the system’s potential energy falls below

a threshold energy, E , a bias potential is added, such that the modified potential,

V �.r/, is related to the original potential, V.r/, via

V �.r/ D V.r/C�V.r/; (25)

where�V.r/ is the bias potential,

�V.r/ D

(

0 V.r/ � E
.E�V.r//2

˛CE�V.r/
V.r/ < E:

(26)

In the above equation,E is the threshold energy specified by the user, which controls

the portion of the potential surface affected by the bias. The acceleration factor ˛

determines how “aggressive” the modification to the potential surface is: the smaller

˛, the more flattened the energy surface becomes.

Under the influence of the bias potential�V , the sampling in an aMD simulation

will not follow a Boltzmann distribution. Instead, the energy barriers between adja-

cent low-energy states are lowered, and the system can explore the configurational

space more efficiently. Like other enhanced sampling methods, the effect of this bias

potential must then be removed from the final result. In aMD, this is achieved by

reweighing the simulation trajectory in the calculation of the ensemble average hAi:

hAi D
hA.r/ exp.ˇ�V.r//i�

hexp.ˇ�V.r//i�
; (27)

in which h:::i and h:::i� represent the ensemble average in the original (unbiased)

and the aMD (biased) ensembles, respectively.
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The aMD method has been successfully applied to study a number of peptide

or protein systems, including HIV-1 protease [47], the proteins GB3 [83] and

ubiquitin [84], as well as the GTPase protein Ras [42]. Recently, several extensions

of this method have been developed [35,50,90,121,122], and interested readers may

find more discussions of aMD in a couple of review articles [43, 48].

6.2 Free Energy: The Concept

The free energy change associated with a chemical or biological process largely

determines the equilibrium properties of the system under investigation. The

protein-ligand binding, for instance, is governed by the free energy change asso-

ciated with the formation of a complex by the two molecules [39]. In statistical

mechanics, the excess or configurational Helmholtz free energy, A, which is the

thermodynamic potential usually associated with a canonical ensemble, can be

expressed as

A D �ˇ�1ln ZNVT; (28)

where ZNVT is defined in (8). Just like we cannot use (8) to calculate ZNVT, the

direct evaluation of A using the above equation is also unfeasible. Fortunately, in

most cases, we are only interested in the difference between the free energies of two

states, e.g., state 0 and state 1. Assuming state 0 and state 1 are characterized by the

partition functions Z0 and Z1, respectively, the difference in their free energies is

given by

�A D �ˇ�1ln Z1=Z0: (29)

Equation (29) can be used to describe a large number of free energy calculation

problems. Perhaps the most relevant one to biomolecule modeling is the calculation

of binding affinity in a protein–ligand complex. These calculations often involve

the creation or annihilation of a ligand molecule, i.e., the energy terms involving

the ligand are gradually added or removed from the total Hamiltonian. Such

calculations are often referred to as “alchemical transformations,” and are used to

obtain solvation-free energy or binding-free energy [39, 127].

Equation (29) suggests that in order to obtain �A, we only need to calculate

the ratio between the two partition functions, rather than each individual ZNVT.

This observation provides the basis for the various free energy calculation methods.

Below, we will focus on two of the most widely used methods, namely, free energy

perturbation (FEP) and thermodynamic integration (TI).
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6.3 Free-Energy Perturbation

In the FEP approach, we start by combining (8) and (29),

�A D �ˇ�1ln

P
exp.�ˇ V1/

P
exp.�ˇ V0/

(30)

D �ˇ�1ln

P
expŒ�ˇ .V1 � V0/� exp.�ˇ V0/

P
exp.�ˇ V0/

(31)

D �ˇ�1ln hexpŒ�ˇ .V1 � V0/�i0: (32)

For simplicity, we have omitted the dependence of V on r in the above equations,

and the summation is to be understood as being performed over all the configura-

tions r. The transition from (31) to (32) is made using the definition of ensemble

average in (10), and h:::i0 represents an ensemble average performed in state 0. If

we further define �V D V1 � V0, then (32) can be simplified to

�A D �ˇ�1ln hexp.�ˇ�V /i0: (33)

In essence, the above equation can be thought of as calculating the exponential of

�V when the system is “frozen” at a particular configuration in state 0, and the

obtained exponentials are averaged over all configurations in state 0 to give �A.

Note that we can get an equivalent formula by using the ensemble average in state 1,

�A D ˇ�1ln hexp.ˇ �V /i1: (34)

The above two equations, which form the basis of the FEP approach, are often

referred to as the “forward” and “reverse” calculation, respectively. Combining

both forward and reverse calculations using the Benett acceptance ratio (BAR)

method [11] has been demonstrated to yield the most accurate result [106]. Since in

many MD programs, performing calculations in both directions can be done nearly

as efficiently as performing the calculation in a single direction, combining forward

and reverse FEP has been recommended as a standard practice [95].

6.4 Thermodynamic Integration

In the TI approach, a parameter � is used to describe the transition of the system

from state 0 to state 1. For instance, in an alchemical transformation where a ligand

is annihilated, �0 and �1 will correspond to the system with and without the ligand,

respectively. To calculate �A using TI, we start by differentiating (28),

dA

d�
D �

1

ˇ

1

ZNVT

@ZNVT

@�
: (35)
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If � is a parameter in the potential energy function, we have

dA

d�
D

P
exp.�ˇV / @V

@�
P

exp.�ˇV /
D

�
@V

@�

�

�

: (36)

The free energy difference between state 0 and state 1 is obtained by integrating

dA=d� in the range of �0 to �1.

�A D

Z �1

�0

�
@V

@�

�

�

: (37)

The derivative of the potential energy V with respect to � can be performed

analytically in many cases, and the calculation of dA=d� amounts to obtain the

numerical value of dV=d� for each configuration sampled at a particular �, and then

calculate the ensemble average hdV=d�i� by summing over all the configurations.

The integration in (37) is performed numerically, often using either the trapezoidal

or the Simpson’s rule. The performance of these two integration methods has been

compared in a recent study, which shows that the Simpson’s rule tends to generate

smaller systemic errors in the results [60].

An important development that significantly improves the accuracy of alchemical

transformation calculations is the soft-core potential [12, 126], which can be used

in combination with both the TI and FEP methods. Such a potential effectively

removes the singularities in the potential energy function when the distance between

the ligand and surrounding atoms approaches zero during the creation or annihila-

tion process. Since the numerical accuracy of the result is significantly improved,

the soft-core potential should always be used in alchemical transformations.

6.5 Umbrella Sampling and Other Techniques

Apart from FEP and TI, another commonly used free energy calculation method is

the umbrella sampling (US) approach. This method divides the transition from �0
to �1 into multiple windows, and uses a biasing potential to restrain the system at a

particular � in each window. The probability distribution along � in each window is

collected as a histogram, which is combined to give the complete free energy profile

using the weighted histogram analysis method (WHAM) [74, 97].

The US method is often used as a benchmark to evaluate the performance of

new free energy calculation techniques. Recently, several such techniques have

been developed, including metadynamics [75] and adaptive biasing force (ABF)

method [30, 31, 53]. Both of them have been applied to biomolecular systems

and demonstrated superior performance than the US method. Another recent

development that significantly improves the efficiency of protein-ligand binding

affinity calculation is the enveloping distribution sampling (EDS) method [26, 91],
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which allows the simultaneous evaluation of the binding free energy for multiple

ligands. Interested readers can find more discussions of these methods in the

corresponding research articles.

So far, all the methods discussed here are based on equilibrium MD simulations.

With recent theory advancement in nonequilibrium statistical mechanics [28,59], we

can also calculate free energy changes using nonequilibrium simulations. This type

of method is based on the Jarzynski equality [58,59], and can be combined with the

steered molecular dynamics (SMD) simulation [57, 93] technique to produce free

energy profiles along a reaction coordinate.

7 Outlook

In this chapter, we have discussed the various theoretical aspects of MD and

provided examples of its recent applications on biomolecular systems. Compared

with the first MD simulation on a protein [87], which lasted about 9 ps, the

development of MD has come a long way. The method has made significant

contributions to our understanding of the behaviors of complex biomolecules.

Today, with the power of supercomputers and the progress of MD softwares, we

can readily perform simulations on millions of atoms for tens to hundreds of

nanoseconds. The recent launch of specialized machines [103,104] and the usage of

graphics processing units (GPUs) [108, 125] have initiated a new round of exciting

method advancement. With these new technologies, we can expect MD simulations

to make even more significant contributions to our understanding of biomolecular

systems in future.

Acknowledgments This work has been supported in part by the National Science Foundation, the
National Institutes of Health, Howard Hughes Medical Institute, Center for Theoretical Biological
Physics, the National Biomedical Computation Resource, and the NSF supercomputer centers.

References

1. Adcock, S.A., McCammon, J.A.: Molecular dynamics: survey of methods for simulating the
activity of proteins. Chem. Rev. 106, 1589–1615 (2006)

2. Agre, P.: The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13 (2006)
3. Alexov, E., Gunner, M.: Incorporating protein conformational flexibility into the calculation

of pH-dependent protein properties. Biophys. J. 72, 2075–2093 (1997)
4. Alexov, E., Gunner, M.: Calculated protein and proton motions coupled to electron transfer:

electron transfer from QA- to QB in bacterial photosynthetic reaction centers. Biochemistry
38, 8253–8270 (1999)

5. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press,
New York (1987)

6. Amaro, R., Baron, R., McCammon, J.: An improved relaxed complex scheme for receptor
flexibility in rational drug design. J. Comp.-Aided Mol. Design 22, 693–705 (2008)



Introduction to Molecular Dynamics: Theory and Applications in Biomolecular... 25

7. Amaro, R., Li, W.: Emerging ensemble-based methods in virtual screening 10, 3–13 (2010)
8. Amaro, R.E., Schnaufer, A., Interthal, H., Hol, W., Stuart, K.D., McCammon, J.A.: Discovery

of drug-like inhibitors of an essential RNA-editing ligase in trypanosoma brucei. Proc. Natl.
Acad. Sci. USA 105, 17,278–17,283 (2008)

9. Bas, D.C., Rogers, D.M., Jensen, J.H.: Very fast prediction and rationalization of pK(a) values
for protein-ligand complexes. Proteins: Struct. Func. Bioinf. 73, 765–783 (2008)

10. Bashford, D.: An object-oriented programming suite for electrostatic effects in biological
molecules: an experience report on the MEAD project. ISCOPE97. Proccedings 1343,
233–240 (1997)

11. Bennett, C.H.: Efficient estimation of free energy differences from Monte Carlo data. J. Comp.
Phys. 22, 245–268 (1976)

12. Beutler, T., Mark, A., van Schaik, R., Gerber, P., van Gunsteren, W.: Avoiding singularities
and numerical instabilities in free energy calculations based on molecular simulations. Chem.
Phys. Lett. 222, 529–539 (1994)

13. Beveridge, D.L., DiCapua, F.M.: Free energy via molecular simulation: Applications to
chemical and biological systems. Annu. Rev. Biophys. Biophys. Chem. 18, 431–492 (1989)

14. Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregerson, B.A., Klepeis, J.L.,
Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable
algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the
ACM/IEEE SC06 Conference. ACM (2006)

15. Brooks, B.R., III, C.L.B., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y.,
Archontis, G., Bartels, C., Caflisch, S.B.A., Caves, L., Cui, Q., Dinner, A.R., Feig, M.,
Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V.,

Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock,
H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: The biomolecular simulation
program. J. Comp. Chem. 30, 1545–1615 (2009)

16. Brooks, C.L., Karplus, M., Pettit, B.M.: Proteins: A Theoretical Perspective of Dynamics,
Structure and Thermodynamics. Wiley, New York (1989)

17. Carlson, H.A.: Protein flexibility and drug design: how to hit a moving target. Curr. Opin.
Chem. Biol. 6, 447 (2002)

18. Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R.,
Crowley, M., Walker, R.C., Zhang, W., Merz, K.M., Wang, B., Hayik, S., Roitberg, A., Seabra,
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The Many Faces of Structure-Based Potentials:
From Protein Folding Landscapes to Structural
Characterization of Complex Biomolecules

Jeffrey K. Noel and José N. Onuchic

1 Introduction

Structural biology techniques, such as nuclear magnetic resonance (NMR), x-ray

crystallography, and cryogenic electron microscopy (cryo-EM), have provided ex-

traordinary insights into the details of the functional configurations of biomolecular

systems. Recent advances in x-ray crystallography and cryo-EM have allowed

for structural characterization of large molecular machines such as the ribosome,

proteasome, and spliceosome. This deluge of structural data has been complemented

by experimental techniques capable of probing dynamic information, such as

Förster resonance energy transfer (FRET) and stopped flow spectrometry. While

these experimental studies have provided tremendous insights into the dynamics of

biomolecular systems, it is often difficult to combine the low resolution dynamical

data with the high-resolution structural data into a consistent picture. Computer

simulation of these biomolecular systems bridges static structural data with dynamic

experiments at atomic resolution (Fig. 1).

Since the first molecular dynamics simulations of bovine pancreatic trypsin

inhibitor 35 years ago [38], molecular simulations have become indispensable tools

in biophysics. Molecular dynamics simulations of biomolecules treat the molecule

as a collection of classical particles interacting through a potential energy function

called a force field [1]. The molecule’s dynamics are propagated through time by
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Fig. 1 Structure-based models bridge static high-resolution structural data with lower resolution
dynamical and structural data at the all-atom level. Many experimental inputs can be combined to
form a coherent picture of a biological process

numerical integration of Hamilton’s equations resulting in a molecular trajectory.

This trajectory can be used to gain a kinetic and thermodynamic understanding of

the system. Simulations can be performed using empirically parameterized force

fields that include explicit solvent. In principle, the chemistry-based representation

should reproduce the structure and dynamics of a biomolecular system without

requiring input from experimental structural data. In practice, making contact with

experimental observables poses harsh challenges for these force fields both due to

the level of accuracy required and the long time scales needed [54, 66]. In order

to integrate experimental data in a consistent manner, biomolecular models with

robust potential energy functions able to access long time scales are necessary. The

energy landscape theory of protein folding provides the theoretical underpinning

for structure-based models (SBM) [47]. These models impose a native bias by

explicitly including structural data in the Hamiltonian. The structural data is

derived from experimental techniques that are able to discern a representative

structure of a molecule in a deep free energy basin, e.g., a protein native state.

The native bias dramatically reduces the complexity of the resulting force field.

These simplifications allow for a clear physical understanding of a system and

open up biologically relevant timescales while retaining the essential dynamical

features. SBM have been validated by their application to protein dynamics,

such as folding, stretching, oligomerization, and functional transitions. Multiple

experimental inputs can be naturally included, e.g., by extending the single native

bias to include information from multiple conformers to explore conformational

transitions. Fueled by the introduction of an all-atom (AA) SBM, prospective new

applications for SBM are being explored in areas such as RNA folding, molecular

machines, and prediction of protein–protein interactions. This chapter will present

the basics of SBM and explain how a publicly available SBM, SMOG (Structure-

based MOdels in GROMACS http://smog.ucsd.edu), has been used to explore the

dynamics of systems as disparate as folding knots in proteins and accommodation

in the ribosome.
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2 Structure-Based Models

2.1 Foundations in Energy Landscape Theory

The inclusion of a native bias, the hallmark of a SBM, has a rigorous footing

in the energy landscape theory of protein folding [8, 33, 47]. Protein folding is

a self-organizing process whereby a protein transitions from a highly disordered

ensemble (unfolded) to a structured ensemble (folded/native state). The relatively

short timescale with which the folded state is reached implies that any competing

nonnative states (traps) are shallow compared with the overall energy bias to folding.

If these traps are sufficiently shallow, the nonnative interactions can be grouped

into an effective diffusion [9, 17]. In addition, the uniqueness of the folded state

implies that it corresponds to the global minimum in the free-energy landscape.

The principle of minimal frustration states that evolution has achieved this folding

robustness by selecting for sequences where the interactions present in the native

structure are mutually supportive, i.e., attractive. The interactions are minimally

frustrated or, in other words, maximally consistent. This organization leads to the

protein folding on a funneled landscape where the energy on average decreases as

it forms structures similar to the native structure.

Minimal frustration and the funneled energy landscape give the theoretical foun-

dation for SBMs. A structure-based potential dramatically reduces the biomolecular

Hamiltonian’s complexity by stabilizing interactions that are spatially close in the

native configuration. While real protein funnels have residual energetic frustration

caused by nonnative interactions, the SBMs discussed here are “perfectly funneled”

models, since in the force field all interactions stabilize the native structure.

Nonnative interactions are strictly repulsive. In such a framework, any barriers to

folding must be free energy barriers arising from the various ways energy and

entropy compensate during folding. The ability of perfectly funneled models to

reproduce experimental folding trends and mechanisms shows that geometrical

effects like chain connectivity have an enormous influence on protein dynamics

[5,11,47]. Since the precise energetics are secondary to the geometry of the protein

molecule, this idea leads to the commonly held notion that geometry determines the

folding mechanism.

Even though SBMs were formulated in the context of protein folding, their

applications are widespread. Folding is only a first step in the lives of proteins which

go on to perform a myriad of functions in the cell. The funneled energy landscape

upon which the protein folds is the same landscape that controls functional protein

motions. Multiple functional conformational states captured by experiment can be

naturally included by extending the funneled landscape to have multiple basins.

Structured RNAs must also have evolutionary pressure to reduce the level of

frustration or they would encounter their own “Levinthal’s paradox.” The robust

dynamics of large molecular complexes such as the ribosome and proteasome must



34 J.K. Noel and J.N. Onuchic

depend even less on the precise atomic energetic details and more on emergent

properties controlled by the geometry of their constituents. While all these systems

will have residual levels of frustration, the use of SBMs as a baseline is crucial to

partition the global properties, those largely dependent on structure, from the details

dependent on specific energetics.

2.2 Structure-Based Model as a Baseline

Simplified models have a long history of elucidating the organizing principles

governing complex systems. A key question is how sensitive a model is to its

underlying parameters. Determining the correct value for a parameter is often

equally important as understanding the sensitivity to perturbations in that parameter.

Since molecular geometry has a central influence on the motions leading to

molecular function, simplified models based on low free energy structures are a

natural starting point. The simplest models look at the normal modes of an energy

landscape created by replacing all short range interactions in a native structure by

Hookean springs [61]. These models can capture relevant rigid body motions. SBMs

provide an important generalization by allowing the possibility for “cracking,”

[24, 25, 40, 68] allowing interactions to break and reform, since the springs are

replaced by short range potentials. Thus, SBM can capture motion on all scales

from native basin dynamics to unfolding.

The straightforward formulation of a structure-based potential allows for sen-

sitivity analysis of the force field parameters [69] and their simplicity makes

them extremely fast to compute. The force field is readily extensible allowing the

introduction of complicated effects to be explored parametrically. For example,

the effects of electrostatics can be explored by perturbative addition of Coulomb

interactions [4,14,35], or the effects of solvent probed by the perturbative addition of

desolvation barriers [12]. A crucial question in the protein folding field has been how

proteins manage to achieve such smooth energy landscapes, or equivalently, why do

AA empirical force fields and structure prediction schemes have difficulty achieving

the level of specificity seen in proteins? Using structure-based potentials with

AA geometries, we can begin to address this question. These models completely

partition energetic effects from geometric effects, and through careful investigation,

may discern to what extent energetics contribute to the apparent native specificity

in protein structure, folding, and function. While processes like the formation

of nonnative intermediates during folding [18, 53, 60] and protein misfolding are

clearly cases that perfectly funneled SBM will be unable to fully describe, through

adding complexity in a piecemeal fashion to a robust baseline model, a more

complete understanding of the interplay between geometry and energy in even these

complicated systems will result.
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3 Implementation of Structure-Based Models

SBMs have a long history in the protein folding field. The folding dynamics of

minimally frustrated sequences were first tested in lattice models. Bryngelson et al.

[10] and Socci et al. [56] investigated a minimally frustrated lattice model with three

types of beads. They found that the dynamics could be well described by diffusion

along a small number of collective coordinates on an effective free energy surface

defined by those coordinates. As the structural correspondence between cubic

lattices and actual proteins is low, Nymeyer et al. implemented an off-lattice, coarse-

grained model of a protein-like structure. They compared the folding dynamics of

an energetically frustrated [62] versus a completely unfrustrated ˇ-barrel [45]. They

showed that the completely unfrustrated model, effectively a SBM, exhibited the

characteristics of a good folder, specifically, having exponential folding kinetics on a

funnel-shaped landscape that is robust to reasonable perturbations. Following these

successes, Clementi et al. [15] introduced the popular “C˛ model,” which also had a

coarse-grained representation of the protein. This model reproduced the transition-

state ensembles (TSE) of several small two- and three-state proteins. The C˛ model

has since been adopted by several investigators to explore myriad topics in protein

folding (see these references for some highlights [2, 11, 12, 22, 26, 28, 29, 52, 59]).

The off-lattice geometry allowed clear representation of protein structures, making

comparisons to experimentally determined dynamics possible. In order to capture

geometric effects like side chain packing, Whitford et al. introduced an AA SBM

[69]. This model is being used to represent proteins [69], RNA/DNA [64] and

ligands in a consistent fashion for both dynamics [42, 43, 66] and molecular

modeling [27, 50, 51]. These two models, AA and C˛ , are currently in wide use

and are available on the SMOG web server [44].

Before the two available models are described in detail, we review the key

components common to any SBM. The defining characteristic is that the parameters

are determined from a native structure. The potential V is composed of three

contributions,

V D V Bonded C V Repulsive

„ ƒ‚ …

Maintain geometry

C V Attractive
„ ƒ‚ …

Tertiary structure

: (1)

V Bonded includes interactions that maintain the covalently bonded structure and

torsional angles. This term also ensures correct chirality. V Repulsive contains spher-

ically symmetric hard wall repulsions that enforce excluded volume and prevent

chain crossings. Collectively, these two terms maintain the protein’s structure

and allowed conformational diversity. V Attractive contains short range, attractive

interactions between atoms (or residues if coarse graining) close in the native

state. These interactions are the core of the SBM and are discussed in the next

section.
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Fig. 2 Native contact map of ribosomal protein S6 (PDB code: 1RIS). Structure of the ˛=ˇ protein
S6 is shown with the N-terminus (residue 1) colored green. Left panel shows the proximity of the
nearest atomic contact for each residue pair up to a maximum of 1.5 nm. Right panel compares two
coarse-grained native contact maps. A pair of residues are considered a native contact if they share
a native atom–atom contact. Top triangle: 6Å cutoff. Bottom triangle: a 6Å cutoff with geometric
occlusion using Shadow [44]. The contacts which are excluded by Shadow are colored orange

3.1 Native Contact Map

Atoms that are spatially near in the native state are considered contacts and together

the set of all contacts composes a native contact map (Fig. 2). A contact map is

a binary symmetric matrix that encodes which atom pairs ij are given attractive

interactions in the SBM potential. In the context of a SBM, the native contact map

should approximate the distribution of stabilizing enthalpy in the native state that is

provided by short range interactions like van der Waals forces, hydrogen bonding,

and salt bridges. Any long range interactions or nonlocal effects are taken into

account in a mean field way through the native bias. For example, the hydrophobic

effect is encoded by the density of native contacts being larger on the interior of the

protein than on the surface.

Methods for constructing contact maps are based on the heavy atom distances

in the native structure. There are three widely used techniques: heavy atom cutoffs

[16], van der Waals radii overlaps [15, 55, 58], and geometric occlusions [44, 71].

Heavy atom cutoff maps define a cutoff distanceRC, typically 4–6.5Å, and consider

all heavy atoms within RC of each other in contact. van der Waals radii cutoff maps

increase the radii of all the heavy atoms by either a multiplicative constant (�1:25)

or an additive constant (�1:4Å). Any atoms that then overlap are considered to be

in contact. The rationale for the multiplicative constant comes from overlapping

electron clouds, or “soft spheres.” The additive constant represents the size of one

water molecule. Half the diameter of water is added to each atomic radius, and

if atoms then overlap it means that a water cannot be placed between them. The

set of atom pairs excluding water from each other are presumed to interact, and thus

considered contacts (the software package CSU [55] uses this approach). Geometric

occlusion maps take the output of a heavy atom cutoff contact map, RC & 6Å, and

then remove any contacts that are geometrically obstructed. RC > 4:5Å introduces
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many unphysical or “occluded” contacts where atoms are interacting through an

intervening atom. Since these interactions are mostly induced dipole interactions,

electron screening effects should dampen the occluded interactions. van der Waals

radii overlaps and geometric occlusions both provide the short range, first layer of

atomic contacts. Geometric occlusion maps add longer range water- or cofactor-

mediated contacts up to the cutoff distance. The advantage of geometric occlusion

is that atoms separated by voids, or those coordinated by water and metals not

explicitly included in a protein simulation, can be accounted for without introducing

spurious occluded contacts.

van der Waals radii overlaps and geometric occlusions provide contact maps

that behave similarly in protein-folding simulations. Simulations with these maps

consistently predict cooperative, protein-like transitions for globular proteins. They

also reproduce thermodynamic folding intermediates for proteins with known inter-

mediates [15]. In the authors’ experience, heavy atom cutoff maps are not robust

in protein-folding simulations. Short-range cutoffs miss longer range contacts,

leaving the contact map sensitive to the precise packing of the native state, and

thus overweight regions of the contact map. This reduces the cooperativity of the

transition, leading to spurious thermodynamic intermediates. Longer cutoffs reduce

the sensitivity to packing by adding larger numbers of contacts, but this introduces

many unphysical contacts where atoms are interacting through an intervening atom.

This overabundance of contacts, by reducing the relative strength of each individual

contact, also tends to decrease cooperativity. SMOG uses a geometric occlusion

contact map called Shadow [44] for proteins. On the SMOG server, the default for

RNA/DNA systems is a 4Å heavy atom cutoff, but there are indications that Shadow

is also sensible for RNA folding.

Single bead per residue coarse-grained contact maps are generally derived from

the corresponding atomic structure. Coarse-grained contact maps could conceivably

be generated from the coarse-grained structure using C˛–C˛ distance cutoffs

(generally 7–12Å). Since the coarse-grained structure ignores side chain packing,

this metric poorly predicts the enthalpic contributions to the native state [39]. For

the C˛ model, SMOG considers two residues in contact if they share at least one

atomic contact.

3.2 SBM Potential

The SMOG structure-based forcefield is available in two grainings, a coarse-grained

(C˛) model [15] and AA model [64, 69].

3.2.1 C˛ Model

The C˛ model coarse grains the protein as single bead of unit mass per residue

located at the position of the ˛-carbon. Ex0 denotes the coordinates (usually obtained
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from the Protein Data Bank http://www.rcsb.org) of the native state and any

subscript 0 signifies a value taken from the native state. The potential is given by

VC˛.Ex; Ex0/ D
X

bonds

�r .r � r0/
2 C

X

angles

�� .� � �0/
2 C

X

backbone

�DFD.� � �0/

C
X

contacts

�CC.rij ; r
ij
0 / C

X

non�contacts

�NC

�
�NC

rij

�12

; (2)

where the dihedral potential FD is,

FD.�/ D Œ1 � cos.�/� C
1

2
Œ1 � cos.3�/�: (3)

The coordinates Ex describe a configuration of the ˛-carbons, with the bond lengths

to nearest neighbors r , three body angles � , four body dihedrals �, and distance

between atoms i and j given by rij . C denotes the contact potentials given to

the native contacts (see Sect. 3.2.3). Protein contacts that are separated by less

than 3 residues are neglected. Excluded volume is maintained by a hard wall

interaction giving the residues an apparent radius of �NC D 4Å. The native bias is

provided by using the parameters from the native state Ex0. Setting the energy scale

� � kBT � D 1, the coefficients are given the homogeneous values: �r D 100�,

�� D 40�, �D D �C D �NC D �.

3.2.2 All-Atom Model

The AA potential is quite similar to the C˛ potential, although representing the AA

geometry requires some additional terms. In the AA model, all heavy (nonhydrogen)

atoms are explicitly represented as beads of unit mass, so each interaction is now

between atoms as opposed to residues. Bonds, angles, and dihedrals therefore have

their traditional chemical meanings. In each residue, there is an additional backbone

dihedral and, except for glycine, many side chain dihedrals. Improper dihedrals

maintain backbone chirality and, when necessary, side chain planarity. The AA

potential VAA is

VAA.Ex; Ex0/ D
X

bonds

�r .r � r0/
2 C

X

angles

�� .� � �0/
2 C
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: (4)
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As in the C˛ model, the coefficients are given homogeneous values: �r D 100�,

�� D 20�, �� D 40�, �NC D 0:01�, and �NC D 2:5Å. The effective repulsive size

for the atoms becomes �eff D .0:01/1=12�NC � 1:7Å. Again, protein contacts that

are separated by less than 3 residues are neglected. A technical issue is normalizing

the dihedral energy around each bond. When assigning dihedral strengths, we first

group dihedral angles that share the middle two atoms. For example, in a protein

backbone, one can define up to four dihedral angles that possess the same C�C˛

covalent bond as the central bond. Each dihedral in the group is scaled by 1=ND,

where ND is the number of dihedral angles in the group.

Two ratios determine the distribution of dihedral and contact energies, contact to

dihedral ratio RC/D and backbone to side chain ratio RBB/SC. In proteins RBB/SC D
�BB=�SC D 2 [69] and in RNA/DNA RBB/SC D �BB=�SC D 1 [64]. The contacts and

dihedrals are scaled relative to their total contributions, RC/D D
P

�CP
�BBC

P
�SC

D 2.

Lastly, the total contact and dihedral energy is set equal to the number of atoms

�Natoms D
P

�C C
P

�BB C
P

�SC. This choice gives folding temperatures near 1

in reduced units ensuring a consistent parameterization.

Notice that every term is based on the native structure except the noncontact

excluded volume term. In the C˛ model, all the residues have a homogeneous shape,

but in the AA model each residue has its unique geometry explicitly represented.

This gives the AA model structure independent sequence information that adds

heterogeneity to the model. This heterogeneity adds geometric frustration to the

model, since interactions can only be satisfied if the side chains are correctly

oriented [43]. A question of current interest is whether this sequence-dependent

information adds constraints to the folding dynamics, allowing the native bias to be

relaxed [3, 69].

3.2.3 Contact Potential

All of the pair interactions defined in the native contact map interact through a short

range, attractive potential, denoted in the SBM potential by C.rij ; r
ij
0 /. The contact

potential has a minimum at r
ij

0 , the distance between the pair in the native state.

Traditionally, a contact is defined through a Lennard–Jones (LJ) type potential, since

the LJ shape is readily available in molecular dynamics packages. In the C˛ model

a “10–12” LJ potential is used for contacts with the minimum set at the separation

between the C˛ pair in the native state r
ij
0 ,

CCA.rij ; r
ij
0 / D 5

 
r

ij
0

rij

!12

� 6

 
r

ij
0

rij

!10

; (5)

and in the AA model a “6–12” LJ potential with the minimum set at the separation

between a contacting atomic pair in the native state,

CAA.rij ; r
ij
0 / D

 
r

ij
0

rij

!12

� 2

 
r

ij
0

rij

!6

: (6)
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Different LJ potentials are used because the native contact distances r
ij
0 can be much

longer in the C˛ model. The contacts are coarse-grained to be between the C˛ atoms,

which can be as distant as 14Å. The r�6 is much broader than the r�10 and can lead

to unphysical structures in unfolded states as native pairs interact at long distances.

The LJ potentials are well tested and work for many systems, but they have

limitations for certain applications because the LJ potential has an excluded volume

that moves with the minimum. The effective size of two atoms in contact grows

with r
ij
0 . This additional excluded volume has little effect on the entropy of unfolded

conformations since mostly noncontacts are interacting, but has a large effect on the

entropy of the folded ensemble where most contacts are formed. In cases where the

user wants to control the excluded volume term [32,43], an attractive Gaussian well

coupled with a fixed hard wall-excluded volume is used,

CG.rij ; r
ij
0 / D

 
1C

�
�NC

rij

�12
!�

1 C G.rij ; r
ij
0 /
�

� 1; (7)

where

G.rij ; r
ij
0 / D � exp

h
�.rij � r

ij
0 /2=.2�2/

i
: (8)

This unusual construction anchors the depth of the minimum at -1. The width of

the Gaussian well � is determined to model the variable width of the LJ potential.

CAA.1:2r
ij
0 ; r

ij
0 / � �1=2 so � is defined such that G.1:2r

ij
0 ; r

ij
0 / D �1=2 giving

�2 D .r
ij
0 /2=.50 ln 2/. If �NC is significantly smaller than r

ij
0 , (7) reduces to the

more pedagogical form,

CG.rij ; r
ij
0 / !

�
�NC

rij

�12

C G.rij ; r
ij
0 / for �NC � r

ij
0 : (9)

The flexibility of the Gaussian approach also allows for multiple basin contact

potentials for energy landscapes with multiple minima (see Sect. 4.3). Using

multiple LJ potentials with different locations of the minima is not a viable option

because the longest LJ potential would occlude the others with its excluded volume

term. A multibasin Gaussian potential CMB for minima taken from two structures

Ex˛ and Exˇ is given by [32],

CMB.rij ; r ij
˛ ; r

ij

ˇ / D

 
1 C

�
�NC

rij

�12
!
�
1 C G.rij ; r ij

˛ /
� �

1 C G.rij ; r
ij

ˇ /
�

� 1:

(10)

Analogous to (7), this construction fixes the depth of both minima at �1.

All of the various potential shapes are presented in Fig. 3. It should be noted that

the folding temperature (defined in Sect. 4.1.1) is typically 0.2–0.3 reduced units

higher for the Gaussian potential as compared to LJ because the extra excluded

volume in the LJ potential destabilizes the native state.
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Fig. 3 Comparison of
Lennard–Jones and Gaussian
contact potentials. Black

curves show LJ contact
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3.3 Molecular Dynamics with SBM

Molecular dynamics uses Newtonian mechanics to evolve the motions of atoms in

time. The interactions defined in the SBM potential define the various forces on the

atoms since force is given by the negative gradient of the potential energy. The sys-

tem is evolved through time in discrete steps. The NVT canonical ensemble is

maintained using a thermostat. Thermostats including a drag term, such as stochastic

dynamics or Langevin dynamics are used for implicit solvent systems like SBMs.

Velocity-rescaling thermostats can introduce heating artifacts when not coupled to

an explicit solvent [41]. Langevin dynamics has been used to model the viscosity

of a solvent [25, 57]. The output of a molecular dynamics simulation is a trajectory,

a time-ordered series of snapshots of the atomic coordinates. The trajectory can be

analyzed as a function of time to uncover kinetic properties or, by application of the

ergodic theorem, as an ensemble to compute thermodynamic properties.

A molecular dynamics trajectory contains the coordinates of all the atoms in the

system, a massive amount of information. Therefore, the trajectory is reduced down

to one or a few reaction coordinates that monitor the progress of the dynamics under

investigation. For protein folding, a useful reaction coordinate would differentiate

between the unfolded ensemble, folding intermediates, and the folded ensemble. A

reaction coordinate for studying a conformational transition would differentiate the

various conformers. A natural reaction coordinate for SBMs is Q, the fraction of

native contacts formed. A contact between the native pair ij is considered formed

if it satisfies rij < r
ij
0 , where  � 1:2–1.4. In protein folding, low Q would

correspond to the unfolded ensemble, medium Q would contain the transition

state ensemble (TSE) and any intermediates, and high Q the folded ensemble. To

investigate a conformational transition between two structures A and B, monitoring

switching between high QA and high QB would indicate transitions. Other possible

reaction coordinates are root mean square deviation from a reference structure or

radius of gyration. An exciting possibility is to monitor the position of an explicitly

represented FRET probe in order to compare with experimental data [66].



42 J.K. Noel and J.N. Onuchic

After the choice of reaction coordinate is made, the value of the coordinate

during the trajectory (or several concatenated trajectories) can be histogrammed to

obtain a potential of mean force (PMF) along the reaction coordinate. If the chosen

coordinate adequately separates two basins, it can be used to identify the transition

state at the peak on the free energy landscape. Q has been shown to be a suitable

coordinate for protein transitions and thus the peaks in F.Q/ can be identified as

TSEs [13] (see Fig. 5). Great care must be exercised when making quantitative

predictions of thermodynamic and kinetic quantities from simplified models. The

kinetics of the system are not simply determined by the free energy landscape, but

are highly dependent on diffusion rates. Diffusion rates vary for different molecular

systems and must be calibrated separately. For discussion of diffusion in SBM see

[30,46,66]. Secondly, the precise values of free energy barriers and thermal stability

are a fine balance and depend on the details of the SBM potential. This said, given

a constant parameterization, kinetic and thermodynamic quantities tend to scale

in a consistent fashion. Fast-folding proteins will consistently have smaller free

energy barriers than slow-folding proteins [11, 69]. Some quantities are robust to

perturbations, in particular the TSE and other so-called geometrical features of the

energy landscape [32, 69].

3.4 SMOG: Automated Generation of SBM

Molecular dynamics simulations have benefited from years of research on computer

algorithms constructed with one goal in mind: speed. Molecular dynamics suites

like GROMACS [23], NAMD [49] and Desmond [7], package all the necessary

algorithms to run stable molecular dynamics and the ability to scale the calculations

to thousands of processors. These packages have made homegrown molecular

dynamics codes built to run SBMs obsolete. SMOG, Structure-based Models in

GROMACS, is a publicly available web server located at http://smog.ucsd.edu [44].

Any PDB structure consisting of standard amino acids, RNA, DNA, and common

ligands, can be uploaded to SMOG, which outputs the necessary coordinate,

topology, and parameter files to run a SBM in GROMACS. This provides the

flexibility necessary to implement efficient and highly scalable SBMs. SMOG in

conjunction with GROMACS version 4.5 scales easily to 128 processors when

simulating a ribosome, �150; 000 atoms. Protein-folding simulations of much

smaller systems scale to �100 atoms per core on a single motherboard.

3.5 Choosing a Graining: C˛ or All-Atom

The C˛ and AA model are both able to describe the properties of the molecular

scaffold’s geometry. When comparing the two models, C˛ and AA, the main

advantage of C˛ is its speed. Because the AA model has roughly eight times more
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atoms and has slower diffusion due to side chain interactions, the C˛ model runs

significantly faster than AA. This speed is important for studying processes with

large barriers, like folding and oligomerization. AA can narrow the speed gap with

parallelization, but not close it completely. Nonetheless, AA has been used to fold

small single domain proteins [69] and even proteins with complex topologies [43].

Many processes without large activation barriers, e.g., native basin dynamics, have

energy landscapes that are easily sampled, and thus the performance hit of AA is of

no consequence.

The explicit representation of atomic coordinates is advantageous, even for

simplified models like SBM. A clear benefit is acting as a bridge between minimalist

models and empirical force fields. Any conformations realized during a simulation

of an AA SBM can be compared with, and used as input for, empirical force

fields with an explicit solvent. Since the sterics are correct, any process that is

dominated by large-scale structural fluctuations should be well represented by an

AA SBM [42,66]. Figure 4 shows targeted molecular dynamics (TMD) simulations

of the tRNA accommodation process in the ribosome, a massive ribonucleoprotein

molecular machine (�2.4 MDa). The trajectories from explicit solvent simulations

overlay the AA SBM trajectories. On a smaller scale, the AA geometry opens

the door to studying side chain degrees of freedom during folding and binding
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simulations. Constricted conformations like polypeptide slipknots, found in coarse-

grained models, are shown to be sterically possible with the AA geometry [43].

Lastly, the AA geometry allows a clear way to add perturbative nonnative chemical

effects like hydrogen bonding [3] and partial charges.

4 Applications

SBMs are being applied to diverse problems, and in the remaining sections we

describe a representative sample of how perfectly funneled SBMs are currently in

use. In each case, the SBM can be constructed and implemented using SMOG and

GROMACS. In Sects. 4.1–4.3, molecular dynamics is used to describe a system

at thermodynamic equilibrium. In this case, it is necessary to adequately sample

configuration space until the quantities of interest have converged. Finally, in

Sect. 4.4 molecular dynamics is used to find deep energetic minima in perturbed

structure-based potentials for molecular modeling applications.

4.1 Folding

4.1.1 Protein Folding

The most-established application of SBM is to the study of protein folding.

Determining the TSE, the shape and size of free energy barriers, and the existence of

folding intermediates are all topics of interest. Figure 5 shows the result of AA SBM

folding simulations for two of the most thoroughly studied proteins, chymotrypsin

inhibitor-2 (CI2) and the SH3 domain. These two proteins are two-state folders,

meaning the protein only populates two basins spanned by a cooperative transition.

Figure 5a,d shows representative traces of Q versus time during constant tem-

perature molecular dynamics near folding temperature TF. TF is the temperature

such that the folding and unfolding basins are equally populated. Simulations are

performed at TF because it maximizes the sampling rate of the folding transition. TF

is determined by running simulations at high and low temperatures, and iteratively

converging on a temperature where both folding and unfolding is observed. Q is

defined as the fraction of native residue pairs with at least one atom–atom contact

within 1.2 times its native separation. Alternative definition of Q, such as the

fraction of atom–atom contacts formed, may shift the locations of basins in the

resulting free energy landscape, but will preserve the heights of any barriers.

Q traces from long molecular dynamics trajectories at various temperatures can

be combined using weighted histogram analysis (WHAM) [31], to obtain an optimal

density of states. The density of states can then be used to extrapolate F.Q/ at any

temperature (Fig. 5b, e). Always, care must be taken to ensure that the trajectories
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Fig. 5 All-atom structure-based simulations of two state-folding proteins CI2 (top) and SH3
domain (bottom). PDB codes: 1FMK, 1YPA. (a,d) The reaction coordinate Q plotted as a
function of time for a typical simulation near TF. Both proteins exhibit transitions between a
folded ensemble at Q � 0:8 and an unfolded ensemble at Q � 0:1. (b,e) Free energy F.Q/
for temperatures 0.98TF, TF, and 1.02TF calculated by weighted histogram analysis of long
constant temperature MD trajectories. A set of “long” trajectories typically contain 30 folded to
unfolded transitions. (c,f) Transition state ensemble (TSE) for the two proteins. Contact formation
probabilities are calculated by an unweighed average of all configurations 0:40 < Q < 0:45.
The upper triangle shows results from the C˛ model and the lower triangle shows the AA model.
Secondary structure is denoted below the contact maps as are the positions of the three hairpin turns
in SH3. CI2 has a diffuse TSE that resembles the native state. The contact probability is largely
predicted by sequence separation. SH3 has a more polarized TSE with contacts from the first ten
residues largely absent. For both proteins, the introduction of energetic and structural heterogeneity
through the AA geometry creates a more specific and less diffuse TSE. The simulations were
prepared using SMOG v1.0.6 [44] with default parameters

reflect equilibrium. One easy method is to chop all trajectories in half and verify

that F.Q/ and the TSE are the same for both halves. The TSE is the ensemble of

structures that compose the bottleneck to folding. CI2 and SH3 each have a single

TSE that connects the unfolded state to the folded state defined by the structure

populating the top ofF.Q/. Figure 5c,f shows the average contact maps of the struc-

tures with 0:4 < Q < 0:45. The contact formation probabilities can be connected

to ˆ-value analysis, an experimental technique that estimates the contribution of a

particular residue’s contacts to the TSE [19]. In simulation,ˆi is given by

ˆi D
P TSE
i � P U

i

P F
i � P U

i

; (11)

where Pi is the probability that residue i forms its contacts and U/F refers to the

unfolded/folded ensembles [36]. ˆi near 1 means that residue i is very native-like

in the TSE and a ˆi near 0 means that residue i is still unfolded in the TSE.
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Since the TSE is a simple average over structures, it can hold hidden complexity.

For some proteins, the TSE is composed of multiple routes through the TSE [6, 22].

Consider SH3; its TSE could be composed of two routes, a major route where

hairpin 2 and hairpin 3 form first and a minor route where hairpin 1 and hairpin 2

form first (Fig. 5f). Multiple routes can be identified by clustering the contact maps

of TSE structures using the number of shared contacts as a similarity measure [6].

These routes represent entropically viable routes through the TSE. Thus, two real

proteins that fold to the same structure may follow seemingly very different paths

due to minor energetic differences.

4.1.2 Multimeric Folding and Binding

Many important biological processes are regulated by the homo- or hetero-oligomers

that are formed when proteins bind [70]. A large survey of protein dimers showed

that the binding mechanisms found in experiments were reproduced by SBMs [36],

which gives strong evidence that protein binding is controlled by protein geometry.

The energy landscapes of these proteins exhibited a rich variety of folding routes

and binding mechanisms. The interplay of folding and binding can be explored in

SBMs by introducing interface contacts into the native contact map. The contact

map of crystallographic structures of protein dimers are analyzed in the same

way as for monomers, atoms spatially close between the protomers are considered

native contacts. Folding trajectories of protomers A and B will have three relevant

order parameters, QA, QB, and QAB. Note that when analyzing the TSE and

folding routes of homo-oligomeric proteins, clustering the TSE is crucial [6]. This

is because the structural symmetry is broken by the requirement of labeling the

protomers, i.e., protomer A folds then binds protomer B is the same route as B folds

then binds A.

Observing binding in simulations is complicated by the entropy loss of binding.

In order to observe binding events, the effective concentration of monomers is

often much higher than in vivo. The concentration of monomers is imposed either

by a linker between the monomers [36], periodic boundary conditions [64], or

an umbrella potential [6, 43, 52] (all available in GROMACS). The umbrella

potential would be implemented as a harmonic center of mass constraint, making

the simulated potential

Vdimer D VAA C k
�
rCM � rCM

0

�2
; (12)

where rCM is the distance between the centers of mass and rCM
0 is the distance

in the native state. k is calibrated to be as weak as possible while still observing

binding. Varying k can model varying protomer concentration. The stability of the

dimer versus the monomers can be controlled by scaling the strength of the interface

contacts.
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4.2 Native Basin Dynamics

Entropically driven motions accessible via thermal fluctuations are important

components of functional protein dynamics [20]. These motions are difficult or

impossible to intuit from rigid crystallographic structure analysis [42]. Analysis

of small-angle x-ray scattering (SAXS) on C-terminal Src Kinase (Csk) indicated

that Csk occupies extended conformations in solution, whereas the crystal structure

showed a compact arrangement of Csk’s SH2, SH3, and kinase domains [27].

Typically, a candidate structure for the protein structure is determined by fitting a

rigid body model to the SAXS data, but this presumes that Csk assumes a relatively

static structure in solution. In order to characterize the Csk solution structure,

constant temperature molecular dynamics simulations of the Csk native basin were

performed using the AA SBM. Theoretical scattering curves were computed from

the resulting native ensemble and compared with the experimental scattering data.

Jamros et al. [27] showed that in all cases, theoretical scattering curves generated

from mixed populations of Csk structures fit the empirical SAXS data better than

any rigid model. This suggests that Csk populates a broad ensemble of structures

in solution, adopting conformations not observed in the crystal structure. More

pertinently, an SBM is able to suggest a solution ensemble of structures for Csk

using only information from the crystal structure. This procedure, termed Safe-

SAXS, should be widely applicable to analyzing solution structures of biological

macromolecules.

4.3 Multiple Basin Models

When a protein is able to be crystallized in substantially different conformations,

it implies the energy landscape has multiple minima. This behavior can be seen in

systems with a high degree of structural symmetry. A dual basin-funneled landscape

solved the mystery of the Rop dimer, a dimer of two helix bundles that switched

from a parallel arrangement to an antiparallel arrangement upon optimization of the

hydrophobic core [21, 34, 52]. An SBM was used that combined the two crystal

structure contact maps into a single native contact map. Thermodynamic sampling

of the landscape showed that the parallel and antiparallel structures were of similar

stability, so small experimental perturbations could tip the balance between the

structures [52].

Combining multiple structures into a single landscape has also been used to study

conformational transitions in adenylate kinase (AKE) [26, 67, 68]. AKE has two

domains, LID and NMP, that must undergo large conformational changes during its

enzymatic function (Fig. 6). The conformational change is captured by two crystal

structures, one in the open state and the other in a closed state, with native contact

maps MO and MC, respectively. The contacts that are in both maps is given by
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Fig. 6 Modeling conformational transitions in adenylate kinase (AKE). (a) AKE contains two
domains, NMP and LID, that undergo >25Å motions between open (red) and closed (green)
states. These motions are coupled with ligand (shown as orange spheres) binding as it catalyzes
ATP+AMP�2ADP. The model is built using structures with PDB codes 1AKE and 4AKE. (b)
The relative occupation of the closed and open states can be tuned to experimental data by varying
the strength of the subset of contacts only existing in the closed state MC. MBB is scaled by 0.6
(red) to 1.2 (black) relative to the open contacts. (c) The subset of atomic contacts existing in both
statesMsame. The dotted lines designate a deviation of less than 0.5Å between states. Contacts that
have significant shifts between structures may impart strain on the protein and can be included with
double minima Gaussian potentials. (d) The subset of atomic contacts existing only in the closed
state. Black circles show contacts of atoms in the LID domain and red circles show contacts of
atoms in the NMP domain. See [68] for details

Msame D MO

T
MC and the complement of Msame are the contacts that are in

either map but not both Mdiff. Results from a SBM with native contact map Mdiff is

shown in Fig. 6b. The relative stabilities of the two states can be easily tuned in the

SBM. The distance between contacts that exist in both states (Fig. 6c) may change

between structures and can be included with double minima Gaussian potentials

(Sect. 3.2.3). How to handle multiple dihedral angle values is less obvious. Whitford

et al. [68] simply used the dihedrals from the open state, viewing the closed state

as an excitation of the open state. Similar methods have been used to look at

conformational changes in protein kinase A [24] and kinesin [25].
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4.4 Molecular Modeling

SBM are structurally robust, which makes them ideal candidates for molecular

modeling applications. During molecular dynamics the native bias maintains a

native-like configuration but all interactions are malleable. Under molecular dynam-

ics, a system populates the lowest free energy basins, and coupled with simulated

annealing can even search for the lowest potential energy minima [63]. Through the

introduction of external biasing potentials, AA SBMs built from high-resolution

structures can reveal candidate AA structures from low resolution experimental

data.

In a recent study of the ribosomal elongation cycle, Ratje et al. [50] used

multiparticle cryoelectron microscopy analysis to capture subpopulations of EF-G-

ribosome complexes at subnanometer resolution. While this resolution is not fine

enough to achieve atomic details, the known crystallographic structure can be used

to obtain atomic models of the microscopy data with a procedure termed MDFIT

[65]. MDFIT biases the AA SBM with an energetic term developed in Orzechowski

and Tama [48], which uses the correlation between the simulated and experimental

electron density. The overall potential function therefore becomes

Vmodel D VAA C Vmap D VAA CW
X

ijk

�sim
ijk�

exp
ijk ; (13)

where W is an overall weight and �sim
ijk and �

exp

ijk are the normalized electron

densities at voxel .i; j; k/ and VAA is the AA SBM potential. A molecular dynamics

simulation initialized at the crystallographic structure will distort to maximize the

overlap between the simulated structure and the experimental electron density. The

structure-based potential naturally maintains tertiary contacts present in the crystal

structure without the need for ad hoc restraints.

The electron density map works well as a global bias, but local biases can also be

introduced. Candidate structures for protein–protein complexes can be derived by

introducing interprotein contacts from bioinformatic analysis and minimizing the

resulting structure-based potential with molecular dynamics. Schug et al. [51] were

able to predict the structure of the Spo0B/Spo0F two-component signal transduction

(TCS) complex within 2.5Å of an existing crystal structure. TCS is ruled by

transient interactions, posing harsh challenges to obtain atomic resolution structures.

These transient interactions though have bioinformatic signatures, which provide

the external biasing potential needed for modeling. Short-range contact potentials

were introduced between correlated residues and the resulting potential

Vmodel D VAA C k.rCM/
2 C

X

fi;j g

CAA.rij ; r/; (14)
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where rCM is the distance between the proteins’ centers of mass, fi; j g denotes

the correlated residues, CAA is Eqn. 6, rij the distance between those residues’ C˛
atoms and r D 7 Å. A weak center of mass constraint, as with multimeric folding

(see Sect. 4.1.2), is a common method of encouraging two molecules to dock. The

resulting structure from the AA SBM simulations can be directly used as input to

an AA empirical force field for additional minimization.

5 Concluding Remarks

The principle of minimal frustration and the funneled landscape provide the theo-

retical framework for SBMs. We have presented numerous applications of SBMs,

including protein folding and oligomerization, structure–function relationships

in protein conformational transitions and structural modeling of protein–protein

and ribonucleoprotein complexes. These models are publicly available at SMOG

http://smog.ucsd.edu. Recent technical improvements in computer hardware for

molecular dynamics simulations should allow for a new level of collaboration

between simplified protein models and explicit solvent models. Protein folding

simulations on the millisecond timescale will enable quantitative characterization

of the roughness of the folding energy landscape [37, 54]. As experimentalists

continue pushing boundaries in the characterization of molecular machines at the

single molecule level, further theoretical investigation is needed to assess how the

interplay of global properties with specific energetic details shapes the dynamics

of these large macromolecular complexes [66]. We expect the importance of large-

scale structural fluctuations, largely controlled by geometry, to be a central theme in

the discussion of molecular machines in the years to come.
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Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with namd. J. Comput. Chem.
26(16), 1781–1802 (2005)

50. Ratje, A.H., Loerke, J., Mikolajka, A., Brünner, M., Hildebrand, P.W., Starosta, A.L.,
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Discrete Molecular Dynamics Simulation
of Biomolecules

Feng Ding and Nikolay V. Dokholyan

1 Introduction

Biological molecules are highly dynamic and coexist in multiple conformations in

solution [1]. Molecular motions are observed on a broad range of time and length

scales using spectroscopy and hydrogen–deuterium exchange experiments [2–5].

The internal motions and resulting conformational changes of these molecules play

an essential role in their function. Sampling the structural and dynamic properties

of biomolecules remains a challenge due to the large range of time and length scales

associated with molecular life. Molecular modeling, especially molecular dynamics

simulations of biomolecules and molecular complexes, has played a crucial role in

bridging time and length scale gaps and has been pivotal to our understanding of the

dynamic aspect of biomolecules [6].

Molecular dynamics (MD) is a computational simulation algorithm, where atoms

move according to the laws of classical mechanics. Energetic interactions between

atoms are modeled with empirical functions (a “force field”) of varying complex-

ities, usually composed of bonded terms representing chain connectivity (bonds,

angles, and dihedrals) and nonbonded terms representing van der Waals (VDW)

and electrostatic interactions. The dynamic trajectory of the molecular system

can be obtained by integrating the equations of motions over a small time step

.�1–2 fs/. Analysis of the trajectories from MD simulations can provide great detail

concerning the motions of individual particles as a function of time. Thus, these

trajectories can be used to address specific questions about properties of a model

system that are often inaccessible to experiments. For many aspects of biomolecular
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function, it is exactly these details that are of the highest interest and utility. MD

simulations allow for the generation of experimentally testable hypotheses, and

experiments play an essential role in validating simulation methodology.

The first MD simulation of a fluid system was reported by Alder and Wainwright

in 1957 [7]. In a hard sphere fluid system, the authors found evidence of a

solid–fluid phase transition that had not been observed in previous Monte Carlo

simulations. The subject of hard sphere simulations falls in the general category

of discrete potential MD (DMD), which is also called event-driven molecular

dynamics, discontinuous molecular dynamics, or discrete molecular dynamics.

The DMD methodology is continuously under development for hard-sphere and

polymer systems [8–15], and has recently seen an increase in applications for

studying biomolecules [16–22]. The development of continuous potentials for MD

simulations has facilitated the inclusion of detailed aspects of atomic interactions

[23, 24], which is the most common form of MD in current practice. Since the

publication of the first MD simulation of bovine pancreatic trypsin inhibitor (BPTI)

in 1977 [25], the application of MD simulations to study the structure, dynamics,

and function of biomolecules has been increasing steadily. However, the time scales

currently accessible in MD simulations are typically 10–100 ns, which restrict

their application to many biological processes with large time and length scales

(e.g., protein folding occurs in milliseconds to seconds). Even utilizing worldwide

computing resources [26] or specialized high-performance computers dedicated

to MD simulations (such as Anton [27, 28]), the time scale reached by MD is

still in the range of microseconds. Conversely, with the recent development of

DMD for biological systems, including the DMD force field [21], all-atom protein

models [29–31], and hydrogen bond modeling [18], DMD simulations of realistic

biomolecular systems can reach microsecond time scales on personal computers.

All-atom DMD simulations have been applied to study protein folding [21, 30],

protein design [32, 33], protein structure optimization [34], and post-translational

modification of proteins [35]. In this chapter, we focus on DMD simulations of

biomolecules. We briefly discuss the DMD algorithm and recent optimization

approaches, important developments of DMD methodology for biomolecules, and

several applications of all-atom DMD for biomolecules.

2 Discrete Molecular Dynamics

2.1 Algorithm

DMD simulations are based on pairwise interaction potentials that are discontinuous

functions of the interatomic distance, r (Fig. 1). We assign for each atom a specific

type—A, B, C, : : :—that determines its interaction with other atoms. The interaction

potential between two atoms i (type A) and j (type B) is characterized by distances

rAB
min < rAB

1 < rAB
2::: < rAB

k::: < rAB
max, where rAB

min corresponds to the
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Fig. 1 A schematic diagram
of DMD potentials.
(a) Interaction between
nonbonded atom pairs. Rmin

corresponds to the hard-core
distance, Rmax corresponds to
the interaction range.
(b) Interaction between
bonded atoms. In both cases,
gray dashed lines correspond
to the continuous potential in
traditional MD

hardcore collision distance and rAB
max corresponds to the maximal interaction range

between the two atoms. If rAB
k < rij < rAB

kC1, the pairwise potential energy

is assigned as Uij D U AB
k . If rij < rAB

min; Uij D 1 so that the two atoms

do not come closer than the hard core distance; and if rij > rAB
max; Uij D 0

such that two atoms will not interact with each other. If atoms i and j are linked

by a bond, the potential energy Uij D 1 when rij > rAB
max. As the result, the

two atoms will not escape from each other beyond rAB
max, mimicking the bond

(Fig. 1b). In DMD simulations, each atom moves with a constant velocity until

its distance to another neighboring atom becomes equal to a potential step rAB
k ,

where the potential energy is not continuous. At this moment in time their velocities

change instantaneously in accordance with the laws of energy, momentum, and

angular momentum conservation. When the kinetic energy of the particles is not

sufficient to overcome the potential barrier �AB
k D U AB

k�1 � U AB
k (only when

the potential change is positive), the atoms undergo a hardcore reflection with no

change in potential energy. Each of these events is termed as a collision. At each

collision, positions and velocities are updated only for the two colliding atoms,

and potential collisions with their neighboring atoms are recomputed. By iterating

these calculations, the trajectory of the system is computed as a set of consecutive

collision events.
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a

b

Fig. 2 Grid approach to
facilitate the search of
neighboring atoms. (a) The
traditional approach to divide
the simulation box into
smallest cells, with cell
dimension larger than the
maximum interaction range.
Only the atoms in the
neighboring 27 cells (in blue)
are counted as the
neighboring atoms of the
atom in red. (b) The new
approach to further divide
each cell into a finer grid. By
dividing each dimension of
the cell by three, the number
of neighboring atoms can be
greatly reduced (dark gray

spheres)

In order to efficiently simulate collisions, Rapaport [8] proposed to divide the

simulation box into subcells, with the dimension of the cell assigned as the largest

interaction range of all the atom pairs and wall-crossing events treated as collisions.

As the result, for each atom i , only the collisions between atom i and the atoms

in the neighboring 33 D 27 cells are required to be computed for predicting the

next collisions of atom i (Fig. 2a). Assuming the average number of atoms in each

cell is Ng , the average number of possible collisions to be evaluated for each atom

is 27Ng. To facilitate the evaluation of all possible collisions and prediction of

the next collisions, Rapaport [9] proposed a priority tree containing all possible

collisions between neighboring atoms .�27NgN/, where N is the total number of

atoms. The priority tree is sorted according to the collision time with computational

complexity O.ln.27NgN//. As an alternative to this multievent scheduling, Allen

and Tildesley [36] proposed a single-event scheduling approach, where only the

soonest collision for each atom is stored in a fixed-length binary tree .�N/ with
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sorting time O.ln.N //. Smith et al. [15] compared these two scheduling methods

and found that in simulations of a polymeric system, the single-event scheduling

approach is more efficient than multievent scheduling due to avoiding the insertion

and deletion of superfluous potential collisions in the priority tree. Next, we discuss

several additional optimization approaches.

2.2 Fine Grid

In DMD, the majority of calculation is the re-evaluation of collision times between

a colliding atom and its neighbors. When the dimension of the cell (lc � IRmax,

the maximum interaction range) is large compared to the hardcore diameter, as

in soft sphere systems (Fig. 1a), the number of atoms in each cell is often more

than one. As discussed above, the number of atoms in the neighboring 27 cells

is approximately 27 l3c �, where � is the number density. However, assuming lc
approximately equal to the interaction range, the number of atoms inside the

interaction range is �.4�=3/l3
c � which is much less than 27 lc

3�. Therefore, many

unnecessary atom pairs are included in the current scheme. We propose to divide

each cell into a finer grid with each dimension divided evenly by a number, Nf

(e.g., Nf D 3 in Fig. 2b). For each cell, we assign an integer address .Cx ; Cy ; Cz/.

If the two cells have the address difference .�C x; �C y ; �C z/ and

X

dDx;y;z

.maxf�C d � 1; 0g � ld
c =Nf/

2 < l2
c ; (1)

we consider the two cells as neighbors, and hence the atoms inside the cells are

neighbors. Here, lc
d are the cell dimensions. As Nf increases, the number of atoms

inside the neighboring cells asymptotically approaches .4 =3/lc
3�, approximately

16% of the original number of neighboring atoms. As the result, the computational

efficiency under the new scheme can be increased by as much as 6.4 times. On the

other hand, the frequency of cell crossing and the corresponding CPU time spent are

correspondingly increasing with this increase in Nf. Therefore, it is possible to find

an optimal number of Nf for each type of DMD simulation system. In our all-atom

protein model for DMD simulations, we use Nf D 6. We find that in dense-packing

cases such as folded proteins, we can improve the simulation efficiency by three to

four times by using a finer grid.

2.3 Reduce the Unnecessary Square Root Calculation

The most expensive calculation in the DMD algorithm is performed after each

collision, when the DMD algorithm re-evaluates the collision times between the

colliding atoms and their neighboring atoms. Because of the costly square root
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Fig. 3 Cases where the square root calculation to predict the next collisions is not necessary. If
(a) two noninteracting (beyond the interaction range IRij) atoms are moving away from each other,
and (b) two approaching, noninteracting atoms with the minimal distance larger than IRij (see
the dashed line in b), the square root calculation is not necessary, since the operand is negative
(collision will not happen). However, even if a collision can happen as in C, D, and E, the collision
will not take place if some other event with respect to either i or j happens first. The open sphere

along the direction of the relative velocity Vij indicates the new position of atom j with respect to
atom i

calculation involved in these calculations, it is important to devise a method to

reduce the number of unnecessary collision time evaluations. For example, usually

under two conditions (Fig. 3a, b), the predicted collision will not happen: (1) when

the two atoms are moving away from each other .Rij � Vij > 0/ and the pairwise
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distance is larger than the interaction range, IRij (Fig. 3a) and (2) when the two

atoms are approaching the interaction range but the minimum distance is still larger

than IRij

�

Rij
2 � .Rij � Vij/

2=Vij
2 > IRij

2
�

(Fig. 3b). Here, Vij is the relative velocity

and Rij is the relative displacement.

We developed a new approach to reduce further unnecessary square root

calculations. During the recalculation of potential collisions (see Sect. 2.1), we

assume a cutoff time �t for each atom D. Within such a cutoff time, a collision

will always happen to the atom of interest. Therefore, we may simply evaluate the

pairwise displacement RijCVij�t , with the pairwise distance Rij within the potential

steps .d�; dC/. In the following cases, collision will not occur:

1. Atoms moving away from each other .Rij � Vij > 0/, but the two atoms do not

collide within �t at dC; .Rij C Vij�t/2 < dC
2 (Fig. 3c)

2. Atoms approaching each other .Rij �Vij < 0/ with a minimum distance larger than

d�

�

Rij
2 � .Rij � Vij/

2=Vij
2 > d�

2
�

, but the two atoms do not collide within �t

at dC; Rij C Vij�t/2 < dC
2 (Fig. 3d)

3. Atoms approaching each other .Rij � Vij < 0/ with a minimum distance smaller

than d�

�

Rij
2 � .Rij � Vij/

2=Vij
2 < d�

2
�

, but the two atoms do not collide within

�t; Œ.Rij C Vij�t/ � Vij�
2=Vij

2 > d�
2 �

�

Rij
2 � .Rij � Vij/

2=Vij
2
�

(Fig. 3e)

and the collision time can be safely assumed to be infinity. The remaining question

is how to define the cutoff time �t . There are two types of events, the cell crossing

and the random collision for the Anderson’s thermostat [37], which can be used as

the reference events since one of them will always happen if no pairwise collision

takes place before these two events. We use the shorter time of these two events to

define the cutoff time for each atom. Alternatively, one can dynamically define the

cutoff time �t for a given atom based on the atom’s average collision time, < tcol >,

which can be updated periodically. We set �t D 4 < tcol >. We find that such an

optimization can improve the efficiency of simulation by 20–30%.

2.4 Paul’s O(1) Sorting Approach

In DMD, the next collision is obtained by sorting, using either the priority tree in the

Rapaport approach (multievent scheduling [9]) or the binary tree in the Allen and

Tildesley approach (single-event scheduling [36]). In both cases, the computational

complexity is in the order of O.ln N /. Recently, Paul [38] proposed a new sorting

approach for DMD with a computational complexity of O(1). In Paul’s approach, a

fixed length array .Np/ is used to hold the collision times, and the array is head–tail

connected for repeated use (Fig. 4). The total time of the array is •t and the time

step is •t=Np. The pointer (index Pt ) corresponds to the “current time” .tC/ in units

of •t=Np . Each collision at time t is added to the array with respect to the “current

time”: ŒPt C .t � tC/=.•t=Np/� % Np . Each element in the array can hold more than

one event since each element corresponds to a time window of •t=Np. All the events
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t, Np

Pt, “Current time”

Ci, ti Cj, tj

Ck, tk

Cl, tl

……

Fig. 4 Schematic for the O(1) sorting approach of collision events by Paul. The linear array of
length Ng corresponds to the time interval •t . The array is head–tail connected for repeated usage.
A pointer indicates the current time tc in units of •t=Ng . Each collision time is inserted into the
array with respect the current time: ŒPt C .t � tc/=.•t=Ng/�% Ng . An element can hold more than
one event connected by a simple linked list. The next collision is obtained by advancing the pointer
until an occupied array is encountered, and choosing the event with the shortest collision time. By
carefully select •t and Ng , the number of events in each element is small and the next collision can
be found by a simple bubble sort

within this time window are linked by a simple “linked list.” The next collision is

obtained by moving the current time pointer forward to the first nonempty element,

within which the soonest collision can be found by a simple “bubble sort” approach

if the number of events within each element is small. One can define •t and Np in

such a way that the number of events within each element is small. We find that

when the system is large .�105 to 106 atoms/, sorting takes a significant amount of

CPU time (�20% of total computation time). In this case, Paul’s sorting approach

greatly reduces the percentage of CPU time for sorting from �20% to only 1–2%.

Therefore, by carefully selecting the size of the fine grid, reducing the number

of unnecessary square-root calculations, and adopting an O(1) sorting algorithm,

DMD simulation efficiency can be greatly improved over the traditional approach

[9, 36], allowing for the simulation of biomolecular systems with realistic models

and force fields. Next, we describe recent developments in the DMD force field and

high-resolution molecular models

3 Development of DMD Force Field for Biomolecules

3.1 Hydrogen Bonds

The hydrogen bond interaction is the driving force for secondary structure for-

mation in proteins and nucleotides. In contrast to the model used in continuous

MD simulations, hydrogen bond interactions cannot be modeled as dipole–dipole

interactions in DMD simulations. Liu and Elliot [39, 40] first proposed a hydrogen
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Fig. 5 Model of a hydrogen
bond in a simple protein
backbone model. (a) The
four-bead model of a
polypeptide. Backbone
carbonyl oxygen and amide
hydrogen are not explicitly
modeled. (b) The schematic
of a hydrogen bond between
carbonyl carbon and amide
nitrogen. The gray

dot-dashed lines correspond
to the auxiliary bonds

bond interaction model for DMD, where a hydrogen bond donor (proton) and

acceptor (lone electron pair) are explicitly modeled as small attracting atoms

positioned inside the hard spheres of the bonding atoms. As the result, the

orientation dependence of the hydrogen bond is effectively modeled [39, 40].

However, the explicit modeling of hydrogens and lone electron pairs significantly

reduces the computational efficiency of the simulations. Smith and Hall proposed

[13] a different approach to model hydrogen bonds in a coarse-grained protein

backbone model (alpha carbon Ca, backbone carbonyl carbon C, and nitrogen N;

Fig. 5a). Although the backbone carbonyl oxygen O and amide H forming the

hydrogen bond are not explicitly modeled, their coordinates can be computed

based on the coordinates of existing backbone heavy atoms. A hydrogen bond is

formed between N and C when they approach within a certain distance of the

hypothetical O and H and are aligned collinearly based on angles of N � H � O and

H � O � C. When this linear alignment is changed, the hydrogen bond is allowed

to dissociate, ignoring the impact of the dissociation energy on the dynamics and

thus violating the energy conservation law. To overcome the energy conservation

violation problem, we proposed an alternative approach to model the hydrogen bond

[18]. The approach is based on a “reaction” algorithm in DMD: Two reactant atoms

A and B can change their types to A0 and B0 upon collision at a given reaction

interaction range. The total potential energy change �E associated with the atom

type change is evaluated by summing over all interacting atoms. If the kinetic energy
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is sufficient to overcome the potential energy change in the case of �E > 0, the

reaction takes place. Similarly, the reverse reaction can occur when the two atoms

dissociate at the reaction interaction range. The reaction is intrinsically a multibody

interaction model.

We explicitly model the hydrogen bond interaction using the reaction algorithm.

For example, using the same coarse-grained backbone model as Smith and Hall

(Fig. 5a), we assign auxiliary atoms for each hydrogen-bonding atom N and C that

correspond to the nearest neighboring atoms along the backbone (Fig. 5b). If two

atoms Ni and Cj form a hydrogen bond, we will explicitly assign a hydrogen bond

between these two atoms and also assign auxiliary bonds between the auxiliary

atoms of the donor and acceptor (gray lines in Fig. 5b). The two atoms then change

their type to Ni
0 and Cj

0. The auxiliary bonds will retain the alignment of the

hydrogen bond during the simulation. The hydrogen bond and the corresponding

auxiliary bonds will dissociate when the two hydrogen-bonded atoms move away

from the reaction interaction range with a kinetic energy able to overcome the

potential energy change. Upon dissociation, the atoms will revert to their original

types. During both hydrogen bond formation and dissociation, the total energy

change associated with type change and bond formation and breaking is evaluated.

If the two approaching atoms cannot form a hydrogen bond, they will proceed

with their regular predicted collision. The DMD potential function for hydrogen

and auxiliary bonds can be derived from statistical analysis of the hydrogen bonds

in high-resolution protein structures. Using this method, we were able to directly

observe in silico a secondary structure transition between alpha helix and beta sheet,

in which transition plays a crucial role in disease-associated protein misfolding and

aggregation [18].

3.2 All-Atom Protein Model

In previous years, DMD has mainly been associated with coarse-grained modeling.

Recently, we have developed an all-atom protein model for use in DMD simulations

[21], where all heavy atoms and polar hydrogen atoms are explicitly represented,

which is often referred to as the united-atom model. The all-atom model allows for

the study of high-resolution conformational dynamics on the atomic level.

In the all-atom protein model (Fig. 6a), bonded interactions are modeled

using distance constraints for the covalent bond length, bond angles, and dihedral

angles (Fig. 6b). For covalently bonded atom pairs and also the bond angles, the

interactions are modeled by a square-well potential (Fig. 1b). Dihedral interactions

between atoms i and i C 3 are modeled by multistep potential functions [19] of

pairwise distance. The set of distance parameters .dmin; d0; d1; d2; dmax/ for

these potentials are experimentally determined from distance distributions in a

nonredundant database of high-resolution protein structures (Fig. 6b).
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Fig. 6 All-atom protein model. (a) Schematic diagram for the all-atom protein model. Only
two consecutive residues are shown. The solid thick lines represent the covalent and the peptide
bonds. The thin dashed lines denote the effective bonds that are needed either to fix the bond
angles, model the side chain dihedral angles, or to maintain the planarity of the peptide bonds.
(b) Parameterization of the bonded interactions for representative atom pairs. The first column
shows the distribution of the distances in serine between N�C’; N�C“, and N�O” , respectively.
The second column shows the corresponding histogram for the distribution of each atom pair. The
third column shows the resulting constraint potentials schematically. For bonds (e.g., N � C’) and
bond angles (e.g., N � C“), the left and right boundaries of the constraint potential correspond to
d � � and d C � , respectively. Here, d is the average length and � is the standard deviation
of the distance distribution. (c) Parameterization of nonbonded interactions in all-atom DMD.
The continuous red line corresponds to the van der Waals and solvation interaction between two
carbon atoms. The black step function is the discretized potential for DMD. (d) A schematic for
the hydrogen bonding interaction between hydrogen Hi and acceptor Aj . Atom Di is the donor
and Xj is the heavy atom directly bonded to Aj . Besides the distance between the hydrogen and
the acceptor dHA, we also assess the auxiliary distances dDA (distance between atoms Di and Aj )
and dHX (distance between atoms Hi and Xj )

In order to accurately represent nonbonded interactions, we discretized the con-

tinuous Medusa force field [34], in which the VDW and solvation interactions are

included. VDW interactions use the standard Lennard-Jones potential, and solvation

interactions are modeled by the Lazaridis–Karplus (LK) solvation model [41],

which is expressed as the sum of pairwise distance-dependent effective solvation

energies (EEF1). The discrete potential functions mimic the continuous potential

Eij .d/ D EVDW
ij .d/ C ELK

ij .d/ by capturing the attractions and repulsions while

using a minimal number of steps (Fig. 6c). By trial and error in test simulations, we

adopted the following discretization protocol: (1) we choose an interaction range of
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6.5 Å, where the interaction potential attenuates in all atom pairs; (2) we assign a

potential step between the distances corresponding to the energy minimum (force is

zero) and the interaction action range (force approaching zero), where the force

is maximum; (3) we choose the hard sphere distance with VDW–EEF1 energy

equal to the minimum energy plus 2kBT � 1:2 kcal=mol, since thermodynamically

the probability to find two atoms within this distance is very low. We choose the

next repulsion step with VDW–EEF1 energy equals to the minimum energy plus

kBT�0:6 kcal=mol, and the third repulsive step before the energy minimum with the

repulsive force �20 pN, a relative strong force in biology. The energy at each step

of the potential is computed as the average of the continuous VDW–EEF1 function,

except for the region corresponding to the energetic minimum.

We model the hydrogen bonding interaction using the reaction algorithm, which

has been adapted to the all-atom representation (Fig. 6d). All possible interactions

between backbone–backbone, backbone–side chain, and side chain–side chain

atoms are included. Long-range electrostatic interactions were not included in the

previous work [21]. Recently, we have included the electrostatic interaction between

formal charges using the Debye–Hückel approximation, which results in better

prediction of protein–peptide and protein–ligand interactions (unpublished work).

Other efforts in methods development of all-atom DMD model include those

by Borreguero et al. [29], Emperador et al. [31], and Luo et al. [30]. However,

these models are either nontransferable with structure-based interaction models

[30] and constraints for specific secondary structure [31], or not systematically

benchmarked [29].

3.3 Extension of the Force Field for Small Molecules

Recently, we have extended the Medusa force field in order to model small molecule

ligands [42] by introducing new atom types and parameterizing the pairwise VDW

and EEF1 interactions. We performed a benchmark of the new force field by

predicting the binding affinities of a large set of protein–ligand complexes. The

correlation coefficient between the computational and experimental affinities is

approximately 0.6, which is comparable to other existing computational approaches.

Additionally, we developed a flexible ligand docking method using the new force

field for both ligand and pose selection [43]. The results of the docking benchmark

are comparable to or better than those of other flexible docking programs on the

market [43]. Therefore, the extended Medusa force field is useful in modeling small

molecules.

We discretized the small molecule Medusa force field extension in order to model

small molecules in DMD simulations. Using a similar discretization protocol to that

described above for VDW–EEF1, we can readily obtain the nonbonded interactions

for small molecules. Since there are an insufficient number of high-resolution

small molecule structures to determine the parameters for the bonded terms, we
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simply use the accepted average length R0 and a fixed ratio � D 0:02 to model the

covalent bond and bond angles, ŒR0.1 � �/; R0.1 C �/�. For the dihedral angles,

we first determine the hybridization of the two central atoms, which determines

the symmetry of the dihedral angle: threefold symmetry for sp3–sp3, twofold for

sp2–sp2, and continuous for sp2–sp3. For simplicity, we assume a variation of 36ı for

each ideal angle and compute the multistep potential accordingly, with the energy

barrier .�E/ set as 2kBT � 1:2 kcal=mol to ensure enough transition between

different rotamers .p � exp.��E=kBT //. Using the extended DMD force field,

we are able to perform simulations of the interactions between proteins and small

molecules. Since the extended force field also includes nucleotides, we are also able

to model both DNA and RNA in DMD.

4 DMD Simulations of Biomolecules

4.1 Folding of Small, Fast-Folding Proteins

Given the vast conformational space available to proteins, the ability to capture

protein native states provides an important, milestone benchmark test for all-atom

DMD simulations. We performed ab initio folding simulations of six structurally

diverse proteins using all-atom DMD with implicit solvation: Trp-cage (20 residues;

a mini ’=“ protein); WW domain (26 residues; the central three strand “-sheet

[Gly5-Glu30] of the all-“ protein), villin head-piece (35 residues; an all-’ protein);

GB1 domain (56 residues; an ’=“ protein); bacterial ribosomal protein L20

(60 residues; an all-’ protein); and the engrailed homeodomain (54 residues; an

all-’ protein). We demonstrate that, using our method, proteins can achieve the

native or near-native states in all cases. For three small proteins—Trp-cage, WW

domain, and villin headpiece—multiple folding transitions are observed, and the

computationally characterized thermodynamics are in qualitative agreement with

experiments. For example, our simulation reproduces the apparent two-state folding

thermodynamics of WW domain (Fig. 7a), as observed in previous experiments

[44, 45]. Additionally, following the folding trajectory in DMD simulations allows

us to examine the folding pathway in detail. For the typical folding trajectory of WW

(http://dokhlab.unc.edu/research/Abinitio/), we find that the initial folding event

features the formation of the first two “-strands. This finding is consistent with

experimentally observed kinetics, where the first two strands are more ordered in

the folding transition state than the rest of the protein [46]. Such a kinetic folding

intermediate was observed only recently in microsecond-long MD simulations with

explicit solvent using the state-of-the-art Anton supercomputer, which is optimized

specifically for MD simulations [28]. In contrast, our simulations were performed on

personal computers, highlighting the computational efficiency of DMD simulations.

Due to the complex nature of protein folding and the fact that the tested proteins

are small in size with relatively simple topologies, we do not expect our method

to fully resolve the protein folding problem. We do posit that our all-atom DMD
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Fig. 7 All-atom DMD simulation of the WW domain. (a) Specific heat computed from simula-
tions exhibits a sharp peak at T � 350K. (b) The alignment between the native state and the
representative folded structure in simulations. The contour plot of the 2D-PMF is plotted as the
function of potential energy and RMSD at T D 348K (c) and T D 320K (d)

method can be used for the accurate sampling of conformational space for proteins

and protein–protein complexes, which is crucial for protein engineering and the

design of protein–protein and protein–ligand interactions.

4.2 Protein–Protein Design

Yin et al. used all-atom DMD simulations in de novo protein–protein interface

design, where the amino acid sequences of a scaffold protein (human hyperplastic

discs protein) were designed to bind a target protein (p21-activated kinase, PAK1).

In the design protocol, DMD simulations were utilized for fast conformational

sampling, and the RosettaDesign93 software was used for sequence sampling. The

DMD and RosettaDesign steps were performed iteratively in order to attain optimal

protein designs that are at global energetic minima in both conformational and se-

quence spaces. We found that introducing DMD simulations allows for the effective

sampling of the protein backbone conformation, which in turn remarkably enriched
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the sequence space compatible with the target complex structure. Compared to

the initial design obtained without using DMD, the final design had significant

backbone .RMSD D 0:82 Å/ and rigid-body .RMSD D 3:8 Å/ movement. As a

result of the backbone movement, 19 out of the 21 interface sites had different

amino acids in the final design as compared to the initial design. The final design

was experimentally verified to have a binding affinity of �100	M to the target

protein, and significantly improved solubility as compared to the wild-type human

hyperplastic discs protein [32] (Fig. 8).

4.3 Protein Dynamic Coupling and Allosteric Engineering

of Kinases

The ability to modulate protein activity in a living cell with temporal control is

crucial for our understanding of biological function. We hypothesize that protein

dynamics is highly heterogeneous with long range dynamic coupling, and that

perturbing distal regions dynamically coupled to the functional site can regulate a

protein’s function. Such an allosteric regulation is commonly utilized by cell, where

the binding of a ligand on one site of the protein can turn the protein’s function on

or off. We performed DMD simulations of the catalytic domain of focal adhesion

kinases (FAK). Based on the simulation trajectory, we found that the catalytically

important loop, the G-loop, is strongly coupled to a loop (the insertion loop) that

is connected by a “-hairpin (Fig. 9a, b) [33]. We reengineered the insertion loop by

inserting a rationally designed unstable FK506-binding protein (iFKBP) domain.

This intrinsically metastable domain is stabilized upon the addition of the drug

rapamycin (or its analogs) in the presence of FRB. Using the DMD force field

extended to include small molecules, we performed DMD simulations in order to

study the impact of ligand binding on the conformational dynamics of the catalytic

domain of FAK. We showed that the allosteric coupling of FKBP and the catalytic

loop allows FAK to be activated via stabilization of FKBP by drug binding (Fig. 9c).

In vivo experiments using the engineered FAK kinases showed that the protein’s

kinase function can indeed be regulated by the addition of the ligand. We have

demonstrated the transferability of this design approach with other kinases, such as

Src and p38 [33]. Therefore, using the allosteric interactions uncovered by DMD,

we created a transferrable toolkit for creating regulatable kinases.

5 Conclusion

DMD was originally developed for simple hard sphere systems. In the past, DMD

simulations were often associated with coarse-grained molecular systems. With the

recent development of a high-resolution DMD force field as well as advances in

DMD efficiency, DMD simulations have been applied to study the dynamics of
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Fig. 8 De novo protein–protein interface design using DMD and Rosetta. (a) Starting from the
initial structure (blue), the DMD assisted design has significant backbone movement in both
the scaffold (green) and target (magenta) proteins. (b) The experimental binding assay of the
protein–protein complex redesigned using DMD-Rosetta. The redesigned scaffold protein has a

binding affinity of �100	M with the wild-type target protein. No binding is found in the control
experiment with PAK1 mutant L470E, indicating that the actual binding interface is the same as
predicted

biological macromolecules. With the continuous development of the methodology,

including the parallelization of simulation approaches [47, 48], in the future the

DMD engine will be extended to sample the dynamics of ever larger molecules and

molecular complexes with even longer time scales. With its ability to efficiently
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Fig. 9 Mechanism of regulation by iFKBP; Src regulation. (a) The portion of the FAK catalytic
domain targeted for insertion of iFKBP (blue) and the G-loop (red). (b) Dynamic correlation anal-
ysis of the wild-type FAK catalytic domain (red, positive correlation; blue, negative correlation).
The circled region indicates strong negative correlation between the movement of the insertion loop
and the G-loop. (c) Tube representation depicting changes in the dynamics of the N-terminal lobe
of the FAK catalytic domain, based on DMD simulations. Warmer colors and thicker backbone
correspond to higher root mean squared fluctuation (RMSF) values, reflecting the degree of free
movement within the structure. The red arrows point to the G-loop

sample the conformational dynamics of complicated systems, DMD simulations

will play an important role in our understanding of biology and the effort to combat

human diseases.
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Small Molecule Docking from Theoretical
Structural Models

Eva Maria Novoa, Lluis Ribas de Pouplana, and Modesto Orozco

1 Docking as a Method for Drug Design

Structural approaches to rational drug design rely on the basic assumption that

pharmacological activity requires, as necessary but not sufficient condition, the

binding of a drug to one or several cellular targets, proteins in most cases. The tradi-

tional paradigm assumes that drugs that interact only with a single cellular target are

specific and accordingly have little secondary effects, while promiscuous molecules

are more likely to generate undesirable side effects. However, current examples in-

dicate that often efficient drugs are able to interact with several biological targets [1]
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and in fact some dirty drugs,1 such as chlorpromazine, dextromethorphan, and ibo-

gaine exhibit desired pharmacological properties [2]. These considerations highlight

the tremendous difficulty of designing small molecules that both have satisfactory

ADME properties and the ability of interacting with a limited set of target proteins

with a high affinity, avoiding at the same time undesirable interactions with other

proteins. In this complex and challenging scenario, computer simulations emerge as

the basic tool to guide medicinal chemists during the drug discovery process.

Since early works in the 1980s, molecular docking has arised as a leading

simulation technique to facilitate the drug design. The traditional paradigm of

docking, known as rigid-body docking approach, assumes implicitly the Fisher’s

lock-and-key model [3], and considers that the ligand-induced structural changes of

the protein are negligible [4]. However, drugs generally exhibit a certain degree of

flexibility, and the bioactive conformation might not be the most stable conformation

in solution [5, 6]. This fact leads to the need of considering drug flexibility for a

successful docking simulation. Furthermore, analysis of the Protein Data Bank [7]

reveals that ligand binding can introduce non-negligible changes in protein structure

which often affect the binding site, raising tremendous difficulties for docking

techniques, especially in cases where structural changes are not only binding-

specific, but also drug-specific [8]. A second limitation in docking experiments

arises from the evaluation of the ligand-binding free energy. Free-energy simulation

techniques are expensive calculations that remain impractical for the evaluation

of large numbers of ligands [9]. Current docking strategies are based on the

combination of very fast functions, which intend to predict binding poses and rank

them by means of a more complex equation (the “scoring function”), which has been

parameterized to reproduce experimental binding data of protein–drug complexes

[10]. However, scoring functions implemented in docking programs make various

assumptions and simplifications, and do not fully account for all phenomena that

determine molecular recognition.

Despite all the challenges, the major practical limitation for docking procedures

does not emerge from technical uncertainties in the evaluation or scoring of

docking poses, but comes from the lack of experimentally solved protein structures.

Indeed, despite the massive effort focused in the experimental resolution of protein

structures, 2010 version of the PDB contains less than 4,000 unique human proteins,

while RefSeq [11] suggests the existence of nearly 100,000 human proteins, twice

or more if splicing variants are considered. Therefore, the current version of PDB

is covering only around 4% of the known human proteome [12]. This sequence-

structure gap becomes even larger if we consider proteins from virus, bacteria, or

other pathogens for which less amount of structural information exists.

The evaluation of the potential interactions of drugs with multiple targets is

severely limited if the analysis relies exclusively on experimentally solved struc-

tures. Fortunately, this limitation can be partially solved with the use of predicted

models of proteins as templates for docking (Fig. 1). In this chapter, we very briefly

1Drugs that bind to several molecular targets or receptors, and therefore tend to have a wide range
of effects and possibly negative side effects.
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Structural coverage human proteins (RefSeq)

Unknown structures

Known experimental
structure

Model at 40% identity

Model at 30% identity

Fig. 1 Structural coverage of human proteins according to RefSeq without including splicing
variants

review the state-of-the-art of docking procedures, making special emphasis on the

potential use of ensembles of structural protein models derived from homology

modeling in high-throughput docking experiments.

2 Docking Algorithms

There is a plethora of docking algorithms and strategies that have been implemented

in a large variety of computer programs, some local and used by a restricted

community, and others commercially available that have a wide user community. It

is out of our scope to review all of them here, and we just outline the basic formalism

behind the most popular ones. The reader is addressed to excellent reviews to gain

a more complete view on current algorithms [10, 13–16].

In principle, all docking algorithms follow a stepwise procedure: (1) several

estimates of the ligand–protein complex (binding poses) are proposed, and (2) these

poses are then ranked using a scoring function and offered to the user, who typically

focuses his/her attention to the best scored ones. Given that scoring functions

are fitted against experimental binding data, scoring values have “free energy of

binding” units. Therefore, they can be used to differentiate between good and bad

drug candidates and even to have an estimate of the binding free energy of the drug.

The differences between the different docking programs rely on (1) the method

used to explore the drug-binding landscape, (2) the method used to introduce

flexibility, and (3) the nature and the parameterization of the scoring function. For

example, DOCK [17], one of the first widely used docking programs, performs a

geometrically based docking of the ligands based on isomorphic subgraph matching

algorithms [18], which is later refined by considering the chemical nature of the

ligand and the binding site. Different scoring functions—mostly in the AMBER [19]

force-field—are used during the different stages of the fitting and ranking process,

including complex physical functions calling to atomistic force-field calculations

coupled to Generalized Born or Poisson–Boltzmann calculations. The popular

AUTODOCK program [20] offers a variety of optimizers including Monte Carlo

simulated annealing and different genetic algorithms using smoothed potential
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energy terms precomputed in a regular grid.2 Scoring is performed considering

ligand-entropic terms and desolvation contributions in addition to ligand–protein

interaction terms. GOLD [21], another very popular program, uses a sampling

protocol similar to the genetic algorithm implemented in AUTODOCK and a very

wide range of well-validated scoring functions, which include specific corrections

such as those for metal ions and covalent interactions [22]. This program includes

also specific scoring functions for kinases and offers the possibility to incorporate

user-refined scoring functions. The program FLExX [23], which has also an ex-

cellent record of success, uses a geometry-fitting algorithm derived from computer

vision engineering, where drugs grow in optimum orientations and conformations

at the binding site from an original seed fragment. The program permits the

introduction of knowledge-based pharmacological restraints and the incorporation

of essential water molecules and crucial metal ions in the binding site. Scoring

is based on a simple physical scoring function based on OPLS [24] force-field

parameters. ICM [25], a powerful program to fit small ligands to proteins, uses

a smoothed atomistic energy function coupled with a Monte Carlo algorithm in

internal coordinates to sample the drug–protein binding space. Its scoring function

contains the usual contributions plus two desolvation correction terms. GLIDE [26],

a widely used docking program in the pharmaceutical industry, uses a “funnel

strategy” where each pose passes a series of hierarchical filters that evaluate the

ligand–receptor interactions, including spatial fit, complementarity of interactions

using a grid-based method, and finally an evaluation and minimization using OPLS-

AA nonbonded ligand–receptor interaction energy. GLIDE incorporates a variety

of scoring functions with increasing computational complexity. MedusaDock [27],

a recently developed software, is a docking method which models both ligand and

receptor flexibility in a rapid manner by using sets of discrete rotamers, obtaining

quite good results with targets which are known to be very flexible.

In addition to those implemented in standard programs, many other scoring

functions have been developed (for a review see [28]), using experimentally

calibrated master equations similar to that in (1).

�Gbinding D ˛Eele C ˇEvW C �EHBond C ıGdesolv C "Slig C �E
lig
dist C 'Gothers; (1)

where Eele and EvW stand for usual electrostatic and van der Waals terms—typically

smoothed to avoid nuclei discontinuities. Hydrogen bonds contribution is sometimes

explicitly included in EHbond, while in others it is captured by Eele and EvW. The

ligand and protein desolvation contribution (typically computed from occluded

surface/volumes) are included in Gdesolv, the loss of ligand entropy upon binding

is introduced in Slig (typically roughly approximated by counting the number of

rotable bonds in the ligand), and the constrained energy is captured by Elig. Other

additional terms can be included, such as corrections for covalent interactions,

2Representation of the receptor energetic contributions (mainly electrostatic and van der Waals) to
be read during the ligand scoring.
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cation–  contacts, special metal–ligand interactions, presence of buried waters in

the binding cavity, and many others. All these different terms are weighted using

parameters that are fitted against empirical data. As discussed above, different

programs offer the user the possibility of using family specific scoring functions and

to incorporate his/her own scoring functions. However, the large number of available

scoring functions has generated an obvious confusion in the users community and

has driven to the popularization of strategies based on consensus or meta-scoring

functions. Future work needs to be done by the community to order this explosion

of different scoring strategies.

Flexibility is treated at different levels by various programs. Ligands with poten-

tial drug-like properties tend to be small and moderately flexible, which facilitates

the determination of the optimum docking conformation by different methods such

as energy minimization, Monte Carlo, genetic algorithms, molecular dynamics,

and many others. The complexity here arises from the need to determine which

is the optimum geometry in solution [6]. As noted above, the incorporation of the

protein flexibility is much more difficult due to the large number of protein degrees

of freedom, and none “final” algorithm has been yet developed. Many programs

allow the user to refine a reduced number of residues in the protein—generally

limited to side chains—by using rotamer libraries [29], Monte Carlo [30], or

restrained molecular dynamics [31]. Nevertheless, one of the most popular strategies

consists in the “ensemble” docking approach, which assumes that the effect of target

flexibility in docking can be represented by using a Boltzmann ensemble of confor-

mations for the protein instead of just a single rigid structure. Different methods

for generating ensembles have been proposed, including molecular dynamics from

a known experimental structure of the target [32, 33], crystallographic (X-ray) [34–

37], and spectroscopic (NMR) [38, 39]-derived structures.

A common feature in most descriptions of new docking methods is the claim

that it is more accurate than the competitors. In our experience, the performance of

docking algorithms changes in each version and depends quite significantly on the

nature of the problem and the skills of the modeler running the project, factors that

hinder the validity of the conclusions derived from blind test experiments [40]. An

estimate of the market share taken by the different docking algorithms is also dif-

ficult to determine, particularly in a scenario of site-licenses, cost-related decisions

in the selection of docking engines and where publication is not often a priority.

However, a simple analysis of the literature (ISI CITATION MANAGER) in 2009

reveals that the market is quite equally divided among different codes (see Fig. 2).

3 Scenario for Docking Use

The literature is full of examples of use of docking algorithms in drug design

procedures, and the documentation accompanying the different computer programs

illustrates many examples where docking has been crucial to derive significant

results. Even though most docking studies are done inside pharmaceutical industries
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Fig. 2 Number of citations in scientific literature of commonly used docking algorithms in 2009

and are never published, analysis of the literature reveals that the word “docking”

has been used in the title or abstract in 1,565 publications during 2009.

Docking can be done in quite different scenarios, where objectives and success

criteria can be quite different:

1. Derivation of structural binding mode for a known binder

2. Determination of primary or secondary targets for a drug

3. Virtual high-throughput screening (vHTS)

The derivation of a structural binding mode for a small molecule is probably the

most traditional use of docking algorithms. Within this paradigm, the process starts

after high-throughput experimental studies (or alternative methods) that detect one

or several small molecules which display activity against a given target. However,

there are many factors that determine whether these “hits” can become “leads”

or can be modified to improve their properties. Such a lead optimization process

requires a quite detailed knowledge of the binding mode, something that only in

silico docking can provide with the required velocity. In this context, the use of

docking methods is defined by the limited number of drugs to consider and by the

existence of a single target protein. The accuracy is, however, crucial since errors in

the placement of the drug can completely misguide the lead optimization process.

A basic metric commonly used for evaluating the accuracy of the predicted binding

modes of docking programs is the root mean square deviation (RMSD) between the

predicted conformation and the native pose of the ligand:

RMSD D
 X

N

.Ri � Rj /
2

N

!1=2
; (2)

where R stands for the ligand coordinates in the predicted binding mode .i/ and

in the native pose .j /, and N is the total number of atoms. In many practical
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cases, the predicted binding mode can be useful even if there is a significant RMSD,

provided that some key groups are properly located. Then, it is also convenient to

use more case-specific descriptors for the validation of docking methods such as the

generalized RMSD:

RMSD D
 X

N

�n.Ri � Rj /2

N

!1=2

; (3)

where N is the total number of atoms in the drug and the weighting factor �n reflects

the importance of the residue n in defining the bioactive drug–protein complex.

Many other qualitative measures of structural quality of the docking poses have

been suggested [41].

Docking programs do not provide a single pose as an output, but a series of them

ranked according to the scoring function. Thus, it is not an uncommon situation

that the real binding mode is detected, but not top-ranked by the scoring function.

Thus, an additional requirement for the derivation of a structural binding mode is the

correct ranking of the good docking solution, which would guarantee that the final

user does not disregard it in a further study. A quite common global estimate of the

accuracy of the predicted binding mode is the “2 Å RMSD rule,” which consists in

computing the percentage of predicted binding modes of the ligands that are found

at less than 2 Å from the native pose. In a recent study [12], we found that for a

selected set of proteins, around 30% of the correctly predicted docked poses are

disregarded due to a failure in the scoring of these poses. Thus, instead of correctly

predicting the binding mode of 43% of the poses, only 30% of the poses are correctly

predicted and scored (see Fig. 3).

The determination of primary or secondary targets for a drug is an increasing

field of application for docking algorithms, especially due to the emergence of

“drug repositioning” strategies [42], i.e., the identification of new indications for

existing drugs. Both new indications and adverse drug reactions are caused by

unexpected ligand–protein interactions on secondary targets, and can be explored

through docking experiments. The objective here is not necessarily to predict the

binding mode with extreme accuracy, but to detect possible targets for a drug.

During the last decades, the dominant philosophy in drug design has been the

“one gene, one drug, one disease” paradigm. However, many effective drugs have

shown to act via modulation of multiple proteins rather than single targets. Indeed,

recent studies suggest that selective compounds compared to multitarget drugs may

exhibit lower clinical efficacy [43,44]. In this regard, parallel large-scale multitarget

virtual screening is a promising method to derive secondary targets.

The use of docking in vHTS is a common practice in pharmacological research

due to its reduced cost compared to experimental HT techniques and to the existence

of large virtual chemical libraries—containing over a million of potential ligands—

available for screening [10]. The main objective of this type of projects is to mine

the original library and derive a small subset of compounds, which has a larger

percentage of promising ligand candidates, a process that is known as “enrichment.”
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Fig. 3 Binding mode prediction accuracy of for five different human proteins: thrombin, rennin,
cyclin-dependent kinase 2 (CDK2), and protein phosphatase 1B (PTP-1B)

Technically, vHTS requires very fast computer strategies, especially in cases where

primary and secondary targets are screened simultaneously. Current protocols for

vHTS are based on filtering strategies, where basic geometrical or pharmacological

criteria are used to obtain a more focused chemical library.

The evaluation of the performance of docking methods is especially important

considering the cost of the calculation. Here, the most important objective is to

check the ability of the method to discriminate between active compounds and

decoys (inactive). A virtual screening run selects a list of molecules .n/ from a given

database of N entries, which includes both actives (true positive compounds, TP)

and decoys (false positive compounds, FP). Actives (A) that have not been found

by the screening method are false negatives (FN) and decoys that have not been

selected are true negatives (TN). The optimum screening is that able to recover all

the true positives, without recovering any false positive. Although it is clear that

virtual screening methods can be assessed by their ability to discriminate between

active and inactive compounds, assessing the enrichment in a virtual screening

procedure is a nontrivial task. Many different enrichment descriptors have been

described in the literature [45,46], and they can all provide different information on
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the performance of the screening. A combination of several enrichment descriptors

is recommended if the aim is to evaluate the performance of a docking algorithm.

The most popular descriptors used to evaluate the quality of docking experiments

in this scenario are the sensitivity [true positive rate; TPR; see (4)], which indicates

the ability of the method to recover the true ligands, and the specificity [true negative

rate; TNR see (5)], which informs on its ability to avoid decoys.

Sensitivity D TPR D TP

TP C FN
; (4)

Specificity D TNR D TN

FP C TN
D 1 � FPR; (5)

where FPR stands for false positive rate. Also, accuracy [Acc; (6)] describes the per-

centage of molecules which have been correctly classified by the screening protocol,

and the precision (positive predictive value; PPV) gives accounts for the proportion

of true positives among the list of selected compounds given by the docking (7).

Acc D
TP C TN

N
D

A

N
� TPR C

�
1 �

A

N

�
� TNR: (6)

PPV D
TP

TP C FP
: (7)

In order to o assess the ability of the models to obtain true actives among the

first ranked compounds (an extra requirement in high-throughput docking) [47], the

enrichment factor [EF, (8)] can be used:

EF D
TP=n

A=N
: (8)

Recently, receiver operating characteristic (ROC; true positive vs. false positive

rates) curves and the associated area under the ROC curves (AUC) have also become

very popular to evaluate the discriminatory power of the virtual screening procedure

[48–50]. The main advantage of these metrics is that they are independent on the

ratio of actives to decoys of the database and accordingly they are good measures of

the global performance of a docking algorithm in a vHTS procedure.

4 Protein Structure Prediction

One of the major practical limitations to the use of docking in pharmacological

research lies in the need of high accurate structural data for the protein. Fortunately,

protein structure can be predicted by a variety of computational methods, homology-

modeling (also named comparative modeling) being the most accurate one in

cases where there is a clear homolog with known structure [51, 52]. Building a

protein structure from homology modeling requires a template—a protein with
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similar amino acid sequence—and involves four major steps: fold assignment,

sequence alignment, model building, and model refinement. Several computer

packages are available to perform all this process automatically, such as the SWISS-

MODEL software [53], the 3D-JIGSAW package [54], or the ModWeb tool [55].

Nevertheless, the general consensus [52] is that manually curated models derived

from the use of programs, such as MODELLER [56], are more reliable than

automatic procedures.

One of the most critical steps in homology modeling is the identification of the

proper template. The simplest method that can be used for this purpose is a simple

BLAST search [57] against the PDB database. However, methods based on multiple

sequence alignments or profiles have demonstrated to be much more sensitive in

identifying distantly related homologs [57, 58]. Choosing the best template among

the candidates derived from multiple alignments is crucial for the final accuracy

of the model and in addition to sequence identity we need to consider that “holo”

structures are always better templates than “apo” ones [59]. In the case that several

holo candidates are available, we should favor the structure containing a similar

ligand to the one that we aim to dock [60, 61].

Another crucial step in the model generation is the alignment of the target

with the template(s). This procedure can be done easily with standard alignment

algorithms in cases of large identity between template(s) and target protein.

However, in difficult cases (below 30% sequence identity), the alignment obtained

by standard methods needs to be refined by:

1. Including structural information of the template, i.e., avoiding gaps in secondary

structure elements, in buried regions, or between two residues that are far in

space [62–65].

2. Building a multiple structure-based alignment of the templates and use them to

align the target sequence to it.

3. Calculating the target and template sequence profiles by aligning them with

sequences sufficiently similar to the target and template sequences respectively,

so that they can be aligned without significant errors. The final target-template

alignment is then obtained by aligning the two profiles [66, 67].

In general, the use of multiple structures and multiple sequences benefits from the

evolutionary and structural information about the templates and target sequence, and

often produces a better alignment for modeling than pairwise alignment methods

[68, 69]. In any case, once the template is selected and the target protein is aligned,

the structural model can be generated using different approaches. In this context,

MODELLER [56], one of the most widely used homology modeling engines,

typically builds models by enforcing spatial restraints derived from the template

structure(s).

The quality of the structure derived from homology modeling roughly correlates

with the sequence identity between the target and the template proteins [70]. Thus,

it is accepted that for sequence identities below 30% less than half of the residues

have their C’ correctly placed [71, 72]. The percentage of correctly placed residues

increases to 85% for identities ranging from 30 to 50% and most of the C’s are well
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Fig. 4 The ligand–receptor interaction energy is strongly altered by slight translation and/or
rotation movements of the ligand. The ligand–receptor binding energy (Ebinding) has been
computed as the difference of the potential energy of the complex [Epot(L–R)] with respect to
the individual potential energies of the ligand [Epot(L)] and the receptor [Epot(R)]. The ligand
shown has been taken from the structure of a human CDK2 (PDB code 1ckp)

positioned for sequence identities above 50%. Inside the high-quality range no direct

correlation exists between the accuracy of the model and the sequence identity with

the template, and evaluation of the expected quality of a model is still an unsolved

problem [73]. In fact, the concept of “accuracy of the model” can be arbitrary, since

it depends on its planned use. For example, a model with accuracy around 3.5 Å

in backbone positioning may be sufficient for understanding protein function or

designing mutations, but is expected to be of small utility for predicting ligand

binding [74, 75], since the strong dependence of the ligand–receptor interaction

energy on fine geometrical details (Fig. 4) implies that small structural errors might

cause a large bias in the binding calculation. A deep discussion on this point is

presented in the next section of this chapter.

5 HT Docking from Homology Modeled Structures

The use of homology models in docking calculations has been recently explored

by different groups, finding in general quite encouraging results. McGovern and

Shoichet [59] performed a high-throughput docking on ten enzymes for which
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Fig. 5 Binding site comparison of thrombin PDB structure (2cn0, shown in green) with homology
models of different sequence identity (blue). The ligand shown (magenta) corresponds to the
crystallized ligand in the 2cn0 structure. As can be seen from the figure, even at low sequence
identities the binding site structure is still reasonably conserved

apo, holo, and homology model structures were available, suggesting that they

were useful for enriching the screening, but in general not as powerful as the

holo-crystal structure. Diller and Li [76] reported significant enrichments of the

homology models of six kinases with identities in the range of 30–50% when used

to screen a large chemical library. Similar results were obtained by Oshiro et al. [77]

in the study of two targets (cyclin-dependent kinase 2 (CDK2) and factor VIIa), by

Gilson’s group [78] with a set of five targets, and by Ferrara and Jacoby [79] in

the analysis of insulin growth factor I receptor. All these results suggest that the

conservation of the binding sites in modeled structures is sufficient, and does not

affect docking accuracy significantly (Fig. 5).

Recently, various groups have suggested [12, 80] using ensembles of homology

models as templates, developing automatic strategies valid within the HT-regime

(Fig. 6). The use of the ensemble docking approach coupled to homology modeling

has two main advantages: (1) there is no need to identify the “best” performing

homology model and (2) protein flexibility is implicitly included in the docking

run. When using the ensemble docking approach, each homology model is built on
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Fig. 6 Example of workflow [12] for building homology models to be used in the ensemble
docking approach

a basis of a different template, and thus the binding site is specialized to recognize

a different subset of active ligands. As a result, there is an improvement in the

probabilities of detecting “true positives” (Fig. 6).

Different studies using ensemble docking with experimental structures have

obtained controversial results. Some authors [34] state that ensemble docking

clearly improves the performance of the docking process, while others [37, 81, 82]

complain about the increase in “false negatives” and suggest that the enrichment of

the results using ensembles is not so different when compared to a good-performing

crystal structure (although the rules to select “a priori” which is a good-performing

crystal structure are not evident). The situation when using homology models is

more evident, since in this case the use of ensembles increases very significantly

the sensitivity with respect to single models, decreasing only slightly the specificity

and leading to an overall clear improvement of the docking results [12]. Figure 7

illustrates the increase in the proportion of correctly predicted binding modes

when using ensemble docking compared to single model docking—only homology

models are being considered in the figure. In this example, single models produce

moderate binding mode predictions, being able to recover 30% of correctly docked
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Fig. 7 Recovery of correctly docked active ligands for a selected set of proteins (’-momorcharin,
trypsin, p38 kinase, HIV retrotranscriptase, factor Xa, and heat shock protein 90). As can be seen
from the figure, the correctly docked ligand recovery is dependent both on the strategy of docking
(ensemble docking versus single docking) and on the sequence identity of the template. A ligand

is considered as correctly docked when its RMSD with the crystallographic ligand is below 2 Å.
Both score-based selection—i.e., best ranked—and RMSD-based selection—i.e., best docked—
are shown. Single docking averages are shown in black and green, whereas ensemble docking
averages are shown in red and cyan. These results were obtained by docking a database containing
both known actives and decoys, using Glide docking program in an SP—standard precision—mode
(data from [12])

ligands (21% if we only take into account the best ranked solution), whereas the

ensemble docking approach increases the correctly docked ligands to 57% (29%

when considering the best ranked solution).

Homology modeling-based ensemble docking coupled with good structural

models and strict scoring methods can outperform single PDB docking (Fig. 8).

Furthermore, the ensemble docking protocol is very robust to the decrease in

sequence identity, given that models with sequence identities in the range of 30–40%

still provide good results for most proteins.

A better view on the overall quality of the homology-based ensemble docking

approach is obtained by analyzing simultaneously its ability for vHTS (i.e., its

capability to recover specifically active ligands from the dataset) and in the context

of structural determination of binding modes (i.e., its capability to yield good

structural solution as the top ranked ones). Results displayed in Figs. 8 and 9 provide

evidence on the power of the ensemble docking approach in a wide range of working

scenarios.

As a summary, the general accepted “rule” is that only models built with more

than 50% sequence identity are accurate enough for docking and the accuracy

in docking is higher with holo structures than homology models [75, 77, 83].

However, recent available studies using ensemble docking with homology models
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Fig. 8 Ensemble docking versus single docking approach. The performance of both approaches
is being compared in terms of recovered active ligands and decoys for four human proteins: renin,
thrombin, cyclin- CDK2, and PTP-1B. The single docking approach performance is represented
with green and lime lines, which correspond to the recovery of active and inactive ligands,
respectively. Similarly, the red and orange lines correspond to the active and inactive ligand
recovery, respectively, when using an ensemble docking approach. In all cases, the difference
between active (true ligands) and inactive (decoys) recovery is higher when using ensemble
docking. Results where obtained using Glide computer program in an extra-precision (XP) mode
with a GlideScore (GS) threshold D �8 (data from [12])

[12] strongly suggest that models with sequence identity above 30–40% display a

considerable ability to specifically recover active ligands, and can even outperform

single crystal structures. Although it is difficult to extend results of the small set of

proteins used in these studies to the entire proteome, the use of ensemble docking

is extremely recommended over single docking, especially when using homology

models. Moreover, the use of homology models is not limited to the retrieval of

active ligands from a chemical library, but can also provide structural complexes

with sufficient accuracy for lead optimization processes.

6 Increasing Coverage

As noted in the beginning of this chapter, despite the tremendous effort focused for

many decades in the experimental determination of protein structures, the current

version of PDB covers only a small fraction of human proteins. This coverage is
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even smaller if we focus on protein structures coming from pathogens. Our group

and others [12, 80] have suggested that homology models derived from templates

with identity ranges of 30–40% can significantly enrich chemical libraries. These

results allow us to expand dramatically the universe of use of docking techniques

(Fig. 1), especially in the case of human proteins with pharmacological interest

(taken from DrugBank database; [84]), which are covered over 75% when using

homology models up to 30% identity (Fig. 10).

Thus, with all the required cautions needed in the use of homology models

for docking purposes (related mostly to the problems in finding good templates

and in determining “a priori” the quality of the model), the use of comparative

models can enlarge dramatically the universe of applicability of small-molecule

docking approaches. Ensemble docking performed on homology models provides

results of similar, or even better quality than those obtained with single crystal

structures, leading to a clear enrichment in the chemical libraries, and producing

poses of good structural quality, even in cases where ligand binding implies

non-negligible changes in protein structure. Altogether ensemble docking from

homology modeling appears as a promising alternative to extend the use of docking

strategies in drug-design pipelines.
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Fig. 10 Structural coverage of human targets of pharmacological interest depending on the
sequence identity threshold used in homology modeling. A 30% sequence identity threshold—
which still gives very good results when using the ensemble docking approach—allows us to
cover 41% more human drug targets, obtaining a final coverage of 75% of the human drug targets.
The superimposition of the crystal structure of thrombin (green, PDB code 2cn0) and homology
models built with different sequence identity—90% (orange), 50% (blue), and 30% (salmon)—is
also shown
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Homology Modeling: Generating Structural
Models to Understand Protein Function
and Mechanism

Srinivas Ramachandran and Nikolay V. Dokholyan

1 Homology Models: Need and Applicability

Geneticists and molecular and cell biologists routinely uncover new proteins

important in specific biological processes/pathways. However, either the molecular

functions or the functional mechanisms of many of these proteins are unclear due

to a lack of knowledge of their atomic structures. Yet, determining experimental

structures of many proteins presents technical challenges. The current methods

for obtaining atomic-resolution structures of biomolecules (X-ray crystallography

and NMR spectroscopy) require pure preparations of proteins at concentrations

much higher than those at which the proteins exist in a physiological environment.

Additionally, NMR has size limitations, with current technology limited to the

determination of structures of proteins with masses of up to 15 kDa. Due to these

reasons, atomic structures of many medically and biologically important proteins do

not exist. However, the structures of these proteins are essential for several purposes,

including in silico drug design [1], understanding the effects of disease mutations

[2], and designing experiments to probe the functional mechanisms of proteins.

Comparative modeling has gained importance as a tool for bridging the gap between

sequence and structure space, allowing researchers to build structural models of

proteins that are difficult to crystallize or for which structure determination by
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NMR spectroscopy is not tractable. Comparative modeling, or homology modeling,

exploits the fact that two proteins whose sequences are evolutionarily connected

display similar structural features [3]. Thus, the known structure of a protein

(template) can be used to generate a molecular model of the protein (query) whose

experimental structure is not known.

The applicability of comparative modeling in structural biology has been vali-

dated by the observations of several groups, e.g., that a limited number of protein

folds are observed in nature [4, 5] and that nature is able to reuse similar folds for

diverse protein functions [6]. Thus, several researchers have used the already avail-

able breadth of structural information to build structural models of many proteins

whose experimental structures have not been determined. For example, ModBase

[7] and SWISS-MODEL [8], repositories of comparative models generated using

automated protocols, have structural models for 3.4 million and 2.2 million unique

sequences respectively; for comparison, the repository for experimental structures,

protein data bank (PDB [9]) has 67,728 experimental structures. The burgeoning

number of structural models in repositories such as ModBase and SWISS-MODEL

reflects the usefulness of comparative modeling in significantly closing the gap

between the number of known sequences and known structures. To further close

this gap, the protein structure initiative [10] aims to determine the experimental

structures for representative members of protein families that do not yet have any

structural templates in the PDB.

Structural models generated by homology modeling can be of direct medical

and biological relevance. Structural models can be used to predict the effects of

single nucleotide polymorphisms uncovered from genome-wide association studies,

helping to delineate the molecular etiology of genetically transmitted diseases [2].

Homology-based structural models have already been used widely in in silico

drug screening [11–13]. For biological experiments, structural models can be

used to design mutations that lead to specific changes in the function or stability

of the modeled protein [14, 15]. Importantly, homology models can be used as

starting models for molecular replacement in X-ray crystallography [16], leading

to better experimental structures. Furthermore, these structural models can be used

in conjunction with methods such as FRET that provide interresidue distances and

for mapping residue-level experimental data, such as accessibility measured through

EPR [17] and H-D exchange mass spectrometry [18, 19].

Thus, to better understand the function and mechanism of a given protein of

unknown structure, researchers can generate structural models using comparative

modeling. In this chapter, we discuss the process of generating a homology-based

structural model of a protein of interest. In particular, we focus on the critical con-

trols and tests to be used at each step of model building to ensure that the final model

is physically and biologically reasonable and, most importantly, to determine the

extent to which the given model can be used in interpretations of experimental data.

Comparative modeling involves several steps, such as identification of the template,

sequence threading, processing insertions and deletions, model optimization, quality

control, and finally, model interpretation (Fig. 1, Table 1). We discuss each of these

steps in the following sections.
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Fig. 1 Flowchart of the steps followed in the construction of a comparative structural model
(�database)

2 Template Identification

2.1 Domain Delineation

One of the first steps to be performed with the query sequence is to determine

the number of domains in the sequence. In many multidomain proteins, a single

structural template covering the whole sequence may not be available. Instead,

templates for each of the domains may be available. Many programs that employ
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Table 1 Some representative methods for the different steps involved in the construction of a
comparative structural model

Procedure Server

Identify homologous sequences BLAST [22], PSI-BLAST [23]

Protein family classifications Pfam [21], InterPro [20]

Profile-based HMMER [25], HHSearch [27], SAM [26]

Threading C profile-based FUGUE (based on structure profile created by
HOMSTRAD) [32], PROSPECT [33],
SPARKS2 [34] and SP3 [35]

Profile-based C secondary
structure prediction

PPA [76]

Meta servers TASSER [77], I-TASSER [40], Bioinfobank [39]

Stereochemical quality control Gaia [62], WHAT IF [61], PROCHECK [65],

MolProbity [64]

Estimating model quality Qmean [55], QmeanClust [60]

machine learning approaches can be used to delineate domain boundaries in a

protein sequence and even identify the potential function of the identified domains.

InterProScan [20] and Pfam [21] are two databases available online that one can

use to find the domains present in the query sequence. For some multidomain

query sequences, one may be able to find structural templates with similar domain

architecture, which will be the ideal scenario, but in others one may have to

model individual domains separately and look for experimental constraints to model

domain–domain orientations.

2.2 Direct Sequence Homology: BLAST and PSI-BLAST

BLAST (basic alignment and search tool) [22] is a powerful and efficient tool

to discover the evolutionary connections of a given protein sequence. Given a

protein sequence of interest, any current researcher will first and foremost employ

BLAST to search for homologs in all available sequence databases to uncover

the functional and evolutionary details of the protein sequence. In the context of

comparative modeling, BLAST helps in the identification of the structural template

on which to base the structural model for a given sequence. While using the protein

BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins), one can specify

the sequence databases that should be searched; for comparative modeling, one

usually chooses the PDB. In the context of BLAST, the PDB sequence database

contains all the sequences that have an associated experimental structure. The match

between BLAST “hits” and a given sequence are described by three parameters:

similarity, coverage, and expect value (E-value). All three parameters are important

in selecting the best template for a given sequence. A minimum of 30% similarity

between query and template is essential for unambiguous alignment that can be used

for generating a homology model. For each domain, at least 70% sequence coverage
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is required. The extent of coverage determines the number of residues that need

to be modeled without prior knowledge of their backbone coordinates. There are

exceptions for the lower bounds of both similarity and query coverage, which will

be discussed under remote homology, but if one were to choose a template based

on BLAST results alone, the lower bounds for similarity and coverage are to be

followed strictly to obtain unambiguous structural models. The E-value provides

the statistical significance of a “hit” and describes the number of hits that can be

obtained by chance in a given database with a given score. Thus, lower the E-

value, greater the significance of a given hit. Generally, E-values less than 0.01 are

considered significant for generating homology models.

If no homologs in the PDB are detected using BLAST for a given sequence, the

alternative strategy is to use position-specific iterated-BLAST (PSI-BLAST) [23].

PSI-BLAST constructs a position-specific scoring matrix (PSSM) using the multiple

sequence alignment of BLAST hits detected above a certain threshold (based on

E-value). The PSSM is then used for searching the database. The construction

of the PSSM and the subsequent database search are performed iteratively for

several rounds until no new sequences are found. By using information from all the

BLAST hits of a given iteration, PSI-BLAST helps uncover distant homologs. In

determining the optimal template using PSI-BLAST, one uses the same thresholds

for sequence coverage, similarity, and E-value that were discussed for BLAST.

Once a suitable template is identified, it is worthwhile to closely analyze

the sequence alignment between the query and template. Analysis from several

rounds of critical assessment of structure prediction (CASP) [24] has shown that

the sequence alignment between query and template is the most important step

in comparative modeling. The most prominent inaccuracies in homology models

arise from inaccurate sequence alignment rather than errors in subsequent steps

of structure building. Significantly, BLAST scoring matrices and PSSMs may not

incorporate subtle structural details pertinent to the given protein like the positioning

of structurally important cysteine disulphide bridges, proline residues, residues

important in protein function, etc. In cases where the positioning of these residues

is known to be important based on experimental data, one should manually edit the

alignment to ensure that these residue positions are preserved between the query

and template. Thus, one should consider all available functional, biochemical, and

structural data of all possible residues in the query sequence while scrutinizing and

updating the sequence alignment between the query and the template.

2.3 Remote Homology

If a template is not detectable with BLAST or PSI-BLAST, one needs to use

programs that are capable of identifying distant evolutionary relationships. It has

been shown that two proteins can share a high degree of structural similarity

in spite of the lack of detectable sequence similarity [6]. The lack of sequence

similarity in these cases highlights high divergence of the sequences and also
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Fig. 2 Construction of
profile databases. The scheme
illustrates the steps involved
in constructing profile
databases based on
sequence alone

the weakness of our current metric, namely sequence similarity, in identifying

distantly related sequences. To account for the observations of distant relationships

between protein sequences and to utilize these relationships in protein structure and

function prediction, many programs and servers have been developed that detect

remote homologs. Even though most of these servers have easy to use interfaces

that do not require any knowledge of the underlying computation, in order to

discriminate between different identified templates (either by a single program or

multiple programs), one needs to have a clear understanding of the algorithms and

guiding principles used in these programs. Hence, we give a brief overview of the

underlying principles of two important classes of bioinformatics approaches that

are used in the detection of remote homologs: sequence-profile-based methods and

structural-profile-based methods. Many subsequent approaches have combined the

sequence-profile and structural-profile-based methods to increase the robustness of

identifying and aligning distantly related proteins.

Using sequence-profiles (Fig. 2) for discovering remote homologs has been

achieved using techniques such as hidden markov models (HMM), neural networks,

and support vector machines. By far, HMM-based techniques have been used most

frequently in direct template detection [25–27]. Other methods have been used in the

prediction of subcellular localization [28], secondary structure prediction [29, 30],

residue environment prediction [29], and identification of transmembrane segments
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Fig. 3 Remote homolog detection. An outline of different strategies involved in detecting remote
homologs: sequence-based and structure-based methods and by using meta-servers. The steps
involved in each of these strategies are also outlined as a flowchart

in protein sequence [31]. HMM-based methods rely on constructing an HMM-

profile for any given sequence, based on a seed alignment generated either using

BLAST or manually. Most of these methods have thousands of such profiles for all

known sequences. Using these profiles, for any query sequence, sequence-profile

and profile–profile matching can be performed to identify significant structural

homologs. All known domains are usually arranged in hierarchical families based

on either function or fold to enable quick retrieval of matches. A given sequence

is searched against HMM-profiles of families that have at least one representative

structure, a process called sequence-profile alignment (Fig. 3). A logical expansion

of sequence-profile alignment is profile–profile alignment, where a profile is

constructed based on evolutionary conservation of the query sequence. The seed

alignment for constructing the profile for the query sequence is usually obtained

using PSI-BLAST. Once an HMM-profile is generated for the query sequence using

PSI-BLAST-based multiple sequence alignment, this profile is searched against

other profiles that have at least one representative structure. Apart from providing

a template structure for constructing a homology model, these profile–profile and

sequence-profile alignments provide a quick means to predict domain boundaries

and possible function of the sequence. For example, scanning the query sequence

using Pfam [21] (a database of HMM-profile based domain families) will identify

the different domains in the sequence as well as possible functional and structural

information of the identified domains.

Structure-based threading [32–35] forms the basis of the second group of

protocols (Fig. 4). We can observe high diversity in the specific protocol followed

by each structure-based threading program to identify remote homologs. Since each
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Fig. 4 Construction of
structural-profile databases.
The scheme illustrates the
steps involved in constructing
structural-profile databases
starting from the structures
in PDB

threading program has its own optimized, intricate protocol and scoring system

to identify structural templates, we only discuss the general principles underlying

these programs rather than the scoring functions of specific programs. There are two

groups of data available to the threading programs to generate an optimal alignment:

data on the query sequence and data on all possible structural templates. Data on

the query side consist of (Fig. 3) (1) the sequence-profile of the query sequence

generated either using PSI-BLAST alone or PSI-BLAST and HMM programs and

(2) the secondary structure propensity of each position of the query sequence,

which can be determined using neural network or HMM-based programs such as

PSIPRED [29] or Jpred [30]. Data on the template side are significantly richer. First,

all known structures can be grouped into structural families based on structural

similarity and a sequence alignment can be performed for sequences in each of

these structural families. The sequence alignment, which is primarily based on the

structural alignment, gives rise to residue propensities in each position of the fold,

which we can denote as the structure-profile (Fig. 4). Second, one can obtain the

secondary structure at each position of the fold using the dictionary of protein

secondary structure(DSSP) program [36]. Third, one can obtain the environment

of each position of the fold—whether it is buried or exposed, whether the backbone

or side-chain are involved in any hydrogen bonds (Fig. 4). Fourth, distance or cut-

off based residue–residue contact probability can be obtained in each structural

family. These four pieces of information are used in a combinatorial fashion by

different programs to match the two pieces of information available for the query

sequence. Thus, each program uses a combination of terms that are optimally

weighted to arrive at a final score that reflects the goodness of fit between a

query sequence and a template structure (or a structural family, depending on the

program). One way to align structure to sequence can be to match the structure-

profile of the template (amino acid propensities in each position of the fold) to the
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sequence-profile of the query (amino acid propensities at each position of the

sequence based on evolution) using dynamic programming, with the gap-penalties

at each template position set by the secondary structure at that position. It has been

observed that insertions and deletions (which arise due to gaps in alignments) are

minimal in positions that feature helix or strand [37], hence gap penalties can be set

higher at positions in the template featuring helix or strand. Similarly, predictions for

buried and exposed positions of the query sequence have also been used in sequence-

structure alignments. To account for changes in fold topology, many programs also

incorporate segmental threading [38] to arrive at a discontinuous sequence-structure

alignment.

2.4 Meta Servers

In the previous sections, we have introduced all the commonly used techniques for

discovering structural templates. By far, the most successful approach in identifying

a structural template for a given query sequence and in determining the best possible

alignment between the sequence and structure has been to combine predictions from

several diverse approaches. Servers such as 3D-Jury [39] and I-TASSER [40] have

developed combined scoring functions that rate each structural template based on its

scores in several profile–profile and structure-profile alignment programs to yield a

consensus alignment (Fig. 3). For a researcher who is well versed in the biochemical

and structural data connected to the query sequence, it is also possible to apply

the available biochemical data as additional constraints in refining the consensus

alignment between query and template.

3 From Alignment to a Structural Model

3.1 Model Construction

Once a statistically significant alignment is obtained between query and template,

construction of the homology model entails converting the template structure into a

structural model for the query sequence. Model construction involves two important

steps: first, in the regions of the template where alignment with the query exists,

the sequence of the template has to be modified to the corresponding sequence

of the query. Second, in the regions where alignment do not exist (insertions and

deletions), either portions of the structure must be removed (deletion) or new

structural fragments need to be built de novo (insertion). The first step requires

only the modification of the side-chain atoms of the aligned positions as the amino

acids in the template structure are morphed into the amino acids corresponding to

the query sequence. With knowledge of the coordinates of the protein backbone,
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positioning of a new side chain is straightforward [41]. Processing insertions is

the most complicated step in model construction, since the positions of backbone

atoms are not known for the inserted residues and must be modeled de novo.

Insertions mostly involve internal loops that are longer in the query compared to the

structural template. The methods to build these loops include ModLoop [42] (part

of MODELLER [43]) which relies on satisfaction of spatial restraints, Hierarchical

Loop Prediction with Surrounding Side chain optimization [44], kinematic closure

protocol in Rosetta [45] and constrained all-atom DMD simulations [46]. Processing

deletions involves the removal of residues in the template structure whose positions

correspond to gaps in the query sequence in the sequence alignment. When a set

of residues are removed, the ends of the deletion need to be connected by a peptide

bond to ensure continuity of the protein chain. Several programs like all-atom DMD,

MD, and Rosetta can be used to create the peptide bond between the ends of the

deleted segment, with minimum perturbation to the backbone of the rest of the

structure. Once the side chains are modified and the insertions and deletions are

processed, one arrives at a complete (albeit initial) structural model for the query

sequence. At this stage, if there are several templates that were identified, one

can use the steps outlined above to construct several complete structural models

for the query based on each of the template structures. In the case of several

structural templates, one has to then choose among the many models for the same

sequence, the structure that best represents the real structure corresponding to the

query sequence, a process that we discuss in the section dealing with model quality.

An illustration of the sequence/structure alignment and homology-based structural

model is shown in Fig. 5.

3.2 Model Refinement

Once a complete structural model for the query sequence is obtained, there are

several possible steps by which the structural model can be refined to approach

a physically accurate structure. Just modifying the side-chains and processing

insertions and deletions as described above result in a model that has minimal

changes from the structural template. However, with limited sequence identity

(in many cases, only 30%), the structures of the template and the query will be

expected to have significant conformational differences even though they share

the same fold. For example, when transitioning from the template to the query

sequence, many small to large amino acid changes in the core will require backbone

perturbations to accommodate the large amino acid while retaining optimal packing

in the core. Furthermore, homology models have been shown to have an excess

of steric clashes and structural artifacts caused by unphysical overlap of newly

positioned side-chain atoms with other side-chain and backbone atoms (Fig. 6a).

Thus, most residues in the core will need to undergo concerted changes in the

side-chain rotamers (changes in the � angles), along with subtle changes in the

protein backbone, to form a core that is optimally packed. Even though side-chain
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Fig. 5 A homology-based structural model. The alignment (a) and the structural model (b) of
the G-domain of nucleolar GTP-binding protein 2 (Uniprot ID Q13823, query) are shown as a
representative homology-based structural model. The template chosen by HHSEARCH [27], as
listed in the SWISS-MODEL database [8] has the PDB ID 3A1S. The residues identical between
the query and template are colored blue. The similar residues are colored orange. The predicted
secondary structure of the query and the observed secondary structure of the template are also
shown;H denotes helix andE denotes strand. Note the high level of similarity in the predicted and
observed secondary structure. The structural model retrieved from SWISS-MODEL database is
rendered as a cartoon using PyMol (http://www.pymol.org), with the identical and similar residues
rendered as sticks. The positions identical in the alignment are colored blue in the structure and the
similar residues are colored orange

repacking can be performed with great accuracy and efficiency by many programs

which fix the backbone position (using knowledge-based rotamer libraries), in this

case, the core refinement is useful only when the repacking is coupled with subtle

changes in backbone conformations.
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Fig. 6 Steric clashes in homology models. Homology models on an average feature much higher
extent of steric clashes when compared to experimental structures (a). The distribution of clash-
scores (which is a normalized energetic parameter reflecting the extent of steric clashes in a protein
structure [50]) of high-resolution crystal structures and representative homology models from
SWISS-MODEL database are plotted. The efficacy of Chiron in minimizing clashes in protein
structure is demonstrated for the homology model of Q13823, whose initial model (b) has a
clash-ratio of 0.13, much higher than that seen in experimental structures. The protein structure
is shown with the cartoon representation, rendered using PyMol (http://www.pymol.org). Clashes
are denoted as colored cylinders, where both the colors and the thickness of the cylinders denote
the van der Waals repulsion energy. The scale of the repulsion energy is shown as a gradient bar
at the bottom, with the numbers at the ends indicating repulsion energy in kcal/mol. Note the
large numbers of cylinders in the initial model, denoting excessive steric clashes. The minimized
structure (c) has a clash-ratio of 0.018, within one standard deviation of the mean clash-score of
high-resolution structures

The refined structural models by definition should feature physically reasonable

backbone conformation and a well-packed core that has an acceptable extent of

clashes. Minimal backbone perturbation to ensure ideal packing can be achieved

by various means including “backrub” and knowledge-based backbone assembly

(as used in Rosetta), all-atom DMD simulations and minimization using molecular

mechanics forcefields. All these methods refine the structural model to the nearest

local minima in the conformational space of the starting structure. Thus, if the
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starting model is far away from the actual structure (>5Å root mean square deviation

(RMSD)), these methods will be of limited utility in bringing the model closer to

the actual structure. Steepest descent/conjugate gradient minimization using all-

atom molecular mechanics force fields is the most widely used method to refine

a structure while also resolving clashes. However, minimization using molecular

mechanics may not resolve severe clashes in some cases, hampering subsequent

molecular dynamics simulations. Use of molecular modeling tools such as Rosetta

[47] is the alternate avenue for refining structures with severe clashes. These tools

use knowledge-based potentials and small backbone moves to resolve clashes.

However, these methods work best with smaller proteins (less than 250 residues in

size). Tools such as MMTSB [48] and PULCHRA [49] have emerged for structure

refinement, which includes removal of clashes during refinement. Chiron [50], an

automated server evaluates the extent of clashes in a given structure and if required,

minimizes these clashes to the levels seen in high-resolution X-ray structures.

Chiron uses all-atom DMD [46, 51] with soft-core potentials. Additionally, Chiron

uses a high coefficient of heat exchange of protein atoms with thermostat to ensure

minimal perturbation of the protein backbone while resolving clashes in the protein.

An example for clash minimization in a homology structural model using Chiron is

shown in Fig. 6b, c. While Rosetta couples backbone moves to side-chain repacking,

the other methods can also be used iteratively with side-chain repacking programs to

achieve rigorous refinement. Side-chain repacking coupled with minimal backbone

optimization to improve core packing transitions a complete structural model into a

physically realistic model that can be used for further studies.

3.3 Estimating Model Quality

The model quality can be classified into two types: (1) the stereochemical quality of

the structural model and (2) the accuracy of the homology-based structural model

with respect to its experimental structure. Given the lack of experimental structure

for the query sequence, the real accuracy of a homology-based structural model

cannot be assessed. To develop methods to predict this accuracy in the absence of

known experimental structure, methods have been developed based on benchmark

sets of structural models built for proteins with already existing experimental

structures. In such cases where the experimental structure is known, there are several

measures that estimate the model’s quality. RMSD is the widely used measure

to estimate the “structural similarity” between any two structures. However, large

differences in positions of a small fraction of the proteins being compared can result

in high values of RMSD, thus not reflecting the majority of the regions where the

structures are highly similar. Thus, CASP competitions use another measure called

global distance test (GDT), which is a measure of similarity of two structures with

similar amino acid compositions but different tertiary structures. GDT is defined

as the largest number of corresponding amino acids’ alpha carbon atoms in the
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compared structures that fall within a given distance cut-off. Usually, an average

of GDT at 1, 2, 4, and 8 Å is used to measure structure quality, and is denoted as

GDT TS. Other variations include corrections to eliminate size-dependence [52]

and also to include a negative term for incorrectly positioned amino acids (resulting

in non-native contacts) [53]. There are various servers that have been developed to

predict GDT TS of a structural model in the absence of an experimental structure

with which to compare.

These quality assessment programs either assess a structural model by itself

(single model) [54–56], or in the context of a large reference set of struc-

tural models generated for a given sequence using different methods (consensus)

[57–59]. The single model methods can compare various structural parameters

such as secondary structure and solvent accessibility (whether a given residue is

buried or exposed) that are predicted for a given sequence with the corresponding

structural parameters of the given model. The scoring functions used in single-

model quality assessment programs also include knowledge-based potentials like

a sequence-dependent torsion term (usually in the context of three consecutive

residues), distance and cut-off based residue–residue interaction potentials and all-

atom interaction potentials. Consensus quality assessment programs rely on the idea

that if a diverse set of methods were used in generating many structural models for a

given query, models that incorporate the best of all methods will be the ones closest

to the experimental structure. How do the consensus methods select models based on

these criteria? Using a large reference set of models for a given sequence (obtained

from the various structure prediction servers), they determine the average distance

of a given model to all other models. The distance measure used in most cases is

GDT TS, although specific servers apply various modifications to the distance to

obtain better predictive power. Through several rounds of CASP, it is apparent that

the models with least average distance to the rest of the reference set feature the

best GDT TS when compared to the experimental structure. We have to emphasize

here that there are many mathematical formulations used in modifying the simple

average distance to obtain better predictions, but these formulations may not always

have a strong physical basis. Interestingly, weighting the average distances with

single-model score yields very good prediction of GDT TS of a model with respect

to the experimental structure [60]. Thus, based on the experience gained from CASP

competitions, the ideal strategy for constructing a homology-based structural model

would entail generating several models using heterogeneous methods, which can

also include human intervention during model building and the incorporation of

known experimental constraints. Once a handful of models are obtained, one can

use the quality assessment programs to obtain a prediction of how close the best

model will be to the experimental structure. The quality score will in turn determine

the use to which a structural model can be put (discussed below).

Apart from model accuracy, an important criterion for model quality is the

stereochemical quality of the given model. The stereochemical quality here broadly

defines the acceptable quality of the covalent geometry and the core-packing of a

given structural model. The covalent geometry of a structural model is assessed

by comparing all its bond lengths, bond-angles, and torsions to standard values.
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The standard values of bond lengths and angles are obtained from studies on

model small molecules [61] or through surveys of high-resolution crystal structures

[62]. The backbone torsions comprise of the ';  , and ! angles. The ' �  of

each residue can be compared to the allowed ' �  map obtained from survey

of high-resolution crystal structures to detect outliers. The side-chain torsions

are again compared to the rotamer libraries [63] to detect outliers. All these

measures ensure that the covalent geometry of the structural model is physically

acceptable. The packing quality can be assessed based on the extent of steric clashes

[50], the prevalence of voids, and the scaling of the solvent accessible surface

area with protein length [62]. There are several servers that can compare these

structural parameters of a model with benchmark distribution to indicate the areas

of the protein structure that need further refinement to be physically acceptable

[61, 62, 64, 65]. Importantly, the stereochemical quality of the structural model is

essential for further studies including molecular simulations.

4 Experimental Constraints to Improve/Verify

Homology Models

Any experimental data that can be used as a structural parameter, even indirectly,

aid in building a better structural model based on homology [66]. Once a structural

model is available, further experiments can be designed using insights from the

model. Thus, designing experiments using structural models and building models

that satisfy experimental constraints become an iterative process leading to better

understanding of a protein’s structure–function relationships. The experimental

constraints that can be used in model building are diverse and we discuss several

examples here. Usually, experimental constraints are sparse and by themselves

not enough to lead to an unambiguous structural model. Thus, several models

can satisfy a given set of constraints. However, the subset of models that do

not satisfy a given experimental constraint can be eliminated from consideration.

The experimental constraints can either be at the residue level or provide overall

structural information. Some of the residue-level constraints include distance

bounds between specific residues obtained by FRET and site-directed cross-linking.

Iterative model building is possible using FRET and site-directed cross-linking,

since a structural model allows probing a much smaller subset of residue-pairs

for distance measurements as opposed to residue-pairs being chosen randomly

[2, 67]. Furthermore, these distance measurements provide direct validation of

a given structural model. Residue accessibilities obtained by EPR spectroscopy

[17] and H-D exchange mass spectrometry [18, 19] also aid in model refinement.

Experiments that provide information on the overall protein structure include

small angle X-ray scattering (SAXS) [68], cryo-electron microscopy (CryoEM)

[69], and circular dichroism (CD) spectroscopy, among others. SAXS provides

the molecular envelope or the overall shape of the protein in solution, which can
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help in discriminating between structurally diverse templates used in generating the

structural model. The utility of CryoEM in atomic-level structural modeling depends

greatly on the resolution of the electron density map obtained for a given protein.

Recent advances in CryoEM have led to subnanometer resolutions density maps that

can be used to directly refine all-atom structural models [70]. CryoEM densities are

usually deposited at the electron microscopy data bank (http://www.emdatabank.

org/), and programs to perform flexible docking of a structural model to EM

densities have been developed [71]. Thus, high-resolution cryoEM currently offers

the best alternative to X-ray crystallography and NMR for obtaining accurate atomic

structure of a given protein. CD spectroscopy is used to determine the secondary

structure content of a given protein and CD measurements can be used to assess

the overall accuracy of secondary structure content of the structural model. Indirect

structural constraints include mutational studies of the protein that assess changes

in function and stability. These constraints can be included in model building only

qualitatively, but still provide means to eliminate inaccurate models.

5 Conclusions

Comparative modeling of protein structures offers an efficient alternative to exper-

imental structure determination in cases where there are difficulties in obtaining

experimental structures for a given protein. Usually, if one can find a structural

template more than 50% identical to the query sequence, a model with an estimated

RMSD of 1 Å to the experimental structure can be obtained [72]. Thus, in cases

where significant homology to a structural template exists, comparative modeling

is a powerful technique to better understand the structure–function relationships

and functional mechanisms of a given protein. Importantly, for clinically relevant

proteins that are hard to crystallize, like G-protein coupled receptors (GPCRs)

and ion channels, landmark structural studies have provided a sufficient number

of templates to model many variants. The structural models of these variants have

been instrumental in furthering our knowledge of different functional mechanisms

(in KC channels [73,74]) and in virtual-ligand screening (GPCRs [75]). Advances in

structural understanding of GPCRs and ion channels represent the most prominent

impact of comparative structural models. These models have been used in numerous

other cases to yield biologically useful insights [1]. During the process of model

building, we need to undertake several precautions and assess model quality at

each step. Most importantly, all structural models need some form of experimental

validation to gain relevance. Thus, an iterative cycle of model building and

experimental verification provides the best scenario for furthering our understanding

of structural and functional aspects of many biological proteins, whose experimental

structures remain unsolved.
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MP Møller-Plesset (perturbation theory)
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TISE Time independent Schrödinger equation
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1 Introduction

The realm of biology is always governed by underlying electronic effects. These

effects are often treated implicitly and may go nearly unnoticed in classical

biomolecular simulations, such as Monte Carlo or molecular dynamics. It is

important to remember, however, that these classical methods always operate on

the single, ground electronic potential energy surface (PES). Furthermore, classical

methods assume the classical behavior of the atomic nuclei, and thus rely on

the so-called Born–Oppenheimer approximation (BAO) heavily used in quantum

mechanics, as discussed in detail below. Due to the BAO, the ground PES can be

obtained by finding the optimal electronic solution for every position of stationary

classical nuclei. The combined electronic and nuclear energy as a function of

nuclear coordinates in the PES. The Born–Oppenheimer PES is usually very

close to the chemical reality. Parameters of classical force fields are optimized to

reproduce this ground PES, either calculated quantum mechanically or derived from

the experiment. Thus, electronic structure is always an active player in classical

simulations through the parameters of the force field in use. However, when it

comes to the assessment of the mechanism of a biochemical reaction that involves

breaking and forming of covalent bonds, quantum mechanics is an almost exclusive

reliable approach, with a prominent classical exception being the empirical valence

bond method. Furthermore, there is a large class of biological processes that simply

cannot be assessed without explicit quantum mechanical treatment. An obvious

example is electron transfer in enzymes or DNA that plays a pivotal role in every

oxidation or reduction event in living cells. Proton or hydrogen transfer is also a

process in which quantum effects are not to be ignored, because these light particles

tunnel through reaction barriers, which are thereby considerably reduced. As an

illustration, it is well-known that the nuclear fusion in the Sun responsible for the

heat that the Sun irradiates would be kinetically impossible without H tunneling.

The Sun is simply not hot enough to overcome the barrier to the H C H ! He

reaction classically. Electronic structure of transition metals is at the heart of the
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catalytic apparatus in metallo-enzymes. Photochemical reactions, such as those

in DNA undergoing photodamage, in photosynthetic machinery, or in rhodopsin

responsible for our vision, involve electronic excitations. The associated photoini-

tiated dynamics then takes place on multiple PESs, rather than just one, and near

surface crossings nuclei exhibit quantum behavior. Such processes and the quantum

mechanical methods that can be used to study them are the subject of this chapter. In

the wealth of electronic structure methods, only some are suitable for calculations

on biologically related molecules and models, due to the high computational cost of

the former and fairly large size of the latter. We address calculations on the ground

and excited electronic states, mixed quantum mechanical–molecular mechanical

(QM/MM) techniques, methods combining quantum mechanical and statistical

mechanical treatment of biological systems, and various types of dynamics.

The sections below address established methods along with examples of biolog-

ical problems that can be studied using these methods, and they are arranged in

order of increasing complexity of the methodology. In each section, the theoretical

foundation is discussed first, accompanied by practical suggestions for the user

including assessment of accuracy and computational cost, and then a few examples

of applications are presented. Some of the presented material is covered in other

monographs and textbooks. However, the intention here is to cover the concentrated

basics of all the essential relevant methods, so as to efficiently coach the Reader

to intelligently use quantum mechanics for biological systems. Finally, the list of

described techniques is not exhaustive, and problem-driven variations built upon

the key methods continue to emerge.

2 Ab Initio Treatment of Biochemical Systems

on the Ground State

2.1 Theoretical Foundation

A great insight into molecular structure, and mechanisms and energetics of chemical

reactions, such as those catalyzed by biological enzymes, can be gained from ground

state ab initio calculations. Using these techniques, various molecular properties

can be calculated, such as total energies, geometries, energy gradients, harmonic

vibrational frequencies and IR absorption intensities, electric dipole moment,

electric polarizability, hyperfine coupling constants, spin-couplings, magnetic sus-

ceptibility, nuclear magnetic shielding, etc. Calculated spectroscopic properties can

be compared with the experiment, and used for interpretation of the experimental

data. Ab initio calculations can yield results of chemical accuracy, if used with

knowledge and care. We therefore spend some time covering the basic principles

behind major ab initio methods, and we welcome already informed Readers to skip

the next ten pages or so. Ab initio quantum chemistry is a foundation of many more

complicated techniques discussed later in the chapter.
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All quantum mechanical techniques are based on the experimentally observed

wave-particle duality intrinsic to all matter. The wave mechanics gave rise to the

habit of describing any system in quantum mechanics by its so-called wave function,

� , which contains all the information about the system. � itself does not have a

physical meaning, but when squared, it has the meaning of the probability density.

The quantity j� j2 D � � �� multiplied by a volume element, dr , returns the

probability of finding the quantum mechanical particle in this volume. Thus, j� j2 dr

integrated over the entire space equals 1, as long as the wave function is normalized.

In quantum mechanics, operators are used as an algebraic form of a “measure-

ment.” When a quantum mechanical operator acts on � , the result is the product of

the value of an observable (physical property) corresponding to this operator and

the wave function itself, if � is the eigenfunction of this operator. In particular, the

true � of a system (which is by the way often hard to find) is an eigenfunction of

the energy operator of the system, called the Hamiltonian, OH . The corresponding

eigenproblem is the famous Schrödinger equation, central to quantum mechanics.

In the time-dependent form it is written as

OH� D i„
@

@t
�: (1)

OH has the kinetic and potential energy terms for all components in the system.

For example, for a molecule in vacuum it has nuclear and electronic kinetic

energy terms, potential energy terms for the internuclear repulsion, electron–nuclear

attraction, and electron–electron repulsion:
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where indexes a and b enumerate nuclei, i and j enumerate electrons, Ra are nuclear

coordinates, ri are electronic coordinates, and other standard physical constants

are omitted because atomic units are used. In the time-independent form of the

Schrödinger equation (TISE), OH acting on � returns the total energy of the system

times the wave function:

OH� D E�: (3)

Mathematically, the wave function that satisfies the TISE is a standing wave,

and the corresponding energy eigenstates are called stationary states. Finding these

eigenstates is the primary goal of trying to solve the TISE. This section is concerned

with the methods of solving it. Considering a seemingly simple form of the TISE,

one may ask why this section is so long. The trick is that for any system more

complicated than one-electron atoms or molecules, the TISE cannot be solved

exactly. The reason for this is the last term in the Hamiltonian (2), which involves
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coordinates of two electrons and represents electron–electron interactions. These

terms make TISE inseparable. Hence, approximations are invoked when solving

the TISE.

The first key approximation that is made is the BOA. The BOA is based on the

fact that electrons are much lighter than nuclei, and so the motion of electrons and

nuclei happens on very different time scales. Because of this, electrons are thought

to adjust instantaneously to the positions of the nuclei in a molecule. The often

used analogy here is the motion of flies on top of a garbage truck: the truck moves

so slowly that the flies do not even notice its movement and adjust their positions

instantaneously to the position of the truck. The BOA is a good approximation in

most cases of chemical relevance. BOA implies that the total wave function of a

molecule can be written as a product of the nuclear and electronic parts, and the

total Hamiltonian as a sum of the nuclear and electronic Hamiltonians:

�total D  nuclear �  electronic; (4)

OHtotal D OHnuclear C OHelectronic: (5)

Then, the TISE is separable within the BOA, and in particular the electronic TISE

can be solved with the nuclear coordinates included as parameters:

OHel el D Eel el; (6)

where
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The first term in the electronic Hamiltonian represents the sum of kinetic energies

of electrons, the second term is the potential energy term for the attraction of

electrons to the now stationary nuclei, and the third term is the interelectronic

repulsion. The nuclear kinetic energy is zero, and the internuclear repulsion is a

constant, within the BOA. The solution of the TISE is the total energy and the wave

function itself. For the exact wave function, the energy can be found as
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As was mentioned already, solving the TISE exactly is impossible for any system

with more than one electron. However, there is a helpful variational principle that

tells us that any approximate wave function would return an eigenenergy that is an

upper-bound of the true energy:
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Hence, the “direction” of improving the electronic wave function when solving

the TISE using approximate methods is always known: it is that of decreasing the

total electronic energy.

The other major approximation is the mean-field approximation dictating that

each electron can be viewed as moving in an averaged field created by all other

electrons. This approximation gave rise to the Hartree-Fock (HF) method that is the

foundation of many approaches in quantum chemistry.

The wave functions for individual electrons in HF are called molecular orbitals

(MOs), denoted by �i . Each �i is a solution of the one electron equation with the

corresponding orbital energy as an eigenvalue. The total electronic wave function

in HF is represented as an antisymmmetrized product of MOs, called a Slater

determinant. Here is how it looks like for an N -electron system:

 el D 1p
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ˇ̌
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where ri are coordinates of individual electrons, and the prefactor in the expression

is the normalization constant. Writing the wave function in the form of Slater

determinant takes care of the fact that the fermionic wave function should be

antisymmetric with respect to permutations of any two fermions (i.e., electrons).

In other words, if electrons i and j are swapped, the total electronic wave function

should change the sign. Where to get the actual MOs, �i? Historically, MOs should

be written as linear combinations of hydrogen-like atomic orbitals, which is referred

to as the MO-LCAO principle: Molecular Orbitals written as Linear Combinations

of Atomic Orbitals. MO-LCAO assumes that AOs do not change too much when

atoms come together to form a molecule. First of all, this assumption is quite a

stretch, and second, actual hydrogenic AOs are hard to deal with computationally.

Hence, in practice, MOs are instead written as linear combinations of basis set

functions:

'i D
X

k

ck�k : (11)

The basis functions are chosen such that they are mathematically easier to use;

for example, they can be Cartesian Gaussians. Obviously, the larger the pool of the

basis functions, the more accurately can it represent the MOs. Hence, big basis sets

are a good thing. A variety of basis sets of various sizes has been developed for

different chemical elements. A large data base of available basis sets is supported

by the EMSL of the US Department of Energy (https://bse.pnl.gov/bse/portal).

For each MOs, the one-electron eigen problem is solved:

OF'i D "i'i ; (12)
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where "i are orbital energies, and OF is the one-electron Fock operator:
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containing the electronic kinetic energy operator (first term), the electron–nuclear

potential energy operator (second term), and the coulomb and exchange pair of

operators having to do with electron–electron interactions:
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The latter is a purely quantum mechanical operator that has no analog in

classical mechanics, and it appears due to the wave function being written as an

antisymmetrized product. Exchange terms are nonzero only for electrons of the

same spin. Hence, there are twice as many coulomb terms as there are exchange

terms. The full Hamiltonian of the system in HF is then

OHHF D
X

i

OF .i/: (16)

HF is a method of simultaneously solving the one-electron Fock equations for

all the MOs and orbital energies through the variational principle. The difficulty

is that the one-electron Fock operators themselves depend on the wave functions

of all other electrons, which in turn are not known. Hence, the procedure for

solving the HF equations must be iterative, and it is called the Self-Consistent

Field (SCF) procedure. For a given nuclear geometry, the initial guess for the

coefficients ck in the expansions for the MOs is made at the start. The coefficients

are then variationally improved, in the direction of reducing the electronic energy

corresponding to this wave function. The Fock equations are solved for the trial

MOs, and the MOs are updated, and compared to the ones from the previous step.

The convergence criterion is satisfied when the change in the newly produced MOs

is within a certain acceptable threshold.

The speed and ultimate success of SCF critically depends on the initial choice

for the trial wave function. In quantum chemical calculations, especially for

electronically complicated systems, such as those containing multiple transition

metal centers, or having low lying excited states, achieving the SCF convergence is a

common everyday battle. However, some steps can be taken to help the convergence:

having an initial guess for the MOs coming from a simpler calculation and having

a fairly accurate starting geometry of the system is a good idea, for example.

Also, there is a helpful approach called “level-shifting” in which the unoccupied

MOs are artificially brought up in energy so as to discourage their mixing with

occupied MOs.
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As a result of the HF SCF procedure, a set of orthogonal occupied and

unoccupied MOs, whose number equals the number of the basis set functions, and

their energies are produced. The total electronic energy of the system is then the

sum of the energies of all occupied MOs, with all the double-counted coulomb and

exchange terms removed:

Eel D
X

i

"i C
X

i

X

j¤i

�

Jij � 1

2
Kij

�

: (17)

Double-counting happened because Jij and Kij terms contributed to the orbital

energies of both �i , and �j , and thus half of them need to be removed. SCF is a

common approach for all quantum chemical methods, HF and beyond.

Finally, HF exists in two flavors: restricted (RHF) in which each pair of

paired electrons is enforced to occupy the MO having the same spatial part, and

unrestricted (UHF) in which spatial parts of the MOs occupied by the spin-up

and spin-down electrons are treated independently and allowed to be different.

Obviously, RHF is much faster than UHF. The use of RHF is permitted only for

closed-shell systems.

In quantum chemistry, quality results are those of chemical accuracy, i.e., within

1 kcal/mol from the experimental data. HF is a good starting point and a foundation

for many better methods, but in itself it is pretty inaccurate, according to this modern

standard. The good HF days were perhaps in the 1970s. What is missing in HF is the

so-called electron-correlation energy. In fact, by definition, the correlation energy is

the difference between the exact electronic energy and the HF electronic energy.

Why does it arise? Because, in reality, the mean-field approximation accounts only

for some of the Columbic interaction between electrons (the HF exchange energy

is exact). There are two kinds of electron correlation: static and dynamic. Static

electron correlation is reflected in the fact that electrons partially occupy virtual

MOs in an attempt to avoid each other. Dynamic electron correlation has to do with

correlated motion of electrons due to their Coulomb repulsion. In view of this, it is

easy to understand why inclusion of electronic correlation always means mixing

the reference wave function with some contributions coming from the excited

states. Methods of the post-Hartree-Fock type are dedicated to better treatment of

electronic correlation, and the degree to which they do it goes together with the

computational cost of the method.

The simplest methods of the post-HF category are the Møller-Plesset (MP)

perturbation theory (PT) methods, MP2, MP3, MP4, and the rarely used MP5 [1].

These methods add a purturbative correction to the HF solution. MPPT is a variant

of the general Rayleigh–Schrödinger PT. The total exact Hamiltonian is viewed as

a sum of the HF Hamiltonian, OHHF, plus the perturbation . OV / responsible for the

missing electron correlation:

OH D OHHF C � OV : (18)



Quantum Mechanical Insights into Biological Processes at the Electronic Level 125

The part of the total Hamiltonian that is viewed as a perturbation in MPPT is

defined as:

OV D
X

i

X

j¤i

1

jri � rj j �
X

i

X

j¤i

�

Jij � 1

2
Kij

�

; (19)

i.e., the difference between the true electron–electron interaction and the HF

electron–electron interaction energy. The corrected wave function is

 D  0 C lim
n!1

n
X

iD1

�i .i/; (20)

where  0 is the HF wave function and  .i/ are the parts of the electronic wave

function due to the perturbation. The total energy is a power-series expansion in

�, too:

E D E0 C lim
n!1

n
X

iD1

�iE.i/; (21)

where E.0/ D P

i

"i . Skipping the details, this particular partitioning of the total

Hamiltonian into the unperturbed part and the perturbation yields a first order

perturbation theory energy correction equal to zero, with the second order PT

correction being:

E
.2/
0 D

X

n¤0

D

 0

ˇ

ˇ

ˇ

OV
ˇ

ˇ

ˇ
 ni2

E
.0/
0 �E.0/

n

; (22)

where  0 is the HF wave function,  n are doubly excited states (terms due to the

singly and triply excited states are zero), and E.0/ D P

i

"i for either the ground

state, or the nth excited state. If the power series for the total energy is truncated

after E.2/, the method is called MP2, and it is the most commonly used method of

the MP group. Higher order corrections can be derived fairly straightforwardly too,

to produce the MP3, MP4, and MP5 formalisms.

There is an important limitation intrinsic to the MP methods. As any PT, MP

works well only if the perturbation is small, i.e., the reference HF wave function is

already a fairly good solution. If this is not the case, MPPT results will be erroneous.

Additionally, one must keep in mind that the perturbation theory correction is

nonvariational. In other words, it is not guaranteed that the total energy obtained

with the MP methods will be the upper-bound of the true energy. What often

comes as a surprise is an oscillatory behavior of the total energies found with MP2,

MP3, MP4, and MP5, meaning that with the seeming increase in the amount of

electron correlation the energy does not consistently go down but oscillates, often

slowly converging to a particular intermediate value. This behavior is also a result

of nonvariational treatment. In such cases, the best MP solution can be found by

projecting to the limit of MP1.
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The next best, and in fact one of the best quantum mechanical methods is coupled

cluster (CC) [2,3]. CC accounts for a good deal of both static and dynamic electron

correlation. In CC, the wave function undergoes an expansion over the excited

states:

j i D e
OT j oi ; (23)

where j oi is the reference HF function.

OT D OT1 C OT2 C OT3 C � � � ; (24)

is the cluster operator. OT1 is the operator producing all single excitations, OT2 is the

operator producing all double excitation, etc. The e
OT operator can be expressed as

a Taylor series, and produces an expansion of the wave function in terms of many

Slater determinants.

e
OT D 1C OT C

OT 2

2Š
C � � � D 1C OT1 C OT2 C

OT 21
2

C OT1 OT2 C
OT 22
2

C � � � (25)

The expansion is usually truncated at double electronic excitations, which yields

the CCSD method. The triple excitations can be added nonvariationally, via one of

the few available algorithms. The most popular one has triple excitations treated

perturbatively, and the corresponding method is called CCSD(T) [4]. CC is a very

expensive method, and requires a lot of memory, disk space, and computer time. In

many cases, the method features high accuracy, so the results can be in a quantitative

agreement with experiment. Cases where CC, and for that matter all HF-based

methods, do not work are discussed next.

So far we have been correcting the HF reference wave function with additional

electron correlation terms, i.e., we sincerely hoped that HF is in fact not such a

bad starting point. However, sometimes this is not true. Typical systems where HF

does not work are those whose ground states are degenerate or nearly degenerate,

i.e., have closely lying excited states. Clearly, in these cases, two or more electronic

configurations should be able to contribute to the wave function on equal footing

(the wave function in such cases is characterized as multiconfigurational). A

prototypical case is an open-shell singlet diradical, where exactly two configurations

should be equal players: �1.˛/�2.ˇ/ and �1.ˇ/�2.˛/, because choosing only one

of these configurations would mean putting “tags” on electrons: this one is spin-

up, and that one is spin-down. However, labeling electrons is not permitted, due to

their indistinguishablility. HF would exactly “label” electrons by representing the

wave function as a single Slater determinant. Hence, another approach, not based

on HF is needed to handle such situations. Another classic example is the treatment

of homolytic bond cleavage reactions, such as H2 ! H C H, using HF or other

single reference methods. In H2, there is one occupied bonding ¢-MO populated

by two electrons. Of course, at the dissociation limit, the two atoms should have

one electron each, and the system should acquire a singlet diradical character.

However, when the atoms are pulled apart, away from their equilibrium distance

in the molecule, HF will keep the electrons paired, because it is unable to deal
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Fig. 1 Scan along the R.H–H/ coordinate for the H2 molecule performed at the HF/6–31G� and
CASSCF(2,2)/6–31G� levels of theory. It is obvious that HF is unable to properly treat the singlet
diradical that forms at large H–H separations, and creates an excited state, HC C H�. On the other
hand, CASSCF dissociates the molecule properly on two neutral H atoms

with singlet diradicals. As a result, HF will dissociate the H2 molecule into H� and

HC, which is an excited state for the system at large distances (Fig. 1). The reason

is that at large distances, the system again needs to be represented by two Slater

determinants, and not just one.

The methods that fit the bill are called multireference methods. They allow many

Slater determinants to contribute to the total wave function. The simplest such

method is configuration interaction (CI) [5,6]. The total CI wave function is literally

a normalized linear combination of the ground and excited state Slater determinants

in which the expansion coefficients ci are variationally optimized:

‰ D
nX

iD1

ci 
.i/: (26)

CIS includes only the ground and singly excited determinants, CISD also

includes doubly excited determinants, and full CI includes all possible excitations,

as far as the basis set permits. Notice that the ground state MOs expanded in terms of

basis set functions remain fixed in CI, and only the coefficients in front of the Slater

determinants are optimized. This is an approximation, because in reality, excited

state MOs may be slightly different. CI is a simple method that is acceptable in

treatment of open-shell low spin systems.
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A slightly more elaborate multireference method is the Multiconfigurational

Self-Consistent Field (MCSCF), or its most commonly used variant the Complete

Active Space Self-Consistent Field (CASSCF) method [7]. It is similar to CI in

that the wave function is a linear combination of Slater determinants. However,

unlike in CI, in CASSCF the MOs inside of each determinant are also variationally

optimized. In this sense, CASSCF can be called multireference HF. The excited

state configurations are generated within the chosen active space. For example,

CASSCF(2,4) indicates that there are two active electrons that may be promoted

to higher MOs to form excited states, and the total number of MOs over which

these two electrons may be distributed is four (that includes the MOs initially

occupied by the two active electrons). Bigger active spaces typically mean higher

accuracy. If certain included excited states do not contribute to the wave function,

the coefficients in front of those determinants will be close to zero, but those

included determinants that appear to be important will have a chance to mix with

the reference configuration.

CI and CASSCF are methods that include static electron correlation, but are weak

in treating dynamic electron correlation. They can provide a hint for whether or not

a particular system has a multiconfigurational wave function, but cannot provide

very accurate results. Again, the simplest way to improve on a simpler solution is

to use the PT. Indeed, much like MP2 and MP3 improve the HF solution, CASPT2

and CASPT3 are used to improve the CASSCF solution [8]. These methods are the

second and third order, respectively, complete active space PT. They are known

to bring the results closer to the desired chemical accuracy, for species with

multiconfigurational wave functions. It is again important to remember that in order

for the PT to work, the reference CASSCF solution should be good enough, i.e.,

capture all the electronic configurations majorly contributing to the wave function.

In other words, the active space should be chosen carefully. Another known caveat

is that CASPT2 systematically overstabilizes states having more unpaired electrons,

and as a result the ground spectroscopic state may be determined incorrectly [9].

Most sophisticated variations that include much of static and dynamic correla-

tion for multireference methods are almost certainly prohibitively expensive for

biologically relevant calculations, at least until we learn to take a full advantage

of computing on GPU. However, it is worth mentioning that they exist. One

such method is multireference CI, MRCI, which forms a CI expansion, but the

components in the expansion are CASSCF wave functions, instead of single Slater

determinants [10, 11]. Another method is multireference coupled cluster, MRCC

[12, 13]. This is a young and promising method of exceptional accuracy, but it is

also exceptionally expensive computationally.

One thing to keep in mind about multireference calculations is that all of them

besides full-CI are not size consistent. This means that a particular truncated CI

active space does not provide equal amounts of electron correlation in calculations

of molecules of different sizes. As an implication, the dissociation limits of

molecules described by methods that are not size consistent will be slightly off.

What is often viewed as a sanctuary from the computational expense and

hardship of ab initio wave function methods, is a principally different approach
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based on the density functional theory (DFT) [14]. DFT methods are often a good

alternative to electron-correlated methods, because they are relatively inexpensive,

and yet fairly accurate in many cases. DFT states that all properties of the system

are uniquely determined by its ground state electron probability density, �0.x; y; z/,

which is a function of only three variables. In particular, the ground state energy is a

functional of �0 W E0 D E0Œ�0�. The theory in principle should completely avoid the

use of the wave function. However, the problem is that in practice �0 is usually found

from the wave function, which then anyhow needs to be found in the first place.

What makes DFT practical is the use of the so-called Kohn–Sham orbitals. The

system of interest can be represented as a system of noninteracting electrons all

experiencing the same “external potential,” �s.ri /, so as to reproduce the exact

electron probability density:

�0 D
NX

iD1

j'i j2; (27)

where �i are the spatial Kohn–Sham orbitals. The ground state wave function is

then the Slater determinant, in �i . The exact ground state electronic energy can be

written in terms of one-electron Kohn–Sham orbitals and one-electron density as
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2
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1'i .r/dr
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�.r/dr C 1
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�.r1/�.r2/

jr1 � r2j
dr1dr2 C EXCŒ��: (28)

The last term is the exchange-correlation energy, which is always empirical, and

makes DFT not exact. It is also the term that is the most difficult to get right, because

it is very problem dependent.

The Kohn–Sham orbitals are found variationally, through iteratively solving the

Kohn–Sham equations (SCF procedure). �i are eigenfunctions of the one-electron

operators, OHKS
i , with the eigenenergies being the orbital energies, "i :

OHKS
i  i D "i i ; (29)

or
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�.r2/

jr1 � r2j
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!
'i.r1/ D "i'i .r1/; (30)

where the exchange-correlation potential, VXCŒ�� D ıEXC Œ��

ı�
, was introduced. Since

the Kohn–Sham orbitals by definition represent noninteracting electrons, the total

Hamiltonian is the sum of the one-electron operators:

OHs D
NX

iD1

OHKS
i : (31)
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The accurate exchange-correlation energy is the holy grail of DFT. It may be

calculated via numerous recipes, none of which produce exact results. Hence, the

large pool of available DFT functionals, such as BPW91, B3LYP, PBE, TPSSh,

MO6, etc. The letters in these abbreviations signify the authors of these functionals:

B is for Becke, L is for Lee, P is for Perdew, S is for Scuseria or Staroverov, W

is for Wang, and Y is for Yang. Some of these functionals are hybrid, based on

linear combinations of several different functionals, and also adding a portion of

exact exchange coming from HF (e.g., B3LYP and TPSSh). Hybrid functionals are

usually more accurate. TPSSh is a modern functional that includes intermediate

range exchange, which appears to be important in the description of transition

metal complexes. Choosing an appropriate DFT functional for a given problem

is a complicated business frequently guided by experience, and thus may have an

alchemic appearance.

Despite the attractiveness of DFT, it is a must to remember the issues that it

has: DFT suffers from electron self-interaction error, i.e., it includes the electron–

electron interactions for an electron with itself, which is of course unphysical, and

has no dispersion built in. As a result, DFT consistently underestimates reaction

barriers. It also does poorly for weakly bound complexes, and cannot handle long-

range charge transfer. The problem is that the noncoulomb part of exchange usually

dies off too quickly at large distances. One solution is range-separated DFT that

treats long and short range differently and can capture the dispersion, which is

an active area of research. In Gaussian 09, a prefix LC- maybe added before the

functional name to add a long-range correction (e.g., LC-BLYP).

DFT alone is a subject of several monographs, and will not be explicated any

further, beyond its basic principle, advantages, and deficiencies.

A large effort is directed toward the reduction of the computational cost of ab

initio calculations. For most methods, various “short-cuts” have been developed,

for example, the resolution of identity treatment, the dual basis formalism, and

techniques that account for local correlation more than for correlation between

distant MOs. These tricks are not discussed in this brief overview. However, it is

important to be aware of them, and use them when possible, because they often

allow for a considerable reduction of the computational cost and treatment of fairly

large molecules with correlated methods.

Finally, ab initio calculations can be coupled with implicit solvation models, such

as PCM, to account for solvent effects [15]. While providing some correction to the

results due to the presence of the environment, implicit solvation models cannot

reproduce the effect of very directional hydrogen bonds that water molecules may

form with particular groups in the system. Therefore, caution must be exercised,

when exploring the role of water in chemical reactions, for example, using implicit

solvation, and if possible, it is better to rely on explicit solvation (to be discussed in

Sect. 3).

Any ab initio calculation can be coupled to the optimization of nuclear geometry,

where after each SCF cycle, gradients for the nuclear motion are calculated, and the
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geometry is adjusted accordingly, to move the species closer to a stationary point on

the PES. After that, the electronic TISE is solved again through the SCF procedure

to convergence, and so on, until the convergence in geometry is also reached.

There is a wealth of geometry optimization algorithms that have been implemented.

Optimization is one of the tools most commonly used for biologically relevant

molecules. Also, harmonic vibrational frequencies can be calculated to confirm

the nature of the found stationary point in the PES (minimum of saddle point),

and to compare the calculated IR spectrum to the experiment for the structural

characterization. For the latter purpose, frequencies need to be scaled down by

a small factor (for example, this factor is 0.9741 for the TPSS DFT functional),

in order to empirically account for the anharmonicity of the PES. IR and Raman

activities of vibrations are also calculated. Ab initio calculations can provide charge

distribution in a molecule, and there are several charge localization schemes, such

as CHELPG (CHarges from Electrostatic Potentials using a Grid based method) and

NPA (Natural Population Analysis). Those can be used, for example, in the analysis

of chemical bonding in the systems, and to find the location of specific electrons

participating in a reaction.

In order to use ab initio calculations for the assessment of reaction mechanisms

and energetics, one may perform a scan of the PES of the system along a suspected

reaction coordinate(s), and this way find the location of the stationary points

(minima and transition states) on it. One may also optimize directly to the minima

and transition state, if a good guess for the geometries is available to begin with. The

nature of a stationary point may be confirmed via vibrational frequency calculations:

minima will have all vibrational frequencies nonnegative, whereas transition states

will have exactly one imaginary frequency, and the corresponding normal mode of

vibration will be along the reaction coordinate. There are also automated methods

to search for the transition states of reactions, such as QST2 and QST3 implemented

in Gaussian.

Some additional quantum mechanical effects may be taken into account ad hoc.

For example, geometry optimization will take the system down to the minimum on

the PES. However, one must recall that in reality the system never resides exactly

there, but rather sits slightly higher in energy due to vibrations, because quantum

objects are never at rest. Hence, an additional quantum mechanical correction to the

energies should be added due to the so-called zero-point vibrational energy, ZPE.

Harmonic ZPE can be obtained from the calculations of vibrational frequencies.

Also, when reactions of interest involve transfer of light particles, such as protons, H

atoms, or hydrides, empirical tunneling corrections may be added when computing

activation barriers.

DFT, HF, and post-HF methods are implemented in several reputable ab ini-

tio packages, for example, Gaussian, GAMESS, TURBOMOLE, ADF, NWChem,

Q-Chem, and MOLPRO. Ab initio program packages that have the most developed

multireference methods are MOLCAS, MOLPRO, GAMESS, COLUMBUS, and also

Gaussian.
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2.2 Navigating Through the Wealth of Ab Initio Methods:

Some Quick Recipes

Based on the presented foundation, next, it is important to be able to recognize

which approximations should and should not work in each particular case, the

accuracy of results one might expect, and how long it would take to complete a

particular calculation. Here are some suggestions on how to quickly turn the wealth

of ab initio methods into your weapon.

For a molecule or model complex prepared for simulations, it is always advised

first to do a quick check for whether or not single determinant methods are

applicable at all. In other words, one must be sure that the HF wave function is

a good reference function to which electron correlation can be added for a better

result. In order to check this, a CASSCF(n,m) single point calculation should be

performed, and one needs to confirm that the HF Slater determinant is the single

main contributor to the CAS expansion (with a coefficient of 0.9 or higher). If the

system is single reference, wipe off that cold sweat, as life just became much easier.

The next temptation should be to use computationally inexpensive DFT. As a rule of

thumb, if the system under consideration does not have weakly bound components

and is not an anion, especially carrying more that a single charge, it is usually safe to

use DFT methods. For large complexes, long range corrections are desirable though.

Sometimes DFT does not work. The famous case is the Cr2 dimer, whose bond

length cannot be predicted correctly by any DFT method. Hence, when using DFT,

one needs to exercise caution and confirm that DFT results are not in contradiction

with those obtained with correlated methods. So at least some testing of this sort

needs to be performed. For more careful treatment of electron correlation, MP2 or

CCSD(T) may be used, if the size of the system permits.

Another question is the choice for the appropriate basis set. The basic rule is “the

bigger the better.” The more basis functions one manages to include in a calculation

while keeping it manageable, the more accurate the result will be. The size of the

basis set matters particularly for the parts of the system that are involved in hydrogen

bonding and other weak interactions, because with small basis sets the fragments of

the system will start using the basis functions from the neighboring fragments to

lower their energy (this is called the basis set superposition error). As a result, the

system will become artificially contracted. For transition metals, especially the ones

of the sixth and seventh periods in the Periodic Table, the basis sets with relativistic

pseudopotentials should be used.

What if the wave function is discovered to be multiconfigurational? This outcome

is suspected for low-spin transition metal complexes, weakly bound systems,

regions of the PES near transition states of some reactions, and other situations

where two or more Born–Oppenheimer PESs become proximal. Then, it is best

to rely on multireference methods. The simplest ones of this category are CI and

CASSCF. For additional dynamic correlation, CASPT2 can be used. Other, more

expensive methods are probably out of reach for systems of a size meaningful to

biology. It could be recommended to optimize the geometry using CI or CASSCF,
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and then run a single point energy calculation at CASPT2, to refine the total energy.

Multireference methods are often hard to converge. For better convergence and

correct results, it is critical to choose the active space carefully. The ambiguity

that hides in this practical suggestion occasionally makes multireference methods

repugnant to some researchers. One needs to experiment with the size of the active

space so as to capture all significant components to the CAS expansion, and yet to

not run out of memory. As a qualitative rule, occupied MOs of a certain type that

are included in the active space should have vacant counterparts of the same type,

so as to enable the promotion of electrons to those vacant MOs. For example, if

occupied delocalized  -MOs on a particular fragment are in the active space, it is

preferred to have all unoccupied delocalized  -MOs on that fragment also included.

If occupied d-AOs on a metal center are in the active space, the unoccupied d-AOs

should also be included. Depending on the chemical bonding in the system, this

might not be enough though. For example, it was shown that for iron porphyrins the

ground electronic state is predicted more accurately by CASPT2, if not only 3d, but

also 4s AOs on Fe are included in the active space [9]. This is because inclusion

of 3d and 4s AOs allowed for the partial 3d–4s hybridization that enhanced the

bonding between Fe and the porphyrin ring. Overall, if the system clearly exhibits

a multiconfigurational nature, the only truly justified way to proceed is to use

multireference methods. Hopefully, the Reader is now convinced and prepared to

argue for this statement, if needed.

If the size of the system prohibits the use of multireference methods with any

meaningful size of the active space, and yet the system is not a single reference,

unrestricted DFT methods are often used as a compromise. This is so-called broken

symmetry approach, and it is often used for the low-spin complexes of transition

metals. It is the responsibility of the researcher to check the reliability of UDFT in

each particular case!

2.3 Examples of Applications

Pure ab initio methods are often used for the assessment of structure, properties, and

reactivity of biologically relevant model complexes.

A large field is the assessment of the mechanism of enzymatic reactions, using

small complexes cut out of the protein. When doing this, one must be careful to

include the chemically important amino acids in the active site that are in immediate

contact with the substrate of the reaction, or hold metal centers. Amino acids are

commonly truncated at the C’ atom, which is then capped with H, unless the amino

acids is too long, in which case it can be made shorter in the model. There is always

some ambiguity as to what residues should be included in the calculations, and

which can be ignored. One must find a satisfying compromise between choosing

a chemically meaningful model, and having it small enough for the ab initio

calculations to be computationally affordable. One may argue that the rest of the

protein is playing an important role in catalysis, and there is an ongoing debate
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about the dynamics of the entire protein being a player in catalysis. Undoubtedly,

nature constructs large proteins for a number of possible reasons, including efficient

substrate binding and product release, chemical security and preservation of the

architecture of the active site, and the specific overall protein properties. However,

the motion of bulky protein parts is a process that occurs on a much slower time

scale than does the catalyzed reaction. Therefore, as long as the conformation of

the protein does not change dramatically from its crystal structure upon substrate

binding, consideration of the catalytic mechanism on a small model is not a bad

idea. As a payoff, ab initio calculations yield fairly accurate activation barriers

and molecular properties of the reacting system, which can be compared to the

experiment.

As an example, consider the mechanistic study of the enzyme urease performed

using UDFT [16]. Urease is a di-Ni enzyme that catalyzes the hydrolysis of urea,

and many things about the reaction mechanism, such as the role of the second Ni

center, the protonation state of the bridging water molecule, the group playing the

role of the nucleophile, etc. are still unclear. The model complex prepared by the

authors included the two Ni centers, truncated amino acids that bind them, i.e., the

immediate coordination shell of the metal ions, and the substrate (Fig. 2). First, the

geometry of the active site extracted from the crystal structure was optimized, and

the ground state multiplicity was determined. It appeared that the lowest energy

state is a quintet. The catalytic mechanism was then explicated using UB3LYP.

The initial complex between urea and the active site, and all intermediates on the

reaction path were optimized, and vibrational frequency calculations confirmed

that they are true minima on the PES. The transition states were also found via

geometry optimization to the saddle point between the two minima. All relevant

transition state structures were confirmed to be true saddle points, by calculating

their vibrational frequencies, and making sure that in each case there is only

one imaginary frequency corresponding to the displacements along the reaction

coordinate. It was found that there are two competing modes of binding of urea

to the active site: bidentate (Fig. 2) and monodentate (Fig. 3). In both complexes,

urea can get hydrolyzed by the active site, and the calculated energetics of the two

paths renders these mechanisms competitive.

In a similar spirit, Solomon and coworkers [17] performed a systematic and re-

markably exhaustive UDFT study of chemically possible peroxo-type intermediates

occurring in the nonheme di-iron enzyme class Ia ribonucleotide reductase (RNR).

This enzyme is responsible for the oxygen atom removal from RNA building

blocks, ribonucleoside diphosphates, to yield corresponding DNA building blocks,

deoxyribonucleoside diphosphates, by RNR. Class I RNRs contain two iron atoms

in one part of the protein, the R2 subunit, which is separated from the catalytic site

in the R1 subunit where the radical chemistry involving the ribonucleotide occurs.

The study was conducted on the R2 subunit using spectroscopically calibrated

density functional computations of equilibrium structures. Fe–O and O–O stretch

frequencies, Mössbauer isomer shifts, absorption spectra, J -coupling constants,

electron affinities, and free energies of O2 and proton or water binding were

presented for a series of possible intermediates. The study explored how water or
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Fig. 2 Hydrolysis of urea catalyzed by urease, starting from the initial complex with bidentate
coordination of urea to the active site. Adapted with permission from [16]

a proton can bind to the di-iron site of RNR and facilitate changes that affect the

electronic structure of the iron sites and activate the site for further reaction. Two

potential reaction pathways were presented: one where water adds to Fe1 of the

cis-	-1,2 peroxo intermediate P causing opening of a bridging carboxylate to form

intermediate P0 that has an increased electron affinity and is activated for proton-

coupled electron transfer to form the Fe(III)Fe(IV) intermediate X; and the other

that is more energetically favorable where the P to P0 conversion involves addition

of a proton to a terminal carboxylate ligand in the site which increases the electron

affinity and triggers electron transfer to form X (Fig. 4). Both pathways provide a

mechanism for the activation of peroxy intermediates in binuclear nonheme iron

enzymes for reactivity.

One may argue against the use of UDFT for calculations on enzymes such as

ureases and ribonucleotide reductases. For example, Ni2C is a metal cation with the

ŒAr�4s2d6 electronic configuration. The incomplete population of the d-set of AOs

leads to an ambiguity in the number of unpaired electrons on each Ni center. This

number depends on the splitting of d-AO in a particular coordination environment

of Ni. Several electronic states may lie close in energy, and may change order even

in the course of the catalyzed reaction. Hence, the nature and number of singly

and doubly occupied d-AOs on Ni may change. In addition, when two Ni centers
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Fig. 3 Hydrolysis of urea catalyzed by urease starting from monodentate coordination of urea to
the active site. Notice the similarity of the overall energetics to that characteristic of the reaction
path shown in Fig. 2. Adapted with permission from [16]

Fig. 4 Two possible reaction pathways for how water or a proton can bind to the di-iron site of
ribonucleotide reductase and facilitate changes that affect the electronic structure of the iron sites
and activate the site for further reaction. Adapted from [17]

are bridged, they may interact, and unpaired electrons on these centers may couple

in a ferromagnetic or antiferromagnetic fashion. Whether this fairly long-distance

interaction is adequately described by dispersion-lacking DFT or not remains to

be seen. Furthermore, it was found, for example, that the surrounding protein
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Fig. 5 The reaction of Kemp elimination, subject to catalysis by artificial enzymes designed
starting from ab initio calculations

environment can impact the adapted electronic configuration of the metallic site,

and the impact is stronger when the prediction is made by multireference methods

than when DFT is used [9]. The problem is rooted again in the poor treatment of

long-range effects in DFT. As we now know, when multiple electronic states are

close in energy, and the ground state is thus nearly degenerate, the best solution is

to use high level multireference methods. However, for this large model complex,

UDFT is probably a wise compromise, and one may rely on the “broken-symmetry”

solution somehow taking care of any multiconfigurationality of the wave function,

should it arise. DFT is much easier to use, and it is much faster. As a result, the

temptation to use DFT and to never look beyond is high. It is fair to say that DFT

is largely overused. A good understanding of the electronic structure and possible

problems in the specific system should guide the researchers in their decision for

the suitable methodology.

Pure ab initio calculations are also a great asset in the design of artificial enzymes,

for example, in the recently developed “inside-out” enzyme design algorithm [18].

In this algorithm, the building of a new enzyme for any reaction of interest starts

from the consideration of this reaction in the gas phase. The transition state to this

reaction is found, by optimizing to the saddle point on the PES using ab initio

methods, usually DFT. The strategic amino acids that will constitute the catalytic

machinery in the enzyme are then placed around the transition state, and their

conformations and orientations optimal for catalysis are also found using ab initio

calculations. The structures thus obtained are called “theo-zymes,” for theoretical

enzymes. A theo-zyme is then grafted into an existing protein scaffold, and the rest

of the enzyme binding pocket is rebuilt and repacked around the theo-zyme, using

molecular mechanics and statistical mechanics techniques. The enzymes are then

computationally and experimentally tested for catalytic activity. The majority of the

work in this effort is done computationally, before any experiment is performed, and

at the heart of the process are the ab initio calculations on a small model of the active

site. The protocol was successful in the design of numerous active enzymes, for

example, for the catalysis of the Kemp elimination reaction (Fig. 5). In this reaction,

a base abstracts H from the substrate. The N–O bond opens, putting the negative

charge on O, which eventually gets easily protonated. Thus, what was needed for the

theo-zyme was a base (Glu, Asp, or Asp/Glu-His diad), and some stabilizers of the

negative charge that develops in the reaction. The rest of the binding site should help
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Fig. 6 Theo-zymes predicted by DFT calculations for the catalysis of the Kemp elimination
reaction. These structures were then grafted onto existing protein scaffolds, and tested for catalytic
activity. The transition state of the reaction is shown in yellow. (a) Glu is playing the role of the
catalytic base, and (b) the Asp-His diad is the base in this case. Adapted with permission from [18]

the specificity to the given transition state, and also the hydrophobic environment.

In Fig. 6, two types of theo-zymes predicted on the basis of these ideas are shown.

In Fig. 6a, Glu plays the role of the catalytic base in the action. Phe is placed for

 -stacking purposes, to stabilize the negative charge developing in the transition

state and orient the substrate. Lys is placed to form a H-bond to the O atom that

acquires the negative charge. The structure in Fig. 6b has Asp as the base, Ser as a

H-bond donor, and Trp as a  -stacker. Theo-zymes such as these were installed into

existing proteins and catalytic activity was confirmed with a considerable success

rate. This demonstrates that small models of the active sites calculated using ab

intio techniques are highly relevant to the chemical actuality in the binding site of

proteins, even though long-range effects are obviously not included in the model.

Highly correlated electronic structure methods, especially multireference meth-

ods are often not needed for the ground state calculations. They are, however,

extensively used in more sophisticated calculations, such as those of excited states

and conical intersections. We withhold examples of their performance until Sects. 3

and 4.

3 Mixed QM/MM Techniques

3.1 Theoretical Foundation

An obvious deficiency of pure ab initio calculations that one might point out

immediately is that calculations are always done on a small model, and the effect of

the environment is considered negligible. However, sometimes excluding the effect

of the larger biomolecule and solvent surrounding the model is highly undesirable,

while it is still needed to describe the small reactive part of the system with quantum

mechanical accuracy. The answer to this dilemma is often found in mixed QM/MM

approaches [19, 20]. In QM/MM, the system is partitioned into what is thought to

be the most chemically significant part, e.g., a reactive center, and the rest of the
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Fig. 7 Partitioning a
biological macromolecular
system in solution into a
small chemically significant
QM region and the MM
region that includes the rest
of the biomolecule and the
solvent, and may be viewed
as the environment for the
QM subsystem

system that can be viewed as a “matrix.” The former part of the system is treated

at the QM level of choice, and called the QM region. The latter constitutes the

MM region and is treated at a MM level, such as a classical force field. The QM

region is usually embedded in the MM region (Fig. 7). As a more accurate variation

of QM/MM, there exist QM/QM methods, where the two parts of the system are

both treated quantum mechanically, but using the methods of different accuracy

and hence computational demand, and also three-layer QM/QM/MM. QM/MM is a

popular approach, and it is still gaining momentum in biochemical simulations.

The total energy of the QM/MM system is not merely a sum of the QM and MM

energies of the corresponding regions, because the two regions are coupled. Instead,

there are two schemes for calculating the total energy of the system: subtractive and

additive. In the subtractive scheme, the required components are the QM energy

of the QM region, EQM(QM), MM energy of the entire system, EMM(system), and

MM energy of the QM region,EMM(QM). Then, the total energy is

EQM=MM.system/ D EMM.system/C EQM.QM/�EMM.QM/: (32)

The method is simple. However, there are two caveats: (1) The interactions between

QM and MM regions are treated exclusively at the MM level, which is often

inaccurate. In particular, the entire electrostatics of the system will be represented

by fixed charges on atoms. (2) The MM parameters are needed for the QM region,

and they are often not available, especially for systems containing transition metals

or for systems in excited electronic states. A particularly prominent example of the

subtractive method is ONIOM, by Morokuma and coworkers [21]. ONIOM has one

additional improvement, however, that the MM charges are incorporated into the

QM Hamiltonian (electrostatic embedding).

More popular nowadays is the additive approach, which dictates the following

expression for the total energy of the system:

EQM=MM.system/ D EMM.MM/C EQM.QM/�EQM�MM.QM;MM/: (33)
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The MM calculation is now done only on the MM part. EQM–MM(QM,MM)

is the QM–MM coupling term, which defines the communication between the

two regions, and also distinguishes between different flavors of QM/MM. This

term includes bonded and nonbonded interactions between the regions. Bonded

interactions have to do with contributions to the total energy due to bond stretching,

valence angle bending, and torsions. Nonbonded interactions include contributions

from electrostatics and Van der Waals interactions.

Electrostatic interactions between QM and MM regions constitute an important

long-range effect. As an illustrative example, consider a highly charged metal cation

inside the QM region interacting with nearby amino acids of the MM region. The

strong electrostatic potential provided by the cation should polarize the nearby

MM region and may even change the protonation states of amino acids. This, in

turn, should affect the protein conformation. At the same time, the impact of the

repolarized and repositioned MM region on the QM region should change, too. So

treating the system properly becomes quite nontrivial, and this is why it is desired to

maximally screen the active center from the potentially inaccurately described QM–

MM boundary. Thus, it is recommended to have the QM region as large as possible,

which of course forces a compromise on the QM accuracy.

There are several schemes for treating electrostatic interactions, of different

levels of sophistication. The mechanical embedding scheme assumes MM-type

electrostatic interactions between point charges on atoms, which come from the

parameterized force field for the MM part and QM calculations on the QM part.

The problem is that QM charge-localization schemes are not necessarily accurate,

updating the QM charges as the QM regions changes leads to discontinuities in the

PES, and QM charges have no chance to respond to the presence of the MM charges

around the QM region. The most popular electrostatic embedding scheme helps the

latter problem by adding the electrostatic interactions with the point charges of the

MM region into the quantum mechanical Hamiltonian. One potential pitfall of this

scheme is that the charges located on the MM region very near the QM region tend

to overpolarize the QM region. Yet a better scheme is polarizable embedding, which

allows for repolarization of the MM region in response to the presence of the QM

region. The repolarized MM region can then act back on the QM region changing its

electron density. This QM/MM method requires iterative solving to self-consistency.

Generally established fully polarizable force fields are not yet available, however,

they are currently under construction.

Nonbonded Van der Waals interactions between QM and MM regions are short

range, and usually create fewer problems. They are handled by MM only. For this,

Lennard-Jones parameters, " and � , for the QM atoms in nonbonded contacts with

the MM atoms have to be available. The interactions are approximated with the

typical Lennard-Jones potential:

VLJ D 4"

�

��

r

�12

�
��

r

�6
�

: (34)
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Fig. 8 The frozen-orbital boundary methods, atoms marked with “Q” belong to the QM subsys-
tem, and atoms marked with “M” belong to the MM subsystem. (a) A set of localized orbitals is
placed on Q1, one of which (shaded) is kept frozen and points toward M1. (b) GHO method: A set
of localized orbitals is placed on M1, one of which (open) is active and points toward Q1. Adapted

with permission from [19]

If the QM/M boundary does not pass through a covalent bond, that would

be it. Sometimes, this is the case, for example, when cofactors are residing in

proteins without being covalently attached. If, however, the QM/MM boundary

does cut a bond, dangling bonds that appear on either side of the cut need care.

Several approaches have been developed for this. The most popular is the link atom

approach: an extra atom, usually H, is introduced to satisfy all dangling valencies in

QM and MM calculations on the separated subsystems. Sometimes, instead a special

boundary atom is placed at the interface, such that on the QM side, it mimics the cut

bond and the electronic character of the MM moiety, and in the MM calculation, it

behaves as a normal MM atom. The link atoms are exempt from any forces dictated

by the calculations. A caveat here is that the link atoms are positioned very close

to point charges on the MM atoms, and thus get overpolarized by the MM region.

One solution is to use minimal basis sets for the link atoms in the QM calculations,

to make them minimally polarizable. Otherwise, the electrostatic terms that are due

to the interactions with the link atoms may be artificially diminished in the QM

Hamiltonian, or the one-electron integrals on the link atoms can be deleted, or the

charges on the MM atoms near the QM region can be redistributed or smeared.

Another approach is to place hybrid localized frozen orbitals at the boundary

(Fig. 8). These MOs do not participate in SCF and remain unmixed with the rest

of the MO system on the QM fragment. The MOs look the most like lone pairs

on atoms at the interface. Some variations on the theme include parameterization

for these orbitals. Also, there is a variant called generalized hybrid orbitals (GHO),

in which frozen MO is placed on the MM atom rather than the QM atom at the

interface, and this MO participates in SCF.

The bonded interactions that involve atoms on both sides of the interface need

to be included in the MM calculation, which therefore involves three atoms into

the QM region at each interfacial point. It is important to keep the QM region

large enough so that no chemical transformations would involve these atoms at the

interfaces. It is also important to have the QM–MM cut such that the net charge on

the MM region would be zero.

QM/MM calculations can be done in conjunction with geometry optimization.

Optimization to a saddle point on the PES (i.e., transition state) is often done through
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the calculation of the Hessian on a small core fragment inside the QM region. The

rest of the QM region is simply adiabatically optimized to adapt to the changes in

the small core. Thus, energy profiles of chemical reactions can be calculated in the

context of QM/MM.

QM/MM scheme may be combined with statistical mechanical sampling tech-

niques, such as Monte Carlo (MC), or molecular dynamics (MD). This is very

powerful, because it combines the accuracy of the QM treatment with the rep-

resentation of large biomolecules as a statistical mechanical ensemble at finite

temperatures and pressures. In addition, sampling allows for calculations of free

energies rather than enthalpies, which is a more relevant quantity. However, it is

nearly prohibitively expensive to combine the full sampling on the system with

good QM calculations on the QM region at every configuration of MC or MD.

The amount of sampling required for good equilibration and statistics accumulation

needs to be large for large biomolecules (on the order to tens of millions of MC

configurations for a protein consisting of ca. 200 residues in explicit water). To

save time, QM/MM MC has been accomplished with the use of semiempirical

methods for QM, as implemented in MCPRO [22]. Semiempirical methods rely

on heavy parameterization, so that integrals in the QM calculations are either

deleted or replaced with parameters. These methods are of a diminished accuracy,

and nowadays almost extinct. Also, various tricks may be employed to reduce the

amount of sampling on the QM region, or to avoid sampling of the QM region

at all.

QM/MM statistical mechanics methods can be used to assess the structures of

large biomolecules, and also the mechanisms of chemical reactions. For example,

QM/MM MC or MD can be coupled to free energy perturbation (FEP), which

among other things allows for driving chemical reactions along chosen reaction

coordinates. FEP is based on imposing the chemical change into the system through

a slowly introduced perturbation, i.e., in a series of small steps. If the steps are small

enough, the assumption is that the statistical mechanical ensemble representing the

system does not change much between the start and the end of the step. So the

sampling can be done only on one of these points. Based on this approximation, the

�G per each step can be calculated using the Zwanzig formula:

�G .1 ! 2/ D G2 �G1 D �kbT ln

�

exp

�

�E2 �E1
kbT

��

1

: (35)

Then, the changes in free energy per step can be added up to yield the change of

free energy to the transition state of the reaction (activation free energy barrier),

or all the way to the products of reaction. Thus, the mechanism and energetics of

the process become accessible. The QM level of theory used in these calculations

should be carefully chosen for the system at hand, and the same rules apply as for

stand-alone ab initio calculations.

Reactions occurring on multiple PESs, i.e., in the nonadiabatic regime, can

also be assessed in QM/MM, either by itself or coupled to statistical mechanical

treatment, usually MD. Nonadiabatic dynamics is considered in Sect. 4.
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Fig. 9 The solvated tryptophan 2,3-dioxygenase protein and the QM Model (Except Link Atoms)
used in the ONIOM calculations. Adapted with permission from [23]

3.2 Examples of Applications

The ONIOM method is of a paramount success and importance for biochemical

applications. Among the most recent ONIOM studies is a mechanistic study by

Morokuma and coworkers [23] on Heme functionality in bacterial tryptophan 2,3-

dioxygenase, which catalyzes the oxidative cleavage of the pyrrole ring of L-Trp.

In this mechanistic study, the system consisted of a large portion of the protein and

explicit water (the classic rigid body TIP5P water model) (Fig. 9a). The QM region

is shown in Fig. 9b. The QM method was B3LYP/6–31G�, and the MM methods

was the AMBER force field. The link atoms approach was used: the QM region was

capped with H atoms in QM calculations. Only a part of the MM region was allowed

to move during the geometry optimization, and the rest of the system provided a

static environment.

In this study, the ONIOM calculations do not support the recently proposed

mechanisms for xcTDO (via either formation of the dioxetane intermediate or

Criegee-type rearrangement) but suggest a rather unique mechanism in the hemes:

(1) direct radical addition of a ferric-superoxide intermediate with C2 of the indole

of Trp, followed by (2) ring-closure via homolytic O–O cleavage to give epoxide and

ferryl-oxo (Cpd II) intermediates, (3) acid-catalyzed regiospecific ring-opening of

the epoxide, (4) oxo-coupled electron transfer, and (5) finally, C–C bond cleavage

concerted with back proton transfer (Fig. 10). Thus, QM/MM calculations have a

potential predictive power, to guide future experimental research.

QM/MM MC simulations are also of a great importance in understanding the

mechanisms of enzymatic reactions. For example, QM/MM MC was used to assess

the mechanism and performance of artificial enzymes catalyzing Kemp elimination

(Fig. 5) that was already mentioned [24]. In these simulations, the QM region was

chosen to contain the substrate and the catalytic base up to C’, and the QM level was

semiempirical PDDG-PM3. The rest of the protein and hundreds of explicit solvent

water molecules (the TIP4P water model) constituted the MM region treated with

OPLS-AA force field (Fig. 11a). The system was extensively sampled with MC (on
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Fig. 10 (a) ONIOM calculations were instrumental in identifying the “missing piece” in the
sequence of structures produced in the reaction catalyzed by tryptophan 2,3-dioxygenase. (b) The
new proposed reaction mechanism that involves the “missing piece.” Adapted with permission
from [23]

the order of 30�106 configurations). The simulations were then coupled to the FEP

methodology for driving the reaction along the reaction coordinates, which were

chosen to be the N–O distance for the opening N–O bond of the substrate, and a

combined reaction coordinate for H-transfer, as shown in Fig. 11b. The reaction

was slowly driven along these coordinates, and at each point on the reaction path

the system was equilibrated with MC. Thus, the free energy map for the reaction

was generated (Fig. 11c). The mechanism of the catalyzed reaction is concerted,

with the proton transfer occurring slightly earlier and driving the subsequent N–O

bond opening. The overall �G of the catalyzed reaction is slightly negative. The

activation barrier is 13.5 kcal/mol, which, when compared to that for the uncatalyzed

reaction in water (ca. 20 kcal/mol), indicates a catalytic effect, in agreement with

experimental results.
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Fig. 11 QM/MM MC modeling of the Kemp elimination reaction catalyzed by an artificial
enzyme: (a) the entire protein solvated with explicit water, prepared for simulations, (b) the choice
for the QM region, (c) the free energy map, and (d) the snap-shot from the MC simulations
taken in the region of the free energy surface corresponding to the TS. Adapted with permission
from [24]

An additional feature of QM/MM FEP MC method is that one can look at the

structure of the protein undergoing the reaction, at any point on the free energy

profile. For example, in Fig. 11d, the representative structure of the binding site

recorded in the region of the transition state is shown. One may see that the

reaction proceeds smoothly, and all the parts of the protein play their designated

roles. For example, Trp201 remains in the  -stacking orientation with respect to

the substrate throughout the course of the reaction, and Asn131 forms a hydrogen

bond to the O atom that acquires negative charge. This structural insight is unique

to simulations, and cannot be attained experimentally. This is an important tool for
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the analysis of enzymatic mechanisms, and, in the case of artificial enzymes, for

the detection of potential structural problems with designs and providing recipes for

their improvement and rescue.

The number of applications and variations on the theme of QM/MM is enormous,

and the field still gains momentum, suggesting its even greater popularity in the

near future. The basic principle of QM/MM is always the same: partitioning the

system into the more chemically significant part and the rest, treat the two parts with

theory of different accuracy and cost, and take good care of how the two subsystems

communicate.

4 Excited States and Electron Detachment

4.1 Theoretical Foundation

Excited electronic states frequently occur in biology. They may form when molecules

absorb ultra violet light coming from the Sun, for example. Electronic excitations

may happen by promoting an electron from the highest unoccupied MO (HOMO),

or from deeper occupied MOs to one of the bound unoccupied MOs. Hence,

there is a whole spectrum of excited electronic states accessible to the molecule.

Higher energy radiation may induce the photoelectric effect in biomolecules, i.e.,

electron detachment from one of the valence MOs to the continuum, yielding a

photoelectron spectrum. Needless to say that electronic excitation and detachment

energies characteristic of molecules can be used as spectroscopic probes for their

structure and electronic properties. Furthermore, molecules excited to one of the

excited PESs will evolve according to gradients for the nuclear motion characteristic

of this PES. This evolution may lead to the formation of various photoproducts,

sometimes irreversibly. This is relevant to photodamage of molecules such as, for

example, DNA in our cells. Alternatively, the system may fluoresce, if it gets trapped

on one of the “dark” exited states. Also, electronic excitations are the key to the

catalytic activity of photoactivated enzymes.

A computational description of excited states requires special methods. The least

computationally expensive applicable method is a variant of DFT, called time-

dependent DFT, or TD-DFT. In TD-DFT, there is a time-dependent potential to

which the system is exposed, and it is postulated that this potential uniquely maps

onto the time-dependent electron density of the system [25]. TD-DFT is a linear

response type of method, which is based on the assumption that the reference ground

state is perturbed relatively little upon the presence of the time-dependent field, and

so the ground state solutions can be used throughout. The poles in the response

function correspond to excitation energies of the system.

The method works well for well-separated ground and excited PESs. However,

being intrinsically single-configurational, TD-DFT cannot handle states that are
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near-degenerate with the ground state. For example, if TD-DFT is used to scan

the ground and excited PESs with the purpose of identifying the mechanism of

nonradiative decay of an excited state, the area near the surface-crossing or seam

will not be describable. Also, long-range charge-transfer excited states cannot be

accurately calculated with TD-DFT, due to the lack of dispersion.

As a cure for the aforementioned problems with TD-DFT, recently, the con-

strained DFT method (C-DFT) was proposed [26]. The constraint enforces the

system to stay in a fixed diabatic state, which is defined by the number of electrons,

Nc, populating a particular site or group of atoms in the molecule:

Z
�.r/�.r/dr D Nc: (36)

�.r/ is the weighting function that specifies a particular excited state of interest.

For example, if a system without charge separation has a long range charge transfer

excited state, this excited state would be described as a diabatic state with fixed

charges of �1 on the acceptor and C1 on the donor of the electron. The total energy

of the constrained state is then optimized:

Ec.�;Nc/ D min ŒEf�.r/g�C �c

�Z
�.r/�.r/dr �Nc

�
; (37)

where the constraint is incorporated via an additional Lagrange multiplier, �c. The

Kohn–Sham equations are solved simultaneously for the orbitals, eigenenergies,

and �c:

�
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jr � r 0jdr 0 C Uxc.r/C �c�.r/

�

�k D "k�k : (38)

Thus, C-DFT is a ground state method, but for the state of the modified

Hamiltonian that has the desired diabatic constraint incorporated. C-DFT is claimed

to allow for more accurate calculations of excited state energies, if long-range charge

transfer is involved. In addition, for the mechanisms of photoreactions, the crossing

point between the diabatic states can be found, and that can serve for understanding

the mechanism of photoreactions. However, in order to perform the dynamics on

such surfaces, the coupling between the diabatic states has to be evaluated, which

cannot be done rigorously, because again the two obtained states are technically

eigenstates of different Hamiltonians. Nevertheless, C-DFT is a promising and

inexpensive method; it is currently implemented in NWChem.

A more accurate method for the excited state calculations is Equation of Motion

Coupled Cluster, EOM-CC [27], although it is quite expensive computationally,

O.N6/. EOM is based on a single HF Slater determinant as a reference func-

tion. It then finds the excited states by diagonalizing the similarity transformed

Hamiltonian:

NH � e�T HeT ; (39)



148 A.N. Alexandrova

where

NHR D ER (40)

L NH D EL (41)

LIRJ D ıIJ; (42)

and T, R, andLC are excitation operators with respect to the reference function, i.e.,

HF. T is usually truncated at single and double excitations (EOM-CCSD). R may

or may not conserve the total number of electrons and unpaired spins in the system,

thus providing access to radicals with different numbers of unpaired electrons. EOM

is also a size-consistent method. The error bar for excitation energies computed

with EOM-CCSD is on the order of 0.1–0.3 eV, which allows for the accurate

interpretation of electronic spectra. EOM also has access to nearly and completely

degenerate excited, Rydberg and valence, and mixed Rydberg-valence states, as long

as HF is a good reference function. However, it is important to keep in mind that

if the ground state becomes nearly degenerate with an excited state or states, EOM

will not be able to handle it. Hence, again, conical intersections with the ground

state and other such topographic entities are out of reach.

Finally, what can handle excited states, in both nondegenerate, and degenerate

cases, is the multireference methods. The cheapest methods are CI, and state-

averaged CASSCF (SA-CASSCF). In a regular CASSCF calculation, the set of

active MOs is optimally chosen so as to improve the correlation effects on the

ground state. If the same active space is then applied also to the excited states,

their treatment will not be as good as that of the ground state. SA-CASSCF

differs from regular CASSCF in that the active space is chosen to be an optimal

compromise, so as to describe the averaged states with maximally similar accuracy.

For more dynamic electron correlation, CASPT2 and CASMRCI may be used.

Vertical electronic excitation energies, as well as locations of conical intersections

can be calculated using multireference methods.

In order for an electronic transition to be observed in a spectrum, it has to

have an appreciable cross section, i.e., transitional probability, which is defined

as an integral over electronic degrees of freedom of the transition dipole moment

operator sandwiched between the final and initial electronic states of the system.

States that have a significant cross section are called “bright” states, and they can be

significantly populated through photo-absorption. States that do not have large cross

sections are so-called “dark” states. They can get populated primarily through the

decay of the prepared bright states. The transitional probability is given through the

computed oscillator strengths in calculations, such as TD-DFT and EOM-CCSD.

What is often of additional interest is optimization on excited PESs. At vertical

electronic excitation, the system hits the excited PES in a Franck–Condon region

(Fig. 12). The excited state PES in the Franck–Condon region has very different

curvature than did the ground PES in the minimum, and in fact is rare that the

minima of the ground and excited PES would coincide. Hence, after excitation,

nuclei experience forces characteristic of the excited PES, and moving under
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Fig. 12 Vertical electronic excitation from the ground PES .E0/ to the excited PES .E1/. The
species hits the excited PES in the Franck–Condon region (vertical arrow pointing upward), located
on the slope of the excited PES. Nuclear relaxation would take the system down to the minimum
on the excited PES, and q01 is the difference between the geometry of the vertically excited species
and the new geometry of the minimum on the excited PES

these forces relax to the nearest minimum on the excited PES, or to the region

of crossing with another PES. Thus, knowing the position of stationary points

on the excited PESs is important in mechanistic studies of photoreactions, and

also in understanding and optimizing fluorescent compounds, such as photoprobes.

Optimization on the excited PESs can be done with TD-DFT and multireference

methods. However, again, if optimization is intended to find the crossing point

between two surfaces, TD-DFT would fail, and only multireference methods should

be used.

Obviously, the methodology used for excited state calculations can also be

used for calculations of vertical electron detachments energies (VDEs). For this,

one needs to calculate the first VDE, by subtracting the energies of the ionized
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species and the initial species. Then, excited electronic states for the ionized species

have to be found, and the excitation energies have to be added to the first VDE

to obtain VDEs corresponding to the electron detachment from the MOs deeper

than the HOMO. Calculated VDEs can be compared to experimental photoelectron

spectra, and good agreement (within 0.1–0.2 eV) would be a structural probe for the

molecule.

4.2 Examples of Applications

Ab initio calculations of excited states can be done with chemical accuracy, to

explain or challenge existing experiments, and to make predictions. For example,

ionization energies of aqueous nucleic acids have been calculated at TD-DFT and

CASPT2 with implicit solvation, and compared to experimental values [28]. The

lowest vertical ionization energies of aqueous cytidine and deoxythymidine were

determined experimentally to be 8.3 eV, corresponding to an electron detaching

from the base. Calculations were in quantitative agreement with the experiment.

A dramatic effect of the aqueous environment was revealed by the ab initio

computations. Namely, bulk water not only modestly lowers the ionization potential

of the DNA bases but also makes it insensitive to the presence of sugar or phosphate.

This is a very different situation from that observed in the gas phase, where the other

DNA components (phosphate in particular) strongly influence the ionization process

at the base.

Krylov and coworkers conducted a very detailed study of the electronic structure

of the chromophore in the green fluorescent protein (GFP), and its changes upon

one and two-electron oxidation [29]. The purpose of this work was to elucidate

the mechanism of oxidative redding of the protein. The chromophore in GFP, 40-

hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI),(Fig. 13a) is widely used

in bioimaging. Structural changes upon oxidation were minor but sufficient to dif-

ferentiate the species by their IR absorption spectra. MOs illustrating the electronic

changes upon electron detachments are shown in Fig. 13b. Electronic states of

relevant species were characterized by the SOS-CIS(D), multireference perturbation

theory, and EOM-CCSD calculations, and results obtained with different methods

were in a fairly good agreement. The one- and two-electron oxidation processes for

deprotonated HBDI were considered. Figure 13c shows an overall energy diagram

for the three considered forms of HBDI. Adiabatically, the doubly oxidized form

is 9.98 eV above the ground state of the anion. The respective value of VDE

corresponding to removing two electrons is 10.37 eV. The adiabatic ionization

energy from the ground state of the doublet radical is 7.59 eV computed using the

anion’s VDE value of 2.54 and 0.15 eV relaxation energy of the neutral radical.

Another relevant value is the energy gap between the excited states D1 and D2 of

the doublet radical and the cation. Using the same values of vertical detachment

and relaxation energies, and 1.52 and 3.37 eV for the verticalD0 ! D1;2 excitation

energies, the authors estimated the ionization energy of the electronically excited
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Fig. 13 (a) The deprotonated chromophore from the GFP in the anonic and cationic forms. (b)
Relevant molecular orbitals of deprotonated HBDI (HF/6–311G�). In the ground state of the anion,
both  1 and  2 are doubly occupied, and the bright state is derived by the  1 !  � excitation.
Oxidized forms are derived by removing the electrons from  1. (c) Energy diagram for the relevant
electronic states of deprotonated HBDI. Adapted with permission from [29]

doublet radical as 6.07 and 4.22 eV, respectively. Finally, the energy gap between

the excited singlet state of the anion and the two excited states of the radical are 1.29

and 3.14 eV, respectively. The results suggested that the doubly oxidized species (the

deprotonated HBDI cation) may be responsible for the oxidative redding through the

following newly proposed mechanism: the first step involves photoexcitation, and

the blue light is sufficient to generate this transition. The second and third steps are

one-electron oxidation steps. The closed-shell character of the cation is consistent

with the relatively chemically stable nature of the red form of GFP. The absorption

in the cation (product of two-electron oxidation) is red-shifted by almost 0.6 eV with

respect to the anion, and the resulting value of 2.02 eV is in good agreement with

the experimental excitation energy of 2.12 eV. The redshift is consistent with the

electronic excitation in the cation being the  1 !  2 process rather than  1 !  �

in the anion. This mechanism of redding is distinctly different from previously

characterized ones in which redding was achieved by extending the  -system of

the chromophore.

Excited states in DNA fragments are important for understanding the mechanism

of DNA photodamage, and self-rescue due to internal conversion from electronically

excited states. Calculations of high accuracy are expensive, as was eluded. Hence,

only small fragments, such as one or two nucleic bases can be characterized using

high levels of ab intio theory. Roos and coworkers sophisticatedly explicated the

electronic spectra of nucleic base monomers [30]. The CASSCF and CASPT2

methods were used. The comparison with the experimental measurements speaks

for the stellar qualities of the chosen methodology. For example, for N(9)H-adenine,

the computed valence   !  � excitation energies are 5.1, 5.2 (4.9), 6.2 (5.7–6.1),
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Fig. 14 The ground and excited PESs for the  -stack of two thymine bases, calculated at the
CASSCF(12,12)/6–31G� level. The conical intersection is precisely identified, explicating the
mechanism of the formation of thymine dimer as a Œ2 C 2� cycloaddition mechanism. Adapted
with permission from [31]

6.7, 7.0 (6.8), 7.6 (7.7) eV, where the numbers in parentheses represent experimental

data. For guanine, the numbers are 4.7 (4.5–4.8), 5.1 (4.9–5.0), 6.0 (5.5–5.8), 6.5

(6.0–6.4), 6.6, 6.7 (6.6–6.7), and 6.7 eV. Intensities of the transitions were also

predicted.

Robb and coworkers [31] investigated the formation of the thymine dimer,

which is a known route of mutagenesis in DNA. The dimer forms between two

 -stacking thymine residues that neighbor each other in a strand of DNA. The

repair of this photoproduct requires a photoinitiated enzyme, photolyase, so it is

a serious type of DNA damage. The process starts from DNA adsorbing a UV

photon, and an electronic excitation from the S0 state to S1. The scans of the

ground and excited PESs were performed at the CASSCF(12,12)/6–31G� and

CASPT2/cc-pVDZ levels of theory. In the scans, the chosen reaction coordinate

was fixed, and gradually incremented from point to point, and the rest of the internal

degrees of freedom were optimized, both on the ground and on the excited PESs.

It was found that the molecule on the S1 PES rapidly evolves, reaching the S1=S0

conical intersection (Fig. 14). At the conical intersection it proceeds further along

the reaction coordinate toward the new minimum on the ground PES, which is

the dimer. The supplementary ground state calculations for this process indicated

that it is highly unlikely to proceed adiabatically, without the involvement of the

excited state.

When considering photochemistry of small fragments that model larger bio-

logical systems, one must remember that the locations of conical intersections

can be heavily impacted by the surrounding environment, such as solvent, or the
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rest of the biomolecule, whether it is a DNA double helix or a protein. This was

demonstrated, for example, in the work by Yamazaki and Kato [32], on nonradiative

relaxation and internal conversion of 9H-adenine. The considered photoprocess

included an electronic excitation on an isolated 9H-adenine, in the gas phase, water,

and acetonitrile. The PESs were explicated with the SA-CASSCF calculations. The

equilibrium geometries of the ground and excited (1  � 1La and 1Lb;
1n �, and

1 ¢�) states and the conical intersections between them have been found. The

dynamic electronic correlation was then added to the found points on the PESs, via

multireference perturbation theory. The relative energies of the excited states were

found to shift in aqueous solution as compared to the gas phase. As a result, the

preferred mechanism of decay changes. Specifically, in water, the 1La and 1Lb states

are very close in energy, and fast to interconvert. The 1La=S0 conical intersection

is the dominant decay pathway. This conical intersection involves the puckering of

the six-membered ring of the 9H-denine molecule. The 1n � and 1 ¢� states are

pushed higher in energy, and the decay pathway through these conical intersections

becomes unfeasible. So in solution, there is no slow component of the decay due to

the 1n � and 1 ¢� states, unlike in the gas phase.

In order to get the full mechanistic information about photochemistry involving

multiple PESs, nonadiabatic dynamics simulations are required. Unlike usual

ground state MD, nonadiabatic dynamics must have a possibility for the nuclei

to jump from one PES to another near conical intersections and seams. Such

simulations are costly and algorithmically more complex. Dynamics is considered

in the next section.

5 Ground and Excited States Dynamics

5.1 Theoretical Foundation

The true insight into the mechanisms of reactions, branching ratios, life-times of

intermediates, etc. can be gained only from the dynamics simulations. Dynamics

may happen on a single PES, in which case it is called adiabatic dynamics. If

dynamics happens on multiple PESs, it is called nonadiabatic dynamics, since the

adiabatic BAO breaks down in this case.

In reality, both electrons and nuclei are quantum particles, and the most proper

approach to dynamics would be to propagate both as quantum objects. The

nuclear wave function, �.R; t/, is an eigenfunction of the nuclear time-dependent

Schrödinger equation:

i„ @
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In quantum nuclear dynamics, �.R; t/ can be represented as a Gaussian

wavepacket, which is the object that needs to be propagated in the dynamics:
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However, this kind of dynamics for the entire biological molecule is prohibitively

expensive. Usually, nuclei are considered classical objects, as long as the dynamics

involves only one PES at a time. As a compromise, there is also mixed quantum-

classical nuclear dynamics, where only some of the nuclei in the system are treated

as quantum particles (i.e., delocalized wave-packets).

We will first consider the ab initio adiabatic dynamics in which nuclei are treated

as classical particles moving on a single adiabatic Born–Oppenheimer PES, one

PES at a time. This kind of dynamics also can be approximated by the classical

force field formalism, if the force field parameters are available for the system. In

ab initio adiabatic dynamics, the Schrödinger equation for the electrons is solved

with nuclear coordinates being constant parameters. The nuclei are then exposed

to the potential provided by the electrons, and move according to this ab initio

potential, obeying the classical equations of motion. The forces acting on nuclei

are calculated on-the-fly, at every step of the dynamics by solving the electronic

Schrödinger equation, and utilizing the Hellmann–Feynman theorem:

FXn D � @E
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D �
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+
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The ab intio PES may be fitted to an analytical function, in order to solve for

the forces. This is the foundation of the Born–Oppenheimer molecular dynamics

(BOMD) method [33, 34], implemented in Gaussian, and also in the stand-alone

classical trajectory program VENUS. The typical time-step in BOMD is on the order

of a few femtoseconds. Adiabatic molecular dynamics can be coupled with classical

treatment of the larger system surrounding the quantum region, in a QM/MM

fashion.

Car-Parinello molecular dynamics (CPDM) is another variant [35]. In contrast

to BOMD, CPMD explicitly introduces the electronic degrees of freedom (usually

provided by DFT) as fictitious dynamical variables. In other words, the Kohn-

Sham molecular orbitals are chosen as the dynamical variables to represent the

electronic degrees of freedom in the system. Electrons are also assigned a fictitious

mass. An extended Lagrangian for the system is then written, and it leads to a

system of coupled equations of motion for both nuclei and electrons. The method

works in conjunction with DFT and plane-wave basis set. CPMD is computationally

expensive, and most likely not usable for sizable systems that might interest bio-

chemists. There is also a cheaper version of CPMD, based on atom-centered density

matrix propagation, ADMP, implemented in Gaussian. ADMP uses Gaussian basis

functions, and works with semiempirical, HF, and pure and hybrid DFT methods.
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Fig. 15 The onset of nonadiabatic coupling between the two PESs. The present example illustrates
the bonding situation in an ionic molecule, like NaCl: at short interatomic distances, the molecules
exists as ACB�, and the state in which the electron transfer from A to B does not happen is an
excited state laying higher in energy; at larger interactomic distances and the dissociation limit, the
two atoms are neutral on the ground PES, and the charge transfer state is an excited state. Thus,
at some interatomic distance, there is a change of the nature of the ground state. For a diatomic
molecule, the region of this change is an avoided crossing. Near this region, the coupling, d12, is
the strongest

Adiabatic dynamics works fine, as long as the system is on a single PES,

well-isolated in its energy from other PESs. If, however, two or more PESs

come close together, they couple to each other, nuclei may hop from one PES to

another, the BAO breaks down, and nonadiabatic dynamics is required. A schematic

representation of a situation where nonadiabatic dynamics is needed is given in

Fig. 15. There are two relevant PESs. At a certain internuclear distance, they get

close to each other and exhibit what is called an avoided-crossing. This is a result of

the noncrossing rule, valid only for systems with one degree of freedom (diatomic

molecules). In systems having more degrees of freedom, the geometry of this area

can look like a conical intersection, or a multi-dimensional “seam.” For N degrees

of freedom in a molecule, the dimensionality of the seam is N � 2. The two PESs

are coupled. The nonadiabatic coupling, d12, in Fig. 15 is a function of R(A–B).

Qualitatively, the evolution of d12 with R(A–B) is indicative of that in most areas on

the PESs, the adiabatic approximation works fine, since the nonadiabatic coupling

is negligible, but near avoided crossing the coupling rapidly becomes large. Here,

we are concerned with the dynamics in the entire space, including the areas of large

coupling.

First, let’s notice that the total wave function in a nonadiabatic situation is no

longer the product of electronic and nuclear parts, but a sum of such products over

all accessible electronic states labeled with i :

�.r;R/ D
X

i

 i .r IR/�i .R/: (46)
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Substitution of this expression into the time-dependent Schrödinger equation, and

integrating over the electronic degrees of freedom yields:

� „2
2

X

a

M�1
a r2

Ra
�j .R/C Ej .R/�j .R/

D �„2
2

X

i

Dij .R/�i.R/C „2
X

i¤j

dij.R/ � rRa�i .R/; (47)

where nonadiabatic couplings, Dij and dij, the components of the full nonadiabatic

coupling, are introduced:
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Nonadiabaticity means that nuclear motions are capable of causing electronic

transitions, and in turn electronic degrees of freedom determine the quantum states.

In other words, electronic and nuclear degrees of freedom are no longer separable.

There are two representation in which nonadiabatic dynamics simulations can be

conducted. First is the adiabatic picture, where the two coupled PESs are adiabatic

electronic states, i.e., the Hamiltonian matrix is diagonal, and nuclear coupling terms

are zero. The electronic coupling in this case is a vector. The other representation

is diabatic. Diabatic states do not diagonalize the Hamiltonian, and the nuclear

coupling is a finite number. However, the electronic coupling is strictly zero, by

definition. If all quantum effects on electrons and nuclei are properly taken into

account, the two representations should give the same result. However, in practice,

this is not the case, and usually the adiabatic picture is employed, and algorithms

such as surface-hopping are developed for the adiabatic situation.

There are two major quantum-classical approaches to nonadiabatic dynamics.

One is Ehrenfest dynamics, where nuclei move on an average PES between the two

coupled states. In this way nonadiabatic effects are taken into account. This is a

single configuration method, and when the two PESs diverge in energy, the average

path has no meaning, and Ehrenfest dynamics is capable of unphysical predictions.

The other algorithm of enormous popularity is already mentioned surface

hopping, and its “fewest switches” incarnation in particular [36]. In this approach,

nuclei are allowed to instantaneously hop from one PES to another, with a certain

probability, when the coupling is strong. After the hop, the component of velocity

in the direction of the nonadiabatic coupling vector is adjusted to conserve energy.

In the areas far from the seams, nuclei evolve classically, on single PES at a time.

Electrons are propagated according to the time-dependent Schrödinger equation,
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and the electronic problem should be solved with a multireference method, such as

SA-CASSCF, CASPT2, or CASMRCI. The surface-hopping method works really

well, though its shortcomings should be mentioned: All surface-hopping trajectories

are independent, which is fundamentally different from the propagation of a wave-

packet. The hops are a bit too drastic and require a sudden change in velocity,

whereas in reality they should move on some effective PESs and the transitions

should be smoother. Sometimes hops become forbidden because the system does

not have enough energy to hop. Decoherence is not taken into account in surface-

hopping, though may be added ad hoc. The surface-hopping algorithm is defined in

the context of the adabatic representation of the electronic sates.

Occasionally, additional quantum mechanical treatment for selected nuclei, such

as HC and hydride, can be added to the dynamics. The selected nucleus or nuclei

are represented with vibrational wave functions, which are then propagated in the

dynamics as quantum objects. Here, we will not consider these algorithms any

further.

Another method of nonadiabatic dynamics was developed by Martı́nez and

coworkers, and is called ab initio multiple spawning (AIMS) [37,38]. AIMS allows

for semiclassical nonadiabatic dynamics simulations, and includes the branching

between bifurcating nonadiabatic paths. The method solves the electronic and

nuclear Schrödinger equations simultaneously, including all molecular degrees of

freedom. The total wave function is expressed as a linear combination of time-

dependent, frozen, and localized in phase-space Gaussian basis functions:
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where I labels electronic states,NI .t/ is the number of nuclear basis functions asso-

ciated with I th electronic state, which may adaptively expand during the dynamics

in the areas where potential energies get close and the population may bifurcate,

r and R are electronic and nuclear coordinates. The nuclear basis functions �Ii
are multidimensional products of complex Gaussians and parameterized by their

average positions and momenta, R
I

i and P
I

i , as well as a semiclassical phase

factor,  Ii . The average positions and momenta evolve according to Hamilton’s

equations, and the semiclassical phase factor evolves as the time integral of

the classical Lagrangian. The electronic basis functions, �I .r IR/, are defined as

solutions of the electronic Schrödinger equation in the adiabatic representation at

the nuclear geometry given by R. The complex coefficients, cIi .t/, evolve according

to the time-dependent nuclear Schrödinger equation in the time-evolving basis set,

which is solved simultaneously with the equations of motion for R
I

i ; P
I

i , and  Ii :

X

kK

S JK
jk PcKk D �i

X

kK

�

H JK
jk � i PES JK

jk

�

cKk : (51)



158 A.N. Alexandrova

The overlap, right-acting time derivative, and Hamiltonian matrix elements in

this equation are:
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H here is the full molecular Hamiltonian operator including the nuclear ki-

netic energy, the electronic PES, and nonadiabatic coupling terms. The electronic

Schrödinger equation is solved simultaneously with the nuclear dynamics to obtain

the PESs and couplings. AIMS on a small fragment can be coupled to purely

classical treatment of a large biological molecule surrounding the fragment, i.e.,

in QM/MM.

In general, nonadiabatic dynamics is computationally expensive, algorithmically

complex, but unavoidable for certain kinds of problems in biomolecular simulations.

It is important to be able to recognize when nonadiabatic dynamics would play a

role in a process. First of all, of course, processes involving excited electronic states

are likely candidates. Even fluorescing systems may exhibit excited state population

leaks through nonradiative internal conversion. Also, in principle, any time a system

crosses an activation barrier, chances are that at the transition state the two surfaces

come close enough for nonadiabatic coupling to become significant. A quick check

for the adiabaticity of the process is to run a CASSCF calculation and assess the

contribution of different states to the CAS expansion.

5.2 Examples of Applications

There are myriads of reported dynamics studies, especially employing ab initio

classical adiabatic dynamics. Here, we will highlight some exciting studies that

employ more complicated simulation engines, and account for nuclear quantum

effects, or go beyond the BAO.

QM/MM adiabatic dynamics simulations were performed on the thymine dimer

radical anion splitting in the photoactivated self-repair process in DNA [39]. The

simulations were done in explicit water. The QM region was treated with DFT, and

the MM region was treated with the AMBER force field. The calculations revealed

that the upper-bound of the free energy barrier to this process is 2.5 kcal/mol.

The mechanism was found to be asynchronous, with one bond in the dimer

breaking earlier in the process (Fig. 16). This work, along with experimental studies

contributed to the general appreciation of the general stability and ability to self-

repair of the natural DNA structure.



Quantum Mechanical Insights into Biological Processes at the Electronic Level 159

Fig. 16 Snap-shots from QM/MM adiabatic dynamics simulations for thymine dimer radical
splitting, and showing the asynchronous mechanism. Adapted with permission from [39]

Nonadiabatic dynamics simulations have been successful, both in the gas phase

and in the context of larger biomolecules. Groenoff et al. studied the reaction

of the ultrafast deactivation of an excited Cytosine–Guanine (CG) base pair in

the DNA double helix consisting of 22 bp [40]. The revealed mechanism is

again a demonstration of the apparent capability of DNA to self-rescue, through

nonradiative internal conversion from the excited state back to the ground state. The

QM region included the two interacting bases. The rest of the DNA molecule and

the solvent were treated classically. At the beginning of each nonadiabatic QM/MM

MD simulation, the CG pair in its equilibrium ground state geometry was excited

from the ground state, S0, to the first excited state, S1, and then allowed to evolve

according to the gradients provided by S1. No reaction coordinate was chosen

prior to the simulations, and all the forces were determined on-the-fly, during the

dynamics. The electronic part of the problem was solved with the CASSCF(2,2)

method (implemented in Gaussian), and nuclei moved classically on a single PES

at a time, as long as they were far away from conical intersections. The MM

region evolved via classical MD, as implemented in GROMACS. In the areas of

strong nonadiabatic coupling, the fewest switches surface hopping algorithm was

employed. It appears that the S1 state is a charge-transfer state, where an electron

hops from G to C. As a result of this charge separation, the negatively charged C

attracts the proton from the N1 atom of G, and the S1 PES is repulsive with respect

to the H-shuttling motion between the N1 atom in G and the N3 atom in C. Hence,

the system on S1 evolves along this H-transfer coordinate, and the motion is also

accompanied by some skeletal deformation of the system. On the S0 PES, the region

corresponding to H being transferred from G to C is high in energy, and so the S0
and S1 surfaces cross in this area of configurational space. When nuclei reach this

point on the S1 PES, they transfer to S0, i.e., the charge hops back from C to G,

and the N1 atom on G again becomes attractive to the transferred H. Following the

gradients on the S0 surface, H returns to G, and the system is back in its original
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Fig. 17 Nonradiative decay for the CG base pair within the DNA double helix: Potential energy
surfaces of the excited and ground states mapped along the proton transfer .N1–H–N3/ coordinate
and the skeletal deformation. The dashed yellow and green lines represent the path sampled in
a typical trajectory. Nonradiative decay occurs along the intersection seam between the surfaces.
Relevant structures along the dynamics path are shown at right. Adapted with permission from [40]

equilibrium ground state geometry (Fig. 17). Thus, the H-bonding in the Watson–

Crick pair appears to play an important role in the DNA self-protection from the UV

damage.

A nonadiabatic dynamics study describing the nonradiative decay in the gas

phase cytosine base photoexcited to the bright S1 state has been reported by Hudock

and Martı́nez [41]. The method in use was AIMS. The electronic structure in

the problem was determined on-the-fly, using the SA-CASSCF(2,2) method. The

nuclear dynamics was described by the frozen Gaussian trajectory basis functions.

In the regions of configurational space where nonadiabatic coupling was large, the

nuclear basis set had a chance to adaptively expand: additional basis functions

were “spawned” to describe the population transfer between the states involved.

The analysis of trajectories showed that all of the known competitive paths of

internal conversion in cytosine can be adopted on different time-scales (Fig. 18).

This complex picture is different from those in thymine and uracil, which are well

characterized by a single mechanism.

6 Summary

Electronic structure plays a critical role in all biological processes. We covered a

variety of electronic structure techniques and their applications to biological sys-

tems. For molecules on the ground state, various properties can be calculated based

on electronic structure methods, for example electronic configuration, IR spectra,

polarizability, dipole moment, magnetic shielding, etc. There are many available

ab intio techniques, and we emphasized their applicability, benefits, and potential

pitfalls. Pure ab initio calculations are typically performed on small molecules or

fragments of larger biological molecules. However, they can be coupled to the

rest of the biomolecule and solvent in mixed QM/MM formalism, which is a very
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Fig. 18 Summary of pathways of excited cytosine. The arrows indicate the passage between
different electronic states, with the observed time lapse and the number of trajectories shown.
The S1 electronic state passes through regions with three different characters .  �; nO 

�, and
nN 

�), and electronic-state quenching to S0 occurs through three different conical intersections.
Adapted with permission from [41]

popular approach. QM/MM has many different versions. Some of them are static,

like ONIOM, and some include statistical mechanical sampling and dynamics.

QM/MM calculations are instrumental in the assessment of reaction mechanisms

in complex biological molecules in solution. We further considered the treatment of

excited electronic states and electronic detachment energies with chemical accuracy.

Excited states are involved in photoprocesses characteristic of biomolecules. Also,

electronic spectroscopy provides an invaluable means of analysis of biomolecules.

Calculations of this kind require methods such as TD-DFT, EOM-CC, and mul-

tireference methods. Using these techniques allows for the prediction of electronic

spectra within 0.1–0.2 eV from the experimental values. Finally, dynamical sim-

ulations were considered as the ultimate approach to gain mechanistic insights

into biochemical processes. Dynamical simulations may operate on a single PES

(adiabatic dynamics), or on multiple PESs (nonadiabatic dynamics). The techniques
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required to properly treat nonadiabatic dynamics were presented in detail. Many

of the described methods are implemented in commercially available packages.

Some of the methods are less standard, and not out out-the-box. It is also still

true and probably will be true for a while that quantum mechanical methods

cannot be used as a “black box.” One should approach every problem with a

good understanding of the electronic nature of the problem, and an idea of which

methods should and should not work in each particular case. One also needs to

experiment with the system, in order to discover any possible caveats, such as

strong multiconfigurational nature of the wave function, or unusual phenomena

such as long range charge transfer, or nonadiabatic character of the dynamics.

The author hopes that this chapter introduces the main concepts that would

enable the Reader to make intelligent choices when using quantum mechanical

methods.
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Multiscale Modeling of Virus Structure,
Assembly, and Dynamics

Eric R. May, Karunesh Arora, Ranjan V. Mannige, Hung D. Nguyen,

and Charles L. Brooks III

1 Introduction

Viruses are traditionally considered as infectious agents that attack cells and

cause illnesses like AIDS, Influenza, Hepatitis, etc. However, recent advances have

illustrated the potential for viruses to play positive roles for human health, instead

of causing disease [1, 2]. For example, viruses can be employed for a variety of

biomedical and biotechnological applications, including gene therapy [3], drug

delivery [4], tumor targeting [5], and medical imaging [6]. Therefore, it is important

to understand quantitatively how viruses operate such that they can be engineered

in a predictive manner for beneficial roles.

Most viruses are nanosized particles that replicate only inside a host cell they

infect. A structure of a complete virus particle is made up of a protective coat of

protein called a capsid that encloses its nucleic acid, either DNA or RNA. Virus

capsids are extremely stable and possess wide-ranging mechanical strengths, which

can be characterized in the theoretical framework typically used for characterizing

materials [7–9]. Capsids exhibit diversity in not only material properties but also

geometric attributes. Capsids across the virosphere display a wide diversity of
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Fig. 1 As evident in the collage above, capsids come in a range of sizes (images represent electron
microscopy reconstructions deposited into the virus particle explorer web site: viperdb.scripps.edu)

shapes, sizes, and architectures (Fig. 1), and understanding how these differences

affect the material properties will provide design principles for engineering capsids.

Virus capsids are built from spontaneous self-assembly of multiple copies of a

single protein or a few distinct proteins arranged in a highly symmetrical manner.

Capsid assembly, from individual proteins in a correct, rapid, and spontaneous

fashion on a biological timescale, is crucial for spreading an infection in vivo

[10, 11]. Therefore, elucidating the means by which viral capsid self-assembly

occurs may assist in the development of novel approaches to interfere with the

assembly process and ultimately prevent viral infections. Following assembly,

some virus capsids undergo morphological changes which are critical for the virus

maturing into an infectious particle [12,13]. Understanding the dynamic behavior of

assembled capsids is equally essential to gain insight into the mechanism associated

with the maturation process and may open avenues for rational drug design by

providing clues for disrupting the maturation process.

Despite several experimental [14–17] and theoretical efforts [18–20], the un-

derlying principles that govern virus capsid self-assembly and maturation are

not well understood. Experimental approaches such as X-ray crystallography and

cryo-electron microscopy have provided excellent starting points to begin under-

standing virus architecture in an intricate manner, but do not provide the dynamical

information crucial for understanding the virus life cycle. Other experimental

methods probing dynamical and mechanical properties of viruses still lack sufficient

resolution in the length and timescales to decipher the movement of individual

proteins constituting the virus capsid. Rapid increases in the availability of computer

power and algorithmic advances have made possible simulations of complete

viruses in atomic detail on the timescale of tens of nanoseconds [21, 22], which

are providing some insights into the experiments just noted. However, atomically

detailed simulation remains a considerable challenge, at increasingly large time

and length scales, for processes of biological importance such as assembly and

maturation of virus capsids.
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We have applied multiscale computational approaches ranging from topology-

based mathematical modeling to physical simulations at different levels of coarse

graining to describe the underpinnings of virus function and structural organization.

This chapter describes key findings of our group’s work in elucidating the under-

lying principles that govern the assembly and maturation of virus capsids using

state-of-the-art multiscale simulation approaches; our focus is on presenting insights

gained by various multiscale approaches rather than simulation details, which can

be found in individual papers. Following a brief introduction into virus architecture,

we describe the biological findings from simple mathematical models concerning

the optimal subunit shape for constructing a capsid and the origins of evolutionary

discrimination of certain T -numbers. We then describe key results, from self-

assembly simulations of virus capsids using coarse-grained modeling, related to

the generalized mechanistic description of structural polymorphism often observed

in vitro. Following, we describe the development of a true multiscale approach

linking equilibrium atomic fluctuations with macroscopic elastic properties of virus

capsids and apply this approach to investigate the buckling transitions of HK97

bacteriophage. We conclude by outlining future applications and required model

developments.

2 Background on Spherical Virus Architecture

A sampling of spherical viruses is shown in Fig. 1 to illustrate the size and shape

diversity of virus capsids. Understanding how these structures form, as well as the

reasons behind the differences in shape and size of virus structures is fundamentally

important. Let us set the stage by providing a brief and historical introduction to

the architecture of spherical virus capsids. The foundations of modern structural

virology began in the 1950s, in the days before high (subnanometer) resolution

imaging was available. During that time, it was becoming clear that the size of any

capsid was much larger than the largest protein that the enclosed viral genome could

express. Crick and Watson reasoned that one could form such a capsid only if viruses

figured out a way to arrange multiple copies of a smaller protein (a “sub”-unit) into

the form of a shell. Based on rudimentary crystallographic evidence [23], Crick and

Watson had proposed that the capsid would have to assume a high order symmetry

group. In doing so, large copies of the same subunit (now known to be a single

protein) would possess identical or equivalent positions within the capsid (hence

the idea of equivalence between the subunits). The proposed symmetries were the

ones displayed by platonic solids [24], of which, icosahedral symmetry, a 60-fold

symmetry, is the highest in order. However, new methods (such as negative staining

electron microscopy) soon showed that the number of subunits per capsid were in

slight disagreement with the Crick–Watson proposal. It was observed that instead

of an icosahedral structure with 60 equivalent subunits, spherical capsids, albeit

icosahedrally symmetric, were found to be composed of multiples of 60 subunits.
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Fig. 2 Making capsid models of various sizes described by .h; k/ pairs. The general idea is that all
capsids consist of 12 pentamers (darkened in (c)) and a variable number of hexamers. Starting from
only a sheet of hexagons (a), where hexagons represent hexamers, and then selectively converting
specific hexamers into pentamers (b), a complete icosahedron may be constructed

Further advancement in the method of negative staining and electron microscopy

led to the observation that capsids are shells formed from repeated pentagon and

hexagon-like arrangements. From these early experiments, two groups of structural

virologists, Horne and Wildy [25] and Caspar and Klug [26], found an interesting

solution to the scalability problem. In particular, both groups recognized that virus

capsids of practically any size could be created by combining 12 pentamers (sym-

metric clusters of five subunits) with a variable number of hexamers (symmetric

clusters of six subunits). Caspar and Klug went further to describe a theoretical

mechanism to “build an icosahedral capsid shell from a flat lattice of hexagons.”

As shown in Fig. 2, a specific capsid can be described by two integers, h and

k, representing steps in the h or k direction, respectively. By taking an “h, k

walk” on the hexagonal surface (Fig. 2a), one ends up on a hexagon which is to

be converted into a pentagon. These hexagons can be converted into pentagons

by excising 1/6th of the selected hexagon and gluing the unpaired edges (Fig. 2b).

When this procedure is repeated to make 12 such pentagons, one will be left with

a three-dimensional model of a complete icosahedral capsid, where pentagons and

hexagons represent pentamers and hexamers, respectively.

Although h and k are useful in understanding capsid size and arrangements of

pentamers and hexamers, it is not always convenient to deal with two numbers as

a descriptor. Conveniently, Caspar and Klug [26] re-introduced a useful descriptor

(initially described by Goldberg in the 1940s), the triangulation number,

T D h2 C k2 C hk: (1)

T is useful because it easily describes the number of subunits .60T / and hexamers

(10(T –1)) in the capsid and the number of distinct symmetry environments present

within the capsid (which is T itself). Today, the triangulation number is the

ubiquitous descriptor of virus architecture.
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3 Mathematical and Geometric Models for Describing

Virus Phenomena

In this section, we explore how concepts borrowed from mathematics and geometry

may help in understanding structural features of virus capsids. Using these simplistic

models, we have addressed problems at various levels of capsid research, ranging

from understanding what is the optimal subunit shape for constructing a capsid,

to understanding the prevalence of certain T -number structures and the absence of

others.

3.1 The Canonical Capsid Model

The utility of simplistic models, which do not account for the specific atomic level

interactions (i.e., an all-atom force field) have been useful in explaining various cap-

sid phenomena such as capsid self-assembly [27–33], capsid morphology [34–37],

subunit stoichiometry [38–40], mechanical properties [41–43], and symmetry

[37, 44]. We will be primarily discussing one such geometric model, the “canonical

capsid,” that has served as a useful platform for the elucidation of capsid design

principles [36, 37, 40].

The concept of the “canonical capsid,” which is a surprisingly simple construct, is

defined as a polyhedron whose faces, each representing a subunit, must be identical

in shape. This model is also known as a “monohedral tiling.” This simple model

is useful because a large number of capsids found in nature can be represented as

monohedral tilings [40]. In addition, these models can shed light on various physical

properties of virus capsids that can be described as canonical.

3.2 Prediction of the Optimal Subunit Shape

Given the construct of the canonical capsid, a key question for investigation is which

subunit shapes are permitted to exist within the confines of the canonical capsid.

Using simple geometry and polyhedral rules [40], we have shown that canonical

capsids can only accommodate one type of “prototile” (subunit design) consisting

of five interacting edges. The bisected trapezoid (Fig. 3a) is one such acceptable

prototile design. It is the same subunit shape that appears in all the natural capsids

(Fig. 3b) we find to be represented by the canonical capsid model [40]. It has indeed

been identified that many viruses share a common subunit protein fold (the double

ˇ-barrel), without sharing high sequence identity [45]. It is quite surprising that a

simple canonical capsid model predicts such a ubiquitous shape found in viruses

infecting almost all domains of life. Apparently, nature may be forcing viral capsid

proteins into adopting this very special shape. It is tempting to conjecture that there

is an overarching evolutionary pressure that may be acting on virus capsid’s design.
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Fig. 3 Canonical capsids as a model. The basic subunit prototile–the bisected trapezoid (shaded
in (a))–predicted from the analysis of the simplistic canonical capsid model [40] bears a
strong resemblance to the subunit design ubiquitously found in virus capsids (b), indicating a
mathematically motivated pressure in maintaining a trapezoidal subunit shape in nature. Apart
from explaining the importance of the capsid subunit shape, the strong resemblance between these
geometric entities and their real counterparts (exampled in (c)), allows for a number of studies in
capsid design criteria [36, 37]

3.3 Hexamer Complexity as a Predictor of Capsid Properties

Analysis of the virus structural data collected over the last half century indicates

that a very large array of capsid sizes ranging from tens to many thousands of

subunits are known to exist in nature (Fig. 1). However, some capsid sizes are

rarer than others (such as T D 12; 19; and 27), an observation that has puzzled

structural virologists as early as 1961 [25,26]. The cause for this apparent bias in the

distribution of the observed capsid sizes is still not clearly understood. To explore if

there is an evolutionary pressure that discriminates against certain capsid shapes, we

further investigated intrasubunit interactions within virus capsids using a canonical

capsid model. Specifically, we explored how subunits interact and how the angles

between subunits can impose constraints on the capsid shape.
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Fig. 4 As predicted by the
inverse C h rule, capsids with
high hexamer complexity are
underrepresented in nature as
evident in the observed versus
unbiased capsid abundances
(% of families that display
capsids of specific C h)

The subunit–subunit angles present within the pentamers (which we call endo

angles) impose constraints on the adjacent hexameric angles, an effect that is

termed endo angle propagation [36]. While the shape and number of pentamers

is fixed for all T number capsids, the number of hexamers (and therefore the

shape) is not. The hexamers experience different environments based upon their

adjacency to neighboring pentamers/hexamers. As a result, the angle patterns

produced by interacting endo angles within the capsid ensure the emergence of

three general morphological classes of capsids that can be differentiated by their

h–k relationship [37]: class 1 (described by the relationship h > k D 0), class

2 (h > k > 0), and class 3 (h D k). We have identified the minimum number

of distinct hexamer shapes (which we call hexamer complexity C h) required to

form a canonical capsid of specific capsid size (T -number). Each canonical capsid

of specific h and k is described by a single C h value. Thus, C h is very useful

in systematically predicting properties of a group of capsids that were previously

thought to be unrelated viruses.

C h is also an indicator of the ease with which a capsid can be assembled,

i.e., a larger number of distinct hexamer shapes would require a more complex

assembly mechanism. Indeed, our modeling studies show that the capsids with

a high C h value require more auxiliary control mechanism for their assembly

while the capsids with a low C h value and low T � number (T D 3; 4; or 7)

display the ability to assemble with no auxiliary requirements [46, 47]. Thus, the

hexamer complexity number (C h) can be used as tool to predict if a particular capsid

assembly requires auxiliary mechanisms or proteins. Accordingly, we predicted

that canonical capsids with larger C h must be present with a lower frequency in

nature since they require complex auxiliary assembly mechanisms. This hypothesis

is corroborated by surveying all available capsid structures in the literature and virus

structure databases. In the scenario that all T number capsids were equally probable,

it would be expected that the complex capsids with C h>2 would represent the

majority of the virus families observed in the nature (63%) (Fig. 4 Unbiased).

However, in actuality, capsids with C h > 2 represent only 5% of the observed

capsid structures (Fig. 4 Observed). This suggests the existence of an evolutionary

pressure which discriminates against viruses with a high hexamer complexity.
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3.4 Limitations of the Canonical Capsid Model

A majority of the capsids we have studied display properties of canonical cap-

sids [40]. However, the remaining small percentage of the noncanonical capsids can-

not be well described by the canonical capsid model and likely require more sophis-

ticated models for their characterization. For example, many noncanonical capsids

possess nontrapezoidal subunit shapes (e.g., the members of the polyomaviridae

family). It has been shown that these noncanonical capsids can be represented

by other simplistic polyhedral models with slight embellishments [38, 39]. Still,

there exist a few other noncanonical capsids with holes and large overlaps in

their structures for which no simple solutions exist. It is these rule breakers that

emphasize the requirement for more sophisticated theoretical models.

These mathematical modeling efforts have served to offer explanations to broad

questions in the field of structural virology such as subunit shape and evolutionary

discrimination of certain T -numbers. However, questions related to dynamical

properties are more suitable to physics-based modeling studies. In the following

sections, we will address two fundamental processes in the virus life cycle,

capsid assembly (Sect. 4) and maturation (Sect. 5), using physics-based modeling

techniques.

4 Self-Assembly of Virus Capsids

Highly specific and spontaneous self-assembly of individual proteins to form

symmetric viral capsids inside the infected host cells is crucial for propagating the

infection in vivo and is one of the most fundamental process of the virus life cycle.

In addition, the in vitro self-assembly of empty capsids without the viral genome is

of significant interest in bionanotechnology for vaccine design, gene therapy, and

medical imaging [48]. As a specific example, empty capsids serve as vaccines to

prevent cervical cancer, which is caused by the human papilloma virus. The vaccine,

which consists of empty capsids of the human papilloma virus, prompts production

of appropriate antibodies in the body, thereby priming an effective immune response

that could be marshaled during subsequent exposure to the infectious virus [49]. The

potency of the cervical vaccine depends strongly upon the degree of capsid self-

assembly [50]. However, due to the inability to control assembly in laboratory and

manufacturing practices, self-assembly of empty capsids often leads to architectural

contaminants (i.e., structural polymorphism) [51]. A clear understanding of the

kinetic mechanisms and thermodynamics of icosahedral capsid self-assembly would

provide valuable insights into how to control the self-assembly process and is a key

prerequisite to their widespread application in medicine.

The quantitative investigation of the virus capsid self-assembly mechanisms

presents significant challenges for both experimental and computational approaches.

Progress has been made toward understanding the molecular-level mechanisms
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driving capsid formation through theoretical studies [19,20,38,44,52–55], structural

analysis [56, 57], and in vitro self-assembly experiments of empty capsids using

only purified capsid proteins [19,58,59]. Still, a detailed mechanistic understanding

of the capsid self-assembly process is lacking. Despite rapid increases in the

availability of computer power and algorithmic advances, atomically detailed

simulations of the self-assembly process have been difficult due to the large system

sizes and the long timescales involved in the process. As a consequence, to-date

most simulation studies of capsid formation have been performed employing only

simple coarse-grained models that significantly reduce the system size [32, 60, 61].

For example, Hagan and Chandler [32] modeled capsid proteins or capsomeres as

point particles to simulate the assembly of small shells, Hicks and Henley [61] used

an elastic model to represent capsid proteins as deformable triangles and Rapaport

simulated the capsid self-assembly of polyhedra structures utilizing trapezoid units

as a building block [28].

We investigated the spontaneous self-assembly process of different-sized virus

capsids employing a coarse-grained molecular dynamics (MD) simulation ap-

proach. To increase the speed and efficiency of the simulations an extremely fast,

event-driven method called discontinuous molecular dynamics (DMD) was em-

ployed [62–64]. Before performing simulations, we developed a range of geometric

models that capture the geometric shape and energetic details of a coat protein

without any specific built-in self-assembly rules such as nucleation. Interestingly,

our prior two dimensional mathematical modeling studies, as well as, initial

exploratory simulation studies by Rapaport [28] had predicted that the trapezoidal

shape is a perfect building block to tile a closed icosahedral surface of any capsid

size (see Sect. 3) [40]. To test this prediction by way of physical simulations, in our

first generation of coat protein models each protein subunit was represented as a

set of 24 beads arranged in four layers confined in the trapezoidal geometry (see

Fig. 5a). Using a simplified model that exploits the important role of coat protein

shape, together with the fast DMD method, allowed us to capture the spontaneous

self-assembly of icosahedral capsids of different sizes as well as explore the optimal

temperature and protein concentration required for the spontaneous self-assembly of

capsids.

By performing over a hundred MD simulations at different temperatures and

protein concentrations, we found that the assembly of T D 1 and T D 3 icosahedral

capsids occurs with high fidelity only over a small range of temperatures and protein

concentrations [33, 65]. Outside this range, particularly at low temperature or high

protein concentration, large enclosed “monster particles” are produced (Fig. 5b).

These mis-assemblies are remarkably similar to experimentally observed Turnip

crinkle virus monster particles [66] or bacteriophage P22 monster particles [67].

Most importantly, our simulation studies revealed that the capsid assembly dynam-

ics under optimal conditions is a nucleated process [58] involving monomer addition

in which building blocks (either monomeric, dimeric, or trimeric species) are glued

together in a sequential manner [33]. It is quite remarkable that our simulations

employing simple models were able to recapitulate the experimental observations

that capsid assembly is a nucleated process [19, 58, 59].
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Fig. 5 (a) Coarse-grained models capturing the geometric shape of the protein and the protein-
protein interactions that occur between proteins in the assembled capsid. (b) At low temperatures
and high concentrations, assembly is nucleated too rapidly and partial growth leads to the
combining of many partial capsids to form “monster particles” that are enclosed in T D 1 systems,

and spiral-like in T D 3 systems, like those seen in cryo-EM experiments. (c) The assembly
of T D 3 capsids under near optimal conditions yields a range of closed capsid forms that are
determined by the number of five-to-six fold symmetry dislocations that occur as a result of certain
kinetic pathways. The population distributions for supramolecular structures from T D 3 systems.
The same structural polymorphism is also observed in T D 1 systems (Figures 1 and 2 of Nguyen
et al. J. Amer. Chem. Soc., 131:2606–14, 2009, copyright 2009, American Chemical Society.)

Interestingly, upon shifting the conditions (protein concentration and tempera-

ture) for T D 1 and T D 3 capsid growth slightly, we observed the self-assembly

of not only icosahedral capsids, but also of a well-defined set of nonicosahedral yet

completely enclosed and equally stable capsules [65] (Fig. 5c). These nonicosahe-

dral capsules exhibit morphologies similar to particles that have been observed in the

mis-assembly of capsids of many viruses [14, 68–74]. These findings demonstrate

that structural polymorphism in capsid structure is an inherent property of capsid

proteins, is independent of the morphology of constituent subunits, and arises from

condition-dependent kinetic mechanisms that are determined by initial assembly

conditions.
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Fig. 6 (a) Coarse-grained model representing each pentameric or hexameric capsomer of coat
proteins as a pentagonal or hexagonal structure for any T capsid systems, inspired by the
presence of pentagonal and hexagonal morphology on many virus particles obtained from cryo-
EM experiments. Each T D 1; 3; 4; 7; or 9 capsid obtained from our simulations contains
12 pentamers and .T � 1/10 hexamers arranged on icosahedral lattice. (b) Different kinetic
mechanisms of assembly in T D 7 systems were deciphered: sequential addition for icosahedral
capsids, condensation of preformed intermediates for large non-icosahedral capsules, and prema-
ture collapse of intermediates for small non-icosahedral capsules (Nguyen and Brooks, Nano Lett.
8: 4574–4581, 2008, copyright 2008, American Chemical Society.)

Considering the ubiquitous nature of nonicosahedral capsules observed in our

simulations of T D 1 and T D 3 systems, we predicted that such capsules are

also formed in T >3 systems. We confirmed this prediction by developing our

second generation of coarse-grained model in which multiples of coat proteins are

represented as either pentameric or hexameric capsomers [75] (Fig. 6a). Our model

capsomers mimic the building blocks of a few known virus systems such as HK97

capsids [76], which have been shown to assemble from pentamers and hexamers. In
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the simulation studies of T D 1; 3; 4; 7; 9; 12; 13; 16; and 19 systems, we observed

the formation of a variety of nonicosahedral yet highly ordered and enclosed

capsules in addition to the expected icosahedral capsids. These simulations demon-

strate that structural polymorphism is independent of the capsid complexity and

the elementary kinetic mechanisms of self-assembly. Furthermore, the simulations

revealed the existence of two distinctive and comprehensive classes of polymorphic

structures. The first class includes aberrant capsules that are larger than their

respective icosahedral capsids in T D 1 � 7 systems and the second class includes

capsules that are smaller than their respective icosahedral capsids in T D 7 � 19

systems (Fig. 6b). The kinetic mechanisms responsible for the self-assembly of

these two classes of aberrant structures were deciphered, providing insights into how

to control the self-assembly of icosahedral capsids. To our knowledge, this is one

of the first simulation studies that provided a generalized description of structural

polymorphism, which is often observed in in vitro experiments [14, 68–70, 72, 73]

and vaccine development studies [71].

Simulation studies, as described here, can provide new tools to inform potential

strategies in antiviral development, protein design, and the engineering of novel

biomaterials. The methodology employed in these studies could also be expanded

upon to elucidate the means by which capsid proteins and the viral genome are

self-assembled into full viruses. Such studies would enable us to make unique

contributions to the field of virology/medicine by suggesting the development of

novel ways to interfere with virus assembly and ultimately with viral infections.

5 Maturation and Mechanical Properties of Virus Capsids

An important aspect of designing nanotechnologies is material characterization;

understanding how the material responds to stresses and different environmental

conditions and ultimately the calculation of the fundamental mechanical moduli.

Characterization of the mechanical properties of virus capsids is important for

technology design as well as understanding the maturation phenomenon, which is

one of the most fundamental process of the virus life cycle.

The T D 7 bacteriophage HK97 is a widely studied system [13, 76–81], due to

its interesting structural features. This virus assembles into a procapsid structure

consisting of 420 copies of a single protein and initially forms a rounded procapsid

structure (Prohead II) as shown in Fig. 7 on the left. The seven protein asymmetric

unit of Prohead II is also shown in Fig. 8. In vivo the structure matures upon pack-

aging of the DNA genome, during which the structure expands, becomes faceted,

and iso-peptide bonds form between side chains of different proteins, resulting in

the mature (Head II) structure as shown in Fig. 7 on the right. The maturation

transition (commonly termed a buckling transition) can also be triggered in vitro

with empty capsids (genome deficient), by lowering the system pH [77, 82]. This

maturation-related structural transition has broad implications for understanding

virus behavior [83]. HK97 is believed to share many aspects of its maturation
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Fig. 7 The structures of HK97 (T D 7) in compact and swollen forms (Fig. 1 of Tama et al.,
J. Mol. Biol., 345: 299–314, 2005, copyright 2005 Elsevier B.V.)

Fig. 8 The seven protein asymmetric unit of the virus HK97, represented with a ribbon drawing
(left) and as an elastic network (right), in which the lines represent the harmonic springs of the
network connecting C˛ atoms within 8Å of each other

process with other double-stranded DNA bacteriophages and with herpes virus [84].

Additionally, HK97 is an ideal system to understand what governs the equilibrium

shape of spherical viruses because it exists in both a rounded (immature) and faceted

(mature) forms during its life cycle. Understanding structural transitions of HK97

from a rounded to a faceted shape should help explain, in general, why certain
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viruses adopt a particular configuration from the range of possible shapes and sizes

(see Fig. 1).

Attempts to explain this faceting or buckling phenomena have been made using

simplified models. Using the discrete canonical capsid model, we identified that

viruses belonging to the class 2 (h > k > 0) morphological group can undergo

buckling transitions (See discussion in Sect. 3). The virus structures in this group,

which includes HK97 (T D 7), have a degree of freedom associated with the

hexamer configurations [36]. This is in contrast to the structures in class 1 and class

3 which we believe to consist of rigid hexamers, with zero degrees of freedom.

This degree of freedom in the class 2 hexamers was identified through our analysis

of endo angle constraints (see Sect. 3), and we find two distinct stable states that

the hexamer can sample. The two available hexamer configurations are a pucker in

and pucker out state, corresponding to the faceted and rounded conformation of the

capsid, respectively. An alternative explanation to the buckling phenomena has been

put forth using purely continuum elastic theory of thin shells, proposed by Lidmar,

Mirny, and Nelson (LMN) [41]. According to the LMN theory, the equilibrium

configuration of the capsid is governed by a minimization of the elastic energy of

the shell. As the elastic energy is dependent on the elastic properties of the shell,

shape changes will arise in response to modulation of these properties. While both

of these models have offered reasonable explanations for the buckling transition

of virus caspids, neither work has incorporated molecular detail into their models.

Recently, we have attempted to bridge the discrete and the continuum description

of the virus capsid buckling transition by developing a multiscale approach which

relates atomic level equilibrium fluctuations to the macroscopic elastic properties of

the system [85, 86].

In the LMN theory, a single parameter, the Foppl-von KKarmKan number ( ),

predicts whether a capsid will adopt a rounded or faceted form, and as can be seen

in Fig. 1, both states are known to exist in nature. The shape dependence on  is

predicted to have a relatively sharp transition between rounded and faceted states, 

is given by

 D YR2

�
; (2)

where Y is the two-dimensional Young’s modulus, R is the shell radius, and �

is the bending modulus. Determining Y and � for capsid structures will allow

 to be determined, but it is inherently important to calculate these moduli to

better understand the mechanical properties of these systems. Furthermore, the

material characterization of capsids should accelerate the development of virus-

based nanotechnologies.

It is difficult to measure the elastic properties of nano-sized objects such as virus

capsids experimentally because most experimental techniques involve averaging

over a large number of particles. However, the single-molecule technique of atomic

force microscopy (AFM) is well suited for probing the mechanical strength of

capsids through nanoindentation studies. These studies typically are conducted in

conjunction with finite-element (FE) simulations in which the three-dimensional
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Young’s modulus (E) can be estimated by matching the AFM and FE force-

displacement curves [87–91]. While these studies address how viruses respond to

force loading, they do not directly evaluate the equilibrium mechanical properties of

these systems. The loading rates in the AFM studies have been criticized for being

too fast [42] and also the assumptions made in the finite element modeling that the

capsid is an isotropic and homogenous medium may not be appropriate.

To overcome these limitations, we have developed a multiscale approach for

calculating the continuum elastic properties Y and �. In this approach, we utilize

atomically detailed models to compute the equilibrium thermal fluctuations of

the capsid, which are then related to the elastic properties of the capsid through

an elastic Hamiltonian [85, 86]. The most relevant motions of the system, when

trying to connect the atomic model to the continuum level theory, are the low

frequency (long wavelength) collective motions. These collective motions arise

from the atomic-level interactions and therefore a model is required which incor-

porates molecular detail. To compute collective motions, we utilize elastic network

models (ENM), which incorporate molecular level details and variable density of

interatomic interactions; an ENM representation of the asymmetric unit of HK97

is shown in Fig. 8 on the right. In addition, ENMs utilize a simple interaction

potential which makes it computationally efficient to capture the collective motions

of large macromolecular assemblies [92]. The essence of the ENM is that it is a

harmonic approximation to the free energy minimum in which the structure lies.

The numerous potential terms (Lennard–Jones, electrostatic, bond, angle, dihedral,

etc) in a standard semi-empirical MD force field are replaced by a single harmonic

potential term accounting for the vibrations of interacting pairs of atoms [93].

The normal modes of the ENM can be calculated by finding the eigenvectors of the

Hessian matrix of second derivatives of the potential. A trajectory of the ENM can

then be computed by propagating the network along a set of the lowest frequency

normal modes.

From these ENM trajectories, a two-dimensional surface is computed by aver-

aging over the shell thickness, and the fluctuations are projected onto a spherical

harmonic basis set. The forces on a 2D elastic shell are known from the early

works on continuum elastic theory of shells [94], and from these forces an energy

density can be written down in the spherical harmonic basis. The total elastic energy

can then be computed by integrating over the shell surface, which, due to the

orthogonality properties of the basis set, reduces to a sum over the mode magnitudes

E D 1

2

X

l

�
8b C �

l.l � 1/.l C 1/.l C 2/

R2

�
j Oal j

2; (3)

where, j Oal j
2 �

PCl
mD�l alma�

lm, alm is the magnitude of spherical harmonic l; m,

and b is the sum of the LamKe constants (�; �), from which Y can be calculated

when a value for the Poisson ratio is known (or assumed). Given the quadratic form

of the energy, the ensemble averages of j Oal j
2 can be calculated and a relationship is

obtained which contains only measurable surface properties (R,
˝
j Oal j

2
˛
) and elastic
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Fig. 9 The spectrum of spherical harmonics describing the equilibrium thermal fluctuations of the
capsid surface for the T D 1 mutant of the Sesbania mosaic virus, shown in bottom left. A nearly
identical spectrum is produced for an all-atom MD simulation of an entire capsid, as that from and
elastic network model (ENM), that is scaled via an MD simulation of only the asymmetric unit.
In both cases the fluctuation spectrum is well described by the theoretical model in (4) (Figure 1
of May and Brooks, Phys. Rev. Lett. 106:18801–18804, 2011, copyright, 2011 American Physical
Society.)

parameters (�, �, �)

˝
j Oal j2

˛
D kBT

8b C �
l.l�1/.lC1/.lC2/

R2

: (4)

Our formulation of the ENM is a nondimensional model, and therefore we use

MD to scale the trajectory to make it quantitatively accurate. The MD simulations

are performed on the asymmetric unit of the capsid under icosahedral rotational

boundary conditions [95]. From the MD simulations a scaling factor is calculated,

which is passed to the ENM model to connect the cruder ENM model to the more

accurate MD force field. We were able to show that this multiscale approach,

combining an ENM with MD on the asymmetric unit, was a good approximation

to the fluctuations generated by simulating the entire capsid explicitly with MD.

The agreement between the theoretical model and the observed fluctuations, as

well as the agreement between the multiscale (ENM) and the brute force MD

approach are shown in Fig. 9. From the fits to the data, we are able to determine

Y , �, and  for the T D 1 mutant of Sesbania mosaic virus (SeMV). We have

applied this multiscale approach to HK97 [85, 86] in the mature and immature

forms and predicted a significant change in  (�200 immature, �800 mature)

between the states. These values are in agreement with the LMN theory, which

predicts structures with  < 250 should be spherical and those with higher  values
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should take on faceted forms, as is observed in Fig. 7. Additionally, we calculated a

reduction in � (�70 kBT immature, �30 kBT mature) between the states. This

reduction in � is functionally important, as it allows the faceted state, with the

high curvature corners, to be adopted at a lower energy cost. Furthermore, it can

be concluded from this analysis that the interactions which are changing during

the transitions, function to reduce � making the shell more flexible and enable it

to reach the infectious state more efficiently. From this analysis we have inferred

a mechanical mechanism for the maturation of HK97 by incorporating molecular

details and have provided support for the LMN theory of buckling transitions.

Further examination of larger (T > 7) capsid structures using this multiscale

method will allow us to test our predictions from the canonical capsid model that

only class 2 capsids have the propensity to undergo buckling transitions.

6 Conclusions and Future Directions

We have studied several aspects of a virus capsid’s behavior ranging from elastic

properties to evolutionary pressures using a variety of modeling techniques. These

techniques span the range from all-atom molecular simulations, to coarse-grained

studies of assembly, to purely mathematical models. Clearly, maturation and capsid

assembly, which are fundamental processes of virus life cycles span a wide range of

spatial and temporal scales. To make progress, we have explored one virus life cycle

process at a time, which allowed us to build models appropriate for the phenomena

under investigation. Even within these independent studies, we have used multiscale

approaches to bridge molecular level detail to continuum theory (Sect. 5), and

incorporate what we learn at one level of description (subunit shape, Sect. 3), into

our studies of other aspects of the life cycle (assembly, Sect. 4). The current work has

offered explanations for several features of viruses not currently accessible through

experimentation. The goal of all of these works is to gain a better understanding of

how viruses operate and it is this knowledge that will further our ability to fight viral

infections, develop and manufacture vaccines, and utilize capsids in nanotechnology

applications. However, to have an greater impact on health and technology we must

continue our exploration to elucidate the intricate and complex processes of virus

life cycles.

In future studies, we will explore the transition pathways associated with

structural changes of capsids. In an earlier study, normal mode analysis identified

the dominant modes characterizing structural transitions of virus capsids, including

HK97 [96]. In the case of HK97, two modes were required to describe the

configurational change. Using these dominant icosahedral normal modes, pathways

were constructed to connect the states of the system. However, these pathways may

not be representative of the physical pathway the virus undergoes, because they are

not refined against an “accurate” potential function. Computing the energetics of

the pathway (free energy barriers, �G between stable states) requires using a more

detailed potential. These calculations will require advanced sampling techniques to
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“find” a minimal energy pathway and then compute the probabilities of the states

along the path [97–99]. Understanding how pH effects the energetics of the pathway

can also be incorporated into our pathway modeling efforts through constant pH-

MD methods [100,101]. The potential benefit of studying these transition pathways

is that molecular interactions that have a drastic effect on the behavior of the system

can be identified. For example, specific salt bridges might form at a given pH, but

altering the pH could break those salt bridges and change the free energy barrier

between the stable states. Identification of these key residues can be tested through

mutagenesis studies, and could provide a target for preventing virus maturation.

Similarly, the pathway methods can be combined with elasticity calculations such as

described above, and residues that are responsible for altering the elastic character

of the material can be identified. This knowledge could provide design principles

for engineering novel capsids and for modulating the properties of capsids used in

nanotechnologies. Understanding transition pathways is just one avenue of further

investigation of viruses, other areas of interest include understanding viral protein–

host protein interactions [102] and protein–nucleic acid interactions during virus

assembly. Viruses have a rich array of features and phenomena that are still poorly

understood. However, by building and employing computational and theoretical

models that capture the essential physics of the underlying phenomenon, we can

shed light on many of these unresolved aspects of the virus life cycle.
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Mechanisms and Kinetics of Amyloid
Aggregation Investigated by a Phenomenological
Coarse-Grained Model

Andrea Magno, Riccardo Pellarin, and Amedeo Caflisch

1 Introduction

Amyloid fibrils are ordered polypeptide aggregates that have been implicated in

several neurodegenerative pathologies, such as Alzheimer’s, Parkinson’s, Hunting-

ton’s, and prion diseases, [1, 2] and, more recently, also in biological functional-

ities. [3–5] These findings have paved the way for a wide range of experimental

and computational studies aimed at understanding the details of the fibril-formation

mechanism. Computer simulations using low-resolution models, which employ a

simplified representation of protein geometry and energetics, have provided insights

into the basic physical principles underlying protein aggregation in general [6–8]

and ordered amyloid aggregation. [9–15] For example, Dokholyan and coworkers

have used the Discrete Molecular Dynamics method [16, 17] to shed light on

the mechanisms of protein oligomerization [18] and the conformational changes

that take place in proteins before the aggregation onset. [19, 20] One challenging

observation, which is difficult to observe by computer simulations, is the wide range

of aggregation scenarios emerging from a variety of biophysical measurements. [21,

22] Atomistic models have been employed to study the conformational space of

amyloidogenic polypeptides in the monomeric state, [23–25] the very initial steps

of amyloid formation, [26–32] and the structural stability of fibril models. [33–35]

However, all-atom simulations of the kinetics of fibril formation are beyond what

can be done with modern computers.
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To overcome such computational limitations, simplified models have been

developed and used to investigate the kinetics and pathways of oligomerization and

fibril formation at different levels of resolution [36]. In this chapter, we first review

briefly the simplified models of aggregation. We then present our coarse-grained

phenomenological (CGF) model of an amphipathic peptide [37], and its use for

studying kinetics and thermodynamics, both in bulk conditions and in presence of

other simplified (macro)molecules.

2 Coarse-Grained Models

In coarse-grained models, the complexity of a system (and therefore the compu-

tational cost) is reduced by grouping atoms into larger units or “beads,” whose

mutual interactions are usually approximated by a potential of mean force [38].

Several coarse-grained models of different resolutions have been developed to

study aggregation (see Fig. 1). Zhang and Muthukumar [39] have created a cuboid

model able of reproducing the features of a nucleation-limited aggregation process.

With their so-called “tube” model, Auer and coworkers [40] have shed light upon

the conversion of a disordered aggregate into an aggregating nucleus. Higher-

resolution models like the one developed by Thirumalai and collaborators [41]

Fig. 1 Main coarse-grained models discussed in Sect. 2. (a) Cuboid model [39]; (b) tube model
[40]; (c) lattice model [41]; (d) CGF model [37]; (e) Shea model [43]; (f) Hall model [42].
Reprinted from [36] with permission by Elsevier
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or the PRIME model of Nguyen and Hall [42] have also showed disordered

aggregates in the early steps of aggregation. Several aggregation scenarios have

been described with the three-bead model of Shea and coworkers. [43] In their

model, the variation of a parameter related to the dihedral flexibility is able to

reproduce different aggregation kinetics and metastable intermediates (amorphous

and ˇ-barrel-like), which is in part similar to the CGF model [37]. The main

difference between the Shea and CGF models is that the former is based on a coarse-

graining from an atomistic description (i.e., “bottom-up” development), whereas

the CGF model is purely phenomenological (“top-down”) as explained in the next

section.

3 The Coarse-Grained Phenomenological Model

The coarse-grained model of an amphipathic peptide developed for studying

aggregation kinetics and thermodynamics is a compromise between mesoscopic

detail and computational efficiency. It must be stressed that this simplified model

does not represent a particular protein sequence, i.e., it has not been generated by

grouping into larger beads the atomic structure of a given (poly)peptide. It rather

was designed from scratch for emulating the main experimental findings on fibril

formation kinetics.

The peptide is approximated by ten spherical beads, four of which represent

the “backbone” (small beads) and six the “side chain” (large beads) (Fig. 2,

top). The “backbone” beads carry partial charges of ˙0:4e, thereby generating

two dipoles; this part of the monomer is designed to interact specifically by

intermolecular dipole–dipole interactions. The large beads interact only by van der

Waals forces. The nonbonding interaction cutoff is set equal to 20Å. The monomer

displays an amphipathic moment, since eight of the ten beads have less favorable

van der Waals interactions than the remaining two beads (black spheres in Fig. 2,

top). The amphipathicity of the “molecule” allows the formation of amorphous

aggregate, such as micellar oligomers, and the assembly of fibrils. In both of these

types of aggregates, the hydrophobic spheres are buried and the hydrophilic spheres

are exposed. The micellar oligomers are spherical and fluid-like, while the fibrils

are ordered and rigid (see below).

The monomer can change its conformation by rotating around the internal

dihedral defined by the small beads (Fig. 2, bottom). Using a one-dimensional spline

function, [44] a dihedral potential was designed with only two minima separated by

a barrier (see Fig. 3). The only parameter that rules the relative populations of the

amyloid-prone and amyloid-protected states is the energy difference dE D E� �Eˇ

between the conformation with perpendicular dipoles (E� ), which prevents ordered

aggregation, and the conformation with parallel dipoles, which is prone to form
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Fig. 2 The CGF model: sticks and beads representations of the monomer in the amyloid-
competent state ˇ and the amyloid-protected state � [37]. The large spheres are hydrophobic
(black) and hydrophilic (gray), while the two dipoles are shown with small red and blue spheres.
The size of the spheres does not represent the actual van der Waals radii, which are 2.5Å for the

black and gray spheres and 2.0Å for the red and blue spheres. The ˇ and � states of the monomer
are shown on top of the two corresponding minima of the free energy, plotted as a function of the
dihedral angle � of the two dipoles. Reprinted from [50] with permission by Elsevier

fibrils (Eˇ). The use of a single parameter to model a complex process was inspired

by the work of Zhou and Karplus, who have analyzed the folding kinetics of a model

protein by varying a single parameter and shown that it is possible to recover several

folding scenarios. [45]
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Fig. 3 The dotted line is the dihedral potential with a dE D �2.5 kcal/mol energy difference
between amyloid-protected and amyloid-competent state. The five continuous lines represent the
free energy profile of the isolated monomer for five different dihedral potentials. Since the peptide
has only one degree of freedom, dE is close to the free-energy difference between the two
aforementioned states. For instance, when dE D 0:0 kcal/mol, the � and ˇ states are equally
populated, whereas for dE D �1.5, �2.0, and �2.25 kcal/mol, the � state is about 15, 39, and
64 times more populated than the ˇ state, respectively. Reprinted from [37] with permission by
Elsevier

4 Aggregation of the CGF Peptide Model in Bulk Solution

Unless specified explicitly, simulations are started from 125 monodispersed mono-

mers of the CGF peptide in a cubic box with a size of 290Å, corresponding to

a concentration of 8.5 mM. After minimization and equilibration, simulations are

performed with Langevin dynamics at 310 K with a very small friction coefficient

of 0.01 ps�1 using CHARMM [46].

4.1 Aggregation Kinetics and Pathways

The range of aggregation kinetics of the CGF model is shown in Fig. 4, where the

normalized degree of polymerization as a function of time is plotted for different
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Fig. 4 Influence of amyloidogenic tendency on aggregation kinetics. (Left): Time series of the
fraction of ordered aggregation evaluated at four values of the amyloidogenic tendency, from
very prone to form fibrillar aggregates (dE D 0:0 kcal/mol) to marginal propensity (dE D
�2.5 kcal/mol). Ten independent simulations are shown for each dE value. (Right): Fluorescence
intensity (degree of aggregation) of V18I (a), V18Q (b), and V18P (c) mutants of Aˇ40 [48].
Note that the ns-�s timescales in the CGF model simulations are much shorter than in the
experiments (hours) because of the much higher concentration in the former (8.5 mM) than in
the latter (120 �M). Reprinted from [37] (left) and [48] (right) with permission by Elsevier (left)
and Jon Wiley & Sons (right)

values of the amyloidogenic propensity dE. The extent of aggregation is controlled

by counting the number of polar contacts: a polar contact is formed whenever two

dipoles of different monomers are closer than 5Å. Three different kinetic phases are

visible: lag, elongation, and final monomer–fibril equilibrium. The variable length

of the lag phase and the higher heterogeneity at longer lag times are indicative of

a stochastic nucleation [47]. Fibril formation is much slower for the ˇ-unstable

models (dE D �2.5 and �2.25 kcal/mol) than the ˇ-stable models (dE D �1.0

and 0.0 kcal/mol). Both the lag phase and the elongation kinetics are affected

by the single free parameter dE of the CGF model. Interestingly, the kinetics

of aggregation are qualitatively consistent with the experimental data on single-
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Fig. 5 Oligomer size histograms of the dED �2.5 kcal/mol potential (top) and
dED 0:0 kcal/mol (bottom) calculated at the lag phase (left) and at the final equilibrium
(right). The z-dimension represents the relative probability. Note that most of the results were
obtained at a concentration C D 8:5mM which is the lowest value at which fibril formation takes
place within a reasonable simulation time for the dE D �2:5 kcal/mol model (10 �s in about 17
days on a single Xeon 5410 processor). Reprinted from [37] with permission by Elsevier

point mutants of Aˇ40 [48], which have shown that the ˇ-sheet propensity and

hydrophobicity affect the features of the aggregation process. This comparison

shows that although the CGF model does not represent any particular polypeptide

sequence, variations of the single parameter dE emulate the behavior observed for

(slightly) different amyloidogenic sequences. Moreover, the anticorrelation between

the length of the lag phase and the rapidity of the fibril elongation has also

been observed experimentally on several samples prepared from amyloidogenic

(poly)peptide sequences. [49]

The distribution function p.N / of the oligomer size N evaluated at the lag phase

or at the final equilibrium is depicted in Fig. 5. The monomer peak ranges from

N D 1 to N D 7, the micellar peak from N D 8 to N D 60, and the fibrillar peak
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Fig. 6 Influence of the amyloidogenicity parameter dE on the kinetics of the CGF model. The
time needed to reach 50% of the maximal amplitude t50 (black circles and y-axis legend on the
right) and the elongation rate (red squares and y-axis legend on the left) are displayed for seven
dE values. Symbols represent the average value of ten independent runs, and the error bars are
the maximum and minimum values. The broken line and the gray band indicate the average and
the max–min values for the time of micelle formation, respectively. Reprinted from [37] with
permission by Elsevier

from N D 61 to N D 125. The micellar peak is present for the dED �2.5 kcal/mol

model at the lag phase, but disappears at the final equilibrium, where the fibril

and the monomers are the only co-existing species. For the ˇ-stable potential

dED 0:0 kcal/mol, the micellar peak is not observed at any concentration value.

Indeed, a comparison of the lag times with the times of micelle formation (Fig. 6)

shows that the fibril formation kinetics of the ˇ-unstable and ˇ-stable models are,

respectively, slower and faster than micelle formation. In fact, micelles are interme-

diates consisting mainly of monomers in the � state, whereas the polymerization of

ˇ-stable monomers directly yields fibrils.

This observation is confirmed also by the analysis of aggregation pathways. [50]

A total of 100 Langevin dynamics simulations for different values of dE were

clustered according to three progress variables: the size of the largest aggregate

Nla, the number of monomers in the ˇ-state within the largest aggregate N
ˇ
la , and

the number of protofilaments in the largest aggregate N
pf
la , where a protofilament

is defined as a file of monomers with intermolecular dipolar interactions parallel
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Fig. 7 Aggregation state network. The size of the largest aggregate Nla and its number of

protofilaments N
pf
la were used to cluster all simulation snapshots into states (i.e., nodes of

the network). The size and the color of nodes correspond to the statistical weight and the

number of protofilaments N
pf
la , respectively. Links are direct transitions within 0.5 ns of Langevin

dynamics. Note the much higher heterogeneity of protofibrillar intermediates for the ˇ-unstable
(dED � 2:5 kcal/mol, bottom) as compared to the ˇ-stable (dED � 1:5 kcal/mol, top) model.
The insets show (proto)fibrillar structures that are representative of each region of the aggregation
state network. In these structures, monomers in the amyloid-competent conformer ˇ and amyloid-
protected conformer � are in red and blue, respectively. Furthermore, hydrophobic spheres are
gray and hydrophilic spheres are not shown for visual clarity. Reprinted from [50] with permission
by Elsevier

with its axis. The aggregation state network (Fig. 7) is a graph in which the

states and direct transitions observed during the Langevin dynamics simulations

are displayed as nodes and links, respectively. Furthermore, the size of each

node reflects the statistical weight of the corresponding state. Micellar oligomers



200 A. Magno et al.

(white nodes, Nla � 20, N
pf
la D 0) and fibrils (red nodes, Nla � 100, N

pf
la D 4)

are the most populated states during the lag phase and the final equilibrium,

respectively. Strikingly, a greater variety of aggregation mechanisms emerges for

the poorly amyloidogenic CGF peptide model (see Fig. 7, bottom) than the highly

amyloidogenic CGF peptide model (see Fig. 7, top). Indeed, the former shows the

presence of intermediates, i.e., protofibrils consisting of only two (green nodes)

or three (blue nodes) protofilaments. According to this analysis, it is reasonable

to expect that a mutation that decreases the ˇ-aggregation tendency could result

in a greater variety of prefibrillar aggregates, as in the case of the Arctic mutant

(E22G) of the Alzheimer’s Aˇ peptide and the A30P mutant for ˛-synuclein, for

which a more pronounced in vitro formation of oligomers and protofibrils was

observed. [51, 52]

4.2 Mechanism of Nucleation

The nucleation properties of the CGF model are investigated by evaluating the

probability of fibril formation for ˇ-subdomains, i.e., the clusters of interacting

ˇ-monomers. The nucleus, defined as the oligomer containing a ˇ-subdomain with a

50% probability to form a fibril, shows an increasing size upon destabilization of the

ˇ-state. Significantly different nucleation mechanisms are observed upon variation

of the amyloidogenicity parameter dE (Fig. 8). For high values of the amyloido-

genic propensity (�2:0�dE � 0.0 kcal/mol), the nucleus size is submicellar, and

nucleation is simply the aggregation of monomers in the ˇ-state. On the contrary, for

poorly amyloidogenic peptides, nucleus formation requires either spatial proximity

of several monomers in the ˇ-state (dE D �2:25 kcal/mol) within a micelle or

collision of two peptide micelles with merging of their ˇ-subdomains (dED �

2:5 kcal/mol). The variety of aggregation scenarios is also observed experimentally.

An unstructured peptide with a marginally stable ˇ-prone state like Aˇ40 [53, 54]

visits oligomeric intermediates in the lag phase, and has a very weak dependence

of the elongation rate on concentration due to the monomer-micelle equilibrium.

This mechanism corresponds to the nucleated conformational conversion proposed

by Serio et al. [55] On the other hand, a functional and nonpathological amyloid

in mammalians [56] lacks on-pathway intermediates and corresponds to the highly

amyloidogenic CGF peptide model. Once more, by varying the only free parameter

dE of the CGF model, it is possible to describe the aggregation properties of a wide

and diverse range of (poly)peptide sequences.

4.3 Concentration Effects

The dE parameter of the CGF model has a strong influence on the concentration

dependence of the fibril-formation kinetics. In agreement with the above-mentioned

mechanism of nucleation, CGF peptides poorly prone to aggregation nucleate only
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Fig. 8 Observed nucleation scenarios of the CGF peptide model. Black and white circles represent
the amyloid-competent conformer ˇ and amyloid-protected conformer � , respectively. CGF
peptides with high values of amyloidogenic tendency nucleate without intermediates, while
poorly amyloidogenic CGF peptides can nucleate either through micelle-sized oligomers (dE D
�2:25 kcal/mol) or transient oligomers larger than a micelle (dE D �2.5 kcal/mol). A further
stabilization (dE D �2:75 kcal/mol) of the protected state prevents fibril formation within the
simulation time of about 20 �s. M, micelle; N, nucleus; T, transient oligomer; F, fibril. Reprinted
from [37] with permission by Elsevier

at concentration values larger than the critical concentration of peptide micelle

formation, whereas CGF peptides with a high value of amyloidogenicity nucleate

even at lower concentrations (Fig. 9, left). Furthermore, the dependence of the

elongation rate on the concentration is only marginal at low amyloidogenic tendency

(Fig. 9b). The reduced concentration dependence originates from competitive poly-

merizations, i.e., the elongation of the fibril and the presence of micellar oligomers.

This observation is a consequence of the monomer–micelle equilibrium of the

CGF peptide model, which maintains a nearly constant concentration of isolated

monomers [58].

4.4 Amyloid Fibril Polymorphism

Experiments based on electron and atomic force microscopy as well as solid-state

NMR spectroscopy revealed that changing the samples conditions, such as the

pH [59] or the cosolvent concentration, [60] or introducing a mechanical

perturbation [61, 62] results in different amyloid fibril morphologies. Furthermore,
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Fig. 9 Influence of peptide concentration on aggregation kinetics. (Left) Effect of concentration on
the lag phase time t50 (a) and elongation rate (b) for low and high values (dE D �2:5 kcal/mol,
black circles; dE D 0:0 kcal/mol, green squares, respectively) of the amyloidogenic tendency.
The symbols represent the average value calculated from 15 simulations for dE D �2:5 kcal/mol
and 10 simulations for dE D 0:0 kcal/mol. The error bars represent the minimum and the
maximum values. The vertical dotted line indicates the critical concentration of micelle formation.
(Right) Influence of the initial monomeric concentration on the kinetics of insulin fibril formation
as measured by Thioflavin T fluorescence [57]. Note that the higher the concentration of
monomeric insulin is at the beginning of the experiments, the shorter is the lag phase and the
faster is the elongation rate. Reprinted from [37] (left) and [57] (right) with permission by Elsevier
(left) and American Chemical Society (right)

even within the same sample, a number of coexisting morphologies can be

detected. [59, 63] Recently, it was observed that the CGF peptide model is able

to generate fibrils with distinct morphologies. [64] Interestingly, the populations of

the different morphologies are strongly and nontrivially influenced by the amyloido-

genic propensity dE, and two main mechanisms for fibril morphogenesis emerge.

When the CGF peptide is highly prone to aggregate (dE D �1:5, �2.0 kcal/mol),

the morphogenesis is under thermodynamic control, meaning that the morphology

with the highest stability will emerge with the highest probability. In contrast, when

the CGF peptide has a low amyloidogenic tendency (dE D �2:25, �2.5 kcal/mol),

the fibril morphogenesis is under kinetic control. The morphologies that nucleate
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Fig. 10 Morphology differentiation and kinetic control of fibril polymorphism. (Left) Morpholo-
gies of mature fibrils and prefibrillar species. (Top) Mature fibrils display a 4-protofilament
structure (4PF). The 4PF morphologies have different orientation of the protofilaments, organiza-
tion of up and down protofilaments, and thickness of the fibril. (Bottom) The prefibrillar species are:

the micellar oligomers M, consisting of �-monomers (blue beads) aggregated through hydrophobic
forces; the 2-protofilament protofibril (2PP), and the 3-protofilament protofibril (3PP), which are
early stages of fibril maturation, where the �-monomers are deposited onto the lateral surface of the
fibril, and the ˇ-monomers make up the protofilaments (colored ribbons). (Right) Branched tree
illustration of the morphology differentiation process as observed in the simulations. Reprinted
from [64] with permission by American Chemical Society

more readily are not necessarily the most stable ones, but those whose precursors

are kinetically more accessible, as revealed by the free energy profiles of the

fibrillation. [64] For the low amyloidogenic scenario, the process of morphology

differentiation can be represented by a branched tree (Fig. 10). During the lag phase,

the micellar oligomers are in equilibrium with the dispersed monomers. The early

morphology differentiation occurs at the nucleation step, where the formation of the

protofibrillar intermediates is regulated by the structural bifurcation of the nucleus.

The 2PP and 3PP1 intermediates are competent to 4PF1 fibrils, while the 3PP2 in-

termediate is competent to 4PF2(C,�) fibrils. Alternatively, the presence of 3PP2C

and 3PP2� intermediates that are directly competent to 4PF2C and 4PF2� fibrils,

respectively, has been observed, although these pathways were not quantitatively

analyzed. Finally, the pathway of formation of 4PF3 fibrils was not investigated

in detail, due to the small number of nucleation events of this morphology. The

multiple-pathways process observed here has a close similarity with the scenario

described by Goldsbury et al., [65] where two different morphologies of Aˇ have

distinct maturation pathways, either with or without the presence of metastable

protofibrils.
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5 Aggregation in the Presence of Lipid Vesicles

and Inert Crowders

Amyloid aggregation in vivo does not occur in bulk solution. Rather, it takes place

in the extracellular space, whose composition includes metabolites and proteins,

or within the cell, which is usually densely occupied by (macro)molecules like

proteins, nucleic acids, and polysaccharides, as well as macromolecular assemblies

and organelles. [66] Several research groups have investigated the interactions

between lipid vesicles and amyloid aggregates, [67–69] whose accumulation on the

surface of lipid bilayers was observed to cause membrane damage. Aggregation

has also been studied in crowded media, [70–72] where the thermodynamics and

kinetics of aggregation are are expected to sensibly change.

5.1 Effect of Lipid Bilayers on CGF Peptide Aggregation

A three-bead model of a lipid molecule has been developed to study the CGF

peptide model aggregation kinetics in the presence of a lipid vesicle. [73,74] Several

independent Langevin simulations at 310 K have been performed for four values of

dE with 125 peptides initially monodispersed in a cubic box of length 290Å and a

preequilibrated unilamellar bilayer vesicle made up of 1,000 lipids. Depending on

the lipid/peptide van der Waals coupling parameter �, between 50% and 80% of the

CGF peptides are located on the lipid vesicle surface after the initial equilibration

phase, i.e., before fibril formation (Table 1).

The effect of lipid bilayers on aggregation kinetics for different values of

amyloidogenicity is reported in Table 2. Highly amyloidogenic peptides fibrillate

more rapidly in the presence of lipid vesicles than in their absence, while the

opposite is observed for peptides of low amyloidogenicity. The faster aggregation

kinetics of highly amyloidogenic peptides is a consequence of their higher effective

concentration on the lipid bilayer relative to the bulk. In contrast, despite the

same increase of peptide concentration on the vesicle surface, fibrillation of

peptides with low amyloidogenic propensity is slower in the presence of lipid

Table 1 Three-bead lipid and surfactants models used with CGF peptide model

Fraction of

CGF peptides

Type of Rhydrophilic Rhydrophobic �hydrophilic �hydrophobic bound to

molecule [nm] [nm] [kcal/mol] [kcal/mol] �a lipid vesicles Reference

Lipid 0.31 0.3 �0.1 �1.265 0.87–0.90 50% [73]

Lipid 0.31 0.3 �0.1 �1.265 0.95 80% [74]

Surfactant 0.35 0.3 �0.1 �0.8 1 [80]

Different scaling is used to model different systems, i.e., surfactants .� D 1/, moderately attractive
.� � 0:9/, and strongly attractive .� � 0:95/ lipid bilayers
aScaling factor for the vdW interactions between lipids or surfactants and peptides
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Table 2 Characteristic lag-time of aggregation t50 for CGF peptide model for different
amyloidogenic tendency in the presence or absence of lipid vesicles [73]

Number of Lag time t50 [ns]
Scaling of peptide/ runs with with without
lipid interactions Amyloidogenicity fibril formation membrane membrane

0.87 High 10/10 11 ˙ 1 19 ˙ 3

Interm. 29/29 89 ˙ 29 56 ˙ 15

Low 17/20 958 ˙ 503 124 ˙ 28

Very low 0/10 >2000 318 ˙ 133

0.90 High 10/10 10 ˙ 1 19 ˙ 3

Interm. 30/30 69 ˙ 23 56 ˙ 15

Low 0/20 >2000 124 ˙ 28

Very low 0/20 >2000 318 ˙ 133

Values in boldface are significantly larger in the presence of the vesicles

vesicles. As mentioned in section III, peptides with low amyloidogenic potential

can fibrillate only after aggregating into spherical oligomeric intermediates with

hydrophobic interior and hydrophilic surface. In the simulations with lipids, such

oligomeric intermediates form in the bulk but not on the vesicle. Fibrillation of

low amyloidogenic peptides therefore takes place in the bulk and is slower than

in the absence of a vesicle due to the lower effective concentration of peptides in

the solvent. These simulation results are consistent with and explain the apparently

contradictory experimental observations on faster aggregation of the Aˇ [68] or

˛-synuclein [75] peptides in the presence of lipid surfaces and slower aggregation

of insulin (which has lower amyloidogenicity), [76] and have been confirmed by

recent studies on the aggregation properties of human islet amyloid polypeptide

hIAPP1�19 in presence of lipid vesicles [77].

To investigate the influence of the CGF peptides on the lipid bilayer, the simu-

lations were initiated with 20 spherical probes inside the vesicle. It was observed

that leakage from the lipid vesicle is enhanced during fibril formation but not by the

mature fibril [73]. More precisely, a comparison between the fibrillation and probe

release rates (Fig. 11, left) revealed that probe release is fastest during fibril growth,

whereas the kinetics of probe release in the presence of mature fibrils is as slow as

in the absence of peptides, indicating that mature fibrils do not damage the integrity

of the vesicle. Rather, the ongoing process of aggregation on the vesicle results

in bilayer surface defects. This observation explains why for some amyloidogenic

peptides there exist mutants that form fibrils more rapidly and are more toxic

than the wild-type peptides, even though their fibrils are not toxic. [78] Moreover,

these computational results are in agreement with the experiments performed by

Engel et al. on membrane damage caused by human islet amyloid polypeptide

(hIAPP) fibril growth [69] (Fig. 11 right).

It has also been hypothesized that formation of toxic oligomers that induce

membrane leakage could be the result of a backward production of oligomers from

the mature fibril. [79] Interestingly, by modulating the attraction between the CGF
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Fig. 11 Comparison of CGF model simulations and experimental data on fibril formation in the
presence of lipid vesicles. (Left) Simulation results. (Left, top) Influence of peptide amyloido-
genicity on fibril growth kinetics and vesicle leakage. A single parameter, the energy difference
between amyloid-competent and amyloid-protected conformations of the peptides, is varied in
different simulations to tune amyloidogenicity. Time series of the average number of ordered polar
contacts between monomers (corresponding to the degree of fibrillation). (Left, bottom) Average
number of probes inside the vesicle, in the absence (black) or presence (colors) of peptides, and for
simulations where a preformed fibril was used instead of dispersed peptides. (Right) Experimental
data: Effect of human islet amyloid polypeptide (hIAPP) fibril growth on membrane leakage. [69]
Thioflavin T fluorescence intensity (Right, top) and induced membrane leakage (Right, bottom) of
three hIAPP samples (black curves), together with representative traces for mouse IAPP variant
which is known to be non-toxic (gray lines) and preformed hIAPP fibrils (dashed lines) are shown.
The two vertical lines are shown to facilitate comparison of the kinetic traces in top and bottom

panel. Reprinted from [73] (left) and [69] (right) with permission by Elsevier and by Copyright
2008 National Academy of Sciences, U.S.A., respectively

peptides and the membrane, fibril disaggregation into soluble backward oligomers

has been observed. [74] The disaggregation process is driven by entropy and results

in soluble protofibrillar oligomers. The protofibrillar oligomers are larger, more

ordered, and more stable than those observed during the aggregation process and,

importantly, are not detected in disaggregation simulations carried out in bulk

solution, i.e., in the absence of lipid vesicles.
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Fig. 12 Amyloid aggregation in the presence and absence of surfactants. The number of peptides
in the largest aggregate is averaged over 20 runs at each simulation condition, i.e., for each
value of aggregation propensity (dE) and each surfactant/peptide concentration ratio (s:p). Free
peptides display fast aggregation without any noticeable lag phase. At surfactant:peptide ratio

of 4:1, peptides aggregate into fibrils, but aggregation is much slower for peptides with low
amyloidogenicity (see the inset for dE D �2.25 and surfactant:peptide ratio of 4:1, extended to
8 �s). At a surfactant:peptide ratio of 8:1, aggregation is completely inhibited for dE D �2.0 and
�2.25 kcal/mol, while highly amyloidogenic peptides (dE D �1.5 kcal/mol) are barely affected

5.2 Effect of Surfactants on CGF-Peptide Aggregation

Surfactant molecules have been modeled using a similar three-bead model as that

used for lipids. The surfactant model differs from lipid models used previously

in two parameters (Table 1): the minimum of the van der Waals energy of the

two hydrophobic beads is less favorable, and the radius of the hydrophilic bead

is larger to enable the formation of amorphous aggregates. Using these parameters,

the surfactant solution is not dominated by a micellar phase. Rather, the surfactants

are organized either as dispersed monomers or disordered aggregates [80].

In the absence of surfactants, all peptide models form fibrils within 1 �s without

any discernible lag phase (Fig. 12, dotted lines). At a surfactant:peptide ratio

of 8:1, the fibril formation kinetics of peptides with dE D � 1:5 kcal/mol are

almost unaffected, whereas already at a ratio of 4:1 the ordered self-assembly

of peptides with dE < �2.0 kcal/mol is significantly slower (Fig. 12, solid lines)

mainly because of a longer lag phase. Moreover, for low-amyloidogenic peptides

(dE � � 2:0 kcal/mol) no fibrillation is observed within the simulation length of
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2 �s at a surfactant:peptide ratio of 8:1, but instead oligomers of �40 peptides

form. These simulation results show that at a fourfold molar excess of surfactant,

the inhibition of fibrillation already depends strongly on the amyloidogenicity of the

CGF peptide model.

5.3 Macromolecular Crowding Effect on CGF Peptide

Aggregation

Simulations with the CGF peptide model together with softly repulsive spheres have

been carried out to assess the influence on the aggregation kinetics of excluded

volume and hindered peptide diffusion due to macromolecular crowding. [81]

As in the case of lipid-bilayer vesicles, the net effect of macromolecular crowding

crucially depends on the amyloidogenicity tendency of the CGF peptide. For

peptides with low aggregation propensity, the self-association process is transition-

state limited, where the kinetic bottleneck is the formation of the fibril nucleus.

In this case, since the oligomers, including the nucleus, are thermodynamically

favored (with respect to the isolated monomers) by the excluded volume effect,

macromolecular crowding accelerates peptide assembly and has an effect analogous

to that of an increase in peptide concentration (Fig. 13, left). This trend is analogous

to that observed experimentally by Munishkina et al., who have studied the effect of

increasing the PEG concentration on the ˛-synuclein aggregation process. [71]

On the other hand, when the aggregation mechanism is fast and proceeds directly

from monomers to fibril, the process is diffusion limited, and the thermodynamic

stabilization of oligomers is less important than the reduction in peptide mobility.

In this case, the bottleneck is not the formation of the nucleus; the rate-limiting

step for peptides that show a direct aggregation mechanism is the elongation of

the fibril. Therefore, in this case macromolecular crowding is much less efficient

in accelerating the self-association of peptides than an equivalent increase in

peptide concentration, since the peptides diffusion is hindered by the crowders

(Fig. 13, right).

6 Conclusion

Atomistic simulations of aggregation are limited by short timescale, while exper-

imental approaches to amyloid fibril formation have insufficient spatial resolution.

Coarse-grained models of polypeptide aggregation sacrifice atomistic detail to reach

timescales that allow the comparison with and interpretation of experimental data.

The models presented in this chapter have shed light upon amyloid aggregation

kinetics and mechanisms, which is helpful to formulate a unified picture of the

available experimental data.
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Fig. 13 Differences in aggregation kinetics upon raising peptide concentration or crowders
content depend on amyloidogenicity. The time t50, at which the growing fibril has reached 50%
of the polar contacts of the mature fibril, is shown as a function of concentration. Black circles

are t50 values calculated at different peptide concentrations in the absence of crowders, while red

squares are t50 values at different equivalent concentrations Ceq obtained by varying the number
of crowders. Symbols represent the average value of ten independent runs and the error bars are
the minimum and maximum values. Reprinted from [81] with permission by American Chemical
Society

The CGF model has only one tunable parameter, the difference dE between

the energy of the amyloid competent and the amyloid-protected state of the

monomer. [37] Variations of this parameter reproduce several aggregation scenarios,

both under homogeneous and heterogeneous conditions. It is important to highlight

that the CGF model does not mimic any particular amyloid (poly)peptide sequence.

However, the different aggregation kinetics obtained with this model can be directly

compared with experiments carried out with specific proteins. In Table 3 are

reviewed the principal characteristics of the aggregation process for both the

high and low amyloidogenic tendency, and in both cases several examples of

real amyloid-forming (poly)peptide sequences are listed. It is important to note

that (coarse-grained) simulations, e.g., those with the CGF [37] and Shea [43]

models, allow for the emulation of conditions and/or phenomena that are not

accessible by (standard) experiments. As an example, the possibility to change

solely the intrinsic conformational landscape of a monomer without affecting

the intermonomer interactions is an advantage of the (coarse-grained) simulation

methods with respect to conventional experimental techniques such as mutagenesis
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Table 3 Influence of amyloidogenic propensity on the aggregation kinetics and pathways of the
CGF model [37]

High amyloidogenicity Low amyloidogenicity Reference

Small nucleus Large nucleus [37]

Fast fibril formation Slow fibril formation [37]

Downhill Micellar intermediates [37]

No intermediates Protofibrillar intermediates [50]

Single pathway Multiple pathways [50]

Strong concentration dependence Growth rate marginally dependent
on concentration

[37]

Polymorphism under
thermodynamic control

Polymorphism under kinetic control [64]

Can promote membrane leakage Does not promote membrane
leakage

[73]

Slightly accelerated by membranes Decelerated by membranes [73]

Marginally influenced by surfactants Decelerated by surfactants [80]

Not accelerated by macromolecular
crowding

Accelerated by macromolecular
crowding

[81]

Phe-Phe, GNNQQNY, transthyretin,
Aˇ42

Aˇ40, Sup35, prion protein,
myoglobin

-

The last line lists some examples but it must be stressed that amyloidogenic tendency strongly
depends on external conditions, so that the same polypeptide sequence can show drastically
different amyloidogenic tendency depending on pH, temperature, etc.

and solvent-induced conformational changes, by which it is not possible to decouple

changes in intra- from intermolecular interactions.

In conclusion, a slight modification of the free energy profile of an extremely

simplified model of an amphipathic peptide is sufficient to observe a wide range

of different fibril formation mechanisms, providing a unifying description of the

heterogeneity of the experimentally observed kinetics of amyloid fibril formation.
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The Structure of Intrinsically Disordered
Peptides Implicated in Amyloid Diseases:
Insights from Fully Atomistic Simulations

Chun Wu and Joan-Emma Shea

1 Introduction

Protein aggregation involves the self-assembly of proteins into large “-sheet-rich

complexes. This process can be the result of aberrant protein folding and lead to

“amyloidosis,” a condition characterized by deposits of protein aggregates known

as amyloids on various organs of the body [1]. Amyloid-related diseases include,

among others, Alzheimer’s disease, Parkinson’s disease, Creutzfeldt–Jakob disease,

and type II diabetes [2–4]. In other instances, however, protein aggregation is not

a pathological process, but rather a functional one, with aggregates serving as

structural scaffolds in a number of organisms [5].

It is now well-established that the primary end-product of aggregation has a

fibril structure, with a cross-“-sheet pattern based on solid state nuclear magnetic

resonance (NMR), X-ray diffraction, electron microscope, and dye-binding studies

[6–9]. Despite the importance of the aggregation process from a biomedical perspec-

tive, several critical questions remain unanswered regarding the nature of the species

populated during the fibrillization process. The very starting point of aggregation—

the nature of the “misfolded” monomeric species—is unknown, particularly in the

case of large class of “intrinsically disordered” or “natively unfolded” proteins that

are prone to aggregation [10, 11]. Rather than populating a well-defined three-

dimensional stable globular fold, these proteins interconvert among a number of

species. As a result, they are very difficult to characterize using traditional ensemble-

averaging methods such as NMR and circular dichroism (CD), although recent
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advances in NMR techniques are making some headway in this direction [12].

Examples of natively unfolded aggregating proteins include the Alzheimer amyloid-

“ .A“/ protein implicated in Alzheimer’s disease, the ’-synuclein protein implicated

in Parkinson’s disease, and the islet amyloid polypeptide (IAPP) implicated in

type II diabetes [13]. Numerous nonfibrillar aggregates (soluble oligomers, micellar

species, and amorphous aggregates) that can be on- or off-pathway to fibril

formation, and some of these aggregates that may possess toxic properties, have

been identified but not thoroughly structurally characterized [14–19]. Small soluble

oligomers are difficult to study experimentally, as they correspond to transient,

unstable species. Most experimental techniques do not possess the temporal and

spatial resolution to yield atomistically detailed information about oligomeric

species.

This chapter focuses on the use of fully atomistic simulations to probe the

very initial stage of aggregation of intrinsically disordered proteins: the monomeric

state. Simulations are uniquely poised to probe the structure of natively unfolded

proteins, as they tract individual protein conformations. We focus primarily on two

natively disordered peptides (the A“ peptide [20] and the IAPP peptide [21, 22])

and review recent simulations on these proteins. Although amyloidogenic peptides

(e.g., A“ and IAPP) are defined as “natively disordered” by ensemble-averaging

experimental techniques such as CD and NMR, all-atom simulations actually reveal

that these on-average “natively unfolded” peptides in fact do have some partial

structure. In particular, the simulations that will be presented show that these

peptides either populate a small number of “-rich conformations that could serve

as direct precursors for the formation of amyloid fibrils or contain some structured

elements such as “-hairpin, short helix-coil-helix, salt bridges, and hydrophobic

cluster that may serve as nucleus for folding and oligomerization.

2 Simulation Approaches

The primary simulation technique to study the monomeric conformations of such

peptides is replica exchange molecular dynamics (REMD) simulation. Conventional

Monte Carlo (CMC) and molecular dynamics (CMD) sampling techniques per-

formed under constant temperature condition are prone to getting trapped in local

minima and are not suitable methods for a thorough exploration of conformational

space. The time required to overcome energy barriers grows exponentially with

the barrier height. At physiological temperatures, escape times can easily reach

scales that are inaccessible on current computers (seconds or larger). An incomplete

sampling of conformational space distorts the statistical picture of conformational

ensembles populated under a given set of conditions and can lead to incorrect

conclusions regarding both folding mechanisms and conformational preferences

of the peptides. A number of enhanced sampling schemes have been recently

developed to remedy this sampling problem and facilitate an escape from the

local energy minima. One of the most promising methods is the replica exchange
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algorithm, initially introduced in the context of spin glasses and later adapted with

significant success to the study of peptides and small proteins [23]. Details of the

replica exchange formulation for molecular dynamics have been worked out by

Sugita and Okamoto [24–27]. In this scheme, a number of identical copies, or

“replicas,” of the original system are simulated in parallel for a given number of

MD steps at different temperatures. Two replicas i and j adjacent in temperaturesTi
and Tj , with energiesEi andEj , are swapped periodically with probability derived

from Boltzmann’s statistics:

pij D
(
1 for � � 0

exp.��/ for � > 0
where � � Œ.ˇi � ˇj /.Ej � Ei/� and ˇ D

1

kT
:

Since the escape time from local energy minima decreases significantly at elevated

temperatures, the replica exchange method enables enhanced sampling by treating

the temperature as a dynamical variable. In addition to extensive sampling, the

algorithm also ensures that the sampled conformations at a given temperature belong

to the canonical statistical ensemble. Data from simulation are clustered [typically

by mutual root mean square deviation (RMSD)] for further analysis [28].

3 The Alzheimer Amyloid-“ Peptide

The Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients

consist primarily of fibrillar aggregates of the Alzheimer amyloid-“ protein (also

known as the A“ protein or A“ peptide), a proteolytic by-product of the amyloid

precursor protein (APP) [2, 4]. The A“ protein is produced predominantly in two

forms: the 40-residue long A“40 protein and the 42-residue long A“42 protein

(Fig. 1). In addition to appearing as a sporadic disease (associated with the

aggregation of the A“40 and A“42 peptides), AD can also occur as an inherited

disease (Familial AD). Familial forms of AD are due to single point mutations in

the A“ protein. The locations of the most common familial mutations are shown

in Fig. 1. In addition, A“ peptides can adopt different conformations in different

solvents.

Fig. 1 Sequences for A“ 1–42. The central hydrophobic core (CHC) spanning residues 17–21 is
shown in the red box and the bend region (residues 22–28) in the blue box. Familial mutations
involving residues E22 and D23 are shown in green and orange, respectively
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Fig. 2 Aggregation pathways of A“42, adapted from [14]. The monomer structure is adapted from
[34] and the protofibril structure from [33]

These small chemical–environmental modifications can cause subtle conforma-

tion changes in the peptide, which can translate into dramatic differences in the ag-

gregation and toxicity of the A“ peptides. All-atom simulations [both conventional

constant temperature and replica exchange molecular dynamics (CMD/REMD)

simulations] are powerful tools to probe these subtle structural effects [29, 30]. For

example, simulations were used to examine subtle conformational changes of the

A“ peptides due to the presence of two additional hydrophobic residues (A“40 vs.

A“42), familiar mutations, and solvent effects. We describe the main results of these

simulations below.

3.1 A“40 and A“42

A“40 and A“42 differ only by the presence of two additional hydrophobic residues

(I41 and A42) at the C-terminus of A“42. While both species are amyloidogenic

and neurotoxic, A“42 aggregates faster and is significantly more toxic than A“40

[19]. Furthermore, A“40 and A“42 are known to oligomerize via distinct pathways.

While A“40 populates stable dimers, trimers, and tetramers prior to fibril formation,

A“42 oligomerizes further to form hexamers and higher order assemblies [14,31,32]

prior to fibril formation [33] (Fig. 2).

Using both CMD and REMD simulations, Garcia and coworkers [34, 35] have

found the major conformation difference between the two alloforms is that the

C-terminus of A“42 is more structured than that of A“40, due to the formation

of a short “-hairpin in the C-terminal sequence 31IIGLMVGGVVIA42 involving

two short strands at residues 31–34 and 38–41, respectively. These structural

features are in a quantitative agreement with available NMR data [34] and IR

data [36]. Using REMD with explicit solvent, we have studied a number of C-

terminal fragments (CTFs) .A“.x�42/; x D 29–31; 39/ [37]. Our simulations have

revealed that the CTFs adopt a metastable “-structure: a “-hairpin for A“.x � 42/;



The Structure of Intrinsically Disordered Peptides Implicated in Amyloid... 219

x D 29–31 and an extended “-strand for A“(39–42). Furthermore, the “-hairpin of

A“(30–42) converted into a turn-coil conformation when the last two hydrophobic

residues were removed, suggesting that the I41 and A42 residues are critical for

stabilizing the “-hairpin in the A“42-derived CTFs. Given the critical role of

the C-terminus in the self-assembly of full-length A“42 peptide, the CTFs were

investigated as inhibitors that could potentially disrupt the self-assembly and reduce

the A“42-induced neural toxicity. Indeed, all of the CTFs did inhibit A“-induced

neurotoxicity to at least some extent. Interestingly, the smallest CTF, A“(39–42),

was particularly effective in inhibiting A“42-induced cell death and rescuing A“42-

induced disruption of synaptic activity [38], making it a lead inhibitor for further

optimization.

3.2 Familial Forms of AD

Early onset AD refers to cases of the disease diagnosed before the age of 65. This

form of AD is present in 5–10% of all AD patients. Approximately, half the cases

of early onset AD correspond to familial AD, in which a genetic mutation leads

to the early onset of the disease. The majority of familial mutants involve residues

E22 and D23 of the A“ peptide [39–42]. Limited proteolysis showed that the 21–30

region of the A“ peptide is resistant to proteolysis, and subsequent NMR studies

[43, 44] showed that this region adopts a bend structure in isolation. Simulations of

the 21–30 fragment using REMD and CMD confirmed that this peptide is structured

[45–51]. Importantly, simulations on longer fragments (including the A“10–35

peptide) reveal that the 21–30 fragment is structured not only in isolation, but also

within the context of the longer sequences [29,30,52–55]. These simulations suggest

that the bend may be responsible for nucleating the folding of the A“ peptide.

Experiments by Meredith and coworkers [56] showed that linking residues D23 and

K28 by a lactam bridge lead to aggregation rates for A“40-lactam(D23/K28) that

were 1,000-fold greater than for the wild type A“40 peptide. Simulations of A“40-

lactam(D23/K28) revealed that this peptide populates, to a much greater extent

that the wild type A“40 peptide, “aggregation-competent” conformations, with a

bend spanning D23–G29 and “-strands in the N- and C-terminal regions [51]. A

number of computational research groups have investigated the effect of familial

mutants located in this bend region (the E22Q Dutch, the E22K Italian, the E22G

Arctic, and the D23N Iowa mutants) on the folding of the A“21–30 fragment using

REMD and CMD [48, 50, 57]. These simulations explored the interplay between

hydrophobic and electrostatic interactions in this segment, and revealed that the D23

mutant significantly disrupts the bend region, intimating that the D23 mutant alters

the folding nucleation of the A“ peptide. The E22 mutants, on the other hand, do not

affect the bend region, implying that the effect of these mutants is on regions outside

of the 21–30 segment. To explore this idea, we extended our simulation to the

A“15–28 peptide [58]. This peptide encompasses the bend region (residues 22–28)

and the central hydrophobic core (residues 17–21), a region critical for aggregation.
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Indeed, our simulations showed that although the E22Q mutant did not affect the

bend structure in the A“ E22Q mutant, it weakened the interactions between the

CHC and the bend, leading to an increased population of “-structure in the CHC.

Our free energy analysis further indicated that the E22Q mutation increases A“

aggregation rates by lowering the barrier for A“ monomer deposition onto a fibril.

3.3 Effect of Solution Conditions on A“ Structure

Whereas on average A“42 peptide adopts disordered coil-turn rich structure in

aqueous solution, it adopts an ordered helix-rich conformation in apolar solvents

[59, 60]. In mixed solvent of hexafluoroisopropanol (HFIP) and water with 80:20

ratio in volume, NMR studies [59] showed it adopts a helix-turn-helix structure,

with two helices nearly at a right angle (helix 1: residues 7–27; helix 2: residues

28–39). To understand the solvent effect, simulations with explicit solvent models

were used to study the conformational preference of A“(1–42) in different solvents

[61–63]. The simulations revealed new insights into the conformations populated by

the A“ peptide in nonaqueous solvents, and showed that the apolar solvents HFIP

(hexafluoroisopropanol) and TFE (2,2,2-trifluoro-ethanol) promote helix formation,

that the polar solvent DMSO (dimethyl sulfoxide) causes the unfolding of the

C-terminal part, and that the polar solvent water induces the ’-helix to “-sheet

transition for the C-terminal part. These simulations may explain why A“42

aggregation generally occurs out of apolar membrane and in extracellular water

environment, where A“42 is converted from nonaggregating helical conformation

to aggregation prone coil and sheet-rich conformations.

4 The IAPP Peptide

Type II diabetes is an age and life-style related disease involving insulin resistance

and loss of “-cell mass. A hallmark of this disease is the presence of amyloid fibrils

of the Islet Amyloid IAPP peptide (also known as amylin) in the “-cells of the

pancreas [22]. The IAPP is a 37-residue peptidic by-product of a larger precursor

protein, and it is co-secreted along with insulin by the pancreatic islet “-cells. Under

pathological conditions, IAPP is over-expressed and aggregates. As in the case

of the A“ peptide implicated in AD, both early oligomers and mature fibrils of

IAPP appear to be toxic. The IAPP peptide is present in many mammalian species,

including rodents. Although the rat and human IAPP forms (Fig. 3) differ only by

six amino acids, only the human form aggregates. Transgenic rodents (rodents with

a human form of IAPP) on a high fat diet can develop type II diabetes with the

accompanying aggregation of the IAPP peptide [64].

The structures of the human and the rat forms of IAPP monomers were studied

independently using REMD by Wu et al. [65] using an implicit solvent (igb5) is the
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Fig. 3 Primary sequences of human and rat IAPP. The sequence differences between rat IAPP and
human IAPP are underlined. The segment in which these mutational differences occur is shown in
the red box

Amber force field ff96 and by Reddy et al. [66, 67] using an explicit solvent and

the Gromos96 53a6 force field. The aim of these simulations was twofold: (1) to

obtain structural information about the monomeric states of these peptides that is not

available from experiments and (2) to explore whether conformational differences

were present in the monomeric form that could explain why the human variant of

IAPP aggregated and the rodent form did not. The results of the simulations by

the two groups are in remarkable agreement. Representative aggregation prone and

nonaggregation prone structures of the human from simulation are shown in Fig. 4.

The nonaggregation prone conformations of human IAPP are very similar to those

of rat IAPP.

The rat form populates predominantly helix-coil structures, with helicity present

in the N-terminal region. The simulation results are in good agreement with NMR

studies [68,69] that point to helicity in this region, and with result from the AGADIR

program [70] that suggest that the N-terminal region has high helical propensity. The

human form, on the other hand, coexists between helix-coil structures, helix-sheet

structures, and “-hairpin structures. The human and rat forms share the same N-

terminal region, and NMR studies on the human form show that, as in the rat case,

there is helical propensity in this region [69,71]. The presence of “-rich elements is

supported by 2D-IR experiments [72] as well as by ion-mobility mass spectrometry

(IMMS) studies from the Bowers group [65]. IMMS generates collision-cross

sections, a measure of the overall size of the ions under study. The IMMS spectra

for the human form differed from the rat form by the presence of an extended

feature. Calculation of theoretical cross sections showed that the compact structures

seen in experiment were consistent with the helix-coil structures seen in simulation,

while the extended feature was consistent with a “-hairpin structure. The simulations

suggest that the “-rich hairpin conformation may be a direct precursor to aggregation

[65] (Fig. 4). The idea that human IAPP possesses both aggregation prone and

nonaggregation prone conformations is supported by earlier CD experiments by the

Kayed group [73].
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Fig. 4 Schematic representation of a possible oligomerization mechanism, adapted from [65].
Among two interconverting structural families of human IAPP, “-hairpins are proposed to self-
assemble into early ordered human IAPP oligomers by side-to-side association. The (?) symbol
notes that we have no data pro or con the occurrence of this mechanism and we hence include it
for completeness

5 Conclusions

Fully atomic simulations, coupled with enhanced sampling techniques, are emerg-

ing as powerful tools for the study of intrinsically disordered peptides. While most

experimental techniques only provide ensemble averaged information, simulations

are capable of providing detailed atomistic information about the structures popu-

lated by these peptides. A highlight of the simulations described in the preceding

paragraph is the identification of “-rich conformers, coexisting with non-“-rich

structures that may play a role in initiating aggregation. With ever increasing

computational power and sophisticated sampling schemes, simulations are now

poised to move beyond the investigation of aggregating IDP peptides in a bulk-

like environment to the study of the interaction of these peptides with membranes

[74–80]. A long-term goal of these simulations is to prove detailed structural

information that can guide the rational design of drugs as therapeutics for amyloid

diseases.
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Computer Simulations of Mechano-Chemical
Networks Choreographing Actin Dynamics
in Cell Motility

Pavel I. Zhuravlev, Longhua Hu, and Garegin A. Papoian

1 Introduction

Cell migration is critical for the development and functioning of many higher

organisms, including humans. Among various cellular processes that may be used to

drive eukaryotic cell locomotion, by far the most conspicuous mechanism is based

on force generation by actin networks. Actin is a medium sized globular protein,

which can polymerize into various filaments, depending on its chemical state, such

as whether it is bound to ATP or ADP [1]. Actin filament containing subcellular

structures are critically important for the survival and motility of eukaryotic cells. In

particular, actin-driven motility is implicated in embryonic and organ development,

neuronal cone growth, immune response, wound healing, and cancer metastasis

among many other biological processes [2–6]. Hence, elucidating the principles of

actin-based cell motility is among the most important challenges of modern cell

biology.

Intense research efforts starting from the 1950s have led to the realization

that the actin protrusion machinery is highly sophisticated, employing complex

mechano-chemical networks, with high degree of redundancy and various nonlinear

feedbacks. The large volume of experimental work suggested numerous possible

mechanisms for various modules of actin polymerization machinery, however, many

key aspects of both biology and physics of actin network dynamics in vivo are

either not well understood or controversial. In particular, two principal cellular

substructures that ubiquitously appear in driving or regulating motility of many

different cell lines are lamellipodia, thin sheet-like protrusions at leading edge

of the cell containing a three-dimensional actin mesh, and filopodia, finger-like
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cellular protrusions comprising a bundle of actin filaments [1]. These filamentous

networks are highly dynamic, where actin polymerization processes and mechanical

interactions continuously remodel the network structure. Actin polymerization

in vivo is regulated spatially and temporally by an intricate web of signaling proteins

and mechano-chemical feedback. Mechanical interactions include, among others,

actin filament buckling, interactions with the cell membrane and adhesion to the

outside environment.

Given the enormous complexity of chemical interactions networks, mechanical

and transport processes governing in vivo actin dynamics, modeling based on

physical principles can be very useful in making sense of sometimes contradictory

experimental results, and perhaps more importantly set theoretical foundations for

making physically reasonable interpretations. Below, we review recent progress on

modeling filopodia and lamellipodia, focusing mainly on simulations and theory at

a single molecule resolution. The latter was historically preceded by macroscopic

description of actin protrusion dynamics, which has played an important role in

formulating the larger framework for understanding cell motility processes. In

general, when macroscopic models work, they often provide elegant conceptual

understanding of the problem, however, they also fail from time to time, where a

recourse to microscopic physics becomes the only solution. A few such examples

are discussed below.

In the following, we first describe general aspects of modeling reaction–diffusion

processes at the cellular scale. It turns out that inherent microscopic randomness

of chemical reactions, which usually averages out on the macroscopic level,

may sometime dominate the behavior of cellular signal transduction networks.

We also briefly describe mechanical processes necessary for modeling cell motility

dynamics. These general mesoscopic modeling sections are followed by discussions

focusing on dynamics of filopodia and lamellipodia, respectively. The emerging

understanding from modeling various actin-based protrusions suggests that the

overall behavior of actin network growth and remodeling dynamics is determined

by a subtle interplay among chemical interactions, transport bottlenecks, and

mechanical feedbacks. The specific nature of this interplay is discussed in sections

on filopodial and lamellipodial dynamics. Finally, various topics in biology and

biophysics of actin networks were thoroughly reviewed in a recent book edited by

M.-F. Carlier [7]. The present chapter provides discussion largely complementary

to the contents of this noteworthy volume, which we recommend as further

reading.

2 Mechano-Chemical Networks Regulating Actin Dynamics

Extension and retraction of filopodia and lamellipodia are based on actin poly-

merization and depolymerization processes, which are, in turn, affected by various

regulatory proteins [8]. Actin filaments (F-actin) are asymmetric, and, hence, the

polymerization–depolymerization rates are different on the two ends called the
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barbed end and the pointed end. In a living cell, typically, the polymerization

rate at the barbed end is considerably faster, so a filament can be thought of as

mainly growing from the barbed end. Barbed ends in lamellipodia and filopodia

are near the cell’s membrane effectively pushing it forward during polymerization.

In lamellipodia, a key branching agent, Arp2/3, can attach to an existing filament

and initiate a daughter filament growing at a specific angle with respect to the

mother filament [9], thus generating a 3D actin mesh (thickness of a lamellipodium

is on the order of 100 nm and transverse dimensions are above the micron length

scale). Although this dendritic mesh viewpoint [10, 11], is university accepted,

there appeared controversial viewpoints [12]. Another important regulator of actin

network dynamics is capping protein that attaches to the barbed end and stops

polymerization completely until it unbinds [13]. Another obvious factor influenc-

ing actin filament polymerization and growth rates is the concentration of actin

monomers (G-actin) near barbed ends, which, in turn, is regulated by special

sequestering proteins [14]. According to a widely accepted viewpoint, filopodia

emerge when lamellipodial actin filaments group together in parallel bundles

within the leading edge [15], increasing locally the pressure on the membrane

and starting a new membrane-enveloped protrusion. It is thought that the pointed

ends of filopodial filaments remain rooted in the lamellipodial actin mesh. Apart

from capping and sequestering proteins, there are many others that regulate the

growth of filopodia and lamellipodia. For example, anticapping proteins play many

roles, including preventing capping proteins from attaching to the barbed ends

and also promoting polymerization [16]. Fascins and other cross-linking proteins

bundle the parallel filaments together, increasing the mechanical stability of actin

meshes in lamellipodia and bundles in filopodia [17]. These and other multiple

regulatory proteins form a complex chemical regulatory and signaling network,

which allows for intricate, context sensitive control of actin protrusion dynamics,

contains numerous redundancies, and, overall, is hard to decipher.

The aforementioned chemical network is tightly coupled to mechanics at the

nanometer/micrometer scales. For instance, elastic force from the membrane under

tension pushes back the polymerizing barbed ends at the filopodial tip and near the

lamellipodial edge. Apart from that, myosin molecular motors in the lamellipodial

actin mesh generate active motions, pulling the filaments into the cell body [18].

The total effect of these two (and possibly more) processes is known as retro-

grade flow, which can be clearly observed in imaging studies. Competing with

polymerization, it engenders the complicated growth-retraction dynamical behavior.

Actin filaments are semiflexible polymers, so they buckle under large enough load.

The buckling length of individual filament is on the order of 100 nm for a few pN

compressive force [19,20]. However, parallel actin filaments can be cross-linked by

special proteins, which increases the buckling force of the bundle [20]. In addition,

in the cells moving over a surface or within a tissue, lamellipodial and filopodial

F-actin filaments can attach to the substrate with so-called focal adhesions, via com-

plex protein adhesion assembly [5]. Focal adhesions impart both direct mechanical

coupling to the actin network, as well as regulate it via chemical signaling.
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Summarizing, actin network dynamics in filopodia and lamellipodia arise from

a complicated mechano-chemical system representing a great challenge for un-

derstanding using both experimental and theoretical approaches. Hence, computer

simulations of this mechano-chemical signaling network, based on microscopic

physics, may shed light on the mechanisms of network growth regulation by various

proteins, complementing and providing guidance to the related experimental efforts.

2.1 Stochastic Simulations of Biological Mechano-Chemical

Networks

Chemical part of the signaling network that regulates actin growth dynamics

consists of various proteins whose numbers evolve in time due to numerous

enzymatic and binary chemical reaction events. Most commonly, chemical reaction

dynamics is analyzed by solving the corresponding system of ordinary first-order

differential equations, with time as the independent variable and concentrations

of interacting species as the time-dependent variables. This approach is known as

chemical kinetics. The continuous concentrations in these equations correspond

to the average numbers of molecules in a unitary volume. However, in reality,

chemical reactions are discrete stochastic processes, where reactants encounter each

other randomly, and may react or not in any given collision. Even unary reactions,

such as radioactive decay are random events at a single atom or molecule level.

However, when the numbers of reacting molecules are large, certainly on the order

of Avogadro’s number, the relative stochastic fluctuations of these numbers are

negligible. In such cases, time evolution of averages gives an accurate description

of the system dynamics, and deterministic chemical kinetics can be safely used,

as usually done in case of macroscopic and even mesoscopic chemical reaction

networks.

2.1.1 Reaction–Diffusion Master Equation

A crucial feature of biological signaling networks is that often the average numbers

of molecules of each reacting protein in the relevant spatial region are very low,

on the order of several molecules. In many cases, most of the time, there are no

molecules of certain protein in that spatial region, with only one or two appearing

for short periods of time, which produces average number of molecules lower than

1. In such a case, the fluctuations, which can be roughly estimated as the square

root of the number of molecules, are on the same scale as the average and can even

exceed it by an order of magnitude (in other words, all appearing molecules are

noise). In these cases, chemical kinetics may not provide a physically meaningful

description of the time evolution of a biological signaling network, therefore, the

dynamics of such network has to be treated stochastically.
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In order to illustrate the difference between chemical kinetics and stochastic

approaches let us consider a unary reaction where species A can convert to B with

rate k1 and backward with rate k�1:

A
k1

��*)��
k�1

B: (1)

Instead of following evolution of concentrations ŒA� and ŒB�, the stochastic

approach treats the dynamics of this chemical system as a random walk on a

1D lattice with nodes corresponding to particular copy numbers for each species

involved in the chemical network. If the system starts with n molecules of A and

m molecules of B (state .n; m/), at any given moment one of the A molecules can

convert to B with rate k1 per molecule, and one of the B molecules can convert to

A with rate k�1 per molecule. This translates to a step to the right along the lattice

with rate nk1 or step to the left with rate mk�1:

:::
.nC2/k1

������*)������
.m�1/k�1

.n C 1; m � 1/
.nC1/k1

�����*)�����
mk�1

.n; m/
nk1

������*)������
.mC1/k�1

.n � 1; m C 1/
.n�1/k1

������*)������
.mC2/k�1

:::

(2)

The complete description of this random walk is given by the probability

distribution P.n; m; t/—the probability that the system is in the node .n; m/ at

time t . This function is a solution of the so-called chemical master equation (CME):

dP

dt
D cMP; (3)

wherecM is the reaction transition matrix operator [21]. Prior works have shown that

noise induced by the discreteness of chemical reactions may result in many interest-

ing biological phenomena, in some cases producing dynamics which is qualitatively

different from the one predicted by corresponding deterministic chemical kinetics

equations [22–28]. Interestingly, discrete steps in elementary chemical events allows

direct mapping of the CME to a quantum field theory (QFT) formalism, with

the corresponding creation and annihilation operators [24, 29]. Furthermore, the

variational principle frequently used in quantum mechanics carries over, where

approximate solutions may be constructed using time-dependent basis functions

[30]. This correspondence highlights the computational difficulties one faces when

switching from deterministic chemical kinetics (analogous to classical mechanics)

to stochastic chemical kinetics (analogous to quantum mechanics).

The example discussed above is zero-dimensional, where it is assumed that

reactants are well stirred, and transport is infinitely fast compared with chemical

reaction rates. However, even when diffusion is fast, molecules still propagate with

finite speed. Hence, for any reaction network, there is a typical distance for a

molecule to travel before it reacts. This mean free path is called the Kuramoto

length [31]: the reactive volumes with linear dimensions below the Kuramoto
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length are well stirred, and may be treated with zero-dimensional kinetics, while

above the Kuramoto length spatial inhomogeneities may manifest themselves, and

diffusion would need to be treated as an explicit additional process. For some

of the actin regulating chemical reactions, the Kuramoto length is on the order

of 100 nm, hence reaction–diffusion treatment is necessary above that length-

scale. In deterministic reaction–diffusion equations, the average concentrations also

depend on spatial coordinates, and chemical kinetics equations are complemented

by diffusion equations. For reaction volumes with 100 nm side, the copy number

of proteins is typically very small, hence randomness of chemical reaction events

plays an important role, and should be taken into account. The corresponding,

spatially resolved stochastic system may be simulated as a collection of connected

Kuramoto volumes, where chemical protein number lattice (2) is replicated in each

voxel. The resulting reaction–diffusion master equation (RDME) may be written as

[19, 21, 32, 33],

dP

dt
D

�
cM C bD

�
P; (4)

where cM and bD are the reaction and diffusion operators, respectively. In general,

exact analytical solution of these equations is usually beyond reach, and even nu-

merical solution is expected to be computationally formidable. As discussed above,

there is direct mapping of these equations into three-dimensional QFT, indicating

both potential challenges in simulating 3D stochastic dynamics, and perhaps hinting

toward using approximate QFT techniques for accelerating simulations.

2.1.2 Detailed Modeling of Filopodia and Lamellipodia

In the models employed in a series of recent works modeling actin-based or-

ganelles [19, 34–36], the space is discretized into compartments, and the basic

chemical dynamical variables are the copy numbers of all chemical species in

all compartments. Diffusion is realized by reactions of hopping between neigh-

boring compartments, with a compartment size on the order of 100 nm. The rate

of reactions corresponding to diffusional hops is equal to D=l2D, where D is

diffusion coefficient, and lD is the compartment length. In a recent work, a careful

connection was drawn between the RDME rates and the kinetic rates from a more

microscopic description based on Brownian dynamics of reacting particles [32]. To

characterize the many-dimensional distribution function, which is the solution of the

master equation, multiple realizations of the random process are run and averages,

variances, joint distributions, and correlation functions are calculated. This approach

is analogous to running multiple Langevin trajectories to obtain characteristics

of probability distribution, which is the solution of the related Fokker–Planck

equation [21].
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Forces modify the corresponding reaction rates. For instance, on general grounds

it is expected that the polymerization rate of a filament is exponentially damped

by factor of exp.�f ı=kT / according to Brownian ratchet model [37], where f

is the force acting on the filament from the membrane, and ı is the monomer

size. This is explained by the need for the filament or the membrane under load

force, f , to fluctuate away from the contact point, so a new monomer can be

inserted, where fluctuations are thermally distributed [37]. In general, thermal

undulations of both the membrane and the filaments are on a microsecond to

millisecond timescale [38–41], and hence, average out during slower reaction–

diffusion time steps. The average amplitude of membrane’s thermal undulations

is on the order of only a few nanometers [19]. This timescale separation allows

determination of mechanical objects’ instantaneous configuration via corresponding

mechanical energy minimization after each reaction–diffusion time step or even less

frequently [35].

For filopodia, each filament is represented as a 1D lattice in space, and retrograde

flow is realized through shifting this lattice backward by one lattice site (along

with any proteins bound to it) in appropriate time interval calculated from the

current speed of retrograde flow. The speed can have a constant part (reflecting

the activity of myosins in the lamellipodial mesh) and also be influenced by forces

from polymerization against the membrane or focal adhesions. The reactions in

the filopodial model include protein binding to filaments, protein molecule-binding

protein molecule, polymerization of the filaments, and molecular motor steps.

In lamellipodia, on the other hand, a dendritic network is established and grows

by the branching activity of Arp2/3, as discussed below. Retrograde flow may be

considered for the lamellipodial F-actin network as well.

When considering the signaling network-regulating filopodial and lamellipodial

growth, the lattice is highly multidimensional, spatially resolved, and in addition, the

rates for steps between the nodes are dependent on mechanical degrees of freedom,

such as retrograde flow velocity, membrane position, or bending and buckling of the

filaments. It is not possible to solve these complicated equations analytically, but

stochastic computer simulations may be employed [19, 42]. Hence, in a stochastic

Monte Carlo approach (often called the Gillespie algorithm [43]), one draws two

random numbers at each step, to decide when and which spatially resolved reaction

will occur next, thus realizing the stochastic propagator on the lattice of chemical

network. Afterward, the copy numbers of the involved proteins in the corresponding

compartments are updated. Finally, the mechanical variables (forces, retrograde flow

speed, etc.) are updated and modifications (such as filament lattice shift backward)

are made if needed. The new forces change instantaneous chemical reaction rates

that will influence the reaction probabilities of the next step. The results of stochastic

simulations can be used to interpret various existing experiments, make new

predictions, and also guide development of simpler analytical models describing

the same processes, for instance, based on reaction–diffusion equations.
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3 Filopodia

3.1 Biological Background

Structurally, a filopodium is a bundle of parallel actin filaments (on the order of 10)

enveloped by the plasma membrane [20]. Filopodial diameter is about 100–200 nm,

and their typical lengths are several microns. However, in some cases, filopodia

can grow up to 100 �m in length. The primary role of filopodia is to sense the

environment and help to guide the cell’s motion. For instance, they are employed

by fibroblasts to find their way to the wound in order to cover it [2]. During embryo

formation, neurons grow axons, projecting them to macroscopic distances. A front

of a growing axon—a neural growth cone—pauses every now and then, extends

multiple filopodia to probe the surroundings, helping to decide in which direction

it has to turn next [3]. Filopodia are also needed for dorsal closure in drosophila

embryos [4] and are implicated in cancer metastasis [6].

Polymerization of F-actin at the barbed ends near the cell’s membrane is pushing

the membrane forward, forming the protrusion and driving the filopodial growth.

The filopodial F-actin growth rate is highly regulated by different mechanisms. First,

free G-actin can be sequestered by thymosin-ˇ4 binding, reducing concentration of

monomers available to polymerization [14]. Profilin binding to G-actin can promote

association of monomers specifically at the barbed end [44]. Opposing that, capping

proteins can bind to the F-actin barbed ends and stop their polymerization [13].

To counter that, there are anticapping proteins, like formins, that also bind to the

barbed ends and not only prevent capping but also often dramatically increase

the polymerization rate [16]. Apart from chemical regulation of the growth rate, a

considerable role in filopodial formation and growth is played by mechanics. Elastic

membrane counterforce due to membrane tension, on the order of 10 pN, suppresses

the polymerization rate. In addition, this membrane force can buckle actin filaments,

which are semiflexible polymers with persistence length on the order of 20 �m [45].

However, there are cross-linking proteins, such as fascins [17, 46] or Ena/VASP,

which can bind to different filaments simultaneously, so that the buckling force of

the filopodial bundle significantly increases. Resistance to bending of the membrane

envelope can additionally protect filopodia against buckling [47].

Membrane forces also contribute to the generation of the retrograde flow—a

gradual motion of the filaments back to the bulk of the cell. Another important

contribution to the retrograde flow comes from special machinery in the cell bulk,

where filopodium is rooted. Active motions in the lamellipodial actin mesh, which

are driven by myosin molecular motors, pull the filaments into the cell [18].

It turns out that the retrograde flow can dramatically influence the filopodial growth

speed, and even turn growth into retraction [19]. However, retrograde flow speed

itself can be influenced by chemical interactions among cytoskeletal proteins. For

instance, when a cell moves on a surface, actin filaments in the cell’s filopodia

and lamellipodia can attach to the substrate via focal adhesions [5, 48]—protein
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complexes which assemble into a link between F-actin and the substrate. Focal

adhesions will counteract the forces generating the retrograde flow, slowing the

flow down. The point of attachment to the filament can migrate due to retrograde

flow or, if focal adhesion complex includes a myosin motor, due to walking of

that motor along the filament. Therefore, the link between the filaments and the

focal adhesions will stretch and generate force which pulls both at the substrate

and the attachment of the focal adhesion to F-actin [48]. This force will promote

focal adhesion release, bringing about yet another round of mechanical regulation.

Altogether, these mechanisms are heavily intertwined into a mechano-chemical

network of regulatory interaction. Furthermore, apart from these most important

players, there are other proteins involved in filopodial regulation, for instance, those

that form the filopodial tip protein complex, which can be observed on the EM

images [15, 46], but remains somewhat mysterious, as neither its exact role nor its

detailed protein composition is yet understood.

Why is there a need for such complicated regulation? A filopodium is primarily

a probe, so it must be adaptable and sensitive to changes in cell’s environment.

Fluctuations in the network permit such sensitivity [34]. Experimentally, some

filopodia are observed to switch every now and then between growth and retraction

phases in response to the environmental cues or to internal random fluctuations.

Last but not the least, the filopodial regulatory mechano-chemical interaction

network is spatially extended, so the transport of involved proteins is another

crucial aspect of its dynamics. Proteins that have a function at the tip (including

G-actin monomers) have to be delivered there, but diffusion becomes less efficient

as the filopodium grows. Other possibilities for protein transport are delivery by

molecular motors, traveling bound to filaments subject to retrograde flow and

in hydrodynamical flows. Transport adds on to the complexity of the regulatory

network, as it essentially sets up the baseline concentrations of chemically and

mechanically interacting proteins of the network.

Due to complexity of the protein interaction network in filopodia, it is very

difficult to devise experiments elucidating the behavior of the network as a whole.

However, it is more feasible to find out a microscopic function of any given protein,

sometimes, even with measurements of relevant reaction rates. Subsequently,

modeling can help to explain the implications of the particular protein on the

dynamics of the whole regulatory network and make new predictions. Therefore,

such modeling has to incorporate important microscopic details, and include all

three interplaying features of the network— chemistry, mechanics, and transport.

3.2 Chemistry, Mechanics, and Transport in Filopodia

Since the filopodium is an elongated organelle, its length and growth speed are

its most natural characteristics. They are also natural experimental observables,

directly measurable through microscopy. From this perspective, one of the most
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Fig. 1 The following processes were included into a computational model of a matured filo-
podium [19,34]: (1) monomeric G-actin diffusion along the filopodial tube; (2) (de)polymerization
of individual actin filaments; (3) fluctuating membrane under load which slows down the filament
polymerization rates; (4) a constant velocity retrograde flow, where actin filaments are pulled into
the cell body; (5) capping proteins arrest polymerization; (6) formins accelerate polymerization

fruitful approaches to describing the filopodial dynamics is to look primarily

at the protein fluxes. Some fluxes are passive, such as diffusion and certain

chemical reactions, for example many binding events, others are driven by energy

consumption through ATP hydrolysis, such as retrograde flow, polymerization, or

molecular motor walking. Together these fluxes result in the highly nonequilibrium

filopodial dynamics. Essentially, in filopodia, the interplay of chemistry, mechanics,

and transport translates into the competition of fluxes.

In a formed filopodium (see Fig. 1), there are three main fluxes of actin [19].

First, diffusion of G-actin from the bulk of the cell to the filopodial tip is a transport

flux, JT. Based on stationary solution of an 1D diffusion equation, the diffusion flux,

JD, may be estimated as,

JT D JD D D
ctip � cbase

L
; (5)
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where D is the protein diffusion constant, ctip and cbase are protein concentrations

at the ends of the filopodial tube, and L indicates filopodial length. It is reasonable

to assume that the protein’s concentration at the filopodial base is maintained at

the bulk cell concentrations. Second, polymerization flux at the tip, JP, converting

G-actin to F-actin, is a chemical (reaction) flux,

JP D N

Sf

�
kCctip � k�

�
; (6)

where N is the number of filaments, Sf is the filopodial cross-section area, kC and

k� are instantaneous polymerization and depolymerization rates at the tip. Last,

retrograde flow pulling F-actin back to the cell is a mechanical (and also transport)

flux,

JR D
N vR

Sfı
; (7)

where vR is the instantaneous retrograde flow speed, and ı corresponds to actin

monomer size. When these fluxes are balanced,

JD D JP D JR; (8)

so that all G-actin diffusing to the tip gets converted to F-actin by polymerization

and then pulled back to the cell, the filopodium length is stationary [19]. Solving

(5)–(8) leads to the following stationary length of filopodia,

Lstationary D
SfD

N

�
ı

vR

�
cbase �

k�

kC

�
�

1

kC

�
; (9)

where kC is not the bare polymerization rate but is exponentially suppressed by the

average membrane force, f ,

kC D k0 exp

�
�

f ı

NkBT

�
: (10)

It turns out that (9) and (10) reproduce detailed stochastic simulations of an

actin only filopodial system within 5–10% accuracy [19], where the latter are

computationally very intensive. Notice, with retrograde flow rate diminishing, the

filopodial length keeps growing, indicating that regulation of retrograde flow rate

can powerfully control filopodial dynamics. In addition, increasing the bulk cell

concentration of G-actin will linearly increase the filopodial length. Finally, in-

creasing the actin bundle size, N , diminishes the resistance on individual filaments,

increasing effective polymerization rate, kC, but also requires more actin transport,

hence seriously exacerbating the transport bottleneck problem when the bundle

becomes too thick [as evidenced by the N�1 term in front of (9)].

Actin-only models of filopodial growth that do not include chemical regulation

predict growth of filopodia up to this stationary length with minuscule fluctuations
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around the average [19, 20]. In these models, stationary length turns out to be

the maximum length as well. If filopodia were to grow longer, diffusion would

not be able to provide enough G-actin, as the diffusional flux decreases with

filopodial length and polymerization and retrograde flow stay the same [see (5)–(7)].

Additionally, actin-only models predict nearly infinite filopodial lifetimes [19, 20].

Various regulatory proteins can modify these fluxes, hence affecting the filopo-

dial growth speed and steady-state lengths via (8). They can stop, slow down, or

accelerate certain reactions, changing the polymerization flux, JP. For instance,

capping protein stops polymerization, formin accelerates it, and G-actin seques-

tration by thymosin-ˇ4 slows it down. Mechanics also modifies chemical fluxes,

for example, an increase in membrane force, or an obstacle in front will slow down

the polymerization rate. The regulatory proteins can change the mechanics, as in

focal adhesion formation or fascins protecting filopodia from buckling instabilities.

Finally, additional proteins can change the transport flux, JT for instance, by

additional fluxes supplied by molecular motors carrying cargo.

3.3 Chemistry

Polymerization is the basic and most important reaction in filopodia, so in this

section we will focus on chemical modification of the reaction flux, JP. Formins

increase the polymerization rate up to fivefold [16], but capping proteins completely

stop polymerization for a particular filament until they fall off. One would therefore

expect that, on average, the simultaneous effect of formins and capping proteins on

filopodial growth would not be dramatic. However, extensive computer simulations

that take into account microscopic details show that the filopodial dynamics is

dramatically altered, due to discrete noise in the system arising from fundamental

randomness of chemical reaction events [34]. If a filament becomes capped, it starts

to retract due to retrograde flow, and might fully retract back to the cell bulk, if

the capping protein does not fall off during the time of retraction. As a result, the

number of growing filament decreases, which, in turn, decreases polymerization and

retrograde flow actin fluxes. Since a lower diffusional flux is needed to maintain

these decreased fluxes, filopodia can grow longer [34]. However, as filaments

disappear, it becomes harder for them to sustain the membrane force, so at some

critical number of filaments (about 3–5) the filopodium starts to retract as a whole

[34]. Capping proteins fall off from the barbed ends at a slow rate, so when enough

filaments are uncapped to overcome the membrane force, the filopodium switches

back to growth. Eventually, at some retraction phase, the filopodium would retract

all the way to the cell body and disappear. So, due to an introduction of a simple

protein regulation, the computational model predicts finite filopodial lifetime (on

the order of several minutes in consistency with experimentally reported values

[49–52]) instead of growth to a stationary length.

The model also suggests a possible mechanism for growth–retraction cycles.

Capping proteins are present in the filopodium in very low concentrations, so their
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fluctuations are important. Capping process is then a discrete (either capped or

uncapped) random noise. It is also slow, due to low capping protein concentration.

The discreteness and slowness make capping process act as a random switch

between two fast processes of growth and retraction. The filopodium thus acts as

an amplifier of capping protein binding noise, making it visible on macroscopic

temporal (�100 s) and spatial (�1 �m) scales. This high susceptibility to tiny

fluctuations may be profitably exploited for the sensorial role of filopodia [34].

It should be noted that in order to describe such effects, the model has to be

stochastic and microscopic and include molecular details, because it is molecular

noise of chemical binding that translates into macroscopic mechanical observables

through mechano-chemical amplification.

3.4 Transport

Modeling the interconversion of actin fluxes in a filopodium suggests that the

diffusional flux can not sustain the growth above several microns (at biological actin

concentrations and retrograde flow speed values), even if the number of polymer-

izing filaments is decreased by capping proteins [19, 20, 34]. In some experiments

filopodia can grow over 80 microns, so there have to be other mechanisms altering

actin fluxes to make such growth possible [50]. Also, diffusional flux is not enough

to account for the experimentally observed growth speeds of about 10 �m/min [50].

Modeling various mechanisms of flux regulation (even such that are not at present

proven to exist from experiments) allows to consider the potential effectiveness

and likelihood of various possible scenarios and then help to focus experimental

research on the most plausible mechanisms. Since modeling requires less resources

than experiments, this is a great way to move forward our understanding of the

regulatory processes in filopodia.

Downregulating polymerization flux or retrograde flow will slow down growth

and/or retraction speeds. Therefore, to provide enough actin for long, fast growing

and retracting filopodia, additional flux of G-actin to the filopodial tip is needed

besides diffusion. A “standard” biological solution for underperformance in diffu-

sional transport is the use of molecular motors. Some molecular motors can walk

on actin filaments in a directed fashion, that is, the shift in their spatial position is

proportional to time, not square root of time, as in diffusion. They can bind cargo,

and drag it along while walking, thus realizing active transport of the cargo [53,54].

In fact, Myosin X molecular motors, which can walk along actin filaments, have

been observed inside filopodia and shown to influence filopodial formation [55].

Their exact role is not known, and they have not been observed to carry G-actin

experimentally. This is where the modeling can help: it is straightforward to

introduce into simulations myosins with ability to walk, diffuse, and bind G-actin,

and see if it will considerably increase the filopodial lengths or growth speeds.

The picture of active transport suggested by cartoons in biology textbooks shows

cargo loaded onto motors which walk forward and unload cargo at the destination,
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much like a conveyor belt. It turns out, that motors are not working in this way

for two reasons [36]. First, since they bind G-actin, the latter becomes unavailable

for the polymerization, so the motors end up sequestering their cargo. The more

motors in filopodia, the more actin they would bind, including when motors are in

the cytosol, which means more sequestration apart from additional transport flux.

The second reason is that the excessive amount of motors will create “traffic jam”

on the filament thus impeding the additional active transport flux. Together, these

two phenomena prevent active transport flux to increase the filopodial length by

more than 30%, which is still on the scale of 10 �m. However, with some help from

chemistry, the active transport could do more. For instance, Ena/VASP is known

to be transported by Myosin X inside filopodia [56] and also cross-links the actin

filaments near the tip [17]. As Ena/VASP also has G-actin binding domains, it is

plausible to propose that Ena/VASP is needed as an adaptor between G-actin and

Myosin X. Again, modeling allows to see the consequences of this assumption. If

Ena/VASP is also consumed for cross-linking near the tip, it would promote release

of G-actin from the motors near the tip, hence alleviating the sequestration problem.

In such case, modeling predicts severalfold increase in the filopodial length [36].

In a narrow range of parameters, the active transport actin flux by itself is enough

to overcome the retrograde flow flux, so even thinning of the diffusional flux in a

continuously elongating filopodium does not stop the growth [36]. Summarizing,

active transport can considerably promote the growth but only with a help of

intricate chemical reaction network involving multifunctional proteins (Fig. 2).

3.5 Mechanics

Mechanical timescales in the actin dynamics, such as thermal undulations, are

generally much faster than those for reaction–diffusion events. In the case of

filopodia, this time-scale separation allows to solve mechanical part of the problem

separately and then use the solution to affect chemistry and transport. The most

fundamental question is the mechanical behavior of actin filaments themselves. As

semiflexible polymers, they can be described by the wormlike chain model [57].

A bundle of cross-linked filaments under load is considerably more complicated

system with a wider spectrum of behaviors. The major questions are the following:

at what lengths and forces bundle will buckle? How does it depend on number

of filaments and character and number of cross-links? What shape will the bundle

adapt?

A large body of studies were dedicated to answering these questions with the help

of modeling. One of the first estimations based on classic elastic theory enhanced

by simulations predicted a mechanical limit on filopodial length [20] in addition to

diffusional transport limit. The buckling force was found to be proportional to the

number of filaments N if they are strongly cross-linked, and to N 1=2 if they are

weakly cross-linked. The N -dependent mechanical limit on the lengths becomes

especially important if capping proteins decrease the amount of filaments. Taking
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Fig. 2 Models of chemical reaction networks for motor transport in filopodia. (Upper) Simple
scheme with motors diffusing, walking, binding to the filaments and loading G-actin as a cargo is
drawn. (Middle, Lower) A scheme with Ena/VASP playing the role of adaptor between a motor
and G-actin monomer is shown

the enveloping membrane into account can make the model more complicated.

A couple of recent works discussed if a particular buckling shape could help

obviate Euler instability, making longer filopodia possible [47, 58]. A model for

cross-linked bundles based on local fields for filaments deformation and cross-links

through numerical simulations and scaling analysis predicts very intricate bending

behavior of the bundles, depending on bundle dimensions and sheer stiffnesses of

filaments and cross-links [59]. The latter model also considers a case where the

bundle consists of fractured filaments that is, overlapping pieces of filaments that do

not run the whole length of the bundle.

In the filopodial models, the force against which the polymerization is occurring

mainly decreases the polymerization rates of filaments and contribute to generating

the retrograde flow. This resistance may come from the force from mechanical
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obstacle or be a pure membrane force due to surface tension. Thermal dynamics of

the membrane is much faster than average interval between chemical reactions, so

the fluctuations of the membrane can be averaged to find, for instance, distribution

of the force between the filaments. Bending energy of the membrane also tries to

minimize the area of stretched membrane, thus inducing attraction and merging of

small F-actin bundles that have slightly protruded the membrane [60, 61]. Actin

growth against obstacle is another broad topic for modeling. Intracellular parasite

Lysteria hi-jacks cell’s actin and uses parallel bundle polymerization for propulsion

[62]. Filopodial growth against a spherical obstacle in vitro influences orientation

of the filaments [63].

Finally, force from focal adhesions can affect retrograde flow. Given the paramount

role of retrograde flow in setting up transport fluxes, this aspect of filopodial

dynamics is also important. Due to retrograde flow, the focal adhesions stretch (as

points of attachment to the filament slide back) and pull at the substrate and at

the filaments. The stretching force influences focal adhesion disengagement rate

and the field of substrate deformation. Deforming substrate affects stretching of the

focal adhesions which, in turn, affects the instantaneous retrograde flow. Even the

simplest model of this interplay of forces shows interesting physics, and is consistent

with the corresponding experimental measurements [48].

4 Lamellipodia

4.1 Introduction

When placed on a substrate, eukaryotic cells crawl by projecting forward flat sheet-

like protrusion structures called lamellipodia which contain a dynamically remod-

eling three-dimensional actin mesh network [1, 64]. A lamellipodium is composed

of dendritically branched actin filaments, which elongate through polymerization

at their barbed ends to push cell membrane forward, and new filaments are

nucleated from the existing filaments [10, 65]. While the dendritic nucleation/array

treadmilling model [10, 11] provides a conceptual model for lamellipodial pro-

trusion, understanding in microscopic detail how cells coordinate the enormous

number of molecules involved in motility process to achieve optimal movement

remains a challenging task. Mathematical modeling and computer simulations have

been increasingly applied to help advance the understanding of growth and force

generation in dendritic actin networks [9, 35, 37, 42, 60, 66–82]. In this section, we

highlight recent progress on the stochastic simulations of lamellipodial protrusion

dynamics, based on detailed chemistry and physics, which have considerably

advanced our understanding of the microscopic physics of cellular motility.

Cell motility based on dendritic actin network growth and remodeling is a

complex process. It is useful to study it with simple cells such as fish keratocytes,

an excellent model system due to the simplicity of their canoe-like shape and
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persistent and fast motion [65,77,83,84]. Moreover, despite the complexity of actin-

based motility, it has been found that simplified models with reconstituted in vitro

system consisting of only the most essential elements can offer great insight on the

physics behind actin-based motility [81,85]. Thus, it should be feasible to construct

physically based simple computational models with a relatively small number of

components to study actin-based motility. Taking into account these considerations,

a recent 3D model of the growth dynamics of lamellipodia-like mesh network was

developed to investigate how capping and anti-capping proteins regulate growth

dynamics of such branched filamentous networks [35,80] (see Fig. 3 for a schematic

illustration of the model). It was observed in the stochastic simulations that with

introducing capping proteins and anti-capping proteins, the density of membrane

leading edge filaments changes correspondingly, which in turn leads to the change

of the number of G-actin monomers available for polymerization and the load on

polymerizing filaments. Thus, the density of leading edge filaments is a simple

but critical quantity controlling protrusion dynamics, since it governs both the

pool of G-actin monomers available for polymerization and the instantaneous

load polymerizing filaments experience. By observing how the density of filament

changes with the varying concentration of regulatory proteins, one can gain valuable

insight on how the regulatory proteins such as capping and anti-capping proteins

control the actin dynamics in lamellipodial-like branched network.

Lamellipodial protrusion dynamics is controlled by complex mechano-chemical

feedbacks. The interplay between molecular processes such as the diffusion and

reactions of various molecules and mechanical characteristics of the system such as

cell membrane, the cytoskeleton, and adhesion to substrate determines the motile

behavior of crawling cells. In the following sections, we’ll give a brief introduction

to these important aspects of actin-based motility in lamellipodia.

4.2 Chemical Feedbacks Regulate Actin Mesh Growth

4.2.1 Elongation vs. Nucleation of Actin Filaments

Monomeric actin is the building block of filaments and its availability is key to

the efficient elongation of filaments; moreover, actin is also a key component in

Arp2/3-mediated nucleation process, in which the nucleation of a new filament on

an existing filament requires both an activated Arp2/3 and a G-actin molecule [86].

Thus, it is essential to understand the interplay between elongation and nucleation

processes. In cells, actin is one of the most abundant proteins, and its availability

facilitates both the speed of protrusion and the rate of nucleation. However, if the

concentration of actin were kept constant, and the concentration of Arp2/3 were

varied, it turns out that the rate of filament nucleation changes monotonically,

but there exists an optimal Arp2/3 concentration at which the protrusion speed is

maximal [35]. Arp2/3 facilitates the nucleation process, which to a large extent

determines the density of leading edge filaments. On the one hand, at low Arp2/3
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Fig. 3 The following processes were included into our computational model of a lamellipodial
protrusion [80]: (1) Stochastic hopping of various monomeric proteins between neighboring
voxels; (2) polymerization and depolymerization events for individual F-actin filaments; (3)
binding of Arp2/3 to sides of existing filament to nucleate a daughter filament at approximate 70ı

angle; (4) binding of capping proteins and formins to polymer barbed ends, to correspondingly
stop and accelerate the polymerization process. Filaments sterically protrude against the cell
membrane, locally deforming it, while the membrane provides some resistance against the bending
deformations and an increase of the membrane area. The counteracting membrane push against
the filaments slows down polymerization of filament tips that bear the most force. A boundary
with bulk reservoir of monomers is placed at the back of the lamellipodium, several microns
down in the x direction. This results in establishing of monomeric gradients longitudinally across
the lamellipodium for species that are actively consumed in front, and have to be diffusively
transported from the rear to replenish the local pool

concentration, filamentous network is sparse, leading to high protrusive resistance

on filaments; on the other hand, at high Arp2/3 concentration, actin filaments

in the dense network would deplete the local monomeric actin pool. Both cases

are unfavorable to the polymerization of actin filaments, although the causes are

different. Overall, this observation indicates that having balanced polymerization

and nucleation rates is important in order to producing maximal protrusion speeds.

The results obtained from microscopic simulations [35] are qualitatively consistent

with the theoretical analysis using a set of deterministic reaction–diffusion partial

differential equations [66].
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4.2.2 The Antagonism Between Capping and Anti-capping Proteins

Affects Actin Network Dynamics

Capping proteins and anti-capping proteins such as formin and Ena/VASP are

key regulators of actin network dynamics [87, 88]. Capping proteins block the

polymerization of actin filaments, thus, one might expect them to inhibit motility.

Motility inhibition by capping proteins occurs just as expected at sufficiently high

concentrations of capping proteins. However, at modest concentrations, capping

proteins can increase the speed of actin-based motility [35, 78, 80, 89–91]. This

interesting phenomenon was explained by two fundamentally different ideas: the

actin funneling hypothesis [89] proposes that capping proteins increase the rate

of individual growing barbed ends by reducing their number, while the monomer

gating model [91] suggests that motility enhancement is due to more frequent

filament nucleation. Motivated by these studies, stochastic simulations [35, 80]

based on microscopic chemical physics have been carried out to investigate the

mechanism of capping proteins promoting motility. The advantage of computer

simulation is that it offers great details on various microscopic quantities involved

in motility process for analysis: it was found that with capping proteins, on

average, there are more actin monomers available for polymerization, leading to

the faster rate of polymerization at low capping protein concentrations, which

is in agreement with the actin funneling hypothesis; although capping proteins

indeed promote nucleation of filaments, also the consequence of increased local

actin concentration, many filaments become capped and lag behind the leading

edge of the membrane, resulting in a diminution of the filament density along the

leading edge of the membrane. This, in turn, leads to higher load on polymerizing

filaments, unfavorable to polymerization process, especially at high capping protein

concentrations.

On the other hand, anti-capping proteins compete with capping proteins for

barbed ends binding, thereby affecting actin dynamics by keeping filament density

at leading edge from being diminished by capping proteins. This, in turn, affects fil-

ament polymerization since the average local actin concentration for polymerization

and the average load on polymerizing filaments are highly correlated to the density

of leading edge filaments. It should be pointed out that anti-capping proteins such as

formins can increase the rate of polymerization dramatically. This polymerization

rate enhancement function by anti-capping proteins makes the dynamic behavior

of the motility system even more diverse [80]. In particular, it turns out that the

coupling of the capping/anti-capping regulation with Arp2/3 nucleation activity

allows the cell to robustly achieve maximal protrusion speed under broad set of

conditions [80].

In summary, protrusion dynamics in a motility system containing capping

proteins may display both the enhanced and inhibited behaviors, which can be

significantly affected by the presence of anti-capping proteins. Detailed analysis

of microscopic quantities obtained from stochastic simulations offers great insight

on the protrusion dynamics of lamellipodial-like branched network, allowing to

discriminate among competing qualitative hypotheses. Furthermore, it is known
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that the movement of cells is usually robust yet adaptive—cells can respond to

the environmental changes efficiently. With the insights obtained from the analysis

on how a group of chemical species with opposing action regulate the protrusion

dynamics of the model motility system, we can better understand how cells can

finely tune the microscopic polymerization process to achieve certain dynamical

behaviors.

4.2.3 Transport of Molecules

Molecular processes in cell motility are controlled by the reaction–diffusion of

various molecules, thus effective transport of molecules plays an important role in

regulating protrusion dynamics.

The rear part of the lamellipodium of the cell is coupled to the lamellum

(cell body), which serves as a reservoir for molecules. This can be modeled

by coupling the rear part of the lamellipodia to a bulk reservoir of various

molecules, whose concentrations are all kept fixed. This coupling is analogous to

imposing a boundary condition in deterministic reaction–diffusion equations. Actin

monomers are consumed and recycled through the treadmilling process, resulting

in a concentration gradient from the bulk region to the leading edge; the nucleation

of filaments occurs within the activation zone of the membrane, also leading to a

concentration gradient for Arp2/3 molecule from the bulk to the membrane [35].

From the profiles of concentration gradients, one can derive the local concentrations

of Arp2/3 and actin in the region close to the membrane, where it is of central

importance since it is the location where nucleations occur and also is the main

location for polymerizations. With this, we can analyze what limits the growth

of lamellipodial network [35]. For example, when actin monomers are abundant,

this favors faster nucleation and tends to deplete Arp2/3, whose bulk concentration

is assumed to be constant and low in absolute value (�100 nM). In such case,

nucleation is limited by the availability of Arp2/3, and the filamentous network

would be sparse. In a sparse filamentous network, there are not enough filaments to

push the membrane, and hence, the protrusion speed would be adversely affected.

As in the filopodial transport discussed above, the abundance of proteins in the cell

body does not necessarily indicate that there would be no problem with protein’s

availability at cell’s leading edge: if the protein is actively consumed, it needs to be

continuously transported, hence, significant local depletion may still result due to

potential transport bottlenecks [35].

4.3 Mechanical Aspects of Lamellipodial Protrusion

4.3.1 Cell Membrane

The cytoskeleton of eukaryotic cells is enclosed by the cell membrane. Cell

migration relies on the force generated from polymerizing actin filaments to push
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cell membrane, which in turn exerts the force on the barbed ends of actin filaments

and inhibits the growth of filaments. Besides the physical confinement on filaments

and the mechanical impedance on the polymerization of actin filaments, the cell

membrane also plays an important role in the nucleation of actin filaments since

the activation of Arp2/3 relies on signals from receptors on cell membrane. The

cell membrane is also involved in cell adhesion connecting the cytoskeleton to the

extracellular matrix.

To incorporate the cell membrane in mechanical models of actin-based motility,

it is necessary to have a proper representation of the membrane. While membrane

may be modeled as a rigid obstacle against which the branched actin network

grows [67, 68], models with simplified flexible membrane offer more realistic

representation of the membrane behavior [9]. Finite element method has also

been applied to model cell membrane in lamellipodial studies [20, 60]. With

the representation of the membrane set, the energy of the membrane including

bending and tension terms could then be written, and the interaction between the

membrane and actin filaments can also be introduced to mimic the force generation

process [9, 35]. Since the protruding plasma membrane grows against the external

obstacle, this additional resistive force in turn impact the polymerizing filaments

below the membrane. The effect of external load can be modeled by introducing

an effective external field which acts on the cell membrane [35]. Higher load from

membrane would slow down the growth of actin filaments.

4.3.2 Re-organization of the Actin Network: From Lamellipodia

to Filopodia

Actin filaments are commonly present in cells, and they may form different struc-

tures including the branched network—lamellipodia and the bundled network—

filopodia, as reviewed in preceding section of this chapter. These different types of

actin networks are mediated by different regulatory proteins: in branched network,

filaments are cross-linked by Arp2/3; while in bundled network, filaments are

connected by actin-binding proteins such as fascin and Ena/VASP. Elucidating how

the different types of actin networks are controlled by physico-chemical factors

is of fundamental significance in understanding the shape and motile behaviors

of cells. Understanding the mechanism of bundling process may help understand

the formation of filopodia from lamellipodia. The convergent elongation model

provides an insightful explanation on the mechanism of filopodia initiation by re-

organization of the dendritic network [15].

The phase behavior of charged rods in the presence of inter-rod linkers has

been studied theoretically as a model for the equilibrium behavior underlying

the organization of actin filaments by linker proteins in the cytoskeleton [92].

The phases include bundle-dominant structure, network-dominant structure and

phase containing both types of structures. The reconstitution of the transition from

lamellipodium (2D aster) to filopodium (star) in membrane-free system has also

been carried out: in the motility system containing no fascin, there is spontaneous

formation of aster-like structure; and in the presence of fascin, these asters transition
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into stars with actin bundles, and capping protein inhibits star formation [73].

Experimental and 3D kinetic Monte Carlo studies of Arp2/3 branched actin network

mediating filopodia-like bundles formation in vitro have also been performed [76].

The latter study showed that the energy gain due to fascin bundling outweighs the

unfavorable energy to bend the filaments to form a bundle.

5 Summary

Until very recently, actin-based cell motility was investigated mainly experimen-

tally, with a wealth of generated data that was hard to synthesize together into a

coherent picture. Hence, many competing and sometimes contradictory interpre-

tations are commonly found in the current literature. Computer simulations based

on microscopic chemistry and physics provide a unique opportunity to examine

some of the common scenarios of actin polymerization dynamics, with the aim of

pointing out more physically plausible hypothesis, and also making new predictions

that can be tested experimentally. Deterministic reaction–diffusion calculations

work at a coarser level, allowing to see the bigger picture, but occasionally fail

due to lack of some critical physical ingredient. Hence, a combination of both

stochastic simulations where individual filaments are geometrically resolved and

molecules randomly hop around and react, and continuous reaction diffusion models

without explicit actin network geometry will be needed to make future progress in

deciphering mechano-chemical networks controlling actin dynamics.

In terms of what we have learnt from recent computational studies, it is clear

that actin network dynamics is controlled through the fine balance of chemical,

mechanical, and transport processes. In particular, because single filaments under

tension are thought to grow exponentially slower, the filament number density is a

critical physical observable that controls growth speed. When the network is sparse,

too few filaments hold the membrane resistance, diminishing polymerization rates.

When the network is too dense, the need to feed numerous growing ends creates

a severe transport bottleneck, also slowing down protrusion speed. Hence, many

regulatory proteins, such as capping proteins, anti-capping proteins, and Arp2/3,

modulate the network dynamics by directly or indirectly influencing the density

of filaments. Furthermore, stochastic effects can sometimes be dramatic, where

for example the molecular noise of capping protein binding and unbinding can be

amplified to macroscopic length- and time-scales. Finally, the importance of deliv-

ering material to the polymerization front, the diffusional transport bottleneck, is

becoming appreciated and new suggestions have been put forward about how active

transport by molecular motors could alleviate the local depletion of monomers.

As we gain understanding how the simplest components of actin’s mechano-

chemical machinery work, future computer simulations will undoubtedly shed more

light on the need and mechanisms of action of several dozen additional regulatory

proteins that are important in actin-based protrusion dynamics. Furthermore, more

realistic coupling of stress distributions in the actin network with chemical processes,

and better modeling of interactions with the external substrate will lead to more

comprehensive understanding of physics and chemistry of eukaryotic cell motility.
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subcellular, or global cell behavior. Therefore, choices have to be made clear at

the outset, ranging from distinguishing between prokaryotic and eukaryotic cells,

specificity within each of these types, whether the cell is “normal,” whether one

wants to model mitosis, blebs, migration, division, deformation due to confined flow

as with red blood cells, and the level of microscopic detail for any of these processes.

The review article by Hoffman and Crocker [48] is both an excellent overview

of cell mechanics and an inspiration for our approach. One might be interested,

for example, in duplicating the intricate experimental details reported in [43]:

“actin polymerization periodically builds a mechanical link, the lamellipodium,

connecting myosin motors with the initiation of adhesion sites, suggesting that the

major functions driving motility are coordinated by a biomechanical process,” or to

duplicate experimental evidence of traveling waves in cells recovering from actin

depolymerization [35, 42]. Modeling studies of lamellipodial structure, protrusion,

and retraction behavior range from early mechanistic models [84] to more recent

deterministic [97, 112] and stochastic [51] approaches with significant biochemical

and structural detail. Recent microscopic–macroscopic models and algorithms for

cell blebbing have been developed by Young and Mitran [116], which update

cytoskeletal microstructure via statistical sampling techniques together with fluid

variables. Alternatively, whole cell compartment models (without spatial details) of

oscillations in spreading cells have been proposed [35,92,109] which show positive

and negative feedback mechanisms between kinetics and mechanics, and which are

sufficient to describe a modality of sustained cell oscillations. The generalization

of such a nonlinear limit cycle mechanism to include 3D spatial substructures

consistent with cell mechanics, and biochemical kinetics and diffusion, charts a

path that our group has elected. Detailed microscopic features are resolved through

effective or collective properties of each substructure, which are dynamically

updated by chemical species and processes. This choice is guided by a series of

developments in the biophysics community on cell structure and rheology (cf. New

Journal of Physics, Vol. 9, 2007), together with recent progress on the biochemical

feedback mechanisms associated with cell morphological oscillations [20,35,58] as

well as other dynamic cell modes.

Our approach is likewise guided by multiphase (implying differentiated sub-

structures) modeling and computational tools developed for analogous applications

such as biofilms [68, 108, 119, 121] and complex fluid mixtures (polymer dispersed

nematic rods [37, 66], liquid crystal drops in viscous fluids [36, 115]). We integrate

these approaches to propose a multiphase cell model with an energy-based phase

field formulation, which we then simulate to illustrate qualitative phenomena that

are possible with such a model. We conclude the chapter with a summary of

experimental information and model advances that will be necessary to make

the model biologically relevant and applicable to experiments. Our goal is a

modeling and numerical framework which captures sufficient biological structure

acceptable to cell biologists, which relies upon experimental data to parametrize

the model equations for the structure, and which can reproduce single cell dynamic

morphology behavior including blebbing, migration, contractile waves, oscillations,

membrane-cortex rupture, and division. An early two-phase model of cell motion is

developed by Alt and Dembo [2].



Computational and Modeling Strategies for Cell Motility 259

We model the cell as a composite of multiple phases or substructures, where

each phase has its own material properties and constitutive relations that must be

experimentally determined (cf. [79]). In the phase field formalism, the boundary

between adjacent phases is diffuse rather than sharp; a phase field variable is

introduced to model the thin transition layer, and an energy functional prescribes

the momentum and energy exchange in the diffuse interface domain rather than

traditional sharp interface elements such as surface tension and normal stress jumps.

The cell phases include a bilayer membrane, a nucleus, and the cytoplasm which

contains various protein filaments, other organelles, and aqueous cytosol [13].

Permeating the cytosol is a network of protein filaments of varying size and rigidity

called the cytoskeleton [41,78,95]. The cytoskeleton not only provides the cell with

mechanical integrity, but also provides a pathway for chemical and mechanical

transport. Eukaryotic cells contain three main types of cytoskeletal filaments:

actin filaments (microfilaments), intermediate filaments, and microtubules [41, 78].

Cytoskeletal elements interact extensively with cellular membranes and extracellu-

lar materials through functional and regulatory molecules or molecule complexes to

affect cell motion [6, 61, 85, 87–89]. A distinguished phase, the cortical layer, lies

between the bilayer membrane and the interior cytosol, and plays a prominent role

in our model. Activation and deactivation in the cortical layer, triggered by specific

protein families, are fundamental to our model. The phase field formulation allows

for dramatic changes in each substructure, such as rupture of the bilayer membrane

or cortical layer, separation of the membrane from the cortical layer by influx of

cytosol, or even cell division. A long-term goal is to have sufficient biophysical and

biochemical resolution to describe any cell morphological dynamic process.

A motile cell can crawl or migrate, especially on a supportable substrate, by

protruding its front and retracting its rear [24, 49, 50, 60, 86, 90, 101, 102]. Cell

motility is a result of orchestrated dynamical reconstruction and destruction of

cytoskeletal structure coupled with cell membrane deformation. This reconstruction

process is triggered by cell–substrate interactions through extracellular signalling

and intracellular responses. The process of cell protrusion, the prelude of cell

motion, is based on the polymerization of G-actin into F-actin filaments and

force redistribution along other filament bundles like microtubules [88]. Actin

polymerization is a directional or more precisely a polar phenomenon. During this

process, the ATP (Adenosine-5’-triphosphate) bound G-actin is added to the barbed

end of the existing F-actin filament, then ATP hydrolyzes into ADP; subsequently,

the ADP bound actin drops off at the pointed end to depolymerize [13]. The

local actin polymerization/depolymerization dynamics are regulated by the local

concentration of functioning proteins, in particular, ATP-bound G-actin, ADP-

bound G-actin, various accessory proteins, and binding subunits such as WASP

proteins, Arp2/3 complexes, ADF/cofilin, profilin, thymosin ˇ4, ˛�actinin, etc.

[89]. The accessory proteins and binding subunits can inhibit or promote the

polymerization/depolymerization process and thereby regulate the cell motility. In

our model, we cannot retain full biochemical resolution and dynamics initially

comparable to biochemical network models (cf. [1] and references therein), so

simplifying choices will be made focusing on the key activation and deactivation

species that are implicated in experiments.
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In the case of cell migration on a substrate, the dynamic assembly and disas-

sembly of focal adhesions plays a central role [12, 28, 90]. Focal adhesions are

specific types of large macromolecular assemblies through which both mechanical

and regulatory signals are transmitted. They serve as the mechanical linkages to the

extracellular matrix (ECM) and as a biochemical signaling hub to concentrate and

direct various signaling proteins at sites of integrin binding and clustering. On the

other hand, surface or substrate topography has long been recognized to strongly

influence cell adhesion, shape, and motion. Patterning and aligning scaffolds at

the micro- and nano-scale with topographical features (indentations or grooves) as

well as ligand organization have been reported to influence cell responses, such

as adhesion, shape deformation (oriented cell elongation), migration, and growth

[22]. The phenomenon of surface topography influencing cell migration is known

as “contact cue guidance.” [54, 73].

The underpinning issue in the contact cue guidance of motile cells is cell

motility via cell–substrate interaction. Theoretical and computational modeling of

cell motility continues to evolve in a variety of directions and for diverse purposes.

However, given the complexity in cell motility, a whole cell model is still in an

immature stage. Significant advances are more focused, such as on local cytoskeletal

and actin dynamics [10,45,80,83], chemotaxis [82], membrane shape conformation

[29], and simple cell models with idealized microstructural details of the cytoplasm

[2,25,26,62,98,99,113]. In studying how actin filaments interact with the membrane

locally, there have been a host of interesting local cytoskeletal dynamical models

developed [3, 6, 14, 45, 80].

In addition to the local dynamical models for cytoskeletal and membrane

dynamics, models have been developed to study cell migration on substrates. One

model was devised to study effects of adhesion and mechanics on cell migration

incorporating cytoskeletal force generation, cell polarization, and dynamic adhesion

for persistent cell movement [26]. In this model, a coarse-grained viscoelastic

model was used to describe mechanics of the cell body. Stephanou et al. [98]

proposed a whole cell model for the dynamics of large membrane deformations

of isolated fibroblasts, in which the cell protrusion was treated as the consequence

of the coupling between F-actin polymerization and contractibility of the cortical

actomyosin network. A model for the contractility of the cytoskeleton including

the effect of stress fiber formation and disassociation in cell motion was developed

by Deshpande et al. to investigate the role of stress fibers in the reorganization of

the cytoskeleton [25]. Models treating the cytoplasm as active gels were proposed

to study cell movement and drug delivery by Wolgemuth et al. [113]. Two-phase

fluid models have also been used to study cell motion, in which the motion of

the membrane and the local forces due to actin polymerization and membrane

proteins are coupled through conservation laws and boundary conditions [2]. The

coupling of biochemistry and mechanics in cell adhesion was recently studied by a

new model for inhomogeneous stress fiber contraction [10]. A computational cell

model for migration coupling the growth of focal adhesions with oscillatory cell

protrusion is developed to show more numerical detail in the migration process [99].

A new continuum modeling approach to study viscoelastic cytoskeletal networks
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is proposed to model the cytoplasm as a bulk viscoelastic material [62]. Each of

these models, and others below, represents a step toward a multipurpose whole cell

dynamics model.

Active polar gel models have emerged as a new and exciting topic in soft matter

and complex fluids [4,8,65,71]. In an active material system, energy is continuously

supplied by internal as well as external sources to drive the movement of the material

system. In a living cell, cross-linking proteins bind two or more self-assembled

filaments (e.g., F-actin or F-actin and microtubules) to form a dynamical gel, in

which motor proteins bind to filaments and hydrolyze nucleotide ATP. This process

coupled to a corresponding conformational change of the binding protein turns

stored energy into mechanical work, thereby leading to relative motion between

bound filaments [72]. Self-propelled gliding motion of certain bacterial species is

another example of such an active material system, where molecular motors drive

the cellular motion in a matrix of another material [8]. Both continuum mechanical

models and kinetic theories have been proposed for active complex fluid systems

[4, 8, 21, 63, 65, 71, 91]. The mathematical framework incorporates the source of

“active forcing” into an otherwise passive material system. The models are based

on free energy considerations, both equilibrium and nonequilibrium, where one can

keep track of dissipative and conservative principles, and the challenge for bio-

logical fidelity is to construct relevant energy potentials and chemical–mechanical

activation functions. These potentials require detailed viscous and elastic properties

of the fundamental cell components or phases, for which experimental techniques

are now advanced enough to make progress. The energy formulation is likewise

compatible with mathematical modeling, numerical algorithms, and simulation

tools that have been developed for the hydrodynamics of multiphase complex fluids

in evolving spatial domains. The simultaneous modeling of reaction and diffusion

of biochemical species is self-consistent with the energetic formulation. These

advances lay the groundwork for our approach.

Given the collective advances in membrane and cytoskeletal modeling, cell–

substrate coupling, and biochemical kinetics, it is now feasible to develop a whole

cell model for migration on substrates. This global cell–substrate model will

enable us to investigate cell motility, dynamics of signaling proteins, cytoskeleton–

substrate coupling, and contact cue guidance of motile cells. The model predictions

will provide qualitative comparisons with cell experiments in the first proof-of-

principle stage, and potentially guide future experiments on detailed mechanisms

associated with motility. As properties of each substructure become more quantified,

the model will be able to make predictions to guide cell motility experiments.

Given the complex nature of cell migration on topographically designed substrates,

we must adopt a theoretical and computational platform that is applicable to a

variety of dynamical modalities. Among the competing mathematical models for

multiphase soft matter phenomena, the field phase approach is sufficiently versatile

to handle the complexity of this challenge, and to sequentially incorporate additional

biological complexity. We take up this topic next.

Phase field models have been used successfully to study a variety of interfacial

phenomena like equilibrium shapes of vesicle membranes [29–34,105,120], dynam-

ics of two-phase vesicles [39, 40], blends of polymeric liquids [38, 103, 106, 107],
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multiphase flows [16, 36, 52, 53, 69, 70, 74, 110, 111, 114, 115, 117–119], dentritic

growth in solidification, microstructure evolution [47, 59, 77], grain growth [17],

crack propagation [18], morphological pattern formation in thin films and on

surfaces [67, 93], self-assembly dynamics of two-phase monolayer on an elastic

substrate [75], a wide variety of diffusive and diffusionless solid-state phase

transitions [18, 19, 104], dislocation modeling in microstructure, electromigration,

and multiscale modeling [100]. Phase field methods can also describe multiphase

materials [39, 40, 110]. Recently, phase field models are applied to study liquid

crystal drop deformation in another fluid and liquid films by our group and other

groups [36, 52, 69, 70, 74, 110, 111, 114, 115, 117–119]. We will now apply the

phase field modeling formalism, treating the substructures of the cell as well as

its surrounding environment as distinct complex fluids, including an ambient fluid

or solid substrate or another cell(s). Distinct phases are differentiated by phase

variables. As a result, the entire material system can be modeled effectively as a

multiphase complex fluid in contact with a substrate [29]; the cell membrane is

modeled naturally as a phase boundary between the cortical layer and the ambient

fluid or substrate. Additional phase variables can be introduced to account for the

various complex fluid components (cortical layer, cytosol, nucleus) confined inside

the cell membrane; these phase variables can serve as volume fractions for each

of the cytoplasm components. The phase field formulation allows the dynamical

model developed for each phase of the mixture to be integrated to form the global

cell model.

We review an incremental set of models for active fluids of self-propelled

microconstituents and active gels, respectively. We will then propose a whole cell

model as a framework for proof-of-principle simulations and future development.

2 Models for Active Filaments

In a seminal paper by Simha and Ramaswamy [96], an active stress mechanism for

diverse model systems including bacteria, molecular motors, F-actin treadmilling

polymerization, and depolymerization mechanisms is formulated. Two fundamental

mechanisms are distinguished that lead to macroscopic motion, both of which are

tied to the existence of a pair of permanent force dipoles of the moving object. One

corresponds to contractile motion, called a puller mechanism by analogy with a

breast stroke of a swimmer, and the other is due to a tensile motion on the object,

called a pusher by analogy with the kick of a swimmer [44, 91, 96]. The fluid flow

field around the moving object in these two different situations exhibits distinct flow

patterns, both of which propel at the particle scale. The stress associated with this

motion is called the active stress. Since this is the essential part of the theories for

active filament material systems, we will give a brief overview of the derivation.

An ensemble of moving objects, including rod macromolecules, bacteria, F-actin

filaments, etc., are considered. An object has its center of mass located at ri and two

permanent force dipoles localized at ri C bni and ri � b0ni , respectively, where
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ni is a unit vector associated with the displacement direction of the i th object.

If bD b0, the object is called apolar; otherwise, polar. The collective force exerted

by the ensemble at location r is given by

f.a/ D f
X

i

ni
�

ı .r � ri .t/ � bni .t//� ı
�

r � ri .t/C b0ni .t/
��

; (1)

where f is the magnitude of the force dipole. We expand the ı� function formally,

and the force can be rewritten as:
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X

i

niniı.r � ri /

!

� .b C b0/.b � b0/

2
f rr W

 

X

i

nininiı.r � ri /

!

C � � � : (2)

From this force formula, the active stress tensor is deduced,
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At leading order, the active stress tensor is given by

� .a/ D ˛
X

i

ni ni ı.r � ri /; (4)

where ˛ D .b C b0/f . Positive values correspond to pullers and negative values

correspond to pushers.

In the case of ATP-driven polymerization and depolymerization, the active stress

is given in the same form, where ˛ is proportional to the energy difference of the

chemical potentials of ATP and the product molecules ADT and Pi . This latter

expression defines the active stress at leading order in all active filament models

discussed below.

2.1 Active Polar Filament Model

We consider a suspension of active polar filaments in a viscous solvent. The active

polar filament model of Muhuri et al. [81] uses the concentration of the active

polar suspensions c and the polarity vector of the filament particle p, in which a

background fluid velocity v is introduced. The governing system of equations in
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this model is summarized below. In this model, the polarity vector is assumed to

represent the velocity of the active particle; the background velocity is assumed

solenoidal, and inertia is neglected. Without external forces, the governing system

of equations consists of:

r � v D 0;

r � � D 0; � D � a C � r C �d;

�d D �
�

rv C rvT
�

;

� r D ��
2
.ph C hp/C…I;

� a D Wc.x; t/

�

pp � kpk2 I
3

�

;

@p

@t
C v � rp � 1

2
.r � v/ � p C

�

�1.p � r/p C �2.r � p/p C �3rkpk2
�

D �

2

�

rv C rvT
�

� p � �rc C �h;

@c

@t
C r � .c.v C p// D 0; (5)

where �1;2;3; �;…;W; �; � are model parameters. The sign of W determines the

nature of the elementary force dipoles. Here, h is the molecular field for the polar

vector p and is given by

h D c
�

˛p � ˇkpk2p CKr2p
�

; (6)

where ˛ and ˇ are model parameters, and K is the analog of the Frank elastic

constant of the Ericksen–Leslie theory for liquid crystals in the one-constant approx-

imation [23]. The stress tensors �d; � r; �a are the dissipative, reversible (or reactive)

and active stress, respectively. The reversible stress is due to the response to the

polar order gradient. The terms containing �1;2;3 and � are the symmetry-allowed

polar contribution to the nematodynamics of p. The corresponding free energy for

the system is identified as

F D
Z

c

2

�

�˛kpk2 C ˇkpk4 CKk rpk2
�

dx: (7)

The molecular field is defined by h D � ıF
ıp

. The moving polar particle velocity

and the background fluid flow velocity are fully coupled. With this model, Muhuri

et al. studied shear-induced isotropic to nematic phase transition of active filament

suspensions as a model of reorientation of endothelial cells. This model neglects the

impact of energy changes to migration of polar filaments.
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An analogous theory using the same set of hydrodynamical variables was

developed by Giomi et al. [44] which involves more sophisticated coupling between

the concentration, background fluid flow, and the polarity vector of the polar

particles. It extends the previous theory to account for the energetic influence to

filament migration. The governing system of equations is summarized below. In

this model, inertial effects are retained and attention was paid to the variational

structure of the governing system of equations. For instance, the missing asymmetric

contribution to reactive stress in the previous model is supplemented.

�

�
@

@t
C v � r

�
v D r � �;

r � v D 0;

� D �d C � r C �a C �b;

�d D 2�D;

� r D ��I � �

2
.ph C hp/C 1

2
.ph � hp/;

� a D ˛c2

T
.pp C I/;

�b D ˇc2

T

�

rp C rpT C r � pI
�

;

@c

@t
C r �

�

c.v C cˇ1p/C � 0h C � 00f
�

D 0;

�

@

@t
C .v C cˇ2p/ � r

�

p C� � p D �T r.rv/p C �h C � 0f; (8)

where h is the molecular field given by h D � ıF
ıp

, f D �r ıF
ıc

is the molecular flux

of the active rods, D D rvCrvT

2
is the rate of strain tensor,� D 1

2
.rv �rvT / is the

vorticity tensor, �b is a dissipative stress (an analogue of �d), and all the parameters

unspecified are model parameters. The free energy of the system is given by

F D
Z

"

C

2

�

ıc

c0

�2

C a2

2
kpk2 C a4

4
kpk4 C K1

2
.r � p/2 C K3

2
.kr � pk/2

CB1
ıc

c0
r � p C B2kpk2r � p C B3

c0
kpk2p � rc

#

dx; (9)

where ıc D c � c0, c0 is a baseline concentration, C is the compression modulus,

and K1;3 are the splay and bend elastic constants; the other coefficients depend

on both passive and active contributions [44]. This model adds additional fluxes

to the transport of the concentration c due to the energetic activity of both polar

velocity field p and the concentration fluctuations of c. The convective effect of the

polar velocity p is added to the transport of both c and p as well. An additional
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“viscous” stress �b is added analogous to the viscous stress �d. The free energy

contains additional coupling terms between the polar velocity and the concentration

gradient.

This model is used to study sheared active polar fluids. An extremely rich variety

of phenomena are identified including an effective reduction or increase in the

apparent viscosity, depending on the nature of the active stresses and flow alignment

property of the particles, nonmonotone stress-strain-rate relationship, and yield

stress for large active forcing [44]. In the limit of strongly polarized states where

the magnitude of p is locked, this formulation can be recast in terms of a unit vector

u D p

kpk
: The details can be found in [44].

2.2 Active Apolar Filament Models

When the polarity on the moving objects is weak, instead of the polarity vector, a

second order nematic tensor can be employed to describe both the nematic order as

well as the active stress. For apolar filament fluids, a coarse-grained model can be

derived with only the nematic order tensor [15,46]. We summarize the version used

by Cates et al. [15] in this section. Let Q be a traceless second order tensor denoting

the nematic order in the active filament fluid. The governing system of equations

consist of the following equations.

r � v D 0;

�

�
@

@t
C v � r

�
v D r � .�/;

H D � ıF
ıQ

C 1

3
T r

�
ıF

ıQ

�
I;

� D �P0I C 2�D C 2�

�
Q C I

3

�
Q W H � �H

�
Q C I

3

�
� �

�
Q C 1

3
I

�
H

�rQ W ıF

ırQ
C Q � H � H � Q � �Q;

�
@

@t
C v � r

�
Q �� � Q C Q �� � ŒD � Q C Q � D� D �H; (10)

where c is the concentration of the apolar active rod assumed constant in this model,

� is the friction coefficient, P0 is the hydrostatic pressure, � is the activity parameter

with � > 0 corresponding to extensile and � < 0 contractile motion. The free energy

density of the material system is given by a simplified Landau-deGennes functional

F D kBTc

"�
1 � N

3

�
Q W Q

2
� N

3
Q3 C N

4
.Q W Q/2 C K

2

�
rQ

:::rQ

�2#
; (11)
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where kB is the Boltzmann constant, T is the absolute temperature, N measures

the strength of the bulk part of the potential, and K is the one-constant Frank

elastic coefficient. This model was used to study sheared active gels close to the

isotropic–nematic transition. This model was later extended to add an active term in

the nematodynamic equation for Q and simulated with lattice Boltzmann numerical

methods [76].

2.3 Kinetic Models for Active Fluids

In an effort to unify the polar and apolar models for active fluids, Liverpool,

Marchetti and collaborators developed a framework for active filament fluids using

a polymer kinetic theory formulation [72]. Here, we briefly describe the 2-D

formulation of the theory and its coarse-graining procedures to yield the moment

equations. Let c be the number density of rigid active rods. The Smoluchowski

equation is given by

@c

@t
C r � J C R � JR D 0;

J D vc �D � rc � 1

kBT
D � crVex C Ja;

JR D c! �Dr

�
Rc � c

kBT
RVex

�
C Ja

r ; (12)

where J is the translational flux, JR is the rotational flux,D D Djjuu CD?.I � uu/

is the translational diffusivity, u is the unit vector in the direction of the molecular

velocity, Dr is the rotational diffusivity, ! is the angular velocity, R D u � @
@u

is the rotational gradient operator, the active translational and rotational fluxes are

defined by

Ja D cb2m

Z Z
va.u; s1I u2; s2/c.r C �;u2; t/du2d�;

Ja
r D cb2m

Z Z
!a.u; s1I u2; s2/c.r C �;u2; t/du2d�; (13)

va and !a are the translational and rotational velocities, respectively. The excluded

volume potential is given by the Onsager potential

Vex D kBT

Z Z
ku � u2kc.x C s;u2; t/dsdu2; (14)
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b is a parameter and m is the mass of the rod. The active velocities are given by

va D 1

2
vr C Vm;

vr D
Q̌
2
.u2 � u/C Q̨

2l
�;

Vm D A.u C u2/C B.u2 � u/;

!a D 2 ŒP C NP.u � u2/� .u � u2/; (15)

where P and NP are the rotational rates, Q̨ D ˛.1 C u � u2/; Q̌ D ˇ.1 C u � u2/;

A D �.ˇ � ˛.s1 � s2/=2/=12, and B D ˛.s1 � s2/=24 for long thin rods [4].

˛ and ˇ are model parameters. All four parameters can be related to the stiffness of

the crosslinkers and to the rate u.s/ at which a motor cluster attached at position s

steps along a filament toward the polar end [72]. The concentration has a generalized

Fourier expansion

c .x;u; t/ D c.x; t/

2�
Œ1C 2p � u C 4Q W uu C � � � :� ; (16)

where the zeroth, first, and second moments are defined by:

c.x; t/ D
Z
c.x;u; t/du;

cp.x; t/ D
Z

uc.x;u; t/du;

cQ.x; t/ D
Z �

uu � kuuk2
2

I

�
c.x;u; t/du: (17)

The force due to the stress for the system is given by

r � � D
Z Z

c.x � �;u; t/
˝
ı.� � su/Fh.s/

˛
s

d�du; (18)

where Fh.s/ is the hydrodynamic force per unit length exerted by the suspension at

position s along the rod. The force can be approximated by the first two terms in the

Taylor expansion

r � � D
Z
c.x;u; t/Fhdu �

Z ��s
l

�2 �
ur
l

�
c�h

�

s

du: (19)
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We denote Q� D � � T r.�/ I
3
.

Q� D Q� a C �d;

Q� a D 2kBTac

��
1 � c

cIN

�
Q � c

cIN

�
pp � kpk2

2
I

�
C C1c

�
4

3
Q C pp � kpk2

2
I

��

CC2c
�
rp � r � p

2
I � 1

4

�

rp � rpT
�

�

;

Q�d D C3

�

1

2

�

D � I

2
T r.D/

�

C 1

3
.QT r.D/ � .D W Q/I/C 1

3
.D � Q C Q � D/

�

; (20)

where C1; C2; C3 are model parameters [72].

This together with the continuity equation for the average velocity v and the

momentum balance equation in the form of Stokes equation constitute the governing

system of equations for the kinetic theory.

r � v D 0;

r � .� C 2�D � P0I/ D 0; (21)

where � is the viscosity of the solvent and P0 is the hydrostatic pressure.

Shelley and Santillian studied dilute active rod particle fluids using a kinetic

theory in which only convective transport is accounted for [91];

J D vc C v0uc; J
R D c!: (22)

In their model, the active stress tensor is given by

Q� a D �Q: (23)

Next, we present one of the latest versions of the kinetic theory in which the

active flux due to rod–rod binary collisions is carefully considered. Baskaran and

Marchetti derived a Smoluchowski equation for self-propelled hard rods in 2-D [9].

@c

@t
C r � J C R � JR D 0;

J D cv C v0uc �DSP � rc � 1

kBT
D � crVex � Djjmv20

2kBT
ISP;

JR D c! �Dr

�

Rc C c

kBT
RVex

�

� Drmv20

2kBT
ISP
r ; (24)

where J is the translational flux and JR is the rotational flux,

DSP D D?I C .Djj CDS �D?/uu (25)



270 Q. Wang et al.

is the translational diffusivity, DS D v20
�

, v0 is the speed of the moving rod, Djj and

D? are the diffusivity in the parallel and perpendicular direction of the rod,m is the

mass of the rod, and the additional fluxes due to collisions are given below.

ISP D
Z Z

sin2.�1 � �2/ Œ‚.sin.�1 � �2// �‚.� sin.�1 � �2//�

�
�

u?
1 c

�
x1 C su1 � l

2
u2;u2; t

�
C u?

2 c

�
x1 C su2 � l

2
u1;u2; t

��
dsdu2;

ISP
r D z

Z Z
sin2.�1 � �2/ Œ‚.sin.�1 � �2// �‚.� sin.�1 � �2//�

�
�
sc

�
x1 C su1 � l

2
u2;u2; t

�
C l

2
cos.�1 � �2/

� c

�
x1 C su2 � l

2
u1;u2; t

��
dsdu2; (26)

where z D u � u2, �1 and � are the initial angles of u and u2, respectively, before

collision.‚.x/ is the Heaviside function.

Taking the zeroth moment, the first moment, and the second moment of the

Smoluchowski equation, the transport equation for the rod density, polarity vector,

and the nematic order tensor can be derived [9].

These models are developed for dilute to semidilute suspensions of active

filaments and rods in viscous solvents. Inside a cell, the cytoplasm is comprised of

various cytoskeletal filaments, microtubules, and intermediate filaments immersed

in the cytosol. The resulting network structures and buffer solution behave like a

gel. We briefly review new models for active biogels next.

3 Models for Active Gels

In active gels, networks of active filaments can form either temporarily or on a

longer timescale. The solvent permeation into the network must be accounted for in

the gel. We next describe several relevant models for active gels briefly.

3.1 Isotropic Active Gel Model

Banerjee and Marchetti proposed a phenomenological model for isotropic active

gels based on a continuum model for physical gels [7]. The governing system of

equations are summarized. We denote by u the position vector of the network, v the
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velocity of the solvent fluid, cb the concentration of bound motor proteins, cu the

concentration of the unbound motors, � the mass density of the gel network, and �f

the density of the fluid. The model is based on the two-component formulation of

multiphase fluids, in which network is treated as a viscoelastic material while the

solvent is modeled as a viscous fluid. The momentum conservation for each phase

is enforced and the mixture is assumed incompressible i.e., the combined velocity is

assumed solenoidal. The interaction between the solvent and the network is through

a friction term in the momentum balance equations for both materials.

�
@2

@t2
u D ��. Pu � v/C r � �;

� D �e C �d C �a;

�e D �
�

ru C ruT
�

C �T r.ru/I;

�d D �s

�

r Pu C r PuT
�

C
�

�b � 2�s

3

�

T r.r Pu/I;

�a D �.�; cb/��I;

�f Pv D r � .�P I C 2�D/C �. Pu � v/;

@cb

@t
C r.cbu/ D �kucb C kbuu;

@cu

@t
D Dr2cu C kucb � kbcu;

r �
�

.1 � �p/v C �p Pu
�

D 0; (27)

where P is the hydrodynamic pressure for the solvent, � the fluid viscosity, � and �

the Lame coefficients of the gel network, �b and �s are the bulk and shear viscosity

arising from internal friction in the gel, �� is the change in chemical potential due

to hydrolysis of ATP, � is a parameter with units of the number density describing

the stress per unit change in chemical potential due to the action of crosslinkers,

kb is the bounding rate of the motor molecules, ku is the unbinding rate, D is the

diffusion coefficient for the unbound motor, and �p is the volume fraction of the

active gel network. A transport equation for �p is needed to complete the system. In

their model, the volume fraction is assumed small, �p � 1, so the incompressibility

condition reduces to r � v D 0.

The active contribution to the stress is an active pressure on the gel network

proportional to��. The gel network is modeled as a viscoelastic material subject to

an active stress due to ATP activities on the motors bound to the filament. This model

leads to spontaneous oscillations at intermediate activity and contractile instability

of the network at large activity [7].
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3.2 Active Polar Gel Model

In a series of papers, Joanny, Prost, Kruse, Julicher et al. [56, 57, 63, 64, 92] studied

active gels pertinent to cytoskeletal dynamics. We discuss one of their generic

models below. We denote the domain occupied by the gel by�, the number density

of monomers in the gel by �, an average velocity transporting the gel by v. The

transport equation for � is given by

@�

@t
C r � .v�/ D �kd ı.S/�C kpı.S/; (28)

where kp is the rate of polymerization and hd is the rate of depolymerization at

the gel surface defined by the level surface fxjS D 0g. The polymerization and

depolymerization in this model are assumed to only take place at the gel surface.

Let �a be the number density of diffusing free monomers and the diffusive flux ja of

free monomers. The transport equation for �a is

@�a

@t
C r � ja D kd ı.S/� � kpı.S/: (29)

Note that the total number of monomers is conserved

@

@t
.� C �a/C r � .v�C ja/ D 0: (30)

Active processes are mediated by molecular motors. Let c.b/ be the concentration

of bound motors and c.m/ the concentration of the free diffusing motors. The con-

servation equations for the motors are given by

@c.m/

@t
C r � j.m/ D kpff c

.b/ � kon

�

c.m/
�n
;

@c.b/

@t
C r �

�

vc.b/
�

C r � j.b/ D �kpff c.b/ C kon

�

c.m/
�n
; (31)

where kon and koff denote the attachment and detachment rate, respectively, and j.b/

and j.m/ are the flux of free motors and the bounded ones relative to the gel motion.

In the timescales considered in their model, the momentum balance is replaced

by a force balance equation

r �
�

� total �…I
�

C fext D 0; (32)

where I is the identity matrix, fext is the external force, � total denotes the total stress

tensor, and … is the pressure.
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Let p be the polarity vector describing the polar direction of the monomer. The

time rate change of the system free energy is given by

PF D�
Z

dx
h
� total W rv C h � P C��r � Pc.b/�.b/ � Pc.m/�.m/ � P�� � P�a�a

i
;

(33)

where h is the molecular field, P D @
@t

p C v � rp C � � p is the corotational

derivative of p, �� is the chemical force conjugate to the ATP production rate

r which determines the number of ATP molecules hydrolyzed per unit time and

unit volume. The dot denotes time derivative, �;�a; �.b/; �.m/ are the chemical

potentials corresponding to �; �a; c.b/; c.m/, respectively. The total stress is given by

� total D � C 1

2
.ph � hp/; (34)

where � is the symmetric part of the stress. The symmetric stress tensor � , P, and

the ATP consumption rate r can be decomposed into reactive part and dissipative

part, respectively,

� D � r C �d;

P D Pr C Pd;

r D r r C rd; (35)

where the superscripts r denote the reactive response and d the dissipative response.

The constitutive equations for the dissipative response are given by
�
1 � �2

D2

Dt2

�
�d D 2�D � �

D

Dt

��1
2
.ph C hp/C Q�1.p � h/I

�
;

�
1 � �2

D2

Dt2

�
Pd D

�
1 � �2

D2

Dt2

� �
h

1
C �1p��

�

C� D
Dt
.�1rv � p C Q�1T r.rv/p/;

rd D ƒ��C �1p � h C �p � r�.b/; (36)

where �1; Q�1; ƒ; �1� are model parameters and � is the relaxation time. The fluxes

for the monomers and motor molecules, which do not have reactive parts, are

given by

j.a/ D �D.a/r�.a/ C �.a/��p;

j.m/ D �D.m/rc.m/ C �.m/��p;

j.b/ D �D.b/rc.b/ C �.b/��p; (37)

whereD.i/ are the diffusion coefficients, �.i/ are coupling parameters.
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The reactive fluxes, the polarity vector, and the ATP consumption rate, are given

next.

� r D��
�
D�d

Dt
C A

�
� ���pp� N���I � � 0��kpk2I C �1

2
.phChp/C N�1p � hI;

�
1 � �2 D

2

Dt2

�
Pr D ��1rv � p � N�1T r.rv/p;

r r D �pp W rv C N�T r.rv/C � 0kpk2T r.rv/; (38)

where �; N�; � 0; �1; N�1 are model parameters and

A D �2
�

r � �d C �d � rv
�

C �3T r.rv/�d C �4T r.rv/T r
�

�d
�

I

C�5T r
�

�d
�

rv C �6rv W �dI; (39)

where �i are the model parameters analogous to the eight-constant Oldroyd model.

Combining the reactive and dissipative parts, the total stress, polarity vector, and

the ATP consumption rate are finally given by

2�D D
�

1C �
D

Dt

�

�

� C ���pp C � 0��kpk2I C N���I C �A
�

��1
2
.ph C hp � Q�1.p � h/I/;

�

1 � �2 D
2

Dt2

�

P D
�

1 � �2 D
2

Dt2

��

h

1
C �1p��

�

�
�

1 � � D
Dt

�

.�1rv � p C Q�1T r.rv/p/ ;

r D ƒ��C �1p � h C �p � r�.b/ C �pp W rv C N�T r.rv/

C� 0kpk2T r.rv/: (40)

By restricting p to be a unit vector and using a free energy for polar liquid crystals

F D
Z �

K1

2
.r � p/2 C K3

2
kp � rpk2 C krp �

hjj

2
kpk2

�

dx; (41)

Kruse et al. studied point defects in two dimensions [64]. This model was later

extended to a multicomponent active fluid model by Joanny et al. [55].
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3.3 Three-Component Active Fluid Model

In this multicomponent model, the active fluid is assumed to consist of three

effective components [55]. Let n0 denote the number density of the monomeric

subunits in a polar network, n1 the number density of the free monomeric subunits,

and n2 the number density of the solvent molecules. The effect of ATP hydrolysis

is considered in the model. The conservation equations for the three densities are

given by

@n0

@t
C r � J0 D S;

@n1

@t
C r � J1 D �S;

@n2

@t
C r � J2 D 0; (42)

where the source term S represents the polymerization and depolymerization which

leads to the exchange of monomers between the gel and the solvent, the flux

constitutive equations are

J0 D n0v C j0

m0

;

J1 D n1v C j1

m1

;

J2 D n2v � j0

m2

� j1

m2

; (43)

m0;1;2 are the molecular masses of monomers in the gel, free monomers in the

solution, and the solvent molecules, respectively. The mass density of the material

system is given by � D m0n0 C m1n1 C m2n2: These equations warrant the

conservation of mass

@�

@t
C r � .�v/ D 0 (44)

because m0 D m1. If the monomeric subunits on the polymer network (m0) differs

from those free ones (m1), the mass conservation may not be upheld in the model.

In this case, the transport equation for ni must be modified.

The conservation of linear momentum is given by

@

@t
.�v/C r � .�vv/ D r � �; (45)
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where � is the total stress of the system and external forces are absent. We denote

the free energy density by f and the free energy by F , i.e., F D
R
f dx: The time

rate of change of the free energy is given by

dF

dt
D
Z "

@t

��

2
kvk2

�

C
2
X

iD0

�i@tni � h � @tp � r��

#

dx; (46)

where �i D ıF
ıni
; i D 0; 1; 2 are the chemical potentials for the three effective

components, respectively, h D � ıF
ıp

is the molecular field, r is the rate at which

ATP molecules are hydrolyzed, and �� D �ATP � �ADP � �P is the difference in

chemical potentials of ATP and the product molecules ADP and Pi , respectively.

Using the generalized Gibbs–Duhem relation for a multicomponent polar fluid

r � �e D �
2
X

iD0

nir�i � rp � h; (47)

where �e represents the Ericksen stress, the free energy rate of change is rewritten

into

dF

dt
D
Z

"

�� s W rv C
1
X

iD0

ji � r N�i C .�0 � �1/S � P � h � r��
#

dx; (48)

where � s is the symmetric part of the stress less the Ericksen stress as well as the

anisotropic stress, N�i D �i
mi

� �2
m2

, P D @
@t

p C v � rp C � � p is the convected

corotational derivative of p, � is the vorticity tensor,

� s D � � �a � �e;s;

�a D 1

2
.ph � hp/;

�e;s D sym

" 

f �
2
X

iD0

�ini

!

I � @f

@rp
� rp

#

; (49)

where sym denotes the symmetric part of the stress. We can identify the gen-

eralized force fields .rv;�r N�i ;h; ��/. The corresponding conjugate fluxes are

.� s; ji ;P; r/; assuming the fluxes are functions of the forces, and expanded to linear

order. The force fields are distinguished in that some forces change signs when

time is reversed like rv while others do not. The stress component obeying time

reversal is dissipative and the others are reactive. With this, we propose the following

phenomenological dissipative fluxes
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� s;d D 2�

�
rv � T r.rv/

3
I

�
C N�T r.rv/I;

jd
i D �

1X

jD0

ijr N�j C N�ih C �ip��;

Pd D CN�ir N�i C h

1
� �1��p;

rd D �
1X

iD0

�ip � r N�i C �1p � h Cƒ��; (50)

where .ij / is nonnegative definite, ƒ; 1 are nonnegative. The reactive terms are

proposed as follows:

� s;r D �
1X

iD0

�j

2

�

pr N�j C r N�jp
�

�
1
X

jD0

N�jp � r N�j I C �1

2
.ph C hp/

C N�1p � hI � �1pp��� �2��I � �3kpk2��I;

jr
i D ��irv � p � N�iT r.rv/p;

Pr D ��1rv � p � N�1T r.rv/p;

r r D �1pp W rv C �2T r.rv/C �3kpk2T r.rv/; (51)

where �1;2;3 are the coefficients for the active terms. By applying the Onsager

reciprocal principle and verifying the long and short time asymptotic behavior,

the constitutive equation can be extended to account for viscoelastic behavior and

chirality.

� s;r D ��
�

D

Dt
� s;d C A

�

�
1
X

iD0

�j

2

�

pr N�j C r N�jp
�

�
1
X

jD0

N�jp � r N�j I

C�1

2
.ph C hp/C N�1p � hI � �1pp��� �2��I � �3kpk2��I

C…1

2
.p � hp C pp � h/C

1
X

jD0

…2

2

�

p � r N�jp C pp � r N�j
�

;

jr
i D ��irv � p � N�iT r.rv/p �…2rv � p � p;

D

Dt
pr D �

D

Dt

h

1
� �1rv � p � N�1T r.rv/p �…1rv � p � p;

r r D �1pp W rv C �2T r.rv/C �3kpk2T r.rv/; (52)
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where …1;…2 denote the coefficients for the chiral terms. The dissipative parts are

given by

�
1� �2

D2

Dt2

�
� s;d D 2�

�
rv � T r.rv/

3
I

�
C N�T r.rv/I;

jd
i D �

1X

jD0

ijr N�j C N�ih C �ip��C…i
3p � h;

Pd D CN�ir N�i C h

1
� �1��p �

1X

jD0

…i
3p � r N�j ;

rd D �
1X

iD0

�ip � r N�i C �1p � h Cƒ��; (53)

where…i
3 denotes coefficients for the chiral terms. The reactive and dissipative parts

can be combined to yield the constitutive equations for the active gel system. The

details are available in [55].

4 A Phase Field Model for a Cell Surrounded by Solvent

We take a simplistic view of the cell structure recognizing the cell membrane as

an elastic closed surface, the nucleus/core as a relatively hard, closed 3-D object

inside the membrane, the remaining cytoplasm/cytoskeleton as a mixture of ATP

bound and ADP bound G-actin, actin filament networks (or polymer-networks), and

a third phase material called solvent which includes all other accessory proteins,

organelles, and other unaccounted for material in the cytoplasm. In the simplified

formulation, we assume the G-actin is available for polymerization at the barbed

end and depolymerization at the pointed end [13]. This assumption will be refined

later in the following.

We use a single-phase field variable or labeling function �.x; t/ to denote the

material inside or outside the cell. Since the core is always disjoint from the outside

of the cell membrane, we simply use � D �1 to denote or label the material

outside the cell membrane and the one inside the core at the same time; whereas the

material in the cytoplasmic region is denoted by � D 1. We treat all materials in the

cytoplasm as multiphase complex fluids or complex fluid mixtures. The interfacial

free energy at the interfaces associated with the phase field variable � is given by

fmb D kBT �b

2

Z

S

hh
�0 C .C1 C C2 � C0/

2 C �GC1C2

i
dS C �d .�S ��S0/

2
i
;

(54)
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where fmb is the Helfrich elastic membrane energy, � is the transitional parameter

that scales with the width of the interfacial region, kB is the Boltzmann constant and

T the absolute temperature, �0 is a constant that is the analog of surface tension of

the membrane, �b is the bending rigidity and �G is the Gaussian bending rigidity,

respectively, C1 and C2 are the principle curvatures, respectively, �d is a constant

for the nonlocal bending resistance also related to the area compression modulus

of the membrane surface, and S denotes the membrane surface. For single-layered

membranes, �d D 0, whereas it maybe nonzero for bilayers. We notice that the

Gaussian bending elastic energy integrates to a constant when the cell membrane

does not undergo any topological changes. For simplicity, we will treat it as a

constant in this book chapter.

Note that
R
�
1C�
2

dx D Vc is the volume of the cytoplasm region. To conserve

the volume of this region, we can simply enforce V.�/ D R
�
�dx D V.�.t D t0//

at some specified time t0. In addition, the surface area of the membrane can be

approximated by the formula

A.�/ D �a

Z

�

�
kr�k2 C .�2 � 1/2

2�2

�
dx; (55)

where �a is a scaling parameter. In the case of �d D 0, the free energy can be

represented by the phase field variable � [29–32, 34]

fmb D kBT �b

ka�

Z

�

�
�0

�
�

2
kr�k2 C 1

4�

�

1 � �2
�2
�

C�
�

�� � 1

�2

�

�2 � 1
�

�

� C
p
2C0�

�

�2
#

dx: (56)

If �d ¤ 0, we can similarly formulate the last term of (54).

For a weakly compressible and extensible membrane, we modify the elastic

energy as following:

fmb D kBT �b

ka�

Z

�

"

�0

�

�

2
kr�k2 C 1

4�

�

1 � �2
�2
�

C�
�

�� � 1

�2

�

�2 � 1
�

�

� C
p
2C0�

�

�2
#

dx

CM1 .A.�/� A .�.t0///
2 CM2 .V .�/ � V.�.t0///

2 ; (57)

where M1 and M2 are penalizing constants. In this formulation, we penalize the

volume and surface area difference to limit the variation of the two conserved

quantities as in Du et al. [29–32, 34]. We can drop the surface tension term since

we are penalizing it in the energy potential already,
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fmb D kBT �b

ka�

Z

�

"
�

�
�� � 1

�2

�

�2 � 1
�

�

� C
p
2C0�

�

�2
#

dx

CM1 .A.�/� A.�.t0///
2 CM2.V .�/ � V.�.t0///

2: (58)

This will be the free energy density used in our cell model.

We denote v as the velocity of the mixture, and p the hydrostatic pressure. We

denote by �1 the mass density of the fluid outside the membrane and inside the core

and by �2 the mass density of the mixture in the cytoplasm. We assume the material

is incompressible in both domains, i.e., �1 and �2 are constants. The density of the

mixture is defined as

� D �1

2
.1 � �/C �2

2
.1C �/: (59)

From mass conservation, we have

r � v D � �2 � �1

�1 C �2

d�

dt
: (60)

This is true when

d�

dt
C �r � v D � 1

�
�: (61)

Here,
d�
dt

D @�

@t
C v � r� is the material derivative and � is the chemical potential of

the material system.

If we use

d�

dt
D � 1

�
� (62)

to transport �, the continuity equation should be

r � v D ��2 � �1

�

d�

dt
: (63)

The balance of linear momentum is governed by

�
dv

dt
D r � .�pI C �/C Fe;

� D �1 C �2; (64)

where �1 is the stress tensor for the fluid outside the membrane and inside the core,

�2 is the stress tensor inside the cytoplasmic region, and Fe is the external force

exerted on the complex fluid.
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Constitutive equations:

We assume the ambient fluid material surrounding the cell is viscous, whose extra

stress is given by the viscous stress law:

�1 D .1 � �/�1D; (65)

where D D 1
2
Œrv CrvT � is the rate-of-strain tensor for the mixture. The viscosities

outside the cell and inside the core are distinct.

The extra stress for the cytoplasm is a volume-fraction weighted stress:

�2 D .1C �/�sD C �p; (66)

where �s is the zero shear rate viscosity and �p is the viscoelastic stress [38].

The total free energy for the complex fluid mixture system is given by

f D fmb C fn; (67)

where fn is the free energy associated to the active cytoplasmic material:

fn D fn.�;Q;rQ/; (68)

where Q is the orientation tensor in cytoplasm with t r.Q/ D 0. It is zero outside

the cell. We denote the chemical potential with respect to � by

� D ıf

ı�
: (69)

The time evolution of the membrane interface is governed by the Allen–Cahn

equation

d�

dt
D � 1

�1
�; (70)

where �1 is a relaxation parameter. The Cahn–Hilliard dynamics can also be used if

we assume the volume conservation without additional constraint:

d�

dt
D r � .�1r�/; (71)

where �1 is the mobility parameter which has different physical units than the

analogous parameter in the Allen–Cahn dynamics. In this latter case, the term

V.�/ � V.�0/ is identically zero in the energy potential and can be dropped from

the surface energy expression.
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The transport equation for the orientation tensor Q is proposed as following

dQ

dt
CW � Q � Q � W � a ŒD � Q C Q � D� D Ca.1C �/D

3

�2aD W .Q C .1C �/I=6/.Q C .1C �/I=6/C �H C �2Q; (72)

where �2 is an active parameter, W is the vorticity tensor, D is the rate of strain

tensor, H D �Œ ıf
ıQ

� t r. ıf
ıQ
/.1C �/I=6� is the so-called molecular field and fn is the

free energy density associated with the orientational dynamics given by

fn D A0

�
1C �

2

�r �
1

2
.1 �N=3/Q W Q � N

3
tr
�

Q3
�

C N

4
.Q W Q/2

�

C .1C �/rK

2rC1

�

rQ
:::rQ

�

C fanch; (73)

where r D 1 is a positive integer, N is the dimensionless concentration, K is a

elastic constant, and fanch is the anchoring potential [11].

Elastic stress

The elastic stress is calculated by the virtual work principle [27]. Consider a virtual

deformation given by E D rvıt . The corresponding change in the free energy is

given by

ıf D �
@�

@t
ıt � H W @Q

@t
ıt: (74)

The variation of �;Q are given, respectively, by

ı� D @�

@t
D �r.�v/ıt;

ıQ D
�

� r � .vQ/C W � Q � Q � W C a ŒD � Q C Q � D�

Ca.1C �/

3
D � 2aD W .Q C .1C �/I=6/ .Q C .1C �/I=6/

�

ıt: (75)

So, the elastic stress is calculated as

Fe D ��r.�/C r.Hij /Qij ;

�p D �.H � Q � Q � H/� a.H � .Q C .1C �/I=6/C .Q C .1C �/I=6/ � H/

C2a.Q C .1C �/I=6/ W H.Q C .1C �/I=6/ � �Q; (76)
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where � < 0 (respectively, � > 0 ) represents a contractile (respectively, extensile)

filament.

� D ıfn

ı�
C ıfmb

ı�

D ıfn

ı�
� 4M1 .A.�/ � A.�0// �a

�
r2� C 2

�2
�.1 � �2/

�
CM2.V .�/ � V.�0//

C
2�
�

�2 � 1
�

�2
C kb�

�

r2

�

r2� � 1

�2

�

�2 � 1
�

�

� C
p
2C0�

�

�

� 2

�2

�

r2� � 1

�2

�

�2 � 1
�

�

� C
p
2C0�

�

�

�
�

3�2 C 2
p
2C0�� � 1

�

�

H D �A0.1C �/r

2r

�

.1 �N=3/Q �NQ2 CNQ W Q

�

Q C .1C �/I

6

��

CK

2r
r � ..1C �/r rQ/� ıfanch

ıQ
: (77)

4.1 Approximate Model

We impose a solenoidal velocity field

r � v D 0: (78)

Then, the model can be simplified further.

d�

dt
D � 1

�1
�;

�
dv

dt
D r � .�pI C �/C Fe;

� D .1 � �/
2

�1 C .1C �/

2
�2;

� D �1 C �2; �1 D .1 � �/�1D; �2 D .1C �/�sD C �p;

Fe D ��r.�/C r.Hij /Qij ;
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�p D �.H � Q � Q � H/� a.H � .Q C .1C �/I=6/C .Q C .1C �/I=6/ � H/

C2a.Q C .1C �/I=6/ W H.Q C .1C �/I=6/� �Q;

dQ

dt
C W � Q � Q � W � aŒD � Q C Q � D� D a.1C �/

3
D

�2aD W .Q C .1C �/I=6/.Q C .1C �/I=6/C �H C �2Q;

� D �0.1C �/; �2 D �02.1C �/; � D �0.1C �/; (79)

where �0 and �02 are parameters which depend on regulatory proteins such as the Rho

family of GTPases for the active gel. As a proof-of-principle illustration for this

article, we assume these activation parameters are prescribed functions of space

and time.

Remark. (i) What should the anchoring condition be at the membrane interface?

The anchoring potential density is given by

fanch D W0

�

1 � �2
�

�

˛1

�

Q C .1C �/I

6

�

W .r�r�/

C˛2
�

kr�k2 �
�

Q C .1C �/I

6

�

W .r�r�/
��

D W0

�

1��2
�

�

.˛1�˛2/
�

QC .1C�/I
6

�

W .r�r�/C ˛2kr�k2
�

; (80)

where ˛2 D 0 gives the tangential anchoring and ˛1 D 0 gives the normal

anchoring. Then, the variations of the potential are given by

ıfanch

ıQ
D .˛1 � ˛2/W0

�

1 � �2
�

�

r�r� � I

3
kr�k2

�

;

ıfanch

ı�
D �2�W0

�

.˛1 � ˛2/
�

Q C .1C �/I

6

�

W .r�r�/C ˛2
�

kr�k2
�

�

�2W0

�

1��2
�

�

˛2r2�C .˛1�˛2/r �
��

QC .1C�/I
6

�

� r�
��

C
W0.˛1 � ˛2/

�

1 � �2
�

6
kr�k2: (81)

We need to update the H and � using the above equations.

(ii) How do we deal with the core of the cell? If we don’t want to introduce

additional variables and equations, we could use the same membrane equation

at the cytoplasm-core interface. The viscosity at the core will have to be much

higher than the viscosity in the fluid outside the cell. An alternative is to

introduce a second phase variable  to deal with the interface between the

cytoplasm and the core.
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In the following, we apply the multiphase complex fluid cell model to an active

cortical layer near the membrane. Everything outside the layer is treated as a viscous

fluid for simplicity. Our goal is to investigate how this cytoskeletal-membrane

coupled model responds to an imposed ATP-activated stress in the cortical layer.

5 Numerical Results and Discussion

The coupled flow and structure equations are solved using a spectral method in 2D

built from analogous multiphase phase field codes [94, 115, 117]. The computed

domain size is Œ0; 1� � Œ0; 1�, which we emphasize encompasses the cell and

ambient viscous fluid. The number of grid points in each direction for the reported

simulations is 256. The parameters used are ka D 0:01;K D 0:01;M1 D 0:1;

M2 D 1; kBT kb D 1e � 9;�1 D 1; �02 D 0:001; a D 0:8;N D 6; � D 0:2; �0 D 4;

�1 D 1; �s D 1;W0 D 0:01; � D 0:02.

5.1 Activation of a Local Domain in the Cortical Layer

In this simulation, we impose the active region on the left side of the cell within the

cortical layer. The initial shape of the cell and active region are shown in Fig. 1. As

time evolves, the activated region induces a protrusion in the membrane and cortical
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Fig. 1 Initial shape and
activation domain are
indicated by the contours
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Fig. 2 Snapshots of cell activation and subsequent movement at t D 0:1; � � � ; 80. The anchoring
condition is not enforced at the membrane (˛1 D ˛2 D 0). The cell migrates to the direction where
the cortex lay is activated

layer due to the activation of the nematic cortical layer. The cell deformation and

translational motion are simulated with respect to variations in the energy associated

with tangential anchoring conditions in the diffuse interface layer between the

membrane and nematic cortical layer: without enforcing an anchoring condition,

a weak anchoring condition, and then strong anchoring.

In order to conserve the cell volume, the entire cell undergoes a deformation

represented by a passive retraction on the opposite side of the cell, leading to clear

cell migration to the left. The activation domain pulls the cell in its direction. Several

snapshots are shown in Figs. 2, 3, 4. Figures 5, 6, 7 contrast the cell membrane

profile at select times in the interval t D Œ0:1; 80� to show cell movement. Recall

that we track the membrane by the zero level set of the phase variable.
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Fig. 3 Snapshots of cell activation and subsequent movement at t D 0:1; � � � ; 80. Tangential
anchoring energy is enforced in the diffuse interface between the membrane and cortical layer
with (˛1 D 0:1; ˛2 D 0). The cell migrates to the direction where the cortex lay is activated

We first simulate the cell movement under the influence of local activation of

the nematic phase in the cortical layer without explicitly enforcing an anchoring

boundary condition at the membrane (the diffuse interface). The activation affects

both the membrane and the interface between the cortical layer and the interior

cytoplasma/cytosol region. Both outward and inward protrusion of the cortical layer

are shown in Fig. 2. We then repeat the simulation with the same set of model

parameters while allowing for tangential anchoring energy at the membrane. The

protrusion is reduced in magnitude. However, the inward invasion nearly disappears

while the cell membrane bulges slightly on both sides of the prominent protrusion.

This is depicted in Fig. 3 with a few selected snapshots. In the third numerical

experiment, we impose the tangential anchoring condition at the membrane with
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Fig. 4 Snapshots of cell activation and subsequent movement at t D 0:1; � � � ; 80. Tangential
anchoring energy is enforced in the membrane-cortical layer diffuse interface (˛1 D 0:5; ˛2 D 0).
The cell migrates to the direction where the cortex lay is activated

an enhanced anchoring energy. The resulting deformations of the membrane and

cortical layer demonstrate an outward protrusion and a propagation of the cortical

layer deformation reminiscent of a slice of a cortical ring contraction wave.

5.2 Active Regions Alternating on Opposing Sides of the Cell

We impose time-dependent activation to two regions located on opposite sides of

the cortical layer within the cell membrane. This imposed activation scheme is

motivated by the compartment model of [5,58] where there are positive and negative
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Fig. 5 The profile of the cell conformation at t D 80 contrasted with the initial shape at t D 0

feedback loops of protein species on either side of the cell. The region on the left is

first activated for t 2 .0; 6/. At t D 6, the active region on the left is turned off while

an active region on the right is started until the end of the simulation at t D 40. The

dynamical process is shown in Fig. 8. Due to longer activation at the right, the cell

exhibits a protrusion on the right.

This formulation is now amenable to reaction–diffusion of protein species or

other components whose concentrations provide the activation potential in the

cortical layer. These features are necessary to explore the possible simulation within

this framework of the cell oscillation modes identified in the Jacobson lab [20,58,87]

and modeled by Allen and Elston [5]. To be biologically useful, many features

in these illustrative simulations will need to be based on experimental data. For

example, we have not attempted to use consistent cell membrane properties, cortical

layer properties, cytosol viscoelastic properties, nor have we introduced a cell

nucleus phase. The detailed biochemical species, and their reaction and diffusion

rates as well as activation potentials, have to be integrated into the model, as

well as constraints for proteins that are bound to the membrane and cortical layer.

The addition of substrate boundary conditions instead of an ambient viscous fluid

is relatively straightforward to put into the model, yet experimental data on the

appropriate surface energies is needed.
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Fig. 6 The profile of the cell conformation at t D 80 contrasted with the initial shape at t D 0:1

for tangential membrane-cortical layer anchoring energy with ˛1 D 0:1; ˛2 D 0

6 Conclusion

We have surveyed recent theoretical and numerical developments that are relevant

to modeling of cell motility. We have integrated many of these advances into

a phase field model of the cell with multiple substructures (the ambient fluid,

bilayer membrane, nematic cortical layer, and internal cytosol) with an activation

potential in the cortical layer that resolves chemical–mechanical transduction. For

this chapter, we have imposed the activation domains, amplitudes, and timescales,

which in the future will be triggered by biochemical processes. The simulated phase

field model exhibits plausible cell morphology dynamics, which are only a cartoon

at this point. To make the model and simulations more biologically relevant, we plan

to use experimental characterizations of the physical properties of the membrane,

cortical layer, cytoplasm, and nucleus, and biochemical kinetics of reacting and

diffusing G protein species which trigger activation and deactivation.
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Fig. 7 The profile of the cell conformation at t D 80 compared with the shape at t D 1 for
tangential anchoring in the membrane-cortical layer diffuse interface, where ˛1 D 0:5; ˛2 D 0

Fig. 8 Activation in the cortical layer on opposing sides of the cell, from t D 2 � 40 in equal
increments. The active part on the LHS is shut down at t D 6 and the RHS is activated for the next
34 time units. Tangential anchoring energy is enforced with ˛1 D 0:1; ˛2 D 0



292 Q. Wang et al.

References

1. Adalsteinsson, D., Elston, T.: www.amath.unc.edu/faculty/Adalsteinsson
2. Alt, W., Dembo, M.: Cytoplasm dynamics and cell motion: two-phase fluid models. Math.

Biosci. 156, 207–228 (1999)
3. Atilgan, E., Wirtz, D., Sun, S.X.: Mechanics and dynamics of actin-driven thin membrane

protrusions. Biophys. J. 80, 65–76 (2006)
4. Ahmadi, A., Marchetti, M.C., Liverpool, T.B.: Hydrodynamics of isotropic and liquid

crystalline active polymer solutions, Phys. Rev. E 74, 061913 (2006)
5. Allen, R., Elston, T.: A compartment model for chemically activated, sustained cellular

oscillations, UNC Preprint (2011)
6. Auth, T., Safran, S., Gov, N.: Filament networks attached to membranes: cytoskeletal pressure

and local bilayer deformation. New J. Phys. 9, 430–444 (2007)
7. Banerjee, S., Marchetti, M.C.: Instability and oscillations in isotropic gels. Soft Matter 7,

463–473 (2011)
8. Baskaran, A., Marchetti, M.C.: Hydrodynamics of self-propelled hard rods, Phys. Rev. E 77,

031311 (2008)
9. Baskaran, A., Marchetti, M.C.: Nonequilibrium statistical mechanics of self-propelled hard

rods. J. Stat. Mech. Theor. Exp. 4, 04019 (2010)
10. Besser, A., Schwarz, U.S.: Coupling biochemistry and mechanics in cell adhesion: a model

for inhomogeneous stress fiber contraction. New J. Phys. 9, 425 (2007)
11. Bird, B., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, 2nd edn., Vol. 2.

Wiley, New York (1987)
12. Bershadsky, A., Kozlov, M., Geiger, B.: Adhesion-mediated mechanosensitivity: a time to

experiment, and a time to theorize. Curr. Opin. Cell Biol. 18, 472–481 (2006)
13. Boal, D.: Mechanics of the Cell. Cambridge University Press, New York (2002)
14. Carlsson, A.: Growth velocities of branched actin networks. Biophys. J. 84, 2907–2918 (2003)
15. Cates, M.E., Fielding, S.M., Marenduzzo, D., Orlandini, E., Yeomans, J.M.: Shearing active

gels close to the isotropic-nematic transition. Phys. Rev. Lett. 101, 068102 (2008)
16. Chen, C., Ren, M., Srinivasan, A., Wang, Q.: 3-D simulations of biofilm-solvent interaction.

Asian J. Appl. Math. 1, 197–214 (2011)
17. Chen, L.Q., Yang, W.: Computer simulation of the dynamics of a quenched system with large

number of non-conserved order parameters. Phys. Rev. B 50, 15752–15756 (1994)
18. Chen, L.Q.: Phase-field modeling for microstructure evolution. Annu. Rev. Mater. Res. 32,

113–140 (2002)
19. Chen, L.Q., Wang, Y.: The continuum field approach to modeling microstructural evolution.

J. Miner Met. Mater. Soc. 48, 13–18 (1996)
20. Costigliola, N., Kapustina, M., Weinreb, G., Monteith, A., Rajfur, Z., Elston, T., Jacobson, K.:

Rho regulates calcium independent periodic contractions of the cell cortex. Biophys. J. 99(4),
1053–1063 (2010)

21. Cui, Z., Wang, Q.: Dynamics of chiral active liquid crystal polymers. DCDS-B 15(1), 45–60
(2011)

22. Curtis, A., Wilkinson, C.: Nanotechniques and approaches in biotechnology. Trends Biotech-
nol. 19, 97–101 (2001)

23. De-Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford Science Publications,
Oxford (1993)

24. DeMali, K.A., Barlow, C.A., Burridge, K.: Recruitment of the Arp2/3 complex to vinculin:
coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159, 881–891 (2002)

25. Deshpande, V.S., McMeeking, R.M., Evans, A.G.: A model for the contractibility of the
cytoskeleton inclduing the effects of stress-fiber formation and dissociation. Proc. Roy. Soc.
A 463, 787–815 (2007)

26. DiMilla, P.A., Barbee, K., Lauffenburger, D.: Mathematical model for the effects of adhesion
and mechanics on cell migration speed. Biophys. J. 60, 15–37 (1991)



Computational and Modeling Strategies for Cell Motility 293

27. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford
(1986)

28. Doherty, G.J., McMahon, H.T.: Mediation, modulation, and consequences of membrane-
cytoskeleton interactions. Annu. Rev. Biophys. 37, 65–95 (2008)

29. Du, Q., Liu, C., Ryham, R., Wang, X.: Phase field modeling of the spontaneous curvature
effect in cell membranes. Comm. Pur. Applied. Anal. 4, 537–548 (2005)

30. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem.
Nonlinearity 18, 1249–1267 (2005)

31. Du, Q., Liu, C., Ryham, R., Wang, X.: Energetic variational approaches in modeling vesicle
and fluid interactions. Physica D 238, 923–930 (2009)

32. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending
energy for vesicle membranes. J. Comp. Phy. 198, 450–468 (2004)

33. Du, Q., Liu, C., Wang, X.: Retrieving topological information for phase field models. SIAM
J. Appl. Math. 65, 1913–1932 (2005)

34. Du, Q., Liu, C., Wang, X.: Simulating the deformation of vesicle membranes under elastic
bending energy in three dimensions. J. Comp. Phys. 212, 757–777 (2006)

35. Elston, T., Allen, R., Kapustina, M., Jacobson, K.: A compartment chemical-mechanical
model for sustained cellular oscillations, University of North Carolina at Chapel Hill preprint
(2011)

36. Feng, J.J., Liu, C., Shen, J., Yue, P.: Transient drop deformation upon startup of shear in
viscoelastic fluids, fluids. Phys. Fluids 17, 123101 (2005)

37. Forest, M.G., Liao, Q., Wang, Q.: 2-D kinetic theory for polymer particulate nanocomposites.
Comm. Comput. Phys. 7(2), 250–282 (2010)

38. Forest, M.G., Wang, Q.: Hydrodynamic theories for blends of flexible polymer and nematic
polymers. Phys. Rev. E 72, 041805 (2005)

39. Funkhouser, C.M., Solis, F.J., Thornton, K.: Coupled composition-deformation phase-field
method for multicomponent lipid membranes. Phys. Rev. E 76, 011912 (2007)

40. Funkhouser, C.M., Solis, F.J., Thornton, K.: Dynamics of two-phase lipid vesicles: effects of
mechanical properties on morphology evolution. Soft Matter 6, 3462–3466 (2010)

41. Frixione, E.: Recurring views on the structure and function of the cytoskeleton: a 300-year
epic. Cell Motil. cytoskeleton 46(2), 73–94 (2000)

42. Gerisch, G., Bretschneider, T., Muller-Taubenberger, A., Simmeth, E., Ecke, M., Diez, S.,
Anderson, K.: Mobile actin clusters and traveling waves in cells recovering from actin
depolymerization. Biophys. J. 87(5), 3493–3503 (2004)

43. Giannone, G., Dubin-Thaler, B.J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W.,
Dobereiner, H.-G., Freund, Y., Borisy, G., Sheetz, M.P.: Lamellipodial actin mechanically
links myosin activity with adhesion-site formation. Cell 128(3), 561–575 (2007)

44. Giomi, L., Liverpool, T.B., Marchetti, M.C.: Sheared active fluids: thickening, thinning, and
vanishing viscosity. Phys. Rev. E 81, 051908 (2010)

45. Gopinathan, A., Lee, K.-C., Schwarz, J.M., Liu, A.J., Branching, capping, and severing in
dynamic actin structures. Phys. Rev. Lett. 99, 058103 (2007)

46. Hatwalne, Y., Ramaswamy, S., Rao, M., Simha, R.A.: Rheology of active-particle suspen-
sions. Phys. Rev. Lett. 93, 198105 (2004)

47. Hobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Physica D
63, 410–423 (1993)

48. Hoffman, B., Crocker, J.: Cell mechanics: dissecting the physical responses of cells to force.
Annu. Rev. Biomed. Eng. 11, 259–288 (2009)

49. Horwitz, R., Parsons, J.: Cell migration-moving on. Science 286, 1102–1103 (1999)
50. Horwitz, R., Webb, D.: Cell migration. Curr. Biol. 13, R756-9 (2003)
51. Hu, L., Papoian, G.A.: Mechano-chemical feedbacks regulate actin mesh growth in lamel-

lipodial protrusions. Biophys. J. 98, 1375–384 (2010)
52. Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving C 0 finite element schemes for phase

field models in two-phase flow computations. J. Comp. Phys. 230(19), 7115–7131 (2011)



294 Q. Wang et al.

53. Jeong, J., Goldenfeld, N., Dantzig, J.: Phase field model for three-dimensional dendritic
growth with fluid flow. Phys. Rev. E 64, 041602 (2001)

54. Jiang, X., Takayama, S., Qian, X., Ostuni, E., Wu, H., Bowden, N., LeDuc, P., Ingber, D.E.,
Whitesides, G.M.: Controlling mammalian cell spreading and cytoskeletal arrangement with
conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18,
3273–3280 (2002)

55. Joanny, J.F., Julicher, F., Kruse, K., Prost, J.: Hydrodynamic theory for multi-component
active polar gels. New J. Phys. 9, 1–17 (2007)

56. Joanny, J.F., Julicher, F., Prost, J.: Motion of an adhesive gel in a swelling gradient: a
mechanicsm for cell locomotion. Phys. Rev. Lett. 25(6), 168102 (2003)

57. Julicher, F., Kruse, K., Prost, J., Joanny, J.-F.: Active behavior of the cytoskeleton. Phys. Rep.
449, 3–28 (2007)

58. Kapustina, M., Weinreb, G., Costigliola, N., Rajfur, Z., Jacobson, K., Elston, T.: Mechanical
and biochemical modeling of cortical oscillations in spreading cells. Biophys. J. 94(12),
4605–4620 (2008)

59. Karma, A., Rappel, W.: Phase-field model of dendritic sidebranching with thermal noise.
Phys. Rev. E 60, 3614–3625 (1999)

60. Kataoka, A., Tanner, B.C.W., Macpherson, J.M., Xu, X., Wang, Q., Reginier, M., Daniel, T.,
Chase, P.B.: Spatially explicit, nanomechanical models of the muscle half sarcomere:
implications for mechanical tuning in atrophy and fatigue. Acta Astronautica 60(2), 111–118
(2007)

61. Kiehart, D.P., Bloom, K.: Cell structure and dynamics. Curr. Opin. Cell Biol. 19, 1–4 (2004)
62. Kim, J., Sun, S.: Continuum modeling of forces in growing viscoelastic cytosketal networks.

J. Theor. Biol. 256, 596–606 (2009)
63. Kruse, K., Joanny, J.F., Julicher, F., Prost, J., Seimoto, K.: Asters, vortices, and rotating spirals

in active gels of polar filaments: Phys. Rev. Lett. 92(7), 078101 (2004)
64. Kruse, K., Joanny, J.F., Julicher, F., Prost, J., Sekimota, K.: Generic theory of active polar

gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E 16, 5–16 (2005)
65. Kruse, K., Julicher, F.: Actively contracting bundles of polar filaments. Phys. Rev. Lett. 85(8),

1778–1781 (2000)
66. Li, J., Forest, M.G., Wang, Q., Zhou, R.: A kinetic theory and benchmark predictions for

polymer dispersed, semi-flexible nanorods and nanoplatelets. Physica D 240, 114–130 (2011)
67. Li, Y., Hu, S., Liu, Z., Chen, L.Q.: Phase-field model of domain structures in ferroelectric thin

films. Appl. Phys. Lett. 78, 3878–3880 (2001)
68. Lindley, B., Wang, Q., Zhang, T.: Multicomponent models for biofilm flows. Discrete

Continuous Dyn. Syst. Ser. B 15(2), 417–456 (2011)
69. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its

approximation by a fourier-spectral method. Physica D 179, 211–228 (2003)
70. Liu, C., Walkington, N.J.: An Eulerian description of fluids containing visco-hyperelastic

particles. Arch. Rat. Mech. Ana. 159, 229–252 (2001)
71. Liverpool, T.B., Marchetti, M.C.: Bridging the microscopic and the hydrodynamic in active

filament solutions. Europhys. Lett. 69, 846 (2005)
72. Liverpool, T.B., Marchetti, M.C.: Hydrodynamics and rheology of active polar filaments. In:

Lenz, P. (ed.) Cell Motility. Springer, NY (2007)
73. Loesberg, W.A., te Riet, J., van Delft, F.C.M.J.M., Schoen, P., Figdor, C.G., Speller, S., van

Loon, J.J.W.A., Walboomers, X.F., Jansen, J.A.: The threshold at which substrate nanogroove
dimensions may influence fibroblast alignment and adhesion. Biomaterials 28(27),
3944–3951 (2007)

74. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological
transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

75. Lu, W., Suo, Z.: Dynamics of nanoscale pattern formation of an epitaxial monolayer. J. Mech.
Phys. Solids 49, 1937–1950 (2001)



Computational and Modeling Strategies for Cell Motility 295

76. Marenduzzo, D., Orlandini, E., Cates, M.E., Yeomans, J.M.: Steady-state hydrodynamic
instabilities of active liquid crystals: hybrid lattice Boltzmann simulations. Phys. Rev. E 76,
031921 (2007)

77. McFadden, G., Wheeler, A., Braun, R., Coriell, S., Sekerka, R.: Phase-field models for
anisotropic interfaces. Phys. Rev. E 4, 2016–2024 (1993)

78. Michie, K., Lowengrub, J.: Dynamic filaments of the bacterial cytoskeleton. Annu. Rev.
Biochem. 75, 467–492 (2006)

79. Mofrad, M., Kamm, R.: Cytoskeletal Mechanics: Models and Measurements. Cambridge
University Press, Cambridge (2006)

80. Mogilner, A.: On the edge: modeling protrusion. Curr. Opin. Cell Biol. 18, 32–39 (2006)
81. Muhuri, S., Rao, M., Ramaswamy, S.: Shear flow induced isotropic to nematic transition in a

suspension of active filaments. Europhysics Lett. 78, 48002 (2007)
82. Murray, J.: Mathematical Biology. Springer, Heidelberg (1989)
83. Nguyen, L., Yang, W., Wang, Q., Hirst, L.: Molecular dynamics simulation of F-actin reveals

the role of cross-linkers in semi-flexible filament. Soft Matter 5, 2033–2036 (2009)
84. Oster, G., Perelson, A.: Cell spreading and motility: a model lamellipod. J. Math. Biol. 21,

383–388 (1985)
85. Paluch, E., Piel, M., Sykes, C.: Cortical actomyosin breakage triggers shape oscillations in

cells and cell fragments. Biophys. J. 89, 724–733 (2005)
86. Parent, C., Devreotes, P.: A cell’s sense of direction. Science 284, 765–70 (1999)
87. Pletjushkina, O., Rajfur, Z., Pamorski, P., Oliver, T., Vasiliev, J., Jacobson, K.: Induction

of cortical oscillations in spreading cells by depolymerization of microtubules. Cell Mot.
Cytoskeleton 48(4), 235–244 (2001)

88. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin
filaments. Cell 112, 453–465 (2003)

89. Rafelski, S.M., Theriot, J.A.: Crawling toward a unified model of cell motility: spatial and
temporal Regulation of actin dynamics. Annu. Rev. Biochem. 73, 209–239 (2004)

90. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons,
J.T., Horwitz, A.R.: Cell migration: integrating signals from front to back. Science 302,
1704–1709 (2003)

91. Saintillan, D., Shelley, M.: Instabilities and pattern formation in active particle suspensions:
kinetic theory and continuum simulations. Phys. Rev. Lett. 100, 178103 (2008)

92. Salbreux, G., Joanny, J.F., Prost, J., Pullarkat, P.: Shape oscillation of non-adhering fibroblast
cells. Phys. Biol. 4, 268–284 (2007)

93. Seol, D.J., Hu, S.Y., Li, Y.L., Shen, J., Oh, K.H., Chen, L.Q.: Three-dimensional phase-field
modeling of spinodal decomposition in constrained films. Acta Materialia 51, 5173–5185
(2003)

94. Shen, J., Yang, X.: An efficient moving mesh spectral method for the phase-field model of
two phase flows. J. Comput. Phys. 228, 2978–2992 (2009)

95. Shih, Y.L., Rothfield, L.: The bacterial cytoskeleton, Microbiol. Mol. Biol. Rev. 70(3),
729–754 (2006)

96. Simha, R.A., Ramaswamy, S.: Hydrodynamic fluctuation and instabilities in ordered suspen-
sion of self-propelled particles. Phys. Rev. Lett. 89(5), 058101 (2002)

97. Stachowiak, M.R., O’Shaughnessy, B.: Kinetics of stress fibers. New J. Phys. 9, 025002
(2007)

98. Stephanou, A., Chaplain, M.A.J., Tracqui, P.: A mathematical model for the dynamics of large
membrane deformation of isolated fibroblasts. Bull. Math. Biol. 66, 1119–1154 (2004)

99. Stephanou, A., Mylona, E., Chaplain, M., Tracqui, P.: A computational model of cell
migration coupling the growth of focal adhesions with oscillatory cell pretrusion. J. Theor.
Biol. 253, 701–716 (2008)

100. Tadmor, E., Phillips, R., Ortiz, M.: Mixed atomistic and continuum models of deformation in
solids. Langmuir 12, 4529–4534 (1996)

101. Van Haastert, P.J., Devreotes, P.N.: Chemotaxis: signalling the way forward. Nat. Rev. Mol.
Cell. Biol. 5(8), 626–634 (2004)



296 Q. Wang et al.

102. Vicente-Manzanares, M., Webb, D.J., Horwitz, A.R.: Cell migration at a glance. J. Cell Sci.
118, 4917–4919 (2005)

103. Wang, Q.: A hydrodynamic theory of nematic liquid crystalline polymers of different
configurations. J. Chem. Phys. 116, 9120–9136 (2002)

104. Wang, Y., Chen, C.L.: Simulation of microstructure evolution. In: Ksufmann, E.N.,
Abbaschian, R., Bocarsly, A., Chien, C.L., Dollimore, D., et al. (eds.) Methods in Materials
Research, 2a3.1–2a3.23, Wiley, New York (1999)

105. Wang, X., Du, Q.: Modelling and simulations of multi-component lipid membranes and open
membranes via diffuse interface approaches. J. Math. Biol. 56, 347–371 (2008)

106. Wang, Q., E, W., Liu, C., Zhang, P.: Kinetic theories for flows of nonhomogeneous rodlike
liquid crystalline polymers with a nonlocal intermolecular potential. Phys. Rev. E 65(5),
0515041–0515047 (2002)

107. Wang, Q., Forest, M.G., Zhou, R.: A hydrodynamic theory for solutions of nonhomogeneous
nematic liquid crystalline polymers with density variations. J. Fluid Eng. 126, 180–188 (2004)

108. Wang, Q., Zhang, T.Y.: Kinetic theories for biofilms. Discrete Continuous Dyn. Syst. Ser. B
in press (2011)

109. Weinreb, G., Kapustina, M., Jacobson, K., Elston, T.: In silico hypothesis generation using
casual mapping (CMAP). PLoS One 4, e5378 (2009)

110. Wheeler, A., McFadden, G., Boettinger, W.: Phase-field model for solidification of a eutectic
alloy. Proc. R. Soc. London Ser. A 452, 495–525 (1996)

111. Wise, S.M., Lowengrub, J.S., Kim, J.S., Johnson, W.C.: Efficient phase-field simulation of
quantum dot formation in a strained heteroepitaxial film. Superlattice Microst. 36, 293–304
(2004)

112. Wolgemuth, C.W.: Lamellipodial contractions during crawling and spreading. Biophys. J.
89(3), 1643–1649 (2005)

113. Wolgemuth, C.W., Mogilner, A., Oster, G.: The hydration dynamics of polyelectrolyte gels
with applications to cell motility and drug delivery. Eur. Biophys. J. 33, 146–158 (2004)

114. Yang, X., Feng, J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop
formation using an energetic variational phase-field method. J. Comput. Phys. 218, 417–428
(2006)

115. Yang, X., Forest, M.G., Shen, J., Liu, C.: Shear cell rupture of liquid crystal droplets in a
viscous fluid. J. Non-Newtonian Fluid Mech. 166, 487–499 (2011)

116. Young, J.J.: Cytoskeleton micromechanics: a continuum-microscopic approach, Dissertation
in Mathematics, UNC Chapel Hill, advised by S. Mitran (2010)

117. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase
flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

118. Yue, P., Feng, J.J., Liu, C., Shen, J.: Diffuse-interface simulations of drop coalescence and
retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129, 163–176 (2005)

119. Zhang, T.Y., Cogan, N., Wang, Q.: Phase field models for biofilms. II. 2-D Numerical
simulations of biofilm-flow interaction. Comm. Comput. Phys. 4, 72–101 (2008)

120. Zhang, J., Das, S., Du, Q.: A phase field model for vesicle-substrate adhesion. J. Comput.
Phys. 228, 7837–7849 (2009)

121. Zhang, T.Y., Wang, Q.: Cahn-Hilliard vs singular Cahn-Hilliard equations in phase field
modeling. Comm. Comput. Phys. 7(2), 362–382 (2010)



Theoretical Analysis of Molecular Transport
Across Membrane Channels and Nanopores

Anatoly B. Kolomeisky

1 Introduction

A successful functioning of cellular systems requires that some molecules and

ions be transferred out of the cell while other particles should be taken in.

The bidirectional flux is accomplished with the help of a complex system of

membrane protein channels and pores [1, 2]. It is known that molecular transport

across cellular membranes is fast, efficient, selective, and that the functioning

of channels is robust with respect to strong nonequilibrium fluctuations in the

cellular environment [2]. These observations are especially surprising because in

many cases molecular translocation does not involve the use of metabolic energy

or significant conformational changes [4]. Although in recent years significant

advances in studying molecular transport in biological systems have been achieved,

the mechanisms of translocation phenomena are still not well understood.

To develop a comprehensive picture of molecular transport across the membrane,

one has to recall that when a molecule enters into the pore its motion is slowed

mostly due to entropic barriers and possibly due to other biochemical interactions.

Additional forces are needed to overcome these barriers. In biological systems, elec-

tric fields, concentration gradients, and chemical interactions are used to speed up

the transport. There is increasing experimental evidence that the high efficiency, ro-

bustness, speed, and selectivity of many biological and artificial channels are a result

of complex processes that involve molecule/pore and intermolecular interactions

[3–17]. Recent high-resolution experiments on polypeptide translocations through

protein nanopores [14, 15] have opened new possibilities in probing the effect of

molecule/pore interactions at the single-molecule level. In these experiments, it was

found that changing the location of the binding site in the pore significantly modified
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the polypeptide flux across the channel. However, a comprehensive description of

the role of interactions in transport through the pores is still not available due to the

biochemical and biophysical complexity of the translocation machinery and the lack

of structural information [4, 14, 15].

Experimental advances in the investigation of biological transport phenomena

have stimulated significant theoretical efforts to describe the fundamental properties

of underlying processes [18–31]. Several theoretical methods have been utilized to

uncover mechanisms of the motion through cellular and artificial nanopores. Signif-

icant efforts have been devoted to developing computational Molecular Dynamics

(MD) approaches to calculate translocation dynamics by taking into account all

atomic and molecular interactions [18, 19]. However, biological transport systems

are so large and complex that current full-atomic MD simulations techniques allow

analysis of dynamics for very short times of �1 ns, while the relevant processes are

taking place in the timescales of seconds and minutes. These observations suggest

that coarse-grained computer simulations and phenomenological analytical methods

probably are more valuable for understanding biological transport mechanisms.

Existing phenomenological approaches mainly follow two directions. Contin-

uum models of channel transport view the translocation as one-dimensional motion

in an effective potential created by interactions with nanopores and with other

molecules [22–27]. Interactions are typically modeled as square well potentials

that occupy the volume of the pore. A different theoretical picture utilizes discrete-

state stochastic models in which the translocation dynamics is analyzed as a set

of chemical transitions between specific binding sites in the channel [28–31]. By

mapping the discrete-state model of molecular transport across the channel to

a single-particle hopping along a periodic lattice, a full dynamic description of

permeation through the pore can be obtained for arbitrary sets of parameters [28,29].

Theoretical calculations also show that both continuum and discrete approaches are

closely related, and the results obtained by these approaches can be mapped into

each other [24, 26].

In this chapter, we present a theoretical analysis of membrane channels translo-

cation phenomena utilizing discrete-state stochastic models. Specific attention is

devoted to explaining physical/chemical mechanisms that control transport through

channels and nanopores.

2 Discrete-State Stochastic Models

The main idea of the phenomenological approach based on discrete-state stochastic

models is that the molecular translocation can be described by a one-dimensional

free-energy profile with minimal positions corresponding to specific binding sites.

Transport of molecules through the nanopore is considered as an effective one-

dimensional motion along the discrete lattice of these binding sites, as illustrated in

Fig. 1. There areN binding sites in the channel, and the concentrations of molecules

to the left or right of the channel are equal to c1 and c2, respectively. The molecule
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Fig. 1 A general schematic view of the discrete stochastic model of channel-facilitated transport
with N binding sites. A cylindrical membrane channel divides the system into three parts: the left

chamber with particle concentration c1, the right chamber with particle concentration c2, and the
pore that can be occupied by a single particle. Open circles correspond to available binding sites
in the channel. The filled circle describes the position that is currently occupied by the particle

can move into the channel from the left (right) with rate u0 D konc1 (w0 D konc2),

and the particle can move out of the channel with rates w1 and uN—see Fig. 1.

In the nanopore, the molecule at the site j (j D 1; 2; � � � ; N ) can jump forward

(backward) with the rate uj (wj ). It is assumed that the molecular size is comparable

to the size of the binding site. In the case of polymer translocations, when the

size of the molecule is larger than the binding site, this theoretical method can

also be extended by properly taking into account free-energy contributions from

the corresponding polymer configurations [32].

2.1 Molecule/Channel Interactions

First, we consider the situation when only one particle can be found in the channel.

The probability to find a molecule at site j at time t is given by a function Pj .t/,

and the translocation dynamics is fully described by a set of master equations,

dPj .t/

dt
D uj�1Pj�1.t/C wjC1PjC1.t/ � .uj C wj /Pj .t/; (1)

for j D 1; � � � ; N ; while P0.t/ � PNC1.t/ D 1 �
PN

jD1 Pj .t/ describes the

completely empty channel at the time t [28,29]. It has been shown [28,29] that this

model with N binding sites can be solved exactly at t ! 1 by mapping it into

a single-particle random walk model on an infinite periodic lattice (with a period

equal to N C 1). The size of the period is equal to N C 1 because there are N states

inside the channel and one state outside of the channel [28, 29]. This mapping can

be understood by considering multiple identical channels arranged sequentially and



300 A.B. Kolomeisky

keeping the constant concentration gradient across each period as �c D c1 � c2

[28]. Thus, all dynamic properties of molecular transport across nanopores can

be calculated explicitly. Specifically, for the uniform channel with a simplifying

assumption of zero particle concentration to the right of the pore (w0 D 0) the

expression for the particle current is given by

J0.N / D
uu0

.N C 1/
�

u C N
2

u0

� ; (2)

where uj D wj D u (j D 1; � � � ; N ). One can also write down the corresponding

expressions for the particle dispersion [29].

To quantify the effect of interactions, we assume that in one of the binding sites,

say the k-th, the particle interacts with the pore with potential " that differs from

other sites. The case of " > 0 corresponds to attractive interactions at this special

site, while negative " describes the repulsive special binding site. The transition rates

near the special binding site must satisfy the detailed balance conditions [28, 29],

which lead to

u0

k�1

w0
k

D
uk�1

wk

x;
u0

k

w0
kC1

D
uk

wkC1

1

x
; (3)

where uk�1, uk, wk , and wkC1 correspond to the uniform channel without special in-

teractions, and we define x D exp."=kBT /. The corresponding explicit expressions

for transition rates can now be written as [33],

u0
k�1 D uk�1x

� ; u0
k D ukx

��1; w0
k D wkx

��1; w0
kC1 D wkC1x

� ; (4)

where the coefficient � (0 � � � 1) describes how the interaction potential modifies

the corresponding transition rates [28, 29, 33]. Now, flux through the channel with

the special binding site at position k is equal to

Jk.N / D
uu0

u
�

2x��CN � 1
�

Cu0

h

2.k � 1/x��Cx1��C.N � k/xC
N.N�1/

2 �kC1
i : (5)

The effect of interactions can be better understood by analyzing the dimensionless

ratio of particle currents,

Jk.N /

J0.N /
D

.NC1/
�

.u=u0/C
N
2

�

.u=u0/ Œ2x��CN � 1� C
h

2.k � 1/x��Cx1��C.N � k/xC
N.N�1/

2
� kC1

i ;

(6)

where J0.N / is the current for the uniform channel without interactions. This

function provides a convenient measure of how the spatial positioning of the special

interaction binding site changes the particle current.

The curves presented in Fig. 2 show the effect of the special binding site location

on particle fluxes through the channels. For attractive interactions, the most optimal
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Fig. 2 The ratio of molecular fluxes for different positions of the special binding site k for the
channel withN D 10 binding sites. Circles are for "=kBT D 5, u=u0 D 0:1, and � D 0:5. Squares

are for "=kBT D �5, u=u0 D 0:1, and � D 0:5. Triangles are for "=kBT D 5, u=u0 D 10, and
� D 0:5. Diamonds are for "=kBT D 5, u=u0 D 0:1, and � D 0:0

current is reached when the binding site is at the exit from the pore (k D N ), while

it is better to have the repulsive site closer to the entrance (k D 1) to accelerate the

transport. It can be shown rigorously from (6) that @Jk.N /

@k
> 0 for positive ", and Jk.N /

is always a decreasing function for negative ".

These observations can be understood in the following way. Putting the attractive

binding site near the exit increases the probability of finding the particle there,

which leads to higher chances to complete the translocation by exiting the nanopore.

The repulsive site at the entrance serves as a barrier for the particles that have

already passed it, lowering the probability of unsuccessful excursions without

the translocation. These results are in full agreement with recent single-molecule

experiments on translocation of polypeptides [14, 15]. In these experiments, the

mutation in the biological nanopore that increased the molecule/pore interaction

have led to faster transport when the mutation site was near the exit. These

theoretical results might also shed the light on experimental observations, showing

that many biological channels have their binding sites at the entrance and/or at the

exit positions, that have not been fully understood so far. To have special binding

at these locations will optimize the overall flux [34]. These results can be easily

extended to more complex potentials with several attractive and repulsive sites, and

it can easily be shown that the most optimal flux is reached when several repulsive

sites cluster together near the entrance, while attractive sites must stay closer to the

exit to optimize the overall particle flux through the channel.
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Fig. 3 The ratio of particle currents as a function of the interaction strength for channel with
N D 10 binding sites. For the solid curve, the parameters are u=u0 D 0:1, k D 1, and � D 0:5.
For the dotted curve, the parameters are u=u0 D 0:1, k D 10, and � D 0:5. For the dashed curve,
the parameters are u=u0 D 0:1, k D 10, and � D 0:8. For the dash-dotted curve, the parameters
are u=u0 D 0:1, k D 5, and � D 0:9

The amplitude of interactions at the special site can also affect the flux through

the nanopore as shown in Fig. 3, in agreement with previous theoretical predictions

for channel-facilitated molecular transport [22–26, 28, 29]. For any set of param-

eters, there is an optimal interaction strength "� that can be obtained from the

condition @Jk.N /

@x
."�/ D 0, yielding the following equation:

2�

�

u

u0
C k � 1

�

D .1� �/x C .N � k/x1C� : (7)

Specifically, for the most optimal site k D N (for attractive interactions) we have the

following expression for the most optimal interaction strength,

"� D kBT ln

�

2�

1� �

�

u

u0
CN � 1

��

: (8)

It is interesting to note that the optimal interaction in this case is an increasing

function of the size of the channel (or the number of binding sites N ). For arbitrary

position of the special binding site, from (7) it can be shown that for � D 0 we have

"� D �1, while for � D 1 one can obtain

"� D
1

2
kBT ln

2

4

2
�

u
u0

C k � 1
�

N � k

3

5: (9)
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The optimal interaction strength also depends on the concentration gradient across

the channel [28]. In addition, it is important to emphasize that very strong attractive

interactions do not benefit the particle transportation, because the molecules become

trapped inside the channel. At the same time, very strong repulsive interactions

serve as impenetrable barriers for molecular motion through the channel. These

theoretical results suggest that the shape and symmetry of free-energy profiles are

important factors that modify the molecular transport across membrane channels.

Theoretical arguments for optimization of particle currents can also be extended

to analyze optimization with respect to other dynamic properties, e.g., particle

fluctuations [29]. It was shown that the largest particle current and the minimal

dispersion can be realized for the same interaction strengths only for locally

symmetric potentials, while breaking this symmetry leads to different optimal

conditions. This result clearly shows the importance of symmetry for understanding

molecular transport across membrane channels.

2.2 Intermolecular Interactions

In real biological transport systems, more than one molecule can be found inside the

nanopores and channels, and intermolecular interactions might become an important

factor of translocation [30, 31]. Earlier theoretical treatments have considered the

effect of particle crowding [30, 31], but only hard core exclusion interactions have

been assumed, and correlations in channel occupation have also been neglected.

However, since molecular permeation through the pores can be viewed effectively

as a one-dimensional system the effect of intermolecular interactions and particle

correlations could be significant. To investigate explicitly the effect of intermolec-

ular interactions, the method of discrete-state stochastic models is very convenient,

but the requirement of having only a single molecule in the pore must be relaxed.

In addition, intermolecular interactions will change the free-energy landscape of the

system, and this should be taken into account.

Specifically, we consider a simple N D 2 model without molecule/pore inter-

actions, as described above, but allowing more than one particle to occupy the

channel. This model can serve as a good testing ground for underlying complex

biological transport phenomena. There is an energy cost associated with finding

two particles next to each other. The configuration with two particles has an energy

", with " > 0 (" < 0) describing attractive (repulsive) interactions. There are four

possible configurations in the channel, as plotted in Fig. 4. We label them as (i; j )

with i; j D 0 (i; j D 1) for the empty (occupied) site. It should be noted that the rate

to enter the half-filled configuration u1 and the exit rate from the fully occupied state

u2 are related via the detailed balance,

u1

u2
D

u0

u
x; (10)
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Fig. 4 A general schematic
picture for channel with
N D 2 binding sites, multiple
occupancy, and with
intermolecular interactions.
Open circles describe empty
sites, while filled circles

denote occupied sites. Two
molecules sitting next to each
other interact with energy "

with x D exp."=kBT /. The case " D 0 corresponds to the situation analyzed in Zilman

[30, 31]. This observation allows us to write explicit expressions,

u1 D u0x
� ; u2 D ux��1; (11)

where the coefficient 0 � � � 1 again specifies how the interparticle interaction

modifies these entrance and exit rates. We can define P.i; j I t / as the probability of

finding channel in the state .i; j / at time t , and temporal evolution of the system

dynamics can be found by analyzing corresponding master equations:

dP.0; 0I t /

dt
D uP.0; 1I t /C uP.1; 0I t /� u0P.0; 0I t /;

dP.1; 0I t /

dt
D u0P.0; 0I t /C u2P.1; 1I t /C uP.0; 1I t /� 2uP.1; 0I t /;

dP.0; 1I t /

dt
D uP.1; 0I t /C u2P.1; 1I t /� .2u C u1/P.0; 1I t /;

dP.1; 1I t /

dt
D u1P.0; 1I t /� 2u2P.1; 1I t /: (12)

Solving these equations at large times ( dP.i;j It/

dt
! 0) yields the expression for the

molecular flux,

J2 D
uu0

�

u C u0
2
x�

�

3u2 C
u20
2
.x C x� /C uu0

�

3C x�

2

� : (13)
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Fig. 5 Ratio of the particle currents as a function of the intermolecular interaction for channel
with N D 2 binding sites. For the solid curve, the parameters are u=u0 D 0:1 and � D 0. For the
dotted curve, the parameters are u=u0 D 0:1 and � D 0:5. For the dashed curve, the parameters
are u=u0 D 0:1 and � D 1. For the dash-dotted curve, the parameters are u=u0 D 10 and � D 0:5

In the limit of " ! �1, only a single molecule can be found in the channel, and

(13), as expected, reduces to (2) for N D 2 and without molecule/pore interactions

(x D 1),

J1 D
uu0

3.u C u0/
: (14)

The effect of intermolecular interactions on the channel fluxes, as shown in

Fig. 5, is rather complex. For � D 0, the flux is always a decreasing function of the

interaction, and single-particle transport is the most optimal. For � D 1, the trend

is reversed: the stronger the interaction, the larger the molecular flux. However, for

intermediate values of 0 < � < 1 (which is probably a more realistic situation to

describe molecular transport in cellular systems), a nonmonotonous dependence is

observed, with the flux reaching a maximum at some optimal interaction strength.

The optimal interaction could be positive or negative depending on the parameters

of the system. These observations can be explained using the following arguments.

For attractive interactions, the presence of the particle in the channel stimulates the

entrance of another particle into the pore, but it also slows down the exit of both

particles from the channel. For repulsive interactions, partially filled channels serve

as barriers for particle entrance, thus lowering particle flux through the system. But

the entering particle simultaneously accelerates the exit of the particle already inside

the channel, increasing the particle current. The combination of these processes

determines the complex behavior in the channel.
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This theoretical analysis can be extended to channels with the larger number

of binding sites. Although the algebraic expressions and derivations become

very complicated, one still expects to have the same mechanisms for molecular

translocation of interacting particles.

3 Summary and Conclusions

To summarize, the effect of interactions on molecular transport across channels has

been investigated theoretically. Using exactly solvable discrete stochastic models,

we have shown that the strength of the interaction and the spatial distribution

of binding sites are important parameters that can effectively control molecular

translocations through nanopores. It was found that the largest particle current

can be achieved when attractive sites are near the exit of the channel, while the

most optimal position of repulsive sites are near the entrance. Optimization of

other dynamic properties can be done in a similar way. It has been argued that

the mechanism of how the interaction affects the transport across the channel is

based on controlling local concentration of particles in the channel. Special binding

sites serve as local traps or barriers, modifying the overall dynamics. Attractive

sites increase the probability of finding the particles at these binding sites, while

repulsive sites work as barriers preventing particles already in the channel from

moving back. Our theoretical picture agrees well with available single-molecule

experiments on translocation of polypeptides, and it also explains qualitatively these

observations [14, 15]. In addition, the presented theoretical conclusions also agree

with experimental observations on maltoporin channels [8]. One could argue that

our theoretical approach explains observed distributions of binding sites in real

biological channels [34]. However, it should be noted that biological transport

systems most probably are not optimized with respect to the particle current. Our

method still allows the analysis of microscopic details of molecular transport across

channels.

The presented theoretical method also allowed us to study the role of inter-

molecular interactions in transport through nanopores. It was found that at some

interaction strength, the particle flux can be increased to reach the maximum level.

This complex behavior could be explained by the fact that particles already in

the channel catalyze or inhibit the entrance of other molecules into the channel.

Thus, discrete-state stochastic models present a convenient theoretical framework

for investigating complex transport phenomena in biological and artificial channels,

and they also serve as a first step for further studies that must include more realistic

structural and biochemical information.
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Modeling Protein Evolution

Richard Goldstein and David Pollock

1 Why Model Protein Evolution?

The study of biology is fundamentally different from many other scientific pursuits,

such as geology or astrophysics. This difference stems from the ubiquitous questions

that arise about function and purpose. These are questions concerning why biologi-

cal objects operate the way they do: what is the function of a polymerase? What is

the role of the immune system? No one, aside from the most dedicated anthropist or

interventionist theist, would attempt to determine the purpose of the earth’s mantle

or the function of a binary star. Among the sciences, it is only biology in which the

details of what an object does can be said to be part of the reason for its existence.

This is because the process of evolution is capable of improving an object to better

carry out a function; that is, it adapts an object within the constraints of mechanics

and history (i.e., what has come before). Thus, the ultimate basis of these biological

questions is the process of evolution; generally, the function of an enzyme, cell

type, organ, system, or trait is the thing that it does that contributes to the fitness

(i.e., reproductive success) of the organism of which it is a part or characteristic.

Our investigations cannot escape the simple fact that all things in biology (including

ourselves) are, ultimately, the result of an evolutionary process.

The understanding of our evolutionary heritage has a wide range of conceptual,

theoretical, and practical applications. First, we are often interested in the evolution-

ary process because it has specific consequences. To control pandemics, we want
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to know how a pathogen spreads, and we do this by studying the phylogenetic

relationships among various pathogen isolates. To understand how to preserve

ecosystems, we study how population structure and population size affects the

evolution and long-term stability of various species. And to understand and control

the evolution of drug resistance or virulence in bacteria, we are interested in

understanding how these processes are mediated by horizontal gene transfer.

Second, by observing not just a single instance of something, but also how it

varies within and between populations and species, we can learn more about how

it works and what is important for maintaining or altering function. It is extremely

difficult to analyze patterns of conservation and variation without considering the

source of this conservation and variation, i.e., the evolutionary process.

Third, we are interested in evidence of new things that are not contained in our

current philosophy. Something that is inconsistent with our current understanding

of what would arise through evolution requires us to postulate a new process,

phenomenon, or extended theory. For example, an overly slow or overly rapid rate of

sequence change, or an overabundance of certain types of network motifs or protein

structures, may clash with what we would otherwise expect.

Fourth, evolutionary biology is the story of our creation, the basis of who we

are and why we are here on this planet. Because it provides ultimate answers to

the “why” questions in biology, evolution serves as an illuminating mechanism to

correct erroneous conceptions of ourselves that we have fabricated based on how

we would like to justify our existence, rather than on biological evidence. Thus,

evolution has justifiably been described as the “universal acid” [1], sculpting and

eating away at our most fundamental and dangerous misconceptions of ourselves

to reveal the underlying sculptured beauty of our true role in the universe. This is

where art and science meet, both “incandescently” and “incestuously” [2].

Conceptual models of evolution often rest on a mapping of genotype (what is

evolving) to phenotype (the traits that result). The process of evolution through

genotype–phenotype space critically depends on the nature of this mapping; many

fundamental disagreements in evolutionary biology result from different conceptu-

alizations of this relationship. Much work has focused on the evolution of biological

macromolecules such as DNA, RNA, and proteins. These molecules provide a

tractable but sufficiently realistic genotype–phenotype map, where the phenotypical

properties such as structure, stability, and functionality can be modeled based on first

principles. In addition, while higher-level models representing cells, organisms, and

ecosystems are not uninteresting, the properties of biological macromolecules lie at

the base of evolutionary processes, and it seems to us that if we are to eventually

understand the higher levels, we must first understand the base. In this review, we

direct our attention to the modeling of proteins and their evolution. The evolution of

proteins can serve as a model for how the activity of the cell is directed, modulated,

regulated, accelerated, and controlled.
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2 The Challenges

Evolution involves a massively parallel operation occurring in large populations

over long periods of time. We seek ways to simulate this process in a reasonable

time with limited computational resources. This means we need to greatly speed

up and therefore grossly simplify the system. In order to model the evolution of

proteins, we need a model of how the proteins behave, a way of characterizing the

viability or fitness of a given protein, and a description of the population dynamics

of the evolutionary process. Developing simplified representations of these three

aspects has specific challenges.

1. Proteins are complex. Proteins can range from hundreds to thousands of amino

acids, representing thousands to tens of thousands of atoms. The number of

possible conformations exceeds the number of atoms in the universe by many

orders of magnitude. Proteins also interact intimately with their heterogeneous

environment, which can include water, ions, and complex bilayer membranes, as

well as other biomolecules such as nucleic acids and other proteins.

2. The interactions within proteins, and among proteins and their environments, are

not well understood. This is especially problematic given that the thermodynamic

properties of proteins often represent small differences between large numbers;

the large terms must be known to excruciatingly high accuracy in order for the

small differences to be meaningful.

3. Proteins have to fulfill multiple requirements, including the abilities to fold into

a stable, well-defined structure; maintain solubility; be trafficked to appropriate

parts of the cell (or excreted externally); and recognize, interact with, and

process other biological and environmental components. The specifics of these

constraints, and how they interact, are difficult to determine.

4. The structure and function of proteins can evolve, as well as the sequence. It is

difficult to predict how changing structural, functional, and sequence contexts

might alter subsequent evolutionary patterns.

5. In general, evolution involves competition between individuals with genomes

that encode multiple proteins. The evolutionary dynamics of a given gene variant

involves the fitness of those individuals that contain this variant, including how it

interacts with other genes and gene products as well as the environment. It is not

easy to quantify the complex and heterogeneous relationship between the fitness

of an individual and the properties of a single or few proteins encoded by their

genomes.

6. Evolution takes place in large, heterogeneous populations. The variation within

this population can have a strong effect on the evolutionary dynamics. The effect

of a mutation on an individual’s fitness depends in part upon the characteristics

of other individuals in that population.

A range of different research approaches has been developed to address these

difficulties and complications.
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2.1 Modeling Protein Energetics

It is generally impractical to explicitly consider the motions and interaction energies

of all of the atoms found in a protein and its environment, and so models must be

constructed that do not consider all of the atoms and all of the motions. A common

strategy is to consider reduced representations of proteins, in which each amino acid

in the chain is represented by one or a few particles.

While the use of a reduced representation removes many conformational degrees

of freedom from the system, the number of possible conformations is still too

large to be easily modeled. To reduce the conformation space, a limited number

of possible conformations may be considered, one of which represents the native

state. These conformations can include known protein structures as well as one

of the sets of decoy structures that have been created (e.g., [3]). A more extreme

approach is to consider each amino acid as a single particle located at adjacent

vertices in a (generally cubic) lattice [4]. The covalent bonds between residues are

represented as edges in the lattice, and interactions occur only between adjacent

nonbonded residues. Possible conformations correspond to different self-avoiding

walks through these lattices; excluded volume is implemented by the requirement

that two residues cannot share the same lattice point. The lattice can either be small

(so that only the compact states are represented) or it can be big enough that entirely

unfolded proteins are possible. The number of possible compact conformations

for small proteins is reasonable (a 27-mer protein on a compact 3 � 3 � 3 lattice

has 103,346 conformations, excluding reflections and rotations), but the number of

conformations increases rapidly with the size of the protein and when noncompact

forms are considered. Small three-dimensional proteins on a regular lattice have

few residues that are internal or “buried” compared to real proteins, and so some

researchers have instead used two-dimensional lattices, which generate a more

reasonable fraction of buried residues. Such lattices have advantages for modeling

protein thermodynamics but are generally inappropriate for simulations of, for

instance, folding dynamics. The ground state can either be specified in advance or

allowed to change during the simulation.

The free energy of a protein is the sum of a number of different types of

interactions, including (a) the van der Waals contact energy between atoms, (b)

Coulomb interactions between charges, (c) hydrogen bonds, (d) the hydrophobic

effect, encompassing the entropy loss resulting from the structuring of water near

nonpolar groups, (e) bond stretches, bends, and rotations, and (f) changes in the

conformational and vibrational entropy. It is difficult to calculate an accurate value

for the free energy of a particular conformation of a protein in its full atom

representation, especially the entropic contributions. The situation becomes even

worse for coarse-grained models, as many of the atoms involved in the interactions

are not represented in the structure. Generally, modelers use highly simplified free

energy functions such as those based on contact energies, where the free energy

G.S; F / of a sequence S D fA1; A2; : : : Ang in fold F can then be expressed as

G.S; F / D
X

<i;j>

.Ai ; Aj / H.r0 � rij /; (1)
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where .Ai ; Aj / is the interaction between the type of amino acid found in positions

i and j , and H.r0 � rij/ is a Heavyside step function equal to one if and only

if rij, the distance between specified atoms in residues i and j , is less than some

cutoff r0. Early models considered only two types of amino acids, hydrophobic (H)

and polar (P), where only hydrophobic residues interact energetically [5]. Energetic

parameters for more realistic schemes have been constructed based on knowledge

of physical chemistry or, alternatively, extracted through statistical analysis of the

available protein structures [6]. The latter approach is based on two incorrect

but useful assumptions. The first is that we can integrate over all of the degrees

of freedom of the system that we consider unimportant for the simulation (such

as conformations of the side chains and solvent molecules) in order to calculate

potentials of mean force, and that the potentials of mean force can be decomposed

into a sum of uncorrelated terms that can be computed independently. The second

assumption is that the distribution of states of a single protein in its multiplicity of

possible conformations can be represented by the distribution of native states of a

multiplicity of known proteins. Under this assumption, the Boltzmann expression

relating the probability of observing a state to the free energy of that state can be

inverted to determine the free energy of an interaction based on the frequency of

that interaction in the database of known protein structures. (Finkelstein and collab-

orators have promoted an interesting evolutionary justification for this assumption

[7, 8]). Because the potential of mean force explicitly includes the sum over all

degrees of freedom of the system, including the solvent degrees of freedom, entropic

interactions involving the solvent (and thus, the hydrophobic effect) are included in

the simulation.

2.2 Modeling Selective Constraints

Once a model of the protein and a representation of its interactions are in place,

the selective constraints acting on the protein can be determined. These can be a

mixture of structural, thermodynamic, or functional properties. Common selective

constraints include:

1. The need to fold into a well-defined structure. In general, explicit folding

simulations are too slow for all but the simplest representations of proteins or

of the evolutionary process [9]. Rather than simulating the folding process, an

alternative approach is to evaluate properties that are characteristic of folded

proteins. For instance, the presence of a nondegenerate ground state (either any

ground state or a prespecified ground state) has been considered adequate [10],

although this is difficult to justify at nonzero temperatures. Wolynes and co-

workers used concepts from spin-glass physics to suggest that an appropriate

measure of “foldability” [11] is the energy gap between the native conformation

and the distribution of the energies for random conformations [12]; this can

also be equated with a statistical Z-score. These predictions were later verified
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using folding simulations [9]. Evolutionary simulations can be performed so that

proteins with a foldability larger than some critical value are considered viable,

with fitness equal to one, while proteins with lesser foldability are considered

nonviable, with fitness equal to zero [13, 14]. (Evolutionary models where

fitnesses are either a constant high value or a constant low value depending upon

some criterion are called truncation selection.)

2. The need to be sufficiently stable in the native state conformation. This is

quantified as either a free energy of folding .�GFolding/ or as the fraction of

time spent in the folded state at equilibrium. The added difficulty here is the need

to consider the enormous ensemble of unfolded conformations. One approach

is to consider a large number of alternative conformations, recognizing that the

number of conformations considered represents a vast underestimation of the

total possible number of such states. Alternatively, one can extrapolate from a

small ensemble of proteins to the properties of a larger ensemble. For instance,

imagine that the distribution of free energies of alternative structures �U.G/

is approximated by a Gaussian distribution with average G and variance �2.

We can consider sampling a large number of structures from this distribution,

representing the entire ensemble of unfolded states, to calculate GU, the free

energy of the ensemble of alternative unfolded states

GU D
¢2 � 2kT G

2kT
C kT ln NU; (2)

where NU is the total number of alternative states, k is the Boltzmann constant,

and T is the temperature [15]. Calculation of the free energies of a limited number

of alternative structures may be sufficient to characterize �U.G/ and allow us to

estimate G and �2.

Another alternative is to consider that we often do not have to calculate stabilities,

but only the change in stability .��GFolding/ due to a mutation. Such changes in

stability can be calculated using, for instance, FoldX [16]. While this can be more

accurate than the simple representation of protein energetics, the complexity of these

calculations limits evolutionary simulations.

3. The need to be functional. In addition to being foldable and stable, proteins

generally fulfill one or more functions. In contrast to foldability and stability,

the functional requirements for proteins are highly specific, making modeling of

functional constraints difficult. One class of models that have been investigated

involves the consideration of binding properties. For instance, Hirst and co-

workers considered the ability of a protein to construct an appropriate binding

pocket [17, 18]. Alternatively, a protein’s fitness can be modeled as a function of

how well it binds a specified peptide or other protein [19,20]. The intermolecular

binding interaction can be calculated using the same parameters used for the

intramolecular interactions, and we can consider fundamental properties of

protein function such as specificity by modeling binding to competing peptides

as well. We can also consider what happens in the evolutionary simulation when
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the binding partner changes, allowing us to model evolutionary dynamics under

changing selective constraints. When fitness involves the binding of multiple

proteins, we can consider these interacting proteins as encoded in a single

genome. The proteins would then co-evolve as the genome evolves.

The above selective constraints refer to the properties of the amino acid sequence

that constitute the protein. Mutations, however, occur at the DNA level, and it

is only through the process of translation that these changes are represented at

the amino acid level [21]. The accuracy of translation is much lower than that of

DNA replication, meaning that there will be a distribution of protein sequences

corresponding to a single DNA sequence. This more complicated relationship

between gene and gene product, and the consequential complication of the fitness

function, can have interesting and important evolutionary consequences [22–24].

2.3 Modeling Evolutionary Dynamics

Evolution is a population phenomenon. In a population of individuals, mutations

that change the phenotype of the organism will succeed based on how that

phenotype fares in competition with other phenotypes that exist in the population

at the same time. A point mutation is the exchange of one nucleotide for another

somewhere in the genome. If the exchange occurs in a coding region, it might alter

the amino acid that is produced upon translation (a missense or nonsynonymous

mutation), or it might result in a stop codon, thus causing premature truncation

of the protein (a nonsense mutation). Alternatively, the new codon might encode

the same amino acid as the old codon, and thus produce no change in the

translated protein sequence (a silent or synonymous mutation). Mutations that are

synonymous are more likely to have a relatively neutral effect on fitness compared to

missense or nonsense mutations, because they do not alter the amino acid sequence

and thus do not alter the functional properties of the individual protein. More

complicated mutations are possible involving the deletion, insertion, duplication,

or re-arrangement of single nucleotides, stretches of nucleotides, or larger units of

the genome.

By definition, mutations occur in individuals, but in subsequent generations

the offspring of the mutated individual will carry the mutation and compete with

offspring in the population that do not carry the mutation. Ultimately, this will

usually lead either to elimination of the new mutation from the population or to

fixation, the process whereby the other variants in the population are eliminated.

After fixation, the previous “mutant” defines a new “wild type.”

In unusual cases, mutants may be neither eliminated nor fixed for long periods

of time, during which the population remains polymorphic. For example, in diploid

organisms an individual carries two copies of each gene, and an individual with one

copy of each variant (a heterozygote) may have an advantage over other individuals.

This is the case with the mutation causing sickle-cell anemia, in which one copy
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of the mutant gene provides some resistance against malaria, while two copies

leads to debilitating illness and early death. Such situations are called heterozygote

superiority or overdominance. Alternatively, it may be that there is an advantage

to being different from others in the population, so that any new mutant with a

phenotypic difference has an advantage as long as it is not overly common in the

population (such as being able to utilize a new but limited source of food); this

situation, where the fitness of a trait depends upon the frequency of the trait in

the population, is called frequency-dependent selection. In either of these cases,

multiple variants may stably co-exist in the population.

Individuals replicate, reproduce, and have heredity, but proteins by themselves do

not. Evolutionary simulations with proteins therefore involve making connections

between the characteristics of the proteins and the fitnesses of the organisms in

which they reside. Furthermore, evolution occurs in populations of individuals

containing proteins, and therefore what matters is the relative fitness of the

individual carrying the protein. We can make this connection most simply by

assuming that the probability that an individual reproduces is proportional to the

probability that a given protein is folded (or that it is folded and able to bind a

peptide). Because folding probability is maximal at a probability of 1.0, fitness

also reaches a maximum at 1.0. At the extreme, there may be a subset of proteins

with relative fitnesses indistinguishably near 1.0, with the remainder of the proteins

having relatively poor folding and likely to be quickly eliminated whenever they

do arise via mutation. This leads to a fitness landscape that is essentially a neutral

network, a set of genotypes connected by single mutations that have equal fitness.

It is possible to ignore population dynamics completely and instead follow

the movement of point mutations via a stochastic hill-climbing procedure, where

random mutations are made and accepted if the mutation increases the fitness

relative to the previous point. This type of simulation results in a trajectory in the

space of possible sequences that moves unceasingly toward higher and higher fitness

values. Such studies can provide insight into the nature and structure of the fitness

landscape but are not representative of the evolutionary process, and generally will

have quite different dynamic and equilibrium properties.

Instead, then, evolution is almost always modeled in a population; but there are

many reasonable choices for the characteristics of this population. Common practice

is to model the simplest population possible unless there are more complex aspects

that one particularly wishes to test or that are critical for a given study. For example,

if heterozygote advantage or other properties of a diploid system are not of interest,

one would usually simulate a haploid organism, in which case the allele is equivalent

to the genotype. Different kinds of nucleotide mutations (for example, thymine to

cytosine, versus guanine to cytosine) are often assumed to arise at equal frequency,

unless it is deemed critical to reflect more realistic relative mutation patterns. An

extreme example of this is the modeling of amino-acid-altering exchanges at equal

frequencies, as though mutations occurred at the amino acid level. Although this is

an obviously unrealistic fiction, it may still be justifiable if it could be argued that

this particular departure from reality does not make any difference in the properties

of concern in a particular study.
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Another consideration in modeling evolutionary dynamics is the timing of

reproduction and selection among individuals. It is common to follow the classic

synchronous population model that coincides with the bulk of classical mathemati-

cal theory on population genetics dynamics. In such populations, reproduction and

changes in allele frequency due to fitness differences occur at the same time for

the entire population. Each such set of steps is called a generation. Thus, for a

population of N individuals, the allele frequencies at the end of one generation

would be multiplied by their relative fitness, and then the entire population would

be randomly re-sampled with replacement from the resulting allele frequencies to

create the next generation. Mutations can occur during this re-sampling. These

can include, in addition to simple mutations, other processes such as mating and

recombination. It is traditional to hold the population size constant over the course

of a simulation.

There are a number of common variants to this scheme, including allowing

the population size to change over time, and allowing individual (or mating pair)

variation in reproductive success. Sometimes alternative schemes are utilized. For

example, in tournament selection, a subset of nTourn individuals from the population

are chosen at random, with replacement, and only the most fit individual in this

subset is replicated in the next population. This process is then repeated N times to

fill the entire population for the next generation. Selection pressure can be controlled

by the value of nTourn, with nTourn D 1 corresponding to no selective pressure (the

next generation is chosen at random from the genotypes in the previous generation)

and nTourn � N corresponding to stochastic hill climbing where only the most fit

individual reproduces. A scheme that better reflects reproduction in many species

(including humans) is the Moran process, in which reproductive events occur

sequentially in the population [25]. Population size is maintained by selecting at

each time step one individual to duplicate (with probability proportional to its

fitness) and one individual to be eliminated. Again, mutations can be implemented

as part of the replication process.

In order to speed up simulations, we can also calculate, rather than simulate,

the probability of fixation. This approach relies on the assumption that mutations

that are destined to become fixed do not overlap in time, such that each mutation is

either eliminated or fixed in the population prior to the arrival of the next mutation.

In this case, the probability of fixation of the mutant PFix has been computed by

Kimura [26–28]:

PFix D
1 � e�2s

1 � e�2Ns
; (3)

where  is equal to 1 for haploid organisms and 2 for diploid organisms, and the

selection coefficient s is given by

s D
!mut � !wt

!mut

; (4)

where !mut and !wt are the relative fitnesses of the mutant and wild-type alleles,

respectively. This equation holds when s << 1, in which case we can choose a
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mutant to test, and then efficiently accept or reject it based on this probability. While

the use of the Kimura formulation results in faster simulations, it eliminates the

possibility of observing interesting phenomena that arise from interactions among

mutations that are polymorphic in a population. For example, a favorable mutant

might not be fixed if, before it does, another mutant happens to arise that is more

favorable. Also, in a selective sweep, an extremely fit mutation that becomes fixed

rapidly can cause linked variants to become fixed as well, even if these other

variants are neutral or even deleterious. These additional variants are said to have

hitchhiked on the fixation of the favorable mutation. Finally, if the mutation rate

is especially rapid, then the fitness of a variant may depend partly on how often it

spawns deleterious mutations [29, 30]. This can lead to emergent properties such as

robustness that would be overlooked when using the Kimura formulation.

3 The Distribution of Observed Protein Structures

As we accumulate an increasing number of protein structures, it is clear that the

distribution of proteins among the diverse folds is extremely uneven, with some

folds greatly over-represented and other possible folds that have not yet been

observed [31–35]. Three classes of explanations for this observation have emerged

[36]: (1) Some folds may be more “designable,” that is, they can be formed by

more sequences, and are therefore more likely to arise in evolution. (2) Some folds

are better suited to important or common functionalities, or a greater range of

functionalities. For instance, the cleft found in the common TIM Barrel fold might

be extremely well suited for catalyzing reactions. (3) Evolutionary dynamics, as

modeled as birth–death processes, may naturally lead to uneven distributions of

proteins as proteins with common folds are more likely to increase their number

through gene duplication events than proteins with rare folds. The first explanation,

involving the “sequence entropy” of various structures, has focused the most on the

nature of the genotype (sequence)–phenotype(structure) map, and the consequences

of this mapping for evolutionary processes.

Parallel to this effort has been the attempt to delineate more specifically the

processes that are involved in the creation of new protein folds [37]. It is clear, both

experimentally [38, 39] and theoretically [14, 40], that changes in protein structure

are extremely slow compared with the rate of change of protein sequences, with

many highly divergent pairs of proteins having extremely similar structures. For

proteins, investigations with simple models have shown that the neutral network

is clustered around a prototype sequence [41]. These neutral networks are isolated

from each other [42], manifested by the slow rate of change of structure. This is in

striking contrast to the case of RNA, where it is relatively easy to make changes

in structure with single changes in sequence [43–45]. (One possible explanation

for this difference may lie in how these different systems are modeled. Often

an RNA molecule is considered viable as long as it has a nondegenerate ground

state, resulting in the vast majority of sequences being viable. In contrast, proteins
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are often modeled as requiring a certain degree of stability or foldability, with a

corresponding low fraction of viable sequences. This has obvious consequences

for the topology of the neutral networks and the resultant ability to move between

structures.)

There has been increased interest in structural plasticity, that is, the ability of a

single protein to populate multiple structures under physiological conditions. The

extreme examples are proteins that fulfill their physiological roles while remaining

unstructured, or becoming structured only when binding some other molecule. But

other proteins have been experimentally observed to fold into different structures,

possibly with different functionalities. These proteins can then form bridge states,

allowing a protein to evolve from one structure to another through this plastic

intermediate [46, 47]. This can greatly enhance the rate of structural evolution.

4 Evolution of Thermodynamic Properties

Natural (that is, evolved) proteins are generally only marginally stable, so that

relatively small changes in temperature are sufficient to cause unfolding. This

observation, combined with the fact that the stability of the same protein from

multiple organisms generally tracks the physiological temperature of each organism,

has been interpreted to indicate that marginal stability is an adaptation for enhanced

functionality [48–54]. An alternative explanation has been provided by evolutionary

simulations, suggesting that marginal stability is a natural consequence of mutation-

selection balance: proteins become stabilized up to the point that selective pressure

for increased stability is counterbalanced by the tendency of random mutations to

decrease stability [20, 55]. Such a model predicts that selection is more efficient

in larger populations, as is clear from (3). There is some evidence to support

this effect: Bastolla and colleagues estimated that proteins in intracellular bacteria

(which have smaller population sizes than most bacteria) have smaller energy gaps

between native and alternative compact states than those in free-living bacteria [56].

Similarly, proteins with both short [57] and long [58] disordered regions are more

common in eukaryotes than in prokaryotes.

In addition to the biophysical consequences, marginal stability can cause phe-

notypic plasticity because the same sequence will be more likely to fold into

multiple structures at thermal equilibrium. This would then favor the presence

of bridge states, enhancing the rate of structural evolution, as described above.

Another significant effect may be on the topology of biochemical networks; there is

a relationship between protein stability, the resulting conformational flexibility, and

the number of partners with which a protein can interact [59]. A tendency toward

marginal stability might result in highly promiscuous hub proteins, resulting in some

proteins with many more interacting partners than would be expected in random

networks, reducing the number of intervening interactions necessary to link one

protein to another. This is a possible explanation for the observation of these “small

world networks” [60].



322 R. Goldstein and D. Pollock

5 Other Evolutionary Processes

It is clear that many other evolutionary processes involve proteins. Examples include

the evolution of biochemical and regulatory networks, the origin of pleiotropy

and epistasis, co-evolution between, for instance, hosts and pathogens, hybrid

incompatibility and speciation, phenotypic buffering, the existence and impact of

neutral networks on evolution, and the evolution of evolvability, modularity, and

robustness. There has been a history of exploring these processes with the aid

of simple models that tend to ignore the particular (evolved) characteristics of

the proteins that mediate these effects. With our growing ability to model protein

evolution, these topics will be increasingly amenable to the types of simulations

described in this chapter.

6 Conclusion

Our explorations of biological systems rest on our understanding of evolution. In

addition to its own importance as a biological process, evolution can provide us

with important insights into critical biological phenomena. We can develop our

comprehension of evolution by modeling interesting but tractable systems, such

as simplified models of proteins. Proteins provide us with a plausible mapping

of genotype to phenotype, allowing us to explore topics beyond the “toy model”

stage. Conversely, modeling the evolution of proteins also can provide insights

regarding the nature of these biomolecules, what properties they would be expected

to possess, how to interpret signatures encoded in their sequences, and how they

function in their biological context. The properties of proteins arise as a result of

the evolutionary process, while the evolutionary process is itself constrained by the

properties of the evolving proteins. This circle of causality, influence, and constraint

has proven to be a fruitful area for both those interested in proteins and those

concerned with evolution. As these evolutionary models become more and more

complex, they will have an increasing impact on a wide range of questions not just

in evolution and protein biophysics, but also in biochemistry, cell and organismal

biology, and ecology.
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Modeling Structural and Genomic Constraints
in the Evolution of Proteins

Ugo Bastolla and Markus Porto

1 Molecular Phenotypes

Macromolecules influence the phenotype of the organism where they are expressed

through their function, and in particular through their interactions. Nevertheless,

it is very difficult to computationally predict protein function and interactions.

Moreover, only a few residues take part in them. For these reasons, models of

molecular evolution usually represent folded macromolecules such as RNA or

proteins and identify the function of the molecule with the folded structure, whose

stability determines the modeled fitness.

The first works that modeled a quantitative relationship between genotype and

phenotype were pioneered by the Vienna group, and took RNA molecules rather

than proteins as a case study [1, 2]. RNA secondary structure can be represented as

a list of base pairs interacting through hydrogen bonding. It is possible to assess

the stability of RNA secondary structures using reliable empirical free energy

functions based on Watson and Crick pairing rules. If pseudoknots are forbidden,

fast algorithms allow to determine the most stable secondary structure (low energy

ground state) for a given RNA sequence [3]. These studies showed that there is a

large set of sequences that have a particular target structure as the ground state. This

set is called the neutral network of an RNA secondary structure, where the term

neutral refers to the fact that all sequences in the set share the same structure as

their ground state. Notice, however, that they are not necessarily neutral under the

point of view of misfolding stability because the free energy of the target structure
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and of alternative, competing structures may be quite different. Sequences with

the same ground state that can be evolutionarily interconnected through a point

mutation are neighbors on the neutral network. We define the neutral fraction z.S/

as the fraction of point mutations of sequence S that do not change the ground

state. If the average neutral fraction in the neutral network, z.S/, is above a critical

threshold, random graph theory predicts that the neutral network is connected,

whereas below the threshold the neutral network is formed by a giant connected

component and several small components. For the four-letter AUGC alphabet, the

neutral fraction of some tRNA-like structures were computed and shown to be

z.S/ � 0:29, slightly smaller than the critical threshold zcr D 0:37 [2], so that

the giant component dominates the neutral network. Furthermore, it was shown that

the neutral networks of any two common structures are close in sequence space

in the sense that there are sequences for which both structures are the ground

state (i.e., have very similar low energy) that allow to connect the two neutral

networks [2]. These studies highlighted the importance of neutrality for molecular

adaptation [4]. We note, however, that such multiconformational sequences would

not be observed in evolution if selection required that the target structure must be

sufficiently stable against misfolded conformations.

We now turn from RNA to proteins, which is the main focus of this review

chapter. Motivated by the earlier work on RNA, proteins have been the subject of

intense investigation from several groups since the late 1990s [5–14]. In this case,

there exists no approach to reliably predict the lowest energy structure of a protein

sequence, and we must resort to approximations. It is common to represent a protein

structure as a contact matrix whose element Cij equal 1 if the residues at sites i

and j are close in the three-dimensional folded structure and zero otherwise. This

representation is formally similar to the secondary structure representation of RNA.

However, in the latter case, each site can interact at most with another site, whereas

in proteins each site has multiple contacts. It has been shown that the contact matrix

is sufficient to reconstruct the whole three-dimensional structure of the protein with

very high accuracy [15]. In this context, one usually assumes that the free energy of

a protein with sequence A folded into the contact matrix C is given by the sum of

pairwise contact interactions,

E.A;C/ D
X

ij

Cij U.Ai ; Aj /; (1)

whereU.a; b/ is the contact interaction matrix that expresses the free energy gained

when amino acids a and b are brought in contact. In most of the results reported

here, the matrix determined in Bastolla et al. [16] has been used. For proteins that

fold with two-state thermodynamics, i.e., for which only the native structure and the

unfolded structure are thermodynamically important, stability against unfolding is

defined as the free energy difference between the folded and the unfolded state, and

it can be estimated as �G2 � E.A; Cnat/ C sL, where Cnat is the native structure,

L is protein length, and s D 0:074 is an entropic parameter that was determined

by fitting the above equation to a set of 20 experimentally measured unfolding
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free energies, yielding a correlation coefficient r D 0:92 (UB, unpublished data).

The accuracy of this method for predicting the stability effect of mutations is

comparable to state-of-the-art atomistic methods such as Fold-X [17], and its

computational simplicity allows for its use in simulating protein evolution for long

evolutionary trajectories.

Stability against unfolding is, however, not sufficient to characterize protein

stability, since one has also to assess stability against compact, incorrectly folded

conformations of low energy that can act as kinetic traps in the folding process

and, in many cases, give rise to pathological aggregation. The term positive design

indicates sequence features that favor stability against unfolding by making the

native structure more stable, obtained either through evolution or through sequence

design algorithms. On the other hand, stability against misfolding is thought to

be realized in natural proteins by increasing the energy of key contacts that are

frequently found in alternative structures, which is termed negative design [18, 19].

Multiple sequence alignments show correlated mutations not only between positions

that are in contact in the native structure (as a consequence of positive design)

but also between positions that are distant in the native structure, which has been

interpreted as evidence for negative design [18], although functional interpretations

have also been proposed [20].

Stability against misfolded structures is difficult to estimate, and several models

of protein evolution do not consider it, despite its importance being more and

more recognized. Two simplified sets of alternative structures are most often used:

either the set of approx. 105 maximally compact structures on the 3 � 3 � 3

cubic lattice, which can be enumerated with affordable computational effort [21],

or the set of all compact matrices of L residues that can be obtained from non-

redundant structures in the protein database (PDB). This latter procedure, called

threading in bioinformatics jargon, guarantees that the contact matrices fulfill

physical constraints on chain connectivity, atomic repulsion, and hydrogen bonding

(secondary structure), which are not enforced in the contact energy function. We

will use the threading set in most of this chapter. Whatever the set of alternative

structures, there are several measures to assess the stability against misfolding. A

parameter that is often used is the normalized energy gap ˛.A/, defined as

˛.A/ D min
C

E.A;C/� E.A;Cnat/

jE.A;Cnat/j Œ1 � q.C;Cnat/�
; (2)

where the contact overlap q.C; Cnat/ measures the structural similarity between the

native (lowest energy) structure Cnat and the alternative structure C. A large value of

˛.A/ implies that all the low energy structures are structurally similar to the native

one and belong to its attraction basin. This is necessary for thermodynamic stability,

since the contact interaction parameters are effective free energy parameters that

depend on temperature and, if ˛ is small, a small change in these parameters

could completely change the ground state. Similarly, it is necessary for stability

against mutation and for fast folding kinetics. ˛.A/ is determined by the lowest

energy structure that is structurally unrelated to the ground state and it can be
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approximated analytically, without need to use the set of alternative structures,

using the random energy model (REM) [22] and neglecting correlations between

contacts [23]. However, this latter approximation is not always accurate enough for

characterizing negative design (unpublished results).

An alternative way to estimate protein stability, both against unfolding and

against misfolding, has been recently proposed by Goldstein [24]. This consists of

using the REM to estimate the free energy of unfolded and misfolded structures,

computing the difference in free energy of the native state as

�G � E.A; Cnat/ C kBT s0L � hE.A; C/i C
�2

E

2kBT
; (3)

where hE.A; C/i is the mean and �2
E is the variance of the energy of alternative

structures.

In modeling protein evolution, we still need to define how protein stability in-

fluences fitness, i.e., the reproduction rate of the organism. The simplest possibility

is a neutral fitness landscape where the fitness is a binary variable and all proteins

with stability above a given threshold are considered equally fit, whereas all proteins

below threshold are inviable. We and our collaborators modeled neutral evolution,

imposing two conditions on unfolding and misfolding stability: �G2.A/ > �Gthr

and ˛.A/ > ˛thr [25]. The target native structure is fixed throughout evolution, and

the thresholds are chosen proportional to the values of the stability parameters for

the starting protein sequence in the PDB. In a neutral fitness landscape, population

size has almost no influence on evolution. A more interesting possibility is a

model where fitness is a smooth function of stability, in which case there are

mutations that produce a small decrease in fitness and are more likely to be fixed

in small populations (see next section). We generalized the neutral model through

the fitness function f .x˛; xG ; S/ D 1=
�

1 C x�S
˛ C x�S

G

�

if both x˛ > 0 and

xG > 0, and f .x˛; xG ; S/ D 0 otherwise, where x˛.A/ D ˛.A/=˛thr and

xG.A/ D �G2.A/=�Gthr. The parameter S is called neutrality exponent, and we

recover the neutral landscape in the limit S ! 1.

An alternative fitness function has been used by Shakhnovich [26] and Goldstein

[24] among others, and it defines fitness as the Boltzmann probability to find the

protein in the native state,

f .A/ D
exp.��G.A/=kBT /

1 C exp.��G.A/=kBT /
: (4)

In the low temperature limit, the model becomes neutral in that sequences with

�G < 0 receive fitness one, and other sequences receive fitness zero. Notice,

however, that �G depends on temperature, so that the low temperature limit might

not be well defined (see (3)). Also note that �G enforces both unfolding stability

E.A; Cnat/ < kBT s0L and misfolding stability E.A; Cnat/ � hE.A; Ci.
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2 Population Dynamics and Statistical Physics

If mutations with small fitness effects are considered, generalizing the neutral

model, effective population size N becomes a key variable of the evolutionary

process, since slightly deleterious mutations are more likely to be fixed in small

populations [27–29]. This modeling approach has been pioneered by Ohta, who

showed that population size can provide a possible explanation for empirical

observations such as the generation time effect [30, 31]. Obligate intracellular

lifestyle, such as that of endosymbiotic or parasitic bacteria, implies a strong

reduction in effective population size due to bottlenecks upon transmission from

one host to another. Inspired by Ohta’s theory, computational studies have compared

bacterial species displaying an obligate intracellular lifestyle with their free-living

relatives, suggesting that the genes of intracellular bacteria evolve faster as a result

of relaxed selection [32] (but Itoh et al. [33] give a different interpretation), and

that their structural RNAs [34] and their proteins [35] are less stable than the

orthologous macromolecules of free-living bacteria. Evolution experiments with

virus and bacteria confirm the influence of small population size, demonstrating

fitness loss in populations evolving under repeated bottlenecks [36, 37], and show

that such a loss can be partly compensated by overexpressing chaperones that assist

in protein folding [38]. These findings support the idea that fitness is reduced in

small populations as a consequence of the reduction of protein folding stability.

When modeling population dynamics, two variables are of key importance,

mutation rate per genome per generation � and effective population size N . The

product N� determines the genetic variability of the population. In the rare mutation

limit N� � 1, on average at most one mutation arises in the population at each

generation, and the timescale for fixation of a neutral mutation, proportional to N,

is smaller than the timescale for the appearance of a new mutation in the same

genome, proportional to 1=�, so that mutations do not interact. In this limit the

population is genetically homogeneous, apart from mutants that arise from time to

time. On the contrary, if N� is not small, different alleles may exist simultaneously

at macroscopic frequencies, and more than one mutation may exist in the same

genome, which can produce interactions such as the hitch-hiking effect.

Recent theoretical work has shown that, in the rare mutation limit, the statistical

properties of population genetics are formally equivalent to a statistical mechanical

system, so that there is an exact analogy between the reduction of fitness for small

populations and the increase of entropy for high temperature [39, 40]. Population

genetics shows that the probability that the mutation is fixed in the population can

be exactly computed as [41]

Pfix.A ! A0/ D
1 �

f .A/

f .A0/

1 �

�

f .A/

f .A0/

�N
; (5)



332 U. Bastolla and M. Porto

where N is the effective population size and f .A/ is the exponential growth rate

of the phenotype associated to sequence A, which will be called fitness in the

following. This formula enormously simplifies both the analytic and the numeric

study of evolution. It has been noted that the above formula, multiplied by the

mutation probability from A to A0, can be interpreted as the transition probability

of a Markov process in sequence space. Such a Markov process admits a stationary

distribution in which fitness fluctuates around an equilibrium value, with events of

fitness increase and decrease being on the average equally likely. The stationary

distribution can be computed analytically [39, 40], and it is given by

Pevol.A/ � Pmut.A/ expŒN logf .A/� ; (6)

where Pmut.A/ is the probability to obtain sequence A under mutation alone. The

factor expŒN log f .A/� is equivalent to a Boltzmann distribution, where the effective

population size N plays the role of inverse temperature and the logarithm of fitness

plays the role of minus energy. Thus the model predicts that smaller populations

reach lower fitness, which means that their macromolecules are less stable and the

mutational entropy in sequence space is larger.

Wright [28] generalized the stationary distribution (6) to the case where the

product N� is not small. This stationary distribution has also a deep analogy with

statistical physics [42]. However, it has a simple expression only in the case of two

alleles, in which case the probability to find the first allele with frequency x1 and

the second one with frequency x2 D 1 � x1 is

P.x1; x2/ / x
V1�1
1 ex1 log f1x

V2�1
2 ex2 log f2 ; (7)

where fi is the fitness of allele i and V1 D N�u21=.u12 C u21/. The last factor

represents the mutation bias from allele 2 to allele 1.

It would be interesting to further develop the analogy of statistical mechanics

also in the case of potentially infinite alleles. This has only been done in the infinite

population limit, where population dynamics can also be studied analytically, as

a mutation can be fixed only if it is advantageous or neutral. In this limit, a

large number of mutants arise at each generation, and the population can be

represented as a distribution in the space of all possible genotypes, which is

called a quasispecies [43]. Also, in this limit there is a formal analogy between

population dynamics and statistical physics, where mutation rate plays the role of

temperature [44, 45]. In the single peak landscape, where a unique master sequence

has higher fitness than the sea of mutant sequences, this model undergoes a phase

transition in which at low mutation rate a sizeable fraction of the population adopts

the master sequence, whereas at high mutation rate the population is dispersed in a

sea of less stable mutant sequences.
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3 Substitution Rate and Mutational Robustness

Already in the early days of molecular evolution studies, it was recognized that

the number of amino acid substitutions in the evolution of a protein sequence

grows approximately linearly with the time of divergence [46]. This important

observation, named the molecular clock, lies at the ground of several methods for

reconstructing phylogenetic trees from the comparison of extant protein sequences.

In this context, it is essential to distinguish between mutations and substitutions.

Mutation is a process at the level of the individual, giving rise to a different genotype

and producing a phenotypic effect on fitness (or no effect, if the mutation is neutral).

Substitution is a process at the population level—the macroscopic level, in the

language of statistical physics—and it consists in a mutation that gets fixed in the

population, raising at a frequency of almost 100%.

The first and simplest explanation of the molecular clock was provided by

Kimura’s neutral model [47, 48], which is still one of the most influential models

of molecular evolution. Within this model, a protein can contribute to the fitness of

the organism that bears it in only two ways: either it is functional, and the organism

is viable, or it is not functional, and the organism is not viable. All viable organisms

are considered as equally fit, i.e., there are only two classes of phenotypes and

the fitness is a binary variable. Within the neutral model, and provided that the

mutation rate is small, the substitution rate does not depend on population size since

the number of neutral mutations arising at each generation is N�z, where z is the

fraction of mutations that are neutral, and the probability that a neutral mutation

is eventually fixed in the population is 1=N , in agreement with (5) in the limit

f ! f 0. Thus, the number of substitutions grows linearly with the divergence time

with rate �z. The original neutral model also assumes that z is constant on the neutral

network. This hypothesis implies that the number of neutral substitutions observed

in a time t is a Poisson variable with mean value �zt . However, the variance

of the number of substitutions is significantly larger than expected for a Poisson

variable (overdispersion) [49]. This is not in contrast with the neutral model, since

simulations of neutral evolution with structure conservation show that the fraction

of neutral mutations z.A/ fluctuates strongly from one sequence to another (being

larger for more stable sequences), and this in turn implies overdispersion [50].

It is instructive to study the neutral model in the infinite population limit [51].

In this limit, analytical and numerical evidence shows that the population is not

uniformly distributed in the neutral model, but concentrates at sequences that

have a large fraction of neutral neighbors, since this is the stationary limit of the

quasispecies distribution. This has the same effect as if the population minimizes the

mutation load, i.e., the fraction at which lethal mutants are eliminated. Therefore, in

populations where N� is large, mutational robustness is expected to spontaneously

arise as a result of population dynamics. This in turn establishes a negative

relationship between substitution rate and population size even in the case of neutral

evolution.

As already stated above, if mutations with small fitness effects are present in

the model, effective population size N becomes a key variable of the evolutionary
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process, since slightly deleterious mutations are more likely to be fixed in small

populations. This is the basis of the nearly neutral model proposed by Ohta [30].

Since small populations are more tolerant to mutations, the frequency z of effectively

neutral mutations is larger in small populations, and the substitution rate increases.

Finally, if N� is not small, multiple mutations, both beneficial and detrimental,

may happen in the same genome. This effect complicates the substitution process

considerably, since neutral and slightly deleterious mutations can hitchhike genomes

with advantageous mutations that are positively selected, and therefore increase

their substitution rate. When the advantageous mutation has been fixed, these

passenger mutations are eliminated by purifying selection.

4 Translation Load

As discussed above, if N� is not small, mutational robustness arises even in the

neutral model as a consequence of population dynamics. Mutational robustness is

correlated with stability, since a more stable protein is more tolerant to mutations.

Therefore, a large mutation rate is expected to favor tolerance to mutations and

a larger stability than would be expected in the monomorphic limit. However,

the mutation rate per gene is very small in natural populations of bacteria and

eukaryotes, so that it is doubtful that this mechanism is relevant to explain the high

tolerance to mutations observed in natural proteins. A related explanation for this

mutational robustness has been recently proposed by Wilke and collaborators [52].

When proteins are synthesized on the ribosome, translation errors may happen

relatively frequently, since the accuracy of the ribosome is not very high (for a

200 amino-acids protein, a wrong amino acid is incorporated on the average every

few replication cycles in E. coli). These translation errors may produce wrongly

folded proteins that are not functional and, moreover, tend to aggregate; therefore,

there is a strong selective pressure enforcing robustness against translation errors.

This selective pressure is expected to be stronger for highly expressed proteins.

This is in agreement with the observations that highly expressed proteins tend to be

codified by optimal codons (which improve the accuracy of translation) and tend

to evolve more slowly (since they are subject to stronger selective pressure) [52].

Another element that enforces robustness against translation errors is the genetic

code. It has been shown that the standard genetic code is almost optimal for reducing

the consequences of translation errors on the physiochemical properties of protein

sequences [53]. Using the protein folding model that we adopted for evolutionary

studies, we recently verified that the standard genetic code reduces the effects

on protein folding stability of frequent translation errors with respect to existing

alternative codes [54], although the advantage of the standard code is sometimes

reduced for extreme mutation bias. Despite the importance of the translation load

for protein evolution, however, this ingredient is seldom taken into account when

modeling the fitness.
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5 Protein Stability and Mutation Bias

Another key evolutionary variable, which has received little attention, is the

nucleotide composition of the genome. In prokaryotes, it varies from extreme

adenine plus thymine (AT) content in obligatory intracellular bacteria to extreme

guanine plus cytosine (GC) content, for instance in actinobacteria. These differences

in GC content are thought to be prevalently due to mutation bias [55, 56]. They are

strongest at the third codon position, where GC content barely affects the amino

acid composition of the protein, but also influences the coding positions [57, 58].

Due to the structure of the genetic code, a mutation bias favoring thymine at

the nucleotide level favors the incorporation of hydrophobic amino acids in the

translated protein [35,59]. Hydrophobicity is a key property for protein folding [60].

Proteins that are too hydrophobic tend to misfold and aggregate, whereas proteins

that are too hydrophilic tend to be naturally unfolded [61]. This qualitative trade-

off between unfolding and misfolding was confirmed by a computational study of

the properties of homologous proteins in the proteomes of several bacterial species,

using a model of protein folding stability that correlates well with experimentally

measured unfolding stabilities [35]. The trade-off between unfolding and misfolding

stability is also clear if we consider the unfolding free energy (3). In this case,

we can define �G D �Gu C �Gm, with �Gu D E.A; Cnat/=2 C kBT s0L

and �Gm D E.A; Cnat/=2 � hE.A; C/i C �2
E=2kBT . Using the hydrophobic

approximation U.a; b/ � "H h.a/ h.b/ (see (9) and (10) below) and writing gi D

h.Ai /=hhi, where hhi is the mean hydrophobicity of the protein sequence, we see

that �Gu � �ahhi2 C sL, with a > 0, so that stability against unfolding increases

with hydrophobicity, whereas �Gm � �bhhi2 C chhi4 with b > 0 and c > 0, so

that stability against misfolding decreases with hydrophobicity when it is large. We

and coworkers investigated the relationship between unfolding stability, misfolding

stability, and mutation bias using a protein evolution model with a neutral fitness

landscape. We indeed found that the mutation bias modulates the trade-off between

the two kinds of stability, making proteins evolving under AT mutation bias more

stable against unfolding but less stable against misfolding [62].

Interestingly, the two aspects discussed above, effective population size and

mutation bias, are correlated in nature. In fact, most bacterial and eukaryotic species

that adopted an intracellular lifestyle, with consequent reduction of their effective

population size, also shifted their mutation spectrum toward AT [63], as indicated

by the strong correlation between reduced genome size, which is a signature of

intracellularity, and the AT bias [32, 35]. In order to investigate this relationship,

we have modeled protein evolution in a nonneutral fitness landscape where fitness

smoothly depends on stability against unfolding and against misfolding [25].

Mutations are randomly drawn at each step of the simulations according to a

given mutation bias, and they are fixed in the population according to (5), since

we assume that the population is monomorphic. Protein stability increases with

effective population size, in agreement with theoretical expectations. Interestingly,

for a given effective population size the fitness that can be achieved depends on the
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mutation bias, and it is maximal at an optimal mutation bias. Simulations show that

the optimal mutation bias favors AT (ATopt � 0:6) for small effective population

size, it favors GC (ATopt � 0:3) for intermediate effective population size, and we

find absence of bias (ATopt � 0:5) for very large population size. These results may

contribute to an explanation for why almost all intracellular bacteria evolving with

small effective population size have developed a mutation bias toward AT.

6 Protein Size and Marginal Stability

The model reported above and similar ones also show that protein stability is higher

for nonneutral evolution than for neutral evolution. In fact, within the neutral model,

folding stability does not affect fitness as long as it is above threshold, so that

the stability that is more likely to be observed in evolution is the viable stability

more likely to arise by mutation, which is expected to coincide with the minimal

stability compatible with viable molecules. This phenomenon may explain why

natural proteins only possess a modest stability, which is relatively easy to increase

through engineered mutations [24]. The same tendency toward marginal stability is

also observed in a model of nonneutral evolution, where the fitness is described by

(4) and the fixation probability (5) is used. Stability evolves to a stationary value that

is determined by the mutation-selection balance and by temperature, where stability

is marginal.

The mutation-selection balance also influences the dependence of protein stabil-

ity on chain length. Unfolding stability balances an energetic term E.A;Cnat/ DP
ij C

nat
ij U.Ai ; Aj / that grows with the number of native contacts NC, with a

conformational entropy term that grows with the number of residuesL. For globular

proteins, the number of contacts per residue NC=L increases with L as NC=L �

C0
�
1 �DL�1=3

�
, with D � 3=2, due to the reduction of the surface to volume

ratio for larger proteins. Therefore, native contacts need to be less strong in longer

proteins in order to compensate for conformational entropy loss upon folding, and

the tendency of protein toward marginal stability predicts that native interactions are

weaker in longer proteins. This hypothesis was confirmed by a statistical analysis

of the PDB conducted by one of us and a coworker [23]. Similarly, examination of

the energy gap ˛ that measures stability against unfolding leads to the expectation

that the Z-score of native interactions with respect to all possible interactions, both

native and nonnative, must be more negative for shorter proteins, as it is indeed

observed [23],

Znat D
hU inat � hU ip
hU 2i � hU i2

< �

s
2.ACB=L/

NC=L
; (8)

where hU i D
P

ij hCij iU.Ai ; Aj /=
P

ij hCij i is the average interaction energy

of alternative contacts and hU inat D
P

ij C
nat
ij U.Ai ; Aj /=

P
ij C

nat
ij is the average
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interaction energy of native contacts. Therefore, native interactions tend to be

weaker and less optimized in longer proteins. This may be interpreted as yet another

manifestation of the tendency of proteins to have marginal stability.

7 Inverse Folding

Closely related to the question of protein evolution is the inverse folding problem.

The inverse folding problem can be formulated as the study of the statistical

properties of protein sequences that fold into a given target structure, and is of

importance for bioinformatics applications such as structure prediction, as well

as for theoretical modeling. Interestingly, it is possible to analytically solve the

inverse folding problem within the hydrophobic approximation of the energy. This

approximation exploits the fact that the contact energy matrix U.a; b/ is well

approximated by its main eigenvector h.a/,

U.a; b/ � "H h.a/ h.b/ ; (9)

where "H < 0 and the eigenvector h.a/ is related to the hydrophobicity of residue

a [64, 65]. Using this approximation, the native energy can be expressed as

E.A;Cnat/ � "H

X

ij

C nat
ij hi hj ; (10)

where hi D h.Ai / is the hydrophobicity profile of sequence A. It is immediately

seen that the optimal hydrophobicity profile that minimizes the native energy for a

given value of the mean squared hydrophobicity hh2i coincides with the principal

eigenvector of the contact matrix. If we further impose a condition on the mean

hydrophobicity hhi in order to constrain stability against unfolding, we find that the

optimal hydrophobicity profile is proportional to the so-called effective connectivity

(EC) profile ci [66], a structural profile that almost coincides with the principal

eigenvector for single domain proteins, and generalizes it for multi-domain proteins.

The EC has large components in the core of the protein, where residues have many

contacts, and small components on the surface. Thus, the optimal hydrophobicity

profile h
opt
i / ci expresses the well-known fact that buried positions tend to be

hydrophobic and surface positions tend to be hydrophilic, but in a quantitative

fashion. The optimal hydrophobicity profile is in very good agreement both with

the hydrophobicity profile averaged over sequences obtained by simulating protein

evolution with structural conservation, and with the hydrophobicity profile averaged

over positions in the PDB that have similar EC components. We are currently

investigating modifications of this framework that allow for enforcing stability

against misfolding in a more explicit way.

The sequence that best matches the optimal hydrophobicity profile is analogous

to the prototype sequence found by Bornberg-Bauer and Chan in simulations of
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protein evolution [7]. Such a sequence is the most stable and most robust against

mutations and, despite the fact that it is never encountered in evolution, it deeply

influences the statistical properties of the family of sequences that fold into the same

target structure.

The above scheme allows for computing site-specific amino acid distributions

Pi .a/ at each site of a protein by maximizing the entropy in sequence space with a

constraint on the average hydrophobicity,which enforces stability against unfolding.

One finds that

Pi .a/ / w.a/ exp.�ˇi h.a//; (11)

where w.a/ is the global frequency of amino acid a due to the mutation process

and the genetic code, ˇi is a site-specific Lagrange multiplier that enforces the

appropriate value of the average hydrophobicity, and h.a/ is the hydrophobicity

parameter of amino acid a. This framework assumes the independent site approxi-

mation,P.A1 � � �AL/ �
Q
i Pi .Ai /. This approximation is inevitable to get analytic

insight, however, sites in a protein are not independent, in particular when they

are in contact in the native structure. In these cases, compensatory or correlated

mutations are revealed by statistical analysis of multiple sequence alignments, and

they are often used to predict contacts for proteins of unknown structure [67]. We are

currently generalizing the approach presented here using a pairwise approximation

of the sequence entropy that allows for analytical prediction of pairwise amino acid

distributions for a given protein structure.

8 Protein Structure Evolution

It is often stated that protein structure is much more conserved than sequence

in evolution. This principle is the basis of bioinformatics methods that predict

protein structure based on homology. It has been shown that proteins can diverge

in sequence, reaching similarities typical of randomly related sequences, and yet

conserve a similar fold [5, 68, 69]. This is possible because these sequences are not

random, but share the same hydrophobic fingerprint [65].

A milestone in the study of protein structure divergence was a paper by Chothia

and Lesk, who showed that the root mean square deviation (RMSD) between

different globins diverges regularly with the number of amino acid substitutions, up

to a limit of low sequence identity, where the RMSD suddenly explodes [70]. This

result suggests a generalization of the molecular clock hypothesis to the evolution

of protein structure, but has technical limitations since the RMSD can be used

as a measure of structural divergence only for aligned residues that have good

spatial superimposition. One of us and coworkers recently proposed a measure

of structure divergence based on the contact overlap, which is more suitable for

such a quantification since it minimizes the dependence on protein length both for

evolutionarily related and for unrelated protein pairs [71]. Using this measure, we

confirmed that protein structures diverge in a clock-like manner up to a very small
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sequence identity � 0:15, where structure divergence explodes. Interestingly, the

explosion of structural divergence seems to take place only for proteins performing

different functions, whereas proteins that share exactly the same function can

diverge in structure only up to a limiting value of divergence, so that functional

conservation imposes strong constraints on sequence and structure [71].

The simplest explanation for the explosion of structural divergence is that, below

the crossover, sequence identity does not allow for estimation of the evolutionary

divergence time, so that protein pairs with identity below the crossover may have

diverged for a time much longer than what is inferred from their sequence identity.

This simple explanation is supported by the fact that the sequence identity at

the crossover decreases with protein length. Nevertheless, it is interesting that a

qualitatively similar explosion of structural diversity has been found in a recent

study of protein sequence design [72]. In this study, protein sequences were

designed by optimizing the folding stability of a target structure. It was found that,

when the target structure and the reference structure in the PDB are very similar, the

designed sequence has a rather large identity with the reference sequence. However,

when the target and the reference structure are more different, as it would be in

the case of selection for new function, the designed and reference sequences only

share very low identity, on the order of 20%, i.e., slightly more than the average

identity of unrelated protein pairs. Therefore, the plot of sequence divergence versus

structure divergence of designed protiens shows a crossover very much reminiscent

of the one that we observed for evolved proteins and it may help to rationalize it:

When two proteins perform the same function, natural selection targets very similar

structures, determining sequence and structure conservation, whereas for proteins

with significantly different function, natural selection targets different structures,

whose typical sequence identities are below the crossover region. This interpretation

is consistent with the findings, reported above, that protein function influences

evolution by limiting the extent of sequence and structure divergence in the case

of function conservation, and by accelerating structure divergence with respect to

sequence divergence in the case of function change.

We also found that structure evolution is accelerated upon function change, since

protein pairs with different functions diverge in structure at a rate significantly larger

than those with the same function even before the explosion of structural divergence.

Although not unexpected, this is an interesting result, since it demonstrates a

quantitative influence of protein function on the sequence to structure relationship.

Moreover, it suggests possible improvements to protein function prediction. In fact,

it is known that very small changes in sequence and structure are sufficient to modify

protein function, so that sequence and structure conservation are not a sufficient

indication of function conservation. Our observation that function change modifies

quantitatively the sequence to structure relationship suggests that this information

could be used in order to predict function conservation more reliably.

Besides the quantification of the rate of structure divergence, another interesting

result concerning protein structure evolution was the observation that protein

structures tend to diverge along directions that overlap with the normal modes of

low frequency [73]. This observation has been subsequently rationalized using one
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of the few quantitative models of protein structure evolution, the linearly forced

elastic network model (LFENM) proposed by Echave [74]. In the framework of

the LFENM, a protein is modeled as an elastic network of contacts [75] and a

mutation in the sequence is represented as a perturbation to the native structure that

is directed along the contacts formed by the mutated residue. According to linear

response theory, the response of the protein structure to a perturbation that produces

a force f is �r / H �1f , where H is the Hessian matrix of the elastic network

model. Therefore, the model predicts that structural changes in evolution have large

components along low frequency normal modes, i.e., eigenvectors of the H matrix

with small eigenvalue.

It was believed until recently that divergence in protein evolution in most

cases conserves the fold, defined in colloquial terms as “the main arrangement

of secondary structure elements of a protein.” This assumption is at the basis of

hierarchical structural classifications of proteins like SCOP [76] and CATH [77],

where proteins with demonstrable homology, i.e., common origin, are automatically

classified as belonging to the same structural class or fold. The distribution of

the number of proteins in each fold is a power law, which is consistent with the

view that folds have been populated through divergent evolution from a common

ancestor followed by structural and functional differentiation within the given

fold [78]. Nevertheless, it is increasingly recognized that the fold of a protein can

change through evolution [79, 80], and that the fold as an equivalence class of

protein structure is not consistently defined. In fact, proteins in the same fold of

SCOP or CATH fail to fulfill the transitivity relation that, if two proteins a and

b are both similar to the same protein c, they should be similar to each other.

This transitivity relation is violated because protein domains do not only evolve

in a monoparental way through gene duplication followed by clock-like structure

and function divergence, but they also evolve from multiple parents, i.e., multiple

fragments of supersecondary structure that are combined to give rise to a new fold

and a new function. If protein c shares a fragment with protein a and a different

fragment with protein b, transitivity is violated and proteins cannot be classified in

a tree-like structure, but rather they must be described as a network. We have shown

that, at high structural similarity, transitivity holds, and the traditional, tree-like view

of protein evolution is justified, but for low similarity, structurally related proteins

form a network rather than a tree [81].

As already stated, function is essential in the evolution of proteins. Function

change is difficult to explain in an evolutionary framework, and several models

have been proposed. It is beyond the scope of this chapter to review them here,

but only to point out an interesting link to protein stability: The experimental work

of the group of Tawfik [82] has recently shown that it is possible to evolve proteins

that perform new functions, and that tolerance to mutations is crucial for improving

evolvability. Chaperones that assist protein folding buffer the phenotypic effects of

reduced folding stability, and in this way they enhance the ability of proteins to

evolve new functions.
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9 Conformation Changes

Of course, proteins are not static but perform their function dynamically. The study

of how evolution modulates protein functional dynamics is still in its infancy, but

some interesting observations have already been made. As it happens for structure

divergence, conformation changes also tend to happen along directions related to

the lowest frequency normal modes of the protein. The physical explanation of

this phenomenon does not call evolution into play, but only linear response theory,

since ligand binding can be seen as a perturbation to which the protein responds

according to the matrix H�1, where H is the Hessian matrix of the structure.

According to a maximum Rényi entropy null model, the contribution of mode ˛ to

a conformation change produced by a random perturbation, c2˛ , will be proportional

to the contribution of the same mode to thermal fluctuations, !�2
˛ . It is possible to

define a parameter � that measures the deviation of the observed perturbation change

from this null model [83],

� D Correlation:coefficient
�
c2

˛!2
˛; !2

˛

�
: (12)

If the perturbation that produces the conformation change is random, the null

model predicts that c2
˛!2

˛ is uncorrelated with the mode frequency. A positive and

significant � hints that the perturbation is not random, but the normal modes have

coevolved with it. In particular, � > 0 means that low frequency normal modes

contribute to the conformation change more than expected on the basis of the null

model, with the effect of reducing its free energy barrier and increasing its rate.

Interestingly, � � 0 is found for conformation changes that are not functional,

whereas positive and significant � is found for conformation changes that take place

upon binding of transport proteins with their physiological substrate, among others.

10 Disordered Proteins

In this review chapter, we have discussed proteins that fold to a well-defined native

state. Nevertheless, it is increasingly recognized that a large fraction of eukaryotic

proteins have large unstructured loops that are important for function, and some

are totally unstructured in their native state, becoming partially structured upon

interaction with their interaction partner [84]. Disordered proteins are preferentially

involved in molecular recognition and regulatory function [85]. Folding upon

binding is thought to favor high specificity but low affinity interactions that can

be finely modulated. Moreover, disordered proteins can form multiple conforma-

tions, allowing them to bind multiple partners, which increases the complexity of

intermolecular interactions in eukaryotes.

From the point of view of stability, disordered proteins do not possess

hydrophobic cores and contain many charged residues. Modulation of the charge
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of disordered proteins modulates their size [86] and their conformation. It will be

interesting in the future to model protein evolution in such a way that disordered

proteins naturally arise at one side of the flexibility versus stability spectrum.

11 Conclusions

Although the models presented in this section still have a very limited ability to

represent some crucial aspects of the protein world, such as function, dynamics,

disorder, and the complexity of molecular dynamics, in our opinion they clearly

show that folding stability, both against unfolding and against misfolding, represents

a useful proxy of the genotype to phenotype relationship in proteins, and it

allows for rationalization of some important aspects of their molecular evolution

while, on the other hand, evolution is an essential ingredient for understanding the

thermodynamic properties of natural proteins.
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Modeling Proteins at the Interface of Structure,
Evolution, and Population Genetics

Ashley I. Teufel, Johan A. Grahnen, and David A. Liberles

1 Introduction

Biological systems span multiple layers of organization and modeling across layers

of organization enables inference that is not possible by analyzing just one layer.

An example of this is seen in an organism’s fitness, which can be directly impacted

by selection for output from a metabolic or signal transduction pathway. Even

this complex process is already several layers removed from the environment and

ecosystem. Within the pathway are individual enzymatic reactions and protein–

protein, protein–small molecule, and protein–DNA interactions. Enzymatic and

physical constants characterize these reactions and interactions, where selection

dictates ranges and thresholds of values that are dependent upon values for other

links in the pathway. The physical constants (for protein–protein binding, for

example) are dictated by the amino acid sequences at the interface. These constants

are also constrained by the amino acid sequences that are necessary to maintain

a properly folded structure as a scaffold to maintain the interaction interface. As

sequences evolve, population genetic and molecular evolutionary models describe

the availability of combinations of amino acid changes for selection, depending

in turn on parameters like the mutation rate and effective population size. As

the systems biology level of constraints has not been thoroughly characterized, it

is this multiscale modeling problem that describes the interplay between protein

biophysical chemistry and population genetics/molecular evolution that we will

describe.

There are three main trajectories in multiscale modeling at the interface of

protein structure and evolutionary biology. The first trajectory involves simulation

and forward evolution to describe both biophysical and evolutionary processes.
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In this trajectory, the assumptions and limitations are explicit and well-controlled

hypotheses can be formulated. The next two trajectories are retrospective. First,

there is a growing field adding thermodynamic complexity to phylogenetic models

and this will be described. Second, another growing field involves the use of

standard population genetic models for interspecific evolution, also incorporating

increasing biophysical reality in parameterizing the models. These will be described

in turn.

2 Simulation and Forward Evolution

Simulation and comparative genomic analysis represent complementary trajectories

in evolutionary analysis. As events become more ancient, reconstruction of evolu-

tionary histories and substitutions underlying the sequence–structure–function link

become harder to recover. Further, interpretation of underlying mechanisms and

controlling data for numerous potential variables become potentially problematic.

Therefore, simulations of evolutionary processes with different mechanisms and

explicit assumptions can provide insights into evolutionary pathways that are

difficult to obtain from comparative genomic data.

Simulation approaches have a long history in the field of evolutionary biology,

for example, in the context of population genetics [1]. Calculations on a population-

wide level of variation in allele frequencies due to different fitness effects are not

computationally demanding and provide insights into population-level processes.

However, because of the lack of biochemical detail in such models, they tell us

very little about the mechanisms that underlie fitness changes. To model the effects

of mutations on molecular evolution, it is necessary to have at least a minimal

representation of protein structure.

The most basic such model is the hydrophobic–polar lattice model [2]. The

protein is represented as a series of interconnected beads on a rectangular grid, in

either two or three dimensions, each of which represents either a hydrophobic or

a polar residue (Fig. 1a). Hydrophobic residues interact favorably, mimicking the

solvation pressure to form a hydrophobic core, and other interactions are typically

neutral or repulsive. This simple model enables sampling a very large number of

configurations rapidly, and in the two-dimensional case it even allows a complete

enumeration and examination of the entire sequence–structure–fitness landscape.

Bornberg-Bauer and Chan [2] used this technique to examine the distribution of

thermodynamic stability for sequences undergoing neutral evolution, and found that

the funnel-like behavior of the energy landscape of protein folding is recapitulated

by the sequence landscape. Melin and co-workers [3] found two criteria that apply to

all protein-like sequences under such a model. The native state is highly designable

(robust to mutation) and is well separated on the energy landscape from random

configurations. These properties are similar to those observed in real proteins.

The next level of complexity involved the usage of the 20 amino acids in lattice

simulations. Sali and co-workers [4] examined the folding process using a 3D
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Fig. 1 (a) A hydrophobic–polar lattice model of protein structure, where interactions are defined
contacts based upon the structure of the lattice and the type of each residue, is shown. (b) On top,
the backbone depicted as a cartoon of the secondary structure threaded through the van der Waals
surface of a GRB2 protein (PDB ID: 1GRI) is shown. Below on the left, contacts similar to those
used in lattice models are used to calculate pairwise interaction potentials. On the right, a scoring
function with some terms rooted in physics is used to evaluate mutations, based upon both terms
that affect both interactions and those that are intrinsic properties of the amino acid, including the
propensities to be involved in different secondary structural elements
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cubic lattice model with residue–residue contact energies derived from those found

in known protein structures [5]. They were able to observe that folding rapidly

progresses from random coil to semicompact globule, and then more slowly finds

the exact native contacts, suggesting that Levinthal’s paradox [6] is solved by the

vast reduction in available conformations after the hydrophobic collapse. On the

same trajectory, Li and co-workers [7] further refined the lattice model to include

side chains and allowed a noncubic shape for the protein.

Although thermodynamic stability and kinetics are both important factors in

protein evolution, ultimately the fitness effect due to mutation on any protein

is contingent on its function. Protein–protein interaction is a common type of

functionality and is amenable to study with the lattice model system. A common

strategy is to represent the interaction as occurring between the protein and a

small peptide that binds to some portion of the lattice surface [8]. To simplify

interpretation it is often assumed that the peptide sequence does not change

throughout the simulations, although the methodology can be adapted to study the

co-evolution of interacting proteins. Bloom and co-workers [9] examined the effects

of selection for several ligands under a similar model in more detail. The evolution

of both folding and binding stability were found to be intertwined in this model,

providing somewhat opposing forces on the protein, and sequence evolution most

often causes small steps in structure space rather than large backbone modifications.

More recently, Rastogi and Liberles [10] employed this class of model to

examine the fates of duplicated genes, where binding to extant and novel ligands was

the function. This study used lattice models to address a question in evolutionary

biology that only indirectly involved protein folding thermodynamics, establishing

subfunctionalization as a transition state to neofunctionalization as an important

evolutionary mechanism that is also now supported by comparative genomic data

[11]. Massey et al. [12] used the lattice modeling framework to address the role of

positive selection in driving molecular convergence and its ultimate phylogenetic ef-

fect. Here, the sequences that enabled a new binding interaction were independently

evolved from different starting points in a sequence simulation on a phylogenetic

tree, demonstrating that it was possible for reconstructed phylogenetic trees from

such sequences to show a signal for common function rather than common ancestry.

A similar effect was subsequently observed in comparative genomic data from snake

and lizard mitochondrial genomes [13].

Population dynamics represent an additional consideration when modeling

evolution. Most of the work that does not explicitly address evolutionary questions

models evolution as a random or adaptive walk on the sequence/fitness landscape by

a single sequence reflecting a population size of one. Except for very strong fitness

effects, such simulations are likely to bury true evolutionary signal in the stochastic

noise of immediate fixation of neutral and slightly deleterious changes. By adding

population-level complexity to the simulation, one can also ask additional questions

about the influence of population size, mutation rate, and population dynamics on

the process of molecular evolution. Taverna and Goldstein [14] used a lattice model

to show that protein-like mutational robustness and marginal stability only emerged

in simulations when population dynamics were properly considered.
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Fig. 2 The symmetrical
contact map excluding
contacts within four amino
acid positions derived from
the structure of the SAP
protein (PDB ID 1D4T) at a
distance of 4.5 Å is shown.
This enables the definition of
residues in contact with each
other for the use of
informational potentials

Although lattice models have provided a wealth of information on the rules that

govern proteins in general, they are not well suited to describing differences between

distinct protein folds with respect to either function or evolution. Simulating the

evolution of sequences in real protein conformations or folds requires a higher

level of detail. Currently, the most popular approach involves creating a native

contact map from an experimentally determined structure (see Fig. 2). This allows

one to specify the effect of backbone shape on which residues are near each

other, and hence how their proximity and its effect on the overall folding energy

constrains their mutual mutational opportunity. A pairwise residue interaction

energy is typically assumed [15] (Fig. 1b), although this may also be augmented

with a term representing the effects of solvation [16]. Since the contact map never

changes, one need only to evaluate the effects of a substitution on a relatively small

number of local interactions. Parisi and Echave [17] adopted this level of structural

description to simulate the evolution of a left-handed beta-helix domain with a

known and specific sequence pattern thought to be due to folding constraints. Using

a random walk simulation with an energy difference-based fitness criterion, they

demonstrated that it is possible to reproduce the specific pattern of sequences of this

fold. This suggests that particular folds exert quite specific evolutionary pressures

that constrain the variation of sequences within a protein family. Bastolla and co-

workers [18] showed that overdispersed substitution (deviation from the expected

Poisson distribution) can result from neutral evolution under structural constraint

rather than selection and that the rate of substitution can vary considerably between

populations for the same reason.

An interesting contrast to the contact map is presented by the coarse-grained

(CG) physics-based approach (Fig. 1b). Instead of relying on pairwise interactions

between residues, which inherently ignores multiresidue effects, a variety of

descriptors of separate forces is applied to a protein model with a reduced level of
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detail to score the probability for a sequence to adopt a particular conformation. This

increased level of detail enables study of the effect of both the specific interactions

and the specific underlying forces through evolution.

One particular concern that has not been addressed in detail in the literature is

the relationship between ��G (change in scoring function value) and evolutionary

fitness. Many studies either employ folding thresholds or use a goodness-of-fit

criterion, but more attention to this will need to be paid to this relationship in the

future.

Rastogi et al. [19] introduced a scoring function for folding and binding based

upon that of Mukherjee and Bagchi [20], readapted for evolutionary simulation.

This approach included terms for the bonding potential, the bending potential, the

torsional potential, the Leonard-Jones potential, and the propensities for amino acids

to lie in helical or sheet regions.

Grahnen and co-workers [21] expanded upon this, incorporating additional terms

for solvation and for disulphide bridges, using a structural representation where

side chain positions are modified during simulation and the folding potential is

parameterized for each individual protein. This was found to outperform a pair-

wise interaction approach with respect to biophysical realism and fold specificity

(although further improvement in the model with regard to packing of the coarse-

grained core of the protein will be needed before biological application of these

models), and is fast enough to be applied to more complex situations involving

multiple proteins and large population sizes, enabling future studies in molecular

evolution.

In recapitulating selective pressures on proteins, it is important to consider not

only the energy gap between folded and unfolded states and bound and unbound

states, but also any selective pressures on what not to fold into or bind. Inherent in

considerations of folding is the consideration that the native structure is favored by

an energy gap to alternative structures, and this is considered in simulations with

a folding decoy. Selective pressures on what not to bind may also be an important

aspect of functional specificity in cells and such explicit selective constraints can be

incorporated into simulations as well (see [22)].

As more computationally intensive methods become tractable with increases

in computational resources, a number of future steps can be envisioned. The

coarse-grained approaches can be replaced by all-atom representation of protein

structure, possibly using some variation on modern molecular dynamics force

fields [23–25]. In the future, one would expect electron-level resolution via density

functional theory or other quantum-mechanical approaches to become possible.

Also, incorporating simulations of chemical reactions at the electron level would

open up the study of enzymatic function, which would be expected to exert differ-

ent selective pressures than protein–protein interactions. The trajectory involving

contact maps could in the near future be augmented by allowing the contact maps

to vary throughout the simulation, which would involve some estimation of side

chain or backbone angle modifications due to mutation. An intriguing prospect for

simulation of very long evolutionary processes, such as evolution between entirely

different fold types, is the application of methods such as elastic network models
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[26] in a simulation context rather than for comparative purposes. Adopting existing

protein structure prediction protocols to model the large effect of insertions and

deletions on backbone structure would also be of interest.

In another trajectory, evolutionary systems biology is an emerging field. Sim-

ulations with more than one protein can enable evaluation of the interactome,

with pathway-level selective pressures rather than selective pressures on individual

binding interactions. Ultimately, this would sum up to simulation of a cellular

network on an evolutionary timescale. The logical endpoint in that direction is a

marriage of sequence–structure simulation to the metabolic and transcriptional rate

simulations common in systems biology today. A second goal in this trajectory is

the simulation of cross-species interactions, such as those involved in a viral or

bacterial infection or in the molecular interactions between organisms that co-exist

in an ecosystem. The more interconnections between layers of simulation that are

taken into consideration, the richer our description of evolution becomes and the

questions that can be asked multiply in both significance and number.

3 Phylogeny and Thermodynamics

Phylogenetic inference is another problem where structural models can enable a

greater level of understanding of the evolutionary process. Phylogenetic analysis

is a retrospective problem that enables complementary inference of evolutionary

processes. Models of phylogeny are generally formulated as continuous time

Markov chains, in which branch lengths are a function of the probability of

substitutions. As the probability of a mutation being accepted is impacted by the

disturbances which it may cause the protein energetically, there has been an effort

to incorporate biophysical reality into phylogenetic models in order to improve

their accuracy. These efforts have drawn upon the same classes of models as used

in the evolutionary simulation field. Using models which consider the constraints

of structure [17], one can evaluate the probability of fixing a mutation, resulting

in a particular evolutionary history, in the context of thermodynamic stability.

This approach lends itself naturally to incorporation in maximum likelihood (ML)

or Bayesian methods for phylogenetic tree construction. For instance, Parisi and

Echave [27] apply these considerations to phylogenetic inference. They make use

of a model, in which sequences are allowed to mutate and then are selected upon

based on structural constraints. The selection criterion is based on the difference in

contact potential between the position mutated and the nonmutated sequence. This

selection criterion can then be scaled by a parameter which is related to the selection

pressure. To apply this model in a phylogenetic context, site-specific replacement

matrices are calculated based on the contact potential score, amino acid equilibrium

frequencies, and a count matrix. The replacement matrices produced by this method

are then used to calculate the maximum likelihood of a data set based on a given

topology.
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A further improved method which takes advantage of biochemical properties

with less structural specificity is known as the CAT model [28]. The CAT model

uses an infinite mixture model with a Dirichlet prior distribution to describe

the substitution process. This mixture model is constructed on the premise that

a substitution will generally have similar biochemical properties to the amino

acid which it replaces. Positions on the protein which share similar biochemical

properties can be grouped into categories. These categories are then defined by

stationary probabilities [29].

Rodrigue et al. [30] take another step in the direction of incorporating thermody-

namic reality by making use of statistical potentials, similar to the contact potentials

employed by Parisi and Echave [27]. In this model, the change in contact potential is

scaled such that when the scalar ˇ D 0, interdependent changes are not considered.

Since the Bayes factor can be computed for any value of ˇ, this allows examination

of which values of ˇ result in the best fit of the model and the value of ˇ relays the

relative importance of the difference from the contact potentials. It was found that

models which considered site interdependence always outperformed models which

assumed independence.

Nasrallah et al. [31] examined the impact of site-dependent evolution on phylo-

genetic inference. An approach similar to that of Rodrigue et al. [30] was used to

simulate dependent sequence evolution and phylogenies created from this simulated

data, finding that increased levels of dependence in the simulated data resulted in

decreased levels of accuracy in the constructed phylogenies. In Rodrigue et al. [30],

the complexity of structure has essentially been reduced to two parameters, and

limitations exist as to what only two measures of a vastly complicated structure can

reconstitute. It is suggested that a more accurate description of fitness is needed for

such methods to reach their potential.

Recently, based on measurements inferred from coarse grain models similar to

those of Rastogi et al. [19], Kleinman et al. [32] proposed an energy score that is

based on combinations of a set of factors including secondary structure, contacts,

interresidue distance, solvent accessibility, torsion angles, and flexibility. These

factors were considered linearly and parameters related to them can be optimized.

Models which assume different combinations of these can then be compared based

on the “-value which results in the best fit.

Despite the increase in model fitness, Kleinman et al. [32] find that their model is

not a significant improvement over site-independent models. Specific assumptions

made about the relationship between fitness and change in scoring function, the lack

of consideration of negative design, and potentials that are too general may underlie

the performance of this method.

Current amino acid-level models for phylogenetic analysis do not offer a

sufficient level of biophysical realism and structural models for this purpose are

in their infancy. Further development of models like those of Kleinmann et al. [32]

and Grahnen et al. [21] will enable this field to advance. Better amino acid-level

models will enable more accurate reconstruction of ancient evolutionary histories

that are less likely to be confounded by problems like functional convergence.
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4 Population Genetics and Biophysical Constraints

in Models for Interspecific Evolution

To understand the process of interspecific molecular evolution, the factors which

influence substitution and selection must be recognized and the interplay between

them understood. There exists a broad range of features which can affect substitution

and selection, which may be more or less influential dependent on a given scenario.

To measure selective strength, some models examine the ratio of nonsynonymous

to synonymous changes, where an acceleration of the nonsynonymous substitution

rate is indicative of positive selection. Similar comparisons of the ratio of these

rates can be made to determine if a site is undergoing neutral evolution or purifying

selection. Due to the interest in these ratios, it follows that codon-level models

where synonymous and nonsynonymous changes can be observed have begun

to proliferate. These models allow for formulations of the substitution and the

mutation-selection process to be combined in a single framework which can be

related back to known data from genomes. Measures of selective pressures or

selective strength can then be estimated using maximum likelihood or Bayesian

methods.

A basic implementation of this type of model is given by Halpern and Bruno

[33]. This model assumes the mutation process (rates) is constant across all codons

but natural selection acts differently depending on the position and the nature of the

amino acid side chain. The model does not explicitly consider structure. Halpern

and Bruno represent the substitution rate between an amino acid i and amino acid

j as

Rij D ��ij NP.Zij /;

where � is a proportionality constant, �ij is the rate at which i mutates to j; N is the

haploid population size, and Zij is the probability of fixation of the new mutation.

For the mutation-selection portion of their model, they use the probability of fixation

of a new mutation in a haploid population as that given by the classic Kimura [34]

formulation.

P.Zij / D
1 � e�2sj

1 � e�2Nsj
:

While conceptually clear, this model does not consider any other forces beside

population size in computing the substitution rate.

As suggested above, the substitution rate may differ depending on the types of

changes made to a codon. A reasonable assumption could be that nonsynonymous

substitutions are more likely to be selected for. Should one be interested in

examining the ratio of nonsynonymous to synonymous changes, the differences in

nonsynonymous transition, nonsynonymous transversion, synonymous transition,

and synonymous transversion can be considered. The first models formulated to

capture these dynamics were outlined by Goldman and Yang [35] and many models

have built upon this foundation,
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Rij D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

0; if the two codons differ at more that one position;

�j ; for synonymous transversion;

k�j ; for synonymous transition;

!�j ; for nonsynonymoustransversion;

!k�j ; for nonsynonymoustransition;

where k is the transition transversion ratio, ! is the ratio of nonsynonymous to

synonymous changes, and �j is the equilibrium frequency of codon j .

This initial framework given by Goldman and Yang has been expanded to

incorporate a more complex view of the mutation-selection process taken from the

realm of population genetics, which allows for the consideration of other parameters

influential on selection. Important features of the physical environment such as the

structure of the protein and the solvent accessible surface area of the position can

affect the replacement process. These elements are incorporated into the Robinson

et al. [16] model, where differences in a solvent accessibility score and pairwise

interaction score are considered in the calculation of nonsynonymous changes. In

order to compute these scores, the 3D structure of a protein must be known and is

assumed to be identical across the set of sequences being analyzed; in this case, it is

inferred using a threading-based approach. Methods like these are novel because

they incorporate the phenotypic property of sequence–structure compatibility in

accounting for the substitution process.

Another extension of codon models involving structure for the detection of

positive selection was the invention of tertiary windowing [36–38]. In this approach,

standard codon models were applied independently in a contact sphere delineated by

protein structure to detect regions of a protein that were co-evolving under positive

selection.

However, neither the Robinson model nor the tertiary windowing approach

captures the whole picture of the substitution process, as both leave out population-

level factors. In fact by relating the Robinson model back to the Halpern–Bruno

model, a 2Nsj term can be computed. The 2Nsj term is often referred to as the

scaled selection coefficient. The scaled selection coefficient relates the evolutionary

importance of a trait in a way such that it can be compared to those of other traits

which arose in populations of different sizes.

Amino acid substitution matrices are typically empirical, drawn from existing

data rather than parameterized for use on any one data set. Koshi and Goldstein

[39] built such matrices explicitly incorporating structural considerations. Assuming

that sequences with the same structural properties have the same substitutional

properties, structural context-specific substitution matrices were created. Properties

considered included secondary structure and solvent accessibility. Interestingly,

it was found that different residue position classes produce different optimal

substitution matrices, suggesting the importance of the incorporation of structural

data in models of the substitution process.
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Koshi et al. [40] extended this approach, examining the influence of some of

the physicochemical properties of the amino acids on the substitution process by

introducing hydrophobicity and bulk as parameters in a suitability function into their

model. Wong et al. [41] expanded further on this idea by examining the impact of

volume, hydrophobicity, charge, and polarity independently. It is recognized that

these forces are not independent and that detection of selection for one factor does

not imply that the other factors are not influential. To implement this concept, they

expand the Goldman and Yang [35] model and include a category for the change

of physicochemical properties. While this model represents another step forward

in the inclusion of biophysically relevant parameters and yields interesting results

concerning physicochemical selective pressures, it ignores population-level effects.

Nielsen and Yang [42] proposed a codon model that would estimate the effective

population size along with selection coefficients. They cast! in a population genetic

framework

wij D
2Nj si

1 � e�Nj si
;

and substitute this new value of wij into their familiar 1994 formulation. From their

analysis of mitochondrial protein-coding genes, they found that allowing for the

variation of N among lineages increases model fit.

Huzurbazar et al. [43] constructed a model which considers both population

size and some basic elements of protein physiochemistry. Building on Kimura’s

framework, they explore the probability of fixation of classes of substitutions on

effective population size. These classes of substitution are defined by partitions

based on physicochemical data from the Grantham matrix [44]. The probability of

fixation is given in a manner easily relatable to Kimura’s model as

Fij D
.�j Sij /=.1 � e�2Ni Sij /P
j .�j Sij /=.1 � e�2Ni Sij /

;

where �j is the relative mutational opportunity, j is the index of partitions,

and i indexes the populations. Applying this model to a set of seven species

with vastly different population sizes, it was found that selective coefficients

decline as population size increases and decline with more radical amino acid

substitutions. This unexpected result could be caused by a number of factors, such

as the complexity of the mechanisms by which positive selection acts, linkage

of substitutions, failure to control for the underlying distribution of protein folds

and corresponding substitution patterns, compensatory processes at a systems

level, failure to account for segregating variation differentially averaged with fixed

changes, or other population-level forces. More than anything, this model suggests

that numerous factors on a broad range of levels influence the substitution and

selection process and should ultimately be considered explicitly.

Though this model includes aspects of physicochemical and population-level

properties, they are both incorporated on a relativity basic level. Future substitution

models will have to consider these factors in a more detailed manner. At a structural
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level, the Grantham matrix can be replaced by a scoring function like that in

Grahnen et al. [21]. This can also enable explicit testing of the relationship between

changes in values of the scoring function and probability of fixation (fitness).

Another physically based process that has yet to be considered is that of linkage.

It has been shown that proteins that are encoded for by genes which are located

nearly one another do not evolve independently [45]. Aspects other than protein

structure must be taken into consideration in order to account for this dependence.

Nielsen and Yang [42] and Huzurbazar et al. [43] acknowledge the implications

of recombination but avoid the complication of incorporating this complexity by

making the assumption that their models are only valid in a particular population

genetics context where the mutation rate is low enough to make concurrent

polymorphisms improbable and where the recombination rate is high enough to

insure that polymorphisms are in linkage equilibrium.

In order to make inferences about the selective process in populations in

which these assumptions are not the case, linkage should be considered. Hill–

Robertson effects are not unlikely as it has been found that the probability that a

beneficial mutation will drag another allele into fixation with it is normally less

than twice the selective advantage inferred by the beneficial mutation [46]. Nevo

et al. [47] suggested that fixation effects account for increased standing variation in

small population size organisms compared with expectations from site-independent

models. Should a pair of mutations arise which both confer a similar fitness change

in the absence of recombination, these new mutations could experience competition.

This phenomenon has been observed in Drosophila melanogaster and Drosophila

simulans, where it was found that regions of low recombination had reduced rates of

evolution [48]. The classic formulation for linkage is dependent on both molecular

and population-level processes, with the recombination rate based on the crossover

process and the population size. While it has been suggested that the variation of

recombination rates across organisms may have a limited effect on the substitution

process [49], this conclusion may change as the population size varies. In fact, as

suggested by Huzurbazar et al. [43], there appears to be a complex interplay between

effective population size and other parameters in the substitution process, possibly

even including the underlying protein fold distribution found in different species.

5 Concluding Thoughts

Advances in the development of protein models have generated the ability to

incorporate multiple factors based on structure, evolution, and population genetics.

The implementations of these models in fields as divergent as phylogenetics,

comparative genomics, and evolutionary simulation have enabled addressing ques-

tions involving how both population-level dynamics and physicochemical/structural

properties are influential in the evolutionary process. The development of more

complex models which further consider these multidimensional intricacies in both

forward and retrospective trajectories is vital in furthering our knowledge of
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the process of molecular evolution. The three current research trajectories have

developed more independently than would be desirable, as models from each

subfield can be useful in other subfields. Further, incorporation of population

genetic models into molecular evolution is more advanced than the incorporation of

structural and functional considerations. However, it is with this growing multiscale

modeling trajectory that a key understanding of the evolution of cell and molecular

systems can be generated, both in the details and in the processes.
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