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Preface

This Festschrift celebrates the 65th birthday of Grzegorz Rozenberg, one of the
world leaders in research on theoretical computer science and natural computing.
Grzegorz had—and still has—enormous influence on the development of both dis-
ciplines. He has published over 500 research papers, 6 books, and coedited about
90 books. His papers shaped research in a whole range of areas, including formal
language and automata theory, the theory of concurrent systems, the theory of graph
transformations, mathematical structures in computer science, and natural comput-
ing.

He is often referred to as a guru of natural computing, as he was promoting the
vision of natural computing as a coherent scientific discipline already back in the
1970s.

He is especially fond of—and very successful in—interdisciplinary research. As
a matter of fact, his education and research career is interdisciplinary in a quite
symbolic way: His first degree was as an electronics engineer; he got his master’s
degree in computer science and his Ph.D. in mathematics, and for over 30 years he
has worked closely with biologists on information processing in biological systems.

Grzegorz is well known for his work for the scientific community. Apparently,
this has its roots at the beginning of his career in Poland, as he felt that scientists
there were quite isolated and forgotten by their colleagues in the West. He promised
himself that if he ever got out of Eastern Europe he would spend a considerable part
of his life working for the community.

His current or past functions for the academic community include: president of
the European Association for Theoretical Computer Science (EATCS); a cofounder
and president of the International Society for Nanoscale Science, Computation, and
Engineering (ISNSCE); chair of the steering committee of the DNA Computing
Conference; chair of the steering committee of the International Conference on Ap-
plication and Theory of Petri Nets; chair of the steering committee of the European
Educational Forum; a cofounder and chair of the steering committee of the Inter-
national Conference on Developments in Language Theory; and a cochair of the
steering committee of the International Conference on Unconventional Computa-
tion.

He is on the editorial boards of many journals and book series. As a matter of fact,
he was a cofounder of some well-known journals and book series, most notably the
journal Natural Computing, the journal Theoretical Computer Science C (Theory
of Natural Computing), the book series Monographs and Texts in Theoretical Com-
puter Science, the book series Natural Computing, and the book series Advances in

vii



viii Preface

Petri Nets. For over 20 years, he was the editor of the Bulletin of the European Asso-
ciation for Theoretical Computer Science, and is a coeditor of four handbooks—on
formal languages, on graph grammars and computing by graph transformations, on
membrane computing, and on natural computing.

He also made valuable contributions on the national scene in The Netherlands.
For example, he was the founder and the first president of the Dutch Association
for Theoretical Computer Science. Also, he initiated the Dutch Theory Day, which
is today the main meeting forum for researchers working on theoretical computer
science in The Netherlands.

His life in science is only one of his several lives. He is a professional magician—
often performing at scientific conferences. Also, he spends a considerable part of
his intellectual life studying the paintings of Hieronymus Bosch. [Apparently, he is
writing a book on the art of Bosch.] But, most of all, he is a family man, and an ad-
mirer of the art of his son, DADARA. The phrase “family man” must be seen here
in a broader context, as he calls his Ph.D. students and postdocs, and many of the
scientists who come to work with him, “his children.” For more insight into Grze-
gorz’s life and personality, please see the tribute “Grzegorz Rozenberg: A Magical
Scientist and Brother” by his close friend and collaborator Arto Salomaa in Part I of
this book.

To celebrate the 65th birthday of Grzegorz, we organized in December 2007 a
workshop on Algorithmic Bioprocesses at the Lorentz Center of Leiden University.
The theme of the workshop is one of Grzegorz’s research areas, and it falls within
the general field of natural computing which is certainly his favorite research field
now. As a matter of fact, we wanted the workshop to reflect Grzegorz’s views of
computer science and natural computing, which in a nutshell, can be explained as
follows.

The spectacular progress in information and communications technology (ICT)
is very much supported by the evolution of computer science which designs and
develops the instruments needed for this progress: computers, computer networks,
software methodologies, etc. Since ICT has a tremendous impact on our everyday
life, so too does computer science. However, there is much more to computer science
than ICT: It is the science of information processing, and, as such, it is a fundamental
science for other scientific disciplines.

On the one hand, the only common denominator among the many, diverse re-
search areas in computer science is that they require us to think about various aspects
of information processing. Therefore, the frequently used term “informatics”—most
commonly used in Europe—is much better than “computer science”; the latter stip-
ulates that a specific instrument, namely the computer, is the main research topic
of our discipline. On the other hand, one of the important developments of the last
century for a number of other scientific disciplines is the adoption of information
and information processing as central notions and frameworks of thought—biology
and physics are prime examples here. For these scientific disciplines, informatics
provides not only instruments but also a way of thinking. One of the grand chal-
lenges of informatics is to understand the world around us in terms of information
processing.
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Informatics (computer science) is now undergoing an important transformation
which is stimulated to a great extent by all kinds of interactions with the natural
sciences. It is adapting and extending its traditional notions of computation and
computational techniques to account for computation taking place in nature around
us.

Natural computing is concerned with computing taking place in nature as well
as human-designed computing inspired by nature. Using the terminology of natural
sciences, specifically biochemistry, one can say that natural computing is an im-
portant catalyst for the interactions between informatics and natural sciences, and
hence an important catalyst for the ongoing, exciting development of informatics.

The main idea of the “Algorithmic Bioprocesses” workshop was to reflect the
above point of view, and most importantly to reflect the power and excitement of
interdisciplinary research, which forms the core of natural computing. We have cho-
sen the name “Algorithmic Bioprocesses” because the workshop did not cover the
whole spectrum of natural computing research, but rather it was mostly focused on
the interactions between computer science on the one hand and biology, chemistry,
and DNA-oriented nanoscience on the other.

The workshop turned out to be a great success due—among other reasons – to
the fact that many world leaders of research in natural computing participated. It
was also a very pleasant social event. Grzegorz was visibly happy with the work-
shop, obviously because of its high scientific level, but also because so many of the
speakers were really his “children.”

The idea of a book based on the workshop had already occurred to us before
the event, and participants suggested additional contributors to the book, especially
scientists whose work is related to Grzegorz’s research interests. As a result, this
book contains some contributions that were not presented at the workshop. We be-
lieve that the resulting book provides a valuable perspective on an important part of
current research in natural computing.

The book is divided into parts which, with the exception of Part I, reflect various
research areas related to algorithmic bioprocesses. Part I is a tribute to Grzegorz
written by his very close friend and collaborator Arto Salomaa. Part II, “Sequence
Discovery, Generation, and Analysis,” is concerned with many aspects of funda-
mental studies of biological systems. Part III, “Gene Assembly in Ciliates,” covers
theoretical, computational, and experimental research on the process of gene assem-
bly, including the hypothesis on the biological realization of this process. Part IV,
“Nanoconstructions and Self-assembly,” discusses many aspects of nanoconstruc-
tions and self-assembly including theoretical and computational aspects as well as
pragmatic considerations on implementations of physical chemistry processes. Part
V, “Membrane Computing,” discusses the membrane computing model inspired by
the compartmentalization of cells by biological membranes. It also surveys research
on a more recent model of spiking neural P systems which is motivated by the behav-
ior of spiking neural networks. Part VI, “Formal Models and Analysis,” surveys gen-
eral computer science-inspired approaches to modeling and analysis of biological
processes, such as the use of Petri nets, and the use of probabilistic model checking.
It also presents models for specific biological phenomena such as recombination, the
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eukaryotic heat shock response, the MAP kinase cascade, and the behavior of the
calyx of Held synapse. Part VII, “Process Calculi and Automata,” deals with the re-
lationship between automata and process calculi on the one hand and biochemistry
on the other. It considers molecules as automata, biochemical implementation of
automata, process calculi as a general framework for studying biological processes,
and translations from process algebra models into differential equations—a more
traditional framework used by biologists. Part VIII, “Biochemical Reactions,” con-
siders problems of stochastic simulation and modeling in relation to dynamic de-
scription of biochemical reactions. Finally, Part IX, “Broader Perspective,” provides
a more general setting for the book by adding a number of additional topics from
natural computing. They include molecular evolution, regulation of gene expression,
light-based computing, cellular automata, realistic modeling of biological systems,
and evolutionary computing.

Thus, the book covers a wide spectrum of research topics from natural comput-
ing. Since it is a Festschrift, it is fitting to note here that Grzegorz made valuable
research contributions to the research themes of all parts of this book.

We hope that this book will contribute to the further development of research in
the very exciting and important area of natural computing, by providing valuable
perspective and knowledge to researchers in natural computing, and by motivating
and encouraging others to join this research field. Most of all, we hope that the book
is really a worthy tribute to Grzegorz. We want to thank all the contributors for
helping us to achieve these goals.

Vancouver, Canada Anne Condon
Rehovot, Israel David Harel
Leiden, The Netherlands Joost N. Kok
Turku, Finland Arto Salomaa
Pasadena, USA Erik Winfree
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Grzegorz Rozenberg: A Magical Scientist
and Brother

Arto Salomaa

Abstract This is a personal description of Grzegorz Rozenberg. There is some-
thing magical in the fact that one man, Grzegorz, has been able to obtain so many
and such good results in so numerous and diverse areas of science. This is why I
have called him a “magical scientist.” He is also a very interdisciplinary scientist.
In some sense this is due to his educational background. His first degree was in
electronics engineering, the second a master’s in computer science, and the third
a Ph.D. in mathematics. However, in the case of Grzegorz, the main drive for new
disciplines comes from his tireless search for new challenges in basic science, rather
than following known tracks. Starting with fundamental automata and language the-
ory, he soon extended his realm to biologically motivated developmental languages,
and further to concurrency, Petri nets, and graph grammars. During the past decade,
his main focus has been on natural computing, a term coined by Grzegorz him-
self to mean either computing taking place in nature or human-designed computing
inspired by nature.

1 General

Everyone who has worked with or otherwise followed closely Grzegorz Rozenberg
has been profoundly impressed by his overwhelming enthusiasm in doing research.
One can do great science and have fun doing it is one of his thoughts often ex-
pressed. Grzegorz has contemplated thoroughly the qualities of good science, and is
ready to discuss and give advice about questions such as the choice of your research
area or topic, what is important and what is not, or what is applicable and what is
not. Sometimes a widely investigated research area begins to stagnate. Often an in-
vigorating new idea, perhaps from a different field of science, changes the situation.
These and related thoughts usually come up in discussions with Grzegorz. While
some science writers talk about the “end of science,” meaning that one already has
walked through all significant roads, Grzegorz has quite an opposite view: we are
in many respects only at the beginning of the road. In particular, this is true of com-
puter science and natural computing. I will next outline some of Grzegorz’s thoughts
about these areas.

A. Salomaa (�)
Turku Centre for Computer Science, Joukahaisenkatu 3-5 B, 20520 Turku, Finland
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Computer science develops tools needed for ICT, information, and communica-
tions technology. Such tools include computer networks and software methodolo-
gies, the theoretical basis being essential. Computer science is more than ICT, it is
the general science of information and information processing. The European term
informatics is much better than computer science. The former term does not refer
to any device or instrument for information processing. Such instruments always
presuppose a paradigm of thinking about information processing, whereas if one
speaks of “informatics”, no devices or paradigms are stipulated.

In particular, informatics should study computing and information processing
taking place in nature, and develop paradigms based on it. Research in natural com-
puting, as Grzegorz understands it, is genuinely interdisciplinary and bridges infor-
matics to natural sciences. Evolutionary computing and neural computing are older
examples of such bridges. Human-designed computing inspired by nature includes
such paradigms as molecular computing and quantum computing.

This is no place to overview Grzegorz’s huge scientific production (hundreds
of papers, some eighty books or edited books), or to discuss his contributions to
the scientific community. (For instance, he was EATCS President much longer than
anyone else, not to mention his more than twenty years as the editor of the EATCS
Bulletin.) I will still return to our scientific cooperation in terms of three glimpses
of it, in Sect. 3. Next, I will discuss other matters.

2 Personal Recollections

2.1 Grzegorz and Bolgani

You get a good picture about Grzegorz as a human being by reading [7]: what is
important for him, what he likes to do, where he has been, and whom he has been
with. He has surely had a many-faceted, even adventurous life, centered around fam-
ily (most importantly Maja, Daniel, and Mundo), science, and also magic. Before
I add some personal comments to the matters in [7], I mention a couple of things,
covered very little or not at all in [7].

Life changed for Grzegorz when his grandson Mundo came into the world in Au-
gust 2005. After that, much of his conversation has consisted of telling people about
recent happenings with Mundo. Our email has piles of pictures of Mundo. I have a
big picture of Grzegorz and myself, standing in snow during a sauna intermission
in 1980. It has the text Happiness is being a Grandfather. I am glad that this is now
true also for Grzegorz.

Owls are briefly mentioned in [7]. Grzegorz has a huge collection of owl fig-
urines, real stuffed owls, and material dealing with owls. This exhibition is a real
wonder to a visitor in Bilthoven. Grzegorz calls owls magicians of nature. His inter-
est in owls was initiated by some pictures taken by Juhani Karhumäki in the 1970s.

Also, Hieronymus Bosch is only briefly mentioned in [7]. During the past decade,
Grzegorz has become a real expert on Bosch. He has a comprehensive library of
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books on Bosch, in numerous languages. I was sorry to tell him that I have found
no such book in Finnish. Grzegorz likes to go to “Boschian” lectures and meetings.
My favorite Bosch site is

www.abcgallery.com/B/bosch/bosch.html

I do not know whether Grzegorz has seen it or likes it.
I will tell at the beginning of the next subsection about my first meeting with

Grzegorz. Some years after that Grzegorz started to visit Turku. In 1976, one pur-
pose of the visit was the Ph.D. defense of Juhani Karhumäki. Grzegorz has had
many excellent Ph.D. students of his own, and has been an external examiner or
opponent in many other Ph.D. defenses. The reaction of the candidates has been
overwhelmingly positive. How helpful, constructive, and friendly he has been, can
be seen from many contributions to [1].

Grzegorz stayed with my family many times in the 1970s and became famous,
among many other things, for eating huge amounts of blueberry pie. I was called
“Tarzan,” and Grzegorz wanted to become a member of the Tarzan family. We de-
cided that he will be Bolgani. Later on, “Bolgani” became his official name as a
magician, and it also appears on his visiting card. In the following, I will use the
two names interchangeably.

Although most of the time a scientist, Bolgani has also periods when he lives
with magic. He has developed the performing art of close-up magic to a high pro-
fessional level. I have watched him in numerous shows, both in private homes and
at conference gatherings. I have long given up trying to explain or understand the
illusions. I just enjoy the show. When Bolgani gave a performance in my home,
one of the guests came up later with the “explanation” that he was wearing contact
lenses of a special type. Illusions have no explanation.

Undoubtedly, Bolgani is a born magician. The maiden name of his mother is
Zauberman. The name of his wife Maja means “illusion” in Hindi. His hands are
very sensitive; I have not seen anyone handle a deck of cards as gently as Bolgani.

A magician likes to give a performance. Grzegorz is a great lecturer. The commu-
nity knows this: he always has numerous invitations. It is difficult to match his sense
of humor, and probably impossible to match his capability to include magical illu-
sions in his lectures. Many people make easy things difficult in their lectures. Grze-
gorz has the talent of making difficult things easy. As Maurice Nivat has said, Grze-
gorz is always enthusiastic, always optimistic, always amusing, and never boring.

Bolgani often presents a sequence of illusions within the framework of a story,
such as the following. Bolgani explains that in Chinese the names of the suits hung
tao (heart) and hei tao (spade) are similar and, therefore, some confusion may arise.
But now we try to be careful. He then shows the audience some hearts and puts them
on the table, as well as some spades and puts them also on the table, far from the
hearts. “So this pile is hung tao?” The audience agrees. “And this is hei tao?” Again
consensus. Bolgani then entertains the audience and talks about various matters;
about owls, and about the sauna. That laughter and for him, nowadays Mundo is
the best medicine. That one should never assume anything. That the only place
where success comes before work is in the dictionary. Then Bolgani goes back to

http://www.abcgallery.com/B/bosch/bosch.html
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the cards. “So this is hung tao and this hei tao?” General agreement. But when he
shows the cards, it is the other way round. “Too bad, let us see what happens if
we put everybody in the same pile.” He first puts the pile of hearts on the table
and the spades on top. Again, there is some entertainment. “Now let us see if they
interchanged again.” Bolgani picks up the cards and shows them. “This is absolutely
crazy. They are all zhao hua (club, grass flower)!”

2.2 Brother

Grzegorz had been1 in Holland about one and a half years, and was running a coun-
trywide seminar in Utrecht, where foreign speakers were also invited. I got an invi-
tation (by ordinary mail, not by phone) from G. Rozenberg in May 1971. I was not
familiar with the name previously. He waited for me at the airport and arranged our
meeting through loudspeakers. He looked much younger than I had anticipated. He
drove a small Volkswagen. We got immediately into a very hectic discussion about
parallel rewriting and L systems. This was contrary to all principles about driving,
expressed by Grzegorz later. After about one hour, I started to wonder why we had
not yet arrived at my hotel in Utrecht, well known for the model railroad upstairs. It
turned out that we were still on some side streets of Amsterdam.

The same day Grzegorz told me more about L systems, at the university and dur-
ing dinner at an Indonesian restaurant. This turned out to be an area where our scien-
tific cooperation has been most vivid. The most important outcome is the book [8],
but L systems play an important role also in [10, 11].

I had four lectures during the seminar, and Grzegorz also arranged a big party
in their Marco Pololaan apartment. Although the twenty people present were quite
noisy, the baby Daniel slept all the time. There I got to know many of my friends for
the first time, notably Aristid Lindenmayer. L systems seemed to be a really fresh
idea. I got carried away, and already decided to include a chapter about them in my
forthcoming book on formal languages. During the next few weeks, I exchanged
numerous letters with Grzegorz about the topic.

At this stage, I would like to tell two stories about our joint books. In some way,
they illustrate very well Grzegorz’s friendliness, efficiency, and professionalism.

When working on the book [8], we had many specific deadlines, depending on
mutual trips, etc. Once, I got very nervous that Grzegorz was too involved in other
research topics, and could not possibly make the deadline. I wrote a very angry letter
to him. His answer was very brief. “Tarzan has never before written such an angry
letter. The reason is simple. In your letter you mention that you did not go to sauna
in two days.” That was it, and he made the deadline.

1To justify the word brother appearing in the title of this paper, I quote Grzegorz from [7] where
he describes his “wonderful family.” Then I have two brothers of choice, Andrzej and Arto. It is
difficult to imagine better brothers (an interesting aspect of this brotherhood is that Andrzej and
Arto have never met).
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In March 1994, Grzegorz suggested to me: “Let us make a handbook on formal
languages.” We started planning it immediately. In less than three years, a copy
of [11] (three volumes, more than 2000 pages, 3.6 kilos altogether, more than 50
authors) was in the library of Turku University. Are there similar examples of such
speedy editing of such an extensive handbook-type of scientific work?

Very soon Bolgani became a close family member. My wife tells him everything
about our cats and often wears blouses given by him as presents. He is a coau-
thor in my son’s first scientific publication. My daughter always liked to travel to
Utrecht because “it is the town with the Orange Julius.” My grandchildren call him
Äijä-Bolgani (grandpa-Bolgani). My grandson was very impressed because Bolgani
drew many coins from his ears, and my granddaughter because of his expanding
command of Finnish. On the other hand, Bolgani’s late mother treated me as her
own son. I myself have, more and more during the years, learned to ask his advice
in difficult decisions and situations.

Bolgani always brings carefully selected gifts, not only to me but also to every-
body in my “clan.” In 1975, he gave me a very special memory device. It was with
me everywhere for thirty years, until it finally wore out. No substitute was available,
and I had to be satisfied with miserable alternatives. But in 2007, Bolgani gave me
a substitute, even better than the original!

My brother has an immense supply of jokes and anecdotes, always suitable to the
occasion. Often a fatiguing situation entirely changes with his comments. When I
came, exhausted in the airport bus, together with some other conference participants
to Waterloo in 1977, Bolgani was there to meet us. Instead of greeting me, he went
to the driver, pointing toward me, “Did that fellow behave well in the bus?”

Sometimes, I have experienced real surprise. I had forgotten my slippers in
Bilthoven. The next time I was there they were not to be found, and Bolgani just
remarked that maybe the cleaning lady had somehow misplaced them. Sometime
afterwards, I was staying in Hermann Maurer’s (a close friend of both of us and
a marvelous scientific collaborator) house in Graz. When I entered my room, my
slippers were there!

Bolgani claims that I have a good memory, whereas he has a bad one. I am not
sure of this; it could be the other way round. For instance, in Bolgani’s writings
to me, the expressions “Rabbit Ph.D. Story” and “Dog Paper Story” appear many
times. I do not remember what they refer to.

Some of our best times together have been in the sauna. Bolgani has a special
sauna certificate and many sauna records, for instance, the shortest time between
the plane landing and him sitting in the sauna, or seeing special animals from the
sauna window. I let Bolgani himself speak (“löyly” is the Finnish word for sauna
heat, and “supikoira” for raccoon dog):

When you come to Tarzan nest
You get sauna at its best
Where you can admire
Löyly and birch wood on fire
A lot of flora and fauna
Can be seen from Salosauna
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But with Bolgani and nice weather
You can see two supikoiras together

3 Case Studies of Scientific Cooperation

3.1 Quasi-uniform Events and Mostowski

One of the early papers on automata by Grzegorz [6] deals with quasi-uniform
events. “Languages” were often in the early days called “events,” but I will now
speak of languages. A language L over an alphabet Σ is quasi-uniform if, for some
m ≥ 0,

L = B∗
0 b1B

∗
2 b3 . . . b2m−1B

∗
2m,

where each bi is a letter of the alphabet Σ , and each Bi is a subset (possibly empty)
of Σ . Observe that B∗

i reduces to the empty word when Bi is empty. Thus, there
may be several consecutive letters in the regular expression, but the subsets are
always separated by at least one letter. Grzegorz shows, for instance, that it is decid-
able whether or not a given finite automaton accepts a quasi-uniform language. The
reader might want to prove this, especially because the reference [6] is not so easily
available.

Much later, when studying subword occurrences and subword histories, I noticed
that the language defined by a subword history of a very natural form always is a
finite union of quasi-uniform languages (and hence, star-free). This is an example
where we have worked separately on similar questions. Indeed, because Grzegorz
and I never have time to cover all topics, I have never had a chance to explain to him
the connection between quasi-uniform events and subword histories.

The paper [6] was communicated for publication by the famous logician Andrzej
Mostowski on August 7, 1967. Grzegorz tells about him [7] as follows.

Mostowski was a very kind man of very good manners. He always had time whenever I
wanted to talk to him. I still remember the interview when he offered me a job. Looking
through the papers he said at some point: “I see that you will be the youngest member of
the Institute,” he paused and then he continued “but this problem will resolve itself with
time.”

I also met Mostowski a few times, long before I met Grzegorz. He wore very ele-
gant suits, quite unlike the casual attire now common. He was polite and considerate
to me. For instance, he was chairing a session in a big logic conference in Helsinki
in 1962, where I gave a talk about infinite-valued truth functions. I was somewhat
nervous, and this was apparently noticed by Mostowski. There were some simple
questions after my talk, but Mostowski did not want to embarrass me with his in-
volved question. Instead, he came to me later asking, “How do you actually obtain
the decidability?” Then it was no problem for me to explain to him the details.
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3.2 Developing Cells and Lindenmayer

My cooperation with Grzegorz was centered around developmental languages and
L systems for about two decades. I already told about my first meeting with Aristid
Lindenmayer. Grzegorz had gotten to know him somewhat earlier [7], after studying
a paper by Dirk van Daalen. Aristid became a close friend of ours. Apart from
biological matters, we used to consult him about many other things, for instance,
the English language.

We edited a book [9], for Aristid’s 60th birthday. It also contains information
about the early stages of L systems and the people involved. Aristid did not know
about our plan. One evening in November 1985, Grzegorz phoned him, inviting him
for a cup of coffee. Aristid was surprised to see me also in Bilthoven. Grzegorz told
him that we knew about his birthday and bought him a book as a present, giving
Aristid a parcel containing [9]. After that, the representatives of Springer-Verlag
and other friends who had been hiding upstairs came to congratulate Aristid.

After Aristid’s untimely passing away, we wanted to organize a conference ded-
icated to his memory. It was originally planned to take place in Lapland. But there
were many practical difficulties. The conference, the first DLT, took place in Turku.
All participants signed a special greeting to Jane Lindenmayer. The letter “L” in
“DLT” was originally intended to refer also to L systems.

One of our early joint papers on L systems was the widely referenced article
[3, 4], where Mogens Nielsen and Sven Skyum were also coauthors. Much of the
work was done during the Oberwolfach conference in 1973 in my family apartment.
Sometimes, Grzegorz was shouting so enthusiastically that my family thought we
were fighting. The paper has a strange editorial history: part II appeared several
months before part I.

One of the technical contributions of [3, 4] and related papers was to show how to
get rid of the erasing rules, that is cell death. I mention one example. A D0L system
consists of a word and a morphism (rules for the development of each letter). We
get the language of the system by iterating the morphism on the word. For instance,
starting with the single-letter word a and the morphism a → aba, b → b3, we get
the words

a, aba, abab3aba, abab3abab9abab3aba, . . . .

(A knowledgeable reader will notice the connection with Cantor’s dust.) A general
D0L system may have arbitrarily many letters, and some of the rules may be erasing.
How to get rid of the erasing rules? It was shown in [3, 4] (a very detailed proof
appears in [2]) that this is always possible if one allows finitely many starting words
and applies a letter-to-letter morphism to the end result.

3.3 Twin-Shuffle and Unisono Duet

Simultaneously with the Handbook [11], Grzegorz and I worked with Gheorghe
Pǎun on a book on DNA-based computing [5]. This was in accordance with Grze-
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gorz’s enthusiasm about natural computing. We had already noticed that a property
shared by most of the models of DNA computing is that they produce all recursively
enumerable sets, that is, are universal in the sense of Turing machines. This property
seems to be completely independent, for instance, of a model being grammatical or
a machine model. One morning in the summer 1996 Grzegorz called me. We talked
for about one hour. He spoke very fast, telling me that there is something déjà vu
in Watson–Crick complementarity which leads to Turing universality. Roughly, the
matter can be described as follows.

Consider the binary alphabet {0,1}, as well as its “complement” {0̄, 1̄}. For a
word x over {0,1}, we denote by x̄ the word over {0̄, 1̄}, where every letter of x is
replaced by its “barred version.” For instance, if x = 001100, then x̄ = 0̄0̄1̄1̄0̄0̄. The
shuffle of two words x and y is the set of words obtained by “shuffling” x and y,
without changing the order of letters in x or y. For instance, each of the words

00̄00̄11̄11̄00̄00̄, 0̄0̄1̄1̄0̄0̄001100, 0̄0010̄101̄1̄0̄00̄

is obtained by shuffling x and x̄ with x = 001100. The twin-shuffle language T S

consists of all words obtained by taking an arbitrary word over {0,1} and shuffling
it with its complement. It was known before that T S is universal: every recursively
enumerable language is obtained from it by a generalized sequential machine map-
ping. This means that T S stays invariant for each specific “task,” only the input–
output format has to be specified differently, according to the particular needs. By
viewing the four bases of DNA as the letters 0,1 and their barred versions, the inter-
connection between Watson–Crick complementarity and the twin-shuffle language
becomes clear.

These matters were discussed in [12], and later in [5] and in many other publica-
tions. They were also discussed during ICALP’99 in Prague [13]. This was some-
thing special. Grzegorz and I were both invited speakers. But for the first time in
ICALP history, the invitation was presented to us jointly. We took the matter very
seriously. Both of us were speaking separately; Grzegorz about the wonders of his
favorite ciliate Tom. But there was also a joint part where we both spoke unisono.
This duet had required much practice. Fortunately, the hotel was luxurious, and I
had a big apartment. So, there were no complaints from the neighbors.

4 Conclusion

Grzegorz writes in [7]:

I have a wonderful family. I have written many papers. I have shuffled many decks of cards.
Life has been good to me.

Let us hope that it will continue to be so in the years to come.
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Monotony and Surprise

Pattern Discovery Under Saturation Constraints

Alberto Apostolico

Abstract This paper reviews models and tools emerged in recent years in the au-
thor’s work in connection with the discovery of interesting or anomalous patterns
in sequences. Whereas customary approaches to pattern discovery proceed from ei-
ther a statistical or a syntactic characterization alone, the approaches described here
present the unifying feature of combining these two descriptors in a solidly inter-
twined, composite paradigm, whereby both syntactic structure and occurrence lists
concur to define and identify a pattern in a subject. In turn, this supports a natural
notion of pattern saturation, which enables one to partition patterns into equiva-
lence classes over intervals of monotonicity of commonly adopted scores, in such a
way that the subset of class representatives, consisting solely of saturated patterns,
suffices to account for all patterns in the subject. The benefits at the outset consist
not only of an increased descriptive power, but especially of a mitigation of the of-
ten unmanageable roster of candidates unearthed in a discovery attempt, and of the
daunting computational burden that goes with it.

The applications of this paradigm as highlighted here are believed to point to
a largely unexpressed potential. The specific pattern structures and configurations
described include solid character strings, strings with errors, consensus sequences
consisting of intermixed solid and wild characters, co- and multiple occurrences,
and association rules thereof, etc. It is also outlined how, from a dual perspective,
these constructs support novel paradigms of data compression, which leads to suc-
cinct descriptors, kernels, classification, and clustering methods of possible broader
interest. Although largely inspired by biological sequence analysis, the ideas pre-
sented here apply to sequences of general origin, and mostly generalize to higher
aggregates such as arrays, trees, and special types of graphs.
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1 Introduction

The problem of characterizing and detecting surprisingly recurrent patterns and re-
lated associations or rules arises ubiquitously in applications and is variously pur-
sued order to compress data, unveil structure, infer succinct descriptions, extract
and classify features, etc. In molecular biology, some sequence patterns are vari-
ously implicated in important facets of biological structure and function. In mon-
itoring, surveyance and intrusion detection, the emergence of sequences of events
or behaviors that depart significantly from routine is cause for alert and scrutiny. In
the analysis of network traffic, unusually dense sequences of messages bearing high
mutual similarity may indicate fraudulent activity or prelude to malicious attacks.
Surprisingly high correlations in test answer sheets have helped economists in ex-
posing cheating by schoolteachers [40]. The application of different measures of text
similarity to a corpus of Japanese poetry has revealed connections in “honkadori”
or poetic allusions previously unsuspected in the literary circles [49].

To such a broad variety of contexts, there corresponds a multiplicity of mod-
els and analytical tools. Roughly, the characterizations offered for the notion of a
sequential pattern could be partitioned into statistical and syntactic. In a typical sta-
tistical characterization, a pattern is a sequence of m positions such that at each
position each character from (some subset of) the alphabet may occur with a given
probability or weight. This may be described by a suitable matrix or profile, where
columns correspond to positions and rows to alphabet characters (see, e.g., [34]).
The lineage of syntactic characterizations could be ascribed to the theory of error
correcting codes: a pattern is a string w of length m and an occurrence of it is any
string at a distance of d , the distance being measured in terms of errors of a certain
type. For example, we can have only substitutions like in the Hamming variant [33],
substitutions and indels like in the Levenshtein variant [39], substitutions and swaps
and so on. Syntactic characterizations enable us to describe the model of a pattern,
or a realization of it, or both, as a string or simple regular expression over the input
alphabet perhaps enriched by special a wildcard or “do not care” character.

A somewhat related distinction may be based on whether the patterns being
sought belong in a family of a priori defined, abstract models or templates, or the
search is to be limited to substrings in the sample or to some more or less controlled
neighborhood of those substrings. The approaches in the first class tend to be more
rigorous, but also often pose unbearable computational burdens. Those in the sec-
ond class tend to be computationally viable, but rest on more shaky methodological
grounds. The discovery of interesting patterns in sequences appears thus to be torn
between the rigidity of the model on the one hand and the abundance of candidates
on the other. In particular, the variety of patterns described by strings affected by
errors such as, e.g., mismatches or do not care characters escalates exponentially
with their length and introduces a number of candidates disproportionate to the in-
put size. This tends to generate daunting computational burdens, and often gives
rise to tables that are impossible to visualize and digest. Faced with such “theories



Monotony and Surprise 17

larger than life,” one is exposed to telling Horatio that there are more things in his
philosophy than are dreamed of in heaven and earth.1

Irrespective of the particular model or representation chosen, the tenet of pattern
discovery equates overrepresentation with surprise, and hence with interest. Thus,
any pattern discovery algorithm must ultimately weigh patterns against some thresh-
old, based on a score that compares empirical and expected frequency, perhaps with
some normalization. The departure of a pattern w from expectation is commonly
measured by so-called z-scores, which have the form

z(w) = f (w) − E(w)

N(w)

where f (w) > 0 represents a frequency, E(w) > 0 an expectation and N(w) > 0 is
the expected value of some function of w. For given z-score function, set of patterns

W , and real positive threshold T , patterns such that z(w) > T or z(w) < −T are
respectively dubbed over or underrepresented, or simply surprising.

The escalation of the number of candidate patterns may be in part endemic, but
another part seems rooted in the traditional characterizations of the notion of a pat-
tern that are based either on syntactic or on statistical properties alone. We study
here a systematic application of alternatives that result from a prudent combination
of these two aspects in the model. The first ingredient of this perspective is offered
by certain attributes of “saturation” that combine in a unique way the syntactic struc-
ture and the list of occurrences or frequency for a pattern. In informal terms, a pat-
tern is saturated relative to its subject text, if it cannot be made more specific without
losing some of its occurrences. The second ingredient is the existence of groups of
syntactically related patterns within which z-scores behave monotonically, so that
one may confine attention to the most surprising among saturated patterns and ne-
glect the others.

Some notational conventions follow. Given a finite alphabet Σ of characters
or symbols, we use Σ+ to denote the free semigroup generated by Σ , and set
Σ∗ = Σ+ ∪ {λ}, where λ is the empty word. An element of Σ∗ is called a string
or sequence or word, and is denoted by one of the letters s, u, v,w,x, y, and z.
We write x = x1x2 . . . xn when giving the symbols of x explicitly. The number n of
symbols that form x is called the length of x and denoted by |x|. If x = vwy, then
w is a substring or factor of x and the integer 1 + |v| is its (starting) position in x.
Sometimes a special wildcard character “•” is introduced, whereby we can write
strings on Σ ∪ {•}. We build various kinds of patterns by concatenation of char-
acters and possibly introducing errors and do not care in the resulting strings. The
discussion privileges some special classes of pattern structures and configurations,
including solid character strings, strings with errors, consensus sequences consisting
of intermixed solid and wild characters, co- and multiple occurrences and associa-
tion rules thereof, etc. The central issue is the discovery of patterns recurring with

1“There are more things in heaven and earth, Horatio, Than art dreamt of in your philosophy”—
W. Shakespeare, Hamlet, I, v [76].
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unexpectedly high frequency. Such patterns are considered informative in computa-
tional biology as well as in a multiplicity of other contexts. From a dual perspective,
the overrepresentation exposed in this way may be used for purposes of data com-
pression, and for obtaining succinct measures of information contents and structure,
amenable in turn to tasks of classification and clustering.

Because of the primitive structure of strings and of the universal role they play in
modeling and computation, the discussion concentrates here on this class of inputs.
However, most of the basic principles and of the techniques developed in these
contexts carry on to higher discrete structures such as trees, graphs, etc., to within
varying degrees of adjustment.

2 Solid Patterns

The search for overrepresented patterns of unspecified length in a text requires the
preliminary allocation of the occurrence counts of all substrings of a string [2, 23].
It is known that a suitably expanded suffix tree can be easily adapted to store, for a
given string x and for each substring w of x, the number of distinct occurrences of
w in x. The storage needed is linear in |x|, and the whole substring statistics for x

can be computed in linear time (counting the maximum number of occurrences of
each word without overlap is only slightly more expensive [19, 20]). This counter-
intuitive fact rests on an important combinatorial property, which may be described
as follows. Given two words x and y, let the start-set of y in x be the set of occur-
rences of y in x, i.e., posx(y) = {i : y = xi . . . xj } for some i and j , 1 ≤ i ≤ j ≤ n.
Two strings y and z are equivalent on x if posx(y) = posx(z). The equivalence rela-
tion instituted in this way is denoted by ≡x and partitions the set of all strings over
Σ into equivalence classes. Recall that the index of an equivalence relation is the
number of equivalence classes in it.

Lemma 1 The index k of the equivalence relation ≡x obeys k < 2n.

Lemma 1 is established in analogy to its right-context counterpart as seen in con-
nection with DAWGs [23]. In the example of the string abaabab aabaababaababa,
for instance, {ab, aba} forms one such class and so does {abaa, abaab, abaaba}.
This says that, on a suffix tree, it is enough to count occurrences of the O(n) words
terminating on a branching node, since any of the remaining Θ(n2) words will occur
always only as a prefix of some such word. This property supports the construction
of compact global detectors of unusual words, as is described next.

Once a statistical index is built and empirical probabilities are computed, the
next step is to annotate it with the expected values and variances and measures
of discrepancy thereof, under some adopted probabilistic model. This may be still
rather bulky in practice. For a given probabilistic model and measure of departure
from expected frequency, it is possible to come up with an “observed” string such
that all of its Θ(n2) substrings are surprisingly overrepresented. This means that a
table of the “surprising” substrings of a string can contain in principle a number of
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entries that grows with the square of the length of that string. As it turns out, it is
possible to show that under several accepted measures of frequency deviation, also
the candidate overrepresented words are restricted to the O(n) words that end at
internal nodes of a compact suffix tree.

To convey the intuition behind these facts, consider the naivest possible measure
of “surprise” given by the difference: δw = fw − (n − |w| + 1)p̂, where p̂ is the
product of symbol probabilities for w and fw is the corresponding observed fre-
quency. Let us say that an overrepresented word w belongs to some class C and
let w′ be the longest extension of w in C. Then fw = fw′ , whence w′ constitutes
the saturation of w, that is, the most detailed version of w consistent with its set
of occurrences. On the other hand, δw ≤ δw′ , since the probability of w′ cannot ex-
ceed the probability of w! Thus, the score δ is monotonically nondecreasing in the
transition from δw to δw′ . In other words, it suffices to weigh and filter out only the
branching nodes of the suffix tree: words that end in the middle of an arc cannot
be more surprising. Work performed in connection with biosequence analysis [6, 7]
has shown that this approach can be extended to a broad variety of probabilistic
models.

The discussion of solid words exposes in a nutshell the synergism between pat-
tern saturation and monotonicity of scores. The interested reader will find that simi-
lar properties support the efficient inference and compact representation of variable-
length Markov chain sources [5, 46], a structure originally emerged in the context
of natural language processing [47] and then improved and applied successfully to
the task of learning and classifying proteins [5].

3 Patterns with Mismatches

Patterns of approximate nature are frequent in all walks of information process-
ing and ubiquitous in computational biology. In fact, in most practical cases, “sim-
ilarity” among objects is more informative than sheer identity. For strings, these
problems are expressed using a few basic notions of distance, e.g., Hamming [33]
and Levenshtein [39] distance, and variations thereof. We treat first the problem of
extracting from a given source x strings that occur unusually often in x within a
prescribed maximum number of mismatches. In this context, we look thus for pairs
(w, k) where w is a string of characters from an alphabet Σ and k is the number of
errors or mismatches allowed on w. To quantify “unusually often” for a substring w

of x, this is measured by comparing, e.g., the observed frequency and the expected
number of occurrences for w with (either exactly, or up to) k mismatches. This
problem enters the identification of promoter regions and other important aspects
of molecular sequence analysis (see, e.g., [26, 35]). Unfortunately, the computation
may become quite imposing, since the number of candidates escalates exponentially
with the number of errors permitted. The reason for this reminisces of Plato’s myth
of the Cave:2 the textstring x may only witness a few corrupted patterns, mundane

2Plato: The Republic, Book VII.
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reflections of the “ideal” paradigms. The problem is, in our case, there are only a
linear number of reflections and exponentially many candidates for the ideal para-
digm.

The problem can be mitigated at the expense of a rather harsh approximation,
namely by making the assumption that the pattern must be a substring of x [17].
Under this assumption, the computation of observed frequency is limited to strings
that are, e.g., within k errors of substrings appearing in the text. For the correspond-
ing term in the z-score, let Fk(w) denote the number of observed subwords of x at a
distance k from w, and consider the computation of Fk(w) for all words of x of size
|w| = m ± δ, where δ is a fixed interval. This is done by established techniques in
O(nk) or even expected sublinear time (see, e.g., [14, 27, 31]). There are O(n) sub-
words of length m in x, whence the total computation is O(n2k) or expected O(n2).
This information can be organized in an n × (2δ + 1) table W (x) at the outset, such
that the frequencies of substrings of length [m − δ . . .m + δ] beginning at position i

form the ith column of the table.
Consider now the efficient computation of expected frequencies. This resorts to

the notion of correction factor, which in informal terms is the quantity by which the
probability of a string has to be multiplied in order to account for a single mutation.
Thus, if a character s is allowed to mutate into any of the characters in Σs ⊆ Σ ,
then the Σs -correction factor for s is

∑
s′∈Σs

ps′

ps

.

Given a text x of length n, and a fixed number of errors k, it is possible to build
a [k × n] matrix A of which the generic entry A[i][j ] is the correction factor to
be applied to the probability of string x[1 . . . j ] with exactly i errors. Matrix A is
readily computed in time O(kn) by dynamic programming, due to the following
lemma.

Lemma 2 With fx[j ] the correction factor of x[j ], the following holds:

A[i][j ] =

⎧
⎪⎨

⎪⎩

1 if i = 0 and ∀j ,
0 if i 
= 0 and j < i,
fx[1] if i = j = 1,
A[i][j − 1] + A[i − 1][j − 1]fx[j ] if i > 0 and j > i.

Once the table A has been built, the computation of the correction factor for any
substring x̄ with 1,2, . . . , k errors takes only O(k2) steps. To see this, let Ck(b, e) be
the global correction factor to be applied to substring x̄ = x[b . . . e] in order to obtain
the probability p̂ of x̄ when exactly k errors are imposed. (That is, p̂Ck(b, e) =
P(x̄k) and this value depends on string x and on the indices (b, e).) Then

Lemma 3 C0(b, e) = 1. For k > 0, Ck(b, e) = A[k][e] − ∑k−1
i=0 A[k − i][b − 1] ·

Ci(b, e).
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Further elaboration of this scheme leads to compute probabilities for all sub-
strings of x having length in that range, in overall O(nk) time [17].

At this point, given a textstring x and a length range m ± δ with constant δ, we
can carry out the efficient construction of a table W (x) containing all patterns w

of length between m − δ and m + δ and such that w is a substring of x, together
with their individual probabilities, and expected number of occurrences. W (x) can
be quite bulky, but once more its size can be reduced by limiting entries to those
representing local maxima w.r.t. the score.

4 Patterns Within Bounded Levenshtein Distance

A classical string editing problem based on Levenshtein distance consists of trans-
forming a string x into another string y by performing a series of weighted edit
operations on x of overall minimum cost. An edit operation on x can be the deletion
of a symbol from x, the insertion of a symbol in x, or the substitution of a symbol
of x by another symbol. This problem has a well-known O(|x||y|) time sequential
solution. Particular choices for the costs or initial conditions yield special instances
of the problem such as the Longest Common Subsequence (LCS) and approximate
string searching (see, e.g., [4]). The interest and range of applicability of string edit-
ing and its derivatives is such that entire volumes have been dedicated exclusively to
it since the early 80s. Outside the realm of strings, algorithms for multidimensional
arrays and for trees have been also developed (refer, e.g., to [14]).

We focus here on discovery problems that are modeled in terms of the detection
of special kinds of subsequences. A pattern y = y1 . . . ym occurs as a subsequence
of a text x = x1 . . . xn iff there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such that
xi1 = y1, xi2 = y2, . . . , xim = ym; in this case, we also say that the substring w =
xi1xi1+1 . . . xim of x is a realization of y beginning at position i1 and ending at
position im in x.

Observe that the problem of testing whether a given string y = y1 . . . ym occurs
as a subsequence in a text x = x1 . . . xn is trivially solved in linear time. Actually, a
simple O(n log |Σ |) time preprocessing of x makes it easy to decide subsequently
for any x and in at most |y| log |Σ | character comparisons, whether y is a subse-
quence of x [4]. However, this problem is somewhat vacuous, in far as most any
short string can be expected to occur as a subsequence of a long string. Thus, the
quest for interesting subsequences becomes meaningful only if we add some con-
straints. A natural constraint consists of forcing y to pick its consecutive characters
within a fixed maximum number of positions of x. One may then impose saturation
conditions on the subsequences obeying such constraints and study their behavior
[12]. In a nutshell, a subsequence pattern in text x is first defined as a string together
with its set of starting occurrences in x. Then an equivalence class is any set of
strings that share their starting occurrences in x as subsequence patterns. One then
looks for extremal elements in each class, that is, representatives that embody all
information about the elements in the class. This setup exposes some peculiarities
compared to the case of solid words. To begin with, the strings in an equivalence
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class do not admit of a single representative. Instead, distinctly unrelated strings
may share the same set of occurrences as subsequences. This makes the problem of
finding compact representations harder.

For a more formal treatment, let an occurrence of v in x be specified by a list
of positions of x matching the characters of v consecutively. An ω-occurrence of v

in x is an occurrence such that less than ω positions of x elapse between any two
consecutive characters of v. The positions of x that correspond to the first (respec-
tively, last) character of v form the left (respectively, right) list of v, denoted by

Lv = {l1, l2, . . . , lL} (respectively, Rv = {l1, l2, . . . , lR}). For any given entry of the
left list, each substring of x containing an ω-occurrence of v is an ω-realization of v,
and the ω-occurrence corresponding to the sequence of lexicographically smallest
positions is called greedy. The number of ω-occurrences of subsequences of length
k occurring at the same starting position in x is O(ωk−1). The maximum number of
ω-occurrences of a specific subsequence v in x is O(ω|v|−1 · |x|). This upper bound
is tight, being attained by the pair x = A|x|, v = A|v|. The maximum number of dis-
tinct subsequences of length k that ω-occur in x is O(min(|Σ |k, |x| · ωk−1)); this
bound is attained on Σ = {A,C,G,T} by x = (ACGT)n, ω = 4, n � k. The number
of greedy ω-occurrences of a specific subsequence v in x is O(|x|), and the maxi-
mum number of greedy ω-occurrences of subsequences of length k that start at the
same position in x is O(min(|Σ |,ω)k−1).

It becomes natural to introduce equivalence classes of the following kind. Two
subsequences v and w are left equivalent, denoted v ≡l w, if Lv = Lw . This leads
to introduce saturated classes based on the notion of a special subsequence, which
extends a nomenclature applied in [28] to solid words as follows. A string v ∈ Σ∗
occurring in x starting at positions in Lv 
= ∅ is a special subsequence if for every
symbol a ∈ Σ ∪{$}, such that va has some ω-occurrence we have Lva ⊂ Lv . String
v is a nonspecial subsequence if under the same conditions there is a symbol a ∈
Σ ∪ {$} such that Lva = Lv .

Unfortunately, bounding the number of special subsequences does not seem so
easy as in the case of solid words. But a string of 200 characters produced by
a pseudo-random source emitting symbols from a decimal alphabet with uniform
probabilities has about 4 × 104 4-subsequences, out of which only 10% are special
sequences. This ratio is similar for more structured strings such as π and the golden
ratio φ, as well as for certain proteins.

5 Patterns with Don’t Cares

Conceptually, the subsequence patterns of the previous section are first detected one
by one and then bundled into equivalence classes based on their respective occur-
rence lists. A complementary angle of approach proceeds by considering those and
other varieties of gapped patterns as generated by some consensus or alignment.
The patterns may be rigid, in the sense that a controlled number of do not care or
wild characters are admitted at predefined fixed positions, but also extensible, in
which case a sequence of gaps can now be stretched within prescribed bounds. In
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loose terms, these patterns consist of sequences of intermittently solid characters
interspersed with wild characters, and appearing more or less frequently in an input
sequence. In computational molecular biology and genomic studies, these patterns,
sometimes also called motifs, play a prominent role. When looking for the surpris-
ingly frequent ones among such motifs, it seems natural to exclude from consider-
ation those that could be enriched by specifying additional solid characters without
sacrifice of the corresponding frequency. Motifs that meet such a saturation condi-
tion have been also called maximal.

Rigid motifs are essentially strings over Σ ∪ {•}. Interestingly enough, an
algebraic-flavored notion stronger than maximality, called irredundancy, was in-
troduced for these motifs by L. Parida (see, e.g., [45]) and subsequently studied also
by others. The idea is that, from the roster of all saturated rigid motifs, it is possible
to extract a base of irredundant motifs with the property that any other motif can
be inferred both in terms of its pattern structure and list of occurrence by a suit-
able subset of irredundant motifs on the base. Unfortunately, the size of the base
of motifs in a sequence can be exponential in the size of the input [44]. However,
when the minimum acceptable number of occurrences for a motif is just 2, then it
is seen that the irredundant motifs come from the consensus patterns generated by
the autocorrelations of the input. Furthermore, the size of the base is itself linear in
the input [16] and for binary alphabets it can be actually built in O(n2) time for an
input string of n characters and O(n2 logn) time incrementally for the entire set of
suffixes of that string [22].

Allowing for variable spacers in a motif makes it extensible. Such spacers are
indicated by annotating the dot characters. Specifically, an annotated “•” character
is written as •α where α is a set of positive integers {α1, α2, . . . , αk} or an interval
α = [αl,αu], representing all integers between αl and αu including αl and αu. Thus,
a motif m is extensible if it contains at least one annotated dot. Unlike ω-sequences,
the spacers in an extensible motif may be specified by giving each a different maxi-
mum value. However, the real distinction between these two notions is in that motifs
are meant to be generated not a priori, but rather by the consensus of the input string.
Like subsequences, an extensible motif m may have multiple occurrences starting at
a position of a sequence x. This complicates the probabilistic analysis of extensible
motifs even for basic probabilistic models. However, some easy facts still support
the synergism between saturation and score monotonicity. To be more specific, let
v be a condensation of u if v is obtained by inserting one or more extra solid char-
acter in u while every starting position of an occurrence of u remains also a starting
position of an occurrence of v. With reference to the general form of z-scores given
in the Introduction, if f (w) is interpreted now as deriving from the count of starting
positions rather than from the occurrences of w, then the following facts hold [10].

Theorem 1 Let v and u be extensible motifs under the iid model and let v be a
condensation of u. Then there is a value p̂ ≤ 1 such that pv = pup̂.
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Theorem 2 If f (u) = f (v) > 0, N(v) < N(u), and E(v)/N(v) ≤ E(u)/N(u),
then

f (v) − E(v)

N(v)
>

f (u) − E(u)

N(u)
.

In the particular case of the iid model, this becomes the following theorem.

Theorem 3 Let u and v be motifs generated with respective probabilities pu and
pv = pup̂ according to an iid process. If f (u) = f (v) and pu < 1/2, then

f (v) − E(v)√
E(v)(1 − pv)

>
f (u) − E(u)√
E(u)(1 − pu)

.

These facts identify intervals of monotonicity within which z-score computa-
tion may be limited to class representatives. Like with ω-sequences, no polynomial
bound on the number of these classes seem to hold in general. In practice, however,
a prudent combination of saturation conditions and monotonicity of scores is seen
to afford significant parsimony in the generation and testing of candidate overrepre-
sented rigid and extensible motifs.

6 Saturated Associations and Rules

Pattern saturation may be regarded as an indicator of some implication or rule. For
instance, considering an arbitrary word w ending in the middle of an arc in the
suffix tree of x, Lemma 1 can be rephrased by saying that any occurrence of that
word in x implies an occurrence also of its extension to the nearest node. From this
perspective, the construction of the tree may be regarded as a method to discover this
rule. A germane notion is that of an association rule, which is an expression of the
form S1 → S2 where S1 and S2 are sets of data attributes that present themselves in
tandem more often than expected. We refer to [1] and [43] for a broader discussion
of these concepts.

It is often of interest to find pairs of patterns that have unusually frequent co-
occurrences. Sometimes these pairs are also called dyads, and they arise in se-
quences of biological and more general nature, most notably, in the contexts of nat-
ural language processing and information extraction. With solid words, for instance,
one problem of association discovery consists of finding, for a given textstring x of
n symbols and an integer constant d , and for any pair (y, z) of subwords of x, the
number of times (called tandem index) that y and z occur in tandem (i.e., with no
intermediate occurrence of either one in between) within a distance of d positions
of x. Although in principle there might be n4 distinct subword pairs in x, Lemma 1
tells us that it suffices to consider a family of only n2 such pairs. Clearly, for any
neglected pair (w′, z′), there is a corresponding pair (y, z) contained in our family
and such that: (i) w′ is a prefix of w and z′ is a prefix of z, and (ii) the tandem index
of (w′, z′) equals that of (w, z). It is shown in [18] that this problem has a fast O(n2)
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solution, actually the table of all tandem indices of pairs of maximal words can be
built in time proportional to its size [21].

7 Compressing and Classifying

The same kind of structural repetitiveness that is pursued in pattern discovery as
a source of information may be treated instead, from a dual perspective, as redun-
dancy to be disposed of in order to save storage space and transmission time. This
is the task of data compression methods based on textual substitution [48], in which
multiple replicas of a substring can be fruitfully replaced by a small pointer to a sin-
gle reference copy. With the exception of the elegant family of Lempel–Ziv parses
[38], the optimal implementation of the majority of such schemes translates into
NP-complete problems. Still, some greedy paradigms of steepest descent have been
shown to be susceptible of achieving guaranteed approximation ratio [37]. The ba-
sic paradigm consists of the iterated selection of the pattern giving the highest com-
pression at that iteration. For solid words, the scheme was discussed in [19, 20] in
connection with its algorithmic implications, and it was subsequently implemented
in various forms (refer to [15] and references therein), particularly in an effort to
cope with the known resilience that biological sequences exert toward compression
(see, e.g., [42]).

Saturated string patterns are the obvious candidates for such offline compression
schemes. In fact, in the pattern selected that at each iteration, there is no reason
to forfeit characters that would not detract from its number of occurrences, nor to
encode fewer (nonoverlapping) occurrences than the pattern has in the text. The
basic steepest descent approach has a number of variations and extensions. In par-
ticular, schemes were developed where a controlled number of errors is traded in
exchange for higher compression, or utilizing both rigid and flexible motifs, all the
way to controlled lossy variations of online Lempel–Ziv–Welch parses [3, 8, 9, 11].
Such schemes show particularly good performance on signals and images where the
gaps can be filled at the receiver by straightforward interpolation, leaving negligible
residue distortion. They also demonstrate the use of compression as a possible basis
for measuring similarity and classifying large sequences [8], much in the footsteps
of [36, 41]. Perhaps one domain that best exposes the subtle interplay between pat-
tern discovery, saturation, and classification is that of table compression, which is
highlighted next.

By their nature, the records that appear in tables exhibit substantial interdepen-
dency and repetitiveness in field contents. Therefore, data organization in a table
might expose certain features and correlations and perhaps at the same time blur oth-
ers. By the duality inherent to compression and feature extraction, table compression
might unveil interesting correlations and lead to interesting clustering and classifi-
cation of records. Table compression presents both similarities and differences in
comparison to data base compression (see, e.g., [29, 30]). Massive table compres-
sion has been addressed recently (see, e.g., [24, 25, 32, 50]) from the perspective
of rearranging the order of columns and rows to bring together those affected by
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stronger dependency. However, the most interesting correlations might reside with
clusters of records, that is, rows in the table that present commonalities in some of
the columns [13].

For a formal discussion, let T be a table of n records denoted t1, t2, . . . , tn, where
each record is the concatenation of 
 fields, and assume for simplicity that every
record is a fixed length string of 
 solid characters from some unified alphabet Σ .
Next, define a mask as any string of 
 characters from Σ ∪ {•}. Let σ be a singleton
character of Σ . For characters σ1 and σ2, we write σ1 � σ2 if and only if σ1 is a dot
or σ1 = σ2.

It is natural to generalize to tables gapped motifs such as discussed earlier. Given
a mask m, a record ti is a realization or an occurrence of m if m[j ] � ti[j ] holds
for 1 ≤ j ≤ 
. We use Lm = (l1, l2, . . . , lp) to denote the list of all and only the
occurrences of m in T . We are then only interested in masks having some realization
in T . For a given mask m, let m[j1], m[j2], . . . m[j
′ ] be the sorted list of solid
characters in m. Then a submask of m is any mask m′ obtained by changing some
m[jk] into a do not care. In other words, m is a condensation for any of its submasks.
Clearly, for any condensation m̂ of m, we have that Lm̂ ⊆ Lm. The containment
relation defines a partial order on the masks of T . Clearly, we are interested in
saturated masks, for which any condensation would disrupt the list of occurrences.

Given two records ti and tj of T , let m be the mask that is obtained by taking the
“consensus” of ti and tj , denoted ti ⊕ tj , such that m[k] = ti[k] if ti[j ] = tj [j ] and
m[k] = • otherwise. Clearly, m is saturated, since we have i, j ∈ Lm, and changing
any one of the do not cares in m by a solid character would expel one or both of i

and j from Lm. A mask obtained in this way is a record intersection or intrecord. In
analogy with sequences, it is possible to extract from the set J of intrecords of T a
base, as follows. A intrecord m is redundant if there are intrecords m1,m2, . . . ,mk

such that m is a submask of mf ,f = 1,2, . . . , k and Lm ⊆ ∪Lmf
. Then the collec-

tion of intrecords that are not redundant represents a base for our set, in the sense
that they can produce any redundant mask with its occurrence list without inspection
of T .

Insofar as intrecords capture regularities in the collection of specimens, one of
their main interests is in their use in discovering similarities and correlations. For
instance, assume that we want to analyze the relationships between the distinct val-
ues recorded in the j th field of each record. A value can be described by a point in a
multidimensional space, in which dimensions are associated with intrecords, and the
coordinate of a point along a dimension is the number of records in which the cor-
responding value and the specific intrecord cooccur in the table, normalized by the
total number of records containing the value. Then a natural measure of correlation
between two values may be obtained by taking the Euclidean distance between the
corresponding points: computing all pairwise distances between distinct values and
performing a neighbor-joining clustering, yields dendrogram structures that portray
different classifications of the records.
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8 Concluding Remarks

Pattern discovery represents one of the most challenging tasks of modeling and algo-
rithmic design and yet one that is ubiquitous to crucial application domains. Often,
we do not know enough of the patterns being sought to formulate crisp, adherent
mathematical models. But even when a model is synthesized, the sheer number of
candidates seems unmanageable to the point where it appears to defy the very pur-
pose of embarking on the discovery process. The approaches reviewed in this paper
proceed by solidly intertwining the syntactic structure of a pattern with its set of
occurrences. This leads naturally to a notion of saturation and to the correspond-
ing quest for generator patterns, which are often found to be much smaller subsets
of the original pattern sets, but come virtually at no loss of information. It is seen
that when looking for surprising patterns it may be enough to restrict attention to
saturated ones, insofar as the latter embody the richest syntactic specification while
achieving also maximum values within domains of monotonicity for z-scores and
other similar measures. The result is to mitigate candidate explosion thereby allevi-
ating the discovery process to various degrees, depending on the particular problem
formulation at hand.
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Information Content of Sets of Biological
Sequences Revisited

Alessandra Carbone and Stefan Engelen

Abstract To analyze the information included in a pool of amino acid sequences,
a first approach is to align the sequences, to estimate the probability of each amino
acid to occur within columns of the aligned sequences and to combine these values
through an “entropy” function whose minimum corresponds to absence of informa-
tion, that is, to the case where each amino acid has the same probability to occur.
Another alternative is to construct a distance tree between sequences (issued by the
alignment) based on sequence similarity and to properly interpret the tree topology
so to model the evolutionary property of residue conservation. We introduce the con-
cept of “evolutionary content” of a tree of sequences, and demonstrate at what extent
the more classical notion of “information content” on sequences approximates the
new measure and in what manner tree topology contributes sharper information for
the detection of protein binding sites.

1 Introduction

Comparison of multiple amino acid sequences resulting from years of evolution
demonstrated to provide insightful information on the relationships between se-
quence, structure, function, and evolution of protein families [6, 8]. Multiple se-
quence alignments were originally used to explore phylogenetic relationships be-
tween organisms [14], and more recently, to detect more and more distant homo-
logues, conserved functional features of proteins and major evolutionary events in
genomes [2, 12, 13, 18, 19]. Also, significant improvements in predictions of both
3D fold [11] and function [20] are also achieved through multiple sequence com-
parison.

Pools of aligned amino acid sequences are usually constituted by very few se-
quence instances which are available around us today, and their grouping in se-
quence space highlights potential similar sequences which might exist but that we
did not “see” (yet). We argue that a definition of the information content of a tree
issued from a sequence alignment has to be based on the information coming from
these potential viable sequences also. In this study, we check the hypothesis that the
topology of a distance tree of sequences codes for interesting “biological” informa-
tion of evolutionary origin, which can be extracted from a combinatorial analysis of
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the tree and a suitable interpretation of its nodes. To establish the conditions under
which a pool of sequences organized in a tree is informative or not is a primary
question addressed by our model.

The information content of a biological molecule corresponds to the number of
sequence constraints that have to be conserved to maintain its function under random
mutations [1, 5]. Expressed in amino acid units, the maximum information content
that can be encoded on a N -amino acid long protein sequence is precisely N , which
defines a unique sequence among the 20N different protein sequences with N amino
acids. The calculation of the maximum information content encoded on a tree of N

leaves, is precisely N when we admit the leaves to be labeled by the same sequence.
If the more realistic hypothesis of considering leaves labeled by different sequences
is adopted, then the computation is more subtle since it depends on the topology of
the tree. In this paper, we explain how to make this computation.

In what follows, sequences are made out of amino acids ak , with k = 1, . . . ,20.
The approach to multiple sequence analysis that we propose is general and it might
be applied to arbitrary finite languages. An important general insight to retain from
this analysis is that what we “observe” (that is, the actual data) is just a small amount
of what we actually represent through trees constructed with clustering algorithms
that group together biological objects by similarity.

2 The Model

We suppose to have N sequences which have been aligned, L be the length of the
alignment, and T be the associated distance tree, whose N leaves are labeled by
sequences. We think of the root of T as the set of all possible sequences “repre-
sented” by the N sequences of the original pool as follows. For each position i in
the alignment, we define a characteristic function

χi(ak) =
{

0 no residue ak appears at position i,
1 otherwise

where k = 1, . . . ,20. Since an alignment contains gaps, we encode when needed,
a gap as a 21st residue and we name it a21. We let P ′

0 = ∏L
i=1

∑21
k=1 χi(ak) be

the number of potential sequences which are coherent with the original pool of se-
quences, that is those sequences which are composed by residues which appear at
least once at a given position. Note that having considered a gap as a residue, we
count here also aligned sequences which are formed by gaps at almost all positions.
These sequences might be considered undesired and if so, it is reasonable to sub-
tract from the pool P ′

0 all sequences containing more than L
2 − 1 gaps. This way,

sequences cover at least the 50% of a sequence alignment and for any two sequences
in the alignment the overlap is guaranteed. We call P0 the cardinality of the resulting
set of potential sequences.

As done for the root, a value P can be associated to any internal node of the tree.
It corresponds to all potential sequences represented by the sequences labeling the
leaves of the associated subtree.
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We are interested to evaluate the information content of the pool of aligned se-
quences at a position i which is induced by the tree structure, where i = 1, . . . ,L.
For each i, we consider the Si maximal subtrees of T where position i appears to
be conserved (that is, all sequences labeling a maximal subtree contain the same
amino acid at position i). For each i, it is easy to see that such decomposition of
T into maximal subtrees is unique. For each such subtree T i

j , we evaluate the as-

sociated P i
j . The computation of P i

j is done as for P0 above. Based on the P i
j s, for

j = 1, . . . , Si , we compute the evolution content at a position i, denoted ECi , with
the entropy function

ECi = γ
(
nα

i log2 βni − log2 β
)

where α,β, γ are parameters depending on the specific tree T we are working with.
We define them and comment their significance below. The value ni is computed

from n∗
i =

∑Si

j=1 P i
j

P0
, where

∑Si

j=1 P i
j ≥ N , by considering log10 n∗

i (this operation
gives a value in the interval [−x,0], for some x) and by rescaling the result to the

interval [0,1]. The rationale is that the ratio
P i

j

P0
represents the evolutionary distance

between the root of T i
j and the root of T . The larger the ratio is, the closer the

evolutionary content of the subtree is to the root. Note that for the leaves of the tree
P = 1, since only one sequence is associated to a leaf.

The evolution content of a tree of aligned sequences is defined as

EC =
L∑

i=1

ECi .

To estimate the values of the parameters α,β, γ for a given protein, we randomly
select disjoint subtrees Wj in T in such a way that all leaves in T belong to some
subtree Wj . Let m be the number of selected subtrees. After selection, we com-

pute an expected value n∗ exp =
∑m

j=1 Pj

P0
and rescale it (by applying first log10) to

nexp ∈ [0,1]. In practice, the random generation has to be repeated a sufficiently
large number of times (about 100 times, for instance) and the effective nexp (to be
used in the analysis) can be defined to be the average of the expected nexp’s issued
by each random selection. When a set of proteins is considered instead of a single
protein, we compute the average of the nexp’s estimated for each protein. For dif-
ferent topologies of T , the value nexp may vary, since it is directly associated to a
distribution of subtrees in T .

The parameters α,β allow us to model information on residue conservation for a
specific set of sequences and its associated tree. Namely, α,β are set so to preserve
the convexity of the entropy function within [0,1] and in such a way that nexp be-
comes the x-value where the entropy function takes its minimum. The parameter γ

guarantees the y-values of the entropic function to fall into the same interval, in case
several sequences are considered. The constant log2 β guarantees the maximum of
the entropic function to be at 0. The computation of the parameters is described in
Materials and Methods.
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3 Comparison of EC and IC on Residue Positions

The advantage of using the measure of information EC instead of the more classical
IC is shown, as a proof of principle, for a homodimeric D-amino acid aminotrans-
ferase protein. We test the hypothesis that the most “informative” residues of the
protein structure (pdb:1daa) [17] are those residues lying at the protein homodimeric
interface. For this, we evaluate the prediction of the protein interaction site based on
the two notions. For each position i of the sequence alignment, we compute the
corresponding ECi and ICi and we rank accordingly all residue positions from the
most to the less informative. We then evaluate, by taking gradually larger sets of top
ranked positions (coverage), whether these positions lie into the known interface site
of the protein or not. We found that the ECi notion ranks with much more precision
the interface site, which intuitively defines the region where (functional) informa-
tion resides. Particularly, ECi detects especially well that signals of conservation are
missing in the complementary region and makes prediction of the protein interface
more sharp (Fig. 1). The numerical evaluation is reported for different coverages of
the protein in (Table 1). See also Fig. 2 (left).

The same analysis has being performed on a large database of 62 protein com-
plexes, the Huang database [4], and for each protein complex the EC measure
behaved better than the IC measure (with respect to all comparative scores). The
analysis shows that homodimeric and heterodimeric protein interfaces gain in the

Fig. 1 Left: A–B (top): two views of the protein where residue positions are colored with respect
to their ICi value. Red colors are associated to residues ranking low and blue colors to residues
ranking high. The color scale starts at red, passes through rose and white to reach clear blue and
blue. C–D (bottom): the same two views of the protein, as in A–B, where residue positions are
colored with respect to their ECi value. The color scale is the same as above. Note the rather sharply
identifiable interaction site of the protein which is mainly colored white in C–D. In contrast, the
scattering of white residues does not allow an easy identification of the interaction site in A–B.
Right: residues belonging to the real interface are colored blue. All others are left red
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Table 1 Evaluation of the ECi -ranking (top) and ICi -ranking (bottom) on the D-amino acid
aminotransferase protein structure pdb:1daa. Lines correspond to increasing coverage of the pro-
tein and describe prediction of the interaction site from 5% to 100% coverage

cover coverSurf sens ScoreSens PPV ScorePPV spec ScoreSpec acc ScoreAcc

Residues detected using ECi in protein structure 1daa

0.0505 0.0424 0.1212 0.0787 0.8888 2.8551 0.9931 0.0355 0.7216 0.049

0.101 0.0943 0.2575 0.1632 0.85 2.7303 0.9794 0.0737 0.7547 0.1016

0.1516 0.132 0.3484 0.2164 0.8214 2.6385 0.9657 0.0978 0.7735 0.1347

0.2021 0.1792 0.4545 0.2753 0.7894 2.5358 0.9452 0.1244 0.7924 0.1714

0.2527 0.2264 0.5 0.2735 0.6875 2.2083 0.8972 0.1236 0.7735 0.1703

0.3032 0.2688 0.5303 0.2614 0.614 1.9723 0.8493 0.1181 0.75 0.1627

0.3501 0.3254 0.606 0.2805 0.5797 1.862 0.8013 0.1268 0.7405 0.1746

0.4007 0.3584 0.6515 0.293 0.5657 1.8173 0.7739 0.1324 0.7358 0.1824

0.4512 0.4056 0.6818 0.2761 0.5232 1.6807 0.7191 0.1248 0.7075 0.1719

0.5018 0.4481 0.7272 0.2791 0.5052 1.6229 0.678 0.1261 0.6933 0.1738

0.5523 0.4952 0.7575 0.2622 0.4761 1.5295 0.6232 0.1185 0.665 0.1633

0.6028 0.533 0.7878 0.2548 0.4601 1.4781 0.5821 0.1151 0.6462 0.1586

0.6534 0.5943 0.8484 0.2541 0.4444 1.4275 0.5205 0.1148 0.6226 0.1582

0.7003 0.6462 0.8636 0.2174 0.416 1.3364 0.452 0.0982 0.5801 0.1353

0.7509 0.6981 0.8636 0.1655 0.3851 1.237 0.3767 0.0748 0.5283 0.103

0.8014 0.7547 0.8939 0.1392 0.3687 1.1844 0.3082 0.0629 0.4905 0.0866

0.8519 0.8113 0.9393 0.128 0.3604 1.1578 0.2465 0.0578 0.4622 0.0797

0.9025 0.8726 0.9393 0.0667 0.3351 1.0764 0.1575 0.0301 0.4009 0.0415

0.953 0.9386 0.9696 0.031 0.3216 1.033 0.0753 1.40E–02 0.3537 0.0193

1 1 1 0 0.3113 0.9999 0 0 0.3113 0

Residues detected using ICi in protein structure 1daa

0.0505 0.0471 0.0757 0.0285 0.5 1.606 0.9657 0.0129 0.6886 0.0177

0.101 0.0849 0.1515 0.0666 0.5555 1.7844 0.9452 0.0301 0.6981 0.0414

0.1516 0.1132 0.1666 0.0534 0.4583 1.4722 0.9109 0.0241 0.6792 0.0332

0.2021 0.1603 0.2575 0.0972 0.5 1.606 0.8835 0.0439 0.6886 0.0605

0.2527 0.1981 0.3181 0.12 0.5 1.606 0.8561 0.0542 0.6886 0.0747

0.3032 0.2169 0.3333 0.1163 0.4782 1.5362 0.8356 0.0525 0.6792 0.0724

0.3501 0.2641 0.3939 0.1297 0.4642 1.4913 0.7945 0.0586 0.6698 0.0808

0.4007 0.3018 0.4393 0.1375 0.4531 1.4554 0.7602 0.0621 0.6603 0.0856

0.4512 0.349 0.5 0.1509 0.4459 1.4324 0.7191 0.0682 0.6509 0.0939

0.5018 0.3915 0.5454 0.1539 0.4337 1.3931 0.678 0.0695 0.6367 0.0958

0.5523 0.4481 0.5757 0.1276 0.4 1.2848 0.6095 0.0576 0.599 0.0794

0.6028 0.5047 0.6212 0.1165 0.3831 1.2307 0.5479 0.0526 0.5707 0.0725

0.6534 0.566 0.6515 0.0854 0.3583 1.1509 0.4726 0.0386 0.5283 0.0532

0.7003 0.6273 0.6969 0.0696 0.3458 1.1109 0.4041 0.0314 0.4952 0.0433

0.7509 0.6886 0.7272 0.0385 0.3287 1.056 0.3287 0.0174 0.4528 0.024
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Table 1 (Continued)

cover coverSurf sens ScoreSens PPV ScorePPV spec ScoreSpec acc ScoreAcc

0.8014 0.7452 0.7424 −0.0028 0.3101 0.9961 0.2534 −0.0012 0.4056 −0.0017

0.8519 0.8113 0.7575 −0.0537 0.2906 0.9337 0.1643 −0.0242 0.349 −0.0334

0.9025 0.8773 0.8636 −0.0137 0.3064 0.9843 0.1164 −0.0062 0.349 −0.0085

0.953 0.9433 0.9393 −0.004 0.31 0.9957 0.0547 −0.0018 0.3301 −0.0025

1 1 1 0 0.3113 0.9999 0 0 0.3113 0

Fig. 2 Left: Comparative evaluation of the predictions of the protein interaction site for the
D-amino acid aminotransferase protein pdb:1daa based on the notions of EC and IC. Right: Com-
parative evaluation of the (average of the) predictions of the protein interaction site for all proteins
in Huang Database based on the notions of EC and IC. The evaluation is realized on different
coverage levels (x-axis)

EC evaluation, while transient protein interfaces are detected with sensitivity and
PPV scores which are very low, that is close to random. See Fig. 2 (right) for av-
erage evaluation scores computed on all protein complexes of the dataset, Table 2
for a numerical evaluation and Fig. 3 for average evaluation scores computed on the
three classes of protein interfaces.

4 Materials and Methods

Protein Complexes Dataset for Testing

The Huang database [4] of 62 protein complexes constituted by 41 homodimers
(82 chains), 11 heterodimers (23 chains) and 8 transient complexes (17 chains) has
been used to test the EC notion versus IC.

Evaluation

To properly compare the ICi ,ECi notions on specific proteins, we rely on the fol-
lowing quantities: the number of residues correctly predicted as interacting (true
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Table 2 Evaluation of the ECi -ranking (top) and ICi -ranking (bottom) on the Huang database.
Lines correspond to increasing coverage of the protein and describe average predictions of the
interaction site from 5% to 100% coverage computed for all 62 protein complexes of the database

cover coverSurf sens ScoreSens PPV ScorePPV spec ScoreSpec acc ScoreAcc

Residues detected using ECi in Huang database

0.0521 0.0432 0.0926 0.0494 0.5857 2.1094 0.9602 0.0034 0.699 0.0258

0.1021 0.0861 0.1677 0.0814 0.5437 1.922 0.9315 0.0177 0.7001 0.044

0.1518 0.127 0.2323 0.1052 0.5139 1.796 0.9008 0.0279 0.6975 0.0575

0.202 0.1697 0.2938 0.124 0.4921 1.7111 0.8668 0.0366 0.6918 0.0683

0.2516 0.2129 0.3547 0.1417 0.4736 1.6501 0.8302 0.0432 0.6841 0.0774

0.3019 0.2547 0.41 0.1552 0.4602 1.5962 0.7951 0.0499 0.6758 0.0854

0.352 0.2983 0.4585 0.1601 0.441 1.5207 0.7515 0.0499 0.6617 0.0884

0.4019 0.3421 0.5053 0.1631 0.4261 1.4617 0.7103 0.0526 0.6475 0.091

0.4519 0.3857 0.5543 0.1685 0.4156 1.4207 0.67 0.0558 0.634 0.0944

0.5009 0.4305 0.6037 0.1731 0.4055 1.3845 0.6276 0.0581 0.6184 0.0967

0.5521 0.4779 0.6465 0.1685 0.3922 1.3355 0.5792 0.0572 0.5972 0.0944

0.6017 0.5256 0.6873 0.1616 0.3807 1.2901 0.5295 0.0552 0.5745 0.0914

0.652 0.5753 0.7301 0.1547 0.3702 1.2521 0.4745 0.0499 0.5505 0.0877

0.7021 0.6268 0.7701 0.1432 0.359 1.212 0.4179 0.0447 0.5232 0.0812

0.7513 0.6814 0.8102 0.1288 0.3481 1.1726 0.3585 0.04 0.4933 0.0733

0.8017 0.7378 0.8534 0.1155 0.3389 1.14 0.2972 0.0352 0.4628 0.0659

0.8522 0.7979 0.8905 0.0925 0.3278 1.0997 0.2277 0.0256 0.4257 0.0532

0.9019 0.8589 0.9232 0.0642 0.3162 1.059 0.1539 0.0129 0.3843 0.0371

0.9519 0.9222 0.9567 0.0343 0.3054 1.0218 0.0775 −1.00E–04 0.3409 0.0198

1 0.9851 0.9851 0 0.2948 0.985 0 −0.0148 0.2948 0

Residues detected using ICi in Huang database

0.0521 0.045 0.0911 0.046 0.5684 2.0399 0.9576 0.0027 0.6968 0.0243

0.102 0.0874 0.1529 0.0655 0.4862 1.7151 0.9232 0.0107 0.6907 0.035

0.1518 0.1283 0.2126 0.0842 0.4662 1.6318 0.89 0.0184 0.6849 0.0453

0.202 0.1672 0.2671 0.0998 0.4516 1.5824 0.8549 0.0222 0.6776 0.0533

0.2516 0.2046 0.3177 0.113 0.4413 1.5407 0.8233 0.028 0.6704 0.0606

0.3019 0.2405 0.3575 0.1169 0.4256 1.4772 0.79 0.0306 0.6597 0.0634

0.3521 0.2788 0.4011 0.1223 0.4152 1.425 0.7556 0.0345 0.6494 0.0678

0.4019 0.3187 0.44 0.1212 0.3995 1.3658 0.7163 0.0351 0.6339 0.0674

0.4519 0.3629 0.489 0.126 0.3892 1.3324 0.6709 0.0339 0.6181 0.0691

0.5009 0.4066 0.5319 0.1253 0.3788 1.2927 0.627 0.0337 0.6007 0.0689

0.5521 0.4569 0.5783 0.1213 0.3689 1.25 0.5771 0.0341 0.5798 0.0682

0.6017 0.5074 0.6245 0.117 0.36 1.2147 0.5267 0.0342 0.558 0.0667

0.652 0.5605 0.6714 0.1108 0.3503 1.1814 0.4716 0.0322 0.5321 0.0628

0.7021 0.6167 0.7182 0.1015 0.3422 1.1482 0.4134 0.0302 0.5055 0.059

0.7513 0.6751 0.7641 0.0889 0.3327 1.1157 0.3496 0.0248 0.4739 0.0515
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Table 2 (Continued)

cover coverSurf sens ScoreSens PPV ScorePPV spec ScoreSpec acc ScoreAcc

0.8017 0.7355 0.8075 0.0719 0.3226 1.0819 0.2809 0.0166 0.4389 0.0411

0.8522 0.798 0.848 0.0499 0.3131 1.0469 0.2095 0.0077 0.4014 0.0293

0.9019 0.8605 0.8929 0.0323 0.3057 1.0221 0.1385 −8.00E–04 0.3651 0.0188

0.9519 0.9236 0.9386 0.0149 0.2998 1.001 0.0681 −0.0081 0.3296 0.009

1 0.9851 0.9851 0 0.2949 0.985 0 −0.0148 0.2949 0

positives, TP), the number of residues correctly predicted as noninteracting (true
negatives, TN), the number of noninteracting residues incorrectly predicted as in-
teracting (false positives, FP) and the number of interacting residues incorrectly
predicted as noninteracting (false negatives, FN). We use four standard measures of
performance: sensitivity Sen = TP/(TP + FN), specificity Spe = TN/(TN + FP),
accuracy Acc = (TP + TN)/(TP + FN + TN + FP) and positive predictive value
PPV = TP/(TP + FP). We also consider scores to evaluate the pertinence of the
measures above with respect to expected values. Expected values are calculated on
TPexp = C ·S, TNexp = (1 −C)(N −S), FPexp = C · (N −S), FNexp = (1 −C) ·S,
where C = P/N is the coverage of the protein, where P is the number of surface
residues predicted, N is the total number of surface residues and S is the num-
ber of residues in the real interaction site. Notice that the calculation of expected
values assumes that C · N residues have been selected at random as being posi-
tives on the structure of the protein under study. This means that expected values
are different for different proteins. Then we can compute sensitivity Senexp, speci-
ficity Speexp, accuracy Accexp and positive predictive value PPVexp for the random
case: C, 1 − C, ((1 − C) · (1 − S/N)) + C · S/N , S/N, respectively. Pertinence
scores are computed as follows: sensitivity score ScSen = Sen − Senexp, specificity
score ScSpe = Spe − Speexp, accuracy score ScAcc = Acc − Accexp and PPV score
ScPPV = PPV/PPVexp.

α,β, γ Parameterization for the Entropy Function Applied to a Single Protein or to
a Dataset

The parameters α,β are set so to preserve the convexity of the entropy function
within [0,1] and in such a way that the expected value nexp for a given protein
structure or a given database of proteins (defined above), becomes the minimum of
the entropy function. Intuitively, while α ≤ 1 moves the minimum of the entropic
function toward n = 0, the parameter β allows to start (at α = 1) from a minimum
which is close enough to nexp.

The parameter β is the same for all sequences of a database. To explain its
role, let us consider its intrinsic relation with the parameter α. The equation
log2 β · α2 + (2 − log2 β) · α − 1 = 0 expresses α in terms of β . There are two
solutions α1, α2 for the equation and if α1 falls into the interval [0,1], then the con-
vexity of the function is guaranteed for α ∈ [α1,1], otherwise it is guaranteed for
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Fig. 3 Comparative evaluation of the (average of the) predictions of homodimer (top), heterodimer
(center) and transient (bottom) interfaces based on the notions of EC and IC. The evaluation is
realized on different coverage levels



40 A. Carbone and S. Engelen

(0,1]. By varying α within the interval [α1,1], the minimum of the entropic func-

tion falls into an interval I of the form [ e−1/α1

β
, e−1

β
]. If α varies within (0,1], then

the values of the entropic function fall within I = (0, e−1

β
]. By parameterizing β ,

we want all values nexp associated to the full dataset of sequences (possibly one
sequence) to belong to I . To do this, we fix β in such a way that n log2 βn has the

minimum at e−1

β
(notice that here α = 1).

For the Huang database, β takes value 2.1836, the interval of variation for
α is [0.5941,1] and the minima of the entropic functions vary within I =
[0.0851,0.1684]. The interval I includes all values nexp computed for the sequences
of the Huang database.

To compare entropy values associated to trees of several different sequences, we
use the parameter γ to guarantee the y-values of the entropic functions to fall into
the same interval. Given α,β , we define γ to be min(n log2 βn−log2 β)

min(nα log2 βn−log2 β)
. This way, all

y-values of the entropic function fall into the common interval [min(n log2 βn −
log2 β),0].

5 Discussion

A numerical value coding for the information content of a structure is a very valu-
able quantity, and to correctly interpret this value is key for understanding how to
use it. The classical definition of IC for a set of aligned amino acid sequences is
known to be representing the conservation level of the amino acids in a protein. We
show that it is only an “approximation” of this idea and that the conservation level
can be described more properly by revisiting the IC notion with a new and very
simple interpretation of the distance tree associated to multiple sequence alignment.
The new notion EC provides a better estimation of the conserved interaction sites in
a protein. Particularly, it detects especially well whether the complementary region
of an interaction site is missing signals of conservation. This property is of partic-
ular importance when one wants to couple interaction site detection with docking
algorithms. On a large database of protein complexes, we consistently observe that
approximating IC with EC is always profitable.

One can envisage a definition of information content of sets of sequences that
includes not only residue position conservation (coded in tree topology) but co-
evolved residue positions, also coded in tree topology. This aim is far from being a
trivial one. Notice that a similar attempt lead to the definition of information content
for RNAs [21], where RNA secondary structures provide a way to quantify feasible
structures presenting coevolving sites. For amino acid sequences, this task appears
much more complicated due to the intrinsic physical-chemical nature of proteins.
We should expect the new ranking induced by coevolved residues to be correlated to
sparse networks of amino acids associated to functional and mechanical properties
of the proteins in the sense of [3, 9, 16].

Some work related to our approach is the study of spaces of sequences evolved
for protein folding [15, 22]. Also, an attempt to mix the notion of information con-
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tent on sequences and the information coming from the tree topology has been pro-
posed in [10]. We demonstrated somewhere else that the definition reported there
can be simplified by a better reading of the combinatorial structure of the tree [7].
In contrast to [10], notice that our contribution in this paper is to introduce a new
explicit reading of distance trees from which to derive the information content of
the pool of sequences.

Acknowledgements Part of this work has been done with the financial support of the
AFM/IBM/CNRS Decrypthon project.
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Duplication in DNA Sequences

Masami Ito, Lila Kari, Zachary Kincaid,
and Shinnosuke Seki

Abstract The duplication and repeat-deletion operations are the basis of a formal
language theoretic model of errors that can occur during DNA replication. During
DNA replication, subsequences of a strand of DNA may be copied several times
(resulting in duplications) or skipped (resulting in repeat-deletions). As formal lan-
guage operations, iterated duplication and repeat-deletion of words and languages
have been well studied in the literature. However, little is known about single-step
duplications and repeat-deletions. In this paper, we investigate several properties of
these operations, including closure properties of language families in the Chomsky
hierarchy and equations involving these operations. We also make progress toward
a characterization of regular languages that are generated by duplicating a regular
language.

1 Introduction

Duplication grammars and duplication languages have recently received a great deal
of attention in the formal language theory community. Duplication grammars, de-
fined in [16], model duplication using string rewriting systems. Several properties
of languages generated by duplication grammars were investigated in [16] and [17].
Another prevalent model for duplication is a unary operation on words [2, 3, 9,
11–13]. The research on duplication is motivated by errors that occur during DNA1

replication. Duplication and repeat-deletion (also called repeat expansion and repeat
contraction, i.e., insertions and deletions of tandem repeating sequence) are biolog-
ically significant because they are among the most common errors that occur during
DNA replication. In general, insertions and deletions have been linked to cancer

1A DNA single strand is a string over the DNA alphabet of bases {A,C,G,T }. Due to the Watson–
Crick complementarity property of bases, wherein A is complement to T and C is complement
to G, two DNA single strands of opposite orientation and exact complementary sequences can
bind to each other to form a double DNA strand. This process is called base-pairing.
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and more than 15 hereditary diseases [1]. They can also have positive consequences
such as a contribution to the genetic functional compensation [5]. Interestingly, the
mechanisms that cause insertions and deletions are not all well understood by ge-
neticists [4]. For example, the strand slippages at tandem repeats and interspersed
repeats are well understood but the repeat expansion and contraction in trinucleotide
repeat diseases remain unexplained.

Strand slippage is a prevalent explanation for the occurrence of repeat expansions
and repeat contractions during DNA replication. DNA replication is the process by
which the DNA polymerase enzyme creates a new “nascent DNA strand” that is the
complement of a given single strand of DNA referred to as the “template strand.”
The replication process begins by mixing together the template DNA strand, the
DNA polymerase enzyme, a special short DNA single strand called a “primer,” and
sufficient individual bases that will be used as building blocks. The primer is spe-
cially designed to base-pair with the template, and thus make it double-stranded for
the length of the primer. The DNA polymerase will use the primer-template double-
strand subsequence as a toe-hold, and will start adding complementary bases to the
template strand, one by one, in one direction only, until the entire template strand
becomes double-stranded. It has been observed that errors can happen during this
process; the most common of them being insertions and deletions of bases. The cur-
rent explanation is that these repeat expansions and repeat contractions are caused
by misalignments between the template and nascent strand during replication [4].
DNA polymerase is not known to have any “memory” to remember which base on
the template has been just copied onto the nascent strand, and hence the template
and nascent strands can slip. As such, the DNA polymerase may copy a part of the
template twice (resulting in an insertion) or forget to copy it (deletion). Repeat ex-
pansions and contractions occur most frequently on repeated sequences, so they are
appropriately modeled by the rewriting rules u → uu and uu → u, respectively.

The rule u → uu is a natural model for duplication, and the rule uu → u mod-
els the dual of duplication, which we call repeat-deletion. Since strand slippage is
responsible for both these operations, it is natural to study both duplication and
repeat-deletion. Repeat-deletion has already been extensively studied, e.g., in [10].
However, the existing literature addresses mainly the iterated application of both
repeat-deletion and duplication. This paper investigates the effects of a single du-
plication or repeat-deletion. This restriction introduces subtle new complexities into
languages that can be obtained as a duplication or repeat-deletion of a language.

This paper is organized as follows: in Sect. 2, we define terminology and nota-
tions to be used throughout the paper. Section 3 is dedicated to the closure prop-
erties of the language families of the Chomsky hierarchy under duplication and
repeat-deletion. In Sect. 4, we present and solve language equations based on these
operations, and give constructive solutions of the equation in the case involving du-
plication operation and regular languages. In Sect. 5, we introduce a generalization
of duplication, namely controlled duplication. Section 6 investigates a characteri-
zation of the regular languages that can be obtained as a duplication of a regular
language. When complete, such a characterization would constructively solve the
language equation involving repeat-deletion and regular languages, for a certain
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class of languages. Lastly, in Sect. 7, we present some results on the relationship
between duplication, repeat-deletion, and primitive words.

The conference version of this paper was published in [8].

2 Preliminaries

We now provide definitions for terms and notations to be used throughout the paper.
For basic concepts in formal language theory, we refer the reader to [6, 7, 20, 22].
For a relation R, we denote by R∗ the reflexive, transitive closure of R. Σ denotes
a finite alphabet, Σ∗ denotes the set of words over Σ , and Σ+ denotes the set of
words over Σ excluding the empty word λ. For a nonnegative integer n ≥ 0, Σn

denotes the set of words of length n over Σ , and let Σ≤n = ⋃n
i=0 Σi . The length

of a word w ∈ Σ∗ is denoted by |w|. A language over Σ is a subset of Σ∗. For a
language L ⊆ Σ∗, the set of all (internal) factors (resp. prefixes, suffixes) of L are
denoted by F(L) (resp. Pref(L), Suff(L)). The complement of a language L ⊆ Σ∗,
denoted by Lc, is defined as Lc = Σ∗ \ L. We denote by FIN the family of all finite
languages, by REG the family of all regular languages, by CFL the family of all
context-free languages, and by CSL the family of all context-sensitive languages.
We note that FIN � REG � CFL � CSL.

For a finite automaton A = (Q,Σ, δ, s,F ) (where Q is a state set, Σ is an
alphabet, δ : Q × Σ → 2Q is a transition function, s ∈ Q is the start state, and
F ⊆ Q is a set of final states), let L(A) denote the language accepted by A.
We extend δ to δ̂ : Q × Σ∗ → 2Q as follows: (1) δ̂(q, λ) = {q} for q ∈ Q and
(2) δ̂(q,wa) = ⋃

p∈δ̂(q,w)
δ(p, a) for q ∈ Q, w ∈ Σ∗, and a ∈ Σ . For P1,P2 ⊆ Q,

we define an automaton A(P1,P2) = (Q ∪ s0,Σ, δ′, s0,P2), where s0 /∈ Q is a new
start state and δ′ = δ ∪ (s0, λ,P1). Thus,

L(A(P1,P2)) = {
w | δ̂(p1,w) ∩ P2 �= ∅ for some p1 ∈ P1

}
.

If Pi is the singleton set {pi}, then we may simply write pi for i ∈ {1,2}.
In this paper, we investigate two operations that are defined on words and ex-

tended to languages: duplication and repeat-deletion. We employ the duplication
operation ♥ described in [2], which is defined as follows:

u♥ = {
v | u = xyz, v = xyyz for some x, z ∈ Σ∗, y ∈ Σ+}

.

In the canonical way, the duplication operation is extended to a language
L ⊆ Σ∗:

L♥ =
⋃

u∈L

u♥.

We also define another unary operation based on the dual of the ♥ operation. We
term this operation repeat-deletion and denote it by ♠. Note that while biologists
refer to this process simply as deletion, in formal language theory, the term deletion
typically refers to removing arbitrary (rather than repeated) factors of word.
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Definition 1 For a word v ∈ Σ∗, the language generated by repeat-deletion of v is
defined

v♠ = {
u | v = xyyz, u = xyz for some x, z ∈ Σ∗, y ∈ Σ+}

.

Again, the repeat-deletion operation is extended to languages: for a given lan-
guage L ⊆ Σ∗,

L♠ =
⋃

v∈L

v♠.

We avoid inverse notation because ♥ and ♠ are not inverses when considered as
operations on languages. That is, for a language L ⊆ Σ∗, L ⊆ (L♥)♠ but it is not
always the case that L = (L♥)♠.

Example 1 Let L = a∗bb. Then abb ∈ L ⇒ aabb ∈ L♥. Therefore, aab ∈ (L♥)♠,
but aab /∈ L.

Previous work focused on the reflexive transitive closure of the duplication oper-
ation, which we will refer to as duplication closure. All occurrences of ♥, duplica-
tion, ♠, and repeat-deletion refer to the single step variations of the operations.

3 Closure Properties

Much of the work on duplication has been concerned with determining which of the
families of languages on the Chomsky hierarchy are closed under duplication clo-
sure. It is known that on a binary alphabet, the family of regular languages is closed
under duplication closure. In contrast, on a larger alphabet, REG is still closed under
n-bounded duplication closure for n ≤ 2, but REG is not closed under n-bounded
operation closure for any n ≥ 4. The family of context-free languages is closed
under (uniformly) bounded duplication closure. The readers are referred to [9] for
these results.

It is a natural first step to determine these closure properties under (single step)
duplication. In this section, we show that the family of regular languages is closed
under repeat-deletion but not duplication, the family of context-free languages is
not closed under either operation, and the family of context-sensitive languages is
closed under both operations.

The following two propositions are due to [21] (without proofs).

Proposition 1 The family of regular languages is not closed under duplication.

Proof Let L = ab∗ and suppose that L♥ is regular. Since the family of regular lan-
guages is closed under intersection, L′ = L♥ ∩ ab∗ab∗ is regular. But L′ is exactly
the language {abiabj : i ≤ j}, which is clearly not regular. So, by contradiction, L♥
is not regular, and the family of regular languages is not closed under duplication. �
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Note that the proof of the preceding proposition requires that the alphabet contain
at least two letters. As we shall see in Sect. 6, this bound is tight: the family of
regular languages over a unary alphabet is closed under duplication.

Proposition 2 The family of context-free languages is not closed under duplication.

Proof Let L = {aibi | i ≥ 1}, a context-free language. Suppose L♥ is context-free.
Since the family of context-free languages is closed under intersection with regular
languages, D = L♥ ∩ a∗b∗a∗b∗ is context free.

Let p be the pumping-lemma constant of the language D. Consider the word
z = apbpapbp ∈ D. We can decompose z as z = uvwxy such that vx is a pumped
part. Let zi = uviwxiy. Firstly, v must not contain both a and b; otherwise, pumping
v results in a word with more than two repetitions of aibj for some i, j ≥ 1. This
also applies to x. Secondly, vx must be within the central bpap part; otherwise, the
pumped vx causes a difference between the number of first as and the number of
last bs. Now, we know that vwx is within the central bpap part of z, and v = bi and
x = aj for some 0 ≤ i, j ≤ p (with i, j not both zero). Then z2 = apbp+iap+j bp ,
which cannot be generated by duplication of a word in L. Thus, we conclude that
L♥ is not context-free. �

Proposition 3 The family of context-sensitive languages is closed under duplica-
tion.

Proof Let L be a context-sensitive language, and AL be a linear-bounded automaton
for L. Now, we construct a Turing machine A♥ for L♥ and show that A♥ is a linear-
bounded automaton. Indeed, for a given input w ∈ Σ∗, A♥ nondeterministically
choose w′ ∈ F(w) (let w = xw′z for some x, z ∈ Σ∗) and checks whether w′ = yy

for some y ∈ Σ∗. If not, it turns down this choice. Otherwise, it deletes one of y so
that the input tape has xyz. Now, A♥ simulates AL on this tape, and if AL accepts
the given input, xyz, then A♥ accepts w = xyyz. Therefore, A♥ accepts w if and
only if there exists a nondeterministic choice of the infix with respect to which the
simulated AL accepts the given input. Thus, L(A♥) = L♥.

This construction has four steps; the choice of an infix of an input, check of
whether the infix is repetitive, deletion, and the simulation of AL. The first three
steps require the workspace linear-proportional to the length of an input. In the
fourth step, AL receives an input which is shorter than the original input to A♥
and AL is a linear-bounded automaton. As a result, A♥ is also a linear-bounded
automaton. �

In the following, we consider the closure properties of the language families in
the Chomsky hierarchy under repeat-deletion. Our first goal is to prove that the
family of regular languages is closed under repeat-deletion. For this purpose, we
define the following binary operation � on languages L,R ⊆ Σ∗:

L�R = {xyz | xy ∈ L, yz ∈ R, y �= λ}.
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Proposition 4 (Due to Z. Ésik) The family of regular languages is closed under �.

Proof Let L1,L2 ⊆ Σ+ be regular languages. Let # be a new letter (not in Σ )
and let h be homomorphism defined by h(a) = a for a ∈ Σ∗ and h(#) = λ.
Let L′

1 = L1 ← {#} = {u#v | uv ∈ L1} (← denotes the insertion operation) and
L′

2 = L2 ← {#}. Moreover, let L1 = L′
1#Σ∗ and let L2 = Σ∗#L′

2. Then L1�L2 =
h(L1 ∩ L2). Since the family of regular languages is closed under insertion, con-
catenation, intersection, and homomorphism, L1�L2 is regular. �

Let L be a regular language. We can construct a finite automaton A =
(Q,Σ, δ, s,F ) such that L(A) = L. Recall that for any state q ∈ Q, L(A(s,q)) =
{w : sw �∗

A q} and L(A(q,F )) = {w : ∃f ∈ F such that qw �∗
A f }. Intuitively,

L(A(s,q)) is the set of words accepted “up to q ,” and L(A(q,F )) is the set of words
accepted “after q” so that L(A(s,q))L(A(q,F )) ⊆ L is the set of words in L that have
a derivation that passes through state q .

Lemma 1 Let L be a regular language and A = (Q,Σ, δ, s,F ) be a finite automa-
ton accepting L. Then L♠ = ⋃

q∈Q L(A(s,q))�L(A(q,F )).

Proof Let L′ = ⋃
q∈Q L(A(s,q))�L(A(q,F )). First, we prove that L♠ ⊆ L′. Let

α ∈ L♠. Then there exists a decomposition α = xyz for some x, y, z ∈ Σ∗ such
that xyyz ∈ L and y �= λ. Since A accepts xyyz, there exists some q ∈ Q such that
sxyyz �∗ qyz and qyz �∗ f for some f ∈ F . By construction, xy ∈ L(A(s,q)) and
yz ∈ L(A(q,F )). This implies that xyz ∈ L(A(s,q))�L(A(q,F )), from which we have
L♠ ⊆ L′.

Conversely, if α ∈ L′, then there exists q ∈ Q such that α ∈ L(A(s,q))�L(A(q,F )).
We can decompose α into xyz for some x, y, z ∈ Σ∗ such that xy ∈ L(A(s,q)), yz ∈

L(A(q,F )), and y �= λ. Since L(A(s,q))L(A(q,F )) ⊆ L, we have that xyyz belongs
to L. It follows that α = xyz ∈ L♠ and L′ ⊆ L♠. We conclude that L′ = L♠. �

Proposition 5 The family of regular languages is closed under repeat-deletion.

Proof Since the family of regular languages is closed under finite union and the �

operation, it is closed under repeat-deletion (due to Lemma 1). �

Proposition 6 The family of context-free languages is closed under � with regular
languages.

Proof Repeat the argument in the proof for Proposition 4. Since the family of
context-free languages is closed under insertion, concatenation with regular lan-
guages, intersection with regular languages, and homomorphism, the family of
context-free languages is closed under � with regular languages. �

Lemma 2 The family of context-free languages is not closed under �.
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Proof Let L1 = {ai#bi$ | i ≥ 0} and L2 = {#bj $cj | j ≥ 0}. Although L1 and L2
are CFLs, L1�L2 = {ai#bi$ci | i ≥ 0}, which is not context-free. �

Proposition 7 The family of context-free languages is not closed under repeat-
deletion.

Proof Let L = {ai#bi#bj cj | i, j ≥ 0}, which is context-free. Then L♠ ∩a∗#b∗c∗ =
{ai#bj cj | i, j ≥ 0, i ≤ j}, which is not context-free. Since the family of context-
free languages is closed under intersection with regular languages, and since L♠ ∩
a∗#b∗c∗ is not context-free, we may conclude that L♠ is not context-free. Thus, the
family of context-free languages is not closed under repeat-deletion. �

However, there do exist context-free (and nonregular) languages whose image
under repeat-deletion remains context-free. An example is shown below.

Example 2 Let L = {anbn | n ≥ 0}; this is a context-free language. Then L♠ =
{anbm | 1 ≤ m < n ≤ 2m} ∪ {anbm | 1 ≤ n < m ≤ 2n}. This L♠ is generated by
the following context-free grammar, and hence in CFL. Let G = ({a, b}, {S,X,Y,

Xf ,Yf },P ,S), where the set of production rules P is given by

S → X | Y,

X → aXb | aaXf b,

Y → aYb | aYf bb,

Xf → aXf b | aaXf b | λ,

Yf → aYf b | aYf bb | λ.

Proposition 8 The family of context-sensitive languages is closed under repeat-
deletion.

Proof Let L and AL be defined as we did in Proposition 3. As A♥ in the propo-
sition, we construct a linear-bounded automaton A♠ for L♠ which simulates AL.
In contrast to A♥, A♠ nondeterministically copies an infix of a given input w. For-
mally speaking, w is regarded as a catenation of x, y, z, and y is duplicated so as to
result in xyyz on the input tape. Then A♠ runs AL on the tape. If AL accepts xyyz,
then A♠ accepts w = xyz. As shown in Proposition 3, A♠ is a linear-bounded au-
tomaton. �

In summary, the following closure properties related to duplication, repeat-
deletion, and the � operation hold:

♥ ♠ � � with regular

FIN Y Y Y N
REG N Y Y Y
CFL N N N Y
CSL Y Y Y Y
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4 Language Equations

We now consider the language equation problem posed by the duplication operation:
for a given language L ⊆ Σ∗, can we find a language X ⊆ Σ∗ such that X♥ = L?
In the following, we show that if L is a regular language and there exists a solution
to X♥ = L, then we can compute a maximal solution. We note that the solution to
the language equation is not unique in general.

Example 3 {aaa, aaaa, aaaaa}♥ = {aaa, aaaaa}♥ = {ai : 4 ≤ i ≤ 10}.

In view of the fact that a language equation may have multiple solutions, we
define an equivalence relation ∼♥ on languages as follows:

X ∼♥ Y ⇔ X♥ = Y♥.

For the same reason, we define an equivalence relation ∼♠ as follows:

X ∼♠ Y ⇔ X♠ = Y♠.

Lemma 3 If [X] ∈ 2Σ∗
/ ∼♥ and if Ξ ⊆ [X] (Ξ �= ∅), then

⋃
L∈Ξ L ∈ [X].

Proof Let [X] ∈ 2Σ∗
/ ∼♥ and Ξ ⊆ [X] (Ξ �= ∅). Prove that LΞ = ⋃

L∈Ξ L ∈ [X].
Let Y ∈ Ξ . Clearly, Y ⊆ LΞ and so Y♥ ⊆ LΞ

♥. Now let w ∈ LΞ
♥. Then ∃x, z ∈

Σ∗, y ∈ Σ+, v ∈ LΞ such that w = xyyz and v = xyz. Then there exists Z ∈ Ξ

such that v ∈ Z. Since Y,Z ∈ Ξ , v♥ ⊆ Z♥ = Y♥. Then w ∈ v♥ implies w ∈ Y♥.
Thus, LΞ

♥ ⊆ Y♥. We conclude that Y♥ = LΞ
♥ and LΞ ∈ [X]. �

Corollary 1 For an equivalence class [X] ∈ 2Σ∗
/ ∼♥, there exists a unique maxi-

mal element Xmax with respect to the set inclusion partial order defined as follows:

Xmax =
⋃

L∈[X]
L.

We provide a way to construct the maximum element of a given equivalence
class. First, we prove a more general result.

Proposition 9 Let L ⊆ Σ∗, and let f,g : Σ∗ → 2Σ∗
be any functions such that

u ∈ g(v) ⇔ v ∈ f (u) for all u,v ∈ Σ∗. If a solution to the language equation⋃
x∈X f (x) = L exists, then the maximum solution (with respect to the set inclu-

sion partial order) is given by Xmax = (
⋃

y∈Lc g(y))c .

Proof For two languages X,Y ⊆ Σ∗ such that
⋃

x∈X f (x) = L and
⋃

y∈Y f (y) =
L,

⋃
z∈X∪Y f (z) = L holds. Hence, the assumption implies the existence of Xmax.

(⊆) Suppose ∃w ∈ g(v) ∩ Xmax for some v ∈ Lc. This means that v ∈ f (w).
However, f (w) ⊆ ⋃

x∈Xmax
f (x) = L, and hence v ∈ L, a contradiction. (⊇) Sup-

pose that ∃w ∈ Xc
max ∩ (

⋃
y∈Lc g(y))c . If f (w) ⊆ L, then w ∈ Xmax (by the max-

imality of Xmax). Otherwise, ∃v ∈ f (w) ∩ Lc. This implies that w ∈ g(v) ⊆
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⋃
y∈Lc g(y). In both cases, we have a contradiction. Therefore, we have Xc

max =
⋃

y∈Lc g(y), i.e., Xmax = (
⋃

y∈Lc g(y))c . �

Lemma 4 Let u,v ∈ Σ∗. Then u ∈ v♥ if and only if v ∈ u♠.

Proof (⇒) If u ∈ v♥, then there exist x, z ∈ Σ∗ and y ∈ Σ+ such that v = xyz and
u = xyyz. Then u♠ contains xyz = v. (⇐) If v ∈ u♠, then there exist x′, z′ ∈ Σ∗
and y′ ∈ Σ+ such that v = x′y′z′ and u = x′y′y′z′. Then x′y′y′z′ = u ∈ v♥. �

Proposition 9 and Lemma 4 imply the following corollaries.

Corollary 2 Let L ⊆ Σ∗. If there exists a language X ⊆ Σ∗ such that X♠ = L,
then the maximum element Xmax of [X]∼♠ is given by ((Lc)♥)c .

Corollary 3 Let L ⊆ Σ∗. If there exists a language X ⊆ Σ∗ such that X♥ = L,
then the maximum element Xmax of [X]∼♥ is given by ((Lc)♠)c .

Proposition 10 Let L,X be regular languages satisfying X♥ = L. Then it is decid-
able whether X is the maximal solution for this language equation.

Proof Since L is regular and REG is closed under repeat-deletion and complement,
the maximum solution of X♥ = L given in Corollary 3, ((Lc)♠)c , is regular. Since
the equivalence problem for regular languages is decidable, it is decidable whether
a given solution to the duplication language equation is maximal. �

Due to the fact that REG is not closed under duplication, we cannot obtain a
similar decidability result for the X♠ = L language equation. This motivates our
investigation in the next two sections of necessary and sufficient conditions for the
duplication of a regular language to be regular. Indeed, in the cases when the du-
plication language (Lc)♥ is regular, the solution to language equations X♠ = L,
L ∈ REG, can be constructed as described in Corollary 2.

5 Controlled Duplication

In Sect. 4, we showed that for a given language L ⊆ Σ∗, the maximal solution
of the repeat-deletion language equation X♠ = L is given by ((Lc)♥)c . However,
unlike the duplication language equation, we do not have an efficient algorithm
to compute this language due to the fact that the family of regular languages is
not closed under duplication. This motivates “controlling” the duplication in such a
manner that duplications can occur only for some specific words.

Let L,C be languages over Σ . We define the duplication of L using the control
set C as follows:

L♥(C) = {xyyz | xyz ∈ L, y ∈ C}.



52 M. Ito et al.

Note that this generalization of the duplication operation can express two vari-
ants of duplication that appear in previous literature, namely uniform and length-
bounded duplication ([12, 13]). Indeed, using the notation in [13], we have

D1{n}(L) = L♥(Σn) and D1{0,1,...,n}(L) = L♥(Σ≤n).

This section presents basic properties of controlled duplications, some of which
will turn out to be useful in Sect. 6. For symmetry, we also investigate properties of
controlled repeat-deletion.

Lemma 5 Let L ⊆ Σ∗ be a language and C1,C2 ⊆ Σ∗ be control sets. If C1 ⊆ C2,
then L♥(C1) ⊆ L♥(C2).

Lemma 6 Let L ⊆ Σ∗ be a language and C1,C2 ⊆ Σ∗ be control sets. Then
L♥(C1∪C2) = L♥(C1) ∪ L♥(C2).

Let L ⊆ Σ∗ be a language, C ⊆ Σ∗ be a control set, and w ∈ C. Then w is said
to be useful with respect to L if w ∈ F(L); otherwise, it is called useless with respect
to L. The control set C is said to contain an infinite number of useful words with
respect to L if and only if |F(L) ∩ C| = ∞.

Lemma 7 Let L ⊆ Σ∗ be a language, C ⊆ Σ∗ be a control set, and C′ be the set
of all useless words in C with respect to L. Then L♥(C) = L♥(C\C′).

Proof Lemma 6 implies L♥(C) = L♥(C\C′) ∪ L♥(C′). Since L♥(C′) = ∅, L♥(C) =
L♥(C\C′) �

Proposition 11 For a regular language L ⊆ Σ∗ and a regular control set C ⊆ Σ∗,
it is decidable whether C contains an infinite number of useful words with respect
to L.

Proof Since L and C are regular, F(L), and hence F(L) ∩ C are also regular. Since
finiteness of a regular language is decidable, it is decidable whether or not a reg-
ular control set C contains an infinite number of useful words with respect to a
language L. �

Note that if L ⊆ Σ∗, C ⊆ Σ∗ is a control set, and C contains at most a finite
number of useful words with respect to L, then C′ = C ∩ F(L) is a finite language
and satisfies L♥(C) = L♥(C′). In particular, for any finite language L and any control
set C, there exists a finite control set C′ ⊆ C satisfying L♥(C) = L♥(C′).

We now extend our previous results on the closure properties of language families
so as to accommodate the controlled duplication. Since ♥ = ♥Σ∗ , we trivially have
the following:

– The family of regular languages is not closed under controlled duplication.
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– The family of context-free languages is not closed under controlled duplication,
repeat-deletion, or �.

We conclude this section with definitions of repeat-deletion and the � operation
using control sets, and by providing a few results of them.

Let L,L1,L2,C ⊆ Σ∗. Then

L♠(C) = {xyz | xyyz ∈ L, y ∈ C},
L1�CL2 = {xyz | xy ∈ L1, yz ∈ L2, y ∈ C}.

It is straightforward to prove that the family of regular languages is closed under
�C for any regular language C. Let L1,L2 be regular languages and form L1 and
L2 as defined in the proof of Proposition 4. We see that L1�CL2 = h(L1 ∩ L2 ∩
Σ∗#C#Σ∗). Furthermore, by repeating the argument in the proof of Proposition 5,
we have that the family of regular languages is closed under ♠C for any regular
control set C.

It is simple to check that if each word in L contains a subword that is in C, ♥C

and ♠C satisfy the requirements of Proposition 9, so that we have a procedure to
find X such that X♥(C) = L if such an X exists.

Proposition 12 Let L ⊆ Σ∗ be a context-free language and let C ⊆ Σ+ be a finite
control set. Then L♠(C) is context-free.

Proof Let h be the homomorphism defined by h(a) = h(a) = a for a ∈ Σ,a ∈
Σ . Then L′ = h−1(L) is context-free. Consider L′′ = L′ ∩ (Σ∗{uu | u ∈ C}Σ∗).
Then L′′ is context-free. Now, let θ be the homomorphism defined by θ(a) = a and
θ(a) = λ for a ∈ Σ . Then θ(L′′) = L♠(C), and hence L♠(C) is context-free. �

6 Conditions for L♥(C) to Be Regular

For a regular language L and a control set C, we now investigate a necessary and
sufficient condition for L♥(C) to be regular. As suggested in the following example,
even for a “simple” language L and a control set C, L♥(C) can be nonregular.

Example 4 Let Σ = {a, b} and L = {w ∈ Σ∗ | |w| = 0 (mod 3)} and C = Σ∗. Then
L♥(C) /∈ REG.

Given a regular language L, a sufficient condition for L♥(C) to be regular is a
corollary of the following result in [3]. A family of languages is called a trio if it is
closed under λ-free homomorphism, inverse homomorphism, and intersection with
regular languages. Note that both the families of regular languages and of context-
free languages are trio.

Theorem 1 ([3]) Any trio is closed under duplication with a finite control set.
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Corollary 4 Let L ⊆ Σ∗ be a regular language and C ⊆ Σ∗. If there exists a finite
control set C′ ⊆ Σ∗ such that L♥(C) = L♥(C′), then L♥(C) is regular.

Given a regular language L, we now investigate necessary conditions for L♥(C)

to be regular. Results in [19] stating that infinite repetitive languages cannot be even
context-free indicate that the converse of Corollary 4 may also be true. Hence, in
the remainder of this section, we shall investigate the following claim:

Claim Let L ⊆ Σ∗ be a regular language and C ⊆ Σ∗ be a control set. If L♥(C) is
regular, then there exist a finite control set C′ ⊆ Σ∗ such that L♥(C) = L♥(C′).

As shown in the following example, this claim generally does not hold.

Example 5 Let Σ = {a, b}, L = ba+b, and C = ba+ ∪ a+b. We can duplicate a
prefix bai of a word bajb ∈ L (i ≤ j ) to obtain a word baibajb ∈ L♥(C). In the
same way, the duplication of a suffix a	b of a word bakb (k ≥ 	) results in a word
bakba	b ∈ L♥(C). Thus, L♥(C) = ba+ba+b. Note that L and L♥(C) are regular.
However, there exists no finite control set C′ satisfying L♥(C) = L♥(C′). This is
because ba+ba+b can have arbitrary long repetitions of a’s, and hence arbitrary
long control factors are required to generate it.

Nevertheless, this claim holds for several interesting cases: the case where L is
finite or C contains at most a finite number of useful words with respect to L, the
case of a unary alphabet Σ = {a}, the case L = Σ∗, and the case where the control
set is “marked,” i.e., there exists a ∈ Σ such that C ⊆ a(Σ \ {a})∗a. Moreover, it
turned out that the proof technique we employ for this fourth case can be utilized to
prove that the claim holds for the case where C is nonoverlapping and an infix code,
which is more general than the fourth case. In the following, we prove the direct
implication of the claim for these cases (the reverse one is clear from Corollary 4).

In the case where L is finite, L♥(C) is finite, and hence regular. Since F(L) is
finite, by letting C′ = C ∩ F(L), we have L♥(C) = L♥(C′). Thus, the claim holds for
this case. Moreover, even for an infinite L, we can say that if C contains at most a
finite number of useful words with respect to L, then the claim holds because C′, de-
fined in the same manner as above, is finite. Therefore, in the following, we assume
that L is infinite and C contains an infinite number of useful words with respect
to L.

Next, we show that the claim holds in the case of a unary alphabet. We employ
the following known result for this purpose.

Proposition 13 ([6]) Let Σ = {a} be a unary alphabet, and L be a language
over Σ . L is regular if and only if there exists a finite set N of pairs of integers
such that L = ⋃

k≥0,(n,m)∈N akn+m.

Proposition 14 Let Σ be a unary alphabet, say Σ = {a}, L ⊆ Σ∗ be a regular
language, and C ⊆ Σ∗ be an arbitrary language. Then L♥(C) is regular, and there
exists a finite context C′ ∈ FIN such that L♥(C) = L♥(C′).
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Proof L being regular, there exists a finite set of pairs of integers N = {(pi, qi) |
pi, qi ∈ N0,1 ≤ i ≤ n} for some n ∈ N such that L = ⋃

x≥0,(pi ,qi )∈N apix+qi .

Let Li = ⋃
x≥0 apix+qi , and consider a word ak ∈ C, where k ∈ N. For some

x ≥ 0, we can apply the duplication with respect to ak to apix+qi if and only
if pix + qi ≥ k. The application generates apix+qi+k ∈ L♥(C). Note that for
x1, x2 ∈ N0, pix1 + qi + k = pix2 + qi + k (mod pi). We define a function
ψi : C �→ {0,1, . . . , pi − 1} such that for ak ∈ C, ψi(a

k) = qi + k (mod pi).
Hence, we can partition C into pi disjoint sets depending on ψi . Formally speaking,
C = ⋃

0≤m<pi
Ci,m, where Ci,m = {w ∈ C | ψi(w) = m}. Now, the necessary and

sufficient condition mentioned above as to the applicability implies that for aj , ak ∈
Ci,m, if j ≤ k, then L

♥({aj })
i ⊇ L

♥({ak})
i . Let wi,m be the shortest word in Ci,m. Then

L
♥({wi,m})
i = L

♥(Ci,m)

i holds. Thus, by letting C′ = {wi,m | 1 ≤ i ≤ n,0 ≤ m < pi},
we have L♥(C) = L♥(C′). Clearly, C′ is finite, and hence L♥(C′) is regular. �

By letting C = Σ∗, Proposition 14 implies that the family of regular languages
is closed under duplication when Σ is unary.

Next, we show that the claim holds for the case when L = Σ∗ (Corollary 5). This
requires the following known two lemmata. A word w ∈ Σ+ is said to be primitive
if w = vn implies that n = 1, i.e., w = v. A word v ∈ Σ+ is called a conjugate of w

if v = xy and w = yx for some x, y ∈ Σ∗.

Lemma 8 ([14]) For a primitive word p, any conjugate of p is primitive.

Lemma 9 ([15]) Let p and q be primitive words with p �= q and let i, j ≥ 2. Then
piqj is primitive.

For a language C ⊆ Σ∗, we define Dup(C) = {ww | w ∈ C}.

Proposition 15 Let C ⊆ Σ∗. Then Σ∗Dup(C)Σ∗ is regular if and only if there
exists a finite language C′ such that Σ∗Dup(C′)Σ∗ = Σ∗Dup(C)Σ∗.

Proof The proof of “if”-part is obvious since Σ∗Dup(C′)Σ∗ is regular. Now, con-
sider the proof of “only if”-part. Assume L = Σ∗Dup(C)Σ∗ is regular and consider
the regular language L ∩ (Σ∗ \ LΣ+) ∩ (Σ∗ \ Σ+L). All words in this language
have a representation ww for some w ∈ C. Hence, there exists C′ ⊆ C such that
Dup(C′) = L ∩ (Σ∗ \ LΣ+) ∩ (Σ∗ \ Σ+L). Notice that for any w ∈ C there ex-
ist w′ ∈ C′ and x, y ∈ Σ∗ such that ww = xw′w′y. Therefore, Σ∗Dup(C)Σ∗ =
Σ∗Dup(C′)Σ∗.

Suppose C′ is infinite. Then there exists a word uu ∈ Dup(C′) with length twice
that of the pumping lemma constant for Dup(C′). So, by the pumping lemma,
there exists a decomposition uu = u1u2u3u1u2u3, of uu such that u1, u3 ∈ Σ∗,
u2 ∈ Σ+ and u1u

i
2u3u1u2u3 ∈ Dup(C′) for any i ∈ N. Notice that for any i ∈ N,

u1u
i
2u3u1u2u3 is not primitive because it is in Dup(C′). Consider the case i ≥ 3.

By Lemma 8, ui−1
2 (u2u3u1)

2 is not primitive. Then Lemma 9 implies that u2
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and u2u3u1 share a primitive root, say p ∈ Σ+. We may now write u2 = pn

and u2u3u1 = pm for some n,m ≥ 1. Hence, ui−1
2 (u2u3u1)

2 = pn(i−1)+2m. From
Lemma 8, it follows that u1u

i
2u3u1u2u3 = qn(i−1)+2m, where q is a conjugate word

of p. Now, we have that u1u
i
2u3u1u2u3 = qn(i−1)+2m is a proper prefix (and suffix)

of u1u
i+1
2 u3u1u2u3 = qni+2m, which contradicts with the definition of Dup(C′).

Thus, C′ must be finite. �

Lemma 10 Let C ⊆ Σ∗. Then (Σ∗)♥(C) = Σ∗Dup(C)Σ∗.

Proof Let w ∈ (Σ∗)♥(C). Then there exist x, y, z ∈ Σ∗ such that y ∈ C and w =
xyyz. Thus, w ∈ Σ∗Dup(C)Σ∗. Conversely, let v ∈ Σ∗Dup(C)Σ∗. Then v is of
the form xyyz such that x, z ∈ Σ∗ and yy ∈ Dup(C) (i.e., y ∈ C). The duplication
of y in xyz ∈ Σ∗ results in xyyz = v, and hence v ∈ (Σ∗)♥(C). �

The following corollary derives from Lemma 10 and Proposition 15. In fact, this
corollary asserts the claim in the case when L = Σ∗.

Corollary 5 Let C ⊆ Σ∗. Then (Σ∗)♥(C) is regular if and only if there exists a
finite subset C′ ⊆ C such that (Σ∗)♥(C′) = (Σ∗)♥(C).

The last case we consider is that of marked duplication, where given a word w

in L♥(C), we can deduce or at least guess the factor whose duplication generates w

from a word in L, according to some mark of a control set C. Here, we consider a
mark which shows the beginning and end of a word in C, that is, C ⊆ #(Σ \ {#})∗#
for some character #. For a strongly-marked duplication, where # /∈ Σ and L ⊆
Σ∗#Σ∗#Σ∗, we can easily show that the existence of a finite control set provided
L♥(C) is regular, using the pumping lemma for the regular language. Hence, we
consider the case when the mark itself is a character in Σ , say # = a for some
a ∈ Σ .

It turned out that we could employ the proof of the claim in the case of the
marked duplication for the more general case when C is a nonoverlapping and an
infix code. A language L is called nonoverlapping if vx, yv ∈ L implies x = y = λ,
and L is called infix-code if L∩ (Σ∗LΣ+ ∪Σ+LΣ∗) = ∅. That is, any elements of
the language which is nonoverlapping and an infix-code do not overlap each other.
In the following, we prove the claim for this case.

We introduce several notions and notations used in the proof. For a word w ∈
L♥(C), we call a tuple (x, y, z) a dup-factorization of w with respect to L and C

if w = xyyz, xyz ∈ L, and y ∈ C. When L and C are clear from the context, we
simply say that (x, y, z) is a dup-factorization of w. Let δ(w) be the number of dup-
factorizations of w with respect to L and C. For y ∈ C, if there are x, z ∈ Σ∗ such
that (x, y, z) is a dup-factorization of w, then we call y a dup-factor of w. Let Fd(w)

be the set of all dup-factors of w. Note that |Fd(w)| ≤ δ(w) but the inequality may
be strict.
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Proposition 16 Let L be a regular language and C be a control set which is
nonoverlapping and an infix-code. Then the regularity of L♥(C) implies the exis-
tence of a finite control set C′ such that L♥(C) = L♥(C′).

Proof Let ≡L and ≡♥ be the syntactic congruences of L and L♥(C), respectively,
and we define ≡=≡L ∩ ≡♥. Since both L and L♥(C) are regular, C/≡ is fi-
nite. Let Γ2 = {[c] ∈ C/ ≡ s.t. |[c]| ≤ 2}. Using induction on the number of dup-
factorizations, we prove that (i) Γ2 �= ∅, and (ii) any word in L♥(C) has a dup-factor
which is in an equivalence class in Γ2.

Firstly, we consider a word w in L♥(C) which has the smallest number of dup-
factorizations among the elements of L♥(C). Suppose that no dup-factor of w is in
equivalence classes in Γ2. Let (x, y, z) be a dup-factorization of w. Then there exists
y′ ∈ C such that y′ ≡ y, y′ �= y, and y′ /∈ Suff(x). Let w′ = xy′yz. This is in L♥(C),
and hence w′ must have a dup-factorization, say (α,β, γ ) for some α,β, γ ∈ Σ∗.
Due to the nonoverlapping and infix-code properties of C, β2 is an infix of either
x or yz. Here, we assume that it is in x, and let x = αβ2v, γ = vy′yz for some
v ∈ Σ∗. Then

w′ = αβ2γ ∈ L♥(C) ⇒ αβvy′yz ∈ L

⇒ αβvyyz ∈ L

⇒ αβ2vyyz = w ∈ L♥(C).

Thus, (α,β, vyyz) is a dup-factorization of w. Generally speaking, for a dup-
factorization (α,β, γ ) of w′, w has a corresponding dup-factorization (α′, β, γ )

if y′ is an infix of α, or (α,β, γ ′) otherwise (i.e., y′ is an infix of γ ). Indeed, this
means that δ(w′) < δ(w) and Fd(w′) ⊆ Fd(w). The first consequence is a contra-
diction while the second one is of importance in the induction step. The second is
clear from the above discussion. In order to show the first, it is enough to prove
that there do not exist two distinct dup-factorizations of w′ which correspond to
the same dup-factorization of w, and there exists no dup-factorization of w′ which
corresponds to (x, y, z).

Let (α1, β1, γ1) and (α2, β2, γ2) be two distinct dup-factorizations of w′, and
consider dup-factorizations of w which correspond to them respectively (either
(α′

i , βi, γi) or (αi, βi, γ
′
i ) for each i = 1,2). Firstly, we prove that (α1, β1, γ

′
1) �=

(α2, β2, γ
′
2). Suppose not, then since w′ = α1β

2
1γ1 = α2β

2
2γ2, we have γ1 = γ2, a

contradiction. Next, we compare (α1, β1, γ
′
1) and (α′

2, β2, γ2) (see Fig. 1). Their
construction shown above implies that γ1 and α2 must contain y′ as their infix.
Hence, |α1β

2
1 | + |y′| ≤ |α2|. Since α′

2 is generated by replacing y′ in α2 with y and
β �= λ, we have |α1| < |α2|. Thus, (α1, β1, γ

′
1) �= (α′

2, β2, γ2). Using the same way,
we can easily check that (α′

i , βi, γi), (αi, βi, γ
′
i ) �= (x, y, z).

Now, we assume that for all words in L♥(C) which have at most n dup-
factorizations have a dup-factor which is in the equivalence class in Γ2. Suppose
that there were v ∈ L♥(C) with n + 1 dup-factorizations and without any dup-factor
which is in the equivalence class of size at most 2. Then we can construct a word
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Fig. 1 The comparison
between two
dup-factorizations,
(α1, β1, γ1) and (α2, β2, γ2),
of w′

v′ as above which satisfies δ(v′) ≤ n and Fd(v′) ⊆ Fd(v), which contradict with the
induction assumption. �

Corollary 6 Let L be a regular language and C be a control set. If there exists
a finite set C1 ⊂ C such that C \ C1 is nonoverlapping and an infix-code, then
the regularity of L♥(C) implies the existence of a finite control set C′ such that
L♥(C) = L♥(C′).

Proof Note that L♥(C) = L♥(C1) ∪ L♥(C\C1). Proposition 16 implies the existence
of a finite control set C2 such that L♥(C\C1) = L♥(C2). Then by letting C′ = C1 ∪C2,
which is finite, we have L♥(C) = L♥(C′). �

Indeed, we can prove that Γ1 = {[c] ∈ C/ ≡ s.t. |[c]| = 1} is enough to generate
L♥(C), that is, for a finite control set C′ = {c | [c] ∈ Γ1}, L♥(C) = L♥(C′).

Proposition 17 Let L be a regular language and C ⊆ Σ∗ be a nonoverlapping and
an infix code. If L♥(C) is regular, then L♥(C) = L♥(C′), where C′ = {c | [c] ∈ Γ1}.

Proof All we have to prove is that for w ∈ L♥(C), unless w has a dup-factor which
is in C′, there exists w′ ∈ L♥(C) such that δ(w′) < δ(w) and Fd(w′) ⊆ Fd(w).

Let (x, y, z) be a dup-factorization of w, and let y′ ∈ C such that y �= y′ but
y ≡ y′. Then let w0 = xy′yz, which is in L♥(C). The proof of Proposition 16 implies
that if either (1) y′ /∈ Suff(x) or (2) x = x1y

′ for some x1 ∈ Σ∗ but (x1, y
′, yz) is

not a dup-factorization of w0, then δ(w0) < δ(w). Even otherwise (w0 = x1y
′y′yz),

δ(w0) ≤ δ(w). If this holds with equality, consider w1 = x1yy′yz ∈ L♥(C). If either
(1) y /∈ Suff(x1) or (2) x1 = x2y for some x2 ∈ Σ∗ but (x2, y, y′yz) is not a dup-
factorization of w1, then δ(w1) < δ(w0) = δ(w). Otherwise, let w2 = x2y

′yy′yz.
Note that xk is getting strictly shorter. Hence, repeating this process, we eventu-
ally reach an integer i ≥ 0 such that either (1) or (2) holds for wi . We can check
that δ(wi) < δ(wi−1) ≤ · · · ≤ δ(w0) ≤ δ(w) and Fd(wi) ⊆ Fd(w) as follows: Let
wi = xi(y

′y)i/2+1z ∈ L♥(C) (for even i; the odd case is essentially same, and hence
omitted). Let wi = αβ2γ , where (α,β, γ ) is a dup-factorization of wi . Since ei-
ther (1) or (2) holds, β2 is an infix of xi or that of yz. Assume the former and
let xi = αβ2γ ′ and γ = γ ′(y′y)i/2+1z. Then αβγ ′(y′y)i/2+1z ∈ L. Using y ≡ y′,
we can say that αβγ ′(yy′)i/2yyz ∈ L, and hence αβ2γ ′(yy′)i/2yyz ∈ L♥(C). The
left-hand side is xi(yy′)i/2yyz = xi−1y

′(yy′)i/2−1yyz = · · · = xyyz = w. �
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Consequently, we can say that if we let m = |C/≡ |, then the size of finite control
set C′ is at most m − 1 because at least one equivalence class in C/≡ must have
infinite cardinality.

7 Duplication and Primitivity

Recall that a word w ∈ Σ∗ is primitive if there exists no u ∈ Σ∗ such that w = uk

for some k ≥ 2. We denote by Q the set of all primitive words over the alphabet Σ .
There is evidently a connection between duplication, repeat-deletion, and primitive
words, but the nature of this relationship is unclear. The following section elucidates
some of the properties of this relationship.

Proposition 18 (See, for instance, [18]) Let u,v ∈ Σ+ such that uv is primitive.
Then both u(uv)n and v(uv)n are primitive for any n ≥ 2.

Proposition 19 Let w ∈ Σ∗ be a nonprimitive word. If we duplicate an infix of
w which is strictly shorter than the primitive root of w, then the resulting word is
primitive.

Proof Let w = f n for f ∈ Q and n ≥ 2. We also denote w = xyz for x, y, z ∈ Σ∗,
where y is the infix we duplicate so that the resulting word is xyyz. Since w =
f n = xyz, there exist fs ∈ Suff(f ) and f ′

p ∈ Pref(f ) satisfying y = fsf
′
p . Then

yzx, a conjugate of xyz, is written as yzx = (fsfp)n, where fp ∈ Pref(f ) satisfying
f = fpfs . Let g = fsfp . Clearly g ∈ Q. Now, we prove that yyzx is primitive, and
hence xyyz is also primitive.

We have yyzx = fsf
′
pyzx = fsf

′
pgn. Since |y| < |f |, there exists a word v ∈

Σ+ such that fp = f ′
pv. Then yyzx = y(yv)n and Proposition 18 implies that yyzx

is primitive. �

Proposition 20 Let x, y, z ∈ Σ∗. If xyz is primitive and xyyz is not primitive, then
xz is primitive.

Proof Let f be the primitive root of y, i.e., y = f m for some m ≥ 1. Since
xyyz /∈ Q, its conjugate zxyy is also not primitive. Suppose zx were not prim-
itive, i.e., zx = gn for some n ≥ 2 and g ∈ Q. If g �= f , then zxyy = gnf 2m.
Lemma 9 implies that zxyy ∈ Q, a contradiction. If g = f , then y = gm, and hence
zxy = gn+m /∈ Q. Thus, xyz /∈ Q, a contradiction. As a result, zx ∈ Q, that is,
xz ∈ Q. �

8 Discussion

In this paper, we studied duplication and repeat-deletion, two formal language the-
oretic models of insertion and deletion errors occurring during DNA replication.



60 M. Ito et al.

Specifically, we obtained the closure properties of the families of languages in
the Chomsky hierarchy under these operations, the language equations of the form
X♥ = L and X♠ = L for a given language L, and the operation of controlled dupli-
cation. In addition, we made steps toward finding a necessary and sufficient condi-
tion for a controlled duplication of a regular language to be regular.

Two problems for further investigation are: the problem of how to decide for a
given language L whether the language equation X♥ = L has a solution, and the
problem of finding a necessary condition for the controlled duplication of a regular
language to be regular, in the general case.

Acknowledgements We wish to express our gratitude to Dr. Zoltán Ésik for the concise proof of
Proposition 4. We would also like to thank Dr. Helmut Jürgensen for our discussion on the claim
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Sequence and Structural Analyses
for Functional Non-coding RNAs

Yasubumi Sakakibara and Kengo Sato

Abstract Analysis and detection of functional RNAs are currently important top-
ics in both molecular biology and bioinformatics research. Several computational
methods based on stochastic context-free grammars (SCFGs) have been developed
for modeling and analysing functional RNA sequences. These grammatical methods
have succeeded in modeling typical secondary structures of RNAs and are used for
structural alignments of RNA sequences. Such stochastic models, however, are not
sufficient to discriminate member sequences of an RNA family from non-members,
and hence to detect non-coding RNA regions from genome sequences. Recently, the
support vector machine (SVM) and kernel function techniques have been actively
studied and proposed as a solution to various problems in bioinformatics. SVMs
are trained from positive and negative samples and have strong, accurate discrimi-
nation abilities, and hence are more appropriate for the discrimination tasks. A few
kernel functions that extend the string kernel to measure the similarity of two RNA
sequences from the viewpoint of secondary structures have been proposed. In this
article, we give an overview of recent progress in SCFG-based methods for RNA
sequence analysis and novel kernel functions tailored to measure the similarity of
two RNA sequences and developed for use with support vector machines (SVM) in
discriminating members of an RNA family from non-members.

1 Introduction

Since the number of known RNA sequences, structures, and families is growing
rapidly, computational methods for finding non-protein-coding RNA regions in the
genome have garnered much attention and research [6]. Compared with the gene
finding difficulties inherent in protein-coding regions, identifying non-coding RNA
regions computationally is essentially more problematic as these sequences do not
have strong statistical signals. Currently, a general finding algorithm does not exist.

In RNA sequence analysis, the specific form of the secondary structures in the
cell is an important feature for modeling and detecting RNA sequences. The folding
of an RNA sequence into a functional molecule is largely governed by the formation
of the standard Watson–Crick base pairs A-U and C-G as well as the wobble pair G-U.
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Fig. 1 A typical secondary structure including stem structure of an RNA sequence (left) consti-
tutes the so-called biological palindrome (right)

Such base pairs constitute “biological palindromes” in the genome (see Fig. 1). The
secondary structures of RNAs are generally composed of stems, hairpins, bulges,
interior loops, and multi-branches. A stem is a double-stranded (paired) region of
base-pair stacks (see Fig. 1). A hairpin loop occurs when RNA folds back on itself.

To capture such secondary structure features, stochastic context-free grammars
(SCFGs) for RNAs have been proposed. SCFGs have been used successfully to
model typical secondary structures of RNAs and are also used for structural align-
ment of RNA sequences [1, 4, 5, 20, 25, 27, 29]. However, a serious drawback of the
SCFG method is the requirement of prior knowledge. A known typical secondary
structure of the target RNA family is needed to design the grammars.

Furthermore, stochastic models such as SCFGs and hidden Markov models
(HMMs) have limitations in discriminating member sequences of an RNA family
from non-members by only examining the probabilistic scores. Hence, we require
stronger discriminative methods to detect and find non-coding RNA sequences.

Recently, the support vector machine (SVM) and kernel function techniques have
been actively studied and used to propose solutions to various problems in bioinfor-
matics [17, 30, 31]. SVMs are trained from positive and negative samples and have
strong, accurate discrimination abilities. They are, therefore, better suited to the
discrimination tasks. For protein sequence analyses, string kernels [31] have been
proposed for use with SVMs to classify a protein family. In addition, string ker-
nels are proven to work for remote homology detections of protein sequences, i.e.
a superfamily.

Several kernel functions have been proposed which enhance the ability to mea-
sure the similarity of two RNA sequences from the viewpoint of secondary structure.

2 RNA Sequence Alignment and Secondary Structure Prediction
Using Stochastic Grammar

In RNA, the nucleotides adenine (A), cytosine (C), guanine (G), and uracil (U) in-
teract in specific ways to form characteristic secondary-structure motifs such as
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helices, loops, and bulges. In general, the folding of an RNA chain into a func-
tional molecule is largely governed by the formation of intramolecular A-U and G-C
Watson–Crick pairs. Such base pairs constitute the so-called biological palindromes
in the genome.

2.1 SCFG: Stochastic Context-Free Grammar

Eddy and Durbin [5] and Sakakibara et al. [27] have shown that base pairing in RNA
can be described by a context-free grammar (CFG). In particular, productions of the
forms X → A Y U, X → U Y A, X → G Y C, and X → C Y G describe the structure
in RNA due to Watson–Crick base pairing. Using productions of these types, a CFG
can specify the language of biological palindromes. For example, the application
of productions in the grammar shown in Fig. 2 could generate the RNA sequence
CAUCAGGGAAGAUCUCUUG and the derivation can be arranged in a tree structure
called a derivation tree (Fig. 3, left). A derivation tree represents the syntactic struc-
ture of a sequence produced by a grammar. For the RNA sequence, this syntactic
structure corresponds to the physical secondary structure (Fig. 3, right).

A stochastic context-free grammar (SCFG) G consists of a set of non-terminal
symbols N , a terminal alphabet Σ , a set P of production rules with associated
probabilities, and the start symbol S. The associated probability for every production
A → α in P is denoted Pr(A → α), and a probability distribution exists over the set
of productions which have the same non-terminal on the left-hand sides.

Sakakibara et al. [27] have extended the notion of profile HMMs to Profile
SCFGs so that profile SCFGs can represent motifs, calculate multiple alignments,
and predict secondary structures of RNA sequences. Sakakibara et al. [27] have
assessed the ability of the trained SCFGs to perform three tasks: to discriminate
transfer RNA (tRNA) sequences from non-tRNA sequences; to produce multiple
alignments; and to ascertain a secondary structure of new sequences. The results
have shown that after having been trained on tRNA sequences, the trained grammar
can identify general tRNA from similar-length RNA sequences of other kinds; can
find secondary structure of new tRNA sequences (as shown in Table 1); and can
produce multiple alignments of large sets of tRNA sequences.

Fig. 2 This set of
productions P generates
RNA sequences with a certain
restricted structure.
S,X1, . . . ,X16 are
non-terminals; A, U, G, and C
are terminals representing the
four nucleotides
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Fig. 3 A derivation tree (left) generated by a simple CFG for RNA molecules and the physical
secondary structure (right) of the RNA sequence which is a reflection of the derivation tree

Table 1 Prediction results of secondary structures for unfolded tRNA sequences. Percentage of
correct base-pairs predicted by the structural alignment algorithm based on PHMMTSs (upper), by
Clustal-W using multiple alignment (middle), and by the fully trained profile SCFG (lower)

tRNA type ARCHAE CY CYACHL EUBACT VIRUS MT PART III

PHMMTS 95.47% 99.71% 97.59% 98.65% 100.00% 85.38% 50.22%

Clustal-W 90.06% 94.29% 98.13% 94.12% 65.08% 57.78% 13.64%

Profile SCFG 100.00% 99.87% 99.79% 99.86% 100.00% 98.93% 83.00%

2.2 PHMMTS: Pair Hidden Markov Model on Tree Structure

Recently, Sakakibara [25] has proposed Pair HMMs on tree structures (PHMMTSs),
which is an extension of PHMMs defined on alignments of trees and which provides
a unifying framework and an automata-theoretic model for alignments of trees,
structural alignments, and Pair SCFGs. Based on the observation that a secondary
structure of RNA can be represented by a tree, PHMMTSs are applied to the prob-
lem of structural alignments of RNAs. By structural alignment, we mean a pairwise
alignment to align an unfolded RNA sequence into an RNA sequence of known sec-
ondary structure, as illustrated in Fig. 4. The PHMMTS is modified so that it takes
as input a pair, consisting of a linear sequence and a tree representing a secondary
structure of RNA, and produces a structural alignment.

Sakakibara [25] has presented some computational experiments on RNA fami-
lies, which show the effectiveness of PHMMTS methods for structural alignment. In
the experiments, one RNA sequence annotated with the known secondary structure
is randomly chosen from the group EUBACT in the database, and then all other “un-
folded” tRNA sequences are structurally aligned into the “folded” tRNA sequence.
The fraction of base pairs specified by the trusted alignment that matched in the
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Fig. 4 Structural pairwise alignment problem of RNA sequences

predictions of the PHMMTS-based structural alignment algorithm is counted. The
prediction results of the PHMMTS-based algorithm was also compared with the
predictions based on multiple alignments by Clustal-W [33] and the profile SCFG-
method. Clustal-W was given as input, a set of unfolded tRNA sequences in each
group together with the target tRNA sequence. Secondary structures for each set of
tRNA sequences were predicted based on a multiple alignment made by Clustal-W.
Clustal-W does not take into account the secondary structure of the target tRNA
sequence when it makes alignments, but has an advantage of taking multiple align-
ment instead of pairwise alignment. The results are shown in Table 1. The predicted
secondary structures of the PHMMTS-based structural alignment algorithm agree
extremely well with the trusted alignment, and this algorithm outperforms Clustal-
W, especially for the groups VIRUS, MT, and PART III. The group PART III is most
difficult in the sense that it contains 58 tRNA sequences of unusual secondary struc-
tures lacking a whole loop of the D-domain. For this group, the PHMMTS-based
prediction accuracy is still 50% while Clustal-W predicts very poorly. From these
comparisons, it is very clear that structural alignment is essential to align RNA se-
quences and predict the secondary structures.

On the other hand, the Profile SCFG, which was fully trained and designed
specifically for the tRNA family, always predicts best. It is important to note that
the PHMMTS method does not require any training process and predicts secondary
structures based only on structural alignment into one single folded RNA sequence.
In this sense, these experiments illustrate the trade-off between computational and
resource costs and prediction accuracy.
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2.3 RNA Secondary Structural Alignment with Conditional
Random Fields

Besides pairwise alignments on amino acid sequences, one of the most important
factors in RNA secondary structural alignments is substitution score matrices of
nucleotides. These matrices should include scores for both mutation on a single
base and covariation on a base pair. The previous implementation of PHMMTSs
cannot calculate sufficient structural alignments due to an ad-hoc substitution score
matrix.

To improve substitution score matrices for non-coding RNAs, Sato et al. [29]
have proposed RNA secondary structural alignment based on conditional random
fields (CRFs). CRFs proposed by Lafferty et al. [16] have several advantages over
traditional HMMs and stochastic grammars because CRFs can build discriminative
models with flexible state transitions from annotated training data. Our approach
has some specific features compared to previous methods in the sense that the para-
meters for structural alignment are estimated such that the model can most probably
discriminate between correct alignments and incorrect alignments, and has the gen-
eralization ability so that a satisfiable score matrix can be obtained even with a small
number of sample data without overfitting.

Experimental results show that the parameter estimation with CRFs can outper-
form all the other scoring methods for structural alignments of RNA sequences such
as RIBOSUM [14], which is calculated by an analogous method to the BLOSUM
matrices based on the maximum likelihood estimation by relative frequencies. Fur-
thermore, structural alignment search based on CRFs is more accurate for predicting
non-coding RNA regions than the other scoring methods. These experimental results
strongly support our discriminative method employing CRFs to estimate the score
matrix parameters.

Recently, Do et al. [3] have proposed a method to predict RNA secondary struc-
tures using conditional log-linear models, almost identical to CRFs, and have shown
that the proposed method outperforms all the other methods such as structure pre-
dictions based on the minimum free energy [38].

2.4 PSTAG: Pair Stochastic Tree Adjoining Grammars
for Aligning and Predicting Pseudoknot RNA Structures

Pseudoknot secondary structures of non-coding RNA molecules play important
roles for their own functions such as catalytic functions (see Fig. 5). From a compu-
tational point of view, pseudoknots are difficult to handle because modeling the
pseudoknot structures of RNAs is beyond the generative power of context-free
grammars, and inevitably involves the hard complexity of context-sensitivity. Ue-
mura et al. [35] have applied tree adjoining grammars (TAG) to represent pseudo-
knot structures of RNA sequences. Rivas and Eddy [23] and Cai et al. [2] have
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Fig. 5 Pseudoknot secondary
structure

Table 2 The accuracy of
predicting base pairs for
HDV_ribozyme by PSTAG,
PHMMTS, and Clustal-W

Specificity (%) Sensitivity (%)

PSTAG 88.9 96.0

PHMMTS 46.4 52.0

Clustal-W 25.9 28.0

also attempted grammatical approaches to modeling pseudoknot structures of RNA
sequences.

Matsui et al. [20] have proposed the pair stochastic tree adjoining grammars
(PSTAGs) for modeling RNA secondary structures including pseudoknots. First,
PHMMTSs defined on alignment of “trees” have been extended to PSTAGs defined
on alignment of “TAG trees”, which represent the derivation process of TAGs and
are functionally equivalent to the derived trees of TAGs. Then an efficient dynamic
programming algorithm of PSTAGs has been developed for obtaining an optimal
structural alignment including pseudoknots. Matsui et al. have provided strong ex-
perimental evidence that modeling pseudoknot structures significantly improves the
prediction accuracies of RNA secondary structures (as shown in Table 2).

2.5 Structural RNA Sequence Alignment Based on Sankoff’s
Algorithm

Sankoff [28] has proposed a novel algorithm which simultaneously folds and aligns
RNA sequences, and is identical to pair stochastic context-free grammars. The
Sankoff algorithm can more accurately predict a common secondary structure for
RNA sequences than individual secondary structures for each RNA sequence. Fur-
thermore, a predicted alignment of RNA sequences is more reliable due to consid-
ering secondary structures.

The Sankoff algorithm calculates alignments between all possible substructures
on each sequence using dynamic programming (DP). For two RNA sequences A

and B to be aligned, a DP table with four indexes is required to calculate align-
ments between A[i, j ], a substring of A from the ith to the j th base, and B[k, l],
a substring of B from the kth to the lth base. To divide each A[i, j ] and B[k, l]
into its substructures, optimal bifurcating points i < a < j and k < b < l are deter-
mined for each substructure. Thus, the Sankoff algorithm requires O(n3m3) time
and O(n2m2) space for sequences of length n and m.
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Due to the expensive computational complexity, no naive implementation of the
Sankoff algorithm can align RNA sequences of length greater than about 100 bases
using current computers. As a result, more efficient Sankoff-based methods have
been proposed in which the search space for alignments is constrained by effective
heuristics; Dynalign [18], PMcomp [10], FOLDALIGN [8], Stemloc [11]. However,
even these methods are not fast enough to be applied to long sequences, such as
screening the whole genome.

2.6 SCARNA: Stem Candidate Aligner for RNAs

As mentioned above, the Sankoff-based algorithms are not practical to apply to
long sequences due to the expensive computational complexity. Therefore, some
different approaches to structural alignments have been proposed. Tabei et al. [32]
have proposed one such algorithm, Stem Candidate Aligner for RNAs (SCARNA).

SCARNA takes two unaligned RNA sequences. First, the base pair probability
matrices are calculated by the McCaskill algorithm [21] for each RNA sequence.
The base pair probability matrix contains probabilities of forming the base pair (i, j)

for all positions 0 ≤ i < j < m on a sequence of length m. Next, k continuous
fragments of base pairs (i, j), (i +1, j −1), . . . , (i +k−1, j −k+1), each of which
has the base pair probability above the threshold τ , are extracted as stem candidates
from the base pair probability matrix for each sequence. Each stem candidate is
decomposed into two stem components, i, . . . , i + k − 1 (left) and j, . . . , j − k + 1
(right). A stem component sequence (SCS) is a sequence of all stem components
sorted by their positions in the sequence. Then two SCSs X1, . . . ,Xm and Y1, . . . , Yn

for given sequences are aligned according to the following recurrence equations:

M(i, j) = max

⎧
⎨

⎩

M(αi,βj ) + Δs(i, j),

M(pi, qj ) + s(i, j),

G(pi, qj ) + s(i, j),

(1)

G(i, j) = max

⎧
⎪⎨

⎪⎩

M(i − 1, j),

M(i, j − 1),

G(i − 1, j),

G(i, j − 1),

(2)

M(0,0) = 0,

M(0, ·) = M(·,0) = −∞,

G(0,0) = G(0, ·) = G(·,0) = −∞,

where M(i, j) is the best score up to a pair of Xi and Yj given that Xi matches Yj

and G(i, j) is the best score given that Xi mismatches Yj . Xαi
is the stem compo-

nent which is 1-continuous to Xi , Yβj
is that of Yj , Xpi

is the nearest component
which does not overlap with Xi and Yqj

is that of Yj . s(i, j) is the match score
for Xi and Yj . Δs(i, j) is the difference of the match score for extending Xαi

, Yβj
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to Xi,Yj . s(i, j) and Δs(i, j) are derived from the RIBOSUM substitution matrix,
the base pair probability matrix of each sequence, stacking energy of each stem and
the loop length. Finally, the nucleotide sequences which do not align as SCSs are
aligned by the simple pairwise alignment algorithm.

Since stem candidates extracted from base pair probability matrices of given se-
quences are decomposed into left and right stem components, the consistency in
the sense of base pairs cannot be guaranteed. However, this violation creates the
efficient structural alignment algorithm with O(n3) for time and O(n2) for space.
Furthermore, by considering the loop length in calculating the match score, few
base pairs would be broken in practice. As a result, the accuracy of the alignments
produced by SCARNA is better than or at least comparable to the Sankoff-based
alignment methods in many cases.

3 Discrimination of Functional RNA Sequences Using Support
Vector Machines

Stochastic models such as SCFGs and hidden Markov models (HMMs) are lim-
ited in discriminating member sequences of an RNA family from non-members by
only examining the probabilistic scores. Hence, we require stronger discriminative
methods to detect and find non-coding RNA sequences.

Recently, the support vector machine (SVM) and kernel function techniques have
been actively studied and used to propose solutions to various problems in bioinfor-
matics [17, 30, 31]. SVMs are trained from positive and negative samples and have
strong, accurate discrimination abilities. Hence, they are better suited to the discrim-
ination tasks.

3.1 String Kernel

A brief overview of the string kernel [31] follows. Special attention is paid to the all-
subsequences kernel as the kernel function for RNA sequences is a natural extension
of the string kernel in measuring the similarity of two RNA sequences from the
viewpoint of secondary structures.

General feature mapping for measuring the similarity between two biological
sequences is defined by counting all contiguous and non-contiguous subsequences
of the given sequences. For example, two DNA sequences CTG and CAT have 4
common subsequences: ε (the empty string), C, T, and C-T. The all-subsequences
kernel calculates the inner product of the feature vectors by counting all commonly
held non-contiguous subsequences. The inner product of the two sequences CTG
and CAT is 4.

In protein sequence analysis, string kernels [31] have been proposed for use with
SVMs to classify a protein family. In addition, string kernels are proven to work for
remote homology detections of protein sequences, i.e. a superfamily.
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3.2 Feature Space for RNA Sequences

First, we need to define a feature mapping the space of RNA sequences to a vector
space such that the relative distance in the mapped vector space reflects the sim-
ilarity between two RNA sequences. We consider a notion of similarity between
RNA sequences in terms of common secondary structures. The simplest similarity
feature is the count of base pair occurrences that the two RNA sequences have in
common. That is, counting four kinds of base pairs: A-U, U-A, C-G, G-C, the feature
space becomes a 4-dimensional vector space. This feature mapping is easily con-
structed when the secondary structure of a target RNA sequence is available. In this
paper, we consider the more general case in which secondary structure information
is not available. The strategy is to count all possible base pair candidates in the RNA
sequences.

Example An RNA sequence AUCGAGUCG contains 3 occurrences of possible A-U
base-pairs, 1 occurrence of a U-A base-pair, 4 occurrences of C-G base-pairs, and
2 occurrences of G-C base-pairs. (See Fig. 6 as illustration.) The feature space is
a 4-dimensional vector space: (# of A-U base-pairs, # of U-A base-pairs, # of C-G
base-pairs, # of G-C base-pairs), and the RNA sequence AUCGAGUCG is mapped
into a vector (3,1,4,2).

A method better suited to measuring the similarity of secondary structures which
two RNA sequences have in common is to count the occurrences of possible stack-
ing base-pairs, called stem structures. For example, stems of length 2 constitute
a 16-dimensional vector space (A(A-U)U), (A(U-A)U), (A(C-G)U), (A(G-C)U),
(U(A-U)A), (U(U-A)A), (U(C-G)A), (U(G-C)A), (C(A-U)G), (C(U-A)G), (C(C-G)G),
(C(G-C)G), (G(A-U)C), (G(U-A)C), (G(C-G)C), (G(G-C)C).

Example An RNA sequence AUCGAGUCG is mapped into a 16-dimensional vector
space (0,1,2,0,0,0,1, 0,1,0,0,2,1,0,0,0) for counting the occurrences of non-
contiguous stems of length 2.

Fig. 6 Occurrences of A-U, U-A, C-G, G-C possible base-pairs contained in AUCGAGUCG
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Sakakibara et al. [26] have proposed the similarity feature defined by all possible
non-contiguous stems of arbitrary length for an RNA sequence, and a novel kernel
function, called stem kernel, to calculate the inner product of two vectors in the
feature space of two RNA sequences.

3.3 Stem Kernels

The dimension of the feature space for counting the occurrences of non-contiguous
stems increases exponentially with the length of stem. In addition, the inner product
of the feature vectors mapping from two RNA sequences requires a sum over all
common stems. Hence, the direct computation of these features is not computation-
ally efficient.

In order to compute the inner product of the feature vectors of two RNA se-
quences efficiently, the stem kernel function defined in recursive form has been pro-
posed [26]. For an RNA sequence v = a1a2 · · ·an where ai is a base (nucleotide),
we denote ak by v[k], a contiguous subsequence aj · · ·ak by v[j, k], and the length
of v by |v|. The empty sequence is indicated by ε. For base a, the complementary
base is denoted as ā. For two RNA sequences v and w, the stem kernel K is defined
recursively as follows:

K(ε,w) = K(v, ε) = 1, for all v,w,

K(va,w) = K(v,w)

+
∑

v[k]=ā

∑

i<j s.t. w[i]=ā,w[j ]=a

K
(
v[k + 1, |v|],w[i + 1, j − 1]).

To complete the recursive equations, the following recursive equation is required:

K(v,wa) = K(v,w)

+
∑

w[k]=ā

∑

i<j s.t. v[i]=ā,v[j ]=a

K
(
v[i + 1, j − 1],w[k + 1, |v|]).

Example We illustrate a one step calculation of the above recursive equation with
two RNA sequences v = AUCCUG and w = CACUAGG.

First, the two RNA sequences vG= AUCCUGG and w = CACUAGG have (A-U),
(C-G), and (C-(C-G)-G) in common. Second, assuming that K(v,w) = 11, we cal-
culate K(v[4,6],w[2,5]) = 1, K(v[4,6],w[2,6]) = 2, K(v[4,6],w[4,5]) = 1,
K(v[4,6],w[4,6]) = 1, K(v[5,6],w[2,5]) = 1, K(v[5,6],w[2,6]) = 1,
K(v[5,6],w[4,5]) = 1, and K(v[5,6],w[4,6]) = 1. Then K(vG,w) is inductively
calculated as follows:

K(vG,w) = K(v,w) + K
(
v[4,6],w[2,5]) + K

(
v[4,6],w[2,6])

+ K
(
v[4,6],w[4,5]) + K

(
v[4,6],w[4,6]) + K

(
v[5,6],w[2,5])
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+ K
(
v[5,6],w[2,6]) + K

(
v[5,6],w[4,5]) + K

(
v[5,6],w[4,6])

= 11 + 9 = 20.

The computational complexity in calculating the stem kernel function using dy-
namic programming is estimated. Let the two input RNA sequences v and w be of
length m(= |v|) and n(= |w|). The computational complexity of the stem kernel
K(v,w) for v and w is equal to calculating a table of m2 ×n2 elements for the stem
kernel function K(v′,w′) for all subsequences v′ of v and w′ of w. The calculation
of this table is done in time proportional to m2 × n2 by using a parsing algorithm
and an auxiliary table.

3.4 Computational Experiments

Sakakibara et al. [26] have tested the abilities of the stem kernel with SVMs to dis-
criminate member sequences of an RNA family from non-members in several dif-
ferent experiments. The discrimination performances were compared with the string
kernel, specifically the all-subsequences kernel with gap weight (decay factor).

All datasets were taken from the RNA families database “Rfam” at Sanger In-
stitute [7]. The negative sample was generated by randomly shuffling sequences
with the same nucleotide composition as the positive sample sequence for a target
RNA family. The shuffling of the sequences was accomplished while preserving
the dinucleotide distribution. The discrimination performances of each method was
evaluated by the 10-fold cross validation.

3.4.1 Discriminations of Several RNA Families

The discrimination abilities of the stem kernel and the string kernel were tested
using sample sizes ranging from 10 sequences to 100 sequences for the five RNA
families. Some of the results of the AUC score plots are shown in Fig. 7.

From these experimental results, it is clear that the stem kernel exhibits a rela-
tively good discrimination performance even if a small number of training sequences
is available. Since a small sample size implies that pairwise sequence similarities
among sample RNA sequences decreases, the stem kernel shows the ability to tol-
erate weak sequence similarities. This advantage makes the stem kernel useful in
practical situations because only a small number of sequences is currently available
for many of the functional RNA families in the Rfam database. On the other hand,
the string kernel is sensitive to sequence similarity although the discrimination per-
formance decreased for small samples. It is especially interesting to note in the case
of the CD snoRNA family that the discrimination accuracies of the stem kernel and
string kernel reverse with the smaller sample size. These results imply that the stem
kernel succeeds in capturing the secondary-structure features of RNA sequences for
discrimination tasks.



Sequence and Structural Analyses for Functional Non-coding RNAs 75

Fig. 7 AUC scores on different sample sizes from 10 sequences to 100 sequences for three RNA
families

3.4.2 Finding a Remote RNA Family

Experiments applying the stem kernel to finding remote homologs of RNA se-
quences in terms of secondary structures were performed.

The family of Tymovirus/Pomovirus tRNA-like 3’-UTR element (Tymo_ tRNA-
like) was considered to be a remote homolog of tRNAs. The secondary structures of
Tymo_tRNA-like elements comprise very similar secondary structures to a clover-
leaf structure in tRNAs (see Fig. 8 for both secondary structures). This family rep-
resents a tRNA-like structure found in the 3’ UTR of Tymoviruses and Pomoviruses
and is known to enhance translation. The tRNA-like structure is a highly efficient
mimic of tRNA, interacting with tRNA-specific proteins as efficiently as tRNA [19].

SVMs trained from the positive and negative samples of “tRNA sequences” were
applied to detect 28 Tymo_tRNA-like sequences.

The results in Table 3 show that the stem kernel achieved significantly greater
detections of Tymo_tRNA-like sequences. The string kernel, in contrast, failed to
detect Tymo_tRNA-like sequences adequately. This experimental result is a strong
proponent for application of the stem kernel to discover novel RNA families from
genome sequences.
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Fig. 8 Typical secondary structures of tRNA (left) and Tymo_tRNA-like element (right)

Table 3 Prediction accuracy
of detecting Tymo_tRNA-like
sequences using SVMs
trained from samples for
“tRNA sequences”

Tymo_tRNA-like

AUC Specificity Sensitivity

Stem Kernel 0.603 0.614 0.964

String Kernel 0.503 0.222 0.143

3.5 Marginalized Kernels on SCFGs

The marginalized kernel is a framework to construct kernels from stochastic mod-
els [34]. Kin et al. [13] have proposed marginalized kernels for SCFGs to analyze
non-coding RNAs.

First, a distribution of SCFGs for a given RNA grammar is estimated from train-
ing RNA sequences using the inside-outside algorithm, a variant of the EM algo-
rithm. Then for each sequence, expected counts for base pairs (state P : 4 × 4 = 16
patterns), single bases on the left side (state L: 4 patterns) and single bases on the
right side (state R: 4 patterns) can be calculated by parsing the sequence with the in-
side algorithm and the outside algorithm under the estimated distribution. The first-
order marginalized count vector is defined as the vector which consists of the ex-
pected counts normalized by the length of the sequence. Similarly, expected counts
of any of two states which are continuously co-occurring can be calculated and the
second-order marginalized count vector is defined. For example, co-occurring the
state P and the state P continuously represents stacking of base pairs with 44 = 256
patterns.

Kin et al. [13] have applied the marginalized count kernels for SCFGs to the ker-
nel principal component analysis (kPCA) and have succeeded in classifying tRNAs
accurately by their anti-codons.
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4 RNA Gene Finding Based on the Comparative Genomics
Approach

Recently, since genome sequencing for various species has been done, many re-
searchers attempt to analyze biological processes and genes, including non-coding
RNAs, by applying the comparative genomics approach.

In general, RNA gene finding based on the comparative genomics approach em-
ploys the following strategy: (1) construct a pairwise or multiple alignment of two or
more RNA sequences; (2) predict that each mutation in the alignment occurs under
a structurally conservative model or an independent model.

Rivas and Eddy [24] have developed QRNA which classifies a given pairwise
alignment as one of three models: the coding model (COD) in which substitutions
between synonymous codons occur frequently to conserve amino acid sequences,
the non-coding model (RNA) in which covariances of base pairs occur frequently to
conserve secondary structures, and the others (OTH). They have confirmed that non-
coding RNAs can be detected sensitively from pairwise alignments of Escherichia
coli and Salmonella typhi.

Washietl et al. [36, 37] have developed RNAz which detects a structurally con-
served region from a multiple alignment by support vector machines. RNAz em-
ploys the averaged Z-score of minimum free energy (MFE) for each sequence and
the structure conservation index (SCI). It is assumed that MFE for the common sec-
ondary structure is close to that for each sequence if a given multiple alignment is
structurally conserved; SCI is defined as the rate of MFE for the common secondary
structure to the averaged MFE for each sequence. MFE values for each sequence
and the common secondary structure are calculated by RNAfold and RNAalifold in
the Vienna RNA packages [9]. They have applied RNAz to genomic multiple align-
ments among four mammals (human, mouse, rat, and dog) from the UCSC genome
browser [12], predicted 30,000 candidates of non-coding RNAs, and shown that
about 40% of these are some kind of transcripts detected by the tiling array technol-
ogy.

Pedersen et al. [22] have developed EvoFold based on phylo-SCFGs which as-
sume that any mutations on each column of a given multiple alignment would
occur under a given phylogenetic tree of sequences, and the mutation on single
bases would occur more frequently than that on base pairs in conserved secondary
structures. These assumptions improve the accuracy of predicting secondary struc-
tures [15]. They have applied EvoFold to genomic alignments among eight ver-
tebrates including humans, predicted 48,000 candidates of functional RNAs, and
estimated that 18,500 of them would be correct by statistical analysis.

The methods introduced above are used to detect functional RNAs from multiple
alignments among several species. Therefore, NOT-conserved RNAs cannot be de-
tected by these methods. Furthermore, some structurally conserved RNAs would be
recognized as not-conserved RNAs on the multiple alignments which do not con-
sider secondary structures. To avoid these drawbacks, we have to calculate multiple
alignments with secondary structures by computationally more expensive methods,
or develop a robust method against miss alignments.
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Strategies for RNA-Guided DNA Recombination

Angela Angeleska, Nataša Jonoska,
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Abstract We present a model for homologous DNA recombination events guided
by double-stranded RNA (dsRNA) templates, and apply this model to DNA re-
arrangements in some groups of ciliates, such as Stylonychia or Oxytricha. In these
organisms, differentiation of a somatic macronucleus from a germline micronu-
cleus involves extensive gene rearrangement, which can be modeled as topological
braiding of the DNA, with the template-guided alignment proceeding through DNA
branch migration. We show that a graph structure, which we refer to as an assembly
graph, containing only 1- and 4-valent vertices can provide a physical representation
of the DNA at the time of recombination. With this representation, 4-valent vertices
correspond to the alignment of the recombination sites, and we model the actual
recombination event as smoothing of these vertices.

1 Introduction

Theoretical models for DNA recombination have been proposed for both DNA se-
quence reorganization [6, 10, 11] and topological processes of knotting [23]. DNA
rearrangements in certain types of single-celled eukaryotes with two nuclei were
modeled by Landweber, Kari, and subsequently Rozenberg and a group of authors
who proposed an abstract model for these rearrangements based on string rewriting
operations [6], followed by a model based on involvement of a new molecule called
a template [21]. This paper expands on the template model and describes some re-
cent theoretical and empirical results.

Several species of ciliates, including the model organisms Oxytricha and Stylony-
chia, undergo massive genome rearrangement during differentiation of an archival
germline micronucleus into a somatic macronucleus capable of gene expression.
These DNA processing events involve global deletion of 95–98% of the germline
DNA, effectively eliminating all so-called “junk” DNA, including intergenic DNA
as well as hundreds of thousands of intervening DNA segments (internal eliminated
sequences, IESs) that interrupt genes. In Oxytricha, DNA deletion reduces a 1 Gb
germline genome to a somatic genome of only 50 Mb, nearly devoid of noncod-
ing DNA. As a result of this streamlining, the macronuclear “nanochromosomes” in
spirotrichous ciliates typically encode only a single gene, each flanked by short reg-
ulatory sequences and 20 bp telomeres. A few two- or three-gene chromosomes have
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Fig. 1 Schematic representation of the scrambled Actin I micronuclear germline gene in Oxytricha
nova (top) and the correctly assembled macronuclear gene (bottom). Each block represents an
MDS, and each line between blocks is an IES. The numbers at the beginning and at the end of
each segment represent the pointer sequences. Note that MDS3–MDS8 require permutation and
inversion to assemble into the orthodox, linear order MDS1· · ·MDS9 in the macronucleus. The
bars above MDS2 and its pointers indicate that this block is inverted relative to the others, i.e., this
sequence is the Watson–Crick reverse complement of the version in the macronucleus; from [20]

also been described (e.g., [16]) and more identified in the Oxytricha genome project.
Because IESs interrupt coding regions in the micronucleus, each macronuclear gene
may appear as several nonconsecutive segments (macronuclear destined sequences,
MDSs) in the micronucleus. During macronuclear development, the IESs that inter-
rupt MDSs in the micronucleus are all deleted. Moreover, the MDS segment order
for thousands of genes in the micronucleus can be permuted or sequences reversed,
with no coding strand asymmetry, as is typical of most genes.

Formation of the macronuclear genes in these ciliates thus requires any combina-
tion of the following three events: unscrambling of segment order, DNA inversion,
and IES removal. Figure 1 is a diagram of a typical scrambled gene (see [20]) re-
quiring all three events and shows the corresponding assembled macronuclear gene.

Although the general mechanism that guides this process of assembly is not
known, there exist pointer-like sequences that are repeated at the end of the nth
MDS and at the beginning of the (n + 1)st MDS in the micronucleus. Each pointer
sequence is retained as only one copy in the macronuclear sequence. Such repetition
of sequences suggests “pointer guided” homologous recombination. Several mod-
els for these processes have been proposed, including the models based on string
rewriting operations in [6, 13] and graph reduction techniques [3]. All these models
assume that the DNA rearrangement is performed when a correct pair of pointers
align and splice.

Using the DNA recombinations in ciliates as a model system to describe DNA
rearrangements that may occur more generally [15], a model based on RNA-guided
DNA rearrangements was proposed in [2]. Recently, this model was supported by
an experimental observation that maternal RNA templates may guide the DNA re-
arrangement in the early development of the macronucleus [19]. In this paper, we
describe the model for double-stranded-RNA template-guided DNA rearrangements
as proposed in [2] and briefly discuss the experimental findings in [19]. As a re-
sult of this model, in [2], we suggest that during the recombination process mul-
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tiple pointers may align simultaneously, allowing an abstract representation of the
molecules as a graph structure in space. We also proposed that recombinations are
performed simultaneously at the positions where pointers have aligned. This ini-
tiates systematic studies of certain types of spatial graphs with rigid 4-valent ver-
tices. The 4-valent vertices are used to represent pointer alignments and the DNA
recombinations (splicings) are modeled as smoothings of the vertices. This mathe-
matical model motivates a variety of theoretical questions about characterization of
the structure of such spatial graphs. We show a brief description of some of these
studies, while a more detailed analysis can be found in [1].

2 RNA-Guided DNA Recombination

Several models for DNA rearrangement processes in ciliates have been proposed,
including the models in [6, 13] which assume that a correct pair of pointers align
and splice.

Some such pointers, however, are as short as two nucleotides, but usually 2–
20 nt, [5]. To account for the alignment of short pointers, Prescott et al. proposed
a DNA template-guided recombination model [21]. However, recent evidence [19]
suggests, instead of DNA, an involvement of long (single- or double-stranded) RNA
molecules in the DNA processing, at least at some stages.

A new explicit model, expanding on the notion of templates proposed in [21]
was developed in [2]. We elaborate on the latter one in this section. The model
proposes DNA recombination using double- or single-stranded RNA as templates.
The templates facilitate (align) the micronuclear DNA and allow recombination,
without modifying any portion of the templates.

Our assumption that templates are dsRNA molecules means that the portion of
the molecule that plays the role of a template is double-stranded. For easier repre-
sentation, we depict the double-stranded molecules as ladders, ignoring the helical
structure.

Let T be the dsRNA molecule that plays the role of a template, and let X and Y

be two portions of a DNA molecule(s) that contain the same pointer.
The figures represent X, Y, and T as ribbons with orientation of the strands 5′

to 3′ indicated with an arrow. Base pairs are represented as vertical stripes (Fig. 2).
The “upper” strand of X (denoted uX) reading 5′–3′ contains block αβδ, where α is
a portion of the ith MDS, β is the (i + 1)st pointer, and δ is a portion of an IES. The
“upper” strand of Y (uY ), read 3′–5′, contains a block ε̄β̄γ̄ , where γ is a portion

Fig. 2 Two DNA segments X and Y to be recombined, guided by a template T . The regions α

and γ indicate portions of two consecutive MDSs. The region β indicates the pointer sequence
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Fig. 3 Step by step model of DNA recombination guided by a dsRNA template

of the ith MDS and ε a portion of an IES (barred symbols represent Watson–Crick
complements of unbarred symbols).

We propose a dsRNA template T , such that its “upper” strand in direction 3′–
5′ (denoted with uT ) has a block ᾱβ̄γ̄ composed of sequences ᾱ, β̄, and γ̄ . The
lower strands of T , X, and Y (denoted lT , lX, lY ) are complementary to the upper
strands. The proposed steps of the recombination are as follows:

[A.] All three molecules X, Y, and T are present in the environment at the same
time and the template strands find their corresponding complements in molecules X

and Y as shown in Fig. 3(A). We assume that the template is short enough to initiate
branch migration.

Even if the pointer sequence β is as short as two nucleotides and occurs more
than twice in the DNA sequence, the context of β in T (αγ ), the left context in X

(α) and the right context in Y (γ ) would be sufficient to lead to the alignment of the
correct pointer sequences.
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[B.] Through branch migration, the ends of the strands of template T , once in a
neighborhood of complementary sequences, can easily anneal with their comple-
ments. An unzipping of the three double-stranded stripes occurs, from point a1 to
a2 on X, from b1 to b2 on Y, and from a1 to b2 on T (see Fig. 2). A portion of
lX and a portion of lY , containing β̄ and β , respectively, become single-stranded.
Because they are in close proximity to each other and single-stranded, hydrogen
bonds form between the complementary regions connecting lX and lY , as shown in
Fig. 3(B).

The original pairing and the new pairing are considered probabilistic. At some
point during this process, cuts are made at c1, c2, c3, and c4 on the lower and upper
backbones of X and Y as shown in Fig. 3(F). These cuts may depend on the way in
which the pointers align and which portion of the pointer sequence participates in
the branch migration process.

[C.] Note that the substrings of α, β , γ , ᾱ, β̄, and γ̄ that cannot find their com-
plementary strings might remain unpaired. RNA-DNA hybrids are stronger than
DNA-DNA, so the process (to be successful) may be thermodynamically driven. In
the situation depicted in Fig. 3(C), only the single-stranded subsequences β̄ and β

from T hybridize to the corresponding complementary sequences of uX and uY .

[D.] In the next step, illustrated in Fig. 3(D), the hydrogen bonds, between uX and
uT on one hand and lT and uY on the other hand, start to dissociate. Through
branch migration, because RNA duplexes are more stable than RNA-DNA duplexes,
the template strands release uX and uY . At the same time, enabled by strand com-
plementarity, new hydrogen bonds develop between uX and uY .

[E.] Branch migration permits the complementary regions of uX and uY corre-
sponding to β to hybridize, releasing the template (shown in Fig. 3(E)). Thus, the
template is available to serve for further recombinations if needed.

We refer to the pairing between molecules X and Y shown in Fig. 3(E) as a
DNA vertex. This portion shown in Fig. 3(E) is a molecule that has been studied and
characterized in-vitro before (e.g. [22]) as a type of DX molecule known as “double
parallel cross over molecule.”

[F.] Figure 3(F) shows the resulting molecules obtained after the cuts are introduced
at c1, . . . , c4. The paired X and Y molecules containing the sequence αβγ indicate
the new recombined molecule. Schematically, (assuming the cuts relieving possible
strain have been introduced) the right portion of molecule Y rotates toward molecule
X (“falls down”) and the left portion of molecule X rotates toward molecule Y (also
“falls down”), permitting the nicks to be ligated, forming the product strands.

If the portions that have undergone recombinations, portions X and Y , belong to
the same DNA molecule, after recombination, the remaining fragments (containing
sequence εβδ) could be released as a circular molecule. Schematically, in this case,
the left portion of molecule Y rotates toward molecule X (“goes up”) and the right
portion of molecule X rotates toward molecule Y (also “goes up”) at which point,
the nicks are ligated.
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We note that the whole process is irreversible, as the resulting products of re-
combination do not contain the appropriate context for a template to weave new
molecules.

3 Brief Summary of Experimental Conclusions

Recent experimental evidence in several ciliates [4, 8, 12, 17] indicates that small
∼27nt RNAs, produced during macronuclear development (and like piRNAs, as-
sociated with piwi proteins [9]), are involved in marking germline segments to be
deleted or retained through chromatin modification. This suggests a possible in-
volvement of short (single or double stranded) RNA molecules instead of template
DNA. However, these experimentally described small RNAs could tag the deleted
sequences and, therefore, could not function as templates to align retained DNA and
promote MDS reordering.

The steps of DNA tagging for deletion and MDS reordering could be uncoupled,
however, with the current experimental observations in [18] that suggest that simple
IES excision events generally occur before the more complex reordering events. The
results in [19] show that double-stranded RNA copies of (parental) macronuclear
chromosomes are indeed present at an early stage of macronuclear development.
Furthermore, RNA interference (RNAi) directed against putative RNA templates
leads to aberrant gene unscrambling in the resulting progeny, either blocking the
process completely or producing incorrect rearrangements, including over-deletion
[19]. The RNAi experiments only disrupted rearrangement of the targeted gene.
This suggests that the experiments specifically destroyed the proposed RNA tem-
plates.

In a key experiment to test the template model, both synthetic DNA and RNA
versions of alternatively rearranged full-length nanochromosomes with two MDSs
(MDS4 and MDS5 for one gene and MDS7 and MDS8 for a different gene) in the
reversed order were introduced. Microinjection of these molecules into the parental
macronucleus strikingly leads to epigenetic reprogramming of the new rearrange-
ment pattern in the sexual progeny’s genome, effectively scrambling the order of
specific MDSs in each experiment (e.g., switching the order of MDS4 and 5, pro-
duced a product that reads 1–2–3–5–4–6. . . ). Because the DNA versions could be
transcribed into RNA along with other parental DNA molecules, and because these
experiments worked whether DNA or RNA was microinjected, these results pro-
vide the first molecular evidence that maternal RNA templates instruct the process
of DNA unscrambling in ciliates. Furthermore, the microinjection experiments re-
vealed that the sequence of the product does not physically incorporate the sequence
of the template (both were marked with distinct restriction sites), ruling out the pos-
sibility of recombination between template and germline DNA [19]. A small addi-
tional observation, however, was that point mutations in the template occasionally
transfer to the product, implicating some involvement of RNA-guided DNA repair
at recombination junctions [19].
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4 Assembly Graphs and Recombination Strategies

4.1 Toward an Abstract Model

In this section, we define spatial graphs to model DNA structures in space during
the recombination processes. Graphs were also used to model such recombination
processes in [7].

First, we justify our approach from the point of view of our proposed model of
recombination described in Sect. 2.

Consider the situation where two segments of DNA molecules have aligned
pointers and are ready for recombination as presented in Fig. 3(E). Assume that X

and Y are parts of the precursor DNA molecule from a germline gene in a stichotri-
chous ciliate. Suppose further that α is the last portion of the ith MDS sequence, β

denotes the sequence of the (i +1)st pointer, and γ is the first portion of the (i +1)st
MDS sequence. Sequences ε and δ are the last and first portions of IES sequences,
respectively.

Schematically, this situation is depicted in Fig. 4. The stage at which the point-
ers align, and just before homologous recombination takes place, is depicted by an
intersection of the two molecules at the pointer region (shown in Fig. 4, left). The
resulting product of homologous recombination is depicted on the right of Fig. 4.
After recombination, one of the resulting molecules contains two newly ordered
MDSs, and the other contains the excised IES(s). As numerous templates can fa-
cilitate alignment of many pointers at once, a few, or even all of the recombination
events may occur simultaneously. Therefore, we consider spacial graphs with 4-
valent vertices modeling the case when multiple pointer sequences are aligned.

Consider the example in Fig. 1. We associate a graph to the micronuclear se-
quence depicted in Fig. 1 in the following way. For each pair of pointers that occurs
in the micronuclear segment, we place a 4-valent vertex in the plane. Label the
vertices with the corresponding number. There are 8 such vertices in this example,
labeled 2 through 9 (see Fig. 5(A)). Next, we pick a point in the plane, called the

Fig. 4 Schematic representation of the pointer alignment shown as a 4-valent vertex and the re-
combination result shown as smoothing of the vertex
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Fig. 5 Schematic representation of the simultaneous braiding and recombination process

base point, and as we read the string of pointers in the micronuclear gene (3-4-4-
5-6-7-5-6-7-8-9-3-2-2-8-9), following a chosen direction, we start connecting the
vertices: vertex 3 connects to vertex 4, loop back to vertex 4, connect to vertex 5,
etc. When all vertices (pointers in the string) are exhausted, we connect the path
back to the base point. In this way, we obtain a graph with 4-valent vertices. Here,
a 4-valent vertex means a vertex that has 4 incident edges. Note that in the process
of connecting the vertices, there may be instances when we have to intersect the
arcs that have already been drawn. These intersections are depicted with over- and
under-information as in knot diagrams (see, for example, [14]). The way the cross-
ing information is depicted depends on the way the molecule is situated in space and
needs investigation. The resulting “4-valent” graph is called a spatial graph, indi-
cating that the graph is considered embedded in space, and its topological position
in space is a question for consideration. Denote such obtained graph by Γ .

Next, label each edge connecting a pair of vertices in Γ by MDSi or IESj , such
that starting at the base point, if one travels Γ following its orientation, the edge
labels follow the appearance of the MDSs and IESs as they appear in the scrambled
micronuclear gene. For the example shown in Fig. 1, after visiting vertex 3 the label
of the next edge is MDS3, followed by IES1, then by MDS4 and so on. This labeling
is shown in Fig. 5(A).

Note that the representation of the Actin I micronuclear gene from Fig. 1 as a
spatial graph in Fig. 5(A) completely captures its MDS-IES structure such that each
pair of pointers that occur in the gene is represented by a vertex in Γ . The DNA
rearrangement can appear at every alignment of the pointers. As shown in Fig. 4,
this is represented by smoothing of the vertices of Γ . Such smoothing can be per-
formed simultaneously at each vertex of Γ . For the example of Actin I gene from
Fig. 1, the result of the simultaneous smoothing is shown in the diagram depicted in
Fig. 5(B). As shown, this result is composed of three connected components. Two
of them are labeled only with IESs which indicates the IES excision. One of the
components contains MDS1−MDS2−MDS3 − · · ·−MDS9, which represents the
assembled macronuclear gene in correct MDS order. Following this example, any
MDS-IES micronuclear gene structure can be modeled by a spatial graph, and its
assembly into a macronuclear gene can be viewed as a simultaneous smoothing of
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each vertex. We showed in [2] that simultaneous smoothing always leads to one
component having all MDSs in a correct “macronuclear order.” However, simulta-
neous rearrangement at all pointer sequences may not be realistic. Probably some
rearrangements appear simultaneously, or in a close time period to be considered
simultaneous, and identifying the sets of pointers that could undergo simultaneous
rearrangement, as well as their possible order of appearance is the topic of the fol-
lowing sections.

In order to precisely formulate and study the MDS-IES micronuclear gene struc-
tures and their recombinations, we introduce the notion of assembly graphs as a
special type of spatial graphs.

4.2 Assembly Graphs

A rigid vertex in a graph is a vertex with preassigned cyclic order of its incident
edges such that each edge e incident to a vertex v has a predetermined “predecessor”
edge, and a predetermined “successor” edge with respect to v which constitute the
neighbors of e.

An assembly graph is a finite connected graph, where all vertices are rigid ver-
tices of valency 1 or 4. A vertex of valency 1 is called an end point. Three examples
of assembly graphs are depicted in Fig. 6. The one in Fig. 6(A) has two endpoints,
and those in Fig. 6(B) and (C) have no endpoints. In Fig. 6(B), a nonplanar graph is
depicted with crossing with an “over-arc” and the “under-arc” information provided
which is not a vertex of the graph. The depicted graph is a projection of the spatial
graph.

Write |Γ | to denote the number of 4-valent vertices in Γ . The assembly graph is
called trivial if |Γ | = 0. Note that the definition of an assembly graph implies that
the number of end points is always even.

Different molecules from the micronucleus may be involved in the recombination
process. They are represented with different “cyclic” or “linear” components in the
assembly graph. In order to identify the molecules involved in the assembly process,
i.e., the components in the assembly graph, we define transverse paths. A transverse
path in an assembly graph Γ is a path of maximal length forming a sequence of
vertices and nonrepeating edges in Γ such that any two consecutive edges incident

Fig. 6 Examples of assembly graphs. Simple assembly graphs (A) and (B), and a nonsimple as-
sembly graph (C)
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to the same vertex are not neighbors. In Fig. 6(A) and (B), examples for two types
of transverse paths are depicted. A transverse path for each example is given by

(A) (v0, e1, v1, e2, v2, e3, v2, e4, v1, e5, v3),

(B) (v0, e1, v1, e2, v0, e3, v1, e4),

(C) (v0, e2, v1, e4),

respectively.
The case when the recombination appears intramolecular (i.e., only a single mi-

cronuclear molecule contains all MDSs of the macronuclear gene) is represented as
an assembly graph with only one transverse path visiting all edges exactly once. We
identify this case as a simple assembly graph. An assembly graph Γ is called simple
if there is a transverse Eulerian path in Γ , meaning there is a transverse path γ that
contains every edge from Γ exactly once.

In Fig. 6, graphs (A) and (B) are simple, but the graph (C) is not. Note that in a
simple assembly graph, an Eulerian transverse path visits every nonend-point vertex
twice.

As described in Sect. 4.1, the vertices of an assembly graph represent pairs of
aligned pointers (see Fig. 4) and each of the edges is a representation of either
an MDS or an IES sequence. Each pointer sequence is flanked on one side with
an MDS sequence and on the other side with an IES sequence. Therefore, at each
vertex, two edges representing MDS sequences meet. In order to track the sequence
of MDSs if a path follows an edge with an MDS label, arrives at a vertex, the path
follows with another edge having an MDS label only if the next edge is one of
the neighboring edges. Using such paths in the assembly graph, we can represent
precisely the correct ordering of the MDSs in the macronuclear gene, in fact, the
macronuclear gene itself. As a macronuclear gene has no pointer sequences at the
two ending MDSs, we are interested in paths that do not necessarily start at a vertex,
called below, open paths. We define the notions more precise as follows.

Let Γ be an assembly graph. An open path in Γ is a homeomorphic image of
the open interval (0,1) in Γ .

An open path can be represented also by a sequence:

(e1 \ v0), v1, e2, v2, e3, . . . , vm−1, em, vm, (em+1 \ vm+1),

where vi ’s are vertices in Γ such that vi �= vj when i �= j , ei ’s are edges in Γ such
that the initial vertex of e1 and the terminal vertex of em+1 are not included.

Two open paths are disjoint if they do not have a vertex in common.
A set of pairwise disjoint open paths {γ1, . . . , γk} for a positive integer k is called

Hamiltonian if their union contains all 4-valent vertices of Γ . An open path γ is
called Hamiltonian if the set {γ } is Hamiltonian. Finally, a polygonal path is an
open path γ :

(e1 \ v0), v1, e2, . . . , vm−1, em, vm, (em+1 \ vm+1),

such that ei and ei+1 are neighbors for every i ∈ {1,2, . . . ,m}.
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Fig. 7 Hamiltonian
polygonal path γ in a simple
assembly graph

Hamiltonian polygonal paths are of special interest, since they trace the correct
order of the MDSs in the macronucleus. In Fig. 7, the assembly graph that models
the micronuclear Actin I gene is given, with the Hamiltonian polygonal path γ that
represents the macronuclear (after assembly) Actin I gene.

5 Successive Smoothings and Assembly Strategies

5.1 Smoothing

As mentioned in Sect. 4.1, it is assumed that DNA recombination appears soon
after pointer sequences are aligned. The recombination as a result of splicing is
represented as a smoothing of the vertex (see Fig. 4). If the pointer sequences are
aligned in parallel, i.e., the pointer sequences appear in the same direction within
the micronuclear sequence, then the smoothing of the vertex follows the predeter-
mined direction of the graph, which we call parallel smoothing. If the alignment is
antiparallel, i.e., the pointer sequences appear in opposite direction within the mi-
cronuclear sequence, then the smoothing of the vertex is performed opposite the
direction of the graph, called nonparallel smoothing below. In this section, we de-
fine smoothing of assembly graphs determined by a polygonal path. More precisely,
a smoothing of a 4-valent vertex in an assembly graph can be viewed as a removal
of the vertex and connecting two parallel arcs as depicted in Fig. 8. There are two
types of smoothings as depicted. To distinguish them, we have to fix an orientation
of an assembly graph. An orientation of an assembly graph is a fixed direction of
each transverse arc or cyclic component of the graph. These orientations are defined
abstractly, independent from the 5′ − 3′ orientation of DNA. An assembly graph
with a fixed orientation is called an oriented assembly graph. For an oriented as-
sembly graph, each smoothing of a vertex is either orientation preserving (parallel
smoothing, or p-smoothing, as in Fig. 8 left) or nonpreserving (nonparallel smooth-
ing, or n-smoothing as in Fig. 8 right). We note that for a simple assembly graph,
the type (p or n) of smoothing does not depend on a choice of the single orientation,
as reversing it will reverse orientations of both arcs at every vertex.

The sets of Hamiltonian paths can be related to sets of smoothings as follows. Let
Γ be an assembly graph. Let γ = {γ1, . . . , γk} be a Hamiltonian set of polygonal
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Fig. 8 Two types of
smoothings, parallel (p-)
smoothing (left) and
nonparallel (n-) smoothing
(right)

Fig. 9 Smoothing at a vertex
v with respect to a polygonal
path γ

paths for Γ . A smoothing of a 4-valent vertex v in Γ with respect to a polygonal
path γ is a smoothing such that the arcs on which the path lies are connected as
depicted in Fig. 9.

5.2 Strategies for Simultaneous Assemblies

As mentioned in the previous section, a polygonal path in an assembly graph can
be seen as a unique representation of a macronuclear gene. A few of the pointer re-
combinations may occur simultaneously or within a narrow enough time window to
be considered simultaneous. We assume that the recombinations that occur simul-
taneously do not disturb the natural MDS order in the macronuclear gene. In our
model of an assembly graph, a set of simultaneous recombinations translates into a
set of simultaneous smoothings, and the consistent order of the MDSs during the re-
combination process becomes a requirement that the corresponding polygonal path
remains connected after these smoothings. In this section, we show a way to obtain
smoothing strategies (i.e., recombination strategies) for a given simple assembly
graph.

In this section, we work with simple assembly graphs with a single Hamiltonian
polygonal path. In other words, we consider the case of a single micronuclear mole-
cule containing a set of scrambled MDSs which assemble in a single macronuclear
gene. We call such graphs realizable. A more detailed treatment of realizable graphs
is included in [1].

Let Γ be a realizable assembly graph, and S a subset of vertices in Γ . An S-
partial smoothing of Γ with respect to a Hamiltonian polygonal path γ , is an as-
sembly graph with a set of 4-valent vertices V (Γ ) \ S, denoted by Γ̃(γ,S), obtained
by smoothing of all vertices in S with respect to γ .

We note that after a set of recombinations have been performed, the resulting
molecule must contain all other MDSs in the inherited order, i.e., the remaining
vertices must belong to a single polygonal path. Therefore, a subset S ⊂ V (Γ ) is
called linear with respect to γ if the S-partial smoothing of Γ with respect to γ is a
simple assembly graph.

Lacking further experimental evidence about the intermediate steps in the recom-
binations process leading from micronuclear molecules to macronuclear genes, we
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Fig. 10 Three choices of partial smoothings. (A) Example of a linear set: {2,3}-smoothing of
graph Γ from Fig. 7 results in a single transverse component containing γ . (B) Example of a suc-
cessful but not linear set: {2,3,4}-smoothing of graph Γ from Fig. 7 results in two transverse com-
ponents one of which contains γ . (C) Example of a nonlinear nonsuccessful set: {4,8}-smoothing
of graph Γ from Fig. 7 results in three transverse components two of which contain γ

also assume the following. If all MDSs of a macronuclear gene are part of a sin-
gle micronuclear molecule, then after recombination at some part of the pointers,
the MDSs remain as part of a single molecule. Hence, we further specify the sets
of vertices for successful simultaneous smoothing. Let Γ be a realizable assembly
graph, and γ be a Hamiltonian polygonal path. A subset S ⊂ V (Γ ) is called suc-
cessful with respect to γ if the S-partial smoothing of Γ with respect to γ is an
assembly graph that has a transverse arc component containing γ . (Here, we regard
that γ remains in tact after the smoothing.)

A successful S-smoothing for a set S ⊂ V (Γ ) can be seen as a performed recom-
bination at the pointers represented by the vertices in S, such that this recombination
does not separate the MDSs (the edges from γ ) that are expected to be part of the
assembled gene. Hence, we regard a successful subset S of V (Γ ) as one step in the
process of assembly such that the pointers in S are recombined at the same time.
It is proven in [2] that for any simple assembly graph Γ , if S = V (Γ ), then S is
successful. Note that every linear subset is successful.

Example 1 Let Γ be the assembly graph depicted in Fig. 7, where a polygonal
Hamiltonian path γ is indicated by a thick line. Consider three sets of vertices S ′ =
{2,3}, S′′ = {2,3,4}, and S′′′ = {4,8}.

The assembly graphs Γ̃(γ,S′), Γ̃(γ,S′′), and Γ̃(γ,S′′′) depicted in Fig. 10(A),
Fig. 10(B), and Fig. 10(C), respectively, are obtained from Γ by applying S′-, S′′-
and S′′′-partial smoothings with respect to γ . We observe that S′ is linear, since
Γ̃(γ,S1) is a simple assembly graph with a Hamiltonian polygonal path indicated
with thick line. Therefore, S′ is also successful.

On the other hand, S′′ is successful, since Γ̃(γ,S′′) has a transverse path (i.e., com-
ponent) that contains γ . However, S′′ is not linear, because Γ̃(γ,S′′) has two trans-
verse components: one containing γ and the other being a separate cyclic compo-
nent. The set S′′′ is neither linear nor successful, since Γ̃(γ,S′′′) has three transverse
components: one indicated with a dotted line, another indicated with a solid line
containing parts of γ, and the third being a small cyclic part which does not contain
any part of γ . Since there are two components that contain edges from γ , S′′′ is
neither linear, nor successful.
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Fig. 11 (A) An example of an assembly graph and the corresponding Hamiltonian polygonal
path. (B) S1-smoothing of the graph in (A), for the successful set S1 = {2,3}. (C) S2-smoothing of
the graph in (A), for the set S2 = {4,5,6}. S2 is not successful and, therefore, cannot be the first
smoothing set in a smoothing strategy

The observations obtained from this example about linear and successful sets of
vertices can be formalized into a precise characterization of successful sets. Because
this characterization is rather technical, the reader is referred to [1] for details. Here,
we end with following result describing the “successful strategies” (sequences of
sets) for assembling a macronuclear gene.

A macronuclear gene is completely assembled after recombination at all pairs
of pointers. Therefore, we want to determine an assembly strategy for an assembly
graph through partial successful smoothings such that the resulting graph has no
4-valent vertices.

Given a simple assembly graph Γ and a Hamiltonian polygonal path γ in Γ ,
a successful smoothing strategy for Γ with respect to γ is a sequence of pairwise
disjoint subsets (S1, . . . , Sk) of V (Γ ) such that their union is V (Γ ) and Si is suc-
cessful in Γ̃(γ,S′

i−1)
, where S′

j = ⋃j

h=1 Sh.

Proposition 1 There is one-to-one correspondence between the set of successful
smoothing strategies and the set of all nested sequences: P1 ⊂ P2 ⊂ · · · ⊂ Pk =
V (Γ ), where Pi is successful for Γ for every i = 1, . . . , k.

Example 2 For the simple assembly graph Γ and the polygonal Hamiltonian path
γ given in Fig. 11(A), consider the sets S1 = {2,3} and S2 = {4,5,6}. The smooth-
ing Γ̃(γ,S1) is depicted in Fig. 11(B), and since γ belongs to a single transverse
component of Γ̃(γ,S1), S1 is successful. The set S2 = {4,5,6} is not successful as
seen in Γ̃(γ,S2) depicted in Fig. 11(C) since portions of γ belong to two transverse
components. Furthermore, S1 ∪ S2 = V (Γ ). Therefore, the sequence (S1, S2) is a
successful smoothing strategy, but (S2, S1) is not a successful smoothing strategy
for Γ with respect to γ .
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6 Concluding Remarks

In this paper, we presented a survey of the proposed model for RNA-guided DNA
recombination and a theoretical model for spatial graphs that represent such recom-
bination. Both models initiate new research, both experimentally and theoretically.
Although recent experiments [19] support our proposal for RNA templates, further
details about the recombination process are missing. For example, at what stage of
the branch migration process are the strands cut, what type of enzymes are involved,
and what properties of the pointers allow simultaneous recommendation to occur,
etc. Further knowledge of the recombination events may allow precise (theoreti-
cal) description or characterization of the types of assembly graphs that are repre-
sentations of naturally occurring recombination processes. Theoretically, we have
only considered simultaneous smoothing of a single component (single micronu-
clear molecule) and performing such investigations for multicomponent graphs re-
mains important in understanding unscrambling of a genome full of thousands of
scrambled genes. Furthermore, the notion of smoothing along a polygonal path is
new in mathematics and its study will provide new research pathways for knot and
graph theory.
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Reality-and-Desire in Ciliates

Robert Brijder and Hendrik Jan Hoogeboom

Abstract The theory of gene assembly in ciliates has a number of similarities with
the theory of sorting by reversal. Both theories model processes that are based on
splicing, and have a fixed begin and end product. The main difference is the type of
splicing operations used to obtain the end product from the begin product. In this
overview paper, we show how the concept of breakpoint graph, known from the
theory of sorting by reversal, can be used in the theory of gene assembly. Our aim is
to present the material in an intuitive and informal manner to allow for an efficient
introduction into the subject.

1 Introduction

Ciliates are single cell organisms that have two functionally different nuclei, one
called micronucleus and the other called macronucleus. During sexual reproduc-
tion, a micronucleus is transformed into a macronucleus in a process called gene
assembly. This is the most involved DNA processing in living organisms known
today: The genome of the micronucleus is both functionally and physically very
different from the genome of the macronucleus. Formal models for gene assembly
has been developed; see, e.g., [7].

Another research area concerned with DNA processing is sorting by reversal;
see, e.g., [1, 11, 13]. Two different species can have several segments in their
genomes that are very similar, although their relative order (and orientation) may
differ in both genomes. In the theory of sorting by reversal one tries to determine the
number of reversal operations needed to reorder such a series of genomic ‘blocks’
from one species into that of another. An essential tool is the breakpoint graph (or
reality and desire diagram) which is used to capture both the present situation, the
genome of the first species, and the desired situation, the genome of the second
species.

Motivated by the breakpoint graph, the notion of reduction graph was introduced
in [4] into the theory of gene assembly. The intuition of ‘reality and desire’ remains
in place: instead of two different species, we deal with two different nuclei—the
reality is a gene in its (original) micronuclear form, and desire is the same gene but
in its (final) macronuclear form.
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In contrast to sorting by reversal, in gene assembly, the operations that splice
the DNA are irreversible and can only be applied on a fixed pair (or two pairs) of
positions in the DNA, called pointers. Therefore, although the intuition is the same,
the definition of reduction graph is notably different from the definition of break-
point graph (in the theory of sorting by reversal). Surprisingly, where the breakpoint
graph is mostly useful to determine the number of needed operations, the reduction
graph has different uses in the theory of gene assembly [2–4]. In this chapter, we
provide a brief introduction in both sorting by reversal and gene assembly, we give
an intuitive foundation of the reduction graph, and we summarize its uses. As this
is an informal account of the material, formal definitions are sometimes and proofs
are always omitted.

2 Sorting by Reversal

During nature’s evolution, the genomes of the species change. One such change
is due to inversion in which two pieces of a chromosome break and recombine in
a different way; see Fig. 1. The end result is that the segment y between the two
breakpoints is inverted; this is indicated by ȳ in the figure. In this way, two different
species can have several contiguous segments in their genomes that are very similar,
although their relative order (and orientation) may differ in both genomes. For exam-
ple, consider the two chromosomes in Fig. 2. Both chromosomes have 9 segments
in common, however, their relative order and orientation differs. The breakpoints of
a chromosome are the borders of each two consecutive segments. Figure 3 shows
the application of such an inversion, called reversal, on the breakpoint between seg-
ments 0 and 2̄ (2 inverted) and the breakpoint between segments 1̄ and 6. These two
breakpoints are indicated by two small arrows in the figure.

Fig. 1 Inversion within a chromosome

Fig. 2 Two chromosomes of different species and their common contiguous segments
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Fig. 3 Applying a reversal on the chromosome

Fig. 4 The breakpoint graph of the given chromosome

In the theory of sorting by reversal, initiated by Hannenhalli and Pevzner in [8],
one tries to determine the minimal number of reversals needed to convert such a
series of genomic segments from one species into that of the other. The smaller this
number, the more likely it is that their common ancestor in evolution is relatively
young. Thus, this number can aid in constructing an ancestor tree of species, called
a phylogenetical tree.

An essential tool in the theory of sorting by reversal is the breakpoint graph (or
reality and desire diagram) which is used to capture both the present situation, the
genome of the first species, and the desired situation, the genome of the second
species. In this graph, we assign two vertices for each breakpoint, representing both
sides of that breakpoint. These vertices are labeled such that segment i has a vertices
labeled by i and i + 1. Then i represents the left-hand side and i + 1 the right-hand
side of segment i. If i appears inverted in the genome, then w.r.t. the chromosome,
i appears on the right-hand side and i + 1 on the left-hand side. Moreover, there
are edges, called desire edges that connect vertices with the same label. In this way,
each desire edge connects two sides of two segment that should be next to each other
in the genome of the second species. In Fig. 4, these vertices and edges are depicted
for our example.1

In addition to the desire edges, the breakpoint graph has a second set of edges,
called reality edges. These edges connect each two vertices belonging to the same
breakpoint. Thus, in Fig. 4, the left-most two vertices labeled by 1 and 3 are con-
nected by a reality edge, and similarly for the next two vertices labeled by 2 and 7,

1It is customary for breakpoints graphs to instead let 2i − 1 represent the left-hand side and 2i the
right-hand side of segment i—in this way eliminating the need for labels. We choose this notation
to make comparison with reduction graphs defined in the next chapter easier.
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etc. The linear order of the vertices in the figure is therefore partially captured by
the reality edges. However, the complete linear order of the vertices remains impor-
tant, and hence the breakpoint graph should not be seen as a graph, but as a diagram
where the vertices are drawn in this linear order. Consequently, reality and desire
diagram is arguably a more appropriate name for this concept. One could extend
the breakpoint graph with a third set of edges, for example called segment edges,
connecting each two consecutive vertices belonging to the same segment. Then in
Fig. 4, e.g. the two vertices labeled by 3 and 2 of segment 2̄ are connected by such
a segment edge. In this way, we obtain a graph which retains the linear order of
the vertices, and hence need not be seen as a diagram. We will later introduce these
additional sets of edges in the context of gene assembly. Given only the breakpoint
graph, it is possible to deduce, in a computationally efficient way, the minimal num-
ber of reversals needed to convert the genome from one species into that of the
other [11].

3 Gene Assembly

Ciliates, a group of one-cellular organisms, differ from other organisms in that they
have two nuclei that are radically different, both functionally and physically—this
holds in particular for the stichotrichs group of ciliates. The two nuclei (which both
can occur in arbitrary multiplicity) are called micronucleus (MIC) and macronucleus
(MAC). Their names are due to their relative sizes within the ciliate.

All the genes occur in both the MIC and the MAC, but in very different forms.
For each gene, however, one can distinguish a number of segments M1, . . . ,Mκ ,
called MDSs (macronuclear destined segments), appearing in both the MIC and
MAC form of that gene. In the MAC form, the MDSs appear as in Fig. 5: Each two
consecutive MDSs overlap in the MAC gene. The gray areas in the figure where the
MDSs overlap are called pointers. In the MIC form the MDSs appear scrambled and
inverted with non-coding segments, called IESs (internal eliminated segments), in
between. As an example, Fig. 6 shows the MIC form of the gene that encodes for the
actin protein in a ciliate called sterkiella nova (see [5, 12], and [7]). Notice that the
gene consists of nine segments, and that MDS M2 occurs inverted, i.e. rotated 180
degrees, in the gene. It is important to realize that the number of MDSs, the specific
permutation of the MDSs and the possible inversion in the gene of individual MDSs
is fixed for a given gene in MIC form (and given species), but can be very different
for different genes.

Fig. 5 The structure of a MAC gene consisting of κ MDSs
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Fig. 6 The structure of the MIC gene encoding for the actin protein in sterkiella nova

Fig. 7 Recombination operation

The process of gene assembly transforms the MIC into the MAC. This process
occurs during sexual reproduction of two ciliates where first a MIC is formed hold-
ing half of the genetic information of each parent, and then a MAC is constructed
from this newly formed MIC. During gene assembly, each gene in MIC form is
transformed into the corresponding gene in MAC form. Since there are very many
genes, this process is highly parallel. The transformation of a single gene from MIC
form to MAC form is complex: All MDSs must be ‘sorted’ in the right order and
must have the right orientation, and all IESs must be spliced out from between the
MDSs. Therefore, quite a number of ‘cutting and gluing’, called recombination, is
necessary for each such transformation. The process of recombination is illustrated
in Fig. 7. Here, two segments, which may be part of the same sequence, are aligned,
cut, and glued back together in a different way such that x and v are interchanged.
Thus, recombination occurs on two locations within one sequence or between two
sequences. We refer to [7] for an in-depth treatment of the biology of gene assembly.

4 Reality-and-Desire

In this section, we show how the concept of breakpoint graph can be used for gene
assembly. Consider now a small example gene in MIC form given in Fig. 8. Recall
that all MDSs are recombined to obtain the sequence given in Fig. 5. Now, we assign
vertices to each side of each segment (MDSs or IESs) and draw edges connecting
the MDSs in the order dictated by Fig. 5; see Fig. 9. Since gene assembly is accom-
plished using recombination, it is also known how the segments between the MDSs,
the IESs, are to be connected. Therefore, also these segments are connected through
edges. The edges now added are called desire edges due to the obvious similarities
with those in the theory of sorting by reversal.

Consider now Figs. 10 and 11 where we have only drawn the pointers of the
MDSs of Figs. 6 and 8, respectively. The pointer on the left-hand (right-hand, resp.)
side of MDS Mi is denoted by i (i + 1, resp.), except that M1 (Mκ , resp.) has
no pointer on the left-hand (right-hand, resp.) side. As usual, if MDS Mi appears
inverted, then w.r.t. the MIC form of the gene, ī appears on the right-hand side and
i + 1 on the left-hand side.

We argue that the desire edges given in Fig. 9 can be constructed given only the
sequence of pointers given in Fig. 11. Indeed, pointers indicate the pairs of locations
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Fig. 8 An example sequence of MDSs

Fig. 9 An example sequence of MDSs with desire edges

Fig. 10 The pointers of the MIC gene of Fig. 6

Fig. 11 An example sequence of pointers

of the MIC form of a gene on which recombination takes place. Each two locations
corresponding to the same pointer are used together in a recombination operation.
The segments between the pointers remain intact during gene assembly. Thus, for
each pointer occurrence in the sequence, we assign two vertices representing the
left and the right side of the pointer. If v1 and v2 are vertices belonging to the first
occurrence of a pointer p and v3 and v4 belong to the other occurrence of p, then
we connect either v1 with v3 and v2 with v4 or v1 with v4 and v2 with v3—this
choice depends on the relative orientation of the two occurrences of pointers. In
Fig. 11, the orientation of pointers 2 and 4 are different, called positive, and the
orientation of pointer 3 is the same, called negative. If a pointer is positive, then the
corresponding desire edges are drawn in such a way they ‘cross’ and if the pointer
is negative, then they are drawn parallel to each other; see Fig. 12 where we have
augmented Fig. 11 with desire edges. Notice that the desire edges are identical to
that of Fig. 9. Therefore, in the remaining, we will abstract from the notions of
MDSs and IESs and only consider sequences of pointers. Now, if we add a second
set of edges, connecting each pair of vertices of a segment (thereby representing
the segments), then we have obtained a graph that represents the end result after
all recombination has taken place. These edges, which are called reality edges, are
represented as ‘double edges’ and are depicted in Fig. 13. We have added special
vertices s and t representing both ends of the gene in MIC form. Since each vertex
(except s and t ) belongs to a pointer, we label each vertex by the pointer (without
possibly its bar) it belongs to. The obtained graph, called reduction graph, for our
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Fig. 12 An example sequence of pointers with desire edges

Fig. 13 An example sequence of pointers and its reduction graph

Fig. 14 The reduction graph of the example

example is given in Fig. 14. The same graph is depicted in Fig. 15—we have only
rearranged the vertices.

Recall that this graph represents the end result after gene assembly has been per-
formed: The reality edges represent the segments and the desire edges connect the
segments as they appear in the end result. We notice in Fig. 15 one linear connected
component and one cyclic connected component. Therefore, during gene assembly,
a circular molecule must have been excised for this gene. It can be easily verified
that a reduction graph always has exactly one linear connected component and zero
or more cyclic connected components.

We now formally define the notions, including reduction graph, mentioned
above. The sequences of pointers in Figs. 10 and 11 and will be represented as
the strings 344567567893̄2̄289 and 232̄4̄23, respectively. Each such string is called
a legal string since it is a string over Π = {2,3, . . . , κ} ∪ {2̄, 3̄, . . . , κ̄}, for some
fixed κ , and for each p ∈ Π that occurs in u, u contains exactly two occurrences
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Fig. 15 The reduction graph
of Fig. 14

from {p, p̄}. We will use the convention that ¯̄p = p for p ∈ Π . We also define
Δ = {2,3, . . . , κ}.

Although each gene in MIC form can be represented by a legal string, there are
legal strings, e.g. 23243̄4, that do not correspond to a sequence of MDSs, and hence
cannot correspond to a gene in MIC form. Hence, for those strings, a figure similar
to Fig. 9 cannot, but a figure similar to Fig. 13 can be given. In fact, it can be shown
that renumbering the symbols of 23243̄4 in a way that respects the orientation of
the pointers (positive or negative) cannot lead to a legal string corresponding to a
sequence of MDSs; see Chapter 8 in [7]. From now on, we will work with legal
strings, and consequently the notions and results are given in greater generality:
Fundamentally, we deal with arbitrary recombination using pointers.

For p ∈ Π , we define p = p if p ∈ Δ and p = p̄ if p ∈ Δ̄, i.e. p is the ‘unbarred’
variant of p. The domain of a string v ∈ Π∗ is dom(v) = {p | p occurs in v}. For
a pointer p and a legal string u, if both p and p̄ occur in u, then we say that both
p and p̄ are positive in u; if on the other hand only p or only p̄ occur in u, then
both p and p̄ are negative in u. So, every pointer occurring in a legal string is either
positive or negative in it.

A 2-edge colored graph is a 6-tuple G = (V ,E1,E2, f, s, t), where V is a finite
set of vertices, s, t ∈ V are called the source and target, and f : V \{s, t} → Γ is
a vertex labeling function. There a two (not necessary disjoint) sets of undirected
edges E1,E2 ⊆ {{x, y} | x, y ∈ V,x �= y}. The range of f of 2-edge colored graph
G is denoted by dom(G). Also, 2-edge colored graphs G and G′ are considered iso-
morphic, denoted G ≈ G′, when they are equal modulo the identity of the vertices.
However, the labels of the identified vertices must be equal. Also, the source (target,
resp.) of G needs to be identified with the source (target, resp.) of G′.

Definition 1 Let u = p1p2 · · ·pn with p1, . . . , pn ∈ Π be a legal string. The re-
duction graph of u, denoted by Ru, is a 2-edge colored graph (V ,E1,E2, f, s, t),
where

V = {I1, I2, . . . , In} ∪ {I ′
1, I

′
2, . . . , I

′
n} ∪ {s, t},

E1 = {e0, e1, . . . , en} with

ei = {I ′
i , Ii+1} for 0 < i < n, e0 = {s, I1}, en = {I ′

n, t},
E2 = {{I ′

i , Ij }, {Ii, I
′
j } | i, j ∈ {1,2, . . . , n} with i �= j and pi = pj

}

∪ {{Ii, Ij }, {I ′
i , I

′
j } | i, j ∈ {1,2, . . . , n} and pi = p̄j

}
, and

f (Ii) = f (I ′
i ) = pi for 1 ≤ i ≤ n.
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Fig. 16 The reduction graph Ru of u = 27̄473534̄2656

Fig. 17 The reduction graph
Ru of Fig. 16

The exact identities of the vertices in the definition of reduction graph are not
essential and, therefore, in graphical depictions, we represent the vertices (except
for s and t ) by their labels (as we did in Fig. 14). Note that the reduction graph
is defined for the general concept of legal strings. Therefore, the reduction graph
represents the end product after recombination of arbitrary sequences of pointers
(which by definition come in pairs)—not only those that correspond to sequences of
MDSs.

As another example, Figs. 16 and 17 show the reduction graph Ru of legal string
u = 27̄473534̄2656. Although we will sometimes use other legal strings as well, we
will use this legal string as our running example.

5 The Form of Reduction Graphs

Since legal strings represent the begin product (gene in MIC form) and the corre-
sponding reduction graph the end result (the same gene in MAC form and its excised
products), it is natural to study the possible forms of reduction graphs. Formally, we
characterize in this section the (2-edge colored) graphs that are (isomorphic to) re-
duction graphs.

Certainly, a graph G isomorphic to a reduction graph must be a 2-edge colored
graph (V ,E1,E2, f, s, t) such that each label is a (unbarred) pointer, and each label
must occur exactly four times. Each vertex must be connected to exactly one (real-
ity) edge from E1, and each vertex, except s and t , must be connected to exactly one
(desire) edge from E2. Finally, edges from E2 must connect vertices with a common
label. Let us call these graphs abstract reduction graphs, and let ARG be the set of
all abstract reduction graphs. It turns out that there are graphs in ARG that are not
(isomorphic to) reduction graphs; one such example is given in Fig. 18.

To obtain a characterization, we need one more property of reduction graphs:
the possibility to linearly order the vertices as done in Fig. 16. To make this linear
order of vertices explicit, we introduce merge edges to the reduction graph as done
in Fig. 19.



108 R. Brijder and H.J. Hoogeboom

Fig. 18 An abstract
reduction graph

Fig. 19 The reduction graph Ru of Fig. 16 augmented with merge edges

Remark 1 In the breakpoint graph, the reality edges are actually the merge edges
in the reduction graph. Thus, perhaps it would have been more appropriate to call
merge edges reality edges, and reality edges, e.g. ‘segment edges’ (since they repre-
sent segments of DNA) in the reduction graph. The notion of segment edges is not
introduced in breakpoint graphs but it is implicitly present since the graph is drawn
as a circular diagram: the reality and desire diagram.

Now, when is a set of edges M for G ∈ ARG a set of merge edges? Like desire
edges they have the properties that (1) the edges connect vertices with a common
label and (2) each vertex except s and t is connected to exactly one merge edge.
Moreover, M and the set E2 are disjoint—no desire edge is parallel to a merge
edge. Finally, the reality edges and merge edges must allow for a path from s to
t passing each vertex once. This last requirement is equivalent to the fact that the
reality and merge edges induce a connected graph.

If it is possible to add a set of merge edges to the graph, then it is not difficult
to see that the graph is isomorphic to a reduction graph Ru. Indeed, we can iden-
tify such a u for this reduction graph by simply considering the path from s to t

alternating over the reality and merge edges. The orientation (whether it is positive
or negative) of each pointer is determined by the crossing or non-crossing of the
desire edges (exactly as in the definition of reduction graph). Thus, e.g. based on
Fig. 19, we see that legal string u = 27̄473534̄2656 corresponds to this graph. How-
ever, also, e.g. legal string 27̄473̄53̄4̄2656 corresponds to this graph. We call these
legal strings equivalent. Formally, we say that legal strings u and v are equivalent,
denoted by u ≈ v, if there is homomorphism ϕ : Π∗ → Π∗ with ϕ(p) ∈ {p, p̄} and
ϕ(p̄) = ϕ(p) for all p ∈ Π such that ϕ(u) = v. Thus, the set of legal strings corre-
sponding with an reduction graph with merge edges is an equivalence class w.r.t. ≈.

It is shown in [2] that surprisingly, G ∈ ARG has a set of merge edges precisely
when the pointer-component graph P CG, defined below, is a connected graph. In
other words, G is (isomorphic to) a reduction graph iff G ∈ ARG and P CG is a
connected graph.
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Fig. 20 The
pointer-component graph of
the abstract reduction graph
from Fig. 18

Fig. 21 The
pointer-component graph of
the reduction graph from
Fig. 17

The pointer-component graph represents how the labels of graphs in ARG (and
in particular reduction graphs) are distributed among its connected components. For
G ∈ ARG, the pointer-component graph of G, denoted by P CG, is a multi-graph
(we allow loops and parallel edges), where the vertices are the connected compo-
nents of G, the edges are the elements of dom(G), and an edge p ∈ dom(G) con-
nects two different connected components C1 and C2 if both contain a vertex labeled
by p. If there is only one connected component C with vertices labeled by p, then
edge p is a loop on C. Note that for each label p there are exactly two desire edges
with vertices labeled by p. Hence, each label is present in at most two connected
components, and P CG is well defined.

The pointer-component graph of the graph of Fig. 18 is given in Fig. 20. The
linear connected component of Fig. 18 is denoted by R in the figure. Since the
graph in Fig. 20 is not a connected graph, the graph of Fig. 18 is not isomorphic to
a reduction graph. On the other hand, the pointer-component graph of the abstract
reduction graph from Fig. 17, given in Fig. 21, is a connected graph—confirming
that this graph is isomorphic to a reduction graph.

6 Different Strings, Same Graph

In this section, to simplify terminology, we consider equivalent legal strings as being
identical. Let us consider now (two different) legal strings u = pqp̄q and v = pqpq .
It turns out that they have the same reduction graph (up to isomorphism), thus Ru ≈
Rv , and this graph is given in Fig. 22. The reason different legal strings may have
the same reduction graph is that a reduction graph may have more than one set of
merge edges—each one corresponding to a different legal string, cf. Sect. 5. Thus,
there can be many MIC forms of genes (i.e. legal strings) obtaining the same MAC
structure (i.e. reduction graph). In [2], it is shown how for a given legal string u we
can obtain precisely the set of all legal strings having the same reduction graph (up
to isomorphism). In fact, it turns out that this set is exactly the set of all legal strings
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Fig. 22 The reduction graph of pqp̄q (and pqpq)

obtained by applying compositions of the following string rewriting rules. Hence,
each ‘orbit’ of legal strings under these string rewriting rules is an equivalence class
w.r.t. graph isomorphism of its reduction graphs.

First, we define for a string u = x1x2 · · ·xn with xi ∈ Π , its inversion ū =
x̄nx̄n−1 · · · x̄1. For all p,q ∈ Π with p �= q,

• the dual string positive rule for p is defined by dsprp(u1pu2pu3) = u1pū2pu3,
• the dual string double rule for p,q is defined by dsdrp,q(u1pu2qu3p̄u4q̄u5) =

u1pu4qu3p̄u2q̄u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π . The names of
the two rules are due to their similarities with the string positive rule and string
double rule defined later.

Let us take u = pqp̄q and v = pqpq given earlier. Clearly, dsprq(u) = v, thus
these legal strings indeed have a common reduction graph. If we consider again
legal string u = 27̄473534̄2656 with its reduction graph given in Fig. 17, then we
can apply dsdr4,5̄ dspr3 to u and obtain legal string 27̄4265̄34̄7356. Hence, the
reduction graph of this legal string is also given in Fig. 17.

7 Intermediate Gene Patterns

We have shown that the reduction graph is a representation of the MAC form of a
gene (including the IESs) given a gene in its MIC form (formally and more gener-
ally, a legal string u). Here, we show that we can generalize the notion of reduction
graph to allow for representations of any intermediate product. In such an interme-
diate product some pointers, represented as a subset D of dom(u), have not yet been
used in recombination operations, while the other pointers, in dom(u)\D, have al-
ready been used in recombination operations. A reduction graph of u w.r.t. this set
D, denoted by Ru,D , represents such intermediate product. Hence, the reduction
graph of u w.r.t. ∅ is (equivalent to) the reduction graph of u in Definition 1.

We informally define this graph through an example, and refer to [4] for a formal
definition. The reduction graph Ru,D of our running example u = 27̄473534̄2656
w.r.t. D = {2,4} is given in Fig. 23.

We build the reduction graph as before, but simply ignore the pointers in D—they
are put as strings on the reality edges which are now directed edges. For example,
the string 4̄2 between (occurrences of) pointers 3 and 6 in u can be found as a la-
bel on an edge between vertices labeled by 3 and 6. The reverse edge is labeled by
its inversion 2̄4. By rearranging the vertices, we obtain the graph in Fig. 24. It is
assumed that a recombination operation during gene assembly cannot be undone.
Thus, when a pointer is used in recombination, it is not considered a pointer any-
more. Therefore, the intermediate product of our example is the linear sequence of
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Fig. 23 The reduction graph of u w.r.t. D = {2,4}

Fig. 24 The reduction graph
of u w.r.t. D = {2,4}

Fig. 25 The reduction graph
of u w.r.t. D = {3,4,5,6,7}

pointers (legal string) 24̄4̄2, the label of the alternating path from s to t which we
will denote by red(u,D), and a circular molecule. We moreover assume that gene
assembly is intramolecular,2 meaning that all recombination takes place on the lin-
ear DNA molecule. Thus, the generated circular molecules must not contain any
pointers. Since the cyclic connected component in Fig. 24 has only empty strings as
edge labels, this figure represents a valid intermediate product w.r.t. the required in-
tramolecular nature of the process. It is easy to obtain an ‘invalid intermediate prod-
uct’; take, for example D = {3,4,5,6,7} with its reduction graph given in Fig. 25.
Hence, it is not possible to first recombine pointer 2, followed by recombination of
the remaining pointers.

8 Gene Assembly Operations

Since we assume the process is intramolecular, there are restrictions on the use of
recombination operations, as illustrated in the previous section by the existence of
‘invalid’ intermediate products. In this section, we recall constraints on the use of
recombination through three types of operations to enforce that only valid interme-
diate products can be created; see also [7]. Recombination on a positive pointer is
shown in Fig. 26—notice its similarities with the reversal operation in Fig. 1. Since

2The study of intermolecular models of gene assembly, which we do not consider here, has been
initiated in [10]. There, it is possible for different components/molecules to recombine.
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Fig. 26 Hairpin recombination

Fig. 27 Loop recombination

Fig. 28 Double-loop recombination

this operation is intramolecular, we allow recombination on positive pointers: We
call this hairpin recombination. Recombination on a negative pointer is shown in
Fig. 27. Since we require an intramolecular process, we allow this operation only if
segment y in the figure is not relevant. That is, if y does not contain any pointers.
We call such operation loop recombination. Finally, we may also allow recombina-
tion on a negative pointer p if it is done in parallel with recombination on another
negative pointer q overlapping with p—meaning that the sequence is of the form
xpyqzpuqw for arbitrary sequences of pointers x, y, z, u, and w. This operation is
given in Fig. 28 and is called double-loop recombination. Notice that this operation
interchanges segments u and y. When a pointer is used in recombination, it is not
considered a pointer anymore. Hence, in the figures, the ‘pointers’ after recombina-
tion are indicated by dotted lines.

We can formally model this process as follows. As usual, the sequences of point-
ers are described by legal strings. The three types of recombination operations can
be defined now as three types of string rewriting rules, called string pointer rules,
operating on legal strings. For all p,q ∈ Π with p �= q:

• the string negative rule for p is defined by snrp(u1ppu2) = u1u2,
• the string positive rule for p is defined by sprp(u1pu2p̄u3) = u1ū2u3,
• the string double rule for p,q is defined by sdrp,q(u1pu2qu3pu4qu5) =

u1u4u3u2u5,

where u1, u2, . . . , u5 are arbitrary strings over Π . Note that each of these rules is
defined only on legal strings that satisfy the given form. For example, snr2 is not
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defined on legal string 2323. Notice the surprising similarities of the string positive
and double rules with the dual string pointer rules defined in Sect. 6.

The string negative (positive, double, resp.) rule corresponds to the loop (hairpin,
double-loop, resp.) recombination operation. Note that the fact that the molecular
operations remove pointers is explicit in the string pointer rules. The model consti-
tuting the notions of legal string and the three types of string pointer rules is called
string pointer reduction system (SPRS, for short) and was introduced in [6]. Also,
monograph [7] describes this model in detail.

Example 1 We consider again our running example u = 27̄473534̄2656. We cannot
apply spr5̄ to u, but we can apply spr4 to u. We have spr4(u) = 27̄3̄5̄3̄7̄2656. Now,
we can apply spr5̄ to the obtained legal string.

For a given gene in its micronuclear form, a sequence of these molecular opera-
tions is successful if it transforms the pattern into its macronuclear form. Note that
the macronuclear form of a gene corresponds to the empty string as then all pointers
have been used in recombination operations. We now formally define the notion of
successfulness. Let u and v be legal strings. A composition ϕ of reduction rules is
called a reduction of u, if ϕ is applicable to (defined on) u. A successful reduction ϕ

of u is a reduction of u such that ϕ(u) = λ (the empty string is denoted by λ). Thus,
e.g. snr4 spr3̄ spr2 is a successful reduction of 232̄4̄34.

It is important to realize that for every non-empty legal string there is at least
one reduction rule applicable. Indeed, every legal string for which no string positive
rule and no string double rule is applicable must have only negative pointers and
no overlapping pointers. Thus, all pointers are negative and nested and, therefore,
there is an applicable string negative rule. Consequently, every legal string has a
successful reduction (cf. Theorem 9.1 in [7]).

We define dom(ρ) for a reduction rule ρ as the set of pointers used by ρ, so
dom(snrp) = dom(sprp) = {p} and dom(sdrp,q) = {p,q} for p,q ∈ Π . For a com-
position ϕ = ρn · · ·ρ2 ρ1 of reduction rules ρ1, ρ2, . . . , ρn, we define dom(ϕ) =
dom(ρ1)∪dom(ρ2)∪· · ·∪dom(ρn). Moreover, we define snrdom(ϕ) = dom(ρi1)∪· · · ∪ dom(ρik ), where ρi1, . . . , ρik are (all) the snr rules of ϕ.

9 Cyclic Components

Recall from Sect. 4 that the cyclic connected components of the reduction graph rep-
resent the cyclic molecules that are excised from the DNA molecule. A quick look
at the three types of recombination operations of the previous section shows that
each such molecule must have been created due to loop recombination. Since loop
recombination is formally described by string negative rules, we have the following
result.

Theorem 1 Let N be the number of cyclic connected components in the reduction
graph of legal string u. Then every successful reduction of u has exactly N string
negative rules.
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Example 2 Since Ru in Fig. 17 has three cyclic components, by Theorem 1, every
successful reduction ϕ of u has exactly three string negative rules. For example,
ϕ = snr2 snr4̄ spr7̄ snr6 sdr3,5 is a successful reduction of u. Indeed, ϕ has exactly
three string negative rules. Alternatively, snr6 snr3 snr7 spr2 spr5̄ spr4 is also a
successful reduction of u, with a different number of (spr and sdr) operations.

It turns out that the reduction graph also allows for determining on which (sets
of) pointers the string negative rules can be applied—formally these are the sets
snrdom(ϕ) for all successful reductions ϕ of u. Surprisingly, the pointer-component
graph is of use again. In fact, it was originally defined for this purpose; see [3].

Let us first denote P Cu|D as the graph obtained from P Cu by removing the edges
outside D.

Theorem 2 Let u be a legal string, and let D ⊆ dom(u). There is a successful
reduction ϕ of u with snrdom(ϕ) = D iff P Cu|D is a tree.

Example 3 In our running example, we see that D = {2,3,6} induces a (spanning)
tree of P Cu given in Fig. 21. Therefore, there is a successful reduction ϕ of u with
snrdom(ϕ) = D. Indeed, we have ϕ′ = sdr4̄,5 spr7̄(u) = 226336. It is clear that we
can extend ϕ′ to a successful reduction which applies string negative rules on 2, 3,
and 6. Notice that here snr3 must be applied before snr6.

In [2], it is shown that the possible orders in which the string negative rules can
be applied is also deducible from P Cu by considering rooted trees.

We conclude this section with a result concerning intermediate gene patterns
and the generalized notion of reduction graph of Sect. 7. In this section, we have
already seen that for reductions ϕ of u with D = dom(u)\dom(ϕ), we have ϕ(u) =
red(u,D) (the label of the alternating path from s to t in Ru,D). As a consequence,
reductions ϕ1 and ϕ2 of a legal string u with the same domain have the same effect:
ϕ1(u) = ϕ2(u). This puts Theorem 4.8 of [9] into a new perspective: the fact that a
reordering of operations yields the same result is independent of the parallelism of
the operations. The next result shows for which D ⊆ dom(u) there exists a reduction
ϕ with D = dom(u)\dom(ϕ).

Theorem 3 Let u be a legal string, and let D ⊆ dom(u). There is a reduction ϕ of
u with dom(ϕ) = dom(u)\D iff red(u,D) is legal with domain D (or equivalently,
the label of every reality edge of a cyclic connected component is λ).

It should be stressed that the results of this section depend mostly on the follow-
ing two properties of our string rewriting system SPRS under consideration: (1) only
one type of rule ‘creates’ cyclic components, and (2) every legal string has a suc-
cessful reduction. Most results carry over to other string rewriting systems having
these two properties.
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10 Discussion

The concept of breakpoint graph from the theory of sorting by reversal has many
uses for gene assembly in ciliates. While a legal string is a representation of the
micronuclear form of a gene (the begin product of gene assembly), the reduction
graph of that legal string is a representation of the macronuclear form of that same
gene (the end product of gene assembly). The possible forms of reduction graphs
are characterized, as well as the sets of legal strings that obtain a common reduction
graph. Also, loop recombination is well explained by the reduction graph, just as
the reversal operation (similar to hairpin recombination) is explained by the break-
point graph. It remains an open problem to characterize hairpin and double-loop
recombination.
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Template-Guided Recombination:
From Theory to Laboratory

Mark Daley and Michael Domaratzki

Abstract Template-guided recombination (TGR) is a model for the rearrangement
of genomic DNA that takes place in some ciliated protozoa. Originally proposed as
a formal model, TGR has been investigated both as a realistic model for genome
rearrangement in ciliates and, due to interest in the potential of ciliates as “in vivo
computers”, in terms of its computational power. TGR was put forward as a biolog-
ical hypothesis that certain types of DNA rearrangements in ciliates are primarily
controlled by a process of template-matching, where new genes are generated by
using old genes as templates. Most significantly, it has recently been experimentally
established that gene rearrangement in the stichotrichous ciliate Oxytricha trifallax
(Sterkiella histriomuscorum) proceeds in a template-guided fashion. This survey de-
scribes recent work on TGR as a biological process and the computational properties
of the formal model of TGR.

1 Introduction

Template-guided recombination (TGR) is a model for the rearrangement of genomic
DNA that takes place in some ciliated protozoa. Originally proposed as a formal
model, TGR has been investigated both as a realistic model for genome rearrange-
ment in ciliates and, due to interest in the potential of ciliates as “in vivo computers”,
in terms of its computational power.

Originally introduced by Prescott et al. [16], template-guided recombination was
put forward as a biological hypothesis that DNA rearrangement in ciliates is primar-
ily controlled by a process of template-matching, viz., new genes are descrambled
by using old, already descrambled, genes as templates. Most significantly, it has
recently been experimentally established by Nowacki et al. [15] that gene descram-
bling in the stichotrichous ciliate Oxytricha trifallax (Sterkiella histriomuscorum)
proceeds in a template-guided fashion.
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1.1 Relationship to Natural Computing

Ciliate DNA rearrangement and its computational properties are of particular inter-
est to researchers in natural computing. Natural computing studies the use of natural
media, such as molecules, particles (in the context of quantum computation), or light
to perform computation. In this field, the evolution of a mechanism in ciliates which
performs rearrangement, a basic form of computing, has received much attention in
the literature. For instance, the complexity of solving particular problems in certain
formal models of DNA rearrangement in ciliates has recently been examined by
Alhazov et al. [1]. We note in passing that such investigation for particular compu-
tational problems (e.g., NP-complete problems) has not yet been undertaken in the
TGR model.

1.2 Outline

In this survey, we examine the computational and experimental research on TGR.
The remainder of this survey is structured as follows. In Sect. 2, we briefly de-

scribe the process of conjugation in ciliates and the role of DNA rearrangement in
that process.

In Sect. 3, we present the formal biological model for template-guided recombi-
nation. In Sect. 4, we review the basics of formal language theory and present the
formal language theoretic formulation of TGR. In Sect. 5, we note the relationship
of TGR to splicing systems, in Sect. 6, we investigate the computational power of
TGR, Sect. 7 addresses the problem of deciding the equivalence of template sets,
and Sect. 8 introduces the notions of covers and scaffolds. We finish with Sect. 9
describing recent experiments verifying the template-guided model.

2 Conjugation in Ciliates

The ciliated protozoa are an ancient group of single-celled eukaryotes which pos-
sess a unique feature: almost all ciliates have two types of nuclei. Typical eukaryotes
(e.g., humans) have a single nucleus in each cell that performs somatic day-to-day
“genetic housekeeping” functions, such as transcribing genes, as well as serving as
the germline repository of genetic information to pass on to the next generation. Cil-
iates, however, have developed a unique division of labor: a macronucleus (MAC)
serves as the somatic nucleus while a much smaller, functionally inert, micronucleus
(MIC) serves as germline storage.

While ciliates reproduce through asexual fission, they also engage in sexual ac-
tivity known as conjugation. During conjugation no offspring are produced; instead,
two ciliates exchange genetic material and each then leaves the conjugation process
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Fig. 1 A simplified view of
conjugation. Two ciliates (a)
meiotically generate and
exchange haploid MICs (b),
form a new MIC and destroy
the old MAC (c) and finally
generate a new MAC (d)

as a genetically “new” organism. The precise details of conjugation vary signifi-
cantly across ciliate species, but the basics of the process, outlined here and sum-
marized in Fig. 1, are highly conserved.

After initiating conjugation, the MICs of the two paired ciliates undergo the
process of meiosis, creating haploid1 micronuclei. One of these haploid MICs, the
stationary MIC, remains in the parent cell, while the other “migratory” haploid MIC
is transferred to the conjugate partner. Upon receiving the partner’s migratory hap-
loid MIC, each cell combines the migratory and stationary haploid MICs to form a
new, diploid MIC.

At this point, the cells then begin the process of destroying their old MACs and
generating new MACs from their new MICs. The process of macro-nuclear de-
velopment is highly variable in different species, but in the stichotrichous ciliates
it involves extreme rearrangements of the micro-nuclear DNA. Up to 95% of the
micro-nuclear DNA is eliminated from the macronucleus and the remaining DNA is
then heavily amplified. Further complexity is introduced by the fact that the macro-
nuclear form of genes may be significantly different than the micro-nuclear form.

When comparing a MIC gene to the functional version of that gene in the MAC,
one notices that two types of transformation have taken place. Many segments of
the MIC gene, called Internal Eliminated Sequences (or IESs) have been completely
deleted from the macro-nuclear version of the gene. This process of IES elimination
has been observed in all ciliate species which have been subject to genetic study.

The stichotrichous ciliates have the even more remarkable property that some
genes have had large sections completely re-ordered between the MIC and MAC
versions of the gene. That is, if a gene has the form 1–2–3–4–5 in the MAC, the
associated MIC version may have the form: 3–5–1–2–4; see Fig. 2 for a schematic
depiction. Each MIC gene can be divided into three types of regions: IESs, macro-
nuclear destined sequences (or MDSs) and so-called pointer sequences which flank

1The ciliate MIC is diploid—it possess exactly two copies of each chromosome, as is the case,
e.g., in humans.
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Fig. 2 A schematic representation of the MIC and MAC versions of a hypothetical stichotrich
gene

each MDS. The pointer sequence at the far right of MDS n is identical to the pointer
sequence at the left of MDS n + 1, when MDSs are labeled according to the order
in which they occur in the MAC.

While the “pointer” sequences are necessary to enable recombination between
MDSs which must be made adjacent, they are not “pointers” in the sense that they
are able to guide descrambling of MDSs. Indeed, pointer sequences are far too short
to uniquely guide descrambling. Template-guided recombination was thus proposed
as a model to explain how “DNA descramblings” of this apparent complexity might
take place in the cell. The central hypothesis is that fragments of descrambled genes
from the old macronucleus serve as templates to guide the reconstruction of a new
macro-nuclear gene from the micro-nuclear version of the gene.

3 Formal Model

We now describe the formal model for TGR proposed by Prescott et al. [16]. The
model of TGR involves three DNA segments, which we denote X,Y, and T . The
segments X and Y represent portions of ciliate DNA which are being rearranged,
while T represents the template. The role of the template is to arrange the pointers.
As noted in Sect. 2, Prescott et al. [16] hypothesized that the origin of the templates
for rearrangement is genetic material from the maternal micronucleus.

For TGR to occur, we require the presence of specific regions, including a pointer
region, in X, Y, and T . From 3′ to 5′, we require the presence of blocks of DNA of
the following form (here, a represents the reverse complement of a):

X: αβ1β2δ,

T : γβ2 β1α,

Y : εβ1β2γ.

Further, we require that the following constraints be satisfied:

(a) δ is not complementary to γ and ε is not complementary to α.



Template-Guided Recombination: From Theory to Laboratory 121

(b) For some constants C,D, and E, |α|, |γ | ≥ C and D ≤ |β1β2| ≤ E. (Here, |α|
is the length of α.)

No other constraints, for example, on the length of δ or ε are made. The region
β1β2 represents the pointer regions used to align the proper MDSs, while α and γ

represent additional material required, in the model, to uniquely resolve the pointers.
Condition (b) above is motivated by the observed lengths of the pointer sequences
in ciliates. Typically, the length of β1β2 is between two and twenty nucleotides (see,
e.g., Chang et al. [3]).

With these requirements met, TGR occurs with the alignment of X,Y, and T .
This alignment of the molecules prior to the recombination is depicted schematically
in Fig. 3.

Next, recombination occurs by the destruction of hydrogen bonds in the αβ1

block of X, the αβ1β2γ block of T and the β2γ block of Y . The formation of
hydrogen bonds occurs between the shaded regions depicted in Fig. 4; note that
hydrogen bonds form between, e.g., both strands of the double helix of X and a
corresponding strand of the double helix of T in the αβ1 block.

After the formation of the hydrogen bonds, the model stipulates that eight cuts
are made to the phosphate backbones of X, T , and Y . These are also depicted in
Fig. 4: the pair of scissors represent the cuts to either the upper or lower stands in
the double helix. These cuts result in four separate molecules, depicted in Fig. 5.
There are six nicks that need to be repaired in the resulting molecules.

A crucial part of the model is that after completion the template can be repaired
by ligation of three nicks. Thus, the operation can be repeated using the same tem-
plate molecule, and a large supply of templates it not necessary.

Fig. 3 Depiction of the
preconditions for TGR. Each
strand is represented
schematically as a single line
(i.e., the complementary
strands are not shown). Tick
marks indicate divisions
between the labeled blocks

Fig. 4 Formation of new
hydrogen bonds and cuts to
the phosphate backbones
during TGR. At each cut
point (indicated by a pair of
scissors), U and L indicate
whether the upper or lower
strand is cut
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Fig. 5 Four molecules
resulting from the eight
phosphate backbone cuts. The
template strand is depicted in
grey for easier viewing of the
molecules at the intersection

Another important observation of the formal model is its irreversibility. None of
the four molecular products can again serve as a template for a TGR involving any
pair of the resultant molecules.

3.1 Origin of IESs

The TGR model is a guiding assumption in the recent, related development of a
hypothesis for the advent of IESs and scrambled micro-nuclear DNA in ciliates.
The proposed model, described by Ehrenfeucht et al. [9], is motivated in part by
experimental observations that ciliates are highly resistant to exposure to radiation
and desiccation.

The model describes how repairs to broken DNA strands could give rise to point-
ers, IESs and scrambled MIC genes. In the model, duplicated regions (the pointers)
as well as additional material (the IESs) are introduced during the repair process.
The major requirement in the repair model is the presence of two undamaged copies
of the DNA to repair one damaged copy.

With this hypothesis, multiple breaks in coiled DNA can result in the types of
scrambling and duplicated pointers and intervening IESs observed in ciliates [9]. In
particular, if the multiple breaks in a coiled are rejoined in the correct ways by the
repair process, the only change is the addition of IESs and an orthodox form of the
micro-nuclear gene is obtained. If multiple breaks in a coil are rejoined to make new
connections, then we obtain scrambled micro-nuclear genes.

We note that the proposed repair mechanism acts as an inverse to TGR by du-
plicating pointer regions and introducing IESs. This is similar to the concept of the
inverse of an operation in language theoretic terms, introduced by Kari [13] (see
Sect. 4.1 for an introduction to formal language theory). The concept of an inverse
to TGR in an intra-molecular setting has been examined in the context of language
equations by Daley et al. [4].

3.2 RNA Template Model

Recently, Angeleska et al. [2] have reconsidered the TGR model proposed by
Prescott et al. The main difference between the two models is the substitution of
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RNA templates (either double-stranded or single-stranded) for DNA templates in
the original model. The authors note several distinctions between the DNA template
model and the RNA template model [2]. In particular, the RNA model requires only
four cuts to the sugar-phosphate backbone of the micro-nuclear RNA, as opposed to
a total of eight for the DNA template model, including cuts to both the micro-nuclear
DNA and the DNA template.

The RNA template model is also feasible as it does not introduce molecules con-
taining a mixture of RNA and DNA on a single backbone and all of the recombined
material consists of micro-nuclear DNA only [2]. We note (see Fig. 4) that the DNA
template models, while not creating DNA-RNA hybrids, does introduce a portion of
the template into the rearranged DNA.

Another observation [2] is that the RNA model produces circular strands of DNA
as a byproduct of the TGR operation. This is consistent with experimental research
showing circular strands of DNA (consisting of IESs) present after the recombina-
tion in some ciliates (see, e.g., Jaraczewski and Jahn [12]).

While the operation has several differences from the model of Prescott et al., as
the authors note it has no effect on the inter-molecular TGR operation as a formal
language theory operation (described below in Sect. 4.2). We examine the experi-
mental evidence for proposing RNA templates in Sect. 9.

4 Formal Language Model

In this section, we describe the formal language theoretic model for TGR. We first
review the necessary formal language theory.

4.1 Formal Language Theory Basics

For additional background on formal languages, see Rozenberg and Salomaa [18].
Let Σ be a finite set of symbols, called letters; we call Σ an alphabet. Then Σ∗ is
the set of all finite sequences of letters from Σ , which are called words. The empty
word ε is the empty sequence of letters. We denote by Σ+ the set of non-empty
words over Σ , i.e., Σ+ = Σ∗ − {ε}. The length of a word w is denoted by |w|.
A language L is any subset of Σ∗.

Let Δ,Σ are alphabets. A function h : Δ → Σ∗ is called a morphism. It is ex-
tended to h : Δ∗ → Σ∗ by the rule h(xy) = h(x)h(y) for all x, y ∈ Δ∗. Given a
language L ⊆ Δ∗, h(L) = {h(x) : x ∈ L}. Further, if L′ ⊆ Σ∗, then h−1(L′) = {x :
h(x) ∈ L′}.

We assume the reader is familiar with the classes of finite, regular, context-free
recursive, and recursively enumerable (r.e.) languages. In particular, a language
is regular (resp., context-free, recursive, recursively enumerable) if it is accepted
(resp., generated, accepted, accepted) by a deterministic finite automaton (resp.,
context-free grammar, Turing machine which halts on all inputs, Turing machine).
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The classes of finite, regular, context-free, recursive, and r.e. languages form a strict
hierarchy of inclusions. We denote the class of finite, regular, context-free, recur-
sive, and recursively enumerable languages, respectively, by FIN,REG,CF,REC,RE.

Recall that a class of languages L is a cone if it is closed under morphism, in-
verse morphism, and intersection with regular languages. If L is also closed under
concatenation and Kleene closure, then L is a full abstract family of languages (full
AFL). For any class of languages L, we denote by L0 the class of ε-free languages
in L, i.e., L0 = {L ∈ L : ε /∈ L}. In this respect, we will mostly be interested in
REG0, the class of ε-free regular languages.

4.2 Formal Language Model for TGR

We now give the formal language theoretic definition of TGR, which was proposed
by Prescott et al. [16] and first studied as a formal operation by Daley and McQuillan
[5]. If n1, n2 ≥ 1 and x, y, z, t ∈ Σ∗ are words, we denote by (x, y) 	t,n1,n2 z the
fact that we can write

x = u1αβv1,

y = v2βγu2,

z = u1αβγu2,

t = αβγ,

with α,β, γ,u1, u2, v1, v2 ∈ Σ∗, |α|, |γ | ≥ n1 and |β| = n2. The word t is the tem-
plate.

The requirements for applying 	t,n1,n2 are depicted in Fig. 6. If these require-
ments are met, then the constructed word is u1αβγu2.

If T ,L ⊆ Σ∗ are languages, then �T ,n1,n2 (L) is defined by

�T ,n1,n2 (L) = {
z : ∃x, y ∈ L, t ∈ T such that (x, y) 	t,n1,n2 z

}
.

We use the notation �T (L) if n1, n2 are understood or unimportant. The language
T is called the set of templates.

We note here the main differences between the formal model presented in Sect. 3
and the relation 	t,n1,n2 .

Fig. 6 Requirements for an
application of TGR
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First, the original model allows for the region αβγ to be a sub-word of longer
templates (i.e., in Fig. 3, T1 and T2 can be non-empty). However, as most classes
of languages are closed under the sub-word operation, this restriction typically does
not affect the complexity of the results obtained.

Another difference is that the formal language operation is only concerned with
the product u1αβγu2 of TGR. The products β1v1 and β2v2 (for an appropriate
factorization of β as β = β1β2) are ignored. This agrees with our focus on the
re-arrangement process—the alignment of pointers and the elimination of IESs—
rather than all molecular products. In particular, we ignore the segmented IESs in
the formal language model.

We also note as well the difference between the length requirements of the model
and the language operations. In particular, the formal language operation insists that
|β| = n1 for some constant n1. However, as shown by Daley and McQuillan [5], this
is equivalent to the condition that |β| ≥ n1 for the same constant n1.

Finally, we note that as a simplification, the formal language theoretic model
removes the condition on non-complementarity between, e.g., v1 and γ .

4.3 Iterated TGR

Daley and McQuillan [5] have also introduced and extensively examined the iterated
version of TGR. As a model of DNA rearrangement in ciliates, iterated TGR is
much more realistic than a single application of TGR. Cellular biochemistry is an
inherently stochastic process involving the interaction of enzymes, substrates, and
catalysts in solution and it is thus natural to consider iterated operations in which
non-determinism is used to model the underlying stochastic system.

Iterated TGR is defined in the natural way: let �0
T ,n1,n2

(L) = L and for all i ≥ 1,
let

�i
T ,n1,n2

(L) =�i−1
T ,n1,n2

(L)∪ �T ,n1,n2

(
�i−1

T ,n1,n2
(L)

)
.

Then we also define �∗
T ,n1,n2

(L) as

�∗
T ,n1,n2

(L) =
⋃

i≥0

�i
T ,n1,n2

(L).

4.4 Classes of Languages Defined by TGR

In order to discuss the closure properties of classes of languages, we introduce some
additional notation. Let L, T be classes of languages and n1, n2 ≥ 1.

�T ,n1,n2 (L) = {
�T ,n1,n2 (L) : T ∈ T , L ∈ L

}
,

�∗
T ,n1,n2

(L) = {
�∗

T ,n1,n2
(L) : T ∈ T , L ∈ L

}
,
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�T (L) = {
�T ,n1,n2 (L) : T ∈ T , L ∈ L, n1, n2 ≥ 1

}
,

�∗
T (L) = {

�∗
T ,n1,n2

(L) : T ∈ T , L ∈ L, n1, n2 ≥ 1
}
.

4.5 Deletion Contexts in TGR

We note that Daley and McQuillan [6] have investigated the computational power
of TGR in which templates specify additional constraints on the deleted regions:
In particular, if t ∈ Σ∗#Σ∗#Σ∗, let 	(d)

t,n1,n2
be the binary relation defined by

(x, y) 	(d)
t,n1,n2

z if we can write

x = u1αβv1v
′
1,

y = v′
2v2βγu2,

z = u1αβγu2,

t = v2#αβγ #v1

with α,β, γ,u1, u2, v
′
1, v

′
2, v1, v2 ∈ Σ∗, |α|, |γ | ≥ n1 and |β| = n2.

This operation is motivated by the investigation of the necessary modifications to
the TGR operation in order to significantly modify its computational power, and not
by observed biological properties. Daley and McQuillan [6] investigate the closure
properties of the operation defined by TGR with deletion contexts, and languages
which are closed under TGR with deletion contexts.

4.6 Intra-molecular TGR

As shown in Fig. 7 and as noted in the original paper of Prescott et al. [16], TGR
does not need to be applied to two distinct strands (or words in the formal language
theoretic model). Indeed, it can be applied to two regions of the same linear strand.
The resulting operation can be seen as a templated version of the ld (loop delete) op-
eration, which is an earlier formal model of ciliate DNA rearrangement. Please see,
e.g., Ehrenfeucht et al. [11] for a description of the ld operation, and the associated
hi (hairpin inversion) and dlad (double loop and delete) operations.

This leads to the following definition of intra-molecular TGR as a formal lan-
guage theoretic operation [4]. Let x, t, y ∈ Σ∗ and n1, n2 ≥ 1. We say that x 	(	)

t,n1,n2
y if there exist u,v,w,α,β, γ ∈ Σ∗ with |α|, |γ | ≥ n1 and |β| = n2 such that we
can write

x = uαβwβγ v,

y = uαβγ v,

t = αβγ.
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Fig. 7 Intra-molecular TGR

If T ,L ⊆ Σ∗ are languages, then �(	)
T ,n1,n2

(L) is defined by

�(	)
T ,n1,n2

(L) = {
z : ∃x ∈ L, t ∈ T such that x 	(	)

t,n1,n2
z
}
.

We use the notation �(	)
T (L) if n1, n2 are understood or unimportant.

Angeleska et al. [2] have independently described a templated version of the ld

operation, as well as the hi and dlad operations, using their refined TGR model.
Their description of hi is especially instructive about the differences between the
Prescott et al. [16] model and their model: in the Prescott et al. [16] model, the
hairpin language operation involves a loss of some materials in general (see Daley
et al. [4] for a description of this operation). However, no loss of material occurs in
the hi language operation described using the model of Angeleska et al.

5 Relation to Splicing Systems

Daley and McQuillan [5] have examined the relationship between TGR and splicing
systems, which we briefly recall here. We refer the reader to Păun et al. [17] for
further results on splicing systems.

An H scheme is a pair σ = (Σ,R) where Σ is an alphabet and R ⊆ Σ∗#Σ∗$Σ∗#
Σ∗ is a set of splicing rules where $,# are not elements of Σ .

For a rule r ∈ R, we define the relation (x, y) |=r z if

r = u1#u2$u3#u4,

x = x1u1u2x2,

y = y1u3u4y2,

z = x1u1u4y2,

for some u1, u2, u3, u4, y1, y2, x1, x2 ∈ Σ∗.
For a language L ⊆ Σ∗ and an H scheme σ = (Σ,R), we define

σ(L) = {
z ∈ Σ∗ : ∃x, y ∈ L, r ∈ R such that (x, y) |=r z

}
.
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Further, for classes of languages L, R, let

S(L, R) = {
σ(L) : L ∈ L, σ = (Σ,R) and R ∈ R

}
.

Let σ = (Σ,R) be an H scheme. For iterated splicing, let σ 0(L) = L and σ i(L)

be defined by

σ i(L) = σ i−1(L) ∪ σ
(
σ i−1(L)

)

for all i ≥ 1. Finally, as expected,

σ ∗(L) =
⋃

i≥0

σ i(L).

For classes of languages L, R, let

H(L, R) = {
σ ∗(L) : L ∈ L, σ = (Σ,R) and R ∈ R

}
.

The following results are due to Daley and McQuillan [5].

Lemma 1 Let L be a trio or L = FIN. Then for all T ∈ L and all n1, n2 ≥ 1, there
exists an H scheme σ = (Σ,R) where R ∈ L such that for all L ⊆ Σ∗, �T ,n1,n2

(L) = σ(L).

The proof of Lemma 1 shows that in order to simulate a finite set of templat-
es T , the resulting splicing system requires

∑
t∈T (|t | − 2n1 − n2 + 1) rules. Daley

and McQuillan show that this bound is tight for single-application TGR, provided
that the size of the alphabet is linear in |T |. The authors note that proving the same
bound is tight for fixed sized alphabets is still open, as is the problem for iterated
TGR.

The following corollary is immediate from Lemma 1.

Corollary 1 For all n1, n2 ≥ 1, all classes of languages L and all classes T such
that T is a trio (or T = FIN), the following inclusions hold:

�T ,n1,n2 (L) ⊆ S(L, T ),

�∗
T ,n1,n2

(L) ⊆ H(L, T ).

In some cases, the inclusions in Corollary 1 are actually equalities.

Lemma 2 For all full AFLs L and all n1, n2 ≥ 1 the following equalities hold:

L =�∗
FIN,n1,n2

(L) = H(L, FIN).

However, some inclusions are strict; in what follows, ⊂ denotes strict inclusion.
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Lemma 3 Let L be a class of languages such that FIN ⊆ L ⊂ RE and L is closed
under intersection with regular languages. Let R be a class of languages such that
REG0 ⊆ R. Then

�∗
RE (L) ⊂ H(L, R) = RE.

For finite languages and finite sets of templates, the following strict inequalities
are known.

Lemma 4 For all n1, n2 ≥ 1,

FIN ⊂�∗
FIN,n1,n2

(FIN) ⊂ H(FIN, FIN) ⊂ REG.

6 Computational Power

6.1 Closure Properties

Many results on the computation power of TGR are inherited from Sect. 5. In this
section, we describe some additional closure properties for TGR.

Despite Lemma 4, every regular language can be expressed as the coding of
the language resulting from iterating TGR on a finite language with a finite set of
templates. Recall that a coding (or letter-to-letter morphism) is a morphism such
that the image of each letter is again a letter. Let C(L) be the coding closure of a
class of languages L.

Lemma 5 The following equality holds:

REG = C
(
�∗

FIN (FIN)
)
.

Daley and McQuillan [7] also present several results on the closure properties
of full AFLs under iterated TGR. They rely in part on the concept of usefulness
for templates. We say that a template t ∈ T is useful on L,n1, n2 if there exists
u1αβv1, v2βγu2 ∈�∗

T ,n1,n2
(L) with |α|, |γ | ≥ n1, |β| = n2, u1, u2, v1, v2 ∈ Σ∗ and

t = αβγ .
That is, a template t is useful with respect to a given language L if t can be

used to combine two words in the iterated TGR of L. Note that the requirements
do not insist that the recombination which can occur when t is useful—that is, the
assembly of u1αβγu2 in our notation—is distinct from u1αβv1 and v2βγu2.

If every template t ∈ T is useful on L,n1, n2, then we say that T is useful on
L,n1, n2.

Theorem 1 Let n1, n2 ≥ 1, L be a full AFL and L,T ∈ L. If T is useful on
L,n1, n2, then �∗

T ,n1,n2
(L) ∈ L.
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Thus, provided that we restrict ourselves to sets of templates in which every
template can be used at some point in an operation of �∗

T ,n1,n2
, then full AFLs are

closed under iterated TGR. Daley and McQuillan [7] show that if T is a regular
set of templates, and L is any language, the subset of T corresponding to all useful
templates on L is also regular. However, the construction provided by Daley and
McQuillan is not effective. Thus, as the regular languages are a full AFL, we have
the following corollary.

Corollary 2 For all full AFLs L, �∗
REG (L) = L.

However, this result is not effective. McQuillan et al. [14] have given effective
closure properties of iterated TGR. In particular, they show the following results.

Theorem 2 Let n1, n2 ≥ 1, L be a regular (resp., context-free) language and T be
a regular set of templates. If L and T are effectively given, then �∗

T ,n1,n2
(L) is an

effective regular (resp., context-free) language.

6.2 Closure Properties of Intra-molecular TGR

As mentioned in Sect. 4.6, we can view TGR as occurring on a single strand of
DNA. The result is a unary word operation. Daley et al. [4] have investigated the
formal language theoretic properties of the operation �(	)

T ; the results below are
phrased for n1 = n2 = 1, but analogues for other values of n1, n2 are not difficult to
obtain. In what follows, we let �(	)

T denote the intra-molecular TGR operation with
n1 = n2 = 1.

Daley et al. [4] note that �(	)
T (L) ⊆ ld(L) for all L and all T . However, even for

T = Σ∗, there exist languages such that �(	)
T (L) = ld(L). That is, because of the

requirements for α and β to be non-empty, the intra-molecular TGR cannot directly
simulate ld .

Theorem 3 Let L be a cone. Let L,T ⊆ Σ∗ such that one is from L and the other
is regular. Then �(	)

T (L) ∈ L. In particular,

(a) If T ,L are regular, then �(	)
T (L) is a regular language.

(b) If T is regular and L is a CFL, then �(	)
T (L) is a CFL.

(c) If T is a CFL and L is regular, then �(	)
T (L) is a CFL.

We contrast the above result with two non-closure properties [4].

Theorem 4 The following non-closure properties hold:

(a) There exist CFLs T ,L such that �(	)
T (L) is not a CFL.

(b) There exist a context-sensitive language L ⊆ Σ∗ and a finite set of templates
T ⊆ Σ∗ such that �(	)

T (L) is not recursive.
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We note that, to date, no computational study of the templated hi or dlad oper-
ations under the RNA template model of Angeleska et al. [2] has been undertaken.
Further, the iterated version of the intra-molecular TGR operation presented here
has not been investigated.

6.3 Closure Property Dependencies

Daley and McQuillan [6] have shown dependencies in closure properties between
TGR and related operations. For instance, the following result gives conditions un-
der which closure under TGR implies closure under intersection.

Lemma 6 Let L be a class of languages closed under left and right concatenation
with a single symbol, quotient with a single symbol and union with singletons. Let
T be a class of languages closed under left and right concatenation with a single
symbol. If �T ,n1,n2 (L) ⊆ L for any n1, n2 ≥ 2, then L is closed under intersection
with languages from T .

A result of this form can also be given for closure under concatenation.

Lemma 7 Let L be a class of languages closed under limited erasing homomor-
phism, union, left and right concatenation by a symbol. Let T be any class of lan-
guages containing the singleton languages. If �T ,n1,n2 (L) ⊆ L for any n1, n2 ≥ 1,
then L is closed under concatenation.

We can also consider results which examine conditions necessary to guarantee
closure under TGR. In the following lemma, we use the notation L1 ∧ L2 to mean
L1 ∧ L2 = {L1 ∩ L2 : L1 ∈ L1,L2 ∈ L2}.

Lemma 8 If L be a full trio closed under concatenation and let T be a trio or
T ⊆ REG. If L ∧ T ⊆ L, then �T (L) ⊆ L.

As a corollary, we have the following result.

Corollary 3 Let L be a intersection-closed full semi-AFL, �L (L) ⊆ L.

Daley and McQuillan also show that the context-sensitive languages are not
closed under TGR with a finite set of templates for any n1, n2 ≥ 1 [6].

For intra-molecular TGR, the following results have been obtained [4].

Lemma 9 Let L be a class of languages closed under concatenation and quotient
with a single symbol, and under �(	). Then L is closed under intersection.
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Theorem 5 Let L ⊆ Σ∗ be a r.e. language. Then there exist an alphabet Δ, linear
CFLs L1,L2 ⊆ Δ∗ and a morphism h : Δ∗ → Σ∗ such that the following equality
holds:

L = h
(
�(	)

L2
(L1)

)
.

7 Equivalence

Beyond the closure properties of TGR, the equivalence problem for sets of templates
has recently been considered [8]. By the equivalence problem, we mean questions
of the form “Given sets of templates T1, T2, are �T1 and �T2 identical operations?”
Such questions are important in the consideration of TGR as a natural computing
operation, since they help identify the necessary modifications to a set of templates
in order to change the resulting rearrangement process in a meaningful way.

We require some additional formal language theoretic terminology. A word x ∈
Σ∗ is a prefix of a word y ∈ Σ∗ if there exists w ∈ Σ∗ such that y = xw. Similarly,
x is a suffix of y if there exists u ∈ Σ∗ such that y = ux. If x ∈ Σ∗, then pref(x)

(resp., suff(x)) is the set of all prefixes (resp., suffixes) of x.
Let n1, n2 ≥ 1. For T1, T2 ⊆ Σ∗, we say that T1 and T2 are (n1, n2)-equivalent,

denoted by T1 ≡n1,n2 T2, if �T1,n1,n2 (L) =�T2,n1,n2 (L) for all L ⊆ Σ∗. By
T1 �n1,n2 T2, we mean �T1,n1,n2 (L) ⊆�T2,n1,n2 (L) for all languages L ⊆ Σ∗. It
is easy to see that T1 ≡n1,n2 T2 if and only if T1 �n1,n2 T2 and T2 �n1,n2 T1.

Example 1 Let n1 = n2 = 1, T1 = {aaa, aab, abc, aaaabc} and T2 = {aaa, aab,

abc}. Then we can verify that T1 ≡n1,n2 T2. In particular, any use of aaaabc in T1
can be simulated by one of the three templates in T2, depending on the decomposi-
tion of aaaabc into αβγ with |β| = 1.

Let (C1) be the following condition:

∀t, t1, t2 ∈ Σ∗ with |t | = 2n1 + n2, if t1t t2 ∈ T1

then ∃t ′1 ∈ suff(t1), t
′
2 ∈ pref(t2) (t ′1t t ′2 ∈ T2). (C1)

Condition (C1) is illustrated in Fig. 8: for every sub-word t of length 2n1 + n2 in a
template in T1, there must be an extension of t in T2 which agrees with the template
in T1 on the sub-words flanking t .

Then we can give an exact characterization of equivalence [8]:

Theorem 6 Let Σ be an alphabet with |Σ | ≥ 3, n1, n2 ≥ 1 and T1, T2 ⊆ Σ∗. The
condition (C1) holds if and only if T1 �n1,n2 T2.

Thus, we can characterize when two sets of templates define the same TGR
operation in formal language theoretic terms. This gives us the tool to determine
which changes can be made to a set of templates in order to affect the rearrange-
ment process.
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Fig. 8 Illustration of condition (C1)

Lemma 10 Let n1, n2 ≥ 1 and T1, T2 ⊆ Σ∗ (|Σ | ≥ 3) be regular sets of templates.
Then it is decidable whether T1 ≡n1,n2 T2.

However, the above result does not give an efficient algorithm. It is open to de-
termine if efficient algorithms exist for deciding whether two sets of templates are
equivalent. In contrast to Lemma 10, as would be expected, there exists a fixed reg-
ular set of templates T0 such that the problem “Given a context-free set of templates
T , is T ≡n1,n2 T0?” is undecidable [8]. However, T0 = Σ∗: it is possible to test
equivalence to Σ∗ for recursive sets of templates.

It can also be shown that if �T is replaced by the intra-molecular operation �(	)
T ,

the characterization in (C1) still holds. However, it is open whether the same char-
acterization also holds for equivalence of iterated TGR. Further, from a formal lan-
guage point of view, it is interesting to ask whether the condition that |Σ | ≥ 3 can
be substituted with |Σ | ≥ 2 in Theorem 6; this problem is also currently open.

8 Covering and Scaffolding

We briefly describe another line of research prompted by the TGR model—that of
covering from templates and scaffolding. Ehrenfeucht and Rozenberg [10] recently
introduced the concepts of covers from templates. Their results deal with covering
of a word x by a collection of words from a given language L. However, as the
authors note, unlike previous work in this area, the authors here are concerned with
the specific positions of x which are covered by words from L. In other words, a
sub-word x′ of x which occurs in two different positions in x is not necessarily
covered in both positions if x′ ∈ L.

In particular, if n,m ∈ N with n ≤ m, let [n,m] denote the set {n,n + 1, . . . ,m}.
Then for an alphabet Σ , a segment is a function f : [n,m] → A. Thus, a segment
is a word which does not necessarily begin at the index 1, but which does occupy
some range of indices.

Note that under this definition, a word is any segment on an interval of the form
[1, n] for some n ≥ 0. The set of all segments over an alphabet Σ is denoted by SΣ .

Given a set C ⊆ SΣ and a segment f ∈ S, we say that C is a cover of f if
f = ⋃

z∈C z. This cover of f is said to be tight if for all z ∈ C, C − {z} is not a
cover of f . A cover C of f is said to be small (with respect to some set F with
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C ⊆ F ⊆ SΣ ) if C is minimal with respect to cardinality among all covers Z ⊆ F

of f . Denote by SCF (f ) the set of all small covers of f with respect to F . The
small index of f (with respect to F ) is the cardinality of the small covers of f with
respect to F ; this concept is well defined since all small covers of f with respect
to F have the same cardinality. For any small cover C of f with respect to F , we
let C = {C(1),C(2), . . . ,C(m)}, where the positions are determined by increasing
left-most elements of the elements C(i); as noted by Ehrenfeucht and Rozenberg;
this is also well defined.

Example 2 Let Σ = {a, b, c} and f ∈ SΣ be defined by

f = {(2, a), (3, b), (4, a), (5, b), (6, c)}.
This is abbreviated as f = (2, ababc). The set C = {(2, ab), (4, ab), (5, bc)} is a
cover of f . However, with respect to the set F = {(2, ab), (4, ab), (5, bc), (4, abc)},
C is not small, as C′ = {(2, ab), (4, abc)} is a cover of f with smaller cardinality.

These definitions of covers are motivated by viewing f as the assembled macro-
nuclear gene of the ciliate and F as the set of segments available for assembly from
the scrambled micro-nuclear gene.

Let f ∈ SΣ , F ⊆ SΣ and let m be the small index of f with respect to F . Let
1 ≤ i ≤ m. The ith kernel of f with respect to F (denoted keri,F (f )) is defined by

keri,F (f ) =
( ⋂

C∈SCF (f )

C(i)

)

−
⋃

C′∈SCF (f )

⋃

j =i

C′(j).

The set of kernels of f is called the scaffold of f (with respect to F ). Ehrenfeucht
and Rozenberg show the following result on the kernels of f .

Theorem 7 Let f ∈ SΣ and F ⊆ SΣ . For all 1 ≤ i ≤ m, the set keri,F (f ) is a
non-empty segment.

Example 3 Let f = (1, abbabaaab) and F = {gi}6
i=1 where g1 = (1, ab), g2 =

(1, aab), g3 = (2, bba),g4 = (4, abaa), g5 = (3, babaaa), g6 = (7, aab), and g7 =
(9, b). Then it is not hard to see that m = 3 and that SCF (f ) consists of the five
covers {g2, g4, g6}, {g2, g5, g6}, {g2, g5, g7}, {g1, g5, g6}, and {g1, g5, g7}.

With this, we can calculate that

ker1,F (f ) = g1,

ker2,F (f ) = (4, aba),

ker3,F (f ) = g7.

The relationship between the scaffold of f and certain covers of f requires us
to introduce the notion of long segments. We say that a segment g ∈ PF (f ) is long
(with respect to F ) if it is not properly included in any other segment in F ; the set
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of all long segments of f (with respect to F ) is denoted LPF (f ). For example, g5 in
Example 3 is a long segment, while g4 is not, since g4 is properly contained in g5.
A cover is said to be long if it consists only of long segments. A long small cover is
a cover that is both long and small.

Example 4 Continuing from Example 3, segments g1, g4, and g7 are not long.
Therefore, the only long small cover of f is {g2, g5, g6}.

For each 1 ≤ i ≤ m, let LPF (f, i) = {y ∈ LPF (f ) : keri,F is contained in y}. That
is, we categorize the long segments of f with respect to F according to containment
of kernels. It is not hard to see that LPF (f, i) is an ordered set. Thus, we let rtF (f, i)

(resp., ltF (f, i)) be the maximal (resp., minimal) element of LPF (f, i). With these
notations, we can state the following result.

Theorem 8 The sets {rtF (f, i)}mi=1 and {ltF (f, i)}mi=1 are long small covers of f

with respect to F .

Example 5 Continuing from Example 4, we get that

LPF (f,1) = {g2}, LPF (f,2) = {g5}, LPF (f,3) = {g6}.
Thus, we have that rt (f, i) and ltF (f, i) are the unique elements of LPF (f, i) for
1 ≤ i ≤ 3.

As noted by Ehrenfeucht and Rozenberg, we have that both rtF (f, i) and
ltF (f, i + 1) are adjacent to (i.e., contact but do not overlap with) keri,F (f ) for all i

with 2 ≤ i ≤ m. On the boundaries, ker1,F (f ) is adjacent to ltF (f, i) and kerm,F (f )

is adjacent to rtF (f,m − 1). We can verify this in Example 5.
Ehrenfeucht and Rozenberg also examine the structure of the scaffold and

bridges, which link the kernels of f . The relationships between long segments and
the kernels and bridges of f are also considered [10].

9 Experimental Results

The hypothesis that the gene descrambling process in stichotrichous ciliates involves
template-guided recombination was recently tested in the ciliate Oxytricha trifallax
by Nowacki et al. [15]. Initially, experiments using RNA interference (RNAi) were
undertaken. RNAi is an experimental technique that allows the selective degrada-
tion of RNA molecules in a cell which contain a chosen target sequence. When
RNAi was performed against putative template sequences for a particular gene, it
was observed that this gene was incorrectly descrambled. This demonstrated that
Oxytricha is not able to descramble scrambled genes in the absence of RNA mole-
cules containing template sequences; thus, templates are a necessary component of
the descrambling mechanism.
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To test if TGR is, in some sense, sufficient to account for gene descrambling, a se-
ries of more ambitious experiments were performed: DNA and RNA were directly
micro-injected into the macronuclei of conjugating Oxytricha cells. In the first set of
experiments, artificial chromosomes (double-stranded DNA), coding for incorrectly
descrambled versions of the genes TEBPα and TEBPβ were micro-injected. It was
observed in the progeny of the micro-injected cells that corresponding incorrectly-
descrambled versions of TEBPα and TEBPβ were present. This result supports the
hypothesis that descrambling is guided by templates made from the chromosomal
DNA of the old macronucleus but leaves open the question of whether the templates
are DNA or RNA.

The second series of experiments involved micro-injection of RNA sequences
designed to intentionally mis-descramble TEBPβ if actually used by the cell as
templates. It was observed that the progeny of RNA micro-injected cells contained
correspondingly incorrectly-descrambled TEBPβ genes, thus providing support for
the RNA template model.

10 Concluding Remarks

We have provided a brief introduction to conjugation and gene descrambling during
macro-nuclear development in ciliated protozoa, along with an exposition of two
theoretical models for descrambling: the original template-guided recombination
model of Prescott et al. [16] and the RNA-template model of Angeleska et al. [2].

Following this, we reviewed the formalization of this process to a ternary word
operation, TGR, which combines words in a splicing-like manner, controlled by a
template word; we noted that this formalization is consistent with both the models of
Prescott et al. [16] and Angeleska et al. [2]. Variants of TGR were described, includ-
ing iterated TGR which is a more realistic model for ongoing biological processes,
TGR with added deletion contexts and intramolecular TGR.

It was shown that under some parametric restrictions, one could construct a splic-
ing system equivalent to a single-application TGR system although, in general, TGR
and iterated TGR are strictly weaker operations than the equivalent splicing opera-
tions. Despite this limitation, iterated TGR on a finite base language, with a finite
template set, is able to generate a coding of an arbitrary regular language. More gen-
erally, all full AFLs are closed under iterated TGR in the case where one is able to
guarantee that the template set is “useful”. For the intramolecular case of TGR, reg-
ular languages are closed while if one of the template, or base language, is regular,
and the other context-free, the result of intramolecular TGR will be context-free.

For single-application and intramolecular TGR, it is decidable if two regular tem-
plate sets are equivalent (i.e., they will define the same operation). For the case of
context-free templates, the same question becomes undecidable. The decidability
status of template equivalence remains open in the iterated case.

A related line of research recently introduced by Ehrenfeucht and Rozenberg
[10], describing coverings and scaffolds, was also reviewed. Motivated by the notion
of micro-nuclear gene fragments “covering” a macro-nuclear gene, this research
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centres on the investigation of how a given word may be “covered” by words from
a fixed language.

Finally, we described the recent experimental results of Nowacki et al. [15] which
verify the biological validity of the RNA template-guided recombination model. The
fact that such strong experimental support now exists for the correctness of the tem-
plate model casts theoretical results in an exciting light, and motivates further study,
as we now know that we are reasoning about the properties of an actual “natural
computer”.
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DNA Cages with Icosahedral Symmetry
in Bionanotechnology

Nataša Jonoska, Anne Taormina,
and Reidun Twarock

Abstract Blueprints for polyhedral cages with icosahedral symmetry made of cir-
cular DNA molecules are provided. The basic rule is that every edge of the cage
is met twice in opposite directions by the DNA strand(s), and vertex junctions are
realized by a set of admissible junction types. As nanocontainers for cargo storage
and delivery, the icosidodecahedral cages are of special interest because they have
the largest volume per surface ratio of all cages discussed here.

1 Introduction

Recent advances in biotechnology provide the necessary tools to engineer cage
structures from nucleic acids, and open novel avenues for applications in nanotech-
nology. Cages with crystallographic symmetry have already been realized exper-
imentally in the shape of a cube [1], a tetrahedron [2], an octahedron [3], or a
truncated octahedron [4], and one natural idea is to use such cages for cargo de-
livery or storage [5]. Moreover, models for two realizations of a cage with a non-
crystallographic symmetry have recently been proposed from a theoretical point of
view [6, 7]. These studies were motivated by the hope that such mathematical con-
siderations on the organization of RNA or DNA in cages with icosahedral symmetry
would aid the design of artificial cages inspired by nature.

We provide here a systematic comparative analysis of three polyhedral cages
with icosahedral symmetry, the icosahedron, the dodecahedron [7], and the icosi-
dodecahedron [6] (see Fig. 1), which are—from a mathematical point of view—
distinguished because they are the three smallest vertex sets realizing icosahedral
symmetry. Moreover, their edges are uniformly of the same length. We expect that
these properties make them easier to be realized experimentally than other polyhe-
dra with this symmetry, and we therefore focus on these three cases here.

An interesting feature of these polyhedra is the fact that they have vertices of
different connectivity: The dodecahedron has trivalent vertices, and hence needs to
be realized in terms of three-junctions, whilst the icosidodecahedron requires four-
junctions and the icosahedron five-junctions. We investigate here possibilities of
realizing these polyhedra with a single circular DNA molecule. Our analysis shows
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Fig. 1 The icosahedron (a), dodecahedron (b), and icosidodecahedron (c) corresponding to the
three polyhedra with icosahedral symmetry with less than 60 vertices

that the complexity of this problem increases when the polyhedra considered have
even degree vertices. The strategy implemented here is to enumerate all possible in-
equivalent realizations of these cages with a single strand of DNA molecule, given
a set of rules on the junctions. This combinatorial approach is manageable without
computer help for the icosahedral and the dodecahedral cages, but becomes cumber-
some for the icosidodecahedron. Our treatment of the latter in this paper is therefore
computer-aided, but a more elegant mathematical framework to solve this type of
problem is being developed.

Our analysis shows that in all three cases at least two circular DNA strands are
needed to form the cage. From that point of view, all three polyhedra lend them-
selves equally well for templates of DNA cages. However, the icosidodecahedron is
the polyhedron among the three with the largest volume to surface ratio (at an edge
length of 1, it is approximately 0.47, compared to 0.37 for the dodecahedron, 0.25
for the icosahedron1), making it perhaps the most interesting icosahedral cage for
applications in nanotechnology.

We start by introducing our theoretical construction method in general terms for
all polyhedra with icosahedral symmetry in Sect. 2, and then provide details for
the three polyhedra in the subsequent sections: the icosahedral cage in Sect. 3, the
dodecahedral cage in Sect. 4, and the icosidodecahedral cage in Sect. 5.

2 Construction of Cages with Icosahedral Symmetry: General
Principles

The goal is to provide blueprints for polyhedral cages with icosahedral symmetry,
made of a circular DNA molecule, with the basic rule that every edge of a given
polyhedral cage is met twice in opposite directions by the strand. This requirement
enables hybridization of the two portions of the strand running along an edge into a
double helix structure.

Mathematically, a cage is a graph whose nodes are the vertices of the corre-
sponding polyhedron, and the connectors are the edges. As explained in [8, 9], the

1Moreover, the volume to area ratios of all icosahedral cages considered here are larger than those
of the crystallographic cages realized to date. For comparison, the value for the octahedron is
approximately 0.14.
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Fig. 2 (a) The DNA double
helix is represented by lines
(blue and red) that trace the
backbone of the helices.
(b) Depending on their
lengths, additional half-turns
may appear, that are
represented by cross-overs on
the planar representation of
the graph

idea is to topologically embed graphs into orientable thickened graphs as deforma-
tion retracts. Such thickened graphs are compact orientable 2-dimensional surfaces
constructed out of strips and thickened n-junctions glued together. They can be con-
sidered as models for DNA cages as follows: The boundary curves of the thickened
graph represent single stranded DNA molecules in the cage, and provide a blueprint
that specifies which types of junctions have to be used to realize this graph.

The design of such templates for DNA cages must take the following factors into
account:

1. Initial data: Assume that the cages correspond to polyhedra with all edges of
equal length λ. Then the number ν(λ) of half-turns in the duplex structure along
each edge depends on λ. Configurations where ν(λ) is odd are modeled as cross-
overs in the planar projective views of the polyhedral cages as shown in Fig. 2.
Note that for DNA there are about 10.5 base pairs (bp) per helical turn.

2. Thickened n-junctions: Mechanical stress may be imposed on the overall config-
uration if the strands of the edges cross each other at the incident vertex junctions.
For example, the thickened n-junction shown in Fig. 3(a) imposes no stress on
the configuration (we name it ‘type An’), whilst the thickened n-junctions ap-
pearing in Fig. 3(b) and (c) accommodate one or two cross-overs (we name them
‘type B1n’ and ‘type B2n’) and may impose stress on the overall configuration
unless extra nucleotides are introduced along the corresponding edge that com-
pensate for it. In general, a thickened n-junction with k cross-overs of the strands
is of type Bkn, k ≤ n.

The number n of legs in the junctions depends on the type of cage considered.
In subsequent sections, cages with thickened 5-junctions (icosahedra), 4-junctions2

(icosidodecahedra) and 3-junctions (dodecahedra) are discussed.

2Stable four-junctions can be assembled; see, for example, [10].
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Fig. 3 (a) Energetically optimal thickened n-junction (type An); (b) higher energy (one strand
“reaches” across to another) thickened n-junction (type B1n); (c) higher energy (two strands
cross-over their neighbors) thickened n-junction (type B2n). The dotted line indicates that there
may be more edges present

2.1 The Construction Procedure: Step I

The first step in the construction procedure is to identify start configurations, i.e.,
orientable thickened graphs with a maximum number of type An thickened junc-
tions. Such graphs are usually made of several distinct circular strands. In order to
determine the start configuration, first assume that every vertex of the polyhedron
is represented by a junction of type An. This is always possible if the polyhedral
edges have an even number of helical half-turns. The start configuration in this case
is given by N separate circular strands (loops), where N is the number of polyhedral
faces.

However, in the presence of cross-overs which take into account the odd number
of half-turns along the edges, this distribution of type An junctions does not neces-
sarily provide an orientable thickened graph. In particular, this is the case if faces
with an odd number of edges occur in the polyhedron (as is the case for all three
polyhedra considered here). In particular, if the cages have all edges of the same
length as in the present analysis, and moreover, exhibit an odd number of half-turns
in the double helix along each edge, the start configuration is obtained as follows:
The two-dimensional surface, orientable or not, obtained by gluing the twisted strips
representing the cross-overs to type An junctions, is called the initial data config-
uration (see Fig. 4 for the initial data configuration of the icosahedron; note that
this configuration has 6 loops, but they do not all run in opposite directions). To this
initial start configuration, we apply the bead rule to obtain a start configuration. The
bead rule consists of placing beads on selected edges of the polyhedron to indicate
that a twisted strip (cross-over) is glued to a twisted leg of a type Bkn thickened
junction, as illustrated in Fig. 5 for a 4-coordinated polyhedron.

Note that by addition of a “cross-over” at one vertex the orientation of the bound-
ary components change at all neighboring edges. For polyhedra with an odd number
of half-turns on their edges, a start configuration is obtained if the following rules
are satisfied:

• Each edge accommodates either a cross-over or a bead.
• Every face of the polyhedron in the start configuration must have an even number

of cross-overs.
• The number of beads is minimal.
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Fig. 4 Initial data
configuration for an
icosahedral cage when ν(λ) is
odd

Fig. 5 Correspondence of a
“cross-over” and a “bead” to
the boundary orientation. An
odd number of helical
half-turns corresponds to a
“cross-over” (left), and the
addition of one half-turn
corresponds to placing a
“bead” on the edge (right)

After the bead rule has been applied, one must discard configurations which are
equivalent under icosahedral symmetry. The symmetry-inequivalent bead configu-
rations correspond to the possible start configurations. In such configurations some
junctions are of type An, and others of type Bkn, the latter having been introduced
to provide orientability of the two-dimensional surface representing the thickened
graph obtained from the polyhedron.

2.2 The Construction Procedure: Step II

Start configurations are usually given in terms of more than one strand of DNA.
Since focus is here on building cages out of a minimal number of strands, these
need to be “merged.” This can be achieved by replacing some of the junctions in
the start configuration by junctions with different connectivity of the strands. Such
replacements result in a change of the overall number of strands used to form the
cage and, therefore, depend on the overall structure, which is different in all three
cases considered here. These replacements are therefore discussed on a case by case
basis in the following sections.

Note that these replacements result in a change of the number of half-turns of the
DNA strands, because they add or remove a half-turn in the duplex structure [7].
If the edges of the polyhedral cage are of equal length and are rigid duplexes,
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i.e., have hybridization going up to the vertices, then there is little flexibility of
the strands at the vertices to cross over from one edge to another, and we assume
that such replacements of the vertex structure are difficult. The replacements of one
type of junction with another are therefore carried out under the assumption that the
strands at the vertices of the cage are not completely hybridized or the lengths of the
edges may differ by a few nucleotides. In these cases, the changes in the connection
of the strands introduced by these replacements do not interfere with the embedding
of the double helical structure.

3 The Icosahedral Cage

The rules described above can be applied in a straightforward manner to the con-
struction of icosahedral cages, and we start by considering the case where an extra
twist occurs on each edge, i.e., the edges are of equal length with an odd number of
half-turns. An icosahedron is a five-coordinated polyhedron with twenty triangular
faces. According to the preceding section, orientability requires an odd number of
beads per face, and the minimum number of 10 beads is achieved with exactly one
bead per face.

Compiling an exhaustive list of start configurations in this case is effortless. For
instance, the bead rule can be implemented by first considering one of the 12 five-
coordinated vertices of the icosahedron, and asking how many allowed possibilities
there are to place beads on the triangular faces forming a pentagon whose center is
the vertex in question.

Direct inspection shows that there are three inequivalent ways to obtain a minimal
bead distribution; all illustrated in Fig. 6. The 3-, 4-, and 5-bead configurations are
labeled (p, r) = (1,2), (3,1), and (5,0), respectively, where p is the number of
beads on the pentagon perimeter, and r is the number of beads on the radii.

The following strategy provides a full set of start configurations (all letters used
for vertices refer to the labeling convention shown in Fig. 7(a)):

1. Place a (5,0) pentagon configuration at any vertex (choose A, say, and label this
configuration (5,0)A). Due to the high symmetry of this bead distribution, the
only bead distribution for pentagons with center vertices B, C, D, E, and F is the
3-bead one, as the corresponding vertices automatically have at least two beads
on radii. There is no allowed bead distribution with more than two beads on
radii, so (1,2) is the only possibility. A similar argument holds for the vertices
G, H, I, J, and K, which must be of type (1,2). Finally, vertex L is automatically

Fig. 6 Minimal bead
configurations on a
triangulated pentagon
compatible with the bead rule
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Fig. 7 (a) Choice of vertex labels on the icosahedron. (b) Start configuration when the bead dis-
tribution (5,0) is placed at vertex A (configuration 1 in Table 1). The number associated to each
vertex counts the number of beads in the pentagon whose center is that vertex

Fig. 8 Mirrored start
configurations when the bead
distribution (3,1) is placed at
vertex A (configurations 3
and 4 in Table 1). The axis of
mirror symmetry is the
dashed blue line through
vertices A, B, J, and L

of type (5,0). The essential features of this icosahedral bead configuration are
encoded in Fig. 7(b), where each vertex is labeled by the number of beads placed
on its incident edges. This start configuration (without further replacements of
5-junctions) requires four DNA single strands.

2. Place a (3,1) pentagon configuration at any vertex in any orientation. Choose
vertex A, say, and place this (3,1)A configuration such that the edge linking ver-
tices A and B hosts a bead. This fixes vertices D, E, and J to have (1,2) config-
urations. Vertex B can be in a (3,1) or a (1,2) configuration. The former yields
that the minimal number bead distribution makes the corresponding thickened
graph non-orientable, as one triangular face acquires two beads. The configura-
tion (1,2) can be placed on vertex B in two orientations: the ‘left’ orientation
(1,2)�,B shows a bead on the edge linking B and G, while the ‘right’ orientation
(1,2)r,B shows a bead on the edge linking B and H. Note that B lies on the axis
connecting A, B, and J and a bead on the edge connecting B and G is a reflec-
tion of the bead placed on the edge connecting B and H, therefore, (1,2)l,B and
(1,2)r,B yield equivalent bead configurations (see Fig. 8).

3. Place a (1,2) pentagon configuration at any vertex in any orientation. Choose
vertex A, say, and place this (1,2)A so that the edge linking vertices D and E
hosts a bead. Then vertex B must be in a (5,0) or a (3,1) configuration since
two edges on the corresponding pentagon perimeter host beads. If B is of type
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Fig. 9 Mirrored start
configurations when the bead
distribution (1,2) is placed at
vertex A, with either (3,1)�,B
and (1,2)F (configuration 6
in Table 1), or with (3,1)r,B
and (1,2)C (configuration 8
in Table 1). The axis of mirror
symmetry is the dashed blue
line through vertices A, B, J,
and L

Fig. 10 Mirrored start
configurations when the bead
distribution (1,3) is placed at
vertex A, with either (3,1)�,B
and (3,1)F (configuration 7
in Table 1), or with (3,1)r,B
and (3,1)C (configuration 9
in Table 1). The axis of mirror
symmetry is the dashed blue
line through vertices A, B, J,
and L

(5,0), one arrives at the same configuration as discussed in case 1 (Fig. 7 (b)).
If B is (3,1), the configuration can be placed in two orientations: (3,1)�,B if the
edge linking B and G hosts a bead, and (3,1)r,B if the edge linking B and H hosts
a bead. Once the orientation is chosen, there is one more choice to make. In the
‘left’ configuration, vertices C and D are automatically in (1,2) configurations
but vertex F can be of type (1,2) or (3,1). Each choice leads to a start configura-
tion which requires two DNA strands. In the ‘right’ configuration, vertices E and
F are automatically in (1,2) configurations but vertex C can be of type (1,2) or
(3,1). Each choice once again leads to a start configuration which requires two
DNA strands. These configurations are shown in Figs. 9 and 10. Note that two of
these four start configurations are mirror images of the other two.

These considerations are summarized in Table 1.
The result is that up to mirror symmetry, one has four inequivalent classes. One

admits four strands (configurations 1 and 5 are equivalent under a rotation of the
icosahedron), and the other three require two strands. Configurations 3 and 4 are
mirror-symmetric, as are configurations 6 and 8, as well as 7 and 9.

The final step in the construction of such cages is to merge the different strands
by using new types of junctions. The start configuration 1 corresponds to the four-
strand cage of Fig. 11(a). The figure shows that the two vertices (A and L, compare
with the labeling in Fig. 7(a)) host thickened junctions of type A5, containing five
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Table 1 Summary of possible start configurations for the icosahedral cages prior to the identifica-
tion of the subset of symmetry-inequivalent configurations

Systematics of minimal bead configurations

(5,0)A (3,1)A (1,2)A

(1,2)B (1,2)D (5,0)B (3,1)�,B (3,1)r,B

(1,2)C (1,2)E (1,2)C (1,2)C (1,2)E

(1,2)D (1,2)J (1,2)D (1,2)D (1,2)F

(1,2)E (3,1)B (1,2)�,B (1,2)r,B (1,2)E (1,2)F (3,1)F (1,2)L (3,1)C

(1,2)F X (1,2)C (3,1)C (1,2)F (3,1)E (1,2)E (3,1)D (1,2)D

(1,2)G X (3,1)F (1,2)F (1,2)G (1,2)G (1,2)G (3,1)G (1,2)G

(1,2)H X (1,2)G (1,2)G (1,2)H (3,1)H (1,2)H (1,2)H (1,2)H

(1,2)I X (1,2)H (1,2)H (1,2)I (1,2)I (3,1)I (1,2)I (1,2)I

(1,2)J X (3,1)I (1,2)I (5,0)J (3,1)J (3,1)J (3,1)J (3,1)J

(1,2)K X (1,2)K (3,1)K (1,2)K (1,2)K (1,2)K (1,2)K (3,1)K

(5,0)L X (3,1)L (3,1)L (1,2)L (1,2)L (1,2)L (1,2)L (1,2)L

1 (2) 3 4 5 6 7 8 9

4 strds 2 strds 2 strds 4 strds 2 strds 2 strds 2 strds 2 strds

Fig. 11 (a) Four-strand start
configuration 1,
(b) two-strand start
configuration 6

Fig. 12 Replacement of a
three-strand configuration by
a one-strand configuration at
a type B2,5 junction

strands. All other vertices have thickened junctions of type B2,5, i.e., 5-junctions
with two cross-overs of the strands at the vertices. These junctions involve three
different strands, and via a replacement of strand connections as depicted in Fig. 12
these strands can be merged into one. If such a replacement takes place at vertex
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Fig. 13 The junctions used as replacements for A5 vertices

B say (replacing the junction of type B2,5), then the resulting cage is made of two
distinct strands. The results in [8] show that the parity of the boundary components
in every thickened graph of a given polyhedron is always the same. Therefore, two
strands are the least number of strands that can be used in the construction of an
icosahedron.

For the case when an icosahedron has an edge length with an even number of
helical half-turns, a start configuration is given by 20 strands of DNA tracing the
polyhedral faces. These can be reduced to two strands in a number of ways. One
possibility is to use the replacements shown in Fig. 13, which result in (a) a reduc-
tion of five distinct strands meeting at a vertex to one, and (b) a reduction of three
different loops to one. Via three replacements of type (a) and two of type (b), one
obtains a two-strand realization of the cage.

4 The Dodecahedral Cage

Next, we consider the case of the dodecahedron, a three-coordinated polyhedron
with 12 pentagonal faces. We start with the case where the edge length of the do-
decahedral cage is such that the DNA duplex has an odd number of half-turns along
each edge, and we encode this additional helical turn via a red cross-over on a do-
decahedral cage in planar projection (see Fig. 14(a)). Since the resulting number of
twists along a pentagonal face is odd, the surface corresponding to the ribbon rep-
resenting the double helical structure of the DNA is non-orientable. We follow the
procedure outlined in Sect. 2 to produce orientable embeddings that may serve as
start configurations for our analysis. In particular, we replace A3 junctions by B1,3
junctions in order to compensate for the twist, and determine their locations via the
bead rule.

As there are twelve faces in the dodecahedron, the minimal number of beads
needed to provide an orientable embedding of the whole double helical structure
is six. There are several non-equivalent ways to introduce six beads by tessellating
the surface of the dodecahedron with the tile shown in Fig. 14(b). The inequivalent
possibilities of placing beads on the edges of the dodecahedron such that precisely
one edge per pentagonal face is decorated by a bead are obtained as follows. Without
loss of generality, we place the first bead on any of the edges, because they are all
equivalent by symmetry. We label this edge, and hence the bead on this edge, as 1;
see Fig. 15. To keep the number of beads at a minimum, no other edge of the two
pentagons labeled A and B can have a bead.
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Fig. 14 (a) A dodecahedral
cage in planar projection,
with cross-over schematically
representing the twists that
occur along the edges as a
result of an odd number of
half-turns in the helical
structure. (b) Tiles needed to
make the structure orientable

Fig. 15 Labeling system
corresponding to Fig. 16.
Symbols (letters, numbers)
identifying the pentagons
follow the first branch of the
solution tree in Fig. 16

Since the order in which pentagons are considered does not matter, we can next
concentrate on the pentagon labeled C. Edges labeled 2 and 4 are equivalent by
symmetry, and hence lead to equivalent configurations. We therefore consider only
the possibility of placing a bead on edge 2 or edge 3, and treat each case separately.
A bead on edge 2 ‘covers’ pentagons C and D in Fig. 15. Since every pentagonal
face has to have a bead on one of its edges, we can, without loss of generality, look
at pentagon E next. Due to the beads already present there is no symmetry, and thus
all edges 5 to 8 lead to different solutions. There are 10 solutions in total, denoted S1
to S10 in Fig. 16. We next concentrate on edge 3 instead of edge 2, hence pentagons
A, B, C, and I contain an edge with a bead. Up to symmetry arguments, there are
three different ways to complete this analysis based on the bead rule, labeled S11 to
S13 in Fig. 16.

We investigate whether any of these 13 solutions can be symmetrically mapped
onto another. To do so, we observe that different bead configurations can be classi-
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Fig. 16 The tree encoding the 13 solutions of placing six beads on the dodecahedral edges such
that each pentagon has precisely one bead. Only solutions S1, S2, S3, S6, and S11 are inequivalent

Table 2 Summary of possible bead paths for the identification of the symmetry-inequivalent start
configurations

Systematics of bead paths

Type I all beads lie on a closed (cyclic) bead path

(corresponding to solutions S1, S2, S4, S9)

Type II all beads lie on a non-cyclic (open) bead path

(corresponding to solutions S3, S5, S7, S8, S10, S12)

Type III all beads lie on three disjoint bead paths with two beads each

(corresponding to solutions S6, S13)

Type IV all beads lie on six disjoint bead paths one edge in length

(corresponding to solution S11)

fied according to different bead paths: We call any path along edges of the decorated
dodecahedron a bead path if, starting and ending on a beaded edge, it alternates
along non-beaded and beaded edges. The four possible scenarios of bead paths are
summarized in Table 2.

Bead placements corresponding to a given type (I–IV) are inequivalent to
arrangements of any other type, because any symmetry would map a path onto an-
other path, and a cycle onto another cycle. Hence, an equivalence may appear only
within a given type. We start with type I. Solutions S1 and S9 are mirror images
of each other (obtained by turning the sphere inside out, i.e., they have different
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helical structures but are otherwise identical). We therefore consider them as equiv-
alent. Solutions S2 and S4 can be considered equivalent as they correspond to the
closed path that divides the 12 pentagons of the dodecahedron into two identical
sets of six. However, S1 and S2 are not related by symmetry, and there are hence
two distinct solutions of type I, represented by S1 and S2. Solutions S3, S5, and S8
represent mutually symmetric open paths, while S7, S10, and S12 represent mutu-
ally symmetric paths, but of opposite orientation to S3, S5, and S8 (again obtained
by turning the sphere inside out). Hence, we can consider all these options as equiv-
alent, and so there is only one (up to symmetry) arrangement of beads producing a
non-cyclic path, represented by S3. The two arrangements of type III corresponding
to solutions S6 and S13 can be mapped one onto another. So, there is only one solu-
tion of this type, represented, say by S6. Finally, S11 is the only solution of type IV.
It corresponds to an equidistant distribution of beads on edges and is in that sense
the ‘most symmetric’ solution.

Every bead configuration translates into a start configuration. The five inequiv-
alent start configurations are depicted in Fig. 17. Each of these DNA embeddings
has 14 vertex configurations of type A3 and 6 vertex configurations of type B1,3.
The DNA embeddings corresponding to solutions S2 and S11 result in six distinct
strands (Fig. 17(d, e)), the embeddings corresponding to solutions S1 and S3 in four
strands (Fig. 17(b, c)), while the embedding corresponding to solution S6 in two
strands (Fig. 17(a)).

In order to realize the cage in terms of a minimal number of DNA strands, the
configurations in Fig. 17(b–d) require further vertex replacements. Note that as in
the case of the icosahedron, (by the results in [8]) two is the least number of strands
that can be used to obtain the dodecahedral cage. Indeed, if a vertex configuration
of type A3 obtained by hybridizing three separate strands is replaced by a vertex
configuration of a branch point of type B1,3, then the number of strands meeting
at the vertex reduces to one according to [8]. In the case of six separate strands
(i.e., the cases of S2 and S11), we need to choose two vertices for replacement,
while for the case of four separate strands (i.e., the cases of S1 and S3), only one
replacement is needed. The reader is referred to [7] for details. In all cases, the
minimal number of strands to assemble a dodecahedron using only junctions of type
A3 and B1,3 is two. Figure 18(a) shows the two-strand configuration corresponding
to solution S6.

We now consider the case of double-stranded DNA embeddings into dodecahe-
dral cages with an even number of half-turns per edge. In these cases, there are no
additional twists on the edges. A start configuration is therefore easily obtained by
placing 12 separate strands into the 12 faces of the dodecahedron. Via n = 5 replace-
ments, one again obtains a DNA embedding with two separate strands. According
to the remark at the end of Sect. 2 (see also details in [7]), these replacements can be
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Fig. 17 Embeddings of the DNA duplex structures in a dodecahedral cage corresponding to the
inequivalent bead configurations. The bullets indicate the placements of beads, i.e., the edge con-
taining an even number of half-turns. The configurations correspond to (a) solution S6 with two
separate strands; (b) solution S1 with four separate strands; (c) solution S3 with four separate
strands; (d) solution S11 with six separate strands; and (e) solution S2 with six separate strands

freely chosen if flexible strand connections are used, and require particular positions
in the non-flexible case.
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Fig. 18 Embedding of a
duplex DNA structure
corresponding to the solution
S6 with two strands

5 The Icosidodecahedral Cage

We now consider the icosidodecahedron, a 32-faced polyhedron with quatro-valent
vertices. We again start with the case where all edges accommodate an odd number
of helical half-turns, which implies additional cross-overs on the edges in the initial
configuration. According to Sect. 2, the bead rule has to be applied in order to obtain
a start configuration. The minimal number of beads required is easily calculated. All
faces of the icosidodecahedron have an odd number of edges: there are 12 pentagons
and 20 triangles. However, each face must have an even number of cross-overs to
keep the orientability. Therefore, each of the 20 triangles must receive at least one
bead. However, by placing a bead on each triangle, one also places at least one bead
on each pentagon. The distribution of this minimum number of 20 beads should
be such that pentagons receive an odd number of beads. Let α be the number of
pentagons receiving one bead, β be the number of pentagons receiving three beads
and γ be the number of pentagons receiving five beads. Given that there are 12
pentagons in total, we must satisfy the two equations

α + 3β + 5γ = 20,

α + β + γ = 12,

with α,β, and γ positive integers. There are three solutions to the problem, namely

Case I α = 8, β = 4, γ = 0,

Case II α = 9, β = 2, γ = 1,

Case III α = 10, β = 0, γ = 2.

We start by considering case I. This tells us that the bead rule is fulfilled if there
are four pentagons with three beads each, and if every triangle has precisely one
bead. We therefore determine all symmetry-inequivalent start configurations with
that property. Since this is a significant combinatorial task for the polyhedron under
consideration, our analysis is computer-assisted.

In a first instance, we use the icosahedral symmetry to reduce the number of
options to be considered. In particular, we determine all symmetry-inequivalent dis-
tributions of four pentagonal faces on the icosidodecahedron. Each of these four
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Fig. 19 Partial start configurations for case I, with a distribution of four out of twelve pentagons
on the icosidodecahedron, represented here as distributions of four vertices on an icosahedron
(a) configurations with three vertices being those of a triangle (red) and the fourth vertex being
either A1, A2, or A3, (b) configurations with three red vertices and the fourth one being either B1,
B2, B3, or B4, (c) configurations with three red vertices and the fourth one being either C1 or C2

Table 3 The distribution of
10-, 12-, 14-, and 16-loop
configurations among the
three different cases

Loop number Case I Case II Case III

10 11527 0 0

12 343 951 0

14 3 8 73

16 0 0 1

faces has three of its edges decorated by one bead, whilst all other pentagons and all
triangles have only one bead on their perimeter. In order to determine all inequiva-
lent configurations of four pentagons, we consider the equivalent problem of finding
all different possibilities of coloring four of the 12 vertices of an icosahedron.

There are 9 inequivalent such configurations for case I, which we call the par-
tial start configurations. We show them schematically in a projective view of the
icosahedron in Fig. 19.

We next determine the inequivalent bead configurations for each partial start con-
figuration. Each partial start configuration encodes several possible cage scenarios
which correspond to all inequivalent ways of placing three beads on the edges of
four distinguished pentagons, and one bead on one of the edges of all other faces
(pentagonal or triagonal). We carry out this combinatorial task computationally via
a computer program that tests, for each start configuration, which combinations of
beads are possible, given the fact that the four distinguished pentagonal faces each
have three beads, while all others have one. The results for all three cases are sum-
marized in Table 3, which indicates the number of different configurations with a
given number of loops in each of these cases.

The computations show that the smallest number of distinct loops is 10 and the
largest number 16. While there are over 104 distinct 10-loop configurations, there
is only one configuration with 16 loops, occurring in case III. All vertex configura-
tions involve either four, three, or two distinct loops. As before, these can at best be
reduced to two-strand configurations because the number of distinct circular DNA
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Fig. 20 Replacements of a 3-loop configuration by a single loop: (a) type I and (b) type II

strands is even in all cases. Such a reduction is possible via the replacements of
type I and type II shown in Fig. 20.

If the edge length of the icosidodecahedron is such that none of the edges has an
additional cross-over, the start configuration consists of 32 loops corresponding to
the 32 faces of the polyhedron. Via 30 replacements of type I or type II, a duplex
cage structure realized by two circular DNA molecules is obtained.

6 Discussion

We have performed a theoretical analysis of different types of icosahedral cages with
minimal (two) DNA strands such that each edge is in a duplex structure. Focus was
placed on the three icosahedrally symmetric polyhedra with the smallest number of
vertices, the icosahedron with 12 vertices at the 5-fold axes of icosahedral symmetry,
the dodecahedron with 20 vertices at the 3-fold axes, and the icosidodecahedron
with 30 vertices at the 2-fold axes. These polyhedra are distinguished by the fact
that they have uniform edge lengths and may therefore be easier to manufacture
than other polyhedra with icosahedral symmetry.

We remark that polyhedral RNA cages have been observed also within the protein
containers, called viral capsids that encapsulate, and hence provide protection for
the viral genome [11, 12]. However, the RNA has to be unknotted for successful
replication and, therefore, these cages usually do not appear in the form we have
described here and are realized by the viral RNA in a different way [13, 14].

A comparative analysis reveals interesting features of the cage structures. In par-
ticular, for each of them, the minimal number of circular molecules needed to con-
struct the cage is two. The icosidodecahedral cage is distinguished by the fact that its
volume per surface ratio is the largest among the polyhedra considered here (and is
also larger than those of the cages that have been realized experimentally to date). It
may therefore be more suitable for nanotechnology applications in which the cages
serve as containers for storage or the transport of a cargo.

We hope that the blueprints for the organization of the cages with a non-
crystallographic symmetry suggested here may assist in their experimental realiza-
tion. In particular, these blueprints suggest the structures of the junction molecules
that may be used as basic building blocks for the self-assembly of those cages along
the lines of [15, 16].
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Applying Symmetric Enumeration Method
to One-Dimensional Assembly of Rotatable Tiles

Satoshi Kobayashi

Abstract Motivated by the increasing importance of the analysis of a complicated
reaction system where molecules are interacting in various ways to produce a huge
number of compounds of molecules, the author’s previous work proposed a new
approach, called Symmetric Enumeration Method (SEM), to the efficient analysis
of such reaction systems. The proposed theory provided a general method for the
efficient computation of equilibrium states. In this paper, we will review the results
of the theory of SEM, and apply it to the equilibria analysis of a one-dimensional
assembly system of tiles which can be rotated around three axes, i.e., the x-, y-, and
z-axes. Although the growth of a tile assembly is restricted to only one-dimensional
direction, the exhaustive method of generating all tile assemblies and obtaining equi-
libria is intractable since the number of assemblies could be exponential with respect
to the number of tiles given to the system. We will show that this equilibria analysis
can be transformed into a convex programming problem with a set of variables of
size polynomial with respect to the number of input tiles.

1 Introduction

Since the pioneering work by Adleman [1], the paradigm of DNA computing (in a
broad sense, molecular computing) has emerged and attracted much attention from
computer scientists, molecular biologists, DNA nanotechnologists, etc. [3, 11, 13–
15]. The principle of DNA computing paradigm essentially relies on the DNA hy-
bridization process, but it is in essence error-prone [4]. Therefore, it is substantially
important to design a set of DNA sequences or tiles with which we can obtain a max-
imum concentration of a target molecular architecture. In order to evaluate a given
set of DNA sequences or tiles in this respect, we need to devise a methodology for
efficiently computing the concentration of the target assembly at the equilibrium
state.

Motivated by the increasing importance of the analysis of Hybridization Reac-
tion Systems (HRSs, for short), the author proposed a new approach to the efficient
analysis of equilibrium state of HRSs by overcoming the combinatorial explosion
problem of resultant assemblies [8–10]. The proposed theory provides a general
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method for the efficient computation of equilibrium states. Thus, it can be applied
to various kinds of HRSs other than those of DNA and RNA molecules. As far as
the author’s knowledge, this was the first attempt to formulate such a general theory
for computing equilibrium state of combinatorially complex hybridization reaction
systems.

The key idea exists in the locality of HRSs. By locality, we intuitively mean the
physical property that the free energy of an assembly X of molecules can be com-
puted as the sum of free energies of all local substructures of X. For instance, the
free energy of a single RNA and DNA molecule at the secondary structure level
can be calculated as the sum of free energies of all local substructures such as
hairpin loops, bulge loops, internal loops, multiple loops, etc. The proposed the-
ory gave a theoretical formulation of locality of HRSs using graph theory. It defines
an HRS with high locality as the one having the following properties: (1) there exists
a weighted directed hypergraph G with initial and final vertices such that the set of
hyperpaths from initial vertices to final vertices is in many-to-one correspondence
with the set of assemblies of molecules, (2) the weight of a hyperpath is equivalent to
the free energy of its corresponding assembly, (3) the hypergraph G has some sym-
metric structures which capture the symmetric property of the space of assemblies.
In this formulation, a hyperarc of a hyperpath can be regarded as a substructure of
its corresponding assembly. With this key concept of locality of HRSs, the paper
established a general theory for computing equilibrium state of HRSs.

In this paper, we will review the results of the theory of Symmetric Enumeration
Method [8–10], and apply it to the equilibria analysis of one-dimensional assembly
system of tiles which can be rotated around three axes, i.e., x, y, z-axes. Although
the growth of a tile assembly is restricted in only one-dimensional direction, the
exhaustive method of generating all tile assemblies and obtaining its equilibria is
intractable since the number of assemblies could be exponential with respect to the
number of tiles given to the HRS. We will show that this equilibria analysis can
be transformed into a convex programming problem with a set of variables of size
polynomial with respect to the number of input tiles.

Adleman’s work [2] on the equilibrium state analysis of linear tile assembly is
related to our work. There are two main and important different points between
these works: (1) although Adleman’s analysis is based on a probabilistic model of
chemical reactions, we rely on the concentration based model, and (2) Adleman’s
analysis focuses on linear tile assembly in which rotation of tiles are not allowed
and is simpler than the assembly system discussed in this paper.

Dirks et al. proposed an interesting method for computing equilibria of inter-
acting RNA molecules by using the dynamic programming method and the convex
programming method [5]. The symmetric enumeration method is a very general
framework which can be applied to various hybridization reaction systems, and is
based on a totally different idea from their approach and uses only convex program-
ming method.

After providing the definition of HRSs in Sect. 2, we will give the theory of
symmetric enumeration method in Sect. 3. Section 4 gives the definition of tile as-
sembly system and its important properties. In Sect. 5, we will give three different
implementations of symmetric enumeration schemes for the tile assembly system.
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2 Equilibrium of Hybridization Reaction System

For a set N of numbers, by N+ and N++, we denote the subsets of N consisting of
all nonnegative and positive numbers in N , respectively. By R and Z, we denote the
set of real numbers and integers, respectively.

Let M be a set of molecules and A be a set of assemblies of molecules consisting
of molecules in M. For x ∈ M and X ∈ A, by #x(X), we denote the number of
molecules x contained in an assembly X. A reaction rule over A is given by a pair
of X1 and X2 of finite multisets consisting of elements of A such that the following
equation holds:

∑

X∈X1

#x(X) =
∑

X∈X2

#x(X) (∀x ∈ M). (1)

Note that the sum over a multiset counts elements redundantly for their multiple
occurrences. This equality constraint (1) corresponds to the law of conservation of
each molecule. A reaction rule (X1, X2) is usually denoted by X1 � X2. In case of
X1 = {X1, . . . ,Xn1} and X2 = {Y1, . . . , Yn2}, where multiple occurrences of assem-
blies are allowed, we often write:

X1 + · · · + Xn1 � Y1 + · · · + Yn2 .

A distribution of a set U is a function from U to R+. Usually, we use notations, [ ],
[ ]1, [ ]2, . . . , etc., for representing distributions. For example, for a distribution [ ]
of A and an assembly X ∈ A, [X] represents a concentration of the assembly X.
A distribution of M is especially called an initial distribution. If we have a set M
of molecules with its initial distribution [ ]0, then any distribution [ ] of A should
satisfy the following equation:

∑

X∈A
#x(X) · [X] = [x]0 (∀x ∈ M). (2)

This equality constraint corresponds to the law of conservation of each molecule.
For instance, let us consider two molecules α and β , and an assembly αβ consist-

ing of molecules α and β . Note that each of α and β is itself an assembly consisting
of only one molecule. Thus, we can consider a reaction rule α + β � αβ . Equi-
librium state of this reaction rule is determined by free energies E(α), E(β), and
E(αβ) of assemblies α, β , and αβ , respectively. More precisely, the distribution [ ]
at the equilibrium state should satisfy:1

[αβ]
[α][β] = e−(E(αβ)−(E(α)+E(β))).

1In this paper, the free energy E(X) of X is a dimensionless quantity, i.e., E(X) is the free energy
per mol of X divided by the physical quantity kBT , where kB is Boltzmann constant and T is
absolute temperature of the reaction system.
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We will give the definition of this kind of equilibrium equation in a general set-
ting. For a reaction rule X1 � X2, its equilibrium equation is given by

e
∑

X∈X1
E(X) ×

∏

X∈X1

[X] = e
∑

X∈X2
E(X) ×

∏

X∈X2

[X]. (3)

In summary, a hybridization reaction system (HRS, for short) is defined by P =
(M, A, {#x | x ∈ M}, R,E, [ ]0), where M is a nonempty set of molecules, A is
a nonempty set of assemblies consisting of molecules in M, #x is a function from
A to Z+ such that #x(X) indicates the number of molecules x contained in an
assembly X, R is a set of reaction rules satisfying (1), E is a free energy function
from A to R, and [ ]0 is an initial distribution of M. In case that M, A, and R are
finite, we say that P is a finite HRS.

The problem of interest is to find an equilibrium state of P , i.e., a distribution [ ]
of A satisfying equilibrium equations (3) of all r ∈ R and conservation laws (2) of
all molecules x ∈ M. Such a distribution [ ] is called an equilibrium state of P .

For instance, let us define an HRS for the above example reaction α + β �
αβ . Consider an HRS P = (M, A, {#x | x ∈ M}, R,E, [ ]0), where M = {α,β},

A = {α,β,αβ}, R = {α + β � αβ}, and a function # is defined by: #α(α) = 1,
#α(β) = 0, #α(αβ) = 1, #β(α) = 0, #β(β) = 1, #β(αβ) = 1.

Then the problem is to find a distribution [ ] of A satisfying:

eE(αβ) × [αβ] = eE(α)+E(β) × [α][β],
[α] + [αβ] = [α]0, [β] + [αβ] = [β]0.

An HRS is said to be consistent if there is a distribution of A satisfying (2) for
all x ∈ M. It is said to be inconsistent if it is not consistent. In actuality, we can
construct an inconsistent HRS. However, we can ignore such possibility in most of
real applications in the sense discussed below.

In most of real applications, assemblies of molecules are usually constructed
by reactions using molecules in M. Therefore, the elements of M take part in
the reactions defined by the rule set R. Therefore, in general, we can assume that
M ⊆ A holds. We say that an HRS is normal if M ⊆ A holds. Then we have the
following proposition.

Proposition 1 A normal finite HRS is consistent.

An initial distribution [ ]0 of M is said to be normal if [x]0 > 0 holds for every
x ∈ M.

Proposition 2 A normal finite HRS with normal initial distribution can have a dis-
tribution [ ] of A satisfying the equations (2) for all x ∈ M and [X] > 0 for all
X ∈ A.

In the sequel of this paper, we will assume the following condition (A0):
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(A0) Any HRS in this paper is a normal finite HRS with a normal initial distribu-
tion.

Let P = (M, A, {#x | x ∈ M}, R,E, [ ]0) be an HRS. The free energy FE(P, [ ])
of P under distribution [ ] of A is defined by

FE
(
P, [ ]) =

∑

X∈A
E(X) · [X] +

∑

X∈A
[X](log[X] − 1

)
. (4)

In this paper, we define 0 log 0 = 0. Note that for any X ∈ A, E(X) is a constant.
Free energy FE(P, [ ]) can be regarded as a function with respect to the variables
[X]’s (X ∈ A). We often simply write FE(P ) instead of FE(P, [ ]) if the context
allows.

Consider the following minimization problem:

Free Energy Minimization Problem (FEMP)
minimize: FE(P )

subject to:

∑

X∈A
#x(X) · [X] = [x]0 (∀x ∈ M),

[X] ≥ 0 (∀X ∈ A).

The following theorem is a well-known result (but we do not know who is the
first to find it).

Theorem 1 A distribution [ ] of A is an equilibrium state of P if [ ] is a minimizer
of FEMP.

Therefore, the problem of computing equilibrium state can be reduced to FEMP.
In this paper, we are interested in the case that the cardinality of A is tremendously
larger than that of M. We will give an approach to overcome such a difficulty.

3 Symmetric Enumeration Method (SEM)

3.1 Hypergraphs

Basic notions and definitions related to directed hypergraphs will be introduced in
this subsection mainly based on [6, 7], but some notions are slightly different from
the originals.

A directed hypergraph G is a pair (V ,Eg), where V is a finite set of vertices,
and Eg is a finite set of hyperarcs associated with two functions t : Eg → V and
H : Eg → 2V . A directed hypergraph is simply called a hypergraph in this paper.
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Fig. 1 Elementarity and nonelementary hypergraphs

A hyperarc e is interpreted as an arrow from a tail t (e) to a set H(e) of heads.2

In this definition, we allow multihyperarcs, i.e., there can be more than one distinct
hyperarcs with the same heads and the same tail. For a vertex v, a hyperarc e such
that v = t (e) (v ∈ H(e)) is called an outgoing (entering) hyperarc of v. For a ver-
tex v, by vout (vin), we denote the set of outgoing (entering) hyperarcs of v. For a
set W of vertices, we define Wout = ⋃

v∈W vout and Win = ⋃
v∈W vin. By V0 and

Vf , we denote the set of vertices v ∈ V such that vin = ∅ and vout = ∅, respectively.
Elements of V0 and Vf are called initial vertices and final vertices, respectively.

A path from s to u in G is a sequence s = v1, e1, v2, e2, . . . , eq, vq+1 = u of
vertices vi (i = 1, . . . , q + 1) and hyperarcs ei (i = 1, . . . , q) such that vi = t (ei)

and vi+1 ∈ H(ei) for i = 1, . . . , q . If s ∈ H(eq) holds, the path is called a cycle. We
say that G is acyclic if it contains no cycles.

A hypergraph G′ = (V ′,Eg′) is called a subhypergraph of G = (V ,Eg) if V ′ ⊆
V and Eg′ ⊆ Eg hold. Let x be an element of V ∪ Eg. For a sub-hypergraph G′ =
(V ′,Eg′), we write x ∈ G′ if x ∈ V ′ ∪ Eg′ holds. For a subset W of V ∪ Eg, we
write W ⊆ G′ if x ∈ G′ holds for every x ∈ W .

Let r ∈ V and S ⊆ V . A hyperpath of G from the root r to the sink set S is
a minimal acyclic subhypergraph γ of G such that r and S are contained in γ

and every vertex of γ , except for those in S has exactly one outgoing hyperarc.
A hyperpath is said to be empty if it contains only one vertex and no arcs (i.e.,
S = {r}). A hyperpath is said to be elementary if every vertex, except for r , has
exactly one entering hyperarc. For a hypergraph G = (V ,Eg), by PT(G), we denote
the set of all hyperpaths from some root r ∈ V0 to some sink set S with S ⊆ Vf .
A hypergraph G is said to be elementary if every hyperpath in PT(G) is elementary.
We say that G is reduced if every hyperpath in PT(G) is not an empty hyperpath.
See Fig. 1 for examples of elementary and nonelementary acyclic hypergraphs.

2In the original definition, a hyperarc has a head and a set of tails.
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3.2 Symmetric Enumeration of Assemblies by Hypergraphs

Let G be a reduced acyclic elementary hypergraph G = (V ,Eg). Let φ be an in-
jective and surjective mapping from V ∪ Eg to V ∪ Eg such that φ(V ) = V and
φ(Eg) = Eg hold. For a subhypergraph G′ = (V ′,Eg′) of G, by φ(G′), we de-
note a graph (φ(V ′),φ(Eg′)). If φ satisfies φ(PT(G)) = PT(G), φ is called a path
mapping.

Let Φ be a set of path mappings of G. Φ is called a path mapping group if Φ

constitutes a group under composition. For an element s ∈ V ∪ Eg, we define a set
Φ(s) = {φ(s) | φ ∈ Φ}. In case that Φ is a path mapping group, Φ naturally in-
troduces an equivalence relation ≡Φ over Eg by e1 ≡Φ e2 iff e1 = φ(e2) for some
φ ∈ Φ . Then for e ∈ Eg, Φ(e) is regarded as an equivalence class with respect to ≡Φ

containing e. For a set S ⊆ Eg, Φ(S) is defined as a multiset Φ(S) = {Φ(s) | s ∈ S}.
Note that Φ(S) is a multiset, i.e., if s1 and s2 with e1 ≡Φ e2 are contained in S,
Φ(s1) and Φ(s2) represent a same set, but Φ(S) contains both of them redun-
dantly. For γ ∈ PT(G), out(γ,Φ) is defined as a multiset out(γ,Φ) = {Φ(vout) |
v ∈ V − V0 − Vf such that v ∈ γ }. Note that out(γ,Φ) is a multiset, i.e., even if
there exist distinct v1, v2 ∈ γ such that Φ((v1)out) = Φ((v2)out), those are counted
redundantly in out(γ,Φ). Intuitively speaking, out(γ,Φ) represents a substructure
of G along the hyperpath γ focusing on its outgoing hyperarcs in view of the equiv-
alence relation ≡Φ . For a hyperpath γ of G, we define a set Φ(γ ) = {φ(γ ) | φ ∈ Φ}.

A weight function w of G is a function from Eg to R. A function f from PT(G)

to R is said to be locally definable if there exists a weight function f from Eg to R
such that for every γ ∈ PT(G),

f (γ ) =
∑

e∈Eg s.t. e∈γ

f (e)

holds. In this paper, we consider a reduced acyclic elementary hypergraph G =
(V ,Eg) associated with a set of weight functions. By W (G), we denote the set of
weight functions associated with G. A path mapping φ is said to be weight pre-
serving if for any w ∈ W (G) and any e ∈ Eg, w(e) = w(φ(e)) holds. A set Φ

of path mappings is said to be weight preserving if every φ ∈ Φ is weight pre-
serving. Φ is said to be structure preserving if for every γ ∈ PT(G) and φ ∈ Φ ,
out(γ,Φ) = out(φ(γ ),Φ) holds.

Now, we will define the key concept of locality by using the above definitions
and notations. Let P = (M, A, {#x | x ∈ M}, R,E, [ ]0) be an HRS and consider a
reduced acyclic elementary hypergraph G = (V ,Eg). Let ψ be a surjective function
from PT(G) to A. For X ∈ A and γ ∈ PT(G), we define rX = |ψ−1(X)| and rγ =
|ψ−1(ψ(γ ))|, where rX and rγ are called a rank of X and a rank of γ , respectively.
A modified free energy function Er from A to R is defined as:

Er(X) = E(X) + log rX.

This function Er is a free energy function with compensation logarithmic factor
related to the rank. This modified free energy function plays an important role for
establishing the theory for equilibrium computation.
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A triple S = (P,G,ψ) is called an enumeration scheme (ES) if Er ◦ ψ and
#x ◦ ψ are locally definable for every x ∈ M. Let ε be a weight function to lo-
cally define Er ◦ ψ . For every x ∈ M, let σx be a weight function to locally
define #x ◦ ψ . We define a set W (G) of weight functions associated with G as

W (G) = {ε} ∪ {σx | x ∈ M}. An enumeration scheme S = (P,G,ψ) is said to be
symmetric if there exists a path mapping group Φ such that:

(1) Φ is weight preserving,
(1) Φ is structure preserving, and
(3) Φ(γ ) = ψ−1(ψ(γ )) holds for every γ ∈ PT(G).

3.3 Reducing Number of Variables by Symmetric Enumeration
Scheme

The difficulty for solving FEMP is that the cardinality of A is very large in real
applications. In this subsection, we will explain a novel method (given in [10]) to
reduce the number of variables of FEMP in case that the following assumptions
hold:

(A1) An HRS P to be investigated has an enumeration scheme S = (P,G,ψ), and
(A2) the enumeration scheme in (A1) is symmetric.

Let P = (M, A, {#x | x ∈ M}, R,E, []0) be an HRS, G = (V ,Eg) be a reduced
acyclic elementary hypergraph associated with a set W (G) of weight functions

W (G) = {ε} ∪ {σx | x ∈ M}, where ε and σx are weight functions for locally defin-
ing Er ◦ ψ and #x ◦ ψ , respectively. For convenience, we often write Xγ instead of
ψ(γ ). We define PT(X) = ψ−1(X), i.e., PT(X) is the set of paths representing X.

Consider the following minimization problem:

Free Energy Minimization Problem (FEMP∗)
minimize:

FE∗
(
P, (we | e ∈ Eg)

) def≡
∑

e∈Eg

ε(e) · we +
∑

e∈Eg

we(logwe − 1)

−
∑

v∈V −V0−Vf

wv(logwv − 1)

subject to:
∑

e∈Eg

σx(e) · we = [x]0 (∀x ∈ M),

∑

e∈vin

we =
∑

e∈vout

we (∀v ∈ V − V0 − Vf ),

we = wφ(e) (∀e ∈ Eg, ∀φ ∈ Φ),

we ≥ 0 (∀e ∈ Eg),
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where wv’s are sums of variables we’s, i.e., wv = ∑
e∈vout

we. Note that the vari-
ables of FEMP∗ are we’s (e ∈ Eg). Therefore, the number of variables are reduced
from |A| in FEMP to |Eg| in FEMP∗. We often omit the second argument of
FE∗(P, (we | e ∈ Eg)), and simply write FE∗(P ) if the context allows.

As will be shown in Theorem 3, the objective function of FEMP∗ is convex.
Therefore, FEMP∗ has an optimal solution.

Theorem 2 [10] Assume (A1) and (A2). Let (w̃e | e ∈ Eg) be a minimizer of
FEMP∗. Then the distribution [ ]∗ defined by (5) and (6) based on w̃e’s is a mini-
mizer of FEMP.

[γ ]+ =
∏

e∈Eg s.t. e∈γ we
∏

v∈V −V0−Vf s.t. v∈γ wv

, (5)

[X]∗ =
∑

γ∈PT(X)

[γ ]+. (6)

Theorem 3 [10] The objective function of FEMP∗ is convex over Rm++, where m =
|Eg|.

Therefore, we can solve FEMP by solving FEMP∗ with a convex programming
method [12].

4 One-Dimensional Assembly of Rotatable Tiles

We consider a linear assembly system of tiles a1, . . . , ak , where we allow three dif-
ferent 180-degree rotations θx, θy, θz of them. The rotation θx (θy , θz, respectively)
is a 180-degree rotation on the x-axis (y-axis, z-axis, respectively) (see Fig. 2). So,
for a tile p, we have 4 different orientations: p (at its original direction), θx(p),
θy(p), and θz(p), each graphically corresponding to p , p, p , and p, respec-
tively. We assume here that for each tile p ∈ Σ = {a1, . . . , ak}, the above 4 ori-
entations are distinguishable from each other, i.e., each tile p itself does not have

Fig. 2 Rotation of a tile
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symmetric property. For convenience, we will prepare symbols, px , py , and pz for
representing θx(p), θy(p), and θz(p), respectively.

In this HRS, we assume that every vertical edge (i.e., an edge which is parallel
to z-axis) can be bonded to each other by a chemical reaction rule. Note that rota-
tions θx , θy , and θz keep those edges vertical. Then a linear assembly of rotations of
tiles can be represented by a string over Γ = {p,px,py,pz | p ∈ Σ}. We extend the
mappings θx , θy, and θz over the domain Γ in a natural manner to those over the
domain Γ ∗ so that θx and θz might be antimorphisms and θy be a morphism, i.e.,
the following conditions might hold: θx(uv) = θx(v)θx(u), θz(uv) = θz(v)θz(u) and
θy(uv) = θy(u)θy(v) for u,v ∈ Γ ∗. Then two strings w1 and w2 over Γ represent a
same linear assembly if and only if w2 = θq(w1) holds for some q ∈ {x, y, z}. Thus,
we introduce an equivalence relation ≡ over Γ ∗ so that w1 ≡ w2 holds if and only
if w2 = θq(w1) for some q ∈ {x, y, z}. Then a set An of linear assemblies of length
at most n can be defined as Γ ≤n/ ≡. The set M = Γ/ ≡ can be regarded as a set
of molecules. Free energy E(w) of each assembly w = a1 · · ·ak ∈ Γ + is defined as
E(w) = sym(w) + ∑k−1

i=1 eg(ai, ai+1) using free energy function eg for local sub-
structures, where sym(w) is an entropic term related to the symmetric property of
the assembly w and eg(x, y) is the free energy value corresponding to the bound-
ary substructure between the tiles x and y. Note that eg(p, q) = eg(θx(q), θx(p)) =
eg(θy(p), θy(q)) = eg(θz(q), θz(p)) holds for p,q ∈ Γ . Consider a corresponding
finite HRS P = (M, An, {#x | x ∈ M}, R,E, [ ]0) where R is a finite set of chem-
ical reactions among all possible combinations of assemblies in An, and #x is a
function from An to Z+ such that #x(X) represents the number of molecules x

contained in X.
We first give some basic symmetric properties of θx , θy, and θz.

Proposition 3 The following relations hold:

(1) θp ◦ θp is an identity function for any p ∈ {x, y, z},
(2) θp ◦ θq = θq ◦ θp for any p,q ∈ {x, y, z},
(3) θx ◦ θy = θz, θy ◦ θz = θx , θz ◦ θx = θy ,
(4) for any w ∈ Γ +, θy(w) �= w,
(5) for any w ∈ Γ + of odd length, w �= θp(w) holds for p ∈ {x, z},
(6) for any w ∈ Γ + and distinct p,q, r ∈ {x, y, z}, w = θp(w) implies θq(w) =

θr(w).

We say that a tile represented by w ∈ Γ + is of symmetric degree d if

d = ∣
∣{q ∈ {x, y, z} | θq(w) = w}∣∣ + 1.

Then we have the following proposition.

Proposition 4 For any X ∈ Γ +/ ≡, either |X| = 2 or |X| = 4 holds. Furthermore,
the symmetric degree of X is given by 4

|X| .

Proof We first show that |X| = 2 or |X| = 4 holds.
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Let X ∈ Γ +/ ≡ and w ∈ X. Consider any w′ ∈ X with w′ �= w. Then there
exists p ∈ {x, y, z} such that θp(w) = w′. Therefore, there exist at most three such
w’s. Thus, we have |X| ≤ 4 for any X ∈ Γ +/ ≡.

Assume that |X| = 1 holds for some X ∈ Γ +/ ≡ and let w ∈ X. Then we have
w = θx(w) = θy(w) = θz(w). However, by Proposition 3 (4), w �= θy(w) holds,
a contradiction.

Assume that |X| = 3 holds for some X ∈ Γ +/ ≡. Then we have w = θp(w) for
some w ∈ X and p ∈ {x, y, z}. By Proposition 3 (6), we have θq(w) = θr(w) for
distinct q, r ∈ {x, y, z} with p �= q and p �= r . Therefore, |X| ≤ 2 holds, a contra-
diction.

Finally, we will show that the symmetric degree of an assembly X is given by 4
|X| .

By the discussion above, we need to consider the cases of |X| = 2 and |X| = 4.
Let w ∈ Γ + such that w represents an assembly X and recall that X is mathe-

matically defined by X = {w,θx(w), θy(w), θz(w)}.
Consider the case of |X| = 4. In this case, there exists no p ∈ {x, y, z} such that

θp(w) = w for some w ∈ X, since otherwise |X| < 4 holds. Therefore, by definition,
the symmetric degree of X is 1.

Consider the case of |X| = 2. In this case, there exist distinct p,q ∈ {x, y, z}
such that θp(w) = θq(w). Let r ∈ {x, y, z} − {p,q}. By θp(w) = θq(w) and Propo-
sition 3 (1)(3), w = θp ◦ θp(w) = θp ◦ θq(w) = θr(w) holds. By |X| = 2, we can
conclude that w = θr(w) �= θp(w) = θq(w) holds. Therefore, the symmetric degree
of X is 2. �

Consider w1 = abyabx . Then, θx(w1) = baxbzax , θy(w1) = aybaybz, and
θz(w1) = byazbxaz, where |{w1, θx(w1), θy(w1), θz(w1)}| = 4 holds. The symmet-
ric degree of this assembly is 1.

For w2 = abxbax , we have θx(w2) = abxbax , θy(w2) = aybzbyaz, and θz(w2) =
aybzbyaz, where w2 = θx(w2), θy(w2) = θz(w2) and |{w1, θx(w1), θy(w1), θz(w1)}|
= 2 hold. The symmetric degree of this assembly is 2.

These propositions are very important for constructing a symmetric enumeration
scheme of the HRS P .

5 Applying SEM to One-Dimensional Tile Assembly

We will apply Symmetric Enumeration Method (SEM) to the tile assembly system
introduced in Sect. 4. In order to show the effectiveness of the SEM, we will give
three examples of symmetric enumeration schemes for the HRS P in Sect. 4.

The enumeration schemes given in Sects. 5.1 and 5.2 are based on the following
assumption (T) concluded by stochastic physics:

(T) the entropic term sym(w) for an assembly X represented by w ∈ Γ + is given
by + log(d) where d is the symmetric degree of X.

The enumeration scheme given in Sect. 5.3 does not depend on the assumption (T),
but only assumes that:

(T′) for any w1,w2 ∈ Γ +, if the symmetric degree of assemblies represented by w1
and w2 are equivalent to each other, then sym(w1) = sym(w2) holds.
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In the sequel, we define k = |Σ |, and by n we denote the maximum length of as-
semblies.

The enumeration scheme given in Sect. 5.1 has O(k2n2) hyperarcs in its hyper-
graph definition. On the other hand, the number of hyperarcs of the hypergraphs in
Sects. 5.2 and 5.3 is O(k3n).

5.1 Symmetric ES Under Assumption (T)

We will construct an enumeration scheme S = (P,G1,ψ1) using a graph G1 =
(V1,Eg1) defined below:

V1 = {I,F } ∪ {V (l, i,p) | 1 ≤ l ≤ n,1 ≤ i ≤ l, p ∈ Γ },
Eg1 = {e(l, i,p1,p2) | 1 ≤ l ≤ n,1 ≤ i ≤ n − 1,p1,p2 ∈ Γ } ∪ {g(p) | p ∈ Σ}.

The number of hyperarcs in G1 is O(k2n2). See Fig. 3 for the main structure of G1.
First, we will explain the definition of G1 in a intuitive manner. The hypergraph

G1 is decomposed into n disjoint graph components Cl (l = 1, . . . , n) such that each
Cl enumerates assemblies of length l. C1 is the most simple component consisting
of vertex set {I,F } and hyperarc set {g(p) | p ∈ Γ }. Initial and final vertices of
g(p) (p ∈ Γ ) are I and F , respectively. We generate a tile p by a hyperarc of the
form g(p).

The component Cl (l = 2, . . . , n) consists of the set of vertices of the form
V (l, i,p) ∈ V1 and the set of hyperarcs of the form e(l, i,p1,p2) ∈ Eg1. Starting
from an initial vertex of the form V (l,1,p1), we will move to a sequence of vertices
V (l,2,p2), V (l,3,p3), . . . , V (l, l,pl−1) reaching to a final vertex V (l, l,pl):

V (l,1,p1)
e(l,1,p1,p2)→ V (l,2,p2)

e(l,2,p2,p3)→ ·· · e(l,l−1,pl−1,pl)→ V (l, l,pl),

which generates an assembly p1 · · ·pl from left to right. Note that the number of
hyperarcs of the above hyperpath is l − 1, but the number of tiles to be generated
is l. Thus, we will generate two tiles at hyperarcs located at the middle of the path
as follows. Let m = � l

2�.
In case that l is even, the middle hyperarc e(l,m,pm,pm+1) generates two tiles

pm and pm+1. The other hyperarcs of the form e(l, i,p1,p2) generate a tile p1 if
i < m and a tile p2 if i > m.

Fig. 3 Hypergraph component Cl of G1 (l ≥ 2)
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In case that l is odd, there are two middle hyperarcs e(l,m,pm,pm+1) and
e(l,m + 1,pm+1,pm+2). By these hyperarcs together, we generate three tiles pm,
pm+1 and pm+2. This can be done by assigning pm and a left half of pm+1 to
e(l,m,pm,pm+1) and by assigning pm+2 and a right half of pm+1 to e(l,m + 1,

pm+1,pm+2). The other hyperarcs of the form e(l, i,p1,p2) generate a tile p1 if
i < m and a tile p2 if i > m + 1.

The formal definition of the tails and heads of all hyperarcs are given below:

t
(
e(l, i,p1,p2)

) = p1 (1 < l ≤ n, 1 ≤ i < l, p1, p2 ∈ Γ ),

H
(
e(l, i,p1,p2)

) = {p2} (1 < l ≤ n, 1 ≤ i < l, p1, p2 ∈ Γ ),

t
(
g(p)

) = I (p ∈ Σ),

H
(
g(p)

) = F (p ∈ Σ).

The definition of the weight functions σ1,p for locally defining #p ◦ ψ1 is given
as follows:

σ1,p

(
g(q)

) =
{

1 if p = q,
0 otherwise,

(p ∈ Σ),

σ1,p

(
e(l, i,p1,p2)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if l is even, i = � l
2� and p = p1 = p2,

1 if l is even, i = � l
2� and (p = p1 xor p = p2),

1 if l is even, i < � l
2� and p = p1,

0 if l is even, i < � l
2� and p �= p1,

1 if l is even, i > � l
2� and p = p2,

0 if l is even, i > � l
2� and p �= p2,

σ1,p

(
e(l, i,p1,p2)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.5 if l is odd, i = � l
2� and p = p1 = p2,

1 if l is odd, i = � l
2�, p = p1 and p �= p2,

0.5 if l is odd, i = � l
2�, p �= p1 and p = p2,

0 if l is odd, i = � l
2�, p �= p1 and p �= p2,

1.5 if l is odd, i = � l
2� + 1 and p = p1 = p2,

1 if l is odd, i = � l
2� + 1, p = p2 and p �= p1,

0.5 if l is odd, i = � l
2� + 1, p �= p2 and p = p1,

0 if l is odd, i = � l
2� + 1, p �= p2 and p �= p1,

1 if l is odd, i < � l
2�, p = p1,

0 if l is odd, i < � l
2�, p �= p1,

1 if l is odd, i > � l
2� + 1, p = p2,

0 if l is odd, i > � l
2� + 1, p �= p2,

(1 ≤ i ≤ l, p1,p2 ∈ Γ ).
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In order to introduce a weight function ε1 for locally defining the modified free
energy Er , we will first investigate rank terms log rX for various assemblies X.
Consider the following hyperpaths:

α1 = V (8,1, a1x) → V (8,2, a2) → V (8,3, a3z) → V (8,4, a2) → V (8,5, a2x)

→ V (8,6, a3y) → V (8,7, a2x) → V (8,8, a1),

α2 = V (8,1, a1z) → V (8,2, a2y) → V (8,3, a3x) → V (8,4, a2y) → V (8,5, a2z)

→ V (8,6, a3) → V (8,7, a2z) → V (8,8, a1y),

α3 = V (8,1, a1x) → V (8,2, a3) → V (8,3, a2y) → V (8,4, a1) → V (8,5, a1z)

→ V (8,6, a2x) → V (8,7, a3z) → V (8,8, a1y),

α4 = V (8,1, a1z) → V (8,2, a3y) → V (8,3, a2) → V (8,4, a1y) → V (8,5, a1x)

→ V (8,6, a2z) → V (8,7, a3x) → V (8,8, a1),

α5 = V (8,1, a2x) → V (8,2, a3x) → V (8,3, a2) → V (8,4, a1z) → V (8,5, a2)

→ V (8,6, a3x) → V (8,7, a3) → V (8,8, a2),

α6 = V (8,1, a2x) → V (8,2, a3x) → V (8,3, a3) → V (8,4, a2x) → V (8,5, a1y)

→ V (8,6, a2x) → V (8,7, a3) → V (8,8, a2),

α7 = V (8,1, a2z) → V (8,2, a3z) → V (8,3, a2y) → V (8,4, a1x) → V (8,5, a2y)

→ V (8,6, a3z) → V (8,7, a3y) → V (8,8, a2y),

α8 = V (8,1, a2z) → V (8,2, a3z) → V (8,3, a3y) → V (8,4, a2z) → V (8,5, a1)

→ V (8,6, a2z) → V (8,7, a3y) → V (8,8, a2y).

The corresponding assemblies are given by

ψ1(α1) → u1 = a1xa2a3za2a2xa3ya2xa1,

ψ1(α2) → u2 = a1za2ya3xa2ya2za3a2za1y,

ψ1(α3) → u3 = a1xa3a2ya1a1za2xa3za1y,

ψ1(α4) → u4 = a1za3ya2a1ya1xa2za3xa1,

ψ1(α5) → u5 = a2xa3xa2a1za2a3xa3a2,

ψ1(α6) → u6 = a2xa3xa3a2xa1ya2xa3a2,

ψ1(α7) → u7 = a2za3za2ya1xa2ya3za3ya2y,

ψ1(α8) → u8 = a2za3za3ya2za1a2za3ya2y.

Note that θy(u1) = u2, θy(u3) = u4, θx(u5) = u6, θy(u5) = u7, and θz(u5) = u8
hold. Therefore, we have

rα1 = 2, rα2 = 2, rα3 = 2, rα4 = 2,
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rψ1(α1) = 2, rψ1(α2) = 2, rψ1(α3) = 2, rψ1(α4) = 2,

rα5 = 4, rα6 = 4, rα7 = 4, rα8 = 4,

rψ1(α5) = 4, rψ1(α6) = 4, rψ1(α7) = 4, rψ1(α8) = 4.

Then, the modified free energy function Er is given as follows for ψ1(α1),
ψ1(α3), and ψ1(α5):

Er

(
ψ1(α1)

) = log 2 + log 2 + eg(a1x, a2) + eg(a2, a3z) + eg(a3z, a2) + eg(a2, a2x)

+ eg(a2x, a3y) + eg(a3y, a2x) + eg(a2x, a1)

= Er

(
ψ1(α2)

)
,

Er

(
ψ1(α3)

) = log 2 + log 2 + eg(a1x, a3) + eg(a3, a2y) + eg(a2y, a1) + eg(a1, a1z)

+ eg(a1z, a2x) + eg(a2x, a3z) + eg(a3x, a1y)

= Er

(
ψ1(α4)

)
,

Er

(
ψ1(α5)

) = log 1 + log 4 + eg(a2x, a3x) + eg(a3x, a2) + eg(a2, a1z)

+ eg(a1z, a2) + eg(a2, a3x) + eg(a3x, a3) + eg(a3, a2)

= Er

(
ψ1(α6)

) = Er

(
ψ1(α7)

) = Er

(
ψ1(α8)

)
,

where the first logarithmic term of each modified free energy originates from the
entropic factor related to the rotational symmetry of the assembly, and the second
logarithmic term is the logarithmic factor related to the rank of each assembly. In this
way, the modified free energy Er(X) of a linear assembly X contains the constant
logarithmic term log 4 whether X is symmetric or not. One of the way to locally
define the function Er is to assign to each hyperarc h the free energy of local sub-
structures generated by h, and furthermore to add the constant term log 4

2 to each
initial and final hyperarc. Formal definition of the weight function ε1 for locally
defining Er is given by

ε1
(
e(l,1,p1,p2)

) = log 4

2
+ eg(p1,p2) (1 ≤ l ≤ n, p1,p2 ∈ Γ ),

ε1
(
e(l, i,p1,p2)

) = eg(p1,p2) (1 ≤ l ≤ n, 1 < i < l − 1, p1,p2 ∈ Γ ),

ε1
(
e(l, l − 1,p1,p2)

) = log 4

2
+ eg(p1,p2) (1 ≤ l ≤ n, p1,p2 ∈ Γ ),

ε1
(
g(p)

) = 0 (p ∈ Σ).

Next, we discuss on the symmetric properties of G1. Let us define the following
path mapping φp for each p ∈ {x, y, z}:

φp(I) = F,

φp(F ) = I,
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φp

(
V (l, i, q)

) =
{

V (l, l − i + 1, θp(q)), if p ∈ {x, z},
V (l, i, θp(q)), otherwise,

(1 ≤ l ≤ n, 1 ≤ i ≤ l, q ∈ Γ ),

φp

(
e(l, i,p1,p2)

) =
{

e(l, l − i, θp(p2), θp(p1)), if p ∈ {x, z},
e(l, i, θp(p1), θp(p2)), otherwise,

(1 ≤ l ≤ n, 1 ≤ i ≤ l, p1,p2 ∈ Γ ),

φp

(
g(p)

) = g(p) (p ∈ Σ).

For instance, we have φy(α1) = α2, φy(α3) = α4, φx(α5) = α6, φy(α5) = α7, and
φz(α5) = α8.

It is straightforward to see that φp is weight preserving since eg(p, q) =
eg(θx(q), θx(p)) = eg(θy(p), θy(q)) = eg(θz(q), θz(p)) holds for p,q ∈ Γ , and
since σ1,p and ε1 are carefully defined so that the weight values of them are as-
signed symmetrically around the middle point of the graph component Cl .

Let φ0 be the identity mapping from V1 ∪ Eg1 to V1 ∪ Eg1. Now, we should
check that the set Φ1 = {φ0, φx,φy,φz} is a path mapping group and is structure
preserving. Since each φp corresponds to θp for p ∈ {x, y, z}, it is clear that Φ1 is a
path mapping group.

Consider an equivalence relation over Eg1 introduced by Φ1, and for each hy-
perarc h ∈ Eg1, by 〈h〉 we denote its equivalence class containing h. For instance,
we have

out(Φ1, α1) = {{〈
e(8,2, a2,p)

〉 | p ∈ Γ
}
,
{〈

e(8,3, a3z,p)
〉 | p ∈ Γ

}
,

{〈
e(8,4, a2,p)

〉 | p ∈ Γ
}
,
{〈

e(8,5, a2x,p)
〉 | p ∈ Γ

}
,

{〈
e(8,6, a3y,p)

〉 | p ∈ Γ
}
,
{〈

e(8,7, a2x,p)
〉 | p ∈ Γ

}}

= out(Φ1, α2),

out(Φ1, α3) = {{〈
e(8,2, a3,p)

〉 | p ∈ Γ
}
,
{〈

e(8,3, a2y,p)
〉 | p ∈ Γ

}
,

{〈
e(8,4, a1,p)

〉 | p ∈ Γ
}
,
{〈

e(8,5, a1z,p)
〉 | p ∈ Γ

}
,

{〈
e(8,6, a2x,p)

〉 | p ∈ Γ
}
,
{〈

e(8,7, a3z,p)
〉 | p ∈ Γ

}}

= out(Φ1, α4),

out(Φ1, α5) = {{〈
e(8,2, a3x,p)

〉 | p ∈ Γ
}
,
{〈

e(8,3, a2,p)
〉 | p ∈ Γ

}
,

{〈
e(8,4, a1z,p)

〉 | p ∈ Γ
}
,
{〈

e(8,5, a2,p)
〉 | p ∈ Γ

}
,

{〈
e(8,6, a3x,p)

〉 | p ∈ Γ
}
,
{〈

e(8,7, a3,p)
〉 | p ∈ Γ

}}

= out(Φ1, α6).

It is straightforward to see that out(Φ1, α5) = out(Φ1, α7) = out(Φ1, α8) holds. In
this way, it is easy to see that Φ1 is structure preserving. Furthermore, it holds that
ψ1(φp(α)) = ψ1(α) holds for every α ∈ PT(G1) and p ∈ {x, y, z}, i.e., φp maps
a given hyperpath α to its rotated counterpart representing a same linear assembly.
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Thus, we have Φ1(α) = ψ−1
1 (ψ1(α)) holds for every α ∈ PT(G1). In summary, the

enumeration scheme S = (P,G1,ψ1) is symmetric.

Theorem 4 S1 = (P,G1,ψ1) is a symmetric enumeration scheme.

In order to compute the equilibrium of a linear assembly system P , we need
to solve a convex programming problem with a set of variables of size |Eg1| =
O(k2n2), where k is the number of tiles in Σ and n is the maximum length of
assemblies.

5.2 Another Symmetric ES Under Assumption (T)

We will construct an enumeration scheme S = (P,G2,ψ2) using a graph G2 =
(V2,Eg2) defined below:

V2 = {I,F } ∪ {
L(i,p),R(i,p) | 1 ≤ i ≤ ⌊

n
2

⌋
,p ∈ Γ

}
,

Eg2 = {
e(i,p1,p2), f (i,p1,p2,p3) | 1 ≤ i ≤ ⌊

n
2

⌋
,p1,p2,p3 ∈ Γ

}

∪ {
l(i,p1,p2), r(i,p1,p2) | 1 ≤ i ≤ ⌊

n
2

⌋ − 1, p1,p2 ∈ Γ
}

∪ {
g(p) | p ∈ Σ

}
.

The number of hyperarcs in G2 is O(k3n).
Figure 4 shows a schematic view of the graph G2. Starting from the initial ver-

tex I , we can apply a hyperarc either of the form e(i,p1,p2), f (i,p1,p2,p3), or

Fig. 4 Schematic view of enumeration graph for linear assemblies
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g(p) for some p1,p2,p3 ∈ Γ , p ∈ Σ and 1 ≤ i ≤ �n
2 �. Applying g(p) finishes

the hyperpath immediately at the final vertex F , by which we mean the genera-
tion of a single tile p. Application of e(i,p1,p2) means the generation of two tiles
p1p2 at the middle of a linear assembly of even length to be generated. Applica-
tion of f (i,p1,p2,p3) means the generation of three tiles p1p3p2 at the middle
of a linear assembly of odd length to be generated. After applying e(i,p1,p2) or
f (i,p1,p2,p3), the hyperpath is split to L(i,p1) and R(i,p2). A hyperarc of the
form l(i,p1,p2) (r(i,p1,p2)) outgoing from L(i,p1) (R(i,p1)) generates a new
tile p2 to the left (right) of the tile p1. In this way, split paths generate tiles of the
same length from the middle to the both ends, thus a hyperpath starting from the hy-
perarc of the form e(i,p1,p2) (f (i,p1,p2,p3)) generates a linear assembly of even
length (odd length). The formal definition of the tails and heads of all hyperarcs are
given below:

t
(
e(i,p1,p2)

) = I
(
1 ≤ i ≤ ⌊

n
2

⌋
,p1,p2 ∈ Γ

)
,

H
(
e(i,p1,p2)

) = {
L(i,p1),R(i,p2)

} (
1 ≤ i ≤ ⌊

n
2

⌋
, p1,p2 ∈ Γ

)
,

t
(
f (i,p1,p2,p3)

) = I
(
1 ≤ i ≤ ⌊

n
2

⌋
, p1,p2,p3 ∈ Γ

)
,

H
(
f (i,p1,p2,p3)

) = {
L(i,p1),R(i,p2)

} (
1 ≤ i ≤ ⌊

n
2

⌋
, p1,p2,p3 ∈ Γ

)
,

t
(
l(i,p1,p2)

) = L(i,p1)
(
1 ≤ i ≤ ⌊

n
2

⌋ − 1, p1,p2 ∈ Γ
)
,

H
(
l(i,p1,p2)

) = {
L(i + 1,p2)

} (
1 ≤ i ≤ ⌊

n
2

⌋ − 1, p1,p2 ∈ Γ
)
,

t
(
r(i,p1,p2)

) = R(i,p1)
(
1 ≤ i ≤ ⌊

n
2

⌋ − 1,p1,p2 ∈ Γ
)
,

H
(
r(i,p1,p2)

) = {
R(i + 1,p2)

} (
1 ≤ i ≤ ⌊

n
2

⌋ − 1, p1,p2 ∈ Γ
)
,

t
(
g(p)

) = I (p ∈ Σ),

H
(
g(p)

) = F (p ∈ Σ).

Some examples of hyperpaths of G2 in case of n = 6 (n: maximum length of
assemblies) are shown in Figs. 5 and 6. The hyperpaths γ1, γ2, γ3, and γ4 gen-
erate linear assemblies w1 = a3za2xa1a1xa2a3y , w2 = a3xa2za1ya1za2ya3, w3 =

Fig. 5 Hyperpaths of G2
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Fig. 6 Hyperpaths of G2

a3xa2ya1a1za2xa3y , and w4 = a3za2a1ya1xa2za3, respectively. Note that θx(w1) =
w1, θx(w2) = w2 and θy(w1) = w2 hold, i.e., w1 and w2 represent a same lin-
ear assembly and are rotationally symmetric around x-axis, and that θz(w3) = w3,
θz(w4) = w4, and θy(w3) = w4 hold, i.e., w3 and w4 represent a same linear as-
sembly and are rotationally symmetric around z-axis. The hyperpaths γ5, γ6, γ7,
and γ8 generate linear assemblies w5 = a3za2xa1a1xa2za1, w6 = a1xa2ya1a1xa2a3y ,
w7 = a3xa2za1ya1za2xa1y , and w8 = a1za2a1ya1za2ya3, respectively. In this case,
we have w6 = θx(w5), w7 = θy(w5), and w8 = θz(w5). Therefore, w5, w6, w7, and
w8 represent a same tile assembly and its symmetric degree is 1. Therefore, we have

rγ1 = 2, rγ2 = 2, rγ3 = 2, rγ4 = 2,

rψ2(γ1) = 2, rψ2(γ2) = 2, rψ2(γ3) = 2, rψ2(γ4) = 2,

rγ5 = 4, rγ6 = 4, rγ7 = 4, rγ8 = 4,

rψ2(γ5) = 4, rψ2(γ6) = 4, rψ2(γ7) = 4, rψ2(γ8) = 4.

Then the modified free energy function Er gives the following values for ψ2(γ1),
ψ2(γ3), and ψ2(γ5):

Er

(
ψ2(γ1)

) = log 2 + log 2 + eg(a3z, a2x) + eg(a2x, a1)

+ eg(a1, a1x) + eg(a1x, a2) + eg(a2, a3y)

= Er

(
ψ2(γ2)

)
,

Er

(
ψ2(γ3)

) = log 2 + log 2 + eg(a3x, a2y) + eg(a2y, a1)

+ eg(a1, a1z) + eg(a1z, a2x) + eg(a2x, a3y)

= Er

(
ψ2(γ4)

)
,

Er

(
ψ2(γ5)

) = log 1 + log 4 + eg(a3z, a2x) + eg(a2x, a1)

+ eg(a1, a1x) + eg(a1x, a2z) + eg(a2z, a1)

= Er

(
ψ2(γ6)

) = Er

(
ψ2(γ7)

) = Er

(
ψ2(γ8)

)
,
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where the first logarithmic term of each modified free energy originates from the
entropic term related to the rotational symmetry of the assembly, and the second
logarithmic term is the logarithmic factor related to the rank of each assembly. In
this way, the modified free energy Er(X) of a linear assembly X contains the con-
stant logarithmic term log 4 whether X is symmetric or not. One of the way to
locally define the function Er is to assign to each hyperarc h the free energy of local
substructures generated by h, and furthermore to add the constant term log 4 to each
hyperarc outgoing from I . Formal definition of the weight function ε2 for locally
defining Er is given by

ε2
(
e(i,p1,p2)

) = log 4 + eg(p1,p2)
(
1 ≤ i ≤ ⌊

n
2

⌋
, p1,p2 ∈ Γ

)
,

ε2
(
f (i,p1,p2,p3)

) = log 4 + eg(p1,p3) + eg(p3,p2)
(
1 ≤ i ≤ ⌊

n
2

⌋
, p1,p2,p3 ∈ Γ

)
,

ε2
(
l(i,p1,p2)

) = eg(p2,p1)
(
1 ≤ i ≤ ⌊

n
2

⌋ − 1, p1,p2 ∈ Γ
)
,

ε2
(
r(i,p1,p2)

) = eg(p1,p2)
(
1 ≤ i ≤ ⌊

n
2

⌋ − 1, p1,p2 ∈ Γ
)
,

ε2
(
g(p)

) = 0 (p ∈ Σ).

The definition of the weight functions σ2,x for locally defining #x ◦ ψ2 are omit-
ted, because they are clear from the definition of G2 and the explanation of the
enumerating process by G2. (For each x ∈ M and hyperarc h, we just need to count
the number of tiles x appearing in the local substructures generated by h.)

Finally, we will discuss the symmetric property of the enumeration scheme S2 =
(P,G2,ψ2). For each p ∈ {x, y, z}, consider the following injective and surjective
mapping φp from V2 ∪ Eg2 to V2 ∪ Eg2:

φp(I) = I,

φp(F ) = F,

φp

(
L(i, q)

) =
{

R(i, θp(q)), if p ∈ {x, z},
L(i, θp(q)), otherwise

(
1 ≤ i ≤ ⌊

n
2

⌋
, q ∈ Γ

)
,

φp

(
R(i, q)

) =
{

L(i, θp(q)), if p ∈ {x, z},
R(i, θp(q)), otherwise

(
1 ≤ i ≤ ⌊

n
2

⌋
, q ∈ Γ

)
,

φp

(
e(i,p1,p2)

) =
{

e(i, θp(p2), θp(p1)), if p ∈ {x, z},
e(i, θp(p1), θp(p2)), otherwise

(
1 ≤ i ≤ ⌊

n
2

⌋
, p1,p2 ∈ Γ

)
,

φp

(
f (i,p1,p2,p3)

) =
{

f (i, θp(p2), θp(p1), θp(p3)), if p ∈ {x, z},
f (i, θp(p1), θp(p2), θp(p3)), otherwise

(
1 ≤ i ≤ ⌊

n
2

⌋
, p1,p2,p3 ∈ Γ

)
,

φp

(
l(i,p1,p2)

) =
{

r(i, θp(p1), θp(p2)), if p ∈ {x, z},
l(i, θp(p1), θp(p2)), otherwise

(
1 ≤ i ≤ ⌊

n
2

⌋ − 1, p1,p2 ∈ Γ
)
,
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φp

(
r(i,p1,p2)

) =
{

l(i, θp(p1), θp(p2)), if p ∈ {x, z},
r(i, θp(p1), θp(p2)), otherwise

(
1 ≤ i ≤ ⌊

n
2

⌋ − 1,p1,p2 ∈ Γ
)
,

φp

(
g(p)

) = g(p) (p ∈ Σ).

It is straightforward to see that for each p ∈ {x, y, z}, φp is a path mapping. Let φ0 be
an identity mapping from V2 ∪Eg2 to V2 ∪Eg2. Then the set Φ2 = {φ0, φx,φy,φz}
is a path mapping group. Since for each p ∈ {x, y, z}, φp is weight preserving, Φ2 is
weight preserving. It is clear that ψ2(φp(γ )) = ψ2(γ ) holds for every γ ∈ PT(G2)

and p ∈ {x, y, z}, i.e., φp maps a given hyperpath γ to its rotated counterpart rep-
resenting a same linear assembly. Thus, we have Φ2(γ ) = ψ−1

2 (ψ2(γ )) holds for
every γ ∈ PT(G2).

Consider an equivalence relation over Eg2 introduced by Φ2, and for each hy-
perarc h ∈ Eg2, by 〈h〉, we denote its equivalence class containing h. For instance,
we have

out(Φ2, γ1) = {{〈
l(1, a1,p)

〉 | p ∈ Γ
}
,
{〈

l(2, a2x,p)
〉 | p ∈ Γ

}
,

{〈
r(1, a1x,p)

〉 | p ∈ Γ
}
,
{〈

r(2, a2,p)
〉 | p ∈ Γ

}}

= {{〈
l(1, a1y,py)

〉 | p ∈ Γ
}
,
{〈

l(2, a2z,py)
〉 | p ∈ Γ

}
,

{〈
r(1, a1z,py)

〉 | p ∈ Γ
}
,
{〈

r(2, a2y,py)
〉 | p ∈ Γ

}}

= out(Φ2, γ2),

out(Φ2, γ3) = {{〈
l(1, a1,p)

〉 | p ∈ Γ
}
,
{〈

l(2, a2y,p)
〉 | p ∈ Γ

}
,

{〈
r(1, a1z,p)

〉 | p ∈ Γ
}
,
{〈

r(2, a2x,p)
〉 | p ∈ Γ

}}

= {{〈
l(1, a1y,py)

〉 | p ∈ Γ
}
,
{〈

l(2, a2,py)
〉 | p ∈ Γ

}
,

{〈
r(1, a1x,py)

〉 | p ∈ Γ
}
,
{〈

r(2, a2z,py)
〉 | p ∈ Γ

}}

= out(Φ2, γ4),

out(Φ2, γ5) = {{〈
l(1, a1,p)

〉 | p ∈ Γ
}
,
{〈

l(2, a2x,p)
〉 | p ∈ Γ

}
,

{〈
r(1, a1x,p)

〉 | p ∈ Γ
}
,
{〈

r(2, a2z,p)
〉 | p ∈ Γ

}}

= {{〈
r(1, a1x,px)

〉 | p ∈ Γ
}
,
{〈

r(2, a2,px)
〉 | p ∈ Γ

}
,

{〈
l(1, a1,px)

〉 | p ∈ Γ
}
,
{〈

l(2, a2y,px)
〉 | p ∈ Γ

}}

= out(Φ2, γ6).

Furthermore, it is straightforward to see that out(Φ2, γ5) = out(Φ2, γ7) =
out(Φ2, γ8) holds. In this way, it is easy to see that Φ2 is structure preserving,
since φ0 and φp for each p ∈ {x, y, z} are graph isomorphisms of G2. In summary,
the enumeration scheme S = (P,G2,ψ2) is symmetric.
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Theorem 5 S2 = (P,G2,ψ2) is a symmetric enumeration scheme.

In order to compute the equilibrium of a linear assembly system P , we need
to solve a convex programming problem with a set of variables of size |Eg2| =
O(k3n), where k is the number of tiles in Σ and n is the maximum length of as-
semblies.

5.3 Symmetric ES Under Assumption (T′)

In the previous subsections, we give symmetric enumeration schemes under the
assumption (T). In this subsection, we will give a symmetric enumeration scheme
without the help of the assumption (T). Because of space constraint, we will only
give a rough sketch of how to construct a symmetric enumeration scheme S3 =
(P,G3,ψ3) under the assumption (T′).

The key idea to implement such an enumeration scheme is described below. For
i = 1,2, let Ai be the set of assemblies of symmetric degree i. Then by Proposi-
tion 4, for each i = 1,2, the assemblies in Ai should have the same rank. Therefore,
for each i = 1,2, the modified free energy Er(X) contains the same values for all
X ∈ Ai with respect to the entropic term related to symmetric degree and the loga-
rithmic term related to rank. Thus, it might be effective to enumerate assemblies of
different symmetric degrees separately by different graph components M1 and M2
which are disjoint from each other.

Formally, A1 and A2 are given by A1 = {X ∈ Γ +/ ≡| |X| = 4} and A2 = {X ∈
Γ +/ ≡| |X| = 2}. We will enumerate A1 and A2 separately by disjoint graph com-
ponents.

Since the construction of enumeration graph for A1 is more complicated than that
for A2, we will first describe how to generate representations of assemblies in A2.
A graph component M2 for enumerating A2 is schematically illustrated in Fig. 7.
The enumeration process by M2 could be intuitively seen as a derivation process of
generating strings in

⋃
X∈A2

X using a context free grammar. For instance, consider
the following hyperpath:

I → Sx(1,p1) → Sx(2,p2) → ·· · → Sx(m,pm),

where m = �n
2 �. This hyperpath generates a tile assembly X by producing a sym-

metric pair of tiles (pi, θx(pi)) step by step from the middle to the both ends of X.
More precisely, when moving from I to Sx(1,p1), we generate two tiles p1θx(p1)

at the middle. We next move from Sx(1,p1) to Sx(2,p2) to produce p2 and θx(p2)

on both sides resulting in a partial assembly p2p1θx(p1)θx(p2). Continuing this
process, we will generate a sequence of tiles pm · · ·p1θx(p1) · · · θx(pm) whose sym-
metric degree is 2. Since we can move from the initial vertex I to any vertex of the
form Sx(i,p) (i = 1, . . . ,m, p ∈ Γ ), we can generate any assemblies of length at
most n and symmetric degree 2.

The part of M2 consisting of the vertices Sz(i,p) (i = 1, . . . ,m, p ∈ Γ ) generates
a tile assembly symmetric around z-axis in a similar manner.
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Fig. 7 Schematic view of hypergraph component M2

The construction of graph component M1 for generating A1 consists of two sub-
components M ′

1 and M ′′
1 . The component M ′

1 generates assemblies in A1 of length
even, and M ′′

1 generates those in A1 of length odd. Note that any odd length as-
sembly is in A1, and thus the construction of M ′′

1 is almost similar to the part of
G2 starting from the initial hyperarcs of the form f (i,p1,p2,p3). So, we omit the
definition of M ′′

1 and describe that of M ′
1 briefly. A schematic view of M ′

1 is il-
lustrated in Fig. 8. We will now describe a generation process of an assembly X

of symmetric degree 1. The process starts generating tiles from the middle to the
both ends of X. The subblock of M ′

1 consisting of vertices of the form Ar(i, q)

(r ∈ {x, z}, i = 1, . . . ,m, q ∈ Γ ) generates the r-axis symmetric part located at
the middle of X. A hyperarc (indicated by dashed arrow) from a tail Ar(i,p1) to
heads B(i + 1,p2) and C(i + 1,p3) (r ∈ {x, z}, i = 1, . . . ,m, p1,p2,p3 ∈ Γ ) gen-
erates a pair of tiles which is asymmetric around r-axis. Finally, from the vertices
B(i + 1,p2) and C(i + 1,p3), we will generate the rest of left and right segments
located at the both ends of X. For instance, consider a hyperpath in Fig. 9. It gener-
ates an assembly a1a2xa3ya1a1za3xa2a1z. The weight definitions of the hypergraph
G3 is omitted since it might be straightforward to define them from the explana-
tion above. As is explained already, in each graph component of M1 and M2, the
entropic term related to symmetric degree and the logarithmic term related to the
rank are constant values. Thus, such an constant value can be assigned to each ini-
tial hyperarc. In this way, we can construct an enumeration scheme satisfying the
symmetric properties.

Theorem 6 S3 = (P,G3,ψ3) is a symmetric enumeration scheme.

If we apply the scheme S3 for computing equilibrium of P , we need to solve a
convex programming problem with a set of variables of size |Egl | = O(k3n), where
k is the number of tiles in Σ and n is the maximum length of assemblies.
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Fig. 8 Schematic view of hypergraph component M1

Fig. 9 A hyperpath in M1

6 Concluding Remarks

We reviewed the result of [8–10] and applied the symmetric enumeration method to
an assembly system of tiles which are rotatable around x, y, z-axes. We gave three
examples of enumeration schemes for the assembly system. Two of them assumed
that

(T) the entropic term sym(w) for an assembly X represented by w ∈ Γ + is given
by + log(d) where d is the symmetric degree of X.

This is a natural request from the theory of stochastic physics. The other one, S3,
assumed that
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(T′) for any w1,w2 ∈ Γ +, if the symmetric degree of assemblies represented by w1
and w2 are equivalent to each other, then sym(w1) = sym(w2) holds.

Although this assumption is too general for real applications to chemical reaction
systems, the fact that we can establish a symmetric enumeration scheme under (T′)
tells us the effectiveness and generality of the proposed theory of the symmetric
enumeration method.

Acknowledgements This work was supported in part by Grant-in-Aid for Scientific Research
on Priority Area No.14085205, Ministry of Education, Culture, Sports, Science, and Technology,
Japan, and is supported by Grant-in-Aid for Scientific Research (C) No. 17500192, Japan Society
for the Promotion of Science.

References

1. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science
266:1021–1024

2. Adleman L, Cheng Q, Goel A, Huang M, Wasserman H (2000) Linear self-assemblies: equi-
libria, entropy, and convergence rates. Unpublished manuscript

3. Benneson A, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular com-
puter for logical control of gene expression. Nature 429:423–429

4. Condon AE (2003) Problems on rna secondary structure prediction and design. In: Proceed-
ings of ICALP’2003. Lecture notes in computer science, vol 2719. Springer, Berlin, pp 22–32

5. Dirks R, Bois J, Schaeffer J, Winfree E, Pierce N (2007) Thermodynamic analysis of interact-
ing nucleic acid strands. SIAM Rev 49:65–88

6. Gallo G, Longo G, Nguyen S, Pallottino S (1993) Directed hypergraphs and applications.
Discrete Appl Math 40:177–201

7. Gallo G, Scutella MG (1999) Directed hypergraphs as a modelling paradigm. Technical report
TR-99-02, Dipartmento di Informatica, Universita di Pisa

8. Kobayashi S (2006) A new approach to computing equilibrium state of combinatorial chemical
reaction systems. Technical report CS 06-01, Department of Computer Science, University of
Electro-Communications

9. Kobayashi S (2007) A new approach to computing equilibrium state of combinatorial hy-
bridization reaction systems. In: Proceedings of workshop on computing and communications
from biological systems: theory and applications. CD-ROM, paper 2376

10. Kobayashi S (2008) Symmetric enumeration method: a new approach to computing equi-
libria. Technical report CS 08-01, Department of Computer Science, University of Electro-
Communications

11. Lipton RJ (1995) DNA solution of hard computational problems. Science 268:542–545
12. Nesterov Y, Nemirovskii A (1993) Interior-point polynomial algorithms in convex program-

ming. SIAM, Philadelphia
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A Self-assembly Model of Time-Dependent Glue
Strength

Sudheer Sahu, Peng Yin, and John H. Reif

Abstract Self-assembly is a ubiquitous process in which small objects self-
organize into larger and complex structures. In 2000, Rothemund and Winfree pro-
posed a Tile Assembly Model as a mathematical model for theoretical studies of
self-assembly. We propose a refined self-assembly model in which the glue strength
between two juxtaposed tiles is a function of the time they have been in neighboring
positions. We then present an implementation of our model using strand displace-
ment reactions on DNA tiles. Under our model, we can demonstrate and study
catalysis and self-replication in the tile assembly. We then study the tile complexity
for assembling shapes in our model and show that a thin rectangle of size k × N

can be assembled using O((log(N))/ log log(N)) types of tiles, demonstrating the
glue model has additional capabilities over the prior tiling assembly model. We also
describe a method to implement with DNA tiles our model of time-dependant glue
strength.

1 Introduction

1.1 Motivation

Self-assembly is a ubiquitous process in which small objects self-organize into
larger and complex structures. Examples in nature are numerous: atoms self-
assemble into molecules, molecules into cells, cells into tissues, and so on. Recently,
self-assembly has also been demonstrated as a powerful technique for constructing
nanoscale objects. For example, a wide variety of DNA lattices made from self-
assembled branched DNA molecules (DNA tiles) [10, 21, 23–25, 43, 45, 46] have
been successfully constructed. Peptide self-assembly provides another nanoscale
example [9]. Self-assembly is also used for mesoscale constructions using capillary
forces [8, 30] or magnetic forces [1].
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1.2 Prior Models for Tile Assembly

Mathematical studies of tiling date back to the 1960s when Wang introduced his
tiling model [39]. The initial focus of research in this area was toward the decid-
ability/undecidability of the tiling problem [29]. A revival in the study of tiling was
instigated in 1996 when Winfree proposed the simulation of computation [44] using
self-assembly of DNA tiles.

In 2000, Rothemund and Winfree [32] proposed an Abstract Tile Assembly (ATA)
Model, which is a mathematical model for theoretical studies of self-assembly. This
model was later extended by Adleman et al. to include the time complexity of gen-
erating specified assemblies [3]. Later work includes combinatorial optimization,
complexity problems, fault tolerance, and topology changes, in the abstract tile as-
sembly model as well as in some of its variants [4–7, 11–14, 16, 19, 20, 22, 26, 27,
31, 33–35, 37, 38, 41, 42].

Adleman introduced a reversible model [2], and studied the kinetics of the re-
versible linear self-assemblies of tiles. Winfree also proposed a kinetic assembly
model to study the kinetics of the self-assembly [40]. Apart from these basic mod-
els, various generalized models of self-assembly are also studied [6, 18]: namely,
multiple temperature model, flexible glue model, and q-tile model.

1.3 Needs for New Models for Tile Assembly

Though all these models contribute greatly toward a good understanding of the
process of self-assembly, there are still a few things that could not be easily ex-
plained or modeled (for example, the process of catalysis and self-replication in
tile assembly). Recall that catalysis is the phenomenon in which an external sub-
stance facilitates the reaction of other substances, without itself being used up in
the process. A catalyst provides an alternative route of reaction where the activa-
tion energy is lower than the original chemical reaction and increase the reaction
rate. Adleman [2] has posed an open question if we could model the process of
catalysis in the self-assembly of tiles. Self-replication process is one of the funda-
mental process of nature, in which a system creates copies of itself. For example,
DNA is self-replicated during cell division and is transmitted to offspring during
reproduction. A material device that can self-replicate is ambition of many engi-
neering disciplines. The biggest incentive is to achieve a low manufacturing cost
because self-replication avoids the costs of labor, capital, and distribution in con-
ventional manufactured goods. In an evolving field like nanotechnology, manufac-
turing costs of molecular machines can become extremely large in the absence of
self-replication. Recently, Schulman and Winfree show self-replication using the
growth of DNA crystals [36], but their system requires shear forces to separate the
replicated units. In this paper, we propose a new model, in which catalysis and self-
replication is possible without external intervention. In our new model, which is
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built on the basic framework of the ATA model, the glue strength between different
glues is dependent on the time for which they have remained together.

The rest of the paper is organized as follows. First, we define the prior ATA
model as well as our new model formally in Sect. 2.2. We then put forth a method
to physically implement such a system in Sect. 3. Then we present the processes
of catalysis and self-replication in tile assembly in our model in Sects. 4 and 5,
respectively. In Sect. 6, we discuss the tile complexity of assembly of various shapes
in our model, beginning with the assembly of thin rectangles in Sect. 6.1 and the
extension to other shapes in Sect. 6.2. We conclude with the discussion of our results
and future research directions in Sect. 7.

2 Tiling Assembly Models

2.1 The Abstract Tiling Assembly (ATA) Model

The Abstract Tile Assembly (ATA) model was proposed by Rothemund and Win-
free [32] in 2000. Intuitively speaking, a tile in the ATA model is a unit square where
each side of the square has a glue from a set Σ associated with it. In this paper, we
use the terms pad and side of the tile interchangeably. Formally, a tile is an ordered
quadruple (σn, σe, σs, σw) ∈ Σ4, where σn, σe, σs , and σw represent the northern,
eastern, southern, and western side glues of the tile, respectively. Σ also contains
a special symbol null, which is a zero-strength glue. T denotes the set of all tiles
in the system. A tile cannot be rotated. So, (σ1, σ2, σ3, σ4) �= (σ2, σ3, σ4, σ1). Also
defined are various projection functions n : T → Σ , e : T → Σ , s : T → Σ , and w :
T → Σ , where n(σ1, σ2, σ3, σ4) = σ1, e(σ1, σ2, σ3, σ4) = σ2, s(σ1, σ2, σ3, σ4) =
σ3, and w(σ1, σ2, σ3, σ4) = σ4.

A glue-strength function g : Σ × Σ → R determines the glue strength between
two abutting tiles. g(σ,σ ′) = g(σ ′, σ ) is the strength between two tiles that abut on
sides with glues σ and σ ′. If σ �= σ ′, g(σ,σ ′) = 0; otherwise, it is a positive value.
It is also assumed that g(σ,null) = 0, ∀σ ∈ Σ . In the tile set T , there is a speci-
fied unique seed tile s. There is a system parameter to control the assembly known
as temperature and denoted as τ . All the ingredients described above constitute a
tile system, a quadruple 〈T , s, g, τ 〉. A configuration is a snapshot of the assem-
bly. More formally, it is the mapping from Z2 to T ∪ {EMPTY} where EMPTY
is a special tile (null,null,null,null), indicating a tile is not present. For a con-
figuration C, a tile A = (σn, σe, σs, σw) is attachable at position (i, j) iff C(i, j) =
EMPTY and g(σe,w(C(i, j +1)))+g(σn, s(C(i+1, j)))+g(σw, e(C(i, j −1)))+
g(σs, n(C(i − 1, j))) ≥ τ , where indices i and j increase toward north and east di-
rections, respectively.

Assembly takes place sequentially starting from a seed tile s at a known position.
One key aspect of this ATA model is that the glues are constant over time. For a given
tile system, any assembly that can be obtained by starting from the seed and adding
tiles one by one, is said to be produced. An assembly is called to be terminally
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produced if no further tiles can be added to it. The tile complexity of a shape S is the
size of the smallest tile set required to uniquely and terminally assemble S under a
given assembly model. One of the well-known results is that the tile complexity of
self-assembly of a square of size N × N in ATA model is Θ(

logN
log logN

) [3, 32].

2.2 Our Time-Dependent Glue (TDG) Model

We propose a time-dependent glue model, which is built on the framework described
above. In this model, the glue-strength between two tiles is dependent upon the time
for which the two tiles have remained together.

Let τ be the temperature of the system. Tiles are defined as in the ATA model.
However, in our model, glue strength function, g, is extended to contain a third argu-
ment that specifies the time for which the two sides of tiles are in contact. Formally
speaking, g is defined as g : Σ × Σ × R → R.

In g(σ,σ ′, t), the argument t is the time for which two sides of the tiles with glue-
labels σ and σ ′ have been juxtaposed. For every pair (σ,σ ′), the value g(σ,σ ′, t)
increases with t up to a maximum limit and then takes a constant value determined
by σ and σ ′. We define the time when g reaches this maximum as time for maximum
strength and denote it as γ : Σ × Σ → R. Note g(σ,σ ′, t) = g(σ,σ ′,γ (σ,σ ′)) for
t ≥ γ (σ,σ ′).

The minimum interaction time is a function μ : Σ × Σ → R. For every pair
(σ,σ ′), a function μ(σ,σ ′) is defined as the minimum time for which the two tiles
with abutting glue symbols σ and σ ′ stay together. If g(σ,σ ′, μ(σ,σ ′)) ≥ τ , the
two tiles will stay together; otherwise, they will separate if there is no other force
holding them in their abutting positions. An example of glue-strength function is
shown in Fig. 1. Intuitively speaking, μ serves as the minimum time required by the
pads to decide whether they want to separate or remain joined. We further define
μ(σ,null) = 0, γ (σ,null) = 0, and g(σ,null, t) = 0.

Next, we give the justification and estimation of μ for a pair (σ,σ ′) of glues. Let
g(σ,σ ′, t) be the glue-strength function. For more realistic estimation of μ, consider

Fig. 1 Figure illustrates the
concept of time-dependent
glue strength, minimum
interaction time, and time for
maximum strength
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a physical system in which, in addition to association, dissociation reactions also
occur. Let p(b) be the probability of dissociation when the bond strength is b, where
p(b) can be determined using Winfree’s kinetic model [40]. Assume that f (t) be
the probability that no dissociation takes place in the time interval [0, t], and assume
the time-interval δt is so small that bond strength g(σ,σ ′, t) does not change in the
time-interval t and t + δt . Then

f (t + δt) = f (t) · (1 − p
(
g(σ,σ ′, t)

))δt
,

f (t + δt)

f (t)
= (

1 − p
(
g(σ,σ ′, t)

))δt
,

f (t + δt)

f (t)
= exp

(−δt · p(
g(σ,σ ′, t)

))
.

The probability that the dissociation takes place between time t and t +δt is given
by f (t) · (1 − exp(−δt · p(g(σ,σ ′, t)))). Since μ is defined as the time for which
two glues are expected to remain together once they come in contact, its expected
value is

E[μ] = lim
δt→0

∞∑

t=0

t · f (t) · (1 − exp
(−δt · p(

g(σ,σ ′, t)
)))

.

Hence, based on the knowledge of glue-strength function, it is possible to determine
the expected minimum interaction time for a pair (σ,σ ′). For simplicity, we will use
the expected value of μ as the actual value of μ for a pair of glues (σ,σ ′).

Next, we illustrate the time-dependent model with an example of the addition of
a single tile to an aggregate. In a configuration C, when a position (i, j) becomes
available for the addition of a tile A, it will stay at (i, j) for a time interval t0,
where t0 = max{μ(e(A),w(C(i, j +1))), μ(n(A), s(C(i +1, j))), μ(w(A), e(C(i,

j − 1))), μ(s(A),n(C(i − 1, j)))}. Recall that our model requires that if two tiles
ever come in contact, they will stay together till the minimum interaction time of
the corresponding glues.

After this time interval t0, if g(e(A),w(C(i, j + 1)), t0) + g(n(A), s(C(i +
1, j)), t0) + g(w(A), e(C(i, j − 1)), t0) + g(s(A),n(C(i − 1, j)), t0) < τ , tile A

will detach; otherwise, A will continue to stay at position (i, j).
We describe in the next section a method to implement our model of time-

dependent glue strength with DNA tiles.

3 Implementation of Time-Dependent Glue Model

In this section, we propose an implementation of time-dependent glue model us-
ing DNA. Structurally, DNA is a long polymer of simple units called nucleotides,
which are held together by a backbone made of sugars and phosphate groups. This
backbone carries four types of bases (A, C, T, and G). These bases form comple-
mentary pairs (A is complementary to T and C is complementary to G) in a sense
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Fig. 2 (a) Illustrates the process of strand displacement. (b) Shows a single step of
strand-displacement as single step of random walk. In (b), the numbers represent the number of
DNA base pairs

that each base can form hydrogen bonds with the complementary base, also known
as Watson–Crick base-pairing. The hydrogen bonding between complementary base
pairs from two DNA strands results in their intertwining in the shape of a double he-
lix, known as double stranded DNA (dsDNA). Individual separate strands are known
as single stranded DNA (ssDNA). The direction of a DNA strand is defined in terms
of its asymmetric ends, referred to as 5′ and 3′ ends. The 5′ end terminates at the
phosphate group attached to the fifth carbon atom in the sugar ring, while the 3′ end
terminates at hydroxyl group attached to the third carbon atom in the sugar-ring. In a
double helix, direction of the nucleotides in one strand is opposite to their direction
in the other strand.

The process of combining complementary, single stranded nucleic acids into a
double stranded DNA molecule is called DNA hybridization. If the hydrogen bonds
between the nucleotides in two hybridizing DNA strands build up sequentially, the
total binding force between the two strands will increase with time up to the com-
plete hybridization, which will provide a simple way of obtaining time-dependent
glue strength between DNA tiles. However, even if we assume that the hybridiza-
tion of two complementary DNA strands is instantaneous, we can design a multistep
binding mechanism to implement the idea of time-dependent glue strength, which
exploits the phenomenon of strand displacement.

Figure 2(a) illustrates the process of strand displacement in which strand B dis-
places strand C from strand A. Figure 2(b) illustrates one step during this process.
At any time either the hybridization of B with A (and hence dehybridization of C

from A) or hybridization of C with A (and hence dehybridization of B from A)
can proceed with certain probability. Hence, we can model the strand displacement
process as a random walk, with forward direction corresponding to hybridization
between B and A, and backward direction corresponding to hybridization between
C and A. A one-dimensional unbiased random walk is a process in which any step
in forward or backward direction is taken with probability 0.5 independent of pre-
vious steps. The average straight-line distance between start and finish points of
a one-dimensional random walk after n steps is on the order of

√
n, and hence ex-

pected number of steps to cover a distance n is O(n2) [15, 17, 28]. In order to model
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Fig. 3 (a) to (h) Illustrate a mechanism by which strand displacement reaction is used to imple-
ment time-dependent glue between two pads. They show step by step removal of Ci ’s by B from A.
In (i), an imaginary graph illustrates the variation of glue-strength between A and B w.r.t. time

the strand displacement, we can assume that the step length in this random walk is
1 base-pair long. Hence, if the length of C is n bases, the expected number of steps
required for B to replace C is O(n2).

Next, we describe the design of the pads of DNA tiles with time-dependent glue
using the above mechanism of strand displacement. To make the glue between pad
A and pad B time-dependent, we need a construction similar to the one in Fig. 3(a).
The strand representing pad A has various smaller strands (Ci ’s, called protector
strands) hybridized to it as shown in Fig. 3(a). The strand B will displace these
protector strands Ci sequentially.

Let the variable γ here will be the time required for B to displace all the Ci ’s. In
the case when there are k different small strands Ci of length ni attached to A, γ is∑k

i=1 n2
i .

Figure 3 gives the step by step illustration of the above process. The variation of
glue strength between A and B is shown in Fig. 3(i). By controlling the length of
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various Ci ’s (i.e. n1, n2, . . . , nk), we can control the glue-strength function g for a
pair of tile-pads (or glues). Thus, we have shown a method to render the DNA tiles
the characteristic of time-dependent glue strength.

An interesting property is that the individual strand displacement of B against Ci

is modeled as an unbiased one dimensional random walk, but the complete process
described above can be viewed as roughly monotonic. As shown in Fig. 3(i), the
strength of the hybridization between strand A and strand B increases in a roughly
monotonic fashion with the removal of every Ci . However during the individual
competition between B and Ci , the increase is not monotonic.

4 Catalysis

Catalysis is the phenomenon in which an external substance facilitates the reaction
of other substances, without itself being used up in the process. A catalyst pro-
vides an alternative route of reaction where the activation energy is lower than the
original chemical reaction and increase the reaction rate. Catalysts participate in
reactions but are neither reactants nor products of the reaction they catalyze. The
following question was posed by Adleman [2]: Can we model the process of catal-
ysis in self-assembly of tiles? In this section, we present a model for catalysis in
self-assembly of tiles using our time-dependent glue model. Now, consider a super-
tile X (composed of two attached tiles C and D) and two single tiles A and B as
shown in Fig. 4(a). We describe below how X can serve as a catalyst for the as-
sembly of A and B . Assume t0 = μ(e(A),w(B)) such that g(e(A),w(B), t0) is less
than the temperature τ . Let μ(s(A),n(C)) = μ(s(B),n(D)) = t1 > t0. Also, assume
g(s(A),n(C), t1) + g(s(B),n(D), t1) < τ and g(e(A),w(B), t1) ≥ τ .

The graph in Fig. 4(b) illustrates an example set of required conditions for the
glue-strength functions in the system. A · B represents a tile A bounded to a tile B .

Fig. 4 (a) Shows catalyst X with the tiles C and D catalyzes the formation of A ·B . (b) Shows the
conditions required for catalysis in terms of the glue-strength function. Solid line shows the plot of
g(e(A),w(B), t) and dashed line shows the plot of g(s(A),n(C), t) + g(s(B),n(D), t)
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To show that X acts as a catalyst, we first show that without X stable A · B cannot
form. Next, we show that A ·B will form when X is present and X will be recovered
unchanged after the formation of A · B .

Without X in the system, A and B can only be held in neighboring positions for
time t0 = μ(e(A),w(B)), since g(e(A),w(B), t0) < τ . Hence, at t0, A and B will
fall apart.

However, in the presence of X , the situation changes. Supertile X has two neigh-
boring tiles C and D. Tiles A and B attach themselves to C and D as shown in
Fig. 4(a). Since we let μ(s(A),n(C)) = μ(s(B),n(D)) = t1 > t0, tiles A and B are
held in the same position for time t1. By our construction, as shown in Fig. 4(b), the
following two events will occur at time t1:

• At t1, the glue strength between A and B is g(e(A),w(B), t1) ≥ τ, and hence
A and B will be glued together. That is, in the presence of X , A and B remain
together for a longer time, producing stably glued A · B .

• At t1, the total glue strength between A · B and X is g(s(A),n(C), t1) +
g(s(B),n(D), t1) < τ , and the glued A · B will fall off X . X is recovered un-
changed from the reaction and the catalysis is complete. Now, X is ready to cat-
alyze other copies of A and B .

Note that if only A (resp. B) comes in to attach with C (resp. D), it will fall off
at the end of time μ(s(A),n(C)) (resp. μ(s(B),n(D))). If assembled A · B comes
in, it will also fall off, at time t1. These two reactions are futile reactions, and do not
block the desired catalysis reaction. However, as the concentration of A ·B increases
and the concentration of unattached A and B decreases, the catalysis efficiency of
X will decrease due to the increased probability of the occurrence of futile reaction
between A · B and C · D.

5 Self-replication

Self-replication process is one of the fundamental process of nature, in which a
system creates copies of itself. For example, DNA is self-replicated during cell di-
vision and is transmitted to offspring during reproduction. A material device that
can self-replicate is ambition of many engineering disciplines. The biggest incen-
tive is to achieve a low manufacturing cost because self-replication avoids the costs
of labor, capital, and distribution in conventional manufactured goods. In an evolv-
ing field like nanotechnology, manufacturing costs of molecular machines can be-
come extremely large in the absence of self-replication. We discuss below an ap-
proach to model the process of self-replication in DNA tiles assembly using our
time-dependent glue model.

Our approach is built on the above described process of catalysis: a product A ·B
catalyzes the formation of C ·D, which in turn catalyzes the formation of A ·B , and
hence an exponential growth of self-replicated A · B and C · D takes place.
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More precisely, let t0 < t1, and consider tiles A, B , C, and D, such that

μ
(
e(A),w(B)

) = μ
(
e(C),w(D)

) = t0,

μ
(
s(A),n(C)

) = μ
(
s(B),n(D)

) = t1,

g
(
e(A),w(B), t0

) = g
(
e(C),w(D), t0

)
< τ,

g
(
e(A),w(B), t1

) = g
(
e(C),w(D), t1

)
> τ,

g
(
s(A),n(C), t1

) + g
(
s(B),n(D), t1

)
< τ.

A system containing these four types of tiles has two states.
State 1. If there is no template A ·B or C ·D in the system, no assembled supertile

exists since no two tiles can be held together long enough to form strong enough
glue between them such that they become stably glued. Since μ(e(A),w(B)) =
μ(e(C),w(D)) = t0 and g(e(A),w(B), t0) = g(e(C),w(D), t0) < τ , neither stable
A · B nor stable C · D can form. Similarly, μ(s(A),n(C)) = μ(s(B),n(D)) = t1,
g(s(A),n(C), t1) < τ , and g(s(B),n(D), t1) < τ implies that neither stable A · C

nor stable B · D can form.
State 2. In contrast, if there is an initial copy of stable A · B in the system, self-

replication occurs as follows. A · B serves as catalyst for the formation of C · D,
and C · D and A · B separate from each other at the end of the catalysis period, as
described in Sect. 4; in turn, C · D serves as catalyst for the formation of A · B .
Thus, we have a classical self-replication system: one makes a copy of itself via its
complement. The number of the initial template (A · B) and its complement (C · D)
grows exponentially in such a system as long as there are sufficient numbers of free
A, B , C, and D tiles to be made into pairs.

Hence, if the system is in state 1, it needs a triggering activity (formation of a
stable A · B or C · D) to go into state 2. Once the system is in state 2, it starts

Fig. 5 A schematic of self-replication
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the self-replication process. Figure 5 illustrates the process of self-replication in the
assembly of tiles.

If the system is in state 1, then the triggering activity (formation of a stable A · B
or C · D) can take place only if A, B , C, D coposition themselves so that the east
side of A faces the west side of B and the south side of A faces the north side of
C, and at the same time the south side of B faces the north side of D. In such a
situation, A and C will remain abutted until time t1, B and D will remain abutted
until time t1, and A and B (and C and D) might also remain together for time t1,
producing stable A · B and stable C · D. And this will bring the system to state 2.
Such copositioning of 4 tiles is a very low probability event. However, among other
conditions, appropriate copositioning of unstable A · B and unstable C · D, or un-
stable A · C and unstable B · D can also perturb a system in state 1 and triggers
tremendous changes by bringing the system to state 2 where self-replication occurs.

6 Tile Complexity Results

6.1 Tile Complexity Results for Thin Rectangles

In the ATA model, the tile complexity of assembling an N ×N square is Θ(
logN

log logN
)

[3, 32]. It is also known that the upper bound on the tile complexity of assembling a
k × N rectangle in the ATA model is O(k + N1/k) and that the lower bound on tile

complexity of assembling a k × N rectangle is Ω(N1/k

k
) [6]. For small values of k,

this lower-bound is asymptotically larger than O(
logN

log logN
). Here, we claim that in

our model, as in the multitemperature model defined in [6], a k × N rectangle can
be self-assembled using O(

logN
log logN

) types of tiles, even for small values of k. The
proof technique follows the same spirit as in [6].

Theorem 1 In the time-dependent glue model, the tile complexity of self-assembling
a k × N rectangle for an arbitrary integer k ≥ 2 is O(

logN
log logN

).

Proof The tile complexity of self-assembling a k × N rectangle is O(N
1
k + k) for

the ATA model [6]. In the time-dependent glue model, we can use the similar idea as
in [6] to reduce the tile complexity of assembling thin rectangles. For given k and N ,
build a j ×N rectangle with j > k such that the glues among the first k rows become
strong after their μ (minimum interaction time), while the glues among the last j −k

rows do not become as strong. First, k rows are called stable rows, and last j − k

rows are called volatile rows. As such, these j − k volatile rows, will disassemble
from the assembly after certain time leaving the target k × N rectangle consisting
of only the stable rows.

The tile set required to accomplish this construction is shown in Fig. 6, which is
similar to the one used in [6]. For more detailed illustration of this tile set, refer to
[6]. First, a j -digit m-base counter is assembled as follows. Starting from the west
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Fig. 6 Tile set to construct a k × N rectangle using only O(N1/j + j) tiles. The glue-strength
functions of red, blue, and black glues are defined in the proof



A Self-assembly Model of Time-Dependent Glue Strength 197

edge of the seed tile, a chain of length m is formed in the first row using m chain
tiles. At the same time, tiles in the seed column also start assembling. It should
be noted that first k tiles in the seed column have sufficient glue strength and they
are stable. Now starting from their west edges, the 0 normal tiles start filling the
m − 1 columns in the upper rows. Then the hairpin tiles HP

1 and HR
1 assemble

in the second row, which causes the assembly of further m chain tiles in the first
row, and the assembly of 1 normal tiles in the second row (and 0 normal tiles in the
upper rows) in the next section of m columns. Generally speaking, whenever a Cm−1
chain tile is assembled in the first row, probe tiles in the upper rows are assembled
until reaching a row that does not contain an m − 1 normal tile. In such a row, the
appropriate hairpin tiles are assembled and this further propagates the assembly of
return probe tiles downward until the first row is reached, where a C0 chain tile gets
assembled. This again starts an assembly of a chain of length m. The whole process
is repeated until a j × mj rectangle is assembled.

Next, we describe our modifications which are required for the j − k upper
volatile rows to get disassembled after the complete assembly of the j × mj rec-
tangle. First of all, we need to have a special (k + 1)-th row (∗∗ row), which will
assemble to the north of the kth row (∗ row), as shown in Fig. 6.

The operating temperature τ = 2. Assume that for all glue-types, μ = t0 and
γ = t1. There are three kinds of glues shown in Fig. 6: black, red, and blue. Assume
that the glue-strength function for a single black glue is gblack(t), a single red glue
is gred(t), and a single blue glue is gblue(t). They are defined as

gblack(t) =

⎧
⎪⎨

⎪⎩

4t
5t0

, t < t0,

4
5 + t−t0

5(t1−t0)
, t0 ≤ t < t1,

1, t ≥ t1,

gred(t) =

⎧
⎪⎪⎨

⎪⎪⎩

2t
5t0

, t < t0,

2
5 + t−t0

10(t1−t0)
t0 ≤ t < t1,

1
2 t ≥ t1,

gblue(t) =
{ 2t

5t0
, t < t0,

2
5 , t ≥ t0.

Multiple glues shown on the same side of a tile in Fig. 6 are additive. For example,
the glue-strength between Ci and Ci+1 (0 ≤ i ≤ m − 2) is 2gblack(t) + gred(t).

This system will start assembling like a base N1/j counter of j digits, as briefed
above and detailed in [3, 6]. It will first construct a rectangle of size j × N using
N1/j + j type of tiles. Once the rectangle is complete, the tile on the north-west
corner will start the required disassembly of the upper (j − k) volatile rows, which
results in the formation of a k × N rectangle. We call these two phases Assembly
phase and Disassembly phase, respectively, and describe them below.

Assembly Phase. In the assembly phase, we aim at constructing a j × N rectan-
gle. In the time dependent model, the assembly proceeds as in the ATA model until
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the assembly of P ∗ tile in the kth row (the distinguished ∗ row). At this point, an
HR∗∗

tile is required to get assembled. However, when the HR∗∗
tile is assembled in

the (k+1)-th row, the total support on HR∗∗
from its east neighbor is only 4

5 + 2
5 < 2

at the end of μ. Thus, HR∗∗
must obtain additional support; otherwise, it will get

disassembled, blocking the desired assembly process. The additional support comes
both from its south neighbor and its west neighbor. (1) On the south front, tile R∗
can arrive and be incorporated in the kth row (the distinguished ∗ row) of the assem-
bly. It holds HR∗∗

for another time interval of μ and provides a support of 2
5 . Further

note that during this second interval, an R tile can be assembled in the (k − 1)-th
row, and the R∗ tile in the kth row will then have support 2 at μ, and hence stay at-
tached. In addition, tile R has support 2 at μ, so it will also stay attached. Regarding
HR∗∗

, the end result is that it receives an additional stable support 2
5 from its south

neighbor. However, the maximum support from both the south and the east is at most
1 + 1

2 + 2
5 , which is still less than τ = 2. Fortunately, additional rescue comes from

the west. (2) On the west front, an i∗∗ tile can get attached to HR∗∗
, and stabilize

it by raising its total support above 2. However, this support is insufficient, in the
sense that i∗∗ itself needs additional support from its own west and south neighbors
to stay attached. If this support cannot come in time, that is, before μ, i∗∗ will get
disassembled, in turn causing the disassembly of HR∗∗

. The key observation here
is that this assembly/disassembly is a reversible dynamic process: the disassembly
may stop and start going backward (i.e., assembling again) at any point. Thus, in a
dynamic, reversible fashion, the target structure of the assembly phase, namely the
j × N rectangle, can be eventually constructed.

The above added complication is due to the fact that we require the HR∗∗
tiles in

the (k + 1)-th row to get a total support of < 2 from the south and the east. This is
crucial because during the subsequent disassembly phase (as we describe next) the
desired disassembly can only carry through if the total support of each volatile tile
from the south and the east is < 2.

Disassembly Phase. In the disassembly phase, we will remove the j − k volatile
rows, and reach the final target structure, a k ×N rectangle. Once the j ×N rectan-
gle is complete, the tile T at the north-west corner (P ′ tile in the j th row) initiates
the disassembly. When the μ of the glue-pairs between tile T and its neighbors is
over, tile T will get detached because the total glue strength that it has accumu-
lated is 4

5 + 2
5 < τ = 2. Note that unlike the above case for HR∗∗

, no additional
support can come from the west for tile T since T is the west-most tiles. As such,
T is doomed to get disassembled. With T gone, T ’s east neighbor will get removed
next, since it now has a total glue strength ≤ 1+ 1

2 < τ . Similarly, all the tiles in this
row will get removed one by one, followed by the removal of the tiles in the next
row (south row). Such disassembly of the tiles continues until we are left with the
target rectangle of size k × N , whose constituent tiles, at this stage, all have a total
glue strength no less than τ = 2, and hence stay stably attached.

Note that, similar as in the assembly phase, the volatile tiles that just got removed
might come back. But again, ultimately they will have to all fall off (after the μ),
and produce the desired k × N rectangle.
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Concluding the Proof. We can construct a k × N rectangle using O(N1/j + j)

type of tiles (where j > k). As in [6], it can be reduced to O(
logN

log logN
) by choosing

j = logN
log logN−log log logN

. �

6.2 Further Tiling Assemblies for Interesting Shapes

Thin rectangles can serve as building blocks for the construction of many other
interesting shapes. One example is a square of size N × N with a large square hole
of size k×k (for k ∼ N). Under the ATA model, the lower bound can be shown to be

Ω(
(k)

2
N−k

N−k
) by a lower bound argument similar to the one in [6]. Note that as N − k

decreases, i.e., the square hole in the square increases, the lower bound increases.
In the case when N − k is smaller than logN

log logN−log log logN
, the lower bound is more

than logN
log logN

. In the case when N − k is a small constant, the complexity is almost
Nc, where c is some constant < 1. However, in the time-dependent model, the tile
complexity of this shape can be reduced to O(

log k
log log k

) even for small values of
N − k, using our thin rectangle construction.

The basic idea is quite simple. We sequentially grow four different thin rectan-
gles in four different directions: one rectangle northward, one westward, one south-
ward, and one eastward. The dimensions of each of these rectangles is (N−k−2

2 ) ×
(k +2). They will make up the major part of the square’s sides as shown in Fig. 7(a).
The required tile set consists of four different groups of tile sets: each one growing
a (N−k−2

2 ) × (k + 2) rectangle in one direction. Each of these rectangles can be

constructed by O(
log k

log log k
) types of tiles as discussed in the proof of Theorem 1. We

Fig. 7 (a) Direction of the red arrow shows the direction of construction of a square with a hole,
starting from the indicated seed. (b) A complete tile set for the square with hole. Sets TN , TS , TW ,
TE are shown in Figs. 8, 9, and 10



200 S. Sahu et al.

Fig. 8 (a) Displays the tiles from the sets TN required for the construction of N ×N square with a
hole of size k × k in the center. (b) Displays the tiles from the sets TS required for the construction
of N × N square with a hole of size k × k in the center. It should be noted that symbols in (a),
(b), Figs. 9, and 10 are from different namespaces. It means that a glue-symbol x in TN is different
from a glue-symbol x in TS , TW , or TE , and they cannot interact

refer to these groups of tile sets as TN , TW , TS , and TE (Fig. 7 (b)). The complete
details of tile sets TN , TW , TS , and TE are shown in Figs. 8, 9, and 10.

As shown in the center in Fig. 7(b), we need some additional tiles (tiles n, e, s,
and w) to connect these four different rectangles with each other in order to com-
plete the desired square with a hole. We call them connector tiles. Note that the glues
on the sides of connector tiles match with the glues of seed tiles of the correspond-
ing rectangles. After the completion of one rectangle, the corresponding connector
tile should assemble and provide a path for the assembly of another rectangle. For
example, the assembly of the connector tile n takes place after the assembly of the
west-most column of the northward rectangle from the tile set TN , and triggers the
assembly of the westward rectangle.

In each of the thin rectangles, a special row and a special column is needed that
can assist the assembly of the corresponding connector tile. We call these special
rows and columns as adjunct row and adjunct column. The tiles required for the
assembly of the adjunct row and column in the northward rectangle are shown in
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Fig. 9 Figure displays the tiles from the sets TN and TS required for the construction of N × N

square with a hole of size k × k in the center

Fig. 10 Figure displays the tiles from the set TW required for the construction of N × N square
with a hole of size k × k in the center

Fig. 8. Note that the glues on the sides of these tiles are designed in such a way that
they do not inhibit the disassembly phase in the construction of the corresponding
thin rectangle.

Finally, we have gaps at the four corners this N × N square, and a (k + 2) ×
(k + 2) square hole in the center with exactly one tile present at each corner of the
hole (Fig. 7). A constant number of type of tiles, referred to as filler tiles, will be
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needed to fill in these gaps, and obtain an N × N square with a k × k hole at its
center.

The complete tile set TN is the tile set described in the proof of Theorem 1 along
with the tiles for adjunct row and column. The boundary tiles in TN are modified
slightly so that they can assist the assembly of appropriate filler tiles when required.
Tile set TW is formed by rotating every tile of TN anticlockwise by 90◦. It should
be noted that a totally disjoint set of symbols for the glues should be used in TW to
avoid any interaction with the tiles in TN . Similarly, the tile sets TS and TE can be
obtained by further anticlockwise rotation of TW by 90° and 180°, respectively.

Thus, the total number of tiles required is the sum of tiles required for each of
the four thin rectangles, four connector tiles, constant number of filler tiles, and
the tiles for adjunct row and column in each of the four rectangles. This is upper
bounded by O(

log k
log log k

). The assembly will grow in the manner shown in Fig. 7(a).
Assuming without loss of generality that the seed is the seed tile of rectangle 1.
Then first rectangle 1 will be constructed; then the connector to rectangle 1 and 2
will assemble; then rectangle 2 will assemble; then connector to rectangle 2 and 3;
then rectangle 3; then connector to 3 and 4; finally rectangle 4 will get assembled.
It should be noted that the filler tiles can assemble anytime during the assembly,
whenever they get enough support to hold them.

7 Discussion and Future Work

In this paper, we defined a model in which the glue strength between tiles depends
upon the time they have been abutting each other. Under this model, we demonstrate
and analyze catalysis and self-replication, and show how to construct a thin k × N

rectangle using O(
logN

log logN
) tiles for constant k > 0. The upper bound on assem-

bling a thin rectangle is obtained by applying similar assembly strategy as in the
multitemperature model [6]. Thus, an interesting question is whether the multitem-
perature model can be simulated using our time-dependent model. It is also an open
problem if under our model the lower bound of Ω(

logN
log logN

) for the tile complexity
of an N × N square can be further improved.

Another interesting direction is to study the kinetics of the catalysis and self-
replication analytically. Winfree’s kinetic model [40] can be used to study them, but
the challenge here is that the rate constant for the dissociation for a particular species
varies with time because of changing glue strengths of its bonds. This makes the
analytical study hard. However, these catalytic and self-replicating systems can be
modeled as a continuous time Markov chain, and studied using computer simulation
to obtain empirical results.
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The Perils of Polynucleotides Revisited

Nadrian C. Seeman

Abstract DNA computing relies on the successful implementation of physical
chemistry techniques involving oligonucleotides of prescribed sequence. Our lab-
oratory has been involved in the assembly and manipulation of designed oligonu-
cleotides in order to pursue studies in genetic recombination and nanofabrication.
We have constructed a large number of unusual branched DNA motifs used to build
a variety of DNA objects, lattices, and nanomechanical devices. Our experience
with these systems has uncovered a large number of experimental pitfalls that may
confront individuals working with DNA-based computation. A decade ago, we pre-
sented our experience in this area in the hope that we could help investigators to
anticipate experimental problems that affect DNA computing schemes. Here, we
review these points from the vantage point of further experience, indicating both
modifications to the original criteria and new points as well.

...that to which we return with the greatest pleasure possesses
the greatest power...
Samuel Taylor Coleridge

1 Introduction

It has been over a decade since Adleman performed the first experimental demon-
stration of DNA-based computation [1]. In that time, the endeavor has matured
markedly. Many individuals have participated in it, and many lessons have been
learned. A parallel enterprise, structural DNA nanotechnology, which dates from
the early 1980s [2] has also grown during that time. This area entails the use of self-
assembled nucleic acid constructs for nonbiological purposes. Many of those drawn
to DNA-based computation have also participated in structural DNA nanotechnol-
ogy (for a review of the area; see Ref. [3]), because the techniques and approaches
of the two areas share many characteristics. The leadership that Grzegorz Rozenberg
provided in establishing the organizational framework for the two communities was
a major contribution to this phenomenon, and all of us owe him a debt of gratitude
for his activities.

I come from the structural DNA nanotechnology community, an enterprise based
on the idea of using branched DNA and cohesive single strands (primarily sticky
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ends) to hold them together [2]. The goal of this effort are the assembly of nano-
scale objects, nanomechanical devices, and designed periodic matter. The applica-
tions of these targets are to act as a way to solve the crystallization problem for
biological macromolecules, for use as potential components in nanofabrication, and
to develop nano-manufacturing methods for producing novel materials. In the mid-
1990s, I wrote a paper in which I summarized our experiences in structural DNA
nanotechnology to prevent those engaged in DNA-based computation from having
to reinvent a number of wheels or from repeating the mistakes we made during the
founding of structural DNA nanotechnology [3]. I think it is time now to review the
points brought up in that paper, and to see which of them are relevant to the work
going on today. There has been a lot of progress, and there have been many new
developments, and it is valuable to discuss some of these issues in this context. In
addition, there are some issues of which I was unaware at the time, and there were
further points that my background made implicit to me, but which I find frequently
necessary to mention to novices in the area.

2 Old Rules and New Perspectives

In this section, I will list the points that I made in the 1998 paper, and then annotate
them with comments based on developments in the intervening decade.

[1] Symmetry Is Inimical to Control

If one treats symmetry in its broadest sense, the equal, or nearly equal free energies
from two possible outcomes of an experiment, it is clear that the greatest control
over molecular associations will be derived from systems that minimize symmetry,
particularly sequence symmetry.

This point certainly applies to small systems, such as DX tiles [4] or other motifs.
However, Mao and colleagues [5] have shown that one can actually utilize symmet-
ric systems to save materials, to minimize stoichiometry issues, and to increase the
sizes of arrays. Yan and colleagues [6] have exploited symmetry so as to build finite
arrays from limited numbers of tiles. Rothemund’s introduction of DNA origami [7]
is a large system that ignores sequence symmetry completely, without losing control.
The issue is mostly a matter of resolution, and the 6 nm pixilation that Rothemund
seeks is largely immune to the sequence symmetry considerations that are so impor-
tant to the development of smaller high resolution arrangements.

[2] Non-Watson–Crick Pairing in Unusual Structures

Watson–Crick pairing appears to be favored for linear duplex DNA. However, when
it is not available, or when it is difficult to achieve, non-Watson–Crick pairing can
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occur. Every base appears capable of pairing with every other base, including it-
self [8].

This point remains correct. Nevertheless, there are some stable arrangements of
non-Watson–Crick base pairing that have been exploited in structural DNA nan-
otechnology. These include, G4 motifs [9], I motifs [10], and osculating interactions
between RNA loops [11]. A crystal structure from Paukstelis et al. [12] demonstrates
the spontaneous formation of parallel non-Watson–Crick interactions.

[3] The Importance of Hybridization Protocols

One must make sure that the pairing structure one wants to achieve has an opportu-
nity to overcome kinetic barriers. We routinely heat all mixtures to 90°C for a few
minutes, and cool the structure slowly before using it. We also check for the presence
of the structure on nondenaturing gels run under the conditions of the experiment,
particularly the temperature and the same DNA and divalent cation concentrations.

In addition to choosing an appropriate hybridization protocol, it is key to note
that one should beware of the possibility of inserting kinetic traps into the hybridiza-
tion protocol. For example, GC-rich ends of a strand designed to form parallel
crossovers might anneal first, leading to the inability of the central part of the mole-
cule to do the appropriate wrapping necessary to produce the designed topology
[13].

[4] The Importance of DNA Concentration and Environment

It is critical to use concentrations of DNA that are appropriate to forming the com-
plex of interest. The significance of appropriate divalent cations, pH, and appropriate
temperatures cannot be overestimated.

It is always important to remember that low concentrations of DNA, such as the
1–10 nM concentrations typically used with DNA origami systems must have sticky
ends that are long enough to cohere at the temperatures being used (particularly at
room temperature).

[5] Proper Estimation of DNA Dimensions

Often a crude model is inadequate to estimate the size of noncanonical DNA fea-
tures, such as loops between double helical segments. It is useful to vary such para-
meters experimentally so as to optimize their design.

There is better modeling software available to day (e.g., [14, 15]) than was avail-
able previously [16]. Nevertheless, it is important that models not be taken too liter-
ally. It is easy to introduce braided crossovers [17] into models when the programs
do not know about the topological details of the system. Likewise, physical model-
ing should not be used as a Procrustean bed: There is a lot of flexibility in DNA,
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and one cannot always count on idealized structures, for which the force constants
are often unknown, to be the materials with which one is dealing. For example, the
3-helix bundle [18] does not fit the criteria of a minimally-strained nanotube [15],
yet it is readily constructed. On a smaller scale, one would not have imagined that
the tensegrity triangle from Mao’s group would be readily built, but it is a very
successful structure [19].

[6] Experimental Determination of DNA Features

One cannot assume that unusual DNA structures assume the shapes that one feels
most comfortable drawing for them. Branched junctions were found not to look like
crosses [20], tRNA molecules were found not to look like any of their predicted ter-
tiary structures [21], and the overall range of structures available to any nucleic acid
molecule is often much larger than one wishes to believe. Furthermore, that struc-
ture is often a function of conditions. One should predicate nothing on an unverified
DNA tertiary structure.

Another point to emphasize is the resolution and range of the technique. Hydroxyl
radical autofootprinting [20] gives information on the nucleotide level (∼0.5 nm)
for bulk materials. The most popular method in use today for structural charac-
terization is atomic force microscopy (AFM). This method provides information on
individual molecules or on periodic and aperiodic arrays at ∼5 nm resolution. It
is worth remembering that the finest structural tool, X-ray diffraction, is capable of
providing information of ∼0.1–0.3 nm resolution, if the sample is sufficiently well
ordered.

[7] The Fidelity of Ligation Is High, but Not Perfect

A “hungry” ligase molecule may well ligate the wrong molecule to a sticky end, if
it bears a close resemblance to the target molecule.

In the period since the previous paper was written, our laboratory has abandoned
ligation to the extent possible. We find that ligation is often highly inefficient, as low
as 70% per nick in branched systems. By contrast, systems in which self-assembly
is needed without ligation are much more efficient. Thus, it is possible to get all of
the component strands of a DX molecule, for example, to associate into the motif
producing a yield of ∼100%. Getting DX molecules to associate further, via sticky
ends is similar to any problem in crystallization, where some big crystals and some
small crystals are always produced.

[8] DNA Molecules Breathe

The bases of DNA molecules unpair at times, and strands of the same sequence
can displace each other. Fraying at the ends of duplex segments occurs often, and
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it may be rampant at higher temperatures. A well-known manifestation of this phe-
nomenon is branch migration, an isomerization that naturally-occurring branched
molecules undergo [22]: One cannot assume that particular molecules will remain
paired noncovalently for very long time periods.

In recent years, dynamic species have become central to structural DNA nan-
otechnology [23] and to programmed nucleic acid circuitry [24, 25]. Consequently,
branch migration has become a central phenomenon exploited in nanomechanical
devices, following the pioneering work of Yurke et al. [26]. It is worth noting that
this process is affected by the presence of drugs and the divalent cations that are in
the solution.

[9] Long and Loose Closed DNA Molecules Form Topoisomers

The plectonemic nature of double helical DNA helices results in catenated closed
molecules. There will be a distribution of topological linkage in long molecules
[27]. Topological impurity can complicate the interpretation of results involving
catenated molecules.

This point remains valid, but does not seem to be relevant to most activities at
this time.

[10] Affinity Binding Is a Filtration Process

Affinity binding, such as biotin-streptavidin binding, is effective, but often imper-
fect. Multiple tags may be needed to achieve desired purification, because the tag
may not be accessible to the receptor in all conformations.

This point remains valid, but there seem to be no major new issues involving it.

[11] Complex Ligation Mixtures Can Lead to Complex Products

The ligation of molecules that can form cyclic species can often be complicated by
numerous products in addition to the target products.

Unwanted ligation in most systems can be controlled by limiting DNA concen-
tration, but complex topological species are difficult to avoid. So far, this does not
seem to be a major issue.

[12] Separation of Hydrogen-Bonded Molecules in Native Conditions Is Often
Ineffective

In our experience, purification is most effective under totally denaturing conditions.
To effect such separations, one must form topologically closed molecules. Nicked
and unnicked hydrogen bonded complexes comigrate on gels in nondenaturing con-
ditions.

This lesson remains correct.
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[13] Restriction Endonucleases Often Produce Partial Digestion Products

This is particularly true if the substrate is not simple double-helical DNA. One must
test all protocols for the effectiveness of the restriction enzymes involved, and it is
often necessary to find means to remove undigested material.

One cannot expect synthetic molecules to be prepared completely free of errors.
There seem always to be small remnants of impure materials that will be indigestible
to restriction enzymes. If complete digestion is needed, the DNA should be prepared
enzymatically using nucleoside triphosphates [28]. Polymerases seem to be subject
to the same issues [29].

[14] Multimerization of Cyclic Structures Can Occur

Discrete target structures involve cyclic pairing schemes, e.g., 1 → 2 → 3 →
4 → 1. One hopes that the final molecule “1” and the first molecule “1” are the
same molecule, but cyclic schemes that do not take steps to ensure the identity of
the two “1” molecules are in danger of multimerization if this phenomenon will
promote favorable interactions or decrease unfavorable ones.

As with point 11 above, control of concentration is key.

[15] Base Stacking Is Often the Determining Interaction

It is tempting to build up hydrogen bonding schemes when one is designing DNA
molecules, but base stacking may well turn out to be the dominant physical interac-
tion in the system.

The importance of base stacking continues to be of key importance. In an era of
complex DNA motifs, blunt ends are often found to be unexpectedly stacked. Over-
hangs often combat this tendency successfully. In addition, designs predicated on
the notion that a system will not stack often are frustrated by the tendency of the
system to stack. Switchback DNA [30] and antijunctions [31] are excellent examples
of this phenomenon.

[16] Treat DNA as a Physical Chemical System

In dealing with DNA molecules, it is necessary to examine them under the condi-
tions in which they will be used, even if that is sometimes inconvenient. It is useful
to vary the temperature, concentration of DNA and the solution environment, and if
using electrophoresis, the gel concentration. So, as to develop a system that works
well for any purpose, one must vary the parameters that define the system, to un-
derstand its strengths and limitations. There are many “bibles” available to provide
molecular biological protocols (e.g., [32]). These sources are invaluable, but we sug-
gest that levels of chemical efficiency that lead to successful molecular biology are
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often inadequate for successful chemistry, and that each protocol be examined care-
fully and not followed blindly. Likewise, it can be useful to ignore enzyme optima,
and concentrate on conditions that ensure that the desired DNA complex is present
in the experiment.

These points remain correct. It is often tempting to prepare a sample in a series of
buffers, and then to expect that putting the samples into a gel with a different running
buffer will yield a proper analysis. This is false—the running buffer will shortly
become the buffer in which the sample is sitting, and the DNA will equilibrate to
that condition. When dealing with problems and system optimization, it is really key
to test the system under the exact conditions in which the experiment will be run.
Thus, a system expected to require high concentrations for a physical experiment
may yield multimers when examined on nondenaturing gels; this is a key precaution
to take. Likewise, a system that will be used at 4˚C should not be tested at room
temperature.

3 New Points

[17] Crude DNA Is Impure Material

DNA should almost always be purified. In small systems, such as DX arrays, poor
array formation will result from impure DNA. DNA origami seems somewhat resis-
tant to the need for purification, but no detailed study has been conducted to see the
impact of using pure staple strands.

[18] DX Cohesion Is More Effective than Simple Sticky-Ended Cohesion

In recent work, we have found that motifs designed to form lattices but that seem
somewhat intractable to crystal formation are much more likely to do so when there
are two sticky ends than a single one [33].

[19] Robust Devices are Necessary for a Nanorobotics That Emulates
Macro-scale Robotics

When designing DNA-based nanomechanical devices, it is important to make sure
that they are robust devices. A robust device is a system that under operating con-
ditions behaves like a macroscopic device. This means that it neither multimerizes
nor dissociates during transitions, so that there are discrete end points.

[20] Two Contexts That Are Not Identical Are Different

It is extremely important to recognize that favored structures are often found in a
particular context. For example, we found that a four-stranded PX system required
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6–8 nucleotide pairs in the major groove and 5 nucleotide pairs in the minor groove
[30]; at low concentrations, 9 nucleotide pairs could also occupy the major groove.
Shih et al. [34] were able to use the PX motif for cohesion with 6 nucleotide pairs
in the major groove and only four nucleotide pairs in the minor groove when a pair
of hairpins were used. We have found recently that within the context of a single
plasmid it is possible to extend the major groove size to 10 or even 11 nucleotide
pairs. Each context was different, and had to be judged from that perspective only.

4 Concluding Comments

In this article, I have tried to annotate the recommendations that I made in the pre-
vious article, based on the experience of the intervening decade. In addition, I have
included a few new points that have arisen. One other point that I mentioned in
the original article should be reiterated: The newcomer to experimental nucleic acid
chemistry should first try to learn the basics from an expert. At the time the first
article was written, ours was the only laboratory involved in experimental struc-
tural DNA nanotechnology. Today, this is easier, because there are more than forty
laboratories worldwide engaged in this enterprise.

Thus, experimental knowledge is accumulating at an astonishingly fast rate. It is
impossible to detail all the technical lessons gained in those laboratories, or even to
be aware of them all. The growth of this field in combination with, and stimulated
by, DNA-based computation has been remarkably satisfying. However, the overall
effort has also become so unwieldy that no individual can be aware of all the techni-
cal details now known that enable us to perform successful experiments in that area.
Furthermore, while trying to remain general, I have discussed only those features
that apply to traditional “vanilla” DNA or RNA. In addition to vanilla DNA, there
are hundreds of derivatives, each of which is likely to evince a series of idiosyn-
crasies. This is a huge field, and the excitement is intense.
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Algorithmic Control: The Assembly
and Operation of DNA Nanostructures
and Molecular Machinery

Andrew J. Turberfield

Abstract It gives me great pleasure to contribute to this celebration of Grzegorz
Rozenberg’s contribution to the field of natural computing. I am grateful to Grzegorz
for fostering this remarkably interdisciplinary community which has provided me
with so much interest and enjoyment.

The theme of this symposium is ‘algorithmic bioprocesses’: this paper is con-
cerned with the creation of artificial structures by algorithmic assembly of a bio-
molecule, DNA. I will survey different strategies for encoding assembly and op-
eration algorithms in the design of DNA nanostructures, using examples that my
colleagues and I have worked on.

1 Algorithmic Assembly

An algorithm is a process or set of rules [1]. DNA self-assembly is dependent on
the Watson–Crick base pairing rule [2]: two single strands of DNA will bind anti-
parallel to each other to form a double helix if their nucleotide sequences are com-
plementary (A binds to T, C to G). This rule is supplemented by rules that pre-
scribe how to design more complicated structural motifs such as branched junctions,
single-stranded loops, G-quadruplexes, i-motifs, etc. [3] This set of structural rules
allows the product of assembly of an interacting set of DNA strands to be controlled
through design of their nucleotide sequences [4].

Strand design is algorithmic: it usually begins with decisions on how to posi-
tion strands in the final product and ends with automated selection of nucleotide
sequences to satisfy the resulting complementarity constraints and to reduce the
strength of competing interactions [5–7]. The process of assembly itself is also al-
gorithmic: the design of the component molecules embodies the assembly program
and controls the physical interactions that determine the product.

Figure 1 shows how a DNA tetrahedron can be assembled from four strands of
DNA [8]. Each strand is designed to run around one face, hybridizing to each of
the three other strands to form three double-helical edges. The edges consist of 20
base pairs (two helical turns) and are approximately 7 nm in length. This is much
shorter than the persistence length of DNA (50 nm [9]), so to a good approximation
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Fig. 1 Algorithmic assembly of a DNA tetrahedron [8]. (a) Design of the four component strands
of DNA, whose nucleotide sequences are designed such that the tetrahedron is the stable product
of self-assembly. Complementary subsequences that hybridize to form each edge are identified by
colour. (b) Space filling representation of a tetrahedron with 20-base pair edges

the edges can be considered to be stiff and straight. The tetrahedron, constructed
of rigid triangles, has a well-defined three-dimensional structure. The information
contained in the design of the four strands—i.e., the regions of complementarity
indicated by colour in Fig. 1, and the designed weakness of all other interactions—
is sufficient to define this structure. To assemble tetrahedra in high yield, all that is
necessary is to mix the four strands in hybridization buffer at high temperature and
cool through the range of temperatures over which assembly occurs.

The products of DNA self-assembly often look like organic molecules scaled up
by one or two orders of magnitude in linear dimension, with double helices for bonds
and branch junctions for atoms. DNA self-assembly differs fundamentally from or-
ganic synthesis, however: the enormous number of distinct nucleotide sequences
(410 for each 10-basepair helix period) means that each junction (atom) and each
helix (bond) can be unique (i.e., the corresponding sequences can be designed to be
orthogonal), and the stabilities of off-target assemblies can be greatly reduced. In
the simplest case, the designed product corresponds to a deep free energy minimum
and its formation is not dependent on the details of the assembly process. DNA
self-assembly usually needs no catalyst to favour a particular pathway and can of-
ten occur in a single reaction. Examples are Shih and co-workers’ octahedron [10],
Rothemund’s origami [11], and the DNA tetrahedron shown in Fig. 1 [8].

In some experiments, assembly takes place in a carefully controlled sequence of
steps, even though the product is designed to be very stable. Examples include the
first DNA polyhedra, made by the Seeman group [12, 13]. Stepwise synthesis is
necessary to achieve a high yield of a single product only when the loss in enthalpy
resulting from deviations from the design is insufficient to compensate for the cor-
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responding increase in entropy (for example, if off-target multimeric products could
satisfy most base-pairing interactions), or when the time required to achieve equilib-
rium becomes impractically long. When it is necessary to adopt sequential synthesis
rather than a one-pot reaction, and when it is simply more convenient, has not been
thoroughly explored.

A strategy often used to create extended DNA structures, particularly two-
dimensional arrays, is to build an assembly hierarchy into the strand designs. Arrays
are typically built from DNA tiles, which are robust building blocks consisting of
a small number of strands held together by hybridization. The most popular type is
the double-crossover tile [14, 15] consisting of two double helices held together by
strand exchange at two points; several other designs have been demonstrated [16–
21]. Interactions between tiles are by hybridization of single-stranded ‘sticky ends’
(typically four to a tile). The structure of the array is determined by the tile geom-
etry and the pattern of complementarity between the sticky ends. Extended arrays
are usually made by mixing components at high temperature and cooling slowly
through the temperature range in which assembly occurs (typically 80∼20°C) [15].
The interactions between the strands that make up a tile are, by design, significantly
stronger than the interactions between sticky ends that bind the tiles together. When
the system is heated above the melting temperature of all complexes, then cooled,
the sequence of assembly is controlled by this hierarchy of interaction strengths:
isolated tiles form first then, at lower temperatures, tiles assemble by sticky-end co-
hesion. Arrays formed in this way are typically indistinguishable from those formed
by annealing pre-formed tiles [15]. In either case, the assembly algorithm involves
two steps: tile formation, followed by assembly into an extended array.

Figure 2 shows two examples of arrays formed in this way [19]. The tile has the
same DNA components in each case: it is formed by hybridization of four short
strands to create a four-arm junction with six-nucleotide sticky ends. In a hybridiza-
tion buffer containing magnesium ions, this motif folds into a compact configura-
tion in which two pairs of arms stack coaxially to form two double helices that are
joined by exchange of two strands where they cross [22, 23]. Hybridization of the
sticky ends joins these tiles to create a woven structure resembling kagome basket-
work [24]. The same tiles can be reprogrammed to form the square lattice structure
shown in Fig. 2 by adding a protein (RuvA) that binds the junctions and unfolds
them into a square planar configuration [25].

The arrays shown in Fig. 2 are periodic. Information-rich, aperiodic arrays can be
created by a process that explicitly maps tile assembly onto the (algorithmic) opera-
tion of a 1D cellular automaton [26]: successive rows of tiles correspond to succes-
sive states of the automaton. The initial row of tiles corresponds to the automaton’s
program, and the pattern of sticky ends on the set of assembling tiles embodies its
rule table. This strategy has been used to assemble complex tile patterns including a
cumulative XOR on the input [27] which can generate a fractal pattern (a Sierpinski
triangle) [28], and a binary counter [29]. This form of assembly takes place close to,
but not quite at equilibrium: array growth must take place in a defined direction—
outward from the seed—corresponding to the operating sequence of the automaton.
The initial row of tiles acts as a crystallization nucleus to seed array growth. It is im-
portant that assembly is not too far from equilibrium, however, to maintain effective
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Fig. 2 Reprogrammable two-dimensional DNA array [19]. (a) The common structural unit—four
oligonucleotides hybridize to form a four-arm tile with two pairs of complementary sticky ends.
(b) Tertiary structure of the tile in the presence of Mg2+: sticky ends are represented by lock and
key symbols. (c) Kagome lattice formed by assembly of tiles in the presence of Mg2+ (for clar-
ity, half a helical turn is shown between junctions that are, in fact, separated by 2.5 turns). The
structure of the array is programmed by the spatial distribution of sticky ends on a tile. (d) Trans-
mission electron micrograph of the kagome lattice (DNA is positively stained (dark); scale bar:
100 nm). (e) Square-planar tile produced by binding of a tetramer of protein RuvA to the four-arm
junction. In this configuration, the ordering of sticky ends around the periphery of the tile is dif-
ferent. (f) Square lattice formed from tiles held in a square-planar configuration. By changing the
tertiary structure of the tile and repositioning the sticky ends, the protein has reprogrammed array
formation. (g) Transmission electron micrograph of the RuvA lattice (negatively stained: protein
is lighter than background; scale bar: 100 nm)

discrimination between an incoming tile that correctly forms bonds to two tiles in
the preceding row and one that forms only one bond. Error-correcting strategies that
(at the cost of requiring a larger tile set) ensure that incorporation of one imperfectly
bonded tile always leads to incorporation of another [30], doubling the free energy
penalty, are only effective if the tile off-rate is sufficiently high to allow removal of
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both incorrect tiles before the front of the growing array has propagated so far that
the error is locked in.

Algorithmic control of assembly can also be achieved in reactions that are far
from equilibrium by designing secondary structure to control reaction rates. A fur-
ther set of sequence design rules is being developed that ensures that the target
structure is the one reached most rapidly. Kinetically controlled assembly, in gen-
eral, avoids equilibrium—the assembly product corresponds to a local, not a global,
free energy minimum. The idea that DNA hybridization rates could be controlled
by a specific DNA signal was introduced by Turberfield and co-workers [31], and
has been developed by groups at Caltech, Lucent Technologies, and Oxford [32–
34]. The fundamental idea is that secondary structure, including loop structures, can
be used to inhibit hybridization of complementary DNA strands. Hybridization of
nucleotides in single-stranded loop domains can provide the free energy to drive a
reaction, but is inhibited topologically (unlinked loops of DNA cannot be wound
round each other to form a double helix without building in compensating counter-
turns) and energetically (a double helix forming a loop that is much shorter than the
persistence length is highly strained). Hybridization can be facilitated by a strand
invasion reaction with a third strand that disrupts secondary structure and opens a
loop. If the subsequent reaction of the opened loop with its complement displaces
the loop-opening strand then this strand is a catalyst that can initiate multiple re-
actions [31]. A reaction rate enhancement of three orders of magnitude has been
achieved by a hybridization catalyst [33]. In other implementations, an initial loop-
opening strand initiates a cascade of further loop-opening reactions to create a pro-
grammed polymeric or dendritic product [35, 36]. Control of non-equilibrium hy-
bridization reactions can also be used to create logic gates whose inputs and outputs
are DNA strands [37, 38]. It is intriguing to speculate that error rates in algorithmic
tile assembly could be reduced by running the reaction further from equilibrium and
using kinetic control to make the rapid incorporation of an incoming tile conditional
on the correct placement of preceding tiles [31].

2 Algorithmic Control of Molecular Machinery

DNA hybridization can be used as a source of energy to drive changes in the confor-
mation of a DNA nanostructure. This concept was introduced by the demonstration
of DNA ‘tweezers’ [39] that could be opened and closed by adding components of
a DNA fuel. DNA hybridization and strand displacement reactions have been used
to drive rotary devices [40], to open a cage [41, 42], to control a chemical reac-
tion [43–46] and to create ‘walkers’ that step along a track [47, 48]. Other nano-
structure actuation strategies include conformational changes induced by changes
in the buffer [49–51]. Each of these devices operates under algorithmic control and,
for each, part of the control loop is outside the self-assembled biomolecular sys-
tem. Usually control is exerted manually by a researcher who controls experimental
parameters such as strand concentrations or pH, though control has been delegated
to independent chemical reactions [52, 53]. The DNA walkers are good examples
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of the advantages and limitations of external control: each step requires addition of
two signal strands of DNA, first to free a foot from an anchorage on the track by a
strand displacement reaction, then to create a link to the next anchorage; the device
is very tightly controlled but incapable of autonomous motion.

To create a DNA device (such as a molecular motor) whose control algorithm is
encoded entirely in DNA, such that it can operate autonomously, is an experimental
challenge [54]. A molecular motor requires an energy source: if the motor itself (or
its track) is to avoid irreversible degradation then it must act as a catalyst for the
reaction of an external fuel. Hybridization catalysis [31] was developed in order to
enable the use of DNA hybridization as an energy source for autonomous molecular
machinery: formation of ten base pairs provides approximately the same free energy
as hydrolysis of a molecule of ATP under typical cellular conditions [55]. Other
energy sources that have been explored are hydrolysis of adenosine triphosphate
(ATP) [56] and of the DNA (or RNA) backbone [57, 58].

Unidirectional motion powered by DNA hydrolysis has been achieved by pro-
gressively destroying the track behind the motor (a ‘burnt bridges’ mechanism).
The motor (cargo) consists of a single strand that can hybridize to any one of an ar-
ray of single-stranded anchorages bound to a rigid track. In one implementation, the
motor incorporates a DNA domain that directly catalyzes hydrolysis of a ribonu-
cleotide incorporated in the anchorage [58]; in another, hybridization of motor to
anchorage enables an auxiliary restriction enzyme to cut the anchorage [57]. In both
cases, the motor migrates from the damaged anchorage to the next, intact, anchor-
age by a branch migration reaction to initiate another cycle of cleavage and motion.
Undirected motion through a three-dimensional matrix of anchorages has also been
demonstrated [59].

Figure 3 illustrates the operation of the enzyme-assisted burnt bridges motor [57].
The motor-anchorage duplex contains a non-palindromic recognition site for a re-
striction enzyme which has been modified to cut only one of the strands—the an-
chorage [60]. The enzyme cannot cut a single-stranded anchorage, so both the motor
and the enzyme have catalytic functions. The fragment of the anchorage released by
the enzyme is short enough to melt and diffuse away: the motor then transfers to
the next anchorage by a process of branch migration [61] which is initiated by hy-
bridization of the single-stranded domain, at the top of the motor, revealed by the
loss of the cut fragment [62].

A DNA hybridization catalyst that is localized at the growing end of a polymer
created by reactions between hairpin loops [63] can be considered as a motor, anal-
ogous to the bacterium Listeria which moves by catalyzing the polymerization of
actin: this directional motion is similar to that of the ‘burnt bridges’ motors in that
it causes an irreversible change (in this case, irreversible creation) of a track.

A motor that does not destroy its track has been created by using repeated en-
zymatic ligation (joining) and restriction (cutting) to move a DNA fragment from
anchorage to anchorage [56]. Ligation of the fragment to the end of an anchorage
enables further ligation to form a covalently bonded bridge with the next anchorage:
this creates a recognition site for a restriction enzyme that cuts the duplex in such a
way that the fragment is transferred between anchorages. By using two restriction
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Fig. 3 Algorithmic operation of a linear motor powered by a nicking enzyme [57]. The track is
an array of periodically spaced single-stranded anchorages. The motor (dark green) is an oligonu-
cleotide that can bind to any one of the anchorages. (a) The motor is bound to anchorage Si ,
enabling enzyme N.BbvC IB to cut the anchorage to release a short fragment. The motor is left
with a single-stranded overhang which is free to bind to the adjacent anchorage Si+1. The motor
cannot bind to Si−1 which was cut in the previous step. (b) The motor then steps onto Si+1 by
a simple branch-migration reaction. For each base pair broken between motor and Si , a base pair
can be formed between motor and Si+1. (c) Upon completion of the branch migration reaction, the
motor is bound to Si+1 and the step is complete

enzymes and a repeated set of four anchorages, it is possible for this device to op-
erate unidirectionally and indefinitely [64]: its energy source is hydrolysis of ATP,
coupled to DNA ligation by the ligase (an ATPase).

A design for a DNA motor that couples catalysis of the reaction of a pair of com-
plementary hairpin loops to a step along a reusable track [54] is shown in Fig. 4.
As with the burnt bridges motor shown in Fig. 3, the track consists of an array of
single-stranded anchorages, to any of which the motor can hybridize. The reaction
between a complementary pair of hairpin loops is catalyzed by the motor-anchorage
complex and by a neighbouring empty anchorage: these structures react with com-
plementary loops to create intermediate complexes in which the loops are open. The
opened loops can then react rapidly with each other to form a stable duplex waste
product. During each loop-loop reaction the motor is lifted from one anchorage
and deposited on the next. This motor is processive: the motor remains securely at-
tached to the track. It is not intrinsically directional, but directional motion could be
achieved by adopting a burnt bridges mechanism: if one of the hairpin species were
removed after forming complexes with each empty anchorage, then ‘used’ anchor-
ages would remain empty, and the motor could only move forward. (The track could
be regenerated by resupplying fuel.) Work on molecular motors that use biomimetic
design principles to coordinate catalysis of the reaction of the fuel with mechanical
motion is in progress [65, 66].
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Fig. 4 Algorithmic operation of a hybridization-powered molecular motor [54]. (a) The motor is
shown bound to one of an array of single-stranded anchorages attached to a rigid track. Move-
ment of the motor is coupled to hybridization of complementary hairpin loops l and l̄. (b) An
empty anchorage is designed to bind to the first few bases of the loop domain of the l̄ hairpin
(pink) and to open the hairpin’s neck (blue) by a strand-displacement reaction. The motor is com-
plementary to the anchorage sequence and has an extended toehold region designed to interact
with the loop domain of the complementary hairpin l. The track-bound motor can open a l hair-
pin in a strand-exchange reaction in which the blue domains in the hairpin neck, the motor and
the anchorage exchange partners, displacing the motor from its initial anchorage but keeping it
securely attached to the track. (c) By forcing open the necks of complementary hairpins l and l̄

the track-bound motor and adjacent empty anchorage catalyze their hybridization. (d) When the
open loops hybridize to produce an l–l̄ duplex (a waste product), the motor is deposited on the next
anchorage by strand exchange. One loop–loop reaction is thus coupled to one step down the track.
This motor could be made directional by preparing all anchorages with bound (open) l̄ hairpins
then removing excess l̄: motion of the motor would leave empty anchorages behind, preventing
backward steps

3 Summary

DNA self-assembly is an algorithmic process. The algorithm that controls assembly
is embodied in the nucleotide sequences of the component strands of DNA. Dif-
ferent control strategies are possible: assembly can occur in a single reaction or in
a controlled sequence of reactions; strands may be designed to ensure that at each
stage the desired product is the most stable or the most rapidly formed. Active de-
vices can be controlled by externally supplied signals or by embedding a control
algorithm in the design of interacting components and DNA fuels.
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On Nonuniversal Symport/Antiport P Systems

Oscar H. Ibarra and Sara Woodworth

Abstract We examine restricted SA P system models and analyze minimal systems
with regard to the size of the alphabet and the number of membranes. We study the
precise power of SA P systems with either 1, 2, or 3 symbols and less than 5, 4, and
3 membranes, respectively, improving the previous results. The question of whether
using only a single symbol with any number of membranes is universal remains
open.

We define and examine restricted forms of SA P systems (called bounded SA
P systems and special SA P systems) finding infinite hierarchies with respect to the
both the size of the alphabet and the number of membranes. We also analyze the role
of determinism versus nondeterminism and find that over a unary input alphabet,
these systems are equivalent if and only if deterministic and nondeterministic linear-
bounded automata (over an arbitrary input alphabet) are equivalent.

Finally, we introduce restricted SA P system models which characterize semi-
linear sets. We also show “slight” extensions of the models allow them to accept
(respectively, generate) nonsemilinear sets. In fact, for these extensions, the empti-
ness problem is undecidable.

1 Introduction

A very simple membrane computing model known as Symport/Antiport P system
(SA P system) was introduced by Gheorghe and Andrei Păun in [18] and quickly
rose in popularity. The model is purely communicative and based on the biochemical
idea that certain pairs of chemicals allow transport between membranes. In SA P
systems, rules only allow the transport of objects between membranes. No objects
are created, no objects are deleted, and the membrane structure is fixed. However,
the model is quite powerful and is known to be computationally complete.

The SA P system model is defined formally as Π = 〈V,μ,w1, . . . ,wm,we,R1,

. . . ,Rm, io〉 where V is the alphabet of objects allowed within the system. The envi-
ronment contains an unlimited number of each object which can be brought into the
system during the computation. μ is the initial membrane hierarchy with m mem-
branes where each membrane is given a distinct label. wi is the initial multiset of
objects initially located in membrane i. we is the initial multiset of objects initially
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located in the environment. If an object occurs once in we , it must occur an infinite
number of times. This means that the environment has its own alphabet E ⊆ V such
that each object in E occurs in unlimited quantities in the environment. Ri is a set of
rules for membrane i of the form (u,out), (u, in), or (u,out;v, in) where u,v ∈ V ∗.

The rule types (u,out) and (u, in) are known as symport rules (uniport if |u| = 1)
while the rule type (u,out;v, in) is known as an antiport rule. A rule of the form
(u,out) in membrane i sends the elements of u from membrane i out to the mem-
brane (directly) containing i. A rule of the form (u, in) in membrane i transports the
elements of u into membrane i from the membrane enclosing i. Hence, this rule can
only be used when the elements of u exist in the outer membrane. A rule of the form
(u,out;v, in) simultaneously sends u out of the membrane i while transporting v

into membrane i. Hence, this rule cannot be applied unless membrane i contains the
elements in u and the membrane surrounding i contains the elements in v. These
systems can be used as generators or acceptors of sets of numbers.

This model was initially found to be computationally complete for systems with
five or more membranes [18]. Since this original paper, more restricted systems
have been studied in terms of the number of objects in the alphabet, the number of
membranes, and the size of the rules. Many computationally complete bounds have
been found. These results can be found in various papers found in [1].

Here, we examine additionally restricted SA P system models. We analyze min-
imal systems with regard to the size of the alphabet and the number of membranes.
We study the precise power of very simple SA P systems with either 1, 2, or 3 sym-
bols and less than 5, 4, and 3 membranes, respectively. This improves the previous
work in [2] and [19]. However, the question of whether using only a single symbol
with any number of membranes is computationally complete remains open.

We then look at restricted forms of SA P systems (called bounded SA P systems
and special SA P systems) where we find an infinite hierarchies with respect to the
both the size of the alphabet and the number of membranes. We also analyze the
role of determinism versus nondeterminism and find that over a unary input alpha-
bet, these systems are equivalent if and only if deterministic and nondeterministic
linear-bounded automata (over an arbitrary input alphabet) are equivalent. Similar
results above have been shown for other types of restricted P systems (that are not
symport/antiport) [12]. However, these previous results do not easily translate for
the models of SA P systems considered here.

Finally, we introduce some restricted SA P system models which characterize
semilinear sets. A set Q ⊆ Nk is a linear set if there exist vectors v0, v1, . . . , vt

in Nk such that Q = {v | v = v0 + m1v1 + · · · + mtvt ,mi ∈ N}. The vectors v0
(referred to as the constant vector) and v1, v2, . . . , vt (referred to as the periods)
are called the generators of the linear set Q. A set Q ⊆ Nk is semilinear if it is a
finite union of linear sets [7]. The empty set is a trivial semilinear set, where the
set of generators is empty. Every finite subset of Nk is semilinear—it is a finite
union of linear sets whose generators are constant vectors. It is also clear that the
semilinear sets are closed under (finite) union. It is also known that they are closed
under complementation, intersection, and projection. A semilinear subset of N1 (i.e.,
1-tuples) is sometimes referred to as regular. Examples include L = {(n,2n) | n ≥ 1}
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and L = {(r, s, t) | r ≤ s ≤ t and r, s, t ≥ 1}. We also show that “slight” extensions
of the models will allow them to accept (respectively, generate) nonsemilinear sets.
In fact, for these extensions, the emptiness problem is undecidable (i.e., no algorithm
exists which decides the following question: given an arbitrary SA P system Π in
the class, is the language accepted by Π empty?).

2 SA P Systems with a Small Number of Objects

SA P system completeness results try to determine how “minimal” of a system is
needed for completeness to hold. Minimal systems restrict many aspects of the sys-
tem including how many objects are used, how many membranes are used, and the
size of the rules which are used. The best known previous results (before the results
we present here) can be found in [2] where the number of symbols can be limited
to 3 and the number of membranes to 3 and computational completeness is still
achieved. This result was expanded to show 2 objects and 4 membranes, 4 objects
and 2 membranes, and 5 objects and 1 membrane are computationally complete.

In [2], some partial results were given for minimal systems which are not known
to be computationally complete. These results are stated here:

1. The languages Lk = {ki | i ∈ N} can be accepted by 1-symbol 1-membrane SA
P systems.

2. The family of all finite sets of natural numbers is contained in the family of 1-
symbol 1-membrane SA P system acceptors.

3. A set Q ⊂ N can be generated by a 1-symbol 1-membrane SA P system acceptor
if and only if Q is finite.

4. The family of all regular sets of natural numbers is contained in the family of
1-symbol 2-membrane SA P system generators.

5. The family of all regular sets of natural numbers is contained in the family of
2-symbol 1-membrane SA P system generators.

(A i-symbol j -membrane SA P system is a SA P system which uses at most i sym-
bols and at most m membranes.) Here, we improve the above results. We also find
that 1-symbol multimembrane SA P systems (acceptors and generators) are surpris-
ingly powerful.

2.1 2-Symbol 1-Membrane SA P System Acceptors

In this section, we consider SA P system acceptors which are restricted to two sym-
bols and one membrane. Previous results in [2] show that all finite sets of natural
numbers can be accepted by this type of restricted SA P system. These results, how-
ever, can be improved.

Theorem 1 The family of all finite sets of natural numbers is properly contained in
the family of 2-symbol 1-membrane SA P system acceptors.
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Proof The result that the family of all finite sets of natural numbers is contained
in the family of 2-symbol 1-membrane SA P system acceptors was shown in [2].
To see that this containment is proper, we show that some nonfinite set of nat-
ural numbers can be accepted by a SA P systems with two symbols and one
membrane. Consider the set L = {2n | n ≥ 0}. The following SA P system with
only 2 symbols and 1 membrane accepts L, and hence proves that the inclu-
sion is strict. Define Π = 〈Σ,μ,w1,R1, io〉 where Σ = {o, t}, μ = [1]1, w1 = λ,
R1 = {(oo,out;o, in), (o,out; t, in), (t t,out; t t, in)}, io = 1.

Informally, this machine has the input oi in the skin membrane initially. During
each step, the input is reduced by half. If there is an odd number of o’s, at least one
t will be drawn into the membrane. Eventually, the number of o’s will be reduced
to one. This will draw a single t into the membrane during the next step. If the
computation ever draws in more than one t , the computation will never halt. An
input is accepted if the number of o’s is always even (until the last step) and always
uses the first rule to apply to each pair of o’s. This will only occur if the input given
is in L. �

Since L is not a semilinear set, the above proof also gives us the following result.

Corollary 1 2-Symbol 1-membrane SA P system acceptors 
= semilinear sets
over N.

We can, however, show that all regular sets (and hence all semilinear sets) can be
accepted by SA P systems with two symbols and one membrane. This improves the
above result.

Theorem 2 The family of all regular sets of natural numbers is properly contained
in the family of 2-symbol 1-membrane SA P system acceptors.

Proof From Corollary 1, we need only show that the family of all regular sets of
natural numbers is contained in the family of 2-symbol 1-membrane SA P system
acceptors. We give a construction such that given a regular set of natural numbers
creates a SA P system with two symbols and one membrane accepting the same
set. Any unary regular set M can be defined in terms of some sets M0 and M1
such that M = M0 ∪ {i + jk | i ∈ M1, j ∈ N} for some k. From M, we create the
SA P system Π = 〈{o, t}, [1]1, λ,R1,1〉 where R1 = {(oi,out; t2, in) | i ∈ M0} ∪
{(oi,out; t3, in) | i ∈ M1} ∪ {(okt3,out; t3, in)} ∪ {(t4,out; t4, in), (o,out;o, in)}.

Informally, the resulting SA operates by using a trap symbol t to guarantee that
no wrong path of the computation is taken. This is done by capping the number of
t symbols to three in a correct computation. If four or more t symbols are brought
into the membrane, the rule (t4,out; t4, in) will guarantee that the computation will
never halt. The rule (o,out;o, in) is used to make sure the computation never halts
if all the o’s are not used in other rules (i.e., the input was not in accepted by M).

The computation works by first choosing to either check that the o’s make up an
element in M0 or they make up an element in {i + jk | i ∈ M1, j ∈ N}. This is done
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by using one of the first two rules in the first step. (The remaining o’s will use the
rule (o,out;o, in) to remain unchanged. Also, it is important to note that if more
than one instance of one of the first two rules is applied, at least four t symbols will
be brought into the system.) If the second rule type was applied, the computation
now is able to remove ok in each prior step until the number of remaining o’s is less
than k. If the input is accepted, the computation will reach a step where there are no
more o’s in the membrane and less than four t ’s resulting in no applicable rules. �

2.2 1-Symbol 3-Membrane SA P System Acceptors

Very little so far is known about the power of SA P systems with only one symbol.
Symport/antiport P system generators are known to be able to generate at least reg-
ular sets if they are allowed at least two membranes [2], but what about acceptors?
Here, we find they are able to accept some nonsemilinear sets.

Theorem 3 The family of languages accepted by 1-symbol 3-membrane SA P sys-
tems contain some nonsemilinear sets.

Proof The following 1-symbol 3-membrane SA P system accepts the nonsemi-
linear set L = {2n | n ≥ 0}. Let Π = 〈Σ,μ,w1,w2,w3,R1,R2,R3, io〉 where
Σ = {o}, μ = [1[2[3]3]2]1, w1,w2,w3 = λ, R1 = {(oo,out;o, in)}, R2 = {(o, in)},
R3 = {(oo,out), (oo, in)}, io = 1.

This system works by dividing the number of o’s in membrane 1 in half until only
a single o is left. If the input was of the form o2n

, each step will leave an even number
of o’s in membrane 1 until the last step which will draw the final o into membrane
2 and the computation will halt. If the input was not of the form o2n

, some step
will have an odd number of o’s (>1) in membrane 1. Since the computation must
work in a maximally parallel manner, at least one o will be drawn into membrane 2
before the final step. If this occurs, at least two o’s will be located in membrane 2
after no o’s remain in membrane 1. These o’s will travel between membrane 2 and
membrane 3 forever causing an infinite loop. (This loop will also occur if the rule
in membrane 1 is not exhausted before the rule in membrane 2 is applied. This type
of computation signifies a wrong guess in the nondeterministic branching.) �

2.3 1-Symbol Multimembrane SA P System Acceptors

In the previous section, we saw that SA P system acceptors with a single symbol can
accept nonsemilinear sets. So, a natural question is: What is the computing power
of a multimembrane acceptor which uses only a single symbol? Although it is still
open whether such systems are universal, we can show that they are more powerful
than partially blind multicounter machines.
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A partially blind multicounter machine (PBCM) [8] is a restricted type of counter
machine which consists of a finite number (call the number m) of counters which
can add one and subtract one, but cannot test for zero. If there is an attempt to
decrement a zero counter, the system aborts and does not accept. A PBCM can be
used as an acceptor of tuples. In this case, the first k counters (for some k ≤ m) are
input counters. The system is started with some nonnegative integers (n1, . . . , nk) in
the input counters and the other counters set to zero. The input tuple is accepted if
the system reaches a halting state and all the counters are zero. Hence, the language
accepted by a PBCM is the set of k-tuples of nonnegative integers accepted by the
system.

A PBCM can also be used as a generator of numbers. In this case, all m counters
are initially zero. When the system halts, the computation is only considered valid
if the nonoutput counters are all zero. If this is the case, the k-tuple created from the
values of the k-output counters is said to be generated. Without loss of generality, it
can be assumed that the k-output counters are strictly increasing counters.

Formally, a PBCM is defined as M = 〈m,B, l0, lh,R〉 where m is the number
of partially blind counters in the system, B is the set of instruction labels, l0 is
the starting instruction, lh is the halting instruction, and R is the set of instruc-
tions. The instructions in R are of the forms: li : (ADD(r), lj , lk); li : (SUB(r), lj );
li : (HALT) where li , lj , and lk are instruction labels and r is the counter that should
be added to or subtracted from. If the instruction li : (ADD(r), lj , lk) is executed,
either instruction lj or lk will execute next (picked nondeterministically). If the in-
struction li : (SUB(r), lj ) is executed, instruction lj is executed next (assuming the
computation did not abort). When the instruction li : (HALT) is executed, the system
halts. If the PBCM system is used as an acceptor, a deterministic model can also be
considered. A deterministic PBCM is defined in the same manner except that the
instruction li : (ADD(r), lj , lk) becomes li : (ADD(r), lj ).

For some k ≥ 2, PBCMs can accept nonsemilinear sets over Nk . When k = 1,
PBCMs accept exactly the semilinear sets over N. It is known that k-output PBCMs
can be simulated by vector addition systems, and vice versa [8]. (Hence, such
counter machines are not universal.) In particular, a k-output PBCM can gener-
ate the reachability set of a vector addition system. However, k-output PBCMs are
strictly less powerful than unrestricted multicounter machines (which are equivalent
to Turing Machines).

It is also known that the family of k-tuples generated by PCBMs is closed under
union and intersection, but not under complementation. The membership, empti-
ness, infiniteness, disjointness, and reachability problems are decidable for PBCMs;
but containment and equivalence are undecidable.

A related model called blind multicounter machine [8] is a multicounter machine
that can add one and subtract one from a counter, but cannot test a counter for zero.
The difference between this model and a partially blind counter machine is that a
blind counter machine does not abort when a zero counter is decremented. Thus,
the counter stores a negative number. Again, an input is accepted if the computation
reaches an accept state and all the counters are zero. We note that a blind counter
machine is equivalent in power to reversal bounded counter machines [8] which are
equivalent to semilinear sets [13].
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The next theorem is an improvement of a result in [19] where it was shown that
a partially blind counter machine with m-counters (operating as an acceptor) can
be simulated by a SA P system with two symbols and 3(m + 1) membranes. Our
construction is a rather intricate modification of the construction in [19].

Theorem 4 Any partially blind counter machine M acceptor with m counters can
be simulated by some 1-symbol (2m + 3)-membrane SA P system acceptor Π .

Proof Let M = 〈m,B, lo, lh,R〉 where M is a partially blind counter machine with
m counters. Assume that the start instruction (lo) is labeled l1 and each additional
instruction is labeled sequentially as l2, l3, . . . , l|R|. Also, assume the last labeled
instruction, l|R| is the HALT instruction (lh) and no other HALT instructions exist.

The instructions of M are encoded with distinct numbers. These numbers have
useful properties much like the encoding in the construction of [19]. In [19], the
main property of the encoding guarantees that for a set of encoded numbers, each
element of the set is distinct. In other words, given an encoded number oi , there
exists no set of additionally encoded numbers such that oj1 + · · · + ojn = oi (where
the oj ’s do not need to be distinct, but are not equal to oi ). In our construction, we
use this idea and extend it so that we can encode two sets of numbers (call them set A

and set B) such that given two encoded numbers oi ∈ A and oj ∈ B , the encoding is
distinct. This means that there does not exist a set of additionally encoded numbers
such that ok1 + · · · + okn = oi + oj (where the ok’s do not need to be distinct, but
are not equal to either oi or oj ). This codification is done in two parts.

First, for each element in the set B ∪ R we associate a distinct natural number
from the set {1,2, . . . , n} where n = |B ∪ R|. The mapping is given here with our
way of denoting each distinct natural number along with the natural number itself.

1. ∀li ∈ B (the label associated with some instruction), li = 2i − 1.
2. ∀li : (ADD(r), lj ) ∈ R (an addition instruction itself), Air = 2i.
3. ∀li : (SUB(r), lj ) ∈ R (a subtraction instruction itself), Sir = 2i.

The li : (HALT) instruction requires two distinct natural numbers for each counter
in the system. These numbers will be encoded over the set {(n + 1), . . . , (n + 2m)}.
This association is created as follows.

1. ∀ i(1 ≤ i ≤ m), Hi = (2i − 1) + n and Hi′ = 2i + n

The second part of the codification is done by encoding each of the previously
defined natural numbers. This encoding will guarantee that the set of applicable
rules at each step has only one distinct ‘correct’ path. (A “noncorrect” path traps at
least some objects causing an infinite loop.) This encoding is done with the function
vα(i) = 12mn′ + 12mi where n′ = n + 2m + 1.

The second set of encoded numbers denote internal “commands.” These com-
mands deal with the actual addition and subtraction of objects in the counter mem-
branes. The set {ADDj ,SUBj ,REMOVEj ,CHECKj } for 1 ≤ j ≤ m denotes these
commands. Each of these elements is encoded by the function vβ as follows.
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1. vβ(ADDj ) = 24mn′ − 4(j − 1) − 1 (adds a number to counter j ).
2. vβ(REMOVEj ) = 24mn′ − 4(j − 1) − 2 (signifies the instruction is completed).
3. vβ(SUBj ) = 24mn′ − 4(j − 1) − 3 (subtracts a number from counter j ).
4. vβ(CHECKj ) = 24mn′ − 4(j − 1) − 4 (makes sure the counters halt in the ap-

propriate configuration).

Some important properties of the encoding created by the functions vα and vβ fol-
low:

– Each vα(i) is strictly greater than half of any other vα(j).
– Each vβ(i) is a distinct value between 24mn′ − (24m)/2 and 24mn′.
– Each vβ(i) − 24m(n′ − 1) is strictly greater than half of any other vβ(j) −

24m(n′ − 1).
– The addition of any vα(i) with some vβ(j) is distinct and cannot be created using

any other combination of vα(i′)’s and vβ(j ′)’s. (This is due to the fact that every
vβ(j ′) is larger than any vα(i′). It is also due to the fact that every vα(i′) is a
multiple of m and every vβ(j ′) is not a multiple of m.)

Using the defined encoding of the instructions, we now create a SA P system Π

to simulate M with 2m + 3 membranes. For ease of understanding, we will label
these membranes with the labels {s, ci1, ci2, t1, t2 | 1 ≤ i ≤ m}. We use s to denote
the skin membrane which controls the execution of each instruction. We use ci1 and
ci2 (1 ≤ i ≤ m) to denote membranes used to store the count of the counter i. We
use the labels t1 and t2 to denote membranes that are used to “trap” incorrect moves
and force an infinite looping of rules. Formally, we define the system as follows:

Π = 〈Σ,μ,w1, . . . ,w2m+3,R1, . . . ,R2m+3, io〉
where Σ = {o}, μ = [s[t1[t2 ]t2 ]t1[c11 [c12]c12 ]c11[cm1 [cm2 ]cm2 ]cm1 ]s , ws = ovα(l1),

wci1 = ovβ(REMOVEi ) for 1 ≤ i ≤ m, wci2 = ovβ(SUBi ) for 1 ≤ i ≤ m, and wt1,wt2 = λ

for 1 ≤ i ≤ m. The rules are created as follows:
For each instruction of the form li = (ADD(r), lj ) add the following rules to

membrane s:

1. (ovα(li ),out;ovα(Air )ovβ(ADDr ), in).
2. (ovα(Air ),out;ovα(lj ), in).

For each instruction of the form li = (SUB(r), lj ) add the following rules to mem-
brane s:

3. (ovα(li ),out;ovα(Sir )ovβ(SUBr ), in).
4. (ovα(Sir ),out;ovα(lj ), in).

For the instruction of the form li = (HALT) add the following rules to membrane s:

5. (ovα(li ),out;ovα(H1), in).
6. (ovα(Hi),out;ovα(Hi′ )ovβ(CHECKi ), in) for 1 ≤ i ≤ m.
7. (ovα(Hi′ ),out;ovα(Hi+1), in) for 1 ≤ i < m.
8. (ovα(Hm′ ),out).
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The following additional rules must be added to the system:

9. In membrane s, for each counter r where 1 ≤ r ≤ m add the rule (ovβ(REMOVEr ),

out).
10. Add the following rules to membrane cr1 for 1 ≤ r ≤ m:

(a) (ovβ(REMOVEr ),out;ovβ(ADDr ), in),
(b) (ovβ(REMOVEr ),out;ovβ(SUBr ), in),
(c) (ovβ(REMOVEr ),out;ovβ(CHECKr ), in).

11. Add the following rule to membrane cr2 for 1 ≤ r ≤ m (ovβ(SUBr ),out;
ovβ(SUBr ), in).

12. Add the rule (o, in) to membrane t1.
13. Add the rules (o, in) and (o,out) to membranes t2.

The basic structure containing only the rules not associated with specific instruc-
tions is given in Fig. 1. Here, we see the two trap membranes and their associated
rules. Also, we see the two membranes for each counter along with their operational
rules. Finally, the skin membrane surrounds all these membranes.

The fundamental idea necessary for the simulation is due to the manner in which
the instructions and commands are encoded using the functions vα( ) and vβ( ). Be-
cause of the encoding, any single vα(i) and vβ(j) can be added to each other and
these numbers are still distinctly distinguishable. Since the construction never has
more than a single vα(i) and a single vβ(j) in any membrane during the same step,
the multiset of o’s can only be broken up as vα(i) and vβ(j) without leaving re-
maining o’s to be drawn into the trap membranes. If the wrong rule set is picked, at

Fig. 1 Basic membrane structure used to simulate a PBCM
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least one extra o will remain in the membrane and the trap membranes will draw in
the o causing an infinite looping of rules to occur.

Informally, the process of Π occurs as a 2-part system. The set of numbers en-
coded by the function vα( ) control the sequence of instructions which are executed
and the set of numbers encoded by the function vβ( ) control the actual processing
of increment and decrement instructions.

An instruction of the form li : (ADD(r), lj ) begins with the encoded multiplicity
for the instruction label within membrane s. This brings in both the multiplicity of
o associated with the instruction itself along with ovβ(ADDr ) (using rule 1). The en-
coded ADDr command adds a single o to membrane cr1 (by swapping ovβ(ADDr )

with ovβ(REMOVEr ) where ADDr = REMOVEr + 1 using rule 10(a)). Simultane-
ously, rule 2 is used in membrane s to throw out ovα(Air ) and draw in ovα(lj ),
leaving ovα(lj ) + ovβ(REMOVEr ) in membrane s. To complete the addition process,
ovβ(REMOVEr ) is thrown out of membrane s (rule 9). Simultaneously, ovα(lj ) are
thrown out of membrane s and the appropriate o’s are drawn in to execute the next
instruction.

An instruction of the form li : (SUB(r), lj , lk) operates almost identically to that
of the li : (ADD(r), lj ) instruction except that ovβ(ADDr ) is replaced with ovβ(SUBr ).

If the wrong maximal multiset of rules is ever chosen in a given step, some num-
ber of o’s will not be used in instruction/command steps (due to the fact that no
vα(i) + vβ(j) can be evenly broken up into any other set of vα()’s and vβ()’s).
These additional o’s will be drawn into trap membrane t1 using rule 12. Once an o

is within this trap membrane, the computation will never halt since the o will con-
stantly pass between the outer trap membrane and the inner trap membrane using
the rules in 13.

Handling the simulation of a subtract instruction from a zero counter operates in
a slightly convoluted manner. The subtract instruction itself is allowed to process,
but the system “blocks” (i.e., enters a state where an infinite loop of applicable in-
structions is guaranteed) when the next instruction is processed. (Since li : (HALT)

is processed as if it is an instruction, we are guaranteed to have an additional in-
struction following a “subtract from zero” instruction.) When a subtract from zero
occurs, the contents of ci1 will be left with just ovβ(SUBi ). All instructions require
that ovβ(REMOVEi ) be removed from ci1 (rules 10(a), 10(b), and 10(c)) in order to
process. Since ovβ(REMOVEi ) is ovβ(SUBi ) + 1, this rule is not applicable if a subtract
from zero occurs and the extra o’s in membrane s must be drawn into membrane t1
where they will be shuttled between t1 and t2 forever.

To check that all of the counters halt containing a count of zero, the encoding
of the set {Hi | 1 ≤ i ≤ m} is used to stall the computation one step by bringing in
the appropriate encoding of the set {Hi′ | 1 ≤ i ≤ m} (using rule 6). When ovα(H ′

i )

is brought in, so is the encoded command CHECKj . Each CHECKj is processed
after the encoded CHECK(j−1) has been processed using rules 6 and 7. In the next
step, ovβ(CHECKj ) is exchanged with ovβ(REMOVEj ) in membrane cj1. If membrane

cj1 previously contained a zero count, it now contains only ovβ(CHECKj ). This will
cause rule 11 to no longer be applicable. If cj1 previously contained a count greater
than zero, rule 11 in membrane cj2 to be applicable forever. Finally, membrane s
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removes objects ovβ(REMOVEj ) while the encoded halt instruction for counter j + 1
is drawn in.

Nondeterminism in this construction is essential. Clearly, a symport/antiport sys-
tem with one symbol must operate nondeterministically if more than one rule of ei-
ther type (u, in) or (u,out) occurs in any membrane. A deterministic system would
require most rules to be antiport rules and consist of a rather tricky construction. In
the above construction, each step often has many possible applicable rules, but only
one set of “valid” rules using all of the objects in the membrane. If not all the objects
are used in “valid” rules, the remaining objects are trapped. Nondeterminism picks
the rule set which uses all of the current o objects without using a trap rule. �

In the above proof, the definition of a SA P acceptor was loosened, initially al-
lowing a fixed number of input symbols in the input membrane along with the input
itself. This relaxed definition is not necessary. If we require the input membrane to
initially contain only the input itself (the strict SA definition), then we only need to
make the following changes to our construction.

1. Initially wci1 = λ; wci2 = ov(βiSUB)+v(βiREMOVE).
2. Add the rule (ov(βiREMOVE),out) to membrane ci2.

Now, our simulation operates identically to the previous simulation after the first
step of computation.

It can be noted that our simulation does not use an unbounded number of maxi-
mally parallel steps in a halting computation. At any point during the simulation, at
most two rules are applied in any membrane during a single step (except within the
trap membranes if a computation takes a wrong path). While the number of rules
which may be applicable in the trap membranes could be large, we only need one
rule to actually execute at each step to guarantee an infinite loop. Hence, the rules
in these membranes are not affected by limiting the number of maximally paral-
lel steps. We will denote a restricted model of a symport/antiport P system k-tuple
acceptor with m objects and n membranes which restricts the number of rules per
membrane per step to x as an i-symbol j -membrane x-parallel SA P system accep-
tor.

Corollary 2 Any partially blind counter machine M acceptor with m counters
can be simulated by some 1-symbol (2m + 3)-membrane 2-parallel SA P system
acceptor Π .

Proof This follows from Theorems 4 and 3. �

These results can also be used to give an upper bound on the number of mem-
branes needed for a single object SA P system to simulate any regular set. It is easy
to see that a 1-counter PBCM can accept any regular set by initially starting with
the input in the counter, decrementing the counter, and simulating the finite automa-
ton (FA) accepting the regular set. The 1-counter PBCM accepts (guessing that the
counter is zero) if the FA accepts. Since Theorem 4 gives a construction to simulate
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an m-counter PBCM with 2m + 3 membranes, we can simulate a 1-PBCM with a
1-symbol 5-membrane SA P system acceptor. (Again the inclusion is strict due to
Theorem 3.)

Corollary 3 The family of all regular sets of natural numbers is properly contained
in the family of 1-symbol 5-membrane SA P system acceptors.

We will show that, in fact, 1-symbol multimembrane SA P system acceptors are
more powerful than partially blind counter machines. Consider a SA acceptor P
with only one symbol o and r membranes m1, . . . ,mr . Without loss of general-
ity (by relabeling the membranes), assume that the first k membranes m1, . . . ,mk

are the input membranes. There are fixed multisets os1, . . . , osr such that at the
start of the computation, the input membranes are given os1+n1 , . . . , osk+nk for
some nonnegative integers n1, . . . , nk and the other membranes are given osj for
j = k + 1, . . . , r . If the system halts, then we say that the k-tuple (n1, . . . , nk) is
accepted. The set of all such k-tuples is the set accepted by P . Then the following
corollary follows from Theorem 4.

Corollary 4 If L ⊆ Nk is accepted by a partially blind counter machine with m ≥ k

counters (note that the first k counters are input counters), then L can be accepted
by a 1-symbol, (2m + 3)-membrane SA acceptor.

Corollary 5 Let G be a k-dimensional vector addition system with states (VASS),
and R(G) ⊆ Nk be the reachability set of G. Then R(G) can be accepted by a
1-symbol multimembrane SA P system acceptor.

Proof Let G = 〈x,W,T ,p0〉 be a VASS. We need only show that R(G) can be ac-
cepted by a partially blind counter machine M. The construction is straightforward.
M has 2k counters, where the first k counters are the input counters. Given input
y = (n1, . . . , nk) in the first k counters and zero in the last k counters, M first stores
the k-tuple x in the last k counters. Then M simulates the computation of G (i.e.,
applies the vectors in W ) on the last k counters. At some point nondeterministically
chosen, M guesses that the k-tuple w in the last k counters is equal to the k-tuple
y in the input counters. Then for each i, M decrements counter i and n + i by 1
simultaneously a nondeterministic number of times in state qi after which M jumps
to state qi+1. After processing all the counters, M enters an accepting state. �

We can now show that 1-symbol multimembrane SA P system acceptors are more
powerful than partially blind counter machines.

Theorem 5 1-Symbol multimembrane SA P system acceptors are more powerful
than partially blind counter machines.

Proof From Theorems 3 and 4, we need only show that L = {2n | n ≥ 0} cannot be
accepted by a partially blind counter machine.
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The idea is the following. Given a partially blind counter machine M with k + 1
counters with the first counter being the input counter, accepting L(M) ⊆ N, we
construct a (k + 3)-dimensional VASS G = 〈x,W,T ,p0〉 (for some k), such that
R(G) ∩ (N × {0}k+2) = {(n,0, . . . ,0) | n ∈ L(M)}. Let L(G) be the projection of
R(G) ∩ (N × {0}k+2) on the first coordinate. Then from the results in [9], L(G) is
semilinear. Hence, L(M) is also semilinear (since L(G) = L(M)).

We now describe the construction of G from M. Initially starting with x =
(0,1,0, . . . ,0), G increments coordinates 1 and 3 by 1 simultaneously a nonde-
terministic number of times, say, n. At this point, the coordinates will have values
(n,1, n,0, . . . ,0). Then G simulates the computation of M on the last k +1 coordi-
nates (n,0, . . . ,0) until M enters an accepting state, guessing that its k +1 counters
are zero. G then decrements the second coordinate by 1.

Clearly, the projection of R(G) ∩ (N × {0}k+2) on the first coordinate is L(M),
and the result follows. �

2.4 1-Symbol Multimembrane SA P System Generators

In the previous section, we defined both PBCM acceptors and PBCM generators.
The following theorem shows that these two PBCM models are equivalent.

Theorem 6 Let k ≥ 1 and L ⊆ Nk . (1) If M is a PBCM generator with m counters
generating L, then we can construct a PBCM acceptor M′ with m + k counters
accepting L. (2) If M is a PBCM acceptor with m counters accepting L, then we
can construct a PBCM generator M′ with m + k counters generating L.

Proof Part 1: With input (n1, . . . , nk) on its first k counters, M′ simulates M on the
remaining m counters. When M enters a final state, then for each i, M′ decrements
counter i and k + i by 1 simultaneously a nondeterministic number of times in state
qi after which M′ jumps to state qi+1. After processing all the counters, M′ enters
an accepting state.

Part 2: M′ first nondeterministically generates a 2k-tuple (n1, n2, . . . , nk, n1, n2,

. . . , nk) in the first two-counters. Then M′ simulates M on the last m counters and
halts in a final state if M accepts. �

Now consider a 1-symbol r-membrane SA generator P . The system has only one
object o and r membranes m1, . . . ,mr , where the first k ≤ r membranes m1, . . . ,mk

are output membranes. There are fixed multisets os1, . . . , osr such that at the start
of the computation, each membrane mj is set to osj for 1 ≤ j ≤ m. If the system
halts with os1+n1, . . . , osk+nk in membranes m1, . . . ,mk , then we say that the k-tuple
(n1, . . . , nk) is generated. The set of all such k-tuples is the set generated by P .
Then as with the 1-symbol multimembrane SA P system acceptors, we can show
the following.



242 O.H. Ibarra and S. Woodworth

Theorem 7 Let L ⊆ Nk . (1) If L is generated by a PBCM with m ≥ k counters, then
L can be generated by a 1-symbol (2m+3)-membrane SA P system generator. (2) If
L is the reachability set of a VASS, then L can be generated by a PBCM generator,
and hence also by a 1-symbol multimembrane SA P system generator.

Proof Part (1) can be proved by a simple modification to the proof of Theorem 4.
The definition of a PBCM acceptor specifies the counters must contain zero after
the computation halts for a given input to be accepted. The definition of a PBCM
generator requires the nonoutput counters be zero after halting. Therefore, the sim-
ulation of the instruction HALT must be changed in order to simulate a generator
rather than an acceptor. The basic idea is to reencode the HALT instruction by re-
moving the instructions which test the output counters end with a count of zero. The
membrane cr2 and the rule 11 for each r where 1 ≤ r ≤ k must be removed so that
a positive counter value does not cause the system to infinitely loop. (Note that this
infinite loop is necessary in the case of an acceptor, since all the counters must end
with zero for the input tuple to be accepted.)

Also, since an additional instruction is needed to guarantee that a subtract from
zero instruction was not executed during the last steps, the halt instruction simulates
adding and immediately subtracting one from each output counter. (This requires a
change to the encoding to account for 2k more instructions. We omit the details.)
Part (2) follows from Part (1) and Theorem 6. �

We can also bound the maximal parallelism for this system to two rules per step
per membrane just like we did for the acceptor version giving us the following result.

Corollary 6 Any partially blind counter machine M generator with m counters
can be simulated by some 1-symbol (2m + 3)-membrane 2-parallel SA P system
generator Π .

It is easy to see that a PBCM generator with only one counter can generate any
regular set by incrementing the counter and simulating the state transitions of the
finite automaton (FA) accepting this regular set. If the FA accepts, the 1-counter
PBCM generator enters the final state. Thus, from Theorem 7, we can see the fam-
ily of all regular sets of natural numbers is contained in the family of 1-symbol
5-membrane SA P system generators. However, this is not minimal since it was
shown in [2] that the family of all regular sets of natural numbers is contained in
the family of 1-symbol 2-membrane SA P system generators. It is open whether
these inclusions are proper (even if we allow the 1-symbol SA generator to have any
number of membranes).

Remark 1 It is also open whether the family of languages generated by 1-symbol
multimembrane SA P systems is able to generate any languages which are not in
the class of languages generated by PBCMs. If they cannot, this would means that
L = {o2n | n ≥ 0} cannot be generated by 1-symbol multimembrane SA P systems.
This would also mean 1-symbol multimembrane SA P systems generators are not
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equal to 1-symbol multimembrane SA P systems acceptors. Whether or not these
statements are true is still open.

2.5 Prioritized 1-Symbol Multimembrane SA P System Acceptors

In order to extend the construction given in Theorem 4 to simulate traditional
counter machines (hence accepting all recursively enumerable sets of natural num-
bers), we need to be able to test the counters for zero. The ability to do this without
additional rule restrictions is still an open question. However, augmenting 1-symbol
multimembrane SA P system acceptors with additional rule restrictions allows uni-
versality. Here, we show that allowing the use of priority relations is enough.

A SA P system with priority relations is defined identically to a regular SA P
system with the addition of a priority relation associated with all the rules in the
system. Each element of the priority relation is defined as a 2-tuple (r1, r2) where
r1 and r2 are rules such that r1 > r2. This affects the application of the rules by not
allowing rule r2 to be applied unless rule r1 is no longer applicable.

To show universality, we give a construction which simulates the operation of
any counter machine (CM) with m-counters by a 1-symbol (2m + 3)-membrane
SA P system acceptor with priority. Since CMs are known to accept all recursively
enumerable sets of natural numbers, this shows that these systems are able to accept
all recursively enumerable sets of natural numbers (obviously the reverse is trivial).

Theorem 8 1-Symbol (2m + 3)-membrane SA P system acceptors with priority
relations are able to accept all recursively enumerable sets of natural numbers.

Proof For this proof, we give a construction to convert any m-counter CM M into
a 1-symbol (2m + 3)-membrane SA P system acceptor with priority Π . This con-
struction follows the construction given in the proof of Theorem 4. Therefore, we
only give the changes that need to be made to the previous construction.

The primary difference between a CM system and a PBCM system is the oper-
ation of the subtract instruction. To correctly simulate the new type of subtraction
instruction, we must add additional encoded instructions to deal with testing for
zero. This means our encoding for Theorem 4 must be modified. Our new encoding
is done as follows.

Again, we first associate some number of distinct natural numbers to each in-
struction we want encoded. Here, for each instruction (or instruction label), we give
our way of denoting each specific associated natural number followed by the natural
number itself. Note that each subtraction instruction has 4 distinct natural numbers
associated to it.

1. ∀li ∈ B : li = 5i − 4.
2. ∀li : (ADD(r), lj ) ∈ R : Ari = 5i − 3.
3. ∀li : (SUB(r), lj , lk) ∈ R : Sir = 5i − 3; S′

ir = 5i − 2; S′′
ir = 5i − 1; S′′′

ir = 5i.
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Let n = 5|B| which is the maximum number of instructions that must be en-
coded. (This case occurs if each instruction is a subtraction instruction. Note some
numbers might not be used in this mapping if the instruction set contains addition
instructions.) For the halt instruction, we need two distinct natural numbers for each
counter (just like the proof of Theorem 4) with the following mapping.

1. ∀ i(1 ≤ i ≤ m) : Hi = 2i − 1 + n and Hi′ = 2i + n.

Let n′ = n+2m+1. The encoding of these distinct natural numbers (corresponding
to the instructions and instruction labels) is done with the function vα(i) = 16mn′ +
16mi.

Previously, to simulate a PBCM, we encoded the commands ADDi , SUBi ,
CHECKi , and REMOVEi for each counter (1 ≤ i ≤ m). To simulate a CM, we must
also encode two additional commands for each counter. We will call these ZEROi

and Z − CORRi for 1 ≤ i ≤ m. These commands signify checking that a counter
contains a zero count and concluding the assumption of a zero counter is correct.
The addition of these commands requires our encoding of the commands to also be
changed slightly.

These commands are encoded with the function vβ(j) defined as follows:

1. vβ(ADDj ) = 32mn′ − 6(j − 1) − 1 (adds a number to counter j ).
2. vβ(REMOVEj ) = 32mn′ − 6(j − 1) − 2 (signifies the instruction is completed).
3. vβ(SUBj ) = 32mn′ − 6(j − 1) − 3 (subtracts a number from counter j ).
4. vβ(CHECKj ) = 32mn′ − 6(j − 1) − 4 (guarantees the counters halt in the ap-

propriate configuration).
5. vβ(Z − CORRj ) = 32mn′ − 6(j − 1) − 5 (makes sure counter j contains zero).
6. vβ(ZEROj ) = 32mn′ − 6(j − 1) − 6 (signifies our zero counter guess was cor-

rect).

The li : (ADD(r), lj ) instructions and li : (HALT) instruction create identical SA
rules to those created in Theorem 4. However, subtract instructions are simulated
differently. Formally, the SA rules needed to implement a subtract instruction fol-
low.

1. For all li = (SUB(r), lj , lk) ∈ R, add the following rules to membrane s:
(a) (ovα(li ),out;ovα(Sir )ovβ(SUBr ), in),
(b) (ovα(Sir ),out;ovα(lj ), in),
(c) (ovα(li ),out;ovα(S′

ir )ovβ(ZEROr ), in),
(d) (ovα(S′

ir ),out;ovα(S′′
ir ), in),

(e) (ovα(S′′
ir )ovβ(Z−CORRr ),out;ovα(S′′′

ir ))ovβ(SUBr ), in),
(f) (ovα(Sir )

′′′
,out;ovα(lk), in).

2. Add the following rules to membrane cr1. (This is in addition to the cr1 rules
used in Theorem 4.):
(a) (ovβ(REMr )o,out;ovβ(ZEROr ), in),
(b) (ovβ(Z−CORRr ),out;ovβ(ZEROr ), in).
Add the associated priority relation 2(a) > 2(b).

Informally, the subtract instruction begins by nondeterministically guessing
whether the current counter contains a zero count or a nonzero count. This is done
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by nondeterministically choosing to execute a rule of type 1(a) or a rule of type 1(c).
If a nonzero count in guessed, the encoded SUB command for counter r is brought
into the system along with the encoded instruction li : (SUB(r), lj ). These objects
decrement counter r in the same manner as decrementing a PBCM counter. (If the
guess was incorrect—meaning the counter initially contained zero—this process
will cause some objects to be trapped, guaranteeing the computation to infinitely
loop.) If a zero-count is guessed, the encoded ZEROr command is drawn into the
membrane along with the encoded instruction S′

ir . If the guess is correct, the en-
coded ZEROr command is swapped with the encoded Z − CORRr command in
membrane cr1 (representing membrane r). This will cause counter r to contain a
count of 1 (since ZEROr = Z − CORRr + 1). To complete the instruction, 1 is sub-
tracted from counter r to return it to zero. If the guess was wrong (the counter con-
tained one or more), the encoded ZEROr command is swapped with the encoding
of REMOVEr + 1. In the next step the instruction S′′

ir will be unable to be removed
causing it to become trapped.

The priority relation guarantees that instruction 2(b) is only executed if the
counter contains zero. If instruction 2(a) is ever executed, there will be too many
objects to correctly execute instruction 1(e). This guarantees that a potentially halt-
ing computation can only occur if the counter contains a zero count.

The remainder of the construction directly follows the proof of Theorem 4. The
previous construction correctly simulates the li : (ADD(r), lj ) and li : (HALT) in-
structions of a counter machine. Therefore, the entire computation of CM M can
be simulated by the constructed SA P system Π which consists of only a single
object, but allowing priorities. �

In Sect. 2.4, it was also shown that the simulation in Theorem 4 for PBCM ac-
ceptors could be modified to also simulate PBCM generators. This result can also
be applied to the above proof allowing us to simulate a CM generator. The modifi-
cations needed are the same as those used in the proof of Theorem 7.

Theorem 9 1-Symbol (2m + 3)-membrane SA P system generators with priority
relations are able to accept all recursively enumerable sets of natural numbers.

Proof This follows from the proof of Theorem 7 and the proof of Theorem 8. �

All recursively enumerable sets of natural numbers can be accepted (and gener-
ated) by a 3-CM acceptor (generator). It can also be noted that for each counter we
need only one element in the priority relation. Therefore, to simulate a 3-CM, we
only need a priority relation of size 3. The following corollary clearly holds.

Corollary 7 1-Symbol 9-membrane SA P system acceptors (or generators) with
3 priority relations are able to accept all recursively enumerable sets of natural
numbers.

Since the proof of Theorem 8 utilizes the same basic structure as the PBCM
acceptor/PBCM generator theorems, the maximal parallelism can be bounded in the
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same manner as before with a maximum of two rules being applied per membrane
per step. This leads to the following corollary.

Corollary 8 1-Symbol 9-membrane 2-parallel SA P system acceptors (or genera-
tors) with 3 priority relations are able to accept all recursively enumerable sets of
natural numbers.

3 Bounded SA P Systems

Initially, membrane systems were designed to be nondeterministic systems. When
multiple, maximal sets of rules are applicable, nondeterminism decides which max-
imal set to apply. Recently, deterministic versions of some membrane models have
been studied to determine whether they are as computationally powerful as the non-
deterministic versions [6, 12]. Deterministic models guarantee that each step of the
computation consists of only one maximal multiset of applicable rules. In some
cases, both the nondeterministic and deterministic versions are equivalent in power
to Turing Machines (see, e.g., [6]). In some nonuniversal P systems, the determin-
istic versus the nondeterministic question has been shown to be equivalent to the
long-standing open problem of whether deterministic and nondeterministic linear-
bounded automata are equivalent [12]; for another very simple class of systems,
deterministic systems are strictly weaker than nondeterministic systems [12]. How-
ever, these two latter results do not easily translate for SA P systems.

In this section, we look at restricted models of symport/antiport P systems. Two
models, called bounded SA P systems and special SA P systems, are acceptors of
multisets with the restriction that the multiplicity of each object in the system does
not change during the computation. These models differ in whether they also bound
the number of membranes within the system or bound the number of distinct objects
that can occur abundantly in the environment. Another model, called bounded string
SA P system, is an acceptor of string languages. This model has the property that
at any time during the computation, the number of objects in the system is equal
to the number of input symbols that have been read so far (in addition to a fixed
number of objects given to the system at the start of the computation). We study the
computing power of these models. In particular, we investigate questions concerning
hierarchies (with respect to the number of distinct objects used in the system or
number of membranes in the system) and whether determinism is strictly weaker
than nondeterminism.

3.1 1-Membrane Bounded SA P Systems

Let Π be a 1-membrane symport/antiport P system over an alphabet V , and let
Σ = {a1, . . . , ak} ⊆ V be the input alphabet. Π is restricted in that all rules are of
the form (u,out;v, in), where u,v ∈ V ∗ with |u| = |v| ≥ 1. Thus, the number of
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objects in the system at any time during the computation remains the same. Note
that all the rules are antiport rules.

There is a fixed string (multiset) w in (V − Σ)∗ such that initially, the system is
given a string wa

n1
1 · · ·ank

k for some nonnegative integers n1, . . . , nk (thus, the input
multiset is a

n1
1 · · ·ank

k ). If the system halts, then we say that the string a
n1
1 · · ·ank

k is
accepted. The set of all such strings is the language L(Π) accepted by Π . We call
this system a bounded SA P system. Π is deterministic if the maximally parallel
multiset of rules applicable at each step in the computation is unique. We will show
the following:

1. A language L ⊆ a∗
1 · · ·a∗

k is accepted by a deterministic (nondeterministic)
bounded SA P system if and only if it is accepted by a deterministic (nondeter-
ministic) logn space-bounded Turing machine (with a two-way read-only input
with left and right end markers).

2. For every r , there is an s > r and a unary language L (i.e., L ⊆ o∗) accepted by
a bounded SA P system with an alphabet of s symbols that cannot be accepted
by any bounded SA P system with an alphabet of r symbols. This result holds
for both deterministic and nondeterministic versions.

3. Deterministic and nondeterministic bounded SA P systems over a unary input
alphabet are equivalent if and only if deterministic and nondeterministic linear-
bounded automata (over an arbitrary alphabet) are equivalent. This later problem
is a long-standing open problem in complexity theory [20].

The restriction |u| = |v| ≥ 1 in rule (u,out;v, in) can be relaxed to |u| ≥ |v| ≥ 1,
but the latter is equivalent since we can always introduce a dummy symbol d and
add d |u|−|v| to v to make the lengths the same and not use symbol d in any rule. We
note a similar system, called bounded P system (BPS) with cooperative rules of the
form u → v where |u| ≥ |v| ≥ 1, was also studied in [5] for their model-checking
properties.

For ease in exposition, we first consider the case when the input alphabet is unary,
i.e., Σ = {o}. Thus, the bounded SA P system Π has initial configuration won (for
some n). The idea is to relate the computation of Π to a restricted type of multi-
counter machine, called linear-bounded multicounter machine.

A deterministic multicounter machine M is linear-bounded if, when given an
input n in one of its counters (called the input counter) and zeros in the other coun-
ters, it computes in such a way that the sum of the values of the counters at any time
during the computation is at most n. One can easily normalize the computation so
that every increment is preceded by a decrement (i.e., if M wants to increment a
counter Cj , it first decrements some counter Ci and then increments Cj ) and every
decrement is followed by an increment. Thus, we can assume that every instruction
of M, which is not “Halt,” is of the form:

p: If Ci 
= 0, decrement Ci by 1, increment Cj by 1, and go to state k else go
to state l,

where p,k, l are labels (states). We do not require the contents of the counters are
zero when the machine halts.
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If in the above instruction, there is a “choice” for states k and/or l, the machine
is nondeterministic. We will show that we can construct a deterministic (nondeter-
ministic) bounded SA P system Π which uses a fixed multiset w such that when Π

is started with multiset won, it simulates M and has a halting computation if and
only if M halts on input n. Moreover, the rules of Π are of the form u → v, where
|u| = |v| = 1 or 2.

It is convenient to use an intermediate P system, called SCPS, which is a re-
stricted version of the CPS (communicating P system) introduced in [22]. A SCPS
(“S” for simple) is a restricted CPS which has only rules of the form a → ax or
ab → axby . Moreover, if the skin membrane has these types of rules, then x, y 
= out
(i.e., no objects are transported to the environment).

Lemma 1 If a language L ⊆ o∗ is accepted by a deterministic (nondeterminis-
tic) linear-bounded multicounter machine M, then it is accepted by a deterministic
(nondeterministic) SCPS Π .

Proof We only prove the case when M is deterministic, the nondeterministic case
being similar. The construction of Π is a simple modification of the construction in
[22]. Assume M has m counters C1, . . . ,Cm. Π has the same membrane structure
as in [22]. In particular, the skin membrane contains membranes E1, . . . ,Em to
simulate the counters, where the multiplicity of the distinguished (input) symbol
o in membrane Ei represents the value of counter Ci . There are other membranes
within the skin membrane that are used to simulate the instructions of M (see [22]).
All the sets of rules R1, . . . , are the same as in [22], except the instruction

p: If Ci 
= 0, decrement Ci by 1, increment Cj by 1, and goto l else goto k

of M is simulated as in [22], but the symbol o is not thrown out (from the skin mem-
brane) into the environment but added to membrane Ej . It follows from the con-
struction in [22] that Π will not have any instruction of the form ab → axbyccome
and if instructions of the form a → ax or ab → axby appear in the skin membrane,
then x, y 
= out. Hence, Π is a deterministic SCPS. �

Lemma 2 If a language L ⊆ o∗ is accepted by a deterministic (nondeterministic)
linear-bounded multicounter machine, then it is accepted by a deterministic (non-
deterministic) bounded SA P system.

Proof We show how to convert the multimembrane SCPS Π of Lemma 1 to a 1-
membrane bounded SA P system Π ′. The construction is similar to the one given
in [5]. Suppose that Π has membranes 1, . . . ,m. For each object a in V , Π ′ will
have symbols a1, . . . , am. In particular, for the distinguished input symbol o in V ,
Π ′ will have o1, . . . , om. Hence, the distinguished input symbol in Π ′ is oi0 , where
i0 is the index of the input membrane in Π . We can convert Π to a bounded SA P
system Π ′ as follows:

1. If a → ax is a rule in membrane i of Π , then (ai,out;aj , in) is a rule in Π ′,
where j is the index of the membrane into which a is transported to, as specified
by x.
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2. If ab → axay is a rule in membrane i of Π , then (aibi,out;ajbk, in) is a rule
in Π ′, where j and k are the indices of the membranes into which a and b are
transported to, as specified by x and y.

Thus, corresponding to the initial configuration won of Π , where on is in the
input membrane i0 and w represents the configuration denoting all the other symbols
(different from o) in the other membranes, Π ′ will have initial configuration w′on

i0
,

where w′ are symbols in w renamed to identify their locations in Π .
Clearly, Π ′ accepts on

i0
if and only if Π accepts on, and Π ′ is a deterministic

(nondeterministic) bounded SA P system. �

We will prove the converse of Lemma 2 indirectly. A k-head two-way finite au-
tomaton (k-2FA) is a finite automaton with k two-way read-only heads operating
on an input (with left and right end markers) [17]. A multihead 2FA is a k-2FA for
some k.

Lemma 3 If Π is a deterministic (nondeterministic) bounded SA P system with an
alphabet V of m symbols (note that V contains the distinguished input symbol o),
then Π can be simulated by a deterministic (nondeterministic) m(m + 1)-2FA M.

Proof Suppose Π is a deterministic bounded SA P system accepting a language
L(Π) ⊆ o∗. Assume that its alphabet is V = {a1, . . . , am}, where a1 = o (the input
symbol). We construct a deterministic multihead FA M to accept L(G). The input
to M (not including the left and right end markers) is on for some n. We will need
the following heads to keep track of the multiplicities of the symbols in the mem-
brane during the computation (note that the bounded SA P system Π is given won

initially):

1. Ki for 1 ≤ i ≤ m. Head Ki will keep track of the current number of ai ’s. Ini-
tially, K1 will point to the right end marker (indicating that there are n o’s in
the input) while all other Ki will point to the appropriate position on the input
corresponding to the multiplicity of symbol ai in the fixed string w.

2. Ki,j for 1 ≤ i, j ≤ m. These heads keep track of how many ai ’s are replaced by
aj ’s during the next step of Π .

One step of Π is simulated by a (possibly unbounded) number of steps of M. At
the beginning of the simulation of every step of Π , M resets all Ki,j ’s to the left
end marker. To determine the next configuration of Π , M processes the rules as
follows:

Let R1,R2, . . . ,Rs be the rules in the membrane. By using K1, . . . ,Km (note
each Ki represents the number of ai ’s in the membrane), M applies rule R1 se-
quentially a maximal number of times storing the “results” (i.e., the number of ai ’s
that are converted by the applications of rule R1) to aj in head Ki,j . Thus, each
application of R1 may involve decrementing the Ki ’s and incrementing some of the
Ki,j ’s. (By definition, the sequential application of R1 has reached its maximum at
some point, if further application of the rule is no longer applicable.)
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The process just described is repeated for the other rules R2, . . . ,Rs . When all the
rules have been processed, M updates each head Kj using the values stored in Ki,j ,
1 ≤ i ≤ m. This completes the simulation of the unique (because Π is deterministic)
maximally parallel step of Π .

It follows from the above description that a deterministic bounded SA P system
can be simulated by a deterministic m(m + 1)-2FA.

If Π is nondeterministic, the construction of the nondeterministic multihead 2FA
Π is simpler. Π just sequentially guesses the rule to apply each time (i.e., any of
R1,R2, . . . ,Rs ) until no more rule is applicable. Note that M does not need the
heads Ki,j ’s. �

For the proof of the next theorem, we need a definition. Define a generalized
linear-bounded multicounter machine as follows. As before, at the start of the com-
putation, the input counter is set to a value n (for some n), and all other counters
are set to zero. Now, we only require that there is a positive integer c such that at
any time during the computation, the value of any counter is at most cn. (Thus, we
no longer require that the sum of the values of the counters is at most n.) In [5],
it was shown that a generalized linear-bounded multicounter machine can be con-
verted to a linear-bounded multicounter machine. For completeness, we describe the
construction.

Suppose that M is a generalized linear-bounded multicounter machine with
counters C1, . . . ,Cm, where C1 is the input counter. Construct another machine M′
with counters D,C1, . . . ,Cm, where D is now the input counter. M′ with input n in
counter D, first moves n from D to C1 (by decrementing D and incrementing C1).
Then M′ simulates M on counters C1, . . . ,Cm (counter D is no longer active).

Let d be any positive integer. We modify M′ to another machine M′′ which
uses, for each counter Ci , a buffer of size d in its finite control to simulate M′,
and M′′ increments and decrements each counter modulo d . M′′ does not alter the
action of M′ on counter D.

By choosing a large enough D, it follows that the computation of M′′ is such
that when given input n in counter D and zeros in counters C1, . . . ,Cm, the sum
of the values of counters D,C1, . . . ,Cm at any time is at most n. It follows that
given a generalized linear-bounded multicounter, we can construct an equivalent
linear-bounded multicounter machine.

The next theorem is similar to a result in [5] concerning BPS.

Theorem 10 Let L ⊆ o∗. Then the following statements are equivalent: (1) L is
accepted by a bounded SA P system, (2) L is accepted by a linear-bounded mul-
ticounter machine, (3) L is accepted by a log n space-bounded Turing machine,
(4) L is accepted by a multihead 2FA These equivalences hold for both the deter-
ministic and nondeterministic versions.

Proof The equivalence of (3) and (4) is well known. By Lemmas 2 and 3, we need
only show the equivalence of (2) and (4). That a linear-bounded multicounter ma-
chine can be simulated by a multihead 2FA is obvious. Thus, (2) implies (4). We now
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show the converse. Let Π be a two-way multihead FA Π with m heads H1, . . . ,Hm.
From the discussion above, it is sufficient to construct a generalized multicounter
machine M equivalent to Π . M has 2m+ 1 counters, D,C1, . . . ,Cm,E1, . . . ,Em.
M with input n in counter D, and zero in the other counters first decrements D and
stores n in counters C1, . . . ,Cm. Then M simulates the actions of head Hi of Π

using the counters Ci and Ei . �

Lemmas 2 and 3 and Theorem 10 can be generalized to nonunary inputs, i.e., in-
puts of the form a

n1
1 · · ·ank

k , where a1, . . . , ak are distinct symbols. The constructions
are straightforward generalizations of the ideas above. Thus, we have the following
corollary.

Corollary 9 Let L ⊆ a∗
1 · · ·a∗

k . Then the following statements are equivalent:
(1) L is accepted by a bounded SA P system, (2) L is accepted by a linear-bounded
multicounter machine, (3) L is accepted by a log n space-bounded Turing machine,
(4) L is accepted by a multihead 2FA. These equivalences hold for both the deter-
ministic and nondeterministic versions.

We now proceed to show that the number of symbols in the alphabet V of a
bounded SA P system induces an infinite hierarchy. This is an interesting contrast
to a result in [19] stating an unbounded SA P system with three objects is universal.
The proof follows the ideas in [11], which showed an infinite hierarchy for a variant
of SCPS, called RCPS.

We will need the following result from [17].

Theorem 11 For every k, there is a unary language L that can be accepted by
a (k + 1)-2FA but not by any k-2FA. The result holds for both deterministic and
nondeterministic versions.

Theorem 12 For every r , there exist an s > r and a unary language L (i.e., L ⊆ o∗)
accepted by a bounded SA P system with an alphabet of s symbols that cannot be
accepted by any bounded SA P system with an alphabet of r symbols. This result
holds for both deterministic and nondeterministic versions.

Proof Suppose there is an r such that any unary language accepted by any bounded
SA P system with an arbitrary alphabet can be accepted by a bounded SA P system
with an alphabet of r symbols. Let k = r(r + 1). From Theorem 11, there is a
unary language L that can be accepted by a (k + 1)-2FA but not by any k-2FA. By
Theorem 10, this language can be accepted by a bounded SA P system. Then by
hypothesis, L can also be accepted by a bounded SA P system with an alphabet of r

symbols. Then from Lemma 3, we can construct from this bounded SA P system an
r(r +1)-2FA accepting L. Hence, L can be accepted by a k-2FA, a contradiction. �

For our next result, we need the following theorem from [21].
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Theorem 13 Nondeterministic and deterministic multihead 2FAs over a unary in-
put alphabet are equivalent if and only if nondeterministic and deterministic linear
bounded automata (over an arbitrary input alphabet) are equivalent.

From Theorems 10 and 13, we have:

Theorem 14 Nondeterministic and deterministic bounded SA P systems over a
unary input alphabet are equivalent if and only if nondeterministic and deterministic
linear bounded automata (over an arbitrary input alphabet) are equivalent.

3.2 Multimembrane Special SA P Systems

Let Π be a multimembrane SA P system, which is restricted in that only rules of the
form (u,out;v, in), where |u| = |v| ≥ 1, can appear in the skin membrane. There
are no restrictions on the weights of the rules in the other membranes. Clearly, the
number of objects in the system at any time during the computation remains the
same. We denote by Et the alphabet of t symbols (for some t ) in the environment.
There may be other symbols in the membranes that remain in the system during the
computation and are not transported to/from the environment, and they are not part
of Et . Note that E0 means that the environment alphabet is empty (i.e., there are
no symbols in the environment at any time). As before, we consider the case where
the input alphabet is unary (i.e., Σ = {o}). Π ’s initial configuration contains on in
the input membrane (for some n) and a fixed distribution of some non-o symbols in
the membranes. The string on is accepted if the system eventually halts. We call the
system just described a special SA P system.

Theorem 15 Let L ⊆ o∗. Then the following statements are equivalent: (1) L is ac-
cepted by a multimembrane special SA P system with no symbols in the environment,
i.e., has environment alphabet E0 (= empty set), (2) L is accepted by a bounded SA
P system, (3) L is accepted by a linear-bounded multicounter machine, (4) L is
accepted by a log n space-bounded Turing machine, (5) L is accepted by a multi-
head 2FA. These equivalences hold for both the deterministic and nondeterministic
versions.

Proof As in Lemma 3, it is easy to show a deterministic (nondeterministic) m-
membrane special SA P system with no symbols in the environment can be sim-
ulated by a deterministic (nondeterministic) two-way FA with 2m heads.

By Theorem 10, to complete the proof, we need only show that a linear-space
bounded multicounter machine can be simulated by a multimembrane special SA
P system with no symbols in the environment. For notational convenience, we will
assume the multicounter machine is controlled by a program with instructions of
the type li : (ADD(r), lj ), li : (SUB(r), lj , lk), and li : (HALT) where li is the label
for the current instruction being executed and r is the counter which is either being
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incremented or decremented. If the current instruction is an add instruction, the next
instruction to execute will be lj . If the current instruction is a subtract instruction, the
next instruction depends on the value of r . If r 
= 0, the next instruction is denoted
by lj otherwise the next instruction is denoted by lk .

The special SA P system simulating a linear-space bounded multicounter ma-
chine will use one membrane to simulate each counter of the multicounter machine.
These membranes will be placed within a “program” membrane where the current
instruction is brought in, implemented, and then expelled. This entire system is en-
closed within a dummy membrane (the skin membrane) containing no rules and a
single copy of each instruction object along with a few auxiliary objects. So, the
overall system uses m + 2 membranes. Obviously, if the skin membrane of the spe-
cial SA P system contains no rules, no object can ever be brought into the system or
expelled from the system. Hence, since the system initially contains |won| symbols,
the system will continue to contain |won| symbols after each step of the computa-
tion.

To show how any linear-space bounded multicounter machine can be simu-
lated, we give a formal transformation to a special SA P system. Our trans-
formation is similar to the transformation in [19] except that our transforma-
tion yields a deterministic (nondeterministic) special SA P system if the origi-
nal linear-space bounded multicounter machine is deterministic (nondeterminis-
tic). (The transformation in [19] only produces a nondeterministic SA P sys-
tem.) The transformation is done as follows. Consider a multicounter machine M
with m counters. Construct a SA P system Π which simulates M as follows:
Π = 〈V,H,μ,w1,w2, . . . ,wm+2,E0,R1,R2, . . . ,Rm+2, io〉 where H = {1,2, . . . ,

m + 2}; μ = [1[2[3]3[4]4 . . . [m+2]m+2]2]1; w1 = one copy of each element in V ex-
cept o and l01 (we assume M’s program begins with the instruction l0); w2 = l01;
w3 = on; wi = λ, for all i = 4, . . . ,m + 2; E0 = ∅ (the environment, Et , is empty
because t = 0); No need to specify i0, since our system is an acceptor.

The elements of V are as follows:

1. o—The symbol o is used as the counting object for the system. The multiplicity
of o’s in each counter membrane signifies the count of that counter.

2. d1, d2, d3, d4, d5, d6—These objects are used to delay various objects from being
used for a number of steps. The objects d1 and d2 are used to delay an action for
1 step. The remaining objects are used to delay an action for 3 steps.

3. c1, c2, c3—These objects are called check objects and are used to guarantee a
subtract instruction expels at most one o object from the appropriate counter
membrane.

4. li1, li2 for each instruction li : (ADD(r), lj ). The object li1 signifies the instruction
executed next is li . The object li2 is used in executing instruction li .

5. li1, li2, li3, li4 for each instruction li : (SUB(r), lj , lk). The object li1 signifies that
the next instruction we will execute is li . The objects li2, li3, and li4 are used in
executing instruction li and are used to signify which branch of li will determine
the next instruction.

6. li1 for each instruction li : (HALT).
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The sets of rules for the Ri ’s are created as follows:

1. R1 = ∅.
2. R2 contains the rules (d1,out;d2, in), (d3,out;d4, in), (d4,out;d5, in), (d5,out;

d6, in) referred to as delay rules.
3. For each instruction li : (ADD(r), lj ) in M:

– R2 contains the rules (li1,out; li2d1o, in), (li2d2,out; lj1, in).
– Rr+2 contains the rule (li2o, in), (li2,out).

4. For each instruction li : (SUB(r), lj , lk) in M:

– R2 contains the rules (li1,out; li2c1d3, in), (li2o,out; c2li3, in), (c1c2d6li3,

out; lj1, in), (li2d6,out; c3li4, in), (c1c3li4,out; lk1, in).
– Rr+2 contains the rules (li2c1, in), (li2o,out), (c1,out; c2, in), (c2,out),

(li2,out;d6, in), (d6,out), (c1,out; c3, in), (c3,out).

5. For each instruction li : (HALT) no rules are added.

Informally, these special SA P system rules work using the following ideas. Ini-
tially, the system is started with the first instruction label object l01 in the program
membrane and the input on within membrane 3 (corresponding to counter 1). To
execute an add instruction, the initial instruction object is replaced with the objects
needed to execute the instruction—li2, d1, and o. If the instruction is a subtract in-
struction the instruction li1 is replaced with li2 along with a delay object d3 and a
check object c1. Once the appropriate objects are in the program membrane, a o

object is appropriately moved into or out of the counter membrane corresponding to
the current instruction. In the case where the current instruction tries to decrement a
zero counter, the check objects cooperate with the delay objects to detect the situa-
tion and bring the appropriate objects into and out of the active membranes. Finally,
the instruction executing objects are expelled from the program membrane and the
correct next instruction object is brought into the program membrane.

Note that when a counter is decremented, an o object is removed from the cor-
responding membrane and moved into the skin membrane. When a counter is in-
cremented, an o object is brought into the corresponding membrane from the skin
membrane. Since the multicounter machine being simulated is, by definition, guar-
anteed to always decrement before incrementing, we are guaranteed to have thrown
an o object into membrane 1 before we ever try bringing an o object from mem-
brane 1 to membrane 2. This guarantees that the special SA P system will operate
through the multicounter machine’s program instructions correctly. �

Corollary 10 Let t be any positive integer. Then multimembrane special SA P sys-
tems with an environment alphabet of t symbols are equivalent to multimembrane
special SA P systems with no symbols in the environment. This holds for determin-
istic and nondeterministic versions.

Proof This follows from the above theorem and the observation that a system with
an environment of t symbols can be simulated by a two-way FA with 2m(t + 1)

heads. �
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The proof of the next result is similar to that of Theorem 12.

Theorem 16 For every r , there exist an s > r and a unary language L (i.e., subset
of o∗) accepted by an s-membrane special SA P system that cannot be accepted by
any r-membrane special SA P system. This result holds for both deterministic and
nondeterministic versions.

3.3 1-Membrane Bounded SA P Systems Which Accept String
Languages

Let Π be a 1-membrane SA P system with alphabet V and input alphabet Σ ⊆ V .
Assume Σ contains a distinguished symbol $, called the (right) end marker. The
rules are restricted to the form (u,out;v, in) or (u,out;vc, in) where u is in V +,
v is in (V − Σ)+, |u| = |v| ≥ 1, and c is in Σ . Thus, the system can export any
symbol in V to the environment, but can only import symbols in Σ from the en-
vironment via rules of type 2 (referred to as read-rules). We call Π a bounded
string SA P system. There is an abundance of symbols from V − Σ in the environ-
ment. The only symbols from Σ available in the environment are in the input string
z = a1 · · ·an (where ai is in Σ − {$} for 1 ≤ i < n, and an = $), which is provided
online externally.

There is a fixed string w in (V − Σ)∗, which is the initial configuration of Π .
Maximal parallelism in the application of the rules is assumed as usual. Hence, in
general, the size of the multiset of rules applicable at each step is unbounded. In par-
ticular, the number of instances of read-rules (i.e., rules of the form (u,out;vc, in))
applicable in a step is unbounded. However, if a step calls for reading k input sym-
bols (for some k), these symbols must be consistent with the next k symbols of the
input string z that have not yet been processed. Note that rules of type 1 do not
consume any input symbol from z.

The input string z = a1 · · ·an (with an = $) is accepted if, after reading all the
input symbols, Π eventually halts. The language accepted is L(Π) = {a1 · · ·an−1 |
a1 · · ·an is accepted by Π} (we do not include the end marker).

We have two versions of the system described above: deterministic and nonde-
terministic bounded string SA P systems. Again, in the deterministic case, the maxi-
mally parallel multiset of rules applicable at each step of the computation is unique.
We will show the deterministic version is strictly weaker than the nondeterministic
version. The proof uses some recent results in [12] concerning a simple model of a
CPS, called SCPA.

An SCPA Π has multiple membranes, with the skin membrane labeled 1. The
symbols in the initial configuration (distributed in the membranes) are not from Σ

(the input alphabet). The rules (similar to those of a CPS) are of the form: (1) a →
ax , (2) ab → axby , (3) ab → axbyccome. The input to Π is a string z = a1 · · ·an

(with an = $, the end marker), provided externally online. The restrictions on the
operation of Π are the following:
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1. There are no rules in membrane 1 with aout or bout on the right-hand side of the
rule (i.e., no symbol can be expelled from membrane 1 into the environment).

2. A rule of type 3 (called a read-rule) can only appear in membrane 1. This brings
in c if the next symbol in the input string z = a1 · · ·an that has not yet been
processed (read) is c; otherwise, the rule is not applicable.

3. Again, in general, the size of the maximally parallel multiset of rules applicable
at each step is unbounded. In particular, the number of instances of read-rules
(i.e., rules of the form ab → axbxccome) applicable in a step is unbounded. How-
ever, if a step calls for reading k input symbols (for some k), these symbols must
be consistent with the next k symbols of the input string z that have not yet been
processed (by the semantics of the read-rule described in the previous item).

The system starts with an initial configuration of symbols from V − Σ distributed
in the membranes. The input string z = a1 · · ·an is accepted if, after reading all the
input symbols, the SCPA eventually halts. The language accepted by Π is L(Π) =
{a1 · · ·an−1 | a1 · · ·an is accepted by Π} (we do not include the end marker).

A restricted 1-way linear-space DCM (NCM) Π is a deterministic (nondetermin-
istic) finite automaton with a one-way read-only input tape with right delimiter (end
marker) $ and a number of counters. As usual, each counter can be tested for zero
and can be incremented/decremented by 1 or unchanged. The counters are restricted
in that there is a positive integer c such that at any time during the computation, the
amount of space used in any counter (i.e., the count) is at most ck, where k is the
number of symbols of the input that have been read so far. Note that the machine
need not read an input symbol at every step. An input w = a1 · · ·an (where an is the
end marker, $, which only occurs at the end) is accepted if, when Π is started in its
initial state with all counters zero, it eventually enters an accepting state while on $.

We note that although the machines are restricted, they can accept fairly complex
languages. For example, {anbncn | n ≥ 1} and {a2n | n ≥ 0} can both be accepted by
restricted 1-way linear-space DCMs. (We usually do not include the end marker,
which is part of the input, when we talk about strings/languages accepted.) It can be
shown that a restricted 1-way linear-space DCM (NCM) is equivalent to a restricted
1-way logn-space deterministic (nondeterministic) Turing machine that was studied
in [3].

We will need the following result that was recently shown in [12].

Theorem 17 A language L is accepted by a restricted 1-way linear-space DCM
(NCM) if and only if it is accepted by a deterministic SCPA (nondeterministic
SCPA).

Theorem 18 Deterministic (nondeterministic) bounded string SA P systems are
equivalent to deterministic (nondeterministic) SCPAs.

Proof First we show that a deterministic (nondeterministic) SCPA Π can be simu-
lated by a deterministic (nondeterministic) bounded string SA P system Π ′, which
has only one membrane. Suppose Π has membranes 1, . . . ,m, with index 1 rep-
resenting the skin membrane. For every symbol a in the system and membrane i,
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create a new symbol ai . We construct Π ′ by converting the rules to 1-membrane
rules as described in the proof of Lemma 2, except that now we have to handle
rules of the form ab → axbyccome in membrane 1. We transform such a rule to
(a1b1,out;ajbkc1, in), where j and k are the indices of the membranes into which
a and b are transported to, as specified by x and y. After we have constructed Π ′,
modify it slightly by deleting the subscripts of all symbols with subscript 1 (in the
rules and initial configuration). Thus, unsubscripted symbols are associated with
symbols in membrane 1 of the SCPA Π .

For the converse, we need only show (by Theorem 17) that a deterministic (non-
deterministic) bounded string SA P system Π can be simulated by a restricted 1-way
linear-space DCM (NCM) M. The construction of M is similar to Lemma 3, ex-
cept M uses counters (instead of heads), and in the maximally parallel step, the
read-rules are the first ones to be processed. Define an atomic read-rule process as
follows: M systematically cycles through the read-rules and finds (if it exists) the
first one that is applicable (note that for a read-rule (u,out;vc, in) to be applicable,
the next input symbol to be processed must be c). M applies a sequence of these
read-rules until no additional read-rule is applicable. Then all the other rules are
processed. We omit the details. If Π is a nondeterministic SCPA, the construction
of a nondeterministic M is similar, in fact, easier. �

From Theorem 17 and the fact that deterministic SCPAs are strictly weaker than
nondeterministic SCPAs [12], we have the following theorem.

Theorem 19 Deterministic bounded string SA P systems are strictly weaker than
nondeterministic bounded string SA P systems.

Let L = {x#p | x is a binary number with leading bit 1 and p 
= 2 val(x)}, where
val(x) is the value of x. It was shown in [12] that L can be accepted by a nonde-
terministic SCPA but not by any deterministic SCPA. Hence, L is an example of a
language that can be accepted by a nondeterministic bounded string SA P system
that cannot be accepted by any deterministic bounded string SA P system. The fol-
lowing follows from Theorem 18 and the fact that similar results hold for SCPAs
[12].

Theorem 20 Let NBSA (DBSA) be the class of languages accepted by nondetermin-
istic (deterministic) bounded string SA P systems. Then: (1) NBSA is closed under
union and intersection but not under complementation, (2) DBSA is closed under
union, intersection, and complementation.

4 SA P Systems and Semilinear Sets

A general problem of clear interest in the area of membrane computing or P systems
is to find classes of nonuniversal P systems that correspond to (i.e., characterize)
known families of languages or subsets of Nk (where N is the set of nonnegative
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integers, and k is a positive integer) and to investigate their closure and decidability
properties. For example, P system characterizations of ET0L, bounded languages
accepted by multihead finite automata, and context-sensitive languages are known
(see, e.g., [3, 11, 14, 15]). Here, we give characterizations of semilinear sets in terms
of restricted models of SA P systems.

We introduce some restricted models of SA P systems that are used as acceptors
(respectively, generators) of sets of tuples of nonnegative integers and show that they
characterize precisely the semilinear sets. Specifically, we prove that a set R ⊆ Nk

is accepted (respectively, generated) by a restricted system if and only if R is a
semilinear set. We also show that “slight” extensions of the models will allow them
to accept (respectively, generate) nonsemilinear sets. In fact, for these extensions,
the emptiness problem is undecidable.

4.1 Simple SA P Systems

We first introduce a restricted model of a SA P system [18] which is used as an
acceptor of tuples of nonnegative integers. A simple SA P system Π is defined as
follows:

1. The alphabet of objects is V = F ∪ {o}, where F is a finite set and o is a distin-
guished object.

2. There are k + 1 membranes (k ≥ 1) arranged in a 2-level structure: membranes
m1,m2, . . . ,mk (the input membranes) are at the same level and enclosed in
membrane mk+1 (the skin membrane).

3. At the start of the computation, the k input membranes are given the strings
on1, . . . , onk , respectively, for some nonnegative integers n1, . . . , nk (the skin
membrane initially does not contain any o).

4. Also, at the start of the computation, there are fixed strings, i.e., multisets
w1, . . . ,wk+1 ∈ F ∗ in membranes m1, . . . ,mk+1, respectively. Thus, the wi ’s
do not contain any o.

5. The environment initially contains a fixed (finite) multiset over F . Of course,
symbols exported to the environment from the skin membrane during computa-
tion can be retrieved from the environment.

6. Each membrane has a set Ri of rules (some may be empty) The rules are of
the form: (u,out), (v, in), or (u,out;v, in) where u,v ∈ V +. A rule of type (a)
transports multiset u from the membrane containing the rule into the surrounding
membrane (if the membrane contains u). Rule of type (b) imports multiset v

from the surrounding membrane into the membrane containing the rule (if the
surrounding membrane contains v). Rule of type (c) simultaneously transports u

to the surrounding membrane and imports v from the surrounding membrane (if
the membrane contains u and the surrounding membrane contains v).

The restriction is: In the rules of types (b) and (c), v does not contain o’s. This
means the number of o’s in any membrane can only be decreased and cannot be
increased.
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7. As usual in a P system, the rules are applied in a nondeterministic maximally
parallel manner.

Notice that the fixed multisets over F given initially in the membranes as well as in
the environment are part of the specification of the simple SA P system Π (which
we do not always explicitly state). We say that a tuple (n1, . . . , nk) is accepted by
Π if, when the k input membranes are given on1, . . . , onk , respectively, the system
halts (i.e., none of the rules is applicable). The set of all such tuples is denoted by
R(Π).

Simple SA P systems are intimately related to counter machines and we will com-
pare them here to variations of reversal-bounded CMs. A reversal-bounded counter
machine is a counter machine which restricts the number of times a counter changes
(reverses) from a nondecreasing mode to a nonincreasing mode and vice versa dur-
ing the course of a computation. Other than the bound on the number of reversals,
the machine operates identically to a standard CM. We can incorporate the reversals
into the finite control which will cause the machine to halt and reject if a counter
ever tries to make more than k reversals.

We define here a special case of reversal-bounded CMs as a counter machine
with only k counters (the input counters) each of whose counters can only be decre-
mented. Moreover, at every step, the machine decrements exactly one counter. We
call this machine a decreasing counter machine.

We can augment a reversal-bounded multicounter machine with an unrestricted
counter, i.e., a free counter. This counter can make an unbounded number of re-
versals. We call such a machine a reversal-bounded counter machine with a free-
counter.

Theorem 21 Let R ⊆ Nk . Then the following statements are equivalent: (1) R is
a semilinear set, (2) R is accepted by a reversal-bounded counter machine with a
free counter, (3) R is accepted by a reversal-bounded counter machine, and (4) R is
accepted by a decreasing counter machine.

Proof It is obvious that (4) implies (3) and (3) implies (2). From the defini-
tion of a semilinear set, it is easy to construct, given a semilinear set R, a de-
creasing counter machine M accepting R. Since M is nondeterministic, it suf-
ficient to describe the construction of M when R is a linear set. So, suppose,
R = {v | v = v0 + m1v1 + · · · + mtvt , mi ∈ N1} ⊆ Nk , with vi = (vi1, . . . , vik)

for 0 ≤ i ≤ t . M, when given (n1, . . . , nk) in its counters, applies the constant vec-
tor v0 to decrement the counters simultaneously by v01, . . . , v0k , respectively. Then
M nondeterministically guesses the number of times mi to apply vi to the counters,
again, decreasing the counters simultaneously by the amounts mivi1, . . . ,mivik , re-
spectively, for 1 ≤ i ≤ t . If all the counters become zero at the same time, M ac-
cepts. Thus, (1) implies (4). That (2) implies (1) is a trivial consequence of a result
in [10], which showed that if a bounded language L ⊆ a∗

1 · · ·a∗
k (where a1, . . . , ak

are distinct symbols and n1, . . . , nk are nonnegative integers) is accepted by a non-
deterministic finite automaton augmented with reversal-bounded counters and one
unrestricted counter, then the set {(n1, . . . , nk) | an1

1 · · ·ank

k ∈ L} is semilinear. �
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Lemma 4 Let Π be a simple SA P system. Then R(Π) can be accepted by a
reversal-bounded counter machine with a free counter M.

Proof We construct a counter machine M with k + 1 counters to simulate Π .
The intuitive idea behind the simulation is the following. The first k counters are
reversal-bounded (the input counters) and the last is the free counter. Initially, the
input counters are set to n1, . . . , nk , respectively. The free counter will keep track
of the current number of o’s in the skin membrane (at the start, there is none). The
initial configuration (w1, . . . ,wk,wk+1) and the rules (R1, . . . ,Rk+1) are stored in
the finite-state control of M. The finite-state control keeps track of the numbers of
non-o symbols and their distributions within the membranes and the environment
(this can be done since their total multiplicities remain the same (as ones initially
given as fixed constants in the definition of Π ) at any time, independent of the ni ’s).
M simulates each nondeterministic maximally parallel step of Π by several moves.
Clearly, because of the restrictions on the rules, the counters keeping track of the
multiplicities of o’s in the input membranes are only decremented. Special care has
to be taken when simulating a rule of type either (u,out) or (u,out;v, in) when u

contains multiple copies of o’s. In order to tell whether such a rule is applicable or
not, for each membrane we associate a finite buffer of size d (where d is the max-
imum number of o’s that can be thrown out by a single rule in the membrane) to
the finite control of M to keep track of the first d o’s in the membrane while using
the counter of M associated with the membrane to hold the number of the remain-
ing o’s. By doing so, checking whether the above rule is applicable can be done by
examining the contents of the finite buffer associated with the membrane where the
rule resides.

Now, in a maximally parallel step, some (possibly all) of the input membranes
can transport o’s to the skin membrane and the skin membrane itself can also trans-
port some o’s to the environment. However, the total number of o’s transferred from
the input membranes to the skin membrane and the total number of o’s transferred
from the skin membrane to the environment may have no relationship, so the free
counter may be decremented and incremented an unbounded number of times dur-
ing the computation. This is the reason why we need a free counter. It follows from
the description that M can simulate the computation of Π . �

We now prove the converse of Lemma 4.

Lemma 5 Let M be a reversal-bounded counter machine with a free counter. Then
R(M) can be accepted by a simple SA P system Π .

Proof By the proof of Theorem 21, we may assume that M is a decreasing counter
machine with k counters accepting R(M) ⊆ Nk . Thus M, when started in its initial
state with n1, . . . , nk in the counters halts in an accepting state if (n1, . . . , nk) is in
R(M). Moreover, at each step of the computation, before it halts, M decrements
exactly one counter (there are no increments).

We will construct a simple SA P system Π simulating M. As defined, Π will
have a 2-level structure with k input membranes m1, . . . ,mk (at the same level)
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enclosed by the skin membrane mk+1. The k input membranes will keep track of
the values of the counters. The construction of Π follows the construction in [19]
where a two-level SA P system is shown to simulate a multicounter machine. In the
construction, each of the inner membranes represents a counter and the multiplicity
of the distinguished symbol o within each membrane represents the value of that
counter. The rules associated with each subtract instruction in the construction ad-
here to the restrictions required by a simple SA P system. Since M has no increment
instructions, the associated Π , by the construction in [19], is a simple SA P system.
We omit the details. �

From Theorem 21 and Lemmas 4 and 5, we have the following theorem.

Theorem 22 Let R ⊆ Nk . Then the following statements are equivalent: (1) R is a
semilinear set, (2) R is accepted by a reversal-bounded counter machine with a free
counter, (3) R is accepted by a reversal-bounded counter machine, (4) R is accepted
by a decreasing counter machine, (5) R is accepted by a simple SA P system.

Note that in a simple SA P system, the number of o’s in the membranes cannot
be increased, since in the rules of the form (v, in) and (u,out;v, in), we do not
allow v to contain o’s. We can generalize the model. The environment can have an
infinite supply of o’s, and in the rules of the forms (v, in) and (u,out;v, in) in the
skin membrane, v is in F+o∗. Thus, v can contain o’s but must contain at least one
symbol in F . (We do not allow v to only contain o’s since, otherwise, the system
will not halt due to an infinite supply of o’s in the environment.) Thus, the number of
o’s in the skin membrane can increase during the computation by importing o’s from
the environment. Call this model simple+ SA P system. Clearly, the construction in
Lemma 4 still works when Π is a simple+ SA P system. The only modification is
that in the simulation of a maximally parallel step of Π by M, we also need to
consider the o’s that may be brought into the skin membrane from the environment
by the (v, in) and (u,out;v, in) rules. Thus, we have the following corollary.

Corollary 11 Let R ⊆ Nk . Then the following statements are equivalent: items (1),
(2), (3), (4), (5) of Theorem 22, and (6): R is accepted by a simple+ SA P system.

The following corollary follows from known results concerning semilinear sets.

Corollary 12 Let k be any positive integer. Then:

1. The class of subsets of Nk accepted by simple SA P systems is closed under union,
intersection, and complementation.

2. The membership, disjointness, containment, and equivalence problems for simple
SA P systems accepting subsets of Nk are decidable.
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4.2 Cascade SA P Systems

In this section, we show Theorem 22 does not generalize to the case when the simple
SA P system has a 3-level structure. In particular, consider a simple SA P system
with only three membranes m1,m2,m3, where membrane m1 is enclosed in m2, and
m2 is enclosed in m3 (the skin membrane). Initially, membrane m1 contains the in-
put on. The same restriction (i.e., in the rules of the forms (v, in) and (u,out;v, in),
v does contain o’s) applies. We show such a system can accept a nonsemilinear
set. In fact, the emptiness problem for such systems is undecidable. To facilitate the
proofs, we first introduce the notion of cascade counter machines.

Cascade Counter Machines. A k-counter cascade machine M is a finite-state
machine with k counters, c1, . . . , ck . The instructions of M are of the following
forms:

s → (s′, ci := ci − 1; ci+1 := ci+1 + 1) (decrement ci then increment ci+1),
s → (s′ if ci is zero else s′′) (test if ci = 0),
s → (s′, ck := ck − 1) (counter ck can be independently decremented).

Notice that in the above, it is implicit that M cannot increment c1 (there is no such
instruction). We say that a nonnegative integer n is accepted if M, when started in
its initial state with counter values (n,0, . . . ,0) eventually enters an accepting state.

We first show the emptiness problem for deterministic 3-counter cascade ma-
chines is undecidable by showing a 3-counter cascade machine with initial counter
values (n,0,0) can simulate the computation of a deterministic (unrestricted) 2-
counter machine with initial counter values (0,0). The former accepts some n if
and only if the latter halts. The result then follows from the undecidability of the
halting problem for 2-counter machines [16].

So, suppose that M is a deterministic (unrestricted) 2-counter machine. We show
that M can be simulated by a deterministic 3-counter cascade machine M′ with
counters c1, c2, c3. The two counters x1 and x2 of M are simulated by c2 and c3
of M′, respectively. Clearly, testing if counter xi is zero for i = 1,2 can be directly
simulated in M′. Incrementing/decrementing counters x1 and x2 of M can also be
simulated in M′:

1. When M increments x1, M′ performs the following: Decrement c1, incre-
ment c2.

2. When M increments x2, M′ performs the following: Decrement c1, incre-
ment c2, decrement c2, increment c3.

3. When M decrements x1, M′ performs the following: Decrement c2, incre-
ment c3, decrement c3.

4. When M decrements x2, M′ also decrements c3.

During the simulation, if c1 is zero when an instruction being simulated calls for
decrementing c1, M′ rejects. Note all state transitions in M are simulated faithfully
by M′. It follows we can construct M′ so it accepts the input n (initially given in c1)
if and only if n is “big” enough to allow the simulation of M to complete. If M
does not halt or n is not big enough to carry out the simulation (at some point),



On Nonuniversal Symport/Antiport P Systems 263

M′ goes into an infinite loop or rejects. It follows that the emptiness problem for
deterministic 3-counter cascade machines is undecidable.

Example We now give an example of a deterministic 3-counter cascade machine
M accepting a nonsemilinear set. Starting with c1 = n, c2 = 0, c3 = 0,

1. If c1 is zero, M rejects.
2. M configures the counters to contain: c1 = n − 1, c2 = 0, c3 = 1.
3. If c1 is zero, M accepts.
4. Set k = 1.
5. Starting with values: c1 = n − (1 + 3 + · · · + (2k − 1)), c2 = 0, c3 = (2k − 1),

(∗) M iteratively decrements c3 by 1 while decrementing c1 by 1 and increment-
ing c2 by 1 until c3 = 0. Then M decrements c1 by 2 and increments c2 by 2
(this is done in two steps). After that, M iteratively decrements c2 by 1 while
incrementing c3 by 1 until c2 = 0.

– If c1 becomes zero before the completion of (∗), M rejects.
– If c1 = 0 after the completion of (∗), M accepts, else M sets k := k + 1 and

goes back to (∗).

Clearly, the values of the counters when k becomes k + 1 are: c1 = n − (1 + 3 +
· · · + (2k − 1) + (2k + 1)) = n − (k + 1)2, c2 = 0, c3 = (2k + 1). It follows that M

can be constructed to accept the set {n2 | n ≥ 1}, which is not semilinear.

From the above discussion and example, we have the following theorem.

Theorem 23 Deterministic 3-counter cascade machines can accept nonsemilinear
sets. Moreover, their emptiness problem is undecidable.

Remark 2 The construction of the deterministic 3-counter cascade machine in the
example above can be modified to accept the set R1 = {2n2 | n ≥ 1}. Now, define
for each k ≥ 1, the set Rk = {2n2k | n ≥ 1}. One can show by essentially iterating
the construction in the example that Rk can be accepted by a deterministic (2 + k)-
counter cascade machine. We believe (but have no proof at this time), that the Rk’s
form an infinite hierarchy: Rk+1 can be accepted by a deterministic (2 + k)-counter
cascade machine but cannot be accepted by any deterministic or nondeterministic
(2+(k−1))-counter cascade machine. Note that 1- and 2-counter cascade machines
are equivalent—both accept exactly the semilinear sets.

It is interesting to observe that for a k-counter cascade machine M, if counter
c1 cannot be tested for zero, then either R(M) = ∅ (if M never enters an accepting
state regardless of the input initially given in c1) or there exists an m ∈ N1 such
that R(M) = {n | n ≥ m,n ∈ N1} (m is the smallest input for which M accepts).
Hence, for cascade counter machines lacking the capability of testing counter c1 for
zero, they accept only semilinear sets. The emptiness problem, nevertheless, remains
undecidable for such a restricted class of cascade counter machines, implying that
the semilinear sets associated with such machines are not effective.
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We conclude this section by noting Theorem 23 is not true for (deterministic or
nondeterministic) 2-counter cascade machines. In fact, consider a nondeterministic
machine M having k+1 counters, where the first k counters are initially set to input
values n1, . . . , nk , respectively, and the last counter set to zero. The computation is
restricted in that the first k counters can only be decremented, but the last counter can
decrement/increment independently. It follows from Theorem 21 these machines
accept exactly the semilinear sets.

Cascade SA P systems. A cascade SA P system consists of k membranes
m1, . . . ,mk (for some k) that are nested: For 1 ≤ i ≤ k−1, membrane mi is enclosed
in membrane mi+1. The input membrane, m1, initially contains on for some n.
Again, in the rules of the forms (v, in) and (u,out;v, in), v does not contain o’s.
There are fixed multisets w1, . . . ,wk not containing o’s in membranes m1, . . . ,mk

initially. The environment initially contains a fixed multiset of symbols.

The connection between cascade counter machines and cascade SA P systems is
given by the following theorem.

Theorem 24 Let k ≥ 1 be a positive integer. A set Q ⊆ N1 is accepted by a k-
membrane cascade SA P system if and only if it can be accepted by a k-counter
cascade machine.

Proof Let Π be a k-membrane cascade SA P system. We construct an equivalent
k-counter cascade machine M. We associate a counter ci for every membrane mi

to keep track of the number of o’s in membrane mi during the computation. The
construction of M simulating Π is straightforward, following the strategy in the
proof of Lemma 4.

We now prove the converse. Let M be a k-counter cascade machine. For no-
tational convenience, we will assume the program instructions for M are labeled
l0, l1, . . . , ln and begin with instruction l0. We also assume they are written in the
form li : (SUB(r), ls , lt ) meaning that when instruction li is executed, counter r is
decremented. If counter r was initially positive (meaning it was able to be decre-
mented), the machine will next execute the instruction ls , otherwise it will execute
the instruction lt . Also, since M is a cascade counter machine, each decrement
from counter r where r < k must be followed by an instruction which increments
the counter r + 1. Hence, we can incorporate each increment instruction into its
preceding decrement instruction. (In the case where we decrement counter r and
r = k, no increment instruction follows since the decremented value is thrown out
of the system.) In this way, we can consider the program for M to consist entirely
of decrement instructions. We now construct an equivalent k-membrane cascade
SA P system Π which simulates each decrement instruction of M. The membrane
structure of Π is a set of nested membranes which each correspond to a counter
in M. The skin membrane also acts as program control membrane. Formally, the
simulation occurs by creating the following cascade SA P system from a given
cascade counter machine: Π = 〈V,H,μ,wm1, . . . ,wmk

,E,Rm1, . . . ,Rmk
〉 where

V = {li1, li2, li3, li4, dij | li is an instruction label of the form li : (SUB(r), ls , lt )
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where r 
= k and 0 ≤ j ≤ 2(k − r) + 1} ∪ {li1, li2, li3 | li is an instruction label
of the form li : (SUB(r), lj , ls) where r = k} ∪ {d0, d1} ∪ {c, c′, c1, . . . , cm} ∪ {o}.
H = {m1,m2, . . . ,mk}. μ = [mk

[mk−1 . . . [m1]m1 . . .]mk−1]mk
. wm1 = c1o

n. wmi
= ci

for all 1 < i < k. wmk
= l01ck (since l0 is the first instruction to execute). E = one

copy of each element in V except o and l01.
Rule sets (Rm1, . . . ,Rmk

) are created based on the cascade machine’s program.
Rule (d0,out;d1, in) is initially created within Rmk

. For each rule of the form li :
(SUB(r), ls , lt ) where r 
= k we add the rules:

1. Rmk
contains the rules (li1,out; li2cd0di0, in), (dij ,out;di(j+1), in) where 0 ≤

j ≤ 2(k − r), (d1di[2(k−r)+1],out; li4c′, in), (li2d1,out; li3, in), (li3cdi[2(k−r)+1],
out; ls1, in), (li2li4,out; lt1, in), (cc′,out).

2. Rmn where k ≥ n > r contains the rules (li2c, in), (li2cr ,out), (li3cr , in),
(li3c,out), (li4c

′, in), (li2li4,out), (cc′,out).
3. Rmr contains the rules (cr ,out; li2c, in), (li2o,out), (li3cr , in), (li3c,out),

(li2,out; crc
′, in), (cc′,out).

For a rule of the form li : (SUB(r), ls , lt ) where r = k, we create the following rules:

1. Rmr = Rmk
contains rules (li1,out; li2d0, in), (li2o,out; li3, in), (li3d1,out;

ls1, in), (li2d1,out; lt1, in).

Informally, the above simulation operates as follows. The process of simulating a
single subtract instruction li : (SUB(r), ls , lt ) if r 
= k begins by the presence of the
object li1 within the outermost membrane (mk). This object is used to bring in the
necessary execution objects li2, c, d0, and di0 using rule (li1,out; li2cd0di0, in). The
objects li2 and c are used cooperatively and are drawn deeper through the membrane
hierarchy until they have reached the membrane mr+1. Here, they are drawn into
membrane mr while the object cr is thrown out.

If membrane mr contains an o object (meaning counter r is not empty), the ob-
jects li2 and o are thrown out into membrane mr+1. This simulates both the current
subtract instruction along with the add instruction we know must follow. Now, the
objects li2 and cr are used cooperatively and are thrown out of each membrane until
they located in the skin membrane.

While this has been occurring, the delay objects in the skin membrane have been
being incremented. The d objects are delay objects and are used to delay certain
execution steps. During each step of computation, their subscripts are incremented
by one. The object d0 only changes to d1 to delay an action for a single step while
the object di0 increments to di[2(k−r)+1]. This number (2(k − r)+ 1) corresponds to
the number of steps plus one that li2 will take to travel to membrane r and back if
membrane r contains a o.

This allows us to determine whether the object li2 is stuck in membrane r .
If the membrane mr contains an o (meaning counter r is not zero), objects li2

and cr will return to the skin membrane in 2(k − r) steps and rule (li2d1,out; li3, in)

is applicable before di[2(k−r)+1] is brought into the membrane. So, li2 and d2 are
thrown out into the environment and object li3 is brought into the system. Now, the
objects c and cr must be swapped to their original positions. This occurs by having
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objects li3 and cr work cooperatively to move deeper through the membranes to
membrane r . Then objects li3 and c work cooperatively to be thrown out of each
membrane until returning to the skin membrane. At this point, everything is com-
plete and all objects are in the correct location. So, objects li3, c, and di[2(k−r)+1]
are thrown out into the environment while object ls1 is brought in. Now, instruction
li is complete and instruction ls will execute next.

If the objects li2 and cr have not returned to the skin membrane after 2(k − r)+1
steps, then the membrane r must not have contained an o. At this point, the objects
d1 and di[2(k−r)+1] are thrown out of the skin membrane and objects li4 and c′
are brought in. Now, objects li4 and c′ work cooperatively to move deeper through
the membranes to membrane mr+1. Object c′ is drawn into membrane mr while
object li2 is thrown out. At this point, membrane mr contains the objects c and c′
while membrane mr+1 contains the objects li2 and li4. These pairs of objects work
cooperatively to be thrown out of each membrane. The pair li2li4 will get to the skin
membrane a step ahead of the pair cc′. The objects li2 and li4 are thrown out into
the environment while bringing in the object lt1. During the next step, the pair cc′
will be thrown out into the environment. At this point, instruction li is complete and
instruction lt will execute next.

If the instruction to be simulated is of the form li : (SUB(r), ls , lt ) where r = k,
the simulation is much simpler. In this case, since the instruction is immediately
placed within the counter membrane, only a single delay object is needed along
with the instruction object li2. If membrane k contains an o, it is thrown out during
the next step along with the object li2 and the object li3 is brought in allowing the
final step to clean up and bring in the instruction object ls1. If li2 is still in membrane
m after one step, the delay object can cooperate with object li2 to bring in the next
instruction object lt1.

Consequently, these cascade SA P system rules simulate the operation of M. �

From Theorems 23 and 24, we have the following corollary.

Corollary 13 3-Membrane cascade SA P systems can accept nonsemilinear sets.
Moreover, their emptiness problem is undecidable.

A careful examination of the proof of Theorem 24 reveals that the degree of
maximal parallelism for the constructed SA P system is finite (i.e., at every step of
the computation, the size of the multiset of applicable rules is bounded by some
fixed integer). Hence, Corollary 13 holds even if the 3-membrane cascade SA P
systems have a bounded degree of maximal parallelism.

4.3 k-Membrane Extended Cascade SA P Systems

The k-membrane cascade SA P system of the previous section can be generalized.
A k-membrane extended cascade SA P system has a set of objects V = F ∪ Σr ,
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where now the input alphabet is Σr = {a1, . . . , ar} (r ≥ 1). Again, the rules are re-
stricted in that in the rules of the forms (v, in) and (u,out;v, in), v does not contain
any symbol in Σr . The environment initially contains only F . There are fixed strings
wi ∈ F ∗, such that the system starts with w1a

n1
1 . . . a

nr
r in membrane m1 (the input

membrane) and wi in membrane mi for 2 ≤ i ≤ k. If the system halts, then we say
that the r-tuple (n1, . . . , nr ) is accepted.

Now, consider a finite-state device M with a finite-state control and a “bag”
containing a multiset of symbols. M starts in its initial state with the multiset
a

n1
1 · · ·anr

r . M’s instructions of are of the following form:

q → (q ′ delete ai from the bag if it is in the bag else q ′′).
Thus, from state q , M removes ai from the bag if it is in the bag and goes to state q ′;
otherwise, M goes to state q ′′. The initial multiset in the bag is accepted if M enters
an accepting state. We call this device a 1-bag automaton. A 1-bag automaton is like
a multiset automaton studied in [4]. Although the notion is not the same, the idea is
quite similar.

We can generalize the 1-bag automaton to a k-bag automaton, where now, a
symbol is deleted from bag i if and only if it is exported into bag i + 1. A symbol
can be deleted from the kth bag independently.

Lemma 6 A set R ⊆ Nr is accepted by a 1-bag automaton if and only if it is ac-
cepted by a decreasing r-counter machine.

Proof Clearly, deleting ai from the bag corresponds to decrementing counter i

(1 ≤ i ≤ r). �

Theorem 25 Let k ≥ 1. A set of tuples R is accepted by a k-membrane extended
cascade SA P system if and only if R is accepted by a k-bag automaton.

Proof The proof for the “only if” part is a straightforward generalization of the
proof of the first part of Theorem 21 (which was for k + 1). For the second part,
let M be a k-bag automaton. We construct a k-membrane extended cascade SA
P system Π equivalent to M, in the same manner as the construction of Theo-
rem 24 where each membrane corresponds to a bag. The rules can be created by
mapping each subtraction rule of the form li : (SUB(r), ls , lt ) to the bag rule of the
form q → (q ′ delete ai from the bag if it is in the bag else q ′′) as follows. The in-
struction labels of a counter machine can also be viewed as states so we can say li
corresponds to q , ls corresponds to q ′, and lt corresponds to q ′′. The bag associated
with q corresponds to the counter r . The additional difference is that the bag also
specifies the object (ai ) in Σ which should be thrown out of the bag. Hence, we can
create Π to simulate M using the techniques in Theorem 24 and the above mapping
along with the following changes. The set V will now additionally contain the set
of objects {a1, . . . , ar} rather than the single object {o}. The set wm1 = c1a

n1
1 · · ·anr

r

rather than c1o
n. Also, the rules (li2o,out) and (li2o,out; li3, in) will be changed to

(q2ai,out) and (q2ai,out; s3, in), respectively. Clearly, this k-membrane extended
cascade SA P system now simulates a k-bag automaton. �
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Theorem 26 A set R ⊆ Nr is accepted by a 1-membrane extended cascade SA P
system if and only if it is a semilinear set.

Proof Let Π be a 1-membrane extended cascade SA P system with input alpha-
bet Σr . We can easily construct a decreasing r-counter machine M which, when
the counters are initially given n1, . . . , nr , simulates the computation of Π on
wa

n1
1 · · ·anr

r . The simulation is straightforward, as in Lemma 4. It follows from
Theorem 21 that R(Π) is a semilinear set.

For the converse, by Lemma 6, we need only show that a 1-bag automaton can
be simulated by a 1-membrane extended cascade SA P system. This follows from
Theorem 25. �

Let Σ2 = {a1, a2}. Using the ideas in the example of the previous sec-
tion, we can easily construct a 2-bag automaton accepting the nonsemilinear set
{(n1, n2) | n1, n2 ≥ 0, n1 + n2 = m2 for some m ≥ 1}. It is also easy to construct
a 2-bag automaton with input alphabet Σ2 that simulates the computations of a 2-
counter automaton. The values of the counters are represented in the second bag.
The number of a1’s (resp., a2’s) in that bag denotes the value of the first (resp.,
second) counter. The a1’s and the a2’s in the first bag are the suppliers (sources) of
the “increments” for the two counters in the second bag.

From the above discussion and Theorem 25, we have the following theorem.

Theorem 27 2-bag automata (and, hence, 2-membrane extended cascade SA P sys-
tems) can accept nonsemilinear sets. Moreover, their emptiness problem is undecid-
able.

4.4 Restricted SA P System Generators

In this section, we look at SA P systems used as generators of tuples. In the definition
of a k-membrane cascade SA P system, the input on is initially given in m1 (the
innermost membrane) with no o’s in the other membranes. The computation is such
that the o’s can only be exported from membrane mi to membrane mi+1 (or to the
environment in the case of mk).

Now, consider a model Π which is a generator of tuples and the cascading (flow
of o’s) is from the environment to the innermost membrane. More precisely, let
m1, . . . ,mk be the membranes of Π , where mi is enclosed in mi+1 for 1 ≤ i ≤ k −1
(m1 is the innermost membrane and mk is the skin membrane). Initially, there are no
o’s in the membranes, but there is an infinite supply of o’s in the environment. There
may also be a finite supply of other symbols in the environment initially. Rules of
the forms (u,out) and (u,out;v, in) are restricted in that u cannot contain o’s. Thus,
o’s can only move from the environment to membrane mk and from mi+1 to mi for
1 ≤ i ≤ k − 1. (Note once o’s reach membrane m1, they remain there.) The set of
numbers generated by Π is G(Π) = {n | Π halts with on in the skin membrane mk}.
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It is important to note that the skin membrane is the output membrane. We call this
new model a k-membrane reverse-cascade SA P system.

Theorem 28

1. 1-Membrane and 2-membrane reverse-cascade SA P systems are equivalent, and
they generate exactly the semilinear sets over N1.

2. 3-Membrane reverse-cascade SA P systems can generate nonsemilinear sets. In
fact, for any recursively enumerable (RE) set R ⊆ N1, the set {2n | n ∈ R} can be
generated by a 3-membrane reverse-cascade SA P system. (Hence, their empti-
ness problem is undecidable.)

3. Any RE set R can be generated by a 4-membrane reverse-cascade SA P system.

The proof of Theorem 28 involves the use of a counter machine similar to the
k-counter cascade machine in Sect. 3. Define a k-counter reverse-cascade machine
M as a nondeterministic machine with k counters c1, . . . , ck . M starts in its initial
state with all counters zero. As usual, the counters can be incremented/decremented
and tested for zero but with the following restrictions:

1. If counter ci+1 is decremented it must be followed by an increment of counter ci

for 1 ≤ i ≤ k − 1, and this is the only way counter ci can be incremented.
2. Counter ck can be incremented independently.
3. Counter c1 cannot be decremented. (Thus, c1 is nondecreasing, hence essentially

useless. The reason is that once it becomes positive, it will remain positive, and
can no longer affect the computation. We include this counter for convenience.)

We say that M generates a nonnegative integer n if it halts with value n in counter
ck , and the set of all such numbers generated is the set generated by M.

It can be shown that for any k ≥ 1, a set R ⊆ N1 is generated by a k-membrane
reverse-cascade SA P system if and only if it can be generated by a k-counter
reverse-cascade machine. Then to prove items (1), (2), and (3) of Theorem 28, we
need only show that they hold for 1-counter/2-counter, 3-counter, and 4-counter
reverse-cascade machines, respectively.

Remark 3 We believe that the 4 membranes in Theorem 28, item (3) is the best pos-
sible. We think that there are RE sets (even recursive sets) that cannot be generated
by 3-counter reverse-cascade machines based on the following discussion.

By definition, in a 3-counter reverse-cascade machine M, with three counters,
c1, c2, c3, counter c1 cannot be decremented. So, in fact, the computation of M
can be simulated by a machine M′ with only two counters: d1, d2. Again, the only
restriction is that if d2 is decremented, it must be followed by an increment of d1, and
this is the only way d1 can be incremented. But now, we allow d1 to be decremented
independently and, as before, d2 can be incremented independently.

We conjecture that there is an RE set (even a recursive set) that cannot be gen-
erated by a 2-counter machine M′ as defined above. (Note that by definition, the
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generated number is in counter d2 when the machine halts.) However, we have no
formal proof at this time.

We can generalize the reverse-cascade SA P system by using, instead of only
one input symbol o, a set of symbols Σr = {a1, . . . , ar} as input symbols, again
with the restriction that these symbols can only be moved from the environment to
membrane mk and from mi+1 to mi for 1 ≤ i ≤ k − 1. Now the system generates a
set of r-tuples of nonnegative integers in the skin membrane when it halts. We can
prove the following theorem.

Theorem 29

1. 1-Membrane reverse-cascade SA P systems with input alphabet Σr = {a1, . . . , ar}
generate exactly the semilinear sets over Nr .

2. 2-Membrane reverse-cascade SA P systems with input alphabet Σ2 = {a1, a2}
can generate nonsemilinear sets over N2. In fact, for any RE set R, the set
{(2n,0) | n ∈ R} can be generated by a 2-membrane reverse-cascade SA P sys-
tem with input alphabet Σ2.

3. For any RE set R, the set {(n,0) | n ∈ R} can be generated by a 3-membrane
reverse-cascade SA P system with input alphabet Σ2.

4. For any RE set R, the set {(n,0,0) | n ∈ R} can be generated by a 2-membrane
reverse-cascade SA P system with input alphabet Σ3.

Remark 4 Again, as in Remark 3, we believe that Theorem 29, item (3) does not
hold for 2-membrane reverse-cascade SA P systems with input alphabet Σ2.

In the definition of a reverse-cascade SA P system, the skin membrane is the
output membrane. We now consider the model where the output membrane is the
innermost membrane m1 (and not the skin membrane). Similar to Theorem 28, we
can prove the following (but item (3) is weaker).

Theorem 30 Under the assumption that the output membrane is the innermost
membrane m1 (and not the skin membrane), we have:

1. 1-Membrane and 2-membrane reverse-cascade SA P systems are equivalent, and
they generate exactly the semilinear sets over N.

2. 3-Membrane reverse-cascade SA P systems can generate nonsemilinear sets
(e.g., the set {n2 | n ≥ 1}). Moreover, their emptiness problem is undecidable.

3. Any RE set R can be generated by a 5-membrane reverse-cascade SA P system.

Remark 5 It does not seem that item (3) of the above theorem holds for a 4-
membrane reverse-cascade SA P system, but we have no proof at this rime.

Finally, consider a 2-level SA P system Π which has membranes m1,m1, . . . ,

mk+1, where m1, . . . ,mk are at the same level, and they are enclosed in the skin
membrane mk+1. The environment contains F initially and an infinite supply of o’s.
We require that for membranes m1, . . . ,mk , in the rules of the forms (u,out) and
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(u,out, v, in), u does not contain o’s. Note that there is no restriction on the rules in
the skin membrane. For this system, we say that (n1, . . . , nk) is generated if, when
Π is started with no o’s in the system and fixed wi ∈ F ∗ in mi (1 ≤ i ≤ k + 1), Π

halts with on1, . . . , onk in membranes m1, . . . ,mk . Call the system just described a
simple SA P system generator. We can show the following theorem.

Theorem 31 A set R ⊆ Nk is generated by a simple SA P system generator if and
only if R is semilinear.

The theorem above no longer holds when the simple SA P system generator is
extended to a 3-level structure, as Theorem 30, item (2) shows.
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6. Freund R, Păun G (2003) On deterministic P systems. In: [1]
7. Ginsburg S (1966) The mathematical theory of context-free languages. McGraw–Hill, New

York
8. Greibach S (1978) Remarks on blind and partially blind one-way multicounter machines.

Theor Comput Sci 7:311–324
9. Hauschildt D, Jantzen M (1994) Petri net algorithms in the theory of matrix grammars. Acta

Inform (Hist Arch) 31(8):719–728
10. Ibarra OH (1978) Reversal-bounded multicounter machines and their decision problems.

J ACM 25:116–133
11. Ibarra OH (2005) The number of membranes matters. Theor Comput Sci
12. Ibarra OH (2005) On determinism versus nondeterminism in P systems. Theor Comput Sci
13. Ibarra OH, Woodworth S, Yen H-C, Dang Z (2005) On symport/antiport P systems and

semilinear sets. In: Proceedings of the 6th international workshop on membrane computing
(WMC6). Lecture notes in computer science. Springer, Berlin, pp 253–271
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Spiking Neural P Systems. Recent Results,
Research Topics

Gheorghe Păun and Mario J. Pérez-Jiménez

Abstract After a quick introduction of spiking neural P systems (a class of P sys-
tems inspired from the way neurons communicate by means of spikes, electrical im-
pulses of identical shape), and presentation of typical results (in general equivalence
with Turing machines as number computing devices, but also other issues, such as
the possibility of handling strings or infinite sequences), we present a long list of
open problems and research topics in this area, also mentioning recent attempts to
address some of them. The bibliography completes the information offered to the
reader interested in this research area.

1 Forecast

It is obvious that the (human) brain structure and functioning, from neurons, astro-
cytes, and other components to complex networks and complex (chemical, electri-
cal, informational) processes taking place in it, should be—and only partially is—
a major source of inspiration for informatics (we choose this more general term
rather that the restrictive, but usual, “computer science”, in order to stress that we
have in mind both mathematical approaches, with intrinsic motivation, and prac-
tical approaches, both the theory of computability and the use of computing ma-
chineries). If biology is such a rich source of inspiration for informatics as natural
computing proves, then the brain should be the “golden mine” of this intellectual
enterprise. Risking a forecast, we believe that if something really great is to appear
in informatics in the near future, then this “something” will be suggested by the
brain (and this will probably be placed at the level of “strategies” of computing,
not at the “tactic” level—just in balance with the two computing devices already
learned from the brain activity and which can be considered the most central notions
in informatics, the Turing machine, and the finite automaton).

The previous statements do not intend to suggest that spiking neural P systems
are the answer to this learning-from-brain challenge, but only to call (once again) the
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attention to this challenge. Becoming familiar with brain functioning, in whatever
reductionistic framework (as spiking neural P systems investigation is), can however
be useful. After all, “the road of one thousand miles starts with the first step”, Lao
Tze said. . .

2 Some (Neural) Generalities

The neuron is a highly specialized cell, at the same time intricate and simple, robust
and fragile, like any other cell, but having the particularity of being involved (in
general) in huge networks by means of the synapses established with partner neu-
rons. It is not at all the intention of these lines to give any biological information
from this area, but only to point out some of the peculiarities related to neurons and
the brain: the functioning of each neuron assumes chemical, electrical, and informa-
tional processing at the same time; the axon is not a simple transmitter of impulses,
but an information processor; in the communication between neurons the spiking
activity plays a central role (which means that the distance in time between consec-
utive spikes is used to carry information, that is, time is a support of information);
the neurons are not cooperating only through synapses, but their relationships are
also regulated through the calcium waves controlled by the astrocytes, “eavesdrop-
pers” of axons playing an important role in the neural communication; the brain
displays a general emergent behavior which, to the best of our knowledge, cannot
be explained only in terms of neuron interrelationships (something is still missing
in this picture, maybe of a quantum nature—as Penrose suggests, maybe related to
the organization of parts, maybe of a still subtler or even unknown nature). Some
of these ideas (especially spiking) are supposed to lead to “neural computing of
the third generation”, which suggests that already computer scientists are aware of
the possibility of major progresses to be made (soon) on the basis of progresses in
neurobiology.

The bibliography of this note contains several titles, both from the general bi-
ology of the cell [1], general neurology [51], and from neural computing based on
spiking [4, 17, 33–36], about the axon as an information processor [49], astrocytes
and their role in the brain functioning [46, 50]. Of course, these titles are only meant
to be initial “dendrites” to the huge bibliography related to (computer science ap-
proaches to) brain functioning.

3 Spiking Neural P Systems—An Informal Presentation

Spiking neural P systems (SN P systems, for short) were introduced in [26] in the
precise (and modest: trying to learn a new “mathematical game” from neurology,
not to provide models to it) aim of incorporating in membrane computing ideas
specific to spiking neurons; the intuitive goal was to have (1) a tissue-like P system
with (2) only one (type of) object(s) in the cells—the spike, with (3) specific rules
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for evolving populations of spikes, and (4) making use of the time as a support of
information.

In what follows, we briefly describe several classes of SN P systems investigated
so far, as well as some of the main types of results obtained in this area.

In short, an SN P system (of the basic form—later called a standard SN P system)
consists of a set of neurons placed in the nodes of a directed graph and sending
signals (spikes, denoted in what follows by the symbol a) along the arcs of the graph
(these arcs are called synapses). The objects evolve by means of spiking rules, which
are of the form E/ac → a;d , where E is a regular expression over {a} and c, d are
natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes
such that ak ∈ L(E), k ≥ c, can consume c spikes and produce one spike, after a
delay of d steps. This spike is sent to all neurons to which a synapse exists outgoing
from the neuron where the rule was applied. There also are forgetting rules, of the
form as → λ, with the meaning that s ≥ 1 spikes are removed, provided that the
neuron contains exactly s spikes.

An extension of theses type of rules was considered (with a mathematical motiva-
tion) in [14, 37]: rules of the form E/ac → ap;d , with the meaning that when using
the rule, c spikes are consumed and p spikes are produced (one assumes that c ≥ p,
not to produce more than consuming). Because p can be 0 or greater than 0, we
obtain a generalization of both spiking and forgetting rules, while forgetting rules
also have a regular expression associated with them.

An SN P system (with standard as well with extended rules) works in the fol-
lowing way. A global clock is assumed and in each time unit each neuron which
can use a rule should do it (the system is synchronized), but the work of the sys-
tem is sequential locally: only (at most) one rule is used in each neuron. One of the
neurons is considered to be the output neuron, and its spikes are also sent to the
environment. The moments of time when a spike is emitted by the output neuron
are marked with 1, the other moments are marked with 0. This binary sequence is
called the spike train of the system—it might be infinite if the computation does not
stop.

With a spike train we can associate various numbers, which can be considered as
computed (we also say generated) by an SN P system. For instance, in [26] only the
distance between the first two spikes of a spike train was considered, then in [42]
several extensions were examined: the distance between the first k spikes of a spike
train, or the distances between all consecutive spikes, taking into account all inter-
vals or only intervals that alternate, all computations or only halting computations,
etc.

An SN P system can also work in the accepting mode: a neuron is designated as
the input neuron and two spikes are introduced in it, at an interval of n steps; the
number n is accepted if the computation halts.

Two main types of results were obtained: computational completeness in the case
when no bound is imposed on the number of spikes present in the system, and a
characterization of semi-linear sets of numbers in the case when a bound is imposed.

Another attractive possibility is to consider the spike trains themselves as the
result of a computation, and then we obtain a device generating a (binary) language.
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We can also consider both input and output neurons and then an SN P system can
work as a transducer. Such possibilities were investigated in [43]. Languages—even
on arbitrary (i.e., not only binary) alphabets—can be obtained also in other ways:
following the path of a designated spike across neurons, as proposed in [12], or
using rules of the extended form mentioned above. Specifically, with a step when the
system sends out i spikes, we associate a symbol bi , and thus we get a language over
an alphabet with as many symbols as the number of spikes simultaneously produced.
This case was investigated in [14], where representations or characterizations of
various families of languages were obtained. (An essential difference was found
between the case when zero spikes sent out is interpreted as a symbol b0 and the
case when this is interpreted as inserting λ, the empty string, in the result.)

Other extensions were proposed in [24] and [22], where several output neurons
were considered, thus producing vectors of numbers, not only numbers. A detailed
typology of systems (and of sets of vectors generated) is investigated in the two
papers mentioned above, with classes of vectors found in between the semi-linear
and the recursively enumerable ones.

The proofs of all computational completeness results known up to now in this
area are based on simulating register machines. Starting the proofs from small uni-
versal register machines, as those produced in [29], one can find small universal SN
P systems (working in the generating mode, as sketched above, or in the comput-
ing mode, i.e., having both an input and an output neuron and producing a number
related to the input number). This idea was explored in [37] and the results are as
follows: there are universal computing SN P systems with 84 neurons using stan-
dard rules and with only 49 neurons using extended rules. In the generative case, the
best results are 79 and 50 neurons, respectively.

In the initial definition of SN P systems, several ingredients are used (delay, for-
getting rules); some of them of a general form (unrestricted synapse graph, unre-
stricted regular expressions). As shown in [21], several normal forms can be found,
in the sense that some ingredients can be removed or simplified without losing the
computational completeness. For instance, the forgetting rules or the delay can be
avoided, and the outdegree of the synapse graph can be bounded by 2, while the reg-
ular expressions from firing rules can be of very restricted forms. The dual problem,
of the indegree bounding, was solved (affirmatively) in [44].

Besides using the rules of a neuron in the sequential mode introduced above, it
is possible to also use the rules in a parallel way. A possibility was considered in
[27]: when a rule is enabled, it is used as many times as possible, thus exhausting
the spikes it can consume in that neuron. As proved in [27], SN P systems with the
exhaustive use of rules are again universal, both in the accepting and the generative
cases.

In the proof of these results, the synchronization plays a crucial role, but both
from a mathematical point of view and from a neuro-biological point of view, it
is rather natural to consider non-synchronized systems, where the use of rules is
not obligatory: even if a neuron has a rule enabled in a given time unit, this rule
is not obligatorily used, the neuron may remain still, maybe receiving spikes from
the neighboring neurons; if the unused rule may be used later, it is used later, with-
out any restriction on the interval when it has remained unused; if the new spikes
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made the rule non-applicable, then the computation continues in the new circum-
stances (maybe other rules are enabled now). This way of using the rules applies
also to the output neuron, hence now the distance in time between the spikes sent
out by the system is no longer relevant. That is why, for non-synchronized SN P sys-
tems we take as a result of a computation the total number of spikes sent out; this,
in turn, makes necessary considering only halting computations (the computations
never halting are ignored, they provide no output). Non-synchronized SN P systems
were introduced and investigated in [8], where it is proved that SN P systems with
extended rules are still equivalent with Turing machines (as generators of sets of
natural numbers).

4 Some (More) Formal Definitions

To make clearer some of the subsequent formulations, we recall here the definition
of central classes of SN P systems, but more details should be found in the papers
mentioned in the bibliography. No general notions or notations from language or au-
tomata theory, computability, complexity, computer science in general or membrane
computing, are recalled.

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a
construct of the form

Π = (O,σ1, . . . , σm, syn,out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni,Ri),1 ≤ i ≤ m, where:

(a) ni ≥ 0 is the initial number of spikes contained by the neuron;
(b) Ri is a finite set of rules of the following general form:

E/ac → ap;d,

where E is a regular expression with a the only symbol used, c ≥ 1, and
p,d ≥ 0, with c ≥ p; if p = 0, then d = 0, too.

3. syn ⊆ {1,2, . . . ,m} × {1,2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);
4. out ∈ {1,2, . . . ,m} indicates the output neuron.

A rule E/ac → ap;d with p ≥ 1 is called a firing (we also say spiking) rule; a
rule E/ac → ap;d with p = d = 0 is written in the form E/ac → λ and is called
a forgetting rule. If L(E) = {ac}, then the rules are written in the simplified form
ac → ap;d and ac → λ. A system having only rules of the forms E/ac → a;d and
ac → λ is said to be restricted (we also use to say that such a system is a standard
one).

The rules are applied as follows: if the neuron σi contains k spikes, ak ∈ L(E)

and k ≥ c, then the rule E/ac → ap;d ∈ Ri (with p ≥ 1) is enabled and it can be
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applied; applying it means that c spikes are consumed, only k − c remain in the
neuron, the neuron is fired, and it produces p spikes after d time units. If d = 0,
then the spikes are emitted immediately, if d = 1, then the spikes are emitted in the
next step, and so on. In the case d ≥ 1, if the rule is used in step t , then in steps
t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed, and it cannot receive new spikes
(if a neuron has a synapse to a closed neuron and sends spikes along it, then the
spikes are lost). In step t + d , the neuron spikes and becomes again open, hence
can receive spikes (which can be used in step t + d + 1). The p spikes emitted by a
neuron σi are replicated and they go to all neurons σj such that (i, j) ∈ syn (each σj

receives p spikes). If the rule is a forgetting one, hence with p = 0, then no spike is
emitted (and the neuron cannot be closed, because also d = 0).

In the synchronized mode, considered up to now in all SN P systems investiga-
tions except [8], a global clock is assumed, marking the time for all neurons, and in
each time unit, in each neuron which can use a rule, a rule must be used. Because
two rules E1/a

c1 → ap1;d1 and E2/a
c2 → ap2;d2 can have L(E1) ∩ L(E2) �= ∅,

it is possible that two or more rules can be applied in a neuron, and then one of
them is chosen non-deterministically. Note that the neurons work in parallel (syn-
chronously), but each neuron processes sequentially its spikes, using only one rule
in each time unit.

The initial configuration of the system is described by the numbers n1, n2, . . . , nm

of spikes present in each neuron. During the computation, a configuration is de-
scribed by both the number of spikes present in each neuron and by the state of
the neuron, more precisely, by the number of steps to count down until it becomes
open (this number is zero if the neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉
is the configuration where neuron σi, i = 1,2, . . . ,m contains ri ≥ 0 spikes and
it will be open after ti ≥ 0 steps; with this notation, the initial configuration is
C0 = 〈n1/0, . . . , nm/0〉 (see an example in Fig. 2).

Using the rules as suggested above, we can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons are
open and no rule can be used. With any computation, halting or not, we associate a
spike train, a sequence of digits 0 and 1, with 1 appearing in positions which indi-
cate the steps when the output neuron sends spikes out of the system (we also say
that the system itself spikes at that time). With any spike train, we can associate var-
ious numbers, which are considered as computed (generated) by the system; in the
spirit of spiking neural computing, the distance between certain spikes are usually
taken as the result of a computation (e.g., the distance between the first two spikes).
Because of the non-determinism in using the rules, a given system computes in this
way a set of numbers. An SN P system can be also used in the accepting mode:
a number n is introduced in the system in the form of the distance between two
spikes entering a specified neuron, and this number is accepted if the computation
eventually halts.

We denote by Ngen(Π) the set of numbers generated (in the synchronized way)
by a system Π in the form of the number of steps elapsed between the first two
spikes of a spike train. Then by Spik2SPm(rulek, consp, forgq,deld) we denote the
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Fig. 1 The initial
configuration of the SN P
system Π

family of such sets of numbers generated by systems with at most m neurons, each of
them containing at most k rules, all of them of the standard form, and each rule con-
suming at most p spikes, forgetting at most q spikes, and having the delay at most d .
When using extended SN P systems, we use Spik2EPm(rulek, consp,prodq,deld) to
denote the family of sets Ngen(Π) generated by systems with at most m neurons,
each of them containing at most k rules (of the extended form), each spiking rule
consuming at most p spikes, producing at most q spikes, and having the delay at
most d . When any of the parameters m,k,p,q, d is not bounded, it is replaced
by ∗. When using the rules in the exhausting or the non-synchronized mode, we
write Nex

gen(Π),N
nsyn
gen (Π), respectively, and the superscripts ex and nsyn are also

added to Spik in the families notation.
The notations should be changed when dealing with other sets of numbers than

the distance between the first two spikes, with accepting systems, when generating
or accepting languages, but we do not enter here into details. Instead, we close this
section by introducing two important tools in presenting SN P systems, namely, the
graphical representation and the transition diagram.

Figures 1 and 2 are recalled from [9]. The graphical representation of an SN P
system is rather intuitive: the neurons are represented by membranes, placed in the
nodes of a directed graph whose arrows represent the synapses; an arrow also exits
from the output neuron, pointing to the environment; in each neuron, we specify the
rules and the spikes present in the initial configuration.

Figure 1 represents the initial configuration of a system Π . We have three neu-
rons, labeled with 1, 2, 3, with neuron σ3 being the output one. Each neuron contains
two rules, with neurons σ1 and σ2 having the same rules (firing rules which can be
chosen in a non-deterministic way, the difference between them being in the delay
from firing to spiking), and neuron σ3 having one firing and one forgetting rule. In
the figure, the rules are labeled, and these labels are useful below, in relation with
Fig. 2.

This figure can be used for analyzing the evolution of the system Π : because the
system is finite, the number of configurations reachable from the initial configura-
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Fig. 2 The transition
diagram of system Π from
Fig. 1

tion is finite, too; hence, we can place them in the nodes of a graph, and between two
nodes/configurations we draw an arrow if and only if a direct transition is possible
between them. In Fig. 2, the rules are also indicated used in each neuron, with the
following conventions: for each rjk we have written only the subscript jk, with 31
being written in bold face, in order to indicate that a spike is sent out of the system at
that step; when a neuron σj , j = 1,2,3 uses no rule, we have written j0, and when
it spikes (after being closed for one step), we write j s.

The functioning of the system, both as a number generator and as a string gener-
ator, can easily be followed on this diagram. The transition diagram is very useful as
a tool involved in the formal verification of an SN P system. A way to automatically
generate such a diagram is also a part of the software described in [47].

5 Open Problems and Research Topics

The following list of problems should be read with the standard precautions: it is
not meant to be exhaustive, there is no ordering of the problems (according to their
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significance/interest), some problems are very general, others are much more par-
ticular, in many cases, the formulation is preliminary/informal and addressing the
problem should start with a precise/suitable formulation, in many cases related re-
sults exist in the literature, and so on. Most problems are stated in a short way, with
reference to the discussion from Sect. 3 and the definitions from Sect. 4.

A. Let us start with a general and natural idea: linking the study of SN P systems
with neural computing. This can be a rich source of ideas, based on transferring
from an area to the other one research topics which make sense also in the destina-
tion framework. What means, for instance, training (in general, learning, adaptation,
evolving) in terms of SN P systems? More elementary: what means solving a prob-
lem by using an SN P system, implicitly, what means to solve a problem in a better
way? Maybe the starting point should not be (only) neural computing, which is al-
ready an abstract, specialized, reductionistic framework, but (also) from neurology,
from learning in the general psycho-pedagogical sense.

This problem is related to another general, natural, and important one: bringing
more ingredients from neurology. Just a few quick ideas: considering an energy as-
sociated with firing/spiking; taking into consideration the anti-port processes which
are performed in synapses; introducing Circadian periodicity in the functioning of
neurons and of nets of neurons, with “tiredness”, “resting periods”, etc. How can a
natural notion such as “‘memory” captured in this framework (short-term, long-term
memory, forgetting information, etc.)?

B. In particular, the recent discoveries related to the role of astrocytes in the
functioning of the brain need to be examined and formalized. Astrocytes are a class
of cells that form a supporting and insulating structure for the neurons, but also
participate in the process of communication between neurons. They “listen” to the
spikes passing along axons and accordingly regulate the release of neurotransmitters
from the nerve terminals, thus relating in an intricate way the functioning of different
neighboring axons. The regulation is either excitatory or inhibitory, and it is done
by means of calcium waves. We refer to [46] and [50] for further details, and further
references. How can astrocytes be considered in an SN P system and with what
consequences?

An attempt in this respect is that from [3], where some preliminary (computabil-
ity) results were obtained. Then a particular case, much simpler, was considered
in [41] in the following setup. A further component of an SN P system is consid-
ered, astro ⊆ sun≤k ; an element of this set is called astrocyte. The idea is that such
an astrocyte controls a number t of axons (actually, synapses, because syn identifies
synapses) less than or equal to a given constant k and, if a number of spikes are trans-
mitted along the t axons, then only one of them is selected and let to go, all others
are simply removed. Because exactly one spike is moved along the controlled axons,
this can lead to deadlock situations, where several astrocytes controlling common
axons cannot work together according to the previous definition. The occurrence of
such a deadlock in SN P systems with astrocytes is proved in [41] to be undecidable.
Another result proved in [41] concerns the possibility of passing from a system with
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astrocytes with an arbitrary degree (the constant k above) with an equivalent system
having the minimal degree, two. For the case of generating numbers (in the sense of
the set Ngen(Π) defined above), the answer is affirmative; the minimal degree can
be reached.

Many issues are left open in [41]: changing the definition in order to avoid the
deadlock; studying astrocytes of a more realistic type (for instance, controlling ax-
ons, not synapses); dealing also with unsynchronized systems, etc.

The neuron-astrocyte coupling is based on signaling pathways of a kind which
reminds the controlling pathways which were recently modeled and simulated in
terms of P systems in many papers, and this suggests the next general research chal-
lenge: applications (in neurology). This is perhaps a too ambitious goal at this stage
of the development of the study of SN P systems and it is first necessary to have an-
swers to the previous two problems, but it is important to keep in mind the possibility
of applications when devising new classes of SN P systems. It is difficult to forecast
which would be the most promising types of applications—looking for conceptual
clarifications, for analytical results, for computer experiments and simulations, for
all these intertwined? Of course, the cooperation with a biologist/neurologist would
be very important in this respect.

Making a step from neurobiology to mathematics, the problem appears to con-
sider systems using more than one type of spikes. At the first sight, this is against
the spirit of spiking neural computing, and can lead to standard membrane systems.
Still, the question makes sense in various setups. For instance, neurology deals both
with excitatory and inhibitory impulses, both in neurons and at the level of astro-
cytes. How can inhibitory spikes be defined and used?

C. Then there are features of SN P systems which were not considered for general
P systems. Using a regular expression for enabling a rule looks like controlling the
application of rules by means of promoters, inhibitors, and activators, but a notion
of delay does not exits in membrane computing. Can it be of any interest also for
usual P systems? Then defining the result of a computation in a P system in terms
of the time elapsed between two specified events, in particular, sending a given
object outside, was briefly investigated in [6], but this issue deserves further research
efforts.

Conversely, there are many ingredients of usual P systems which were not con-
sidered for SN P systems and might make sense also in this area, at least at a math-
ematical level. Of a particular interest can be tools to exponentially increase the
working space in a polynomial (if possible, even linear) time, for instance, by oper-
ations similar to cell division and cell creation in P systems with active membranes.
How new neurons can be created (added to a system) in such a way to make possible
polynomial solutions to computationally hard (typically, NP-complete) problems?
The brain is supposed to be a very efficient computing device—how can SN P sys-
tems be made efficient from this point of view?

D. This touches a more general issue, that of considering SN P systems with a
dynamical structure. The dynamism can be achieved both in terms of neurons and
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synapses, or only for synapses. From birth to maturity, the brain essentially evolves
at the level of synapses, learning means establishing new synapses, cutting them,
making them more stable/fast when used frequently, and so on and so forth. How
this can be incorporated in SN P systems? A related idea is to associate a duration
to each synapse (which is not of interest when the duration is constant), and to vary
it in time, according to the intensity of using that synapse, and this looks rather
motivated from a learning point of view.

Making synapses to have a duration or a length, depending on their use, can be
related to a similar idea [16] at the level of spikes: considering a duration of life also
for spikes, in the form of a decaying constant associated with them (at the level of
the whole system, or locally, for each neuron). If a spike is not used, a number of
steps larger than the decaying threshold, then it is removed (a sort of forgetting rules
are thus implicitly acting, depending on the age of each spike).

E. Moving further to theoretical issues, let us consider an idea related both to
“classic” membrane computing and to the efficiency issue: using the rules in a par-
allel manner. This has been already considered in [27] in the particular form of using
the rules in the exhaustive mode: if a neuron contains kn + r spikes and has a rule
E/an → a;d such that akn+r ∈ L(E) and k ≥ 1,0 ≤ r < n, then the rule is enabled
and it is applied k times; kn spikes are consumed, r remain unused, and k are pro-
duced. Besides continuing the research from [27] (where it is only proved that SN P
systems with an exhaustive use of rules are Turing complete both in the generative
and the accepting modes), several other problems remain to be investigated. Actu-
ally, most problems usually considered for SN P systems with a sequential use of
rules can be formulated also for the exhaustive mode: generating or accepting lan-
guages, translating strings of infinite sequences, looking for small universal systems,
etc.

Then the problem arises to consider other forms of parallelism at the level of
each neuron or at the level of the whole system. What about using several rules at
the same time in the same way as the rules of a usual P system are applied in the
maximally parallel manner? Variants inspired from grammar systems area can also
be considered, thus obtaining a bounded parallelism: at least k, at most k, exactly k

rules to be used at a time. This last idea can be transferred also at the level of neu-
rons: in each step, only a prescribed number of neurons, non-deterministically cho-
sen, to be active. Finally, one can borrow to this area the idea of minimal parallelism
from [15]: when a neuron can use at least one rule, then at least one must be used,
without any restriction about how many. Similarly, we can extend this to the whole
system or to pre-defined blocks of the system: if at least one neuron from a block
can fire, then at least one should do it, maybe more. A significant non-determinism
is introduced in this way in the functioning of the system.

F. When the number of rules to be used in each neuron is “at least zero” (and this
is equivalent with making evolve “at least zero” neurons at a time), we get the rather
natural idea of a non-synchronized functioning of an SN P system. In such a case,
in each time unit, any neuron is free to use a rule or not.
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We have described the functioning of such a system in the end of Sect. 3. We
only recall that because now “the time does not matter”, the spike train can have
arbitrarily many occurrences of 0 between any two occurrences of 1, hence the re-
sult of a computation can no longer be defined in terms of the steps between two
consecutive spikes, but as the total number of spikes sent into the environment by
(or contained in) the output neuron. In this way, only halting computations can be
considered as successful.

In [8], it is proved that SN P systems with extended rules are Turing equivalent
even in the non-synchronized case, but the problem was left open whether this is true
also for systems using standard rules. The conjecture is that this does not happen,
hence that synchronization plays a crucial role in this case. If true, such a result
would be of a real interest.

Similar to the exhaustive mode of using rules, also the non-synchronization can
be investigated in relation with many types of problems usual in the SN P systems
area: handling languages, looking for small universal systems, etc.

A related issue is to consider the class of systems for which the synchronization
does not matter, i.e., they generate/accept the same set of numbers in both modes.
Furthermore, time-free, clock-free, time-independent systems can be considered, in
the same way as in [5, 7, 48].

G. Several times so far, the idea of efficiency was invoked, with the need to in-
troduce new ingredients in the area of SN P systems in such a way to make possible
polynomial solutions to intractable problems. Actually, such a possibility was al-
ready considered in [10]: making use of arbitrarily large pre-computed resources.
The framework is the following: an arbitrarily large net of neurons is given of a reg-
ular form (as the synapse graph) and with only a few types of neurons (as contents
and rules) repeated indefinitely; the problem to be solved is plug-in by introducing
a polynomial number of spikes in certain neurons (of course, polynomially many),
then the system is left to work autonomously; in a polynomial time, it activates an
exponential number of neurons, and after a polynomial time, it outputs the solution
to the problem. The problem considered in [10] was the SAT problem.

This strategy is attractive from a natural computing point of view (we may as-
sume that the brain is arbitrarily large with respect to the small number of neurons
currently used, the same with the cells in liver, etc.), but it has no counterpart in the
classic complexity theory. A formal framework for defining acceptable solutions
to problems by making use of pre-computed resources needs to be formulated and
investigated. What kind of pre-computed workspace is acceptable, i.e., how much
information may be provided for free there, what kind of net of neurons, and what
kind of neurons? (We have to prevent “cheating” by already placing the answer to
the problem in the given resources and then “solving” the problem just by visit-
ing the right place where the solution waits to be read.) What means introducing a
problem in the existing device? (Only spikes, also rules, or maybe also synapses?)
Defining complexity classes in this case remains as an interesting research topic.

In fact, SN P systems contains an in-built ingredient which makes them intrinsi-
cally efficient: by definition, the use of a rule takes one time unit; however, using a
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rule E/ac → a;0 means (i) checking whether or not the neuron is covered by the
regular expression E, (i) removing c spikes, and (iii) producing one spike. Step (i)
assume solving the membership problem for a regular expression in constant time,
in one step, which is not as known for regular languages, whose membership prob-
lem is of a linear complexity (the parsing time is proportional with the length of the
parsed string). This means that we tacitly introduced an oracle, of a rather simple
form—a regular set, but still bringing a considerable speed-up. Details can be found
in [31, 32], where it is also proved that in certain cases this oracle does not help, a
deterministic SN P system with particular regular expressions can be simulated in
polynomial time by a deterministic Turing machine.

In the above mentioned papers, one also address another interesting issue: solving
decidability problems in constant time, in a non-deterministic way. This possibility
is illustrated with solutions to SAT and Subset-Sum. Uniform solutions (still non-
deterministic) to these problems are provided in [30].

Anyway, the complexity investigations in the SN P systems area need and deserve
further efforts. Defining complexity classes (for deterministic or non-deterministic
systems, with or without pre-computed resources), clarifying the role of “oracles”
involved in applying the spiking rules (the brain seems to have such capabilities,
e.g., when recognizing patterns), improving and extending the results from [30–32],
ways to generate an exponential working space, other ideas inspired from neuro-
biology are only a few topics to explore.

H. Coming back to the initial definitions, there are several technical issues which
are worth clarifying (most probably, for universality and maybe also for efficiency
results, they do not matter, but it is also possible to exist other situations where these
details matter). For instance, the self-synapses are not allowed in the synapse graph.
However, a neuron with a rule a → a and a self-synapse can work forever, hence it
can be used for rejecting a computation in the case when successful computations
should halt. Similarly, (in the initial definition from [26]) the forgetting rules as →
λ were supposed to have as /∈ L(E) for all spiking rules E/ac → a;d from the
same neuron, while in extended rules E/ac → ap;d it was assumed that c ≥ p.
Is there any situation where these restrictions make a difference? Then in [21] it
was shown that some of the ingredients used in the definition of SN P systems with
standard rules can be avoided. This is the case with the delay, the forgetting rules,
the generality of regular expressions. Can these normal forms be combined, thus
avoiding at the same time two of the mentioned features?

What then about using a kind of rules of a more general form, namely E/an →
af (n);d , where f is a partial function from natural numbers to natural numbers
(maybe with the property f (n) ≤ n for all n for which f is defined), and used as
follows: if the neuron contains k spikes such that ak ∈ L(E), then c of them are
consumed and f (c) are created, for c = max{n ∈ N | n ≤ k, and f (n) is defined};
if f is defined for no n smaller than or equal to k, then the rule cannot be applied.
This kind of rules looks both adequate from a neurobiological point of view (the
sigmoid excitation function can be captured) and powerful from a mathematical
point of view (arbitrarily many spikes can be consumed at a time, and arbitrarily
many produced).
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J. A standard problem when dealing with accepting devices concerns the dif-
ference between deterministic and non-deterministic systems. Are they different in
power, does determinism imply a decrease of the computing power? Up to now,
all computability completeness proofs for the accepting version of SN P systems
of various types were obtained for deterministic systems. Are there classes (maybe
non-universal) for which the determinism matters?

Actually, the problem can be refined. The determinism is defined usually in terms
of non-branching during computations: a computation is deterministic if for every
configuration there is (at most) one next configuration. A first subtle point: is this
requested for all possible configurations or only for all configurations which are
reachable from the initial one?

Maybe more interesting for SN P systems is the possibility to define a strong
determinism, in terms of rules: an SN P system is said to be strongly deterministic if
L(E) ∩ L(E′) = ∅ for all rules E/ac → a;d and E′/ac′ → a;d ′ from any neuron.
Obviously, such a system is deterministic also when defining this notion in terms of
branching (even for arbitrary configurations, not only for the reachable ones).

Is any class of SN P systems for which these types of determinism are separated?

K. Different from the case of general P systems, where finding infinite hierar-
chies on the number of membranes was a long awaited result, for SN P systems one
can easily find such hierarchies, based on the characterization of semi-linear sets
of numbers (by means of systems with a bounded number of spikes in their neu-
rons): if for each finite automaton with n states (using only one symbol) one can
find an equivalent SN P system with g(n) neurons, and, conversely, for each SN
P system with m neurons one can find an equivalent (i.e., generating strings over
an one-letter alphabet whose lengths are numbers generated/accepted by the SN P
system) with h(m) states, then because there is an infinite hierarchy of regular one-
letter languages in terms of states, we get an infinite hierarchy of sets of numbers
with respect to the number of neurons. Still, several problems arise here. First, not
always the characterization of semi-linear sets of numbers is based on proving the
equivalence of bounded SN P systems with the finite automata. Then this reasoning
only proves that the hierarchy is infinite, not also that it is “dense” (connected is the
term used in classic descriptional complexity: there is n0 such that for each n ≥ n0
there is a set Qn whose neuron-complexity is exactly n). Finally, what about find-
ing classes intermediate between semi-linear and Turing computable for which the
hierarchy on the number of neurons is infinite (maybe connected)?

The previous question directly suggests two others. The first one is looking
for small universal SN P systems (here “universal” is understood in the sense of
“programmable”—the existence of a fixed system which can simulate any particu-
lar system after introducing a code of the particular system in it—not in the sense of
“Turing complete”, although there is a direct connection between these two no-
tions). This question is considered in [37] for SN P systems with standard and
with extended rules, working either in the computing mode or in the generating
mode. For standard rules, 84 and 76 neurons were used, while for extended rules
49 and 50 neurons were used, respectively. Are these results optimal? A negative
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answer is expected (however, a significant improvement is not very probable). What
about universal SN P systems of other types—in particular, with exhaustive or non-
synchronized use of rules?

L. Problem K also suggests to look for classes of SN P systems which are not
equivalent with Turing machines, but also not computing only semi-linear sets of
numbers, hence equivalent in power with finite automata. This does not look as
an easy question, but it is rather interesting, in view of the possibility of finding
classes of systems with decidable properties, but (significantly) more powerful than
bounded SN P systems. Such a class would be attractive also from the point of
view of applications, because of the possibility of finding properties of the modeled
processes by analytical, algorithmic means.

Again in a direct continuation with the previous issue, there appears the need to
find characterizations of classes of languages, other than finite, regular, and recur-
sively enumerable, in terms of SN P systems. The investigations from [9, 12, 14]
have left open these questions, and this fits with the general situation in membrane
computing (as well as in DNA computing): the Chomsky hierarchy seems not to
have a counterpart in nature, families like those of linear, context-free, and context-
sensitive languages do not have (easy) characterizations in bio-inspired computing
models. The same challenge appears for families of languages generated by L sys-
tems (sometimes, with the exception of ET0L languages).

L systems can be related with SN P systems also at the level of infinite sequences:
both by iterating morphisms (D0L systems) and by taking infinite spike trains we
can get classes of infinite sequences. Directly as spike trains we have binary se-
quences, but for extended rules (and for SN P systems with a parallel use of rules)
we can get as an output of a computation a string or an infinite sequence over an
arbitrary alphabet. A preliminary examination of the binary case was done in [43],
but many problems were left open, starting with the comparison of SN P systems
as tools for handling infinite sequences (of bits) with other tools from language and
automata theory (with ω-languages computed by finite automata, Turing machines,
etc.) and with known infinite sequences, e.g., those from [52].

A particular problem from [43] is the following. SN P systems cannot compute
arbitrary morphisms, but only length preserving morphisms (codes). An extension
of these latter functions are the so-called k-block morphisms, which are functions
f : {0,1}k −→ {0,1}k (for a given k ≥ 1) prolonged to f : {0,1}ω −→ {0,1}ω by
f (x1x2 . . .) = f (x1)f (x2) . . .. In [43], it is only shown that 2-block morphisms can
be computed by SN P systems, and the conjecture was formulated that this is true
for any k.

In general, more should be found about the use of SN P systems as tools for
transducing strings and infinite sequences.

Maybe useful in addressing the previous problem—and interesting also from
other points of view (e.g., if starting investigations in terms of process algebra),
is the issue of compositionality: looking for ways to pass from given systems to
more complex systems, for instance, to systems generating/accepting the result of
an operation between the sets of numbers or the languages generated/accepted by the
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initial systems. Morphisms were mentioned also above, but there are many other set-
theoretic or language-theoretic operations to consider, as well as serial and parallel
composition, embedding as a subsystem, etc. Of course, a central point in such op-
erations is that of synchronization. It is expected that the case of non-synchronized
systems is much easier (maybe, instead, less interesting theoretically).

M. We have mentioned at the beginning of these notes that the axon is not a
simple transmitter of spikes, but a complex information processor. This suggests
considering computing models based on the axon functioning (Ranvier nodes am-
plification of impulses, and other processes) and a preliminary investigation was
carried out in [13]. Many questions remain to be clarified in this area (see also the
questions formulated in [13]), but a more general and probably more interesting
problem appears, namely, of combining neurons and axons (as information process-
ing units) in a global model; maybe also astrocytes can be added, thus obtaining a
more complex model, closer to reality.

N. We will conclude with two general issues, where nothing was done up to now.
First, SN P systems have a direct (pictural) similarity with Petri nets, where tokens
(like spikes) are moved through the net according to specific rules. Bridging the two
areas looks then rather natural—with “bridging” understood as a move of notions,
tools, results in both directions, from Petri nets to SN P systems and the other way
round.

Then directly important for possible applications is the study of SN P systems as
dynamical systems, hence not focusing on their output, but on their evolution, on the
properties of the sequences of configurations reachable from each other. The whole
panoply of questions from the (discrete) dynamical systems theory can be brought
here, much similar to what happened in general membrane computing.

6 Final Remarks

Many other open problems and research topics can be found in the papers devoted
to SN P systems—the interested reader can check the titles below in this respect (the
bibliography contains most of the papers about SN P systems which we were aware
of at the beginning of December 2007). On the other hand, because the research in
this area is quite vivid, it is possible that some of these problems were solved at the
same time or shortly after writing these notes, without being possible to mention the
respective results here. That is why, the reader is advised to follow the developments
in this area, for instance, through the information periodically updated at the mem-
brane computing web page [54]. In particular, one can find there the paper [40], on
which the present paper is based.
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Membrane Computing Schema:
A New Approach to Computation
Using String Insertions

Mario J. Pérez-Jiménez and Takashi Yokomori

Abstract In this paper, we introduce the notion of a membrane computing schema
for string objects. We propose a computing schema for a membrane network (i.e.,
tissue-like membrane system) where each membrane performs unique type of oper-
ations at a time and sends the result to others connected through the channel. The
distinguished features of the computing models obtained from the schema are:

1. only context-free insertion operations are used for string generation,
2. some membranes assume filtering functions for structured objects (molecules),
3. generating model and accepting model are obtained in the same schema, and

both are computationally universal,
4. several known rewriting systems with universal computability can be reformu-

lated by the membrane computing schema in a uniform manner.

The first feature provides the model with a simple uniform structure which facilitates
a biological implementation of the model, while the second feature suggests further
feasibility of the model in terms of DNA complementarity.

Through the third and fourth features, one may have a unified view of a variety of
existing rewriting systems with Turing computability in the framework of membrane
computing paradigm.

1 Introduction

In the theory of bio-inspired computing models, membrane systems (or P systems)
have been widely studied from various aspects of the computability such as the
optimal system designs, the functional relations among many ingredients in different
levels of computing components, the computational complexity and so forth. Up to
the present, major concerns are focused on the computational capability of multi-
sets of certain objects in a membrane structure represented by a rooted tree, and
there are a relatively limited amount of works in the membrane structure of other
types (like a network or graph) on string objects and their languages: those are,
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for example, in the context of P system on graph structure [15], of the tissue P
systems [11], and of spiking neural P systems [3, 7].

On the other hand in DNA computing theory, a string generating device called
insertion-deletion system has been proposed and investigated from the unique view-
point of non-rewriting nature in generating string objects [10, 14]. Among others,
string insertion operation with no context is of our particular interests, because of
the relevance to biological feasibility in terms of DNA sequences.

In this paper, we are concerned with tissue-like membrane systems with string
insertion operations and investigate the computational capability of those systems.
By using the framework of tissue-like membrane systems, however, our major focus
is on studying the new aspects of the computational mechanisms used in a variety
of existing models based on string rewriting.

To this aim, we propose the notion of a membrane computing schema which
provides a unified view and framework to investigate new aspects of the variety of
computational mechanisms. More specifically, let M be a given computing device
(grammar or machine) based on string manipulation. Then by a membrane comput-
ing schema Π , we represent the core structure of M in question. At the same time,
we also consider an interpretation I to Π which specifies the details of M . In this
manner, we are able to have M that is embodied as a tissue-like membrane system
I (Π) with string insertion operation.

The advantages of this schematic approach to computing are the following:

(1) High transparency of the computing mechanism is obtained by separating the
skeletal (core) part from other detailed specificity of the computation.

(2) Structural modularity of the computing model facilitates our better understand-
ing of the computing mechanism.

With this framework, we will present not only new results of the computing mod-
els with universal computability but also a unified view of those models from the
framework of tissue-like membrane system with string insertion operations.

2 Preliminaries

We assume the reader to be familiar with all formal language notions and notations
in standard use. For unexplained details, consult, e.g., [14, 16].

For a string x over an alphabet V (i.e., x in V ∗), lg(x) denotes the length of x. For
the empty string, we denote it by λ. For an alphabet V , V = {a | a ∈ V }. A binary
relation ρ over V is called an involution if ρ is injective and ρ2 is an identity (i.e.,
for any a ∈ V , if we write ρ(a) = a, then it holds that ρ(a) = a). A Dyck language
D over V is a language generated by a context-free grammar G = ({S},V ,P,S),
where P = {S → SS,S → λ} ∪ {S → aSa | a ∈ V } and k is the cardinality of V .

An insertion system [10] is a triple γ = (V ,P,A), where V is an alphabet, A is
a finite set of strings over V called axioms, and P is a finite set of insertion rules.
An insertion rule over V is of the form (u, x, v), where u,x, v ∈ V ∗. We define
the relation �→ on V ∗ by w �→ z iff w = w1uvw2 and z = w1uxvw2 for some
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insertion rule (u, x, v) ∈ P , w1,w2 ∈ V ∗. As usual �→∗ denotes the reflexive and
transitive closure of �→. An insertion language generated by γ is defined as follows:
L(γ ) = {w ∈ V ∗ | s �→∗ w, s ∈ A}. An insertion rule of the form (λ, x,λ) is said to
be context-free, and we denote it by λ → x.

We denote by RE,CF,LIN, and RG the families of recursively enumerable lan-
guages, of context-free languages, of linear languages, and of regular languages,
respectively.

A matrix grammar with appearance checking is a construct G = (N,T ,S,M,F),
where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . ,An → xn), n ≥ 1, of context-free rules over N ∪ T (with
Ai ∈ N,xi ∈ (N ∪ T )∗, in all cases), and F is a set of occurrences of rules in
M (we say that N is the non-terminal alphabet, T is the terminal alphabet, S is the
axiom, while the elements of M are called matrices).

For w,z ∈ (N ∪ T )∗, we write w �⇒ z if there is a matrix (A1 → x1, . . . ,An →
xn) in M and the strings wi ∈ (N ∪T )∗,1 ≤ i ≤ n+1, such that w = w1, z = wn+1,

and for all 1 ≤ i ≤ n, either wi = w′
iAiw

′′
i ,wi+1 = w′

ixiw
′′
i , for some w′

i ,w
′′
i ∈ (N ∪

T )∗, or wi = wi+1, Ai does not appear in wi , and the rule Ai → xi appears in F .
(The rules of a matrix are applied in order, possibly skipping the rules in F if they
cannot be applied; we say that these rules are applied in the appearance checking
mode.) If F = ∅, then the grammar is said to be without appearance checking (and
F is no longer mentioned).

We denote by �⇒∗ the reflexive and transitive closure of the relation �⇒.
The language generated by G is defined by L(G) = {w ∈ T ∗ | S �⇒∗ w}. The

family of languages of this form is denoted by MATac . When we use only grammars
without appearance checking, then the obtained family is denoted by MAT . It is
known that MAT ⊂ MATac = RE.

A matrix grammar G = (N,T ,S,M,F) is said to be in the binary normal form
if N = N1 ∪ N2 ∪ {S,#}, with these three sets mutually disjoint, and the matrices in
M are of one of the following forms:

1. (S → XA), with X ∈ N1,A ∈ N2,

2. (X → Y,A → x), with X,Y ∈ N1,A ∈ N2, x ∈ N2 ∪ N2
2 ∪ T ∪ {λ},

3. (X → Y,A → #), with X,Y ∈ N1,A ∈ N2,
4. (X → λ,A → x), with X ∈ N1,A ∈ N2, and x ∈ T ∪ {λ}.
Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap-symbol, once introduced, it is
never removed. A matrix of type 4 is used only once, at the last step of a derivation.
A matrix of type 3 is called appearance checking matrix rule.

For each matrix grammar (with appearance checking) there effectively exists an
equivalent matrix grammar (with appearance checking) in the binary normal form.
(Note that the definition of the binary normal form presented here is a variant of the
one in [5].)

A random context grammar is a construct G = (N,T ,S,P ), where N,T are
disjoint alphabets, S ∈ N , P is a finite set of rules of the form (A → x,Q,R),
where A → x is a context-free rule (A ∈ N,x ∈ (N ∪ T )∗), Q and R are subsets
of N .
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For α,β ∈ (N ∪ T )∗, we write α �⇒ β iff α = uAv, β = uxv for some u,v ∈
(N ∪ T )∗, (A → x,Q,R) ∈ P and all symbols of Q appear in uv, and no symbol
of R appears in uv. We denote by �⇒∗ the reflexive and transitive closure of the
relation �⇒.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S �⇒∗ w}. The
family of languages of this form is denoted by RC. It is known that RC = RE [5].

Note that in what concerns the definitions above for matrix and random context
grammars, we only deal with the type 2 (context-free) grammar as the core grammar.

3 Membrane Computing Schema, Interpretation and Languages

We now introduce the notion of a membrane computing schema in a general form,
then we will present a restricted version, from which a variety of specific computing
models based on insertion operations and filtering can be obtained in the framework
of a tissue-like membrane computing. That is, a membrane computing schema is
given as a skeletal construct consisting of a number of membranes connected with
synapses (or channels) whose structure may be taken as a kind of tissue P systems
(e.g., [11]).

3.1 Membrane Computing Schema

A membrane computing schema of degree (p,k,t) is a construct

Π = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where

• V is a finite alphabet with an involution relation ρ called the working alphabet.
• T is a subset of V called the terminal alphabet.
• Com = {Com1, . . . ,Comp} is a finite set with p elements, called communication

cells.
• Ope = {Ope1, . . . ,Opek} is a finite set with k elements, called operation cells.
• Fil = {SF,FF} ∪ {FF1, . . . ,FFt} is a finite set with (t + 2) elements, called

filtering cells. (More specifically, SF and FF are called structured filter and final
filter, respectively, and FF1, . . . ,FFt are called sub-filter cells).

• Syn is a subset of (Com × Ope) ∪ (Ope × Com) ∪ (Com × (SubFil ∪ {SF})) ∪
({FF} × Com) ∪ (SubFil × Ope) ∪ {(SF,FF), (FF,Out)}, where SubFil =
{FF1, . . . ,FFt}, which determines the tissue membrane structure of Π . (See
Fig. 1.)

• is (= Com1) is the distinguished cell (to designate some specific role).
• Out is the output cell (for obtaining the outputs).
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Fig. 1 Modular structure of
membrane network in Π

Remark

(1) For i = 1, . . . ,p, each cell Comi serves as a communication channel, that is,
any string x in the cell Comi is sent out to all the cells indicated by Syn.

(2) For j = 1, . . . ,k, each cell Opej consists of a finite number of rules {σj1, . . . ,

σjs}, where each σji is a string insertion operation of the form: λ → u, where
u ∈ V ∗.

(3) SF and FF are associated with two languages LSF and LFF over V , respectively.
Further, for 	 = 1, . . . ,t, each cell FF	 is also associated with a language LFF	

.

3.2 Interpretation of Π

In order to embody a membrane computing schema Π , we need to give further
information for Π specifying the initial configuration, each operation in Ope, and
materializing the filtering cells SF, FF, and FF	 (1 ≤ 	 ≤ t). Let us call such a
notion an interpretation I to the schema Π which enables us to have an embodied
computing model I (Π) that is feasible in a usual sense. In what follows, we use the
following notation:

Notation For any x in Com ∪ SubFil ∪ {FF}, let Syn-from(x) = {y | (x, y) ∈ Syn},
and for any y in Ope ∪ SupFil ∪ {SF}, let Syn-to(y) = {x | (x, y) ∈ Syn}.

Formally, an interpretation I to Π of degree (p,k,t) is a construct

I = (
w0, {R1, . . . ,Rk},LSF,LFF, {LFF	

| 1 ≤ 	 ≤ t}),
where

• w0 is a string in V ∗ called the axiom, where V is the working alphabet of Π .
• Ri specifies a set of insertion operations used in Opej (for j = 1, . . . ,k)
• LSF (LFF) materializes a concrete specification about the function of SF (FF,

respectively). In practical operational phases (described below), we assume the
following:
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1. In the cell SF, each string is assumed to form a certain structure (e.g., struc-
tured molecule based on hybridization in terms of H-bonds via minimal energy
principle). SF takes as input a string u over V and allows it to filter through if
it is in LSF (otherwise, a string u is lost). Then after building up a structured
form su of u, SF removes all parts of structures from su and produces as out-
put the concatenation of all remaining strings. The output v is sent out to the
cell FF.

2. FF receives as input a string v over V (from SF). A string v filters through
if it is in LFF and is sent out to Out. Otherwise, it is sent out to all cells in
Syn-from(FF).

3. Each FF	 receives as input a string u over V . Then a string v filters through if
it is in LFF	

and is sent out to all cells in Syn-from(FF	). Otherwise, it is lost.
4. Filtering applies simultaneously to all strings in the filtering cell.

Note that in the case SubFil is empty in a given Π , an interpretation to Π is simply
written as I = (w0, {R1, . . . ,Rk},LSF,LFF).

3.3 Transitions and Languages

Given a schema Π of degree (p,k,t) and an interpretation I to Π , we now have
a membrane system I (Π) based on string insertions. In what follows, we define a
transition sequence of I (Π) and the language associated with I (Π).

The (p+ 1)-tuple of languages over V represented by (L1, . . . ,Lp,Lout) consti-
tutes a configuration of the system, where each Li represents the set of all strings
in the cell Comi (for all i = 1, . . . ,p), and Lout is the set of strings presented in the
output cell (of the system at some time instance).

Let C1 = (L1, . . . ,Lp,Lout) and C2 = (L′
1, . . . ,L

′
p,L

′
out) be two configurations

of the system.
We define one transition from C1 to C2 in the following steps:

(0) Pre-checking Step: For each 	 = 1, . . . ,t, consider L[	] = ⋃q

i=1 L	i
, where

Syn-to(FF	) = {Com	1, . . . ,Com	q }. Then each cell FF	 filters out all strings
of L[	] that are not in LFF	

, and all strings that have passed through are sent to
all the cells in Syn-from(FF	). (In the case when t = 0, i.e., SubFil = ∅, this
step is skipped.)

(1) Evolution Step: For each j = 1, . . . ,k, let σj1, . . . , σjs be all the operations
given in Opej .

Suppose that we apply operations σji : λ → uji (1 ≤ i ≤ s) to a string v which
means that each σji is applied to v simultaneously. Further, when we apply σji to v,
the location in v to insert uji is non-deterministically chosen and the result σji(v)

is considered as the set of all possible strings obtained from v by σji . (Note that if
two or more rules share the same location to insert, then all possible permutations of
those rules are considered to apply to the location.) The result of such an application
of all operations in Opej to v is denoted by Opej (v).
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Let L(j) = ⋃d
m=1 Ljm , where Syn-to(Opej ) ∩ Com = {Comj1, . . . ,Comjd

}.
Then the total result performed by Opej to L(j) is defined as

Opej

(
L(j)

) =
⋃

v∈L(j)

Opej (v).

This result is then sent out to all cells in Syn-from(Opej ) simultaneously.

(2) Filtering Step: For each i = 1, . . . ,p, let L̃i = ⋃r
n=1 Opejn

(L(jn)), where

Syn-from(Comi ) = {Opej1
, . . . ,Opejr

}. Further, let Le = ⋃g

m=1 L̃im , where
Syn-to(SF) = {Comi1, . . . ,Comig }.

SF takes as input the set Le and produces as output a set of strings Lf . (Recall
that in the cell SF, each string u is assumed to form a certain structure, and the
output of SF is the reduced string by removing structural parts from u in LSF .) Then
SF sends out Lf to FF. (Any element of Le that was filtered off by SF is assumed
to be lost.)

Finally, the cell FF filters out strings of Lf depending upon whether they are
in LFF or not. All strings in Lf that passed through FF are sent out to Out, while
others are simultaneously sent to all Comi in Syn-from(FF) or they are all lost if
Syn-from(FF) = ∅.

Let Lff be the set of all strings that were filtered off by FF. Then we define
C2 = (L′

1, . . . ,L
′
p,L

′
out) by setting for each i = 1, . . . ,p

L′
i =

{
Lff if Comi ∈ Syn-from(FF),
L̃i otherwise.

Further, let L′
out = Lout ∪ Lf (Out), where Lf (Out) = Lf − Lff (the set of all

strings that have passed through FF and been sent to Out).

Remark

(1) Each cell in Com not only provides a buffer for storing intermediate results in
the computation process but also transmit them to the cells specified by Syn.

(2) Each cell in Ope takes as input a set of strings L and applies insertion operations
to L, and sends out the result to the cells specified by Syn.

(3) Each filtering cell in Fil also takes as input a set of strings L and performs
filtering of L in a way previously described, and sends out the result to the cells
specified by Syn.

(4) The system has a global clock and counts time in such a way that every cell
(including communication cells) takes one unit time to perform its task (de-
scribed in (1), (2), and (3) for Com, Ope and Fil, respectively), irrespective of
the existence of strings in it.

Let I = (w0, {R1, . . . ,Rk},LSF,LFF, {LFF	
| 1 ≤ 	 ≤ t}) be an interpretation

to Π . We write C1 �⇒ C2 if there is a transition from C1 to C2 of I (Π).
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A configuration C0 = ({w},
p

︷ ︸︸ ︷
∅, . . . ,∅) with w in V ∗ is called the initial configu-

ration. (We assume that filtering cells are all empty in the initial configuration.)
For any n ≥ 0, let C0 �⇒n Cn = (L1,n, . . . ,Lp,n,L

(n)
out) be a sequence of n-

transitions which we call a computation with n transitions from C0. Then a language
L

(n)
out is called the nth output from C0.

Now, we consider two types of computing models induced from I (Π); one is the
generating model and the other the accepting model.

[Generating Model] In the case of a generating model, we concern all computa-
tions whose results are present in the output cell.

We define the language generated by I (Π) as follows:

Lg

(
I (Π)

) =
⋃

n≥0

L
(n)
out,

where L
(n)
out is the nth output from (w0,∅, . . . ,∅) and w0 is the axiom of I .

[Accepting Model] In the case of an accepting model, we make a slight modifi-
cation on an interpretation I and consider the following I = (λ, {R1, . . . ,Rk},LSF,

LFF, {LFF	
| 1 ≤ 	 ≤ t}) with LFF which functions in such a way that if a string v

filters through LFF , then (not v but) a special symbol “Yes” is sent to Out.
Let w be an input string to be recognized. Then w is accepted iff the re-

sult Yes is present in the output cell after a certain number of transitions from
C0 = ({w},∅, . . . ,∅). Thus, we define the language accepted by I (Π) as follows:

La

(
I (Π)

) = {
w ∈ T ∗ | Yes ∈ L

(n)
out: the nth output from (w,∅, . . . ,∅)

for some n ≥ 0
}
.

Finally, for a class of schemes S = {Π of degree (p,k,t) | p,k,t≥ 0} and for
a class of interpretations I , we denote by L M S x(S, I) the family of all languages
Lx(I (Π)) specified by those systems as above, where Π is in S and I is in I . That
is,

L M S x(S, I) = {
Lx(I (Π)) | I ∈ I is an interpretation to Π ∈ S

}

where x is in {a,g}.

4 Characterizations by Membrane Schema Π0

The structure of the membrane computing schema Π introduced in the previous
section seems to be general enough to induce a computing device of the univer-
sal computability by finding an appropriate interpretation. In what follows, we will
show that such a universal computability can be realized by much simpler schemes
together with appropriate interpretations of moderately simple filtering cells.
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Fig. 2 Membrane computing
schema: Π0,k

First, we consider the following simple membrane computing schema of degree
(2,k,0):

Π0,k = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where:

(1) V , T , Ope, is and Out are the same as in Π

(2) Com = {Com1,Com2}
(3) Fil = {SF,FF} (i.e., SubFil is empty)
(4) Syn = {Com1,Opei ), (Opei ,Com2) | 1 ≤ i ≤ k} ∪ {(FF,Com1), (Com2,SF),

(SF,FF), (FF,Out)} (See (a) of Fig. 2).

Let Π0 = ⋃
k≥0 Π0,k.

We are now in a position to present our first result.

Theorem 4.1 There exists a class of interpretations IG such that RE = L M S g(Π0,

IG).

Proof We prove only the inclusion ⊆. (The opposite inclusion is due to a conse-
quence of the Turing–Church thesis.)

Let L be any language in RE that is generated by a Chomsky type-0 gram-
mar G = (N,T ,S,P ). Then we consider the following interpretation IG =
(S,RG,LSF,LFF) to Π0,k, where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let RG =
{Rr | r ∈ P }. (Note that the cardinality of RG gives k of Π0,k.)

(ii) • LSF is given as the following language: Lmir = {xwwRy | x, y,w ∈ V ∗}.
That is, a string filters through SF iff it is an element in Lmir, where V =
N ∪ T ∪ {r | r ∈ P }. (Recall that, by definition of SF, any string in SF is
assumed to form a structure, and we assume the hybridization by involution
relation ρ over V . Specifically, SF performs two functions: it only accepts all
structures of molecules containing a single hairpin formed by ww, and then
it removes the portion of a hairpin from the structure and sends out the rest
part of the string to FF (see (b) of Fig. 2). The structures rejected by SF are
all lost.)
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• LFF is simply given as T ∗, so that only strings in T ∗ can pass through FF
and are sent to the output cell Out. Other strings are all sent to Com1.

For any n ≥ 1, let C0 = ({S},∅,∅) �⇒n Cn = (L1,n,L2,n,L
(n)
out) be a computation

with n transitions in IG(Π0,k). Suppose that S �⇒n−1 α ⇒r β in G, where α =
xuy, β = xvy and r : u → v is used. Then we can show that

(a) α is in L1,(n−1),
(b) β ′ = xvruuRry is in SF, and
(c) after filtering by SF, the reduced string of β ′, i.e., a string xvy(= β) is sent to

FF.

In FF, if β is not in T ∗, then it is sent to Com1 and, therefore, in L1,n, where
Cn = (L1,n,L2,n,L

(n)
out). Otherwise, β is sent to L

(n)
out. That is, if β is in L(G), then

we have β is in Lg(IG(Π0,k)).
Conversely, suppose that for any n ≥ 1, α is in L1,n. Then there exists α′ =

α1wwRα2 in Com2 such that α = α1α2. From the way of constructing RG, there
exists a unique rule r : u → v in P such that Rr = {λ → vr,λ → uRr} and w = ru.
(No other Rr ′ (r ′ �= r) can make a substring wwR by insertion operations because
of the uniqueness of r .)

Therefore, we can write α′ = α1ruuRrα2 for some α1, α2. Then there must
exist α′

1 such that α1 = α′
1v because of the rule λ → vr . Hence, we have α′ =

α′
1vruuRrα2 from which we can derive that α′

1uα2 is in L1,(n−1). Thus, there exists
a derivation: α′

1uα2 �⇒r α′
1vα2 = α in G. By iteratively applying the above argu-

ment, we eventually conclude that there exists a derivation: S �⇒n α in G. (For
more details, consult discussion in Sect. 3 of [13].)

Taking L1,0 = {S} into consideration, it holds that for any n ≥ 0, L1,n = {α |
S �⇒n α in G}. If α is in Lg(IG(Π0,k)), then it is also in L(G). Thus, we have
L(G) = Lg(IG(Π0,k)). Clearly, considering for IG the class of interpretations IG

for all type-0 grammars G, we complete the proof. �

Note The language Lmir used for LSF can be replaced with simpler (regular) lan-
guage LG = ⋃

r∈P V ∗{ruuRr}V ∗, where r : u → v ∈ P and P is the set of produc-
tions of G. However, we choose Lmir here because of its independence of G.

Theorem 4.2 There exists a class of interpretations IM such that RE = L M S a(Π0,

IM).

Proof We use the same strategy as in Theorem 4.1, but start with a (nondeterminis-
tic) Turing machine M . That is, let L(M) be any language in RE accepted by M =
(Q,T ,U, δ,p0,F ), where δ ⊆ Q × U × Q × U × {L,R}. For (p, a, q, c, i) ∈ δ,
we write (p, a) → (q, c, i) ∈ δ. Without loss of generality, we may assume that M

immediately stops as soon as it enters into a final state of F . An instantaneous de-
scription (ID) of M is represented by a string #xpay#′ in {#}U∗QU∗{#′}, where
xay is the tape content (x, y ∈ U∗, a ∈ U ), M is in the state p(∈ Q) and the tape
head is on a, and #(#′) is the left-boundary (right-boundary).
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Given an input w(∈ T ∗), M starts computing w from the state p0, represented
by an ID: #p0w#′. (We may assume that the tape content is one-way extendible to
the right.) In general, suppose that a transition rule (p, a) → (q, c, i) ∈ δ is applied
to an ID: #xbpay#′. Then we have a transition between IDs of M :

• #xbpay#′ �⇒ #xbcqy#′ (if i = R ),
• #xbpay#′ �⇒ #xqbcy#′ (if i = L ),
• #xbp#′ �⇒ #xbcq#′ (if i = R, and y = λ),
• #xbp#′ �⇒ #xqbc#′ (if i = L, and y = λ).

In each case, one can consider a rewriting rule, for example, a rule pa → cq for the
first case, or a rule p#′ → cq#′ for the third case. Let PM be the set of all rewriting
rules obtained from δ in the manner mentioned above. Further, we define L(M) as
{#p0w#′ | #p0w#′ �⇒∗ #xqy#′ for some q ∈ F,x, y ∈ U∗}.

We now consider the following interpretation IM = (RM,LSF,LFF):

(i) For each r : u → v in PM , construct Rr = {λ → vr, λ → uRr}, and let RM =
{Rr | r ∈ PM}, where the cardinality of RM gives k in the degree of Π0,k.

(ii) LSF is given in the same way as in IG in the proof for Theorem 4.1.
(iii) LFF is given as V ∗FV ∗, where V = U ∪ {#,#′} ∪ {r | r ∈ PM }.
Let w be any string in T ∗ and n ≥ 0. Then from the way of constructing IM together
with discussion above, it is easily seen that #p0w#′ �⇒n #xqy#′ for some q ∈ F ,
x, y ∈ U∗ iff there exists Yes ∈ L

(n)
out such that C0 = ({#p0w#′},∅,∅) �⇒n Cn =

(L1,n,L2,n,L
(n)
out). Thus, we have L(M) = La(IM(Π0,k)). Let IM be the class of

interpretations IM for all Turing machines M , which completes the proof. �

5 Further Results on Some Variants of Membrane Schema

We now introduce two classes of membrane computing schemes Π1.5 and Π1 which
are variants of Π0. With an appropriate class of interpretations I , both are able to
induce a family of computing devices that can again characterize RE.

A membrane computing schema Π1,k,t is given as follows:

Π1,k,t = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where:

(1) V , T , Ope, is and Out are the same as in Π0,k.
(2) Com = {Com1}.
(3) Fil = {SF,FF} ∪ SubFil, where SubFil = {FFi | 1 ≤ i ≤ t} or = ∅ (t= 0).
(4) Syn = {(Com1,FFi ), (FFi ,Opei ) | 1 ≤ i ≤ t} ∪ {(Com1,Opej ) | t+ 1 ≤ j ≤

k} ∪ (Opei ,Com1) | 1 ≤ i ≤ k} ∪ {(Com1,SF), (SF,FF), (FF,Out)}. (See (a)
of Fig. 3.)

(Note: In (3) and (4) above, t can take any integer in {0,1, . . . ,k}, and when t= 0,
it means the corresponding set is empty. Π1,k,t is a membrane computing schema
of degree (1,k,t) with t≤ k.)
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Fig. 3 Membrane computing
schema: Π1,k,t

Notation We now consider the following two classes of schemes:

Π1.5 =
⋃

k>t≥0

Π1,k,t,

Π1 =
⋃

k≥0

Π1,k,k.

Theorem 5.1 There exists a class of interpretations IGm such that RE = L M S g

(Π1.5, IGm).

Proof sketch We use an argument similar to the one in Theorem 4.1 and start with
a matrix grammar. That is, let L be any language in RE generated by a matrix
grammar Gm = (N,T ,S,M,F) with appearance checking, where N = N1 ∪ N2 ∪
{S,#}, and we may assume that Gm is in the binary normal form (see Sect. 2).

We consider the following interpretation IGm = (XA,RGm,LSF,LFF, {LFFi
|

1 ≤ i ≤ t}), where

(i) XA is the string in (S → XA) of Gm.
(ii)-1: k is the cardinality of M and t is the number of appearance checking matrix

rules in M . For each appearance checking rule mi : (X → Y,A → #) (1 ≤
i ≤ t), construct Rmi

= {λ → Ysmi
, λ → Xsmi

}.
(ii)-2: For other rules mj : (X → Y,A → x) in M (where Y ∈ N1 ∪ {λ}, x ∈

T ∪ N2 ∪ N2
2 ∪ {λ};t + 1 ≤ j ≤ k), construct Rmj

= {λ → Ysmj
, λ →

Xsmj
, λ → xrmj

, λ → Armj
}. Then let RGm = {Rm1, . . . ,Rmk}.

(iii) • LSF is given as the following regular language: Lmat = LsLr , where

Ls = {
smi

XXsmi
| mi : (X → Y,A → y) ∈ M, 1 ≤ i ≤ k

}∗
, and

Lr = (
T ∪ N2 ∪ {rmj

AArmj
| mj : (X → Y,A → x) ∈ M,

t+ 1 ≤ j ≤ k})∗
.
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• LFFi
is given as follows: For each appearance checking rule mi : (X →

Y,A → #) (1 ≤ i ≤ t), consider

Lmi
= (V ∪ V )∗ − (V ∪ V )∗{A}(V ∪ V )∗,

where V = T ∪ N ∪ {sm, rm | m ∈ M}.
Then LFFi

is given as Lmi
. (Thus, FFi performs in such a way that it

allows only strings in Lmi
to pass through and sends them to the cell Opei .

Other strings are all lost.)
• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF

and are sent to Out.

Let C0 = ({XA},∅) and consider a transition sequence: C0 �⇒n Cn = (L1,n,

L
(n)
out). Then for any α ∈ (N ∪ T )∗ and n ≥ 0, it holds that α ∈ L1,n iff XA �⇒n α

in Gm. Thus, we have L(Gm) = Lg(IGm(Π1,k,t)). Let IGm be the class of interpre-
tations IGm for all matrix grammars Gm, which completes the proof. �

Theorem 5.2 There exists a class of interpretations IGr such that RE = L M S g

(Π1, IGr ).

Proof sketch We use the same argument as the one in Theorem 5.1, but start
with a random context grammar Gr = (N,T ,S,P ) generating arbitrary recursively
enumerable language L (see Sect. 2). Then consider the following interpretation
IGr = (S,RGr ,LSF,LFF, {LFFi

| 1 ≤ i ≤ k}), where

(i) k is the cardinality of P . For each rule ri : (A → x,Q,R) (1 ≤ i ≤ k), construct
Rri = {λ → xri, λ → Ari}. Then let RGri

= {Rri | ri ∈ P }.
(ii) • LSF is defined by the regular language:

Lm = (
T ∪ {rAAr | r : (A → x,Q,R) ∈ P })∗

.

• LFFi
is given as follows: For each rule ri : (A → x,Q,R), let

Lri = (V ∪ V )∗{A}(V ∪ V )∗

∩
⋂

X∈Q

(V ∪ V )∗{X}(V ∪ V )∗

∩
⋂

X∈R

(
(V ∪ V )∗ − (V ∪ V )∗{X}(V ∪ V )∗

)
,

where V = N ∪ T ∪ {r | r ∈ P }. Then LFFi
is defined by Lri . (That is, each

FFi performs in such a way that it allows only strings in Lri to pass through
and sends them to the cell Opei . Other strings are all lost.)

• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF
and are sent out to Out.

Let C0 = ({S},∅) (note that S is the starting symbol of Gr ) and consider a tran-
sition sequence: C0 �⇒n Cn = (L1,n,L

(n)
out). Then for any α ∈ (N ∪ T )∗ and n ≥ 0,
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Fig. 4 Membrane computing
schema: Π2,k

it holds that α ∈ L1,n iff S �⇒n α in Gr . Thus, we have L(Gr) = Lg(IGr (Π1,k,k)).
Letting IGr be the class of interpretations IGr for all random context grammars Gr ,
we complete the proof. �

We present yet another class of membrane computing schemes Π2 which is sim-
pler than Π0 but still able to provide the universal computability of the models
induced from the schema with appropriate interpretations, but at the sacrifice of
increase of the structural complexity in the filtering function SF.

A membrane computing schema Π2,k is given as follows:

Π2,k = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where

(1) V , T , Ope, Fil, is and Out are the same as in Π0,k.
(2) Com = {Com1}.
(3) Syn = {(Com1,Opei ), (Opei ,Com1) | 1 ≤ i ≤ k} ∪ {(Com1,SF), (SF,FF),

(FF,Out)} (see (a) of Fig. 4).

Let Π2 = ⋃
k≥0 Π2,k.

From this simpler class of schemes Π2, we can induce a family of computing
devices I(Π2) (with an appropriate class of interpretations I ) that can character-
ize RE.

Theorem 5.3 There exists a class of interpretations I ′
G such that RE = L M S g

(Π2, I ′
G).

Proof sketch Let L be any language in RE that is generated by a Chomsky
type-0 grammar G = (V ,T ,S,P ). Then consider the following interpretation I ′

G =
(S, {RG},LSF,LFF), where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let RG =⋃
r∈P Rr . The cardinality of RG gives k in the degree of Π2,k.

(ii) LSF adopts the Dyck language D over the alphabet N ∪ T ∪ {r | r ∈ P }.
(iii) LFF is given as T ∗, so that only strings in T ∗ can pass through FF and are sent

out to Out.
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Consider a transition sequence: C0 = ({S},∅) �⇒n Cn = (L1,n,L
(n)
out). Then for any

α ∈ (N ∪T )∗ and n ≥ 0, it holds that α ∈ L1,n iff S �⇒n α in G. Thus, it holds that
L(G) = Lg(I

′
G(Π2,k)). In order to complete the proof, we have only to consider

for I ′
G the class of interpretations I ′

G for all type-0 grammars G. (The proof is
based on the following result that each recursively enumerable language L can be
represented in the form L = h(L′ ∩ D)), where L′ is an insertion language, h is a
projection and D is a Dyck language. (Theorem 3.1 in [13]). In order to understand
the idea of the proof, it would be helpful to note that RG in Com1 generates the
insertion language L′, while a pair of SF and FF plays the same role as a pair of D

and h, respectively.) �

6 Concluding Remarks

In this paper, we have introduced the notion of a membrane computing schema and
showed that several known computing models with the universal computability can
be reformulated in a uniform manner in terms of the framework of the schema to-
gether with its interpretation. A similar idea in the context of grammar schema has
been proposed and discussed in [2, 6] to prove the computational completeness of
new type of P systems based on the framework of the random context grammars
for both string and multi-set languages. (Note that the definition of random con-
text in those papers is not on a string to be rewritten but on the applicability of
rules to re-write, different from the standard notion.) As for the communication by
sending objects and the use of filtering function, there are several papers that have
been devoted to studying the computational powers of communicating distributed
H systems (e.g., [4, 12]), and of the hybrid networks of evolutionary processors
(e.g., [8, 9]). Among others, the notion of observers in G/O systems proposed in [1]
may be of special interests in that it seems to have a close relation to the filtering
mechanism (for structured or string objects) of the membrane computing schema
introduced in this paper.

Table 1 summarizes the results we have obtained. From the table, one can have a
unified view of the existing various models of computation based on string rewrit-

Table 1

Computing model Schema SF FF SubFil

Chomsky type-0 grammar Π0 LG(∈ RG) T ∗ (N.A.)

or Lmir(∈ LIN)

Turing machine Π0 LG(∈ RG) V ∗FV ∗ (N.A.)

or Lmir(∈ LIN)

Random context grammar Π1 Lm(∈ RG) T ∗ Lri (∈ RG)

Matrixac grammar Π1.5 Lmat = LsLr(∈ RG) T ∗ Lmi
(∈ RG)

Chomsky type-0 grammar Π2 D(∈ CF) T ∗ (N.A.)
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ing. For example, it is seen that there exists a trade-off between the complexity of
network structure in the schema and the complexity of the filtering SF.

More specifically, for new terminologies, L is a star language iff L = F ∗ for
some finite set F . Further, L is an occurrence checking language iff L = V ∗FV ∗
for some finite set F . Then it should be noted that in Table 1:

(i) LG is a finite union of occurrence checking languages,
(ii) Ls , Lr and Lm are star languages,

(iii) Lri is a finite intersection of occurrence checking languages and their comple-
ments,

(iv) Lmi
is the complement of an occurrence checking language.

Since Π0 (or Π1) is more complex than Π2, one may see a trade-off between
the complexity of the schema and that of SF, telling that LG for single (or Lmat for
multiple) hairpin checking is simpler than a Dyck language D for nested hairpin
checking. This kind of trade-off can also be seen in complexity between a series of
schemes (Π1,Π1.5,Π2) and the corresponding SFs(Lm,Lmat,D).

In this paper, we have just made the first step in the new direction toward under-
standing and characterizing the nature of the Turing computability from the novel
viewpoint of modularity in the membrane computing schema. There seems to re-
main many left for the future works:

• it would be the most interesting to study the relation between the complexity
of the language classes and that of SF within a given schema. For instance, we
can show that within the schema Π2, CF can be characterized by star (regular)
languages for SF.

• Instead of insertion operations we adopted in this paper, what kind of operations
can be considered for the unique operation in the cells Ope? What kind of differ-
ent landscape of the computing mechanism can be seen from the new schema?
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Finite Splicing: Generative Capacity,
New Models and Complexity Aspects

Paola Bonizzoni and Remco Loos

Abstract Splicing systems have been introduced twenty years ago as a basic ab-
stract model of the DNA recombination mechanism. In fact, it was the first of a
long series of computational models based on a molecular process. Much research
has been done on the generative capacity of these systems, mostly considering en-
hanced variants of the original definition. However, some important questions about
the original finite systems are still unsolved. For example, we do not have any sys-
tematic way to go about constructing a splicing system for a given language, and we
still lack significant algorithmic results for this model.

In this work, we survey new research directions on finite splicing that could
suggest a new approach to the solution of these basic problems and could shed a
new light on the splicing formalism. These include an alternative definition of the
splicing language, splicing systems as accepting devices, and complexity issues for
splicing systems.

1 Introduction

This work aims to present recent developments in a research topic that originated
from the fundamental theoretical studies on biological computations based on op-
erations modifying DNA molecules. This topic concerns the splicing operation as
a basic operation of computational models called Splicing Systems, also known as
H -systems. Splicing is a basic biological mechanism that consists in the cutting
and recombination of DNA molecules under the influence of restriction enzymes.
It can be formalized as on operation on a pair of strings by means of the well-
known notion of a splicing rule consisting of a pair of the form (u1, u2)$(u3, u4),
where u1u2, u3u4 are specific strings over an alphabet representing the substrings
or location where the rule applies, called splice sites. The cutting occurs in the lo-
cation between u1 and u2 and u3 and u4. Then whenever the rule applies to strings
wu1u2v and yu3u4z, after cutting the recombination generates new strings wu1u4z

or yu3u2v specified by the paste sites u1u4 and u3u2.
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This simple formulation of the splicing operation has attracted the interest of
several researchers toward the investigation of computational models inspired by
molecular operations. After the first relevant results in this field showing the ca-
pacity of this basic formalism to generate regular languages, the general research
has moved to several variants, with additional computational mechanisms, showing
even the universality of such systems (see [27] for an overview). Then the interest
moved toward the formalization of models using other molecular operations and
models [11].

However, in spite of the huge literature on splicing systems, it turned out that the
simpler notion of splicing system invented by T. Head still lacked a deep investiga-
tion explaining the real language generative capacity of such systems.

This open question has been the subject of recent work in [3, 6, 7, 14, 15] aiming
to characterize languages generated by the splicing operation by means of classical
notions of formal language theory. At the same time, this research direction raised
the question of investigating the computational power of the splicing operation when
acting on circular string, showing interesting connections with classical concepts on
circular regular languages [2, 4, 5].

In this paper, we will survey recent improvements in this research direction, while
pointing out the open questions that still are unsolved in this field, basically decision
problems on the generative capacity of these systems.

Moreover, while the basic splicing operation still needs to be clearly understood
from a formal language and algebraic view, other aspects of splicing systems have
recently been addressed which show that the basic finite model of splicing still offers
room for new research.

On the one hand, a new definition of a splicing language has been proposed,
based on the properties of the biological recombination operation [20, 23]. Such a
new definition has a great impact on the computational power of finite splicing sys-
tems. On the other hand, complexity aspects of splicing systems have been system-
atically addressed [21, 24, 25]. This allows to explore dimensions of the splicing
formalism left aside by most of the research done so far, which had been mainly
focused on computational power. Here, we will mostly address descriptional com-
plexity, which also has some relation to many of the basic questions mentioned
above.

Finally, new work shows that splicing systems can also be regarded as accepting
devices [21, 22]. It turns out that results and methods for generating systems do not
carry over straightforwardly to the accepting systems, which makes that these give
rise to a whole new set of questions.

The paper is organized as follows. In Sect. 2, we recall the basic notions and
terminology on splicing systems and splicing languages, and survey the most recent
research developments on the characterization of splicing languages in a formal
language framework. We explore their relation with the notion of a Schützenberger
constant, and look into decision algorithms for splicing systems [30].

Section 3 is devoted to recent results showing splicing systems from a different
perspective. The notion of a language generated by a non-preserving splicing sys-
tem is introduced in Sect. 3.1. Definitions and results on descriptional complexity
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for splicing systems are treated in Sect. 3.2. Finally, Sect. 3.3 addresses accepting
splicing systems.

We conclude the paper with a section discussing open questions in this formalism
and pointing to directions for further research.

2 Formal Languages and Finite Splicing Systems

Since the early work by Head in 1987, linear splicing systems have been conceived
as generative devices of formal languages.

The recombinant behavior of DNA molecules under the action of restriction and
ligase enzymes is modeled by means of a basic operation on strings. The splicing
operation acts on a pair of strings, or strands of DNA, by cutting then at specified
substrings, described by splice sites and modeling restriction enzymes that recog-
nize a pattern inside the molecules. Then fragmented strings are pasted according
substrings of the splice sites modeling the action of ligase enzymes. In particular,
Head was concerned with the structure of the languages of those DNA molecules
(strings) which could be produced through the splicing operation, performed by a
splicing system consisting of a finite set of initial DNA molecules (initial language)
and a finite set of enzymes (set of rules).

Under this assumptions, a splicing system, called H system, consists of a triple
H = (V ,A,R) where V is a finite alphabet, A is a finite set of words over V ,
or initial language and R is a finite set of splicing rules. Let us recall that given
a rule r = (u1, u2)$(u3, u4) that applies to w′ = wu1u2v and y′ = yu3u4z, then
x = wu1u4z is a new string generated by splicing; then the derivation of x from w′
and y′ by rule r is denoted as (w′, y′) �r x.

Then the splicing language generated by the system is defined using the notion
of closure of a language L under the set R of rules. Formally, given

cl(L,R) = {w : (x, x′) �r w, r ∈ R,x, x′ ∈ L}, then the language generated by
the system H is σ ∗

R(A), where

σ 0
R(L) = L,

σ i+1
R (L) = cl

(
σ i

R(L),R
) ∪ σ i

R(L), i ≥ 0,

σ ∗
R(L) =

⋃

i≥0

σ i
R(L).

We say that a splicing language L is closed under a set R of rules iff
cl(L,R) ⊆ L.

Also, an extended splicing system can be defined by adding a terminal alphabet
T ⊆ V to the definition. Such an extended system H = (V ,T ,A,R) generates the
language L(H) = σ ∗

R(A) ∩ T ∗.
The language generative capacity of H -systems has been extensively investi-

gated under which level in Chomsky hierarchy A,R belong to, showing that these
systems can be as powerful as the Turing machines [18, 27]. At the lowest level of
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the hierarchy, the regularity of splicing languages generated by regular initial lan-
guages and a finite set of rules is proved in [29]. On the other side, H -systems with
finite initial set of rules and a finite initial language generate a proper subclass of
regular languages [8]. The strict inclusion firstly proved in [12], has been proved
several times (see [19, 29]) and [33] as examples).

A constructive proof has been given, for example, in [19], where an algorithm to
construct a finite state automaton that recognizes the language generated by a not
necessarily finite splicing system (V ,L,R), where L is a regular language and R is
a finite set, is described.

The investigation of this class has opened new questions that show the strict con-
nection between formal language frameworks and the splicing operation on strings.
Indeed, the complete characterization of regular splicing languages is an intriguing
open problem. Since the pioneering work of Head, it has been evident that well-
known concepts in formal language theory, such as the one of a constant for a
regular language L, given by Schützenberger in [30] play an important role in the
description of the structure of the above-mentioned class of regular languages.

Indeed, Head showed that under some conditions, the generated language is in
the class of strictly locally testable languages [16].

Later on, even the notion of syntactic congruence for a regular language L [28]
has revealed to be crucial to relate the splicing operation to the class of regular
languages [3, 15].

In the following, we will reconstruct the basic steps that have been done to
achieve basic results in this research field: the characterization of the original class
of Head regular splicing languages [7] and decisions procedures for this class of
splicing languages [10, 15].

It must be pointed out that in the literature at least two other notions of splic-
ing rules and splicing operations have been proposed. These are known as Head
and Pixton splicing operations, respectively. In [9], it has been shown that splicing
systems based on Pixton splicing operation are more powerful than the ones based
on the standard (Păun) splicing, and these systems are more powerful than Head
splicing systems.

A classification of these different notions of splicing may be given by using the
standard (Păun) splicing operation adopted also in this paper, simply by requiring
that the set R of rules defines a specific (symmetric, reflexive, or transitive) binary
relation over the pair of splice sites, as pointed out partially in [6].

Let us recall that a set R of rules is called reflexive whenever given a rule r ∈ R

relating the splice site u1u2 to u3u4 then the rule r ′ with splice sites both identical
u1u2 is still in R. Similarly, R is symmetric whenever given r ∈ R, then the rule
relating u3u4 to u1u2 is given in R.

Observe that reflexivity and symmetry can be stated as properties of a splicing
language. More precisely, a language is defined to be reflexive or symmetric iff it
is closed under a set of reflexive or symmetric rules, respectively, generating the
language.

The relationship between symmetric and non-symmetric splicing languages has
been investigated in [32]. These languages are called 1-splicing languages in [27]
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and they are properly included in the class of symmetric splicing languages as
proved in [32], also called 2-splicing languages: indeed the languages of Lemma 1
show the strict inclusion.

Now, reflexivity and symmetry are the most relevant properties that relate the
different Păun and Head notions of splicing operation. These two properties were
implicitly introduced by Head’s definition of splicing languages as necessary con-
ditions for an accurate biological representation of DNA splicing systems. Indeed,
Head splicing languages are reflexive and symmetric splicing languages, while ac-
cording to Păun’s definition there exist non-reflexive and non-symmetric splicing
languages.

Actually, the reflexive property of rules is equivalent to the property of splice sites
of the rules being constants for the regular splicing language. This is the first inter-
mediate significative result relating splicing languages to constants and has been
proved for symmetric and reflexive languages in [7] and [15]). Formally, the result
provides the following characterization of reflexive (symmetric or non-symmetric)
languages: a regular language is a (symmetric) reflexive splicing language L iff it is
generated by a splicing system having (symmetric) rules with splicing sites that are
constants for the language L.

A basic consequence of this result is that classes of regular splicing languages can
be characterized under this well-known notion. Indeed, classes of reflexive splicing
languages having splice sites of rules that are constants of a specific form can be
related to known classes of regular languages characterized under the notion of con-
stant.

2.1 Constant Languages and Classes of Regular Splicing
Languages

The seminal work on splicing operation [16] is a clear example of how the form
of constants in a regular splicing language i.e. a characterization of the regular lan-
guage in terms of constants can be translated into rules of a specific form as detailed
below.

Languages generated by a system S = (V ,A,R) where each rule r ∈ R is of
the form (x,1)$(x,1) or (1, x)$(1, x), for x ∈ V +, called null context splicing lan-
guages (NCS, in short) are strictly locally testable languages.

Strictly locally testable languages (SLT) are characterized in [13] as those lan-
guages for which there exists a positive integer k for which every string in V ∗ of
length k is a constant.

Languages generated by systems with one-sided rules of the form (1, v)$(1, u)

or (v,1)$(u,1), for u,v ∈ V ∗ are finitely constant generated splicing languages, or
simply FCS languages [17].

These languages are characterized by a crucial notion in finite splicing theory
that has been firstly introduced in [17]: that of constant language.

Let L be a regular language and m be a word in V ∗ that is a constant for L. Let us
recall that a word m ∈ V + is a constant for language L if V ∗mV ∗ ∩L 
= ∅ and for all
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words x1, x2, v1, v2 ∈ V ∗, x1mx2 ∈ L, v1mv2 ∈ L implies that x1mv2, v1mx2 ∈ L.
A constant language in L for m is the language L(m,L) ⊆ L such that L(m,L) =
V ∗mV ∗ ∩ L.

In the paper, for simplicity, we use the notation L(m) for denoting a constant
language L(m,L) in L.

A language L is a FCS language if it is a finite union of a finite set with a finite
set of constant languages in L for a set M of constants of L.

The language b+ab+ is an example of FCS language that is not a NCS language
as every string consisting only of b′s is not a constant. Vice versa, note that a NCS
language is not necessarily a constant language, as it holds in the case of language
L = a∗ ∪ b∗, as L is the union of two constant languages over two distinct symbols
of the alphabet.

The characterization of the whole class of (symmetric) reflexive splicing lan-
guages has required the introduction of the notion of split-language.

Indeed, given L a reflexive symmetric splicing language, then L is characterized
in terms of a finite set M of constants for language L. More precisely, L is defined
in finite terms as a finite union of split languages.

Given L a regular language, a splicing operation is defined for a pair of constant
languages L(m1), L(m2) in L by a splicing rule r if each of the constants m1 and
m2 is a distinct splice site of rule r .

Formally, given r = (u1, u2)$(u3, u4), such that u1u2 = m1, u3u4 = m2,
and L(m1) = Li1u1u2Li2, L(m2) = Lj1u3u4Lj2, then the result of a splic-
ing operation of L(m1), L(m2) by r is the language Li1u1u4Lj2 denoted as
SPLIT(L(m1),L(m2), r) and called split language.

Given M a finite set of constants for language L, we define the set F(M) of
2-factors of words in M:

F(M) = {
(mi1,mi2) : mi1mi2 ∈ M

}
.

A binary relation over F(M) induces a set RM of rules, precisely, RM ⊆ {(s1$s2) :
s1, s2 ∈ F(M)}: let us call RM set of constant based rules over M.

The characterization theorem for reflexive symmetric splicing languages in [7],
is then stated below.

Theorem 1 Let L be a regular language. The following are equivalent:

1. L is a (symmetric) reflexive splicing language.
2. There exists a finite set X ⊂ A∗, a finite set of constants M for L, a set RM of

(symmetric) constant based rules over M and

L =
⋃

mi∈M
L(mi)

⋃

rij ∈RM

SPLIT
(
L(mi),L(mj ), rij

) ∪ X. (1)

Then the set M is called generating set of constants for language L.

Example 1 The regular language L = a+ba+ba+ ∪ a+ca+ba+ is a reflexive sym-
metric splicing language. Indeed, given the set M = {c, bab} of constants for L and
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the constant languages L1 = a+m1a
+ and L2 = a+m2a

+ba+, where m1 = bab,
m2 = c, then L = L1 ∪ L2 ∪ Split(L1,L2, r), where r = (b, ab)$(ac,1) ∈ RM.

Observe that language L is not a FCS language, as indeed language a+ba+ba+
cannot be obtained as a finite union of constant languages and of a finite set.

The following remark holds as a consequence of the above result.

Remark 1 Given L a regular language, a constant language L(m) is a spe-
cial case of split language, as indeed L(m) = SPLIT(L(m),L(m), r), where r =
((m,1)$(m,1)) is a constant based rule. Moreover, observe that given L a splicing
language characterized by (1) of Theorem 1, then for every pair mi,mj it holds that
cl(L(mi) ∪ L(mj ), rij ) = SPLIT(L(mi),L(mj ), rij ).

By using the above remark, we can obtain as a corollary of Theorem 1 the fol-
lowing characterization of reflexive splicing languages which is proved in [15].

Corollary 1 Let L be a regular language. Then the following are equivalent:

1. L is a reflexive (symmetric) splicing language.
2. There exists a set R of reflexive (symmetric) rules such that L is closed under R

and L − cl(L,R) = X, for X ⊂ A∗ a finite set.

There exist splicing languages that are reflexive and not symmetric as stated in
Lemma 1. Indeed, by applying a Theorem stated in [32], it is proved that L1 =
a∗ ∪ a∗ba∗ and L2 = a∗ ∪ da∗ ∪ a∗c are not symmetric languages, while we can
show that these languages are reflexive.

Lemma 1 Languages L1 = a∗ ∪ a∗ba∗ and L2 = a∗ ∪ da∗ ∪ a∗c are splicing lan-
guages that are reflexive and not symmetric.

Proof The language L1 can be expressed as L(b) ∪ cl(L(b),R), where R = {r},
r = (1, b)$(b,1), L(b) = a∗ba∗ is a constant language. Similarly, the language
L2 = L(d) ∪ L(c) ∪ cl(L(c) ∪ L(d), r), where L(d) = da∗ and L(c) = a∗c and
r = (1, c), (d,1). Then by Proposition 1, L1 is a reflexive splicing language. �

In [15], it is proved that the regular language a∗b∗a∗b∗a∗ ∪ a∗b∗a∗ is a symmet-
ric, non-reflexive splicing languages, while language b∗a∗b∗a∗ ∪ a∗b∗a∗ ∪ a∗ is a
splicing language that is neither symmetric nor reflexive.

The following Lemma 2 shows also the existence of splicing languages that are
neither reflexive nor symmetric.

Lemma 2 [15] The language L = a+d+b+a+d+b+a+ ∪ a+d+b+a+ ∪ a+ is a
splicing language that is neither symmetric nor reflexive.
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2.2 Decision Procedures

The characterization of reflexive splicing languages stated in Theorem 1 and Corol-
lary 1 leads to decision procedures for reflexive languages.

A crucial step in these decision procedures is to have an algorithm to decide
whether a language is closed under a set of rules. This procedure has been detailed
in [6].

In [10], a decision procedure for reflexive splicing languages based on the char-
acterization stated in Theorem 1 is provided. It mainly consists of the following
steps:

(1) First, a characterization of the classes of the syntactic monoid that allow to com-
pute a set of generating constants for a regular splicing language is provided us-
ing a notion of equivalence relation among words. Then it has been proved that
this relation leads to a refinement of constant classes of the syntactic monoid.
Smallest representatives of these classes directly provide the finite largest set of
candidate generating constants for the splicing language.

(2) For each subset M of candidate generating constants for the language, then
the decision algorithm tests whether the union of constant languages is closed
under a given subset of constants based rules over M. Clearly, this step requires
exponential time in the size of the reduced automaton for the regular language.

Note that bounding the length of generating constants for the language is a crucial
step in the decision procedure.

A different algorithm is proposed in [15], based on an alternative characterization
of reflexive splicing languages using interesting properties concerning the syntactic
monoid of a splicing language. Again, in the decision algorithm, the construction
of a bound for the length of rules under which the regular language is closed is a
crucial step. Actually, finding a tight upper bound for the length of splice sites of
rules is an interesting open question.

3 New Directions

Since the introduction of the splicing, and the early results showing regularity of
the basic formalism, research into splicing systems has continued, but has moved
away from these basic systems. As mentioned before, this research has been mainly
focused on universal models of splicing involving additional control mechanism
or special features. Recently, however, new research directions for finite splicing
systems have been explored. These shed a new light on the splicing formalism and
show that the basic formalism still has room for further study. We here introduce
some of these new directions, present their results and point to open problems and
opportunities for further research.
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3.1 Non-preserving Splicing

The general picture that had emerged from years of splicing research was the fol-
lowing. Basic finite splicing systems are computationally weak, but when adding
some kind of additional feature they are computationally complete. These features
can be a regular set of rules, control mechanisms taken from regulated rewriting, or
distributed architectures (see [27] for an overview of models and results).

In [20] and [23], another approach was taken. Instead of adding features, the
basic definition of a splicing system was reexamined. If we recall the definition of
a splicing systems from Sect. 2, we see that its language is defined by iteratively
adding strings to an initial set. However, this is not necessarily what happens in
the biochemical recombination operation. For instance, suppose we use restriction
enzymes TaqI and SciNI, with the following patterns given in Fig. 1.

Since the sticky ends are the same, new molecules can be produced by recombi-
nation:

. . . T CGC . . . . . .GCGA. . .

. . .AGCG. . . . . .CGCT . . .

These new molecules cannot be cut by either of the two enzymes, which makes that
all old molecules will be replaced by new molecules. In splicing terms, this means
that a language cannot only evolve by adding strings, but also by removing strings
and replacing them with new ones. Non-preserving splicing reflects this behavior.
In these models, at each step, whenever a rule is applied to a string, this string is
not present in the next step, unless it is created as the result of a rule application in
the same step. Strings which are not involved in any rule remain unchanged in the
language.

Formally, we define a new splicing step for a set of splicing rules R over V and
for a language L ⊆ V ∗:

τR(L) = σR(L) ∪ {
w ∈ L | (¬∃x ∈ L, r ∈ R,y, z ∈ V ∗)[(w,x) �r (y, z)

]}
.

Then we can define a non-preserving splicing system as a usual splicing system,
but where the language produced is τ∗

R(A), which is defined as follows:

τ 0
R(L) = L,

τ i+1
R (L) = τR

(
τ i
R(L)

)
, i ≥ 0,

τ ∗
R(L) =

⋃

i≥0

τ i
R(L).

Surprisingly, with this language definition, finite spicing systems are very pow-
erful.

Fig. 1 Restriction sites of
enzymes TaqI and SciNI
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Theorem 2 [20, 23] Finite extended non-preserving splicing systems are computa-
tionally complete.

From this result, we automatically obtain the following decision properties.

Corollary 2 For finite non-preserving splicing systems, membership, emptiness,
finiteness, equivalence, and generally all non-trivial properties are undecidable.

3.2 Complexity Aspects

Splicing systems have been mainly studied from the point of view of computational
power. Other aspects, such as complexity issues, have not been systematically ad-
dressed. For example, descriptional complexity has been previously studied, but this
work focused on limiting a specific resource or structural parameter. While measur-
ing specific resources can provide insights into the role that these parameters play, it
does not necessarily say that much about the overall description necessary to spec-
ify a particular system. In [21], a first real attempt is made to address descriptional
complexity for splicing systems in terms of the total size of the system. Extended
finite splicing systems are compared with non-deterministic finite automata (NFA).
Both systems generate (respectively accept) exactly all regular languages [26].

3.2.1 Complexity Measures

The first step in studying descriptional complexity is defining fair and meaningful
measures. For finite automata, the primary complexity measure considered in the
literature is the number of states. This is normally a good indicator of total size, since
the number of transitions of an n-state NFA over Σ is bounded by n2 · Card(Σ)

and it gives fair comparisons when comparing with other formalisms having states
or a comparable resource (e.g., non-terminals in context-free grammars). However,
since for splicing systems there does not seem to be such a resource and since we are
interested in the total size of the systems, we also consider the number of transitions
of the NFA. Let M = (Q,Σ, δ, q0,F ) be an NFA. Then we denote

Q(M) = Card(Q),

T (M) = Card(δ).

For splicing systems, there are several measures we could consider. For instance,
one could consider the number of rules of the system. But because of its structure
consisting of an initial language and a set of rules, even a system with an empty set
of rules can be arbitrarily complex in terms of the size of the equivalent NFA (as
complex as the finite initial language). Even if we also consider the size of A, the
length of the words in A can make the equivalent NFA arbitrarily complex. Also,
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as we will see, the length of the rules is relevant. This is why we will measure the
size of a splicing system by considering both the number and the length of the rules
and the initial language. Given an extended finite H system Γ = (V ,T ,A,R), we
define the following measures:

R(Γ ) =
∑

r∈R

|r|,

A(Γ ) =
∑

w∈A

|w|.

The total size of Γ , denoted Size(Γ ), is defined as SizeR(Γ ) + SizeA(Γ ).

3.2.2 Descriptional Complexity of Finite Splicing Systems

We first show upper and lower bounds for the increase in descriptional complexity
when changing from an finite extended splicing system to an equivalent NFA.

Theorem 3 [21] For the conversion of a finite extended splicing system Γ to an
equivalent NFA M, the following bounds hold:

1. Upper bound: Q(M) ≤ A(Γ ) + R(Γ ) + 1.
2. Lower bound: Q(M) ≥ A(Γ ) + R(Γ ) − 8.

Proof (sketch) For (1), this follows from a streamlined version of Pixton’s construc-
tion [29]. We can improve this construction by realizing that the first state of each
path describing each u1u4 is only reached by λ-transitions and that all outgoing tran-
sitions of the last state of the path are also λ-transitions. This means that removing
λ-transitions in the usual way and removing all superfluous states, we can eliminate
those states.

For part (2), we define an infinite sequence of languages Ln,n ≥ 1, such that each
Ln is generated by an finite extended splicing system Γn, where Γn = (V ,A,Rn),
with

• V = {a, b, c, d},
• A = {cabc, dd},
• Rn = {(b, c)$(c, a), ((ab)n, c)$(λ, d)}.
For each n, Γn generates Ln = {c(ab)ic | i ≥ 0} ∪ {c(ab)j d, c(ab)j dd, c(ab)jdc |
j ≥ n} ∪ {c, dc, dd}. The smallest NFA Mn accepting this language has 2n + 4
states, as can be shown using the extended fooling set method of [1], yielding the
given bound. �

Turning to the other direction, converting an NFA into an equivalent finite ex-
tended splicing system, we can again show an upper and a lower bound.

Theorem 4 [21] For the conversion of an NFA M to an equivalent finite extended
splicing system Γ the following bounds hold, for some constant c:
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1. Upper bound: A(Γ ) + R(Γ ) ≤ c · T (M).
2. Lower bound: A(Γ ) + R(Γ ) ≥ T (M).

Proof (sketch) For (1), let L be a regular language and M = (Q,Σ, δ, q0,F ) be a
minimal NFA accepting L, where Q is the set of states, Σ the input alphabet, q0
the initial state, F the set of final states and δ the set of transitions. We construct the
extended finite splicing system Γ = (V ,Σ,A,R), where

• V = Σ ∪ Q ∪ {Z}, where Z is a new symbol not in Σ ∪ Q,
• A = {ZZ} ∪ {ZqiaqjZ | qi, qj ∈ Q,a ∈ Σ ∪ {λ}, (qi, a, qj ) ∈ δ},
• and R consists of the following rules:

– (λ, qZ)$(Zq,λ) for all q ∈ Q,
– (Zq0, λ)$(λ,ZZ),
– (λ, qf Z)$(ZZ,λ) for all qf ∈ F .

The initial language A contains all the words of the form ZqiaqjZ such that M can
pass from qi to qj on reading a. Thus, A is the set of all valid paths of length 1.
The rules of the form (λ, qZ)$(Zq,λ) connect two paths such that the last state of
the first path coincides with the first state of the second. Thus, we build all words
in ZqiwqjZ such that δ(qi,w) = qj . The last two rules eliminate the initial state
appearing at the beginning and the final state appearing at the end, obtaining words
in L. It is easily verified that the size of Γ is linear in the size of M .

For part (2), we define an infinite sequence of languages Ln,n ≥ 1, such that
Ln = {an}. A minimal NFA Mn accepting Ln has n + 1 states and n transitions.
Obviously, there exists an finite extended splicing system Γ with an empty set of
rules and A(Γ ) = n generating Ln. Assume that a smaller finite extended splicing
system Γn exists. This means that A(Γn) + R(Γn) ≤ n − 1. Now, by part (1) of
Theorem 3, we can construct an equivalent NFA with A(Γ )+ R(Γ )+ 1 ≤ n states.
Since we chose Ln to need n + 1 states, this is a contradiction. �

3.2.3 Decidability Questions

It is known that some decidability questions for NFA such as, e.g., membership or
emptiness are solvable in polynomial time whereas the problems of equivalence or
inclusion are known to be hard, namely PSPACE-complete [31]. It is an easy obser-
vation that any finite splicing systems can be converted to an equivalent NFA and
vice versa in polynomial time. Thus, every decidability question, which is solvable
for NFA in polynomial time, is solvable in polynomial time for finite splicing sys-
tems as well. On the other hand, problems being hard for NFA are hard for finite
splicing systems as well. Altogether, we obtain the following theorem.

Theorem 5 [21] The following problems are solvable in polynomial time for a given
finite splicing system:

1. membership
2. emptiness
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3. finiteness

The following problems are not solvable in polynomial time for finite splicing sys-
tems unless P = PSPACE:

1. equivalence
2. inclusion
3. universality

Finally, we mention here that also computational complexity for splicing systems
has been studied [24, 25]. Time complexity is defined in terms of the number of
‘rounds’ of rule application needed to generate a word, where space complexity
is defined as the size of a production tree of the word. These notions are mostly
relevant for universal models of splicing, but the previous section shows that this
need not exclude finite systems from consideration.

3.3 Accepting Splicing Systems

When we think of a splicing system as a possible device of molecular computation, it
becomes rather natural to consider an accepting variant. Indeed, such computations
typically involve finding a solution to a specific given problem.

An accepting splicing system (introduced in [22], further studied in [21]) is a
quadruple Γ = (V ,A,R,YES, 〈 , 〉) where YES, 〈 , 〉 ∈ V and HΓ = (V ,A,R) is a
splicing system. Let Γ = (V ,A,R,YES, 〈 , 〉) be an accepting splicing system. We
say that Γ accepts a word w ∈ V ∗ if and only if the following condition holds:

YES ∈ σk
R

(
A ∪ {〈w〉}) for some integer k.

Thus, the language accepted by Γ is defined as

L(Γ ) = {
w ∈ V ∗ | Γ accepts w

}
.

An extended accepting splicing system Γ = (V ,T ,A,R,YES, 〈 , 〉) is defined
similarly as in the generating case.

One of the most interesting aspects of accepting splicing systems is that there
does not seem to be any straightforward way to translate results from the generating
case to the accepting variant. So, while it is fairly easy to show that all regular
languages can be recognized by accepting splicing systems (see [21]), we do not yet
have a Pixton-like construction that shows their inclusion in the regular languages.

Other indications of this difference, and of the interest of accepting systems come
from the results on their descriptional complexity [21].

Theorem 6 There is no polynomial function f such that for any finite extended
accepting splicing system Γ there exists an equivalent finite extended generating
splicing system Γ ′ such that f (Size(Γ )) ≥ Size(Γ ′).
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This theorem follows from the results presented earlier in this section and the
following theorem.

Theorem 7 There is no polynomial function f such that for any finite extended ac-
cepting splicing system Γ there exists an equivalent NFA M such that f (Size(Γ )) ≥
Size(M).

Proof (sketch) We can show that the intersection of two regular languages can be
accepted by an extended finite accepting splicing system of size O(m + n), where
m and n are the sizes of the systems accepting each of the languages. On the other
hand, it is known that for two minimal NFAs Mn and Mm accepting the languages
(an)∗ and (am)∗, where n and m are co-primes, any NFA accepting the intersection
of these languages has at least Q(Mn) · Q(Mm) states. We define an infinite series of
languages as follows. For each k ∈ N, let Lk denote the language (ak)∗. Moreover,
let pi denote the ith prime number. We now define an infinite sequence of languages
Ln,n ≥ 1, where

Ln =
n⋂

i=1

Lpi .

Any NFA accepting Lk needs at least k states. By the intersection result stated
above, for any NFA Mn accepting Ln

Q(Mn) ≥
n∏

i=1

pi.

Now, if a polynomial function f exists such that f (Size(Γ )) ≥ Size(M), using
the intersection result for accepting splicing systems, it is possible to construct an
automaton Mn of size polynomial in n. But since Q(Mn) ≥ ∏n

i=1 pi ≥ 2n, this is a
contradiction. So there exists no such f . �

4 Open Questions and Further Research

As we have seen in Sect. 2, some of the main questions in the theory of splicing
have been open since the introduction of splicing systems. Specifically, there are
two main questions.

1. A characterization of the family of languages generated by basic finite splicing
systems.

2. An algorithm to decide whether a given language is a splicing language.

Many specific subproblems of these basic questions or related questions can be
formulated.
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Closely related to the above problems is the issue of finding a procedure to con-
struct a splicing system for a language. It is striking that after many years of re-
search, we do not have any systematic way to go about constructing a splicing sys-
tem for a given language.

One relevant question is understanding the relation of regular splicing languages
with constants. More precisely, it has been conjectured [10] that a splicing language
must contain a constant. If this is the case, as pointed out in [15], the structure of a
regular splicing language should be strictly related to constants of the language.

The characterization of reflexive splicing languages given in [7] shows that a
splicing language can be expressed as a finite union of languages obtained by splic-
ing a finite set of constant languages by means of constant splicing rules. We wonder
whether a similar characterization could hold in the general case, that is, can we find
a finite set of languages and rules such that any splicing language is obtained by fi-
nite splicing of languages?

Also, the new directions discussed in Sect. 3 offer a variety of research questions.
Descriptional complexity aspects are closely related to the issues mentioned

above, and could be a way to approach these open problems. For instance, find-
ing theoretical lower and upper bounds on the size increase when converting an FA
or equivalent representation of a splicing language to a splicing system, could be
helpful in finding a procedure to construct a splicing system for this language.

Also, the notion of minimality of a splicing system would be interesting to ex-
plore. We believe that the notions introduced in Sect. 3.2 would be well suited for
such investigations.

In this respect, questions to address would include finding algorithms for

• deciding whether a given splicing system is minimal,
• finding the minimal size of a splicing system for a given language,
• minimizing a splicing system.

For accepting splicing systems, the same series of basic questions can be ad-
dressed as for the generating variant. As we mentioned in Sect. 3.3, so far no
straightforward way of relating the two versions is known. Thus, it would be very
interesting to also find a characterization for the accepting variant, as well as algo-
rithms for recognizing accepting splicing languages and for constructing an accept-
ing splicing system for such a language.

Also, issues of minimality would be worth exploring here. The results of Sect. 3.3
suggest that the results would be significantly different from those for generating
systems. Moreover, comparing the minimal generating splicing system and the min-
imal equivalent accepting system might provide important insights into the working
of splicing.

Finally, the non-preserving definition for splicing systems opens the way to sev-
eral directions of further work. First of all, the universality of finite systems under
the non-preserving definition allows to explore the algorithmic possibilities of the
basic splicing operation without extra features. In this way, we could conceive prob-
lem solving algorithms based on these finite systems. In addition, computational
complexity issues can be studied for these systems. We already have well-defined
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complexity measures for splicing systems, touched upon in Sect. 3.2, which could
also be applied in this case. These original measures are based on extended splicing
systems with regular rules, and with them, splicing complexity classed were charac-
terized in terms of well-known Turing machine classes. It would be very interesting
to extend this line of work to non-preserving systems, given that these systems only
rely on finite splicing rules and thus offer a fairer reflection of the power of splicing.

In all, we believe that finite splicing systems still leave ample room for further
investigation.
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puting with bio-molecules. Theory and experiments. Springer, Singapore
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27. Păun G, Rozenberg G, Salomaa A (1998) DNA computing, new computing paradigms.
Springer, Berlin

28. Perrin D (1990) Finite automata. In: Van Leeuwen J (ed) Handbook of theoretical computer
science, vol B. Elsevier, Amsterdam, pp 1–57

29. Pixton D (1996) Regularity of splicing languages. Discrete Appl Math 69:101–124
30. Schützenberger MP (1975) Sur certaines opérations de fermeture dans le langages rationnels.

Symp Math 15:245–253
31. Stockmeyer L, Meyer AR (1973) Word problems requiring exponential time: preliminary re-

port. In: Fifth annual ACM symposium on theory of computing, pp 1–9
32. Verlan S, Zizza R (2003) 1-splicing vs. 2-splicing: separating results. In: Proceedings of

Words03, Turku, Finland, pp 320–331
33. Verlan S (2004) Head systems and applications to bio-informatics. PhD thesis, University of

Metz





Formal Models of the Calyx of Held

Andrea Bracciali, Marcello Brunelli,
Enrico Cataldo, and Pierpaolo Degano

Abstract We survey some recent work on the behavior of the calyx of Held synapse.
The analysis considered are based on formal and quantitative models aimed at cap-
turing emerging properties about signal transmission and plasticity phenomena.
While surveying work about a specific and real-scale biological system, we dis-
tinguish between deterministic and stochastic approaches. We elaborate on the fact
that in some cases, as in the calyx, the latter ones seem to be more adequate. The
stochastic models, which we have developed, are based on a computational interpre-
tation of biological systems. We illustrate the advantages of this approach in terms
of expressiveness.

1 Introduction

A systemic approach to the study of living systems and the properties emerging from
their behavior is becoming recognized as a needed, although articulate, methodol-
ogy for understanding many biological phenomena. This has recently been embod-
ied in the Systems Biology research field [11, 35]. Within it, computer science can
provide models and analysis tools, far beyond its traditional contribution to catego-
rizing acquired knowledge. This is justified by a reading of biological dynamics in
terms of computational processes—“Cells as computation” [52].

This paper is a survey of some studies on a specific biological domain: the ca-
lyx of Held synapse. Several are deterministic, while others combine computational
models and stochastic semantics. Overall, we illustrate how these systemic and for-
mal methods considerably contribute to address some of the many not understood
biological mechanisms. More specifically, we discuss some desirable properties en-
joyed by the computational and stochastic approach, such as adequacy, expressive-
ness, and compositionality.

Neuroscience is experiencing an explosive growth in the amount of detailed and
high quality experimental data on neural processes underlying behavior. Neurons
represent the elementary components of the nervous systems, able to communi-
cate with each other at highly specialized contact sites called synapses. In general,
each neuron consists of a somatic cellular body, on which a variable number of thin
elongated structures called dendrites converge and from which a long single struc-
ture called axon emerges, branching in several synaptic terminals. The synapses are

A. Bracciali (�)
Dipartimento di Informatica, Università di Pisa, Pisa, Italy
e-mail: braccia@di.unipi.it

A. Condon et al. (eds.), Algorithmic Bioprocesses, Natural Computing Series,
DOI 10.1007/978-3-540-88869-7_18, © Springer-Verlag Berlin Heidelberg 2009

331

mailto:braccia@di.unipi.it
http://dx.doi.org/10.1007/978-3-540-88869-7_18


332 A. Bracciali et al.

the places of functional contacts between neurons, where the information is stored
and transmitted from one (pre-synaptic terminal) to another (post-synaptic terminal)
neuron, by releasing chemical molecules (neurotransmitters) [47]. Furthermore, the
releasing process can be altered by repeated activity, making the signal transmission
a plastic phenomenon, i.e. the synaptic terminal is then a kind of computational unit,
which changes its output based on its previous activity and ongoing modulation [46,
76]. Plasticity is hence a basic mechanism for the processes of memory and learning.

Mathematical and computational models are necessary to describe and under-
stand available data, with different methodologies and approaches according to the
level of abstraction chosen for describing the systems [13, 14, 19, 37, 43, 60]. Tradi-
tionally, the chemical kinetics of neurons (and other bio-systems) has been described
deterministically in terms of differential equations.

Several models have been proposed for phenomena like the intracellular signal-
ing pathways, which underly most of the phenomena cited above, and at this scale,
often the most appropriate ones are stochastic [15, 30, 63, 69, 72]. The major draw-
back of a deterministic description is due to the fact that cellular processes occur in
a small volume frequently involving a very small number of interacting molecules.
Significant stochastic fluctuations can hence occur, which can significantly affect
the dynamics and can be seen as random variations about a mean number of mole-
cules [63]. For instance, models for the circadian rhythm or genetic networks can
oscillates or rests, depending on the description used. In these cases, the stochastic
approach has to be preferred.

A significant part of the stochastic and systemic approach consists in the devel-
opment of formal models which, beyond tackling the inherent complexity, allow for
a faithful representation of phenomena at the right level of abstraction. Also, they
have to be suitable for predictive simulations and automated processing. Then in-
vestigated phenomena can be precisely modeled and virtual experiments performed
in silico. Such experiments may be easy and fast, and often result in satisfying ap-
proximations of their in vitro/vivo counterparts.

At this level of abstraction, the cited interpretation of life systems in terms of
computational systems “cells as computation” seems definitely profitable, as prop-
erly recognized in [52]. This analogy is even stronger in the light of the relevance
that interaction has progressively acquired in the theory of computation, starting
from the early development of concurrent systems and with the recent advent of
new computational paradigms, which are component-based, interactive, and distrib-
uted over open environments, such as service oriented architectures. Furthermore,
stochastic semantics has been easily embedded in these computational frameworks,
e.g. [29, 49].

According to this metaphor, cells, molecules and biological “active” compo-
nents are assimilated to computer processes, the computational units of a concurrent
software system. Biological interaction corresponds to process communication. By
communicating, processes may exchange information or synchronize themselves.
A biological experiment has then a direct correspondence with a computation. This
justifies the attempt to exploit all those modeling and analysis techniques, exten-
sively developed for understanding computational systems, within systems biology.
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That is, biological processes cannot only be simulated by in silico experiments, but
it is also possible to formally reason about their computational models and infer
properties of interest.

Technically, these models can be based on process calculi, developed for for-
mally describing the behavior of systems composed by processes. Process behavior
is defined in terms of basic interaction steps, e.g. communication or synchronization.
Compositional operators, like sequential, parallel, or non-deterministic composi-
tions, allow more structured behavior to be expressed. Process calculi are generally
equipped with an operational semantics consisting of a transition system defined by
rules that, given the process representing the current state of the system, determine
the next states it can evolve to. Often, these models and their analysis enjoy nice
compositional properties, being system behavior defined in terms of the behavior
of its components. The level of abstraction in representing system dynamics can be
chosen by adopting suitable interaction and composition primitives. Several process
calculi have been proposed for modeling the dynamics of living systems, e.g. [51],
while others have been extended or defined with operators oriented to describing
different aspects of biological interaction, such as specific abstractions for molecu-
lar interaction [44], compartments [50], and active membranes [9].

In the following, we recollect a number of formal models for the calyx of Held
synapse recently appeared in literature so as to illustrate different systemic ap-
proaches to an open case of study.

We first discuss several deterministic models proposed for describing issues
about the calcium triggered release of neurotransmitters in the synapse. Then we
illustrate a model of the same and other aspects of the synapse behavior we have
developed (see [5–7] for technical details). To our knowledge, ours is the first sto-
chastic model of a neural terminal based on a process calculus. We present the mod-
els of the pre- and post-synaptic terminals and experiments regarding, for instance,
plasticity and the dynamics of vesicle release and recruitment. The model of the
whole synapse can be built from the pre- and post- synaptic models in a pure com-
positional manner, which is not always the case in the settings of stochastic models.
The entire model allows plastic events to be observed throughout the whole synapse.
This modeling effort seems to confirm the viability of the approach by the construc-
tion of a quite detailed model and, moreover, it allows for a pragmatic evaluation of
its expressiveness. Neurons, the calyx of Held and some technical background are
recapitulated in short.

2 Background

Some background from both biology and computer science is briefly recapitulated
in this section and references to more technical treatments are provided.
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2.1 Neurons

Information in neurons is in the form of space and time variation of the electrical
potential across the cytoplasmatic membrane. While in a resting state, the neuron
maintains an electrical polarization of about −70 mV between its interior and the
cellular context. The signal (action potential) through the cell body and along the
axon is transmitted in an all-or-none fashion as a sequence of depolarizations, up
to +40 mV, and repolarizations, ending up at the synaptic terminal. These induce
the opening of the calcium ion (Ca2+) channels with a transient elevation of their
concentration in the pre-synaptic terminal. These ions control the transmitter release
process (calcium-triggered-release hypothesis) [75], consisting in the exocitosis of
synaptic vesicles (small elements containing the neurotransmitters) located at the
pre-synaptic so-called active zone [65]. It is worth noting that some chemical mes-
sengers and modulators regulate, intracellularly and extracellularly, respectively, the
relationship between action potential and release in a synaptic terminal. This rela-
tionship is altered by repeated activity giving rise to plasticity [76]. The pre-synaptic
terminal is then a kind of computational unit, which changes its output based on its
previous activity and ongoing modulation [46, 76].

The arrival and binding of neurotransmitters on post-synaptic receptors trigger
post-synaptic potentials, which can be excitatory or inhibitory. These consist of
graded potentials that induce an action potential in the post-synaptic neuron when
reaching a threshold value. Synapses involving neurotransmitters are chemical and
the connection between the pre- and the post-synaptic neuron occurs in a variety of
possible combinations, such as axodendritic, axosomatic, axoaxonic, or dendroden-
dritic. The last case implies that the flow of neural information is bidirectional. In
addition to chemical synapses, there are electrical synapses which allow current to
flow directly from one neuron to another. There are also non-synaptic interneuronal
signals, such as volume transmission, involving glia, and ephaptic transmission, in
which the extracellular electric field of one neuron influences the activity of an-
other neuron. Beyond the above general properties, neurons can be distinguished
according to their size, shape, membrane electrical and neurochemical properties,
and connectivity. The traditional vision of the neuron as input-integration-output de-
vice must be replaced by that of a complex computational machines, like a spatio-
temporal filter, a coincidence detector, a unit of internally distributed devices of
memory stored locally or metabolic assemblies [2].

The ever increasing collection of data regarding anatomy and physiology of parts
of different nervous systems still has no correspondence with a unifying theory of
the brain. The difficulty resides in the multi-scale complexity of the these systems,
in which information processing occurs simultaneously at several levels: molecu-
lar, channels and synapses, cellular, local networks, projections areas and receptive
fields, brain systems, and brain-behavior [15].

Some neural systems, such as the mammalian neocortex, are characterized by
connectivity reaching thousands of synaptic inputs for each neuron. To study these
kind of biological neural networks, it is worthwhile to build network models of
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neuron-like units with the action potential replaced by the firing rate. A rate rep-
resents the probability per unit of time to have an action potential in a small time
interval. The synaptic connections are represented by a set of parameters varying
according to some bio-inspired rules. These seemingly oversimplified models can
give many insights for the understanding of the collective behavior of large neural
networks [28].

Models more adherent to biology need to also take into account the dynamic
behavior of the membrane electrical potentials. At the most abstract side of this ap-
proach, there is the description of the action potentials as a string of numbers, rep-
resenting the times at which they occur. This approach is rooted in the information
theory and its principal goal is to uncover the neural code, that is the information
content in a single action potential and in their relative time intervals. When the
shape of the action potential and/or the neural spatial structure play a role, then
the last description is inadequate and one must invoke models that describe the ob-
served electrical behavior of the membrane, by representing it as resistive-capacitive
circuits [1, 32, 36, 40, 53].

The intracellular processes underlying the phenomena cited above are described
within deterministic or stochastic frameworks [15, 30, 63, 69, 72].

2.2 The Calyx of Held

The calyx of Held is a giant glutamatergic synapse of the mammalian auditory tract.
Its post-synaptic target is the neuron of the medial nucleus of the trapezoid body.
They belong to the relay pathway of the sound source localization in the auditory
brainstem. Its size allows the manipulation of its intracellular biochemical compo-
sition, and this makes the calyx of Held an ideal model system for studying pre-
synaptic mechanisms of transmission in central nervous system, specifically the
intracellular pathway underlying exocitosys and its regulation, and the short-term
plasticity. Spatially, the calyx of Held is structured as a parallel arrangement of a
large array of active zones, ranging from 300 to almost 700 in number [56]. Active
zones, each containing up to 10 vesicles, are clustered in groups of about 10 of them,
in a volume having a diameter of almost 1 µm. Each action potential activates all
the active zones. Each active zone is morphological similar to the active zones of
the small nerve terminals.

This model system is one among few experimental preparations in which it has
been possible to measure, simultaneously, neurophysiological parameters in both
the pre- and post-synaptic terminals. Major attention has been directed to the study
of the Ca2+ ionic channels for the role that Ca2+ plays in the exocitotic process.
In addition, this is an excellent model system for addressing the mechanisms of
short-term plasticity [76]. It has been shown that the release of vesicles is highly
sensitive to Ca2+ concentration and a model has been proposed for describing this
behavior [57]. The calyx of Held shows short-term facilitation [20], which seems
dependent on the build up of a small but effective amount of residual Ca2+. During
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prolonged stimulation, this synapse depresses caused by a depletion of the readily
releasable vesicle pool according to [45, 70, 76]. Several models have been proposed
to uncover some of the mechanisms underlying these plastic processes, all charac-
terized by the assumption of continuity and determinism, which in these cases might
not be appropriate.

2.3 Deterministic Models of Biochemical Pathways

Biochemical reaction networks are modeled with several approaches. At suffi-
ciently low concentrations of the reactants (which does not mean small numbers
of molecules), these processes are modeled with the Generalized Mass Action Rate
Law (GMA) [61]. We describe this law (known as Law of Mass Action for sim-
ple processes) and the underlying hypotheses for the simple particular case of bi-
molecular reaction, in which a molecule A reversibily interacts with the molecule
B to form a molecule C. The variables A(t), B(t) and C(t) represent molecular
concentrations (numbers of molecules per unit volume at time t ). The assumptions
underlying the GMA are: (1) the rate of formation of C is proportional to the joint
concentrations of A and B; (2) each C molecule acts independently of other C mole-
cules and has a given probability to decay in its constituents. The last assumption
means that the C decay rate is proportional to the number of molecules C present.
Conventionally:

A + B

k1

C
k−1

where k1 and k−1 are the rate constants. The following system of Ordinary Differ-
ential Equations, in short ODEs corresponds to the above kinetic schema:

dC

dt
= k1AB − k−1C,

dA

dt
= −k1AB + k−1C,

dB

dt
= −k1AB + k−1C.

Given initial conditions, the solution of the above system provides A(t), B(t) and
C(t). An extensive treatment of biochemical ODEs modeling is in [67], a crit-
ical analysis on the adequacy of ODEs deterministic description of biochemical
processes and of the, sometimes subtle, relationship between the continouos deter-
ministic approach and the stochastic discrete one is in [71].

2.4 The Stochastic Simulation Algorithm

The description of biochemical networks is carried out within a stochastic kinetics
framework [66] when considering, for example, a small volume where only few
molecules interact [21, 23, 24, 33, 69]. A system of N chemical species S1 . . . SN
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interacting through M elemental (instantaneous) chemical reactions (uni- or bimole-
cular) R1 . . .RM could be fully described, in principle, by resolving the trajectories
of all the individual molecules. This approach is computationally untractable.

The study simplifies notably when the system is well-stirred: molecules are ran-
domly distributed in a given volume V and with assigned temperature T . In this
case, the system is completely described by knowing the time evolution of the vec-
tor X(t) = (X1(t), . . . ,XN(t)), from a given starting value X(t0) = X0, with Xi(t)

representing the number of molecules of the species i at time t . The Ri are char-
acterized by two quantities: the propensity function ai(x) (where, for the sack of
simplicity, we write x for X(t)) and the state-change vector νi .

The definition of the propensity function ai(x) is such that ai(x) dt represents the
probability that the reaction Ri occurs in the volume V in the time interval [t, t +dt].
More specifically, one wants to find a probability rate constant ci , such that ci dt

represents the probability that any two, or one, molecules, randomly chosen amongst
those reacting according to Ri , will react in the time interval dt . By knowing ci

and summing over all the possible distinct combination of Ri reacting molecules
(addition law of probability), it is immediate to show that for the Ri unimolecular
reaction Sj → products, then ai(x) = cixj , while for a bimolecular reaction Sj +
Sp → products ai(x) = cixj xp . When the reaction Ri occurs, the state vector x
becomes x + νi .

Given that the description is probabilistic, one wants to know what is the proba-
bility P(x, t |x0, t0) to find the system in the state X(t) = x, given that it was in the
state X(t0) = x0 at time t0.

The equation for the time evolution of the probability can be written as the sum
of the probabilities of the ways, mutually exclusive, in which the system can evolve
from a state X0 at time t0 to a state x at time t + dt :

P(x, t + dt |x0, t0) = P(x, t |x0, t0)

[

1 −
M∑

j=1

aj (x) dt

]

+
M∑

j=1

P(x − νj |x0, t0)aj (x − νj ) dt.

By rearranging the previous equation, with dt however small, one obtains the Chem-
ical Master Equation (CME):

∂P (x, t |x0, t0)

∂t
=

M∑

j=1

[aj (x − νj )P (x − νj |x0, t0) − aj (x)P (x, t |x0, t0)].

Note that the CME represents a set of coupled differential equations, as many as all
the possible molecular composition of the system, a number which is prohibitively
large. Anyway, even for very simple systems, the numerical solution of the CME
is out of question because the transition probability matrix becomes rapidly un-
tractable [18, 62].
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Daniel Gillespie proposed a way to overcome these difficulties, the Stochastic
Simulation Algorithm (SSA), by using a so-called inversion method of Monte Carlo
theory [23, 24]. The approach consists in finding numerical realization of X(t) as
function of t .

Just to gain some intuition on the SSA, we recall that the key for generating
simulated trajectories of X(t) is the function P(τ, i), with P(τ, i) dτ representing
the probability that the next reaction will be of type Ri and will occur in the interval
(t + τ, t + τ + dτ), in a given volume and with the system in a state X(t) (written
as usual as x) at time t . Now, P(τ, i) can be expressed as P1(τ ) × P2(i, τ ), where
P1(τ ) dτ is the probability that the next reaction will occur in the interval (t + τ, t +
τ + dτ) and P2(i, τ ) is the probability that the next reaction will be of the type Ri .

Gillespie showed that P(τ, i) = ai(x) exp(−a0(x)τ ), where a0(x) = ∑M
k=1 ak(x),

and suggested to calculate the time and the type of the next reaction by drawing two
random numbers r1 and r2. It can be shown that the time of the next reaction is
τ = (1/a0(x)) × ln(1/r1). The next reaction Ri to occur will be the one for which
the number i is the smallest integer satisfying the relation

∑i
k=1 ak(x) > r2a0(x).

When the time and the kind of reaction have been found, the number of the mole-
cules taking part to that reaction are updated. The process can run indefinitely, as
far as reactions may occur (typically a maximal duration of the simulation interval
is fixed).

Summing up the SSA is: (1) Initialize the time and the system: t = t0, x = x0;
(2) Evaluate all the ak(x) and a0(x); (3) Generate τ and i as indicated above; (4) Re-
place the time t with t + τ and the number of molecules x with x + νi ; (5) Return
to step 2.

The SSA can be applied to homogeneous volumes, it can handle reactions but not
diffusion. The Chemical Master Equation is a special form of the Master Equation
for jump processes governed by chemical reactions [66]. Note that the Gillespie
algorithm can be applied to all continuous time Markov jump processes [18, 62].

2.5 Process Calculi and the Stochastic Pi-calculus

Process calculi have been defined within concurrency theory to formally represent
the observable behavior of a system made of interacting components, also called
processes. The observable behavior is an abstraction of the actual behavior of the
components at the desired level of abstraction. Process calculi are based on an alge-
braic notation whose main ingredients are

(i) the basic actions that components can perform together with a set of operators
for defining processes by composing basic actions and simpler processes;

(ii) a semantics describing the possible dynamics of a process according to the ac-
tions it can perform. Often it is operational and consists of a labeled transition
system (LTS). LTS have states, roughly processes themselves, and transitions,
i.e. a relation among a state and the next one the process can evolve to. Tran-
sition may have labels recording relevant information about the step, such as
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the observable behavior. LTS are usually defined compositionally by inductive
rules over the structure of the components of a process;

(iii) properties and methodologies to analyse process behavior. Examples of prop-
erties can be equivalence relations, such as bi-simulations, or reachability prop-
erties, such as checking whether a process can reach a given state of interest.
Examples of analysis techniques are model checking, i.e. verifying whether an
LTS can fulfill a formula of a suitable logic expressing the property of inter-
est, and static analysis, which reasons about an abstraction of an LTS to check
properties. These methods can often be automated.

The Pi-calculus [42] models systems of concurrent communicating processes
whose communication network may also evolve in time. It is based on the notion
of name. Basic actions are communications through shared channels. Channels are
identified by a name. Informally, a!n represents sending message n trough chan-
nel a, while a?m associates the message received through channel a to (variable) m.
One of the operators of the calculus is sequential composition, written _ ._. Given a
process P ′, the process P = a!n.P ′ can perform the output action and then evolve
to P ′. Such a general behavior is formalized by a semantic rule as

a!m.P ′ am−→ P ′

with the label am recording the channel and the message. Analogously,

a?m.P ′ an−→ P ′[n/m]
where n can be any received message and P ′[n/m] stands for the fact that, as effect
of the communication, the value of m within P ′ is n. Another operator is paral-
lel composition _ |_. In P |Q, the two processes can either evolve independently,
e.g. P |Q an−→ P ′|Q if P

an−→ P ′, or communicate through a shared communication
channel, if any, i.e. they can execute complementary input/output actions on a chan-
nel identified by the same name. Communication is formalized by an inductive rule
as

P
a(n)−→ P ′ Q

an−→ Q′

P |Q τ−→ P ′|Q′ .

This rule can be applied to generate a transition for a process C whenever it has the
structure P |Q, as required by the conclusion of the rule (lower row). For instance,
if C = a!n.A′|a?(m).B ′ the rule can be applied (P = a!n.A′ and Q = a?(m).A′)
and, since its premises are satisfied (upper row, P = a!n.A′ an−→ A′ = P ′ and Q =
a?(m).B ′ an−→ B ′[n/m] = Q′ are justified by the previous rules), the transition in
the conclusion exists:

a!n.A′|a?(m).B ′ τ−→ A′|B ′[n/m].
Note that labels in the premises require complementary actions, while the label τ

denotes an action internal to A|B , e.g. it does not expose any channel for possi-
ble communications. This rule is compositional, as the behavior of P |Q is defined
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in terms of the behavior of its components P and Q and it is abstract as only the
observable behavior of P and Q is taken into consideration and not, for instance,
their internal structure. Importantly, channel names themselves can be exchanged
through communications, hence modeling the dynamical reconfiguration of the sys-
tem communication network. Non-determinism is represented by rules like

P
an−→ P ′

P + Q
an−→ P ′

and symmetrically for Q. One of the two alternative processes is non-deterministic-
ally selected to let the system evolve, while the other is discharged.

A stochastic version of Pi-calculus has been defined in [29, 49]. Communica-
tions are annotated with a rate r representing the probability distribution for the
action happening within a given time, e.g. a!n@r . This extension has been moti-
vated by the study of system performances depending on the possible occurrence
of events, such as the distribution of incoming requests or task completion times.
From the rates and the current state of a process, accounting for the number of
possible actions ready to be performed, the next transition can be stochastically de-
termined. Clearly, this paves the way for an application of the SSA algorithm, when,
in biological settings, processes are read as reactants, communications as reactions
and the propensity functions are determined from rates, which now represent “the
speed” of a reaction (see [10] for details). Several simulation tools have been de-
veloped, e.g. the Stochastic Pi-calculus Machine (SPiM) [48], to cite one. Once that
processes/active biological components have been defined, together with their rates
and the initial conditions of the experiment, a stochastic trajectory (i.e. a computa-
tion) is computed, allowing the behavior of the system to be analysed.

3 Deterministic Models

In this section, we describe a selection of experimental and theoretical work which
have addressed the issue of synaptic plasticity in the calyx of Held. All these models
are based on continuity assumptions and they all use Ordinary Differential Equa-
tions, in short ODEs. These models fit with the experimental data, in the range
of variable values investigated, presenting limitations when considering events at
smaller scales, in which the discrete aspects of the behavior emerge.

3.1 The High Ca2+ Sensitivity of Vesicle Release

In the process of synaptic transmission, a fundamental step is the vesicle release
triggered by a transient elevation of the intracellular Ca2+. It has been experimen-
tally shown by [57] that the Ca2+ peak concentrations needed for triggering release
are of the order of 10–20 µM, much smaller of the commonly accepted values of
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100–300 µM. The experimental technique was the so-called Ca2+ un-caging, dur-
ing which the intra-celluar cytosolic Ca2+ is elevated in a spatially homogeneous
way. Under this condition, the measured signal due to the fluorescent Ca2+ indi-
cators has been directly linked to the Ca2+ sensed by the vesicles. The amount
of released vesicles has been obtained by deconvolution of the recorded excitatory
post-synaptic currents. This first requires to chemically suppress the post-synaptic
fast glutamatergic receptor desensitization (desensitization is a decreased respon-
siveness of a receptor for a stimulus). It was observed that for a Ca2+ concentration
greater than 12 µM, most of the release occurred within 3 ms. By inducing several
different cytosolic Ca2+ concentrations and calculating the correspondent cumu-
lative and rate of release, Schneggenburger and Neher [57] have built a minimal
kinetic model of the Ca2+ dependent release, consisting of five Ca2+ binding steps.
This sequence ends with vesicle fusion coming from the fully Ca2+ bound state.
The kinetic model consisted of a deterministic rate equations, whose parameters
were determined by a fitting procedure:1

Ca2+
i + V

5kon

VCa2+
i

+ Ca2+
i

koffb
0

4kon

V2Ca2+
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+ Ca2+
i

2koffb
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V3Ca2+
i

+ Ca2+
i ,

3koffb
2

V3Ca2+
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i

+ Ca2+
i

4koffb
3
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V5Ca2+
i

γ−→ T

5koffb
4

where Ca2+
i represents the molar concentration of intracellular calcium ions, V the

number of vesicles, and T the released vesicles. The kinetic rate constant relative
to vesicle release is γ = 6000 s−1; the other values are kon = 9 × 107 M−1 s−1,
koff = 9500 s−1 and b = 0.25.

These equations were driven by transient Ca2+ curves with decays and ampli-
tudes compatible with experimental findings, obtained by solving a system of dif-
ferential equations.

1Slightly imprecisely, hereafter we shall use the notation

A + B

to

C + D

back

...

. . .
...

to represent the reversible reaction from A and B to C and back. Then the produced C is involved,
together with D, in the next (reversible) reaction producing. . . . That is, the formula does not intend
to represent neither A + B ← C + D nor A + B → C + D.
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3.2 Pre-synaptic Facilitation

Facilitation is a form of activity-dependent synaptic enhancement: the synaptic
strength increases during a train of action potentials [20, 75]. It is generally accepted
that the intracellular residual Ca2+ remaining from previous activity causes facili-
tation [76]. However, this is controversial, since the residual Ca2+ is very small and
seems not sufficient to induce facilitation. Other mechanisms have been suggested,
among which the permanence of Ca2+ bound to the high affinity binding sites of
the secretory machinery or Ca2+ buffer saturation [20], just to cite a few.

By using the Ca2+ uncaging method described above and starting from [57], the
authors of [20] have shown that facilitation can be ascribed mainly to the small
residual Ca2+. Some of their experiments consisted in the use a double Ca2+ pulse
protocol, with a varying inter-stimulus interval, to asses the amplitude and the de-
cay kinetics of facilitation. Felmy et al. [20] found a consistent facilitation at inter-
stimulus interval of few ms, but this was neither due to an increase of the Ca2+ sen-
sitivity of transmitter release nor to an increase in the size of the readily releasable
vesicle pool. In [20], the uncaging technique was used to induce a controlled and
small (less than 1 µM) Ca2+ concentration increase to reveal facilitation. The model
equations were driven by Ca2+ functions of time obtained as solutions of systems of
differential equations. The residual Ca2+ was modeled by adding a Ca2+ concentra-
tion of about 2 µM. The simulations showed an increased vesicle release, but only
a fraction of that observed experimentally. Hence, other mechanisms for facilitation
cannot be excluded.

3.3 Pre-synaptic Potentiation

Synaptic potentiation is a form of synaptic plasticity in which the synaptic strength
increases, e.g. because the number of the releasable pool vesicles increases. Exper-
iments on the calyx of Held have shown that synaptic potentiation of spontaneous
and evoked vesicle release can be induced by phorbol esters, which increases the
apparent Ca2+ sensitivity of vesicle fusion [39]. Lou et al. [39] have used Ca2+
uncaging and have developed a deterministic allosteric model of Ca2+ activation of
vesicle fusion, extending the model in [57]:
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where kon = 108 M−1 s−1; koff = 4000; l+ = 0.0002; f = 31.3; l+f 5 = 6000 = γ ;
b = 0.5. The value of the fusion rate is l+ = 0.0002. Potentiation in presence of
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phorbol ester was simulated by increasing fivefold the fusion rate l+. The new model
explains the spontaneous release and the smaller Ca2+ cooperativity in the release
process. The potentiation is more evident at lower Ca2+ concentrations. The model
differs from that in [57] mainly in the range of small Ca2+ concentration, in which
the continuity assumption might break down.

3.4 Pre-synaptic Depression

Experimental data attest that the vesicles of the active zone can be split in two virtu-
ally separated and equally populated pools. One pool consists of the so-called read-
ily releasable or fast vesicles, and the other one of so-called reluctantly releasable or
slow vesicles [45, 54, 68, 76]. The vesicles released during a single action potential
discharge belong to the fast pool and the amount of release corresponds to about 4%
of it [20].

When the synapse is depolarized to elicit maximal Ca2+ influx, all the fast and
slow vesicles of the active zones are released and the synapse active zone is com-
pletely depleted. This represents one of the proposed mechanisms for synaptic de-
pression, which is a reduction of the synaptic strength that builds up during sustained
neural activity. In the release process, most of the fast and slow vesicles are released
with the characteristic times of about 3 and 30 ms, respectively [45, 59]. It is also
known that the slow vesicles are replaced much more rapidly than the fast ones.
The precise mechanisms through which this form of release happens are, however,
still debated. For some cells, it is likely that the slow vesicles differ in their intrinsic
kinetics from the fast ones [64]. For the calyx of Held synapse, some deterministic
mechanisms of depression have been suggested. One of these assumes that the slow
vesicles are precursors of the fast ones and that they become releasable by moving
toward the fast pool [45].

Another model built upon [39] suggests that the time course of release observed
during the experiments of Ca2+ un-caging might be due to kinetic mechanisms in-
trinsic to the vesicle fusion machinery of fast and slow vesicles [70]. These mech-
anisms differ in the value of the coefficient l+, which is 2 × 10−4 s−1 for the fast
pool and 7 × 10−6 s−1 for the slow pool. The slow vesicles are re-integrated much
faster (order of hundreds milliseconds) than the fast vesicles (order of seconds). This
model describes fairly well most of the features of vesicles release induced by Ca2+
un-caging, but it did not account for the so-called sub-maximal release, that is the
increased number of fast vesicles released as the un-caging step of Ca2+ increases.
Such findings suggest other mechanisms and/or the need of different approaches in
the description of these events. In addition, sustained neural activity accelerates the
recruitment of the fast vesicles, via intra-cellular Ca2+ reaching a speed up to ten
times the normal one. A deterministic model for describing this behavior is in [31],
under the hypothesis that a global Ca2+ concentration drives the recruitment of vesi-
cles to the fast pool.
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3.5 Post-synaptic Receptor Desensitization

Synaptic depression can be due to the occurrence of vesicle depletion and/or to
post-synaptic receptor desensitization [25–27, 76]. Computational models help to
distinguish the relative contributions of these two mechanisms [73]. A model of
post-synaptic fast glutamatergic receptors is in [25], and it obeys the following state
equations:

C0 + T̄
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r1
u
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where the symbol T̄ represents the concentration of the neurotransmitter molecules,
which bind to the receptor-gated channels. T̄ is modeled as a pulse of 1 µM neu-
rotransmitters of duration 1 ms. Receptor-gated channels C0 are activated through
a process of two reversible T̄ binding steps: from C0 to C1, intermediate channel
state, and then to C2, the activated channels. There are then two possibilities. In
the first, the activated channels evolve to the states O1 and O2, in which the chan-
nel is open to the ion flux that transmits the signal. In the other case, the activated
channels evolve to the desensitized states D, and are not permeable to the ion flux;
also the fraction of channels that open during a synaptic response decreases. All
transitions are reversible. The model developed in [25] contains also a description
of the T̄ release mechanisms, uses a concentration of 100 µM for Ca2+, with some
hypotheses on releasable vesicle pool dynamics. The simulation results showed that
receptor desensitization contributed to synaptic depression. This model reproduces
some features of synaptic depression dynamics, e.g. vesicle depletion. Nevertheless,
the scale of description is indeed too high and considers the synapse as a whole, so
it not permits a study of the vesicle pool dynamics at level of single vesicles.

4 A Process-Calculus Stochastic Model

We describe a model which is stochastic and based on the Pi-calculus, following the
above mentioned interpretation of biological systems as computational ones. Sev-
eral process calculi have been equipped with a stochastic semantics, e.g. [8, 38, 49,
50], often based on the stochastic simulation algorithm and its variants, originally
proposed to determine one of the possible evolutions of a biochemical system ac-
cording to a given probability distribution. The dialect of the Pi-calculus adopted
here also has a stochastic semantics and suitable simulation and analysis tools, viz.
SPiM [48].
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Our approach benefits from conjugating an abstract and compositional algebraic
model with a formal stochastic semantics, accounting for the non-continuous, nor
discrete, nature of many described phenomena, as discussed in the previous sections.

Next, we report on stochastic models of the pre- and post-synaptic terminals,
obtained by building upon deterministic models, and we illustrate how the model
specification has been turned into an executable representation. First, we introduce
a core model of the pre-synaptic activity: from Ca2+ ions to released neurotrans-
mitters. The implementation of the model is also discussed. Next, we present an
experiment about pre-synaptic short-term plastic phenomena. This is based on in-
cremental enhancements of the core model, which modularly increase its descrip-
tive power till covering a quite articulate set of processes. Further on, we describe
our model of membrane activity in the post-synaptic terminal. In the present case,
a model of the complete synapse signal traversal can be compositionally obtained by
the separate models of the two terminals. On top of this, another experiment about
plastic events throughout the whole synapse has been carried out.

These experiments represent an initial validation of the adequacy of the approach
for the long term study of more detailed plastic mechanisms, which are at the basis
of memory and learning and are involved in several neural diseases.

4.1 Step- and Wave-Like Ca2+ Uncaging Pre-synaptic Model

Our work starts from the deterministic model of vesicle release in the pre-synaptic
terminal presented in [57]. Moving to a stochastic and discrete model, we calculated
stochastic rates according to the known relationship between stochastic and deter-
ministic rate constants [34]. This requires to estimating the volume within which
the reactions of interest occur. The particular morpho-functional organization of this
synapse has allowed us to model a subunit of the pre-synaptic element, consisting
of a cluster of about 10 active zones, each containing about 10 vesicles, in a volume
of 0.5 × 10−15 liter (see Sect. 2.2). With this volume estimate, both the stochastic
rates and the initial quantities of Ca2+ ions can be defined (e.g. 6000 Ca2+ ions
correspond to a molar concentrations [Ca2+] of 20 µM).

Our simulations have confirmed the results obtained with the deterministic model
and they agree with experimental findings, thus supporting the adequacy of our
stochastic model. In particular, we verified high sensitivity of vesicles to calcium
concentrations. In several other synapses, vesicle release requires a calcium con-
centration in the range of 100–300 µM [65], while in the calyx of Held [57], the
concentration can be much lower than 100 µM, as confirmed by our results, ac-
cording to which relatively low concentrations up to 20 µM are able to deplete the
releasable pool in a few milliseconds.

Figure 1 shows the simulation results for the step-like calcium un-caging. The left
side shows mainly the step-like time course of Ca2+; the middle part displays the
same picture in logarithmic scale so as to appreciate the intermediate states of cal-
cium binding and vesicle activation (Vstar) and release (T); the right part focuses
on activated vesicle (Vstar) and the total number of the transmitter released (T). It
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can be observed that the pool of vesicles is 80% depleted within 3 ms, in accordance
with the experimental findings [57].

High sensitivity of vesicle release has been observed in response to a uniform
elevation of [Ca2+] in the range 10 µM. Recently, the experimental work [4] has
addressed the issue whether very short [Ca2+] elevations are sufficient to induce
a release similar to that due to an action potential. A spatially uniform and very
rapidly decaying [Ca2+] transient was induced by Ca2+ un-caging in the presence of
added Ca2+ buffers. This short-lived elevation (wave-like) of calcium concentration
has been revealed to be able to trigger vesicle release. It has been straightforward to
introduce in our model a simple mechanism of calcium extrusion, adapted from [17]
by tuning the rate constants to fulfill our working hypotheses:

Ca2+
i + P

c1

CaP
c3−→ Ca2+

o
c2

where Ca2+
o is the extruded calcium and P is an abstraction of a pumping mech-

anism. The left side of Fig. 2 displays the simulated calcium wave lasting about
1 ms, with a half width 0.5 ms and a peak value of about 6,000 ions (corresponding
to a calcium concentration of 20 µM), conforming to the experimental requirements
in [4]. The right side of the same figure shows the release of one vesicle. Con-
sidering that a whole pre-synaptic element can be made of about 70 of simulated
clusters, it results that a single action potential, and accordingly a single calcium
wave, is able to release a significant amount of vesicles. This also fits with the ex-
perimental findings [4, 57, 58]. Notably, the Ca2+ time courses in both step and
wave like cases were obtained in a very simple way (Sect. 4.2) when compared to
the methods involving the solution of complex systems of differential equations, as
done in [57, 58].

4.2 Implementation of the Model

Excerpts from the model, viz. its SPiM implementation, are here discussed in order
to give a flavor of the process-based model adopted. As explained (bio-chemical)
interaction is modeled as process communication, here pairs of complementary in-
put/output actions over the same communication channel (?c/!c). In the present
model, communication reverts to synchronization, as no data is exchanged. Com-
munication channels can be (dynamically) created by the new command and have
associated a stochastic rate, e.g. several rates are defined and channel vca is created
with rate con5 = 1.5:

val con5 = 1.5
val b = 0.25
val coff5 = 47500.0 * b * b * b * b

new vca@con5:chan
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Then the specification of some interactions follows. A calcium ion (ca()) can in-
teract with a vesicle (v()) over channel vca (beyond being able to do other things).
After this communication, ca() disappears and v() becomes v_ca(), represent-
ing the binding of the two. This realizes a second order reaction.

First order reactions are modeled as interactions with a single dummy mole-
cule, i.e. a fictitious molecule introduced to allow synchronization. Being in a single
copy, it does not alter the stochastic dynamics since such a quantity is irrelevant.
For instance, any v_ca() can then either accept other calcium bindings or de-
grade back to an unbound vesicle by communicating through bvca with the single
copy of Dv_ca(). After such a reaction, v(), ca() and Dv_ca() itself are
restored.

ca() = do ?vca;() v() = !vca; v_ca()
or ?v2ca;() v_ca() = do !bvca; v()
... or !v2ca; v_2ca()
or ?cp;() Dv_ca() = ?bvca; ( ca() | Dv_ca() )

Some of the operators used are sequence (;), multiple alternative choice (do ?c
or ?d or ...), i.e. only one of the possible actions can be executed and the oth-
ers discharged, and process definition (p()= ...) and invocation (...; p()),
a mechanism that allows a behavior to be specified (definition) and dynamically
enabled by other processes (invocation). Processes can run in parallel (p()|q()).

The dynamics of a simulation consists of a trajectory, i.e. a set of transitions
from one state to the next one, determined from the actions enabled in a state and
the number of processes ready to perform them, according to SSA.

The duration of the simulated dynamics of the system (here 0.005 s) is set by an
initial command like:

directive sample 0.005

So far, the system has been described by specifying simple atomic behavior, basi-
cally corresponding to chemical reactions, and then by composing them together.
The parametric process w(cnt:int) allows us to suitably modulate the calcium
wave. After a stochastic delay, if its integer parameter cnt is positive it replicates
80 copies of itself, with the parameter decreased, in parallel with 80 ca(). Other-
wise, if cnt is not positive, it dies. This realizes a recursively defined exponential
growth, which can be controlled by the delay rate and the parameter in its rapidity
and quantity. The growth is turned into a wave by specifying the pumping mecha-
nism as described in the model. Accordingly, the interaction capability, i.e. action
?cp, has to be added to ca(). This is a modular composition that only requires
further to tune pump parameters to obtain the desired wave.

Finally, the initial state of the experiment can be populated specifying how many
molecules of each specie are present (here 1 wave, 1,000 pumping molecules, 100
vesicles and 1 copy of the needed dummy molecules).
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p() = !cp; ca_p()

w(cnt:int) = do delay@40000.0;
if 0 <= cnt then ( 80 of ca() | 80

of w(cnt - 1)) else ()
or !void; ()

run 1 of w(1) 1000 of p() 100 of v()
1 of (Dv_ca() | Dv_2ca()| ... )

4.3 Short Term Plasticity: Facilitation, Potentiation,
and Depression in the Pre-synaptic Terminal

Here, we recast some experiments regarding plasticity phenomena in the pre-
synaptic terminal, previously introduced in Sects. 3.2, 3.3, and 3.4 in the determin-
istic context. Beyond relying on a more adequate model, as discussed above, these
examples also illustrate the expressiveness of the linguistic abstraction adopted.

Paired Pulse Facilitation

We consider the hypothesis on residual Ca2+ which actually is less than 1 µM, i.e.
less than 300 Ca2+ ions for the volume we consider. For most synapses, the increase
of local [Ca2+] needed for release is between 100 and 300 µM. The residual Ca2+
is therefore not typically sufficient to induce facilitation.

Figure 3 shows two Ca2+ waves with varying time delays between them (12
and 2 ms). For the smaller delay, the amount of release caused by the second wave
increases notably. From the central column, a possible explanation emerges: just
before the second calcium wave develops, the amount of residual Ca2+ grows when
the delay decreases. Also, other parts of the release machinery seems to be influ-
enced by the residual Ca2+, even at low concentrations. This is the case, e.g. for the
occupancy of the pump P (central column) or for the intermediate steps of vesicle
binding.

Summing up, our simulations support the hypothesis that, in the calyx of Held,
paired pulse facilitation is likely due to the residual Ca2+ and to occupancy of Ca2+
buffers [20, 75].

Implementation

Once a wave generator has been defined, multiple instances of it can be activated
with different stochastic delays, e.g.

snd_w() = delay@0.125; w(1)
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It is worth noting that the actual delay after which the wave is generated cannot be
exactly determined, because it is stochastically based on a probability distribution.
Determining events at a specific time point is currently not supported by the simu-
lation tool. As a matter of fact, this would be beyond the dynamics ruled by SSA.
Also, the events we are considering rarely occur in nature at a time point that can be
exactly determined.

Synaptic Potentiation

We derived a stochastic model from the model proposed in [39] that describes the
synaptic potentiation of the spontaneous and evoked vesicle release induced by the
phorbol esters. In this case, the effect of the esters, which increase the apparent Ca2+
sensitivity of vesicle fusion, can be straightforwardly studied by varying the fusion
rate, which originally was l+ = 0.0002 and has been increased fivefold.

Results for a step-like Ca2+ un-caging of 1,200 ions are in Fig. 4. In accordance
with experimental findings [39], potentiation effects are more visible at smaller
Ca2+ values. Values for the fusion willingness parameter l+ are 0.0002 (left col-
umn) and 0.001 (middle column). A logarithmic scale has been here used to plot the
calcium un-caging. The right column shows a 20 trials for the different values of l+.
In the case of increased l+, the number of released vesicles increases, while at the
same time, the number of the activated vesicles decreases.

Implementation

In this case, only small changes to parameters have been needed, so as to reflect the
new hypotheses over vesicle behavior.

Synaptic Depression

In order to test competing hypotheses on the mechanisms of short-term synaptic
depression, we have defined in [7] a stochastic model addressing the spatial and
functional distribution of vesicles within the pre-synaptic terminal, their different ki-
netics, their different recruitment, and the speed-up role of intracellular Ca2+ for re-
cruitment in case of intense neural activity (up to ten times faster than normal [31]).
Importantly, the model exhibits dynamical equilibrium: after depletion, the initial
number of vesicle is replaced. Moreover, this makes it interesting to simulate longer
time scales, not limited to the “release interval” only. The implementation of these
features has been facilitated by the possibility of mixing different levels of abstrac-
tion in a quite compositional construction of the whole model.

As far as release dynamics is concerned, we considered a fast and a slow pool
of vesicles, as suggested in [70]. Each of the model components is inspired by the
model in [39] (Sect. 3.3), with suitable values of l+ distinguishing the two.
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For the calyx of Held, it has been shown that the maximum number of releasable
vesicles does not vary in time. Hence, we have fixed a maximum (and starting) num-
ber of vesicles and other species that can be present at the same time in the system.
This is supported by a spatial interpretation that we adopted as a working hypothe-
sis: hosting capability is constrained by the saturation of the space available to the
vesicle pools. Hence, we label specie names with numbers. Indeed, two possible
ways to obtain dynamic stability for vesicle trafficking are either limiting the max-
imum number of vesicles in each pool, or imposing some temporal dependence on
the stochastic constants.

This model is graphically summarized in Fig. 5 and formally specified as (to-
gether with the chosen vesicle dynamics):

V ∞
RP

k1

V 100
DSP

k2

k3

V 50
S ,

k4

Ca2+
i + C

k5

Ca2+
i C + V ∞

RP
k6−→ V 50

F + Ca2+
i + C.

k7

As a matter of fact, recruitment is a vesicle maturation process. The recruitment is
faster for the slow vesicles, while for the fast ones it may well go beyond the time in-
terval considered. The slow vesicles go back and forth between the releasable (V 50

S )
and docked (V 100

DSP) pool states. Docked vesicles are not yet releasable. They are re-
plenished from a reservoir pool of vesicles (V ∞

RP), which is refilled with mechanisms
on longer time scales, and hence not considered here. Here, the label ∞ represents
a significantly large pool of elements. The recruitment of fast vesicles may be ac-
celerated by the action of Ca2+ and the molecule calmoduline (C) [31, 59], which
form a complex (Ca2+ C) inducing vesicle maturation.

Figure 6 shows linear scale, log scale, and a selection of relevant simulation val-
ues, as usual. The first row illustrates the effects of a continuous depolarization,
mimicked by a step-like Ca2+ (6000) un-caging experiment. The release TF due to

Fig. 5 Schema of the
multi-pool vesicle refilling
and depletion
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the fast vesicles VF (synchronous) happens within the first 3 ms, that of TS due to the
slow VS (asynchronous) has a longer duration and the double slope of their cumu-
lative release (TF + TS ) is evident. Moreover, the variation in the space availability
for the different pools (SVF ,SVS ) is shown. The bifurcation of the two curves TF

and SVF is due to the contribution of the fast vesicles recruited during the activ-
ity: the former continues growing whereas the latter remains almost constant and
near its maximum value of 50. The slow pool (VS ) is emptied more slowly (see the
time course of SVS ) and the contribution to the release comes from the underlying
refilling process (compare the behavior of SVS and TS ).

The second row shows the effects of a plateau-like Ca2+ un-caging lasting about
17 ms. In a depolarization of assigned duration, it is possible to follow the depletion
and the refilling of vesicle pools: after a release the system comes back to the initial
conditions with time courses compatible to the experimental observations (actually,
the time scale in Fig. 6 has been accelerated for the sake of presentation, while in
reality the refilling lasts for hundreds of ms).

The introduced concept of available space represents a real and effective con-
straint, often overlooked in most of the models of synaptic function. Moreover, we
have modeled fast vesicles recruitment through local Ca2+ by a few abstract intra-
cellular process; other authors [31] instead needed to invoke global Ca2+ concen-
trations.

Implementation

The extended model above encompasses dynamics that go beyond the modeling
of mere bio-chemical events. Issues with a spatial and temporal flavor have been
addressed, yet in a simple manner.

Bounding the number of the elements of certain species can be thought as a
spatial or structural property, like a saturation phenomenon of the available area.
Labeled species, e.g. V 50

S , have been implemented by assuming a set of active el-
ements, containing as many elements as the number of elements allowed, e.g. 50
for VS . The generation of a constrained element, e.g. V 100

DSP or V 50
S , happens through

interaction with one of the active elements of the relative set, if any available exists,
and binds it, making it unavailable for further interactions.

v_rp() = vd_docked() =
!d_ch1; vd_docked() do !d_ch2; ( v_rp() |

vd_docking_space() )
or !d_ch3; ( sv() |

vd_docking_space() )
vd_docking_space() =

do ?d_ch1; () D_vd_undocking() = ?d_ch2;
D_vd_undocking()

or ?d_ch4; ()
sv() =

vs_docking_space() = do !d_ch4; ( vd_docked() |
vs_docking_space() )

?d_ch3; () ...
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A vesicle of the reservoir pool r_vp() can become docked vd_docked()
only by interacting with vd_docking_space(), the relative “spatial” element,
through channel d_ch1. The spatial element is then lost and it is restored when
the vesicle is released. Hence, no more specie elements can be simultaneously
present than those allowed by the constraint. A spatial element is also needed for
a slow vesicle sv() to go back to the docked position via d_ch4, restoring one
vs_docking_space(), while a docked vesicle can freely go back to the un-
constrained v_rp() (d_ch2), also restoring one docking slot; analogously for a
docking vesicle maturing to a slow one (d_ch3).

The Ca2+ mediated facilitation determines temporal properties of the recruiting
of fast vesicles. In the implementation of this process, first ca() activates clmd()
into ca_clmd(), then either the reaction is inverted or a fast vesicle is maturated
via a constrained mechanism (d_ch6). Both ca() and clmd() are released:

clmd() = ca_clmd() =
!d_ch5;ca_clmd() do !d_ch6; ( v() | ca() | clmd() )

or !d_ch7; ( ca() | clmd() )
vf_docking_space() =

?d_ch6; ()

It is important to note that rather than a precise bio-chemical interaction of ca(),
we are here describing an abstract, perhaps less understood, facilitator role of it,
which leaves ca() and clmd() unaltered. This kind of abstract processes may be
useful for summarizing a set of bio-chemical reactions, of which only the result-
ing macro behavior is known. These processes can be easily modeled within the
language, but require a proper tuning of the stochastic parameters for matching the
expected behavior, in this case the known time scale of vesicle recruitment. The
varying amount of ca() determines the strength of the reaction, according to SSA,
implementing a sort of variable stochastic rates.

Note also that in the second step, i.e. the maturation of a fast vesicle via d_ch6,
no vesicle from the reservoir pool is involved, since both ca_clmd and the con-
straining mechanism already participate to the binary interaction. This simplifica-
tion is acceptable, since vesicles are continuously made available by the pool and
the tuning of parameters recovers again the time course of this abstract process. In
general, whenever one might want to model abstract processes involving more than
two components, binary interaction alone can result in a limitation.

4.4 Post-synaptic Membrane Receptor Activity

We have modeled the membrane activity in the post-synaptic terminal, related to
the pre-synaptic mechanisms previously described. This has been done in [6] by de-
vising a stochastic model for the post-synaptic terminal in isolation from the model
in [16, 25].

The equations are those in Sect. 3.5 read stochastically. We recall that T̄ stands
for each single neurotransmitter molecule that binds to the receptor-gated channels,
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while in the pre-synaptic model T has been used to represent the whole content
released by a single vesicle.

The synaptic response is determined, on the post-synaptic side, by the time
course of the rising phase of the synaptic ion current. This is a function of the open-
ing rate of the receptor-gated channels and of the neurotransmitter concentration.
We monitor the numbers of open channels O1, O2, and de-sensitized channels D.

We have determined the number of the T̄ , which are stochastically assumed to
be released in the synaptic cleft, in accordance with the amount stochastically pro-
duced by a single calcium wave in our experiments on the pre-synaptic terminal
(about 3 to 6 vesicles). Each “pre-synaptic” T corresponds to a wave of neuro-
transmitters T̄ . The definition of the wave duration and amplitude required some
considerations. First, to determine the “activation” rate of the receptor rb , we not
only need to estimate the volume Vol occupied by the neurotransmitter in the cleft,
but also the effective interaction volume I Vol where the interactions happen against
the post-synaptic surface. We have computed Vol by considering how many neuro-
transmitters are contained into a single vesicle (6000–8000) and by considering the
value of their concentration when they have spread into the synaptic cleft: 10−3 M.
We obtained Vol = 10−17 liter. Following [55], we estimated the effective IVol as
Vol/160, obtaining IVol = 6 × 10−20 liter, which was needed for converting from
the deterministic to the stochastic rate value. Also, IVol permits us to estimate the
number of neurotransmitters involved: about 50 T̄ , as peak value.

Figure 7 shows a sample of the simulations performed: the time course of the
neurotransmitter T̄ , and the channel states O1,O2,D, together with other interme-
diate channel states; the logarithmic scale of them; and a focus on the time course
of O1,O2,D. Note the very short duration of the T̄ waves and the relatively slower
kinetics of the post-synaptic activated channels. This corresponds to the prolonged
time course of the synaptic currents observed experimentally [12, 16]. Moreover,
observe that for each T̄ wave, i.e. for each vesicle released according to our assump-
tions, the number of open channels is of the order of tens, fitting with experimental
observations [75]. Finally, the buildup of the desensitization is also evident, again
in accordance with experimental data.

4.5 A Whole Synapse Model

A comprehensive model of the whole synapse has been devised by building upon
the independently developed models of the pre- and post-synaptic processes, which
have been considered in isolation in Sects. 4.1 and 4.4. Details about the overall
model can be found in [6]. What is worth underlining here is that the construction
is done in a strongly compositional manner. This has been facilitated by the “spa-
tial” separation of the two component models and by the presence of a well-defined
“point of contact”, the neurotransmitters, which is quite a natural interface between
the two models.

Indeed, the calcium pulse induces the release of vesicles, represented abstractly
in the pre-synaptic model as the release of a single neurotransmitter T by each
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vesicle. In the post-synaptic model, each T has been interpreted as a wave of neuro-
transmitters, with amplitude and duration determined as above, as sketched by the
following equations, where ≡ puts into relations the release of a vesicle T and the
generation of a neurotransmitter wave T̄ .

. . .
γ−→ T , T ≡ T̄ , C0 + T̄

rb

C1 . . . .

r1
u

Often, in the study of synaptic transmission many of the elements we considered
are often neglected, e.g. typically the stochasticity of the vesicle release and the real
amount of neurotransmitter sensed by the post-synaptic receptors. It is also worth
noting that the calcium wave now induces stochastically the T̄ waves we supplied
by hand when describing the membrane receptor dynamic in isolation.

Implementation

The needed interface can be simply implemented by re-defining vesicle behavior as

vstar() = .... ; tt(1)

and defining tt( n:int ) as a suitable t() wave generator, as usual. Then t()
has the same definition given to each neurotransmitter in the post-synaptic model.

4.6 An Experiment on the Whole Synapse

Figure 8 shows some results of a virtual experiment addressing plasticity events in
the whole synapse. Indeed, the interaction between pre- and post-synaptic mecha-
nisms generates short-term plasticity events in a way not yet fully understood [73].
Besides describing some events of short-term plasticity, our model helps distin-
guishing the pre-synaptic and post-synaptic influence in them. It is know that in
the process of short-term synaptic depression, vesicle depletion and post-synaptic
receptor desensitization play distinct roles. It has also been shown that desensiti-
zation has a role in the synaptic depression only when the frequency of the action
potentials is above 10 Hz [73].

The displayed results are on a train of calcium waves at a frequency of about
100 Hz, which mimics action potentials like neural signals. The left part of the fig-
ure displays calcium waves, and other values like pump occupancy and channel
intermediate states, shown in the central part in logarithmic scale. This makes clear
the dynamics of the many processes involved, e.g. the neurotransmitter dynamics
and the number of open channels. Remarkably, in the right part, a buildup of de-
sensitization is visible starting from the third wave (see the increase of value D in
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between the third and fourth wave). Note, also, that the same amount of neurotrans-
mitter causes different effects as far as the number of opened channels is concerned
(compare the ratio between O1 and T̄ in the first two waves with the same ratio
in the sixth and the seventh wave). One feature of our approach is the possibility
of quantifying the number of vesicles stochastically associated to each action po-
tential (recall that each vesicle corresponds to a T̄ wave with a peak of about 50
neurotransmitters and it is possible to see superpositions of some of them). Another
important aspect is that at the same time one can measure the number of receptor
channels open or desensitized. This means that it is possible to distinguish effects
due to vesicle depletion, when it builds up, from the effects due to receptor channels.

5 Concluding Remarks

In this paper, we have surveyed a selection of some recent formal models developed
for elucidating transmission and plasticity processes at the calyx of Held synapse.
Moreover, we have provided a brief overview of the biological and formal back-
grounds of the topic.

We have focused first on deterministic models in Sect. 3 describing the Ca2+
triggered release process and related plastic events, for which elements of vesicles
trafficking and post-synaptic membrane have been introduced. All these models fit
the experimental findings fairly well, for averaged variable quantities concerning
the synapse as a whole. Nevertheless, these approaches have some methodological
limitations, due to the break down of the continuous hypothesis, when the processes
investigated need a focus on small volumes and concentrations, such as plasticity.
This is particularly clear for this synapse in which, for example, small values of
Ca2+ concentrations play a relevant role. Indeed, absolutely small quantities at the
volume of interaction, which are much smaller than in the majority of the other
synapses, are able to affect the release processes, as it happens in the facilitation
processes. Moreover, these approaches present some computational limitations be-
cause they rely on complex sets of ODEs for describing relatively simple Ca2+ time
courses.

We have then described in Sect. 4 models of our own [5–7], consisting of sto-
chastic representations and extensions of the models presented in Sect. 3. By incre-
mentally building upon the core models of the synaptic terminals, we have covered
aspects as step and wave-like Ca2+ un-caging, facilitation due to repeated activ-
ity, spontaneous release, potentiation due to activation parameters strengthening.
We have also presented a quite precise, abstract, and new representation of vesicle
depletion and refilling under prolonged depolarization, which is able to exhibit dy-
namic stability. By the compositional property of our approach, we have connected
the initial models of the pre- and post-synaptic terminals in a model of signal traver-
sal of the whole synapse, on which we have carried out experiments about plasticity
of the synapse. The linguistic abstraction chosen has allowed us to model processes
at different levels of abstraction in a uniform way, such as biochemical dynamics
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and more abstract mechanisms, used to represent processes whose full details are
still not understood.

The main ingredients of our approach are: a stochastic model, which is more suit-
able than other approaches traditionally adopted in the context addressed; a process
calculus as a representation language, which has demonstrated good properties in
terms of expressiveness, modularity, compositionality, and adequate levels of ab-
straction; a computational tool, joining together the above two ingredients, to per-
form efficient and precise in silico simulations.

From the biological viewpoint, the surveyed models have been assembled out of
experimental data, by fitting of parameters and hypotheses on non-fully understood
mechanisms. They provide a coherent representation of the reality they represent.
Examples from the stochastic approach are the sensitivity to Ca2+ in the release
process and in the facilitation phenomena, and the adequacy of the spatial and ki-
netic hypotheses on vesicle dynamics (e.g. time courses of depletion and refilling
under prolonged de-polarizations, see [45]). The surveyed models have to be con-
sidered as virtual environments where, in perspective, one may precisely verify and
build hypotheses and explanations by in silico experiments. The more complete the
model, the more informative the virtual experiments.

The presented multi-disciplinary study has also given us some insights from the
computer science viewpoint. The adequacy of process calculi for modeling life sys-
tems has been further tested. These experimentations also suggest possible future
development, such as a possible role for non-binary synchronization in supporting
processes beyond the mere biochemical dynamics; a finer control of event time; and
the embedding of quantities, like simulation time or the number of elements of a
given specie, as data in the calculus. Also, of interest, is the possibility of using
variable stochastic rates for linking, e.g., reaction speed to temperature. Many of
these extensions rise the issue of their integration within the stochastic semantics as
determined by SSA. For instance, a notion of locality could be used to overcome the
assumption of spatial uniformity (well-stirred space). Indeed, for synaptic transmis-
sion and plasticity it is recognized that the introduction of a description of spatial
structures could improve the quality of experiments [3, 22, 30, 74, 76], e.g. for han-
dling diffusion processes. In this sense, “location-aware” calculi, like the Brane cal-
culi [9] or spatial Pi-calculus [41], seem of interest. Finally, compositionality also
needs further investigations: the stochastic interplay of different processes makes
compositionality hard in the general case, since a local behavior in a component can
perturb the overall system to which the component is added. Compositionality is in-
stead easier to achieve when components are quite separate, for instance when they
refer to disjoint volumes or have a clear and limited interface through which their
molecules can interact, as it happens in the composition of the pre- and post-synaptic
models [6].

Acknowledgements This research has been partially supported by MIUR PRIN Bisca, and
by EU-FETPI Global Computing Project IST-2005-16004 Sensoria (Software Engineering for
Service-Oriented Overlay Computers).



364 A. Bracciali et al.

References

1. Arbib MA (ed) (1995) The handbook of brain theory and neural networks. MIT Press, Cam-
bridge

2. Ascoli GA (ed) (2002) Computational neuroanatomy. Humana, Totowa
3. Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements.

Nat Rev 3:497–516
4. Bollmann JH, Sakmann B (2005) Control of synaptic strength and timing by the release-site

Ca2+ signal. Nat Neurosci 8:426–434
5. Bracciali A, Brunelli M, Cataldo E, Degano P (2007) Expressive models for synaptic plas-

ticity. In: Calder M, Gilmore P (eds) Computational methods in system biology (CMSB’07).
LNBI, Springer, Edinburgh, pp 152–167

6. Bracciali A, Brunelli M, Cataldo E, Degano P (2008) Stochastic models for the in silico sim-
ulation of synaptic processes. BMC Bioinform 9(4):S7

7. Bracciali A, Brunelli M, Cataldo E, Degano P (2008) Synapses as stochastic concurrent sys-
tems. Theor Comput Sci 408(1):66–82

8. Calder M, Gilmore S, Hillston J (2006) Modelling the influence of RKIP on the ERK sig-
nalling pathway using the stochastic process algebra pepa. Trans Comput Syst Biol VII
4230:1–23

9. Cardelli L (2004) Brane calculi-interactions of biological membranes. In: Vincent V,
Schachter V (eds) Proceedings of computational methods in systems biology. LNCS, vol 3082.
Springer, Paris, pp 257–280

10. Cardelli L (2008) On process rate semantics. Theor Comput Sci 391(3):190–215
11. Cassman M, Arkin A, Doyle F, Katagiri F, Lauffenburger D, Stokes C (2007) System

biology—international research and development. Springer, The Netherlands
12. Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic

function. Trends Neurosci 19:163–171
13. Cooper LN, Intrator N, Blais BS, Shouval HZ (2004) Theory of cortical platicity. World Sci-

entific, New Jersey
14. Dayan P, Abbot LF (2001) Theoretical neuroscience—computational and mathematical mod-

eling of neural systems. MIT Press, Cambridge
15. De Schutter E (2000) Computational neuroscience: more math is needed to understand the

human brain. In: Engquist B, Schmid W (eds) Mathematics unlimited—2001 and beyond, 1st
edn. Springer, Berlin, pp 381–391

16. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In:
Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, pp 1–25

17. Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membrane,
synaptic transmission and neuromodulation using a common kinetic formulation. J Comput
Neurosci 1:195–231

18. Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems. SIAM,
Philadelphia

19. Fall CP, Marland ES, Wagner JM, Tyson JJ (eds) (2005) Computational cell biology. Springer,
New York

20. Felmy F, Neher E, Schneggenburger R (2003) Probing the intracellular calcium sensitivity of
transmitter release during synaptic facilitation. Neuron 37:801–811

21. Gardiner CW (2001) Handbook of stochastic methods—for physics, chemistry and the natural
science. Springer, Berlin

22. Ghijsen WEJM, Leenders AGM (2005) Differential signaling in presynaptic neurotransmitter
release. Cell Mol Life Sci 62:937–954

23. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem
81:2340–2361

24. Gillespie DT, Petzold LR (2006) Numerical simulation for biochemical kinetics. In: Szal-
lasi Z, Stelling J, Perival V (eds) System modeling in cellular biology, 1st edn. MIT Press,
Cambridge, pp 331–354



Formal Models of the Calyx of Held 365

25. Graham BP, Wong AYC, Forsythe ID (2001) A computational model of synaptic transmission
at the calyx of Held. Neurocomputing 38(40):37–42

26. Graham BP, Wong AYC, Forsythe ID (2004) A multi-component model of depression at the
calyx of Held. Neurocomputing 58(60):449–554

27. Hennig MH, Postlethwaite M, Forsythe ID, Graham BP (2007) A biophysical model of short-
term plasticity at the calyx of Held. Neurocomputing 70:1626–1629

28. Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. West-
view, Santa Fe

29. Hillston J (1996) A compositional approach to performance modeling. Cambridge University
Press, Cambridge

30. Holmes WR (2005) Calcium signaling in dendritic spines. In: Reeke GN, Poznanski RR, Lind-
say KA, Rosenberg JR, Sporns O (eds) Modeling in the neuroscience—from biological sys-
tems to neuromimetic robotics, 2nd edn. CRC Press, New York, pp 25–60

31. Hosoi N, Sakaba T, Neher E (2007) Quantitative analysis of calcium-dependent vesicle re-
cruitment and its functional role at the calyx of Held synapse. J Neurosci 27:14286–14298

32. Izhikevich EM (2006) Dynamical system in neuroscience: the geometry of excitability and
bursting. MIT Press, Cambridge

33. Van Kampen NG (1992) Stochastic processes in physics and in chemistry. Elsevier, Amster-
dam

34. Kierzek AM (2002) Stocks: stochastic kinetic simulations of biochemical system with gille-
spie algorithm. Bioinformatics 18:470–481

35. Kitano H (2002) Systems biology: a brief overview. Theor Comput Sci 295(5560):1662–1664
36. Koch C (1999) Biophysics of computation—information processing in single neuron. Oxford

University Press, New York
37. Koch C, Segev I (eds) (1998) Methods in neuronal modeling. MIT Press, Cambridge
38. Lecca P, Priami C, Quaglia P, Rossi B, Laudanna C, Costantin G (2004) A stochastic process

algebra approach to simulation of autoreactive lymphocyte recruitment. SIMULATION: Trans
Soc Model Simul Int 80(4):273–288

39. Lou X, Scheuss V, Schneggenburger R (2005) Allosteric modulation of the presynaptic Ca2+
sensor for vesicle fusion. Nature 435:497–501

40. Lytton WW (2002) From computer to brain—foundations of computational neuroscience.
Springer, New York

41. Mathias J, Ewald R, Uhrmacher AM (2008) A spatial extension to the π calculus. Electron
Notes Theor Comput Sci 194(3):133–148

42. Milner R (1999) Communicating and mobile systems: the π -calculus. Cambridge University
Press, Cambridge

43. Mitra PP, Bokil H (2008) Observed brain dynamics. Oxford University Press, Oxford
44. Nagasaki M, Onami S, Miyano S, Kitano H (1999) Bio-calculus: its concept and molecular

interaction. Genome Inform 10:133–143
45. Neher E (2006) A comparison between exocytic control mechanisms in adrenal chromaffin

cells and a glutamatergic synapse. Eur J Physiol 453:261–268
46. Neher E (2007) Short-term plasticity turns plastic. Focus on synaptic transmission at the calyx

of Held under in vivo-like activity levels. J Neurophysiol 98:577–578
47. Nicholls JG, Martin AR, Wallace BG, Fuchs PA (2001) From neuron to brain. Sinauer Asso-

ciates, Sunderland
48. Phillips A, Cardelli L (2007) Efficient, correct simulation of biological processes in the sto-

chastic pi-calculus. In: Calder M, Gilmore S (eds) Proceedings of computational methods in
systems biology. LNCS, vol 4695. Springer, Edinburgh, pp 184–199

49. Priami C (1995) Stochastic π -calculus. Comput J 36(6):578–589
50. Priami C, Regev A, Shapiro E, Silvermann W (2004) Application of a stochastic name-

passing calculus to representation and simulation of molecular processes. Theor Comput Sci
325(1):141–167

51. Regev A, Panina E, Silverman W, Cardelli L, Shapiro E (2004) Bioambients: an abstraction
for biological compartements. Theor Comput Sci 325(1):141–167



366 A. Bracciali et al.

52. Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419:343
53. Rieke F, Warland D, von Steveninck RR, Bialek W (1997) Spikes—exploring the neural codes.

MIT Press, Cambridge
54. Sakaba T, Stein A, Jahn R, Neher E (2005) Distinct kinetic changes in neurotransmitter release

after snare protein cleavage. Science 309:491–494
55. Savtchenko LP, Rusakov DA (2007) The optimal height of the synaptic cleft. Proc Natl Acad

Sci 104:1823–1828
56. Schneggenburger R, Forsythe ID (2006) The calxy of Held. Cell Tissue Res 326:311–337
57. Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release

rates at a fast central synapse. Nature 46:889–893
58. Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr

Opin Neurobiol 15:266–274
59. Schneggenburger R, Sakaba T, Neher E (2002) Vescicle pools and short-term synaptic depres-

sion: lessons from a large synapse. Trends Neurosci 25:206–212
60. De Schutter E (ed) (2001) Computational neuroscience—realistic modeling for experimental-

ist. CRC Press, Boca Raton
61. Segel LA (1987) Modeling dynamic phenomena in molecular and cellular biology. Cambridge

University Press, Cambridge
62. Smith GD (2005) Modeling the stochastic gating of ion channels. In: Fall CP, Marland ES,

Wagner JM, Tyson JJ (eds) Computational cell biology, 2nd edn. Springer, New York, pp 285–
319

63. Smolen PD, Baxter DA, Byrne JH (2004) Mathematical modeling and analysis of intracel-
lular signaling pathways. In: Byrne JH, Roberts JL (eds) From molecules to networks—an
introduction to cellular and molecular neuroscience. Elsevier/Academic Press, Amsterdam,
pp 391–429

64. Sorensen JB (2004) Formation, stabilization and fusion of the readily releasable pool of se-
cretory vescicles. Eur J Neurosci 448:347–362

65. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547
66. Ullah M, Wolkenhauer O (2007) Family tree of Markov models in Systems Biology. IET Syst

Biol 1:247–254
67. Voit EO (2000) Computational analysis of biochemical systems—a practical guide for bio-

chemists and molecular biologists. Cambridge University Press, Cambridge
68. Weis S, Schneggenburger R, Neher E (1999) Properties of a model of Ca2+-dependent vesicle

pool dynamics and short term synaptic depression. Biophys J 77:2418–2429
69. Wilkinson DJ (2006) Stochastic modeling for System Biology. Chapman and Hall/CRC Press,

London
70. Wolfel M, Lou X, Schneggenburger R (2007) A mechanism intrinsic to the vesicle fusion

machinery determines fast and slow transmitter release at a large cns synapse. J Neurosci
27:3198–3210

71. Wolkenhauer O (2009) System Biology—dynamic pathway modeling (to appear)
72. Wolkenhauer O, Ullah M, Kolch W, Cho K-H (2004) Modeling and simulation of intracellular

dynamics: choosing an appropriate framework. IEEE Trans Nanobiosci 3:200–207
73. Wong AYC, Graham BP, Billups B, Forsythe ID (2003) Distinguishing between presynaptic

and postsynaptic mechanisms of short-term depression during action potentials trains. J Neu-
rosci 23:4868–4877

74. Xu-Friedman MA, Regehr WG (2004) Structural contribution to short-term synaptic plasticity.
Physiol Rev 84:69–85

75. Zucker RS, Kullmann DM, Schwartz TL (2004) Release of neurotransmitters. In: Byrne JH,
Roberts JL (eds) From molecules to networks—an introduction to cellular and molecular neu-
roscience. Elsevier/Academic Press, San Diego, pp 197–244

76. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405



Understanding Network Behavior by Structured
Representations of Transition Invariants

A Petri Net Perspective on Systems and Synthetic
Biology

Monika Heiner

Abstract Petri nets offer a bipartite and concurrent paradigm, and consequently
represent a natural choice for modeling and analyzing biochemical networks. We
introduce a Petri net structuring technique contributing to a better understanding
of the network behavior and requiring static analysis only. We determine a clas-
sification of the transitions into abstract dependent transition sets, which induce
connected subnets overlapping in interface places only. This classification allows
a structured representation of the transition invariants by network coarsening. The
whole approach is algorithmically defined, and thus does not involve human inter-
action. This structuring technique is especially helpful for analyzing biochemically
interpreted Petri nets, where it supports model validation of biochemical reaction
systems reflecting current comprehension and assumptions of what has been de-
signed by natural evolution.

1 Motivation

Systems and synthetic biology are concerned with understanding biochemical
processes (pathways) in biological systems ranging in size from a single pathway to
a whole organism, and varying in the chosen abstraction level from gene regulatory
networks via signal transduction networks to metabolic networks.

Independently of size and abstraction level, all pathways and, therefore, their
models, too, exhibit inherently rather complex network structures. These structures
reflect the causal interplay of the basic actions and employ all the patterns well
known in computer engineering, such as sequence, branching, repetition, and con-
currency. However, opposite to technical networks, biochemical networks tend to
be very dense and apparently unstructured making the understandability of the full
network of interactions difficult and, therefore, error-prone.
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Getting a survey on the current state of knowledge about a particular pathway
requires a lot of reading and search through several data bases, including the cre-
ative interpretation of various graphical representations. These pieces of separate
understanding have to be assembled to get a comprehensive as well as consistent
knowledge representation. For this purpose, a readable and executable language
with a formal, and hence unambiguous semantics would obviously be of great help
as a common intermediate representation language. Formal models open the door to
mathematically founded analyses. The transformation from an informal to a formal
model involves the resolution of any ambiguities, which must not necessarily hap-
pen in the right way. Therefore, the next step in a sound model-based technology
should be devoted to model validation.

Model validation aims basically at increasing our confidence in the constructed
model. There is no doubt that this should be a prerequisite before raising more so-
phisticated questions, where the answers are supposed to be found by help of the
model and where we are usually ready to trust the answers we get. So, before think-
ing about model-based behavior prediction, we are concerned with model valida-
tion.

For model validation, we introduce a qualitative model as a supplementary in-
termediate step, at least from the viewpoint of the biochemist accustomed to con-
tinuous modeling only. One of the benefits of using the qualitative approach is that
systems can be modeled and analyzed without any quantitative parameters.

This model-driven perspective is equally helpful in the setting of systems biology
as well as synthetic biology. In systems biology, models help us in formalizing our
understanding of what has been created by natural evolution. So first of all, models
serve as an unambiguous representation of the acquired knowledge and help to de-
sign new wetlab experiments to sharpen our comprehension. In synthetic biology,
models help us to make the engineering of biology easier and more reliable. Mod-
els serve as blueprint for novel synthetic biological systems. Their employment is
highly recommended to guide the design and construction in order to ensure that the
behavior of the synthetic biological systems is reliable and robust under a variety of
conditions.

Computer science has generated quite a number of modeling formalisms, which
are used in the scenario sketched so far. In this paper, we apply the Petri net formal-
ism. Biochemical reaction systems and Petri nets share two distinctive characteris-
tics. Both are inherently bipartite, and both are inherently concurrent. Thus, Petri
nets seem to be a natural choice for modeling biochemical networks. Petri nets are
known to combine an intuitive and executable modeling style with mathematically
founded analysis techniques, comprising qualitative as well as quantitative ones,
complemented by reliable tool support.

This paper is based on a typical static analysis technique, the invariants. Place
and transition invariants are a popular validation technique for technical as well as
biochemical networks. One approach of acquiring a deeper understanding of the net-
work behavior consists in understanding all its basic executions, which correspond
to the minimal transition invariants. We go one step further by guiding the hierar-
chical structuring (coarsening) of a given network to support its comprehension. We
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determine a classification of the transitions into abstract dependent transition sets,
which induce connected subnets overlapping in interface places only. This classi-
fication allows a structured representation of the transition invariants by network
coarsening.

The whole approach is algorithmically defined, and thus does not involve hu-
man interaction. This structuring technique is especially helpful for analyzing bio-
chemically interpreted Petri nets, where it supports model validation of biochemical
reaction systems reflecting current comprehension and assumptions.

This paper is organized as follows. In the next section, we recapitulate the rele-
vant Petri net notions, before we motivate a biochemical interpretation of Petri nets.
Thereafter, we introduce a new structuring method, sketch the computation of its
two main features, and demonstrate the gained structuring effect by three smaller
cases studies, which are also provided on our web pages. Finally, we refer to related
work, before concluding with a short summary of the essential aspects.

2 Preliminaries

To be self-contained, we give the formal definitions of the Petri net notions relevant
for this paper. As usual, we denote the set of non-negative integers including zero
by N0, and the set of integers by Z. |S| denotes the number of elements in a set S.

To allow formal reasoning, we are going to represent biochemical networks
by Petri nets, which enjoy formal semantics amenable to mathematically sound
analysis techniques. The first two definitions introduce the standard notion of
place/transition Petri nets, which is the basic class in the ample family of Petri net
models.

Definition 1 (Petri Net, Syntax) A Petri net is a quadruple N = (P,T ,f,m0),
where

– P and T are finite sets with P ∪ T �= ∅, P ∩ T = ∅,
– f : ((P × T ) ∪ (T × P)) → N0,
– m0 : P → N0.

Thus, Petri nets (or nets for short) are weighted, directed, bipartite graphs. The
elements of the set P are called places, graphically represented by circles, while the
elements of the set T are called transitions, represented by rectangles. The function
f defines the set of directed arcs, weighted by non-negative integers. The (pseudo)
arc weight 0 stands for the absence of an arc. The arc weight 1 is the default value
and is usually not given explicitly. A place carries an arbitrary number of tokens,
represented as black dots or a natural number. The number zero is the default value
and usually not given explicitly. m(p) yields the number of tokens on place p in the
marking m, and m0 specifies the initial marking.

We introduce the following notions and notations for a node x ∈ P ∪ T .

– •x := {y ∈ P ∪ T | f (y, x) �= 0} is the preset of x.
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– x• := {y ∈ P ∪ T | f (x, y) �= 0} is the postset of x.
– x is called input node of the net if •x = ∅.
– x is called output node of the net if x• = ∅.
– x is called boundary node of the net if it is either input or output node.

Additionally, we extend the first two notions to a set of nodes X ⊆ P ∪ T and
define the set of all pre-nodes •X := ⋃

x∈X
•x, and the set of all post-nodes X• :=⋃

x∈X x•.
Up to now, we have introduced the static aspects of a Petri net only. The behav-

ior of a net is defined by the firing rule, which basically consists of two parts: the
precondition and the firing itself.

Definition 2 (Firing Rule) Let N = (P,T ,f,m0) be a Petri net.

– A transition t is enabled in a marking m, written as m[t〉, if
∀p ∈• t : m(p) ≥ f (p, t), else disabled.

– A transition t , which is enabled in m, may fire.
– When t in m fires, a new marking m′ is reached, written as m[t〉m′, with

∀p ∈ P : m′(p) = m(p) − f (p, t) + f (t,p).

– The firing happens atomically and does not consume any time.

According to this may firing rule, a transition is never forced to fire. Figuratively,
the firing of a transition moves tokens from its pre-places to its post-places, while
possibly changing the number of tokens; compare Fig. 1. Generally, the firing of a
transition changes the formerly current marking to a new reachable one, where some
transitions are not enabled anymore while others get enabled. The repeated firing of
transitions establishes the behavior of the net. The whole net behavior consists of all
possible partially ordered firing sequences (partial order semantics) or all possible
totally ordered firing sequences (interleaving semantics), respectively.

Every marking m is defined by the given token situation in all places, i.e. m ∈
N

|P |
0 . All markings, which can be reached from a given marking m by any firing

sequence of arbitrary length, constitute the set of reachable markings [m〉. The set
of markings [m0〉 reachable from the initial marking is said to be the state space of a
given system. However, in this paper, we confine ourselves deliberately to analysis
techniques, which do not require the generation of the state space. So, the presented
approach works also for nets with infinite state spaces, i.e. for unbounded Petri nets.

To open the door to analysis techniques based on linear algebra (or better: dis-
crete computational geometry), we represent the net structure by a matrix, called
incidence matrix in the Petri net community and stoichiometric matrix in systems
biology. We briefly recall the essential technical terms.

Definition 3 (P-Invariants, T-Invariants) Let N = (P,T ,f,m0) be a Petri net.

– The incidence matrix of N is a matrix C : P ×T → Z, indexed by P and T , such
that C(p, t) = f (t,p) − f (p, t).

– A place vector (transition vector) is a vector x : P → Z, indexed by P (y : T →
Z, indexed by T ).
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– A place vector (transition vector) is called a P-invariant (T-invariant) if it is a non-
trivial non-negative integer solution of the homogeneous linear equation system
x · C = 0 (C · y = 0).

– The set of nodes corresponding to an invariant’s non-zero entries are called the
support of this invariant x, written as supp(x).

– An invariant x is called minimal if � ∃ invariant z : supp(z) ⊂ supp(x), i.e. its sup-
port does not contain the support of any other invariant z, and the greatest com-
mon divisor of all non-zero entries of x is 1.

– A net is covered by P-invariants, shortly CPI (covered by T-invariants, shortly
CTI) if every place (transition) belongs to a P-invariant (T-invariant).

Invariants are vectors over natural numbers, which can be read as specifications
of multisets. Contrary, supports are sets, which can technically be specified as vec-
tors over Booleans, which allows the access to the ith entry by indexing.

The set X of all minimal P-invariants (T-invariants) xi of a given net is unique
and represents a generating system for all P-invariants (T-invariants). All invariants
x can be computed as non-negative linear combinations: n · x = ∑

(ai · xi), with
n,ai ∈ N0, i.e. the allowed operations are addition, multiplication by a natural num-
ber, and division by a common divisor.

3 Biochemically Interpreted Petri Nets

The idea to use Petri nets for the representation of biochemical networks is rather
intuitive and has been mentioned by Carl Adam Petri himself in one of his internal
research reports on interpretation of net theory in the seventies. It has also been
used as the very first introductory example in one of the early survey papers [28].
We follow this approach; see Fig. 1.

Places usually model passive system components like conditions, species, or any
kind of chemical compounds, e.g. proteins or proteins complexes, playing the role
of precursors, products, or enzymes of chemical reactions. Occasionally, we want to
differentiate between primary and secondary compounds. The latter ones are often
assumed to be ubiquitous and available in sufficient amount.

Complementary, transitions stand usually for active system components like
atomic actions or any kind of chemical reactions, e.g. association, dissociation,
phosphorylation, or dephosphorylation, transforming precursors into products, pos-
sibly controlled by enzymes. A reversible chemical reaction is modeled by two op-
posite transitions; compare Fig. 2.

Fig. 1 The Petri net for the well-known chemical reaction r: 2H2 + O2 → 2H2O and three of
its markings (states), connected each by a firing of the transition r. The transition is not enabled
anymore in the marking reached after these two single-firing steps
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Fig. 2 Hierarchical structuring by use of macro transitions, which are drawn as two centric
squares. The flat net (left) and the hierarchical net (right) are identical—from an analysis point
of view. Both nets model a reversible reaction a � b with its producing and consuming environ-
ment. The nodes colored in gray may be considered as logical nodes, automatically generated by
the drawing tool. They connect the transition-bordered subnet on the lower hierarchy level with its
environment on the next higher hierarchy level

The arcs go from precursors to reactions (ingoing arcs), and from reactions to
products (outgoing arcs). In other words, the pre-places of a transition correspond
to the reaction’s precursors, and its post-places to the reaction’s products. Enzymes
establish side conditions and are connected in both directions with the reaction they
catalyze – we get read arcs; compare place O2 in Fig. 6.

Arc weights may be read as the multiplicity of the arc, reflecting known stoi-
chiometries. Tokens can be interpreted as the available amount of a given species in
number of molecules or moles, or any abstract, i.e. discrete concentration level.

We adopt the following drawing conventions; compare Fig. 2.

– Input/output transitions are generally drawn as flat rectangles to highlight their
special meaning for the net behavior.

– Logical nodes (fusion nodes) are colored in gray. All logical nodes with the same
name are identical, at least from an analysis point of view. They are commonly
used for compounds involved in many reactions, e.g. secondary compounds.

– Transition-bordered subnets can be hidden in macro transitions, drawn as two
centric squares. This allows an hierarchical structuring of larger nets. We are
going to apply this technique to coarsen a given net according to its minimal
T-invariants’ inherent structure; see Sect. 4.

Invariants are a beneficial technique in model validation, and the challenge is to
check all invariants for their biological plausibility.

A P-invariant x is a non-zero and non-negative integer place vector such that
x ·C = 0; in words, for each transition it holds that: multiplying the P-invariant with
the transition’s column vector yields zero. Thus, the total effect of each transition
on the P-invariant is zero, which explains its interpretation as a token conservation
component. A P-invariant stands for a set of places over which the weighted sum
of tokens is constant and independent of any firing, i.e. for any markings m1, m2,
which are reachable by the firing of transitions, it holds that x · m1 = x · m2. In the
context of metabolic networks, P-invariants reflect substrate conservations, while
in signal transduction or gene regulatory networks P-invariants often correspond to



Understanding Network Behavior by Structured Representations of Transition Invariants 373

the several states of a given species (protein or protein complex) or gene. A place
belonging to a P-invariant is obviously bounded, and CPI causes structural bound-
edness, i.e. boundedness for any initial marking.

Analogously, a T-invariant y is a non-zero and non-negative integer transition
vector such that C · y = 0; in words, for each place it holds that: multiplying the
place’s row with the T-invariant yields zero. Thus, the total effect of the T-invariant
on a marking is zero. A T-invariant has two interpretations in the given biochemical
context.

– The entries of a T-invariant specify a multi-set of transitions, which by their par-
tially ordered firing reproduce a given marking, i.e. basically occurring one after
the other. This partial order sequence of the T-invariant’s transitions may con-
tribute to a deeper understanding of the net behavior. A T-invariant is called fea-
sible if such a behavior is actually possible in the given marking situation.

– The entries of a T-invariant may also be read as the relative firing rates of the
transitions involved, all of them occurring permanently and concurrently. This
activity level corresponds to the steady state behavior.

The two opposite transitions modeling the two directions of a reversible reac-
tion always make a minimal T-invariant; thus, they are called trivial T-invariants.
A net which is covered by non-trivial T-invariants is said to be strongly covered by
T-invariants (SCTI). Transitions not covered by non-trivial T-invariants are candi-
dates for model reduction, e.g. if the model analysis is concerned with steady state
analysis only.

The automatic identification of non-trivial minimal T-invariants is in general use-
ful as a method to highlight important parts of a network, and hence aid its compre-
hension by biochemists, especially when the entire network is too complex to easily
comprehend.

We are especially interested in a network’s input/output behavior, which we are
going to characterize by input/output T-invariants (I/O T-invariants), i.e. such T-

Fig. 3 The four nets on the left are each covered by one minimal T-invariant. Invariants can con-
tain any structures (from left to right): cycles, forward/backward branching transitions, forward
branching places, backward branching places. Generally, invariants overlap, and in the worst-case
there are exponentially many of them; the net on the far-right has 24 T-invariants
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invariants, involving input and output transitions. These special T-invariants can of-
ten be read as alternative, self-contained pathways within a given network under
consideration.

A minimal P-invariant (T-invariant) defines a connected subnet, consisting of its
support, its pre- and post-transitions (pre- and post-places), and all arcs in between.
There are no structural limitations for such subnets induced by minimal invariants,
compare Fig. 3, but they are always connected, however, not necessarily strongly
connected. These minimal self-contained subnets may be read as a decomposition
into token preserving or state repeating modules, which should have an enclosed
biological meaning.

Minimal invariants generally overlap; the combinatorial effect causes an explo-
sion of the number of minimal invariants. There are exponentially many of them in
the worst-case; compare Fig. 3, far-right. Therefore, we are going to apply a struc-
tured representation of a given set of invariants.

4 Structuring Method

The following discussion concentrates on T-invariants. Likewise, the presented tech-
nique can be applied to P-invariants due to the given symmetry of the two notions.

We define a dependency relation based on a set of minimal T-invariants. It can be
equally applied to the full set of all minimal T-invariants as well as to a subset, e.g.
the set of non-trivial T-invariants.

Definition 4 (Dependency Relation) Let N = (P,T ,f,m0) be a Petri net, and let
Y denote a set of minimal T-invariants y of N . Two transitions i, j ∈ T depend on
each other, i �� j for short, if

∀y ∈ Y : i ∈ supp(y) ⇔ j ∈ supp(y).

This is an abstract dependency, defined on the T-invariants’ support only. Depen-
dent transitions appear always together in the given set of minimal T-invariants. The
drop out of one transition prevents the whole set of transitions depending on each
other to accomplish their common function.

The dependency relation fulfills the following properties:

– reflexivity: i �� i;
– a transition depends on its own.
– symmetry: i �� j ⇔ j �� i;

the dependency of i on j implies the dependency of j on i, and vice versa.
– transitivity: i �� j ∧ j �� k ⇒ i �� k;

if i depends on j , and j depends on k, then i depends also on k.

Thus, it is an equivalence relation in the transition set T , leading to a partition
of T . We call the equivalence classes Ai with

Ai ⊆ T ∧ ∪Ai = T ∧ ∀i, j : i �= j ⇒ Ai ∩ Aj = ∅
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maximal abstract dependent transition sets (ADT sets), and it holds

∀Ai, ∀y ∈ Y : Ai ⊆ supp(y) ∨ Ai ∩ supp(y) = ∅.

ADT sets can be read as the smallest biologically meaningful functional units
(building blocks). Contrary to T-invariants, which generally overlap, ADT sets in-
duce by definition subnets overlapping in interface places pif ∈ PIF only, with

PIF =
⋃

∀i,j,i �=j

(•Ai ∪ Ai
•) ∩ (•Aj ∪ Aj

•).

These subnets represent a possible structural decomposition of biochemical net-
works into smaller subnets. Notably, the decomposition is based on statically decid-
able properties only.

Following the idea of hierarchical structuring of larger networks, we are going
to hide building blocks within macro transitions. However, ADT sets are not nec-
essarily connected, as we will see in Sect. 6. Hence, a further decomposition into
connected ADT sets is generally needed, possibly according to primary compound
flow only, i.e. neglecting connections by secondary compounds, and we get non-
maximal ADT sets.

Having a decomposition of the transition set T into ADT sets inducing connected
subnets, we are able to determine the interface places, and to coarsen automatically
a given net according to the minimal T-invariants’ inherent structure:

– macro transitions abstract from connected ADT sets, and
– places on the hierarchy’s top level correspond to the interface between the ADT

sets.

Then the coarse net structure gives a structured representation of all T-invariants,
which may contribute to a better understanding of the net behavior. Moreover, the
coarse net structure allows to identify sensitive net parts, i.e. interface places; the
knock-out of which would switch off a significant part of the whole network or even
prevent any output.

Maximal ADT sets support also the efficient design of wetlab experiments by
identifying minimal sets of observation points providing coverage of the whole net-
work: each maximal ADT set needs obviously one observation point only.

Finally, ADT sets are likely to be useful for automatic layout algorithms,
whereby the differentiation between primary and secondary compounds might be
supportive.

5 Computation

For the algorithmic-oriented minds, we sketch the computation of the two main
features of which our structuring approach is made.
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5.1 Computation of Invariants

Technically, we need to solve a homogeneous linear equation system over non-
negative integers. This restriction of the data space establishes—from a strong
mathematical point of view—a challenge. There is no closed formula to compute
the solutions. However, there are algorithms—actually, a class of algorithms—
constructing the solution (to be precise: the generating system for the solution space)
by systematically considering all possible candidates.

This algorithm class has been repetitively re-invented over the years. Thus, these
algorithms come along with different names. But a closer look always reveals the
same underlying principle. All these versions may be classified as “positive Gauss
elimination”; the incidence matrix of the Petri net is systematically transformed to
a zero matrix by suitable matrix operations.

Before we start, an auxiliary matrix is added to the incidence matrix to log, which
matrix operations have been done. The auxiliary matrix is always a quadratic matrix.
It is initialized by the identity matrix (diagonal is set to 1, else 0), and it is added to
the right for the computation of the P-invariants (then it is a quadratic matrix over
the places), or it is added below the incidence matrix for the computation of the T-
invariants (then it is a quadratic matrix over the transitions). The matrix operations,
compare Algorithm 1, are always applied to the composed matrix, consisting of the
incidence matrix and the auxiliary matrix.

The algorithm terminates, when all columns in the incidence matrix are zero. It
needs at most as many iterations of the outer loop as we have transitions, because
each iteration makes one column to zero.

Algorithm 1 Computation of P-invariants
input incidence matrix C, extended by auxiliary matrix;

while there are non-zero columns in C do
pick one non-zero column i in C;
for all pairs of rows with unequally signed entries in this column i do

add a new row, which is the smallest possible linear combination of this
pair, making the matrix entry in this column i to zero;

end for;
delete all old rows, i.e. those which have been used in creating these linear
combinations;
assert i is now a zero column;
assert if we had n negative entries and p positive entries in column i,

then the number of rows changes by n · p − (n + p)

end while;
assert if there is a solution, the incidence matrix is now zero;
assert all rows in the auxiliary matrix are P-invariants,

among them are all minimal P-invariants;
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The challenge in implementing this basic algorithm is twofold. First, we need
to eliminate efficiently all non-minimal P-invariants. Second, because the algorithm
has to consider all possible candidates, all possible linear combinations are con-
structed, blowing up the number of rows in the intermediate data structure. There
are heuristics trying to minimize this effect, e.g. to pick a column, for which we
get less new rows. However, as we know, heuristics never work fine for all possible
cases. To give some figures: It might be that there are several millions of rows at an
intermediate state of the algorithm, and at the end there are just around 100 left.

It is straightforward to adjust this algorithm to compute T-invariants; or the inci-
dence matrix is transposed—P-invariants of the transposed net are the T-invariants
of the original net.

5.2 Computation of Dependent Sets

The algorithm is rather straightforward and easily explained. Let us recall, T-
invariants are technically transition vectors over natural numbers, i.e. they have as
many components as there are transitions in the net, usually given as column vec-
tors. Likewise, their supports can be given as transition vectors over Booleans with
true if the transition belongs to the set, and false else; again written as column vec-
tors. Let us arrange these column vectors of all T-invariants or of their supports side
by side. We get a matrix Tinv with as many rows as we have transitions and as many
columns as we have T-invariants.

The dependency relation can now be rephrased in terms of this matrix Tinv: two
transitions dependent on each other, i.e. they always occur together, if their rows
are identical. Maximal dependent transition sets are now defined by maximal sets of
identical rows. To compute them, we execute Algorithm 2.

The algorithm terminates when all rows have been assigned. Because we have a
finite set of transition, the number of rows is finite, too. In the worst case, the outer

Algorithm 2 Computation of maximal dependent transition sets
input matrix Tinv;

while there are non-assigned rows do
create a new set s;
let i be the first index of a row, which has not been assigned to a set;
mark row i as assigned, and put i into s;
for all non-assigned rows j do

if rows i, j are identical, i.e. Tinv(i,∗) = Tinv(j,∗)

then j belongs to the same set as i: mark j as assigned, and put j into s

end if
end for;
assert s specifies a maximal ADT set;

end while
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loop is entered as often as there are transitions. Then each transition builds its own
set.

6 Case Studies

We present deliberately three smaller case studies, allowing to be easily understood.

6.1 Glycolysis

We start with one of the standard examples of metabolic networks, the combined
glycolysis and pentose phosphate pathway in erythrocytes (red blood cell). We use
a version based on [38], which is also elaborated in [19]. The network defines the
various reactions occurring in the cell under heavy energy load, such as in brisk mus-
cle activity. Glucose serves as precursor, and Lactate as product, involving several
secondary compounds (ATP, ADP, NADH+, NADH, Pi) in the stepwise conversion
process; compare Fig. 4.

There are three minimal T-invariants, which we give in a short-hand notation,
enumerating the non-zero entries only:

y1 = (p_Gluc, 2 · p_ADP, 2 · p_Pi,

r9, r10, r11, r12, r13, 2 · r15, 2 · r16, 2 · r17, 2 · r18, 2 · r19, 2 · r20,

2 · c_Lac, 2 · c_ATP),

y2 = (3 · p_Gluc, 5 · p_ADP, 5 · p_Pi,

3 · r9, 6 · r1, 6 · r2, 3 · r3, 2 · r4, r5, r6, r7, r8,

2 · r11, 2 · r12, 2 · r13, 5 · r15, 5 · r16, 5 · r17, 5 · r18, 5 · r19, 5 · r20,

5 · c_Lac, 5 · c_ATP),

y3 = (r13, r14).

The net is CTI, however, not SCTI, because r14 is involved in a trivial T-invariant
only. Considering the two non-trivial minimal T-invariants, y1 and y2, we find four
maximal ADT sets. The first set contains the intersection of both T-invariants, com-
prising almost the whole glycolysis

A = supp(y1) ∩ supp(y2)

= {p_Gluc, p_ADP, p_Pi,

r9, r11, r12, r13, r15, r16, r17, r18, r19, r20,

c_Lac, c_ATP}.
The knock-out of one of the transitions in A switches off both non-trivial T-

invariants. The next two sets contain those transitions, which are specific to one
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Fig. 4 The Petri net and its coarse structure for the combined glycolysis and pentose phosphate
pathway in erythrocytes. The layout of the flat net mimics the hypergraph given in [38]. Nodes
colored in gray in the flat net are logical (fusion) nodes. Input and output transitions are drawn as
flat rectangles. The two pathways highlighted in the coarse net are: (a) glycolysis, and (b) pentose
phosphate pathway

of the two T-invariants. The specific transition of the T-invariant y1 belongs to the
glycolysis

B = supp(y1) − supp(y2)

= {r10},

and the specific transitions of the T-invariant y2 cover the pentose phosphate path-
way

C = supp(y2) − supp(y1)

= {r1, r2, r3, r4, r5, r6, r7, r8}.
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The remaining transition belongs to a trivial T-invariant only; it builds an (pseudo)
ADT set on its own. This transition does not contribute to the steady state behavior
of the two non-trivial T-invariants.

D = T − supp(y1) − supp(y2)

= {r14}
Thus, the main building blocks of the Petri net, and by this way of the underlying

biochemical network, are represented by the first three ADT sets, each defining a
connected subnet. The two subnets, describing the two pathways, are defined by the
union of the first ADT set with the second or third one, respectively. However, if
we neglect the connectivity established by secondary compounds, the ADT set A

breaks down into two subsets:

A1 = {p_Gluc, r9}, A2 = A − A1,

which are connected according to the primary compound flow, however, not maxi-
mal anymore.

We obtain the coarse network structure as given in Fig. 4, lower part, highlight-
ing the structuring principle inherent in the non-trivial minimal T-invariants. Each
macro transition stands for a connected subnet defined by a set of transitions, occur-
ring together in all non-trivial minimal T-invariants.

In this example, each elementary (loop-free) macro transition sequence in the
coarse net structure corresponds to a non-trivial minimal T-invariant of the whole
network. There are two such sequences:

y1 = (A1;B;A2),

y2 = (A1;C;A2),

sharing the beginning and the end. Thus, the two I/O T-invariants y1, y2 are now
represented by I/O macro transition sequences. The places shown in the coarse net
structure are the boundary places of the subnets, building the interface between the
subnets. Please note, only the primary compound flow is represented here.

6.2 Apoptosis

The term apoptosis refers to the genetically programmed cell death, which is an es-
sential part of normal physiology for most metazoan species. Disturbances in the
apoptotic process may lead to various diseases. The signal transduction network of
apoptosis governs complex mechanisms to control and execute programmed cell
death, which are—by the time being—not really well understood. A variety of dif-
ferent cellular signals initiate activation of apoptosis in distinctive ways, depending
on the various cell types and their biological states. We consider here a core model
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Fig. 5 The Petri net and its coarse structure for a core model of the apoptosis. The layout of the
flat net is inspired by the graphical scheme given in [27]. The three pathways highlighted in the
coarse net are: (a) the Fas receptor pathway, (b) the pathway induced by intrinsic apoptotic stimuli,
and (c) the cross-talk pathway. The ADT sets C1 and C2 are involved in all three pathways

of [16], which is based on [27], comprising the pathways induced by the Fas recep-
tor and the intrinsic apoptotic stimuli, as well as the cross-talk in between; compare
Fig. 5.
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There are three minimal T-invariants, covering the net:

y1 = (p1,p2,p3,p8,p9,p10,

r1, r2, r3, r4,

c1, c2, c3, c4),

y2 = (p4,p5,p6,p7,p8,p9,p10,

r3, r4, r7, r8, r9, r10, r11, r12, r13,

c1, c2, c3, c4),

y2 = (p1,p2,p3,p5,p6,p7,p8,p9,p10,p11,

r1, r3, r4, r5, r6, r9, r10, r11, r12, r13,

c1, c2, c3, c4).

There are no trivial T-invariants; so, CTI implies SCTI. We consider all minimal
T-invariants, and we get six maximal ADT sets:

A = {p1,p2,p3, r1},
B = {r2},
C = {p8,p9,p10, r3, r4, c1, c2, c3, c4},
D = {p4, r7, r8},
E = {p5,p6,p7, r9, r10, r11, r12, r13},
F = {p11, r5, r6}.

Notably, the ADT set C is involved in all minimal T-invariants; so, it is vital
for the whole network. This set does not induce a connected subnet; therefore, we
decompose it into two connected subsets:

C1 = {p9,p10, r3, r4, c1, c2, c3, c4},
C2 = {p8}.

Consequently, C1 and C2 are not maximal ADT sets anymore. Using these seven
ADT sets, we get the coarse net structure as given in Fig. 5, lower part. The three
pathways are clearly distinguishable, and—we claim—much better readable than
in the flat net. In this example, each minimal I/O T-invariant is represented by
a partially ordered I/O macro transition sequence in the coarse net structure (the
sign + stands for ‘unordered’, i.e. concurrent macro transitions):

y1 = (A + C2;B;C1),

y2 = (C2 + D;E;C1),

y3 = ((A;F) + C2;E;C1).
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6.3 Hypoxia

Oxygen is an essential and vital element for the survival of organisms. Lower oxy-
gen content, termed hypoxia, arises under pathophysiological conditions. When
there is an imbalance of oxygen content, the organism adapts by restoring normal
oxygen content through activation of various genetic and metabolic pathways to
compensate for the imbalance. One of the well-studied molecular pathways acti-
vated under hypoxia condition is the Hypoxia Induced Factor (HIF) pathway re-
sponsible for regulating oxygen-sensitive gene expression. Continuous models in
the style of ordinary differential equations (ODEs) have been proposed in [21] and
[51]. The Petri net given in Fig. 6 has been derived from these ODEs in order to
highlight the ODEs’ inherent structure. Reading the given qualitative Petri net as
a continuous Petri net, whereby all transitions firing rates follow the mass action
kinetics, generates exactly the original ODEs.

Here, we confine ourselves to the very first step—understanding the essential net-
work behavior. We start with the computation of the minimal T-invariants. Besides
the expected seven trivial T-invariants for the seven reversible reactions,

y1 = (r3, r4), y2 = (r5, r6), y3 = (r12, r13),

y4 = (r15, r16), y5 = (r18, r19), y6 = (r21, r22),

y7 = (r29, r30),

there are three non-trivial ones:

y8 = (r1, r2),

y9 = (r1, r12, r14, r18, r20),

y10 = (r1, r3, r15, r17, r18, r20, r22).

Please note, (r1, r2) is not considered to be a trivial T-invariant due to its rel-
evance for the input/output behavior. Determining the maximal ADT sets over all
T-invariants yields 17 sets, 15 of them contain just one transition, and the remaining
two are {r5, r6} and {r29, r30}, i.e. they correspond to those two trivial T-invariants,
the transitions of which are not involved in any of the non-trivial T-invariants. Ne-
glecting the trivial T-invariants in the computation of the maximal ADT sets yields
the much more interesting result:

A = {r1}, B = {r2}, C = {r12, r14}, D = {r18, r20},
E = {r3, r15, r17, r22},

and the pseudo ADT set, containing all remaining transitions of the net, not con-
tributing to the non-trivial T-invariants. The maximal ADT sets A–E induce con-
nected subnets, and we get the coarse net structure as given in Fig. 6, lower part.
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Fig. 6 The Petri net and its coarse structure (when neglecting the trivial T-invariants) for the hy-
poxia response network based on the ODEs given in [21] and [51]. The three pathways to degrade
HIF (S3) highlighted in the coarse net are: (a) direct degradation by r2, (b) degradation not requir-
ing S4, and (c) degradation requiring S4. The knock-out of S12 interrupts both (b) and (c)

The three non-trivial T-invariants are represented by the three macro transition se-
quences:

y8 = (A;B),

y9 = (A;C;D),

y10 = (A;E;D).

7 Tools

The case studies have been done using Snoopy [18, 45]—a tool to design and ani-
mate or simulate hierarchical graphs, among them the qualitative Petri nets as used
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in this paper. Snoopy provides export to various analysis tools as well as import and
export of the Systems Biology Markup Language (SBML) [13].

The T-invariants, ADT sets and their decomposition into connected subnets have
been computed with the Petri net analysis tool Charlie [3]. To support result evalua-
tion, node sets, as specified by T-invariants or ADT sets, can be visualized (colored)
in Snoopy.

The automatic derivation of the hierarchical Petri net showing the coarse net
structure is subject of a running student’s project.

The data files of the case studies and the analysis results are available at
www-dssz.informatik.tu-cottbus.de/examples/coarsening.

8 Related Work

Please note, the following remarks are not meant to be exhaustive, but to give the
interested reader some suggestions where to continue reading.

Petri nets, as we understand them today, have been initiated by concepts proposed
by Carl Adam Petri in his Ph.D. thesis in 1962 [33]. The first substantial results
making up the still growing body of Petri net theory appeared around 1970. Initial
textbooks devoted to Petri nets were issued in the beginning of the 80s [34, 39, 47].
General introductions into Petri net theory can be found, for example, in [1, 6, 28,
48]. An excellent textbook for theoretical issues is [36]. The text [7] might be useful,
if you just want to get the general flavor in reasonable time.

Petri nets have been deployed for technical and administrative systems in nu-
merous application domains since the mid-70s. The deployment in systems biology
has been first published in [17, 38, 40]. Recent surveys on applying Petri nets for
biochemical networks are [2, 26], offering a rich choice of further reading pointers,
among them numerous case studies applying various types of Petri nets to biochem-
ical networks, comprising gene regulatory networks, signal transduction networks,
metabolic networks, or combinations of them. The majority of these papers deal
with one Petri net type only, mostly quantitative Petri nets such as stochastic, contin-
uous, or hybrid Petri nets. A careful qualitative analysis of the combined glycolysis
pentose phosphate pathway is exercised in [19]. A framework integrating qualita-
tive, stochastic and continuous Petri nets into a step-wise modeling and analysis
process is demonstrated by a running example each in [11, 12, 14].

P- and T-invariants are well-known concepts of Petri net theory since the very
beginning [22]. There are corresponding notions in systems biology, called chemical
moieties or conservation relations [25, 46], and elementary modes [43] or extreme
pathways [44], which are elaborated in the setting of biochemical networks in [30].
In order to reduce the generating system of the solution space, generic pathways
(minimal metabolic behavior) have been proposed, which are especially helpful, if
there are plenty of reversible reactions [23, 24]. For biochemical systems without
reversible reactions, the notions T-invariants, elementary modes, extreme pathways,
and generic pathways coincide.

http://www-dssz.informatik.tu-cottbus.de/examples/coarsening


386 M. Heiner

The efficient computation of invariants has been repeatedly examined; for some
of the earlier papers, see, e.g. [5, 31, 49], for modular computational approaches,
see [4, 32, 52].

Invariants have been applied for validation and verification of Petri net mod-
els in many ways. Invariant-based model validation of technical or administrative
systems—especially in the context of P-invariants— is one of the standard Petri net
techniques; their use to check model consistency is straightforward. The introduc-
tory textbooks [29, 39] give examples how P-invariants can be used in mathematical
reasoning to prove certain model properties.

The model validation of biochemical networks by help of T-invariants is demon-
strated in [15] by three case studies, comprising metabolic as well as signal trans-
duction networks, one of them represented as colored Petri net. The comprehensive
textbook [30] is focused on the stoichiometric matrix and related evaluation tech-
niques of reconstructed biochemical networks. It is also a good entry point for the
growing body of related literature in systems biology.

The partial order run of I/O T-invariants is considered in [9, 10] to gain deeper in-
sights into the signal response behavior of signal transduction networks. T-invariants
are used in [19] to derive adequate environment behavior, transforming an open sys-
tem into a closed one, in [8] for the identification of functional modules by clustering
techniques, and in [37] to obtain time constraints reflecting the steady state behavior.

Finally, a bit of history. The idea to decompose T-invariants into sub-T-invariants
is rather intuitive and has already been used in an informal manner in [20] in order
to support the validation process for a metabolic network of the potato tuber. The
concept of maximal sets of dependent transitions has been introduced in [41] and
implemented in Perl to validate the mating pheromone response pathway in Saccha-
romyces cerevisiae. These results are published in [42], which also gives a formal
definition of the notion called Maximal Common Transition set (MCT-set), which
corresponds to maximal abstract dependent transition sets as introduced in our pa-
per. A generalization of MCT-sets is elaborated in [50], comprising also the foun-
dation for the structuring approach presented in our paper. That is why we adopt the
naming convention introduced there. The crucial point for our application scenario
is that we generally need a further decomposition of maximal ADT sets into ADT
sets inducing connected subnets, which are consequently not maximal anymore.

While writing this paper, and especially compiling this section, we became aware
of the notions perfectly/partially/directionally correlated reaction sets, abbreviated
by co-sets (which would cause confusion in the Petri net community). They are usu-
ally introduced verbally as well as by examples; see, e.g. [30]. However, partially
correlated reaction sets seem to correspond to (maximal?) abstract dependent tran-
sition sets, and perfectly correlated reaction sets to (maximal?) dependent transition
sets (not discussed in our paper; see [50] for details). The authors advocate cor-
related reaction sets for hierarchical thinking in network biology and the unbiased
modularization of biochemical networks, and confirm our observation that these sets
“can include non-obvious groups of reactions and differ from groupings of reactions
based on a visual inspection of the network topology” [35]. There is no better way
to conclude this section.
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9 Summary

Petri nets provide a concise, executable, and formal modeling paradigm, allowing a
unifying view on knowledge originating from different sources, which are usually
represented there in various, sometimes even ambiguous styles. The derived models
can be validated by checking T-invariants for biological interpretation.

We have presented a structuring technique contributing to a better understanding
of the network behavior and requiring static analysis only. The state space is never
constructed, thus the technique works even for systems with infinite state spaces,
i.e. unbounded Petri nets.

The key notions are T-invariants and ADT sets. Minimal T-invariants induce al-
ways connected subnets, which generally overlap. Maximal ADT sets induce al-
ways subnets, overlapping in interface places only, but which are not necessarily
connected. We determine a classification of the transitions into ADT sets, inducing
connected subnets.

This classification defines a structural decomposition into subnets, which can be
read as smallest biologically meaningful functional units. Connected ADT sets can
be hidden in macro transitions. The derived coarse network provides a structured
representation of the given set of minimal T-invariants, and may serve as a short-
hand notation. This technique works equally for P-invariants.

The whole approach is algorithmically defined and does not require human inter-
action. However, the computation of all minimal T-invariants has to be accomplished
first, and in the worst-case there are exponentially many of them.

The proposed structuring technique does not rely on the given interpretation of
Petri nets. Nevertheless, it seems to be specifically helpful for analyzing biochem-
ically interpreted Petri nets, where it supports the validation of models formalizing
our current understanding of what has been created by natural evolution.

In this paper, we have focused on model validation by means of qualitative mod-
els, because it is obviously necessary to check at first a model for consistency and
correctness of its biological interpretation before starting further analyses, aiming in
the long-term at behavior prediction by means of quantitative models. The expected
results—justifying the additional expense of preliminary model validation—consist
in concise, formal and, therefore, unambiguous models, which are provably self-
consistent and more likely to reflect adequately the modeled reality.
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Quantitative Verification Techniques
for Biological Processes

Marta Kwiatkowska, Gethin Norman,
and David Parker

Abstract Probabilistic model checking is a formal verification framework for sys-
tems which exhibit stochastic behavior. It has been successfully applied to a wide
range of domains, including security and communication protocols, distributed al-
gorithms and power management. In this chapter, we demonstrate its applicability to
the analysis of biological pathways and show how it can yield a better understanding
of the dynamics of these systems. Through a case study of the Mitogen-Activated
Protein (MAP), Kinase cascade, we explain how biological pathways can be mod-
eled in the probabilistic model checker PRISM and how this enables the analysis of
a rich selection of quantitative properties.

1 Introduction

Recent research has had considerable success adapting approaches from computer
science to the analysis of biological systems and, in particular, biochemical path-
ways. The fundamental theory behind the majority of this work is the simulation-
based techniques for discrete stochastic models originally introduced by Gille-
spie [9]. This models the evolution of individual molecules, whose rates of inter-
action are controlled by exponential distributions, and differs from the principal
alternative modeling paradigm of pathways, using ordinary differential equations
to model the evolution of average molecular concentrations over time. We adopt
the stochastic modeling approach but, by employing formal verification techniques,
compute exact quantitative measures as opposed to taking averages over sets of sim-
ulation runs.

In this chapter, we demonstrate how probabilistic model checking [2, 20, 32] and
the probabilistic model checker PRISM [14, 27] can be employed as a framework
for the modeling and analysis of biological pathways. This approach is motivated
by both the fact that PRISM has already been successfully applied to the study of
biological pathways; see, for example [4, 11, 30], and previous work which has
demonstrated the applicability of probabilistic model checking to the analysis of a
wide variety of complex stochastic systems; see, for example [18].
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This framework inherits many of the advantages of model checking, including
the use of a both a formal model and specification of the system under study and the
fact that the approach is exhaustive, analysing all possible behaviors of the system.
We are also able to re-use existing technology, exploiting the efficient implementa-
tions and tool support developed for probabilistic model checkers such as PRISM.
The intention is that probabilistic model checking should be used in conjunction
with other, well-established approaches for analysing pathways based on simulation
and differential equations. In combination, these techniques can offer greater insight
into the complex interactions present in biological pathways.

Outline

In the next section, we give an overview of probabilistic model checking and the
tool PRISM. Section 3 presents the MAPK cascade, discusses how the pathway can
be modeled in the PRISM language, and demonstrates how PRISM can be used to
specify and analyse a wide range of quantitative properties. In Sect. 4, we discuss
related work and Sect. 5 concludes the chapter.

2 Probabilistic Model Checking

Probabilistic model checking is a formal verification technique for the modeling and
analysis of systems that exhibit stochastic behavior. This technique is a variant of
model checking, a well established and widely-used formal method for ascertaining
the correctness of real-life systems. Model checking requires two inputs:

• a description of the system, usually given in some high-level modeling formalism
such as a Petri net or process algebraic expression;

• a specification of one or more desired properties of the system, normally using
temporal logics such as Computation Tree Logic CTL) or Linear-time Temporal
Logic (LTL).

From these inputs, a model checker can construct a model of the system, typically a
labeled state-transition system in which each state represents a possible configura-
tion and each transition represents an evolution of the system from one configuration
to another over time. It is then possible to automatically verify whether or not each
property is satisfied, based on a systematic and exhaustive exploration of the con-
structed state-transition system.

In probabilistic model checking, the models are augmented with quantitative in-
formation regarding the likelihood that transitions occur and the times at which they
do so. In practice, these models are typically Markov chains or Markov decision
processes. To model biological pathways, the appropriate model is continuous-time
Markov chains (CTMCs), in which transitions between states are assigned (positive,
real-valued) rates. These values are interpreted as the rates of negative exponential
distributions.
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Formally, letting R≥0 denote the set of non-negative reals and AP be a fixed, finite
set of atomic propositions used to label states with properties of interest, a CTMC
is a tuple (S, �R,L) where:

• S is a finite set of states;
• �R : (S × S) → R≥0 is a transition rate matrix;
• L : S → 2AP is a labeling function which associates each state with a set of atomic

propositions.

The transition rate matrix �R assigns rates to each pair of states, which are used
as parameters of the exponential distribution. A transition can only occur between
states s and s′ if �R(s, s′) > 0 and, in this case, the probability of the transition
being triggered within t time-units equals 1 − exp(− �R(s, s′)×t). Typically, in a
state s, there is more than one state s′ for which �R(s, s′) > 0; this is known as a
race condition and the first transition to be triggered determines the next state. The
time spent in state s before any such transition occurs is exponentially distributed
with the rate E(s) = ∑

s′∈S
�R(s, s′), called the exit rate of stat s. The probability of

moving to state s′ is given by �R(s, s′)/E(s).
A CTMC can be augmented with rewards, attached to states and/or transitions of

the model. Formally, a reward structure for a CTMC is a pair ( �ρ,�ι) where:

• �ρ : S → R≥0 is a state reward function;
• �ι : (S × S) → R≥0 is a transition reward function.

State rewards can represent either a quantitative measure of interest at a particular
time instant (e.g. the number of phosphorylated proteins in the system) or the rate
at which some measure accumulates over time (e.g. energy dissipation). Transition
rewards are accumulated each time a transition occurs and can be used to compute,
e.g. the number of protein bindings over a particular time period.

Properties of CTMCs are, like in non-probabilistic model checking, expressed
in temporal logic, but are now quantitative in nature. For this, we use probabilis-
tic temporal logics such as CSL [1, 2] and its extensions for reward-based prop-
erties [20]. For example, rather than verifying that ‘the protein always eventually
degrades’, using CSL allows us to ask ‘what is the probability that the protein even-
tually degrades’ or ‘what is the probability that the protein degrades within t hours?’
Reward-based properties include ‘what is the expected number of phosphorylations
within the first t time units?’ and ‘what is the expected time that proteins spend
bound before relocation occurs?’ For further details on probabilistic model check-
ing of CTMCs, see, for example [2, 20, 32].

PRISM [14, 27] is a probabilistic model checking tool developed at the Uni-
versities of Birmingham and Oxford. It provides support for several types of prob-
abilistic models, including CTMCs. Models are specified in a simple, state-based
language based on guarded commands. PRISM’s notation for specifying properties
of CTMCs incorporates the reward-based extension ([20]) of CSL. Figure 1 shows
a screenshot of PRISM in action.
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Fig. 1 A screenshot of the
PRISM graphical user
interface

The underlying computation in PRISM involves a combination of:

• graph-theoretical algorithms, for conventional temporal logic model checking
and qualitative probabilistic model checking;

• numerical computation, for quantitative probabilistic model checking, i.e. calcu-
lation of probabilities and reward values.

Graph-theoretical algorithms are comparable to the operation of a conventional,
non-probabilistic model checker. For numerical computation, PRISM typically
solves linear equation systems or performs transient analysis. Due to the size of
the models that need to be handled, the tool uses iterative methods rather than
direct methods. For solution of linear equation systems, it supports a range of
well-known techniques including the Jacobi, Gauss–Seidel, and successive over-
relaxation (SOR) methods; for transient analysis of CTMCs, it employs uniformiza-
tion.

One of the most notable features of PRISM is that it uses state-of-the-art sym-
bolic approaches, using data structures based on binary decision diagrams [17, 25].
These allow for compact representation and efficient manipulation of large, struc-
tured models by exploiting regularities exhibited in the high-level modeling lan-
guage descriptions. The tool actually provides three distinct engines for numerical
solution: the first is purely symbolic; the second uses sparse matrices; and the third
is a hybrid, using a combination of the two. The result is a flexible implementation
which can be adjusted to improve performance depending on the type of models and
properties being analysed.

PRISM also incorporates a discrete-event simulation engine. This allows approx-
imate solutions to be generated for the numerical computations that underlie the
model checking process, by applying Monte Carlo methods and sampling. These
techniques offer increased scalability, at the expense of numerical accuracy. Using
the same underlying engine, PRISM includes a tool to perform manual execution
and debugging of models. Other functionality provided by the user interface of the
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tool includes a graph-plotting component for visualization of numerical results and
editors for the model and property specification languages.

3 Case Study: MAPK Cascade

We demonstrate the application of probabilistic model checking to the modeling,
specification and analysis of biological pathways through a case study: the MAPK
cascade.

The Mitogen-Activated Protein (MAP) Kinases are involved in a pathway
through which information is sent to the nucleus. It is one of the most important sig-
naling pathways, playing a pivotal role in the molecular signaling that governs the
growth, proliferation, and survival of many cell types. The MAPK cascade consists
of a MAPK Kinase Kinase (MAPKKK), a MAPK Kinase (MAPKK), and a MAPK.
The cascade is initialized through the phosphorylation of MAPKKK, which then
activates MAPKK through phosphorylation at two serine residues. This then acti-
vates MAPK through phosphorylation at theronine and tyrosine residues. The ini-
tialization of the pathway can be caused by a diverse set of stimuli including growth
factors, neurotransmitters and cytokines.

Figure 2 gives an overview of the structure of the pathway and Fig. 3 details
the reactions that form the cascade, as taken from [15]. In the reactions presented
in Fig. 3, it is assumed that the phosphorylation of both MAPK and MAPKK oc-
cur in two distributed steps. For example, when MAPK collides with its activator
(MAPKK-PP) the first phosphorylation (MAPK-P) occurs and the activator is re-
leased. The phosphorylated MAPK must then collide again with its activator for the
second phosphorylation (MAPK-PP) to occur. The deactivation of phosphorylated
MAPK and MAPKK is caused by the corresponding phosphatase, while the activa-
tion and deactivation of MAPKKK is through the enzymes E1 and E2, respectively.
To simplify the presentation in Fig. 3, we denote MAPK, MAPKK, and MAPKKK
by K, KK, and KKK, respectively.

Fig. 2 MAPK cascade pathway
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Fig. 3 MAPK cascade reactions

The kinetic rates given in Fig. 3 are based on the data presented in [15] where
it is assumed that the Km values (Km = (dm + km)/am) for phosphorylation and
dephosphorylation of MAPK, MAPKK, and MAPKKK all equal 300 nM.

3.1 Specifying the Model

We now outline how to construct a discrete stochastic model of the MAPK cascade
reactions from Fig. 3 in the modeling language of the PRISM tool. The applicability
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of probabilistic model checking and PRISM follows from the fact that the underly-
ing model can be shown to be a CTMC, in which the stochastic rates associated with
each transition can be derived from the kinetic rates of the reactions. In the case of
unary reactions, the stochastic rate equals the kinetic rate. On the other hand, for
binary reactions, if the kinetic rate is given in terms of molar concentrations, then
the stochastic rate can be obtained by dividing by Vol × NA where Vol is the volume
and NA is Avogadro’s number. For a more detailed discussion of the relationship
between kinetic and stochastic rates, see, for example [9, 36].

A model described in the PRISM language comprises a set of modules, the state
of each being represented by a valuation over a set of finite-ranging variables. The
global state of the model is determined by a valuation over the union of all variables
(denoted V ). The atomic propositions of the model are given by predicates over
the variables V and the labeling function assigns to each state the predicates that it
satisfies.

The behavior of a module, i.e. the changes in state which it can undergo, is spec-
ified by a number of guarded commands of the form:

[act] guard → rate : update;

where act is an (optional) action label, guard is a predicate over the variables V ,
rate is a (non-negative) real-valued expression and update is of the form:

(x ′
1 = u1) & (x′

2 = u2) & · · · & (x′
n = un)

where u1, u2, . . . , uk are functions over V and x1, x2, . . . , xn are variables of the
module. Intuitively, in global state s (i.e. a valuation over the variables V ) of the
PRISM model, the command is enabled if s satisfies the predicate guard. If a com-
mand is enabled, a transition that updates the module’s variables according to update
(i.e. for 1 ≤ i ≤ n the variable xi is updated to the value ui(s)) can occur with rate
rate. When multiple commands with the same update are enabled, the correspond-
ing transitions are combined into a single transition whose rate is the sum of the
individual rates.

To model interactions where the state of several modules changes simultaneously,
we use synchronization, through the action labels that can be included in the guarded
commands. The rate of the combined transition is defined as the product of the rates
for each command. As we will see below, the rate of the combined transition is often
fully specified in one module and rates omitted from the other modules (this yields
the correct rate since PRISM assigns a rate of 1 to any command for which none is
specified).

When building a PRISM model of a biological pathway, it is possible to con-
struct an individual-based model which provides a detailed model of the evolution
of individual molecular components. However, taking this approach comes at a cost:
it will inevitably suffer from the well-known state-space explosion problem where,
as the complexity of the system increases, the state space of the underlying model
grows exponentially.
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Fig. 4 PRISM module representing quantities of species relating to MAPK

An alternative is to employ a population-based approach where the number of
each type of molecule or species is modeled, rather than the state of each individual
component. Such an approach leads to a much smaller state-space (see, for example
[11]) while still including sufficient detail to express the properties of interest. For
these reasons, it is this approach that we use here.

For the PRISM language, a population-based model can be expressed naturally
by using the variables of modules as counters, i.e. there is a variable for each of the
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Fig. 5 PRISM module representing quantity of MAPK phosphatase

possible species in the system which keeps count of the number of that species that
are currently present.

In Fig. 4, we present the module representing quantities of the species relating
to MAPK and, in Fig. 5, the module representing MAPK phosphatase. The whole
cascade could have been specified in one single large PRISM module. However,
there is a natural separation of the different elements in the cascade (those relat-
ing to MAPKKK, MAPKK, MAPK, MAPKK phosphatase, MAPK phosphatase,
E1 and E2) and defining the system using individual modules based on this separa-
tion makes the description simpler, easier to understand and less prone to modeling
errors. This fact can be seen in other PRISM language models of biological path-
ways; see, for example [4, 11, 27]. The complete PRISM description of the MAPK
cascade is available from the case study repository on the PRISM website [27].

As can be seen in Figs. 4 and 5, we have specified that there are initially N in-
active MAPKs (the initial value of the variable k is N ) and M MAPK phosphatases
(the initial value of kptase is M). The actual values of N and M have been left un-
defined since, as will be seen later, this allows these parameters to be varied during
model checking.

The values for stochastic reaction rates of the system are defined as constants
(see the top of Fig. 4). Notice that the stochastic rates of the binary reactions (i.e.
those specified by the constants a7, a8, a9, and a10) are obtained from the kinetic
rates by dividing by the initial number of MAPKs (i.e. N ). This is because (recall
the discussion of computing stochastic reaction rates earlier in this section) we make
the assumption that the volume of the system is proportional to the initial number
of MAPKs. It would also have been possible to leave some of the constants for the
stochastic rates unspecified and then vary these during verification.

Figures 4 and 5 also show that the modules for MAPK and MAPK phosphatase
synchronize through the actions a_k_ptase, d_k_ptase, and k_k_ptase, which cor-
respond to the deactivation of MAPK (as described in reactions 8 and 10 of Fig. 3).
The actions a_k_kk, d_k_kk, and k_k_kk, which appear in the module for MAPK
(Fig. 4), correspond to the activation of MAPK by MAPKK-PP (see reactions 7 and
9 of Fig. 3), and there are corresponding commands in the module for MAPKK.

When using a population-based approach, we must ensure that the rates of the
CTMC take into account the different possible interactions that can occur. For ex-



400 M. Kwiatkowska et al.

ample, if there are three activated MAPKs (k_pp1, k_pp2, and k_pp3) and two
MAPK phosphatases (kptase1 and kptase2) then there are six different species
that can be formed: k_pp1: kptase1, k_pp1: kptase2, k_pp2: kptase1, k_pp2: kptase2,
k_pp3: kptase1 and k_pp3: kptase2. The reaction rate is thus proportional to both
the number of activated MAPKs and the number of MAPK phosphatases. This is
straightforward to achieve in the PRISM modeling language since PRISM multi-
plies rates when modules synchronize: in this case, we set the rates to a10×kpp and
kptase in the modules MAPK (Fig. 4) and KPTASE (Fig. 5), respectively.

3.2 Specifying Rewards

Rewards are PRISM’s mechanism for describing additional quantitative measures of
probabilistic models. In this section, we explain how to specify reward structures for
the PRISM model of the MAPK cascade presented in the previous section. Reward
structures in PRISM are described using the construct:

rewards “reward_name” . . . endrewards

comprising one or more state-reward items of the form:

guard : reward;
and/or transition-reward items of the form:

[act] guard : reward;
where guard is a predicate (over the variables V of the model), act is an action label
appearing in the commands of the model and reward is a real-valued expression
(which can contain variables and constants from the model). A state-reward item
assigns a state reward of reward to all states satisfying guard and a transition-reward
item assigns a transition reward of reward to all act-labeled transitions from states
satisfying guard. Multiple rewards (from different reward items) for a single state or
transition are summed and states or transitions with no assigned reward are assumed
to have reward 0.

In Fig. 6, we present four different reward structures for the PRISM model of the
cascade. The first reward structure (“activated”) assigns a state reward equal to the
amount of MAPK that is activated while the second reward structure (“percentage”)

Fig. 6 Reward structures for the cascade
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assigns a state reward equal to the percentage of MAPK that is activated. These can
be used to compute the expected amount/percentage of activated MAPK at some
time instant or in the long run. The third reward structure “reactions” assigns a
reward of 1 to all transitions which correspond to a reaction between MAPK and
MAPKK. This can be used to compute the expected number of such reactions within
a particular period of time or on average (in the long run). The final reward structure
(“time”) simply assigns a state reward of 1 to all states in the model which can be
used, for example, to analyse the total expected time before an event/reaction occurs
or a certain configuration is reached.

3.3 Specifying Properties

The temporal logic CSL, originally introduced by Aziz et al. [1] and since extended
by Baier et al. [2], is based on the temporal logics CTL [5] and PCTL [10]. It pro-
vides a powerful means of specifying a variety of performance measures on CTMCs.
PRISM use an extended version [20] which also allows for the specification of re-
ward properties. We now give a number of examples of such specifications relating
to the PRISM model and reward structures for the MAPK cascade presented in the
previous sections. Recall that, in a PRISM model, atomic propositions are given by
predicates over the variables of the model.

• (kkpp = N ∧ kpp = 0) → P≥0.12[(kkpp > 0)U (kpp > 0)]—if all MAPKKs are
activated and none of the MAPKs are activated, then the probability that, while
some MAPKKs remain activated, a MAPK becomes activated is at least 0.12.

• P=?[ true U [t,t]((kpp + kkpp) = l)]—what is the probability that the total num-
ber of MAPKs and MAPKKs activated at time instant t equals l?

• (kkkp > 0 ∧ kpp = 0) → P≤0.7[(kpp = 0)U [t1,t2](kpp > 0)]—if some MAPKKKs
are activated and no MAPKs are activated, then the probability that the first time
a MAPK gets activated is within the time interval [t1, t2] is at most 0.7.

• (k = 0) → P≤0.01[(k = 0)U [t,∞)(k > 0)]—if there are no inactive MAPKs, then
the probability that some MAPK is deactivated for the first time after time t is at
most 0.01.

• S=?[(kpp = l)]—what is the probability that in the long run there are precisely l

MAPKs activated?
• R{“reactions”}=?[C≤t ]—what is the expected number of reactions between MAPKs

and MAPKKs during the first t seconds?
• (kpp = N) → R{“activated”}≥N/2[I =t ]—if all MAPKs are activated, then after t

seconds the expected number of activated MAPK is at least half of the total num-
ber of MAPK.

• R{“reactions”}=?[F (kpp = N)]—what is the expected number of reactions be-
tween MAPK and MAPKK before all MAPKs are activated at the same time
instant?
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• (kpp > 0) → R{“time”}≤120[F (k = N) ]—if some MAPKs are activated, the ex-
pected time until all of the MAPKs become deactivated at the same time instant
at most 120 seconds.

• R{“percentage”}≥98[S]—in the long run, at least 98% of MAPK is activated.
• R{“reactions”}=?[S]—what is the long-run average rate of reactions between

MAPK and MAPKK?

3.4 Results and Analysis

When analysing quantitative properties such as those listed above, it is often bene-
ficial to study trends resulting from variations in parameters either from the model
(e.g. initial species concentrations or reaction rates) or from the property specifica-
tion (e.g. a time bound). Performing analysis in this way is more likely to provide
insight into the dynamics of the model or to identify interesting or anomalous be-
havior.

To illustrate this, Fig. 7 shows results obtained with PRISM for the MAPK cas-
cade case study when considering the expected amount of activated MAPK at time
instant t , as t varies. The initial quantities of MAPK, MAPKK, and MAPKKK (de-
noted N ) are 4 for Fig. 7(a) and 8 for Fig. 7(b). The initial quantity of all remaining
species in the cascade (the enzymes E1 and E2 and the phosphatases for MAPK
and MAPKK) is 1. The plots in Fig. 7 also show the standard deviation of the ran-
dom variable for the amount of activated MAPK at time t , drawn as a pair of dotted
lines. Since, the standard deviation of a random variable X equals the square root
of its variance which equals E(X2) − E(X)2, the standard deviation (and variance)
is calculated by additionally computing the expected value at time t for the reward

Fig. 7 Expected activated MAPK at time t (R{“activated”}=?[I =t ])
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Fig. 8 Simulation results for amount of activated MAPK at time t

structure:

rewards “activated_squared”
true : kpp ∗ kpp;

endrewards

i.e. the square of the reward structure “activated” given in Fig. 6.
For the purposes of comparison, we also show results for the expected amount of

activated MAPK computed using PRISM’s discrete-event simulation engine. These
results are presented in Fig. 8 (for the same initial configurations as those used in
Fig. 7). These are generated using very small numbers of simulation runs (10 and
100). Smoother approximations for the plots from Fig. 7 can be obtained with higher
numbers of runs.

Since it is also easy to change the initial amount N of MAPK, MAPKK, and
MAPKKK in our model, we also show how the expected amount of activated MAPK
over time varies for different values of N . Figure 9(a) shows the expected percentage
of activated MAPK at time t for values of N from 2 up to 8, and Fig. 9(b) the
standard deviation for the amount of MAPK over the same parameters.

Using the other reward structures from Fig. 6, we also present results for the ex-
pected number of reactions between MAPK and MAPKK up until time t (Fig. 10(a))
and the expected time until all MAPKs are activated at the same time (Fig. 10(b)).
In both cases, we vary the initial amount N of MAPK, MAPKK, and MAPKKK
and, in Fig. 10(b), we also vary the initial quantity (denoted L) of the enzyme E1.

The results demonstrate that as N grows, the percentage of MAPK that is eventu-
ally activated increases and the time until all MAPKs are activated decreases. They
also show the (expected) dynamics that raising species quantities increases the num-
ber of reactions that occur between them. We also observe that as N increases, the
behavior of the PRISM model demonstrates the same behavior as that presented
in [15] (computed through ODEs and the reactions given in Fig. 3) where, in re-
sponse to an external stimulus (E1), the cascade acts as a switch for the activation
of MAPK.
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Fig. 9 Expected activated MAPK at time t and corresponding standard deviation values

Fig. 10 Expected MAPK–MAPK reactions by t and time until all MAPK activated

4 Related Work

In this section, we briefly review some other applications of probabilistic verifi-
cation techniques to systems biology. We also describe the connections that exist
between these approaches and the PRISM tool. Figure 11 illustrates the ways in
which PRISM can interact with other tools and specification formalisms.

PRISM has been applied to a variety of biological case studies. In [11], it is used
to study a model of the Fibroblast Growth Factor (FGF) signaling pathway. The
model corresponds to a single instance of the pathway, i.e. there is at most one of
each molecule or species, which has the advantage that the resulting state space is
relatively small. However, the model is still highly complex due to the large number
of different interactions that can occur in the pathway and is sufficiently rich to
explain the roles of each component and how they interact. In [4], PRISM is used to
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Fig. 11 Language and tool connections for PRISM

model the RKIP-inhibited ERK pathway where concentrations of each protein are
modeled as discrete abstract quantities. Through comparisons with simulations for a
traditional differential equation model, the authors show that accurate results can be
obtained with relatively small sets of discrete values. PRISM is used in [30] to model
codon bias, studying a range of quantitative properties of the system. Finally, [31]
uses PRISM, in combination with several other tools, to analyse gene expression
modeled using P-Systems.

Another formalism that has proved popular for modeling biological systems is
stochastic process algebra. For example, PEPA [13] is used in [3] to study the ef-
fect of RKIP on the ERK signaling pathway. The stochastic π -calculus [28], an
extension of the π -calculus with CTMC semantics, has been used to model many
systems; see, for example [21, 29]. Various tools for construction and verification
of PEPA models are available and, for the stochastic π -calculus, simulators such as
BioSpi [29] and the Stochastic Pi-Machine (SPiM) [26] have been developed, but
no model checkers. Both formalisms can also be used in conjunction with PRISM,
through language translators. The PEPA translator is part of PRISM [27] and a pro-
totype stochastic π -calculus translator has been built based on the techniques in
[24].

An alternative format for representing biological models is Systems Biology
Markup Language (SBML) [34], a computer-readable language based on XML.
This is intended to facilitate exchanging models between different systems biology
software tools. Biochemical reaction networks are described by specifying the set of
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Fig. 12 Fragment of
SBML-shorthand code for the
MAPK cascade of Fig. 3

species in the system, the reactions they can undergo, and the kinetic laws and para-
meters which govern these reactions. Again, support for PRISM is provided through
a language translator [33]. For illustration, Fig. 12 shows a fragment of the “SBML-
shorthand” [35] code which describes the set of MAPK reactions used throughout
this chapter. This simple textual language can be automatically translated [35] into
SBML. When the SBML model produced is then converted into PRISM code [33],
the resulting CTMC is identical to the one used in this chapter.

Further mechanisms are also available for input of models into PRISM. The tool
includes a simple pre-processing language (PRISM-PP) which can be used to au-
tomatically generate model and property specifications that contain a lot of repeti-
tion. Markov chains can also be imported directly (through an explicit list of their
states, transitions, and rates) allowing models to be generated in other tools and then
analysed in PRISM.

Conversely, it is also possible to use external tools to analyse PRISM models.
One example is the statistical based model-checker Ymer [37], which performs
approximate CSL model checking of CTMCs expressed as PRISM models, using
discrete-event simulation and sequential acceptance sampling (for a detailed com-
parison of the merits of this approach and the probabilistic model checking tech-
niques used by PRISM, see [38]). Another example is the tool GRIP (Generic Rep-
resentatives In PRISM) [7], which performs language-level symmetry reduction of
PRISM models based on the generic representatives approach of [8]. Further support
for symmetry reduction is provided by PRISM-symm [19], a prototype extension of
PRISM which uses an efficient symbolic (MTBDD-based) implementation.
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Finally, models that have been specified in the PRISM modeling language can be
constructed in PRISM, and then exported to an explicit representation of the Markov
chain for analysis in other tools. In particular, this output can be customized for the
probabilistic model checkers Markov Reward Model Checker (MRMC) [16] and the
Erlangen–Twente Markov Chain Checker (ETMCC) [12] which can both be used
for verifying CTMCs against CSL specifications. MRMC also supports rewards-
based property specifications through the logic CSRL [6]. Models, in addition to
other PRISM outputs such as numerical results or simulation traces, can be imported
into more general-purpose tools such as MATLAB [23] and MAPLE [22].

5 Conclusions

We have illustrated how probabilistic model checking and, in particular, the prob-
abilistic model checker PRISM can be employed as a framework for the analysis
of biological pathways. One of the key strengths of this approach is that it allows
for the computation of exact quantitative measures relating to the evolution of the
system over time. Since as we have demonstrated, it is possible to specify and verify
a wide variety of such measures, a detailed, quantitative analysis of the interactions
between the components of a pathway is possible.

The principal challenge remaining for the application of probabilistic model
checking to biological systems, as in so many other domains, is the scalability of
the techniques to ever larger systems and models. There is hope that some of the
techniques that have already been developed in the field of formal verification, such
as symmetry reduction, bi-simulation minimization and abstraction, will prove ben-
eficial in this area. For further details on such approaches and pointers to related
work; see, for example [11].
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A New Mathematical Model for the Heat Shock
Response

Ion Petre, Andrzej Mizera, Claire L. Hyder,
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Lea Sistonen, and Ralph-Johan Back

Abstract We present in this paper a novel molecular model for the gene regulatory
network responsible for the eukaryotic heat shock response. Our model includes the
temperature-induced protein misfolding, the chaperone activity of the heat shock
proteins, and the backregulation of their gene transcription. We then build a math-
ematical model for it, based on ordinary differential equations. Finally, we discuss
the parameter fit and the implications of the sensitivity analysis for our model.

1 Introduction

One of the most impressive algorithmic-like bioprocesses in living cells, crucial for
the very survival of cells is the heat shock response: the reaction of the cell to ele-
vated temperatures. One of the effects of raised temperature in the environment is
that proteins get misfolded, with a rate that is exponentially dependent on the tem-
perature. As an effect of their hydrophobic core being exposed, misfolded proteins
tend to form bigger and bigger aggregates, with disastrous consequences for the cell;
see [1]. To survive, the cell needs to increase quickly the level of chaperons (pro-
teins that are assisting in the folding or refolding of other proteins). Once the heat
shock is removed, the cell eventually reestablishes the original level of chaperons;
see [10, 18, 22].

The heat shock response has been subject of intense research in the last few years,
for at least three reasons. First, it is a well-conserved mechanism across all eukary-
otes, while bacteria exhibit only a slightly different response; see [5, 12, 23]. As
such, it is a good candidate for studying the engineering principle of gene regulatory
networks; see [4, 5, 12, 25]. Second, it is a tempting mechanism to model mathemat-
ically, since it involves only very few reactants, at least in a simplified presentation;
see [18, 19, 22]. Third, the heat shock proteins (the main chaperons involved in the
eukaryotic heat shock response) play a central role in a large number of regulatory
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and of inflammatory processes, as well as in signaling; see [9, 20]. Moreover, they
contribute to the resilience of cancer cells, which makes them attractive as targets
for cancer treatment; see [3, 15, 16, 27].

We focus in this paper on a new molecular model for the heat shock response,
proposed in [19]. We consider here a slight extension of the model in [19] where,
among others, the chaperons are also subject to misfolding. After introducing the
molecular model in Sect. 2, we build a mathematical model in Sect. 3, including
the fitting of the model with respect to experimental data. We discuss in Sect. 4 the
results of the sensitivity analysis of the model, including its biological implications.

2 A New Molecular Model for the Eukaryotic Heat Shock
Response

The heat shock proteins (hsp) play the key role in the heat shock response. They act
as chaperons, helping misfolded proteins (mfp) to refold. The response is controlled
in our model through the regulation of the transactivation of the hsp-encoding genes.
The transcription of the gene is promoted by some proteins called heat shock fac-
tors (hsf) that trimerize and then bind to a specific DNA sequence called heat shock
element (hse), upstream of the hsp-encoding gene. Once the hsf trimer is bound to
the heat shock element, the gene is transactivated and the synthesis of hsp is thus
switched on (for the sake of simplicity, the role of RNA is ignored in our model).
Once the level of hsp is high enough, the cell has an ingenious mechanism to switch
off the hsp synthesis. For this, hsp bind to free hsf, as well as break the hsf trimers
(including those bound to hse, promoting the gene activation), thus effectively halt-
ing the hsp synthesis.

Under elevated temperatures, some of the proteins (prot) in the cell get misfolded.
The heat shock response is then quickly switched on simply because the heat shock
proteins become more and more active in the refolding process, thus leaving the heat
shock factors free and able to promote the synthesis of more heat shock proteins.
Note that several types of heat shock proteins exist in an eukaryotic cell. We treat
them all uniformly in our model, with hsp70 as common denominator. The same
comment applies also to the heat shock factors.

Our molecular model for the eukaryotic heat shock response consists of the fol-
lowing molecular reactions:

1. 2 hsf � hsf2
2. hsf + hsf2 � hsf3
3. hsf3 + hse � hsf3 : hse
4. hsf3 : hse → hsf3 : hse + mhsp
5. hsp + hsf � hsp : hsf
6. hsp + hsf2 → hsp : hsf + hsf
7. hsp + hsf3 → hsp : hsf + 2 hsf
8. hsp + hsf3 : hse → hsp : hsf + 2 hsf + hse
9. hsp → ∅
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10. prot → mfp
11. hsp + mfp � hsp : mfp
12. hsp : mfp → hsp + prot
13. hsf → mhsf
14. hsp → mhsp
15. hsp + mhsf � hsp : mhsf
16. hsp : mhsf → hsp + hsf
17. hsp + mhsp � hsp : mhsp
18. hsp : mhsp → 2 hsp

It is important to note that the main addition we consider here with respect to the
model in [19] is to include the misfolding of hsp and hsf. This is, in principle, no
minor extension since in the current model the repairing mechanism is subject to
failure, but it is capable to fix itself.

Several criteria were followed when introducing this molecular model:

(i) as few reactions and reactants as possible;
(ii) include the temperature-induced protein misfolding;

(iii) include hsf in all its three forms: monomers, dimers, and trimers;
(iv) include the hsp-backregulation of the transactivation of the hsp-encoding gene;
(v) include the chaperon activity of hsp;

(vi) include only well-documented, textbook-like reactions and reactants.

For the sake of keeping the model as simple as possible, we are ignoring a number
of details. For example, note that there is no notion of locality in our model: we
make no distinction between the place where gene transcription takes place (inside
nucleus) and the place where protein synthesis takes place (outside nucleus). Note
also that protein synthesis and gene transcription are greatly simplified in reaction
4: we only indicate that once the gene is transactivated, protein synthesis is also
switched on. On the other hand, reaction 4 is faithful to the biological reality; see [1]
in indicating that newly synthesized proteins often need chaperons to form their
native fold.

As far as protein degradation is concerned, we only consider it in the model for
hsp. If we considered it also for hsf and prot, then we should also consider the
compensating mechanism of protein synthesis, including its control. For the sake of
simplicity and also based on experimental evidence that the total amount of hsf and
of prot is somewhat constant, we ignore the details of synthesis and degradation for
hsf and prot.

3 The Mathematical Model

We build in this section a mathematical model associated to the molecular model
1–18. Our mathematical model is in terms of coupled ordinary differential equations
and its formulation is based on the principle of mass-action.
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3.1 The Principle of Mass-Action

The mass-action law is widely used in formulating mathematical models in physics,
chemistry, and engineering. Introduced in [6, 7], it can be briefly summarized as
follows: the rate of each reaction is proportional to the concentration of reactants.
In turn, the rate of each reaction gives the rate of consuming the reactants and the
rate of producing the products. For example, for a reaction

R1 : A + B → C,

the rate according to the principle of mass action is f1(t) = kA(t)B(t), where k ≥ 0
is a constant and A(t), B(t) are functions of time giving the level of the reactants A

and B , respectively. Consequently, the rate of consuming A and B , and the rate of
producing C is expressed by the following differential equations:

dA

dt
= dB

dt
= −k A(t)B(t),

dC

dt
= k A(t)B(t).

For a reversible reaction,

R2 : A + B � C,

the rate is f2(t) = k1A(t)B(t) − k2C(t), for some constants k1, k2 ≥ 0. The differ-
ential equations are written in a similar way:

dA

dt
= dB

dt
= −f2(t),

dC

dt
= f2(t). (∗)

For a set of coupled reactions, the differential equations capture the combined rate
of consuming and producing each reactant as an effect of all reactions taking place
simultaneously. For example, for reactions

R3 : A + B � C, R4 : B + C � A, R5 : A + C � B,

the associated system of differential equations is

dA/dt = −f3(t) + f4(t) − f5(t),

dB/dt = −f3(t) − f4(t) + f5(t),

dC/dt = f3(t) − f4(t) − f5(t),

where fi(t) is the rate of reaction Ri , for all 3 ≤ i ≤ 5, formulated according to the
principle of mass action.

We recall that for a system of differential equations

dX1

dt
= f1(X1, . . . ,Xn),

...
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dXn

dt
= fn(X1, . . . ,Xn),

we say that (x1, x2, . . . , xn) is a steady states (also called equilibrium points) if it is
a solution of the algebraic system of equations fi(X1, . . . ,Xn) = 0, for all 1 ≤ i ≤
n, see [24, 28]. Steady states are particularly interesting because they characterize
situations where although reactions may have nonzero rates, their combined effect
is zero. In other words, the concentration of all reactants and of all products are
constant.

We refer to [11, 17, 29] for more details on the principle of mass action and its
formulation based on ordinary differential equations.

3.2 Our Mathematical Model

Let R+ be the set of all positive real numbers and Rn+ the set of all n-tuples
of positive real numbers, for n ≥ 2. We denote each reactant and bond between
them in the molecular model 1–18 according to the convention in Table 1. We
also denote by κ ∈ R17+ the vector with all reaction rate constants as its com-
ponents; see Table 2: κ = (k+

1 , k−
1 , k+

2 , k−
2 , k+

3 , k−
3 , k4, k

+
5 , k−

5 , k6, k7, k8, k9, k
+
11,

k−
11, k12, k

+
13, k

−
13, k14, k

+
15, k

−
15, k16).

The mass action-based formulation of the associated mathematical model in
terms of differential equations is straightforward, leading to the following system

Table 1 The list of variables
in the mathematical model,
their initial values, and their
values in one of the steady
states of the system, for
T = 42. Note that the initial
values give one of the steady
states of the system for
T = 37

Metabolite Variable Initial value A steady state (T = 42)

hsf X1 0.669 0.669

hsf2 X2 8.73 × 10−4 8.73 × 10−4

hsf3 X3 1.23 × 10−4 1.23 × 10−4

hsf3 : hse X4 2.956 2.956

mhsf X5 3.01 × 10−6 2.69 × 10−5

hse X6 29.733 29.733

hsp X7 766.875 766.875

mhsp X8 3.45 × 10−3 4.35 × 10−2

hsp : hsf X9 1403.13 1403.13

hsp : mhsf X10 4.17 × 10−7 3.72 × 10−6

hsp : mhsp X11 4.78 × 10−4 6.03 × 10−3

hsp : mfp X12 71.647 640.471

prot X13 1.14 × 108 1.14 × 108

mfp X14 517.352 4624.72
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Table 2 The numerical
values for the fitted model Kinetic constant Reaction Numerical value

k+
1 (1), forward 3.49091

k−
1 (1), backward 0.189539

k+
2 (2), forward 1.06518

k−
2 (2), backward 1 × 10−9

k+
3 (3), forward 0.169044

k−
3 (3), backward 1.21209 × 10−6

k4 (4) 0.00830045

k+
5 (5), forward 9.73665

k−
5 (5), backward 3.56223

k6 (6) 2.33366

k7 (7) 4.30924 × 10−5

k8 (8) 2.72689 × 10−7

k9 (9) 3.2 × 10−5

k+
11 (11), forward 0.00331898

k−
11 (11), backward 4.43952

k12 (12) 13.9392

k+
13 (15), forward 0.00331898

k−
13 (15), backward 4.43952

k14 (16) 13.9392

k+
15 (17), forward 0.00331898

k−
15 (17), backward 4.43952

k16 (18) 13.9392

of equations:

dX1/dt = f1(X1,X2, . . . ,X14, κ), (1)

dX2/dt = f2(X1,X2, . . . ,X14, κ), (2)

dX3/dt = f3(X1,X2, . . . ,X14, κ), (3)

dX4/dt = f4(X1,X2, . . . ,X14, κ), (4)

dX5/dt = f5(X1,X2, . . . ,X14, κ), (5)

dX6/dt = f6(X1,X2, . . . ,X14, κ), (6)

dX7/dt = f7(X1,X2, . . . ,X14, κ), (7)

dX8/dt = f8(X1,X2, . . . ,X14, κ), (8)

dX9/dt = f9(X1,X2, . . . ,X14, κ), (9)

dX10/dt = f10(X1,X2, . . . ,X14, κ), (10)

dX11/dt = f11(X1,X2, . . . ,X14, κ), (11)
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dX12/dt = f12(X1,X2, . . . ,X14, κ), (12)

dX13/dt = f13(X1,X2, . . . ,X14, κ), (13)

dX14/dt = f14(X1,X2, . . . ,X14, κ), (14)

where

f1 = −k+
2 X1X2 + k−

2 X3 − k+
5 X1X7 + k−

5 X9 + 2k8X4X7 + k6X2X7

− ϕ(T )X1 + k14X10 + 2k7X3X7 − 2k+
1 X2

1 + 2k−
1 X2,

f2 = −k+
2 X1X2 + k+

2 X3 − k6X2X7 + k+
1 X2

1 − k−
1 X2,

f3 = −k+
3 X3X6 + k+

2 X1X2 − k−
2 X3 + k−

3 X4 − k7X3X7,

f4 = k+
3 X3X6 − k−

3 X4 − k8X4X7,

f5 = ϕ(T )X1 − k+
13X5X7 + k−

13X10,

f6 = −k+
3 X3X6 + k−

3 X4 + k8X4X7,

f7 = −k+
5 X1X7 + k−

5 X9 − k+
11X7X14 + k−

11X12 − k8X4X7 − k6X2X7

− k+
13X5X7 + (

k−
13 + k14

)
X10 − (

ϕ(T ) + k9
)
X7 − k+

15X7X8

− k7X3X7 + (
k−

15 + 2k16
)
X11 + k12X12,

f8 = k4X4 + ϕ(T )X7 − k+
15X7X8 + k−

15X11,

f9 = k+
5 X1X7 − k−

5 X9 + k8X4X7 + k6X2X7 + k7X3X7,

f10 = k+
13X5X7 − (

k−
13 + k14

)
X10,

f11 = k+
15X7X8 − (

k−
15 + k16

)
X11,

f12 = k+
11X7X14 − (

k−
11 + k12

)
X12,

f13 = k12X12 − ϕ(T )X13,

f14 = −k+
11X7X14 + k−

11X12 + ϕ(T )X13.

The rate of protein misfolding ϕ(T ) with respect to temperature T has been
investigated experimentally in [13, 14], and a mathematical expression for it has
been proposed in [18]. We have adapted the formula in [18] to obtain the following
misfolding rate per second:

ϕ(T ) =
(

1 − 0.4

eT −37

)

× 0.8401033733 × 10−6 × 1.4T −37 s−1,

where T is the temperature of the environment in Celsius degrees, with the formula
being valid for 37 ≤ T ≤ 45.

The following result gives three mass-conservation relations for our model.
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Theorem 1 There exists K1, K2, K3 ≥ 0 such that

(i) X1(t) + 2X2(t) + 3X3(t) + 3X4(t) + X5(t) + X9(t) = K1,
(ii) X4(t) + X6(t) = K2,

(iii) X13(t) + X14(t) + X12(t) = K3,

for all t ≥ 0.

Proof We only prove here part (ii), as the others may be proved analogously. For
this, note that from (4) and (6), it follows that

d(X4 + X6)

dt
= (f4 + f6)(X1, . . . ,X14, κ, t) = 0,

i.e., (X4 + X6)(t) is a constant function. �

The steady states of the model (1)–(14) satisfy the following algebraic relations,
where xi is the numerical value of Xi in the steady state, for all 1 ≤ i ≤ 14.

0 = −k+
2 x1x2 + k−

2 x3 − k+
5 x1x7 + k−

5 x9 + 2k8x4x7 + k6x2x7

− ϕ(T )x1 + k14x10 + 2k7x3x7 − 2k+
1 x2

1 + 2k−
1 x2, (15)

0 = −k+
2 x1x2 + k+

2 x3 − k6x2x7 + k+
1 x2

1 − k−
1 x2, (16)

0 = −k+
3 x3x6 + k+

2 x1x2 − k−
2 x3 + k−

3 x4 − k7x3x7, (17)

0 = k+
3 x3x6 − k−

3 x4 − k8x4x7, (18)

0 = ϕ(T )x1 − k+
13x5x7 + k−

13x10, (19)

0 = −k+
3 x3x6 + k−

3 x4 + k8x4x7, (20)

0 = −k+
5 x1x7 + k−

5 x9 − k+
11x7x14 + k−

11x12 − k8x4x7 − k6x2x7

− k+
13x5x7 + (

k−
13 + k14

)
x10 − (

ϕ(T ) + k9
)
x7 − k+

15x7x8 − k7x3x7

+ (
k−

15 + 2k16
)
x11 + k12x12, (21)

0 = k4x4 + ϕ(T )x7 − k+
15x7x8 + k−

15x11, (22)

0 = k+
5 x1x7 − k−

5 x9 + k8x4x7 + k6x2x7 + k7x3x7, (23)

0 = k+
13x5x7 − (

k−
13 + k14

)
x10, (24)

0 = k+
15x7x8 − (

k−
15 + k16

)
x11, (25)

0 = k+
11x7x14 − (

k−
11 + k12

)
x12, (26)

0 = k12x12 − ϕ(T )x13, (27)

0 = −k+
11x7x14 + k−

11x12 + ϕ(T )x13. (28)

It follows from Theorem 1 that only eleven of the relations above are indepen-
dent. For example, relations (15)–(17), (19), (21)–(27) are independent. The system
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consisting of the corresponding differential equations is called the reduced system
of (1)–(14).

3.3 Fitting the Model to Experimental Data

The experimental data available for the parameter fit is from [10] and reflects the
level of DNA binding, i.e., variable X4 in our model, for various time points up
to 4 hours, with continuous heat shock at 42◦C. Additionally, we require that the
initial value of the variables of the model is a steady state for temperature set to
37◦C. This is a natural condition since the model is supposed to reflect the reaction
to temperatures raised above 37◦C.

Mathematically, the problem we need to solve is one of global optimization, as
formulated below. For each 17-tuple κ of positive numerical values for all kinetic
constants, and for each 14-tuple α of positive initial values for all variables in the
model, the function X4(t) is uniquely defined for a fixed temperature T. We denote
the value of this function at time point τ , with parameters κ and α by xT

4 (κ,α, τ ).
Note that this property holds for all the other variables in the model and it is valid in
general for any mathematical model based on ordinary differential equations (one
calls such models deterministic). We denote the set of experimental data in [10] by

En = {
(ti , ri) | ti , ri > 0,1 ≤ i ≤ N

}
,

where N ≥ 1 is the number of observations, ti is the time point of each observation
and ri is the value of the reading.

With this setup, we can now formulate our optimization problem as follows: find
κ ∈ R17+ and α ∈ R14+ such that

(i) f (κ,α) = 1
N

∑N
i=1(x

42
4 (κ,α, ti) − ri)

2 is minimal and
(ii) α is a steady state of the model for T = 37 and parameter values given by κ .

The function f (κ,α) is a cost function (in this case least mean squares), indicat-
ing numerically how the function xT

4 (κ,α, t), t ≥ 0, compares with the experimental
data.

Note that in our optimization problem, not all 31 variables (the components of κ

and α) are independent. On one hand, we have the three algebraic relations given by
Theorem 1. On the other hand, we have eleven more independent algebraic relations
given by the steady state equations (15)–(17), (19), (21)–(27). Consequently, we
have 17 independent variables in our optimization problem.

Given the high degree of the system (1)–(14), finding the analytical form of the
minimum points of f (κ,α) is very challenging. This is a typical problem when the
system of equations is nonlinear. Adding to the difficulty of the problem is the fact
that the eleven independent steady state equations cannot be solved analytically,
given their high overall degree.

Since an analytical solution to the model fitting problem is often intractable, the
practical approach to such problems is to give a numerical simulation of a solution.
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Fig. 1 The continuous line shows a numerical estimation of function X4(t), standing for DNA
binding, for the initial data in Table 1 and the parameter values in Table 2. With crossed points, we
indicated the experimental data of [10]

Several methods exist for this; see [2, 21]. The trade-off with all these methods is
that typically they offer an estimate of a local optimum, with no guarantee of it
being a global optimum.

Obtaining a numerical estimation of a local optimum for (i) is not difficult. How-
ever, such a solution may not satisfy (ii). To solve this problem, for a given local op-
timum (κ0, α0) ∈ R17+ × R14+ one may numerically estimate a steady state α1 ∈ R14+
for T = 37. Then the pair (κ0, α1) satisfies (ii). Unfortunately, (κ0, α1) may not be
close to a local optimum of the cost function in (i).

Another approach is to replace the algebraic relations implicitly given by (ii) with
an optimization problem similar to that in (i). Formally, we replace all algebraic
relations Ri = 0, 1 ≤ i ≤ 11, given by (ii) with the condition that

g(κ,α) = 1

M

M∑

j=1

R2
i (κ,α, δj )

is minimal, where 0 < δ1 < · · · < δM are some arbitrary (but fixed) time points. Our
problem thus becomes one of optimization with cost function (f, g), with respect
to the order relation (a, b) ≤ (c, d) if and only if a ≤ c and b ≤ d . The numerical
values in Table 2 give one solution to this problem obtained based on Copasi [8].
The plot in Fig. 1 shows the time evolution of function X4(t) up to t = 4 hours, with
the experimental data of [10] indicated with crosses.
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The solution in Table 2 has been compared with a number of other available
experimental data (such as behavior at 41◦C and at 43◦C), as well as against qual-
itative, nonnumerical data. The results were satisfactory and better than those of
previous models reported in the literature, such as [18, 22]. For details on the model
validation analysis, we refer to [19].

Note that the steady state of the system of differential equations (1)–(14), for the
initial values in Table 1 and the parameter values in Table 2 is asymptotically stable.
To prove it, it is enough to consider its associated Jacobian:

J (t) =

⎛

⎜
⎜
⎝

∂f1/∂X1 ∂f1/∂X2 . . . ∂f1/∂X14
∂f2/∂X1 ∂f2/∂X2 . . . ∂f2/∂X14

...
...

...

∂f14/∂X1 ∂f14/∂X2 . . . ∂f14/∂X14

⎞

⎟
⎟
⎠ .

As it is well known, see [24, 28], a steady state is asymptotically stable if and
only if all eigenvalues of the Jacobian at the steady state have negative real parts.
A numerical estimation done with Copasi [8] shows that the steady state for T = 42;
see Table 1, is indeed asymptotically stable.

4 Sensitivity Analysis

Sensitivity analysis is a method to estimate the changes brought into the system
through small changes in the parameters of the model. In this way, one may esti-
mate both the robustness of the model against small changes in the model, as well
as identify possibilities for bringing a certain desired changed in the system. For
example, one question that is often asked of a biochemical model is what changes
should be done to the model so that the new steady state satisfies certain properties.
In our case, we are interested in changing some of the parameters of the model so
that the level of mfp in the new steady state of the system is smaller than in the
standard model, thus presumably making it easier for the cell to cope with the heat
shock. We also analyze a scenario in which we are interested in increasing the level
of mfp in the new steady state, thus increasing the chances of the cell not being able
to cope with the heat shock. Such a scenario is especially meaningful in relation
with cancer cells that exhibit the properties of an excited cell, with increased lev-
els of hsp; see [3, 15, 16, 27]. In this section, we follow in part a presentation of
sensitivity analysis due to [26].

We consider the partial derivatives of the solution of the system with respect
to the parameters of the system. These are called first-order local concentration
sensitivity coefficients. Second- or higher-order sensitivity analysis considering the
simultaneous change of two or more parameters is also possible. If we denote
X(t, κ) = (X1(t, κ),X2(t, κ), . . . ,X14(t, κ)), the solution of the system (1)–(14)
with respect to the parameter vector κ , then the concentration sensitivity coefficients
are the time functions ∂Xi/∂κj (t), for all 1 ≤ i ≤ 14, 1 ≤ j ≤ 17. Differentiating
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the system (1)–(14) with respect to κj yields the following set of sensitivity equa-
tions:

d

dt

∂X

κj

= J (t)
∂X

∂κj

+ ∂f (t)

∂κj

, for all 1 ≤ j ≤ 17, (29)

where ∂X/∂κj = (∂X1/∂κj , . . . , ∂X14/∂κj ) is the component-wise vector of par-
tial derivatives, f = (f1, . . . , f14) is the model function in (1)–(14), and J (t)

is the corresponding Jacobian. The initial condition for the system (29) is that
∂X/∂κj (0) = 0, for all 1 ≤ j ≤ 17.

The solution of the system (29) can be numerically integrated, thus obtaining
a numerical approximation of the time evolution of the sensitivity coefficients.
Very often, however, the focus is on sensitivity analysis around steady states. If
the considered steady state is asymptotically stable, then one may consider the
limit limt→∞(∂X/∂κj )(t), called stationary sensitivity coefficients. They reflect
the dependency of the steady state on the parameters of the model. Mathemati-
cally, they are given by a set of algebraic equations obtained from (29) by setting
d/dt(∂X/κj ) = 0. We then obtain the following algebraic equations:

(
∂X

∂κj

)

= −J−1Fj , for all 1 ≤ j ≤ 17, (30)

where J is the value of the Jacobian at the steady state and Fj is the j th column of
the matrix F = (∂fr/∂κs)r,s computed at the steady state.

When used for comparing the relative effect of a parameter change in two or
more variables, the sensitivity coefficients must have the same physical dimension
or be dimensionless; see [26]. Most often, one simply considers the matrix S′ of
(dimensionless) normalized (also called scaled) sensitivity coefficients:

S′
ij = κj

Xi(t, κ)
· ∂Xi(t, κ)

∂κj

= ∂lnXi(t, κ)

∂lnκj

.

Numerical estimations of the normalized sensitivity coefficients for a steady state
may be obtained, e.g. with Copasi. For X14 (standing for the level of mfp in the
model), the most significant (with the largest module) sensitivity coefficients are the
following:

◦ ∂ln(X14)/∂ln(T ) = 14.24, ◦ ∂ln(X14)/∂ln(k6) = 0.16,
◦ ∂ln(X14)/∂ln(k+

1 ) = −0.16, ◦ ∂ln(X14)/∂ln(k9) = 0.15,
◦ ∂ln(X14)/∂ln(k+

2 ) = −0.16, ◦ ∂ln(X14)/∂ln(k+
11) = −0.99,

◦ ∂ln(X14)/∂ln(k+
5 ) = 0.49, ◦ ∂ln(X14)/∂ln(k−

11) = 0.24,
◦ ∂ln(X14)/∂ln(k−

5 ) = −0.49, ◦ ∂ln(X14)/∂ln(k12) = −0.24.

These coefficients being most significant is consistent with the biological intu-
ition that the level of mfp in the model is most dependant on the temperature (para-
meter T ), on the rate of mfp being sequestered by hsp (parameters k+

11 and k−
11) and

the rate of protein refolding (parameter k12). However, the sensitivity coefficients
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also reveal less intuitive, but significant dependencies such as the one on the reac-
tion rate of hsf being sequestered by hsp (parameters k+

5 and k−
5 ), on the rate of dis-

sipation of hsf dimers (parameter k6), or on the rate of dimer- and trimer-formation
(parameters k+

1 and k+
2 ).

Note that the sensitivity coefficients reflect the changes in the steady state for
small changes in the parameter. For example, increasing the temperature from 42
with 0.1% yields an increase in the level of mfp with 1.43%, roughly as predicted
by ∂ln(X14)/∂ln(T ) = 14.24. An increase of the temperature from 42 with 10%
yields, however, an increase in the level of mfp of 311.93%.

A similar sensitivity analysis may also be performed with respect to the initial
conditions; see [26]. If we denote by X(0) = X(0, κ), the initial values of the vec-
tor X, for parameters κ , then the initial concentration sensitivity coefficients are
obtained by differentiating system (1)–(14) with respect to X(0):

d

dt

∂X

∂X(0)
= J (t)

∂X

∂X(0)
(t), (31)

with the initial condition that ∂X/∂X(0)(0) is the identity matrix. Similarly, as for
the parameter-based sensitivity coefficients, it is often useful to consider the nor-
malized, dimensionless coefficients

∂Xi

∂X(0)
j

(t) · X(0)
j (t)

Xi(t)
= ∂ln(Xi)

∂ ln(X(0)
j )

.

A numerical estimation of the initial concentration sensitivity coefficient of mfp
around the steady state given in Table 2 for T = 42, shows that all are negligible
except for the following two coefficients: ∂ln(X14)/∂ln(X

(0)
9 ) = −0.497748 and

∂ln(X14)/∂ln(X
(0)
13 ) = 0.99. While the biological significance of the dependency

of mfp on the initial level of prot is obvious, its dependency on the initial level of
hsp : hsf is perhaps not. Moreover, it turns out that several other variables have a
significant dependency on the initial level of hsp : hsf:

◦ ∂ln(X1)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X6)/∂ln(X9(0)) = −0.04,
◦ ∂ln(X2)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X7)/∂ln(X9(0)) = 0.49,
◦ ∂ln(X3)/∂ln(X9(0)) = 1.04, ◦ ∂ln(X9)/∂ln(X9(0)) = 0.99,
◦ ∂ln(X4)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X14)/∂ln(X9(0)) = −0.49,
◦ ∂ln(X10)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X11)/∂ln(X9(0)) = 0.49,

For example, increasing X
(0)
9 by 1% increases the steady state values of X7 by

0.49% and decreases the level of X14 by 0.49%. Increasing X
(0)
9 by 10% increases

the steady state values of X7 by 4.85% and decreases the level of X14 by 4.63%.
The biological interpretation of this significant dependency of the model on the

initial level of hsp : hsf is based on two arguments. On one hand, the most significant
part (about two thirds) of the initial available molecules of hsp in our model are
present in bonds with hsf. On the other hand, the vast majority of hsf molecules
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are initially bound to hsp. Thus, changes in the initial level of hsp : hsf have an
immediate influence on the two main drivers of the heat shock response: hsp and
hsf. Interestingly, the dependency of the model on the initial levels of either hsp or
hsf is negligible.

Acknowledgements This work has been partially supported by the following grants from Acad-
emy of Finland: project 108421 and 203667 (to I.P.), the Center of Excellence on Formal Methods
in Programming (to R-J.B.).

References

1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2004) Essential cell biology,
2nd edn. Garland Science, London

2. Burden RL, Douglas Faires J (1996) Numerical analysis. Thomson Brooks/Cole, Pacific
Grove

3. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic,
predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

4. El-Samad H, Kurata H, Doyle J, Gross CA, Khamash M (2005) Surviving heat shock: control
strategies for robustness and performance. Proc Natl Acad Sci 102(8):2736–2741

5. El-Samad H, Prajna S, Papachristodoulu A, Khamash M, Doyle J (2003) Model validation and
robust stability analysis of the bacterial heat shock response using sostools. In: Proceedings of
the 42nd IEEE conference on decision and control, pp 3766–3741

6. Guldberg CM, Waage P (1864) Studies concerning affinity. In: Forhandlinger CM (ed)
Videnskabs-Selskabet i Christiana, p. 35

7. Guldberg CM, Waage P (1879) Concerning chemical affinity. Erdmann’s J Pract Chem
127:69–114

8. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer
U (2006) Copasi—a complex pathway simulator. Bioinformatics 22(24):3067–3074

9. Kampinga HK (1993) Thermotolerance in mammalian cells: protein denaturation and aggre-
gation, and stress proteins. J Cell Sci 104:11–17

10. Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation
domain is modulated by constitutive phosphorylation. Mol Cell Biol 17(4):2107–2115

11. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2006) Systems biology in practice.
Wiley–VCH, New York

12. Kurata H, El-Samad H, Yi TM, Khamash M, Doyle J (2001) Feedback regulation of the heat
shock response in e.coli. In: Proceedings of the 40th IEEE conference on decision and control,
pp 837–842

13. Lepock JR, Frey HE, Ritchie KP (1993) Protein denaturation in intact hepatocytes and isolated
cellular organelles during heat shock. J Cell Biol 122(6):1267–1276

14. Lepock JR, Frey HE, Rodahl AM, Kruuv J (1988) Thermal analysis of chl v79 cells using
differential scanning calorimetry: Implications for hyperthermic cell killing and the heat shock
response. J Cell Physiol 137(1):14–24

15. Liu B, DeFilippo AM, Li Z (2002) Overcomming immune tolerance to cancer by heat shock
protein vaccines. Mol Cancer Ther 1:1147–1151

16. Lukacs KV, Pardo OE, Colston MJ, Geddes DM, Alton EWFW (2000) Heat shock proteins in
cancer therapy. In: Habib (ed) Cancer gene therapy: past achievements and future challenges.
Kluwer, Dordrecht, pp 363–368

17. Nelson DL, Cox MM (2000) Principles of biochemistry, 3rd edn. Worth Publishers, New York
18. Peper A, Grimbergent CA, Spaan JAE, Souren JEM, van Wijk R (1997) A mathematical model

of the hsp70 regulation in the cell. Int J Hyperthermia 14:97–124



A New Mathematical Model for the Heat Shock Response 425

19. Petre I, Hyder CL, Mizera A, Mikhailov A, Eriksson JE, Sistonen L, Back R-J (2008) Two
metabolites are enough to drive the eukaryotic heat shock response. Manuscript

20. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet
362(9382):469–476

21. Press WH, Teukolsky SA, Vetterling WT, Flammery BP (2007) Numerical recipes: the art of
scientific computing. Cambridge University Press, Cambridge

22. Rieger TR, Morimoto RI, Hatzimanikatis V (2005) Mathematical modeling of the eukaryotic
heat shock response: dynamics of the hsp70 promoter. Biophys J 88(3):1646–1658

23. Srivastava R, Peterson MS, Bentley WE (2001) Stochastic kinetic analysis of the escherichia
coli stres circuit using σ 32-targeted antisense. Biotechnol Bioeng 75(1):120–129

24. Taubes CH (2001) Modeling differential equations in biology. Cambridge University Press,
Cambridge

25. Tomlin CJ, Axelrod JD (2005) Understanding biology by reverse engineering the control. Proc
Natl Acad Sci 102(12):4219–4220

26. Turányi T (1990) Sensitivity analysis of complex kinetic systems. Tools and applications.
J Math Chem 5:203–248

27. Workman P, de Billy E (2007) Putting the heat on cancer. Nat Med 13(12):1415–1417
28. Zill DG (2001) A first course in differential equations. Thomson, Tompa
29. Zill DG (2005) A first course in differential equations with modeling applications. Thomson,

Tompa
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Artificial Biochemistry

Luca Cardelli

Abstract We model chemical and biochemical systems as collectives of interacting
stochastic automata, with each automaton representing a molecule that undergoes
state transitions. In this artificial biochemistry, automata interact by the equivalent
of the law of mass action. We investigate several simple but intriguing automata
collectives by stochastic simulation and by ODE analysis.

1 Introduction

Macromolecules

Molecular biology investigates the structure and function of biochemical systems
starting from their basic building blocks: macromolecules. A macromolecule is a
large, complex molecule (a protein or a nucleic acid) that usually has inner mutable
state and external activity. Informal explanations of biochemical events trace indi-
vidual macromolecules through their state changes and their interaction histories:
a macromolecule is endowed with an identity that is retained through its transfor-
mations, even through changes in molecular energy and mass. A macromolecule,
therefore, is qualitatively different from the small molecules of inorganic chemistry.
Such molecules are stateless: in the standard notation for chemical reactions they
are seemingly created and destroyed, and their inner structure is used mainly for the
bookkeeping required by the conservation of mass.

Attributing identity and state transitions to molecules provides more than just
a different way of looking at a chemical event: it solves a fundamental difficulty
with chemical-style descriptions. Each macromolecule can have a huge number of
internal states, exponentially with respect to its size, and can join with other macro-
molecules to from even larger state configurations, corresponding to the product
of their states. If each molecular state is to be represented as a stateless chemical
species, transformed by chemical reactions, then we have a huge explosion in the
number of species and reactions with respect to the number of different macromole-
cules that actually, physically, exist. Moreover, macromolecules can join to each
other indefinitely, resulting in situations corresponding to infinite sets of chemical
reactions among infinite sets of different chemical species. In contrast, the descrip-
tion of a biochemical system at the level of macromolecular states and transitions
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remains finite: the unbounded complexity of the system is implicit in the potential
molecular interactions, but does not have to be written down explicitly. Molecular
biology textbooks widely adopt this finite description style, at least for the purpose
of illustration.

Many proposal now exist that aim to formalize the combinatorial complexity of
biological systems without a corresponding explosion in the notation. One of the
earliest can be found in [4] (which inspired the title of this article), where an artifi-
cial formal frameworks is used to get insights into natural systems. More recently,
the descriptive paradigm in systems biology has become that of programs as mod-
els [8, 12, 20, 21]. Macromolecules, in particular, are seen as stateful concurrent
agents that interact with each other through a dynamic interface. While this style of
descriptions is (like many others) not quite accurate at the atomic level, it forms the
basis of a formalized and growing body of biological knowledge.

The complex chemical structure of a macromolecule is thus commonly ab-
stracted into just internal states and potential interactions with the environment.
Each macromolecule forms, symmetrically, part of the environment for the other
macromolecules, and can be described without having to describe the whole envi-
ronment. Such an open system descriptive style allows modelers to extend systems
by composition, and is fundamental to avoid enumerating the whole combinatorial
state of the system (as one ends up doing in closed systems of chemical reactions).
The programs-as-models approach is growing in popularity with the growing mod-
eling ambitions in systems biology, and is, incidentally, the same approach taken
in the organization of software systems. The basic problem and the basic solution
are similar: programs are finite and compact models of potentially unbounded state
spaces.

Molecules as Automata

At the core, we can therefore regard a macromolecule as some kind of automaton,
characterized by a set of internal states and a set of discrete transitions between
states driven by external interactions. We can thus try to handle molecular automata
by some branch of automata theory and its outgrowths: cellular automata, Petri nets,
and process algebra. The peculiarities of biochemistry, however, are such that until
recently one could not easily pick a suitable piece of automata theory off the shelf.

Many sophisticated approaches have now been developed, and we are particu-
larly fond of stochastic process algebra [18, 19]. In this paper, however, we do our
outmost to remain within the bounds of a much simpler theory. We go back, in a
sense, to a time before cellular automata, Petri nets, and process algebra, which
all arose from the basic intuition that automata should interact with each other. Our
main criterion is that, as in finite-state automata, we should be able to easily and sep-
arately draw the individual automata, both as a visual aid to design and analysis, and
to emulate the illustration-based approach found in molecular biology textbooks. As
a measure of success, in this paper, we draw a large number of examples.
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Technically, we place ourselves within a small fragment of a well-known process
algebra (stochastic π -calculus), but the novelty of the application domain, namely
the “mass action” behavior of large numbers of “well-mixed” automata, demands a
broader outlook. We rely on the work in [2, 3] for foundations and in-depth analysis.
In this paper, we aim instead to give a self-contained and accessible presentation of
the framework, and to explore by means of examples the richness of emergent and
unexpected behavior that can be obtained by large populations of simple automata.
Our automata drawings are precise, but the only formalization can be found in the
corresponding process algebra scripts in the Auxiliary Materials [1].

Stochastic Automata Collectives

With those aims, we investigate stochastic automata collectives. By a collective, we
mean a large set of interacting, finite state automata. This is not quite the situation
we have in classical automata theory, because we are interested in automata interac-
tions. It is also not quite the situation with cellular automata, because our automata
are interacting, but not necessarily on a regular grid. And it is not quite the situation
in process algebra, because we are interested in the behavior of collectives, not of
individuals. And in contrast to Petri nets, we model separate parts of a system sepa-
rately. Similar frameworks have been investigated under the headings of collectives
[24], sometimes including stochasticity [13]. The broad area of computer network
analysis is also relevant; see [9] for a bridge between that and stochastic automata.

By stochastic, we mean that automata interactions have rates. These rates induce
a quantitative semantics for the behavior of collectives, and allow them to mimic
chemical kinetics. Chemical systems are, physically, formed by the stochastic in-
teractions of discrete particles. For large number of particles, it is usually possible
to consider them as formed by continuous quantities that evolve according to de-
terministic laws, and to analyze them by ordinary differential equations (ODEs).
However, one should keep in mind that continuity is an abstraction, and that some-
times it is not even a correct limit approximation. In biochemistry, the stochastic
discrete approach is particularly appropriate because cells often contain very low
numbers of molecules of critical species: that is a situation where continuous mod-
els may be misleading. Stochastic automata collectives are hence directly inspired
by biochemical systems, which are sets of interacting macromolecules, whose sto-
chastic behavior ultimately derives from molecular dynamics. Some examples of
the mismatch between discrete and continuous models are discussed at the end of
Sect. 3.

Paper Outline

In Sect. 2, we introduce the notion of stochastic interacting automata. In Sect. 3, we
explore a number of examples inspired by chemical kinetics, leading to the imple-
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mentation of basic analog and digital devices. In Sect. 4, we describe more sophis-
ticated automata, which are more suitable for biochemical modeling. In Sect. 5, we
discuss further related work, and conclude. The figures are in color (the layout and
the narrative offer color-neutral hints, but we encourage reading the digital version
of this paper). Auxiliary Materials [1] include magnifiable figures and the editable
simulation scripts that generated the figures.

2 Interacting Automata

2.1 Automata Reactions

We begin by focusing on the notion of stochastic interacting automata and their
collective behavior. Figure 1 shows a typical situation. We have three separate au-
tomata species A, B , C, each with three possible states (circles) and each with a
current state (yellow): initially A1, B1, C1, respectively. Transitions change the cur-
rent state of an automaton to one of its possible states: they are drawn as thick gray
arrows (solid or dashed). Interactions between separate automata are drawn as thin
red dashed arrows. Collectives consist of populations of automata, e.g., 100 × A,
200 × B and 300 × C.

There are two possible kinds of reactions that can cause an automaton to take
a transition and change its current state; each reaction changes the situation de-
picted on the left of Fig. 2 to the situation on the right, within some larger con-
text. First, from its current state, an automaton can spontaneously execute a de-
lay transition (dashed gray arrow) resulting in a change of state of that automa-
ton. Second, an automaton can jointly execute an interaction (thin red dashed ar-
row) with a separate automaton. In an interaction, one automaton executes an in-
put (?), and the other an output (!) on a common channel (a). A channel is an
abstraction (just a name) for any interaction surface or mechanism, and input/output

Fig. 1 Interacting automata



Artificial Biochemistry 433

Fig. 2 Automata reactions

are abstraction for any kind of interaction complementarity. An actual interaction
can happen only if both automata are in a current state such that the interac-
tion is enabled along complementary transitions (solid gray arrows); if the inter-
action happens, then both automata change state simultaneously. The system of
automata in Fig. 1, for example, could go through the following state changes:
A1,B1,C1 →(a) A2,B3,C1 →(b) A2,B2,C2 → A2,B2,C1 →(c) A3,B2,C3 →
A1,B2,C3 → A1,B2,C1 → A1,B1,C1.

Each reaction fires at (@) a rate r . In the case of interaction, the rate is associated
to a channel (i.e., interactions have rates, but input/output transitions do not have
rates of their own). Reaction rates determine, stochastically, the choice of the next
reaction to execute, and also determine the time spent between reactions [5, 16]. In
particular, the probability of an enabled reaction with rate r occurring within time t is
given by an exponential distribution F(t) = 1 − e−rt with mean 1/r . A Continuous
Time Markov Chain (CTMC) can be extracted from an automata collective [2]: a
state of such a CTMC is a multiset of the automata current states for the population,
and a transition in the CTMC has a rate that is the sum of the rates of all the reactions
connecting two states.

2.2 Groupies and Celebrities

In the rest of this section, we explore a little zoo of simple but surprising automata
collectives, before beginning a more systematic study in Sect. 3. We usually set
our reaction rates to 1.0 (and in that case omit them in figures) not because rates
are unimportant, but because rich behavior can be obtained already by changing the
automata structure: rate variation is a further dimension of complexity. The 1.0 rates
still determine the pacing of the system in time.

The automaton in Fig. 3 has two possible states, A and B . A single automaton can
perform no reaction, because all its reactions are interactions with other automata.
Suppose that we have two such automata in state A; they each offer !a and ?a, hence
they can interact on channel a, so that one moves to state B and the other one moves
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Fig. 3 Celebrity automata

Fig. 4 Possible interactions

back to state A (either one, since there are two possible symmetric reactions). If we
have two automata in state B , one will similarly move to state A. If we have one in
state A and one in state B , then no interactions are possible and the system is stable.

We call such automata celebrities because they aim to be different: if one of them
“sees” another celebrity in the same state, it changes state. How will a population
of celebrities behave? Starting with 100 celebrities in state A and 100 in state B ,
the stochastic simulation in Fig. 3 (obtained by the techniques in [16] and Auxiliary
Materials [1]) shows that a 50/50 noisy equilibrium is maintained. Moreover, the
system is live: individual celebrities keep changing state.

The possible interactions between celebrities are indicated in Fig. 3 by thin-red-
dashed interaction arrows between transitions on the same automaton. Remember,
however, that an automaton can never interact with itself: this abuse of notation
refers unambiguously to interactions between distinct automata in a collective. The
possible interactions should more properly be read out from the complementary
transition labels. The transition labels emphasize the open system interactions with
all possible environments, while the interaction arrows emphasize the closed system
interactions in a given collective.

Figure 4 shows more explicitly the possible interactions in a population of 5
celebrity automata, of which 3 are in state A and 2 are in state B . Note that since
there are more “a interactions” than “b interactions,” and their rates are equal, at
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Fig. 5 Groupie automata

this point in time an “a interaction” between a pair of automata is more likely.
These considerations about the likelihood of interactions are part of the stochastic
simulation algorithm, and also lead to the chemical law of mass action for large
populations [25].

Let us now consider a different two-state automaton shown in Fig. 5. Again,
a single automaton can do nothing. Two automata in state A are stable since they
both offer !a and ?b, and no interactions are possible; similarly, for two automata in
state B . If we have one automaton in state A and one in state B , then they offer !a
and ?a, so they can interact on channel a and both move to state A. They also offer ?b
and !b, so they can also interact on channel b and both move to state B .

We call such automata groupies because they aim to be similar: two groupies
in different states will switch to equal states. How will a population of groupies
behave? In Fig. 5, we start with 100 A and 100 B: the system evolves through
a bounded random walk, and the outcome remains uncertain until the very end.
Eventually, though, the groupies form a single homogeneous population of all A

or all B , and the system is then dead: no automaton can change state any further.
Different runs of the simulation may randomly produce all A or all B: the system is
bistable.

2.3 Mixed Populations

Populations of groupies and populations of celebrities have radically different be-
havior. What will happen if we mix them? It is sufficient to mix a small number
of celebrities (1 is enough) with an arbitrarily large number of groupies, to achieve
another radical change in system behavior. As shown in Fig. 6, the groupies can still
occasionally agree to become, e.g., all A. But then a celebrity moves to state B to
differentiate itself from them, and that breaks the deadlock by causing at least one
groupie to emulate the celebrity and move to state B . Hence, the whole system now
evolves as a bounded random walk with no stable state.

An important lesson here is that an arbitrarily small, but nonzero, number of
celebrities can transform the macroscopic groupie behavior from a system that al-
ways eventually deadlocks, to a system that never deadlocks. We can also replace
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Fig. 6 Both together

Fig. 7 Hysteric groupies

celebrities with simpler doping automata (Fig. 7) that have the same effect of desta-
bilizing groupie collectives.

We now change the structure of the groupie automaton by introducing interme-
diate states on the transitions between A and B , while still keeping all reactions
rates at 1.0. In Fig. 7, each groupie in state A must find two groupies (left) or three
groupies (right) in state B to be persuaded to change to state B . Once started, the
transition from A to B is irreversible; hence, some hysteresis (history dependence)
is introduced. Both systems include doping automata (center) to avoid population
deadlocks.

The additional intermediate states produce a striking change in behavior with re-
spect to Fig. 6: from complete randomness to irregular (left) and then regular (right)
oscillations. The peaks in the plots of Fig. 7 are stochastic both in height and in
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width, and occasionally one may observe some miss-steps, but they clearly alter-
nate. The transformation in behavior, obtained by changes in the structure of indi-
vidual automata, is certainly remarkable (and largely independently on rate values).
Moreover, the oscillations depend critically on the tiny perturbations introduced by
doping: without them, the system typically stops on its first cycle.

The morale from these examples is that the collective behavior of even the
simplest interactive automata can be rich and surprising. Macroscopic behavior
“emerges” apparently unpredictably from the structure of the components, and even
a tiny number of components can have macroscopic effects. The question then
arises, how can we relate the macroscopic behavior to the microscopic structure?
In the following section, we continue looking at examples, many of which can be
analyzed by continuous methods. We return to discussing the behavior of groupies
at the end of Sect. 3.

3 The Chemistry of Automata

3.1 Concentration

The first few chapters of a chemical kinetics textbook [10] usually include a dis-
cussion of the order of a chemical reaction. In particular, a reaction of the form
A →r C is first-order, and a reaction of the form A + B →r C is second-order. The
terminology derives from the order of the polynomials of the associated differential
equations. In the first case, the concentration of A, written [A], follows the exponen-
tial decay law d[A]/dt = −r[A], where the right-hand side is a first-order term with
coefficient −r (r being the base reaction rate). In the second case, the concentration
of A follows the mass action law d[A]/dt = −r[A][B], where the right-hand side
is a second-order term. (In the sequel, we use [A]• for d[A]/dt .)

Our automata collectives should match these laws of chemical kinetics, at least
in large number approximations. But what should be the meaning of “a concentra-
tion of discrete automata states” that would follow such laws? That sounds puz-
zling, but is really the same question as the meaning of “a concentration of discrete
molecules” in a chemical system. One has to first fix a volume of interaction (as-
sumed filled with, e.g., water), and then divide the discrete number of molecules
by that volume, obtaining a concentration that is regarded (improperly) as a contin-
uous quantity. Along these lines, a relationship between automata collectives and
differential equations is studied formally in [2].

Under biological conditions, common simplifying assumptions are that the vol-
ume of interaction is constant that the volume is filled with a liquid solution with
constant temperature and pressure, and that the solution is dilute and well mixed. The
dilution requirement is a limit on maximum chemical concentrations: there should
be enough water that the collisions of chemicals with water are more frequent than
among themselves. The well-mixed requirement means that diffusion effects are not
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important. Together, these physical assumptions justify the basic mathematical as-
sumption: the probability of any two non-water molecules colliding (and reacting)
in the near future is independent of their current position, so that we need to track
only the number (or concentration) of molecules, and not their positions. Three-way
collisions are too unlikely to matter [5].

Therefore, we assume that our automata interact within a fixed volume V , and we
use a scaling factor γ = NAV , where NA is, in chemistry, Avogadro’s number. For
most purposes, we can set γ = 1.0, which means that we are considering a volume
of size 1/NA liters. However, keeping γ symbolic helps in performing any scaling
of volume (and hence of number of automata) that may be needed.

With these basic assumptions, we next analyze the reaction orders that are avail-
able to our collectives, and the effect of reaction order on kinetics.

3.2 First-Order Reactions

As we have seen, an automaton in state A can spontaneously move to state A′ at a
specified rate r , by a stochastic delay. In a population of such automata, each tran-
sition decrements the number of automata in state A, and increments the number
of automata in state A′. This can be written also as a chemical reaction A →r A′
(Fig. 8), with first-order rate law −r[A], where [A]t = #At/γ is the concentra-
tion of automata in state A at time t , and #A0 is the initial number of automata in
state A. The concentration [A] is a continuous quantity, and is more properly related
to the expectation of the discrete number #A having a certain value [25]. The rate
of change for the reaction (assuming A′ �= A) is then the derivative of [A], written
[A]• = −r[A]. The profile of the reaction is an exponential decay at rate r : [A]0e

−rt

(see curve S1 in Fig. 9).
A sequence of exponential decays produces an Erlang distribution, as seen in

Fig. 9 (many biological processes, like the sequential transcription and translation
of DNA, behave similarly). Initially, we have C = 10000 automata in state S1. The
occupation of the initial state S1 is an exponential decay, the occupation of the inter-
mediate states Si is the Erlang distribution of shape parameter i, and the occupation
of the final state is the cumulative Erlang distribution of shape parameter 10.

Fig. 8 First-order reactions

Fig. 9 Sequence of delays
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The shape of an exponential distribution is independent of the initial quantity
(e.g., the half-life is constant). In general, for first-order reactions, the time course
of the reactions is independent of the scaling of the initial quantities. For example,
if we start with 10 times as many automata in Fig. 9 and we scale down the vertical
axis by a factor of 10, we obtain the same plot, to the original time 20. Meaning that
the “speed of the systems” is the same as before, and since there are 10 times more
reactions in the same time span, the “execution rate” is 10 times higher.

3.3 Second-Order Reactions

As discussed in Sect. 2, two automata can interact to perform a joint transition on
a common channel, each changing its current state. The interaction is synchronous
and complementary: one automaton in state A performs an input ?a and moves to
state A′; the other automaton in state B performs an output !a and moves to state B ′.

This interaction can be written as a chemical reaction A + B →rγ A′ + B ′
(Fig. 10, top), where r is the fixed rate assigned to the interaction channel, and
rγ is the volume scaling for A + B reactions [25] (to scale the volume γ to n × γ ,
we must scale #X0 to n × #X0 to keep [X]0 the same, and r to r/n to keep rates
(r/n)n× γ the same). The rate law, given by the law of mass action, is −rγ [A][B],
because each automaton in the population of current states [A] can interact with
each automaton in the population of current states [B], and the derivatives (assum-
ing A,B,A′,B ′ are distinct) are [A]• = [B]• = −rγ [A][B].

A different situation arises, though, if the interaction happens within a homoge-
neous population, e.g., when state A offers both an input ?a to transition to state A′
and an output !a to transition to state A′′ (Fig. 10, bottom). Then every automa-
ton in state A can interact with every other automaton in state A in two symmetric
ways; hence, the rate r must be doubled to 2r . The volume scaling for A + A re-
actions is (2r)γ /2 = rγ [25]. The chemical reaction is then A + A →rγ A′ + A′′,
whose rate law is −rγ [A]2. The rate of change of [A] (assuming A′ �= A �= A′′) is
[A]• = −2rγ [A]2, since two A are lost each time.

In Fig. 11, we show an automaton that exhibits a first-order reaction and one of
each kind of second-order reactions. Its collective behavior is determined by the
corresponding chemical reactions. This shows that the dynamics of all orders of
reactions can be intermingled in one automaton.

Fig. 10 Second-order
reactions



440 L. Cardelli

Fig. 11 All 3 reactions

Fig. 12 Same behavior

Fig. 13 Sequence of
interactions

In order to compare the behavior of different automata collectives, we must in
general go beyond the corresponding chemical reactions, and we must instead com-
pute the corresponding ODEs (which can be obtained from the chemical reactions).
For example, the automaton in Fig. 12 has a different pattern of interactions and
rates, different chemical reactions, but the same ODEs as the one in Fig. 11. In both
cases, [A]• = −[B]• = t[B]+rγ [A][B]−sγ [A]2, but note that the b rate in Fig. 12
is set to s/2 in order to obtain the same rate of decrease in A population and rate
of increase in B population as in Fig. 11, given the differences in the corresponding
chemical reactions.

The time course of second-order reactions decreases linearly with the scaling up
of the initial quantities. For example, if we start with 10 times as many automata as
in Fig. 13, and we scale down the vertical axis by a factor of 10, and we scale up
the time axis by a factor of 10, we obtain the same plot. Meaning that the “speed of
the system” is 10 times faster than before, and since there are also 10 times more
reactions, the “execution rate” is 100 times higher. Moreover, the system in Fig. 13
is about 500 times faster than the one in Fig. 9 in reaching 75% of input level in its
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final state, even though it has the same rates and number of automata. Second-order
reactions “go faster.”

3.4 Zero-Order Reactions

As we have just seen, the two basic kinds of automata interactions, which corre-
spond to the two basic kinds of chemical reactions, lead to collective dynamics
characterized by various kinds of curves. But what if we wanted to build a pop-
ulation that spontaneously (from fixed initial conditions) increases or decreases at
a constant rate, as in Fig. 14? We can consider this as a programming exercise in
automata collectives: can we make straight lines? This question will lead us to im-
plementing a basic analog component: a signal comparator.

First-order reactions have a law of the form r[A], and second-order reactions a
law of the form r[A][B]. Zero-order reactions are those with a law of the form r

(a constant derivative), meaning that the “execution rate” is constant, and hence
the “speed of the system” gets slower when more ingredients are added. Zero-
order reactions are not built into chemistry (except as spontaneous creation reac-
tions 0 →r A), but can be approximated by chemical means. The main biochemical
methods of obtaining zero-order reactions are a special case of enzyme kinetics
when enzymes are saturated.

Real enzyme kinetics corresponds to a more sophisticated notion of automata:
both are treated in Sect. 4. For now, we discuss a close analog of enzyme kinetics that
exhibits zero-order behavior and can be represented within the automata framework
described so far. We will make precise how this is a close analog of enzymes, and in
fact, with a few assumptions, it can be used to model enzyme kinetics in a simplified
way.

Consider the system of Fig. 14. Here, E is the (pseudo-) enzyme, S is the sub-
strate being transformed with the help of E, and P is the product resulting from the
transformation. The state ES represents an enzyme that is “temporarily unavailable”
because it has just transformed some S into some P , and needs time to recover (ES
does not represent an E molecule bound to an S molecule: it is just a different state
of the E molecule alone).

This system exhibits zero-order kinetics (i.e., a constant slope), as can be seen
from the plot. If we start with lots of S and a little E, the rate of production of P

is constant, independently of the instantaneous quantity of S. That happens because
E becomes maximally busy, and effectively processes S sequentially. Adding more

Fig. 14 Zero-order reactions
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enzyme (up to a point) will just increase the ES population: to obtain the zero-order
behavior it is not necessary to have a single E, just that most E be normally busy.
All our rates are 1.0 as usual, but note that E → ES happens fast, proportionally to
[E][S], while ES → E happens slowly, proportionally to [ES].

To explain the reason for the constant slope, and to make the connection to en-
zyme kinetics precise, we now mimic the standard derivation of Michaelis–Menten
kinetics [10]. The reactions for the system in Fig. 14 are

E + S →rγ ES + P,

ES →s E.

The corresponding ODEs are

[E]• = s[ES] − rγ [E][S],
[ES]• = rγ [E][S] − s[ES],
[S]• = −rγ [E][S],
[P ]• = rγ [E][S].

We call [E0] = [E] + [ES] the total amount of enzyme, either free or busy; that is,
the concentration of enzyme. We now assume that, in normal operation, the enzyme
is at equilibrium, and in particular [ES]• = 0. This implies that [ES] = rγ [E][S]/s.
Set:

Km = s/rγ,

Vmax = s[E0].

Hence, [ES] = [E][S]/Km, and [ES] = ([E0] − [ES])[S]/Km, and from that we
obtain [ES] = [E0]([S]/(Km + [S])). From the [ES]• = 0 assumption, we also have
[P ]• = s[ES], and substituting [ES] yields

[P ]• = Vmax[S]/(Km + [S]),

which describes [P ]• just in terms of [S] and two constants. Noticeably, if we have
Km � [S], then [P ]• ≈ Vmax; that is, we are in the zero-order regime, with constant
growth rate Vmax = s[E0]. For the system of Fig. 14 at γ = 1, we have Km = 1,
[S]0 = 1000, Vmax = 1, and hence [P ]• ≈ 1, as shown in the simulation.

The chemical reactions for Fig. 14 are significantly different from the standard
enzymatic reactions, where P is produced after the breakup of ES, and not before
as here. Still, the expressions for Km, Vmax, and [P ]• turn out to be the same as
in Michaelis–Menten kinetics (and not just for the zero-order case), whenever the
dissociation rate of ES back to E + S is negligible, that is, for good enzymes.
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3.5 Ultrasensitivity

Zero-order kinetics can be used, rather paradoxically, to obtain sudden nonlinear-
ity or switching behavior. Let us first compare the behavior of directly competing
enzymes in zero-order and second-order kinetics. For conciseness, we now depict
a pair of states E,ES (as in Fig. 14) as a single state E with a solid/dashed arrow
representing the transition through the now hidden state ES (Fig. 15).

At the top of Fig. 15, in zero-order regime, a fixed quantity of F is compet-
ing against a linearly growing quantity of E. The circuit is essentially computing
the subtraction [F ] − [E] (the rest being sequestered in the hidden “unavailable”
states): the E quantity is neutralized until it can neutralize and then exceed the F

quantity. At the bottom, we have almost the same system, except in second-order
regime: the result of the competition is quite different because neither quantity can
be sequestered.

On that basis, we now reproduce the peculiar phenomenon of ultrasensitivity in
zero-order regime [14], confirming that our simplified kinetics, while not agreeing
with enzyme kinetics at the microscopic level, still manages to reproduce some of
its macroscopic effects: the core of the matter is the zero-order regime of operation.
In an ultrasensitivity situation, a minor switch in relative enzyme quantities creates
a much amplified and sudden switch in two other quantities. In Fig. 16, we start
with a fixed amount (=100) of enzyme F , which is holding the S vs. P equilibrium
in the S state (at S = 1000), and we let E grow from zero. As E grows, we do not
initially observe much free E, but the level of free F decreases (as in Fig. 15 top),
indicating that it is getting harder for F to maintain the S equilibrium against E.

Fig. 15 Subtraction (top)

Fig. 16 Ultrasensitivity
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Eventually, the level of free F drops to zero, at which point we see a sudden switch
of the S vs. P equilibrium, and then we observe the level of free E growing. Hence,
in this case, a switch in the levels of E vs. F controls a factor of 10 bigger switch in
the levels of S vs. P . If P is itself an enzyme, it can then cause an even bigger and
even more sudden switch of an even larger equilibrium.

Therefore, we have obtained a device that can compare the relative levels of two
slowly varying weak signals (E,F ), and produce a strong, quickly-switching output
signal that means E > F .

3.6 Positive Feedback Transitions

We now come to another programming exercise in automata collectives. None of
the curves that we have seen so far are symmetric; we can then ask: can we make a
symmetric bell shape as in Fig. 18? This question will lead us to building another
basic analog component: an oscillator.

A theorem of probability theory guarantees that we can in fact approximate any
shape we want by combining exponential distributions, but the resulting automata
would normally be huge. Here, we are looking for a compact programming solution.
One way to obtain a sharp raising transition (the first half of a bell curve) is by pos-
itive feedback. In Fig. 17, the more B’s there are, the faster the A’s are transformed
into B’s, so the B’s accumulate faster and faster, up to saturation. (Note that at least
one B is needed to bootstrap the process.)

By linking two such transitions in series (Fig. 18), we obtain a symmetrical bell
shape. We can see that after the B’s start accumulating, they are being drained faster
and faster by the accumulating C’s. The fact that the B’s are being drained in a
symmetrical way can be explained by the kinetics of B: [B]• = [B]([A] − [C]).
(Note that there is a very small chance that the B’s will be drained by the C’s before
the wave can accumulate in B , therefore, stalling it.)

Fig. 17 Positive feedback
transition

Fig. 18 Bell shape
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Fig. 19 Oscillator

Fig. 20 Positive two-stage
feedback

Fig. 21 Square shape

Linking several such transitions in series (not shown) produces a soliton-like
wave that does not dissipate (a delay transition between adjacent states is needed to
prevent stalling).

Linking three positive feedback transitions in a loop produces a stochastic oscil-
lator (Fig. 19); moreover, the ODEs extracted from the chemical reactions describe
a (never stopping) deterministic oscillator. A sustained stochastic oscillation can be
obtained by starting with all states nonzero; the oscillation can then survive as long
as no state A, B , C goes to zero; when that happens (usually after a long time) there
is nothing to pull on the next wave, and the oscillation stops.

An interesting variation is a two-stage positive feedback loop (Fig. 20) where the
drop of state A is delayed and the growth of state B is steeper. Joining two such
transitions (Fig. 21) produces a shape that approximates a rectangular wave as we
increase the cardinality of A. Linking three such transitions in a loop produces again
an oscillator (Fig. 22). However, this time it is critical to add doping because each
state regularly drops to zero and needs to be repopulated to start the next propa-
gation. This oscillator is a 3-states version of the oscillators in Fig. 7, and is very
robust.
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Fig. 22 Hysteric 3-way
groupies

Fig. 23 Second-order
cascade

3.7 Excitation Cascades

Beyond signal comparators and oscillators, other basic analog devices, we may want
to build include signal amplifiers and dividers. We next imitate some amplifiers
found in biological systems that are made of cascades of simpler stages. As a tech-
nical note, the modular nature of these staged amplifiers leads us to write compact,
parametric simulation code that is instantiated at each stage. This compactness is not
reflected in the figures, where we simply redraw each stage. But, as a consequence,
it is more convenient in the simulation code to plot the counts of active outputs, e.g.,
!a, !b, !c, rather than the counts of the states that produce those outputs, e.g., aHi,
bHi, cHi: this plotting style is adopted from now on.

We consider cascades where one enzyme activates another enzyme. A typical
situation is shown in Fig. 23 (again, all rates are 1.0), where a low constant level of
first-stage aHi results in a maximum level of third-stage cHi, and where, charac-
teristically, the third stage raises with a sigmoidal shape, and faster than the second-
stage level of bHi. This network can be considered as the skeleton of a MAPK
cascade, which similarly functions as an amplifier with three stages of activation,
but which is more complex in structure and detail [11].

The resulting amplification behavior, however, is nonobvious, as can be seen by
comparison with the zero-order activation cascade in Fig. 24; the only difference
there is in the zero-order kinetics of the enzymes obtained by introducing a delay
of 1.0 after each output interaction. Within the same time scale as before, the level
of cHi raises quickly to the (lower) level of aHi, until aHi is all bound. On a
much longer time scale, cHi then grows linearly to maximum. Linear amplification
in cascades has been attributed to negative feedback [22], but apparently can be
obtained also by zero-order kinetics. Of course, the behavior in Fig. 23 is the limit
of that in Fig. 24, as we decrease the zero-order delay.
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Fig. 24 Zero-order cascade

Fig. 25 Zero-order
cascade-1 stage

Fig. 26 Second-order double
cascade

A single stage of a second-order cascade works like the bHi level shown in
Fig. 23 (since no bHi is actually consumed by the next stage), that is, as an amplifier.
Surprisingly, a single stage of the zero-order cascade, works quite differently, as a
signal replicator. In Fig. 25, a given level of aHi (=100 or =900), induces an equal
level of bHi, as long as it is lower than the reservoir of bLo (=1000). (If aHi

exceeds bLo, then bHi := bLo and aHi := aHi − bLo.) However, the two-stage
cascade in Fig. 24 does not work like two signal replicators in series. This seems to
happen because the bHi are not available for degradation to bLo while bound by
interaction with the next stage, cLo, and hence can accumulate.

Real MAPK cascades are actually based on double activation, as shown in
Fig. 26, where the sigmoid output is more pronounced and delayed than in Fig. 23.
And once again, the zero-order regime brings surprises: the cascade in Fig. 27 works
in reverse, as a signal attenuator, where even a very high amount of aHi produces a
low stable level of cHi which is at most 1/3 of maximum cHi. This is because one
stage of such a cascade is actually a signal level divider, where if bHi = 1000 then
cHi = 333, with the signal being distributed among the three states of the stage.
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Fig. 27 Zero-order double
cascade

Fig. 28 Simple inverter

3.8 Boolean Inverters

Having seen how to obtain basic analog functions (comparators, oscillators, ampli-
fiers, and dividers) it is now time to consider digital devices: inverters, and other
Boolean gates. Automata with distinguished “low” and “high” states can be used to
represent respectively Boolean false and true.

We begin by investigating automata collectives that implement Boolean invert-
ers. The most obvious inverter, Inv(a, b) with input ?a and output !b, is shown
in Fig. 28: its natural state is high because of the spontaneous decay from low
to high. The high state sustains (by a self loop) an output signal (b) that can be
used as input to further gates. A high input signal (a) pulls the high state down to
low, therefore, inverting the input. (Steady state analysis of the ODEs shows that
[bHi] = max/(1 + γ [aHi]), where max = [bHi] + [bLo].)

We test the behavior of populations of inverters according to three quality mea-
sures, which are first applied to the inverter in Fig. 28:

(1) Restoration. With two inverter populations in series (100 × Inv(a, b) + 100 ×
Inv(b, c)), a triangularly-shaped input signal (?a) is provided that ramps up
from 0 to 100 and then back down to 0.

(2) Alternation. We test a connected sequence 100 × Inv(a, b) + 100 × Inv(b, c) +
· · · + 100 × Inv(e, f ).

(3) Oscillation. We test a cycle of three populations, 100 × Inv(a, b) + 100 ×
Inv(b, c) + 100 × Inv(c, a).

In Fig. 28, top plot, we see that the first stage inverter is very responsive, quickly
switching to low !b output and then quickly switching back to high !b output when
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Fig. 29 Feedback inverter

Fig. 30 Double-height
inverter

the input is removed, but the second stage !c output is neither a faithful reproduction
nor a Boolean restoration of the ?a input. In the middle plot, we see that intermediate
signals in the alternation sequence are neither high nor low: the Boolean character
is lost. In the bottom plot, we see that three gates in a loop fail to sustain a Boolean
oscillation. Therefore, we conclude that this inverter does not have good Boolean
characteristics, possibly because it reacts too strongly to a very small input level,
instead of switching on a substantial signal.

In an attempt to force a Boolean behavior, we add a positive feedback to the
high state, so that (one might think) a higher input level would be required to force
switching, hence improving the Boolean switching characteristics (Fig. 29). The re-
sult is, unexpectedly, a linear signal inverter. (We can deduce the linearity from the
steady state analysis of the ODEs: [bLo] = [aHi][bHi]/([bHi] + 1/γ ) ≈ [aHi]
for [bHi] � 1/γ , hence [bHi] = max−[bLo] ≈ max−[aHi].) Such a linear in-
verter can be useful for inverting an analog signal, and also has decent Boolean
alternation properties. But it does not oscillate.

A good Boolean inverter can be obtained instead by doubling the height of the
simple inverter (Fig. 30). This double height inverter gives perfect alternation, and
good restoration (transforming a triangular input, !a into a nearly rectangular out-
put, !c). However, it still fails to oscillate.
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Fig. 31 Double-height
feedback

Finally, we combine the two techniques in a double-height feedback inverter
(Fig. 31). This has perfect restoration, transforming a triangular input into a sharp
rectangle. It also has strong and quickly achieved alternation, and regular oscillation.

In conclusion, it is possible to build good Boolean inverters and signal restor-
ers. This is important because it lessens the requirements on other circuits: if those
circuits degrade signals, we can always restore a proper Boolean signal by two in-
verters in series. We examine some Boolean circuits next.

3.9 Boolean Circuits

It probably seems obvious that we can build Boolean circuits out of populations of
automata, and hence support general computation. However, it is actually surprising,
because finite populations of interacting automata are not capable of general compu-
tation [3], and only by using stochasticity one can approximate general computation
up to an arbitrarily small error [23]. Those are recent results, and the relationship
with the Boolean circuits shown here is not clear; likely one needs to use sufficiently
large populations to reduce computation errors below a certain level.

We again consider automata with low states and high states to represent respec-
tively Boolean false and true. In general, to implement Boolean functions, we also
need to use intermediate states and multiple high and low states.

Figure 32 shows the Boolean gate automata for “c = a Or b” And “c = a and b”.
The high states spontaneously relax to low states, and the low states are driven up
by other automata providing inputs to the gates (not shown). A self-loop on the high
states provides the output. In the plots, two input signals that partially overlap in
time are used to test all four input combination; their high level is just 1/10 of max
(where max is the number of gate automata).

The chemical reactions for the Or gate are aHi + cLo →γ aHi + cHi, bHi +
cLo →γ bHi + cHi, cHi → cLo. From their ODEs, by setting derivatives to
zero, and with the automata constraint [cHi] + [cLo] = max, we obtain [cHi] =
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Fig. 32 Or and And

Fig. 33 Imply and Xor

max([aHi] + [bHi])/([aHi] + [bHi] + 1/γ ). That is, if the inputs are zero, then
[cHi] = 0. If, say, [aHi] is nonzero, then [cHi] = max[aHi]/([aHi] + 1/γ ) so
that for [aHi] � 1/γ we have [cHi] ≈ max.

The And gate can be similarly analyzed. Note that And is not perfectly commuta-
tive because the decay back to cLo on a single input is slightly different depending
on which input is provided. However, as usual, any analog implementation of a dig-
ital gate must be given enough time to stabilize.

Figure 33 shows automata for “c = a Imply b” and “c = a Xor b”. In these
automata, we use two high states (both producing the same output) to respond to
different inputs. The dip in the plot for Imply arises when many automata decay
from the high state cHb to the high state cHa, through cLo, in a transition from
false Imply true to false Imply false.

The steady state behavior of Imply is: output = [cHa] + [cHb] = max−
max[aHi]/([aHi][bHi] + [aHi] + 1/γ ) where max is the size of the collective. If
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[aHi] = 0, we have output = max; if [aHi] �= 0 and [bHi] = 0 we have output ≈ 0;
if [aHi] ≈ [bHi] ≈ max, we have output ≈ max.

Although Xor can be constructed from a network of simpler gates, the Xor gate
in Fig. 33 is implemented as a single uniform collective.

3.10 Bistable Circuits

We have now assembled a collection of basic analog and digital devices that can
be used to perform signal processing and combinatorial computation. For complete-
ness, we need to discuss also memory elements; these can be constructed either
as bistable digital circuits (flip-flops), using the gates of Sects. 3.8 and 3.9, or as
bistable analog devices.

We have already seen examples of bistable analog devices: the ultrasensitive
comparator of Sect. 3.5, and the groupies of Sect. 2.2. The groupies, however, are
not stable under perturbations: any perturbation that moves them away from one
of the two stable states can easily cause them to wander into the other stable state.
Hence, they would not be very good as stable memory elements.

In Fig. 34, we show a modified version of the groupies, obtained by adding an
intermediate state shared by the two state transitions. This automaton has very good
memory properties. The top-left and top-center plots show that it is, in fact, sponta-
neously bistable. The bottom-left plot shows that it is stable in presence of sustained
10% fluctuations produced by doping automata. The bottom-center plot shows that,
although resistant to perturbations, it can be switched from one state to another by
a signal of the same magnitude as the stability level: the switching time is compara-
ble to the stabilization time. In addition, this circuit reaches stability 10 times faster
than the original groupies: the top-right plot shows the convergence times of 30 runs
each of the original groupies with 2 states, the current automaton with 3 states, and a
similar automaton (not shown) with 4 states that has two middle states in series. The
bottom-right plot is a detailed view of the same data, showing that the automaton

Fig. 34 Memory elements
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with 4 states is not significantly faster than the one with 3 states. Therefore, we have
a stable and fast memory element.

3.11 Discrete vs. Continuous Modeling

We finally get back to the oscillating behavior of the hysteric groupies of Fig. 7. In
the previous sections, we have analyzed many systems both by stochastic simulation
and by differential equations, implying that in most cases we have a match between
the two approaches, and that we can use whatever analysis is most useful. However,
continuous techniques are not always appropriate [2, 25], and there are well-known
examples of that [26].

As an illustration of the general issue, in Fig. 35, we compare the stochastic
simulation of groupie collectives against numerical solutions of their corresponding
differential equations (found in the Fig. 35 scripts in Auxiliary Materials [1]). On
the left column, we have the basic groupies from Fig. 5, and on the middle and
right columns we have the groupies with one or two intermediate steps from Fig. 7;
in all cases, we include a low number of doping automata, as in Fig. 7, to prevent
deadlocks. The bottom row has plots of the stochastic simulations, all starting with
2000 automata in state A. (Comparable, noisier simulations with 200 automata are
found in the mentioned figures.) The top row has instead the ODE simulations with
the same initial conditions (including doping), and with the volume of the solution
taken as γ = 1.0.

As we can see, in the right column, there is an excellent match between the sto-
chastic and deterministic simulations; moreover, the match gets better when increas-
ing the number of molecules, as expected. In the middle column, however, after a
common initial transient, the deterministic simulation produces a dampened oscilla-
tion, implying that all 4 states are eventually equally occupied. Instead, the stochas-

Fig. 35 Discrete vs.
continuous modeling
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tic simulation produces an irregular but not at all dampened oscillation, where the A

and B states persistently peak at twice the continuous values (detailed plots reveal
that A and its successor state peak together, and so do B and its successor). Even
more strikingly, in the left column, the deterministic simulation produces an equi-
librium level, which also happens to be stable to perturbations, while the stochastic
simulation produces a completely unstable random walk.

The conclusions one should draw from this situation is that it is not always ap-
propriate to use a deterministic approximation of a stochastic system (and it is likely
impossible in general to tell when it is appropriate). The difference can be partic-
ularly troublesome when studying just one run of one copy of a stochastic system
(e.g., the behavior of one cell), as opposed to the average of a number of runs, or
the average of a number of copies. Unfortunately, to understand the behavior of,
e.g., cells, one must really study them one at a time. Stochastic behavior can be
characterized precisely by other kinds of differential equations (the chemical master
equation), which are always consistent with the stochastic simulations, but those are
much more difficult to analyze than the mass action ODEs [6].

4 The Biochemistry of Automata

4.1 Beyond Simple Automata

As we have seen, the simple automata of Sect. 2 can model typical chemical interac-
tions. Biochemistry, however, is based on a richer set of molecular interactions, and
in this section we explore a corresponding richer notion of interacting automata.

A characteristic feature of biochemistry, and of proteins in particular, is that bi-
ological molecules can stick to each other to form complexes. They can later break
up into the original components, with each molecule preserving its identity. This
behavior can be represented by chemical reactions, but only by considering a com-
plex as a brand new chemical species, thus losing the notion of molecular identity.
Moreover, polymers are formed by the iterated complexation of identical molecules
(monomers): chemically this can be represented only by an unbounded number of
chemical species, one for each length of a polymer, which is obviously cumbersome
and technically infinite.

In order to model the complexation features of biochemistry directly, we intro-
duce polyautomata, which are automata that can form reversible complexes, in ad-
dition to interacting as usual. Association (&) represents the event of joining two
specific automata together out of a population, and dissociation (%) is the event that
causes two specific associated automata to break free; both events result in state
changes. Association does not prevent an automaton from performing normal in-
teractions or other associations, but it prevents it from reassociating on the same
interface, unless it first dissociates. Association and dissociation can be encoded in
π -calculus [15] (as shown in Auxiliary Materials [1]: Fig. 36), by taking advantage
of its most powerful features: fresh channels and scope extrusion. That encoding
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Fig. 36 Polyautomata
reactions

results in flexible modeling of complexation [20], but does not enforce constraints
on reassociation.

Here, we strive again to remain within the confines of an automata-like frame-
work, including diagrammatic descriptions. A formal presentation of polyautomata
is given in [3], where it is shown that they are Turing-complete in conjunction with
an unbounded supply of a finite number of monomer species (and that instead, the
automata of Sect. 2 can achieve Turing-completeness only with an unbounded sup-
ply of different species, which means infinite-size programs).

4.2 Polyautomata

Polyautomata are automata with an association history, and with additional kinds of
interactions that modify such history. The main formal difference from the automata
of Sect. 2 is that the current state now carries with it a set S of current associations.

An association is a pair 〈π,k〉 where π is an event label (?a or !a for the comple-
mentary sides of an association), and k is a unique integer identifying an association
event between two automata. We assume that a fresh k can be produced from, e.g.,
a global counter during the evolution of a collective: only two automata should have
the same k in their associations at any given time. This unique k is used to guarantee
that the same two automata that associated in the past will dissociate in the future.

There can be multiple ways of disassociating two automata after a given associ-
ation; the rates of association and of each possible disassociation can differ. There-
fore, each channel will now be attributed with a list of one or more rates: this is
written a@r0, . . . , rn−1 for n ≥ 1. We then say that arity(a) = n.

If arity(a) = 1, then r0 is called the interaction rate, because it covers the old
case of ordinary interactions: the old interaction rules from Fig. 2 apply with r0 ≡ r ,
with the understanding that the association sets are unaffected. If arity(a) ≥ 2, then
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r0 is the association rate, and r1, . . . , rn−1 are the dissociation rates. The association
rules from Fig. 36 then apply.

An association (Fig. 36 top) on a channel cannot happen if an automaton has
a past association event on that channel, as recorded in the current state; that is,
that particular “surface patch” of the automaton is currently occupied and cannot be
reused. The preconditions ?a /∈ S (short for 〈?a, k〉 /∈ S for any k) and !a /∈ T , check
for such conflicts, where S and T are the sets of associations. If a new association
is possible, then a fresh integer k is chosen and stored in the association sets after
the transition. The transition labels are ?a0 and !a0, indicating an association at rate
r0 on channel a. In examples, we use instead the notation &?a and &!a for these
labels, where & indicates association, omitting index 0.

Symmetrically, a dissociation (Fig. 36 bottom) on a channel happens only if the
two automata have a current association on that channel, as identified by the same k

in their current states. If a dissociation is possible, the corresponding associations are
removed from the association sets after the transition (+ here is disjoint union), en-
abling further associations. The transition labels are ?ai and !ai with i ∈ 1, . . . , n−1,
indicating a dissociation at rate ri on channel a. In examples, we use the notation
%?ai and %!ai for these labels, where % indicates dissociation; if arity(a) = 2, then
we write simply %?a and %!a, omitting index 1.

4.3 Complexation

As an example of the association/dissociation notation, in Fig. 37, we consider two
automata that cyclically associate, moving to bound states Ab, Bb , and then disso-
ciate, moving back to free states Af , Bf . We also show the association sets under
each state, although the number k can change at each iteration. The yellow car-
toon shapes illustrates the mechanics of complexation, where complexation chan-
nels are depicted as complementary surfaces. The plot shows that for the chosen
rates, the dynamic equilibrium is heavily biased toward the bound states. (In this
section, a state Af corresponds to the plot line !A_f .)

Fig. 37 Complexa-
tion/decomplexation
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Fig. 38 Enzymatic reactions

Fig. 39 Homodimerization

The use of multiple dissociation rates is exemplified by enzymatic reactions
(Fig. 38): these are now the true enzymatic reactions, not the ones from Sect. 3.4
[20]. From the bound state of enzyme (Eb) and substrate (Sb), two dissociations are
possible with the one at higher rate producing product (P ).

More subtle forms of complexation exist. Homodimerization (Fig. 39) is sym-
metric complexation: a monomer offers both an input and an output complexa-
tion on the same channel, meaning that it offers two complementary surfaces, and
can stick to a copy of itself. Note that a monomer here cannot bind to two other
monomers over its two complementary surfaces. That situation leads to polymeriza-
tion, as shown next.

4.4 Polymerization

A polymer is obtained by the unbounded combination of monomers out of a finite
set of monomer shapes. There are many forms of polymerization; here, we consider
just two basic linear ones.

In linear bidirectional polymerization, each monomer can join other monomers
on one of two complementary surfaces, without further restrictions. Therefore, two
polymers can also join in the same way, and a single polymer can form a loop
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Fig. 40 Bidirectional
polymerization

Fig. 41 Automata polymers

(although a single monomer cannot). For simplicity, we do not allow these polymers
to break apart.

In Fig. 40, we show a monomer automaton that can be in one of four states: Af

(free), Al (bound on the left), Ar (bound on the right), and Ab (bound on both sides,
with two association events). The sequence of transitions is from free, to bound on
either side, to bound on both sides.

There are four possible input/output associations between two monomers, indi-
cated by the red dashed arrows in the figure. Number 1 is the association of two
free monomers in state Af : one becomes bound to the left (Al) and the other bound
to the right (Ar). Number 2 is the association of a free monomer with the leftmost
monomer of a polymer (a monomer bound to the right): the free monomer becomes
bound to the right and the leftmost monomer becomes bound on both sides (Ab).
Number 3 is the symmetric situation of a free monomer binding to the right of a
polymer. Number 4 is the leftmost monomer of a polymer binding to the rightmost
monomer of another polymer (or possibly of the same polymer, forming a loop,
as long as the two monomers are distinct). Figure 41 is a schematic representation
of some possible configurations of monomers, with thick lines joining their current
states and representing their current associations.

The plot in Fig. 40 shows the result of a fairly typical simulation run with 1000
monomers. When all the monomers are fully associated, we are left with a number of
circular polymers: the plot is obtained by scanning the circular polymers after they
stabilize. The horizontal axis is discrete and counts the number of such polymers
(9 in this case). Each vertical step corresponds to the length of one of the circular
polymers (polymers are picked at random for plotting: the vertical steps are not
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Fig. 42 Actin-like
polymerization

sorted by size). It is typical to find one very long polymer in the set (∼800 in this
case), and a small number of total polymers (<10).

We now consider a different form of polymerization, inspired by the actin
biopolymer, which can grow only at one end and shrink only at the other end. In
Fig. 42, we have the same four monomer states, but the sequencing of transitions is
different. There are four possible input/output associations between two monomers,
indicated by the red dashed arrows in the figure. Number 1 is the association of two
free monomers in states Af : one becomes bound to the left (Al) and the other bound
to the right (Ar). Number 4 is the breakup of a polymer made of just two monomers,
one that is bound to the left and one that is bound to the right; they both return free.
Number 2 is the association of a free monomer with the rightmost monomer of a
polymer (a monomer bound to the left): the free monomer becomes bound to the
left and the rightmost monomer becomes bound on both sides (Ab). Number 3 is
the dissociation of a monomer bound to the right, from the leftmost monomer to
its right which is bound on both sides; one becomes a free monomer and the other
remains bound to the right. Loops cannot form here, because if we have a monomer
bound to the left and one bound to the right (which could be the two ends of the
same polymer), then there is no interaction that can make them bound on both sides.

The plots in Fig. 42 show three views of the same simulation run with 1000
monomers, at times 0.01, 0.25, and 35; all rates are 1.0. During an initial quick tran-
sient the number of Ab and of Al = Ar temporarily stabilize, each approaching level
333 (with average polymer length 3). Ab crosses over at time 0.02 and then slowly
grows until Al = Ar = 100 around time 35; hence, the final number of polymers is
∼100 with average length ∼10.

Figure 43 shows in detail a typical sequence of interactions among three
monomers, with two associations followed by two dissociations. At each step, we
show the possible interactions by dashed red arrows connecting the enabled transi-
tions. The thick lines indicate the current associations, which are actually encoded
in the association sets shown under the current states, by the shared k and j . Note
that in state Ab , the association set has the form {〈!a, k〉, 〈?a, j 〉}. This illustrates the
need to store !a and ?a separately in the history: if we recorded only the channel,
〈a, k〉, then the second association for 〈a, j〉 would be prevented because the set
would already contain the channel a. And if we modified the occurrence check to
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Fig. 43 Typical monomer
interactions

allow storing distinct pairs 〈a, k〉, 〈a, j〉, this would allow arbitrary reassociations
on the same channel.

In conclusion, polyautomata provide a relatively simple graphical notation for
representing combinatorial systems of interacting and complexing molecules. Sys-
tems that grow without bounds by complexation can be represented compactly and
finitely: this would not be possible using the automata of Sect. 2 or, in fact, using
chemical reactions.

5 Conclusions and Related Work

Despite ongoing conscious efforts, biochemistry is still lacking an adequate notation
for describing large and complex biological models in a compositional, parameter-
izable, and scalable way [12]. Formal notations (such as programming languages
and process algebras) are fundamental tools for achieving those goals: they enable
engineering and analysis techniques that are orthogonal to the ones available by
mathematical models (such as set theory, calculus, and Markov chains). In comput-
ing, adequate notation is key to the maintainability of large information processing
systems consisting of millions of lines of code, whose complexity is dwarfed only
by biological systems. Noticeably, information processing systems are not written
using differential equations, nor set theory, because those are not useful tools in that
domain.

Still, it is always important to relate formal notation to mathematical models. We
have used automata notation for exploring simple, but intriguing biochemical sys-
tems, aiming to demonstrate how easy it is to “play with” the notation to get insights
into a system. We have shown, by example, how to relate the interacting automata
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notation to stochastic behavior and to differential equations. For a full development,
the process algebra foundations for this work are found in [2], which connects the
stochastic π -calculus approach to modeling biochemistry [20], to stochastic and de-
terministic chemical kinetics [25]. Additionally, foundations for Sect. 4 are found
in [3].

The use of compositional, graphical, formal notation has been long advocated
[7], but most graphical notations in systems biology still lack such fundamental
properties. Our automata are at least compositional, but are neither parameterizable
nor scalable, unless they are embedded in the richer framework of process alge-
bras, which has all such properties. Our diagrams are based on previous work on
the graphical representation of the whole π -calculus [17]. Dealing with the full
π -calculus, however, means having to graphically represent, in general, bound vari-
ables. The full π -calculus also seems excessive for use in biochemical models, both
semantically and graphically. Therefore, while the diagrams in Sects. 1–3 are es-
sentially a reduced version of the ones in [17], the diagrams in Sect. 4 opt to use
operators instead of bound variables to deal with the important biochemical opera-
tion of complexation, and also enforce an invariant against reassociation of occupied
sites.

The pragmatics of graphical and formal notation for the biochemical domain
still requires investigation. It has taken decades to develop adequate notations and
analysis techniques for large software and hardware systems; we are just at the be-
ginning to do the same for biochemical systems, where the task will certainly be
much harder.

Acknowledgements Much of this material was initially prepared for a doctorate course of the
same title at the University of Trento, in May 2006, and improved by referees.
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Process Calculi Abstractions for Biology

Maria Luisa Guerriero, Davide Prandi,
Corrado Priami, and Paola Quaglia

Abstract Several approaches have been proposed to model biological systems by
means of the formal techniques and tools available in computer science. To mention
just a few of them, some representations are inspired by Petri nets theory and others
by stochastic processes.

A most recent approach consists in interpreting living entities as terms of process
calculi, by composition of a few behavioural abstractions. This paper comparatively
surveys the state of the art of the process calculi approach to biological modelling.

The modelling features of a set of calculi are tested against a simple biological
scenario, and available extensions and tools are briefly commented upon.

1 Introduction

The recent progress of biology is rapidly producing a huge number of experimental
results and it is becoming impossible to coherently organise them using only human
capacity. Abstract models to reason about biological systems are becoming an indis-
pensable conceptual and computational tool for biologists, so calling for computer
science.

Research at the convergence of biology and computer science started by observ-
ing that biological molecules in real systems participate in very complex networks,
like regulatory networks for gene expression, intracellular metabolic networks, and
intra/inter-cellular communication networks. Due to the (relatively) recent studies
in molecular biology and in the omics disciplines, there is an accurate description
of the fundamental components of living systems, especially of proteins and cells.
There is not, however, a complete knowledge on how these individual components
are related and interact to form complex systems. Various computational approaches
have been developed and used to cope with the complexity of these systems. Some
of them are:

• biochemical kinetic models (see, e.g. [2, 75, 81]);
• generalised models of regulation (see, e.g. [1, 30, 78]);
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• functional object-oriented databases (see, e.g. [3, 43, 80]);
• integrated frameworks with GUI (see, e.g. [38, 74]);
• exchange languages (see, e.g. [44]);
• formal methods from theoretical computer science (see, e.g. [31, 41, 59, 60]).

The above proposals aim at constructing models of biological systems to help
life scientists in their research, but they do not directly investigate what biology is.
A landmark paper by Regev and Shapiro [70] calls for a paradigm change, postu-
lating the design of a language for the cell, i.e. of a language that allows the repre-
sentation of biological theories. A forerunner work by Fontana et al. [32] exploits
the λ-calculus for describing natural systems. Later on, process calculi [40, 54, 55,
73], which are languages introduced as foundations for interacting and distributed
systems, have emerged as suitable formalisms for reasoning about biology.

The similarity between communicating distributed systems and networks of in-
teracting biological entities is intriguing, and gave rise to a range of biologically
inspired calculi. A comprehensive picture of the state of the art, however, is still
missing, and this paper tries to overcome this limitation. The task is carried out
by presenting a simple scenario coming from the biology of the immune system
(Sect. 2), and then showing how this setting can be represented in the considered
calculi (Sect. 3). We conclude with some final remarks (Sect. 4).

2 A Simple Biological Scenario

This section introduces the running example used to compare the various process
calculi in the biology applicative domain. Since interaction is a central notion in
process calculi, before describing the biological scenario, we will briefly overview
the basics of biochemical interactions.

2.1 Biochemical Interactions

Living entities are constantly crossed by a flow of matter and energy. In this con-
tinuous random flow, reactions take place whenever there is a sufficient kinetic en-
ergy [77]. For instance, a reaction between molecules A and B in Fig. 1 may occur

Fig. 1 Molecular interaction
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Fig. 2 Interfaces, sites, and states

if A and B are close enough and correctly oriented. Normally, the frequency of
reactions is quite low. By need, enzymes may orient molecules in the right way
favouring and speeding up reactions [16]. Referring to the example in Fig. 1, we
observe that two molecules can bind if they possess complementary zones, called
domains, and they have the right orientation (or, alternatively, the complementary
domains are visible or available to each other).

These conditions, however, are not enough. A domain of a molecule can be either
active or inactive. An inactive domain cannot bind, not even when a complementary
domain with the right orientation is close to it. In order to activate a domain, a
molecule needs to be involved in some specific reaction, e.g. in a phosphorylation
(binding of a phosphate group to the protein).

Concluding, domains can be classified depending on three possible states: active
bound, active free, and inactive. Figure 2 shows a schematic representation. Biolog-
ical entities (named A, B , and C in the picture) possess an interface (the rounded
box with coloured hooks). Each interface has n > 0 sites (the hooks sticking out the
rounded box), and each of them can be in one of the three mentioned states (the
colour of the hook). A site is an indivisible structure that can only join to a com-
plementary site. In the scenario drawn in Fig. 2, A cannot bind to B . In fact, sites 2
and i, as well as 3 and j , are complementary, but 2 and 3 are both inactive. On the
contrary, A and C can bind together: sites i and 2, as well as j and 3, are pairwise
complementary, and all of them are active free.

An interesting point is relative to the possibility to dynamically change the num-
ber and/or the state of the sites available on a given interface. For instance, as shown
below, it might be necessary to be able to add sites.

2.2 The Running Example

We introduce here the running example that will be used to present and compare the
considered calculi in the biology applicative domain. The example comes from the
biology of the immune system, and it is relative to the activation of the lymphocyte
T helper. The scenario has two main properties: (i) it is sufficiently complex to be
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Fig. 3 Lymphocyte T helper activation

an interesting case study for modelling issues; (ii) it is abstract enough to allow us
to omit a number of biological details.

Lymphocytes T helper (or helper T cells) are eukaryote cells belonging to our
immune system. They play a central role by activating and, so, controlling many
specific defence strategies. Lymphocytes are normally inactive, and they start their
activity only after being triggered by special events. Here, we will focus on

• the sequence of phagocytosis—digestion—presentation phases, and
• the activation of lymphocytes T helper performed by macrophages.

Macrophages are cells that engulf a virus (phagocytosis). When this happens, the
virus is degraded into fragments (digestion or lysis), and a molecule, the so-called
antigen, is displayed on the surface of the macrophage (presentation or mating).
The antigen may be recognised by a specific lymphocyte T helper, and this in turn
activates the mechanisms of immune reply, a response specific to the recognised
virus.

Figure 3 gives an abstract representation of the described phenomenon. Viruses
are modelled as entities with inactive sites which represent the viral antigens. The
process starts with the phagocytosis of the virus by the macrophage. The virus is
then decomposed, and eventually viral antigens are moved to the surface of the
macrophage. So, the macrophage acquires some active sites from the virus, and it
can wait for a lymphocyte with a complementary site. When the appropriate lym-
phocyte T helper binds to the macrophage, it becomes active and starts playing its
role in the immune reply. Observe that lymphocytes have active sites even before
binding to a macrophage.
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3 Calculi for Biology

In this section, we survey the main calculi for biology which have been proposed in
the literature. We begin by pointing out the general features of process calculi for the
description of interacting distributed systems. Then each of the considered calculi
for biology is presented and used to model the simple scenario described in Sect. 2.
Available simulation and analysis tools are also mentioned and briefly commented
upon.

3.1 Process Calculi: The Approach

Starting from the forerunner Calculus of Communicating Systems (CCS) [54],
process calculi have been defined with the primary goal of providing formal speci-
fications of concurrent processes, namely of computational entities executing their
tasks in parallel and able to synchronise over certain kinds of activities. The model
of a system is given as a term that defines the possible behaviours of the various
components of the system. Calculi are equipped with an operational semantics [65],
which consists in a set of syntax-driven rules, that allow users to automatically in-
fer the possible future of the system. Usually, the fact that process P evolves into
process Q is written as P → Q.

The basic entities of process calculi are actions. In the most basic view (e.g. in
CCS), actions are input/output operations on channels. Actions can be composed
sequentially, meaning that a process can perform an action after the other. Processes
can also be composed in parallel: in P1 | P2, where ‘|’ is the infix parallel com-
position operator, processes P1 and P2 can either interleave their basic actions or
interact. Moreover, most of the calculi are equipped with some sort of restriction
operator which fixes the scope of actions. For instance, assuming a to be an ac-
tion, and using ‘ν’ to denote restrictions, P1 | νaP2 means that action a is private to
process P2.

The interaction policy assumed by each calculus is probably its main distinguish-
ing feature, and it drives the design of its primitive operators. Here is a(n incomplete)
list of possibilities.

• Two-way synchronisation (see, e.g. [54]). Each action has a complementary ac-
tion, typically called co-action. Actions and co-actions can synchronise with each
other. So, for instance, assuming a and a to be complementary actions, the follow-
ing interaction would be possible: a.P1 | a.P2 → P1 | P2 where ‘.’ is the action-
prefix operator.

• Multi-way synchronisation (see, e.g. [39]). The parallel composition operator is
parametric w.r.t. a set of actions (sometimes called cooperation set) on which all
of the parallel processes are obliged to synchronise. There is no need to resort
to complementary actions in this case. For example, a.P1 |{a} a.P2 |{a} a.P3 →
P1 |{a} P2 |{a} P3. On the other hand, assuming b to be distinct from a, no in-
teraction is possible for b.P1 |{a} a.P2 |{a} a.P3, because the leftmost component
cannot contribute to the synchronisation with the other processes.



468 M.L. Guerriero et al.

Table 1 Process calculi
abstraction for systems
biology, adapted from [70]

Biology Process calculi

Entity Process

Interaction capability Action name

Interaction Synchronisation/Communication

Modification/Evolution State change

• Name-passing (see, e.g. [55]). In this case, actions have either the form a〈b〉 or
the form a(c). The first one stands for “output the channel name b along the
channel named a”, and the second one stands for “input any name from channel
a and then use it instead of the parameter name c”. The name-passing interaction
policy is a specific instance of the two-way communication paradigm: the actions
a〈b〉 and a(c) are complementary to each other, and they can be involved in an
interaction. In this case, more than simple synchronisation occurs: channel names
flow from senders to receivers. For instance, a〈b〉.P1 | a(c).P2 → P1 | P2{b/c},
where {b/c} denotes the substitution of the free occurrences of c by the actually
received name b.

Since names can be transmitted in interactions, the restriction operator plays a
special role in name-passing calculi. Restricted names cannot be used as transmis-
sion media. They can, however, be used as transmitted data and, once transmitted,
they become private resources shared by the sender and the receiver. For example,
(νba〈b〉.P1) | a(c).P2 → νb(P1 | P2{b/c}), which is an instance of the so-called
scope extrusion. The peculiarity of this kind of communication has been extensively
used in modelling biological behaviours. Since P1 and P2{b/c} can privately inter-
act over b in νb(P1 | P2{b/c}), if P1 and P2 represent molecules, then the process
νb(P1 | P2{b/c}) can be seen as the complex of these two molecules.

The mentioned operators are those common to various process calculi; in ad-
dition to these, each calculus adopts a few specific operators. The complete set of
process calculi operators is very small and yet it contains all the ingredients for the
description of concurrent systems in terms of their behaviour, i.e. of their evolution.
Indeed, the operational semantics of process calculi allows for the formal interpreta-
tion of the behaviour of a process as a directed graph, called transition system. The
nodes of the graph represent the processes, and an edge connects P to Q only if P

evolves into Q.
Two main properties of process calculi are worth mentioning. First, the behav-

iour of a complex system is expressed in terms of the behaviour of its components.
A model can be designed following a bottom-up approach: one defines the basic op-
erations that each sub-component can perform, and then the full system is obtained
by composition of these basic building blocks. This property is called composition-
ality. Second, the rules defining the operational semantics of processes allow for
both the automatic generation of the transition system and the simulation of runs of
the represented system. So, process calculi are specification languages that can be
directly implemented and executed.
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Table 1 gives a concise picture of the mapping between biology and process cal-
culi. In the process calculi interpretation, a biological entity (e.g. a protein) is seen as
a computation unit (i.e. a process) with interaction capabilities abstracted as action
names. Similarly to biological entities, which interact/react through complemen-
tary capabilities, processes synchronise/communicate on complementary actions.
The modifications/evolutions of molecules after reactions are represented by state
changes following communications. The abstraction in Table 1 has four main prop-
erties [70]: (i) it captures an essential part of the phenomenon; (ii) it is computable
(or, better, it is executable), allowing for computer aided analysis; (iii) it offers a
formal framework to reason; and (iv) it can be extended.

In the rest of this section, we will survey the main process calculi proposed for
representing biological systems, and we will comment on the way the various lan-
guages focus on particular extensions of the abstraction principles in Table 1.

3.2 Biochemical π -Calculus

The biochemical π -calculus [71] is a name-passing process calculus which extends
the π -calculus [55, 73]. Molecules are modelled as processes, and molecular com-
plexes are rendered by parallel compositions of processes sharing private names.
Movements between complexes and formations of new complexes are represented
as transmissions of private names. Once a complex is formed, its components inter-
act by communicating on complementary sites.

Figure 4 reports a code fragment that specifies the antigen presentation phase.
The global system SYS is given by the parallel composition of four processes:
VIRUS, MACROPHAGE, TCELL1, and TCELL2. Figure 4 only presents the specifi-
cations of the first two elements. Here, we just sketch the intuition of the behaviour
of the sub-system given by MACROPHAGE | VIRUS. The restriction on top of each
component stands for its enclosing membrane. The macrophage phagocytizes the
virus by means of a communication on the public channel Tlr. Operationally, this
communication involves the output action Tlr〈MemM〉 and its complementary input
action Tlr(y). Its effect is twofold: (i) the restricted name MemM undergoes a scope

Fig. 4 Phagocytosis-digestion-presentation in π -calculus
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Fig. 5 TCELL activation in π -calculus

extrusion and becomes a private resource of both MACROPHAGE and VIRUS (thus,
modelling the engulfment of the virus); (ii) the name y in VIRUS is renamed into
MemM (modelling the adaptation of the internal machinery of the macrophage to
start the lysis). The subsequent communication over the channel MemM is such
that Ant1 is transmitted to MACROPHAGE, which in turn can make Ant1 avail-
able to the lymphocytes T (either TCELL1 or TCELL2) by means of the last action
!Ant1〈str〉. The bang operator, ‘!’, allows us to model infinite behaviours. In partic-
ular, !Ant1〈str〉 behaves as Ant1〈str〉(!Ant1〈str〉) and, therefore, MACROPHAGE can
activate many TCells expressing Ant1.

Figure 5 shows the implementation of the activation of the appropriate lym-
phocyte T helper. We assume that the antigen presentation phase has already oc-
curred, and hence that the macrophage is ready to communicate on channel Ant1
with whichever lymphocyte can execute a complementary action on the same chan-
nel. In the evolution drawn in Fig. 5, this lymphocyte is TCELL1 which, after the
synchronisation on Ant1, can start its activities. Notice that the active form of the
macrophage, MACROPHAGE’, can activate another TCell because of the bang oper-
ator.

The biochemical stochastic π -calculus [62, 68] is a stochastic extension of the
biochemical π -calculus, which allows modellers to quantitatively describe biolog-
ical systems. Several variants of the biochemical stochastic π -calculus have been
recently proposed (e.g. SPICO [46] and Sp@ [79]), while a graphical represen-
tation for the biochemical stochastic π -calculus is described in [63]. There exist
implementations of the biochemical stochastic π -calculus that make real in silico
experiments possible. Two examples of simulation tools for the biochemical sto-
chastic π -calculus are BioSPI [7] and SPiM [76], both based on Gillespie’s sto-
chastic simulation algorithm [33]. In addition to simulation, various methods to
analyse π -calculus models have been proposed (e.g. causality and concurrency
analysis [19]).

Several complex models of real biochemical systems have been implemented and
simulated using these tools. Notably, the simulation of extra-vasation in multiple
sclerosis reported in [51] showed to have a sort of predictive flavour: an unexpected
behaviour of leukocytes has been guessed by the results of in silico simulations,
and a posteriori proved in wet experiments. Other complex systems described in
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the biochemical stochastic π -calculus include gene regulatory networks (e.g. the
control of transcription initiation at the lambda switch [47]), cell cycle control [50],
and signalling pathways (e.g. the Rho GTP-binding protein cycle [15] and the FGF
signalling pathway [37]). In [17], a model of a full cell with a hypothetical minimal
gene set is presented and analysed.

3.3 BioAmbients

BioAmbients [69] is an extension of the biochemical π -calculus enriched with an ex-
plicit notion of compartments. Similarly to the biochemical π -calculus, BioAmbi-
ents models biochemical interactions as communications on channels, but it focuses
on compartments: the location of molecules within specific compartments is con-
sidered a key issue for regulatory mechanisms in biological systems. Biomolecular
systems are organised in a hierarchical and modular way, and molecules can per-
form their task only if they are in the right compartment. In BioAmbients, systems
are represented as a hierarchy of nested ambients, which represent the boundaries
of compartments containing communicating π -calculus like processes.

Three kinds of communication are defined in BioAmbients, depending on the
relative position of the communicating processes:

• local, i.e. between two processes in the same ambient,
• s2s, i.e. between two processes located in sibling ambients,
• p2c / c2p, i.e. between processes located in ambients with a parent-child / child-

parent relation.

Additional pairs of primitives are provided to represent the movement of ambi-
ents:

• enter n / accept n, for entering into an ambient and accepting the entrance, re-
spectively,

• exit n / expel n, for exiting from a containing ambient and expelling a contained
ambient, respectively,

• merge+ n / merge- n, for merging two ambients together.

Figure 6 shows a possible specification of the digestion of the virus by the
macrophage. The two processes Infect and Digest abstract the infection capability
of the virus and the digestion capability of the macrophage, respectively. Virus and
macrophage synchronise on channel tlr, and the virus enters the macrophage by an
enter / accept pair. Then the macrophage obtains the antigen with a p2c communi-
cation on channel tlr, and eventually, it makes the antigen available to lymphocytes
T helper.

BioAmbients uses communication channels to implement interfaces of biologi-
cal entities. Figure 7 reports the BioAmbients implementation of the activation of
the lymphocyte T helper. Each lymphocyte reacts to a specific antigen, and it begins



472 M.L. Guerriero et al.

Fig. 6 Phagocytosis-digestion-presentation in BioAmbients

Fig. 7 TCELL activation in BioAmbients

its task by means of a communication on a dedicated channel. After the right lym-
phocyte has been activated by an s2s communication, the macrophage can activate
other TCells (notice the use of the bang operator).

The third version of the BioSpi simulator [7] can handle BioAmbients stochastic
simulation. Static analysis techniques that allow users to analyse descriptions of
systems to discover dynamic properties have been adapted to BioAmbients (e.g.
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control flow analysis [57] and spatial analysis [58]). A symbolic approach which
allows modellers to deal with partially unspecified biological systems is presented
in [5].

A few biological case studies have been simulated and analysed by means of the
BioAmbients calculus (e.g. the FGF endocytotic pathway [4] and the LDL choles-
terol degradation pathway [64]).

3.4 Brane Calculi

Brane calculi [14] builds on the observation that membranes are not just containers,
but also active entities that take care of coordinating specific activities. This means
that membranes are considered as active elements and the whole computation hap-
pens on membranes. In Brane, calculi membranes can move, merge, split, enter, or
exit into/from another membrane. Some constraints, inspired by the real behaviour
of biological membranes, need to be satisfied when applying these operations. The
most important is continuity of transformations. For instance, a membrane cannot
simply pass across another; it rather has to gradually buckle and create a bubble that
later on may detach. Another important constraint is the preservation of the orienta-
tion of membranes, so merging of membranes cannot occur arbitrarily. For instance,
this constraint prevents membranes with a different orientation to merge.

A system is represented as a set of nested membranes, and a membrane as a set
of actions. Actions carry out membrane transformations. The primitives related to
movement to/from membranes are classified in two main groups.

• Phagocytosis (phago) for engulfing one external membrane, pinocytosis (pino) for
engulfing zero external membranes, and exocytosis (exo) for expelling an internal
membrane.

• Budding (bud) for splitting off one internal membrane, dripping (drip) for splitting
off zero internal membranes, and mating (mate) for the controlled merging of two
membranes.

Communication can be on-membrane or cross-membrane, and it is associated with
distinct pairs of primitives.

• On-Membrane: the primitives p2pn / p2p⊥
n are for on-membrane communications

only; they follow the π -calculus communication style.
• Cross-Membrane: the primitives s2sn / s2s⊥

n , p2cn / p2c⊥
n , and c2pn / c2p⊥

n are
for communications between processes in distinct membranes; they follow the
BioAmbients communication style.

Figure 8 reports a specification of the running example in Brane calculi. The op-
erator ◦ stands for parallel composition. The rounded parentheses (| |) enclose the
content of the membrane. The actions that a membrane can perform are represented
at the left of its enclosing rounded parentheses. In the first step, MACROPHAGE
engulfs VIRUS by a phago on trl. Notice that the INFECT part of VIRUS is now
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Fig. 8 Phagocytosis-digestion-presentation in Brane calculi

Fig. 9 TCELL activation in Brane calculi

inside the DIGEST part of MACROPHAGE, mimicking the real biological behav-
iour. Then by means of a c2p communication, the macrophage makes ant1 available
to T cells. Availability is shown by the pending s2s communication on ant1.

Figure 9 shows the Brane calculi code for the activation of the appropriate
lymphocyte. The approach is analogous to the one adopted in the biochemical
π -calculus and in BioAmbients: The T cell that knows the right name (in this
case ant1) can synchronise with MACROPHAGE’ and proceed with its activities
T_ACTIVITIES.

The projective Brane calculus [27] is a refinement of Brane calculi. Following the
observation that biological membranes reactions are directed, Brane calculi actions
are replaced by directed actions, so that interaction capabilities are specified as fac-
ing inward or outward. This refinement results in an abstraction which is closer to
biological settings than the one provided by the original language. In [8], a method
for analysing causality in Brane calculi is proposed. The Brane Logics [53] allows
temporal properties to be expressed and checked.

As for case studies, the Brane calculi description of the LDL cholesterol degra-
dation pathway appeared in [9].
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Fig. 10 Phagocytosis-digestion-presentation in CCS-R

3.5 CCS-R

CCS-R [25] is an extension of CCS that taking into account the fact that most bio-
chemical reactions can be reversed, allows reversibility to be explicitly expressed.

The calculus adopts a two-way synchronisation mechanism. No name is passed
in communications, and hence it is not possible to render complex formations by
means of transmissions of private names. For this reason, the information flow from
the virus to the macrophage in the Phagocytosis-Digestion-Presentation phase can-
not be faithfully rendered in CCS-R. It is still possible though to specify this phase
as a pathway activation. Such coding is used in the specification of the running ex-
ample shown in Fig. 10, where the binary choice operator ‘+’ is used to mean non-
determinism between the two operands. Each parallel component of SYS is associ-
ated with a numerical identifier, used to allow for consistent backtracking from syn-
chronisations. Let us consider the case when [VIRUS]1 non-deterministically syn-
chronises with [MACROPHAGE]2 on channel Tlr. After the transition, a memory is
added to the residuals of both interacting processes. On one side, 〈2,Tlr, INFECT〉
records that a synchronisation with process number 2 occurred, and that the sub-
process INFECT was non-deterministically discharged. On the other side, the mem-
ory 〈1,Tlr,nil〉 records that this is the result of a synchronisation with process num-
ber 1 and no relevant process was discharged (written nil). The data provided by
these memories allow the system to backtrack to the initial process SYS. This be-
haviour mimics the fact that the bond between a macrophage and a virus is weak and
can be broken, so reversing the reaction. On the contrary, the bond between a T cell
and the corresponding antigen is strong and cannot be broken. So, the activation of
T Cells (Fig. 11) can be modelled by using irreversible interactions that in CCS-R,
are those involving underlined partners.

Reversible CCS [24] is a refinement of CCS-R which allows processes to back-
track from reactions only if this is in agreement with a true-concurrency notion of
causal equivalence.
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Fig. 11 TCELL activation in CCS-R

3.6 PEPA

PEPA [39] is a formal language for describing Markov processes. It was introduced
as a tool for performance analysis of large computer and communication systems,
to examine both quantitative properties (e.g. throughput, utilisation, and response
time) and qualitative properties (e.g. deadlock freeness). PEPA explicitly supports
stochastic information. With the advent of the systems biology era, the abstraction
facilities of PEPA have been exploited in biochemical signalling pathways analysis
and simulation [12].

The calculus adopts a multi-way synchronisation mechanism. The parallel com-
position operator is ‘ ��

L
’, with L being the cooperation set. A PEPA specification

taken from [12] follows:

Prot1H ::= (r1, k1).Prot1L

Prot2H ::= (r1, k1).Prot2L

Prot3L ::= (r1,�).Prot3H

Sys ::= Prot1H ��
{r1} Prot2H ��

{r1} Prot3L

The system is composed of two proteins which can interact on r1 with stochastic
rate k1 (written (r1, k1)), and of a third protein that can execute r1 with indefinite
rate (written (r1,�)). The subscripts H and L stand for high and low protein level.
The multi-way synchronisation mechanism allows the three processes to advance in
a single step. So, Sys is transformed into Prot1L ��

{r1} Prot2L ��
{r1} Prot3H , a system

with a high level of Prot3, and with low levels of Prot1 and Prot2.
PEPA cannot represent compartments neither directly nor indirectly by means of

name passing and scope extrusion. So, the information flow from the virus to the
macrophage in our example cannot be rendered in a completely faithful way; like in
CCS-R, however, it can be rendered as a chain of biochemical interactions. Figure 12
shows the PEPA code. First, MACROP synchronises with VIRUS on activity Tlr with
rate k. Then activity Ant1 is visible and ready to activate the proper T cells.

The specification of TCell activation is reported in Fig. 13. The virus (rather
than the macrophage) synchronises with the TCell that possesses the right antigen.
Notice that Ant2 is in the cooperation set {Ant1,Ant2}. Otherwise, due to the PEPA
semantics, TCELL2 could proceed without recognising the right antigen.
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Fig. 12 Phagocytosis-digestion-presentation in PEPA

Fig. 13 TCELL activation in PEPA

Bio-PEPA [18] is an extension of PEPA specifically designed for the represen-
tation of biochemical networks. Its main features are that it enables modellers to
explicitly define the stoichiometry of reactions and to use general kinetic laws dif-
ferent from the basic mass-action.

Several tools for simulation and analysis support PEPA models. The PEPA Work-
bench [34] is the first analysis tool developed for PEPA: it enables several kinds of
analysis (e.g. freedom from deadlocks and Markovian analysis of both transient
and steady-state properties). The PEPA Eclipse Plug-in [61], a contribution to the
Eclipse integrated development environment, includes a PEPA editor and perfor-
mance analysers which use Markov chain, ODE methods, or simulation. PEPA is
also supported by the multi-paradigm modelling tool Möbius [56]. ODEs can be
automatically obtained from PEPA descriptions as described in [10], and models
suitable for analysis in the PRISM model checker [48] can be automatically derived
from PEPA models, making it possible to perform model checking of temporal prop-
erties expressed in the Continuous Stochastic Logic (CSL).

A few biological systems have been modelled and analysed using PEPA. A rele-
vant example is the ERK signalling pathway [11].
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3.7 Beta-binders

Beta-binders [67] is a bio-inspired process calculus that interprets biological entities
as boxes enclosing internal processing engines. Each box is provided with typed
interfaces for interaction with other boxes. The internal unit is given by parallel
processes interacting by a π -calculus name-passing paradigm. Graphically, a box
looks like the following:

P | Q
x1 : �1 . . . xn : �n

In each pair xi : �i , xi is the name of the interface, and �i is its associated type.
Communication between boxes departs from plain name-passing, and is inspired
by enzyme theory [45]. In particular, it is based on a user-definable notion of com-
patibility over types (see [66] for an example). Interaction between two boxes can
occur only if the corresponding internal units are ready to perform complementary
(input/output) actions over interface names with compatible types.

Beta-binders offers only a limited support to the dynamic modification of boxes.
A few primitives drive possible changes of interaction sites: hide and unhide actions
make invisible (resp. visible) a visible (resp. invisible) site, so accounting for phos-
phorylation and dephosphorylation, and the expose action allows for the addition of
a new typed interface to the box. The join and split primitives allow two boxes to
join together, and a box to split in two, respectively.

Figure 14 reports the Beta-binders fragment that encodes the antigen presentation
phase. The global system SYS is given by the parallel composition of four boxes
representing a macrophage, a virus, and two T cells, respectively. The macrophage
phagocytizes the virus, resulting in a box whose interaction capabilities are inherited
from the macrophage, and whose internal unit is the parallel composition of the

Fig. 14 Phagocytosis-digestion-presentation in Beta-binders
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Fig. 15 TCELL activation in Beta-binders

internal bodies of the joined boxes. This represents the fact that the genetic material
of the virus is absorbed by the macrophage. Hence, the virus antigen Ant1 is passed
to the macrophage and then a new site typed by {Ant1} is exposed.

Figure 15 shows the implementation of the T cell activation phase. Assuming
that {Ant1} is compatible with � only if Ant1 ∈ �, a communication between the
two leftmost boxes activates the expected T cell. Note that in Fig. 15 the boxes con-
taining PTCELL1 and PTCELL2 have non-disjoint types {Ant1,Ant3} and {Ant2,Ant3},
respectively. This allows us to model a typical scenario of immune systems: the two
T cells have a similar shape (they can be both activated by Ant3), and yet they are
not identical (e.g. only one of them can be activated by Ant1).

A stochastic extension of Beta-binders is presented in [28], where the notion of
compatibility is used to derive quantitative parameters. In another extension [35] of
the formalism, an explicit notion of compartments has been introduced, making the
representation of static hierarchies of boxes easier.

The Beta Workbench [6, 72] is a collection of tools for modelling, simulating, and
analysing Beta-binders systems. The simulator is based on a variant of Gillespie’s
stochastic simulation algorithm [33]. In [52], a parallel simulator for Beta-binders
is presented.

The authors of [29] propose a formal method for measuring the effect of drugs
on systems modelled in Beta-binders, using the NO-cGMP pathway as a case study.
Techniques for analysing spatial [35] and temporal [36] properties of Beta-binders
systems have been described and applied to the cAMP signalling pathway in OSNs,
and to the ERK pathway, respectively.

3.8 κ-Calculus

The κ-calculus [26] is a formal calculus of protein interactions. It was conceived
to represent complexation and decomplexation of proteins, using the concept of



480 M.L. Guerriero et al.

Fig. 16 Phagocytosis-digestion-presentation in the κ-calculus

shared names to represent bonds. The units of κ-calculus are proteins, and operators
are meant to represent creation and division of protein complexes. The κ-calculus
comes equipped with a very clear visual notation: proteins are drawn as boxes with
sites on their boundaries, which can be either visible, hidden, or bound. For instance,

represents two molecules M1 and M2 bound at sites s2 and s3, respectively. More-
over, the site s1 of M1 is hidden and the site s4 is visible.

Besides the graphical representation, the κ-calculus provides a language in the
style of process calculi. Expressions and boxes are given a semantics by a set of
basic reactions. Once the initial system has been specified and the basic reductions
have been fixed, the behaviour of the system is obtained by rewriting it after the
reduction rules. This kind of reduction resembles pathway activation.

The calculus does not offer a natural support for managing the evolution of com-
partments. Like in CCS-R and PEPA, it is possible to represent the Phagocytosis-
Digestion-Presentation example as an activation pathway (see Fig. 16(a)). The virus
is rendered by the box V, which has a visible site in, used to enter a cell, and a hidden
site a1, which represents the antigen. The macrophage is represented by the box M,
which has a visible site ph, used to phagocytize a molecule. Figure 16(b) shows the
single reaction relevant to our running example. In this reaction rule, the superscript
x in phx and inx means that the sites in and ph are linked by the channel named x.

Figure 17(a) shows both the graphical and the textual representation of the acti-
vation of a lymphocyte T helper. After phagocytosis, the virus has a visible site a1,
which represents its antigen: only the lymphocyte with the right site can bind it. The
graphical notation does not clearly represent the selection of the right lymphocyte.
This gap is filled by the formal model via the definition of the basic reactions. In
particular, the system described in Fig. 16(b) may be extended with the rules de-
fined in Fig. 17(b). By these rules, it is possible to infer the reduction shown in
Fig. 17(b).

The bioκ-calculus [49] is an extension of the κ-calculus with the addition of
operations on membranes in the style of Brane calculi. Therefore, the bioκ-calculus
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Fig. 17 TCELL activation in κ-calculus

can easily represent both protein interactions (complexation and decomplexation)
and cell interactions (membrane fusions and protein translocations).

A stochastic κ-calculus simulator is described in [21]. The Kappa Factory [42]
is a graphical platform for the design, analysis, and simulation of bio-molecular
systems. Different kinds of analysis methods are supported, e.g. static dependencies
on rules and analysis of traces. In [22] and [23], techniques for reachability and
causality analysis are described.

The EGFR/ERK pathway has been extensively modelled and analysed using the
κ-calculus [20, 22, 23].

4 Concluding Remarks

A survey of the process calculi that have been adopted to describe the behav-
iour of living entities has been presented. The common feature of all the surveyed
languages is the interpretation of biological interactions in terms of synchronisa-
tion/communication of concurrent processes. As for the rest, the calculi differ in
many respects. Some of them take compartments as primitive, while others adopt
name-passing to simulate complex formation. Explicit compartments, when present,
can be either flat or dynamically organised in a hierarchy.

None of the presented languages seems to emerge as the perfect general-purpose
formalism for modelling biology. Rather, some of the calculi have been proved
to be well suited for modelling interactions at the level of cellular systems, while
others for rendering signalling pathways. Sometimes the main features of two cal-
culi are merged together to get a more expressive formalism; an example is the
bioκ-calculus, which combines Brane calculi with the κ-calculus.
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Table 2 Summary on tools and case studies

Simulation Analysis Case studies

Biochemical π-calculus BioSPI [7], SPiM [76] causality [19] [15, 17, 47, 50, 51]

BioAmbients BioSpi [7] CFA [57],

spatial [58] [4, 64]

Brane Calculi – causality [8],

modal logic [53] [9]

CCS-R – causality [24] –

PEPA PEPA Workbench [34], Markovian [61],

Eclipse Plug-in [61] model checking [13] [11]

Beta-binders Beta Workbench [6] reachability [29],

locality [35] [29, 35]

κ-calculus Kappa Factory [42] reachability [22]

causality [23] [20]

Table 2 schematically summarises some of the considered issues for each of the
calculi we have dealt with: the availability of simulation platforms; the adaptation
or development of analysis techniques; the investigation of complex case studies.

The largest number of case studies has been modelled using the biochemical
π -calculus. BioAmbients first, and Brane calculi later on, has introduced an explicit
notion of compartments. Relevant analysis tools and interesting case studies have
been developed for both of them. Beta-binders and κ-calculus focus on the represen-
tation of biochemical interactions. The first one adopts a communication paradigm
depending on the compatibility of the interacting sites, while the latter provides
an accurate description of complexation and decomplexation. No simulation envi-
ronment has been developed for CCS-R, but still this is the only language offering
primitive support for the description of reversibility, a key biological mechanism. Fi-
nally, PEPA is surely the language exhibiting the largest number of well-established
simulation and analysis tools. Moreover, its multi-way synchronisation makes the
calculus close to chemical equations and hence more appealing to biologists.

Deepening the understanding of the process calculi approach to the description of
living entities poses new challenges for computer scientists. First of all, process cal-
culi may seem obscure to non-experts, and user-friendly software platforms need to
be developed. Another crucial point is the relation between in-silico activity (mod-
elling, simulation, analysis) and wetlab experiments. Models are meaningless if not
derived from real biological observations, and in-silico experiments and analysis
have to be validated to prove their predictive flavour. However, techniques that allow
the direct quantitative measure of pathway activities or protein levels, considering a
single cell, are not common practise and, so, laboratory protocols have to be adapted
or renewed. Process calculi for biology are in their pioneering phase and, although
they are powerful and promising, a closer collaboration between life and computer
scientists is required to bring appreciable results.
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Deriving Differential Equations from Process
Algebra Models in Reagent-Centric Style

Jane Hillston and Adam Duguid

Abstract The reagent-centric style of modeling allows stochastic process algebra
models of biochemical signaling pathways to be developed in an intuitive way. Fur-
thermore, once constructed, the models are amenable to analysis by a number of
different mathematical approaches including both stochastic simulation and cou-
pled ordinary differential equations. In this chapter, we give a tutorial introduction
to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such
models can be used to generate systems of ordinary differential equations.

1 Introduction

Process algebras are a well-established modeling approach for representing concur-
rent systems to facilitate both qualitative and quantitative analysis [6, 20, 27]. Within
the last decade, they have also been proposed as the basis for several modeling tech-
niques applied to biological problems, particularly intracellular signaling pathways,
e.g. [2, 8, 9, 16, 21, 22, 30, 32, 33]. The original motivation for this proposal was
the observation of the clear mapping that can be made between molecules, within a
biochemical pathway, and processes, within concurrent systems [34]. The mapping
is then elaborated with reactions between molecules represented by communication
between processes, etc.

This mapping has been extremely influential with much subsequent work follow-
ing its lead. It takes an inherently individuals-based view of a pathway or cell. This
is unsurprising because process algebras have traditionally been used in this manner
with each entity within the system captured explicitly. However, there are drawbacks
to such an individuals-based view, principally the problem of state-space explosion.
When each individual within a system is represented explicitly and all transitions
within or between individuals are captured as discrete events, the number of states
becomes prohibitively high. This problem prohibits the use of techniques which
rely on access to the state space in its entirety, such as model checking or numerical
solution of a Markov chain. However, it also impacts on other techniques such as
stochastic simulation because although they explore the state space iteratively, the
size of the state space still has a deleterious impact on the likely computational cost
of obtaining statistically significant results.
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Biologists have recognized and empirically solved this problem for decades with
the use of systems of ordinary differential equations (ODEs) to represent intracel-
lular systems. Although rarely presented in that way, these mathematical models
are continuous or fluid approximations of the true model of the system. The rea-
son that the approximation aspect of the ODE models is often ignored is because
in many circumstances it is an extremely good approximation, certainly adequate
for the analyses and reasoning which need to be performed. The idea underlying
the approximation is that when the number of molecules become high, the discrete
changes that take place as counts are increased or decreased by one or two mole-
cules (according to stoichiometry), may be regarded as continuous changes. In the
biological setting, where the exact number of molecules is often difficult to obtain
but is known to be extremely large, this more abstract view is both intellectually
and computationally appealing. The continuous state space models, in the form of
systems of ODEs, are much more efficiently solved than their discrete state space
counterparts.

We have been investigating the role of process algebra modeling in this popula-
tion-based modeling approach. This requires a somewhat different abstraction than
the molecules-as-processes one proposed by Regev et al. in order to cleanly derive
the fluid approximation. We term this style of modeling reagent-centric modeling
and we exemplify it below with the stochastic process algebra PEPA and the recently
defined biologically-inspired modification Bio-PEPA.

2 Reagent-Centric Modeling

A process algebra model captures the behavior of a system as the actions and in-
teractions between a number of entities, usually termed agents or components. In
classical process algebras such as CCS [27] and the π -calculus [28], the actions are
atomic and interactions are strictly binary, consisting of complementary input and
output actions. In CSP [26], the form of interaction is generalized to be synchroniza-
tion on shared names, allowing multi-way communications to take place. In stochas-
tic process algebras, such as PEPA [25] or the stochastic π -calculus [31], a random
variable representing average duration is associated with each action. In the stochas-
tic π -calculus, as in the π -calculus, interactions are strictly binary whereas in PEPA
the more general, multi-way synchronization is supported.

We use the term reagent to mean an entity which engages in a reaction. In the
basic case, this will be a biochemical species such as a protein, receptor molecule or
an enzyme. However, it may be more abstract, capturing the behavior of a group of
entities or a whole subsidiary pathway. Although the participants in a reaction will
be particular species, in some circumstances, the modeler may choose not to repre-
sent them explicitly. There may be a variety of reasons for this choice. For example,
detailed knowledge of the pathway may be unknown or may be only tangentially rel-
evant to the pathway which is under study. Equally as we add a new species/entity
to the model we want to specify that it interacts with the existing components, the
existing reagent, building the behavior of the model incrementally.
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This addresses one of the shortcomings of the molecules-as-processes abstrac-
tion. In a process algebra compositionality is a key feature. Thus, a model, consist-
ing of a number of interacting agents, is itself an agent. However, the same cannot
be said for molecules. A number of molecules who interact do not, in general, re-
sult in a molecule. However, with our abstract notion of a reagent, it is the case that
interacting regents do result in a reagent.

The reagent-centric style of modeling also makes a subtle but essential shift
from the molecules-as-processes abstraction for modeling biochemical pathways
in process algebra in terms of how models are constructed. In the molecules-as-
processes abstraction each molecule in a cell is modeled as an agent and the actions
of the agent record the changes which occur for that molecule. Consider a reaction
react in which a molecule of species A combines with a molecule of species B to
form a compound C. In the molecules-as-processes style, this would be represented
as:1

A
def= react.C, B

def= react.0, A | B.

In contrast in the reagent-style each species is represented as a distinct agent:

A(l)
def= react.A(l − 1),

B(l)
def= react.B(l − 1),

C(l)
def= react.C(l + 1).

Here, the formal parameter l used within a model records the capacity of the com-
ponent to participate in the reaction. When the model is to be interpreted as a set of
ODEs, then this denotes the concentration. The key thing is that model description
records the impact of the reaction on this capacity. The system is then the composi-
tion of all these species, interacting on the action react:

(
A(lA0) ��

react
B(lB0)

) ��
react

C(lC0).

Note that all species are represented in this model equation even though some may
have initial concentration zero (say lC0 = 0)

Thus, in the reagent-centric style of modeling the atomic components of the
model are generally the species of the biological system. Each component records
the reactions which the species may be involved in together with the role that the
species has in that reaction, i.e. whether the species is a reactant or a product or an
enzyme. In PEPA models, this was done informally, but in the recently developed
process algebra Bio-PEPA, the syntax is designed to record such details.

To some extent, the different styles here result from the forms of interaction
which are supported in the process algebras. In the π -calculus, where complemen-
tary actions are used, it would not be possible to model in the reagent-centric style,

1We disregard rates for the initial discussion to be able to focus on the style of representation.
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whereas this is completely natural in a language such as PEPA which supports multi-
way synchronization.

In our discussions so far, we have ignored the specification of the rate at which
a reaction takes place, and not used any specific process algebra. In the subsequent
discussions, we will use the stochastic process algebra PEPA which has the follow-
ing syntax:

S ::= (α, r).S | S + S | CS,

P ::= P ��
L

P | P/L | C
where S denotes a sequential component and P denotes a model component which
executes in parallel. C stands for a constant which denotes either a sequential com-
ponent or a model component as introduced by a definition. CS stands for constants
which denote sequential components. The effect of this syntactic separation between
these types of constants is to constrain legal PEPA components to be cooperations
of sequential processes. Thus, sequential components may have a designated first
action, or offer alternative actions. Constants are used to name the behavior of com-
ponents, and mutually recursive definitions allow the possibility of infinite behavior.
Model components are cooperations of model components, controlled by a cooper-
ation set L which specifies which actions must be synchronized between the compo-
nents. Actions outside the set L may be undertaken independently and concurrently.
For more details, see [25].

Let us consider a simple Michaelis–Menten reaction.

S + E
k1�
k−1

C
k2−→E + P.

Here, S is a substrate, P is a product, and E is an enzyme. Substrate and enzyme
may bind to form a complex, C. This reaction has a rate constant k1. The complex
may dissociate into its original components with rate k−1 or into the enzyme and
product with rate k2.

Modeling this in PEPA in the reagent-centric style, assuming just two abstract
levels (a justification for this will be discussed in the next section) for each species,
we distinguish only high, denoted by a subscript H , and low, denoted by a sub-
script L:

SH
def= (bind, k1).SL,

SL
def= (dissoc,�).SH ,

EH
def= (bind,�).EL,

EL
def= (dissoc,�).EH + (prod,�).EH ,

CH
def= (dissoc, k−1).CL + (prod, k2).CL,

CL
def= (bind,�).CH ,
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PL
def= (prod,�).PH .

The model equation is

(
(SH ��

L1
EH ) ��

L2
CL

) ��
L2

PL

where L1 = {bind,dissoc} and L2 = {bind,dissoc,prod}.
In the following, we term components of the model the sequential components

corresponding to the species in the signaling pathways (S,E,C, and P in the ex-
ample above) and derivatives, the internal states of the components, e.g. SH and SL.

3 Deriving ODEs

Even at the coarsest level of abstraction, distinguishing only high and low levels, the
reagent-centric process algebra model provides sufficient information for deriving
an ODE representation of the same system [7]. This is because it is sufficient to
know which reactions increase concentration (low-to-high) and which decrease it
(high-to-low), and this is recorded quite explicitly in the reagent-centric style. Thus,
for any reagent-centric PEPA model, with derivatives designated high and low, it is
straightforward to construct an activity graph which records this information.

Definition 1 (Activity Graph) An activity graph is a bipartite graph (N,A). The
nodes N are partitioned into Nr , the reactions, and Na , the reagents. A ⊆ (Nr ×
Na) ∪ (Na × Nr), where a = (nr , na) ∈ A if nr is a reaction in which the concen-
tration of reagent na is increased, and a = (na, nr) ∈ A if nr is a reaction in which
the concentration of reagent na is decreased.

The same information can be represented in a matrix, termed the activity matrix.

Definition 2 (Activity Matrix) For a pathway which has R reactions and S reagents,
the activity matrix Ma is an S × R matrix, and the entries are defined as follows:

(si , rj ) =
⎧
⎨

⎩

+1 if (rj , si) ∈ A,
−1 if (si , rj ) ∈ A,
0 if (si , rj ) /∈ A ∪ (rj , si) /∈ A.

The activity graph and activity matrix corresponding to the simple Michaelis–
Menten reaction modeled in the previous section are presented in Fig. 1.

In the activity matrix, each row corresponds to a single reagent and is essentially
the stoichiometry matrix. In the representation of the pathway as a system of ODEs,
there is one equation for each reagent, detailing the impact of the rest of the system
on the concentration of that reagent. This can derived automatically from the activity
matrix, when we associate a concentration variable mi with each row of the matrix.
The entries in the row indicate which reactions have an impact on this reagent, the
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Fig. 1 Activity graph and activity matrix corresponding to the Michaelis–Menten reaction

for i ← 1 . . .NA do {One differential equation per reagent}
dNi

dt
← 0

for j ← 1 . . .NR do
if Ma(i, j) �= 0 then {Activity j influences reagent i}

S ← ∅ {Create the set of reactants for activity j}
for k ← 1 . . .NA do

if Ma(k, j) = −1 then
S ← S ∪ {k}

if Ma(i, j) = +1 then {Product from activity j}
dNi

dt
← dNi

dt
+ rj ×

∏

k∈S

nk(t)

else {Reactant from activity j}
dNi

dt
← dNi

dt
− rj ×

∏

k∈S

nk(t)

Fig. 2 Pseudo-code for the algorithm deriving a system of ODEs from an activity matrix

sign of the entry showing whether the effect is to increase or decrease concentration.
Thus, the number of terms in the ODE will be equal to the number of non-zero
entries in the corresponding row, each term being based on the rate constant for the
reaction associated with that row. Assuming that reactions are governed by mass
action, the actual rate of change caused by each reaction will be the rate constant
multiplied by the current concentration of those reagents consumed in the reaction.
The identity of these reagents can be found in the column corresponding to the
reaction, a negative entry indicating that a reagent is consumed. The pseudo-code
for this algorithm is presented in Fig. 2.
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4 Example: Tumor Necrosis Factor α

In this section, we demonstrate the use of reagent-centric modeling, the derivation
of an ODE model and the results which can be obtained, for a more biologically
interesting system.

Tumor Necrosis Factor α (TNFα) is a potent proinflammatory cytokine (a pro-
tein used for cell signaling). TNFα plays an important role in a wide spectrum of
biological processes including cellular proliferation, differentiation, inflammation,
lipid metabolism, coagulation, and programmed cell death (apoptosis). It has been
implicated in a variety of diseases, including autoimmune diseases, insulin resis-
tance, arthritis, and cancer. A thorough mathematical treatment of the dynamics of
the TNFα pathway may help to throw light on these important concerns in human
health.

The role of TNFα in regulating these processes depends on complicated signaling
cascades and networks involving binding of TNFα to receptors including TNFR1
and recruitment of the signal transducers TRADD, RIP, and TRAF2 which activate
effectors such as IKK and NF-κB. The TNF pathway is shown in Fig. 3.

In the figure, the circles depict the reagents and the rectangles depict the re-
actions. Note that reversible reactions are shown as two uni-directional reactions,
which is also how they are represented in the PEPA model. The shaded circles indi-
cate those reagents (TNFα, TNFR1, TRADD, RIP, TRAF2, IKK, and NF-κB/IκB)
which are known to have a non-zero initial concentration. All other initial concen-
trations are assumed to be zero.

A system-theoretic approach to the analysis and quantitative modeling of the
TNFα-mediated NF-κB-signaling pathway appears in [17]. The authors develop an
ODE model and use it to validate their model of the pathway against experimental
results. Here, we develop a PEPA model in reagent-centric style for the TNFα-
mediated NF-κB-signaling pathway. The definitions of the components used appear
in Fig. 4 and the corresponding model equation is presented in Fig. 5. In the PEPA
model, the initial state of each reagent is recorded in the model equation, where
those reagents which have a non-zero initial concentration start in the “high” state.
In this representation, such terms are followed by a parameter in square brackets
indicating the initial value. Note also that in the model equation the cooperation sets
are not explicitly represented. Instead, a wildcard notation “*” is used to indicate that
synchronization takes place over all shared names, i.e. whenever two components
have an activity in common they must cooperate on that activity.

From this PEPA model, we are able to generate a system of coupled ODEs as
explained above. These are presented in Fig. 6. Our system of ODEs agrees with the
system which was developed directly in [17]. This provides convincing evidence
that our PEPA model is describing the same system. Through numerical integration
of our ODEs, we can see the processes of binding, recruitment, and activation at
work in the graphs in Fig. 7. Reading the graphs from left to right, top to bottom,
we see the cascade of reactions corresponding to the reactions in the top center, and
then right-hand side of Fig. 3. These time series results agree with those presented
in [17].
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Fig. 3 Schematic diagram showing the reactions of the TNF signaling pathway

The graphs presented in Fig. 8 show the same results from a different perspective,
making the timing behavior of the cascade explicit.
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TNFαH
def= (r12_3, k12_3).TNFαL,

TNFαL
def= (r3_12, k3_12).TNFαH ,

TNFR1H
def= (r12_3, k12_3).TNFR1L + (r2r , k2r ).TNFR1L,

TNFR1L
def= (r3_12, k3_12).TNFR1H + (r2f , k2f ).TNFR1H ,

TNFR1C
H

def= (r3_12, k3_12).TNFR1C
L + (r34_5, k34_5).TNFR1C

L,

TNFR1C
L

def= (r12_3, k12_3).TNFR1C
H + (r5_34, k5_34).TNFR1C

H ,

TRADDH
def= (r34_5, k34_5).TRADDL + (r4r , k4r ).TRADDL,

TRADDL
def= (r5_34, k5_34).TRADDH + (r4f , k4f ).TRADDH ,

TRADDC
H

def= (r5_34, k5_34).TRADDC
L + (r57_10, k57_10).TRADDC

L+ (r56_9, k56_9).TRADDC
L,

TRADDC
L

def= (r34_5, k34_5).TRADDC
H + (r10_57, k10_57).TRADDC

H+ (r9_56, k9_56).TRADDC
H ,

FADDH
def= (r6r , k6r ).FADDL + (r56_9, k56_9).FADDL,

FADDL
def= (r6f , k6f ).FADDH + (r9_56, k9_56).FADDH ,

RIPH
def= (r57_10, k57_10).RIPL + (r7r , k7r ).RIPL,

RIPL
def= (r10_57, k10_57).RIPH + (r7f , k7f ).RIPH ,

TRAF2H
def= (r810_11, k810_11).TRAF2L + (r8r , k8r ).TRAF2L,

TRAF2L
def= (r11_810, k11_810).TRAF2H + (r8f , k8f ).TRAF2H ,

IKKH
def= (r911_12, k911_12).IKKL + (r9r , k9r ).IKKL,

IKKL
def= (r12_911, k12_911).IKKH + (r9f , k9f ).IKKH ,

RIPC
H

def= (r10_57, k10_57).RIPC
L + (r810_11, k810_11).RIPC

L,

RIPC
L

def= (r57_10, k57_10).RIPC
H + (r11_810, k11_810).RIPC

H ,

TRAF2C
H

def= (r11_810, k11_810).TRAF2C
L + (r911_12, k911_12).TRAF2C

L,

TRAF2C
L

def= (r810_11, k810_11).TRAF2C
H + (r12_911, k12_911).TRAF2C

H ,

IKKC
H

def= (r12_911, k12_911).IKKC
L + (r12_13, k12_13).IKKC

L,

IKKC
L

def= (r911_12, k911_12).IKKC
H ,

IKKP
H

def= (r1314_15, k1314_15).IKKP
L ,

IKKP
L

def= (r12_13, k12_13).IKKP
H + (r15_1314, k15_1314).IKKP

H ,

NF-κB/IκBH
def= (r1314_15, k1314_15).NF-κB/IκBL + (r14r , k14r ).NF-κB/IκBL,

NF-κB/IκBL
def= (r15_1314, k15_1314).NF-κB/IκBH + (r14f , k14f ).NF-κB/IκBH ,

IκBC
H

def= (r15_1314, k15_1314).IκBC
L + (r15_1617, k15_1617).IκBC

L,

IκBC
L

def= (r1314_15, k1314_15).IκBC
H ,

IκBH
def= (r16, k16).IκBL,

IκBL
def= (r15_1617, k15_1617).IκBH ,

NF-κBL
def= (r15_1617, k15_1617).NF-κBH ,

NF-κBH
def= (proliferation,p).NF-κBH ,

IκBP
H

def= (r9_56, k9_56).IκBP
L ,

IκBP
L

def= (r56_9, k56_9).IκBP
H .

Fig. 4 Component definitions for the PEPA model of the TNF pathway in the reagent-centric style
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TNFαH [20] ��{∗} TNFR1H [25] ��{∗} TNFR1C
L

��
{∗} TRADDH [25] ��{∗}

TRADDC
L

��
{∗} FADDL ��

{∗} RIPH [25] ��{∗} RIPC
L

��
{∗}

TRAF2H [25] ��{∗} TRAF2C
L

��
{∗} IKKH [25] ��{∗} IKKC

L
��
{∗}

IKKP
L

��
{∗} NF-κB/IκBH [25] ��{∗} IκBC

L
��
{∗} IκBL ��

{∗}
NF-κBL ��

{∗} IκBP
L

Fig. 5 Model equation for the PEPA model of the TNF pathway in reagent-centric style

5 More Powerful Reagent-Centric Modeling: Bio-PEPA

We viewed our work on reagent-centric modeling in PEPA as an experiment to in-
vestigate the usefulness of the approach and process algebra in the systems biology
context. Whilst the reagent-centric style appears to offer distinct advantages, there
were limitations in what could be expressed in PEPA. In particular, the main difficul-
ties related to the definition of stoichiometric coefficients (i.e. the coefficients used
to show the quantitative relationships of the reactants and products in a biochemical
reaction) and the representation of kinetic laws.

The difficulty in representing stoichiometry is not limited to PEPA: other process
algebras, where molecules are represented as processes and interactions are limited
to two processes (as in the π -calculus), also have problems capturing reactions with
stoichiometry greater than one.

In terms of kinetic laws, PEPA and other process algebras consider elementary
reactions with constant rates (mass-action kinetic laws). The problem of extending
to the domain of kinetic laws beyond basic mass-action (general kinetic laws) is
particularly relevant, as these kinds of reactions are frequently found in the litera-
ture as abstractions of complex situations whose details are unknown. Reducing all
reactions to the elementary steps is complex and often impractical. In the case of
process algebras, such as the π -calculus, the assumption of elementary reactions is
motivated by the fact that they rely on Gillespie’s stochastic simulation for analysis.
Some recent works have extended the approach of Gillespie to deal with complex re-
actions [1, 10], but these extensions are yet to be reflected in the work using process
algebras.

In this section, we give a brief overview of Bio-PEPA, a new language for the
modeling and analysis of biochemical networks. Bio-PEPA is based on the reagent-
centric view in PEPA, modified in order to represent explicitly some features of
biochemical models, such as stoichiometry and the role of the different species in a
given reaction. A major feature of Bio-PEPA is the introduction of functional rates
to express general kinetic laws. Each action type represents a reaction in the model
and is associated with a functional rate.

Bio-PEPA is based on a high level of abstraction similar to the one proposed
in formalisms such as SBML [4], which have been widely adopted by biologists.
Following the reagent-centric view, models are based not on individual molecules,
but on discrete levels of concentration within a species: each component represents
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dm1(t)
dt

= k3_12 · m3(t) − k12_3 · m1(t) · m2(t),

dm2(t)
dt

= k2f + k3_12 · m3(t) − (
k2r + k12_3 · m1(t)

) · m2(t),

dm3(t)
dt

= k12_3 · m1(t) · m2(t) + k5_34 · m5(t) − (
k3_12 + k34_5 · m4(t)

) · m3(t),

dm4(t)
dt

= k4f + k5_34 · m5(t) − (
k4r + k34_5 · m3(t)

) · m4(t),

dm5(t)
dt

= k34_5 · m3(t) · m4(t) + k18_56 · m18(t) + k10_57 · m10(t)

− (k5_34 + k56_18 · m6(t) + k57_10 · m7(t)) · m5(t),

dm6(t)
dt

= k6f + k18_56 · m18(t) − (
k6r + k56_18 · m5(t)

) · m6(t),

dm7(t)
dt

= k7f + k10_57 · m10(t) − (
k7r + k57_10 · m5(t)

) · m7(t),

dm8(t)
dt

= k8f + k11_810 · m11(t) − (
k8r + k810_11 · m10(t)

) · m8(t),

dm9(t)
dt

= k9f + k12_911 · m12(t) − (
k9r + k911_12 · m11(t)

) · m9(t),

dm10(t)
dt

= k57_10 · m5(t) · m7(t) + k11_810 · m11(t)

− (
k10_57 + k810_11 · m8(t)

) · m10(t),

dm11(t)
dt

= k810_11 · m8(t) · m10(t) + k12_911 · m12(t)

− (
k11_810 + k911_12 · m9(t)

) · m11(t),

dm12(t)
dt

= k911_12 · m9(t) · m11(t) − (k12_911 + k12_13) · m12(t),

dm13(t)
dt

= k12_13 · m12(t) + k15_1314 · m15(t) − k1314_15 · m13(t) · m14(t),

dm14(t)
dt

= k14f + k15_1314 · m15(t) − (
k14r + k1314_15 · m13(t)

) · m14(t),

dm15(t)
dt

= k1314_15 · m13(t) · m14(t) − (k15_1314 + k15_1617) · m15(t),

dm16(t)
dt

= k15_1617 · m15(t) − k16 · m16(t),

dm17(t)
dt

= k15_1617 · m15(t),

dm18(t)
dt

= k56_18 · m5(t) · m6(t) − k18_56 · m18(t).

Fig. 6 Differential equations generated from the PEPA model of the TNF pathway in
reagent-centric style

a species and it is parametric in terms of concentration level. Some advantages of
this view are:

– It allows us to deal with uncertainty/incomplete information in the exact number
of elements (semi-quantitative data);

– In a discrete state space representation, the focus is on the concentration levels
rather than the number of elements. This means that the state space is reduced as
there are fewer states for each component.
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Fig. 7 Time-series plots obtained by numerically integrating the ODEs derived from the PEPA
model. These plots show the processes of recruitment and activation at work

– The population level view, in terms of continuously changing concentrations, and
the individual level view, counting molecules, are both easily recovered from this
abstract view.

In Bio-PEPA the granularity of the system is defined in terms of the step size h

of the concentration intervals; the same step size h is used for all the species. This is
motivated by the fact that, following the law of conservation of mass, there must be
a “balance” between the concentrations consumed (reactants) and the ones created
(products). When the stoichiometry is greater than one, we need to consider con-
centration quantities proportional to stoichiometric coefficients. Given a species i,
we can assume that it has a maximum finite concentration Mi . The number of levels
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Fig. 8 Additional time-series plots obtained by numerically integrating the ODEs derived from the
PEPA model. These plots show the cascade of protein activation at work in the signaling pathway
and the temporal dependency in the recruitment of proteins

for the species i is given by Ni + 1 where Ni = �Mi

h
� (the integer value greater than

or equal to Mi

h
). Each species can assume the discrete concentration levels from 0

(concentration null) to Ni (maximum concentration).
If li is the concentration level for the species i, the concentration is taken to be

xi = li × h.
The syntax of Bio-PEPA is similar to that of PEPA but with some important

differences. As in PEPA, a model is made up of a number of sequential components;
here there is one sequential component for each species. The syntax is designed in
order to collect the biological information that we need. For example, instead of a
single prefix combinator there are a number of different operators which capture the
role that the species plays with respect to this reaction.

S ::= (α, κ) op S | S + S | C, P ::= P ��
L

P | S(l)

where op=↓|↑| ⊕ | � | �.
The component S is called a sequential component (or species component) and

represents the species. The component P , called a model component, describes the
system and the interactions among components. We suppose a countable set of se-
quential components C and a countable set of action types A. The parameter l ∈ N

represents the discrete level of concentration. The prefix term, (α, κ) op S, contains
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information about the role of the species in the reaction associated with the action
type α:

– (α, κ) is the activity or reaction, where α ∈ A is the action type and κ is the
stoichiometric coefficient of the species in that reaction; information about the
rate of the reaction is defined elsewhere (in contrast to PEPA);

– the prefix combinator “op” represents the role of the element in the reaction.
Specifically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, � an inhibitor
and � a generic modifier.

The choice operator, cooperation, and definition of constant are unchanged.
To fully describe a biochemical network in Bio-PEPA, we need to define struc-

tures that collect information about the compartments, the maximum concentrations,
number of levels for all the species, the constant parameters, and the functional rates
which specify the rates of reactions. A preliminary version of the language was pro-
posed in [18], with full details presented in [19].

In order to specify the dynamics of the system, we associate a functional rate
fαj

with each action αj . This function represents the kinetic law of the associated
reaction. For the definition of functional rates, we consider mathematical expres-
sions with simple operations and operators involving constant parameters and com-
ponents. In addition, Bio-PEPA has some predefined functions to express the most
commonly used kinetic laws: mass-action, Michaelis–Menten, and Hill kinetics.

The functional rates are defined externally to the components and are evaluated
when the system is derived. They are used to derive the transition rates of the system.
In the functional rates, some parameter constants can be used. These must be defined
in the model by means of a set of parameter definitions.

6 Related Work

As mentioned earlier, several other process algebras have been considered in the
context of biological systems. Initial work focused upon the π -calculus and its bio-
chemical stochastic extension [32], but later work has included several process alge-
bra developed specifically for modeling biological processes, such as Beta-binders
[30], Brane Calculi [11], BioAmbients [12], and the Calculus of Looping Sequences
[3]. In most cases, any quantitative analysis is carried out using stochastic simula-
tion, based on Gillespie’s algorithm [24], treating each molecule individually.

In his work on the stochastic π -calculus, Cardelli has also considered the deriva-
tion of systems of ODEs and the relationship between the ODE models and the sto-
chastic simulation [13, 14]. However, as the stochastic π -calculus models are based
on the molecules-as-processes abstraction, the mapping to ODEs is less straightfor-
ward than is the case for the reagent-centric models presented here.

We have discussed how Bio-PEPA allows models which capture general kinetic
laws and stoichiometry, features which are central in approaches designed by biol-
ogists, such as SBML [4], but are not readily represented in most process algebras.
An exception is the stochastic extension of Concurrent Constraint Programming
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(sCCP) [5]. In [5], Bortolussi and Policriti show how to apply this process alge-
bra to biological systems. In their work, each species is represented by a variable
and the reactions are expressed by constraints on these variables. The domain of
application is extended to any kind of reactions and the rate can be expressed by a
generic function. The analysis is limited to stochastic simulation using Gillespie’s
algorithm.

Also somewhat related is the work on BIOCHAM [15], a programming envi-
ronment for modeling biochemical systems, making simulations and querying the
model in temporal logic. In its current version, BIOCHAM is based on a rule-based
language for modeling biochemical systems, in which species are expressed by ob-
jects and reactions by reaction rules. The rates are expressed using functions whose
definitions are similar to those proposed in Bio-PEPA. This language allows the
evaluation of CTL queries using the NuSMV model checker [29]. In addition to
simulation models, ODE-based models may also be derived.

7 Conclusions

The reagent-centric style of modeling offers the modeler a great deal of flexibility in
how models can be analysed. In particular, it offers an easy route to the population-
based models, based on systems of ordinary differential equations, which are widely
used by biologists. For many models, this style of mathematical analysis offers a
fast and efficient route to obtaining quantitative insights into the behavior of the
system. However, when a microscopic view of the system is more appropriate, for
example, when certain macromolecules are present in extremely low numbers, and
continuous approximation cannot be justified, discrete state space models are just
as readily extracted from the reagent-centric description. This has the advantage
that the modeler does not need to commit to a particular form of analysis at the
instigation of a modeling study.

These two approaches can seem to be in opposition. Stochastic simulation uses
a discrete state space, stochastic model based on the individual elements in the sys-
tem, molecules. Models can be computationally expensive to solve and many trajec-
tories are needed in order to get statistically significant results. In contrast, ODE ap-
proaches use a continuous state space, deterministic model based on the population
view of the system, distinguishing populations of molecules in terms of concentra-
tions. Many efficient solvers for ODEs are available and only one solution is needed
due to the deterministic nature of the model. It is known that when populations are
large, i.e. there are large number of molecules, stochastic simulation tends to the
same results as the ODE models. So, these approaches should be viewed as alterna-
tives, each having a valuable role to play in appropriate circumstances [35]. One of
the motivations for introducing a high-level modeling formalism is that it gives the
possibility of the same model being mapped to the alternative mathematical repre-
sentations and solved in either way, rather than the modeler having to commit to just
one approach at the inception of a modeling study. We have already demonstrated
the benefits that this can bring for model verification. In [9], we give an account
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Fig. 9 Alternative modeling
approaches: a single
reagent-centric description of
a system may be used to
derive alternative
mathematical representations
offering different analysis
possibilities

of how an error in the time course data obtained from a hand-crafted ODE model
in [23] was uncovered by comparing the ODE and stochastic simulation models
readily derived from a PEPA model of the same pathway.

Furthermore, the reagent-centric style of modeling offers a third approach to
modeling the system, which can be seen as a compromise between the popula-
tion view of the ODEs and the individuals view of the stochastic simulation (see
Fig. 9). The abstract view aggregates individual molecules/discretizes the popula-
tion view and gives an intermediate which is discrete and stochastic, but without the
prohibitively large state spaces encountered when each molecule is modeled as an
individual. This gives us access to Markovian analysis techniques based on numer-
ical linear algebra such as passage time analysis and stochastic model checking.
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Programmable DNA-Based Finite Automata

Tamar Ratner and Ehud Keinan

Abstract Computation using DNA has many advantages, including the potential
for massive parallelism that allows for large number of operations per second, the
direct interface between the computation process and a biological output, and the
miniaturization of the computing devices to a molecular scale. In 2001, we reported
on the first DNA-based, programmable finite automaton (2-symbol-2-state) capa-
ble of computing autonomously with all its hardware, software, input, and output
being soluble biomolecules mixed in solution. Later, using similar principles, we
developed advanced 3-symbol-3-state automata. We have also shown that real-time
detection of the output signal, as well as real-time monitoring of all the computa-
tion intermediates, can be achieved by the use of surface plasmon resonance (SPR)
technology. More recently, we have shown that it is possible to achieve a biologi-
cally relevant output, such as specific gene expression, by using a reporter-gene as
an output-readout. We cloned the input into circular plasmids, and thereby achieved
control over gene expression by a programmable sequence of computation events.
Further efforts are currently directed to immobilization of the input molecules onto
a solid chip to enable parallel computation, where the location of the input on the
chip represents specific tagging.

1 Introduction

Bio-Molecular Computing (BMC) is rapidly evolving as an independent field of
science at the interface of computer science, mathematics, chemistry, and biology
[1–3]. Living organisms carry out complex physical processes dictated by molecular
information. Biochemical reactions, and ultimately the entire organism’s operations
are ruled by instructions stored in its genome, encoded in sequences of nucleic acids.
Comparison between the Turing machine and the intracellular processing of DNA
and RNA show remarkable similarities. Both systems process information stored in
a string of symbols built upon a fixed alphabet, and both operate by moving step-by-
step along those strings, modifying or adding symbols according to a given set of

E. Keinan (�)
Department of Chemistry, Technion—Israel Institute of Technology, Technion City,
Haifa 32000, Israel
e-mail: keinan@tx.technion.ac.il

E. Keinan
Department of Molecular Biology and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037,
USA

A. Condon et al. (eds.), Algorithmic Bioprocesses, Natural Computing Series,
DOI 10.1007/978-3-540-88869-7_25, © Springer-Verlag Berlin Heidelberg 2009

505

mailto:keinan@tx.technion.ac.il
http://dx.doi.org/10.1007/978-3-540-88869-7_25


506 T. Ratner and E. Keinan

rules. These parallels have inspired the idea that biological molecules could become
the raw material of a new computer species. Such biological computers would not
necessarily offer greater power or performance in traditional computing tasks. Obvi-
ously, the speed of natural molecular machines, which depend on the catalytic rates
of enzymes, is significantly slower than that of electronic devices, which perform
billions of gate-switching operations per second. However, bio-molecules possess
the unique ability of speaking the language of living cells [4].

DNA is an obvious choice for making the basic building blocks for bio-
computers, mainly due to the high density of information stored in DNA strands,
the ease of constructing many copies of them, and the ready availability and high fi-
delity of various DNA enzymes. The base-pairing rules can serve as a programming
language, and the comprehensive knowledge of DNA handling, editing, amplifica-
tion, and detection enables designing and predicting computations.

The growing interest in the design of new computing systems is attributed to the
notion that although the silicon-based computing provides outstanding speed, it can-
not meet some of the challenges posed by the developing world of bio-technology.
New abilities, such as direct interface between computation processes and biolog-
ical environment are necessary. In addition, the challenges of parallelism [5] and
miniaturization are still driving forces for developing innovative computing tech-
nologies. Moreover, the growth in speed for silicon-based computers, as described
by Moore’s law, may be nearing its limit [6]. The design of new computing archi-
tectures involves two main challenges: reduction of computation time and solving
intractable problems. Most of the celebrated computationally intractable problems
can be solved with electronic computers by an exhaustive search through all pos-
sible solutions. However, an insurmountable difficulty lies in the fact that such a
search is too vast to be carried out using the currently available technology.

In his visionary talk in 1959, Feynman suggested to use atomic and molecular
scale components for building machinery [7]. This idea has stimulated several re-
search studies, but it was not until 1994 that an active use of molecules was pre-
sented in the form of computation [8]. Numerous architectures for autonomous
molecular computing have been developed over the years on the basis of molecular
biology opportunities [9–17]. Some of these have been explored experimentally and
proved to be feasible [9, 18–21]. This account focuses on the realization of proram-
mable finite-state automata in our labs that can compute autonomously upon mixing
all their components in solution.

2 Bio-molecular Finite Automata

2-Symbols-2-States Soluble DNA-Based Finite Automata

Our design of bio-molecular finite automata (Scheme 1) [18] was based on the basic
principles of the Turing machine [22]. The hardware comprised of FokI, a type-II
endonuclease restriction enzyme, T4 DNA ligase, and ATP. The software comprised
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Scheme 1 Two-symbol two-state automaton. (A) The 8 possible transition rules of a finite au-
tomaton having two internal states (S0 and S1) and two input symbols (a and b). (B) A selected
subset of the 8 rules that represents 4 transition rules of a finite automaton. (C) A graphic descrip-
tion of this automaton that includes 2 states: S0 and S1 (indicated by circles), 2 symbols: a and b,
a start state S0 (indicated by a straight arrow) and 4 transition rules (indicated by curved arrows).
This automaton answers the question whether the number of b’s in a given input is even. A positive
answer to this question will result in the accepting state S0 (indicated by a double circle). On the
other hand, an even number of b’s in the input will result in a final state S1

of transition molecules in the form of short double stranded (ds) DNA molecules,
which encoded for the automaton transition rules. A dsDNA molecule encoded the
initial state of the automaton and the input, with each input symbol being coded by
a six base-pair (bp) dsDNA sequence. The system also contained ‘peripherals’, two
output-detection molecules of different lengths. Each of these could interact selec-
tively with a different output molecule to form an output-reporting molecule that
indicated a final state and could be readily detected by gel electrophoresis (Fig. 1).

The two different internal states, either S0 or S1, were represented by two dis-
tinguishable restriction modes of any 6-bp symbol, either at the beginning of the
symbol domain or 2-bp deeper into that domain, respectively (Fig. 2). The different
cleavage site was achieved by using a type-II, 4-cutter endonuclease, FokI, which
cuts 9 and 13 bases away from its recognition sites. In this system, there were 6
unique 4-nucleotide 5′-prime sticky end sequences that could be obtained by two
restriction modes of 2 symbols and a terminator.

The automaton processed the input as shown in Scheme 2. First, the input was
cleaved by FokI, thereby exposing a 4-nucleotide sticky end that encoded the initial
state and the first input symbol. The computation proceeded via a cascade of transi-
tion cycles. In each cycle, the sticky end of an applicable transition molecule ligated
to the sticky end of the input molecule, detecting the current state and the current
symbol. The product was cleaved by FokI inside the next symbol, exposing a new
four-nucleotide sticky end. The design of the transition molecules ensured that the
6-bp-long encodings of the input symbols a and b were cleaved by FokI at only two
different ‘frames’, the leftmost frame encoding the state S1 and the rightmost frame
encoding S0. The exact next restriction site, and thus the next internal state were
determined by the current state and the size of the spacers in an applicable tran-
sition molecule (Fig. 1). The computation proceeded until no transition molecule
matched the exposed sticky end of the input or until the special terminator symbol
was cleaved, forming an output molecule that has a sticky end encoding the final
state. This sticky end ligated to one of two output detectors and the resultant output
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Fig. 1 Molecular design of a 2-symbol-2-state finite automaton. The 10 components of the au-
tomaton include an input molecule, 2 enzymes, ATP, 4 transition molecules, and 2 detection mole-
cules. The 4 transition molecules shown here, which represent one specific program, are chosen
from a library of 8 transition molecules, and construct the automaton presented in Scheme 1

Fig. 2 Two different internal states. (A) Two restriction modes of a 6-bp domain by a 4-cutter
enzyme. (B) The symbols ‘a’ with its restriction products produced by a 4-cutter endonuclease

reporter was identified after purification by gel electrophoresis. The operation of the
automata was tested by running it with a selection of programs on various inputs
and detected by gel electrophoresis (Fig. 3).

Based on this design, a ligase-free system was also demonstrated. In this man-
ner, software molecules were not consumed but the input consumption drove the
biomolecular computations [23].
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Scheme 2 Description of a computing process with input ‘bab’ [24]. The input is cleaved by FokI,
forming the initial state. The complementary transition molecule (〈S0−1〉) is hybridized and in the
presence of T4 DNA ligase it is ligated to the restricted input. Similarly, the input is processed via
repetitive cycles of restriction, hybridization and ligation with complementary transition molecules.
In the final step, the output is ligated to S0 detection molecule (〈S0−D〉)
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Fig. 3 Running automaton programs on various inputs. In each lane, the injected molecules are
the detection-molecules S0–D and S1−D, molecules encoding intermediate configurations capped
by yet-to-be-processed input molecules and output-reporting molecules S0−R or S1–R. Expected
locations of different species and a size marker of 200 bp are indicated by arrows to the left. Input
molecules are specified below each lane. Expected outputs (S0 or S1) are S1–R for input aa, S1–R
for input aba, and S0–R for input aabb

Immobilized DNA-Based Automata

We have demonstrated that a type-II, 4-cutter endonuclease, can restrict a 6-bp sym-
bol in three distinguishable modes [24]. Three internal states, S0, S1, or S2, could
thus be represented by restriction at the beginning of the symbol domain, 1-bp
deeper or 2-bp deeper into that domain, respectively (Fig. 4). Thus, a 3-state au-
tomaton with 2 symbols would have a total library of 12 transition rules with a
much broader spectrum of possible programs as compared with the previously re-
ported 2-symbol-2-state case [18].

The increased number of states and symbols resulted in significant enhancement
of the computing power. For example, with a 3-symbol-3-state device (Scheme 3)
there is a library of 27 possible transition rules and 134,217,727 possible selections
of transition-rule subsets from that library. Since there are 7 possible selections of
the accepting states (S0, S1, S2, any combination of two and a combination of all
three), the outcome becomes a remarkably large number of 939,524,089 syntacti-
cally distinct programs. This number is considerably larger than the corresponding
number of 765 possible programs offered by our previously reported 2-symbol-2-
state device [18]. Theoretically, the bio-molecular automata can be further expanded
to a 37-symbol-3-state automaton.

The applicability of this design was further enhanced by employing surface an-
chored input molecules, using the surface plasmon resonance (SPR) technology to
monitor the computation steps in real-time. Computation was performed by alter-
nating the feed solutions between endonuclease and a solution containing the ligase,
ATP, and appropriate transition molecules. The output detection involved final lig-
ation with one of three detection molecules solubles. The process occurred in a
stepwise manner, with automatic detection of each step, on a Biacore® chip. The
binding and computing events were monitored while taking place at the sensor sur-
face.

The realization of this computational design was achieved as follows: the chip
was loaded with biotinylated input molecules. Computation was carried out by al-
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Fig. 4 Three-state automaton design. (A) Three restriction modes by a 4-cutter enzyme repre-
senting three internal states. (B) Nine transition rules for each symbol lead to a total library of 27
possible rules

Scheme 3 A 3-symbol-3-state finite automaton. The automaton is shown both graphically (left)
and in the form of a table of nine transition rules (right)

ternating the feed solution between the above-described restricting and ligating so-
lutions. The flow cell was first fed with a solution of BbvI endonuclease, then fed
with a mixture of transition molecules and ligase, and so forth. Detection of the final
state was carried out by sequential feed of three mixtures, each containing one of the
detection molecules, D–S0, D–S1, or D–S2, together with T4-DNA ligase and ATP.
As the Biacore chip contains 4 independent sectors, it was possible to perform par-
allel computing with 4 different input molecules. This advantage was demonstrated
by stepwise monitoring of the computation using one automaton and four different
inputs: bc, a, ac, acb (Fig. 5).

DNA-Based Automaton with Bacterial Phenotype Output

We have recently demonstrated for the first time that the output of a computation
produced by a molecular finite automaton can be a visible bacterial phenotype [25].
The 2-symbol-2-state finite automaton, which was described in Scheme 1 and Fig. 1,
utilized linear dsDNA inputs that contained strings of six base pair symbols. We
prepared encased inputs by inserting such strings into the lacZ gene on the pUC18
plasmid (Scheme 4). The computation resulted in a circular plasmid that differed
from the original pUC18 by either a 9 base pair (accepting state) or 11 base pair
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Fig. 5 Monitoring the computation process by SPR [24]. Stepwise computing with one automaton
(Scheme 3) and four input molecules: bc, a, ac, and acb. The transition molecules were supplied
only to satisfy the computation needs of the latter three inputs, while no transition molecules were
available for computation with the bc input. The differential RU values represent the changes in
the SPR response between two consecutive steps. R represents restriction; L represents ligation.
The computation was followed by detection with the soluble detection molecules, D–S0 and D–S1

insert (unaccepting state) within the lacZ α region gene. Upon transformation and
expression of the resultant plasmids in E. coli, the accepting state was represented
by production of functional β-galactosidase and formation of blue colonies on X-
gal medium. In contrast, the unaccepting state was represented by white colonies
due to a shift in the open reading frame of lacZ.

Construction of the extended input molecules was carried out by cloning an in-
sert into a multiple cloning site (MCS) of the vector pUC18 (Scheme 4). This insert
comprised all the previously described components, including several 6-bp symbols,
a 6-bp terminator, and recognition sites of restriction enzymes. The inserted com-
puting cassette contains a restriction site for MluI (ACGCGT), upstream of FaqI
recognition site (the working enzyme). Thus, digestion of the plasmid with MluI
converted the plasmid into a linear dsDNA with a GCGC-5′ sticky end (the spec-
tator end). This choice dictated that the specific sequence of the terminator would
be CGCGCG so that the final obtained sticky end will be complementary to the
spectator one independent of the final state (5′-CGCG).

The chosen automaton accepted inputs with an even number of b symbols, which
means that if the dsDNA molecule input contained an even number of b segments
the computation would lead to a 9-bp insert in the pUC18 plasmid and formation
of blue colonies on X-gal medium. In contrast, if the input string contained an odd
number of b symbols, the computation would result in an 11-bp insert, ORF shift,
and hence formation of white colonies on X-gal medium (Scheme 5).
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Scheme 4 General preparation of a circular input molecule [25]. Cloning an input insert into the
multiple cloning site of pUC18. Digestion of the plasmid with MluI converted the plasmid into a
linear dsDNA, with a 5′-CGCG overhang on the upper string and GCGC-5′ on the lower string

Parallel Computation by DNA Array

As discussed previously, one of the main advantages of these bio-molecular devices
is their ability to perform parallel computing. In addition, it has been demonstrated
that the use of SPR technology allows for real-time detection of the output sig-
nal, as well as for real-time monitoring of all computation intermediates [24]. One
drawback of this type of molecular finite automata [18, 23–25] is the complete con-
sumption of the input information. Consequently, although simultaneous multiple
computations were possible, they all involved loss of the original input information
and, therefore, had an inability to correlate that information directly to the output.
Nevertheless, the successful monitoring of the computation processes by using im-
mobilized input molecules suggested that input immobilization could enable parallel
computation, where the input location on the chip would represent specific tagging.
The immobilization of multiple inputs on a chip would allow for the detection of all
outputs, as well as direct assignment of each output to its original input.

We are currently focusing on the unprecedented design of more advanced com-
putation arrays, based on combinations of the SPR technology with broadened types
of finite automata. The application of the SPR technology is implemented with the
ProteOn, which has been recently developed by Biorad-Haifa that enables parallel
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Scheme 5 Computation resulting in bacterial phenotype output. Left: computation with an input
that contains an even number of b symbols leads to blue bacterial colonies output (S0); right:
computation with an input that contains an odd number of b symbols leads to white bacterial
colonies output (S1)

processing in six independent microfluidic channels. The ProteOn chip is capable
of rotating 90°, resulting in six plumb channels, allowing for simultaneous compu-
tations with six different immobilized inputs in six horizontal rows. Each input can
be processed with six different soluble automata in six vertical columns (Fig. 6).
In this work, we implement 3-symbols-3-state automata processing 4-symbols-long
input. By using a microfluidic system, the vertical grooves are each fed a differ-
ent solution containing transition molecules from six different automata, one per
groove. The soluble automata process each input in the same manner that has been
described previously, to finally produce an immobilized output, which is detectable
by the SPR technology. Moreover, this work expands on the previously described
finite automata, by performing computations utilizing some 3-symbol-3-state finite
non-complete and non-deterministic automata (stochastic).

This matrix approach demonstrates the power of parallel computation with 36
different computations occurring simultaneously, each can result in one of eight
possible output signals: any one of the three states; any combination of two of them;
all three; or none (in case the computation is suspended), allowing a total of 836

different chip designs. If each one of the potential 8 outputs in every junction en-
codes for a different color of a specific pixel, then each chip design represents a
different image. Thus, the overall number of possible images can be as large as 836
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Fig. 6 A 6 × 6 array of different inputs, I1–6, (rows) and different automata, A1–6, (columns). The
computation results in one out of eight possible output signals for each junction (pixel), either one
of the three states, any combination of two of them, all three, or none (in case the computation is
suspended). Thus, the overall number of possible pictures can be as large as 1032

or 1032. Since in this work, each computation includes 4 sequential steps, there are
144 computational steps per chip.

3 Conclusions

This work presents significant enhancement of the computational power in compar-
ison with our initially reported 2-symbol-2-state automata [18]. The major improve-
ments include (a) the increase of the number of internal states, (b) the increase of the
number of symbols, (c) the use of the SPR technology, which permits real time de-
tection of the output signal as well as real time monitoring of stepwise computation,
and (d) the immobilization of the input molecules on a chip, thus enabling perform-
ing parallel computing on different inputs. The first two improvements increase the
overall number of syntactically distinct programs from 48 to 137,781. Theoretically,
automata with up to 37 different symbols, 6 bp each, could be created on the basis
of this technology.

The ever-increasing interest in BMC devices has not arisen from the hope that
such machines could compete with their electronic counterparts by offering greater
computation speed, fidelity, and power or performance in traditional computing
tasks. The main advantage of autonomous BMC devices over the electronic comput-
ers arises from their ability to interact directly with biological systems and even with
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living organisms without any interface. We describe, for the first time, an automa-
ton that produces the computational output in the form of meaningful, expressible
in-vivo dsDNA [25]. These results demonstrate that an appropriately designed com-
puting machine can produce an output signal in the form of a specific biological
function via direct interaction with living organisms. The next steps along this line
would be the insertion of a complete computing device into a living cell or a tis-
sue, with the long-term goal of utilizing BMC devices for in-vivo diagnostics and
disease control, or a design of new types of biological regulation.
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Part VIII Biochemical Reactions





A Multi-volume Approach to Stochastic
Modeling with Membrane Systems

Daniela Besozzi, Paolo Cazzaniga, Dario Pescini,
and Giancarlo Mauri

Abstract In the last decades, experimental investigations have evidenced the role
of biological noise in cellular processes, and several stochastic approaches have
been proposed to modeling and simulation of biochemical networks. Here, we re-
view the main stochastic procedures defined for single-volume biochemical systems
(SSA, tau-leaping), and discuss their practical utility and limitations. Then, within
the framework of membrane systems, we propose a multi-volume generalization of
the tau-leaping algorithm, called τ -DPP, feasible for the stochastic analysis of com-
plex biochemical systems. Finally, we present a case-study application of τ -DPP
to an intracellular genetic oscillator, coupled with an intercellular communication
mechanism.

1 Introduction

After the completion of the human genome sequencing (and of a lot of other
genomes), the main challenge for the modern biology is to understand complex
biological processes such as metabolic pathways, gene regulatory networks and cell
signaling pathways, which are the basis of the functioning of the living cell. This
goal can only be achieved by using mathematical modeling tools and computer sim-
ulation techniques, to integrate experimental data and to make predictions on the
system behavior that will be then experimentally checked, so as to gain insights into
the working and general principles of organization of biological systems.

In fact, the formal modeling of biological systems allows the development of
simulators, which can be used to understand how the described system behaves
in normal conditions, and how it reacts to (simulated) changes in the environment
and to alterations of some of its components. Simulation presents many advantages
over conventional experimental biology in terms of cost, ease to use and speed.
Also, experiments that are infeasible in vivo can be conducted in silico, e.g. it is
possible to knock out many vital genes from the cells and monitor their individual
and collective impact on cellular metabolism. Evidently such experiments cannot be
done in vivo because the cell may not survive. Development of predictive in silico
models offers opportunities for unprecedented control over the system.
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In the last few years, a wide variety of models of cellular processes have been
proposed, based on different formalisms. For example, chemical kinetic models at-
tempt to represent a cellular process as a system of distinct chemical reactions. In
this case, the network state is defined by the instantaneous quantity (or concentra-
tion) of each molecular species of interest in the cell, and molecular species may
interact via one or more reactions. Often, each reaction is represented by a differen-
tial equation relating the quantity of reactants to the quantity of products, according
to a reaction rate and other parameters.

Recently, it has been pointed out that transcription, translation, and other cel-
lular processes may not behave deterministically but instead are better modeled as
random events [20]. Models have been investigated that address this concern by
abandoning differential equations in favor of stochastic relations to describe each
chemical reaction [1, 16].

At a different level of abstraction many formalisms, originally developed by com-
puter scientists to model systems of interacting components, have been applied to
biology. Among these, there are Petri nets, Hybrid Systems, and the π -calculus.
Moreover, formalisms such as P systems, originally proposed as a model of compu-
tation inspired by biology, have recently found application to the formal description
and modeling of biological phenomena.

In the next section, we briefly discuss the role of stochasticity in biology, and
present the main stochastic approaches to modeling and simulation of biochemi-
cal networks (proposed by Gillespie [6, 16]), and their limitations, mainly due to
computational burden. In Sect. 3, the basic definitions concerning P systems and
their dynamical probabilistic version, DPP [27–29], will be given, and then it will
be shown how they can constitute the basic formalism to support a multi-volume
generalization of Gillespie’s tau-leaping algorithm [7]. In Sect. 4, a model of a ge-
netic oscillator coupled with a quorum sensing intercellular mechanism [11, 14] will
be considered as a case study, and the results of simulations of this model will be
presented. We will conclude with a final discussion of some issues concerning possi-
ble improvements and future extensions of our multi-volume approach to stochastic
modeling.

2 Stochastic Approaches to Modeling and Simulation
of Biological Systems

In this section, we treat of the role of biological noise as the triggering mecha-
nism of stochasticity in biochemical systems, and discuss about the deterministic
formulation and the stochastic approach in the modeling and simulation of biolog-
ical systems. Then we review some main stochastic algorithms for single-volume
biochemical systems, i.e. the stochastic simulation algorithm and tau-leaping, and
comment on their strength and limitations.
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2.1 Stochasticity in Chemical and Biological Systems

If we model a biological process as a network of biochemical reactions, our goal will
be to simulate the evolution in time of the quantities of different chemical species
in the system. To this aim, it is usual to give a deterministic formulation through
a set of coupled ordinary differential equations (ODEs). This traditional approach
has at its core the law of mass action, an empirical law giving a simple relation
between reaction rates and molecular component concentrations. Hence, given the
knowledge of initial molecular concentrations, the law of mass action provides a
complete picture of the component concentrations at all future time points. So doing,
we assume a macroscopic point of view, which deals with the aggregated quantity
of substances and the rate of change of concentrations. Over many years, powerful
algorithms with sound mathematical basis have been developed for solving these
equations.

This is sufficient in many cases but, for example, fails to capture the inherent
stochasticity of biochemical systems in which the small population of a few critical
reactant species can result in stochastic behaviors. In this case, we should consider a
microscopic point of view, keeping track of every molecule in the system and of the
single reactions in which it is involved, which are chosen in a way that is random
or stochastic in nature. For this reason, stochastic modeling is recently gaining in-
creasing attention in the study of biological systems, since “noise” and discreteness
have been revealed to play an important role in cellular processes involving a few
molecules.

Indeed, the number of publications that investigate the experimental evidences
of noise is continuously growing (see, e.g. [4, 13, 21, 33] and references therein).
There exist two main sources of biological noise. The extrinsic source is due to the
experimental conditions, such as the fluctuations in temperature, pressure and light,
or due to other cellular factors. The intrinsic source is due to the variability of the
chemical reactions which, from a microscopic point of view, correspond to a scat-
tering event among reactants, and consequently it undergoes temporal and spatial
fluctuations. Works like [12, 30, 31] quantify the role of noise in gene expression,
and show the inadequacy of the classical deterministic and continuous modeling ap-
proach to describe phenomena such as inter and intra-cellular signaling pathways
(especially when the transcription and translation machineries are involved), there-
fore supporting the need of stochastic modeling approaches.

2.2 Single-Volume Stochastic Simulation Algorithms

The stochastic simulation algorithm (SSA), presented by Gillespie in [16], is one of
the first methods developed and used to describe the dynamical evolution of chem-
ical systems. This procedure provides the exact behavior of a system, since it is
proved to be equivalent to the Chemical Master Equation (CME). The requisites
needed for the application of the SSA are related to the definition of the volume
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where all the reactions take place. The SSA can deal only with single volume sys-
tems. The conditions (pressure, temperature, etc.) of the volume must be kept con-
stant during the evolution and, moreover, all the molecular species are considered
well mixed (uniformly distributed inside the volume).

The description of the system is given by means of a set of chemical species,
coupled with their quantities, to denote the current state. On the other hand, a set of
chemical reactions specifies how the chemical species interact and evolve. More-
over, there is a stochastic constant associated with each reaction. Each constant
reflects the physical and chemical properties of the species involved in the reac-
tion, and it is used to compute the probabilities of the reactions application (called
propensity functions).

Gillespie, in [16], has formally shown how starting from the application prob-
abilities of the reactions, it is possible to find, in each step of the algorithm, the
time increment τ and the index μ of the reaction that will be executed during τ .
Therefore, finding τ and μ at each iteration of the algorithm, makes it possible to
sequentially describe the behavior of the system. This is achieved by considering
every single reaction that happens inside the volume, and modifying the quantities
of the species involved in the selected reaction.

The main problem of the SSA regards the computational time needed to per-
form the simulation of a chemical system. The algorithm complexity increases with
the number of species and the number of reactions of the system, hence many real
problems cannot be efficiently solved using this technique.

In order to work out the problem related to the huge computational time required
for the execution of SSA, Gibson and Bruck presented in [15] a novel procedure,
called “Next Reaction Method”, able to describe the exact behavior of a chemical
system, with better performances than SSA. Gibson and Bruck proved that it is pos-
sible to use a single random number for each reaction event, instead of extracting
new random numbers at each iteration of the algorithm (as in SSA). Moreover, the
complexity of the next reaction method is proportional to the logarithm of the num-
ber of reactions (and not to the number of reactions, as in SSA). The basic idea is to
compute the propensity functions of the reaction, and to associate to each reaction a
putative time. The evolution is then described executing the reaction with the short-
est time. After the execution of the rule, the only propensity functions and putative
times that are recalculated are those affected by the executed reaction.

Another technique used to speed up stochastic simulation performed by means of
SSA was first introduced by Gillespie and Petzold in [17] and it is called tau-leaping
procedure. Here, instead of describing the dynamics of the system by tracing every
single reaction event occurring inside the volume, a time increment τ is computed
and a certain number of reactions are selected (according to specified conditions)
and executed in parallel. The obtained behavior of the chemical system is not exact,
as in SSA, but it is approximated.

Several different versions of the tau-leaping algorithm have been proposed,
aimed at improving the procedure to compute the τ value and to select the reactions
to be applied in the current step, thus avoiding the possibility to obtain negative
population of chemical species (we refer to [5, 8, 18, 32] for more details). Despite
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the improvements in the simulation method achieved by these techniques, they all
present a problem related to the description of the system dynamics: though an er-
ror control parameter is used, they do not allow to uniformly bound the changes of
the species quantities during the τ selection procedure therefore resulting in a poor
approximation of the system behavior. Moreover, in order to compute the time in-
crement at each step, they require the evaluation of a quadratic number of auxiliary
quantities (relative to the number of chemical reactions).

For these reasons, we refer to the tau-leaping version presented in [6], where the
authors worked out the problems related to the approximation and to the evaluation
of the step size. Here, the approximation of the system dynamics is guaranteed by
the leap condition, a condition used to uniformly bound the changes in the propen-
sity functions of the reactions during the step. Moreover, a new τ selection strategy
is exploited, and only a number of auxiliary quantities which increases linearly with
the number of reactant species needs to be computed.

Furthermore, to avoid the possibility of obtaining negative molecular populations
(due to the application of a number of reactions greater than the number of mole-
cules currently present inside the volume), it is necessary to identify the subsets of
critical and non-critical reactions: a reaction is called critical, if its reactants are
present inside the system in very small amounts. Exploiting the definition of the
two reactions subsets, it is then possible to select a number of reactions that will
be applied during the iteration, preventing the negative quantities. In general, by us-
ing the tau-leaping procedure, a system can evolve following three different ways:
(1) execute a SSA-like step if, according to the current system state, it is better to
apply a single reaction; (2) execute a set of non-critical reactions and one critical
reaction; and (3) execute a set of non-critical reactions only.

The SSA algorithm, the next reaction method, and the (different) tau-leaping
procedures are only applicable to chemical systems enclosed in a single volume.
In order to overcome this limitation, novel approaches have been introduced. One
of these approaches, called τ -DPP algorithm [7], is a method based on the tau-
leaping procedure that enables to describe the dynamics of multi-volume systems
(where every volume is defined under the usual SSA conditions, such as constant
temperature, pressure, etc., and uniformly distributed molecules). This procedure
will be explained in Sect. 3.3.

Besides, other techniques have been developed to simulate systems with spatial
heterogeneity, e.g. the next sub-volume method [10] and the binomial τ -leap spatial
stochastic simulation algorithm [19]. Here, the purpose is to deal with single vol-
ume systems where the molecular species are not uniformly distributed. In order to
exploit the Gillespie’s method to evaluate the probabilities of the reactions and to
manage the diffusion of molecules, the volume of the system is divided into sepa-
rated sub-volumes. Each sub-volume is taken small enough to be considered well
mixed. Therefore, it is possible to identify the reactions and the diffusion processes
that take place inside every single sub-volume of the system. The difference between
these two methods is that, the next sub-volume method is based on the next reaction
method by Gibson and Bruck (hence it provides the exact behavior of the system),
while the binomial τ -leap spatial stochastic simulation algorithm is based on the
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tau-leaping method (hence it provides an approximated behavior, but it improves
the simulation performances).

3 A Multi-volume Approach with Membrane Systems

In this section, we recall the basic notions of membrane systems, or P systems, and
discuss some issues about their possible application in the study of biochemical sys-
tems. In particular, we consider the problem of maximal parallelism, that is inherent
in the basic definition of P systems, and we describe some possible ways to over-
come this obstacle. In particular, we discuss about the introduction of probabilities
for rule application.

Then we present τ -DPP, a computational method recently appeared in [7], which
can be used to describe and perform stochastic simulations of complex biological or
chemical systems. The “complexity” of the systems that can be managed by means
of τ -DPP, resides not only in the number of the (chemical) reactions and of the
species involved, but mainly in the topological structure of the system, that can be
composed by many volumes. For instance, cellular pathways involving several spa-
tial compartments (as the extracellular ambient, the cytoplasm, the nucleus, etc.), or
multicellular systems like bacterial colonies, or multi-patched ecological systems as
meta-populations, are all examples of biological systems that could be investigated
with τ -DPP. Since τ -DPP represent a general simulating framework for a broad
range of complex systems, in the following we will use the generic terms volume,
object, and rule, to denote the compartment or region, where the molecular species,
or any other elemental “species”, can be modified in some way by a biochemical or,
more generally, an interspecies reaction.

3.1 Membrane Systems

P systems, or membrane systems, were introduced in [25] as a class of unconven-
tional computing devices of distributed, parallel, and non-deterministic type, in-
spired by the compartmental structure and the functioning of living cells. A basic
P system is defined by a membrane structure where multi-sets of objects evolve ac-
cording to given evolution rules, which also determine the communication of objects
between membranes. A membrane structure consists of a set of membranes hierar-
chically embedded in a unique membrane, called the skin membrane. The mem-
brane structure is represented by a string of correctly matching square parentheses,
placed in a unique pair of matching parentheses. Each pair of matching parentheses
corresponds to a membrane, and usually membranes are univocally labeled with dis-
tinct numbers. For instance, the string μ = [0 [1 ]1 [2 [3 ]3 [4 ]4 ]2 ]0 corresponds
to a membrane structure consisting of 4 membranes placed at three hierarchical lev-
els. Moreover, the same membrane structure can be also represented by the string
μ′ = [0 [2 [4 ]4 [3 ]3 ]2[1 ]1 ]0, that is, any pair of matching parentheses at the same
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hierarchical level can be interchanged, together with their contents; this means that
the order of pairs of parentheses is irrelevant, what matters is their respective rela-
tionship. Each membrane identifies a region, delimited by it and the membranes (if
any) immediately inside it. The number of membranes in a membrane structure is
called the degree of the P system. The whole space outside the skin membrane is
called the environment.

An object can be a symbol or a string over a specified finite alphabet V ; multi-
sets of objects are usually considered in order to describe the presence of multiple
copies of any given object inside a membrane. A multi-set associated with mem-
brane i is a map Mi : V ∗ → N which associates a multiplicity to each object in the
multi-set itself. Inside any membrane i, objects in Mi are modified by means of
evolution rules, which are multi-set rewriting rules of the form ri : u → v, where u

and v are multi-sets of objects. The objects from v have associated target indications
which determine the regions where they are to be placed (communicated) after the
application of the rule: if tar = here, then the object remains in the same region;
if tar = out, then the object exits from the region where it is placed and enters the
outer region (or even exits the system, if the rule is applied in the skin membrane);
if tar = inj , then the object enters the membrane labeled with j , j �= i, assumed it
is placed immediately inside the region where the rule is applied (otherwise the rule
cannot be applied).

When considering P systems as computing devices, a computation is obtained
starting from an initial configuration (described by a fixed membrane structure con-
taining a certain number of objects and rules) and letting the system evolve. A uni-
versal clock is assumed to exist: at each step, all rules in all regions are simultane-
ously applied to all objects which can be the subject of an evolution rule. That is, we
say that rules are applied in a maximal parallel manner, as well membranes evolve
simultaneously. If no further rule can be applied, the computation halts and its result
is read in a prescribed way.

Recently, P systems have been applied in various research areas, ranging from
biology to linguistics and to computer science (see, e.g. [9]). For a comprehensive
overview of basic P systems, of other classes lately introduced and their application
in computer science and biology, we refer the interested reader to [26], and to the P
Systems web page (http://ppage.psystems.eu).

3.2 DPP

Dynamical probabilistic P systems (DPP) were introduced in [29]: they are mem-
brane systems where probabilities are associated with the rules, and such values vary
during the evolution of the system, according to a prescribed strategy. The method
for evaluating probabilities and the way the system works are here briefly explained.

In what follows, we are not interested in the computation of DPP, but in its evo-
lution, since we are interested in the application of DPP as a discrete and stochastic
tool for the analysis of dynamical systems. For more details about DPP and exam-
ples of simulated systems, we refer also to [2, 3, 27, 28].

http://ppage.psystems.eu
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Formally, a dynamical probabilistic P system of degree n is a construct Π =
(V ,O,μ,M0, . . . ,Mn−1,R0, . . . ,Rn−1,E, I ) where:

• V is the alphabet of the system, O ⊆ V is the set of analyzed symbols.
• μ is a membrane structure consisting of n membranes labeled with the numbers

0, . . . , n − 1. The skin membrane is labeled with 0.
• Mi , i = 0, . . . , n − 1, is the initial multi-set over V inside membrane i.
• Ri , i = 0, . . . , n− 1, is a finite set of evolution rules associated with membrane i.

An evolution rule is of the form r : u → v, where u is a multi-set over V , v is a
string over V × ({here,out} ∪ {inj | 1 ≤ j ≤ n − 1}). A constant k ∈ R+ is also
associated with the rule.

• E = {VE,ME,RE} is called the environment, and consists of an alphabet
VE ⊆ V , a feeding multi-set ME over VE , and a finite set of feeding rules RE

of the type r : u → (v, in0), for u,v multi-sets over VE .
• I ⊆ {0, . . . , n − 1} ∪ {∞} is the set of labels of the analyzed regions (the label ∞

corresponds to the environment).

The alphabet O and the set I specify which symbols and regions are of peculiar
importance in Π , namely those elements whose evolution will be actually consid-
ered during the analysis and the simulation of the system. On the other hand, we can
also identify the set of parameters P of Π , which consists of: (1) the multiplicities
of all symbols appearing in the multi-sets M0, . . . ,Mn−1 initially present in μ, and
of those appearing in the feeding multi-set ME , and (2) the constants associated to
all rules in R0, . . . ,Rn−1.

The alphabets V,O,VE , the membrane structure μ, the form of the rules in
R0, . . . ,Rn−1,RE , and the set I of analyzed regions—which do not belong to the
set of parameters of Π—are the components that determine the main structure of Π .

A family of DPP can then be defined as F = {(Π, Pi ) | Π is a DPP and Pi is the
set of parameters of Π, i ≥ 1}, that is, it is a class of DPPs where all members have
the same main structure, but the parameters can change from member to member.
We assume that, given any two elements (Π, P1), (Π, P2) ∈ F , it holds P1 �= P2
for the choice of at least one value in P1 and P2.

The definition of a family of DPP is useful if one wants to analyze the same DPP
with different settings of initial conditions, such as different initial multi-sets and/or
different rule constants (for instance, when not all of them are previously known
and one needs to reproduce a given behavior) and/or different feeding multi-sets. In
other words, the family F describes a general model of the biological or chemical
system of interest and, for any fixed choice of the parameters, we can investigate the
evolution of the corresponding specified DPP.

We describe now how stochasticity plays its role in DPP. To each rule in the
set Ri , for all i = 0, . . . , n − 1, we associate a probability for the rule application,
which is computed considering the rule constant and the current multi-set occurring
in membrane i. Namely, let V = {a1, . . . , al}, Mi be the multi-set inside membrane
i and r : u → v a rule in Ri with constant k. Let also be u = a

α1
1 . . . a

αs
s , alph(u) =

{a1, . . . , as} (the set of symbols from V appearing in u) and H = {1, . . . , s}. To ob-
tain the actual normalized probability pi of applying r with respect to all other rules
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that are applicable in membrane i at the same evolution step, we need to evaluate the
(non-normalized) pseudo-probability p̃i(r) of r . The pseudo-probability depends on
the constant associated with r and on the left-hand side of r , and is defined as

p̃i(r) =
{

0 if Mi(ah) < αh for some h ∈ H,

k · ∏h∈H
Mi(ah)!

αh!(Mi(ah)−αh)! if Mi(ah) ≥ αh for all h ∈ H .
(1)

In other words, whenever the current multi-set inside membrane i contains a suf-
ficient number of each symbol appearing in the left-hand side of the rule (second
case in (1)), then p̃i(r) is dynamically computed according to the current multi-set
inside membrane i. For each symbol ah appearing in u, we choose αh copies of ah

among all its Mi(ah) copies currently available in the membrane, that is, we con-
sider all possible distinct combinations of the symbols appearing in alph(u). Thus,
p̃i(r) corresponds to the probability, computed during the current evolution step, of
having an interaction among the objects (placed on the left-hand side of the rule),
which are considered indistinguishable.

Once the pseudo-probability of all rules inside a membrane have been given,
we evaluate the normalized probabilities for each rule: this value gives the actual
probability to execute that rule inside the membrane. The normalized probability
for any rule rj ∈ Ri is

pi(rj ) = p̃i(rj )
∑m

j=1 p̃i(rj )
. (2)

A DPP works as follows. An initial configuration of Π is fixed depending on
the choice of the values in P : it consists of the multi-sets initially present inside
the membrane structure, the chosen rule constants and the feeding multi-set (this is
given as an input to the skin membrane from the environment at each step of the
evolution by applying the feeding rules).1 Then we assume that the system evolves
according to a universal clock, that is, all membranes and the application of all rules
are synchronized. At each step of the evolution, all applicable rules are simultane-
ously applied and all occurrences of the left-hand sides of the rules are consumed.
The applied rules are chosen according to the probability values dynamically as-
signed to them; the rules with the highest normalized probability value will be more
frequently tossed. If some rules compete for objects and have the same probability
values, then objects are nondeterministically assigned to them. Note that, by the as-
signment of a dynamic probability to each evolution rule, DPP mitigate the maximal
parallelism of membrane systems, a feature that makes them more feasible for the
study of biological systems.2

1Different strategies in the feeding process have been defined in [2, 3], where the role of the envi-
ronment was replaced with feeding rules of a stochastic type, directly defined and applied inside
the internal membranes.
2In [3], we also introduced the use of “mute rules” (of the form u → (u,here)) which can be used
as a trick to maintain the maximal parallelism at the level of rule application, but not at the level of
object consumption.
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The dynamics generated by DPP is qualitative, that is, they do not assign a time
increment to the simulation steps. The need for an accurate quantitative tool led to
the definition of τ -DPP [7], designed to share a common time increment among all
the membranes, which allows to generate an accurate distribution of rules in each
compartment.

3.3 τ -DPP

τ -DPP is a stochastic simulation approach introduced in [7] to the aim of extend-
ing the single-volume algorithm of tau-leaping [6]. τ -DPP is able to handle multi-
volume systems where the distinct volumes are arranged according to a specified
hierarchy, and with the additional assumption that the topological structure and the
volume dimensions do not change during the system evolution. As already seen in
Sect. 3.1, this condition is well satisfied by the membrane structure of a P system,
which is also the underlying spatial arrangement used within τ -DPP. Indeed, τ -DPP
presents a close correspondence to DPP, but it exploits a (modified) version of the
tau-leaping procedure to simulate the evolution dynamics of each volume, as well
as the one of the whole system.

The correct behavior of the whole system is achieved by letting all volumes
evolve in parallel, and by using the following strategy for the choice of time in-
crements. At each iteration of the algorithm execution, we consider the current state
of each volume (determined by the current number of objects), and we calculate a
time increment independently in each volume (according to the standard tau-leaping
algorithm). Then the smallest time increment is selected and used to evaluate the
next-step evolution of the entire system. Since all volumes locally evolve according
to the same time increment, τ -DPP is able to correctly work out the global dynam-
ics of the system. Moreover, by adopting this procedure, the simulated evolutions
of all volumes get naturally synchronized at the end of each iterative step. The syn-
chronization is also necessary—and exploited together with a parallel update of all
volumes—to manage the communication of objects among volumes, whenever pre-
scribed by specific (communication) rules.

Besides the length of the local and global time increments, we need to check
which kind of evolution will be performed inside each volume, during the current
iteration, by looking only at the volume internal state. The types of evolutionary step
are those defined in the tau-leaping procedure and described in Sect. 2.2: a volume
can evolve executing either (1) a SSA-like step, or (2) non-critical reactions only,
or (3) a set of non-critical reactions plus one critical reaction. When the global time
increment has been chosen, it is possible to extract the rules that will be applied
inside each volume at the end of the current iterative step. A detailed description of
τ -DPP procedure is presented later on.

Internal and Communication Rules

In the description of a biological or chemical system by means of τ -DPP, each
volume V1, . . . , Vn can contain two different kinds of rules, termed internal and



A Multi-volume Approach to Stochastic Modeling with Membrane Systems 529

communication rules. An internal rule describes the modification or evolution of the
objects inside the single volume where it is applied, while a communication rule
sends the objects from the volume where it is applied to an adjacent volume (pos-
sibly modifying the form of these objects during the communication step). In both
cases, a stochastic constant has to be associated with the rule, which is needed to
compute the probability of applying that rule, together with the form of the rule itself
(algebraically, the stochastic constant is related to the deterministic rate constant of
biochemical systems).

Internal rules have the general form α1S1 +α2S2 +· · ·+αkSk → β1S1 +β2S2 +
· · · + βkSk , where S1, . . . , Sk ∈ S are distinct object types (e.g. molecular species),
and α1, . . . , αk,β1, . . . , βk ∈ N (e.g. stoichiometric coefficients). The objects ap-
pearing in the left-hand side of the rule are called reagents, while the object on
the right-hand side are called products. Note that usually we will consider the case
where (at most) two objects appear in the reagents group. The rational behind this
is that we require biochemical reactions to be (at most) of the second-order, since
the simultaneous collision and chemical interaction of more than two molecules at
a time, has a probability to occur close to zero in real biochemical systems.

When dealing with communication rules inside a volume, besides defining the
sets of reagents and products, it is necessary to specify the target volume where
the products of this rule will be sent. Formally, a communication rule has the form3

α1S1 +α2S2 +· · ·+αkSk → (β1S1 +β2S2 +· · ·+βkSk, tar), where S1, . . . , Sk ∈ S
are distinct object types, α1, . . . , αk,β1, . . . , βk ∈ N, and tar can be equal to:

• out: this means that the products of the rule are “sent outside” the source volume,
where the rule is applied, to the adjacent outer volume.

• inlabel: this means that the products of the rule are “sent inside” the volume with
the label specified in the target. This kind of rules are only allowed if the target
volume is placed inside the source membrane, and the two volumes are adjacent
(that is, there exists no other volume placed between the source and the target
volume).

• in: this means that the products of the rule are non-deterministically sent to any
of the volumes placed inside the source membrane. This kind of rule can be used
instead of a set of rules with specific targets inlabel (one rule for each inner vol-
ume).

Communication rules are considered special rules for what concerns the time
increment (τ ) selection procedure, applied in the first stage of the τ -DPP algorithm.
For internal rules, this procedure is exactly the same of the tau-leaping algorithm
[6], and exploits the species variation to compute the length of the step. Namely,
in order to correctly evaluate the simulation time increment and to describe the
behavior of the system with a good approximation, we need to choose the “largest”
value of τ that also satisfies the leap condition [6]. This condition informally says
that the change in the system state, during the chosen time increment τ , must be

3The condition that at most two objects appear as reagents is usually required also for communi-
cation rules.
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“small enough” so that the variation of the propensity functions of the rules will be
slight. The leap condition is used to bound—by means of an error control parameter
[6]—the computed τ value because, for arbitrary values of the time increment, the
computation of the exact distribution of the rules to apply is as hard to solve as
the CME. On the other hand, when computing the τ value under the leap condition
(also considering the changes in the species according to both the left-hand and
right-hand sides of the rules), it is possible to find a good approximation of the rules
distribution, by means of Poisson random variables related to τ and to the propensity
functions of the rules.

As for as internal rules are concerned, this procedure can be applied without re-
strictions, since they involve a variation only in the volume where they are applied.
On the contrary, the variation due to communication rules implies a change in the
quantities of objects inside two different volumes: the reagents inside the source
volume, and the products sent to the destination volume. To correctly estimate the
value of τ when dealing with communication rules, instead of looking at the varia-
tion of both reagents and products (as it is done for internal rules), we only consider
the variation of the objects inside the source volume (that is, we only look at the
left-hand side of the communication rule). Indeed, the value of τ is independent
from any objects that has to be communicated, since these products will be received
in the target volume only at the end of the iteration step (see below). For this reason,
for the τ selection procedure, the right-hand side of a communication rule is neither
considered in the source, nor in the target volume. Obviously, the communicated
objects will contribute to the update of the system state, which takes place at the
end of the iteration step, and will be therefore considered to determine the state of
the target volume for the next iteration step.

The τ -DPP Algorithm

The τ -DPP algorithm proceeds by executing iterative steps to simulate the evolution
of the entire system. Each step consists of several substeps that are executed inde-
pendently and in parallel for each single volume Vi , i = 1, . . . , n, of the system. In
the following description, the algorithm execution naturally proceeds according to
the order of instructions, when not otherwise specified by means of “go to” com-
mands.

Step 1. Initialization: load the description of volume Vi , which consists of the ini-
tial quantities of all object types, the set of internal and communication
rules and their respective stochastic constants, the set of targets for each
communication rule.

Step 2. Compute the propensity function aμ of each rule Rμ, μ = 1, . . . ,m, and
evaluate the sum of all the propensity functions in Vi , a0 = ∑m

μ=1 aμ. If
a0 = 0, then go to step 3, otherwise go to step 5.

Step 3. Set τi , the length of the step increment in volume Vi , to ∞.
Step 4. Wait for the communication of the smallest time increment τmin =

min{τ1, . . . , τn} among those generated independently inside all volumes
V1, . . . , Vn, during the current iteration, then go to step 13.
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Step 5. Generate the step size τi according to the internal state, and select the
way to proceed in the current iteration (i.e. SSA-like evolution, or tau-
leaping evolution with non-critical reactions only, or tau-leaping evolution
with non-critical reactions and one critical reaction), using the selection
procedure defined in [6].

Step 6. Wait for the communication of the smallest time increment τmin =
min{τ1, . . . , τn} among those generated independently inside all volumes,
during the current iteration. Then

– if the evolution is SSA-like and the value τi = τSSA generated inside the
volume is greater than τmin, then go to step 7;

– if the evolution is SSA-like and the value τi = τSSA is equal to τmin, then
go to step 10;

– if the evolution is tau-leaping with non-critical reactions plus one critical
reaction, and the value τi = τnc1c is equal to τmin, then go to step 11;

– if the evolution is tau-leaping with non-critical reactions plus one critical
reaction, and the value τi = τnc1c is greater than τmin, then go to step 12;

– if the evolution is tau-leaping with non-critical reactions only (τi = τnc),
then go to step 12.

Step 7. Compute τSSA = τSSA − τmin.
Step 8. Wait for possible communication of objects from other volumes, by means

of communication rules. If some object is received, then go back to step 2,
otherwise go to step 9.

Step 9. Set τi = τSSA for the next iteration, then go back to step 6.
Step 10. Using the SSA strategy [16], extract the rule that will be applied in the

current iteration, then go to step 13.
Step 11. Extract the critical rule that will be applied in the current iteration.
Step 12. Extract the set of non-critical rules that will be applied in the current iter-

ation.
Step 13. Update the internal state by applying the extracted rules (both internal and

communication) to modify the current number of objects, and then check
for objects (possibly) received from the other volumes. Then go back to
step 2.

The initialization phase of the algorithm is executed in parallel inside every single
volume of the system, where distinct rules and amounts of objects may appear. The
computation of the propensity functions aμ of the rules Rμ is performed exploiting
the expression presented in [16]. In step 2, we check whether the sum a0 of all
the propensity functions of the volume is equal to zero. If so, then no rule can be
executed inside this volume; in this case, we set τi = ∞ and let the volume wait
for the current τmin value, chosen among the time increments computed inside the
other volumes. This step is necessary for the synchronization between this volume
and the other ones where, possibly, some rules will be applied. So doing, during the
update at the final step of the algorithm, it will also be possible to check whether the
volume is the target of some communication rules applied in other volumes (that is,
whether it will receive new objects), and hence properly update its internal state.
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On the other hand, if a0 > 0, the value of τi is computed inside the volume
considering only its internal state (this is done exploiting the first part of the tau-
leaping procedure presented in [6]). The τi computation also implies the selection of
the kind of evolution for the current iteration inside each volume Vi , independently
from the kind of evolution selected in the other volumes.

Once every volume of the system has computed its τi value, the smallest one
is then selected and used to generate the evolution of the whole system (step 6 of
the algorithm) during the current iteration. This means that each volume will not
evolve according to the internally computed τi , but according to the common value
τmin. The rational behind this is that, we let all volumes proceeds along a common
timeline, therefore, avoiding paradoxical situations where one volume will execute
rules that take place in the future or in the past time of another volume.

When every volume has received the common value τmin, according to the evo-
lution strategy selected at step 5 of the algorithm, it extracts the rules that will be
applied in the final stage of the iteration. If the evolution of the volume is governed
by the SSA strategy, we have to check if τmin is equal to τi (here called τSSA). If
so, it means that the chosen τmin value was actually generated inside this volume,
and that the current iteration is “long enough” to allow the application of one rule
inside this volume. On the other hand, if τmin < τSSA, then it is not possible to apply
any rule inside this volume. For this reason, we only have to update the value of τi

(step 7 of the algorithm).
Afterward, the volume verifies for possible incoming objects: if something is

received from other volumes, then the internal state of the volume is changed, and
in the next iteration the volume will compute new values of the propensity functions
and a new τi value. On the contrary, if the volume does not receive anything from
its adjacent volumes, then its internal state remains unchanged. For this reason, the
τi value used in the next iteration will be the current τSSA value (updated during
the step 7 of the algorithm). Notice that the value τi = τSSA − τmin is used again in
the next iteration because in the case τi is the smallest time increment of the whole
system, then the volume will be able to complete the execution of one rule.

The situation is easier for the other kinds of evolution. If the volume is executing
a tau-leaping step with the application of a set of non-critical reactions and one
critical reaction, we have to check if τi = τmin. If this is true, besides the execution
of the non-critical reactions extracted from the Poissonian distributions (we refer to
[6] for details), it is possible to execute one critical reaction. Indeed, the value τi

computed inside the volume corresponds to the time needed to execute such critical
reaction (this is the reason why its execution is allowed). On the contrary, if τi >

τmin, the volume will execute non-critical reactions only.
Finally, if the volume is evolving according to the tau-leaping procedure with the

execution of non-critical reactions only, we use τmin for the sampling of the number
of rules that will be executed (according to the strategy described in [6]). The last
step of the algorithm corresponds to the system update. Every volume executes its
own rules during this step, both internal and communication. The internal states of
all volumes are hence updated in parallel and, thanks to the choice of the common
time increment τmin, also in a synchronized fashion.
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4 Application of τ -DPP to Coupled Genetic Oscillators

The control of gene expression in living cells can occur through distinct mecha-
nisms, e.g. positive or negative regulation, which enhance (or inhibit, respectively)
the binding between the RNA polymerase and the promoter site of a gene. One goal
in gene regulation analysis is to understand how functional oscillations (e.g. in the
circadian clock) can emerge in a complex system as the macroscopic effect of the
interactions and the coupling of basic and microscopic elements.

In particular, the capability to construct and control synthetic gene circuits in
laboratory experiments, allows to investigate the issue of gene regulation in simpli-
fied systems. An example of such systems is the repressilator, a synthetic oscillator
implemented in Escherichia coli cells by means of specifically constructed plas-
mids [11]. It consists of a network of three genes, lacI (from E. coli), tetR (from
the tetracycline-resistant transposon Tn10), and cI (from λ phage), whose codified
proteins act as repressors of each other’s gene, in a cyclic way. Namely, the product
of lacI inhibits the transcription of tetR, the product of tetR inhibits the transcrip-
tion of cI, whose product in turn inhibits the transcription of lacI, thus closing the
repression cycle. To detect and readout the network behavior, a green fluorescent
protein—whose synthesis is periodically triggered by the tetR product—has been
used as the reporter part of this system. Observations on a growing E. coli culture
evidenced the emergence of spontaneous oscillations in individual cells, as well as
the effect of noise through the variability between different cells, probably due to
the stochastic fluctuations of the network components [11].

Bacteria are able to synthesize a diffusive molecule, called autoinducer, which
is used to perform intercellular signaling. This communication mechanism, termed
quorum sensing [34], allows bacterial cells to sense whether a critical cell density
has been reached in their surrounding, thereby switching on whole-population be-
haviors through the synchronization of all individuals.

Gram-positive and Gram-negative bacteria synthesize different signaling mole-
cules. In general, the first use oligopeptides as autoinducers, while the latter (e.g.
E. coli) use acyl-homoserine lactone (acyl-HSL) molecules. The quorum sensing
circuits in Gram-negative bacteria usually contain two main families of proteins,
which have been found to be homologous to two well-characterized protein in the
bioluminescent bacterium V. fischeri: the LuxI and LuxR families. LuxI-like proteins
are needed for the synthesis of the autoinducers (they acts as acyl-HSL synthases
when provided with an amino donor and an appropriate acyl donor [24]), while
LuxR-like proteins form complexes with the autoinducer, which then regulate the
transcription of target genes [22].

In [14], a synthetic multicellular clock has been investigated, by coupling the re-
pressilator system with bacterial quorum sensing. This intercellular communication
mechanism is able to lead the local genetic oscillators, within a noisy and non-
identical population, to global oscillatory rhythms. In particular, it was shown that
individual repressilator systems can self-synchronize, even when their periods are
broadly distributed [14].

In this section, we propose a multi-volume model based on τ -DPP that considers
a repressilator-like system (RL) coupled with a quorum sensing-like circuit (QSL).
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Fig. 1 The (single volume)
network of the genetic
oscillator system coupled
with quorum sensing
mechanism

Namely, the RL consists of three genes (G1,G2,G3) which cyclically inhibit each
other’s expression, while the QSL consists of a genetic component that triggers
the production of the auto-inducer (through the synthesis of the intermediate auto-
inducer-synthases), plus a “control” molecule that mimics the role of the protein in
the LuxR family. The two systems are interlaced through one positive feedback and
one negative feedforward loop: the first operates on the promotion of gene G1 in the
RL by means of the QSL auto-inducer molecule, while the second operates on the
inhibition of the QSL gene by means of G1 product (see Fig. 1).

4.1 A Multi-volume Model for Coupled Genetic Oscillators

The multi-volume model for RL + QSL system consists of n volumes, each one
corresponding to a cell, a set of 34 rules defined within each cell (Table 1) and 1
communication rule defined in the environment (Table 2), and an alphabet of 21
molecular species. Among these, we can recognize 14 “individual” species, and 7
“complex” species.

The set S of individual species consists of Gi,Ri,Pi , which denote, respec-
tively, the ith gene, mRNA and protein in the RL, for i = 1,2,3; GQS,RQS,PQS
which denote, respectively, the gene, mRNA and protein in the QLS; A, the auto-
inducer molecule; C, the control molecule used to trigger on, along with A, the over-
expression of gene G1. The set of complex species is denoted by C , and consists of
the (bound) species G1 · P3,G2 · P1,G3 · P2,A · C,A · C · G1,A · GQS,GQS · P1.
Each complex species is formed when two individual species interact and get bound.
Formally, this process is represented by means of rules of the form X + Y → X · Y ,
where X,Y ∈ S . We also consider the possibility to have complex species consist-
ing of more than two individual species; in this case the complex is formed in two
sequential steps, that is, X + Y → X · Y , followed by X · Y + Z → X · Y · Z, where
X,Y,Z ∈ S .

The rules in each cell work as follows. Rules r1 and r2 describe, respectively,
the transcription of gene G1 into one molecule of mRNA, R1, and its translation
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Table 1 Reactions inside the single cell

Reaction Reagents → products Constant

r1 G1 → G1 + R1 c1 = 1 × 10−2

r2 R1 → R1 + P1 c2 = 1 × 10−1

r3 R1 → λ c3 = 1 × 10−4

r4 P1 → λ c4 = 1 × 10−2

r5 G2 → G2 + R2 c5 = 1 × 10−2

r6 R2 → R2 + P2 c6 = 1 × 10−1

r7 R2 → λ c7 = 1 × 10−4

r8 P2 → λ c8 = 1 × 10−2

r9 G3 → G3 + R3 c9 = 1 × 10−2

r10 R3 → R3 + P3 c10 = 1 × 10−1

r11 R3 → λ c11 = 1 × 10−4

r12 P3 → λ c12 = 1 × 10−2

r13 G1 + P3 → G1 · P3 c13 = 1 × 10−1

r14 G1 · P3 → G1 + P3 c14 = 1 × 10−3

r15 G2 + P1 → G2 · P1 c15 = 1 × 10−1

r16 G2 · P1 → G2 + P1 c16 = 1 × 10−3

r17 G3 + P2 → G3 · P2 c17 = 1 × 10−1

r18 G3 · P2 → G3 + P2 c18 = 1 × 10−3

r19 GQS → GQS + RQS c19 = 1 × 10−2

r20 RQS → RQS + PQS c20 = 1 × 10−1

r21 RQS → λ c21 = 1 × 10−4

r22 PQS → λ c22 = 1 × 10−2

r23 PQS → PQS + A c23 = 5 × 10−3

r24 GQS + A → GQS · A c24 = 1 × 10−7

r25 GQS · A → GQS + A c25 = 1 × 10−3

r26 GQS · A → GQS · A + RQS c26 = 3 × 10−2

r27 GQS + P1 → GQS · P1 c27 = 1 × 10−2

r28 GQS · P1 → GQS + P1 c28 = 1 × 10−3

r29 A + C → A · C c29 = 1 × 10−3

r30 A · C → A + C c30 = 1 × 10−2

r31 G1 + A · C → G1 · A · C c31 = 1 × 10−6

r32 G1 · A · C → G1 + A · C c32 = 1 × 10−3

r33 G1 · A · C → G1 · A · C + R1 c33 = 5 × 10−2

r34 A → (A,out) c34 = 1

Table 2 Reaction in the environment

Reaction Reagents → products Constant

rE A → (A, in) cE = 1
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into one copy of protein P1. Rules r3, r4 describe the degradation of R1 and P1,
respectively. The same holds for the sets of rules r5, . . . , r8 and r9, . . . , r12, defined
for the other two genetic elements in the RL.4

Rules r13, r15, r17 describe the cyclic repression relation between the 3 genes in
the RL: namely, the protein synthesized by gene G1,G2,G3, acts as repressor for
the expression of gene G2,G3,G1, respectively. When the protein binds to the gene
(e.g., rule r13 forms the complex G1 ·P3), it blocks gene expression by avoiding the
application of the respective transcription rule (e.g., rule r1). The gene repression
ends whenever the repressor is released from the complex and the gene returns in
an unbound form, that is, by the application of the inverse rules r14, r16, r18.

The other rules consider the coupling between the RL and the QSL, which allows
cells to communicate each other and possibly synchronize their behavior. Rules
r19, . . . , r22 describe the transcription and translation of the quorum sensing gene
GQS, and the degradation of the respective synthesized mRNA and protein, RQS
and PQS. Rule r23 describes the synthesis of the auto-inducer molecule A, by means
of the quorum sensing protein PQS.5 When the auto-inducer is present in the mem-
brane, it can undergo three different processes. First, it can bind to the quorum sens-
ing gene (rule r24, and its inverse r25) and promote its expression (rule r26); note
that the expression of GQS can also be inhibited, if protein P1 binds to it (rule r27,
and its inverse r28). Second, the auto-inducer can form a complex with the control
molecules C (rule r29, and its inverse r30). In this case, the complex A · C can bind
to gene G1 (rules r31 and r32) and enhance its expression (rule r33). Third, the auto-
inducer can exit the cell (rule r34) and diffuse into the environment, from where it
can enter again any cell, by the application of the non-deterministic environmental
rule rE .

4.2 Results of Simulations

In the following, we report the results of the simulations performed with τ -DPP
using, when not otherwise specified, the stochastic constant values given in Tables 1
and 2.

We start by presenting in Fig. 2 the oscillatory dynamics of the repressor pro-
teins P1,P2,P3 in the single cell, when the quorum sensing circuit is silenced (that
is, only rules r1, . . . , r18 are active inside the cell). The expected outcome resembles
the behavior obtained in [11], where the order of oscillations of the three proteins
proceed in a sequential, cyclic manner, dictated by the structure of the genetic re-
pressor systems.

4Note that we do not explicitly describe the presence and the role played by transcriptional, trans-
lational, and degradation machineries occurring in real cells, tacitly assuming their constant avail-
ability.
5In bacteria, the synthesis of these molecules require the additional components described in
Sect. 4. We assume that these components are always available and we do not explicitly include
them in the model.



A Multi-volume Approach to Stochastic Modeling with Membrane Systems 537

Fig. 2 Stochastic oscillations of the repressor proteins P1,P2,P3 in the single cell

Fig. 3 Dynamics of quorum sensing protein PQS (see text). Left side: steady state. Right side:
controlled oscillations

In Fig. 3, we show the variation of dynamics of the quorum sensing protein,
PQS. On the left side, we show the situation where only rules r1, . . . , r22 are active,
hence the RL and the QSL are not interlaced. In this case, PQS reaches a steady
state (top part), and the complex GQS · P1 is never formed (bottom part). On the
contrary, if also rules r27, r28 are active, that is, the negative feedforward occurs, then
PQS undergoes controlled oscillations (right side, top part). The right bottom part
indicates how frequently protein P1 regulates the expression of GQS (the complex
GQS · P1 is formed).
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Fig. 4 Dynamics of quorum sensing protein PQS and auto-inducer (see text). Left side: steady
state. Right side: controlled oscillations

Then we consider the communication between the single cell and the environ-
ment, and investigate the oscillatory dynamics within the cell through the activation,
from time to time, of different subsets of rules.

In Fig. 4, we show the situation within the single cell when the quorum sensing
circuit is activated and interlaced with the genetic oscillator. On the left side, all
rules r1, . . . , r26, r34, rE are active, but the control of P1 over GQS is silenced. In this
case, PQS reaches again a steady state (top part), and the auto-inducer molecule is
constantly accumulated inside the cell (bottom part), thus promoting the expression
of GQS though the formation of the complex GQS · A (middle part). If also rules
r27, r28 are activated (right side), then PQS starts oscillating (top part), thanks to
the positive regulation of the auto-inducer (through more frequent formations of the
complex GQS ·A, middle part), whose amount is no more constantly increasing now
(bottom part).

Finally, in Fig. 5, we show the dynamics within the single cell when all rules (left
side), and all rules but the environmental one (right side), are activated. Therefore,
in this case, we are also considering the positive regulation of gene G1 by means of
the auto-inducer (controlled, in turn, by C, which is assumed to be initially present
in 1000 copies inside the cell). On the left side, we show how the amount of P1 gets
notably increased, together with PQS (top part), since there is a high auto-induction
of GQS (middle part). The auto-inducer shows the same behavior of the previous
figure. On the right side, where the communication of the auto-inducer from the
environment toward the cell is silenced, we see that the auto-inductive regulation
of GQS is not triggered (middle part), since few molecules A remain inside the cell



A Multi-volume Approach to Stochastic Modeling with Membrane Systems 539

Fig. 5 Genetic oscillator interlaced with quorum sensing circuit inside the single cell. Left side:
active auto-induction. Right side: no auto-induction

(bottom part). Therefore, the dynamics of proteins P1,P2,P3,PQS resembles the
normal oscillations of Fig. 3.

In order to better validate the effective application of communication rules in
τ -DPP, and to investigate the role of the intercellular signaling mechanism, we con-
sider a simple example where two cells (plus the environment) are coupled together.
In particular, we analyze the case where one cell, say C1, is unable to produce the
auto-inducer (that is, rule r23 is silenced by setting c23 = 0), while the other cell (C2)
is fully functional. Note that if C1 is placed in an empty environment (where neither
cells nor auto-inducer molecules are present) under these conditions, then all its in-
ternal rules triggered by the auto-inducer (namely, r24, . . . , r34) cannot be switched
on. Instead, by placing C1 together with C2, we show how the correct application of
the communication of the auto-inducer from C2 to the environment, and from here
to C1, is able to activate all other rules r24, . . . , r34 in C1. Therefore, the intercel-
lular (quorum sensing like) mechanism is effectively working in a proper way. The
results of this simulation are shown in Fig. 6 where, on the left side, we present the
oscillations occurring along a common timeline in cells C1 (top part, where PQS is
not as high as P1) and C2 (bottom part, where both PQS and P1 are elicited). On the
right side, instead, we show how frequently the gene GQS gets negatively regulated
by P1 and positively regulated by A (note that the value of GQS · A is multiplied by
1.1 in order to make the graphic more readable).

Finally, it would be interesting to check whether a more complex system, con-
sisting of a population of coupled cells, can show (emergent) synchronization events
with respect to the oscillations of the three repressor proteins and the quorum sens-
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Fig. 6 Comparison of dynamics between two coupled cells. Left side: oscillations in C1 (top) and
C2 (bottom). Right side: gene regulation in C1 (top) and C2 (bottom)

ing protein. Since the modeling and simulation approach we use here is stochastic,
the gain of such a synchronized behavior in a noisy system is harder than doing this
with a deterministic approach (see, e.g. [14]). We will deal with this issue in a future
extension of this work.

5 Discussion

τ -DPP provides the description of the dynamics of systems characterized by a com-
plex structure, composed by several volumes organized in a specified hierarchy.
Both the dynamics of each single volume and of the system as a whole, can be
achieved in an accurate way, by (independently) considering the current state of the
volumes and by choosing a common time increment of the system for each itera-
tion. This strategy is implemented exploiting the tau-leaping procedure. On the other
hand, it is known that the complexity of the tau-leaping algorithm, though in gen-
eral performing better than SSA, increases with the number of the species and of the
reactions. In addition, in τ -DPP we have to consider the computational cost raised
by the number of volumes in the system structure. Another problem of the τ -DPP
algorithm, is related to the τ selection procedure: using the smallest τ computed at
each iteration means that the volumes with an internal τ greater than τmin will ex-
ecute a larger number of steps to describe their internal behavior. Despite that, this
kind of τ selection procedure is needed in order to manage the communication and
the synchronization among the compartments at the end of each iteration.
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Another issue concerns the stochastic constants associated with communication
rules. The application of a communication rule means that an object (or a set of
objects) is instantaneously sent to the target volume, without considering the “time”
that the objects could need to move from one volume to another one. For instance,
a communication rule might represent the passage of a solute through a cellular
membrane mediated by a transport protein. This biological process can require a
conformational change in the transport protein structure, which necessarily prolong
the time the solute would take to virtually cross the membrane in a direct way [23].
To this aim a tuning of the stochastic constants of the communication rules would be
necessary, in order to better represent the behavior of the objects that move between
adjacent volumes. Another solution could consist in defining intermediate volumes
in τ -DPP (that is, to consider the biological membrane as a volume in itself), or also
to include diffusion processes for the movement of objects.

In addition, the problem of the volume changing in time should also be addressed,
especially when dealing with cellular processes spanning the cell cycle period. In
fact, in this case the dimension of the volume can increase, and also its internal
conditions can be modified, therefore, the requisite condition of fixed volume for
the applicability of standard stochastic algorithms fails.
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Salomaa A (eds) Lecture notes in computer science, vol 4361. Springer, Berlin, pp 298–313
8. Chatterjee A, Vlachos DG, Katsoulakis MA (2005) J Chem Phys 122:024112
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Programmability of Chemical Reaction
Networks

Matthew Cook, David Soloveichik, Erik Winfree,
and Jehoshua Bruck

Abstract Motivated by the intriguing complexity of biochemical circuitry within
individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a for-
mal model that considers a set of chemical reactions acting on a finite num-
ber of molecules in a well-stirred solution according to standard chemical kinet-
ics equations. SCRNs have been widely used for describing naturally occurring
(bio)chemical systems, and with the advent of synthetic biology they become a
promising language for the design of artificial biochemical circuits. Our interest here
is the computational power of SCRNs and how they relate to more conventional
models of computation. We survey known connections and give new connections
between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets,
Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran,
and Turing Machines. A theme to these investigations is the thin line between de-
cidable and undecidable questions about SCRN behavior.

1 Introduction

Stochastic chemical reaction networks (SCRNs) are among the most fundamental
models used in chemistry, biochemistry, and most recently, computational biology.
Traditionally, analysis has focused on mass action kinetics, where reactions are as-
sumed to involve sufficiently many molecules that the state of the system can be
accurately represented by continuous molecular concentrations with the dynamics
given by deterministic differential equations. However, analyzing the kinetics of
small-scale chemical processes involving a finite number of molecules, such as oc-
curs within cells, requires stochastic dynamics that explicitly track the exact num-
ber of each molecular species [1–3]. For example, over 80% of the genes in the
E. coli chromosome are expressed at fewer than a hundred copies per cell [4], av-
eraging, for example, only 10 molecules of Lac repressor [5]. Further, observations
and computer simulations have shown that stochastic effects resulting from these
small numbers may be physiologically significant [6–8].
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In this paper, we examine the computational power of Stochastic Chemical Reac-
tion Networks. Stochastic Chemical Reaction Networks are closely related to com-
putational models such as Petri nets [9], Vector Addition Systems (VASs) [10], Frac-
tran [11, 12], and Register Machines (sometimes called Counter Machines) [13],
and for many of these systems we can also consider stochastic or nondeterministic
variants. Our initial route into this subject came through the analysis of a seemingly
quite unrelated question: What digital logic circuits are constructible with a given
set of gate types when it is not possible to copy values (as is true, for example, in
quantum circuits)? It turns out that this gate implementability question, as we will
discuss in Sect. 4.1, is very closely related to the question of what states can be
reached by a Stochastic Chemical Reaction Network.

Given the importance of stochastic behavior in Chemical Reaction Networks, it
is particularly interesting that whereas most questions of possibility concerning the
behavior of these models are decidable [10], the corresponding questions of prob-
ability are undecidable [14, 15]. This result derives from showing that Stochastic
Chemical Reaction Networks can simulate Register Machines [16] efficiently [17]
within a known error bound that is independent of the unknown number of steps
prior to halting [14]. This result—that when answers must be guaranteed to be
correct, computational power is limited, but when an arbitrarily small error prob-
ability can be tolerated, the computational power is dramatically increased—can
be immediately applied to the other models (Petri nets and VASs) when they are
endowed with appropriate stochastic rates. This result is surprising, in light of the
relatively ineffective role the addition of probability plays in the widely held belief
that BPP = P .

Several further results extend and refine this distinction.

• When endowed with special fast reactions guaranteed to occur before any slow
reaction, Stochastic Chemical Reaction Networks become Turing universal, and
thus can compute any computable function without error.

• Stochastic Chemical Reaction Networks with reaction rates governed by standard
chemical kinetics can compute any computable function with probability of error
less than ε for any ε > 0, but for ε = 0 universal computation is impossible [10,
14, 17].

• Stochastic Chemical Reaction Networks in which each reaction’s probability of
occurring depends only on what reactions are possible (but not on the concentra-
tions) are not capable of universal computation with any fixed bounded probabil-
ity of success.

• Taking the result of the longest possible sequence of reactions as the answer,
Stochastic Chemical Reaction Networks are capable of computing exactly the
class of primitive recursive functions without error.

• The time and space requirements for Stochastic Chemical Reaction Networks do-
ing computation, compared to a Turing Machine, are a simple polynomial slow-
down in time, but an exponential increase in space [14, 17].

This last result, regarding the complexity, is the best that can be expected, due to
the unavoidable fact that information must effectively be stored in the bits compris-
ing the number of molecules present of each species. For uniform computations,
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wherein the same finite set of chemical species and reactions are used to solve any
instance of the problem, storing n bits requires the presence of 2Ω(n) molecules. In
practice, keeping an exponentially large solution well stirred may take a correspond-
ingly large amount of time, but in any event, due to the space constraint, Stochastic
Chemical Reaction Networks will effectively be limited to logspace computations.

The intention of this paper is to review, present, and discuss these results at an
intuitive level, with an occasional foray into formal exactitude. Enjoy.

2 Formalization of Chemistry

2.1 Stochastic Chemical Reaction Networks

A Stochastic Chemical Reaction Network is defined as a finite set of d reactions act-
ing on a finite number m of species. Each reaction α is defined as a vector of nonneg-
ative integers specifying the stoichiometry of the reactants, rα = (rα,1, . . . , rα,m),
together with another vector of nonnegative integers specifying the stoichiometry of
the products, pα = (pα,1, . . . , pα,m). The stoichiometry is the nonnegative number
of copies of each species required for the reaction to take place, or produced when
the reaction does take place. We will use capital letters to refer to various species
and we will use standard chemical notation to describe reactions. So, for example,
the reaction A + D → A + 2E consumes 1 molecule of species A and 1 molecule
of species D and produces 1 molecule of species A and 2 molecules of species E

(see Fig. 1). In this reaction, A acts catalytically because it must be present for the
reaction to occur, but its number is unchanged when the reaction does occur.1

The state of the network is defined as a vector of nonnegative integers specifying
the quantities present of each species, A = (q1, . . . , qm). A reaction is possible in
state A only if there are enough reactants present, that is, ∀i, qi ≥ rα,i . When reac-
tion α occurs in state A, the reactant molecules are used up and the products are
produced. The new state is B = A ∗ α = (q1 − rα,1 + pα,1, . . . , qm − rα,m + pα,m).

We write A C→ B if there is some reaction in the Stochastic Chemical Reaction Net-
work C that can change A to B; we write

C∗→ for the reflexive transitive closure of
C→. We write Pr[A C→ B] to indicate the probability that, given that the state is ini-

tially A, the next reaction will transition to the state to B. Pr[A C∗→ B] refers to the
probability that at some time in the future, the system is in state B.

Every reaction α has an associated rate constant kα > 0. The rate of every reac-
tion α is proportional to the concentrations (number of molecules present) of each
reactant, with the constant of proportionality being given by the rate constant kα .

1In chemistry, catalysis can involve a series of reactions or intermediate states. In this paper, how-
ever, we will generally use the word catalyst to mean a species which participates in, but is un-
changed by, a single reaction.
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Specifically, given a volume V , for any state A = (q1, . . . , qm), the rate of reaction
α in that state is

ρα(A) = kαV

m∏

i=1

(qi)
rα,i

V rα,i
where qr def= q!

(q − r)! = q(q − 1) · · · (q − r + 1). (1)

Since the solution is assumed to be well stirred, the time until a particular reaction
α occurs in state A is an exponentially distributed random variable with the rate
parameter ρα(A); i.e., the dynamics of a Stochastic Chemical Reaction Network is
a continuous-time Markov process, defined as follows.

We write Pr[A C→ B] to indicate the probability that, given that the state is ini-
tially A, the next reaction will transition to the state to B. These probabilities are
given by

Pr[A C→ B] = ρA→B
ρtot

A

where ρA→B =
∑

α s.t. A∗α=B
ρα(A) and ρtot

A =
∑

B
ρA→B. (2)

The average time for a step A → B to occur is 1/ρtot
A , and the average time for a

sequence of steps is simply the sum of the average times for each step. We write

Pr[A C∗→ B] to refer to the probability that at some time in the future, the system is
in state B.

This model is commonly used for biochemical modeling [1–3]. When using this
model as a language for describing real chemical systems, the reasonableness of
the underlying assumptions are affirmed (or denied) by the model’s accuracy with
respect to the real system. However, in the work presented here, we will be using
the model as a programming language—we will write down sets of formal chemical
reactions that have no known basis in reality, and any network that is formally ad-
mitted by the model will be fair game. That is, while Stochastic Chemical Reaction
Networks are usually used descriptively, we will be using them prescriptively: we
imagine that if we can specify a network of interest to us, we can then hand it off
to a talented synthetic chemist or synthetic biologist who will design molecules that
carry out each of the reactions. Therefore, our concern is with what kinds of sys-
tems the formal model is capable of describing—because our philosophy is that if it
can be described, it can be made. Of course, this might not be true. A similar issue
arises in classical models of computation: It is often observed that Turing Machines
cannot be built, because it is impossible to build an infinite tape or a machine that
is infinitely reliable. Nonetheless, it is enlightening to study them. We believe the
formal study of Stochastic Chemical Reaction Networks will be similarly enlight-
ening. But before proceeding, it is worth considering just how unrealistic the model
can become when we are given free reign to postulate arbitrary networks.

An immediate concern is that while we will consider SCRNs that produce ar-
bitrarily large numbers of molecules, it is impossible that so many molecules can
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fit within a predetermined volume. Thus, we recognize that the reaction volume V

must change with the total number of molecules present, which in turn will slow
down all reactions involving more than one molecule as reactants. Choosing V to
scale proportionally with the total number of molecules present (of any form) re-
sults in a model appropriate for analysis of reaction times. Note, however, that for
any Stochastic Chemical Reaction Network in which every reaction involves exactly

the same number of reactants, the transition probabilities Pr[A C→ B] are indepen-
dent of the volume. For all the positive results discussed in this paper, we were
able to design Stochastic Chemical Reaction Networks involving exactly two reac-
tants in every reaction and, therefore, volume needs to be considered only where
computation time is treated. A remaining concern—which we cannot satisfactorily
address—is that the assumption of a well-stirred reaction may become less tenable
for large volumes. (However, this assumption seems intrinsically no less justified
than the common assumption that wires in boolean circuits may be arbitrarily long
without transmission errors, for example.)

A second immediate concern is that the reactions we consider are of a very gen-
eral form, including reactions such as A → A+B that seem to violate the conserva-
tion of energy and mass. The model also disregards the intrinsic reversibility of ele-
mentary chemical steps. In other words, the model allows the reaction A + B → C

without the corresponding reverse reaction C → A + B . This is true, but it is nec-
essary for modeling biochemical circuits within the cell, such as genetic regulatory
networks that control the production of mRNA molecules (transcription) and of pro-
tein molecules (translation). Although no real reaction is strictly irreversible, many
natural cellular reactions such as cleavage of DNA can be modeled as being effec-
tively irreversible, or an implicit energy source (such as ATP) may be present in
sufficiently high quantities to drive the reaction forward strongly. Thus, our models
intrinsically assume that energy and mass are available in the form of chemical fuel
(analogous to ATP, activated nucleotides, and amino acids) that is sufficient to drive
reactions irreversibly and to allow the creation of new molecules. Together with the
dependence of V on the total number of molecules, we envision the reaction solu-
tion as a two-dimensional puddle that grows and shrinks as it adsorbs fuel from and
releases waste to the environment. This is very similar in spirit to computational
models such as Turing Machines and Stack Machines that add resources (tape or
stack space) as they are needed.

Another potentially unrealistic feature of the SCRN formalism is that it allows
reactions of any order (any number of reactants), despite the generally accepted
principle that all underlying physical chemical reactions are binary and that higher
order reactions are approximations in situations with some very fast rate constants.
For this reason, in our constructions, we restrict ourselves to use reactions with at
most two reactants. Further, it is generally accepted that Michaelis–Menten kinetics
are followed for catalytic reactions. For example, the above reaction A+B → C+B

should be decomposed into two reactions A + B → M and M → C + B where
M is some intermediate species, but the abbreviated intermediate-free form is also
allowed in the model. Another principle involving catalysts is that if a reaction can
occur in the presence of a catalyst, then it can usually also occur (albeit usually
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much more slowly) without the catalyst. For example, if A+B → C +B can occur,
then so can A → C. Continuing in this vein, a wealth of further restrictions, each
applicable in certain contexts, could arise from detailed considerations of the types
of molecules being used.

Instead of focusing on these or other restrictions, we focus on the cleanest and
most elegant formalism for Stochastic Chemical Reaction Networks and treat it as a
programming language. We happily leave the task of accurately implementing our
networks to the synthetic chemists and synthetic biologists.

2.2 Other Models of Chemical Computing

It is worth noting that several other flavors of chemical system have been shown
to be Turing universal. Bennett [18] sketched a set of hypothetical enzymes that
will modify a information-bearing polymer (such as DNA) so as to exactly and effi-
ciently simulate a Turing Machine. In fact, he even analyzed the amount of energy
required per computational step and argued that if the reactions are made chemically
reversible and biased only slightly in the favorable direction, an arbitrarily small
amount of energy per computational step can be achieved. Since then, there have
been many more formal works proving that biochemical reactions that act on poly-
mers can perform Turing-universal computation (e.g., [19–21]). In all of these stud-
ies, unlike the work presented here, there are an infinite number of distinct chemical
species (polymers with different lengths and different sequences), and thus formally,
an infinite number of distinct chemical reactions. These reactions, of course, can be
represented finitely using an augmented notation (e.g., “cut the polymer in the mid-
dle of any ATTGCAAT subsequence”), but as such they are not finite Stochastic
Chemical Reaction Networks.

A second common way of achieving Turing universality is through compartmen-
talization. By having a potentially unbounded number of spatially separate com-
partments, each compartment can implement a finite state machine and store a fixed
amount of information. Communication between compartments can be achieved by
diffusion of specific species, or by explicit transfer reactions. This is, for example,
exploited in the Chemical Abstract Machine [22] and in Membrane Systems [23].
Note that [24], contrary to its title, only establishes that Chemical Reaction Net-
works appear to be able to implement feed-forward circuits (along the lines of
Sect. 3), making them empirically at least P-hard.

3 Bounded Models: Boolean Logic Circuits

A natural relation to Boolean circuits leads one to expect that Stochastic Chemi-
cal Reaction Networks may well have similar computational power. For example,
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given a circuit built from NAND gates, we can construct a corresponding Stochastic
Chemical Reaction Network by replacing each gate

xk = xi NAND xj

with the four reactions

Ai + Aj → Ai + Aj + Bk,

Ai + Bj → Ai + Bj + Bk,

Bi + Aj → Bi + Aj + Bk,

Bi + Bj → Bi + Bj + Ak.

The presence of a single Ai molecule represents that xi = 0, the presence of a single
Bi molecule represents that xi = 1, and the presence of neither indicates that xi has
not yet been computed. If the circuit has only feed-forward dependencies, it is easy
to see that if one starts with a single A or B molecule for each input variable, then
with probability 1 the correct species will be eventually produced for each output
variable. In this sense, a Stochastic Chemical Reaction Network can deterministi-
cally compute the same function as the Boolean circuit, despite the uncontrollable
order in which reactions occur. Note that in this particular network, the specific rate
constants can affect the speed with which the computation occurs, but do not change
the eventuality.

Circuits of the same general flavor as the one above can be modified to work
with mass action chemical kinetics [24, 25], showing that individual Boolean logic
gates can be constructed, and that they can be connected together into a circuit.
This provides for efficient computation but is a nonuniform model: the number of
chemical species increases with the number of gates in the circuit, and thus with the
size of the problem being solved.

Contrary to the limited (finite state) computational power of Boolean circuits,
individual Stochastic Chemical Reaction Networks are not limited by finite state
spaces: there may potentially be an unbounded number of molecules of any given
species. As even minimal finite-state machinery coupled with unbounded memory
tends to allow for Turing-universal computation, one might speculate that the same
should hold true for Stochastic Chemical Reaction Networks. If so, then Stochastic
Chemical Reaction Networks would be capable of uniform computation, and pre-
dicting their long-term behavior would be undecidable.

The following sections will show that this is indeed the case. Stochastic Chemical
Reaction Networks are in fact much more powerful than one might think from the
simple Boolean circuit approach shown above.

4 Unordered Program Models: Petri Nets and VASs

The main complicating factor when trying to “program” a Stochastic Chemical Re-
action Network is that reactions occur in an uncontrollable order, making it quite
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Fig. 1 Four representations of the same computation. Starting with 1 A and n C’s, the maximum
number of D’s that can be produced is 2n. (a) A Stochastic Chemical Reaction Network. (b) A Petri
net. Each circle corresponds to a place (a molecular species), and each black bar corresponds to
a transition (a reaction). (c) A Vector Addition System. Note that dimensions F and G must be
added to the Vector Addition System to capture the two reactions that are catalyzed by A and B .
(d) A Fractran program. The numerators correspond to the reaction products, and the denominators
correspond to the reactants. The first seven prime numbers are used here in correspondence to the
letters A through G in the other examples. As in the previous example, F (13) and G (17) must be
introduced here to avoid unreduced fractions for the catalyzed reactions

difficult to guarantee a unique outcome for a nontrivial computation. Stochastic
Chemical Reaction Network computations that are arranged so as to guarantee a
unique outcome will be called confluent computations.

We can find clues regarding how to program such systems, including relevant
theorems, by examining the related computational models mentioned above and
shown in Fig. 1. The differences between the models are minor, amounting mostly



Programmability of Chemical Reaction Networks 551

just to different interpretations or viewpoints of the same underlying fundamental
process. For example, consider Petri nets [26], as shown in Fig. 1(b). In this model,
a network consists of a directed bipartite graph, having connections between places
(shown as circles) and transitions (shown as black bars). The state consists of a
nonnegative number of tokens at each place, and a new state is achieved by the firing
of a transition. When a transition fires, it consumes one token from the incident
place for each incoming edge, and produces one token into the incident place for
each outgoing edge (there is no difference between the two sides of the black bar).
Thus, a transition is enabled only if there are enough tokens in the input places. In
any given state, there are typically many transitions that could fire. Which one fires
first is intentionally left unspecified: the theory of Petri nets addresses exactly the
question of how to analyze asynchronous events. If the system uses rate constants
as in (1) for each transition (in which case the model is a type of stochastic Petri
net), the model is formally identical to Stochastic Chemical Reaction Networks:
each place corresponds to a molecular species (the number of tokens is the number
of molecules) and each transition corresponds to a reaction [27].

A closely related model, Vector Addition Systems (VASs), was developed and
studied by Karp and Miller [10] for analyzing asynchronous parallel processes.
Here, questions concern walks through an m dimensional integer lattice, where each
step must be one of d given vectors Vα ∈ Zm, and each point in the walk must have
no negative coordinates. Whether it is possible to walk from a point x to a point
y (the reachability question) is in fact decidable [28]. It is also decidable whether
it is possible for a walk to enter a linearly-defined subregion [29]—a special case
is whether the ith component of the point ever becomes nonzero (the producibility
question).

The correspondence between Vector Addition Systems, Stochastic Chemical Re-
action Networks and Petri nets is direct. First, consider chemical reactions in which
no species occurs both on the left side (as a reactant) and on the right side (as a
product)—i.e., reactions that have no instantaneous catalysts. When such a reaction
α occurs, the state of the Stochastic Chemical Reaction Network, represented as a
vector, changes by addition of the vector pα − rα . Thus, the trajectory of states is a
walk through Zm wherein each step is any of d given vectors, subject to the inequal-
ities requiring that the number of molecules of each species remain nonnegative,
thus restricting the walk to the nonnegative orthant.

Karp and Miller’s decidability results for VASs [10] directly imply the decidabil-
ity of the question of whether a catalyst-free Stochastic Chemical Reaction Network
can possibly produce a given target molecule (the producability question again). As
a consequence, confluent computation by Stochastic Chemical Reaction Networks
cannot be Turing universal, since questions such as whether the YES output mole-
cule or the NO output molecule will be produced are decidable. The restriction to
catalyst-free reactions is inessential here: each catalytic reaction can be replaced by
two new reactions involving a new molecular species (an “intermediate state”, see
Fig. 1(c)), after which all reachability and producibility questions (not involving the
new species) are identical for the catalyst-free and the catalyst-containing networks.
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4.1 Gate Implementability

The initial path leading the authors to consider the computational power of Sto-
chastic Chemical Reaction Networks came from a surprisingly unrelated topic. We
were considering the general question of whether circuits constructed from available
gate types are able to implement a desired target function. We call this the gate im-
plementability question. The terms gate and function will be used interchangeably
here.

It has been known since the time of Post [30] that given a set of functions of
boolean values, only a finite number of tests need to be done to know whether a
particular target function can or cannot be implemented by them, if function val-
ues, once produced, can be used repeatedly (in other words, if fan-out is available).
However, in situations where values cannot be used repeatedly (as is the case, for
example, in quantum computation), the implementability question becomes much
less clear. Indeed, if the analogous questions are asked for circuits built of relations,
rather than functions, then the ability to reuse values makes this question become
decidable, whereas it is undecidable if values, once produced, can only be used
once [31].

It is natural to wonder, if fan-out is not available, might the gate implementability
question become undecidable, as it did for relations?

First of all, we have to be clear about what we mean by “circuits without fan-
out.” From a feed-forward point of view, a fan-out node in a circuit is a device with
one input and two outputs, and both outputs equal the input. So, we will be generous
and expand the definition of “function” to allow multiple outputs. (If we do not do
this, then all circuits must be trees, and it becomes difficult to implement anything
at all, since in contrast with formulas, inputs cannot be used at more than one leaf of
the tree.) We will define the outputs of a feed-forward circuit to be all of the output
wires which have not been fed into some other gate, and the inputs are of course all
the input wires which are not produced as the output of another gate.

This gives us an implementability question for feed-forward circuits that is com-
parable to the implementability question for relations. As with relations, the avail-
ability of fan-out makes the question easily decidable: Simply iteratively expand
the set of implementable functions, starting with the inputs and the given functions.
However, without fan-out available, the situation is not quite so easy.

4.2 Gate Implementability Is Equivalent to Reachability
in Stochastic Chemical Reaction Networks

In this section, we will show that any gate implementability question can in fact
be reduced to a reachability question for a chemical reaction network, and vice
versa. Intuitively, the idea is that the wires in the circuit correspond to molecules, the
gates in the circuit correspond to reactions, the designer of the circuit corresponds
to the source of randomness in the Stochastic Chemical Reaction Network, and the
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ability to implement a given function corresponds to the reachability question for
the Stochastic Chemical Reaction Network.

The idea for the forward direction is that we consider all possible inputs to the
circuit simultaneously. Since we know what we are trying to implement, we know
how many inputs there are, and what the possible values for each input are, and thus
we know exactly how many distinct possible states the entire circuit can be in. For
example, if there are five Boolean inputs, then there are 25 = 32 possible states for
the circuit (one for each possible combination of values on the input wires), and
every wire in the circuit can have its behavior described by a vector of length 32,
giving the value of that wire in each of the 32 possible states the circuit might be in.
In this example, the five inputs to the circuit would be described by the following
vectors:

〈0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1〉,
〈0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1〉,
〈0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1〉,
〈0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1〉,
〈0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1〉.

The vector describing an output of a gate is easily calculated from the vectors for
the inputs.

The corresponding chemical reaction network will be designed to have one
species for each possible vector. (In the example above, there would be 232 species.)
Then each gate available in the implementability question is converted into a long
list of chemical reactions: For each possible combination of input vectors to the gate,
we provide a chemical reaction which takes those species as reactants and produces
the appropriate species (those corresponding to the correct outputs of the gate for
these inputs) as products.

The starting state for the chemical reaction network is one molecule of each of
the species used as inputs (in the example above, recalling that each vector is a
species, the starting state would be the five listed vectors), and the target state for
the reachability question is simply the corresponding set of output vector species
for the target gate in the implementability question. It is clear from the design that
the target state is reachable in the chemical reaction network if and only if the target
gate is implementable in the implementability question.

Now we will show the other direction, that any reachability question for a chemi-
cal reaction network can be reduced to an implementability question for gates with-
out fan-out.

The idea for this direction is to design some gates that can only be usefully com-
bined by following exactly the reactions of the given network. The alphabet of val-
ues used by the gates will consist of one symbol for each of the chemical species,
plus an extra symbol “ε”, which we will think of as an error symbol. There will
be one gate per reaction, plus one extra gate. Each reaction will be converted into a
gate with as many inputs as reactants and as many outputs as products. For example,
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the reaction A + 2B → C + D would become a gate with 3 inputs and 2 outputs,
and the computation performed by the gate is almost trivial: It outputs ε on every
output, unless its inputs are 〈A,B,B〉, in which case it outputs 〈C,D〉. Other reac-
tions are similarly converted. We also provide an extra gate with two inputs and two
outputs, which is a two-wire identity gate, except that if either input is ε, then both
outputs are ε. Otherwise, the first output matches the first input, and the second out-
put matches the second input. The purpose of this gate is to allow the error symbol
ε to spread from one wire to another, as we will see shortly.

The initial state and target state for the reachability question then become the
inputs and outputs of the target gate, and again every other possible input should
lead to all outputs being ε.

Any satisfactory solution to this implementability question clearly corresponds
to a partially ordered sequence of reactions that demonstrates a positive answer to
the reachability question. Conversely, any sequence of reactions reaching the target
state of the reachability question can be directly converted into a circuit of gates
that is almost guaranteed to implement the target gate. The only potential problem
is that if the input given to the circuit differs just slightly from the intended input,
then some of the gates will still be getting exactly the inputs that were intended, and
for some circuits, it may not be the case that all outputs are ε, but rather just some
subset of them. It is for this reason that we supplied the extra “error propagating”
gate. If necessary, this gate can be used many times at the end of a circuit (2n − 3
times for a circuit with n outputs) to ensure that if any outputs are ε, then all outputs
must be ε. Clearly, the availability of this gate will not otherwise affect the ability
to simulate the sequence of reactions. Thus, the answer to the gate implementability
question will match exactly the answer to the chemical reachability question.

5 Almost Universal: Primitive Recursive Computation

It has long been known that certain questions about whether a Petri net “might do X”
are decidable, where typical values of X are, in the language of Stochastic Chemical
Reaction Networks, “keep having reactions forever” or “grow without bound” or
“reach a certain state” or “produce at least some given quantities of given species.”
[9, 10, 28]. These results carry over directly to Stochastic Chemical Reaction Net-
works so long as the question does not ask about the probability of X happening, but
only about the possibility of it happening (i.e., only about whether the probability of
X is zero vs. nonzero).

As mentioned in Sect. 4, confluent computation by Stochastic Chemical Reac-
tion Networks can only implement decidable decision problems. Thus, for questions
about the output of a Stochastic Chemical Reaction Network (given by some final
quantity of the output species) to have any hope of being undecidable, the output
must be probabilistic in nature. We will examine questions of probability in Sect. 6;
here, we restrict ourselves to questions of possibility.

Although the questions of possibility listed above are known to be decidable,
their complexity is sometimes not so clear. The complexity of the problem for X =
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“grow without bound” is known to be doubly exponential [32], but the complexity
of the problem for X = “reach a certain state” has been an open problem for decades
[9].

Even though double exponential complexity sounds quite complex, the complex-
ity of these types of problems can in fact be far greater. Some suspect that the reach-
ability problem (i.e., X = “reach a certain state”) may have complexity comparable
to primitive recursive functions, which are so powerful that few natural nonprimitive
recursive functions are known.

In Sect. 5.3, we present examples of problems whose complexity does exactly
match the power of primitive recursive functions. Specifically, if X = “have a
molecule of S1 present when attaining the maximum possible amount of S2”, or
X = “have a molecule of S1 present after taking the longest possible (over all se-
quences) sequence of reactions.” These questions are equivalent in power to prim-
itive recursively defined predicates, where the number of primitive recursive func-
tions used to recursively build up the predicate is on the order of the number of
molecular species in the Stochastic Chemical Reaction Network, and the input to
the predicate corresponds to the initial state of the Stochastic Chemical Reaction
Network.

To show that such question are no more powerful than primitive recursive func-
tions, in Sect. 5.2 we show that for any Stochastic Chemical Reaction Network, it
is possible to define a primitive recursive function which can return the amount of
S1 that is produced by whichever sequence of reactions leads to the largest possible
amount of S2. Our proof, while far from straightforward, is much simpler than previ-
ous similar proofs (which used results on bounds for solutions to bounded versions
of Hilbert’s tenth problem), since it gives an explicitly primitive recursive formula
bounding the size of the tree of all possible runs of the Stochastic Chemical Reaction
Network. The bulk of the proof lies in defining this bounding function and proving
that it indeed bounds the depth of the tree. This bound enables the definition of a
primitive recursive function which analyzes the entire tree, explicitly finding the run
with the largest amount of S2 and returning the corresponding amount of S1.

5.1 Primitive Recursive Functions

Primitive Recursive Functions were first investigated in the 1920s, starting with
Skolem [33], who pointed out that many standard functions on nonnegative inte-
gers can be defined using just function composition and recursion, starting with just
the successor function. This surprising fact is illustrated in Fig. 2, which shows how
functions can be built up in this way, including for example a function that will tell
you whether a number is prime or not.

The wide range of functions that could be defined in this way led logicians to
wonder whether all mathematical functions could be defined in this way, or at least
all those functions for which there exists a deterministic algorithm for calculating
the value. Recall that this was long before people had ever written algorithms for
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Fig. 2 Examples of Primitive Recursive Functions. Starting with only the successor function,
other functions can be built up one by one using a simple form of recursion. Where the function
being defined is used in its own recursive definition, the rule is that it must have exactly the same
arguments but with n replaced by m

electronic computers, before Gödel’s famous incompleteness theorem [34] and be-
fore Turing Machines [35], in short, before people had figured out any satisfactory
way of standardizing or formalizing the process of mathematical calculation. Per-
haps this was the way.

It turned out that this was not the way. In 1928, Ackermann [36] showed that
there is a limit to how fast a Primitive Recursive Function can grow (depending on
how many other functions are used to help define it), and there turns out to exist
simple deterministic algorithms for calculating functions that grow even faster than
this limit, as shown in Fig. 3. Thus, the world of Primitive Recursive Functions is
not large enough to encompass all mathematical calculations.

Not long after Ackermann’s paper made it clear that Primitive Recursive Func-
tions were merely a strict subset of the functions that can be calculated, Herbrand
in 1931 [37] and Gödel in 1934 [38] defined General Recursive Functions, which in
1936 were argued by both Church [39] and Turing [35] to correspond exactly to the
set of all functions that can possibly be calculated in any algorithmic way. This ar-
gument was accepted by most people, and is now well known as the Church–Turing
thesis.

A major distinction between the General Recursive Functions and the Primitive
Recursive Functions is that the latter (and also Ackermann’s function) are defined
for all inputs—that is to say, computation eventually halts and produces an output,
no matter what the input is—whereas the former include additional functions, some
of which halt only for some inputs. Figuring out which General Recursive Functions
halt for which input is known as the Halting Problem, and it is formally undecidable:
there is no General Recursive Function that will always correctly determine whether
a given algorithm halts.
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Fig. 3 An illustration of the Ackermann function. The Ackermann function Ai(n) is a function
of two variables, i and n. The ith row of the Ackermann function, Ai , can be constructed visually
from the previous row Ai−1 as shown: A zig-zag line starts going up at x = 1, and bounces back and
forth between the function values (shown as dots) and the line x = y. The function values hit by the
zig-zag line become the entries for the next row. The formal definition is A0 = S, Ai+1(0) = Ai(1),
Ai+1(m + 1) = Ai(Ai+1(m)). Although each row is a Primitive Recursive Function, the diagonal
f (n) = An(n) grows faster than any Primitive Recursive Function in the same sense that 2n grows
faster than any polynomial

While most people turned their attention at this point to General Recursive Func-
tions, Rózsa Péter [40] continued to develop the theory of Primitive Recursive Func-
tions, treating them not as a historical mistake, but as an opportunity for study. Her
work makes it clear that the following definition is an equivalent way to define Prim-
itive Recursive Functions.

Definition Primitive Recursive Functions are exactly those functions which can be
computed by a Turing Machine in time bounded by some row of the Ackermann
function.

This definition makes it evident that just about every algorithm ever used for
practical calculation is in fact Primitive Recursive, since most rows of the Acker-
mann function grow far faster than the time required for any practical calculation.

Although Péter’s work showed that many seemingly different definitions all lead
to this same set of functions, the definitions were rather abstractly mathematical in
nature, none of them corresponding to what we would think of today as a fundamen-
tal computational model like a Turing Machine. So, it is interesting that Primitive
Recursive Functions arise here in relation to Stochastic Chemical Reaction Net-
works, a fundamentally reality-based model.

5.2 A Primitive Recursive Bound on the Depth of the Tree
of Reachable States

Theorem 1 Given two states A and B, in order to determine whether starting from
A a Stochastic Chemical Reaction Network can reach a state with at least as many
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Fig. 4 The search tree for the system of Fig. 1, starting on the left with state (A,B,D). Solid
lines represent single reactions, while dotted lines represent any number of further repetitions of a
completed cycle that purely increases a molecular quantity, leading to the attainability of arbitrarily

large quantities of that species shown, for example, as . The dashed circles are repeats of previ-
ous states, and thus do not require further exploration even if further reactions are possible. In this
example, the search tree is finite. Must this always be the case? If so, then there are no undecidable
questions among questions which can be answered by scanning the full search tree. This section
shows that the search tree is finite, and indeed boundable by a primitive recursive function

molecules as B is decidable and requires a search tree of size bounded by a primitive
recursive function of the number of molecules of each species and the stoichiometric
coefficients of the reactants.

Here, we present the details of our proof that the tree of possible execution paths
of a Stochastic Chemical Reaction Network has depth bounded by a primitive re-
cursive function whose “degree” is on the order of the number of species in the
Stochastic Chemical Reaction Network.

For those familiar with the subject, the algorithm is nearly identical to Karp and
Miller’s [10], but the rest of the proof is much more direct than comparable previous
proofs which relate other questions about the tree to primitive recursive functions.
See also [15].

The Algorithm

In this section, we will present an algorithm for finding which species can be pro-
duced and which cannot. That is, it will find out whether any reachable states have
nonzero levels of any species of interest. In fact, it will do slightly more: For any
given set of molecule quantities (such as (10A,3B, . . .)), the algorithm can find out
whether or not it is possible to reach any state that has at least these levels of these
species.

The algorithm is simply to search through the full tree of all possible reaction
sequences, using a couple of simple tricks to try to avoid getting stuck in infinite
loops.
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If state B has at least as many molecules of each species as state A does, then we
will say that B ≥ A. On the other hand, if B has more of some species and less of
others than A has, we say that B and A are incomparable: A � B and B � A.

A fundamental observation is that if the system is in state A at some point, and
then later it is in state B, and B ≥ A, then the sequence of reactions that led from A
to B may be repeated arbitrarily many times before continuing. This would appear
to be a serious obstacle to exhaustively searching the space of reachable states, but
in fact it will be the key to bounding the search. When this happens, we can consider
two cases: B = A or B > A.

If B = A, then this sequence of reactions leading from A to B had no effect,
and may be omitted entirely. In particular, it is clear that the shortest sequence of
reactions leading from the initial state of the system to any particular final state will
not visit any state more than once. Thus, no possibilities will be missed if the search
tree is simply pruned at any point where a previous state is repeated.

On the other hand, if B > A, that is, if B has strictly more of some species than
the earlier state A had, then by repeating this sequence of reactions, an arbitrarily
large amount of those species may be produced. We will call such species freely
generatable after the sequence of reactions from A to B has occurred. If at any
later point in the calculation, some potential reaction is not possible because one of
the freely generatable species has run out, we can simply retroactively assume that
more repeats of the sequence from A to B were performed back at the time when
that species became freely generatable, and this will allow the potential reaction to
proceed after all. For this reason, when a species becomes freely generatable, it may
effectively be removed from the problem statement, reducing the problem to a sim-
pler problem. So, although the search tree cannot be pruned when B is reached, the
subtree beyond that point corresponds to searching the space of a simpler problem,
in which a further repetition of the reaction sequence leading from A to B would
indeed lead to pruning, since states A and B are equal in the reduced problem. The
algorithm therefore specifies the quantity of a freely generatable species as ∞, a
value which is considered larger than any other value, and which is unchanged by
the addition or removal of molecules.

It remains to show that the search tree is always finite, and thus this algorithm
will always terminate.

The Data Structure

Now, we will define a data structure whose purpose will be to help us define the
bound in the next section.

At each point in the search tree, there is a (usually infinite) set S of all states S
satisfying S � A for every A which is an ancestor of that point in the search tree.
We will call this set of states S the remaining states for that point in the search
tree, because these are the states which, if reached on the next step, will not lead
to pruning or simplification. Our proof will examine this set of states and use the
structure of this set to provide a bound on how much deeper the search tree can be.
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Fig. 5 Left: An example of a
possible entry in list L4, for a
system with 7 species. Right:
All the entries that will be
added to list L3 to replace the
entry on the left, if the system
arrives at state
(2,4,1,3,3,3,0). The union
of the new 3-dimensional
regions is precisely that
portion of the old
4-dimensional region which
is 
≥ the new state

For any given point in the search tree, we represent the set of remaining states by
lists Li , with each entry in list Li representing an i-dimensional region of remaining
states, specified by n − i integers (specifying quantities of n − i of the n species).
The union of all regions from all lists exactly yields the set of remaining states for
the given point in the search tree.

When a reaction takes the system to a new state (taking the search to a new point
in the search tree), the lists are modified by eliminating each list entry which repre-
sents a region containing any state greater than or equal to the new state. Each elimi-
nated entry is replaced by new entries in the list of next lower index. The new entries
are found by considering all regions of dimension one less than the old region, ly-
ing within the old region, with a previously unspecified coordinate now specified
as some particular integer k, with 0 ≤ k < m, where m is the number of molecules
present, in the new state, of the species corresponding to the dimension now being
specified. In general, this might lead to some redundancy, if some of the new regions
lie inside other existing regions, but we will not need to worry about this.

The lists for the initial state of the system are created similarly, with the “old”
region taken to be the full n-dimensional space, just a single entry in list Ln. Thus,
a system started in state (q1, q2, . . . , qn), where qi is the quantity of the ith species,
will start with

∑
i qi entries in list Ln−1. Similarly, whenever an entry in list Li is

replaced by new entries in list Li−1 due to a new state (q1, q2, . . . , qn), the number
of new entries will be

∑
i∈P qi , where P is the set of species whose quantity is

unspecified in the old entry.
If the ith species becomes freely generated, all list entries in all lists will have

their ith entry changed to be specified as ∞, which may move some of them to the
list of next lower index: Since ∞ is treated by the lists as a specified quantity, any
list entry which previously did not specify the quantity of the ith species will now
have one fewer unspecified quantities, and will thus move to the list of next lower
index.

It remains to show that these lists eventually get exhausted as the algorithm pro-
gresses deeper into the tree. For readers familiar with the game of Chomp [41], this
process is quite similar to Chomp on infinite boards.



Programmability of Chemical Reaction Networks 561

The Bound

To each point in the search tree, with its state and its lists, we can assign a pos-
itive integer as described below. We will see that regardless of which reaction is
performed at the next step, the positive integer assigned to the ensuing point in the
search tree will always be less than the positive integer assigned to the current point.
Since the positive integer strictly decreases with depth, it is in fact a bound on the
depth.

The integer for a given state A and lists Li is defined for a system with n species
in the following nontrivial way:

B(A,L) = f
|Ln−1|
n−1

(
f

|Ln−2|
n−2

(· · · (f |L1|
1

(
f

|L0|+m·r+qmax
0 (0)

)) · · ·))

where r is the number of nonfreely generatable species, qmax is the largest number
of molecules present of any of those r species, and m, a constant, is one more than
the maximum coefficient appearing on the right-hand side of any reaction.

The functions fi are defined as follows:

fi(x) = f i·x+m
i−1 (x),

f0(x) = x + 1.

These definitions are not meant to capture intuitive notions of any meaningful
functions, but rather are designed to (a) be explicitly primitive recursive, and (b) be
of a form that enables the necessary proof steps below to work.

In these definitions, the exponents on the functions denote multiple applications
of the function, so, for example, f 3

8 (x) = f8(f8(f8(x))). Each fi , as well as B, is
a Primitive Recursive Function, since it is easy to define repeated application of a
function: Given a function g(x), we can define h(n, x) = gn(x) using the recursive
definition h(0, x) = x, h(m + 1, x) = g(h(m,x)).

It is straightforward to show that the functions fi(x) are strictly increasing in x,
and that fi+1(x) > fi(x). Thus, if the exponents appearing within the definition of
B are in any way reduced or shifted to the right, B will decrease.

This can be used to show that regardless of whether a reaction leads to a remain-
ing state or leads to a new freely generatable species; B will always decrease.

If a reaction results in one or more freely generatable species, then some parts of
the exponents may shift to the right, and r will decrease. In the exponent of f0, the
decrease of r will more than make up for any increase in qmax (by the definition of
m), so B will decrease as promised.

If a reaction leads to a remaining state, then one or more list entries will be
replaced by other entries. Each i-dimensional entry to be removed will be replaced
by

∑
j∈P qj entries that are (i − 1)-dimensional. This number of new entries is no

more than i · qmax, since P , the set of species of unspecified quantity, is of size i.
So, the exponent of fi is reduced by 1 while the exponent of fi−1 increases by at
most i · qmax. In the formula for B, then an fi gets replaced with f

i·qmax
i−1 , and then

this exponent is possibly reduced. But the original fi was equivalent (by definition)
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to f i·x+m
i−1 , where x is the full argument (which must be at least qmax, since qmax

appears in the exponent of f0), so even just the f i·x
i−1 portion was bigger than the

replacement, and the f m
i−1 portion more than compensates for any increase in the

exponent of f0 due to any change in qmax. The total effect is therefore again a
decrease in B.

Thus, we have finished showing that B, a primitive recursive function of the
initial state, bounds the depth of the search tree. Thus, both the depth of the tree,
and its total size (being at most exponential in the depth), are not only finite but
bounded by a primitive recursive function of the initial state. In the next section, we
will see examples which cannot be bounded by anything smaller than this.

5.3 The Max-Path Problem

We have shown that any Chemical Reaction System can be analyzed by Primitive
Recursive Functions, but the reverse question is also interesting: Can any Primitive
Recursive Function be calculated by a Chemical Reaction System? This question
raises conceptual issues not present in the forward question, since Chemical Re-
action Systems are inherently nondeterministic, it being unspecified at each step
which reaction should occur next. Thus, one must choose how to define which of
the possible sequences of reactions should be considered as leading to the correct
(or incorrect) calculation of the function. If one chooses, say, the longest possible
sequence of reactions (the deepest leaf in the search tree), or the sequence that leads
to the most molecules being produced (either of all species put together, or of some
particular species), then it is indeed possible to calculate any Primitive Recursive
Function, where the input and output are given as numbers of molecules of certain
species. These choices provide an exact equivalence in power between Chemical
Reaction Systems and Primitive Recursive Functions. Admittedly, this is not a prac-
tically useful notion of calculation by a SCRN—if I have the chemicals in my lab,
how do I perform an experiment that indicates the output of the computation?—
but it does help clarify the boundary between decidable and undecidable questions
about SCRNs.

Theorem 2 For any primitive recursive function f , a Stochastic Chemical Reac-
tion Network can be designed with special species Sin, Sout, and Smax computing f

as follows. Starting with n molecules of Sin (and some fixed number of molecules
of other species), the reachable state with the maximal amount of Smax will have
exactly f (n) molecules of Sout.

We prove this theorem with a construction. We begin by presenting, for any cho-
sen fixed integer i, a SCRN that Max-Path-computes the ith row of the Ackermann
function. This simple example of Max-Path “computing” by SCRNs is enlightening
in and of itself, but more importantly, it plays a crucial role in our general construc-
tion, where it is used to bound the number of steps taken by a Register Machine that
computes the Primitive Recursive Function in question.
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Fig. 6 A Chemical Reaction System for nondeterministically computing entries for the first i rows
of the Ackermann function using 2i + 2 species. However, as shown in this paper, no Chemical
Reaction System with a finite number of species is able to compute all rows of the Ackermann
function. To compute an entry in the ith row, Ai(n), start this Chemical Reaction System in the
state (Yi , nX). Then the maximum number of molecules of X that can be produced is exactly
Ai(n), achievable by always choosing the first possible reaction from the list

SCRNs for Rows of the Ackermann Function

Figure 1(a) gives a SCRN that computes 2n. This example can be generalized to
compute any chosen row of the Ackermann function. Since the Ackermann func-
tion grows faster than any primitive recursive function, the full Ackermann function
cannot be Max-Path computed by any single SCRN; using a different SCRN for
each row of the function is the best we could hope to do.

We prove that the construction works by proving the two sides: First, we prove
that starting in state (Yi, nX) we can produce Ai(n) X’s. Second, we prove that no
more than Ai(n) X’s can be produced.

We prove the first part by induction on row index i. Our inductive assump-
tion will be that from (Yi−1, nX) we can get to (W,Ai−1(n)X). (The base case
is easy to confirm.) Now starting with (Yi, nX), we first convert all X’s to Zi−1’s
by reactions in the first column. Then through a reaction in the second col-
umn we reach (Yi−1,X,nZi−1), and the inductive assumption allows us to reach
(W,Ai−1(1)X,nZi−1). Now we repeatedly use the first possible reaction in the
third column, producing (Yi−1, same X, one fewer Zi−1), followed by the induc-
tive assumption, producing (W,Ai−1(previous X), same Zi−1), until we can no
longer use that reaction in the third column. At this point, we have produced

(
W,Ai−1

(· · · (Ai−1(
︸ ︷︷ ︸

n+1 times

1
)))

X
) = (

W,Ai(n)X
)
.

This shows that it is indeed possible to produce Ai(n) X’s.
Now, we argue that no more than Ai(n) X’s can be produced from (Yi, nX). The

proof consists of showing that the expression

Ti

(
Ti−1

(· · · (T2
(
A

#Y1
1

(
A

#Y0
0 (#X)

)))))
where Ti(m) = A

#Zi−1
i−1

(
A

#Yi

i (m)
)

does not increase no matter which reaction is performed, assuming there is a exactly
one of the Y ’s or W present (an invariant enforced by our system). Since the initial
value of this expression is Ai(n) when starting in (Yi, nX), we would then know
that no more than Ai(n) X’s can be produced.
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The following two lemmas are useful.

Lemma 1 Ai(Aj (m)) ≥ Aj(Ai(m)) for i > j .

Proof If i > j , then Aj(Ai(m)) ≤ Ai−1(Ai(m)) = Ai(m + 1) ≤ Ai(Aj (m)). �

Lemma 2 Ai(m) ≥ A2
i−1(m).

Proof First, we expand Ai(n) = Ai−1(Ai−1(· · · (1))) where the composition occurs
n + 1 times. Except in edge cases, the lemma is then equivalent to showing that
Ai−1(· · · (1)) ≥ n where the composition occurs n − 1 times. This inequality holds
because applying the Ackermann function increases the argument by at least one. �

Now, we will use these lemmas to show that each of the three types of reactions
(in the three columns) does not increase our expression.

Consider the reaction X + Yi → Zi−1 + Yi . The reaction takes subexpres-
sion Ti(Ti−1(· · · (#X))) = A

#Zi−1
i−1 (Ai(Ti−1(· · · (#X)))) to subexpression A

#Zi−1+1
i−1

(Ai(Ti−1(· · · (#X − 1)))). The start subexpression is equal to

A
#Zi−1
i−1

(
Ai

(
Ti−1

(
A0

(· · · (#X − 1)
)))) ≥ A

#Zi−1
i−1

(
Ai

(
A0

(
Ti−1

(· · · (#X − 1)
))))

using the first lemma. Since Ai−1(Ai(m − 1)) = Ai(m), this expression equals the
end subexpression.

Now, consider the reaction Yi → X +Yi−1. It takes the subexpression Ai(A
#Zi−2
i−2

(Ti−2(· · · (#X)))) to the subexpression

A
#Zi−2
i−2

(
Ai−1

(
Ti−2

(· · · (#X + 1)
))) ≤ A2

i−1

(
A

#Zi−2
i−2

(
Ti−2

(· · · (#X)
)))

by applications of the first lemma. This is not more than the original subexpression
by the second lemma.

Lastly, consider the reaction W + Zi → Yi . This reaction takes subexpression
A

#Zi

i (A
#Zi−1
i−1 (Ti−1(· · · (#X)))) to A

#Zi−1
i (A

#Zi−1
i−1 (Ai(Ti−1(· · · (#X)))), which is not

greater than the original by applying the first lemma.

SCRNs for Primitive Recursive Functions

Now, we show that given any primitive recursive function f , a Stochastic Chemical
Reaction Network can be designed so that the state with the maximal amount of
S2 will have exactly f (n) molecules of S1, where n is given as input by being the
number of molecules of an input species S3 when the system is started. We sketch
the proof here.

Any primitive recursive function can be computed by a Register Machine2 in
time bounded by some row of the Ackermann function (see Sect. 5.1). The required

2See Sect. 6 for a description of Register Machines and Broken Register Machines, and how
SCRNs can be designed to simulate Broken Register Machines.
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row can be determined by a structural examination of the primitive recursive func-
tion. Our Stochastic Chemical Reaction Network is designed to first compute an
upper bound B on the running time needed to compute f by computing the appro-
priate row of the Ackermann function as in the previous section.

The Stochastic Chemical Reaction Network then simulates a Broken Register
Machine (that is, a Register Machine whose decrement instructions may fail nonde-
terministically even when the register is not empty) for B steps, which we know is
more than enough time for the Register Machine program to finish. After each of the
B steps (with the halt instruction changed to a nop (no operation) instruction so
that B steps can indeed occur), the Stochastic Chemical Reaction Network passes
control to a “subroutine” which doubles the amount of S2 (actually, all it can do
is allow the amount of S2 to at most double, but that is good enough). In addition,
every successful decrement of a register produces an extra molecule of S2. Thus,
S2 winds up being a large integer whose binary digits are a record of the times at
which decrement instructions successfully decremented a register. This means that
any run with the largest possible amount of S2 must have always succeeded at decre-
menting whenever possible. In other words, it emulated the Register Machine in the
correct, nonbroken way. Thus, we can be sure that in this run, S1 has been computed
correctly. Since the bulk of the time is consumed by doubling S2, the correct run is
also the longest possible sequence of reactions for the Stochastic Chemical Reaction
Network, and the same remains true if we append a “clean up” routine to the end of
the computation, that clears away the large quantity of S2.

Thus primitive recursive functions are in perfect correspondence with questions
of the form “How many molecules of S1 will there be if a Stochastic Chemical
Reaction Network produces the maximal amount of S2?” or “How many molecules
of S1 will there be if the Stochastic Chemical Reaction Network takes the longest
possible sequence of reactions?” So, although questions of possibility in Stochastic
Chemical Reaction Networks are decidable, we have shown here that in some ways
they have the full power of primitive recursive functions.

6 Ordered Program Models: Register Machines and Fractran

Because of the above and other decidability results, Petri nets, Stochastic Chemical
Reaction Networks, and VASs are typically conceptually grouped with nonuniform
models such as Boolean circuits, as was mentioned in Sect. 3. However, when pro-
vided with rate constants and evaluated in a probabilistic context, these models are,
in fact, capable of uniform computation as well.

Bennett [18] proposed a method for simulating a TM that uses a DNA-like in-
formation carrying polymer as the equivalent of a TM tape, with an attached chem-
ical group representing the head position and head state.3 Reactions then occur on

3Recall that a TM consists of an infinite tape, and a head which can be in some finite number of
internal states pointing to a specified position on the tape and capable of reading and writing from
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Fig. 7 A register machine comparing the value of register R1 to R2. If R1 ≤ R2, then it outputs 1
in register R3. If R1 > R2 then it outputs 2 in register R3. The start state is indicated with “start”
and the halting states are those without outgoing arrows

this polymer that mimic the operation of the TM. The SCRN corresponding to this
system has a different species for each polymer sequence, length, and the “head”
chemical group and location. A single molecule then represents a single TM (tape
and attached head), and reactions transform this molecule from one species to an-
other. Thus, infinitely many species and infinitely many reactions are needed to
represent Bennett’s biomolecular TM simulation as a SCRN (although augmented
combinatorial formalisms, which go beyond SCRNs, can represent Bennett’s chem-
ical TMs and other Turing-universal polymer-based chemical machines; see, for
example, [21]).

Taking a different approach of storing and processing information, we show that
SCRNs with a finite set of species and chemical reactions are Turing universal in
probability—they can execute any computer program for any length of time, and
produce the correct output with high probability. Thus, to increase the complex-
ity of the computation performed by SCRNs, it is not necessary to add new reac-
tions or species (as is the case when simulating circuits or using arbitrarily complex
polymers). Our method, building on [16] as described in [14], involves showing
that Register Machines (RMs) can be simulated by SCRNs for any length of time
with little probability of error. Since it is known that any computer program can be
compiled to a RM [13, 42], we can conclude that any computer program can be
effectively compiled to a SCRN. Also since there exist specific RMs known to be
Turing-universal (i.e., capable of simulating any computer program), we can con-
clude that there is a Turing-universal SCRN that can simulate any computer program
with high probability.

Register Machines are a simplified, idealized abstraction of how computers work,
with a CPU manipulating memory. Minsky showed in the 60s that Register Ma-
chines are capable of universal computation. A Register Machine is a machine that
has a fixed number of registers, each of which can hold an arbitrary nonnegative
integer. In addition to the registers, it has a fixed program which consists of a set
of instructions. Every instruction is either an increment instruction, a decrement in-
struction, or a halt instruction. The increment and decrement instructions specify

and to the tape. Reading a bit of the tape allows the head to transition to different internal states
and move left or right depending on the read bit; whether and which symbol is written depends of
the state of the head.
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which register is to be incremented or decremented, and they also specify which
instruction should be executed next, after the increment or decrement. Decrement
instructions, however, might not succeed with their intended decrement—if the reg-
ister is 0, it cannot be decremented. In this case, the decrement instruction is said
to fail, and each decrement instruction specifies an alternate next instruction to go
to in the case that the decrement fails. The current state of a Register Machine is
given by the values of the registers, along with which instruction is the next one
to execute. A simple example of an RM comparing two integers is shown in Fig. 7.
Register Machines are nice because of their simplicity, which makes it easy for other
systems to simulate them.

One variant of Register Machines which in our experience is sometimes useful is
what we call Broken Register Machines. These are the same as Register Machines
except that decrement instructions are allowed to fail (nondeterministically) even
if the register is nonzero. (If the register is zero, the instruction is of course forced
to fail as before.) It is possible to show that Broken Register Machines turn out
to be equivalent to Petri nets and VASs (and thus to Stochastic Chemical Reaction
Networks as well), although the equivalence is not quite as direct as for the other
systems. The nature of the equivalence between Broken Register Machines and Sto-
chastic Chemical Reaction Networks, combined with the fact that Broken Register
Machines only need to decide between two options at a time, enables one to show
that in fact only two priority levels are necessary for a Stochastic Chemical Reaction
Network to be universal.

Another model that turns out to be related is a lesser known model called Fractran
[11], shown by Conway to be Turing universal. A Fractran program consists of an
ordered list of rational numbers (see Fig. 1(d)). Execution is deterministic: starting
with a positive integer n as input, we find the first fraction on the list that produces
an integer when multiplied by n, and this product becomes the new number n′. This
process is iterated forever unless it halts due to no fraction resulting in an integer.
Conway showed that any Register Machine program can be converted directly into a
Fractran program: representing every integer in fully factored form, n = p

a1
1 · · ·pam

m ,
where pi is the ith prime, the exponents a1 . . . ak store the contents of the k regis-
ters, while other distinct primes ph are each present iff the Register Machine is in
state h. The denominator of each Fractran fraction conditions execution on being in
state h and—if the operation is to decrement the register—on having a nonempty
register. The numerator provides for increments and sets the new state. Since Reg-
ister Machines are Turing-universal (although since they only allow increment and
decrement operations, thus storing all state in unary, they entail exponential slow-
downs compared to more reasonable computational models); it follows that Fractran
is also universal.

Examination of Conway’s construction illustrates the relation to VASs, Petri nets,
and Stochastic Chemical Reaction Networks. Considering the integer n as the vec-
tor of exponents in its prime factorization, multiplication by a fraction corresponds
to subtracting the exponents in the denominator and adding the exponents in the nu-
merator, subject to the condition that no negative exponents are generated. This cor-
responds exactly to a Vector Addition System. Equivalently, each fraction can be in-
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terpreted as a chemical reaction: each species is represented by a unique prime num-
ber, and the denominator specifies the reactants and their stoichiometry, while the
numerator specifies the products. (Catalytic reactions would correspond to nonre-
duced fractions, and can be avoided as shown in Fig. 1.) The determinism—and
hence universal computational power—inherent in Fractran execution corresponds
to there being a strict priority in which the various possible transitions are applied.

6.1 Computation in Stochastic Chemical Reaction Networks

If it were possible to prioritize the reactions in a Stochastic Chemical Reaction Net-
work, then by analogy to the ordered fractions in Fractran, this would establish the
Turing-universality of Stochastic Chemical Reaction Networks. (This result is also
well known in the field of Petri nets, and our analysis of Register Machines shows
that in fact only two distinct priority levels are necessary.)

By giving higher-priority reactions vastly faster rate constants kα , we can approx-
imate a priority list: almost surely, of all reactions for which all reactants are present
in sufficient number, a reaction with a much faster rate will occur first. However,
“almost surely” turns out not to be good enough for a couple of reasons. First, there
is a nonzero probability of the slow reaction happening at each step, and thus proba-
bility of successful output falls exponentially with the number of steps. Second, the
number of molecules of a given species can potentially exceed any bound, so the
ordering of actual rates ρα(A) may eventually be different from the specified or-
dering of rate constants kα . Especially in light of the decidability results mentioned
above, it is not surprising that this naive approach to achieving Turing universality
with Stochastic Chemical Reaction Networks fails.

If there were some way to increase rate constants over time, this could solve these
problems, but of course, rate constants cannot change. Another way to promote one
reaction over another would be to give the preferred reaction some extra time to
occur before the competing reaction has a chance to occur. This approach turns out
to be workable, and it is not too hard to set up some reactions that produce a signal
after some delay, where the delay depends on a particular concentration. We refer
to such a set of reactions as a clock. An important technical point is that since the
entire computation will consist of an unknown number of steps, the probability of
error at any given step must be decreasing so that the sum of all the probabilities can
remain small regardless of how long the computation winds up taking. To address
this issue, the clock can at each step increase the concentration that controls its delay,
so that the delays are progressively longer, and thus the probabilities of error are
progressively smaller. Fortunately, it turns out that a simple polynomial slowdown
in overall computation time is all that is required for making the total probability of
error (over the entire course of the arbitrarily long computation) be small.

In the following, we give a construction for simulating Register Machines with
Stochastic Chemical Reaction Networks with only a polynomial slowdown, and we
prove that successful output will occur with fixed probability 1 − ε independent of
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the input and computation time. An initial number of “precision molecules” can be
added to reach any desired level of ε. Thus, tolerating a fixed, but arbitrarily low,
probability that computation will result in an error, Stochastic Chemical Reaction
Networks become Turing universal. In consequence, the probabilistic variants of the
reachability and producibility questions are undecidable.

The simulation is relatively simple to understand, but its performance is limited
by the fact that it is simulating a Register Machine, which is exponentially slower
than a Turing Machine (in the space used by the Turing Machine), due to its unary
representation of information. Can Stochastic Chemical Reaction Networks do bet-
ter than this? It turns out that they can. In Sect. 7, we discuss a more sophisticated
algorithm that allows Stochastic Chemical Reaction Networks to directly polyno-
mially simulate a Turing Machine.

Probability in SCRNs Is Undecidable

Theorem 3 For all 0 ≤ ε < 1/2, the following problem is undecidable: given a
Stochastic Chemical Reaction Network C, a species S, and a starting state A, de-
termine, to within ε, the probability that C starting from A will produce at least one
molecule of S.

To prove this theorem, we will show how Stochastic Chemical Reaction Net-
works are capable of simulating Register Machines. First, we define the correspon-
dence between instantaneous descriptions of Register Machines and states of Sto-
chastic Chemical Reaction Networks that our construction attains. Then we show
that determining whether a Register Machine ever reaches a particular instantaneous
description is equivalent to ascertaining whether our Stochastic Chemical Reaction
Network enters a set of states with sufficiently high probability.

Definition 1 An instantaneous description ID of a Register Machine M with t reg-
isters is a vector (a, c1, . . . , ct ) where a is a state of M and ci ∈ N represents the
value of register i.

Definition 2 The reachability relation ID
M∗→ ID′ is defined naturally. Namely, it is

satisfied if M eventually reaches ID′ starting from ID.

Definition 3 For two states A and B of a Stochastic Chemical Reaction Network C,

we write A C→ B if there is a reaction that takes the system from A to B. Let
C∗→ be

the reflexive transitive closure of
C→.

Instantaneous descriptions of a Register Machine map to sets of states of our
Stochastic Chemical Reaction Network as follows.

Definition 4 For an instantaneous description ID = (a, c1, . . . , ct ) of a Register Ma-
chine M let M(ID, n) be the state of a Stochastic Chemical Reaction Network that
contains exactly:
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• n molecules of species A,
• ci molecules of Ri ∀1 ≤ i ≤ t ,
• 1 molecule of Sa ,
• and 1 molecule of T , B , B ′, and B ′′ each.

Definition 5 Our Stochastic Chemical Reaction Networks will be said to ε-follow a
Register Machine M if there is some n0 such that for all instantaneous descriptions
ID and ID′ of M we have

(a) ID
M∗→ ID′ ⇐⇒ Pr[M(ID, n0)

C∗→ M(ID′, n) for some n] > 1 − ε,

(b) ID
M∗
� ID′ ⇐⇒ Pr[M(ID, n0)

C∗→ M(ID′, n) for some n] < ε.

Theorem 4 For any Register Machine M , and any ε > 0, there is a Stochastic
Chemical Reaction Network C that ε-follows M .

In fact, slight modifications of our construction can show that all questions about
whether a Stochastic Chemical Reaction Network “might do X” mentioned Sect. 5
becomes uncomputable in the probabilistic setting (“does X with probability >ε”).

Proof We construct a Stochastic Chemical Reaction Network to simulate the Reg-
ister Machine, consisting of two components: a clock module and a register logic
module (Fig. 8). The communication between the modules is established through
two species, T and C, of which at most a single molecule is present. Whenever the
clock releases the C, the register logic module can complete a step of the register
machine (with the exception of the actual decrement of a decrement instruction),
converting the C into a T in the process. The clock module then takes the T and, af-
ter a delay, releases another C to repeat the process. The delay imposed by the clock
module makes it exceedingly likely that any decrement waiting to happen will oc-
cur before the next C is released. This effectively enforces the reaction order that is
necessary for correct computation.

The register logic module has a single molecule of species Sa for every state a of
the register machine. The number of molecules of species Ri stores the value of the
register i. If the current register machine state a is an increment state, once the clock
module releases the C, then the reaction Sa + C → Sb + Ri + T increments the ith
register and transitions to the next state b. If the current state is a decrement state and
the register i being read is empty, then the reaction Sa + Ri → S′

a is not possible,
and once the clock module releases the C, the reaction Sa +C → Sc +T takes place
and transitions to the state c indicating that the register is empty. If the register i is
not empty (i.e., there is at least one molecule of Ri in solution), then the intent is that
the reaction Sa + Ri → S′

a should decrement the register and capture Sa before the
clock module next releases a C. (Otherwise, the reaction Sa + C → Sc + T could
occur first, erroneously sending the register logic module into the state c, which is
only supposed to happen if the register is empty.)

Thus, the only possible error that can occur in the register logic module is if
Sa + C → Sc + T occurs before Sa + Ri → S′

a in a decrement step, when register
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Fig. 8 Simulating a register machine. (a) The communication between the clock and the register
logic modules is through single molecules of species C and T . (b) The clock module is responsible
for producing a C molecule once every so often. The clock module is designed so that the length of
time between receiving a T and producing a C slowly increases throughout the computation, thus
slowing down the register logic module to help it avoid error. Specifically, the more A’s there are,
the longer the delay. The clock starts out with n0 A’s and one each of B , B ′, and B ′′ and T . Every
clock cycle not only produces a C, but increases the number of A’s by one. Thus, at the beginning
of the kth cycle, there are n = k + n0 molecules of A. The clock’s operation is further analyzed in
Fig. 9. (c) The register logic module simulates the register machine state transitions. The register
logic module starts out with quantities of molecules of Ri indicating the starting value of register i,
and a single molecule of species Sa where a is the start state of the register machine. Note that at
all times the entire system contains at most a single molecule of any species other than the A and
Ri species. All rate constants are 1 (The construction will work with any rate constants)

i is not empty. By delaying the release of the C, the clock module ensures that the
probability of this happening is low. The delay increases from step to step suffi-
ciently to guarantee that the union bound taken over all steps of the probability of
error does not exceed ε.

Let us analyze the probability of error quantitatively. Suppose the current step is
a decrement step and that the decremented register has value 1. This is the worst
case scenario since if the register holds value greater than 1, the rate of the reaction
Sa + Ri → S′

a is correspondingly faster, and if the step is an increment step or the
register is zero, then no error can occur. Figure 9 illustrates the state diagram of the
relevant process. All of the reactions in our Stochastic Chemical Reaction Network
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Fig. 9 The state diagram for a single decrement operation when there are n A’s and the register
to be decremented holds the value 1, and the corresponding system of differential equations gov-
erning the instantaneous probabilities of being in a given state. The numbers on the arrows are the
transition rates. The instantaneous probability of being in state T is s, in state T ′ is s′, and in state
T ′′ is s′′. The instantaneous probability of being in the error-possible state is p and the probability
of being in the no-error state is q

have the same rate constant of 1. Thus, all reactions with exactly one molecule of
each reactant species in solution have the same reaction rate of 1. There are two
reactions for which this single molecule condition is not true: T ′ + A → T + A

and T ′′ + A → T ′ + A, since there are many A’s in solution. If there are n A’s in
solution, each of these two reactions has rate n. Now, we will bound the probability
that the clock produces the C before the Sa + Ri → S′

a reaction occurs, which is a
bound on the probability of error. The top 4 states in the diagram (Fig. 9) represent
the 4 possible states of the clock: we either have a T , T ′, T ′′, or a C. A new cycle
starts when the register logic module produces the T and this is the start state of the
diagram. No matter what state the clock is in, the reaction Sa + Ri → S′

a can occur
at rate 1 in the register logic module. Once this happens, no error is possible. On the
diagram this is indicated by the bottom state (no error) which is a sink. On the other
hand, if a C is produced first then an error is possible. This is indicated by the sink
state C (error possible).

We compute the absorption probability of the error-possible state by solving the
corresponding flow problem. Solving the system of differential equations in Fig. 9
for dp

dt
under the condition that ds

dt
= −1, ds′

dt
= ds′′

dt
= 0, we find that the absorption

probability of the error-possible state is p = 1
(n+2)2+4

. Thus, the probability of error

for a step with n A’s is bounded by p = 1
(n+2)2+4

. In order to be sure that the
probability that no error occurs during any point in the computation is larger than
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1 − ε, recall that n increases by one at each step, so we need

∞∑

n=n0

1

(n + 2)2 + 4
< ε.

The terms in the above inequality are inversely quadratic in n, so if n0 = 1 then the
sum is finite (in fact, it is roughly 0.3354). This means that for any ε, we can choose
an appropriate n0, the initial number of A’s, to make the above inequality true. �

How fast is the Register Machine simulation? Since each consecutive step is
potentially delayed longer and longer, we need to be careful that the simulation
is not slowed down too much. Indeed, it can be shown that the expected time to
perform t steps of the Register Machine simulation requires at most O(t4) SCRN
time [14].

6.2 Eliminating Dependency on the Number of Molecules Disables
Universal Computation

If the rates of the possible reactions do not depend on the number of molecules then
it can be shown that the system is incapable of universal computation. In particular,
it will be predictable in the sense that the probability that at least one molecule of
a given species is eventually produced can be computed to arbitrary precision. This
precludes the previous output method of using an indicator species whose produc-
tion with high or low probability indicates the outcome of the computation. Further,
any other method of output that can be converted to this form of output cannot
be universal either. This includes, for example, Stochastic Chemical Reaction Net-
works that enter a specific state with high or low probability to indicate the output.
Specifically, the model we are considering here is the following: Suppose we are
given a Stochastic Chemical Reaction Network with given constant rates for all the
reactions, and an initial set of molecules. Then at each step, based solely on the re-
action rates, a reaction is chosen. This reaction then occurs if the reactants for it are
present. Such steps continue indefinitely.

The difference between this model and the standard stochastic one is that in the
standard model, the reaction rate is obtained by combining a rate constant with the
current concentrations as described in Sect. 2.1 (see (1)), while here for all reactions
α and states A, ρα(A) = kα if all the reactants of α are present in A and 0 otherwise.

Theorem 5 Let S be the infinite set of all states with at least one molecule of the
indicator species present. Suppose for all reactions α and states A, ρα(A) = kα if
all the reactants of α are present in A and 0 otherwise. Then there is an algorithm

that given 0 < ε and any starting state A, computes Pr[A C∗→ B for some B ∈ S]
within ε.
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Let S̃ be the (probably infinite) set of states from which no state in S is reachable,
and let R be the set of states outside S from which it is possible to reach S. (Note
that given any state, the question of whether it is possible to reach some state in S

is computable, as shown in Sect. 5.2.) Note also that there is a bound b such that
for any state A ∈ R, the length of the shortest sequence of reactions leading from
A into S is at most b. This means that there is some constant p0 such that for any
state r ∈ R, the probability of entering S within b steps is at least p0. Thus, the
probability of remaining in R must decay at least exponentially.

This implies that the probability that the system will eventually enter S or S̃ is 1,
and so simply by computing the probabilities of the state tree for R far enough, one
can compute the probability of entering S to arbitrary precision.

7 Efficiency of Computation by Stochastic Chemical Reaction
Networks

Section 6 showed that universal computation (in probability) can be performed by
SCRNs, but our construction inherits the ridiculous inefficiency of Register Ma-
chines, which in general require exponential time to simulate Turing machine com-
putations. Is it possible to use the power of chemistry to perform computations more
quickly and efficiently?

Trivial ways to speed up a chemical computer involve changing environmental
conditions such as increasing the temperature or the effective concentration (molec-
ular count per unit volume). In order to discuss the “intrinsic speed” of the computer
we are proposing, we fix the temperature, as well as the maximum concentration (re-
call that the volume scales dynamically with the molecular count in our model, see
Sect. 2.1). Then the performance of the chemical computer will be gauged asymptot-
ically as the size of the “tape” as well as the number of simulation steps increases.
With improved chemical programming, it turns out that compared to the abstract
Turing Machine, its chemical implementation incurs only a polynomial slowdown.
The volume required, however, inevitably grows exponentially with the size of the
tape of the Turing machine being simulated. This is impossible to avoid since fixing
the number of species there is simply no way to store information in a form other
than unary.

7.1 Stochastic Chemical Reaction Networks Can Efficiently
Simulate Turing Machines

Theorem 6 For any 0 < ε < 1/2 and any Turing Machine M, we can make a Sto-
chastic Chemical Reaction Network that, starting with n molecules of species Sin
(and some number of molecules of other species, dependent on ε but not n), will with
high probability (> 1 − ε) result in fast (expected time polynomial in the running
time of M(n)) and accurate (eventually produces Shalt iff M(n) halts) computation.
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Of course, by having different output species, the same output method can be
used to indicate a 0/1 output or in fact an integer output encoded in unary.

The overall idea to achieve this fast Turing Machine simulation is to adopt the
Register Machine simulation, but allow more sophisticated operations on the regis-
ters [14, 17]. If in addition to incrementing and decrementing a register, we could
double or halve the value of any register and check the remainder in a constant
number of clock cycles of the Register Machine simulation, then we could simulate
a Turing Machine in linear time. To do this, we can represent the accessed portion of
the Turing Machine head tape as two integers whose binary representation encodes
the tape to the left and to the right of the head respectively, such that their least
significant bits represent the contents of the tape cells immediately to the left and
right of the head. Since reading and removing the least significant bit corresponds
to halving and checking for remainder, and writing a new least significant bit cor-
responds to doubling and possibly adding one, a single Turing Machine step can be
performed in a small constant number of these enhanced Register Machine cycles.
With registers represented in unary molecular counts, halving would correspond to
a reaction scheme that takes two molecules of one species and produces one mole-
cule of another species, while doubling would correspond to a reaction scheme that
takes one molecule of one species and produces two molecules of another species.
Conversion of all molecules must take place quickly and exactly—if a single mole-
cule is not converted, the least significant bit(s) will be in error. Unfortunately, we
will see that halving a register quickly is rather difficult, but fortunately we will be
able to avoid the halving operation.

In the following section, we provide a construction similar to (but not identical
to) that in of Ref. [14] and give an informal explanation of how it works.

The Exploding Computer

To perform computation quickly using molecular counts, we have a number of chal-
lenges. The primary difficulty is that if every molecule matters for a decision, then
the presence or absence of a single molecule (for example, the parity of a register)
must be communicated to all other molecules in the system that are affected by the
decision. But in our model of well-mixed chemistry, communication happens only
by chance collisions between molecules—and rare species will therefore interact
rarely.

The main technique that allows large numbers of molecules to be processed
quickly is for the state changes to occur via explosive chain reactions. These “ex-
plosions” do not necessarily increase the number of molecules; they might simply
change the molecules from one form to another. Each explosion starts as an expo-
nentially growing chain reaction, until the amount of reactive material starts to get
used up, at which point it finishes with exponential decay of the reactive material.
Thus, an exponential amount of reactive material can be processed in a given amount
of time, as shown in Fig. 10. By changing the number of product molecules in the
reaction, the explosion scheme can be easily transformed into a means to quickly
and exactly double the number molecules present.
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Fig. 10 The time course of a reactant-limited chain reaction explosion, shown as a conversion
from a species A to a species B , initiated by a trigger T . If at the beginning, a fraction p of all
molecules in the system are A molecules, then the number of converted molecules grows like ekpt ,
where t is time and k is the rate constant of the reaction catalyzed by B . For the first half of the
chain reaction, at least p/2 of the molecules are A, and so the expected time for the first half
to complete is under (2/kp) log |A|/2. For the second half of the chain reaction, over p/2 of the
molecules are B , so each molecule of A gets transformed at a rate above kp/2, so the quantity
of A decreases faster than ekpt/2, and the expected time for the second half to complete is under
(2/kp) log |A|/2. Thus, the total time needed for the explosion to finish is on the order of log |A|/p

The naive implementation of having a halving reaction akin to 2M → M ′ is slow
for the same reasons as shown in Fig. 11.

If we are to avoid having to halve the value of a register, we must have an archi-
tecture for computation that only requires doubling when reading and writing bits
to and from memory. To do this, we use the digits of the memory integer as a queue
of binary digits. We can read and remove the most significant digits (as we will
show), we can shift the digits over (by doubling, or multiplication by a constant),
and we can write new low order digits by simply producing a few extra molecules.
Thus freshly written digits get exponentially amplified step by step until they are
the largest contribution to the overall magnitude, at which point the system is able
to detect their value.

Before proceeding, we should make sure that these operations are sufficient for
efficient simulation of Turing Machines. To see this, here is how to convert a Turing
Machine into a program that uses only queues. First, consider a Turing Machine
that uses a fixed amount of space on a binary tape. This finite tape is encoded in the
queue using three bits per cell, one bit for the cell’s value, an another bit to indicate
the cell that the Turing Machine head is reading, and the third bit to indicate the
first and last cells. Note that after one time step, the tape will be changed only in
the three cells around where the head is reading: the center cell might have a new
value, and either of the adjacent cells might need to be marked to indicate that this
is where the Turing machine is now reading. To implement a single time step of the
Turing Machine, the new queue program will make a pass through the whole queue,
keeping the most recent three cells memorized at every step. Each step consists of
spitting out the correct new value for the oldest of the three cells and then reading in
one more cell. The queue program knows when it has completed a pass, thanks to the
third bit in each cell. Thus, to simulate Turing Machines that use arbitrary amounts



Programmability of Chemical Reaction Networks 577

Fig. 11 (A) To read the most significant digit of M , we compare M (red) to a known threshold
quantity T (blue). This is done by a simple reaction, M + T → T̂ . The goal is that after all the M

and T molecules have reacted to form T̂ , only the species in excess, either M or T , will remain.
However, the time it takes for this reaction to complete will depend on the amounts of M and T .
(B) If M and T are present in nearly equal quantities, then toward the end of the reaction only
a few molecules of M and a few molecules of T will remain, and we will need to wait a very
long time to be confident that these last few molecules have found and reacted with each other,
especially when the volume is large. (C) If either M or T is significantly in excess of the other,
with the excess being at least some constant fraction of the entire volume, then toward the end of
the reaction, as one of the species approaches extinction, its rate of decay will remain exponential,
and the reaction will fully finish quickly, regardless of volume

of tape, the queue program can simply output some blank cells at the beginning
and end of each pass. Overall, the queue program is slower than the original Turing
Machine, but only by a linear factor—if the original machine took O(t16) steps, the
queue program will take O(t17) steps. (Slightly more efficient implementations are
possible [14, 43].)

With this queue architecture, the challenge of detecting a single molecule is
avoided; all we need is a scheme that allows the system to be able to read the high
order memory digit quickly and accurately. This can be achieved by storing integers
in the memory using a Cantor-set structure. To be able to read the most significant
digit of the memory integer, we need to compare the memory integer to a threshold
value, and as shown in Fig. 11 it is important that the memory integer not be too
close to the threshold value. That is, the magnitude of the memory integer, regard-
less of the contents of the memory, should be separated from the threshold value it is
being compared to by a gap that is at least some fixed fraction of the threshold value
itself, so that the comparison will always complete in logarithmic time. The way we
will satisfy this requirement is by using numbers which, in base 3, use only the dig-
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its 1 and 2. These numbers have a Cantor-set structure. Thus, the highest possible
k + 1 digit number starting with 1, namely 2 · 3k − 1 = 1222 . . .23, and the lowest
possible k + 1 digit number starting with 2, namely 2.5 · 3k − 0.5 = 2111 . . .13,
are separated by an interval that is proportional in size to the numbers themselves,
making the leading digit easily detectable.

The system can write a low order digit into the memory by simply having just a
single molecule present of the species responsible for writing this digit.

We have discussed the representation of the queue (i.e., encoded Turing Machine
tape) as the molecular counts of a register species—but how do we represent which
step of the program is currently being executed? Since the program contains a finite
number of states, it is possible to assign a distinct molecular species for each pro-
gram state. In fact, we combine both representations into one: if the queue program
is in state 10 with the integer M in the queue, then we will have M copies of the
molecular species M10. The molecular count encodes the queue, and the molecu-
lar species encodes the program step being executed. Thus, to push a “1” onto the
bottom of the queue and transition to state 20, we perform an “explosion” that con-
verts the M copies of M10 into 2M copies of M20 and then produce one more M20.
Effectively, the chemical system is designed as a sequence of conditional explosive
reactions, each of which changes the “color” of the solution.

As in the Register Machine simulation of the previous section, the system can
have a very low chance of ever making a mistake, even though there is some chance
of error at every step, as a result of having the speed of the system regulated by a
clock that slows down over time. Since each step is more likely to succeed when
it is given more time to complete its work, the slowing clock makes successive
steps more and more likely to succeed. Intuitively, if it makes it through the first
several steps without error, later steps become progressively easier to do correctly,
so it’s quite likely to just go forever without making any mistakes. Mathematically,
the probability of error decreases at each step fast enough that the sum of all the
probabilities of error converges to a small value. This value can be made arbitrarily
small, regardless of the computation to be done by the Turing machine, simply by
starting the system with a greater number of precision molecules (P in Fig. 12).

The molecular species and reactions for the simulation are shown in Fig. 12.
Four clock cycles are required for each step so that the various suboperations do not
interfere with each other. At each step, the clock molecule C triggers an explosive
chain reaction, and the output of that chain reaction is used to catalyze all the other
reactions occurring at that step (with the exception of comparisons and subtractions,
which have no catalysts).

When reading a bit of memory, the reactions compare the memory M with the
threshold T , as discussed in Fig. 11. After the first clock cycle, which performs the
comparison, only half of the remaining reactions will occur, according to the result
of the comparison. If T > M , then the leading digit of M was “1,” and only the
reactions on the left side will occur. If M > T , then the leading digit of M was “2,”
and only the reactions on the right side will occur. During the second clock cycle, D

is subtracted from M either once or twice, so as to zero out the leading digit (which
was just read). During the third cycle, the threshold T is restored, and the fourth
cycle cleans up D and M .
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Fig. 12 Reactions for a chemical system emulating a Turing Machine that has been converted into
a queue program. The horizontal dashed lines represent clock cycles. This example uses the con-
vention that the program states of the queue program are multiples of 10, while substates required
for the chemical implementation modify the rightmost digit. Species listed to the side of an arrow
are catalysts for the reaction: At least one of them must be present for the reaction to occur. In a
slight abuse of this notation, when the clock signal C is used as a “catalyst,” it is actually being
converted to C4. (So, it is not really being used catalytically—but this notation makes the diagram
cleaner.) Mi molecules store the memory integer and encode the program state i. T molecules (of
various sorts) store the comparison threshold. D molecules store a single ‘1’ in the most significant
digit. There is more D than T. P molecules store the current precision of the system. C is the clock
signal. There is exactly one C molecule at any time. (a) Reading a bit of memory. (b) Writing a bit
of memory. (c) Operation of the clock. Any D species (D, D′, D′′, or D∗) can serve as a catalyst
for the conversion of the C in each step

Every read operation must be followed by a write operation, so that the tape
does not shrink. Extra write operations are allowed, so the tape can grow, but states
corresponding to such extra operations must include the reactions in the gray region.
The first clock cycle multiplies M by 3, and if the tape is growing, then T , P , and D

also get multiplied by 3. The second clock cycle writes the new digit of M . The third
cycle cleans up D, T , and P , and it also adds D to P . This way, the precision P is
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always a multiple of D, and the multiple grows by one with each write operation,
so the precision of the simulation increases at every step. The fourth cycle cleans
up M .

The clock molecule is used to trigger the advance from one stage of the reaction
to the next. Therefore, when C is used as a “catalyst,” it is actually transformed into
a C4, so that it cannot trigger the advance to the following stage until some time
has passed. Effectively, the clock slowly lets the C4 become a C again. To become
a C, it has to work its way down, but since P is greater than D by a growing factor,
the process of the C4 becoming a C becomes slower and slower as time goes on.
This slowing of the clock is what makes the whole system become more and more
reliable over time.

A detailed construction based on the same principles is presented in [14], with
an analysis of its error probability and running time. A more efficient construction
can be implemented based on the work of Angluin et al. in the distributed comput-
ing literature [17] (see [14, 44]). Simulating tTM steps of a Turing Machine using
sTM space can be done in polylog(m) · tTM time where m = O(2sTM) is the total
maximum molecular count encountered.

7.2 Turing Machines Can Efficiently Simulate Robust Stochastic
Chemical Reaction Networks

We have seen that enforcing reaction order, even probabilistically, is enough to
achieve Turing-universality. However, our simulation of Turing Machines (and Reg-
ister Machines) by Stochastic Chemical Reaction Networks, uses reaction propensi-
ties rather weakly: while it was essential that one reaction propensity is higher than
another, and increases over time, the exact value of reaction propensities are not used
in the computation. Intuitively, we can say that a Stochastic Chemical Reaction Net-
work behaves “robustly” if its behavior does not depend crucially upon getting the
reaction propensities exactly right. Formal definitions can be found in [44], as well
as the proof that the Turing Machine embedding based on [17] is robust.

Such robust chemical systems form an interesting class, whose computational
power can be almost exactly captured, bounding above and below the maximum
amount of computation such systems can perform in a unit of time, compared to
a Turing Machine. Although on the order of m reactions can occur per unit time,
where m is the total number of molecules present, the actual amount of computation
is at most polylog(m) Turing Machine steps.

While fast Turing Machine embeddings in robust Stochastic Chemical Reaction
Networks show a lower bound on their computational power, how can we show
that they are not capable of performing more computation per unit time? The main
idea of the argument is that robust chemical systems are easy to simulate by a Tur-
ing Machine. Intuitively, since robust chemical systems are robust to perturbations
in reaction rates, they permit some sloppiness when trying to predict their behavior.
Then, since it is widely believed that there is no universal way of speeding up Turing
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Machines, it should not be possible to speed up arbitrary Turing Machines by em-
bedding them in an chemical system and simulating the system. With some caveats
related to real-number arithmetic, for robust systems, the problem of estimating the
probability of being in a given state at a given time t can be solved in polylog(m) · t
computation time on a Turing Machine, where m is the maximum molecular count
encountered. This implies that, loosely stated, for robust Stochastic Chemical Re-
action Networks, it is neither possible to embed more than polylog(m) computation
time per chemical unit time, nor is it possible to simulate the Stochastic Chemical
Reaction Network using less than polylog(m) computation time per chemical unit
time [44].

It should be emphasized that the correspondence between Turing Machines and
Stochastic Chemical Reaction Networks is surprisingly tight. One can simulate the
other with surprisingly little loss of efficiency (especially for programs using little
memory where polylog(m) for m = O(2sTM) is small compared to tTM).

8 Concluding Remarks

The power of different systems to do computation can vary greatly. It has previ-
ously been assumed that systems such as genetic regulatory networks and chemical
reaction networks are much weaker than the gold standard computational systems
such as Turing Machines. On the other hand, we have become accustomed to proofs
that even some of the simplest systems are capable of universal computation [45,
46], meaning that they are in some senses equivalent in power to Turing Machines,
and thus predicting their eventual behavior is impossible even in theory. Chemical
reaction networks have been shown to be universal when combined with polymer
memory [18] or membrane-separated compartmental memory [22], but researchers
have previously assumed that on their own, a finite number of species in a well-
mixed medium can only perform bounded computations [22, 24].

In contrast with this historical intuition, here we have shown that in fact such
“plain” chemical reaction networks can indeed perform unbounded computation, us-
ing the concentration (number of molecules) of each species as the storage medium.
We went on to pinpoint both the power and the weakness of chemical reaction net-
work computation by showing that it is just as fast as Turing Machine computation,
but that it requires exponentially more space.

This universality of chemical reaction networks turns out to derive from their
probabilistic nature. If the possible reactions in a chemical system could be priori-
tized, so that the next reaction at each step is always the one with highest priority,
then universal behavior is easily attainable (along the lines of [12]), but of course
chemistry does not behave in this way. However, since the reaction rates in a chemi-
cal system are influenced by the concentrations, they are somewhat under the control
of the system itself, and as we have shown, this weak form of prioritization turns out
to be enough to let the system perform universal computation with high probability
of success.
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If we require that the chemical system be guaranteed to give the right answer
without fail, then the system is effectively deprived of the opportunity to use its reac-
tion rates, since they only influence what is likely to happen, not what is guaranteed
to happen. Indeed, in this situation, the system is incapable of universal computa-
tion. Thus, the stochastic reaction rate foundation turns out to be the source of the
computational power of chemical reaction networks.

Open questions, along the lines of the results we have given, include:

(1) Are continuous Stochastic Chemical Reaction Networks (using mass action ki-
netics) Turing universal?4

(2) Can one have a universal Stochastic Chemical Reaction Network which has
constant probabilities (that do not depend on concentrations) for all reactions
except one, with the remaining reaction having a decaying probability that de-
pends on time (but not on concentrations)?

(3) Can Stochastic Chemical Reaction Networks that have reversible reactions be
universal?

(4) What is the power if one wishes to guarantee that all paths in a Stochastic Chem-
ical Reaction Network lead to same result (confluent computation)? Are we lim-
ited to Boolean logic circuits, or can we do some sort of uniform computation?

(5) Can a more efficient Turing Machine simulation be embedded in a nonrobust
Stochastic Chemical Reaction Network than a robust one?
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Log-gain Principles for Metabolic P Systems

Vincenzo Manca

Abstract Metabolic P systems, shortly MP systems, are a special class of P sys-
tems, introduced for expressing biological metabolism. Their dynamics are com-
puted by metabolic algorithms which transform populations of objects according to
a mass partition principle, based on suitable generalizations of chemical laws. In
this paper, the basic principles of MP systems are formulated for introducing the
Log-gain principles, and it is shown how to use them for constructing MP models
from experimental data of given metabolic processes.

1 Introduction

Metabolism is the basis of the biomolecular processes of life. In its abstract and sim-
plest setting, a metabolic system is constituted by a reactor containing a population
of (bio)molecules of some given types, and communicating with an environment
from/to which it gets/expels matter and/or energy. In this reactor, some reactions
are active which transform molecules into other kinds of molecules, according to
some stoichiometric patterns. These reactions transform matter by satisfying some
chemical principles which can be formulated in very general terms: (i) molecules
participate to reactions according to fixed ratios expressed by integer coefficients,
(ii) matter cannot be created or destroyed, namely reactions transform matter of one
kind into matter of other kinds, and (iii) each reaction needs or releases some energy,
in order to be performed. A state of such a metabolic system is essentially described
by the amount of molecules of each type which are inside it. This means that, if
x1, x2, . . . , xn are respectively the quantities of the different types of molecules, and
if we observe the system at steps 0,1,2, . . . , then its evolution turns out to be a
function from natural numbers (the steps, separated by a suitable time interval) to
vectors of dimension n (the amounts of substances, expressed, as rational numbers,
in terms of some population unit).
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The classical approach of dynamical systems describes this kind of evolution by
means of Ordinary Differential Equations (ODE) of the following kind:

dx1

dt
= f1(x1, x2, . . . , xn),

dx2

dt
= f2(x1, x2, . . . , xn),

...

dxn

dt
= fn(x1, x2, . . . , xn)

(1)

they are called autonomous ODE because the time variable t does not occur explic-
itly as argument of the functions at the right member (see [46] for classical analyses
of biological metabolism). According to Peano–Picard’s theorem, if the functions
f1, f2, . . . , fn are of class C1 (continuously differentiable functions), then the rel-
ative Cauchy’s problem is solvable in a suitable interval: there exist n functions
x1 = g1(t), x2 = g2(t), . . . , xn = gn(t) that are solutions of the system and satisfy
some given initial conditions [24]. The principle underlying ODE models is the
mass action principle, according to which the infinitesimal variation of a substance
produced by a reaction, is proportional to the product of the reactant masses instan-
taneously available. One of the main problems of differential models is the exact
determination of the differential equations which govern the phenomenon under in-
vestigation. In fact, the infinitesimal nature of quantities involved in the equations
require a knowledge of the microscopic molecular kinetic, and when the system is
very complex and reactions are not completely understood, the numerical data are
very difficult or even impossible to be evaluated. The same problem occurs even
in stochastic simulations of (bio)chemical reactions, which are based on Gillespie’s
approach [21]. Therefore, it would be very important to formulate the dynamical
description of systems in a way that overcomes this intrinsic limitation.

Some discrete models of (bio)chemical processes were introduced in [26, 35],
where logical formulae, on strings inside membranes, expressed even complex
dynamics. Though, this framework resulted too complex for expressing real bio-
molecular processes. P systems were then introduced in [37] as a new computation
model, inspired by biology [10, 38, 47], into the mainstream of the formal language
theory. They are essentially based on multi-sets rewriting and membranes. Applica-
tions of this perspective to biological modeling were developed in [3, 18, 20, 41–45].
A new discrete perspective in dynamical systems, based on P systems, was intro-
duced in [1] and extended in [34, 39, 40]. A general discrete mathematical theory
of reaction systems was developed in a series of papers [12–14] where their proper-
ties are mainly studied in the perspective of computation models. In this paper, we
elaborate a new approach, introduced in [33] and then widely developed, on differ-
ent lines, in [5–7, 11, 15–17, 27–32], which is focused on the notion of Metabolic
P systems, shortly MP systems. In particular, we show the possibility of deducing
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an MP model, for a given metabolic process, from a suitable macroscopic observa-
tion of its behavior along a certain number of steps. MP systems are a special type
of P systems which were proven to effectively model the dynamics of several bi-
ological processes, among them: the Belousov–Zhabotinsky reaction (Brusselator),
the Lotka–Volterra dynamics, the SIR (Susceptible-Infected-Recovered epidemic)
[4, 5], the leukocyte selective recruitment in the immunological response [5], the
Protein Kinase C activation [7], circadian rhythms [15], mitotic cycles [19, 32], and
a Pseudomonas quorum sensing process [9].1

2 The Mass Partition Principle

The new perspective introduced by MP systems can be synthesized by a new princi-
ple which replaces the mass action principle. We call it the mass partition principle.
According to it, the system is observed along a discrete sequence of steps, and at
each step, all the matter of a kind of substance, consumed in the time interval be-
tween two consecutive steps, is partitioned among all the reactions which need it to
generate their products. If we are able to determine the amount of reactants that each
reaction takes in that step, according to the stoichiometry of the reactions, which we
assume to know, we can perfectly establish the amount of substances consumed and
produced between two steps, therefore, whole the dynamics can be discovered. In
this sense, another reading of MP systems could be just “Mass Partition” systems.

MP system reactions act on object populations, rather than on single objects (as
P system rules do). Moreover, their dynamics is deterministic at population level,
whereas nothing can be said about the dynamical evolution of single objects. This
situation resembles what happens in the macroscopic gas laws, which specify de-
terministic relationships among pressure, volume and temperature measures, but do
not cope with the mechanical behavior of single molecules.

As an instance, consider a metabolic system with four kinds of substances
a, b, c, d and the reactions, (2) where u1, u2, u3 at the right hand, are the number
of elements (with respect to a population unit) which are consumed/produced by
the reactions, for each occurrence of the involved substances, when the system goes
from a state to the next one of its evolution:

r1 : aa → bc (u1),

r2 : b → ad (u2),

r3 : ad → ac (u3).

(2)

For example, the rule r1 says that 2u1 molecules of substance a (a occurs two times
as a reactant of r1) are consumed while u1 molecules of b and u1 molecules of c

1The package Meta-P-lab, developed in Java within the research group on Models of Natural Com-
puting led by the author, at the Department of Computer Science of the University of Verona,
Italy [8], provides computational tools for MP systems. The last release is available at the site
mplab.sci.univr.it.
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are produced. This formulation of reactions is an implicit assumption of Avogadro’s
chemical principle, asserting that in a reaction the same number of molecules is
involved for each substance occurrence in the reaction stoichiometry [31].

Let us assume to know the quantities u1[i], u2[i], u3[i], called flux units of
r1, r2, r3 respectively, giving the substance molar amounts consumed/produced by
the reactions between two instants i and i + 1. The reactant/product substance
variations due to reaction rj are multiples of uj . Therefore, if we indicate by
a[i], b[i], c[i], d[i] the amount of substances a, b, c, d at the instant i, in the pre-
vious example, the following equations are easily derived by the form of reac-
tions (2):

a[i + 1] − a[i] = −2u1[i] + u2[i],
b[i + 1] − b[i] = u1[i] − u2[i],
c[i + 1] − c[i] = u1[i] + u3[i],
d[i + 1] − d[i] = u2[i] − u3[i].

(3)

By looking at the reactions, we see that a is consumed by the first reaction and
is produced by the second one, therefore, if the first reaction moves u1 mole-
cules and the second one moves u2 molecules, the global variation of a is just
of −2u1 + u2 elements (the third reaction consumes, but at same time produces
u3 elements of a). Analogous arguments will provide the other equations. We can
express synthetically the system of equations (3) in terms of usual matrix prod-
uct:

X[i + 1] − X[i] = A × U [i]
where

X[i] = (
a[i], b[i], c[i], d[i]),

U [i] = (
u1[i], u2[i], u3[i]

)

and A is the following matrix:

A = (Ax,r | x ∈ X, r ∈ R) =
⎛

⎜
⎝

−2 1 0
1 −1 0
1 0 1
0 1 −1

⎞

⎟
⎠ .

This example shows that if we know the flux units at an instant i, then we are
able to calculate the state of the system after a time interval τ . This will be the main
point of our further investigation.

Let us consider a set X of substances and a set of R of reactions seen, as pairs
of strings, and represented in the arrow notation according to which any reaction is
identified by a rewriting rule αr → βr with αr,βr strings over X (αr represents the
reactants of r , while βr represents the products of r). As usual, for a string γ and
a symbol x we denote by |γ |x the number of occurrences of the symbol x in the
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string γ , while |γ | is the length of γ . Then the general definition of stoichiometric
matrix can be given.

Definition 1 The stoichiometric matrix A of a set R of reactions over a set X of
substances is A = (Ax,r | x ∈ X, r ∈ R) where Ax,r = |βr |x − |αr |x . The set of
reactions having the substance x as a reactant is Rα(x) = {r ∈ R | |αr |x > 0} and the
set of rules consuming or producing x is R(x) = {r ∈ R | Ax,r �= 0}. Two reactions
r1, r2 compete for x ∈ X if r1, r2 ∈ Rα(x) for some substance x ∈ X.

3 Metabolic P Systems

MP systems are essentially deterministic P systems where the transition to the next
state (after some specified interval of time) is calculated according to a mass par-
tition strategy, that is, the available matter of each substance is partitioned among
all reactions which need to consume it. The policy of matter partition is regulated at
each instant by flux regulation maps, or simply flux maps.

The notion of MP system we introduce here generalizes that one given originally
in [29], and developed in [27–32], which was based on reaction maps. In fact, the
log-gain theory we present in this paper can be naturally formulated in terms of flux
maps rather than reaction maps. We distinguish the two kinds of MP systems as
MPR and MPF systems (MP systems with reaction maps versus MP systems with
flux maps), which we will show to be equivalent.

A discrete dynamical system is specified by a set of states and by a discrete
dynamics on them, that is, by a function from the set N of natural numbers to the
states of the system [25, 34]. In this context, the natural numbers which are argument
of dynamics are called instants or steps.

Definition 2 (MPF System) An MP system with flux regulation maps, shortly an
MPF system, is a discrete dynamical system specified by a construct

M = (X,R,V,Q,Φ,ν,μ, τ, q0, δ)

where X,R,V are finite disjoint sets, and the following conditions hold, with
n,m,k ∈ N:

• X = {x1, x2, . . . , xn} is the set of substances (the types of molecules);
• R = {r1, r2, . . . , rm} is the set of reactions over X, that is, pairs (in arrow notation)

of type α → β with α,β strings over the alphabet X;
• V = {v1, v2, . . . , vk} is the set of parameters (such as pressure, temperature, vol-

ume, pH, . . . ) equipped by a set {hv : N → R | v ∈ V } of parameter evolution
functions;

• Q is the set of states, seen as functions q : X ∪ V → R from substances and
parameters to real numbers. We denote by q|X the restriction of q to substances,
and by q|V its restriction to parameters.
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• Φ = {ϕr | r ∈ R} is a set of flux maps, where the function ϕr : Q → R states the
amount (moles) which is consumed/produced, in the state q , for every occurrence
of a reactant/product of r . We set by U(q) = (ϕr(q) | r ∈ R) the flux vector at
state q;

• ν is a natural number which specifies the number of molecules of a (conventional)
mole of M , as its population unit;

• μ is a function which assigns, to each x ∈ X, the mass μ(x) of a mole of x (with
respect to some measure unit);

• τ is the temporal interval between two consecutive observation steps;
• q0 ∈ Q is the initial state;
• δ : N → Q is the dynamics of the system, given by: δ(0) = q0 and

δ(i + 1)|X = A × U
(
δ(i)

) + δ(i)|X,

δ(i + 1)|V = (
hv(i + 1) | v ∈ V

) (4)

where A is the stoichiometric matrix of R over X, and ×, + are the usual matrix
product and vector sum.

The algorithm of Table 1 computes (and provides as outputs) N steps in the
evolution of a given metabolic system M starting from an initial state (the vector

Table 1 The computation of N steps of an MP system M

Metabolic-Algorithm(M,N )

1. begin

2. For i = 0, . . . ,N do

3. For each x ∈ X do

4. begin

5. y := x[i];
6. For each r ∈ R(x) do

7. begin

8. u := ϕr(δ(i));

9. z := u · Ax,r ;

10. y := y + z;

11. end

12. x[i + 1] := y ;

13. write x[i+1];

14. end

15. For each v ∈ V do

16. begin

17. v[i + 1] := hv(i + 1);

18. write v[i + 1];
19. end

20. end
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notation δ(i) = (x1[i], x2[i], . . . , xn[i], v1[i], v2[i], . . . , vm[i]) is used). The values
of ν,μ, τ of Definition 2 have no direct influence in the mathematical description
of the dynamics of an MP system. Nevertheless, they are essential for the phys-
ical interpretation of the dynamics with respect to a specific mass/time measure
scale.

Given a real metabolic system which can be observed in its evolution, then almost
all the elements occurring in the definition of MP system: substances, reactions, pa-
rameters, parameter evolutions . . . can be, in principle, deduced by a macroscopic
observation of the system. The only component which cannot be directly measured
by a macroscopic observation is the set Φ of flux functions. In fact, they depend
on the internal microscopic processes on which molecules are involved. This means
that the key point, for defining an MP system modeling a metabolic system, is the
determination of this set of functions. This problem corresponds to the problem of
evaluating the kinetic rate constants in differential models of metabolic processes.
In Sect. 6, we will show that there is a method for deducing a set of functions ap-
proximating Φ , by means of a suitable procedure of observation and of an algebraic
elaboration of the data collected during the observation.

Reaction maps were introduced in [29]. In MP systems with reaction maps,
shortly MPR systems, flux units are not given by flux maps, but they are calculated
by means of maps fr : Q → R, where r ∈ R, called reaction maps, and by means of
inertia functions ψx : Q → R, where x ∈ X. The reaction map fr provides a value
fr(q), called the reactivity of the rule r in the state q , while ψx(q) determines the
(molar) quantity of substance x that is not consumed in the state q . Flux units are
calculated according to partition ratios of substance reactivities. In fact, at any step,
the amount of each substance x is distributed among all the rules competing for it,
proportionally to the reactivities of reactions in that step, but including as competing
also the reaction x → x having as reactivity the inertia of x.

Definition 3 (MPR System) An MP system with reaction maps, shortly an MPR
system, is a discrete dynamical system specified by a construct

M = (X,R,V,Q,F,ψ, ν,μ, τ, q0, δ)

where all the components different from F , ψ , and δ are as in Definition 2. The set
F = {fr : Q → R | r ∈ R} is constituted by functions, called reaction maps, ψ is a
function ψ : X × Q → R which provides for each substance and state, the inertia
of the substance in the state, that is, its quantity (number of moles) not available
to be consumed by the reactions. The dynamics δ is that of the MPF system M =
(X,R,V,Q,Φ,ν,μ, τ, q0, δ) where the flux functions are given by the following
equations:

wr,x(q) = fr(q)

ψx(q) + ∑
r ′∈Rα(x) fr ′(q)

, (5)

ϕr(q) =
{

fr(q) if αr = λ;
min{wr,y(q)·q(y)

|αr |x | y ∈ αr} otherwise. (6)
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Equation (5) provides the partition of x which r is allowed to consume, while (6)
computes the reaction unit of r , as the minimum of substance quantities available to
all reactants of r .

Definition 4 Two MP systems are equivalent when they have the same sets X (sub-
stances) and V (parameters, with the same related evolution functions), the same
ν,μ,q0|X, τ (of Definition 2), and the same dynamics.

From Definition 3, it follows that for any MPR an equivalent MPF exists, now
we show that also the converse relation holds, that is, for any MPF an equivalent
MPR exists.

Definition 5 An MP system is monic if |αr | ≤ 1 for every r ∈ R.

Lemma 6 For any MPF system there exists a monic MPF system which is dynami-
cally equivalent to it.

Proof If in a rule, for example r : ab → c, many substances occur in the left side,
then we can split it into two rules: r1 : a → c, r2 : c → λ by requiring that the fluxes
of the two rules are equal. We can proceed in this way for all the rules which are not
monic. Of course, the monic MP system which we get in this manner is equivalent
to the original one. �

Theorem 7 For any MPF system, there exists an equivalent MPR system.

Proof According to the previous lemma, we can assume that the MPF system M

we consider is monic. Then we define an MPR system M ′ where for any rule r , we
set the value of its reaction map f ′

r equal to the corresponding flux map of M , that
is, for any state q , f ′

r (q) = ϕr(q), and at the same time, we add, for any substance
x, an inertia function ψx defined as ψx(q) = q(x) − ∑

r∈Rα(x) f
′
r (q). With these

positions, by Definition 3, for any rule r ∈ R having αr = λ, we have a flux map ϕ′
r

in M ′ that is trivially equal to ϕr . Otherwise, for a rule r with αr �= λ, the following
equations hold for any y ∈ αr :

w′
r,x(q) = f ′

r (q)

ψx(q) + ∑
r ′∈Rα(x) f

′
r ′(q)

, (7)

ϕ′
r (q) = min

{
w′

r,y(q) · q(y) | y ∈ αr

}
(8)

but for any rule r ∈ R and for any y ∈ αr , from (7) we have

w′
r,y(q) · q(y) = f ′

r (q) · q(y)

(q(y) − ∑
r ′∈Rα(y) f

′
r (q)) + ∑

r ′∈Rα(y) f
′
r ′(q)

= f ′
r (q) (9)
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therefore, as we assumed M to be monic, this value coincides with the minimum
requested by the equation (8). Finally, by the position f ′

r (q) = ϕr(q), it results,
from (8) and (9), that ϕ′

r (q) = ϕr(q). In conclusion, the fluxes of the MPR system
M ′ are the same of the MPF system M which we started from, whence the two
systems result to be equivalent. �

4 MP Models and Differential Models

It was shown in [17] that a special correspondence can be established between MPR
systems and differential models, such that, under suitable hypotheses and within
some definite approximation, the MPR non-cooperative systems provide the same
evolutions computed by numerical integration of the corresponding ODE. In fact,
MPR systems transform naturally into ODE systems according to the mass action
principle, on which differential models are based on. According to the mass action,
the amount of products generated by a reaction is proportional to the product of
quantities of its substrates (considered with their multiplicity). This idea is formal-
ized by the following definition, where x′ is the derivative of x with respect to time.
In this section, all the MP systems we consider are MPR systems.

Definition 8 (MPR–ODE Transform) Let M = (X,R, . . .F, . . .) be an MPR sys-
tems (F the set of reaction maps). The following system of equations ODE(M), for
x ∈ X, where Π(αr) is the product of all the quantities of reactants of reaction r , is
called the ODE-transformed of M :

x′ =
∑

r∈R

Ax,rfr (q)Π(αr).

Let us briefly recall from [17] the main results concerning the relationship be-
tween reactivity MPR systems and ordinary differential equations (here the term
“monic” corresponds to the attribute “non-cooperative” of [17]).

Theorem 9 For any MPR system M , there exists a monic MPR system M ′ having
the same ODE transform of M .

Theorem 10 Given an ODE system E, an MPR system can be found having E as
its ODE-transform.

Definition 11 (Uniformly Inerzial MPR System) For some positive ψ ∈ R, an MPR
system is ψ -uniformly inertial if all its substances have as inertia a constant value ψ .

Theorem 12 Given a non-cooperative, ψ -uniformly inertial MPR system M , if
ODE(M) satisfies the differential conditions of univocal solvability, then the evo-
lution of M converges, as ψ → ∞, to the solution of ODE(M) having the initial
conditions of M .
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4.1 An MP Model of Mitotic Oscillator

One of the most interesting modeling results for reactivity MP systems was
the translation of Golbeter’s differential model of mitotic oscillations, formalized
by (10) referring to Table 2 [22, 23].

The fundamental mechanism of mitotic oscillations concerns the fluctuation in
the activation state of a protein, produced by the cdc2 gene in fission yeast or by
homologous genes in other eukaryotes. The simplest form of this mechanism is
found in early amphibian embryos. Here (see Fig. 1), cyclin is synthesized at a con-
stant rate vi and triggers the transformation of inactive (M+) into active (M) cdc2
protein, which provides the formation of a complex known as M-phase promoting
factor (MPF) which triggers mitosis, but at same time M , by a chain of events that
we do not mention, elicits the transformation of a protease, from state X+ to X, and
X degrades cyclin, producing the inactivation of cdc2 that brings the cell back to
the initial conditions in which a new division cycle can take place.

The following ODE is the differential model of the dynamics described in Fig. 1,
where c,m,x are the percentages of C,M,X, respectively (while 1 − m,1 − x are

Table 2 Numerical values of
Goldbeter’s model (expressed
in suitable measure units
based on micro-mole and
second)

K1 = 0.005 K2 = 0.005 K3 = 0.005 K4 = 0.005

VM1 = 3 VM3 = 1 V2 = 1.5 V4 = 0.5

vi = 0.025 vd = 0.25 Kc = 0.5 Kd = 0.02

kd = 0.01 c[0] = 0.01 x[0] = 0.01 m[0] = 0.01

Fig. 1 The model provided
by A. Goldbeter from [22]
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the percentages of M+,X+, respectively):

dc

dt
= vi − vdx

c

Kd + c
− Kdc,

dm

dt
= V1

(1 − m)

K1 + (1 − m)
− V2

m

K2 + m
,

dx

dt
= V3

(1 − x)

K3 + (1 − x)
− V4

x

K4 + x
.

(10)

Figure 2 is a solutions of these equations obtained by numerical integration for some
value of parameters given in [22] and reported in Table 2.

Fig. 2 A numerical solution of the set of differential equations (10) implementing the model
provided by A. Goldbeter from [22]

Table 3 An MP model of the
differential system (10) r1 : A → AC f1 = vi

a

r2 : C → X f2 = vdX
Kd+c

r3 : X → λ f3 = vd c
Kd+c

r4 : C → λ f4 = kd

r5 : C → MC f5 = VM1M+
(Kc+c)(K1+(1−m))

r6 : M+ → λ f6 = VM1C
(Kc+C)(K1+(1−m))

r7 : M → M+ f7 = V2
K2+m

r8 : X+ → XM f8 = VM3m
K3+(1−x)

r9 : M → λ f9 = VM3·(1−x)
K3+(1−x)

r10 : X → X+ f10 = V4
K4+x
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An MP system corresponding to Goldbeter’s model is given in Table 3. It was
obtained by means of the general procedure described in [17] and provides (for
suitable specific parameters of the system) a dynamics equal to that of Fig. 2.

5 Metabolic Log-gain Principles

Given a real system that we can observe for a certain number of steps, is it possible
to determine an MP system which could predict, within an acceptable approxima-
tion, the future behavior of the given system? We will show how this task could
be achieved. In fact, in some cases, we can determine, in a systematic way, an MP
system which is an adequate model of some observed metabolic dynamics.

In order to discover the reaction fluxes at each step, we introduce some log-gain
principles. In fact, it seems to be natural that a proportion should exist between the
relative variation of substances and the relative variation of flux units. The relative
variation of a substance x is defined as the ratio Δ(x)/x. In differential notation
(with respect to the time variable), this ratio is related to dx

dt
/x, and from elementary

calculus we know that it is the same as d(lgx)
dt

. This equation explains the term “log-
gain” for expressing relative variations [46]. We use a discrete notion of log-gain
for stating the following principle. In the following, given a dynamics δ of an MP
system, we use a simplified notations, for i ∈ N, r ∈ R, and w ∈ X ∪ V (notation of
Definition 2):

ur [i] = ϕr

(
δ(i)

)
,

w[i] = (
δ(i)

)
(w).

Principle 13 (Log-gain) For i ∈ N and r ∈ R, let us call

Lg
(
ur [i]

) = (
ur [i + 1] − ur [i]

)
/ur [i]

the log-gain of the flux unit ur at the step i, and analogously,

Lg
(
w[i]) = (

w[i + 1] − w[i])/w[i]
the log-gain of the substance or parameter w at step i. There exists a subset Tr

of X ∪ V of elements called (log-gain) tuners of r such that: Lg(ur [i]) is a linear
combination, in a unique way, of the tuners of r :

Lg
(
ur [i]

) =
∑

w∈Tr

pr,wLg
(
w[i]). (11)

Log-gain principle extends a very important rule, well known in theoretical bi-
ology as the allometric principle. According to it, a specific ratio holds between
the relative variations of two related biological parameters (e.g. mass of an organ-
ism and its superficial area). This principle seems to be a general property of living
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Table 4 Sirius’ reactions and
reaction maps, where
k1 = 4, k2 = 0.02, k3 =
4, k4 = 0.02, k5 = 4, a[0] =
100, b[0] = 100, c[0] = 0,
and k = 100 is the inertia of
each substance

r1 : a → aa f1 = k1

r2 : a → b f2 = k2 · c
r3 : b → λ f3 = k3

r4 : a → c f4 = k4 · b
r5 : c → λ f5 = k5

organisms which allows them to keep basic equilibria underlying their internal orga-
nization. As it is reported in [2], many empirical laws on metabolism are instances
of allometry and also the abundance of power laws in biological systems is related
to this principle. Therefore, it is not surprising that log-gain mechanism is the basis
for deducing the right metabolic algorithm of MP systems which fit the observations
of given metabolic processes.

Now, starting from this first formulation of log-gain principle, we will present
a method for constructing an MP system which reproduces, with an acceptable ap-
proximation, the dynamics of a given system that we observe for a sufficient number
of steps. In this context “observe” means to know, with a sufficient precision, the
(molar) quantities of all different kinds of molecules, and the values of parameters,
for a sequence of steps. Let us denote these quantities, according to our simplified
notation, with the sequence, for i = 0, . . . , t , of vectors:

δ(i) = (
x1[i], x2[i], . . . , xn[i], v1[i], v2[i], . . . , vk[i]

)
.

Moreover, we assume to known the reactions, the parameter evolutions, and the
tuners of reactions (the time unit and the molar unit are fixed). We want to predict
the substance vectors X[i] for steps i > t . We solve the problem when we discover
the flux maps Φ . By using a simple metabolic systems, called Sirius, we present a
procedure, based on a log-gain principle. This procedure will allow us to determine
some vectors of flux units U [i] which provide an MP dynamics fitting with given
observation data.

Consider the metabolic system Sirius given in Table 4. This system is interesting
because it provides a simple metabolic oscillator with no parameter. Its differential
formulation, according to the correspondence stated in [17], is given by equations
(12), its dynamics generated by an MPR system is given in Fig. 3:

da

dt
= k1a − k2ca − k4ba,

db

dt
= k2ac − k3b,

dc

dt
= k4ab − k5c.

(12)

Consider two consecutive steps i and i + 1 of its evolution. Let a[i], b[i], c[i] be
the quantities of a, b, c, respectively (expressed in moles), at step i. Substance a

is produced by the rules r1 and it is consumed by the rules r2, r4, and analogously
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Fig. 3 Sirius’ oscillator dynamics

for the other substances. Therefore, by the stoichiometric matrix of the reactions,
we get the following system of equations we call SD[i] (Substance Differences at
step i). We assume that this system has maximal rank, that is, in it no equation is a
linear combination of other equations:

a[i + 1] − a[i] = u1[i] − u2[i] − u4[i],
b[i + 1] − b[i] = u2[i] − u3[i],
c[i + 1] − c[i] = u4[i] − u5[i].

(13)

Let the values u1[i], u2[i], u3[i], u4[i], u5[i] be the flux units at the steps i, then the
log-gain module provides the following system of equations LG[i]:

Lg
(
u1[i]

) = p1Lg
(
a[i]),

Lg
(
u2[i]

) = p2Lg
(
a[i]) + p3Lg

(
c[i]),

Lg
(
u3[i]

) = p4Lg
(
b[i]),

Lg
(
u4[i]

) = p5Lg
(
a[i]) + p6Lg

(
b[i]),

Lg
(
u5[i]

) = p7Lg
(
c[i]).

(14)

Putting together the systems (14) and (13), at steps i and i + 1, respectively,
we get the system that we indicate by LG[i] + SD[i + 1] and we call observation
log-gain module at step i.

Now, consider the (observation) log-gain module at step 0 and assume to know
the vector U [0] (a method for finding it is outlined in [31]). Moreover, assume to
know the tuners of the reactions, and set to 1 the coefficients of the tuners, but add a
value pr to the log-gain linear combination of rule r , which we call log-gain offset
of rule r , and which includes the error we introduce by reducing to 1 the coefficients
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of the tuner log-gains. As an instance, Sirius’ log-gain module has 8 equations and
12 variables, but after setting to 1 the log-gain coefficients and adding the log-gain
offsets, we get a system of 8 equations and 10 variables. In general, an offset log-
gain module is determined according to the following principle.

Principle 14 (Offset Log-gain) There exists a subset Tr of X∪V of elements called
(log-gain) tuners of r and a unique value pr , called offset log-gain, such that

Lg
(
ur [i]

) =
∑

w∈Tr

Lg
(
w[i]) + pr . (15)

The offset log-gain module, we call OLG[i], has n + m equations and 2m un-
known variables. Now, we show that we can reduce the number of variables by
obtaining a square linear system. In fact, if we consider the stoichiometric module
SD[i + 1], we realize that the sum of the offsets of reactions consuming or produc-
ing a given substance x is constrained to be equal to a fixed value. For example, in
the case of Sirius, we have the following SD[i + 1] system:

a[i + 2] − a[i + 1] = u1[i + 1] − u2[i + 1] − u4[i + 1],
b[i + 2] − b[i + 1] = u2[i + 1] − u3[i + 1],
c[i + 2] − c[i + 1] = u4[i + 1] − u5[i + 1]

(16)

that can be rewritten, in terms of (offset) log-gains, in the following manner:

a[i + 1]Lg
(
a[i + 1]) − u1[i] − u2[i] − u4[i]

= u1[i]Lg
(
u1[i]

) − u2[i]Lg
(
u2[i]

) − u4[i]Lg
(
u4[i]

)
.

b[i + 1]Lg
(
b[i + 1]) − u2[i] − u3[i] = u2[i]Lg

(
u2[i]

) − u3[i]Lg
(
u3[i]

)
,

c[i + 1]Lg
(
c[i + 1]) − u4[i] − u5[i] = u4[i]Lg

(
u4[i]

) − u5[i]Lg
(
u5[i]

)

(17)

now, let us distinguish in the log-gain offset linear combination the non-offset part,
by setting

Lgur
[i] =

∑

w∈Tr

Lg
(
w[i]) (18)

with this notation the previous system can easily be put in the following form:

a[i + 1]Lg
(
a[i + 1]) − u1[i] + u2[i] + u4[i]

= u1[i]Lgu1
[i] − u2[i]Lgu2

[i] − u4[i]Lgu4
[i] + p1 + p2 + p4,

b[i + 1]Lg
(
b[i + 1]) − u2[i] + u3[i] = u2[i]Lgu2

[i] − u3[i]Lgu3
[i] + p2 + p3,

c[i + 1]Lg
(
c[i + 1]) − u4[i] + u5[i] = u4[i]Lgu4

[i] − u5[i]Lgu5
[i] + p4 + p5
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that is, for suitable linear operators K1,K2,K3,H1,H2,H3:

K1
(
Lgu1

[i],Lgu2
[i],Lgu4

[i]) = H1(p1 + p2 + p4),

K2
(
Lgu2

[i],Lg(u3
[i]) = H2(p2 + p3),

K3
(
Lgu4

[i],Lgu5
[i]) = H3(p4 + p5).

(19)

From system (19), it becomes apparent that if we impose to the log-gain offsets
of rule r2 and r4 to be equal to 0, then the log-gain gaps covered by their log-
gain offsets can be covered by the offset of the rule r1. Analogously, by the other
equations we can choose, as log-gain offsets different from 0, the offsets of rules
r3 and r5, respectively. In conclusion, we reduce only to three the number of log-
gain offsets occurring in the offset log-gain module, reaching finally a system with
a number of variables equal to the number of equations.

The previous argument can be easily generalized to any offset log-gain module,
by stating the following lemma.

Lemma 15 In any log-gain module OLG[i], for every substance x, the sum of all
the offsets of rules in R(x) is equal to a value depending on the log-gains of tuners
of rules of R(x).

On the basis of this lemma, we can obtain a further elaboration of the log-gain
principle for reducing the number of offsets of log-gain module exactly to the num-
ber of substances.

Definition 16 (Offset Log-gain Covering Property) Given an MP system M of sub-
stances X = {x1, . . . , xn}, then a set R0 = {rj1 , . . . , rjn} of reactions has the offset
log-gain covering property if ri ∈ R(xi) and, for every 1 < i ≤ n.

Consider a case of two substances x1, x2 such that R(x1) = {r1, r2, r3, r4} and
R(x2) = {r2, r3}. In this case, if we choose r1 from R(x1) and r3 from R(x2) −
R(x2), then we get a set R0 = {r1, r3} having the offset log-gain covering property.

The offset log-gain covering property allows us to write down a system of equa-
tions for computing, at each step, the reaction fluxes of a system where states are
known by observation.

Principle 17 (Offset Log-gain Adjustment) Let M be an MP system with a set of
reactions R = {r1, r2, . . . , rm} and a set of substances X = {x1, x2, . . . , xn}. Let R0
be a subset of reactions having the offset log-gain covering property. The following
system OLGA[i] is associated to any step i of the dynamics of M , where r ∈ R, Tr

are the tuners of reaction r , x ∈ X and the log-gain offset pr [i] = 0 if r /∈ R0:

Lg
(
ur [i]

) =
∑

w∈Tr

Lg
(
w[i]) + pr [i],

x[i]Lg
(
x[i + 1]) = (Ax,r1 ,Ax,r2 , . . . ,Ax,rm) × U [i + 1].

(20)
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Theorem 18 The log-gain principles implies that OLGA[i] of an MP system, for
any step i ∈ N, i > 0, has one and only one solution.

Proof (informal) The variations of substances, at step i, determine the substance
log-gains, and, according to the log-gain principles, they determine univocally the
log-gain of the flux units at step i. Consequently, the vector U [i + 1] is determined,
and finally according to (4), the new state of the system is completely determined. �

Corollary 19 Given an MP system M , A set R0 of reactions of M having the offset
log-gain covering property can be always found.

When many different subsets of reactions can be found which have the offset log-
gain covering property, it is reasonable to assume that the choice which provides the
offset vectors with minimal norm (in Rn) represents the OLGA system which yields
the better approximations to the real fluxes of a given observed dynamics.

However, criteria and methods are under investigation for finding offset log-gain
coverings which could provide optimal results. Moreover, what is stated in the previ-
ous theorem and corollary should be grounded on a formal basis, by introducing an
algebraic formulation of the offset log-gain covering property. More specifically, we
intend to provide suitable conditions ensuring that the OLGA matrix corresponding
to a covering has a non-null determinant. These questions will be topics of further
elaborations of the log-gain theory for MP systems.

In the case of Sirius, the following OLGA[i] system was obtained, where flux
units and substance quantities at step i are assumed to be known, while unknown
variables, in the left side of equations, are the components of flux unit vector
U [i + 1] and of the offset vector O[i + 1] = (p1[i + 1],p3[i + 1],p5[i + 1]).

u1[i + 1] − p1[i + 1]u1[i] = u1[i]Lg
(
a[i]) + u1[i],

u2[i + 1] = u2[i]Lg(a[i]) + u2[i]Lg
(
c[i]) + u2[i],

u3[i + 1] − p3[i + 1]u3[i] = u3[i]Lg
(
b[i]) + u3[i],

u4[i + 1] = u4[i]Lg
(
a[i]) + u4[i]Lg

(
b[i]) + u4[i],

(21)
u5[i + 1] − p5[i + 1]u5[i] = u5[i]Lg

(
c[i]) + u5[i],

u1[i + 1] − u2[i + 1] − u4[i + 1] = a[i + 2] − a[i + 1],
u2[i + 1] − u3[i + 1] = b[i + 2] − b[i + 1],
u4[i + 1] − u5[i + 1] = c[i + 2] − c[i + 1].

If we solve the OLGA[i] of Sirius for i = 0 (U [0] is assumed to be known, and
X[i] = (a[i], b[i], c[i]), for i = 1, . . . , t , are given by observation), then we get
U [1]. If we apply the same procedure again for i = 1,3, . . ., we get the vectors
U [2],O[2],U [3],O[3], . . . ,U [t],O[t]. Now, assume that reaction fluxes depend
on the quantities a, b, c with some polynomial dependence of a given degree, say a
third degree, then we can use standard approximation tools for finding the functional
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dependence of the vector U with respect to the substance quantities a, b, c. The
resulting polynomials approximate the regulation functions Φ we are searching for,
and our task is completed.

General methods are under investigation which could systematically search for
polynomials (depending on substance quantities and parameter values) which also
fit with the flux units determined by OLGA modules solutions. In some numerical
experiments [36], flux polynomials were found with a good approximation to the
observed dynamics. Our procedure, based on the log-gain principles, assumes the
knowledge of U [0]. Actually, there are several possibilities under investigation and
one of them is based on a suitable iteration of the log-gain module [31]. However,
we discovered experimentally a very interesting fact, which deserves a more subtle
theoretical investigation. Consider the system SD[i] of 3 equations and 5 variables
(u1, u2, u3, u4, u5), choose one of its infinite solutions (imposing some additional
very natural constraints) and identify it with U [0]. In many cases, we found that
independently from the chosen value of U [0], after a small number of steps, say 3
steps, our procedure will generate with a great approximation, the same sequence
of flux vectors. This means that the data collected in the observation steps are suffi-
cient to determine the functions which on the basis of substance quantities, regulate
the dynamics of the system. The method was tested for Sirius and other systems
(Lotka–Volterra, Brusselator, Mitotic Oscillator). Numerical elaborations were per-
formed by standard MATLAB® operators (backslash operator for square matrix left
division or in the least squares sense solution) and interpolation was performed by
polynomials of third degree. Specific observation strategies were adopted, by using
about one hundred steps. In almost all cases, the observed dynamics were correctly
reconstructed [36]. This means that the flux functions, deduced according to the
meta-metabolic algorithm, provide MP systems with the same dynamics of the ob-
served systems. Of course, in our experiments we discovered what we already knew,
because the systems we observed were artificial systems, but this does not dimin-
ishes the validity of our method, as it showed a good level of coincidence between
observation and deduced regulation. Therefore, in the case of natural systems, from
suitable observations, we could discover, with good approximation, the underlying
regulation maps, and consequently, reliable computational models of their dynamics
can be found. However, applications of meta-metabolic algorithm to more complex
dynamics as well as deeper theoretical analyses of the simulation results will be
topics for further research.

6 Conclusions

MP systems proved to be relevant in the analysis of dynamics of metabolic
processes. Their structure clearly distinguishes a reaction level and a regulation
level. We showed that an essential component of the regulation level can be deduced
by applying the log-gain theory to data that can be collected from observations of
the systems. The search of efficient and systematic methods for defining MP sys-
tems from experimental data is of crucial importance for systematic applications
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of MP systems to complex dynamics. The log-gain method can deduce, in a given
metabolic system, a time series of (approximate) flux unit vectors U [i] (i ranging
in time instants), from a time series of observed states. This method is based on the
solution of one linear system (of n + m equations and n + m variables) for each
value of i. Two crucial tasks remain to be performed for a complete discovery of
the underlying MP dynamics which explains an observed dynamics: (i) a systematic
reliable determination of the initial vector U [0] which is the basis of our iterative
method (results in this direction are in [31]), and (ii) a systematic way for deducing
the flux regulation maps (depending on the state) from the time series of flux vectors.
Our future research will focus on these problems in order to show the applicability
of our method to real complex cases. At this end, three main research lines are under
investigation: (i) extending the theoretical aspects, (ii) performing suitable biolog-
ical experiments, and (iii) developing computational tools for modeling biological
phenomena.
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boom HJ, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2006. Lecture
notes in computer science, vol 4361. Springer, Berlin, pp 382–394

20. Franco G, Jonoska N, Osborn B, Plaas A (2008) Knee joint injury and repair modeled by
membrane systems. Biosystems 91(3):473–488

21. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem
81(25):2340–2361

22. Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and
cdc2 kinase. Proc Natl Acad Sci 88(20):9107–9111

23. Goldbeter A (2004) Biochemical oscillations and cellular rhythms. Cambridge University
Press, New York

24. Jost J (2005) Dynamical systems. Springer, Berlin
25. Kurka P (2003) Topological and symbolic dynamics. Société Mathématique de France, Paris
26. Manca V (1998) String rewriting and metabolism: a logical perspective. In: Păun G (ed) Com-
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Hybrid Method for Simulating Small-Number
Molecular Systems

Kazufumi Mizunuma and Masami Hagiya

Abstract Computational devices such as the toggle switch or the oscillator have
recently been used in artificial or biological cells in which the number of molecular
species is very small. To simulate their behavior, the stochastic simulation algorithm
by Gillespie and the “τ -leap” method, also proposed by Gillespie to reduce simu-
lation time, are widely used. In this paper, we discuss groups of cells that interact
with the environment by exchanging molecules through their membranes. The sto-
chastic simulation algorithm or even the “τ -leap” method requires a large amount
of computation time because all the cells in the group and the environment need to
be stochastically simulated. In this paper, we propose a hybrid simulation method
in which molecular species in the environment are treated based on their concentra-
tion, and their time evolution is obtained by solving ordinary differential equations.
The behavior of the cell group is then estimated by stochastically simulating some
sampled cells. If the state of cells influences the environment, the whole simulation
process is iterated until the time evolution of the environment becomes invariant. If
the simulation ends after a few iterations, then the overall simulation time greatly
decreases.

1 Introduction

In recent years, many attempts have been made to numerically simulate the behavior
of a cell or a cell group by using system dynamics (systems biology) and compu-
tational devices such as the toggle switch or the oscillator, either in a natural or
artificial cell (synthetic biology) [2, 5, 7]. To simulate biochemical reactions in such
systems, models based on deterministic ordinary differential equations (ODEs) are
generally applied [10]. In cells, however, due to the stochastic behavior of a small-
population species, accurately predicting their fluctuations is not possible using such
methods. The result of this is that a large amount of computational time is inevitably
required for stochastic and accurate simulations. Thus, an obvious need exists for
an effective method with higher speed and a minimal loss of accuracy.

Bistability is a fundamental behavior of a biological system that has been studied
through numerous experiments and simulations [5]. Such a system has two steady

M. Hagiya (�)
Graduate School of Information Science and Technology, University of Tokyo, Tokyo,
Japan
e-mail: hagiya@is.s.u-tokyo.ac.jp

A. Condon et al. (eds.), Algorithmic Bioprocesses, Natural Computing Series,
DOI 10.1007/978-3-540-88869-7_29, © Springer-Verlag Berlin Heidelberg 2009

607

mailto:hagiya@is.s.u-tokyo.ac.jp
http://dx.doi.org/10.1007/978-3-540-88869-7_29


608 K. Mizunuma and M. Hagiya

states, and a small change in some molecular species in the population leads the sys-
tem from one state to the other. Biological examples of bistable systems include the
λ phage lysis-lysogeny switch [6], genetic toggle switches, including those found
in quorum sensing [10], the lactose operon repressor system, cellular signal trans-
duction pathways, and various systems of cell-cycle control. The key to studying
such systems is to know the regulatory mechanisms that result in switching between
states. Many experiments have indicated that noise plays an important role in the
behavior of bistable systems [5, 8]. To date, stochastic modeling has shown that the
effect of noise extensively affects the transition of states. Among the efforts in that
direction, Tian et al. employed the Poisson τ -leap method in place of ODEs to simu-
late the behavior of some molecules in cells, and showed the effect of noise on state
transition [10]. Their work also indicated gains in simulation speed obtained by the
Poisson τ -leap method compared to Gillespie’s original stochastic simulation algo-
rithm (SSA). However, because of the large population of cells, stochastic modeling
still requires a great deal of time to simulate the interaction between a cell and the
environment. In particular, considering that each cell affects the environment, all the
cells should be simulated together.

In this paper, we present a hybrid method to reduce the time for simulating
bistable biological systems that interact with the environment, including the quo-
rum sensing systems discussed by Tian et al.

We first deal with a case in which the interaction between a cell and the envi-
ronment does not depend on the state of a cell. We made an approximation of the
discrete numbers of molecules by assuming a continuous concentration. Because
numerous cells exist in such a system, the random effects of cells are averaged. As a
result, we can partition the simulation into two parts that of individual cells and that
of their environment, and use the Poisson τ -leap method [4] for the former and the
deterministic ODE method for the latter. In particular, each cell can be simulated
separately with the environmental concentration simulated in the latter part.

If the state of each cell has an effect on its environment, accurate simulations
require great computational time because all the cells should be simulated together.
However, we can approximate the behavior of the environment using the results of
simulating a small number of cells as a sample, i.e., by using the ratio of the cells
that made a state transition and the distribution of the time of state transition. Using
the result of these samples, we can obtain the continuous concentration of the envi-
ronment as a function of time. With this result, the simulation of sample cells can
be repeated, taking the new concentration of the environment into account. In prin-
ciple, this process can be iterated until the environmental concentration converges.
If the concentration converges after a small number of iterations, effective gains are
achieved in simulation speed with a small sacrifice in simulation accuracy. In sum-
mary, our method can reproduce an approximate behavior of a cell group and the
environment with a short simulation time.

A concrete example to which our method has been applied is the toggle switch
analyzed by Tian et al. [10]. We modified by it introducing the dependency of acyl-
homoserine lactone (AHL) production on cell states. We used the same experimental
parameters as in Tian et al. [10].
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The rest of this paper is organized as follows. We give a brief review of stochastic
methods and simulations of toggle switches in Sect. 2, and present our methods with
some examples in Sect. 3. Section 4 concludes the paper.

2 Background

In this section, we provide some background of the system used in our simulation:
the stochastic simulation methods and simulations of toggle switches in a cell or a
cell group.

2.1 Gillespie’s Stochastic Simulation Algorithm

2.1.1 Original SSA

In this paper, we study the evolution of molecular numbers in an idealized cell, i.e.,
a well-stirred chemical reaction system. Gillespie proposed a method for the time
evolution simulation of such a system [3]. This system has a fixed volume Ω and
contains N molecular species {S1, . . . , SN }, which interact chemically inside it at
a constant temperature through reaction channels. We then describe the number of
species Si as Xi(t) at time t . Note that our goal is to describe the time evolution
of X(t) = [X1(t), . . . ,XN(t)]T = x when we start the simulation with some given
initial state X(t0) = x0.

For each reaction channel Rj (j = 1, . . . ,M), we define a probability density
function aj (x) in a given state X(t), which is called propensity function and used
with the form of aj (x)dt to represent the probability that one reaction Rj will occur
somewhere inside Ω in an infinitesimal time interval [t, t + dt). We also define a
state change vector νj whose element νij represents the change in the number of
species Si due to the occurring reaction Rj . Hence, with these two functions, we
can characterize the reaction channels.

During a stochastic simulation, we can determine the time and index of the next
reaction. The stochastic simulation algorithm is the procedure for generating these
randomly in accordance with the current values of the propensity functions and then
recalculating the next state of the system.

In the so-called direct method, we use two independent random numbers r1 and
r2, a sample of uniform distribution in the unit interval, and then take the time of the
next reaction to be the current time plus μ, where

μ = 1

a0(x)
ln

(
1

r1

)

.
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Here, a0(x) = ∑M
k=1 ak(x), and the index of the next reaction is determined by the

inequality, which the value of j satisfies

j−1∑

k=1

ak(x) < r2a0 ≤
j∑

k=1

ak(x).

Finally, the system is updated by

x(t + μ) = x(t) + νj .

We adopted the result of this method [3, 9] as reference to measure the exactness
of the Poisson τ -leap method described in the next section.

2.1.2 τ -Leap Method

Our simulation model adopts the Poisson τ -leap method to achieve computational
efficiency of the stochastic algorithm [4]. This method was also proposed by Gille-
spie for reducing the simulation time with only a small loss of accuracy.

The assumption of this method is almost the same as that of his original
SSA: a well-stirred biochemical reaction system that contains N molecular species
{S1, . . . , SN } inside a volume Ω , reaction channels {R1, . . . ,RM} at a constant tem-
perature, propensity function aj (x), and the element νj , which represents the change
in the number of species due to reaction Rj . However, the evolution method of the
system is different from the original SSA. Because step sizes in the original method
tend to be very small, it requires a large simulation time. To overcome this draw-
back, we assume in the Poisson τ -leap method that a reasonably large number of
reactions are firing in a well- adjusted time interval [t, t + τ). Moreover, between
the time τ , the propensity function aj (x) is assumed to not change. In addition, the
number of reactions in the channel Rj is sampled from a Poisson random variable
P(aj (x)τ ) with the mean aj (x)τ . Finally, after generating a sample value for each
reaction channel, the system is updated by

x(t + τ) = x(t) +
M∑

j=1

νjP
(
aj (x)τ

)
.

By using this method, we can introduce a stochastic aspect into a simulation, in
contrast to the ODE method [10].

2.2 Simulations of Toggle Switches

2.2.1 Toggle Switch with SOS Pathway

The toggle switch, the behavior of which Tian et al. simulated, consists of two genes,
lacI and λcI , which encode the transcriptional regulator proteins LacR and λCI,
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respectively [2, 7, 10]. Because expression of one gene tends to repress the other,
this system has two distinct bistable states. A state with low expression of lacI when
λcI has high a expression level and a state that is the exact converse. Transitions
between these steady states can be induced by a signal that temporarily moves the
system to an intermediate state.

Although a deterministic model has been proposed that realizes the existence of
bistability in a genetic toggle switch, it does not agree with experimental results
concerning the population distribution of cells in each state.

Based on this deterministic model, Tian et al. introduced a stochastic aspect into
the model and analyzed the results using cells that show different genetic switching
behaviors under the same experimental condition [10]. The system is updated by the
generated Poisson samples given by

u(t + τ) = u(t) + P

[

ε

(

α1 + β1K
3
1

K3
1 + v(t)3

)

τ

]

− P

[(

d1 + γ s

1 + s

)

u(t)τ

]

,

v(t + τ) = v(t) + P

[

ε

(

α2 + β2K
3
2

K3
2 + u(t)3

)

τ

]

− P
[
d2v(t)τ

]
,

where u and v are the molecular numbers of λCI and LacR, respectively. In this sys-
tem, α1 is the basal synthesis rate of λCI and α1 +β1 is its maximal rate. In addition,
α2 + β2 are the equivalent parameters for LacR expression. The term ε denotes the
copy number of the toggle switch plasmid and s is related to the degradation of λCI
when DNA in cells is damaged and the SOS pathway becomes active. Finally, d2 is
the constant degradation rate of LacR. To investigate the fluctuational behavior of
the system, we reproduced the simulation by Tian et al. according to their parame-
ters [10]. We adopted 1

100 min as the time τ . The reaction data for this simulation
are α1 = α2 = 0.2 µM·min−1, β1 = β2 = 4 µM·min−1, ε = 1, d1 = d2 = 1 min−1,
K1 = K2 = 1 µM, and γ = 1 min−1. We estimated that ≈500 molecules per cell
in E. coli corresponds to a concentration of 1 µM. The initial molecular numbers
are u(0) = 2,125 and v(0) = 125 [7]. The degradation rate of λCI is set to d1 = 1
when t ∈ [0,60] and t ≥ 960, but d1 + γ s/(1 + s) in t ∈ [60,960] because it is nec-
essary to shift the system from the steady state to an intermediate state with large
degradation of λCI [10].

The results of these simulations are shown in Fig. 1. Panel A gives the result of
a deterministic simulation of successful switching (s = 2.2) and Panel B shows one
of unsuccessful switching (s = 1.7). The different behaviors of the genetic switch
under the same condition (s = 1.7) are shown in Panel C (successful switching) and
Panel D (unsuccessful switching).

Panel A and B demonstrate that genetic switching will occur only if the number
of λCI is below a threshold value attributable to its degradation.

Indeed, the deterministic model indicates that no switching takes place with
the parameter s = 1.7, but switching does occur with the parameter s = 2.2. Tian
et al. described that the boundary value of s is approximately 2.0 [10]. However, we
observed slightly different results in the simulations using the stochastic model. Fig-
ure 1 gives the results of two simulations: a successful transition in Panel C and an
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Fig. 1 Simulations of the toggle switch interfaced with the SOS signaling pathway

unsuccessful transition in Panel D based on the same degradation parameter s = 1.7.
Because the decrease in λCI leads the system from the steady state with a high λCI
expression level to an intermediate unstable state, the intrinsic noise brought about
by introducing the Poisson random variables into ODEs determines if switching
occurs.

Figure 2 shows the number of switched cells in stochastic simulations (using
Gillespie’s original method and the Poisson τ -leap method) based on different pa-
rameters s. Furthermore, the figure shows that to simulate stochastic models, we are
able to reliably use the Poisson τ -leap method instead of the exact SSA method and
reduce the computational time.

2.2.2 Toggle Switch with Quorum-Sensing Signaling Pathway

The toggle switch was also combined with a quorum-sensing signaling pathway,
giving a different example of a stochastic simulation. In the following example of a
quorum-sensing signaling pathway, the signal protein AHL determines the activity
of each cell based on variation in the cell population densities of the culture.

The artificial network system Kobayashi et al. constructed consists of a sensor
plasmid and the toggle switch plasmid [7]. As the signal molecule AHL diffuses
between the culture and cells, variation in cell population densities influences the
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Fig. 2 Number of switched cells in stochastic simulations based on different degradation parame-
ters s

sensor plasmid in each cell. In the toggle switch plasmid, the expression of LacR
is negatively regulated by λCI, and that of λCI is negatively regulated by the total
LacR from the sensor plasmid, resulting in the toggle switch behavior. The system
is updated by the generated Poisson samples given by

x1i (t + τ) = x1i (t) + P [b1τ ] + P [μ1k1x̄eτ ] − P [μ1x1iτ ] − P [x1id1τ ],

x2i (t + τ) = x2i (t) + P

[

ε1

(

b2 + β1x
2
1i

K2
1 + x2

1i

)

τ

]

− P [x2id2τ ],

x3i (t + τ) = x3i (t) + P

[

ε2

(

b3 + β2K
3
2

K3
2 + x3

4i

)

τ

]

− P [x3id2τ ],

x4i (t + τ) = x4i (t) + P

[

ε2

(

b4 + β3K
3
3

K3
3 + (x2i + x3i )3

)

τ

]

− P [x4id3τ ],

xe(t + τ) = xe(t) +
N∑

i=1

(
P [μ2k2x1iτ ] − P [μ2k2x̄eτ ]) − P [xedeτ ],

where x1i and xe are the number of AHL molecules in the ith cell and in the culture,
respectively; x2i and x3i are the numbers of LacR, which are from the sensor plas-
mid and the toggle switch plasmid, respectively; and x4i is the number of λCI. In
addition, ε1 and ε2 are the copy numbers of the sensor plasmid and the toggle switch
plasmid, respectively. μ1 and μ2 represent the diffusion rates of AHL across the cell
membrane, where μ2 = k1

k2
μ1. xji = xji(t) are numbers of molecules; x̄e and x̄1i are



614 K. Mizunuma and M. Hagiya

Fig. 3 Simulations of the toggle switch interfaced with the quorum-sensing signaling pathway

concentrations of xe and x1, respectively; and k1 (=500) and k2 (= k1 ·Vext/Vc) are
factors for exchanging concentrations to molecular numbers in each cell and in the
culture, respectively. (Vext represents the total extracellular volume, and Vc is the
volume of a cell) [1, 10]. Note that only AHL molecules are freely diffusible across
the membrane.

We simulated the system when t ∈ [0,840] according to the data of Tian et al.
under the initial condition (x1i , x2i , x3i , x4i , xe) |t=0 = (0,0,125,2125,0). The re-
action data are ε1 = 0.5 and ε2 = 1; b1 = 0.45 µM·min−1 and b2 = b3 = b4 =
0.2 µM· min−1; β1 = 0.97 µM·min−1 and β2 = β3 = 4 µM·min−1; d1 = d2 = d3 =
1 min−1 and de = 0.01 min−1; K1 = 0.11 µM and K2 = K3 = 1 µM; μ1 = 2 min−1;
and the volume factor Vext/Vc = 3.5 × 106 [10], and the cell number N = 3080 or
10000 (only with ODEs).

Results of the simulations are shown in Fig. 3. Panel A gives the result of a de-
terministic simulation of successful switching (N = 10000) and Panel B shows that
of unsuccessful switching (N = 3080). The different behaviors of a genetic switch
under the same condition (N = 3080) are shown in Panel C (successful switching)
and Panel D (unsuccessful switching). Here, although these two cells occur under
the exact same condition, by introducing stochastic parameters, we could realize
individualistic behaviors of cells in the same culture.

As in the toggle switch consisting of a single cell, by comparing Panel A with
Panel B, we see that genetic switching happens only if the number of λCI is below
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Fig. 4 Number of AHL molecules in the extracellular culture

a threshold value. In the deterministic model, no switching occurs with the number
of cells below 9000, but in the stochastic model, as shown by Tian et al., almost
all cells switch at around that number [10]. Figure 3 gives two simulations for a
successful transition in Panel C, and an unsuccessful transition in Panel D based on
the same environment in the culture. Because the decrease in λCI similarly leads
each cell from the steady state with a high λCI expression level to an intermediate
unstable state, the intrinsic noise brought about by introducing the Poisson random
valuables into ODEs makes the difference as to whether switching occurs.

The number of AHL molecules in the extracellular environment is shown in
Fig. 4. As previously described, this system is updated by the stochastic method.
Because the behavior of the genetic switch in each cell is determined by the same
environment, the most important factor for the switching population distribution is
considered the number of AHL molecules in the environment, i.e., xe. These results
indicate that if we can achieve this simulation curve, we will be able to reproduce
the behavior of each cell. Note that the curve is very smooth because the production
of AHL from several cells is averaged.

3 Hybrid Simulation

In this section, we present two approaches to hybrid simulations for reducing the
computation time of a stochastic simulation. We evaluated their accuracy and effi-
ciency using the previous quorum-sensing model.
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3.1 Methods

3.1.1 Basic Approach

First, we investigated a basic approach to hybrid simulations by using a toggle
switch with a quorum-sensing signaling pathway described in the previous section.
The toggle switch exists in each cell and is influenced by AHL, which diffuses in
from the environment. Because AHL is assumed to be the only molecular species
that can pass across cell membranes, the biological state of the cells is determined
by the extracellular molecular number of AHL. In other words, if simulating the
number of AHL molecules in a short time, we can easily predict the behavior of
each cell.

Here, we assume that the number of AHL molecules in the environment (extra-
cellular space in the culture) changes continuously, not randomly. The model is then
given by

x1i (t + τ) = x1i (t) + P [b1τ ] + P [μ1k1x̄eτ ] − P [μ1x1iτ ] − P [x1id1τ ],

x2i (t + τ) = x2i (t) + P

[

ε1

(

b2 + β1x
2
1i

K2
1 + x2

1i

)

τ

]

− P [x2id2τ ],

x3i (t + τ) = x3i (t) + P

[

ε2

(

b3 + β2K
3
2

K3
2 + x3

4i

)

τ

]

− P [x3id2τ ],

x4i (t + τ) = x4i (t) + P

[

ε2

(

b4 + β3K
3
3

K3
3 + (x2i + x3i )3

)

τ

]

− P [x4id3τ ],

dx̄1

dt
= b1 + μ1x̄e − μ1x̄1 − d1x̄1,

dx̄e

dt
= μ2N(x̄1 − x̄e) − dex̄e,

where the reaction parameters are the same as those of Tian et al. [10]. Note that the
equation for x̄e is changed to a continuous differential equation, and the equation
for x̄1 is added. This variable x̄1 represents the average concentration of AHL in a
cell.

Note that this approach is based on the observation in Sect. 2.2. Indeed, the num-
ber of diffused AHL molecules from each cell is randomly determined by a sample
of the Poisson distribution. However, because large numbers of cells are living in
the culture, all diffused AHL molecules are summed and the time evolution of their
gross number is averaged.

3.1.2 Iterative Approach

Next, we extended this basic approach and applied the iterative method, which we
also applied to the toggle switch with a quorum-sensing pathway. In the model Tian
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et al. simulated [10], AHL in the extracellular culture one-sidedly influenced the
toggle switch to change its state. We hence assume that the state of the toggle switch
reversely influences the environment. In short, we changed the production of AHL
in a cell to be influenced by the state of the toggle switch; if a state transition occurs,
with the degradation of λCI, the production rate of AHL (b1) also decreases. Under
such condition, we cannot use our basic approach as the behavior of each cell is
different regardless of whether its toggle switch changes its state.

Except for the equation for x̄1, the new model is given by

x1i (t + τ) = x1i (t) + P

[(

b + β4x
3
4i

K3
4 + x3

4i

)

τ

]

+ P [μ1k1x̄eτ ] − P [μ1x1iτ ]

− P [x1id1τ ],

x2i (t + τ) = x2i (t) + P

[

ε1

(

b2 + β1x
2
1i

K2
1 + x2

1i

)

τ

]

− P [x2id2τ ],

x3i (t + τ) = x3i (t) + P

[

ε2

(

b3 + β2K
3
2

K3
2 + x3

4i

)

τ

]

− P [x3id2τ ],

x4i (t + τ) = x4i (t) + P

[

ε2

(

b4 + β3K
3
3

K3
3 + (x2i + x3i )3

)

τ

]

− P [x4id3τ ],

dx̄e

dt
= μ2N(x̄1 − x̄e) − dex̄e,

where the reaction parameters are almost the same as those of Tian et al. [10], except
that some new parameters are introduced: b = 0.4 is the minimum synthesis rate of
AHL in a cell, b + β4 is its basal rate with β4 = 0.07, and K4 = 1 µM.

For simulating the behavior of the system, we used the following approach. First,
we introduced the deterministic ODE into the system, which calculates the average
concentration of AHL in a cell given by

dx̄1

dt
= (

b + β4
(
1 − ρ(t)

)) + μ1x̄e − μ1x̄1 − d1x̄1,

where ρ(t) is the ratio of cells whose toggle switch has undergone a state transition

by the time t . Here, we approximated the synthesis rate b + β4x
3
4i

K3
4 +x3

4i

of AHL in a

cell by b + β4 in the original state of the toggle switch (x4i � K4) and by b after
a state transition (x4i � K4). Initially, ρ(t) was set to be constantly 0. Second, we
simulated the system for a specific number of times. We adopted 100 as the number
of times to get the time-population distribution ρ(t) of the state transition of the
toggle switch. The ratio ρ(t) is approximated by M(t)

100 , where M(t) is the number
of cells that changed the state of the toggle switch by t . Next, we performed a
simulation that reflected the influence of the observed time-population distribution
of the toggle switch. From this, we attained another time-population distribution of
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the toggle switch based on the previous simulation. We repeated this process until
the time-population distribution no longer changed.

3.2 Results

3.2.1 Basic Approach

The results of the simulation are shown in Fig. 5. Two curves are shown: one ac-
cording to the method of Tian et al. and the other based on our method.

Because the number of AHL molecules that diffuse from each cell is averaged
for numerous cells (N = 3080), the curve based on our model is almost on top of
the curve using the original method. From the perspective of computation time, we
simulated a single cell and computed the time evolution of the extracellular AHL
molecules in 6.6 seconds, whereas the original model took about 4 hours. The time-
population distribution of cells can be approximately computed by stochastically
simulating a cell for a reasonable number of times, for example, 100, less than the
N = 3080 required for the time evolution of AHL.

3.2.2 Iterative Approach

The results of the simulation are shown in Fig. 6. Eight curves are shown: one by
the original method and the others by our method.

Fig. 5 Number of AHL molecules in the extracellular culture: original model and our basic model
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Fig. 6 Number of AHL molecules in the extracellular culture: original model and our iterative
model (1st–7th)

As shown in the figure, we achieved almost the same curve as the original method
after three or four iterations. The first curve was obtained with M(t) = 0; in other
words, we assumed that all cells did not change the state of the toggle switch. The
second curve, which is shown at the bottom, was lower than the original one because
the computed number of AHL molecules was larger, and the transition of the toggle
switch occurred in more cells in the first iteration. In the third and fourth iterations,
the curves become almost stable, and with more iterations, the curves converge to
the original one. From the viewpoint of computation time, we achieved the time
evolution of the extracellular AHL molecules in 12.0 minutes on each iteration,
whereas the original model took about 4 hours.

All simulation programs were written in Java. The platform we ran these pro-
grams on was a 1.3 GHz Pentium M PC with 0.99 GB memory.

4 Conclusions

In this study, we attempted to simulate the stochastic behavior of certain molecules
in cells. In systems such as cells, because some species have a smaller number of
copies, their behavior is not sufficiently averaged. However, in an experimental cul-
ture, for example, species that are large in number and those that are small in number
are often mixed although their fluctuational behaviors are different. While we dealt
with two different situations, our approaches were based on the same principle. We
divided our simulation into two parts, one part in each cell and the other part in the
environment, and then simulated them with the stochastic method and the continu-
ous method. Our results demonstrated the superior potential of our technique.
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Note that this study examined only the models based on Tian et al. Due to the
severity of the parameters, we were unable to test many models. In the future, we
plan to examine more models and parameters, and thus reveal the conditions by
which we can simulate these models using our approach.
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On Involutions Arising from Graphs

Jurriaan Hage and Tero Harju

Abstract We investigate various aspects of involutions of groups, i.e. anti-
automorphisms of order at most two. The emphasis is on finite Abelian groups.
We count the number of involutions for the cyclic groups, and consider the problem
for direct products of groups. We also give a characterization for the set of skewed
squares of finitely generated Abelian groups with identity as the involution. The
present paper is motivated by our research into switching classes of combinatorial
graphs where the edges have skew gains.

1 Introduction

Involutions occur naturally in biological processes especially in the base inversions
of DNA. The material in this paper is mainly motivated not so much by the bio-
logical applications, but rather by a quest for techniques which enable analysis of
networks of processors which can be modeled by actions of groups on finite combi-
natorial graphs. Such an action is presented by Seidel switching (see [10, 11] or [3,
5, 12]), and in a more general setting by switching in the so-called skew gain graphs
(see [2, 4, 6]).

In the context of Seidel switching (of ordinary graphs), the confronted involu-
tion corresponds to the inversion of the underlying group. In the general setting of
skew gain graphs, more flexibility is gained by having general involutions in the
underlying group that acts on the graphs.

In the following, we consider involutions in groups without the graphs which em-
ploy them. In Sect. 3, we concentrate on cyclic groups, and then in Sect. 4, we con-
sider involutions of direct products of finite groups. In Sect. 5, we consider a prob-
lem for infinite Abelian groups concerning involutions to which Hage [4] showed
that the membership problem of switching classes can be reduced.

2 Preliminaries

We use Z, R and R+ to refer to the sets of integers, real numbers and positive real
numbers, respectively. The cardinality of a set X is denoted by |X|. The identity
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function on X is denoted by ιX , from which the subscript X is omitted if it is clear
from the context.

Let Γ be a group. For a function f , the set of its fixed points is Fix(α) = {a ∈ Γ |
α(a) = a}, and the set of its inverted points is Inx(α) = {a ∈ Γ | α(a) = a−1}.

A bijection α : Γ → Γ is an anti-automorphism, if α(ab) = α(b)α(a) for all
a, b ∈ Γ . For Abelian groups, an anti-automorphism is always an automorphism.
An anti-automorphism α of the group Γ is an involution, if α2 = ι, i.e., if α has
order at most two.1 Let Inv(Γ ) denote the set of all involutions of Γ . We use #a

to denote the order of a group element a ∈ Γ . The kernel of a group homomor-
phism α : Γ → Γ ′ is the set ker(α) = {a | α(a) = 1Γ ′ }. The image of α is Im(α) =
{b ∈ Γ ′ | b = α(a), a ∈ Γ }. For other standard group notation, we refer to Rot-
man [8].

Example 1 Let a ∈ Γ , and let δ ∈ Inv(Γ ) be an involution. Then δ(1Γ ) = 1Γ ,
δ(an) = δ(a)n for integers n ∈ Z, and #δ(a) = #a. The inversion a �→ a−1 is an
involution of each group Γ .

Clearly, δ : Γ → Γ is an involution if and only if the mapping a �→ δ(a)−1 is an
automorphism of order at most two. Therefore, for instance, if Γ contains an ele-
ment g with #g = 2, then the mapping a �→ (a−1)g (= ga−1g−1) is an involution.
This is the case among the finite groups γ of even order.

The following two results are proven, at least, in [6].

Lemma 1 Let δ be an involution of a finite group Γ .

1. Either Fix(δ) �= {1Γ }, or δ is the inversion of Γ and Γ is of odd order.
2. Either Inx(δ) �= {1Γ }, or δ is the identity function and Γ is an Abelian group of

odd order.

Recall that the center of a group Γ is the normal subgroup Z(Γ ) = {x ∈ Γ | xy =
yx for all y ∈ Γ }.

Theorem 1 The center Z(Γ ) of Γ is closed under every involution of Γ . In partic-
ular, if Γ has a nontrivial center, then for all involutions δ either δ(z) = z for all
z ∈ Z(Γ ) or there exists an element x ∈ Z(Γ ) such that δ(x) = x−1 with x �= 1Γ .

3 Involutions of Cyclic Groups

Each finite cyclic group is isomorphic to Zn for some n, and by the fundamental
theorem of Abelian groups, it can be written as a direct sum

Zn
∼= Z

p
m1
1

⊕ Z
p

m2
2

⊕ · · · ⊕ Zp
mr
r

1In the literature, an element of a group of order two is also called an involution.
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of cyclic groups Z
p

mi
i

, where pi ≥ 2 are distinct prime numbers such that n =
p

m1
1 p

m2
2 . . . p

mr
r .

Let δ ∈ Inv(Zn), and suppose δ(1) = k. Now, δ(i) ≡ ik (mod n) and so 1 =
δ(k) ≡ k2 (mod n), i.e.,

k2 ≡ 1 (mod n). (1)

Example 2 Let then n = 16. If (1) holds for k then it also holds for n − k, so k = 15
is also possible. It is easy to see that if k > 1, then k ≥ √

n + 1, and hence k cannot
be equal to 2, 3 or 4. From Example 1, we know that #1 = #k, and hence k generates
Zn as well, implying (n, k) = 1. This means that other possible values for k that have
to be examined are 5 and 7. Of these, only 7 works (and thus also 9).

Let ξ : N → {−1,0,1} be defined by

ξ(n) =
{

1 if 8|n,
−1 if 2|n and 4 � |n,
0 otherwise.

Lemma 2 If n = pm for a prime p and m ∈ N, then (1) has exactly 21+ξ(n) solutions
k with 1 ≤ k ≤ n − 1.

Proof The two solutions k = 1 and k = n− 1 work for any cyclic group. In the case
p = 2 and m = 1, these give the same unique solution.

Assume that (1) holds for k /∈ {1, n − 1}. Now, pm|(k − 1)(k + 1), and thus
p = 2; otherwise, pm = k + 1 (because k < n) and so k = n − 1. Suppose 2i |k − 1
and 2j |k + 1 with i + j = m. We have 0 ≤ i < m.

If i = 0, and thus j = m then n = k + 1; a contradiction. Suppose then that i > 0
in which case also j > 0. Let r = min(i, j). Then 2r |(k + 1) − (k − 1) = 2, i.e.,
r = 1. If r = i, then j = m − 1, and so 2m−1|k + 1. If r = j , then i = m − 1, and so
2m−1|k − 1. Hence, in both cases,

k ≡ ±1 mod 2m−1. (2)

For m = 1 and m = 2, we obtain the same solutions as in the above, and for m ≥ 3,
we have two solutions.

Summarizing, we have one solution if p = 2 and m = 1, four solutions if p = 2
and m ≥ 3 and two if p �= 2 or p = 2 and m = 2.

In the above, we have only proven half of what we need to prove, namely indi-
cating possible solutions. The fact that these solutions do indeed always exist can
be verified easily from (1).

Hence, for every n, the number of solutions equals 21+ξ(n). �

Theorem 2 Let n = p
m1
1 p

m2
2 . . . p

mr
r be a prime decomposition of n with pi < pi+1,

and mi > 0 for 1 ≤ i ≤ r − 1. Then | Inv(Zn)| = 2r+ξ(n).
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Proof Lemma 2 can be applied to each p
mj

j , with 1 ≤ j ≤ r . We can then use
Theorem 122 in the book of Hardy and Wright [7] to conclude that the total number
of solutions equals the product of the numbers of solutions to the separate equations
for p

mj

j for 1 ≤ j ≤ r .
If p1 �= 2, then every prime number gives two solutions yielding a total of 2r so-

lutions, and indeed in this case ξ(n) = 0. If p1 = 2, then we have three possibilities:
m1 = 1, and hence p1 yields only one solution, and hence we have a total of 2r−1

solutions. The other two cases, m1 = 2 and m1 > 2, follow similarly, because now
ξ(n) = ξ(p

m1
1 ). �

Note that the involutions can be found by solving two sets of equations using the
Chinese remainder theorem; see [7].

4 Involutions of Group Products

In the previous section, it turned out that finding involutions of cyclic groups is
rather easy. In this section, it is shown that computing the involutions of a direct
product of two groups involves taking the Cartesian product of the sets of involutions
of both groups.

We remind (see, e.g., Rotman [8]) that the inner and outer direct products of
groups coincide up to isomorphism, i.e., for a group Γ , if Γ1 and Γ2 are two of its
normal subgroups such that Γ = Γ1Γ2 and Γ1 ∩ Γ2 = {1Γ }, then Γ ∼= Γ1 × Γ2. If
Γ = Γ1Γ2 is a direct product, then a1a2 = a2a1 for all a1 ∈ Γ1 and a2 ∈ Γ2, and,
moreover, each element a ∈ Γ has a unique representation as a product a = a1a2,
where ai ∈ Γi .

Let Γ = Γ1Γ2 be a direct product, and let α : Γ → Γ be any function. We
define the projections α(i) : Γ → Γi for i = 1,2 by: for each a ∈ Γ let α(a) =
α(1)(a)α(2)(a), where α(1)(a) ∈ Γ1 and α(2)(a) ∈ Γ2. By the uniqueness property of
direct products, these functions are well defined. We also write

δ[i] : Γi → Γi

for the restriction of δ(i) onto the subgroup Γi for i = 1,2.
The following example shows that an involution of a direct product cannot nec-

essarily be obtained by projections of its components.

Example 3 Let Γ = Γ1 × Γ1 for a group Γ1, and let δ be the reversed inversion
on Γ , that is,

δ(a1, a2) = (
a−1

2 , a−1
1

)

for all a1, a2 ∈ Γ1. Then δ is an involution of Γ . Indeed, it is clear that δ2 = ι, and,
moreover, for all ai, bi ∈ Γ1,
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δ(a1, a2) · δ(b1, b2) = (
a−1

2 , a−1
1

)(
b−1

2 , b−1
1

) = (
a−1

2 b−1
2 , a−1

1 b−1
1

)

= (
(b2a2)

−1, (b1a1)
−1) = δ(b1a1, b2a2)

= δ
(
(b1, b2) · (a1, a2)

)
.

However, δ is not of the form δ = (δ1, δ2) for any functions (let alone involutions)
δ1 and δ2 of Γ1, if Γ1 is nontrivial.

However, we do have

Theorem 3 Let Γ = Γ1Γ2 be a direct product.

1. If δi ∈ Inv(Γi) for i = 1,2, then the function δ : Γ → Γ defined by

δ(a) = δ1(a1)δ2(a2) for a = a1a2 with ai ∈ Γi

is an involution of Γ .
2. If δ ∈ Inv(Γ ), then there are normal subgroups Δ1 and Δ2 of Γ such that Γ =

Δ1Δ2 is a direct product with |Δ1| = |Γ1|, |Δ2| = |Γ2| for which δ[i] : Δi → Δi

is an involution of Δi for i = 1,2.

Proof In order to prove (i), let δi be involutions as stated. Let a = a1a2 and b = b1b2

for a1, b1 ∈ Γ1 and a2, b2 ∈ Γ2. Now, for the function δ as defined in the claim,

δ(ab) = δ(a1a2b1b2) = δ(a1b1a2b2) = δ1(a1b1)δ2(a2b2)

= δ1(b1)δ1(a1)δ2(b2)δ2(a2) = δ1(b1)δ2(b2)δ1(a1)δ2(a2)

= δ(b1b2)δ(a1a2) = δ(b)δ(a)

and thus δ is an anti-automorphism of Γ . Further, the condition δ2(a) = a is easily
checked.

For (ii), suppose first that δ ∈ Inv(Γ ), and define

Δ1 = {δ(a) | a ∈ Γ1} and Δ2 = {δ(b) | b ∈ Γ2}.
Clearly, a ∈ Δ1 (resp. in Δ2) if and only if δ(a) ∈ Γ1 (resp. δ(a) ∈ Γ2). Since an
involution is a bijection, we have immediately that |Δi | = |Γi | for i = 1,2.

We show then that Δ1 and Δ2 are normal subgroups of Γ . Indeed, let y = aua−1

for some a ∈ Γ and u ∈ Δ1. Now, δ(y) = δ(a)−1δ(u)δ(a) ∈ Γ1, since δ(u) ∈ Γ1 and
Γ1 is a normal subgroup of Γ . This shows that Δ1 is normal in Γ . The case for Δ2

is symmetric.
Next, we observe that Δ1 ∩Δ2 = {1Γ } is the trivial subgroup of Γ . Furthermore,

if a ∈ Γ , then a = a2a1 for some ai ∈ Γi , because Γ = Γ2Γ1. Therefore, δ(a) =
δ(a1)δ(a2), where δ(a1) ∈ Δ1 and δ(a2) ∈ Δ2. Since each element b ∈ Γ is an
image b = δ(a), we have shown that Γ = Δ1Δ2 is a direct product of Γ .

It is clear that δ[i] is an involution of Δi for both i = 1 and i = 2. �
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In particular, if Γ is an Abelian group, then it is a direct product (sum) of cyclic
groups, and thus Theorem 4 states that the involutions of an Abelian group can be
obtained from the cyclic groups Zpk that are its direct components. However, count-
ing the number of involutions of Γ is not reduced in this way to the number of in-
volutions of its direct components, because part (ii) of Theorem 4 uses ‘swappings’
of subgroups.

Example 4 Let Γ = Z2 ⊕ Z2. The groups Γ and Z2 have only the identity function
ι as their involution (equal to the group inversion), but in the case of the former, it is
not the only one. Indeed, the following swapping function δ is an involution of Γ :

δ((a, b)) = (b, a) for a, b ∈ {0,1}.

5 The set Δ2(Γ, δ)

In [4], the following set of decomposable values arose (called the skewed squares in
[5]): for a group Γ and its inversion δ, let

Δ2(Γ, δ) = {a ∈ Γ | a = bδ(b) for some b ∈ Γ }.
In this section, we investigate this set in more detail.

First, in the following proof, we have a connection of the above set with decom-
positions of Abelian p-groups.

Theorem 4 Let Γ be a finite Abelian group of odd order, and let δ ∈ Inv(Γ ). Then
Γ is isomorphic to the direct sum Fix(δ) × Inx(δ).

Proof It is well known that in each Abelian group of odd order every element a ∈ Γ

has a unique “square root” x in Γ , i.e., x2 = a, when adopting the multiplicative
notation; see Rotman [9, p. 81]. Now, for each a ∈ Γ , a = xy holds for some x ∈
Fix(δ) and y ∈ Inx(δ) if and only if a−1x = y−1 = δ(y) = δ(a)δ(x−1) = δ(a)x−1

if and only if x2 = aδ(a) and y2 = (aδ(a))−1. This proves the claim since Fix(δ) ∩
Inx(δ) = {1Γ }. �

Example 5 If δ is the group inversion, then clearly Δ2(Γ, δ) = {1Γ }. Also, it is easy
to determine that Δ2(Z, ι) is the set of even numbers, Δ2(R, ι) = R for the additive
group of reals, and Δ2(R+, ι) = R+ for the multiplicative group of positive real
numbers.

Given a fixed group Γ with an involution δ, we define the function sΓ,δ by

sΓ,δ(a) = aδ(a) for a ∈ Γ

so that we have Im(sΓ,δ) = Δ2(Γ, δ). When Γ and δ are obvious from the context
we write s instead of sΓ,δ .
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Lemma 3 For any group Γ , Δ2(Γ, δ) is closed under the group inversion, and
Δ2(Γ, δ) ⊆ Fix(δ).

Proof Let s(a) ∈ Δ2(Γ, δ). Then s(a)−1 = δ(a)−1a−1 = s(δ(a)−1) ∈ Δ2(Γ, δ).
For the second part, δ(s(a)) = δ(aδ(a)) = aδ(a) = s(a). �

Because involutions of a direct product do not always project onto the factors, it
is unlikely that we can determine the skewed squares of a group Γ with involution
δ from the skewed squares of the groups in a decomposition of Γ , see Example 3.
However, we do have that involutions δ1 and δ2 of groups Γ1 and Γ2, respectively,
can be used to construct an involution (δ1, δ2) for Γ1 × Γ2 by applying them com-
ponentwise. For involutions, thus constructed the set of skewed squares can be con-
structed from the sets of skewed squares of the factors as proved by the following
result.

Theorem 5 Let Γ = Γ1 × Γ2 be a direct product of groups and let δi ∈ Inv(Γi) for
i = 1,2. Then Δ2(Γ, (δ1, δ2)) = Δ2(Γ1, δ1) × Δ2(Γ2, δ2).

Proof It holds that

(a, b)(δ1, δ2)(a, b) = (a, b)
(
δ1(a), δ2(b)

) = (
aδ1(a), bδ2(b)

)
,

where aδ1(a) ∈ Δ2(Γ1, δ1) and bδ2(b) ∈ Δ2(Γ2, δ2). �

6 Example: The Case of the Identity Involution

In the rest of the article, we assume that δ is the identity function, ι. Note that ι is
an involution of every Abelian group and no other, so Γ must be Abelian. Written
additively, the definition of Δ2 reduces to

{a ∈ Γ | a = 2b for some b ∈ Γ }.
So, in a sense, Δ2 contains the “even elements” of the group Γ .

Example 6 We can easily verify that Δ2(Z2, ι) = {0}, Δ2(Z3, ι) = {0,1,2},
Δ2(Z4, ι) = {0,2}, and Δ2(Z6, ι) = {0,2,4}.

From this example, it emerges that for even n, Δ2(Zn, ι) contains exactly the
even numbers and for odd n, it equals the entire Γ . The latter is not surprising since
if x ∈ Γ has order n and (m,n) = 1, then x is divisible by m.

It is plain that Δ2(Z2k , ι) = {0,2,4,6, . . . ,2k−1}, for k ≥ 1, and Δ2(Zpk , ι) =
Zpk where p > 2 is prime and k ≥ 1, and Δ2(Z, ι) contains the even numbers and
so by Theorem 5 and the fundamental theorem of finitely generated Abelian groups
we get the following result.
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Theorem 6 Let Γ be a finitely generated Abelian group with a decomposition Γ1 ⊕
· · · ⊕ Γn (unique up to the order of the summands) into infinite cyclic groups and
cyclic p-groups. Then Δ2(Γ, ι) = Δ2(Γ1, ι) ⊕ · · · ⊕ Δ2(Γ	, ι).

The previous theorem says nothing about Abelian groups that are not finitely
generated such as R+ under multiplication. To deal with R+, we recall the notion of
divisibility: a group is divisible if for every element a and n > 0, we have a = bn for
some b. Note that the set Δ2 is only concerned with divisibility by two. Therefore,
the following result is easy.

Theorem 7 If Γ is divisible, then Δ2(Γ, ι) = Γ .

A result such as this suggests that it may be worthwhile to investigate other de-
compositions of groups, into divisible and reduced components, or into torsion and
torsion free components.

Acknowledgement We thank professor R. Tijdeman and W. Kosters for discussions on the in-
volutions of cyclic groups.
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Parallel Computing by Xeroxing
on Transparencies

Tom Head

Abstract We illustrate a procedure for solving instances of the Boolean satisfia-
bility (SAT) problem by xeroxing onto transparent plastic sheets. Suppose that m

clauses are given in which n variables occur and that the longest clause contains k

literals. The associated instance of the SAT problem can be solved by using a xerox
machine to form only n + 2k + m successive transparencies. The applicability of
this linear time algorithm is limited, of course, by the increase in the information
density on the transparencies when n is large. This same scheme of computation
can be carried out by using photographic or other optical processes. This work has
been developed as an alternate implementation of procedures previously developed
in the context of aqueous (DNA) computing.

1 Introduction

This article records a talk given at the Algorithmic Bioprocesses meeting in Leiden
in 2007. The brief style of the talk is adhered to, but the interested reader may see
[5] for an alternate presentation of the fundamental concepts introduced here.

Suppose that we have a xerox machine that “reads” as input a rectangle of width
w and height h and “writes” as output a rectangle of these same dimensions. We
use transparent plastic sheets as the medium from which the input is read and as
the medium onto which the output is written. Computing is made possible through
iteration of such reading and writing by allowing the transparency that is read to be
overlaid by other transparencies. We also allow the use of masking strips.

In a classical paper, Cook [1, 2] demonstrated the centrality of the algorithmic
problem of deciding whether, for a given list of clauses, a truth setting can be found
for the Boolean variables occurring in the clauses that results in each of the clauses
having the value True. This is the problem we treat here.

We suppose that m clauses are given, that the maximum number of literals occur-
ring in any of the clauses is k, and that the number of distinct variables occurring in
the set of clauses is n. We suggest that the reader imagine the tactile experience of
actually handling such transparencies as they are laid onto a xerox machine. We are
confident that the essence of the procedure proposed for solving (in principle) any
satisfiability (SAT) problem will be clear once we have illustrated such a solution
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for a case in which m = 4, n = 3 and k = 3. We treat the specific case in which the
four clauses are: (1) p ∨ q , (2) p′ ∨ q ∨ r ′, (3) q ′ ∨ r ′, and (4) p′ ∨ r . The traditional
SAT question in this case is: Does a truth value assignment exist for p,q, r such that
the four given clauses have the value True? We have chosen this example for two
reasons: It is simple enough to be treated in complete detail. It is the same exam-
ple that we treated previously by aqueous computing [3, 8] which allows a detailed
comparison of xerographic computing and aqueous computing.

The computation is divided into two phases—each having its particular technique
of parallelization. The table of all 2n truth settings is constructed in n steps is Sect. 2.
In Sect. 3, it is shown that by using at most 2k copies of the truth table, each clause
can be evaluated at every row of the truth table simultaneously. In Sect. 4, it is then
shown how, using an appropriate negative xerox copy associated with each of the
m clauses, to complete the solution of the satisfiability problem using n + 2k + m

transparencies. In Sect. 5, we indicate a major (lateral) extension of our xerox com-
puting method. Computing through xerography was born from a long term dream of
using light as the tool for “writing on molecules” in aqueous computing [3]. Finally,
the dawn: why not write with light on photographic film, or having no photo-lab, a
xerox machine?

2 Constructing an n Variable Truth Table by Xeroxing
onto Only n Transparencies

Lines of a truth table for the ordered triple of Boolean variables p,q, r will con-
sist of triples of absolutely opaque squares, �, and absolutely transparent squares.
We indicate the location of each transparent square by writing, . Here, an opaque
square � denotes the truth value True and a transparent square denotes the value
False. Thus, when occurring as rows in a truth table, � � expresses: p = True,
q = False, r = True and expresses: p = q = r = False. The identifications
� = True and = False are the appropriate choices when OR statements are to be
evaluated as we shall see in Sect. 3. The reverse identifications are appropriate when
AND statements are to be evaluated as we shall see in Sect. 4. The first line of the
truth table is initialized with a black band of thickness h/23 across the top edge of
the transparency. This initial transparency is denoted here by the display:

p, q, r

� � � where the notation “7 rows” reminds that the transparency has a
7 rows still transparent region lying below the black band that is

adequate to store seven more rows.

From this initial transparency, the complete truth table is constructed as follows:

� � � � � Each display on the right is obtained from the
7 rows 7rows neighboring display at its left by xeroxing the left

display with the appropriate column masked.
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� � � � � Each new display at the left is created by laying the
� � � transparency at the right (above) under the

6 rows 6 rows transparency at its left (above) in the appropriate
manner.

� � � � �
� � �

� � �
�

4 rows 4 rows

� � � With n = 3 xeroxing operations, as indicated above,
the complete n = 3 column 2n = 8 row truth table
has been produced. This method applies in the
general case to produce, for any positive integer n,
the n variable table. Practicality is, of course,
challenged by sufficiently large n. This limitation
may be expected to continue through the future even
though the precision of xerography, photography, or
other applicable optical processes may be greatly
increased. Perhaps it will eventually prove not to
exclude practicality in significant cases.

� �
� �

�
� �

�
�

3 Evaluating a Clause over All Truth Settings Simultaneously

Form k = 3 identical xerox copies of the truth table constructed in Sect. 2. The
clause p ∨ q can be evaluated at each of the lines of the truth table in Sect. 2 by
choosing two of the three copies of the truth table and laying the column headed by
p on the first copy over the column headed by q on the second copy. This gives the
complete truth column for p ∨ q . For use in Sect. 4, record this column as follows:
Make a negative copy of this column of values on a transparency after masking
all columns other than the column for p ∨ q using an opaque mask. (Yes, xerox
machines do make negative as well as positive copies.)

To be prepared to treat clauses, for example, p′ ∨ q ′ ∨ r ′, in which literals in-
volving negations occur, form k = 3 identical negative copies of the truth table con-
structed in Sect. 2. Thus, we evaluate p′ ∨q ∨ r ′ by using two of the negative copies
and one of the positive copies of the truth table and bringing the columns for p′,
q , and r ′ into coincidence. Finally, after masking all columns other then this single
triple layer column, a negative copy of this column is made. Truth columns for the
remaining clauses can be made and recorded in this same way.

4 Completing the Solution

How are the negative copies of the value columns for the four clauses produced in
Sect. 3 used to complete the solution? Below are the four negative columns followed
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by a column obtained from the first four by overlaying them. The original truth table
is also copied below:

p ∨ q p′ ∨ q ∨ r ′ q ′ ∨ r ′ p′ ∨ r Solution? Truth Table
� � No � � �
� � No � �

� � No � �
� � No �

� � No � �
YES �

� � No �
� � No

By taking the negatives of the value columns of the four clauses, we have effectively
reversed the significations of � and . The presence of � in the value column of a
clause now signifies that the clause is False and the presence of signifies that
the clause is True. Thus, when these value columns are overlaid, there will exist
a solution of the related SAT problem if and only if there appears in the overlaid
column an occurrence of . Moreover, when solutions exist they can all be read
immediately by laying the overlaid column (headed: Solution?) beside the original
truth table. In the present case, we see above that there is exactly one solution of this
instance of the SAT problem and that the truth settings that give this solution are:
p = False, q = True, r = False.

5 Extending the Scope and Observing the Flexibility
of Computing by Xerography

In the construction of the n variable truth table in Sect. 2, we concatenated each
newly created transparency at the foot of the previous. A second option exists: the
new transparency can be set adjacent to the previous one. Our meaning here will be
immediately clear on examining one simple example. For an n = 4 variable SAT,
having variables p,q, r, s, we display at the left below the result of the first three
xerox and concatenate steps. The appropriately masked fourth xeroxing step is dis-
played, not below but adjacent at the right. We say that we have displayed the four
variable truth table in two segments. This gives a display having width 4 × 2 = 8
columns and 23 = 8 rows. One should take a moment to realize that evaluation
of clauses works in the multi-segment case just it does in the single segment case
treated in Sect. 3. The only difference is that the truth values of clauses also occur in
similar segments. One need only imagine computing the truth values for p∨q ∨s by
lining up, by hand, the columns for p, q, and s in the first segments of three copies
of the two-segment truth table and realizing that the three appropriate columns of the
second segment are thereby automatically correctly lined up. The reader may wish
to imagine the appropriate handling of one positive copy and two negative copies of
the truth table that result in the truth column(s) for p′ ∨ r ∨ s′.
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p, q, r , s p ∨ q ∨ s p′ ∨ r ∨ s′ p′, q ′, r ′, s′
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �

A caution is in order: Observe that if a five variable table were to be used with
the number of rows held at eight, then one more xerox would be made of the two
segment table—producing a four (not a three) segment table when laid adjacent to
the two segment stage. The general formula for the number of rows and columns
required when an n = i + j table is constructed to have j segments is: n × 2j

columns and 2i rows.
How does all this scale up? Suppose we wish to solve 10 variable SAT problems

using the same size transparencies as used for the three variable SAT solved in
previous sections. Suppose we use three segments. This will require 10 × 23 = 80
columns and 27 = 128 rows. This could be done with care by hand. For 20 variable
SATs using 8 segments would require 20 × 28 = 5120 columns and 212 = 4096
rows. Although this would require special technology, it should still be possible.
Once the three positive and three negative copies of the 20 variable truth table have
been prepared, any 3-SAT with 20 (or fewer) variables could be solved quickly
because only one additional xerox operation for each clause of any given 3-SAT
instance would be required.

If it should be practical to solve substantial SAT problems in this manner, the
fantasy for the future would be: The truth table with the largest number of variables,
say N , capable of being processed successfully using the highest level of then avail-
able technology would be produced. Then at that time every 3-SAT instance having
N , or fewer, variables could be solved by the method described here in time linear
in the number of clauses. The computation process could be easily automated based
on a stack of six (analogs of the) transparent sheets (three positive and three negative
copies of the truth table). Presumably in the future some quite different optical tech-
nology would be involved—but at least the transparency based xerox procedures
illustrated here provide assurance that a technology is possible.

6 The Immediate Future

Since presenting the talk reported above, we have solved instances of the follow-
ing algorithmic problems by xerography using the methodology illustrated here for
SAT problems: (1) finding all minimal dominating sets in a graph, (2) finding all
maximum independent sets in a graph, and (3) finding all permutations contained
in a binary relation. These procedures have arisen by taking the previously given
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aqueous solutions ([4, 7, 9], respectively) “out of the water and into the light.” The
minimum and maximum conditions in (1) and (2) use xerography techniques we
have recently developed for: (4) adding arbitrarily long lists of pairs of n-bit binary
numbers simultaneously in parallel, and (5) finding the maximum value and all its
locations in arbitrarily long lists of n-bit binary numbers. We are now developing
a unified exposition of the xerographic approach to combinatorial problems. The
reader is likely to “see” the whole program from these remarks: View Sect. 2 above
as showing that the traditional trees of possibilities of depth n, in which the number
of leaves grows exponentially in n, can be constructed with only n xeroxing (photo)
operations. Notice that during the construction, substantial pruning can be carried
out in cases such as (1), (2), and (3) above. With the resulting “table” replacing the
traditional tree diagram, further restrictions can be tested simultaneously in parallel
as in Sect. 3 above. When needed (as in (1) and (2), but not (3) above), parallel
addition (4) can be used to count in parallel the numbers of “ones” in each row.
Then maximum (and using a negative xerox, minimum) values can be determined
with their locations using (5). The interested reader is invited to carry out this pro-
gram for him/her self immediately—and to go on to apply it to further combinatorial
problems. Correspondence is invited at: tom@math.binghamton.edu.

Older readers will recall that several decades ago computing was based on a tri-
umvirate: (1) a lowly key punch machine, (2) decks of data cards, and (3) a mono-
lithic computer. The first two members have since disappeared. The insight here
is that with a sufficiently flexible “key punch,” the data cards could have done the
computing, and the computer could have been returned directly to the manufacturer.
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Some Undecidable Dynamical Properties
for One-Dimensional Reversible Cellular
Automata

Jarkko Kari and Ville Lukkarila

Abstract Using the fact that the tiling problem of Wang tiles is undecidable even if
the given tile set is deterministic by two opposite corners, it is shown that the ques-
tion whether there exists a trajectory which belongs to the given open and closed set
is undecidable for one-dimensional reversible cellular automata. This result holds
even if the cellular automaton is mixing. Furthermore, it is shown that left expan-
sivity of a reversible cellular automaton is an undecidable property. Also, the tile
set construction gives yet another proof for the universality of one-dimensional re-
versible cellular automata.

1 Introduction

1.1 History and Brief Outline of the Results

The history of cellular automata dates back to John von Neumann and Stanislav
Ulam. This makes cellular automata one of the earliest biologically motivated mod-
els of computation. In cellular automata, a regular network of elementary devices
operate synchronously, interacting locally with each other. The collective behavior
of these cells can be amazingly complex as seen, for example, in the Game-of-Life.
This emergence of complexity is an essential feature that makes cellular automata
useful models and simulation tools in the study of emergent behaviors.

In physics, cellular automata are good models for microscopic systems consisting
of massive numbers of simple particles interacting locally with each other. Time re-
versibility is a property of microscopic physics that can be programmed into cellular
automata by choosing the local interaction rule appropriately. Such reversible cel-
lular automata are interesting objects of study, and also the topic of this article. We
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are interested in determining which reversible cellular automata possess some well-
known dynamical properties associated to chaotic behavior. Properties investigated
include variants of transitivity, sensitivity, and expansivity, and we concentrate on
one-dimensional cellular automata only. All our results are for undecidability, and
they are based on reductions from a reversible version of the well-known domino
problem proved undecidable by Berger in 1966 [3].

The domino problem, also known as the tiling problem of Wang tiles, deals with
plane tilings using unit square tiles with colored edges. The problem is to deter-
mine, given a finite collection of such tiles, whether the entire plane can be covered
by copies of the tiles in such a way that everywhere the abutting edges have identical
colors. The tiling problem has become the basis of reduction for many undecidabil-
ity proofs concerning cellular automata. So far, however, reversible one-dimensional
cellular automata have resisted this approach. In this work, we introduce 2-way de-
terministic tile sets to resolve the problem: we call a set of tiles 2-way deterministic
if each tile is uniquely determined by the colors on its north and east sides, as well
as by the colors on the opposite south and west sides. A valid tiling of the plane
by such tiles can be viewed as a space-time evolution of a reversible cellular au-
tomaton. From the fact that the domino problem remains undecidable even when
the input instance is 2-way deterministic, we conclude new undecidability results
for reversible cellular automata.

Along the way, we also obtain a simple tiling description of a result of Dubacq
stating that any Turing machine (reversible or not) can be simulated in real time by
a one-dimensional reversible cellular automaton [5]. Some undecidability problems
related to the dynamical properties of cellular automata are presented in Sect. 4 for
reversible one-dimensional cellular automata. Finally, it is shown that it is undecid-
able whether a given one-dimensional cellular automaton is left expansive. Previ-
ously, no undecidability results regarding dynamical properties of one-dimensional
reversible cellular automata have been known.

1.2 Cellular Automata

Cellular automata are dynamical systems which update the variables on an infinite
d-dimensional lattice according to some function with a finite number of arguments.
Formally, a cellular automaton is a 4-tuple A = (d,A,N,f ), where d is the dimen-
sion, A is the state set, N = (x1, . . . ,xn) is the neighborhood vector consisting of
vectors in Zd and f : An → A is the local rule. A configuration c ∈ AZ

d
is a map-

ping which assigns a unique state for each cell location in Zd . The cells in locations
x + xi are called neighbors of the cell in location x.

At every time step, the new configuration c′ is determined by

c′(x) = f
(
c(x + x1), . . . , c(x + xn)

)
, (1)

that is, the new state of cell in location x is computed by applying the local rule to
its neighbors. The global rule F : AZ

d → AZ
d

is defined by setting F(c) = c′ in the
sense of (1). State q is said to be quiescent if f (q, . . . , q) = q .
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A cellular automaton is said to be reversible if the global rule F has an inverse
mapping F−1. It can be shown that if the inverse mapping F−1 exists, it is a global
rule of a cellular automaton, that is, it is defined by a local rule. It is also known
that F is reversible if and only if it is injective. Furthermore, for case of cellular
automata, the injectivity of the global rule implies surjectivity of the global rule [12].
It is in general undecidable to know if a given cellular automaton is reversible [11],
but in the one-dimensional case reversibility is decidable [1]. A cellular automaton
is said to be nilpotent if it has a quiescent state q and there exists such a bound n0
that

Fn(c)(i) = q

for every n ≥ n0, i ∈ Z and c ∈ AZ
d
. It is undecidable to determine if a given cellular

automaton is nilpotent [10].
The distance between two different configurations c and e can be defined to be

d(c, e) =
(

1

2

)min{‖x‖∞|c(x)�=e(x)}
,

where ‖ · ‖∞ is the max-norm. Function d(·,·) is also a metric thus making the set of
configurations a metric space. The balls in the metric are called cylinders and they
form a basis for the topology. Radius r cylinder containing configuration c is the set

Cyl(c, r) = {
e ∈ AZ

d |c(x) = e(x) when ‖x‖∞ ≤ r
}

For every radius r, there are only finitely many cylinders and these cylinders are by
definition disjoint. Therefore, radius r cylinders form a finite partition of the space
of configurations. Hence, every cylinder is clopen because the complement of every
cylinder is a union of other cylinders with the same radius.

Pair (X,F ) is a dynamical system if X is compact topological space and F :
X → X is a continuous mapping. In particular, d-dimensional cellular automata are
dynamical systems of the form (AZ

d
,F ). The properties of cellular automata as

dynamical systems have been extensively studied. Further background information
on cellular automata can be found in [12]. In this work, we concentrate on one-
dimensional reversible cellular automata, so from now on d = 1.

Transitivity, (topological) mixing and different variants of expansivity are among
dynamical properties related to chaotic behavior. Cellular automaton (AZ,F ) is
transitive if for all non-empty open sets U and V there exists such a positive integer
n that Fn(U) ∩ V �= ∅. Cellular automaton (AZ,F ) is mixing if for all non-empty
open sets U and V there exists such a positive integer n that Fk(U) ∩ V �= ∅ for
every k ≥ n. By definition, a cellular automaton which is mixing is transitive also.
A reversible cellular automaton (AZ,F ) is expansive if there exists such a constant
ε that for any two different configurations c and e

d
(
Fn(c),F n(e)

) ≥ ε (2)

for some integer n ∈ Z.
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A cellular automaton (AZ,F ) is positively expansive if there exists such a con-
stant ε that for any two different configurations c and e (2) holds for some positive
integer n ∈ N.

It is known that only one-dimensional cellular automata can be expansive or pos-
itively expansive [7, 21]. It can be easily shown that a reversible cellular automaton
cannot be positively expansive. Furthermore, positive expansivity implies topologi-
cal mixing (and transitivity) [4]. A simple example of a cellular automaton, which
is reversible, expansive and transitive, is the shift σ : AZ → AZ. The shift mapping
is defined according to

σ(c)(i) = c(i + 1).

A reversible cellular automaton (AZ,F ) is left expansive if there exists such a con-
stant ε that for any two different configurations c and e with c(i) �= e(i) for some
i < 0 (2) holds for some integer n ∈ Z. Similarly, a reversible cellular automaton is
right expansive if there exists such a constant ε that for any two different configura-
tions c and e with c(i) �= e(i) for some i > 0 (2) holds for some integer n ∈ Z.

A cellular automaton (AZ,F ) is positively left expansive if there exists such a
constant ε that for any two different configurations c and e with c(i) �= e(i) for some
i < 0 (2) holds for some positive integer n ∈ N. Similarly, the cellular automaton is
positively right expansive if there exists such a constant ε that for any two different
configurations c and e with c(i) �= e(i) for some i > 0 (2) holds for some positive
integer n ∈ N.

The original definition of left and right expansivity given by Kurka actually
meant positive left and right expansivity [14]. Here, Kurka’s left expansivity is
called positive left expansivity and right expansivity is called positive right expan-
sivity because of the similar difference between expansivity of reversible cellular
automata and positive expansivity of the irreversible cellular automata. Intuitively
positive left expansivity means that if two configurations differ by some cell then
their later images will differ by cells further to the right. Similarly positive right ex-
pansivity means that if two configurations differ by some cell then their later images
will differ by cells further to the left.

1.3 Tilings

A Wang tile (or a tile in short) is a unit square with colored edges. The edges of a
Wang tile are called north, east, west, and south edges in a natural way. Each edge
of a Wang tile has a color which is a label from a finite alphabet. For the given tile t ,
expressions tN , tE , tW and tS are used to denote north, east, west, and south edge
colors, respectively. A Wang tile set T (or a tile set in short) is a finite set containing
Wang tiles.

Given tile sets T1, . . . , Tn, a tile set T ⊆ T1 × · · · × Tn is a sandwich tile set.
Elements of T are called sandwich tiles. Tile set Ti is said to be layer i of the
sandwich tile set T ⊆ T1 × · · · × Tn. Let t ∈ T be an element of a sandwich tile set
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and t = (ti1 , . . . , tin). Then the colors of t are sequences of corresponding colors of
the original tiles, for example, tN = (ti1N, . . . , tinN ).

A tiling is a mapping f : Z2 → T , which assigns a unique Wang tile for each
integer pair of the plane. A tiling f is said to be valid, if for every pair (x, y) ∈ Z2

the tile f (x, y) ∈ T matches its neighboring tiles (e.g. the south side of tile f (x, y)

has the same color as the north side of tile f (x, y − 1)).
A tiling f : Z2 → T is called periodic with period (a, b) if f (x, y) = f (x + a,

y + b) for all (x, y) ∈ Z2 and (a, b) �= (0,0). Otherwise, the tiling f is called
nonperiodic. A tile set T is called aperiodic, if there exists some tiling with the
tile set T , but no tiling with the tile set T is periodic. If the tile set T admits a
periodic tiling f : Z2 → T with some period, then it admits also a doubly peri-
odic tiling g : Z2 → T , that is, there exists such non-zero integers a and b that
g(x, y) = g(x + a, y) and g(x, y) = g(x, y + b) for all (x, y) ∈ Z2 [20].

The following decision problem is referred to as the tiling problem: “Given a
Wang tile set T , does there exist a valid tiling of the plane?” A tiling f : Z2 → T is
said to contain tile t ∈ T , if for some integers x, y ∈ Z equation f (x, y) = t holds.
The following decision problem is referred to as the tiling problem with a seed tile:
“Given a Wang tile set T and a tile t ∈ T , does there exist a valid tiling of the plane
that contains the tile t?”

If the tiling problem with a seed tile was decidable, then the tiling problem would
be decidable. Let T be the tile set of the given instance of the tiling problem. Then
the answer for the tiling problem is affirmative, if, and only if, for some tile t ∈ T

the answer for the tiling problem with a seed tile is affirmative considering the tile
set T as the tile set of the instance and the tile t as the seed tile of the instance. It is
already known that the tiling problem is undecidable [3, 10, 16, 20].

A Wang tile set T is said to be NE-deterministic, if within the tile set there does
not exist two different tiles with the same colors on the north and east sides. In gen-
eral, a Wang tile set is XY-deterministic, if the colors of X- and Y-sides uniquely
determine a tile in the given Wang tile set. A Wang tile set is 4-way determinis-
tic, if it is NE-, NW-, SE-, and SW-deterministic. A tile set will be called 2-way
deterministic, if it is NE- and SW-deterministic.

The definition of determinism for tile sets was originally motivated by the theory
of cellular automata [10, 12]. A tile set can be considered as a one-dimensional
cellular automaton, if the tile set contains all the possible color pairs at one corner
and the tile set is deterministic by the same corner. The tiles can be seen as states of
the cells and the diagonal rows of tiles as configurations of the cellular automaton.
Therefore, the rule which determines whether neighboring tiles match can in this
case be considered as the local rule of a cellular automaton. It has been shown that
the tiling problem is undecidable with tile sets that are deterministic by at least one
corner. From this, it follows that nilpotency of one-dimensional cellular automata
is undecidable [10]. If the Wang tile set is 2-way deterministic by opposite corners
(and all color pairs are met at these corners), then the tile set can be seen as a
reversible cellular automaton.
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1.4 Turing Machines

In what follows, the reader is assumed to be somewhat familiar with the concept of
Turing machine [9, 17]. In this article, a Turing machine M is considered to be a
four-tuple M = (Q,Γ, δ, q0), where Q is the state set, Γ is the tape alphabet, δ is
the partial transition function and q0 ∈ Q is the initial state. No “accept”, “reject”,
or “halt” states are defined explicitly. The tape of a Turing machine is defined to be
two-way infinite and symbol ε is used to denote the empty symbol of the Turing
machine. The transition function is a partial mapping

δ : Q × Γ → Q × Γ × {,�},
that is, at every time step the read-write head moves either to the left or to the right
or halts. A Turing machine is said to halt, if it is in state q reading symbol s and
δ(q, s) in undefined. The Turing machine halting problem is the following decision
problem: “Does the given Turing machine M halt when started on an empty tape?”
The halting problem is known to be undecidable.

2 The 2-Way Deterministic Tiling Problem with a Seed Tile

It is known that the tiling problem is undecidable in the 4-way deterministic case
[16] with and without a seed tile. However, in the 4-way deterministic case, the
construction is unnecessarily complicated in terms of cellular automata. Therefore,
it is shown in this section that the tiling problem with a seed tile is undecidable
for 2-way deterministic tile sets. The construction is much more simple and it pro-
vides the same undecidability results with respect to cellular automata while the
argumentation is more readable. Furthermore, the 2-way deterministic construction
gives another proof for the fact that any Turing machine can be simulated with a
reversible one-dimensional cellular automaton, which could not be achieved with
the 4-way deterministic construction in [16].

2.1 The Idea for the Undecidability Proof

The basic idea is to represent the Turing machine tape on diagonal rows as in [10]. It
is easy to show that an arbitrary Turing machine computation can be represented on
diagonal rows. The computation on diagonal rows is done in the manner of Fig. 1(a).
Every second diagonal row in the northwest-southeast direction is used to represent
the Turing machine configuration at a certain moment. One tile at each diagonal row
represents the read-write head and the current symbol to be read. The other tiles of
the diagonal row represent the other symbols on the tape located to the left and to
the right from the read-write head.
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Fig. 1 The general idea of representing the computation on diagonal rows

Since a Turing machine is a deterministic method of computation, the tile set
constructed in this manner is clearly deterministic in (at least) one direction. More
specifically, it is the direction to which the computation advances in time. To force
determinism also in the opposite direction, some modifications are needed. On every
operation of the read-write head, a “signal” is sent to the direction that is opposite
to the read-write head movement. This signal contains information about the read-
write operation which is currently being conducted and the direction from which the
read-write head entered the current cell after the previous move. The computation
with signals is represented in Fig. 1(b). In Fig. 1(b), if the read-write head moves
to the left, then the signal is sent toward the east, and if the read-write head moves
to the right, then the signal is sent toward the north. In practice, the signal is just
a component of a side color which is moves onward unobstructed. These signals
containing information about the previous move and the current one are referred to
as the move signals. The move signals are started on the tiles in Figs. 2 and 3 (i.e.
the tiles that represent the read-write head). The tiles in Fig. 5 (i.e. the tiles that
represent the tape) just move the possible move signals onward. This construction
will make the tile set representing the given Turing machine 2-way deterministic.

2.2 The Tile Set for the Given Turing Machine

In this subsection, a 2-way deterministic tile set is constructed for the given Turing
machine. In what follows, the diagonal rows of tiles are referred to as diagonals in
short.
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Fig. 2 Action tiles for move δ(q, a) = (q ′, a′,)

Fig. 3 Action tiles for move δ(q, a) = (q ′, a′,�)

Fig. 4 Merging tiles. The tiles depend on the new state q ′, the new symbol a′ to be written, the
move direction and on the new symbol b to be read

The tiles to represent read-write operations For every possible move of the Turing
machine, either the tiles in Fig. 2 and the tile in Fig. 4(a), or the tiles in Fig. 3 and
the tile in Fig. 4(b) are added to the tile set.

The tiles for a left move Assume that the Turing machine contains move δ(q, a) =
(q ′, a′,). Then the tiles in Fig. 2 and the tile in Fig. 4(a) are added to the tile set.
The tile in Fig. 2(a) is used if the previous move was to the left and the current
move is to the left. If the previous move was to the right, then the tile in Fig. 2(b)
is used.

The tiles for a right move Assume that the Turing machine contains move
δ(q, a) = (q ′, a′,�). Then the tiles in Fig. 3 and the tile in Fig. 4(b) are added
to the tile set.
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Fig. 5 The tiles to represents the symbols on the tape. Here, q denotes an arbitrary state and
symbols a, b, and c denote arbitrary elements of the tape alphabet

The tile in Fig. 3(a) is used if the previous move was to the left and the current
move is to the right. If the previous move was to the right and the current move is
to the right, then the tile in Fig. 3(b) is used.

The tiles in Figs. 2 and 3 will be called action tiles and the tiles in Fig. 4 will
be called merging tiles. Together these tile are referred to as move tiles or the tile
set MM.

The tiles to represent tape contents For every state q and every element a, b, and c

of the tape alphabet, the tiles in Fig. 5 are added to the tile set. The tile in Fig. 5(a)
is used to represent a cell (or the border between two cells if a �= b) of the tape
without any information about an earlier read-write operation.
The tiles in Fig. 5(b) represent tape contents likewise, but contain also information
about a read-write operation during which the read-write head moved to the left.
That is, the east side and the west side have colors of form (·, qc, ·) if, and only if
there exist a move of form δ(q, c) = (·,·,).
The tiles in Fig. 5(c) are similar to the tiles in Fig. 5(b) with the exception that they
contain information about a read-write operation during which the read-write head
moved to the right and not to the left. The north side and the south side have colors
of form (·, qc, ·) if and only if there exist a move of form δ(q, c) = (·,·,�).
The tile set is being constructed so, that if the seed tile (i.e. the tile in Fig. 6(c)) is
located on an even diagonal, then on every odd diagonal symbols a and b in Fig. 5
are equal.
The tiles that are used to represent the tape contents of the given Turing machine
M are referred to as alphabet tiles or as the tile set AM.

The starting tiles To force the Turing machine to start on a blank tape only, the tiles
in Fig. 6 are added to the tile set. One of these tiles (namely, the tile in Fig. 6(c)) is
chosen to be the seed tile. If the seed tile is contained within a tiling, then the tiling
represents a Turing machine computation. Other tiles in Fig. 6 force the Turing
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Fig. 6 Starting tiles

machine to start on a blank tape. The blank initial configuration of the Turing
machine is represented by the tile pattern shown in Fig. 8. In short, if the seed
tile is located in the origin, then the Turing machine simulation is done in the first
quadrant.
For the given Turing machine M, the tiles in Fig. 6 are referred to as starting tiles
or as the tile set SM.

For every Turing machine M, the tile set constructed using the method above is
denoted by TM, that is,

TM = MM ∪ AM ∪ SM.

An example of a Turing machine operation is shown in Fig. 7.
Let (q, a) be any preimage pair for which the transition δ(q, a) is not defined.

Then there will be no tile that would have the color qa on its west side or south
side. Therefore, if the Turing machine halts, that is, if at some moment of time the
read-write head in state q reads symbol a, then the tiling cannot be completed to
cover the entire plane in a valid way.

Lemma 1 For any given Turing machine M, the tile set TM is both NE- and SW-
deterministic.
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Fig. 7 Rewrite operation abqcd � aq ′bc′de � ab′qc′de � ab′c′′qde

Fig. 8 Using the tiles in
Fig. 6 to start the Turing
machine simulation on a
blank tape

Proof The tile set is SW-deterministic, since clearly it has no two tiles having the
same colors on the south side and the west side.

Similarly, the tile set is NE-deterministic. No two tiles in Figs. 2, 4, 3, and 5 have
the same colors on the north side and the east side. �
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Theorem 1 The following question is undecidable: “Given a Turing machine M,
does the tile set TM admit a valid tiling of the plane containing the tile in Fig. 6(c)?”

Proof The tile set TM quite obviously corresponds the actions and configurations
of the given Turing machine M. Requiring the seed tile to be the tile in Fig. 6(c),
the structure in Fig. 8 is forced to be tiled on the plane.

The structure in Fig. 8 obviously corresponds the initial configuration with a
blank tape. Therefore, the plane can be tiled correctly if and only if the given Turing
machine does not halt (when started on a blank tape). Of course, the halting problem
with a blank tape is undecidable. �

Since the tiling problem with a seed tile is a generalization of the problem in The-
orem 1, it is seen that the tiling problem with a seed tile is undecidable for tile sets
that are 2-way deterministic. Moreover, the tile set TM would be NE-deterministic
even if the Turing machine M was non-deterministic. No matter what the state q

and symbol a are, the tiles in Figs. 2, 4, and 3 are uniquely defined by the colors of
their north and east sides.

A 2-way deterministic tile set can be constructed even for any non-deterministic
Turing machine. This tile set is constructed by modifying the tile set TM. Modifi-
cation is based on using signals containing information about the particular move
that was chosen. These signals could be referred to as decision signals. The tile in
Fig. 2 is modified so that it sends a decision signal to the left and backward in time
(i.e. toward west since the computation advances toward the northeast). Likewise,
the tile in Fig. 3 is modified to send a decision signal to the right and backward in
time (i.e. toward the south). Furthermore, the tiles in Figs. 5 and 6 are modified to
allow crossings with any kinds of decision signals. It is quite straightforward to see
that the new modified tile set is indeed both NE- and SW-deterministic.

3 Tile Sets and Cellular Automata

3.1 Interpreting Tile Set as a Cellular Automaton

Following the presentation in [10], it is possible to regard Wang tile sets (that are
deterministic at least in one direction) as one-dimensional cellular automata.

If the given tile set is, say, SW-deterministic, it is possible to consider the tiles as
states of a cellular automaton. As shown in Fig. 9, with a cellular automaton the next
state of a cell is determined with a similar manner as the next tile (to the northeast)
in a tiling with a SW-deterministic tile set. With a cellular automaton, the new state
depends on the old states and in a tiling (with a SW-deterministic tile set) the new
tile is determined by the colors of its neighbors.

It should be noted that the given Wang tile set may not contain all the possible
color pairs in the southwest corners of the tiles. If the given tile set T is assumed to
be deterministic in only one direction, say, by the southwest corner, it is enough to
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Fig. 9 The tiles of a SW-deterministic tile set can be considered as states of a cellular automaton

add a tile to the original tile set for every missing southwest corner color pair. For
example, if there is no tile t with tW = x and tS = y in the given tile set T , a tile t

with tN = tE = z, tW = x and tS = y, where z is any color of the tile set T , could be
added to the tile set while maintaining SW-determinism.

If the given tile set is assumed to be both NE- and SW-deterministic, equally
many color pairs are missing as northeast corners and southwest corners. It is triv-
ial to construct (for example, by some ordering method) a one-to-one correspon-
dence between the missing colors in the southwest corners and the missing colors
of the northeast corners. This bijection can clearly be considered as a NE- and SW-
deterministic set of tiles. Moreover, the union of the initial tile set and this new tile
set is both NE- and SW-deterministic tile set containing N2 tiles, where N is the
number of colors in the original tile set. Let T � denote the new tile set which was
constructed for the missing color pairs. Now it can be seen that the tile set T ∪ T �

can be considered as a reversible cellular automaton.
A bit more formally, for the NE- and SW-deterministic tile set T , a reversible

cellular automaton (T ∪ T �,FT ) simulates the tiling procedure. The global rule FT

is defined using local rule

fT (x, y) = z if x, y ∈ T ∪ T �, xE = zW and yN = zS.

The function fT : (T ∪ T �)2 → T ∪ T � is total and well defined, since the tile set
T ∪ T � is both NE- and SW-deterministic.

3.2 Universality of One-Dimensional Reversible Cellular Automata

It has been shown by Morita and Harao that one-dimensional reversible cellular au-
tomata are computationally universal [18]. More precisely, they have shown that any
reversible Turing machine can be simulated with some reversible one-dimensional
cellular automaton. Since any Turing machine can be simulated with a reversible



652 J. Kari and V. Lukkarila

Turing machine [2], the universality of one-dimensional reversible cellular automata
follows.

However, the requirement of reversibility for the given Turing machine is not
necessary for the machine to be simulated with a reversible one-dimensional cellular
automaton. In fact, Dubacq has given a construction for a family of reversible cellu-
lar automata to simulate any irreversible Turing machine in real time [5]. Dubacq’s
approach was more from the cellular automata point of view. The construction of the
family of tile sets given in Sect. 2.2 gives a tiling view for Dubacq’s result. Namely,
an instantaneous description of a Turing machine can be represented by a configura-
tion where exactly one of the cells contains a move tile representing the read-write
head and all the rest of the cells have alphabet tiles as states. The cellular automaton
executes one Turing machine computation step in two time steps. If the initial con-
figuration c of the cellular automaton (with global rule F ) represented valid Turing
machine configuration, so does F 2t (c). The additional move signals can be ignored
and the instantaneous description of the Turing machine computation can be read
directly.

Theorem 2 (J.-C. Dubacq, 1995 [5]) Any Turing machine can be simulated using a
reversible one-dimensional cellular automaton in real time.

Proof The given Turing machine M can be simulated with the cellular automaton
(T ∪T �,FT ), where T = MM ∪AM, that is, the state set of the cellular automaton
consists of the move tiles and the alphabet tiles and the tiles of (some) set (MM ∪
AM)�. Because for every computation step of the Turing machine M the cellular
automaton (T ∪ T �,FT ) conducts two computation steps, the cellular automaton
with global rule F 2

T simulates the given Turing machine in real time. �

Corollary 1 (K. Morita and M. Harao, 1989 [18]) Reversible one-dimensional cel-
lular automata are computationally universal.

4 Undecidability Results for Reversible Cellular Automata

4.1 Undecidability of the 2-Way Deterministic Tiling Problem

It can be shown that the 4-way deterministic tiling problem with a seed tile can be
reduced to the 4-way deterministic tiling problem [16]. With the same construction,
one can reduce the 2-way deterministic tiling problem with a seed tile to the 2-way
deterministic tiling problem without losing the 2-way determinism of the original
tile set instance. With this reduction, Theorem 3 follows from Theorem 1. Of course,
the result is also a direct consequence of the 4-way deterministic variant of [16].

Theorem 3 ([16]) The tiling problem is undecidable for tile sets that are 2-way
deterministic.
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This theorem is the basis of the proofs of the undecidability results in the follow-
ing sections.

4.2 Some Undecidability Results for Cellular Automata

A cellular automaton (AZ,F ) is said to be globally immortal with respect to subset
B ⊆ A if there exists such a configuration c ∈ BZ that Fn(c)(i) ∈ B , for all integers
n, i ∈ Z. The following decision problem is referred to as the global immortality
problem: “Given a cellular automaton (AZ,F ) and subset B ⊆ A, is (AZ,F ) glob-
ally immortal with respect to B?”

A cellular automaton is said to be locally immortal with respect to subset B ⊆ A

if there exists such a configuration c ∈ BZ that Fn(c)(0) ∈ B , for all integers n ∈ Z.
The following decision problem is referred to as the local immortality problem:
“Given a cellular automaton (AZ,F ) and subset B ⊆ A, is (AZ,F ) locally immortal
with respect to B?”

These definitions of “immortality” are motivated by the immortality problem of
Turing machines [8]. Hooper has shown that it is undecidable if a given Turing
machine halts on every extended configuration (i.e. the tape may contain infinitely
many non-blank cells).

The problems of global immortality and local immortality are slightly related to
the nilpotency. In a nilpotent cellular automaton every cell enters to a quiescent state
q within a bounded number of time steps. In the immortality problems, the elements
of A \B correspond to the quiescent state of a nilpotent cellular automaton with the
distinction that a cell does not have remain in a state of A \ B . With this difference,
the immortality problems make sense for reversible cellular automata also.

Theorem 4 The global immortality problem is undecidable for reversible one-
dimensional cellular automata.

Proof Undecidability of the question follows by a reduction from the problem of
Theorem 3. Let (T ∪T �,FT ) be the cellular automaton constructed in Sect. 3.1 and
let B = T in the definition of the problem.

Assume first, that the given tile set T admits a valid tiling. Then one can choose
any northwest-southeast diagonal row of tiles of the valid tiling to be the configu-
ration c. Since the tile set is NE-deterministic and configuration c is part of a valid
tiling, Fn

T (c)(i) ∈ T , for all integers n, i ∈ Z.
Assume second that the given tile set T does not admit a valid tiling. If for some

configuration c (considered again as a northwest-southeast diagonal row of a valid
tiling), the condition of the problem did hold, then it would be possible to construct
a valid tiling. However, this contradicts the assumption.

Hence, a configuration c exists if, and only if, the tile set T admits a valid
tiling. �
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Fig. 10 Combining the
global rule with a shift causes
the preimages of two different
patterns to be transferred to
disjoint locations

Any surjective cellular automaton with global rule F and radius r can be con-
verted to a mixing cellular automaton by forming a new global rule which is a com-
position of the original global rule and a sufficiently high power of the shift rule σ .
For example, composition F ◦σ r+1 : AZ → AZ is a mixing cellular automaton. The
idea is illustrated better in Fig. 10. By applying a shift, the preimage of the requested
pattern is moved away from the origin.

Lemma 2 Let (AZ,F ) be a surjective cellular automaton with radius r . Then
(AZ,F ◦ σ r+1) is mixing.

Lemma 3 Let (AZ,F ) be an injective cellular automaton with radius r1 and let
its inverse local rule have radius r2. Then (AZ,F ◦ σ r+1) is expansive where r =
max(r1, r2).

Corollary 2 The global immortality problem is undecidable for reversible one-
dimensional cellular automata that are both expansive and mixing.

Proof The property in question is shift-invariant. Therefore, by using Lemmas 2
and 3, the claim follows from Theorem 4. �

Theorem 5 The local immortality problem is undecidable for reversible one-dimen-
sional cellular automata that are left expansive.

Proof Let T1 be the tile set in Fig. 11(a) and let T2 be the tile set in Fig. 11(b). Let
tb be the blank tile in set T1. Form a new sandwich tile set

A = (T × T1) ∪ (
T � × T2

)

and let B = T × {tb}.
This tile set can also be considered as a reversible cellular automaton because all

the possible color pairs occur both at northeast and southwest corners. The cellular
automaton simulates tiling on two layers with some additional constraints. On the
first layer are tiles T ∪ T � and on the second layer are tiles T1 ∪ T2. Let G be the
global rule of this cellular automaton.

Let c ∈ BZ, that is, let c be a configuration consisting of states T ×{tb} only. If c

is diagonal row of tiles in a valid tiling, then Gn(c) ∈ BZ for every n ∈ Z. If c does
not generate a valid tiling, then Gn(c)(i) ∈ T � × T2 for some n, i ∈ Z. Due to the
structure of tile sets T1 and T2, once the “arrow signal” is generated using the tiles
of T2, it is always forwarded at least to the left (i.e. northwest) and either forward
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Fig. 11 New tiles to pair
with the original tile set

(i.e. north) or backward (i.e. west) in time without ever being canceled. This implies
that Gn(c)(0) ∈ A \ B for some n ∈ Z. Hence, Gn(c)(0) ∈ B for every n ∈ Z if, and
only if, T admits a valid tiling. This would conclude the proof for reversible cellular
automata.

For left expansive cellular automata, the rule G is modified so that underlying
tiling rule of state components T ∪T � is combined with shift σ . Let this new global
rule be F . This converts the tiling procedure by T ∪ T � into an expansive cellular
automaton. The second rule on the second layer is not modified because tile set
T1 defines an expansive cellular automaton and tile set T2 defines a left expansive
cellular automaton. Therefore, using either tiles T1 or T2 on predefined locations
atop tiles T ∪ T � defines a left expansive cellular automaton. �

It is not known whether the local immortality problem is decidable or undecid-
able for expansive cellular automata. If the problem was an undecidable for expan-
sive cellular automata, then also expansivity would be an undecidable property. This
would follow by applying the same construction as later in the proof of Theorem 7.

Theorem 6 The local immortality problem is undecidable for reversible one-dimen-
sional cellular automata that are both left expansive and mixing.

Theorem 6 will be proved by modifying the cellular automaton in the proof of
Theorem 5 so that it becomes mixing.

The only reason why the cellular automaton is not already mixing is that the
signals may cause dependence between two configurations in the same computation.
That is, configurations of two different cylinders might not appear in the same orbit
because the contents of one cylinder might cause some undesired pattern of signals
(of the ones generated by T1 and T2) appear throughout the computation near the
origin. For the given two open sets U and V , this might prevent from finding a
configuration c ∈ U so that Fk(c) ∈ V for some k (i.e. the cellular automaton would
not be even transitive). The problem is illustrated in Fig. 12.

Unfortunately, the shift rule cannot be applied to the signals of tile sets T1 and
T2 because then a column of tiles without the signals might appear even if there was
tiling error (i.e. a state from T � × T2) in the tiling represented by the computation.
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Fig. 12 The signal generated
by the tile set T2 may cause
dependence between cells of
two configurations of the
same orbit in the proximity of
origin. Solid lines represent
the signals in the tiles.
Dashed lines represent
absence of the signals. Circles
denote tiling errors (where T2
is used). The rectangles
represent domains defining
the different cylinders

Combining the original rule with shift would make the cellular automaton mixing,
but the problem might not be undecidable anymore. Therefore, the signals in tiles
T1 and T2 need to be modified.

Proof (sketch) Let (T ∪ T �,G) be the cellular automaton defined by the 2-way
deterministic tile set T . It can be assumed that (T ∪ T �,G ◦ σ r+1) is expansive and
mixing for some positive integer r . The theorem will be proved by a reduction from
the problem of Corollary 2.

The state set T ∪T � and the rule G◦σ r+1 is modified by adding a three different
kinds of signals. The first set of signals consists of signals that move with a speed
of one cell per time step either from left to right or right to left. For the sake of
the argument, let these signals be called type 1 signals. The second set consists of
signals that move with a speed of one cell per two time steps either from left to right
or right to left. These signals will be called type 2 signals.

The third set of signals consists of signals that move with a speed of one cell per
time step either from left to right or right to left. These signals will be called type 3
signals and they correspond the signals of tile sets T1 and T2. If a tiling error occurs
in the underlying tiling, the type 3 signals in the same cell are modified as in tiles
T2 if and only if there is no type 1 and type 2 signal present in the cell. That is, type
1 and type 2 signals are used to “cancel out” the effects of tiling errors on type 3
signals. Signals of type 1 and 2 are not altered at any point. Let the new global rule
be denoted by F .

Given two radius r cylinders C1 = Cyl(c1, r) and C2 = Cyl(c2, r), it is shown in
Fig. 13 how the type 1 and 2 signals can be used to cancel out tiling errors every-
where else except in the immediate vicinity of the origin. Type 1 and 2 signal from
different sides of the origin coincide after t0 = 2r + 2 time steps. Therefore, con-
figurations belonging to any two cylinders can appear in the same trajectory for
every t ≥ max(t0, n0) time steps apart, where n0 is the bound given implicitly by
Lemma 2. Hence, cellular automaton F is mixing. Also, adding signals type 1, 2,
and 3 does not remove left expansivity.
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Fig. 13 If two configurations are sufficiently far apart in the same orbit, the type 1 and 2 signals
can be used to cancel out tiling errors that would cause constraints between the cylinders of the
two configurations. Dashed lines denote the type 1 signals, dotted lines denote the type 2 signals
and the rectangles denote the cell state sequences defining the cylinders

It is now undecidable whether there exists such a configuration c that state
Fn(c)(0) contains none of the signals type 1, 2, or 3 for any integer n. �

Interpreting the definition of local immortality problem in a different way, Corol-
lary 3 follows.

Corollary 3 Given a left expansive and mixing cellular automaton (AZ,F ) and
clopen set C ⊆ AZ, it is undecidable whether there exists such a configuration c ∈ C

that Fn(c) ∈ C for every n ∈ Z.

4.3 Left Expansivity is Undecidable

In this section, it is shown that is undecidable whether the given cellular automaton
is left expansive. However, it still remains an open problem whether expansivity or
positive expansivity is a decidable property.

Theorem 7 Given a reversible cellular automaton (AZ,F ), it is undecidable
whether F is left expansive.
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Proof Let ((T ∪S)Z,G) be the cellular automaton of Theorem 5. The states that do
not contains the signals generated by tile T2 are denoted by T and the states that do
contain the signals are denoted by S. The new state set is A = (T ∪ S) × {0,1} ×
{0,1}. The new rule is defined by

F(c1, c2, c3)(i) =
{

(G(c1)(i), σ (c2)(i), c3(i)) if c1(i) ∈ T ,
(G(c1)(i), c3(i), σ (c2)(i)) if c1(i) ∈ S,

where (c1, c2, c3) ∈ A. That is, the new cellular automaton contains three different
layers. On the first layer, the original cellular automaton is simulated. The second
and the third layer contain only binary states that either remain in place or move
one cell per time step to the left. If the state of the first layer belongs to S, then the
second and the third component are interchanged. The idea is that if all the cells of
the first layer are in states of T , the states of the second layer are moved one step to
the left and the states of the third layer remain unchanged. The cellular automaton
(AZ,F ) is left expansive if and only if the answer to the question of Theorem 5 is
affirmative for ((T ∪ S)Z,G).

Assume that for every initial configuration every cell of ((T ∪S)Z,G) must enter
to a state in S at some point. Due to the compactness, this happens for every cell
infinitely often and there exists such a bound N that during N time steps every
cell must enter to a state in S at least once. This means that a binary state value
of originally the third component of cell i must travel at least one cell to the left
for every N time step. This means that no single state of the second of the third
layer remains in place, but travel infinitely far to the left eventually. Hence, the new
cellular automaton is left expansive.

Assume that for some initial configuration c cell i of ((T ∪ S)Z,G) does not
enter a state in S ever. Let c0 be such a configuration that c0(j) = 0 for every j .
Let c1 be such a configuration that c1(j) = 1 if i = j and c1(j) = 0 otherwise. Then
d(Fn(c, c0, c0),F

n(c, c0, σ
−i (c1))) ≥ ε for any ε by choosing suitably large i. That

is, the information of the difference only at the third component of cell i does not
travel arbitrarily far to the left. Hence, the new cellular automaton is not left expan-
sive. �

5 Discussion

We have introduced 2-way deterministic Wang tiles to prove undecidability results
on one-dimensional reversible cellular automata. Our goal, yet unreached, was to
use this approach to prove that expansivity is an undecidable property. To establish
this, it would be sufficient to show that local immortality is undecidable among ex-
pansive cellular automata. We were able to prove this for left expansive automata
(Theorem 5), which then directly yields the undecidability of left expansivity (The-
orem 7).

Another, closely related open question is a conjecture of Nasu [19] that all ex-
pansive one-dimensional cellular automata are conjugate to subshifts of finite type.
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It would seem that for our approach to work, a counter example to the conjecture
would be needed. For example, it is easy to infer from the proof of Theorem 5 a left
expansive cellular automaton in which possible history sequences of cells are not a
subshift of finite type.

Finally, we point out that the property of being periodic (i.e. Fn being equal to
the identity function for some positive n) was recently proved undecidable [13].
Also, it has been recently shown that sensitivity, transitivity and topological mixing
are undecidable properties for reversible one-dimensional cellular automata [15].
Previously, the non-reversible case of sensitivity was known to be undecidable [6].
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On Using Divide and Conquer in Modeling
Natural Systems

Yaki Setty, Irun R. Cohen, Avi E. Mayo,
and David Harel

Abstract In recent years, we have been studying approaches to the realistic model-
ing of natural systems, especially biological systems. We have tested several of these
in a project devoted to modeling pancreatic organogenesis, a complex system that
dynamically promotes structural and molecular development. Here, we describe one
of these approaches—a kind of ‘divide and conquer’ technique, in which the sys-
tem is disassembled into modules to specify behaviors on the scale of the organ
(i.e., morphogenesis) and the cell (i.e., molecular interactions). At run-time, these
modules are re-assembled to direct development in individual cells. This approach
employs multi-scaling and dynamics, two important characteristics of natural sys-
tems, but avoids cross-scaling. It thus appears to be useful for systems in which
the importance of cross-scaling seems to be less significant, such as the develop-
ment of phyllotaxis in plants. In pancreatic organogenesis, cross-scaling was found
to be a significant characteristic, and thus by using ‘divide and conquer’ we could
cover only its preliminary stages. We discuss the approach and our use of it, as
well as he various methods to analyze the achievements and limitations of the end
result.

1 Introduction

Natural systems, such as organs and organisms, are large-scale complex systems
with numerous elements and interactions. Modeling such systems can lead to better
understanding thereof and may help in efforts to save on resources and development
time. During the past years, we have been focused on developing approaches for
modeling natural systems. We developed several approaches to simulate the nat-
ural systems through changes in 4 dimensions: time and three dimensions of space.
The chain of reactions leading to cellular and structural development emphasizes
the need for multi-scaling. Furthermore, the importance of 4D dynamics in natural
systems underlies the time-dependent developmental processes that affect the devel-
oping organ. Thus, for the very least, a plausible approach should conduct dynamic
formation of a 3D structure.
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We tested our approaches on pancreatic organogenesis, a complex system in
which the pancreas is developed and formed. This system involves multiple scales,
dynamics, and a unique 3D anatomic structure. During organogenesis, reactions in
cells lead to cellular behavior and anatomic structuring of the organ. In turn, the
cell’s position feeds back and influences gene expression. In pancreatic organogen-
esis, cells act in concert and aggregate to a cauliflower-shape structure. Zooming
into the formation process discloses the molecular interactions that drive each cell
during its life cycle.

The end result approach, which we term autonomous cell, defines a cell as a 3D
entity that senses its environment and acts accordingly. This approach was found
very beneficial for modeling pancreatic organogenesis and conduct multi-scale,
cross-scale, and dynamics as well as emergence of the 3D organ structure from a
collection of molecular interactions. The approach enables integration of the ge-
netic, molecular, and cellular components, along with environmental signaling into
a dynamically running, three-dimensional simulation (see [40]).

However, as a step toward the autonomous cell approach, we have developed
several approaches that served as important milestones in our work, and enhanced
different aspects in the task of modeling natural systems. The ‘divide and conquer’
approach1 that we describe here suggests decomposing a system into independent
modules and reassembled them at run time. Accordingly, we defined two main mod-
ules; one specifies the structural development of the system and the other formalizes
the molecular interactions in an individual cell.

In natural systems, such as pancreatic organogenesis, these two modules corre-
spond to different scales of the system [7]. The specifications of molecular interac-
tions correspond to behavior of the system at the cell scale, while the formation of
the organ specifies the morphogenesis at the organ scale. From the biological point
of view, the ‘divide and conquer’ approach suggests to separate scales in natural
systems, namely, the behavior of the organ from the behavior of individual cells.
Thus, this approach conducts multi-scaling and 3D dynamics, two important char-
acteristics of realistic modeling [7].

To apply the ‘divide and conquer’ approach to pancreatic organogenesis, we for-
malized a eukaryotic cell as an object with a sub-object for its nucleus. We specified
in a molecular interaction module the relevant interactions in a cell using the lan-
guage of statecharts [16], as implemented in the Rhapsody tool [44]. Separately, we
specified a module for structural development using a concept inspired by sweeps
to branched skeleton algorithms [33]. Accordingly, an autonomous object serves
as the morphogenesis module, which holds predefined skeletons of the structure at
various developmental stages. The two modules direct at run time the development
of instances of a cell in the simulation. Events that are generated by the molecular
module drive the molecular development of cells, which are in parallel directed by
the morphogenesis module toward the predefined skeleton.

1Here, we abuse the term ‘divide and conquer’, which is generally used in computer science to
describe an algorithm design paradigm that works by recursively breaking down a problem into
two or more sub-problems of the same (or related) type, until these become simple enough to be
solved directly.
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We linked the model to a 3D animated front-end (in 3DGameStudio [1]) and an
analysis GUI (in MATLAB [23]), using the idea of Reactive Animation [10] and its
generic platform [18]. At run-time, the simulation is visualized and analyzed at a
front-end and a GUI, respectively.

To analyze the model, we separately examined the behavior of each module. The
emerging structure was compared against images of 2D histological sections, while
the molecular interactions were compared to a simple mathematical model that de-
scribes the kinetics of cell populations. The analysis revealed qualitatively similar
results, but we found the overall approach insufficient for realistic modeling of the
complete system. In particular, when we attempted to extend the coverage, we had
to introduce cross-scaling to capture the interplay between structural development
and molecular interactions (i.e., the two independent modules).

2 Pancreatic Organogenesis

In mice, pancreatic organogenesis is initiated on the eighth embryonic day, and is
roughly divided into two transitions, primary and secondary [29]. During the pri-
mary transition, cells in the appropriate regions of the flat gut are specified as
pancreatic and form a bud; during the secondary transition, the bud evolves and
becomes a branched structure [20, 41]. Organogenesis depends on simultaneous in-
teractions across molecular and morphogenetic mechanisms that act in concert to
form the organ. The molecular mechanisms involve processes that regulate the dif-
ferentiation and development of individual cells (see, e.g., Fig. 1, left), whereas the
morphogenic mechanisms gather the cells together to form a cauliflower-like shaped
organ (see, e.g., Fig. 1, right). Pancreatic morphogenesis is initiated by a budding
process, which leads to thickening of the flat gut. Later, followed by mesenchyme
intervention, the pancreas undergoes a process of branching to create the branched
structure of the matured pancreas [20]. In parallel, different molecular processes
(e.g., proliferation and pancreatic specification) promote the molecular development
of the organ [4, 5, 20]. These processes are driven by interactions between different
elements including intra-cellular signaling and cell-cell interaction [9, 21, 26, 37].

3 Methods

3.1 Modeling Approach

We studied the morphogenetic behavior and the molecular interactions in pancreatic
organogenesis. Using the language of statecharts [16, 17], as it is implemented in the
Rhapsody tool [44], we formalized the molecular interactions of a pancreatic cell.
Statecharts define behavior using a hierarchy of states with transitions, events, and
conditions. The language can be compiled into executable code using the Rhapsody
tool. To promote aggregation of cells toward a specific structure, we employed a
concept that directs objects toward a pre-defined fixed skeleton. This concept was
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Fig. 1 Left: An illustration of the many molecular interactions driving the pancreatic differentia-
tion in a single cell (adapted from [20]; Reprinted with permission of Wiley–Liss, Inc., a subsidiary
of John Wiley & Sons, Inc.). Right: An illustration of pancreatic formation at four different time
points, as depicted in the literature (adopted from [21])

inspired by sweeps to branched skeleton algorithms [25, 33] and was adjusted to
pancreatic organogenesis by adding relevant features such as 3-dimensionality and
proliferation.

To visualize the model, we used the idea of Reactive Animation [10], a technique
that links a reactive executable model with an animated front-end to form a visual-
ized, interactive, and dynamic model. Using a generic platform for Reactive Anima-
tion [18], we linked the model to a 3D animated front-end (in 3DGS [1]) and a math-
ematical GUI (in MATLAB). The front-end visualizes the simulation and provides
the means to interact with it, while the mathematical GUI monitors and analyzes
the progress. At run time, processes in the simulation are reflected in the front-end
in different ways, e.g., by color and position changes. Separately, the mathematical
GUI displays various graphs and statistics of the simulation. A prerecorded clip of
the simulation at run-time is available at research.microsoft.com/~yakis/runs.

3.2 Modeling Molecular Interactions

A eukaryote cell consists of many concurrent sub-cellular and molecular mecha-
nisms that drive development and function over its life cycle. Each sub-cellular

http://research.microsoft.com/~yakis/runs
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Fig. 2 Modeling eukaryotic cell. The two objects, Cell and Nucleus, accompanied by a pseudo
statechart for their behavior

element consists of many concurrent processes and mechanisms that dynamically
drive the cell’s function over time. In the model, we formalized a cell as an object
and its nucleus as a sub-object to indicate (strong) composition between them. Ac-
cordingly, the Nucleus object specifies behavior for the gene expression in the
cell, while the Cell object itself specifies the behavior of molecular mechanisms
(e.g., proliferation). This setup is illustrated in Fig. 2, which shows the cell object
accompanied by schematic versions of their statecharts.

The nucleus, the core of a cell, contains the DNA and consists of genes that reg-
ulate its development. The genes are expressed in response to various signals in the
cell. Genes express proteins that influence the cell’s behavior. To model the nucleus,
we took a simplistic approach, defining each gene as an independent component
that can be either Expressed or Unexpressed. The effect of gene expression
is diverse and depends on the process. Gene expression is visualized in different
manners. For example, in the case of markers, proteins that determine differentia-
tion, expression is visualized by color changes of the animated cell. In pancreatic
organogenesis, one important gene is PDX1, which is considered as the pancreatic
marker. In the model, when the active state of the PDX1 component moves to Ex-
pressed the corresponding animated figure changes its color from red to green.
The color change indicates that this specific cell accomplished pancreatic specifica-
tion and is now specified as pancreatic progenitor and no longer as an endodermal
cell.

The Cell itself describes the behavior of various molecular mechanisms (such
as, differentiation, proliferation, death) in a cell during its lifespan. This element also
carries the spatial 3D coordinates of the cell and updates their values at run-time as
the simulation progresses. We specify the mechanisms as orthogonal components,
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which at run-time act concurrently to drive the cell’s behavior over time. As an ex-
ample, consider the cell proliferation process. The Proliferation component
defines a state for each stage of the cell cycle. At run-time, when the Prolif-
eration ends (i.e., its active state moves to state M), the Cell duplicates itself
by creating an identical Cell instance (i.e., a new instance of a cell is created and
its active states are set to be identical to its parent). At the front-end, an additional
animated cell is created in the appropriate location, which was calculated during its
parent division.

3.3 Modeling Structural Formation

To model the morphogenetic behavior of cells, we use a concept inspired by sweeps
to branched skeleton algorithms (STBS). STBS algorithms are used to model lobed
leaves by predefining a branch skeleton to reconstruct the plant structure [31, 33]. In
the past, these algorithms were mainly used to extract the structure of a 2D scanned
object. In organogenesis of natural systems, we have to consider a population of ob-
jects that, among other things, proliferate and interact. Thus, we adjusted the concept
to support morphogenesis of proliferating population in 3D.

As mentioned, among other things, we assigned a property in the Cell object
that specifies its spatial coordinates. Accordingly, when a newborn Cell is ini-
tiated, its spatial properties are updated based on its parent location. In addition,
we defined another object, which utilizes pre-defined 3D skeletons that determines
generic structures of the organ at different stages. This STBS object corresponds to
mechanisms in the environment that promote cells to aggregate and form the pan-
creatic structure. At run time, the object directs cells by minimizing the distance
between the cell the skeleton. Thus, cells are ‘swept’ toward the skeleton to form
the branched structure of the pancreas. At the front-end, the animated cells continu-
ously update their positions. As the animation progresses, the visualization discloses
how the population aggregates to form the branched structure of the pancreas.

3.4 Combining the Two: The Simulation at Run-Time

When the model is executed, instances of the Cell (Fig. 2) are created and appear
in the front-end as a sheet of red spheres on the proper location at the flat endodermal
Gut. Once a Cell instance is created, one state in each concurrent component of
the statechart is set to be an active state. At this point, the Cells are uniform and
their active states are set to the initial states (designated by a stubbed arrow). As
the simulation advances, cells respond to various signals by changing their active
states accordingly. Hence, the sheet loses uniformity at a very early stage of the
simulation.

To illustrate the simulation in progress, consider a conceptual process that uni-
fies many biological processes such as signaling pathways or cell migration. Such



On Using Divide and Conquer in Modeling Natural Systems 667

a process is stimulated by a signal that initiates a chain of various reactions. Con-
sequently, events are sent to the Nucleus, which initiates expression in various
Genes. In turn, the active state in the relevant components moves to the Ex-
pressed state and the corresponding animated cell changes its color. Eventually,
an event is generated and the relevant molecular mechanisms move to new states.
For example, an event may promote a cell to proliferate, and thus the active state
in the Proliferation component in the Cell becomes M. Consequently, the
cell duplicates itself, and a new animated cell appears in the front-end. In parallel,
cells are specified as pancreatic and change the color of their corresponding spheres
(Fig. 2 top-left).

At the same time, the STBS object directs cell movement towards the predefined
skeleton. Accordingly, the spatial properties of cells are continuously updated to
simulate cell migration. At the front-end, animated cells change their location ac-
cordingly to form the pancreatic branched structure. When a cell proliferates, the
new instance interacts with the STBS object and is directed based on its parent posi-
tion. Other molecular mechanisms, such as differentiation or specification, act con-
currently. The simulation achieves equilibrium when cells are differentiated and are
located in a proper position on the skeleton, where they cannot proliferate anymore.

4 Results

4.1 Behavior of Population Fits Simple Mathematical Model

To analyze the molecular development of the cell population in the simulation, we
recorded the cell count of the endodermal and pancreatic populations over time.
Each run of the simulation generated a slightly different growth, but the overall
course maintained similar characteristics. Figure 3 (left) shows a typical time de-
pendent molecular development of endodermal (red), pancreatic (green), and overall
cell population (black).

We observed three major regimes. In the primary regime (embryonic day 8–9)
endodermal cells proliferate but do not specify as pancreatic. Thus, the endodermal
population increases but the pancreatic one does not. At the secondary regime, spec-
ification signals are introduced and endodermal cells start specifying as pancreatic
cells and the proliferation continues in both. In this regime, we observed decrease
of the endodermal population and a rapid growth in the pancreatic one. In the last
regime (starts approximately at embryonic day 13), both populations enter a steady
state, in which the endodermal population is fully specified and the pancreatic pop-
ulation achieved maximum.

To test the plausibility of the results, we constructed a simple mathematical
model that simulates the molecular behavior of cell populations in the model. We
formalized the system using ordinary differential equations (see, e.g., [8, 38, 39])
to describe the kinetics of cell population. The model (1) considers a population of
endodermal cells (E) and a population of pancreatic cells (P ). E proliferates at rate
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Fig. 3 Molecular development in pancreatic organogenesis: Cell count (in thousands) of endo-
dermal (red), pancreatic (green) and overall (black) population as function of time (in embryonic
days). (Notice the star symbol, indicating the median values.). Left: Cell count in the computa-
tional statechart-based model. Right: Mathematical ODE-based model with the parameters kp = 1,
ks = 3, fp = 4/(tn + 4) and fs = tn/(tn + 1)

kp and specifies as pancreatic in rate ks , which is regulated by additional signals
formalized in fs . The pancreatic population P is increased by the specification and
proliferation processes. Pancreatic cells proliferate at the same rate an endodermal
but are bounded by additional signals, thus we assign the fp element to describe
effect of such. Figure 3 (right) shows a solution for the mathematical model. This
result manages to reproduce the behavior of the cell population and the three regimes
described above.

dE/dt = kpE − ksfsE,

dP/dt = kpfpP + ksfsE.
(1)

The difference between the two models emerges from the modeling perspective.
While the mathematical model describes the behavior of cells as a population, the
computational model specifies behavior of an individual cell and the behavior of the
population emerges from execution of many instances with the same specification.
Although simplified, the mathematical model revealed similar characteristics for
the populations as emerged from the computational simulation. Here, we used the
mathematical model for qualitative analysis only and did not examine the model in
detail. However, a quantitative analysis is possible, but is beyond the scope of this
paper.

4.2 The Emerging Structure Generates Histological Sections

As the simulation advances, cells proliferate and are directed by the morphogen-
esis module toward the branched structure of the pancreas. Figure 4 shows four
steps in the formation of the structure from flat sheet into the matured pancreas
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Fig. 4 Four snapshots of the structure formation in the simulation: endodermal (red) and pancre-
atic (green) cells act in concert to form the branched pancreatic structure

Fig. 5 Comparison of the
emerging structure and 2D
histological sections at
embryonic day 10 (top;
adapted from [20]) and 10.5
(bottom; contributed by Dor’s
lab)

(see a recorded clip at research.microsoft.com/~yakis/branching). To compare the
3D emerging structure with the two dimensional data (e.g., Fig. 1, right), we en-
abled a ‘halt and slice’ option in the animated front-end. Accordingly, at any stage
of the simulation, the user can halt the simulation and view slices of the emerging
structure over the x- and the y-axis. The cross-section slices are then compared with
the histological section. A comparison of 2D histological sections (left) and cross
sections of the simulated structure (right) is shown in Fig. 5. The results indicated
that the emerging structure manages to qualitatively illustrate somewhat of the dy-
namic of early stages of pancreatic morphogenesis. Notice that in addition to the
structural formation, the molecular behavior is also visualized in the front-end at
run time. For example, cells proliferate by creating new instances and change their
properties (e.g., color) to indicate gene expression. It is important to emphasize that
the molecular changes are not effected by the cell position, which is being regulated
separately.

http://research.microsoft.com/~yakis/branching
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4.3 The Need for Cross-scaling in Pancreatic Organogenesis

As mentioned, the ‘divide and conquer’ approach, by its very nature, separates the
molecular interactions from the structural formation. Thus, it does not conduct the
interplay between main modules. To proceed with realistic modeling of pancreatic
organogenesis, in particular to advance to the ‘secondary transition’ in which cells
adopt their final fate, we had to introduce cross-scaling [7] to enable interplay be-
tween the molecular interactions and the structural formation.

The principles underlying cross-scaling in modeling natural systems are illus-
trated in Fig. 6. In the ‘divide and conquer’ approach (Fig. 6, top), a module for
molecular interactions (left) is separated from the structural behavior (right). At run
time, the two modules interact with cells (middle), to drive in parallel their molec-
ular and structural development. An approach that considers cross-scaling (Fig. 6,
bottom) links the two modules and enables interplay between them. At run time,
molecular interactions and structural information direct cell development as before,
but also interact with each other to promote different aspects in their development.

The Delta–Notch mechanism emphasizes the need for cross-scaling in organo-
genesis. In pancreatic organogenesis, this mechanism directs cells towards their final
fate. It is partly initiated by external signals (from the extra-cellular space) and is
enhanced by cell-cell interaction. At the same time, cells that adopted an endocrine
fate, aggregate to form clusters named ‘islet of Langerhans’. In this case, the stage of
a cell is significantly determined by external signals in its spatial position. Thus, the
molecular development relies much on morphogenesis. In turn, a cell that adopted
an endocrine fate, starts aggregating in a cluster, and thus the molecular interac-
tions determine the structural formation. Such a mechanism forces cross-scaling for
simulating its behavior.

Fig. 6 Top: An illustration of
the interaction scheme
between the cells and the
morphogenetic and molecular
interactions in the model.
Bottom: Cross-scaling in
modeling (notice the extra
arrow indicating interactions
between the modules)
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5 Discussion

During the last decade, increasing interdisciplinary work modeled aspects in natural
systems to explain relevant experimental findings (see, e.g., [2, 6, 14, 27]). However,
most of this work describes the system at a specific scale and ignores others. More-
over, the work focuses on a single mechanism in each scale and disregards multiple
interactions. Another type of modeling work formalizes gene expression and protein
activity using a variety of mathematical and computational tools (for example, see
[3, 19, 30, 34, 35]). However, most of the relevant work ignores multiple concurrent
activities and focuses on a single mechanism in the entire system. An example of
comprehensive modeling is the beating heart project [28], which over the last fifty
years formalized the electric activities in the heart. However, by its mathematical
nature, the model is not interactive and does not support the kind of visualization
we seek.

Recently, various papers use computational modeling approaches for natural sys-
tems. In [13], hybrid automata are used to model the Delta–Notch mechanism,
which directs differentiation in various natural systems. In [11], computational chal-
lenges of systems biology are described and various approaches for achieving them
are discussed. A similar motivation for model-driven engineering approaches is dis-
cussed in [36]. In [12], computational and mathematical approaches are reviewed
and the term executable biology is used to describe the kinds of modeling carried
out in our group, and recently also elsewhere. In [45], a model for a eukaryotic cell
is built, in which a UML class diagram was used to formalize the relations between a
cell and its sub-cellular elements. The setup was empowered by specifying behavior
of different cell types (e.g., red blood cell) using the ROOM formalism. A simi-
lar approach was employed in [43] to model the Ethylene-Pathway in Arabidopsis
thaliana using statecharts and LSCs.

To simulate the development of natural systems, we confront a complex system
that dynamically evolves over time and space. This task requires one to understand
the many time-dependant aspects of the system. A comprehensive modeling ap-
proach of such systems should provide the means to specify behavior of its different
aspects [7]. Moreover, the approach should deal with the system on different lev-
els of abstraction, which in turn drive different scales of the development. At the
very least, such an approach should provide the means to simulate the dynamics of
formation of a 3D structure.

The ‘divide and conquer’ approach presented here was inspired by many indus-
trial reactive systems, which can be separated into fundamental components that
interact at run time. In natural systems, this approach provides the means to specify
dynamic behavior of the structural and molecular development of a natural system
as separated modules. From the biological point of view, these modules correspond
to different scales of the system, organ, cell, gene, etc. However, by its nature, the
approach does not provide the means to specify interplay between the different mod-
ules. Thus, it conducts multi-scaling and 3D dynamics but avoids cross-scaling.

In this paper, we describe how the ‘divide and conquer’ approach was employed
for modeling pancreatic organogenesis. The end result gave rise to dynamic rep-
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resentation of the system and managed to capture the preliminary stages of its de-
velopment. Furthermore, the model provided plausible results for the preliminary
period. However, more complex mechanisms of the system could not be specified
using this approach. These mechanisms involve interplay between structural and
molecular behaviors, which are specified separately in the model. Thus, we move
that this approach can be used to model such systems as the development of phyl-
lotaxis in plants, which might be separated into fundamental modules. For example,
structural phyllotaxis principles can be specified as L-Systems [22, 32], while mole-
cular behavior can be formalized using deferential equations. Furthermore, existing
models (such as, e.g., [15, 24, 42]), which describe structural formation of natural
systems, can be extended using the ‘divide and conquer’ approach to support mole-
cular behavior.

In the case of pancreatic organogenesis, the ‘divide and conquer’ approach em-
phasized the need for cross-scaling in organogenesis, and served as a significant
milestone in our work toward the model described in [40], which employs the ‘au-
tonomous cell’ approach.

Acknowledgements We thank Yuval Dor and Judith Magenheim for providing histological im-
ages of the pancreas.
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No Molecule Is an Island: Molecular Evolution
and the Study of Sequence Space

Erik A. Schultes, Peter T. Hraber,
and Thomas H. LaBean

Abstract Our knowledge of nucleic acid and protein structure comes almost ex-
clusively from biological sequences isolated from nature. The ability to synthesize
arbitrary sequences of DNA, RNA, and protein in vitro gives us experimental access
to the much larger space of sequence possibilities that have not been instantiated in
the course of evolution. In principle, this technology promises to both broaden and
deepen our understanding of macromolecules, their evolution, and our ability to en-
gineer new and complex functionality. Yet, it has long been assumed that the large
number of sequence possibilities and the complexity of the sequence-to-structure
relationship preempts any systematic analysis of sequence space. Here, we review
recent efforts demonstrating that, with judicious employment of both formal and
empirical constraints, it is possible to exploit intrinsic symmetries and correlations
in sequence space, enabling coordination, projection, and navigation of the sea of
sequence possibilities. These constraints not only make it possible to map the distri-
butions of evolved sequences in the context of sequence space, but they also permit
properties intrinsic to sequence space to be mapped by sampling tractable num-
bers of randomly generated sequences. Such maps suggest entirely new ways of
looking at evolution, define new classes of experiments using randomly generated
sequences and hold deep implications for the origin and evolution of macromole-
cular systems. We call this promising new direction sequenomics—the systematic
study of sequence space.

1 Introduction

Almost a century ago, as it came to be understood that protein and RNA molecules
were linear chain polymers, it also became clear that the evolution of these mole-
cules occurred as natural selection chose from among a vast sea of sequence pos-
sibilities. Although extraordinary progress has been achieved in understanding the
sequence, structure, function, and evolution of biological proteins and RNAs; this
corpus of theory has had little to say about the properties of the much larger space
of potential, yet unrealized sequences. Since our knowledge of molecular structure
remains idiosyncratic to the vanishingly small, profoundly biased biological sam-
pling of the enormous space of possible sequences, it has been impossible to draw
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truly general conclusions about molecular structure and evolutionary history. For
example, without unevolved sequences in the analysis, it is impossible to resolve
properties of proteins and RNAs that must be true in principle (due to physiochem-
ical properties), from those that are the result of historically contingent accidents
propagated by evolutionary descent. Hence, it is impossible to understand the ulti-
mate origins of complex protein and RNA structures and to account for evolutionary
transformations from one structure to another.

The explanation for why unevolved sequences have remained so neglected can
be found in the historical development of molecular evolutionary theory. This be-
gan when concepts of molecular evolution were being forged under the twin influ-
ences of Darwin’s theory of evolution and the new science of structural biology at
the molecular scale. Experimental discoveries in protein and RNA biochemistry re-
vealed molecular structures of unprecedented size and complexity, and discovery of
highly ordered yet aperiodic structure in these macromolecules needed an explana-
tion that chemistry and physics at the time could not offer. As it was then understood,
the conformational entropy of molecules of such size should overwhelm the folding
process, and thus the 3-dimensional (3D) structures of proteins and RNAs should
resemble amorphous materials, such as liquids or glasses, rather than the observed,
highly-ordered structures, more reminiscent of organic crystals. In the absence of a
physical explanation, Darwin’s theory of natural selection was used to escape from
this dilemma: vast periods of time (billions of years) and shear numbers of trials
(global populations of organisms) allowed nature to find those exceedingly rare se-
quences that fortuitously had the ability to overcome conformational entropy and
fold to stable 3D structures. Supplanting God as the creator of life, natural selec-
tion also became the accepted mechanism accounting for the “miracle” of folded
proteins and RNAs. This early fusion of structural biology and Darwinian theory
implied that unevolved sequences were disordered, and so they became scientifi-
cally irrelevant. Despite ample evidence to the contrary, this assumption took root
early and continues to influence thinking today.

In what follows, we first outline the historical development of molecular evolu-
tionary theory in order to trace the origins of the assumption that sequences coding
for well-ordered molecular structures can only be located through the strenuous
labors of natural selection and that unevolved sequences are predestined to be un-
structured. From this point of view, much of what we have to say about proteins is
true for RNA and vice versa, and we will interchangeably draw on examples from
each. We then summarize a few recent approaches that have challenged this as-
sumption and have not only legitimized the analysis of the structures of unevolved
sequences, but have gone on to embrace the much larger space of sequence possibil-
ities as a missing, though essential component of a complete molecular evolutionary
theory. We then conclude with what we view as a promising new direction for mole-
cular evolution in a post-genomic era—a research program we call sequenomics.
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2 The Delicate Clockwork Hypothesis of Molecular Evolution

It is hard to believe that within living memory, there was a time when molecular
sequence and structural information for protein and single-stranded RNA molecules
was non-existent (for brief reviews, see [51, 68]). At the risk of oversimplification, it
can be said that our current understanding of RNA and protein structure has emerged
from three fundamental experimental discoveries (recognized by five Noble Prizes)
all before circa 1960.

First, through a series of genetic experiments on the bread mold Neurospora,
Beadle and Tatum [3] had established a correspondence between genes and protein
enzymes, formulating the famous one-gene-one-enzyme hypothesis.

Second, using analytical centrifugation, Theodore Svedberg and his colleagues
had established definitively that proteins were macromolecules of unprecedented
size (not colloidal aggregates as had been conjectured) [64]. In conjunction with the
first protein sequences that were chemically determined (Sanger’s work on insulin,
[55]) and the first protein structures that were solved by x-ray crystallography (Pe-
rutz’s and Kendrew’s work on haemoglobin [20] and myoglobin [28]), it became
clear that function at the molecular level (specific binding and catalysis) could be
rationalized by atomic-scale molecular structure.

Third, expanding on the ideas of Mirsky and Pauling [45], and working with the
protein ribonuclease, Anfinsen demonstrated that the sequence information of the
polypeptide chain can be sufficient to account for the acquisition of the functional,
folded structure known as the native fold (1957, reviewed in [1]). As it was assumed
that the native conformation was also the minimum free energy conformation (an
assumption consistent with contemporary structural studies on crystals and small
molecules), Anfinsen’s proposal became known as the thermodynamic hypothesis.

Taken together, these seminal experiments link evolution, sequence information,
folded structure, and biochemical function into a single, coherent framework that
can be expressed via the well-known mantra: sequence dictates structure, structure
dictates function. The relationship between sequence and structure implies that if
the rules governing folding can be deduced, then it might be possible to predict
structure (and function) from sequence information alone, a proposition referred
to as the folding problem. Concurrent discoveries in nucleic acids also suggested
an analogous sequence-structure folding problem for single-stranded RNAs [15]. It
is notable, however, that these experiments say nothing regarding the structures of
unevolved molecules.

At the time when the first RNA and protein x-ray structures became available,
conformational studies of molecules had focused on low molecular weight organic
structures having few conformational states. But as single macromolecules, it was
unclear how conformational entropy could be overcome. Instead, proteins and RNA
were expected to access a large number of conformations either dynamically (i.e., as
“random-coils”) or as a disordered collapsed (i.e., as a “glass”) [9]. Yet, as Anfinsen
had demonstrated, despite the vast number of possible conformations, nature could
solve the folding problem in seconds.
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As Kauffman reviews in his Origins of Order [31], natural selection had come
to be seen, for a variety of different reasons, as the sole source of order in biol-
ogy. In the absence of a physical theory of complex polymer folding, researchers
adopted natural selection as an explanation for how proteins and RNAs acquired
unique folded conformations. For example, Levinthal had noted early on that the
number of possible conformations in protein polymeric chains is far too large to al-
low exhaustive conformational searches for minimum free energy structures—a co-
nundrum that came to be known as Levithal’s Paradox [39, 40]. Levinthal noted that
protein backbones have two, independent dihedral angles for each amino acid and
additional rotations permitted for each side chain. Hence, for proteins of even mod-
est length, say 150 amino acids (to use Levinthal’s original formulation), there are
450 degrees of freedom with 10300 possible conformations. For RNA, the situation
is worse, with six independent backbone angles, phosphate rotamers, distinct sugar
conformations, and dozens of hydrogen-bond-mediated base interactions [4].

Levinthal’s own answer to the Paradox was that the native, functional fold need
not necessarily be a global minimum free energy structure (in contradiction to the
thermodynamic hypothesis) and the exploration of conformation space by a pro-
tein need not be exhaustive. An exhaustive search implies that the energy associated
with each conformation (the so-called energy landscape) is high (unstable) and ap-
proximately the same, thus permitting a random-walk. Levinthal postulated that in
reality, the energy landscape must be structured into a kind of high-dimensional fun-
nel with correlations between neighboring conformations that could constrain and
expedite the folding process. Levinthal commented that this informed energy land-
scape was presumably an evolutionary adaptation, implying that unevolved proteins
would have uncorrelated energy landscapes.

More recently, Frauenfelder and Wolynes [18], also starting with a “random-
energy” model of protein folding, have described this evolutionary-induced modi-
fication of the energy landscape in their Principle of Minimum Frustration. In this
case, the energy landscape is molded by evolution as a “random heteropolymer”
is altered by mutation and selection in such a way as to minimize conflicting in-
tramolecular interactions in the native fold. Folding funnels and minimally frus-
trated structures were used to explain folding in evolved proteins, however, uncorre-
lated, random energy landscapes were assumed to be reasonable approximations for
unevolved molecules. This central role of natural selection in accounting for macro-
molecular conformations remains pervasive and continues to impact contemporary
research. For example, the website for IBMs recent $100M Blue Gene Initiative in
protein folding states unequivocally that unevolved “Heteropolymers typically form
a random coil in solution and do not ‘fold’ to any reproducible structure in exper-
imentally accessible times” and that “Arbitrary strings of amino acids do not, in
general, fold into a well-defined three-dimensional structure.”

The ability of a protein or RNA polymers to position thousands of atoms into
energetically stable, kinetically accessible and functional configurations suggested
that selection had to “work hard” to “engineer” the mysteriously complex solutions
to the folding problem. Hence, evolved molecular structures came to be seen as
delicate clockworks, carefully “designed” and “adjusted” as natural selection chose
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from among sequence possibilities. Just as randomly swapping gears and sprock-
ets in a clockwork mechanism would almost certainly be disastrous, the random
sequence mutations that are the basis of molecular evolution were expected to be al-
most always deleterious, if not catastrophic to the Ångstrom-scale architectures. For
our purposes here, we refer to this perspective as the Delicate Clockwork Hypothesis
(DCH) of molecular evolution.

The DCH was a reasonable response to the unprecedented complexity of native
protein and RNA structures, especially at this time when natural selection dominated
thinking in biology [21]. However, by the late 1960s, molecular sequence data be-
gan to contradict the DCH. It had become possible to observe that homologous pro-
teins and RNAs (functionally equivalent molecules from different organisms, e.g.,
hemoglobin from cow, pig, shark, fish, and worms) had recognizable similarities
in their sequences, and that there tend to be more similarities between sequences
from closely related species [74]. It turned out that the rare mutations that had been
accepted by natural selection, and accumulated over time, could thus be used to de-
fine the evolutionary relationships of different species. Genealogical lineages could
be mapped, mutation-by-mutation, and for molecules like ribosomal RNA that were
common to all species, it was possible to construct universal phylogenetic trees [71].

This diversity among observed molecular sequences was difficult to explain if
the DCH was an accurate description of molecular structure. This prompted Salis-
bury [54] to point out that “If life really depends on each gene being as unique as
it appears to be, then it is too unique to come into being by chance mutations.” In
an analysis of molecular evolution in sequence space that is curiously reminiscent
of Levinthal’s approach to folding in conformation space, Salisbury calculated the
probabilities (as estimates of time) of finding a particular protein sequence by ran-
dom mutation in the enormous space of sequence possibilities. In what we might
refer to as Salisbury’s Paradox, it was clear that under the prevailing idea of the
uniqueness of the gene sequence space would be simply too large, and the num-
ber of sequences with folded structures too few for meaningful sampling by random
mutation. The DCH assumes that there would be insufficient raw material (favorable
mutations) for selection to work on.

The accumulating sequence data forced Salisbury to challenge what he called the
“dogma of high gene specificity”. Referencing a previous mathematical analyses by
Quastler [50] who speculated that with respect to the amino acid sequence, “a certain
neighborhood of structurally related amino acid polymers. . . can perform the same
function” and “identical functions can be associated with multiple neighborhoods
that are structurally unrelated.” Salisbury concluded that biological functions could
not be as rare or randomly distributed in sequence space as the DCH implied. Protein
structures must somehow be insensitive to some, or even the majority, of amino acid
substitutions, as if clockwork could be randomly rearranged and still keep perfect
time. Apparently, in direct contradiction to the DCH, a significant, if unexpected,
redundancy in protein sequences’ encoding of structure was the key to molecular
evolution. As Levinthal’s Paradox had been solved with the idea of correlated en-
ergy landscapes, so was Salisbury’s Paradox solved with correlations in sequence
space. Functional proteins were not islands in sequence space, but archipelagos of
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interconnected sequences that folded to the same structures and having the same
function. In either case, however, these isle refuges of coherent folding dotted a sea
of disordered sequences.

Shortly thereafter, John Maynard Smith [62] offered a more rigorous solution
to Salisbury’s Paradox. Not only did Smith reconsider the fraction of molecular
sequences that must be functional, but he also modeled the inherent organization of
sequence space: “Suppose now that we imagine all possible amino-acid sequences
to be arranged in a ‘protein space’, so that two sequences are neighbors if one can be
converted into another by a single amino-acid substitution.” Where A is the number
of monomers (A = 20 amino acids for proteins, A = 4 nucleotides for RNA) and
N is the length of the sequence, for any polymer sequence X, there are (A − 1)N

sequences that are single-step mutations. For functional proteins, Smith then defined
the fraction, f , of these local neighbors that are at least as active as X. So long
as the product of f and 19N is greater than 1, “meaningful proteins will form a
network, and evolution by natural selection is possible.” To demonstrate what he had
in mind, Smith invoked the image of a popular word game whereby one word can be
converted into another word by a series of one letter substitutions, each substitution
creating a viable word. So, WORD can be converted into GENE as:

WORD
WORE
GORE
GONE
GENE

The analogy was that viable words were like functional proteins, and the sub-
stitution of letters like the substitution of amino acids. Depending on the size and
extent of these networks of neutral sequence variants in sequence space (i.e., neutral
networks), random mutations would always be able to access a sufficient number of
viable sequences to ensure molecular diversification. As evidence that f 19N > 1,
Smith had cited the then recent paper by King and Jukes [30] that presented empiri-
cal evidence that a large fraction of amino acid substitutions are selectively neutral.
Along with the work of Kimura [29], this observed preponderance of selectively
neutral mutations resulted in the formulation of the then heretical Neutral Theory
of molecular evolution. The Neutral Theory was in direct contradiction to the DCH
and ignited surprisingly acrimonious debates that have been well documented (for
example, see the Dibner Institute’s excellent online resources for “Early Reception
of the Neutral Theory” and “Ideology in the Neutralist-Selectionist Debates”). The
vigor of these debates is testimony to the degree to which the DCH was held and de-
fended. More recently, Meier and Özbek [44] acknowledge that even today “protein
structures and their concurrent functions have remained largely mysterious, as the
destruction of these structures by mutation seems far easier than their construction.”

Although Smith’s concept of neutral networks was consistent with Salisbury’s
and Quastler’s analyses, it takes the extra step of considering sequence space, not as
a grab-bag of probabilities, but as a network or graph, with definite relations, subject
to mathematical analysis, metrics, and the possibility of establishing coordinate sys-
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tems. Smith was envisioning molecular evolution as a diffusion process on neutral
networks and molecular phylogenies as “samplings” of such neutral networks.

The diversity of molecular sequence data suggests that neutral networks must
be extensive in sequence space. It has now been demonstrated that only 5–20% of
a given protein’s amino acid sequence remains invariant during evolution [47] and
that sequences with little if any measurable sequence identity can nonetheless fold
into identical conformations [63, 66]. The same appears true for RNA: only seven
nucleotides are strictly conserved among group I self-splicing introns, yet the sec-
ondary (and presumably the tertiary) structure of the ribozyme is preserved [42]. Be-
cause these disparate group I isolates have the same fold and function, it is thought
that they descended from a common ancestor by taking distinct paths on the same
neutral network.

In the last 20 years, well-established methods of nucleic acid and protein syn-
thesis have permitted direct, quantitative evaluation of the DCH. Automated DNA
synthesis can be used to construct arbitrary sequences or combinatorial pools of
sequences that serve as templates for the genetically-encoded expression of RNA
and protein molecules. Although this technology has been primarily used in the
synthesis and analysis of evolved, biological sequences (or their mutated coun-
terparts), it can also be adapted to the synthesis of random-sequence, unevolved
RNA and proteins. For example, LaBean et al. [35–37], designed and synthesized
DNA sequences that, when cloned, expressed unevolved proteins having sequence
lengths and amino acid compositions matching small globular proteins found in na-
ture. Surprisingly, they discovered ample evidence for solubility, specific secondary
structure, and cooperative unfolding transitions, among these unevolved protein se-
quences. Davidson and Sauer [11, 12], Prijambada et al. [48], Chiarabelli et al. [8]
and Doi et al. [14] have also expressed, purified, and analyzed the structures of un-
evolved, random-sequence proteins. Although these systems produce oligopeptides
that are smaller than biological proteins and sometimes used a restrictive set of the
20 amino acids, they also obtained evidence for secondary structure. Schultes et
al. [56] expressed and analyzed a set of 20 RNA molecules whose sequences had
been randomly-generated in a computer. Using a battery of physical and chemical
techniques for probing the folded conformations of these RNAs, they demonstrated
sequence specific, magnesium-dependent folding to structures that were often as
compact as evolved sequences having analogous size and nucleotide composition.
Hence, for both proteins and RNAs, it appears that at least some elements of folded
structure are common in sequence space and are independent of natural selection.

In addition to these structural studies, Schultes and Bartel [57] synthesized a
series of RNA to verify the existence of RNA neutral networks for two catalytically
active RNAs. This study was also able to demonstrate the close proximity of neutral
networks to one another in sequence space (these results will be discussed in more
detail in the next section).

Furthermore, by screening combinatorial pools of random-sequence proteins or
RNAs for predefined function (i.e. in vitro selection), it has now been amply demon-
strated that specific, biological-like binding and catalysis are at least as common in
sequence space as one in 1010 to 1012 [70]. Moreover, since combinatorial pools
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have been shown to produce functional sequences for particular, arbitrary physio-
chemical tasks, these same pools, by implication, must contain functional sequences
for any physiochemical task [10, 26, 27]. Hence, from a space of 1060 possible se-
quences (RNA oligonucleotides having 100 randomized positions; 4100 ≈ 1060 pos-
sibilities), a typical combinatorial pool containing as few as 1014 sequences (only 1
part in 1046 of the possible), nevertheless appears to contain every function found
in the whole of sequence space.

Taken together, these experimental results demonstrate that sequence space is,
contrary to the DCH, densely populated with sequences able to fold into stable, well
ordered and even native-like conformations. Furthermore, the diversity of structures
and functions available in relatively small samples of sequence space points to-
ward correlations and symmetries within the complex multi-dimensional encoding
of structure that have yet to be fully appreciated for their roles in the evolution of
new biochemical functions. These results indicate the need for a new theory of mole-
cular structure that is independent of natural selection, evolution, or even biology.
This theory would certainly accommodate the dynamics of selection and mutation
in accounting for the diversity and disparity among functional sequences and their
structures, but this theory would also make specific predictions about how the much
larger space of possible sequences facilitates evolution.

Starting from Smith’s conception of a protein space, and its analogue for RNA,
we have been developing some of the conceptual approaches and the computational
and experimental tools of such a theory. We review some of this work in the next
section.

3 Theory and Experiments with Unevolved Sequences

Smith’s example made clear the formal organization of related sequences into neigh-
borhoods where nearest neighbors are related by single-step amino acid substitu-
tions. Smith restricted his discussion to proteins of a single length, N , ignoring for
the sake of clarity, deletion, and insertion mutations. He also assumed a fixed alpha-
bet size (A = 20 amino acids). As each amino acid position of a given sequence can
mutate to any one of the other 19 amino acids, it is obvious that each sequence is
connected to 19N neighboring sequences by single-step substitutions. As this is true
for all AN sequences, protein sequence space is a (19N)-regular graph. In this rep-
resentation, each node on the graph is a sequence and each single-step substitution
is an edge. Generalizing to RNA which has only four monomeric building blocks
(A = 4 nucleotides), RNA sequence space is a (3N)-regular graph. Table 1 sum-
marizes some of the fundamental mathematical properties of sequence spaces using
well-known combinatorial formulas. Figure 1 represents a trivial sequence space for
binary strings of length N = 4, drawn from the monomers G and A.

To make the concept of protein sequence space more concrete, imagine you are
gazing with your (19N)-dimensional eye at the regular graph of a protein sequence
space. Since this is the totality of sequence possibilities, all of protein evolution
must take place inside the finite boundaries of this graph. From this hyper-bird’s-eye
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Table 1 Fundamental
properties of sequence space Alphabet size A, the cardinality of the set of

monomers {a1, a2, a3, . . . , aA}
Sequence length N

Number of sequence possibilities AN

Number of nearest neighbors
(dimensionality of the space)

(A − 1)N

Number of neighbors k-steps
away

(A − 1)kNCk

Number of composition classes (N+(A−1))CN

Number of sequences per
composition class

N !/(a1! · a2! · a3! · · · · · aA!)

Fig. 1 A Boolean
hyper-cube is the sequence
space for binary sequences,
N = 4, where each sequence
is connected to its four
single-step mutational
neighbors

view of evolution, imagine color-coding sequences according to various structural
or functional properties. First, color all the nodes that are capable of folding into one
specific, compact, globular conformation such as a native myoglobin fold (this is, in
the context of an aqueous, buffered saline solution at room temperature, conditions
typically used in in vitro experiments). Although Salisbury would be interested to
know the fraction of sequences that have lit up, we might go on to ask how these col-
ored nodes are distributed across the graph. Are they isotropically dispersed or clus-
tered? Are there multiple clusters? If so, are the different clusters interconnected, or
are they isolated by regions of sequence space devoid of myoglobin folds? Using a
different color, now mark all those myoglobin sequences that have been actualized
in the course of evolution. Are they interconnected by a single (19N)-dimensional
phylogenetic tree or do they belong to multiple, independent evolutionary lineages?
Using a third color, light up the constellations of sequences capable of folding and
functioning in the context of a fibrous protein such as collagen. Do the myoglobin
and collagen distributions occupy distinct regions of sequence space, or are they
interwoven? What happens to sequences “in between” the colors? Are they half-
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globular, half-fibrous, or something altogether different? Now imagine repeating
these experiments while parametrically scanning the experimental conditions (e.g.,
changing temperature or salt concentration or pH). How sensitive are the two distri-
butions of colors to these changes? Under what conditions do the distributions grow
or contract or change shape? Are there certain critical values of conditions for which
the distributions undergo abrupt changes in size and shape?

The purpose of this gedankenexperiment is to demonstrate the range and scope
of fascinating and important questions that were not permissible under the DCH.
Of course, in reality, we can never hope to directly view a high-dimensional space,
but we can conceive of useful projections. Also, for even short polymers, it will
never be possible to exhaustively analyze all possible sequences. However, although
any particular sampling of sequence space will always be necessarily sparse, there
are nonetheless, practical strategies for sampling sequence spaces that can yield
meaningful data. As we will see, sequence spaces contain a number of profound
symmetries and complex correlations that when understood will not only help to
rationalize the evolution of RNA and protein molecules in nature, but will also serve
as a powerful guide in laboratory-based searches for novel molecular structures and
function.

Practical approaches to visualizing sequence space must involve a drastic reduc-
tion in dimensionality, from 19N or 3N down to just 2 or 3. Although there are
a number of mathematical techniques one could use to perform this dimensional
reduction, without proper constraints these projections would tend to confound vi-
sualization and obscure the patterns we are seeking. However, based on what we
know from the theory of regular graphs and from the physiochemical properties of
proteins and RNAs, a useful projection scheme immediately presents itself.

As can be seen in Table 1, all AN sequence possibilities can be partitioned into a
relatively small number of composition classes: sequences that have the same pro-
portions of monomers. The number of sequences that belong to a composition class
varies dramatically, and can be calculated using the multi-nominal function. The
notion of composition class has particular relevance to real molecular sequences
because each of the monomers are chemically and structurally distinct, and so se-
quences biased in one composition are expected to have structural properties that are
different from sequences having other compositional biases. Extreme cases are the
homopolymers, sequences composed of only a single type of monomer. These se-
quences are unique in that they contain no sequence information, and their physical
properties reflect only the intrinsic propensities of the monomer itself. Depending
on the monomer, the homopolymer may or may not be structured. For example, in
the case of RNA, poly-guanine is expected to have a collapsed structure (primarily
due to base stacking interactions) whereas poly-uridine is not. Indeed, poly-uridine
is probably a good example of a true random-coil [56]. For proteins, the same could
be said for poly-lysine at alkaline pH (ordered) and at neutral and acidic pHs (dis-
ordered). Homopolymers composed of the other amino acids would be more or less
the same, but in any case, for both proteins and RNA, the homopolymer sequences
act as internal references with information theoretic, physiochemical, and biologi-
cal significance. Hence, homopolymers act as universal reference points for regular
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Fig. 2 The RNA simplex.
Chargaff’s Axis (green line)
defines the familiar gradient
in GC content. The simplex
also makes explicit additional
composition parameters:
G + A and G + U (red axes).
Isoheteropolymers are located
at the intersection of the red
and green axes. Plotted are
147 16S rRNA biological
isolates (oval): Archaea, red;
Bacteria, blue; Eucarya,
yellow (from [60])

graph of sequence space. Using the homopolymers, we could even “triangulate”
distances (in single-step substitutions) to any arbitrary sequence.

To be concrete, the sequence space for RNAs having exactly 85 nucleotides has
255 dimensions and over 1051 sequence possibilities. This enormous number se-
quences, however, is partitioned among only 109,736 distinct composition classes.
Although sequence spaces have no absolute “center” or “inside/outside” sequences,
the space of composition classes does. In the case of RNA, each of the compo-
sition classes can be geometrically arranged as points in the volume of a tetrahe-
dron, where the four vertices are the composition classes of the four homopolymers,
and the composition class at the center-of-gravity of the tetrahedron represents se-
quences having a uniform distribution of the four nucleotides (i.e., 25% each A,
C, G, and U), Fig. 2. We refer to these maximum entropy sequences as the iso-
heteropolymers. Because all possible sequences are partitioned among the com-
position classes, the tetrahedron can be considered a 3-dimensional projection, or
simplex, of the (3N)-dimensional regular graph of RNA sequence space.

Because the four nucleotide bases are sterically and chemically distinct, differ-
ent ratios of the four bases impose an anisotropic distribution of chemical proper-
ties among RNA with differing compositions. The most important anisotropy, due
to Watson–Crick base-pairing (A pairs with U, C pairs with G), is the symmetry
defined by the set of compositions extending from the mid-point of the CG-edge
through the center of the simplex, to the mid-point of the AU-edge (green line in
Fig. 2). Referred to as Chargaff’s Axis (after Chargaff’s Rule for base composition
in genomic DNA, where molar fractions of A = T & C = G [7]), it is the locus
of composition classes formally permitting the maximum possible Watson–Crick
base-pairing in RNA. In this way, the RNA simplex projection combines the formal
properties of sequence space with well established biophysical properties of RNA.

Taking a lead from the thought experiment described above, we can imagine
that evolving RNA sequences map trajectories in sequence space as they undergo
modification by mutation and selection. Trajectories involving changes in monomer
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composition can be plotted and observed in the RNA simplex. This is done by sim-
ply extracting the frequency of nucleotide bases composing individual sequences,
and then calculating their simplex coordinates as G + A, G + U and G + C contents.
In our first analysis, we compiled 2800 distinct sequences representing 15 distinct
functional classes of biological RNA [60]. Remarkably, we found that these diverse
biological RNAs universally occupied a restricted volume of the simplex, forming
narrow clouds that parallel Chargaff’s Axis, yet are displaced (by ∼5%) toward the
AG-edge (i.e., toward the purines), Fig. 2. The diversity in sequence and structure
among the 15 functional classes of RNAs examined, imply that these molecules
share little, if any, evolutionary history and that their coincidence in this region of
the simplex was a heretofore unknown example of adaptive convergence. This was
observational evidence that a universal principle of macromolecular structure was
being independently exploited by different genealogical lineages of RNA.

At the time, we were completing these first analyses, the first complete genomes
of free-living organisms were being published, and the idea of calculating and plot-
ting base composition was seen by some to be a step backward to days before effi-
cient sequencing methods had been developed. To the contrary however, by casting
RNA evolution first in the context of sequence space, and then in the context of com-
position space, our analysis immediately revealed profound patterns that even the
most comprehensive cladistic methods had failed to detect. This is because cladistic
methods seek patterns within evolutionary lineages and are thus unable to resolve
trends that are due to universal constraints from trends that merely reflect genealog-
ical descent. Of course, phylogenetic analyses and the approach taken with the RNA
simplex are entirely complementary, and either method is diminished in its explana-
tory power absent the other.

The displacement of the biological distributions from Chargaff’s Axis reflects the
structural constraints inherent to the folding of the linear phosphodiester backbone
of RNA polymers under the influence of basepairing. The acquisition of arbitrar-
ily complex folds in single-stranded RNAs emerges from the alternating composi-
tion of double-helical stem structures separated by unpaired single-stranded joining
structures. As the bases in the canonical stem structures must, by definition, fulfill
Chargaff’s Rule (and, therefore, must lie on Chargaff’s Axis), it is primarily the
composition of unpaired bases in the joining structures that dictate the magnitude
and direction of the displacement away from Chargaff’s Axis.

For the biological isolates, the magnitude of the displacement from Chargaff’s
Axis is dictated by the compromise between the thermodynamic stability of the folds
(favoring stems) and need for complex macromolecular structures (favoring single-
stranded joining regions). The direction of the displacement of biological isolates
from Chargaff’s Axis could be, a priori, in any direction, yet the unpaired residues
are universally purine-biased. This observed “purine-loading” in nature may re-
flect the unique chemical properties of purines contributing to stable and specific
folding in RNA [34]. For example, X-ray crystallographic analyses of native-fold
RNAs have demonstrated the ubiquity of purine-associated structural primitives in-
cluding the A-minor motif, a tertiary interaction whereby an unpaired adenosine
residue docks in the minor groove of a helical stem elsewhere in the macromolecu-
lar fold [46]. It has been established that the A-minor motif plays an essential role
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in stabilizing overall three-dimensional folded structures and maintaining biological
activity [13].

The patterns revealed by the RNA simplex, and the purine-loading observed in
structural studies comprise circumstantial evidence for the existence of general prin-
ciples governing the complex folds required for biological activity. To explain this
coincidence of biological sequences in restricted volumes of the RNA simplex, it
is necessary to analyze and compare the macromolecular folding of sequences that
are distinct from biological isolates. For example, if purine-loading is a universal
principle, then purine-depleted sequences would be less likely to acquire biologi-
cally relevant folds. Perhaps purine-depleted sequences tend to have lower thermo-
dynamic stability or kinetic barriers that somehow prevent sufficiently complex or
adaptable structures. Answering such questions require the synthesis and biophys-
ical characterization of unevolved RNA sequences. Because in vitro methods are
laborious even for well-behaved RNA structures [67], we began our probing of un-
evolved RNA sequences in silico. This required a fast RNA folding algorithm, and
a strategy for meaningful, if sparse sampling.

Michael Zuker’s program, mfold, employs a dynamic programming algorithm
to compute the minimum free energy secondary structure of a specified RNA se-
quence [72, 73]. It also incorporates empirically derived thermodynamic parame-
ters of base-pair interactions [43]. mfold is limited to secondary structure prediction
(forgoing any attempt at three-dimensional structure prediction) which is to say that
it is better at finding reverse-complementary sub-sequences than correct backbone
topologies. Nonetheless, it is a robust and efficient algorithm for modeling sequence
specific base-pair interactions, which contribute the bulk of the free energy of fold-
ing.

At first, the idea of sampling RNA sequence space seems futile. For even short
RNAs of only 100 nucleotides have over 1060 sequence possibilities. Using mfold, it
is a heroic task to fold 108 sequences, yet this is only one-part in 1052. How could we
possibly produce a meaningful analysis of sequence space with such an exceedingly
sparse sample? This conundrum can be resolved by employing methods of “perfect
sampling.” Rather than sampling sequence space by generating random sequences
from a uniform distribution of the four nucleotide bases (repeating the sampling
from within or near the isoheterpolymers), we instead generate random sequences
that have specific base frequencies spanning uniformly and systematically, the entire
volume of the RNA simplex. In a method, we call Constrained Independent Ran-
dom Sampling (CIRS), a given composition class is repeatedly and independently
sampled producing a cohort of randomly generated sequences that are unrelated, but
have identical base compositions. CIRS essentially “shuffles” a sequence within a
given composition class, creating a random permutation that is one of many possible
molecular isomers.

In our simulations, 100 arbitrary sequences (each having 100 nucleotide bases)
were sampled from 1771 compositions classes differing by 5% composition inter-
vals throughout the simplex [58]. The resulting thermodynamic free energies com-
puted from the folded RNAs were then averaged for each composition class and
plotted in the simplex (Fig. 3).
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Fig. 3 Constrained Independent Random Sampling of the RNA simplex. Each composition class
is colored according to the average computed thermodynamic free energy of folding for 100 arbi-
trary sequences. Due to the asymmetries of the CG and AU base-pair interactions, the most stable
folds (red) tend to occur near the CG-edge of the simplex. Folds having intermediate stability
(green) fan out along Chargaff’s Axis toward the AU-edge. Only in CG-depleted sequences, are
there ample opportunities for AU base-pair interactions. Blank space indicates composition classes
sparse in Watson–Crick partners and, therefore, sparse in RNA polymers having stable, unique
folds (from [60]

According to these computations, the most stable folds occur for sequences near
the mid-point of the CG-edge (red points). Intermediate stabilities (green points)
occur along Chargaff’s Axis, where the potential for Waston–Crick base pairing is
maximal. The “bottle neck” in this distribution near G + C = 0.2 reflects the frus-
tration of stable G:C pair formation by the abundance of A and U residues (and A:U
pairs). Blank space is occupied by RNAs lacking Watson–Crick partners and, there-
fore, stable secondary structure. This complex distribution of RNA folding with re-
spect to composition, maps the spontaneous base-pairing propensity of RNA poly-
mers throughout sequence space. As the RNA simplex makes clear, spontaneous
macromolecular properties (spontaneous in the sense that they are independent of
selection or rational design) can sometimes provide as much or even more ordered
structure than those found in biology. This spontaneous ordering of macromolecular
folds, is a purely physiochemical processes driven by the release of free energy of
folding and has nothing to do with natural selection or biological evolution. Indeed,
from this point of view, it is the preponderance of well-ordered macromolecular
folds in sequence space that permits evolutionary adaptation [31]. In the context of
sequence space, natural selection is seen merely as a culling mechanism, rather than
as a creative force.
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Rob Knight’s group at the University of Colorado in Boulder used mfold and the
RNA simplex to demonstrate that for unevolved sequences having the same base
composition as biological isolates, the predicted structures had the same composi-
tional preferences among their structural elements as observed among the biological
isolates [61]. That is, like the biological RNAs, these unevolved sequences folded
such that purines predominated the unpaired residues. Hence, purine-loading is not
a consequence of natural selection, but is a manifestation of the self-ordering prop-
erties intrinsic to RNA polymers.

Curious as to how the complex distribution of folding in the RNA simplex might
constrain or facilitate RNA evolution, we proposed a stochastic model for mapping
evolutionary trajectories within the simplex. Making simple assumptions about se-
lection (tending to maximize thermodynamic stability) and mutation (tending to
randomize the sequence) we were able to evaluate the evolutionary “potential” for
each composition class, creating the analogue of a “attractor-basin portrait” for RNA
evolutionary dynamics in the simplex. Surprisingly, this simple model predicted the
mean G + A and G + U values of 928 tRNAs and 382 5SrRNAs to within 3%
[58, 59].

In a more sophisticated analysis of the distribution of specific RNA structural
motifs in sequence space, Knight et al. [33] discovered (after folding several hun-
dred million arbitrary RNAs on a computational grid) that the sequences capable
of folding to the isoleucine aptamer and hammerhead ribozyme structures are most
likely to be found in distinct regions of the simplex. This curious result also implied
that the neutral networks for these two RNA structures probably has local varia-
tion in the degree of connectivity. Furthermore, this result suggests that random-
sequence pools of RNAs used in vitro selection experiments could be optimized by
compositionally biasing the pool synthesis, thereby focusing the sparse sampling of
sequence space into the most promising composition classes.

mfold is explicitly a secondary structure prediction algorithm and ignores
tertiary-level interactions completely, so although computational analyses have an
important role to play in a survey of sequence space, they are inherently limited
and must ultimately be supplemented with analogous empirical data. As mentioned
previously, Schultes et al. [56] have implemented CIRS in vitro, synthesizing 10
arbitrary sequences (having 85 nucleotides) at two distinct composition classes: the
isoheteropolymers (a useful reference point when considering base composition)
and a composition corresponding to the genomic form of the Hepatitis Delta Virus
(HDV) self-cleaving ribozyme. The HDV ribozyme and other model sequences
were used as structural controls against which to compare the conformations of
unevolved RNAs. The structures of these 20 unevolved RNA molecules were then
probed using three independent methods: native gel electrophoresis; analytical ul-
tracentrifugation; and lead(II) chemical probing. These experiments demonstrated
that these unevolved RNAs had sequence-specific secondary structure configura-
tions and compact magnesium-dependent conformational states comparable to those
of evolved RNAs. But unlike evolved sequences, unevolved sequences were prone
to having multiple competing conformations. So, by comparing structures of only
two dozen RNAs, it was possible to begin teasing apart properties of RNA structure
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that are dependent on natural selection from those that are independent of natural
selection: Evolution appears necessary to achieve uniquely folding sequences, but
not to account for the well-ordered secondary structures and overall compactness
commonly observed in nature.

In CIRS, each sequence in constitutes an independent random sample and is
therefore unable to address the local network architecture of sequence space. To
gain insight into the local neighborhood structure of sequence space we use a dif-
ferent method of sampling called Local Network Sampling (LNS). In this case, a
particular sequence (called the anchor) is used as the basis for generating a sample
set of mutant sequences. In this way, the sample gathers data about how structural
correlations between sequences are distributed in sequence space. For instance, LNS
may generate all the single- and double-step substitution mutations of the anchor se-
quence (either in silico, or in vitro using combinatorial pools or microarrays). Such
a LNS would provide a direct measurement of the fraction of neighbors that are
neutral (f as defined by Smith [62]). In principle, the anchor may be an evolved or
unevolved sequence. Using LNS in this way, we could compare the degree of neu-
trality among evolved and unevolved sequences and/or sequences having different
monomer compositions.

In a different application of LNS, a pair of sequences (an anchor and a target)
is connected by a series of sequences that form a connected path through sequence
space, linking the anchor and target by single- or double-step substitutions (double-
step substitutions are particularly relevant in nucleic acids as they are basis of com-
pensatory mutations in helical stems). The intervening sequences can be generated
by random mutations or by mutations that preserve some aspect of structure (i.e.,
as neutral mutations, Grüner et al. [22, 23]), [17, 52]. For example, Schultes and
Bartel [57] used rational design and methods of site-directed mutagenesis to ex-
perimentally implement a LNS that demonstrated the proximity of RNA neutral
networks in sequence space.

In these LNS experiments, the anchor and target sequences were two different
ribozymes: the class III ligase and the antigenomic form of the HDV self-cleaving
ribozyme. The class III ligase is a synthetic ribozyme isolated from a pool of random
RNA sequences. It joins an oligonucleotide substrate (5′-GAACCAGUC) to its 5′
terminus using a 2′–5′ linkage that is distinct from the typical 3′–5′ linkage used
in biological RNAs. The HDV self-cleaving ribozyme carries out the site-specific
cleavage reactions needed during the life cycle of the virus (at the position indicated
by the arrow in Fig. 5, near G10). The prototype class III and HDV ribozymes have
no more than the 25% sequence identity expected by chance.

Using what was known about the structures of these two ribozymes, it was pos-
sible to rationally design a single sequence that simultaneously satisfied the base-
pairing requirements of both the HDV and ligase ribozymes. Although this sequence
design was initially done by hand, the procedure was later automated as a simple
computer program (Graham Ruby, personal communication). Indeed, “on paper” a
large number of such “intersecting” sequences can be conceived.

One such sequence (Fig. 4) was 42 mutational steps away from the ligase anchor
(39 base substitutions, one point deletion, and two single-nucleotide insertions) and
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Fig. 4 The intersection
sequence: a single RNA
sequence accommodating the
base-pairing configuration of
two different ribozyme folds.
Sequence position is
numbered and color coded
(with respect to the ligase
secondary structure),
demonstrating that there are
no two base-pairs in common
between the two folds. Two
single-step substitutions are
indicated (LIG1 & HDV1)
that stabilize one fold over
the other (from [57])

44 mutational steps from the HDV ribozyme target (40 substitutions, one deletion,
and three insertions). When this sequence was synthesized in the two formats de-
picted in the figure, catalytic activity significantly above the uncatalyzed rates were
detected for both self-ligation and site-specific self-cleavage (Fig. 5). It was shown
that ligation occurred with the regiospecificity of the class III ligase (forming a 2′
linkage rather than the biological 3′ linkage), indicating that the class III ligase fold
was achieved by some of the molecules. Cleavage also occurred as expected, with
formation of cyclic phosphate. Although ligation and cleavage rates were lower than
for the anchor and target sequences, this single sequence could assume two com-
pletely different, catalytically active folds.

In designing the intersection sequence, an unavoidable substitution from A to C
(at position 13) was required, a position known to be critical to the optimal function-
ing of the ligase. Substituting C13 with A (creating the LIG1 construct, see Figs. 4
and 5) simultaneously restored ligase activity and introduced a G:A mismatch in
the context of the HDV fold. The C13A point substitution dramatically increased
the ligation rate (90 times) and lowered the cleavage rate below detection. On the
other hand, the U73C substitution (creating the HDV1 construct), which is expected
to stabilize the HDV fold, substantially increased site-specific cleavage (120 times),
while lowering the ligation rate twofold. The substantial improvement seen with
single-nucleotide substitutions suggested that the intersection sequence might be
very close to the neutral networks of both ribozymes. With only two additional mu-
tations (again one stabilizing the ligase fold, the other stabilizing the HDV fold), it
was demonstrated that two ribozyme sequences (LIG2 and HDV 2), having totally
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Fig. 5 The close apposition of two neutral networks in RNA sequence space. The abscissa in-
dicates distance in single-step mutations from the intersection sequence (center) to the prototype
ligase and HDV ribozyme sequences. The curves represent measured activities for ligation (blue)
and cleavage (red) along the respective neutral networks. The intersection sequence demonstrated
both ligation and cleavage activities (horizontal dotted lines). Note that LIG2 and HDV2, though
separated by only 4 substitutions, are considered to be neutral for their respective functions (from
[57])

different folds and near-prototype-level activities, were separated in sequence space
by only four substitutions.

At this point, in order to confirm that both LIG2 and HDV2 are on the respective
neutral networks of the anchor and target sequences, paths were designed in se-
quence space that link these minor variants of the intersection sequence to their pro-
totype sequences. Each step along these paths changed no more than two residues,
often as compensatory mutations. Very smooth paths could be designed (Fig. 5),
gradually changing nearly half the ribozyme residues yet never falling from the
prototype activities by more than sevenfold. The ease by which these paths were de-
signed is consistent with the theoretical results suggesting that neutral networks are
a common feature of RNA sequence space. Because the anchor and target ribozymes
share no evolutionary history or structural features, it suggests that neutral networks
for other pairs of ribozymes closely approach each other. Indeed, by virtue of the
high-dimensionality of sequence space, it appears plausible that each ribozyme neu-
tral network closely approaches all other ribozyme networks.

In a very different approach to LNS, Curtis and Bartel [10] employed combinato-
rial pools to gain insight into the proximity of different ribozyme folds in sequence
space. Nucleic acid sequences having a known functionality (i.e., the anchor) can
often be optimized by creating high-diversity, partially randomized, combinatorial
libraries of sequence variants (often differing from the anchor sequence by 2–10%).
These so-called doped pools, containing up to 1014 molecules, are then screened for
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sequences having higher levels of activity than the anchor. In this case, however,
Curtis and Bartel [10] used doped pool selections not to optimize the existing func-
tionality, but as the basis for selecting an entirely new activity unrelated to that of
the anchor.

First, a previously described, 90 nucleotide, self-aminoacylating ribozyme (an-
chor) was partially randomized (each of 65 bases were permitted to vary to one of
the three other bases with a probability of 11%). Using methods to separate and am-
plify any sequence that could covalently link a phosphate group to itself, 23 distinct
classes of self-kinasing ribozymes were eventually isolated. The kinase ribozyme
activities were radically different than that of the parent (including the use of a trig-
onal bipyramidal transition state in contrast to the tetrahedral transition state of the
parental self-aminoacylating ribozyme). Furthermore, the folds of each of the ki-
nase ribozymes had little, if any correspondence with the fold of the parent. Hence,
it was clear that many new folds and new activities can be found in close proximity
of sequence space.

However, it was also found that the new kinase ribozymes were on average sig-
nificantly farther from the self-aminoacylating ribozyme in sequence space (14 mu-
tational steps) than was expected considering the statistical distribution of sequence
variants in the initial doped pool (averaging only 7.5 mutational steps). Evidently,
the more closely related sequences in the local mutational neighborhood of the an-
chor frustrate the formation of the alternative folds necessary for the alternative
kinase function. Similar results have been obtained in analogous experiments us-
ing doped pools of nucleic acid aptamers [10, 26, 27], suggesting this is a general
feature of the distribution of structure and function in sequence space. Although a
close apposition of neutral networks (only 4 mutational steps) was demonstrated in
the LNS experiment using rational design of individual mutants discussed above,
the doped pool LNS experiments suggest that this may be relatively rare (though
easily designed when the competing structures are understood). Although no con-
ventional imagery can adequately capture the complexity of these high-dimensional
neutral networks, it would appear that in some sense, RNA neutral networks are less
like footpaths and more like expressways, where many different lanes of traffic are
juxtaposed, yet remain distinct.

Prospects for a Protein Simplex and Exploring Protein Neutral
Networks

Using the RNA simplex and very limited sampling (in vitro and in vivo), it is sur-
prising how much we could learn about RNA sequence space. The same could be
done for protein sequence space, although in the case of proteins there are 20 amino
acids rather than 4 nucleotides, complicating the analysis (the composition of space
for proteins is a 19-dimensional analogue of a 3-dimensional tetrahedron). Further-
more, the structure of the protein polymer backbone and the kinds of interactions
that drive protein folding are different from RNA and necessitate the use of dif-
ferent algorithms, projections, and exploitation of different symmetries in order to
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create maps that emphasize the most relevant features of protein folding and func-
tion. Hence, protein sequence spaces will require the development of alternative
methods of representation. As with RNA, such approaches promise insights into
deep problems of protein folding, structure, function, and evolution not otherwise
resolvable.

As just one example, from analyses of the native folds of protein sequences found
in nature, it has been estimated that the total number of protein folds may be as few
as 3000 [41]. This remarkably small number of folds found in nature immediately
raises a fundamental question that cannot be answered when referring to genomic
data sets alone. Are these 3000 folds the limit of what sequence space has to offer
or is this limited number a consequence of historically constrained genealogical
lineages? As is the case with RNA, current theories of protein structural biology and
evolution make no predictions about what lies beyond biological sequences or the
3000 well-defined folds identified among those sequences. Only by systematically
sampling protein sequence space in silico and ultimately in vitro will it be possible
to reach a definitive explanation for the observed redundancy of protein folds found
in nature.

Not only does this silence about unevolved sequences and structures create an
explanatory gap in understanding the distributions of biological proteins, but it also
fails to account for the spectrum of complex protein behavior found in nature and
the laboratory. For example, it has recently been recognized that entire proteins, or
large segments of proteins lack well-structured, three dimensional folds and that the
amino acid sequence of these disordered regions can be highly conserved. Some of
these disordered segments have been shown to have specific function, such as fold-
ing upon binding to specific targets and providing linkers in macromolecular arrays
[16]. Without a theory of protein structure extending beyond evolved sequences,
it has not been possible to understand the evolutionary significance or the struc-
tural biology of these so-called intrinsically unstructured proteins. On the one hand,
their disorder may be taken as models of the structures of unevolved sequences. On
the other hand, their evolutionarily conserved sequences (and characteristic amino
acid composition, [65]) suggests that this “disordered” state is actually evolution-
arily derived and, therefore, just as “evolved” as the structures of highly ordered
globular or fibrous proteins. Only by learning more about the folds of unevolved
protein sequences will it be possible to formulate a coherent understanding of the
entire spectrum of protein structure, from disordered homopolymers [53] and in-
trinsically unstructured proteins to meso-ordered molten globules [49] to insoluble
“over-structured” protein aggregates such prions [69].

No Molecule Is an Island

This survey of recent theoretical and experimental findings leads to a very different
conception of folding and evolution than had been assumed from the time of the
earliest biochemical investigations of protein and RNA. Under the delicate clock-
work hypothesis, functional molecules were thought to be rare, isolated islands of
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Fig. 6 Three theories of structure and function in sequence space. Circles represent different se-
quences and neighboring circles represent neighboring sequences. Red colors and blue colors rep-
resent two distinct molecular structures/functions. Different shades of red and blue represent slight
variations in structure or function that are considered neutral. White circles indicate sequences
without defined structures (e.g., random-coils). Grey circles indicate sequences with multiple com-
peting conformations (rudimentary folds)

ordered structure in a sea of disordered random-coils (Fig. 6a). Although accumulat-
ing theory and data began to conflict with the DCH, suggesting that the distribution
of function in sequence space was more like archipelagos (where isthmuses con-
nected a small chain of islands, Fig. 6b), it remained axiomatic that the surrounding
seas of unevolved sequences were disordered and irrelevant to understanding mole-
cular structure and evolution. Since the 1990s, theoretical and experimental results
suggest that RNA and protein sequence space is permeated by vast networks of
sequences having neutral folds and functions. These networks span the entire se-
quence space, just as mountain ridges may span entire continents (Fig. 6c). As each
fold is thought to correspond to a unique neutral network, these networks must be
interwoven, densely “packed” in sequence space like a ball of string made of many
different threads. Although it remains an open question as to whether arbitrary, un-
evolved sequences belong to extensive neutral networks, our experimental analyses
of the structures of unevolved RNA and protein sequences suggest that a polymor-
phic rudimentary folding is prevalent among unevolved sequences throughout se-
quence space. We envision this rudimentary folding, for both RNA and protein,
not as the absence of order, but rather as the superposition of multiple “ordered”
structures, not unlike induced molten-globule states of native proteins. Indeed, the
ubiquity of the molten-globule state (usually seen as a “broken” native fold), is from
this point of view evidence of the intrinsic capacity of sequence space to generate or-
dered structure. In Fig. 6c, the rudimentary state depicted as grey circles, in contrast
to the random-coil states (white circles, Figs. 6a and 6b) postulated in the DCH.

The hypothesis that unevolved sequences typically have rudimentary folds pro-
vides the coherent framework for structural biology and molecular evolution that
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has been missing since the 1950s. Not only does rudimentary folding provide a con-
text in which to understand the many non-native states that have been identified in
RNA and proteins, but it also begins to rationalize the origins of functional folds
and how one fold could evolutionarily transform into another. Rudimentary folding
implies that evolution proceeds not by building up a unique folding pathway from
sequences that fold poorly, but by the elimination of competing meta-stable struc-
tures from sequences that are already significantly folded. Molecular evolution is
therefore not a laborious search for rare sequences, but a problem in negative de-
sign, whereby numerous competing folds are selected against. Hence, rather than
seeing the vast space of unevolved sequences as a near-perfect vacuum of biological
function, the ubiquitous rudimentary fold suggests that sequence space is a nursery
of nascent functionality, incubating evolutionary diversification and transformation.
Due to the high-dimensionality of sequence space, any unevolved sequence having
a rudimentary fold is probably close to a native fold, if not many native folds (as
in Fig. 6c, where a grey circle may be near both red and blue circles). This would
explain the ease by which molten-globule states can be induced from native folds
by mutation or alteration in solution conditions.

Extensive neutral networks of native folding proteins or RNAs explain the diver-
sification of sequences seen in nature, but neutral networks and rudimentary fold-
ing also explain the origin of entirely new folds. Different neutral networks that
have close apposition in sequence space allow one structure to transform into an-
other with only a small number of mutations. Rudimentary folds may facilitate this
transition, acting as intersection sequences, simultaneously maintaining functional
capacity for both folds until suitable mutations can complete the transition to the
new neutral network. Indeed, rudimentary folding may be indistinguishable from
sequences that lie at the intersections of (or between the close apposition of) neutral
networks. From this point of view, the molten-globule states of perturbed biological
native folds may be seen as intersection sequences bridging two (or more) neutral
networks. It would be interesting to see if known molten-globules can be stabilized
into alternative yet native-like structures. If so, then it is most accurate to conceive
of arbitrary unevolved sequences not as evolutionary dead ends, but as a rich matrix
of superimposed structure that bridge the multidimensional space between numer-
ous neutral networks of native folds. In a sequence space supporting ubiquitous
rudimentary folding, no molecule need ever be an island unto itself.

Rather than being irrelevant to our understanding of macromolecular structure
and evolution, unevolved sequences are the crucial missing link between the large
amount of sequence and structural data and a predictive theory of molecular evolu-
tion and its intelligent biotechnological application. Learning what we have about
navigating and sampling sequence space, and seeing where this could lead, we
would like to propose a framework for a more unified and concerted research ef-
fort to map protein and RNA sequence space. In analogy to genomics (a compre-
hensive sampling of biological sequences), we refer to this research program as
sequenomics, a comprehensive sampling of sequence space.
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4 Sequenomics: Mapping the Universe of Sequence Possibilities

Sequenomics is the study of sequence space. Although this includes all nucleic acid
and protein sequences found in nature, the primary concern of sequenomics is the
much larger space of unevolved sequences. The goal of sequenomics is to system-
atically and comprehensively sample nucleic acid and protein sequence spaces, in
silico and in vitro, producing “maps” and “atlases” that define biological distribu-
tions, intrinsic symmetries, and physiochemical “territories” in the context of the
totality of sequence possibilities. Such maps will reveal previously hidden, univer-
sal rules governing molecular folding and evolution, stimulate new approaches in
the development of structure prediction algorithms, and suggest novel experiments
using individual sequences, pools and microarray technology to inform the search
for functional RNAs and proteins.

Before describing our vision of sequenomics, it is helpful to describe what se-
quenomics is not. Sequenomics is not cluster analysis or cladistic analysis of func-
tional sequences. Although many theoretical [2, 19, 32], bioinformatic [38, 44], and
experimental [5, 6] research efforts are otherwise complementary to the goals of se-
quenomics, it is the referral to informative, random samples of sequence space that
most distinguishes this new approach.

The core questions of sequenomics, for both RNA and protein are: How do the
folded conformations of unevolved sequences compare to known biological struc-
tures? What is the spectrum of ordered and disordered folding states? How common
is native folding? How many different folds are there? How does the distribution
of physiochemical properties and the connectivity of neutral networks vary across
sequence space? How do these distributions limit or enable evolution? How can we
use this knowledge to advance de novo design and in vitro selection? How can we
best search sequence space? The core technical challenge of sequenomics is the
development of sampling methods that are efficient and informative despite being
necessarily sparse (experimentally, we need to sample on the order of a googol se-
quences using only thousands of sequences).

Answering these core issues will require a concerted approach of theoreti-
cal analyses and laboratory experiments, involving the development of new com-
putational tools and experimental technologies with high-throughput capabilities.
Based on our own research experience investigating unevolved RNAs and proteins,
we have identified four distinct but complementary activities within sequenomics:
(1) establishing a theoretical framework; (2) creating interactive visualization tools
as low-dimensional windows into high-dimensional sequence spaces; (3) the assem-
bly of a unique database of sequence and structural information combining evolved
and unevolved RNAs and proteins; (4) laboratory experiments dedicated to the syn-
thesis and structural characterization of unevolved, random-sequence RNAs and
proteins.
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Theoretical Sequenomics

The theoretical foundation of sequenomics is the regular graph structure of sequence
space. As such, combinatorial and information theoretic tools can be immediately
brought to bear in order to reveal numerous symmetries intrinsic to sequence space
and correlations that emerge from the physiochemical constraints of macromolecu-
lar folding.

These theoretical descriptions will guide the formulation of sampling strategies
using computer simulations, and ultimately laboratory experiments, to characterize
the folding and structures of unevolved sequences. As discussed above, there are
two broad classes of sampling methods in sequenomics: Constrained Independent
Random Samples (generating sets of sequences randomly and independently under
constraints, such as a specified monomer composition) and Local Networked Sam-
ples (generating sets of sequences that are interconnected as single-step mutational
variants of an a priori specified sequence). Although LNS samples can sometimes
probe local mutational neighborhoods exhaustively (i.e., all single- or double-step
mutations), this method can also be used to design networks of mutational variants
that extend as “transects” across the “diameter” of sequence space. Hence, despite
the enormous size of sequence space, meaningful random samples of RNA and pro-
tein sequence space can be practically constructed and evaluated. As laboratory ex-
periments tend to be more costly than computer simulations, we suspect that maps
of sequence space based on samples using computer simulations will precede, and
will therefore guide, subsequent experimental efforts.

Along these lines, it will be useful to develop software tools integrating various
nucleic acid and protein folding/structure prediction algorithms, with the goal to
evaluate and compare the performance of existing algorithms on known sequences
and on samples of sequence space. Computational sampling may in some instances
require the folding of hundreds of millions of sequences in order to elucidate distinct
regions of sequence space and the nature of their boundaries. Some or all of this
computed data may be archived into the Sequenomics Database described below.
Like any map, the scale or resolution in mapping sequence space will be chosen
to present certain features of the “territory” over others. Thus, fast algorithms can
be used for constructing small-scale, low-resolution maps, and more demanding
algorithms for detailed analysis (e.g., neutral network analyses).

Although no folding algorithm is perfect, we can still develop useful, approxi-
mate maps of sequence space using computer simulations. By comparing the struc-
tures of evolved and unevolved sequences head-to-head, we can begin to make in-
ferences about background sequences and how they are modified in the course of
evolution, even if algorithms can make only low-resolution predictions or have some
error in predicting correct folds. This is because any limitation that is idiosyncratic
to a particular algorithm will be held constant over individual sequences of the sam-
ple and can therefore be handled as systematic error. In addition to the final output
of an algorithm, the behavior of the algorithm may also tell us much about the
space. For example, for sequences that are poised at the junction of two neutral net-
works, folding algorithms may demonstrate anomalous run times as the sequence is
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undecided about its ultimate structure. Furthermore, the computational sampling of
sequence space using different algorithms is also an opportunity to perform compar-
isons of various algorithms against each other, and evaluate their performance over
large datasets that are not confounded by genealogical history or other factors that
may be peculiar to biological samples. Such head-to-head comparisons will also in-
dicate where factors like extreme monomer composition and sequence information
complexity may expose the intrinsic limitations of a given algorithm.

Sequenomics Visualization

In our work with the RNA simplex described above, we discovered that visual
representation was much more than a convenient communication tool. It was es-
sential to conceptualizing RNA sequence space and understanding how the high-
dimensionality of sequence information impacts the evolution of RNA molecules.
Yet the RNA simplex is only one of many conceivable projections, and additional
methods for RNA and novel methods for protein sequence spaces are needed. These
visualization tools need to be interactive, taking advantage of space, motion, and
parametric control of the projections themselves, in order to identify and commu-
nicate inherently complex, and sometimes high-dimensional patterns. The devel-
opment of visualization software would interlock with the theoretical efforts (de-
scribed above) and the database efforts (described below), resulting in interactive,
low-dimensional computational windows to the high-dimensional regular-graphs of
sequence space.

The Sequenomics Database

To create useful maps of sequence space, we will need a centralized system of cat-
aloging molecular sequence and structural data that is much more general than any
existing bioinformatics database. In particular, this central data source would need
to archive data from both RNA and proteins. But even beyond the juxtaposition of
nucleic acids and protein sequences, such a database would be unique in archiving,
in a consistent format, structural information for four broad classes of sequences.
These sequence classes are necessary as standards and controls when evaluating the
structures of unevolved sequences.

(1) Reference Sequences (negative controls): These are homopolymers, 4 for RNA,
20 for proteins. These 24 sequences contain no information content and so
their macromolecular properties reflect the physiochemical properties intrinsic
to each of the nucleotide or amino acid monomers. Some homopolymers may
be impossible to synthesize and/or experimentally analyze (see experimental
section below), and may confound folding algorithms. Nonetheless, homopoly-
mer sequences will still provide essential reference points if only in mapping
zones forbidden to biological evolution.
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(2) Model Sequences (positive controls): These are well behaved, artificial sequence
designs that fold into simple, predictable structures, e.g., hairpins in RNA and
the four-helix-bundle in proteins.

(3) Evolved Sequences: These are sequences isolated from nature or in vitro evolu-
tion experiments. For the purposes of sequenomics, only the highest-quality,
representative data for the known ranges of molecular structures, functions,
source organisms, and ecological settings will be included in this database.
Although datasets comprehensive for particular functional classes (e.g., 16 S
rRNA used to build universal phylogenetic trees) are important when asking
questions about neutral networks, it is the inclusion of sequences from a wide
range of functional classes and evolutionary lineages will make this compilation
unique among bioinformatics databases, and uniquely positioned to answer the
core questions of sequenomics.

(4) Unevolved Sequences: As samples of sequence space, the unevolved sequences
are the unknowns that sequenomics wishes to understand. At first, it seems
absurd to keep randomly generated sequences in a database, but the arbitrary
sequences we generate and then analyze (by computational folding or by lab
experiments) become valuable data that deserve to be archived for the purposes
of ongoing analyses. Depending on the application, random sequences could
be stored as records similar to the biological sequence data or as a seed for
pseudo-random number generation.

Experimental Sequenomics

Ultimately, protein and RNA sequence space will need to be probed experimen-
tally, using real molecules in the laboratory. As the actual synthesis, preparation and
analysis of protein and RNA sequences is much more costly than its virtual ana-
logue, the issues surrounding efficient sampling methodologies become even more
important. Experimentalists, however, will be able to consult the theoretical maps of
protein and RNA sequence space (and even download specific unevolved sequences
from the sequenomics database) to find sets of sequences permitting specific hy-
potheses to be tested. There are three experimental methods by which arbitrary,
unevolved sequences can be synthesized and their structures analyzed.

(1) The synthesis of specific arbitrary sequences: Automated DNA synthesis has
made the construction of arbitrary DNA templates routine. From these tem-
plates, the synthesis of specified RNAs and proteins sequences can be imple-
mented. Using commercial sources of DNA synthesis, it is possible for a single
lab to make and process hundreds of oligonucleotide templates per year. Us-
ing high-throughput technologies, it is not inconceivable that tens of thousands
of oligonucleotide and protein sequences could ultimately be made and per-
haps even characterized per year. These techniques would be used to synthesize
unevolved sequences, including the rational construction of putative neutral
networks.

(2) The synthesis of combinatorial pools: Automated DNA synthesis can also be
adapted to the synthesis of diverse pools of DNA templates. In this case, residue
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positions along the length of the template are permitted to incorporate a mixture
of the four nucleotides, simultaneously creating many, random-sequence DNA
templates. Routine synthesis and preparative techniques can yield individual
pools with 1015 unique sequences. Such pools have been used as the starting
point for the selection of a wide variety of functional biopolymers. However,
from the point of view of sequenomics, it is the sequences from these pools
that are not selected that are of interest. Combinatorial pools can serve as a
means to economically isolate large numbers of arbitrary sequences for direct
analysis (although, unlike the synthesis of specific arbitrary sequences noted
above, the monomer composition will fluctuate around the composition of the
nucleotide mixture during pool synthesis). Combinatorial pools having biased
compositions, although currently possible, have yet to be explored extensively
as a means of focusing search in sequence space. Mathematical and experi-
mental exploration of the role compositional focusing might play in optimizing
combinatorial searches is an important goal of sequenomics. In contrast to this
“shotgun” sampling of sequence space (where each molecule has uncorrelated
sequence), these combinatorial methods can also be used to sample the local
neighborhood of particular sequences. This “neighborhood” sampling method
generates a pool of sequence variants that differ from the original sequence (on
average) by some specified number of mutations (typically in the range of 2 to
10% of N ). In this case, the 1015 molecules in the pool are highly correlated.
Entire pools or cloned isolates from these pools, can be assayed for structure.

(3) Fabrication of micoarrays: Microarray technology for synthesis and display of
protein and nucleic acid sequences has found wide application in genomic stud-
ies. Microarrays permit the quantitative analysis of large numbers of sequences
(for binding or other biochemical tasks) in parallel using automated “chip”
readers. As a cross between the synthesis of specific arbitrary sequences and
the synthesis of combinatorial pools, microarrays will find extensive and novel
uses in the sequenomics, especially in the exhaustive search of local mutational
neighborhoods for neutral networks or intersecting neutral networks.

The characterization of folding and structure in unevolved sequences will be per-
formed using any of various, standard techniques to be determined as a compromise
between resolution and throughput. However, particularly useful techniques may in-
clude Nuclear Magnetic Resonance Spectroscopy (a technique that can yield precise
measurements of the overall order-disorder in a protein or RNA) and Temperature
Gradient Gel Electrophoresis (a technique that permits expedient measurement of
thermodynamic and kinetic properties, e.g., [24, 25]. As noted above in the outline
of the sequenomics database, positive structural controls will include sequences hav-
ing trivial but well-behaved structures or sequences that code for complex structures
that have been previously well characterized. Negative structural controls, or refer-
ence molecules, include sequences such as homopolymers, having no information
content and in some cases no unique structure.

The dedication of expensive resources to the study of unevolved protein and RNA
sequences seems, at first, anathema to both the spirit and practice of structural bi-
ology. Research proposals compete and funding is justified through the promise of
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application in biotechnology and medicine. How could unevolved sequences, having
by definition, no known function, find their way to the head of long queues of excel-
lent proposals struggling for scarce resources? We believe that once a solid theory of
sequence space is developed, visualization tools are in place, and the sequenomics
database is constructed, a large number of well-defined, tractable experiments will
present themselves, and the space of unevolved sequences will become the obvious
frontier of post-genomic and post-structural proteomic research.
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Niching Methods: Speciation Theory Applied
for Multi-modal Function Optimization

Ofer M. Shir and Thomas Bäck

Abstract While contemporary Evolutionary Algorithms (EAs) excel in various
types of optimizations, their generalization to speciational subpopulations is much
needed upon their deployment to multi-modal landscapes, mainly due to the typi-
cal loss of population diversity. The resulting techniques, known as niching meth-
ods, are the main focus of this chapter, which will provide the motivation, pose the
problem both from the biological as well as computational perspectives, and de-
scribe algorithmic solutions. Biologically inspired by organic speciation processes,
and armed with real-world incentive to obtain multiple solutions for better decision
making, we shall present here the application of certain bioprocesses to multi-modal
function optimization, by means of a broad overview of the existing work in the
field, as well as a detailed description of specific test cases.

1 Introduction

Optimal behavior of natural systems is frequently encountered at all levels of every-
day life, and thus has become a major source of inspiration for various fields. The
discipline of natural computing aims at developing computational techniques that
mimic collective phenomena in nature that often exhibit excellent behavior in in-
formation processing. Among a long list of natural computing branches, we are
particularly interested in the fascinating field of organic evolution, and its compu-
tational derivative, the so-called Evolutionary Algorithms (EAs) field. By encoding
an optimization problem into an artificial biological environment, EAs mimic cer-
tain elements in the Darwinian dynamics and aim at obtaining highly-fit solutions in
terms of the problem. A population of trial solutions undergo artificial variations and
survive this simulation upon the criteria posed by the selection mechanism. Analo-
gously, it is suggested that this population would evolve into highly-fit solutions of
the optimization problem.

The original goal of this work was to extend specific variants of EAs, called Evo-
lution Strategies (ES), to subpopulations of trial solutions which evolve in parallel
to various solutions of the problem. This idea stems from the evolutionary con-
cept of organic speciation. Essentially, the natural computing way of thinking is
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required here to further deepen into evolutionary biology theory, and attain creative
solutions for the artificial population in light of the desired speciation effect. The
so-called Niching techniques are the extension of EAs to speciational subpopula-
tions. They have been investigated since the early days of EAs, mainly within the
popular variants of Genetic Algorithms (GAs). In addition to the theoretical chal-
lenge to design such techniques, which is well supported by the biological-inspired
motivation, there is a real-world incentive for this effort. The discipline of decision
making, which makes direct benefit out of the advent of the global optimization
field, poses the demand for the multiplicity of different optimal solutions. Ideally,
those multiple solutions, as obtained by the optimization routine, would have high
diversity among each other, and represent different conceptual designs.

The remainder of this chapter is organized as follows. Section 2 will formally
provide the reader with the motivation for this study. Section 3 will then outline the
relevant biological components upon which this work is based, with clear emphasis
on speciation and organic diversity. The algorithmic framework, the so-called de-
randomized evolution strategies, will be described in Sect. 4. The linkage between
organic speciation to evolutionary algorithms, namely niching techniques, will be
discussed in Sect. 5. In Sect. 6, we shall introduce in detail our proposed niching
framework, and in Sect. 7, we will report on our experimental observation. Finally,
Sect. 8 will conclude this chapter and propose directions for future research in this
domain.

2 Motivation: Speciation Theory vs. Conceptual Designs

Evolutionary algorithms have the tendency to lose diversity within their population
of feasible solutions and to converge into a single solution [1–3], even if the search
landscape has multiple globally optimal solutions.

Niching methods, the extension of EAs to finding multiple optima in multi-modal
optimization within one population, address this issue by maintaining the diversity
of certain properties within the population. Thus, they aim at obtaining parallel con-
vergence into multiple attraction basins in the multi-modal landscape within a single
run.

The study of niching is challenging both from the theoretical point of view and
from the practical point of view. The theoretical challenge is two-fold—maintaining
the diversity within a population-based stochastic algorithm from the computational
perspective, but also having an insight into speciation theory or population genet-
ics from the evolutionary biology perspective. The practical aspect provides a real-
world incentive for this problem—there is an increasing interest of the applied opti-
mization community in providing the decision maker with multiple solutions which
ideally represent different conceptual designs, for single-criterion or multi-criteria
search spaces [4, 5]. The concept of “going optimal” is often extended now into the
aim for “going multi-optimal”, so to speak: obtaining optimal results but also pro-
viding the decision maker with different choices. On this particular note, it is worth
mentioning the so-called 2nd Toyota Paradox [6]:
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“Delaying decisions, communicating ambiguously, and pursuing an excessive number of
prototypes, can produce better cars faster and cheaper.”

Niching methods have been studied in the past 35 years, mostly in the context
of genetic algorithms, and the focus has been mainly on the theoretical aspect. As
will be discussed here, niching methods have been mostly a by-product of studying
population diversity, and were hardly ever at the front of the EC research.

3 From DNA to Organic Diversity

In this section, we introduce the biological elementary concepts that correspond
to the core of niching methods: population diversity. This section is mainly based
on [7].

A Preliminary Note on Terminology

A species is defined as the smallest evolutionary independent unit. The term niche,
however, stems from ecology, and it has several different definitions. It is some-
times referred to as the collective environmental components which are favored by
a specific species, but could also be considered as the ecosystem itself which hosts
individuals of various species. Most definitions would typically also consider the
hosting capacity of the niche, which refers to the limited available resources for
sustaining life in its domain.

In the context of function optimization, niche is associated with a peak, or a basin
of attraction, whereas a species corresponds to the subpopulation of individuals oc-
cupying that niche.

3.1 Genetic Drift

Organic evolution can be broken down into four defining fundamental mechanisms:
natural selection, mutation, migration, or gene flow, and genetic drift. The latter,
which essentially refers to sampling errors in finite populations, was overlooked
by Darwin, who had not been familiar with Mendelian genetics, and thus did not
discuss this effect in his “Origin of Species” [8].

In short, genetic drift is a stochastic process in which the diversity is lost in finite
populations. A distribution of genetic properties is transferred to the next generation
in a limited manner, due to the finite number of generated offspring, or equivalently
the limited statistical sampling of the distribution. As a result, the distribution is
likely to approach an equilibrium distribution, e.g., fixation of specific alleles when
subject to equal fitness. This is why genetic drift is often considered as a neutral
effect. The smaller the population, the faster and stronger this effect occurs. An
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analogy is occasionally drawn between genetic drift to Brownian motion of particles
in mechanics.

In order to demonstrate the genetic drift effect, we conducted simulations1 on
the following basic model of population genetics: The evolution of random-mating
populations with two alleles, namely, A and a, equal fitnesses of the three genotypes
(i.e., no preferences for AA, Aa, nor aa), no mutations, no migration between the
replicate populations, and finite population size N . We simulated ten simultaneously
evolving populations, for three test-cases of population sizes: N1 = 10, N2 = 100,
and N3 = 1000. Figure 1 offers an illustration for the three different simulations.
It is easy to observe a clear trend in this simple experiment: Alleles’ loss/fixation
is very likely to occur in small population sizes, and is not likely to occur in large
population sizes.

The genetic drift effect had been originally recognized by Fisher [9] (referred
to as random survival), and was explicitly mentioned by Wright when studying
Mendelian populations [10]. It was, however, revisited and given a new interpreta-
tion in the Neutral Theory of Molecular Evolution of Kimura [11]. The neutral the-
ory suggested that the random genetic drift effect is the main driving force within
molecular evolution, rather than the non-random natural selection mechanism. The
combination of natural selection and genetic drift is considered nowadays, by the
contemporary evolutionary biology community, as the driving force of organic evo-
lution. Moreover, the importance of the Neutral Theory is essentially in its being a
null hypothesis model for the Natural Selection Theory by definition.

3.2 Organic Diversity

Diversity among individuals or populations in nature can be attributed to different
evolutionary processes which occur at different levels. We distinguish here between
variations that are observed within a single species to a speciation process, during
which a new species arises, and review shortly both of them.

Variations Within a Species

Diversity of organisms within a single species stems from variance at the genotypic
level, referred to as genetic diversity, or from the existence of spectrum of pheno-
typic realizations to a specific genotype. These effects are quantified and are usually
associated with genotypic variance and phenotypic variance, respectively. Several
hypotheses explaining genetic diversity have been proposed within the discipline of
population genetics, including the neutral evolution theory. It should be noted that
genetic diversity is typically considered to be advantageous for survival, as it may

1Simulations were conducted with the PopG Genetic Simulation Program, version 3.1.
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Fig. 1 Ten simultaneously evolving populations, for three test-cases of population sizes: N1 = 10
[top], N2 = 100 [center], and N3 = 1000 [bottom]. The vertical axis corresponds to the allele
frequency of A in the population, as a function of generations, indicated on the horizontal axis
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allow better adaptation of the population to environmental changes, such as climate
variations, diseases, etc.

Phenotypic variance is measured on a continuous spectrum, also known as quan-
titative variation. Roughly speaking, the main sources of quantitative variations [7,
12] are outlined here:

1. Genes have multiple loci, and hence are mapped into a large set of phenotypes.
2. Environmental effects have direct influence on natural selection; fitness is time-

dependent, and thus phenotypic variations in the outcome of selection are ex-
pected.

3. Phenotypic plasticity is the amount in which the genotypic expression vary in
different environments,2 and it is a direct source of variation at the phenotypic
level.

4. The plastic response of the genotype to the environment, i.e., the joint effect
of genetic and environmental elements, also affects the selection of a specific
phenotype, and thus can lead to variations. This effect is known as Genotype-
Environment Interaction (“G-by-E”).

Thus, quantitative variations are mainly caused by genotypic and phenotypic real-
izations and their interaction with the environment. The ratio between genetic vari-
ance to total phenotypic variance is defined as heritability [10].

Speciation

The essence of the speciation process is lack of gene flow, where physical isolation
often plays the role of the barrier to gene flow. Lack of gene flow is only one of
the necessary conditions for speciation. Another necessary condition for speciation
to occur is that the reduction of gene flow will be followed by a phase of genetic
divergence, by means of mutation, selection, and drift. Finally, the completion or
elimination of divergence can be assessed via the so-called secondary contact phase:
interbreeding between the parental populations would possibly fail (offspring is less
fit), succeed (offspring is fitter) or have a neutral outcome (offspring has the same
fitness). This would correspond respectively to increasing, decreasing, or stabilizing
the differentiation between the two arising species. Note that the speciation can
occur de facto, without the actual secondary contact taking place; the latter is for
observational assessment purposes.

In organic evolution, four different levels of speciation are considered, corre-
sponding to four levels physical linkage between the subpopulations:

1. Allopatric speciation The split in the population occurs only due to complete
geographical separation, e.g., migration or mountain building. It results in two
geographically isolated populations.

2Bradshaw [13] gave the following qualitative definition to phenotypic plasticity: “The amount by
which the expressions of individual characteristics of a genotype are changed by different environ-
ments is a measure of the plasticity of these characters”.
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2. Peripatric speciation Species arise in small populations which are not geograph-
ically separated but rather isolated in practice; the effect occurs mainly due to the
genetic drift effect.

3. Parapatric speciation The geographical separation is limited, with a physical
overlap between the two zones where the populations split from each other.

4. Sympatric speciation The two diverging populations co-exist in the same zone,
and thus the speciation is strictly non-geographical. This is observed in nature
in parasite populations, that are located in the same zone, but associated with
different plant or animal hosts [14].

These four modes of speciation correspond to four levels of geographically decreas-
ing linkages. Roughly speaking, statistical association of genetic components in na-
ture, such as loci, typically results from physical linkage. In this case, we claim that
statistical disassociation, which is the trigger to speciation, originates from gradu-
ally decreasing physical linkage.

In summary, speciation typically occurs throughout three steps:

1. Geographic isolation or reduction of gene flow.
2. Genetic divergence (mutation, selection, drift).
3. Secondary contact (observation/assessment).

4 Derandomized Evolution Strategies (DES)

The paradigm of Evolutionary Computation (EC), which is gleaned from the model
of organic evolution, studies populations of candidate solutions undergoing varia-
tions and selection, and aims at benefiting from the collective phenomena of their
generational behavior. The term Evolutionary Algorithms (EAs) essentially refers
to the collection of such generic methods, inspired by the theory of natural evolu-
tion, that encode complex problems into an artificial biological environment, define
its genetic operators, and simulate its propagation in time. Motivated by the basic
principles of the Darwinian theory, it is suggested that such simulation would yield
an optimal solution for the given problem.

Evolutionary algorithms [1] have three main streams, rooted either in the United
States and in Germany, during the 1960s: Evolutionary Programming (EP), founded
by Fogel in San Diego [15], Genetic Algorithms (GAs) founded by Holland in Ann
Arbor [16, 17], and Evolution Strategies (ES), founded by Bienert, Schwefel and
Rechenberg, three students to that time at the Technical University of Berlin (see,
e.g., [18–20]).

Derandomized evolution strategies for global parameter optimization, the gen-
eral framework of this study, is reviewed in this section.

4.1 Evolutionary Algorithms

Whereas ES and EP are similar algorithms and share many basic characteristics
[21], the principal difference between them and GAs is the encoding of the genetic
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Algorithm 1 An Evolutionary Algorithm
1: t ← 0
2: Pt ← init() {Pt ∈ S μ: Set of solutions}
3: evaluate(Pt )
4: while t < tmax do
5: Gt ← generate(Pt ) {Generate λ variations}
6: evaluate(Gt )
7: Pt+1 ← select(Gt ∪ Pt ) {Rank and select μ best}
8: t ← t + 1
9: end while

information. Traditional GAs encode the genome with discrete values (as in na-
ture), whereas ES as well as EP do that with continuous real-values. Moreover, ES
and EP focused more on development of mutation operators, while in classical GA
research the recombination operator received most attention. Today, GA, ES, and
EP subsume under the term Evolutionary Algorithms (EAs).

Here, we offer an introductory generic description of an EA. The latter considers
a population (i.e., set) of individuals (i.e., trial solutions), and models its collec-
tive learning process. Each individual in the population is initialized according to
an algorithm-dependent procedure, and may carry not only a specific search point
in the landscape, but also some environmental information concerning the search.
A combination of stochastic as well as deterministic processes such as mutation,
recombination, and selection, dictate the propagation in time toward successively
better individuals, corresponding to better regimes of the landscape. The quality
of an individual or alternatively the merit of a trial solution are determined by a
so-called fitness function, which is typically the objective function or its rescaling.
Thus, certain individuals are favored over others during the selection phase, which is
based upon the fitness evaluation of the population. The selected individuals become
the candidate solutions of the next generation, while the others die out.

More explicitly, an EA starts with initializing the generation counter t . After
generating the initial population with μ individuals in S , a set Gt of λ new solutions
are generated by means of mutation and possibly recombination. The new candidate
solutions are evaluated and ranked in terms of their quality (fitness value). The μ

best solutions in Gt ∪ Pt are selected to form the new parent population Pt+1.
A generalized EA pseudo-code is outlined in Algorithm 1.

4.2 Canonical Evolution Strategies

Evolution strategies were originally developed at the Technical University of Berlin
as a procedure for automated experimental design optimization, rather than a global
optimizer for continuous landscapes. Following a sequence of successful applica-
tions (e.g., shape optimization of a bended pipe, drag minimization of a joint plate,
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and hardware design of a two-phase flashing nozzle), a diploma thesis [22], and a
dissertation [23] laid out the solid foundations for ES as an optimization method-
ology. There has been extensive work on ES analysis and algorithmic design since
then [20, 24, 25]. We shall review here the basic components of a canonical evolu-
tion strategy.

General

Evolution strategies consider a population of candidate solutions of the given prob-
lem. This population undergoes stochastic as well as deterministic variations, with
the so-called mutation operator, and possibly with the recombination operator. The
mutation operator is typically equivalent to sampling a random variation from a nor-
mal distribution. Due to the continuous nature of the parameter space, the biological
term mutation rate can be associated here with the actual size of the mutation step
in the decision space, also referred to as the mutation strength.

Representation

An individual is represented by a tuple of continuous real-values, sometimes re-
ferred to as a chromosome, which comprises the decision parameters to be opti-
mized, x, their fitness value, f (x), as well as a set of endogenous (i.e., evolvable)
strategy parameters, s ∈ Rm:

The kth individual of the population is thus denoted by

ak = (
xk, sk, f (xk)

)
.

The dimension m of the strategy parameter space is subject to the desired parameter
control approach, to be discussed shortly. The endogenous parameters are a unique
concept for ES, in particular in the context of the mutation operator, and they play a
crucial role in the so-called self-adaptation principle.

Next, we outline the two essential ES operators, while omitting the description
of others (e.g., recombination).

Mutation

The ES mutation operator considers stochastic continuous variations, which are
based on the multi-variate normal distribution with zero mean value.. Given a
normally-distributed random vector, denoted by z = (z1, z2, . . . , zn)

T , the mutation
operator is then defined as follows:

xNEW = xOLD + z. (1)
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Essentially, the (n ·(n+1))/2 independent elements of the covariance matrix, which
uniquely defines the normal distribution, are the endogenous strategy parameters
that evolve along with the individual:

s ← C,

i.e., the strategy parameter vector s represents the covariance matrix C in this case.
We choose to omit the details concerning the update rule for the strategy parameters,
and refer the reader to [1].

Selection

Natural selection is the driving force of organic evolution: clearing-out an old gen-
eration, and allowing its individuals with the fitness advantage to increase their rep-
resentation in the genetic pool of future generations. As dramatic as it might sound,
death is an essential part in this process.

Evolution strategies adopt this principle, and apply deterministic operators in
order to select the best μ individuals with the highest fitness, e.g. minimal objective
function values, to be transferred into the next generation. Two selection operators
are introduced in the standard ES using an elegant notation due to Schwefel. The
notation characterizes the selection mechanism, as well as the number of parents
and offspring involved:

• (μ + λ)-selection: the next generation of parents will be the best μ individuals
selected out of the union of current parents and λ offspring.

• (μ,λ)-selection: the next generation of parents will be the best μ individuals
selected out of the current λ offspring.

4.3 Derandomization

Due to the crucial role that the mutation operator plays within evolution strategies,
its mutative step-size control (MSC) was investigated intensively. The latter tends
to work well in the Standard-ES for the adaptation of a single global step-size, but
tends to fail when it comes to the individual step-sizes or arbitrary normal mutations
(elements of the covariance matrix). In particular, the disruptive effects to which the
MSC is subject, were studied at several levels [25, 26]. The so-called derandomized
mutative step-size control aims to treat those disruptive effects, regardless of the
problem dimensionality, population size, etc.

The concept of derandomized evolution strategies has been originally introduced
by scholars at the Technical University of Berlin in the beginning of the 1990s.
It was followed by the release of a new generation of successful ES variants by
Hansen, Ostermeier, and Gawelczyk [27–30].
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The first versions of derandomized ES algorithms introduced a controlled global
step-size in order to monitor the individual step-sizes by decreasing the stochas-
tic effects of the probabilistic sampling. The selection disturbance was completely
removed with later versions by omitting the adaptation of strategy parameters by
means of probabilistic sampling. This was combined with individual information
from the last generation (the successful mutations, i.e. of selected offspring), and
then adjusted to correlated mutations. Later on, the concept of adaptation by ac-
cumulated information was introduced, aiming to use wisely the past information
for the purpose of step-size adaptation: instead of using the information from the
last generation only, it was successfully generalized to a weighted average of the
previous generations.

Note that the different derandomized-ES variants strictly follow a (1, λ) strategy,
postponing the treatment of recombination or plus-strategies for later stages. In this
way, the question how to update the strategy parameters when an offspring does not
improve its ancestor is not relevant here.

Moreover, the different variants hold different numbers of strategy parameters to
be adapted, and this is a factor in the learning speed of the optimization routine. The
different algorithms hold a number of strategy parameters in either O(n) or O(n2)

in terms of the dimensionality n of the search problem.
In our work, we consider 5 specific DES variants: DR1 [27], DR2 [28], DR3

[29], the CMA comma-strategy [25, 30], and its elitist sibling, the CMA plus-
strategy [31]. The first two possess a first-order learning mechanism (a vector of
variations), while the other three possess a second-order learning mechanism (full
covariance matrix).

5 Introduction to Niching

5.1 Population Diversity in Evolution Strategies

Subject to the complex dynamics of the various forces within an evolutionary algo-
rithm, population diversity is typically lost, and the search is likely to converge into
a single basin of attraction in the landscape.

Population diversity loss within the population of solutions is the fundamental
effect which niching methods aim to treat. In fact, from the historical perspective,
the quest for diversity-promoting-techniques was the main goal within the EC com-
munity for some time, and niching methods were merely obtained as by-products, so
to speak, of that effort. As will be argued here, population diversity is an important
component in a population-based search.

Next, we describe the effect of diversity loss within evolution strategies. This will
be followed by some conclusions drawn by the GA research concerning diversity
loss with GAs, as a point of reference to ES.
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5.2 Diversity Loss in Evolution Strategies

The defining mechanism of ES is strongly dictated by the mutation operator as well
as by the deterministic selection operator. As defining operators, they have a direct
influence on the diversity property of the population. The recombination operator,
nevertheless, does not play a critical role in the ES mechanism. In practice, espe-
cially in the context of derandomized ES, it is not an essential component.

We attribute two main components to the population diversity loss within ES:
fast take-over, which is associated with the selection operator, and genetic drift (or
neutrality effect), which is associated both with the selection and the recombination
operators, respectively.

Selective Pressure: Fast Take-over

Evolution strategies have a strictly deterministic, rank-based approach, to selec-
tion. In the two traditional approaches, (μ,λ) and (μ + λ), the best individuals
are selected—implying, rather intuitively, high selective pressure. Due to the cru-
cial role of the selection operator within the evolution process, its impact within the
ES field has been widely investigated.

Furthermore, Goldberg and Deb introduced the important concept of takeover
time [32], which gives a quantitative description of selective pressure with respect
only to the selection operator:

Definition 1 The takeover time τ ∗ is the minimal number of generations until re-
peated application of the selection operator yields a uniform population filled with
copies of the best individual.

The selective pressure has been further investigated by Bäck [2], who analyzed
all the ES selection mechanisms also with respect to takeover times. It concluded
that upon employing the typical selection mechanisms, very short takeover times are
yielded. This result implies that ES are typically subject to high selective pressures.

ES Genetic Drift

We consider two different ES neutral effects, that could be together ascribed as
a general ES genetic drift: recombination drift, and selection drift. We argue that
these two components are directly responsible to the loss of population diversity in
ES.

Recombination Drift

Beyer explored extensively the so-called mutation-induced speciation by recom-
bination (MISR) principle (see, e.g. [33]). According to this important principle,
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repeated application of the mutation operator, subject to a dominant recombina-
tion operator, would lead to a stable distribution of the population, which resembles
a species or a cloud of individuals. When fitness-based selection is applied, this
cloud is likely to move together towards fitter regions of the landscape. Further-
more, Beyer managed to prove analytically [33] that the MISR principle is indeed
universal when finite populations are employed, subject to sampling-based recom-
bination. The latter was achieved by analyzing the ES dynamics without fitness-
based selection, deriving the expected population variance, and showing that it is
reduced with random sampling in finite populations. This result was also corrob-
orated by numerical simulations. That study provides us with an analytical result
that a sampling-based recombination is subject to genetic drift, and leads to loss of
population diversity.

Selection Drift

On the other hand, a recent study on the extinction of subpopulations on a simple bi-
modal equi-fitness model investigated the drift effect of the selection operator [34]. It
considered the application of selection on finite populations, when the fitness values
of the different attractors were equal (i.e. eliminating the possibility of a take-over
effect), and argued that a neutral effect (drift) would occur, pushing the population
into a single attractor. The latter study indeed demonstrated this effect of selection
drift in ES, which resulted in a convergence to an equilibrium distribution around a
single attractor. It was also shown that the time of extinction increases proportionally
with μ. The analysis was conducted by means of Markov chain models supported
by statistical simulations.

Corollary 1 Evolution strategies that employ finite populations are typically under-
posed to several effects that are responsible for the loss of population diversity. It
has been shown that the standard selection mechanisms may lead to a fast take-
over effect. In addition, we argued that both the recombination and the selection
operators experience their own drift effects that lead to population diversity loss. We
conclude that an evolution strategy with a small population is likely to encounter a
rapid effect of diversity loss.

5.3 Neutrality in ES Variations: Mutation Drift

The mutation operator, the defining operator of evolution strategies, applies
normally-distributed variations of finite sample sizes, and thus is expected to ex-
perience sampling errors as the sample sizes decrease. These sampling errors lead
to an undirected movement of the population center of mass, with speed which
depends on the population size. We shall call this effect mutation drift.
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Simulations

In order to demonstrate and analyze this mutation drift effect, we conducted simula-
tions on the following basic ES model: The parallel evolution of several populations
in an n-dimensional space, based on sequential normally-distributed variations (with
a fixed identity matrix as the covariance of the distribution), without selection nor
recombination. The ES variation can be then considered as a continuous random
walk of μ individuals in an n-dimensional space. Essentially, this corresponds to
mutation-only ES of multiple populations.

We simulated 10 simultaneously evolving populations, for three test-cases of
population sizes: μ1 = 10, μ2 = 100, and μ3 = 1000, subject to three space di-
mensions n1 = 1, n2 = 10, and n3 = 1000. For each simulation, we measured the
distance of the population mean, or center of mass, to the starting point, as a func-
tion of generational steps. More precisely, we measured the location of the popula-
tion mean for n1, and the Euclidean distance from the origin for {n2, n3}. Figure 2
presents the outcome of these calculations.

It is easy to observe in those simulations a similar trend in the equivalent sim-
ulations of Sect. 3.1: The population center of mass is strongly drifted away from
the origin when it is small, and has the contrary effect when the population is large.
We therefore conclude that mutation drift is very likely to occur in small population
sizes, and is not likely to occur in large population sizes. This is the essence of the
distribution’s sampling error, which we chose to define here as mutation drift.

We thus demonstrated here that the center of mass of a small ES population is
subject to a so-called mutation drift. This is an equivalent effect to the genetic drift
of alleles, as described in Sect. 3.1. We claim that it allows for easy translation of
small populations from one location to another, having the potential to boost fast and
efficient speciation. Therefore, we argue that drift in this context can be a blessing
for the fast formation of species in niching.

Since small populations are typically employed by evolution strategies, and es-
pecially by the derandomized variants, we consider this effect of mutation drift as
a positive potential component for niching with ES. This result provides us with
further motivation to introduce DES with small populations into the niching frame-
work.

5.4 Niching Methods

Despite the fact that the motivation for multi-modal optimization is beyond doubt,
and the biological inspiration is real, there is no unique definition of the goal state-
ment for niching techniques. There have been several attempts to provide a proper
definition and functional specification for niching; we review some of them here:

1. Mahfoud [3] chose to put emphasis on locating as well as maintaining good
optima, and formulated the following:
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Fig. 2 Illustration of the mutation drift effect in ES, for 10 simultaneously evolving populations,
as a function of population size [μ1 = 10 (left), μ2 = 100 (center), and μ3 = 1000 (right)] and
landscape dimensionality [n1 = 1 (top), n2 = 10 (center), and n3 = 1000 (bottom)]. The vertical
axes correspond to the location of the center of mass of the population (for n1 = 1, top row) or
distance from the origin to the center of mass of the population (for n2 = 10 or n3 = 1000, in the
center or bottom rows, respectively). The horizontal axis corresponds to the generational step of
the calculation

The litmus test for a niching method, therefore, will be whether it possesses the capabil-
ity to find multiple, final solutions within a reasonable amount of time, and to maintain
them for an extended period of time.

2. Beyer et al. [35] put forward also the actual maintenance of population diversity:

Niching: process of separation of individuals according to their states in the search space
or maintenance of diversity by appropriate techniques, e.g. local population models,
fitness sharing, or distributed EA.

3. Preuss [36] considered the two definitions mentioned above, and proposed a
third:

Niching in EAs is a two-step procedure that (a) concurrently or subsequently distributed
individuals onto distinct basins of attraction and (b) facilitates approximation of the
corresponding (local) optimizers.
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We choose to adopt Preuss’ mission statement, and define the challenge in nich-
ing as follows:

Attaining the optimal interplay between partitioning the search space into niches occupied
by stable subpopulations, by means of population diversity preservation, versus exploiting
the search in each niche by means of a highly efficient optimizer with local-search capabil-
ities.

GA Niching Methods

Niching methods within genetic algorithms have been studied during the past few
decades (see, e.g. [3] and [37]), initially triggered by the necessity to promote popu-
lation diversity within EAs. The research has yielded a variety of different methods,
which are the vast majority of existing work on niching in general. Especially, the
important concept of fitness sharing should be outlined.

The sharing concept was one of the pioneering niching approaches. It was first
introduced by Holland in 1975 [17], and later implemented as a niching technique
by Goldberg and Richardson [38]. This strong approach of considering the fitness
as a shared resource has essentially become an important concept in the broad field
of evolutionary algorithms, as well as laid the foundations for various successful
niching techniques for multi-modal function optimization, mainly within GAs. The
basic idea of fitness sharing is to consider the fitness of the landscape as a resource
to be shared among the individuals, in order to decrease redundancy in the popula-
tion. In practice, the individual raw fitness is scaled by its niche count, which is an
indicator for the number of other individuals in its proximity. Thus, an individual
is penalized in the selection phase for being in a crowded region with other indi-
viduals. This concept follows to some degree the hosting capacity concept of an
ecological niche, as discussed previously.

Niching in Evolution Strategies

Researchers in the field of evolution strategies initially showed no particular interest
in the field of niching, leaving it essentially for genetic algorithms. An exception
would be the employment of island models. Roughly speaking, classical niching
mechanisms such as fitness sharing, which redefine the selection mechanism, are
likely to interfere with the core of evolution strategies—the self-adaptation mech-
anism—and thus doomed to fail in a straightforward implementation. Any manip-
ulation of the fitness value is usually not suitable for evolution strategies, as in the
case of constraints handling: death-penalty is typically the chosen approach for a
violation of a constraint in ES, rather than a continuous punishment as used in other
EAs, in order to avoid the introduction of disruptive effects to the self-adaptation
mechanism (see, e.g. [39, 40]). Therefore, niching with evolution strategies would
have to be addressed from a different direction. Moreover, the different nature of
the ES dynamics, throughout the deterministic selection and the mutation operator,
suggests as well that a different treatment is required here.
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There are several, relatively new, niching methods that have been proposed
within ES, mostly clustering-based [34, 41, 42]. A different approach, which pre-
ceded this work, was presented in [43–45].

6 Proposed Framework: Niching with DES Kernels

Following our mission statement, as presented in the previous section, we were aim-
ing at constructing a generic niching framework which offers the combination of
population diversity preservation and local-search capabilities. We considered de-
randomized evolution strategies as the best choice for that purpose, as an EA with
local search characteristics. Furthermore, DES typically employ small populations,
which was shown to be a potential advantage for a niching technique, as it can boost
the speciation effect (Sect. 5.3).

6.1 The Proposed Algorithm

The advent of derandomized evolution strategies allows successful global optimiza-
tion with minimal requirements concerning exogenous parameters, mostly without
recombination, and with a low number of function evaluations. In particular, con-
sider the (1 +, λ) derandomized ES variants presented earlier. In the context of nich-
ing, this generation of modern ES variants allows the construction of fairly simple
and elegant niching algorithms. Next, we outline our proposed method.

Our niching technique is based upon interacting search processes, which simul-
taneously perform a derandomized (1, λ) or (1 + λ) search in different locations of
the space. In case of multi-modal landscapes, these search processes are meant to
explore different attractor basins of local optima.

An important point in our approach is to strictly enforce the fixed allocation of
the population resources, i.e. number of offspring per niche. The idea is thus to pre-
vent a scenario of a take-over, where a subpopulation located at a fitter optimum
can generate more offspring. The biological idea behind this fixed allocation of re-
sources lies in the concept of limited hosting capacities of given ecological niches,
as previously discussed.

The speciation interaction occurs every generation when all the offspring are
considered together to become niches’ representatives for the next iteration, or sim-
ply the next search points, based on the rank of their fitness and their location with
respect to higher-ranked individuals. We focus in a simple framework without re-
combination (μ = 1).

6.2 Niching with (1 +, λ) DES Kernels

Given q , the estimated/expected number of peaks, q + p “D-sets” are initialized,
where a D-set is defined as the collection of all the dynamically adapted strategy as
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Algorithm 2 Dynamic Peak Identification (DPI)
input: population Pop, number of niches q , niche radius ρ

1: Sort Pop in decreasing fitness order
2: i := 1
3: NumPeaks := 0
4: DPS := ∅ {Set of peak elements in population}
5: while NumPeaks �= q and i ≤ popSize do
6: if Pop[i] is not within sphere of radius ρ around peak in DPS then
7: DPS := DPS ∪ {Pop[i]}
8: NumPeaks := NumPeaks + 1
9: end if

10: i := i + 1
11: end while
output: DPS

well as decision parameters of the derandomized algorithm, which uniquely define
the search at a given point of time. These parameters are the current search point,
the mutation vector/covariance matrix, the step-size, as well as other auxiliary pa-
rameters. At every point in time, the algorithm stores exactly q + p D-sets, which
are associated with q + p search points: q for the peaks and p for the “non-peaks
domain”. The (q + 1)th...(q + p)th D-sets are individuals which are randomly re-
generated every epoch, i.e. a cycle of κ generations, as potential candidates for niche
formation. This is basically a quasi-restart mechanism, which allows new niches to
form dynamically. We stress that the total number of function evaluations allocated
for a run should depend on the number of desired peaks, q , and not on p. Setting
the value of p should reflect the dilemma between applying a wide restart approach
for exploring further the search space and exploiting computational resources for
the existing niches. In any case, due to the curse of dimensionality, p loses its sig-
nificance as the dimension of the problem increases.

Until the stopping criterion is met, the following procedure takes place. Each
search point samples λ offspring, based on its evolving D-set. After the fitness eval-
uation of the new λ · (q + p) individuals, the classification into niches of the entire
population is obtained in a greedy manner, by means of the DPI routine [46] (Algo-
rithm 2). The latter based on the fixed niche radius ρ. The peaks then become the
new search points, while their D-sets are inherited from their parents and updated,
respectively.

Algorithm Dynamics

We would like to point out the dynamic nature of the subpopulations dynamics.
Due to the greedy classification to niches, which is carried out every generation,
some niches can merge in principle, while all the individuals, except for the peak
individual, die out in practice. Following our principle of fixed resources per niche,
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Algorithm 3 (1 +, λ)-CMA-ES Niching with Fixed Niche Radius
1: for i = 1 . . . (q + p) search points do
2: Generate λ samples based on the D-set of i

3: end for
4: Evaluate fitness of the population
5: Compute the Dynamic Peak Set with the DPI Algorithm
6: for all elements of DPS do
7: Set peak as a search point
8: Inherit the D-set and update it respectively
9: end for

10: if NDPS = size of DPS < q then
11: Generate q − NDPS new search points, reset D-sets
12: end if
13: if gen mod κ ≡ 0 then
14: Reset the (q + 1)th . . . (q + p)th search points
15: end if

only the peak individual will be sampled λ times in the following generations. In
biological terms, the peak individual could be associated with an alpha-male, which
wins the local competition and gets all the sexual resources of its ecological niche.

A pseudo-code for the niching routine is presented as Algorithm 3.

Sizing the Population

We follow the recommended population size for (1, λ) derandomized ES (see, e.g.
[26]), and set λ = 10. On this note, we would like to mention a theoretical work
on sizing the population in a derandomized (1, λ) ES with respect to the local
progress [47]. The latter work obtained theoretical results showing that the local se-
rial progress is maximized when the expected progress of the second best individual
vanishes. These results allowed in the construction of a population size adaptation
scheme, which sets the value of λ as a function of the fitness difference of the sec-
ond fittest offspring and its parent. This adaptation scheme was shown to perform
well on a set of simple theoretical landscapes [47].

6.3 Niche Radius Calculation

The original formula for ρ for phenotypic sharing in GAs was derived by Deb and
Goldberg [32]. Analogously, by considering the decision parameters as the decoded
parameter space of the GA, the same formula can be applied, using the Euclidean
metric. Given q , the number of peaks in the solution space, every niche is considered
to be surrounded by an n-dimensional hyper-sphere with radius ρ which occupies
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1
q

of the entire volume of the space. The volume of the hyper-sphere which contains
the entire space is

V = crn (2)

where c is a constant, given explicitly by

c = π
n
2

�(n
2 + 1)

, (3)

with �(n) as the Gamma function. Given lower and upper bound values xk,min,
xk,max of each coordinate in the decision parameters space, r is defined as follows:

r = 1

2

√
√
√
√

n∑

k=1

(xk,max − xk,min)2. (4)

If we divide the volume into q parts, we may write

cρn = 1

q
crn (5)

which yields

ρ = r

n
√

q
. (6)

Hence, by applying this niche radius approach, two assumptions are made:

1. The expected/desired number of peaks, q , is given or can be estimated.
2. All peaks are at least in distance 2ρ from each other, where ρ is the fixed radius

of every niche.

7 Experimental Observation

The proposed niching framework has been successfully applied to a suite of arti-
ficial multi-modal high-dimensional continuous landscapes, as reported in [48]. It
was observed to perform well, both with (1,10) and (1 + 10) DES kernels (the
latter corresponds only to the elitist CMA), while typically obtaining most of the
desired basins of attraction of the various landscapes at different dimensions. Fur-
thermore, upon carrying out behavioral analysis of the simulations, some character-
istic patterns for the different algorithmic kernels were revealed. The elitist CMA
was observed to perform better on average. We choose to omit here specific details
concerning the numerical simulations, and refer the reader to [48].

As was furthermore reported in [48], the proposed niching framework was suc-
cessfully applied to a real-world landscape from the field of quantum control,
namely the dynamic molecular alignment problem (for a review, see [49]). This
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challenging application required the definition of a tailored-made diversity mea-
sure, due to certain invariance properties of the control function. It was shown to
perform well, and to obtain different pulse-shapes of high-quality, representing dif-
ferent conceptual designs. Also in this case, the elitist-CMA kernel was observed to
perform best.

7.1 Extending the Framework: Learning Niche-Shapes

The relaxation of assumptions and limitations concerning the hypothetical land-
scape is much needed if niching is to be valid in a broader range of applications.
Another study, as reported in [50], addressed the so-called niche radius problem by
introducing the Mahalanobis distance into the niching framework with the CMA
kernel, for obtaining niches with more complex geometrical shapes. The proposed
approach was tested on high-dimensional artificial landscapes at several levels of
difficulty, and was shown to be robust and to achieve satisfying results. Figure 3
presents a snapshot gallery of the niching algorithm with the CMA-plus kernel, em-
ploying the Mahalanobis distance, performing on the Fletcher–Powell landscape.

8 Summary and Outlook

We have introduced Niching as an algorithmic framework following the biological
process of speciation. Upon providing the practical motivation for such a frame-
work, in terms of conceptual designs for better decision making, we outlined in
detail the essential biological background, as well as the algorithmic arena of deran-
domized evolution strategies. We then proposed a specific niching algorithm, which
employs DES kernels, subject to a fixed niche-radius approach.

We discussed briefly experimental observations of the proposed niching algo-
rithm, both on artificial as well as real-world high-dimensional multi-modal land-
scapes, as reported previously in [48]. The conclusion was that the proposed al-
gorithm performed well on multi-modal landscapes. Furthermore, given some in-
variance properties in the decision space, a tailored-made diversity measure was
reported to obtain satisfactory results. Niching with the elitist-CMA kernel was ob-
served to perform best on average. We suggest an explanation for the advantage of a
plus strategy for niching. The niching problem can be considered as an optimization
task with constraints, i.e. the formation of niches that restricts competing niches and
their optimization routine of exploring the search space freely. It has been suggested
in previous studies (see, e.g. [40]) that ES self-adaptation in constrained problems
will tend to fail with a comma-strategy, and thus a plus-strategy is preferable for
such problems. We might link this argumentation to the observation of our numeri-
cal results here, and suggest that a plus-strategy is preferable for niching.

Here are some directions for future study in this domain:
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Fig. 3 A snapshot gallery: the adaptation of the classification-ellipses, subject to the Mahalanobis
metric with the updating covariance matrix, in the CMA+ strategy for a 2D Fletcher–Powell prob-
lem. Images are taken in the box [−π,π]2. Contours of the landscape are given as the background,
where the X’s indicate the real optima, the dots are the evolving individuals, and the ellipses are
plotted centered about the peak individual. A snapshot is taken every 4 generations (i.e. every 160
function evaluations), as indicated by the counter
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• Transferring this generation of niching algorithms into additional real-world ap-
plications.

• Developing elitist versions for all the DES kernels, for employment in the pro-
posed niching framework. Following the experimental observation reported here
for the elitist-CMA, such kernels can perform well in the proposed niching algo-
rithm.

• Proceeding with the effort to tackle the niche radius problem, in order to develop
state-of-the-art DES niching techniques which are not subject to the niche radius
assumptions.
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On the Concept of Cis-regulatory Information:
From Sequence Motifs to Logic Functions

Ryan Tarpine and Sorin Istrail

Abstract The regulatory genome is about the “system level organization of the core
genomic regulatory apparatus, and how this is the locus of causality underlying the
twin phenomena of animal development and animal evolution” (E.H. Davidson. The
Regulatory Genome: Gene Regulatory Networks in Development and Evolution,
Academic Press, 2006). Information processing in the regulatory genome is done
through regulatory states, defined as sets of transcription factors (sequence-specific
DNA binding proteins which determine gene expression) that are expressed and ac-
tive at the same time. The core information processing machinery consists of mod-
ular DNA sequence elements, called cis-modules, that interact with transcription
factors. The cis-modules “read” the information contained in the regulatory state of
the cell through transcription factor binding, “process” it, and directly or indirectly
communicate with the basal transcription apparatus to determine gene expression.
This endowment of each gene with the information-receiving capacity through their
cis-regulatory modules is essential for the response to every possible regulatory state
to which it might be exposed during all phases of the life cycle and in all cell types.
We present here a set of challenges addressed by our CYRENE research project
aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE
Project is devoted to (1) the construction of a database, the cis-Lexicon, contain-
ing comprehensive information across species about experimentally validated cis-
regulatory modules; and (2) the software development of a next-generation genome
browser, the cis-Browser, specialized for the regulatory genome. The presentation is
anchored on three main computational challenges: the Gene Naming Problem, the
Consensus Sequence Bottleneck Problem, and the Logic Function Inference Prob-
lem.

1 Introduction

Gene expression is regulated largely by the binding of transcription factors to ge-
nomic sequence. Once bound, these factors interact with the transcription apparatus
to activate or repress the gene. Unlike a restriction enzyme, which recognizes a sin-
gle sequence or clearly defined set of sequences, a transcription factor binds to a
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family of similar sequences with varying strengths and effects. While the similarity
between sequences bound by a single factor is usually obvious at a glance, there is
as yet no reliable sequence-only method for determining functional binding sites.
Even the seemingly conservative method of looking for exact sequence matches to
known binding sites yields mostly false positives—since binding sites are small,
usually less than 15 bases long, by chance alone millions of sequence matches are
scattered throughout any genome. Very few of these have any influence on gene
regulation. The activity of a putative binding site depends on more than the site
sequence, and it is hoped that the site context (i.e., the surrounding sequence) con-
tains the necessary information. To predict new binding sites, we must understand
the biology of gene regulation and incorporate the missing sources of regulatory
information into our model.

To this end, we have created a database for storing the location and function of all
experimentally found and validated binding sites, the cis-Lexicon. The cis-Browser,
a powerful visual environment for integrating many types of known genomic in-
formation and experimental data, together with the cis-Lexicon make up the core
components of the CYRENE project: a software suite, associated tools, and set of
resources for regulatory genomics. Only by mining a large, high-quality collection
of functional binding sites can we uncover the missing clues into what makes sites
functional.

We have come across many fundamental issues as the CYRENE project has de-
veloped. We crystallized three of these under the names the Gene Naming Prob-
lem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference
Problem.

2 A Case Study

A gene with one of the best-understood cis-regulatory regions is endo16 of the sea
urchin Strongylocentrotus purpuratus [6]. A 2.3 kb sequence directly upstream of
the transcription start site has been shown to contain binding sites for many tran-
scription factors, clustered into six cis-regulatory modules [26], as seen in Fig. 1.
Each module has its own independent function: Modules A and B drive expression
in different periods of development, Modules DC, E, and F cause repression in cer-
tain regions of the embryo, and Module G is a general expression booster at all
times. Each module has a similar organization: one or two binding sites for unique
factors which do not bind anywhere else in the regulatory region, surrounded by
several sites for factors which are found in other modules as well.

Module A has been described as a “hardwired logic processor,” whose output in
terms of gene expression depends entirely on the binding of its inputs. The factor
which binds uniquely to Module A, Otx, is the “driver” of the module, meaning that
the change in the output of the module over time is a result of the change in the con-
centration of Otx [24]. The other factors which bind to Module A, while absolutely
necessary for correct behavior, are ubiquitous and typically do not play a role in
its output changing. The precise structure of a regulatory region is visualized in a
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Fig. 1 The structure of endo16’s regulatory region (from [25])

Fig. 2 Quintessential diagram (from [25])

“quintessential diagram,” as seen in Fig. 2. We call such an image the quintessen-
tial diagram because it displays at a glance the most fundamental knowledge we
have of the organization of a gene’s regulatory region. When searching for papers
with information relevant to our database, we found that no useful paper lacks this
diagram.

The sites within Module A carry out a complex logic program. Sites CG1 and P
(highlighted green in Fig. 3) communicate the effects of Module B to the transcrip-
tion apparatus—if either of them is disabled (by mutating the sequence), the gene
expression is as if Module B were not present at all. Site Z (highlighted red) commu-
nicates the effects of Modules DC, E, and F. Sites CG1, CG2, and CG3 (highlighted
blue) together boost the final output of the module. If even one of them is disabled,
then the boost is completely removed.

Module B was shown to have a similar complexity [25]. In fact, all cis-regulatory
modules execute information processing of their inputs, and the sum total of the
computations performed by the regulatory regions of individual genes, when con-
sidered within the complex network established by the dependencies among genes,
forms a “genomic computer” [13].
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Fig. 3 Computational logic model for Modules A and B of endo16 (from [25])

3 The Gene Naming Problem

“It all comes, I believe, from trying to define the indefinable.”
– Charles Darwin [29]

“Scientists would rather share a toothbrush than use the same name for the same gene.”
– Anonymous

As one tries to compile information from the literature into a database for au-
tomatic analysis, one of the issues that immediately crops up is that of naming. If
information was inserted verbatim, then in order to find something one would need
to use the exact terminology of the author. It would also be impossible to bring
related information together automatically, unless large “translation” tables were
compiled manually, which would suffer from problems with both completeness and
precision. Completeness, because the addition of a new term in the database would
require a new entry in the translation table, which could easily be left out by acci-
dent. Precision, since many terms are ambiguous when taken out of context even if
they were completely obvious in the original setting. Errors in completeness lead to
missed relationships, while errors in precision lead to spurious ones. Therefore, it
is clear that a standard set of terms must be developed that all of the descriptions
given in the literature can be translated to at the time the information is added to the
database. This does lead to some loss of information, as the translation will always
be imperfect, but the set of terms can always be expanded if systematic problems
are noticed. A prime example of such a controlled vocabulary is the Gene Ontology,
which describes gene and gene product attributes [2]. In the course of developing
the cis-Lexicon, we composed standard terms for describing regulatory function,
such as activation, repression, and cis-regulatory module linkage, called the Cis-
Regulatory Ontology. We are in the process of defining a similar vocabulary for
describing the functional interactions among transcription factor binding sites.

In all of the above cases, the translation of terms to a standard vocabulary is
relatively straightforward because the properties described are clearly distinct and
understood, regardless of the terminology—if one paper says a transcription factor
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Fig. 4 Synonyms for dl and
eve

“increases expression” and another says a factor “boosts expression,” it is very clear
that both phrases refer to our canonical term “activation.” A much more difficult
problem is the wide variety of names given to a single gene in the literature. A peek
into GenBank for a well-studied gene often yields more than 15 aliases; see Fig. 4 to
see the synonyms for dl and eve of D. melanogaster displayed in the cis-Browser. To
attempt to use tables of gene synonyms to determine which gene is really “meant”
by a name can only lead to the troubles outlined in our discussion of translation
tables earlier.

The Gene Naming Problem arises from the many techniques biologists use to
study genes: examining a gene from the phenotype of a mutation, linkage map, or
similarity to other known genes all yield different views, and consequently different
names. Given the genomic sequence, the obvious unifier would be the gene’s locus,
but this is not always known. In addition, even the definition of a gene and its locus
is in flux [11].

When a gene is named according to its similarity with other known genes, dif-
ferent conventions lead to similar but separate names, such as oct-3 versus oct3,
which can both be found in the literature. One method which is less widespread is
to prefix a homology with an indicator of the new species, such as spgcm being a
homology of gcm in D. melanogaster. This method can be impaired by the diffi-
culty in determining what qualifies as a new species—at least 26 definitions have
been published [29].

Occasionally, different transcription factors can bind to the exact same sequence.
This is especially likely for factors in the same family which share an evolutionary
history—the DNA binding motif may not have diverged much between them. In this
case, when a sequence is found to be a functional site, for example, by a gel shift
assay or perturbation analysis, it is not clear what factor is actually binding there. It’s
also possible for two putative binding sites to overlap, where it is not clear whether
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only one or both play a role in gene regulation. This can play havoc in determining
the function of individual sites.

When biologists attempt to determine which factor is binding to a site by finding
the molecular weights of proteins isolated by gel shifts or other similar techniques,
often several weights are found. This can be caused by measuring different sub-
units of a single protein, alternative splicings of a single gene, different translation
products from a single mRNA molecule, or even completely distinct factors. For ex-
ample, when the structure of endo16 was first mapped, 8 of the 14 inputs tentatively
identified were found with more than one molecular weight [26]. Only by cloning
the cDNAs encoding the factors can it be determined whether the multiple weights
are from the same gene or not. The molecular weight can be thought of as a type
of hash code for a protein: its value depends on the protein’s sequence, but contains
less information. If two proteins have a slightly different weight, they can still be
from totally unrelated genes and their sequences can be very different. Analogously,
even protein products from the same gene can have very different weights, if they
differ in terms of splicing (entire exons added or subtracted which might not affect
the final function a great deal). Biologists depend, however, on the assumption that
proteins from different genes will have different weights. This may be true with
very high probability, but it cannot be universally true, especially since our methods
of measurement are always imperfect. This is similar to how unique identifiers are
created and used in computer science: IDs are given by random number generators
from a large enough range (e.g., 64-bit numbers) that the probability of a clash is
almost zero.

4 The Consensus Sequence Bottleneck Problem

“[E]ssentially all predicted transcription-factor (TF) binding sites that are generated with
models for the binding of individual TFs will have no functional role.”

– Wasserman and Sandelin [23]

Given the wide variety of sequences that a transcription factor binds to, there
is no straightforward yet accurate model. The earliest model, consensus sequence,
while still preferred by most biologists, suffers from being forced to choose either
selectivity (matching only known site sequences) or sensitivity (matching all known
site sequences) [21]. As almost any pair of binding sites for a single factor differ
in at least one base (see [19] for a study where out of seven binding sites for the
same factor, only two sites have identical sequence and only three match the known
consensus in all positions), the consensus sequence model allows for differences in
two ways: (1) permitting a range of bases in certain positions through symbols such
as Y (allowing C, T, or U); and (2) permitting a set number of global mismatches,
such as allowing one or two bases which do not match the consensus at all. Both
methods greatly increase the number of hits to random sequence: replacing an A
with an R or V increases the probability of a match by chance by a factor of 2 or 3,
respectively. Allowing for 1 or 2 mismatches anywhere in a consensus sequence
increases it by a factor of up to 4 or 16.
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Fig. 5 Matches for known binding site sequence in endo16

Imagining the set of all DNA sequences of a single length to be a coordinate
space, these two methods of allowing for differences act to create a bubble whose
contents are the sequences matched by the model. The more differences allowed, the
larger the bubble. The assumption is that since the set of sequences bound by a tran-
scription factor are evidently similar in some unclear way, they should be clustered
in this coordinate space and we should be able to find a “bubble” which contains
this cluster tightly—it should contain all the sequences in the set, and none outside
it. In practice, however, this is not the case. Stormo showed that given just 6 sites in
E. coli, in order to match all of them, the “consensus” sequence must be so vague
that a match is found by chance every 30 bp [21]. It is clear that at such levels of gen-
erality, the sets accepted by consensus sequence models begin to overlap as well—
the distinction between binding sites for individual factors effectively disappears.

To demonstrate the futility of searching for individual sites using known bind-
ing site sequences, we examined the gene endo16 from S. purpuratus. Two cis-
regulatory modules of this gene have been studied, yielding 13 unique transcription
factor inputs binding to 17 sites [24, 25]. We searched for additional sequences
which look like binding sites for these same 13 factors within the two modules by
searching for sequences like those we have recorded, except allowing for one sin-
gle mismatch. For one of the inputs, otx, we knew of 4 other sites in other genes
(blimp1/krox [16] and otx itself [28]), and we included those in our search, yielding
3 unique site sequences total for otx. For another input, brn1/2/4, we knew of one
other site in blimp1/krox [16], so we included its sequence as well. The result of
our search as visualized in the cis-Browser can be seen in Fig. 5. Exact matches are
highlighted in red, and matches with one mismatch are drawn in gray.

The second major model of transcription factor binding sites is the position
weight matrix (PWM). By incorporating not only the bases known to appear at
each position but also their probabilities of occurrence, a much more precise model
is made. While the independence/additivity assumptions are imperfect, they are a
good approximation of reality, especially for the simplicity of the model—while
there are a few notable exceptions, most factors are described relatively well by a
PWM [3]. The logarithm of the observed base frequencies has been shown to be
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proportional to the binding energy contribution of the bases [4], so there is clear bi-
ological significance to using these values as the weights of the matrix. But a matrix
of coefficients is not sufficient to predict binding sites—there is still the question of
the best cut-off score. Unlike a consensus sequence, a PWM assigns a score to every
sequence, and a cut-off must be chosen as the minimum score to expect a sequence
to be a functional binding site. Even with a cut-off chosen to best match the experi-
mentally known sites, it is unclear how “good” a site is if it is barely over the limit,
or how nonfunctional a sequence is if it is just under the cut-off. As true binding
sites are not merely “on” or “off,” but have an effect whose degree may depend on
the strength of the bind, the concept of a cut-off may be incorrect.

4.1 Motif Finding

None of the existing methods of representing a binding site can predict which sites
are functional. Unlike restriction enzymes which have an effect by themselves, tran-
scription factors only work by affecting the transcription machinery. Some factors
do this directly, while others only communicate via intermediaries. Even a short
sequence will contain what looks like many sites for many different transcription
factors, and it is difficult to determine which actually determine gene expression.

One method to bypass this problem is to look at a set of genes that appear to
be coregulated, i.e., they are expressed at the same time in the same location. It is
very likely that the same transcription factor regulates these genes, either directly or
indirectly. Therefore, many of the promoter regions of these genes should contain a
binding site for that factor. By simply searching for a short sequence which is found
to be overrepresented (i.e., more common than expected by chance), in principle we
should be able to find such a binding site.

Unfortunately, the binding sites will probably not be identical. Some type of
tolerance for mismatches must be added to the search algorithm, which complicates
things considerably (otherwise a simple count of the number of occurrences of, e.g.,
every 8-mer would suffice). Some algorithms model the motif they are looking for
combinatorially as a consensus string with a maximum number of mismatches [18],
while others use a probabilistic or information-theoretic framework [14].

Without being able to discern de novo the regulatory regions of genes, we know
that they should be conserved between closely-related species. Like the protein-
coding sequence, regulatory sequence has a functional purpose and most mutations
to it will cause harm to an organism. Therefore, few offspring who have any changes
to the regulatory sequence will survive, in contrast to those who have changes to se-
quence outside the regulatory and coding regions, which should have no difficulty.
Over generations, while a few minor changes occur within functional regions, large
changes will accumulate in the rest. By examining the sequence of species at the
right evolutionary distance, we should see clear conservation only where the se-
quence has a specific function. We can exclude the protein-coding sequence from
our analysis, either by using predicted gene models (e.g., [10]) or by transcriptome
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analysis (e.g., [20]), and only look at the conserved patches of unknown function,
which are likely to contain regulatory sequence (see, for example, [1, 17, 19, 27]).
For the highest accuracy, several species can be compared simultaneously [5].

4.2 Evaluations of Motif-Finding

Existing motif algorithms perform reasonably well for yeast, but not for more com-
plex organisms [7]. Several evaluations of the many proposed methods have been
attempted, but the use of real genomic promotor sequences is hampered by the sim-
ple fact that “no one knows the complete ‘correct’ answer” [15, 22]. For an overview
of the algorithms and the models they are based on, see [7].

5 The Logic Function Inference Problem

“Development of Western Science is based on two great achievements—the invention of the
formal logical system (in Euclidean geometry) by the Greek philosophers, and the discov-
ery of the possibility to find out causal relationships by systematic experiment (during the
Renaissance).”

– Albert Einstein

The observed expression of a gene in space and time is not determined by a single
transcription factor binding site, but by a collection of sites whose effects are com-
bined in nontrivial ways. Istrail and Davidson catalogued the known site interactions
into 4 categories: transcriptional activation operators, BTA control operators, com-
binatorial logic operators, and external control operators [12]. To fully understand
the regulation of any gene, we must (1) identify all binding sites, (2) understand the
function of each site, and (3) understand the rules for combining their functions to
infer the overall cis-regulatory output [8].

As discussed above, step 1 alone is an especially difficult problem, since knowl-
edge of transcription factors is largely biased toward one category: the “drivers.”
The drivers are those transcription factors whose expression varies in space and
time, and thus determine the expression of the genes they regulate. Other factors are
more or less ubiquitous—they do not vary, but instead are always present, which
makes their presence harder to detect. Only thorough studies such as perturbation
analysis can expose them.

Perturbation analysis is currently the only method for determining the functional
interactions among modules and sites. Biologists take the known regulatory se-
quence of a gene and modify it to determine the function of each part. When several
modules are known to exist, a high level understanding of the function of each mod-
ule and how they interact together can be found by observing the expression caused
by different subsets of the full array of modules. For example, to discover the func-
tion of the modules of endo16, Yuh and Davidson tried each of the six modules
individually and in many different combinations (A, B, DC, E, F, FA, EA, DCA,
FB, EB, DCB, etc.) [26].
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Fig. 6 Quintessential graph (from [19])

When putative sites are identified, biologists can tease out the complex hidden
logic underlying even the simplest regulatory region by mutating both individual
sites and groups of sites, each in independent experiments. This “regulatory archae-
ology” is performed one experiment (“dig”) at a time—after each experiment, pos-
sible models are postulated, and the next perturbation is chosen based on the results.
When the S. purpuratus gene spgcm was studied by Ransick and Davidson [19],
they identified three putative binding sites for Su(H) to investigate. They recognized
that two of the sites were arranged in a manner similar to a pattern familiar from
studies in Drosophila and mouse, so they treated the two as a single feature. To
determine the precise function of the sites, they observed the expression resulting
from mutating all three, only the pair, and only the third single site. Even with only
two elements to examine, they found a nontrivial logic behind their function: hav-
ing either element yielded nearly the full correct activation, while one element in
particular (the solo site, not the pair) was clearly necessary for correct repression
(mutating the pair resulted in impaired repression but did not remove it entirely).

There are a two obvious strategies for choosing the next construct when in the
midst of a series of experiments: pick the perturbation whose results can rule out
the greatest number of putative models (i.e., binary search); or pick the perturbation
whose expected results would confirm the experimenter’s current hunch (i.e., an
expert heuristic). The better the algorithm, the fewer the experiments that need to be
performed to uncover the regulatory logic—and that means less time and less cost.

The intermediate results of perturbation analysis is visualized as a “quintessential
graph”: with one row for each reporter construct tested, bars are drawn to show the
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expression and/or repression of each construct relative to the control, which contains
the full regulatory region sequence. See Fig. 6 for one example.

It can be difficult even to test whether a model is correct or not—the measured
output, gene expression, is not a simple value. It varies from organism to organ-
ism, and it cannot be characterized as a single number, but at best as a distribution
with variance. This variance can cause the ranges of expression for perturbation
constructs to overlap even when they are significantly different. More experiments
would yield tighter distributions, but the cost can sometimes not be afforded. At
times, biologists must choose the next construct to test and move on without achiev-
ing statistically significant results, although the results they achieved might have
been significant to them in view of their domain knowledge.

6 Conclusion

The concept of cis-regulatory information abstracts the wealth of types of data re-
quired for designing algorithms for computationally predicting the most likely orga-
nization of a piece of regulatory DNA into cis-regulatory modules. In this paper, we
presented three problems that highlight the computational difficulties encountered
in extracting such information. Two other sources of cis-regulatory information of
fundamental importance are: (1) gene regulatory networks architecture (e.g., the
endomesoderm network [9]), and (2) genomic data from species at the right evolu-
tionary distance that preserve only the cis-regulatory modules (e.g., S. purpuratus
and L. variegatus). The challenge of extracting cis-regulatory information is much
amplified by the relatively scarce data sets and the depth of the analysis required to
unveil such rich information sources.
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