
DNA Implementation of Theorem Proving with
Resolution Refutation in Propositional Logic

In-Hee Lee1, Ji-Yoon Park2, Hae-Man Jang2

Young-Gyu Chai2, and Byoung-Tak Zhang1

1 Biointelligence Laboratory
School of Computer Science and Engineering

Seoul National University, Seoul 151-742, Korea

2 Department of Biochemistry and Molecular Biology
Hanyang University, Ansan, Kyongki-do 425-791, Korea
{ihlee,jypark,hmjang,ygchai,btzhang}@bi.snu.ac.kr

Abstract. Theorem proving is a classical AI problem having a broad
range of applications. Since its complexity grows exponentially with the
size of the problem, many researchers have proposed methods to par-
allelize the theorem proving process. In this paper, we use the massive
parallelism of molecular reactions to implement parallel theorem provers.
In particular, we show that the resolution refutation proof procedure can
be naturally and efficiently implemented by DNA hybridization. Novel
DNA encoding schemes, i.e. linear encoding and hairpin encoding, are
presented and their effectiveness is verified by bio-lab experiments.

1 Introduction

DNA computing is famous for its power of massive parallelism. Since Adle-
man’s first experiment [1], many researchers utilized parallel reactions of DNA
molecules to solve hard computational problems [3, 7, 17]. Recently, several re-
search groups have proposed DNA computing methods for logical reasoning [6,
10, 16, 15].

Theorem proving is a method for logical reasoning and has a variety of ap-
plications, including diagnosis and decision making [8, 11]. Resolution refutation
is a general technique to prove a theorem given a set of axioms and rules. But
theorem proving by resolution refutation has a difficulty in practice. If the goal
becomes complex or the number of axioms gets large, the time for theorem prov-
ing grows exponentially. To overcome this drawback, parallel theorem provers
have been proposed [5, 9, 14]. However, these parallel machines do not overcome
the difficulties inherent to silicon-based technology.

Wasiewicz et al. [16] describe an inference system using molecular comput-
ing. Their inference system is different from ours in that theirs does not use a
resolution refutation technique. A resolution method for Horn clause computa-
tion was suggested in [6, 15], but was not used for theorem proving. Mihalache
proposed an implementation of Prolog interpreter with DNA molecules which



2 In-Hee Lee et al.

is an important practical application of resolution refutation theorem proving
[10]. But his suggestion is not physically feasible, because it requires too many
experimental steps. Except for the inference system in [16], none of these was
implemented in real bio-lab experiments.

In this paper, we describe resolution refutation theorem proving methods
using DNA, which is verified by experiments. We develop two different encoding
methods for logical formulas, i.e. linear and hairpin encodings. These make use
of the DNA hybridization reaction in a natural way to perform resolution refu-
tation. Our implementation requires only a constant number of lab steps. The
feasibility of the methods is confirmed by lab experiments.

The rest of the paper is organized as follows. A brief introduction to theorem
proving and resolution refutation is given in Section 2. Sections 3 and 4 describe
the linear and hairpin implementation methods and their experimental results,
respectively. Conclusions are drawn in Section 5.

2 Theorem Proving with Resolution Refutation

Theorem proving is a method for automated reasoning [8, 11]. In theorem prov-
ing, one must decide methods for representing information and inference rules
for drawing conclusions [8]. Here, we confine ourselves to propositional logic.
We use the resolution as inference rule. In this section, we will briefly describe
propositional logic, resolution principle, and resolution refutation.

Propositional logic formula consists of Boolean variables and logical connec-
tives. Boolean variable is a variable which can take only T (true) or F (false)
as its value. Among basic logical connectives, there are ∧ (and, logical product),
∨ (or, logical sum), ¬ (not, negation), and → (implication). A Boolean variable
or its negation is called a literal. More exactly, a Boolean variable with ¬ con-
nective is called a negative literal and one without it is called a positive literal.
It is proven [2] that any n-ary connective can be defined using only ∧, ∨, and ¬.
For example, A → B can be defined as ¬A ∨ B for any Boolean variables A,B.

To prove theorems using resolution refutation, every formula must be ex-
pressed in clause form. A clause form in propositional logic is defined as follows:

(clauseform) := (clause) ∧ (clause) ∧ · · · ∧ (clause)
(clause) := (literal) ∨ (literal) ∨ · · · ∨ (literal)

A clause with no literal is called an empty clause.
Now the resolution principle can be defined. Let A and B be clauses, and v

be a literal such that v ∈ A and ¬v ∈ B. Then, from both A and B we can draw
(A−{v})∨ (B−{¬v}). We say that we resolved A and B on v and the product
of resolution is called a resolvent.

In general, a resolution refutation for proving an arbitrary formula ω from a
set of formulas Δ proceeds as follows [11]:

1. Put the formulas in Δ into the clause form.
2. Add the negation of ω, in clause form, to the set of clauses and call it C.



DNA Implementation of Theorem Proving 3

Fig. 1. Theorem proving using resolution refutation.

3. Resolve these clauses together, producing a resolvent that logically follows
from them.

4. If an empty clause is produced, a contradiction is occurred. Thus, ω is proved
to be true. Stop.

5. If no new resolvent can be produced, ω is proved to be false. Stop.
6. Else, add the resolvent to C and go to step 3.

When an empty clause is drawn, C is called the proof of the goal ω. Fig. 1
shows an example of theorem proving process. The set of formulas { P ∧Q → R,
S ∧T → Q, S, T , P } is given. We want to prove R is true. After converting the
formulas into clause form, we get a set of clauses {¬P ∨¬Q∨R, ¬S∨¬T ∨Q, S,
T , P}. Then we add the negation of R, i.e. ¬R, to this set. Each box in Fig. 1
contains one clause. The clauses and their resolvents are connected with arrows.
The symbol nil denotes an empty clause. Resolving on P from ¬P ∨ ¬Q ∨ R
and P results in ¬Q∨R. Similar steps can be continued until an empty clause is
produced. The above theorem proving process becomes complex as the number
of formulas grows. In the case of the propositional calculus, one must decide the
literal to resolve on. Therefore, if there are n different literals, there are n! dif-
ferent theorem proving processes with n! = O(nn) by Stirling’s approximation.
Thus, the complexity of proof grows exponentially. So it is impossible for large
n to test one by one with digital computer which one is a logically correct proof.
To speed up finding proofs, two approaches were developed. One approach is to
use heuristics such as the breadth-first strategy, the set of support strategy, or
the unit preference strategy [8]. The other approach is to parallelize the theo-
rem proving process [5, 9, 14]. We took the second approach and chose to use
the massive parallelism of DNA molecular reactions for implementing parallel
theorem provers.

3 Linear Implementation of Resolution Refutation

We solved the theorem proving problem in Fig. 1 by bio-lab experiments. We
developed two versions of implementation and performed experiments separately.
Two steps are involved in each implementation.



4 In-Hee Lee et al.

Fig. 2. (a) Encoding for a Boolean variable and its negation (The arrows are from 5’
to 3’). (b) The general procedure for our experiments.

In the first step, we represent formulas in clause form with DNA. Because we
restrict ourselves to propositional logic, we need to encode each Boolean variable
with DNA sequence. Our implementations are different from each other in the
way to make a clause from these variable sequences. In both implementations
below, we encoded each variable with a different sequence of the same length.
The negation of a variable is denoted as a Watson-Crick complementary sequence
of the variable. Encoding for a Boolean variable and its negation is shown in Fig.
2. In the second step, we implemented resolution refutation steps with molecular
reactions. This step depends on the result of the previous step. But in our two
implementations, the general procedure is the same (see Fig. 2).

1. Mix molecules corresponding to clauses.
2. Hybridize molecules to perform resolution.
3. Ligase hybridization products to make it easy to find a proof.
4. Perform PCR to amplify ligation products. In this step, ligation products

which are not a proof are not amplified.
5. Perform gel electrophoresis to see whether we found a proof or not.

3.1 Representation of Clauses

Each sequence for a variable in the clause is concatenated into a single long
sequence. We arranged the variables to make linear double-strand after the hy-
bridization step. As an example, sequence for a clause ¬Q ∨ ¬P ∨ R is a con-
catenation of sequences for ¬Q, ¬P , and R (see the topmost box in Fig. 3).

3.2 Implementation of Resolution Refutation

Resolution between two clauses is represented with the annealing of two se-
quences corresponding to each clause. Thus, the resolvent may be either a par-
tially double-stranded molecule or a fully double-stranded molecule, if the resol-
vent is an empty clause. Therefore, to see whether an empty clause is produced,



DNA Implementation of Theorem Proving 5

Fig. 3. Simplified process of linear implementation (The arrows are from 5’ to 3’).

one needs to verify if there exists a fully double-stranded molecule. We used liga-
tion, PCR, and gel electrophoresis to detect this molecule. During ligation, every
clause sequence used to produce an empty clause will be ligated into a long dou-
ble strand. In the next step, we amplified this ligation product by PCR with the
goal sequence as a primer. Finally, the result is examined by gel electrophoresis.
All of these experimental steps are summarized in Fig. 3.

3.3 Experimental Results

The sequences used in the experiment were designed by NACST using evolu-
tionary optimization [13] and synthesized by Bioneer Co. (Tae-Jeon, Korea).
The oligomer sequences are given in Table 1. The experiment consists of the
following steps:

1. Purification of oligomers: Each oligomer was 5’-phosphorylated and pu-
rified by PAGE. Briefly, 1 nmol of each oligomer was mixed and incubated
for 1 h at 37◦C with 10 U T4 polynucleotide kinase (Life Technologies) in
70 mM Tris-HCl, pH 7.6, buffer containing 10 mM MgCl2, 100 mM KCl, 1

Table 1. Sequences for linear implementation (in order of from 5’ to 3’).

clause sequence

¬Q ∨ ¬P ∨ R cgtacgtacgctgaa ctgccttgcgttgac tgcgttcattgtatg
Q ∨ ¬T ∨ ¬S ttcagcgtacgtacg tcaatttgcgtcaat tggtcgctactgctt

S aagcagtagcgacca
T attgacgcaaattga
P gtcaacgcaaggcag
¬R catacaatgaacgca



6 In-Hee Lee et al.

Table 2. The PCR condition for linear implementation.

cycle denaturation (94◦C) annealing (58◦C) polymerization (72◦C)

1 4 min 0.5 min 0.5 min
2 ∼ 26 0.5 min 0.5 min 0.5 min

27 0.5 min 0.5 min 10 min

Fig. 4. Electrophoretogram of the PCR product in the linear implementation. Lane 1:
PCR products with S and ¬R as primers. Lane 2: PCR products with ¬S and R as
primers. Lane M is a size marker.

mM 2-mercaptoethanol and 1 mM ATP (Sigma, St. Louis, MO, USA), in a
volume of 100 ul. The T4 kinase was inactivated by heating to 95◦C for 10
min.

2. Hybridization of oligomers: 100 pmol of each oligomers were mixed. Ini-
tial denaturation was achieved at 95◦C for 10 min. During hybridization we
lowered temperature from 95◦C to 16◦C (1◦C / min) using iCycler thermal
cycler (Bio-rad, USA).

3. Ligation of hybrid molecules: Ligation was achieved with T4 DNA lig-
ase at 16◦C for overnight using iCycler thermal cycler. The reaction buffer
contains 50 mM Tris-HCl (pH 7.8), 10 mM MgCl2, 5 mM DTT, 1 mM ATP,
and 2.5 μg/ml BSA.

4. PCR amplification for ‘readout’: 50 ul PCR amplification contained 100
pmol of primer and template. The reaction buffer consists of 10mM Tris-HCl,
pH 7.8, containing 50 mM KCl, 1.5 mM MgCl2, 0.1% Triton X-100, 0.2 mM
dNTP, and 1 U DNA Taq polymerase (Korea Bio-technology, Korea). PCR
condition is given in Table 2.

5. Gel electrophoresis: Amplified PCR products were purified by electrophore-
sis on a 15% polyacrylamide gel (30% acrylamide [29:1 acrylamide / bis
(acrylamide)]). The running buffer consists of 100 mM Tris-HCl, pH 8.3, 89
mM boric acid, and 2 mM EDTA. The sample buffer is Xylene Cyanol FF
tacking dye. Gels are run on a Bio-rad Model Power PAC 3000 electrophore-
sis unit at 60 W (6V/cm) with constant power.



DNA Implementation of Theorem Proving 7

Fig. 5. The simplified process of hairpin implementation (The arrows are from 5’ to
3’).

The electrophoretogram is given in Fig. 4. To make an empty clause, all of the 5
variables must be resolved. Every time one variable is resolved, double-stranded
region with 15 bp is produced. Therefore, we can expect a 75 bp band will appear
after gel electrophoresis. As can be seen in Fig. 4, an empty clause is produced.
Thus, we found a proof for the given problem.

4 Hairpin Implementation of Resolution Refutation

In linear implementation, variables were needed to be rearranged to make an
empty clause form a linear double-stranded molecule. This requirement poses
a limitation on the type of clauses we can use. That is, some kind of clauses
does not make a linear double strand no matter how we rearrange the variables.
Also, it is impossible to know in advance which sequence to use as a primer.
To overcome these limitations, we introduce branched molecules and hairpin
molecules to represent clauses. As a result of this improvement, we can decide the
primer sequence once the goal is given. Similar idea was introduced by Uejima
and others[15] for Horn clause computation. But their work was intended to
perform Horn clause computation not resolution refutation. And in their work,
clause with one literal is represented in a different way from ours.

4.1 Representation of Clauses

Each clause with n literals is denoted by an n-armed branched molecule except
for the clause with one literal. Each n-arm has a sticky end corresponding to
each literal. Sticky ends for the positive and negative literals of one variable are
complementary. For a clause with one literal except the goal, we represent it
with a hairpin molecule having a sticky end. We encode the goal clause with



8 In-Hee Lee et al.

Table 3. Sequences for hairpin implementation (in order of from 5’ to 3’ ).

clause sequence

¬Q ∨ ¬P ∨ R gtctgatgcc ggcattacac tcctccagta
gtgtaatgcc ttccggtacc agcacacgaa
tcgtgtgctt ggcatcagac accttaccgg

Q ∨ ¬T ∨ ¬S tacgtgtagc ctgactacaa tactggagga
ttgtagtcag tgaggaagac gcgttatcac
tacgtgtagc ctgactacaa tactggagga

S agttggtctg tcgcaa cagaccaact aatcacaagg
T gttcttccgt atgcga acggaagaac gtgataacgc
P ctcttgtctg agcgtt cagacaagag aaggccatgg
¬R ccggtaaggt

a linear single strand as in the linear implementation described in the previous
section. For example, if there were ¬Q∨¬P ∨R, S, and ¬R (the goal), the clause
¬Q ∨ ¬P ∨ R is represented by a 3-armed branched molecule, S by a hairpin
molecule, and ¬R by a single strand (see Fig. 5).

4.2 Implementation of Resolution Refutation

As in the linear implementation, resolution between two clauses is denoted as
hybridization between two molecules. When an empty clause is drawn, it will
start with a goal sequence and end with its negation, since clauses are either
branched molecules or hairpin molecules except for the goal. Therefore, at the
PCR step, we used the goal variable and its negation as a primer. To read the
PCR product, we used gel electrophoresis. If a band is formed, we can conclude
that the goal is true. If not, we say that the goal is not true. Because each band
corresponds to a proof, we can find several different proofs at one time.

4.3 Experimental Results

As in the previous experiment, all sequences were designed by NACST [13] and
were synthesized by Bioneer Co. The sequences we used are given in Table 3.
Experimental steps are the same as in the previous experiment. The main differ-
ences between two experiments were the PCR condition and the type of gel used
in gel electrophoresis. The PCR condition for this experiment is given in Table
4. We used 2% agarose gel at the gel electrophoresis step. Due to the properties
of our sequences, we could not get an exact result. Another experiment is in
progress to find conditions to get a clearer result. The electrophoretograms of
hairpin implementation after hybridization and PCR are given in Fig. 6. In Fig.
6-(a), a hazy band appeared around 25 ∼ 40 bp which is the range of sequences
we used. In Fig. 6-(b), we can see a partial proof is produced. From this fact, we
conclude that some parts of sequences prevented PCR. We are trying to find a
clear result with new sequences.



DNA Implementation of Theorem Proving 9

Table 4. The PCR condition for hairpin implementation

cycle denaturation (95◦C) annealing (65◦C) polymerization (72◦C)

1 5 min 1 min 1 min
2 ∼ 26 1 min 1 min 1 min

27 1 min 1 min 10 min

Fig. 6. (a) Electrophoresis of products after hybridization. Lane 1: Hybridization unit
of oligomer. Lane M is a 25 bp size marker. (b) Electrophoresis of products after PCR.
Lane 1: The PCR product in the presence of primer. PCR amplification of ligation
was performed with primer ¬R. Lane M is DNA molecular weight marker V (Roche,
Germany). The arrow indicates the 110 bp PCR product.

5 Conclusions

Using molecular reactions of DNA, we proved theorems in the propositional
calculus. We presented methods for encoding clauses with DNA molecules and
solved theorem proving problems with lab experiments. Our methods are dis-
tinguished from other work in several points. First, it does not need additional
operations except hybridization. Only simple operations such as ligation and
PCR are needed to verify the results. Second, the number of experimental steps
does not vary with the problem size. Our implementation methods require only
hybridization, ligation, PCR, and gel electrophoresis, and these operations are
all O(1) operations. Finally, taking the limit of PCR operation (10,000bp) into
consideration, our methods can solve theorem proving problems with up to 660
literals (15mer per literal).

There are, however, some cases when our method can not tell whether a proof
is found or not. For example, in the hairpin implementation, if the goal variable
is resolved more than once, our method will tell there exists a proof regardless
of the existence of empty clause. We are trying to develop new methods without
this drawback.



10 In-Hee Lee et al.

Acknowledgements

This research was supported in part by the Ministry of Education under the
BK21-IT program and the Ministry of Commerce through the Molecular Evo-
lutionary Computing (MEC) project. The RIACT at Seoul National University
provided research facilities for this study.

References

1. Adleman, L., Molecular computation of solutions to combinatorial problems, Sci-
ence, 266:1021–1024, 1994.

2. Fitting, M., First-Order Logic and Automated Theorem Proving, Springer-Verlag
New York Inc., 1942.

3. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., and Yokoyama, S., Towards par-
allel evaluation and learning of Boolean μ-formulas with molecules, Preliminary
Proceedings of the Third DIMACS Workshop on DNA Based Computers, 105–114,
1997.

4. Hagiya, M., From molecular computing to molecular programming, Lecture Notes
in Computer Science, 2001.

5. Hasegawa, R., Parallel theorem-proving system: MGTP, Proceedings of Fifth Gen-
eration Computer System, 1994.

6. Kobayashi, S., Horn clause computation with DNA molecules, Journal of Combi-
natorial Optimization, 3:277-299, 1999.

7. Lipton, R.J., DNA solution of hard computational problem, Science, 268:542–545,
1995.

8. Luger, G.F. and Stubblefield, W.A., Artificial Intelligence: Structures and Strate-
gies for Complex Problem Solving, 2nd Ed., Benjamin/Cummings, 1993.

9. Lusk, E.L. and McCune, W.W., High-performance parallel the-
orem proving for shared-memory multiprocessors, http://www-
fp.mcs.anl.gov/∼lusk/papers/roo/paper.html, 1998.

10. Mihalache, V., Prolog approach to DNA computing, Proceedings of the IEEE In-
ternational Conference on Evolutionary Computation, IEEE Press, 249–254, 1997.

11. Nilsson, N.J., Aritificial Intelligence: A New Systhesis, Morgan Kaufman Publish-
ers Inc., 1998.

12. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., and
Hagiya, M., Molecular computation by DNA hairpin formation, Science, 288:1223-
1226, 2000.

13. Shin, S.-Y., Kim, D., Lee, I.-H., and Zhang, B.-T., Evolutionary sequence gener-
ation for reliable DNA computing, 2002 IEEE World Congress on Evolutionary
Computation, 2002 (accepted).

14. Suttner, C., SPTHEO - A parallel theorem prover, Journal of Automated Reason-
ing, 18(2):253-258, 1997.

15. Uejima, H., Hagiya, M., and Kobayashi, S., Horn clause computation by self-
assembly of DNA molecules, Preliminary Proceedings of the Seventh International
Meeting on DNA Based Computers, 63–71, 2001.

16. Wasiewicz, P., Janczak, T., Mulawka, J.J., and Plucienniczak, A., The inference
based on molecular computing, International Journal of Cybernetics and Systems,
31(3):283–315, 2000.

17. Winfree, E., Algorithmic self-assembly of DNA, Ph.D. Thesis, California Institute
of Technology, 1998.


