

Modeling Evolution

This page intentionally left blank

Modeling
Evolution
an introduction to
numerical methods

D. A. Roff

1

3
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

D. A. Roff 2010

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2010

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data
Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain
on acid-free paper by
CPI Antony Rowe Chippenham, Wiltshire

ISBN 978–0–19–957114–7

1 3 5 7 9 10 8 6 4 2

Contents

1 Overview 1

1.1 Introduction 1

1.1.1 The aim of this book 1

1.1.2 Why R and MATLAB? 2

1.2 Operational definitions of fitness 3

1.2.1 Constant environment, density‐independent, stable‐age distribution 5

1.2.2 Demographic stochasticity 5

1.2.3 Environments of fixed length (e.g., deterministic seasonal environments) 7

1.2.4 Constant environment, density‐dependence with a stable equilibrium 7

1.2.5 Constant environment, variable population dynamics 9

1.2.6 Temporally stochastic environments 10

1.2.7 Temporally variable, density‐dependent environments 12

1.2.8 Spatially variable environments 13

1.2.9 Social environment 14

1.2.10 Frequency‐dependence 15

1.3 Some general principles of model building 16

1.4 An introduction to modeling in R and MATLAB 17

1.4.1 General assumptions 17

1.4.2 Mathematical assumptions of model 1 18

1.4.3 Mathematical assumptions of model 2 25

1.4.4 Mathematical assumptions of model 3 40

1.4.5 Mathematical assumptions of model 4 43

1.4.6 Mathematical assumptions of model 5 45

1.4.7 Mathematical assumptions of model 6 51

1.5 Summary of modeling approaches described in this book 55

1.5.1 Fisherian optimality analysis (Chapter 2) 55

1.5.2 Invasibility analysis (Chapter 3) 56

1.5.3 Genetic models (Chapter 4) 56

1.5.4 Game theoretic models (Chapter 5) 57

1.5.5 Dynamic programming (Chapter 6) 57

2 Fisherian optimality models 59

2.1 Introduction 59

2.1.1 Fitness measures 59

2.1.2 Methods of analysis: introduction 61

2.1.3 Methods of analysis: W ¼ f ðy1; y2;…; yk ; x1; x2;…; xnÞ and well‐behaved 62

2.1.4 Methods of analysis: W ¼ f ðy1; y2;…; yk; x1; x2;…; xnÞ and not well‐behaved 65

2.1.5 Methods of analysis: gðW Þ ¼ f ðy1; y2;…; yk ; x1; x2;…; xn;W Þ 67

2.2 Summary of scenarios (Table 2.1) 69

2.3 Scenario 1: A simple trade‐off model 71

2.3.1 General assumptions 71

2.3.2 Mathematical assumptions 72

2.3.3 Plotting the fitness function 72

2.3.4 Finding the maximum using the calculus 73

2.3.5 Finding the maximum using a numerical approach 75

2.4 Scenario 2: Adding age structure may not affect the optimum 75

2.4.1 General assumptions 75

2.4.2 Mathematical assumptions 75

2.5 Scenario 3: Adding age‐specific mortality that affects the optimum 76

2.5.1 General assumptions 76

2.5.2 Mathematical assumptions 76

2.5.3 Plotting the fitness function 77

2.5.4 Finding the maximum using the calculus 79

2.5.5 Finding the maximum using a numerical approach 81

2.6 Scenario 4: Adding age‐specific mortality that affects the optimum and using

integration rather than summation 81

2.6.1 General assumptions 81

2.6.2 Mathematical assumptions 82

2.6.3 Plotting the fitness function 82

2.6.4 Finding the maximum using the calculus 84

2.6.5 Finding the maximum using a numerical approach 85

2.7 Scenario 5: Maximizing the Malthusian parameter, r, rather than expected

lifetime reproductive success, R0 86

2.7.1 General assumptions 87

2.7.2 Mathematical assumptions 87

2.7.3 Plotting the fitness function 88

2.7.4 Finding the maximum using the calculus 89

2.7.5 Finding the maximum using a numerical approach 92

2.8 Scenario 6: Stochastic variation in parameters 93

2.8.1 General assumptions 94

2.8.2 Mathematical assumptions 94

2.8.3 Plotting the fitness function 95

2.8.4 Finding the maximum using the calculus 97

2.8.5 Finding the maximum using a numerical approach 99

2.9 Scenario 7: Discrete temporal variation in parameters 100

2.9.1 General assumptions 100

2.9.2 Mathematical assumptions 100

2.9.3 Plotting the fitness function 101

2.9.4 Finding the maximum using the calculus 102

2.9.5 Finding the maximum using numerical methods 104

vi CONTENTS

2.10 Scenario 8: Continuous temporal variation in parameters 105

2.10.1 General assumptions 105

2.10.2 Mathematical assumptions 105

2.10.3 Plotting the fitness function 106

2.10.4 Finding the maximum using a numerical approach 107

2.11 Scenario 9: Maximizing two traits simultaneously 108

2.11.1 General assumptions 108

2.11.2 Mathematical assumptions 109

2.11.3 Plotting the fitness function 110

2.11.4 Finding the maximum using the calculus 112

2.11.5 Finding the maximum using a numerical approach 112

2.12 Scenario 10: Two traits may covary but optima are independent 113

2.12.1 General assumptions 113

2.12.2 Mathematical assumptions 113

2.13 Scenario 11: Two traits may be resolved into a single trait 114

2.13.1 General assumptions 115

2.13.2 Mathematical assumptions 115

2.13.3 Plotting the fitness function 116

2.13.4 Finding the optimum using the calculus 117

2.13.5 Finding the optimum using a numerical approach 119

2.14 Scenario 12: The importance of plotting and the utility of brute force 119

2.14.1 General assumptions 119

2.14.2 Mathematical assumptions 120

2.14.3 Plotting the fitness function 120

2.14.4 Finding the maximum using the calculus 123

2.14.5 Finding the maximum using a numerical approach 128

2.15 Scenario 13: Dealing with recursion by brute force 130

2.15.1 General assumptions 130

2.15.2 Mathematical assumptions 131

2.15.3 Plotting the fitness function 132

2.15.4 Finding the maximum using the calculus 134

2.15.5 Finding the maximum using a numerical approach 134

2.16 Scenario 14: Adding a third variable and more 135

2.16.1 General assumptions 136

2.16.2 Mathematical assumptions 136

2.16.3 Plotting the fitness function 137

2.16.4 Finding the maximum using the calculus 137

2.16.5 Finding the maximum using a numerical approach 137

2.17 Some exemplary papers 139

2.18 MATLAB code 140

2.18.1 Scenario 1: Plotting the fitness function 140

2.18.2 Scenario 1: Finding the maximum using the calculus 140

2.18.3 Scenario 1: Finding the maximum using a numerical approach 141

2.18.4 Scenario 3: Plotting the fitness function 141

2.18.5 Scenario 3: Finding the maximum by the calculus 142

CONTENTS vii

2.18.6 Scenario 3: Finding the maximum using a numerical approach 142

2.18.7 Scenario 4: Plotting the fitness function 142

2.18.8 Scenario 4: Finding the maximum using the calculus 143

2.18.9 Scenario 4: Finding the maximum using a numerical approach 144

2.18.10 Scenario 5: Plotting the fitness function 144

2.18.11 Scenario 5: Finding the maximum using the calculus 145

2.18.12 Scenario 5: Finding the maximum using a numerical approach 145

2.18.13 Scenario 6: Plotting the fitness function 146

2.18.14 Scenario 6: Finding the maximum using the calculus 147

2.18.15 Scenario 6: Finding the maximum using a numerical approach 147

2.18.16 Scenario 7: Plotting the fitness function 148

2.18.17 Scenario 7: Finding the maximum using the calculus 149

2.18.18 Scenario 7: Finding the maximum using numerical methods 150

2.18.19 Scenario 8: Plotting the fitness function 150

2.18.20 Scenario 8: Finding the maximum using a numerical approach 151

2.18.21 Scenario 9: The derivative can also be determined using MATLAB 151

2.18.22 Scenario 9: Plotting the fitness function 151

2.18.23 Scenario 9: Finding the maximum using the calculus 152

2.18.24 Scenario 9: Finding the maximum using a numerical approach 152

2.18.25 Scenario 11: Plotting the fitness function 153

2.18.26 Scenario 11: Finding the optimum using the calculus 153

2.18.27 Scenario 11: Finding the optimum using a numerical approach 154

2.18.28 Scenario 12: Plotting the fitness function 154

2.18.29 Scenario 12: Finding the maximum using the calculus 155

2.18.30 Scenario 12: Finding the maximum using a numerical approach 158

2.18.31 Scenario 13: Plotting the fitness function 160

2.18.32 Scenario 13: Finding the maximum using a numerical approach 162

2.18.33 Scenario 14: Finding the maximum using a numerical approach 163

3 Invasibility analysis 165

3.1 Introduction 165

3.1.1 Age‐ or stage‐structured models 165

3.1.2 Modeling evolution using the Leslie matrix 169

3.1.3 Stage‐structured models 170

3.1.4 Adding density‐dependence 170

3.1.5 Estimating fitness 173

3.1.6 Pairwise invasibility analysis 174

3.1.7 Elasticity analysis 180

3.1.8 Multiple invasibility analysis 181

3.2 Summary of scenarios 184

3.3 Scenario 1: Comparing approaches 184

3.3.1 General assumptions 184

3.3.2 Mathematical assumptions 184

3.3.3 Solving using the methods of Chapter 2 185

3.3.4 Solving using the eigenvalue of the Leslie matrix 186

viii CONTENTS

3.4 Scenario 2: Adding density‐dependence 188

3.4.1 General assumptions 188

3.4.2 Mathematical assumptions 189

3.4.3 Solving using R0 as the fitness measure 189

3.4.4 Pairwise invasibility analysis 189

3.4.5 Elasticity analysis 193

3.5 Scenario 3: Functional dependence in the Ricker model 194

3.5.1 General assumptions 195

3.5.2 Mathematical assumptions 195

3.5.3 Pairwise invasibility analysis 195

3.5.4 Elasticity analysis 198

3.5.5 Multiple invasibility analysis 201

3.6 Scenario 4: The evolution of reproductive effort 203

3.6.1 General assumptions 203

3.6.2 Mathematical assumptions 203

3.6.3 Pairwise invasibility analysis 204

3.6.4 Elasticity analysis 206

3.7 Scenario 5: A two stage model 208

3.7.1 General assumptions 208

3.7.2 Mathematical assumptions 208

3.7.3 Elasticity analysis 210

3.7.4 Pairwise invasibility analysis 211

3.8 Scenario 6: A case in which the putative ESS is not stable 213

3.8.1 General assumptions 213

3.8.2 Mathematical assumptions 213

3.8.3 Pairwise invasibility analysis 213

3.8.4 Elasticity analysis 215

3.8.5 Multiple invasibility analysis 219

3.9 Some exemplary papers 221

4 Genetic models 223

4.1 Introduction 223

4.1.1 Population variance components (PVC) models 223

4.1.2 Individual variance components (IVC) models 228

4.1.3 Individual locus (IL) models 233

4.2 Summary of scenarios 243

4.3 Scenario 1: Stabilizing selection on two traits using a PVC model 243

4.3.1 General assumptions 244

4.3.2 Mathematical assumptions 244

4.3.3 Analysis 244

4.4 Scenario 2: Stabilizing selection using an IVC model 245

4.4.1 General assumptions 246

4.4.2 Mathematical assumptions 246

4.4.3 Analysis 246

CONTENTS ix

4.5 Scenario 3: Directional selection using an IVC model 248

4.5.1 General assumptions 249

4.5.2 Mathematical assumptions 249

4.5.3 Analysis 249

4.6 Scenario 4: Directional selection using an IL model 251

4.6.1 General assumptions 251

4.6.2 Mathematical assumptions 252

4.6.3 Analysis 252

4.7 Scenario 5: A quantitative genetic analysis of the Ricker model 255

4.7.1 General assumptions 255

4.7.2 Mathematical assumptions 256

4.7.3 Analysis 257

4.8 Scenario 6: Evolution of two traits using an IVC model 258

4.8.1 General assumptions 259

4.8.2 Mathematical assumptions 259

4.8.3 Analysis 259

4.9 Scenario 7: Evolution of two traits using an IL model 262

4.9.1 General assumptions 262

4.9.2 Mathematical assumptions 262

4.9.3 Analysis 263

4.10 Some exemplary papers 268

5 Game theoretic models 271

5.1 Introduction 271

5.1.1 Frequency‐independent models 271

5.1.2 Frequency‐dependent models 273

5.1.3 The size of the population 274

5.1.4 The mode of inheritance in two‐strategy games 274

5.1.5 The number of different strategies 276

5.2 Summary of scenarios 276

5.3 Scenario 1: A frequency‐independent game 277

5.3.1 General assumptions 277

5.3.2 Mathematical assumptions 277

5.3.3 Plotting the fitness curves 278

5.3.4 Finding the ESS using the calculus 280

5.3.5 Finding the ESS using a numerical approach 282

5.4 Scenario 2: Hawk‐Dove game: a clonal model 282

5.4.1 General assumptions 282

5.4.2 Mathematical assumptions 283

5.4.3 Finding the ESS using a numerical approach 283

5.5 Scenario 3: Hawk‐Dove game: a simple Mendelian model 287

5.5.1 General assumptions 287

5.5.2 Mathematical assumptions 287

x CONTENTS

5.5.3 A graphical analysis 287

5.5.4 Finding the ESS using a numerical approach 291

5.6 Scenario 4: Hawk‐Dove game: a quantitative genetic model 294

5.6.1 General assumptions 294

5.6.2 Mathematical assumptions 294

5.6.3 A graphical analysis 295

5.6.4 Finding the ESS using a numerical approach 299

5.7 Scenario 5: Rock‐Paper‐Scissors: a clonal model 301

5.7.1 General assumptions 301

5.7.2 Mathematical assumptions 302

5.7.3 Finding the ESS using a numerical approach 302

5.8 Scenario 6: Rock‐Paper‐Scissors: a simple Mendelian model 306

5.8.1 General assumptions 306

5.8.2 Mathematical assumptions 306

5.8.3 A graphical analysis 307

5.8.4 Finding the ESS using a numerical approach 313

5.9 Scenario 7: Rock‐Paper‐Scissors: a quantitative genetics model 315

5.9.1 General assumptions 316

5.9.2 Mathematical assumptions 316

5.9.3 A graphical analysis 316

5.9.4 Finding the ESS using a numerical approach 317

5.10 Scenario 8: Frequency‐dependence with limited interactions 322

5.10.1 General assumptions 322

5.10.2 Mathematical assumptions 322

5.10.3 Finding the ESS analytically 323

5.10.4 Finding the ESS using a numerical approach 328

5.11 Scenario 9: Learning the ESS 331

5.11.1 General assumptions 331

5.11.2 Mathematical assumptions 331

5.11.3 Finding the ESS using a numerical approach 332

5.12 Some exemplary papers 337

6 Dynamic programming 341

6.1 Introduction 341

6.1.1 General assumptions in the patch‐foraging model 341

6.1.2 Mathematical assumptions in the patch‐foraging model 342

6.1.3 A first look at the model 342

6.1.4 An algorithm for constructing the decision matrix 344

6.1.5 Using the decision matrix: individual prediction 351

6.1.6 Using the decision matrix: expected state 354

6.1.7 Using the decision and transition density matrices to get expected choices 356

6.1.8 Adjusting state values to correspond to index values 357

6.1.9 Linear interpolation to adjust for non‐integer state variables 357

6.2 Summary of scenarios 360

CONTENTS xi

6.3 Scenario 1: A different terminal fitness 360

6.3.1 General assumptions 360

6.3.2 Mathematical assumptions 361

6.3.3 Outcome chart and expected lifetime fitness function 361

6.3.4 Calculating the decision matrix 361

6.4 Scenario 2: To forage or not to forage: when patches become options 361

6.4.1 General assumptions 361

6.4.2 Mathematical assumptions 362

6.4.3 Outcome chart and expected lifetime fitness function 363

6.4.4 Calculating the decision matrix 363

6.5 Scenario 3: Testing for equivalent choices, indexing, and interpolation 367

6.5.1 General assumptions 367

6.5.2 Mathematical assumptions 367

6.5.3 Outcome chart and expected lifetime fitness function 368

6.5.4 Calculating the decision matrix 370

6.6 Scenario 4: Host choice in parasitoids: fitness decreases with time 375

6.6.1 General assumptions 375

6.6.2 Mathematical assumptions 375

6.6.3 Outcome chart and expected lifetime fitness function 378

6.6.4 Calculating the decision matrix 379

6.6.5 Using the decision matrix: individual prediction 385

6.7 Scenario 5: Optimizing egg and clutch size: dealing with two state variables 389

6.7.1 General assumptions 389

6.7.2 Mathematical assumptions 391

6.7.3 Outcome chart and expected lifetime fitness function 391

6.7.4 Calculating the decision matrix 393

6.8 Some exemplary papers 399

6.9 MATLAB Code 402

6.9.1 An algorithm for constructing the decision matrix 402

6.9.2 Using the decision matrix: individual prediction 404

6.9.3 Using the decision matrix: expected state 406

6.9.4 Scenario 2: Calculating the decision matrix 407

6.9.5 Scenario 3: Calculating the decision matrix 409

6.9.6 Scenario 4: Calculating the decision matrix 413

6.9.7 Scenario 4: Using the decision matrix: individual prediction 416

6.9.8 Scenario 5: Calculating the decision matrix 417

Appendix 1 423

Appendix 2 428

References 435

Author Index 443

Subject Index 447

Coding Index 450

xii CONTENTS

CHAPTER 1

Overview

1.1 Introduction

1.1.1 The aim of this book

Computer modeling is now an integral part of research into evolutionary biology.

The advent of increased processing power in the personal computer, coupled with

the availability of languages such as R, S-PLUS, Mathematica, Maple, Mathcad, and

MATLAB, has ensured that the development and analysis of computer models of

evolution is now within the capabilities of most graduate students. However,

there are two hurdles that, in my experience, discourage students from making

full use of the power of computer modeling. The first is the general problem of

formulating the question in a manner that is amenable to programming and the

second is its implementation using one of the aforementioned computer lan-

guages. This is because the learning curve of each of these languages is quite

steep, unless one already has prior computing experience as an undergraduate.

Presently available texts on modeling evolutionary problems typically do not

focus on the issue of implementation. The same problem formally confronted

students learning statistical analysis. However, in contrast to books on modeling

in evolution, many statistical texts now give numerous examples and demon-

strate the statistical analyses using available programs. This is particularly

true for statistical texts based on S-PLUS or R (e.g., Crawley [2002, 2007]; Krause

and Olson [2002]; Venables and Ripley [2002]; Roff [2006]). The philosophy, of

providing coding as an integral part of the explanation, has guided the writing

of this book. The present book is designed to outline how evolutionary questions

are formulated and how, in practice, they can be resolved by analytical and

numerical methods (the emphasis being on the latter). The general structure

of each chapter consists of an introduction, in which the general approach

and methods are described, followed by a series of scenarios demonstrating the

different techniques and providing coding in R and, in two chapters (2 and 6),

MATLAB. This coding is available on my Web site (http://www.biology.ucr.edu/

people/faculty/Roff.html). Each scenario commences with a list of general assump-

tions of the model. These assumptions are then given precise mathematical

meaning, followed by the available methods of analysis. I have chosen scenarios

that highlight particular aspects of evolutionary modeling, the aim being to allow

these models to be used as templates for other models. At the end of the chapter a

http://www.biology.ucr.edu/people/faculty/Roff.html
http://www.biology.ucr.edu/people/faculty/Roff.html

list of exemplary papers is given: These papers have been selected on the basis of

how well they explain and illustrate the techniques discussed in the chapter.

1.1.2 Why R and MATLAB?

Both R and MATLAB are readily available and extensively used. The program R has

two major advantages over MATLAB: first it is free, and second it is a highly

sophisticated statistical package. Thus a student who learns R can use it to do

modeling and to address the statistical questions that will arise following experi-

ments to test such models. MATLAB appears to be generally faster than R, except

perhaps in the complex statistical analyses. On the other hand, MATLAB is not

cheap and although it has statistical routines, these are not its forte and I would

not recommend it as a general means of statistical analysis. Although the symbols

of the two languages are different (e.g., “< -” in R vs. “=” in MATLAB), in most cases

the basic structures are very similar and it is not difficult to navigate between the

two, once the general concepts are understood. While I personally prefer R,

MATLAB does have some significance: Therefore, in Chapters 2 and 6 I provide

coding in both R andMATLAB and in the other chapters I give the coding only in R.

The problems addressed in Chapter 2 typically involve the calculus for which

MATLAB is particularly useful and may involve somewhat different coding to that

of R. In contrast, the problems addressed in Chapter 6 use coding that is essentially

the same, and the MATLAB code can be obtained from the R code in large measure

by relatively little editing (see later). This is the case for the other chapters, which,

in the interests of clarity, is why I have omitted the MATLAB code (the primary

coding changes generally involve graphical output). Throughout the book com-

puter code is given in courier font to distinguish it from the rest of the text.

Appendix 1 lists all the R functions used in this book and, where available, the

MATLAB equivalents. In general, R code can be largely converted to MATLAB code

by global editing in a text-editor such as Word. The general changes that will have

to be made are as follows:

1. Replace the assignment symbol “< –” with “¼”.

2. Replace the comment symbol “#” with “%”.

3. For ease of reading I frequently use a “.” in my variable names, as for example,

X.Matrix. This is not permitted in MATLAB and so I replace “.” with the

underscore character “_”.

4. Matrices in R use square brackets, for example, X[1,1]; replace these with

parentheses, that is, X(1,1).

5. Concatenation uses the symbol c(variables); in MATLAB use square brackets

[variables].

6. Loops in R use the brackets “{‘ and ’}”. MATLAB does not use these, so delete

them and replace “}” with “end”.

7. In MATLAB, functions go in separate files. See Appendix 1 and Section 3

(Step 10) for differences in construction of functions.

2 MODE L I N G E VO L U T I ON

8. For MATLAB code place “;” at the end of each line that you do not want to be

echoed back.

9. Supplied functions may differ in name: check Appendix 1 for such changes.

The codes in Chapter 2 are most dissimilar and require care, whereas those in

Chapter 6 are very readily changed.

1.2 Operational definitions of fitness

In modeling evolution we must clearly define the term “fitness,” not only in an

abstract sense but, more importantly, in an operational sense. In this section I

present an overview of such definitions, which are expanded upon in the relevant

chapters.

A central idea of Darwin’s theory is that organisms vary in their ability to leave

descendants, a phenomenon that is now generally called “Darwinian fitness” or

simply “fitness.” In the simplest case the term “descendants” might refer to

immediate offspring but more generally the time horizon is longer than a single

generation and takes into account the differential rate of increase of genotypes in

a population. This concept is pivotal to our understanding of evolution and in the

design and analysis of evolutionary models. There is certainly no real issue with

the basic concept of fitness, but it has proven a rich source of discussion when

implementing operational definitions of fitness in evolutionary models (Brommer

2000; Brommer et al. 2002). Such models attempt to determine the equilibrium

trait values and, in some cases, their evolutionary trajectory, under the influence

of natural selection. Evolutionary models may be classified along five broad

dimensions: (a) finite versus infinite (or very large) population size, (b) type

of environment (constant, fixed length, temporally stochastic, temporally predict-

able, spatially stochastic, and spatially predictable), (c) Density-dependent or

density-independent, (d) inherent population dynamics (equilibrium, cyclical,

and chaotic), and (e) frequency-dependent or frequency-independent. Consider-

able theoretical attention has been given to a subset of these combinations but it is

probably possible to find models that include all combinations, at least for partic-

ular models. Here I shall focus upon those combinations of dimensions for which

there is a relatively strong theoretical justification for the fitness criterion and

where possible suggest the fitness criterion for other combinations.

Operational measures of fitness have developed largely from the fundamental

equation of fitness from the demographic model of Fisher (1930). Fisher took an

actuarial approach, assuming a population at a stable-age distribution in which

case the rate of growth of the population, r, can be described by the age-specific

schedules of reproduction and survival as brought together in the characteristic

(or Euler) equation

Z1
0

e�rxlðxÞmðxÞdx ¼
Z1
0

e�rxVðxÞdx ¼ 1 ð1:1Þ

OV E R V I EW 3

where l(x) is the survival to age x and m(x) is the number of female births at age x.

The above equation can also be written in discrete form (see Chapter 2): which

model is to be preferred will depend upon the details of the underlying biological

model. Qualitative results are not affected by this type of variation and I shall not

explicitly distinguish between the two cases in this overview, but examples of

both are discussed in this book. For a homogeneous population at stable equilibri-

um r equals zero and the characteristic equation reduces to

Z1
0

lðxÞmðxÞdx ¼
Z1
0

VðxÞdx ¼ 1 ð1:2Þ

In the absence of density-dependence, we have the net reproduction rate R0:

R0 ¼
Z1
0

lðxÞmðxÞdx ¼
Z1
0

VðxÞdx ð1:3Þ

This parameter is one of the most widely used operational metrics of fitness

(e.g., Clutton-Brock [1988]; Roff [1992]; Stearns [1992]; Charnov [1993]) but, as

discussed in Section 1.2.4, its use implies a particular definition of the biological

scenario, which is often not overtly acknowledged.

Fisher argued that selection will favor the particular life history that maximizes r,

which he termed theMalthusian parameter in honor of Thomas Malthus, who in

his “Essay on the Principle of Population” (Malthus 1798) pointed out that popula-

tions increase geometrically. This parameter is also referred to as the intrinsic rate

of increase or simply the rate of increase (hence the present use of the symbol r or

sometimes specifically r0 to distinguish it from rates of increase calculated with

other factors is included). The characteristic equation was derived earlier (see Lotka

[1907]; Sharpe and Lotka [1911]) but Fisher was the first to see its importance as a

measure of fitness: “The Malthusian parameter will in general be different for each

different genotype, and will measure the fitness to survive of each” (Fisher 1930,

p. 46). As pointed out by Charlesworth (1970), it is not really desirable to equate

rwith a genotype as segregation and recombination will be changing the frequency

of genotypes in the population. However, it is true, as discussed later, that under the

circumstances considered by Fisher the parameter rwill increase until an equilibri-

um is reached.While the operational definitions of fitnessmay vary under different

scenarios, they all have equation (1.3) as their basic root, that is, fitness is a function

of the long-term growth rate of genotypes in a population. Invasion by a mutant

form is contingent on its long-term growth rate relative to the resident population.

Fisher, who was clearly concerned about the genetical basis of evolution, never

provided a rigorous mathematical argument for r as the appropriate measure of

fitness in genetical models. This lacuna was filled only relatively recently by the

work of Charlesworth (1994, for the collected analyses) and Lande (1982). In many

cases it is not necessary to include the genetical basis of the traits under investiga-

tion, because, in general, sufficient genetic variation is available to permit evolu-

tion to proceed. In all models a central assumption is that there is a set of

4 MODE L I N G E VO L U T I ON

phenotypic trade-offs that limit the scope of trait combinations. Incorporation of

genetic models may be important in determining the evolutionary trajectory or as

a numerical means of locating the optimal combination (see Chapters 4 and 6). For

convenience, I shall divide the following sections according to the primary focus

of the analyses described therein.

1.2.1 Constant environment, density-independent, and stable-age
distribution

This is the situation modeled by Fisher (1930), for which the characteristic equa-

tion provides the appropriate fitness criterion, although, as noted earlier, he did

not provide a formal mathematical proof of this. Charlesworth (1994) showed

that in a population genetical framework, a mutant allele will spread in a

resident population if the mutation increases the intrinsic rate of increase of

a genotype possessing the mutation. Lande (1982) showed that for a quantitative

genetic model with weak selection and a nearly stable-age distribution “life

history evolution continually increases the intrinsic rate of increase of the popu-

lation, until an equilibrium is reached” (Lande 1982, p. 611; see also Charlesworth

[1993]).

The general discrete mathematical model for this scenario is the Leslie matrix,

which comprises the age-specific fecundities and survival probabilities. The finite

rate of increase, l (¼er) is given by the dominant eigenvalue of the Leslie matrix

(see Chapter 3). For the continuous case, as given in equation (1.1) either an

analytical solution can be found from the functional form of V(x) or numerical

methods are employed (see Chapter 2).

1.2.2 Demographic stochasticity

As noted earlier, implicit in the characteristic equation is the assumption of a

constant environment, a stable-age distribution, and an infinite (or very large)

population so that variation due to demographic stochasticity can be ignored.

The question of a spread of a mutant allele in a finite population has been

considered in great detail in the population genetics literature (Wright 1931,

1969; Crow and Kimura 1970; Hedrick 2000; Gillespie 2006). In such models

fitness is mathematically defined with respect to a genotype: thus for the single

locus, two-allele case we have wAA, wAa, and waa, where the subscripts refer to the

genotypes. Relative fitness is then obtained by setting the largest w to 1 and the

others as proportions of the largest value. This characterization of fitness is typical

of population genetic models. The most important implicit assumption of most of

these models is that generation length is fixed, which greatly simplifies analytical

approaches.

Demetrius and Ziehe (2007) tackled the problem by dividing r into two com-

ponents:

r ¼ H þ F ð1:4Þ

OV E R V I EW 5

where

H ¼ �

Z1
0

e�rxVðxÞln½e�rxVðxÞ�dx

Z1
0

xe�rxVðxÞdx
� S

T

F ¼

Z1
0

e�rxVðxÞln½VðxÞ�dx

Z1
0

xe�rxVðxÞdx
� E

T

ð1:5Þ

The parameter T is the mean generation time. S is called the demographic

entropy: It is a measure of the uncertainty of the age of a newborn’s mother.

It measures the degree of iteroparity: small values of S specify late age at

maturity, small progeny sets, and extended reproductive spans and large

values the opposite. H is called the evolutionary entropy: It characterizes

the robustness of the population, that is, the ability of the population to

retain its phenotypic characteristics in the face of random perturbations in its

phenotypic state. H is negatively correlated with the coefficient of variation in

population size. E is called the net reproductive index: It describes the net-

offspring production ln[V(x)], averaged over all age classes. F is called the

reproductive potential.

To relate the Malthusian parameter with demographic stochasticity, Demetrius

and Ziehe (2007) introduce a demographic parameter called the demographic

variance, defined as

s2 ¼

R1
0

e�rxVðxÞf�xFþ ln½VðxÞ�gdx
R1
0

xe�rxVðxÞdx
ð1:6Þ

A mutant can be characterized by its effect on r and s2:

Dr ¼ r� � r
Ds2 ¼ s�2 � s2

ð1:7Þ

where * denotes the mutant, and the selective advantage of the mutant, s, is given

by

s ¼ Dr � 1

N
Ds2 ð1:8Þ

where N is the population size. Note that as population size approaches infinity,

the selective advantage converges to the Fisherian model. The present analysis

takes into account that populations are of finite size, whereas the usual, unstated,

assumption is that the population is very large. Predicted outcomes can be deter-

mined given the signs of Dr and Ds2 (Table 1.1).

6 MODE L I N G E VO L U T I ON

1.2.3 Environments of fixed length (e.g., deterministic seasonal
environments)

An example in this case is a univoltine life cycle in a seasonal environment that

shows no interannual variation. One fitness metric in this instance is the number

of offspring that a female produces at the end of the season (Roff 1980). This

measure may have to be modified to take into account the quality of the offspring

in which case the measure may be redefined as the reproductive success of the

offspring of a female. If multiple generations are possible the fitness criterion

becomes the reproductive success of the descendants passing into the next season

of offspring of a female that originated at the start of the season. By adding the

mathematical constraints of a cutoff, these definitions can be subsumed under the

more general fitness criterion of invasibility, which will be discussed shortly.

1.2.4 Constant environment, density-dependence with a stable equilibrium

This case was studied extensively by Charlesworth (1972), who showed that the

focus of selection is the age group or groups in which the density-dependence

occurs, called the critical age group: Selection will favor the strategy that max-

imizes the number of individuals in the critical age group. If the populationmodel

is written as a projection matrix the maximum fitness is given by the dominant

Lyapunov exponent (van Dooren and Metz 1998; also see Chapter 3). Metz et al.

(1992), and later Ferriere and Gatto (1995), asserted that the dominant (also called

the leading) Lyapunov exponent is an appropriate general criterion of invasibility.

Rand et al. (1994) called this parameter the invasion exponent. As this criterion

measures the long-term growth rate of a population (Ferriere and Gordon 1995) it

relates directly to the Malthusian parameter. In some cases, an easier and equiva-

lent fitness measure is the net reproduction rate, which is the expected offspring

production by a female (see equation (1.3); also see van Dooren and Metz [1998]).

The question of the relationship between equilibrium population size and

relative fitness has risen repeatedly, commencing with the concept of r and K

selection (see review in Roff [1992]). It is clear from the critical age group that

fitness cannot be evaluated to population size nor would we expect that relative

Table 1.1 Predicted outcome of a mutant with specified effects on r and demographic variance s2

Δr Δs2 N Invasion Extinction

Positive Negative Does not matter Highly likely...
Negative Positive Does not matter Highly likely...
Positive Positive >Δs2/Δr Highly likely...
Positive Positive <Δs2/Δr Decreasing with N...
Negative Negative >Δs2/Δr Highly likely...
Negative Negative <Δs2/Δr Decreasing with N

OV E R V I EW 7

selection pressures could be evaluated from total population size. Caswell et al.

(2004) explored this problem and produced a general theorem on density-depen-

dent sensitivity in matrix population models. The effective equilibrium density,

Ñ, is not the census number but rather a weighted value of each stage, the weights

being a function of the contribution to density-dependence and the effect of the

stage on l (¼ the dominant eigenvalue of the density-dependence matrix). At

equilibrium l ¼ 1. The effect of variation in some parameter y on l is measured

by its elasticity, which is defined as the proportional change in l resulting from an

infinitesimal proportional change in y. For detailed discussion of elasticity, see

Grant (1997), Grant and Benton (2000, 2003), Caswell (2002), and Van Tienderen

(2000). The elasticity of l to y is proportional to the elasticity of Ñ to y

y
l
@l
@y

����
y0;n~

¼ y
l
@ N~

@y
¼ ~N

y

N~
@ N~

@y
ð1:9Þ

Any change that increases l will increase Ñ but not necessarily the total census

population. The sensitivity of the invasion exponent to a change in the parameter

y, is given by the elasticity of l to y

1

l
@l
@y

����
y0;~n

ð1:10Þ

from which it is evident that the invasion of a mutant will increase the effective

equilibrium density and the ESS (Evolutionarily Stable Strategy, a strategy that

cannot be invaded by another mutant) will maximize the effective equilibrium

density.

As noted earlier, for a homogeneous population at stable equilibrium r equals

zero and the characteristic equation reduces to equation (1.2) and ignoring the

density-dependent effect we have the net reproduction rate, R0 (see equation [1.3]).

This parameter is one of the most widely used operational metrics of fitness (e.g.,

Roff [1992]; Stearns [1992]; Charnov [1993]; see Chapter 2) but its use implies a

particular definition of the biological scenario, which is often not overtly acknowl-

edged. In order for R0 to be an appropriate definition of fitness either the density-

dependence is selectively neutral or the density-dependence is neutral with respect to the trait

under study (Roff 1992, p. 39). Determination of the optimal life history using rmay

give a different answer to that obtained using R0 (Roff 1992, pp. 183–184; Stearns

1992, pp. 31–33): Both answers cannot be right and the correct one (if either is

correct) depends upon the population dynamical assumptions. If the population is

assumed to be at equilibrium and the above assumption(s) of density-dependence

hold, then R0 is appropriate. On the other hand, if the population is in a growing

phase and again the above assumption(s) of density-dependence hold, then r is

appropriate. If density-dependence is not selectively neutral, then neither metric

is appropriate and the analysis must take the selective effects of the density-

dependence into account (Mylius and Diekmann 1995; Benton and Grant 2000;

Brommer 2000).

8 MODE L I N G E VO L U T I ON

1.2.5 Constant environment, variable population dynamics

Even in a constant environment a population may still show fluctuations as a

result of the deterministic properties of the population model. A general and

much used example of this is the Ricker function (see Chapter 3):

Ntþ1 ¼ lNte
�MNt ð1:11Þ

where Nt is the population size at time t, l is the finite rate of increase at low

population numbers, andM is a parameter that could be the mortality of juveniles

resulting from competition or cannibalism by the parents. Depending on the

value of l, the population is either stable (1 � l � 2), oscillates with a period of

2n (where n is a positive integer, the value of n depending on the value of l, with

e2 < l < e2.6924) or displays chaotic fluctuations (l > e2.6924).

What we would like to know is whether a mutant can invade such a population,

which is generally termed the resident population. To find this out we consider

the situation at the beginning of the process when the mutant is so rare that it

cannot have a significant effect on the dynamics of the system. If under these

circumstances the mutant can increase in frequency, then we presume that it will

increase to fixation in the population. Note that this assumption presupposes no

frequency-dependence. Nor does it suppose that there is necessarily a unique

parameter set that is resistant to invasion by all other mutants (see below and

Chapter 3 for further discussions). We can write the trace for the resident popula-

tion as

NR;t ¼ lRe�MRNR;tNR;t�1

NR;t�1 ¼ lRe�MRNR;t�2NR;t�2

NR;t ¼ NR;0l
t
R

Yt
i¼0

e�MRNR;i

ð1:12Þ

where the subscript R designates the parameters of the resident population.

Taking logs gives

lnNR;t � lnNR;0 ¼ tlnlR �MR

Xt

i¼0

NR;i ð1:13Þ

Taking limits gives

lnlR �MR

Pt
i¼0NR;i

t
¼ lim

t!1
1

t
EðlnNR;t � lnNR;0Þ ð1:14Þ

which is the dominant Lyapunov exponent, given the symbol s by Ferriere and

Gatto (1995). Because a mutant will be in insignificant numbers in the initial

invasion, the trace of population numbers is given by the trace of population

numbers of the resident population, that is,
Pt

i¼0NR;i. Thus, the invasion (Lyapu-

nov) exponent of a mutant, sm, is given by

sm ¼ lnlm �Mm

Pt
i¼0NR;i

t
ð1:15Þ

OV E R V I EW 9

and the condition for the mutant to invade is

lnlm
Mm

>
lnlR
MR

ð1:16Þ

In the above example, it is possible to derive an exact expression for the invasion

(Lyapunov) exponent: This will frequently not be the case and numerical methods

will have to be employed (see Chapter 3). Nothing in the above theory precludes

the existence of a polymorphism, and indeed the origin of the theory for temporal

variation, discussed later, was initiated by the presence of dimorphism for dor-

mancy in plants (Cohen 1966).

1.2.6 Temporally stochastic environments

Environments are rarely if ever temporally stable and such variation is likely to be

reflected in variation in vital rates. In general, a population growth rate converges

to a fixed quantity, which Tuljapurka (1982) labeled a to distinguish it from the

Malthusian parameter. In a constant environment a is equivalent to the Malthu-

sian parameter. Population size at some time t can be represented by

Nt ¼ lt�1Nt�1

Nt�1 ¼ lt�2Nt�2

Nt ¼ N0P
t

i¼0
li

ð1:17Þ

Taking logs gives

lnNt ¼ lnN0 þ
Xt

i¼0

ln½li� ð1:18Þ

As noted earlier, under relatively unrestricted conditions – namely, (a) demo-

graphic weak ergodicity, (b) the random process generating vital rates is stationary

and ergodic, and (c) the logarithmic moment of vital rates is bounded (Tuljapurkar

1989; see Tuljapurkar [1990] for a definition of demographic weak ergodicity) –

the value of N(t) becomes independent of the initial condition, N0, and the long-

run growth rate and hence the fitness of a particular life history is given by Cohen

(1966), Tuljapurkar and Orzack (1980), and Caswell (2001):

lnl ¼ lim
t!1

1

t
EðlnNt � lnN0Þ ð1:19Þ

Fitness is measured by the geometric mean of the finite rate of increase. The

geometric mean rate of increase, r�G, is a function of the arithmetic mean finite

rate of increase, �l�, and its variance, s2l . Using a Taylor series expansion an approx-

imate formula is (Lewontin and Cohen 1969)

r�G ¼ EðlnlÞ � ln l
�

� s2l
2 l�2

ð1:20Þ

10 MOD E L I NG E VO L U T I ON

The important point is that increases in the variance in the rate of increase

decrease fitness and thus selection will favor strategies that both increase the

arithmetic rate of increase and decrease it variance. One such manner in which

the latter can be achieved is by producing variation in offspring phenotypes. This

concept appears to have been put forward at least three times since 1966. It is

implicit in Cohen’s analysis (1966) of the optimal germination rate in a randomly

varying environment, was explicitly advanced verbally by den Boer (1968), who

referred to it by the term “spreading the risk,” and finally discussed by Gillespie

(1974, 1977) in the context of variation in offspring number. Slatkin (1974), in

reviewing Gillespie’s work, labeled the phenomenon as “bet-hedging,” a term

that has stuck. The forgoing arguments apply to populations of infinite size, but

we might expect from the analysis of Demetrius and Ziehe (2007) that this fitness

measuremay break down at low population sizes. Indeed, for a particular scenario

in which there is a common and a rare environment (King andMasel 2007) showed

that bet-hedging would not be favored when

N <

ffi
2
�
sþ 1

�
=
�
sy
�q

ð1:21Þ

where N is the population size,s is the selective advantage associated with switch-

ing in the rare environment, and y is the rate of encountering the rare environ-

ment.

With age structure, the equivalent measure of the long-term population growth

rate in relation to the arithmetic average is (Orzack and Tuljapurkar 1989)

a � lnl� STVS
2

ð1:22Þ

where lnl is the dominant eigenvalue of the average Leslie matrix, S is a column

vector of the sensitivities of l to a fluctuation in the matrix elements (i.e.,

Sij ¼ @lnl=@xij, where xij is the ij element), ST is its transpose, and V is a variance–

covariance matrix of the elements (xij).

Equation (1.22) can be illustrated with a simple two-age class model described by

Tuljapurkar (1989). Population change is described by the equation

Ntþ1 ¼ AtNt ð1:23Þ
where

Nt ¼ N1;t

N2;t

� �
and At ¼

m1

x

m2

x

S 0

0
@

1
A ð1:24Þ

Fecundity at age i equals mi and survival from age class 1 to age class 2 equals S.

Uncorrelated temporal variability is described by the parameter x which follows a

gamma distribution with probability density function:

PðxÞ ¼ vv

ðv� 1Þ! x
v�1e�vx ð1:25Þ

OV E R V I EW 11

The parameter x measures the variance, with the variance increasing as n ap-

proaches zero and x approaching 1 as n approaches infinity. If the parameters are

fixed at their average values the ratiom2Nt/m1Nt converges to a stable value, say R*.

The growth rate of the population is then given by

r ¼ ln l
�

¼ ln
m2S

m1

� �
R�

� 	
ð1:26Þ

The long-run average growth rate of the population with temporal variability, a, is

approximately

a � r � 1

2xl2C2

� �
m1 þm2

l

 �2

ð1:27Þ

where C ¼ 2� fm1x=½ðx� 1Þl�g. As in the case of equation (1.20) the average

growth rate is diminished by variability in the vital rates. Thus it is insufficient

to determine the most fit life history using the growth rate from the averaged

values of the life history.

While the fate of a gene or mutant can be determined by the geometric mean or

long-run growth rate, and thus fitness can be so defined for the sake of modeling,

Lande (2007, p. 183) has shown that “these measures fail to describe the expected

short-term dynamics of gene frequencies or mean phenotypes, by which expected

selection coefficients and expected relative fitnesses should be defined.” The

expected relative fitness of an individual is the Malthusian fitness of the genotype

or phenotype in the average environment minus the covariance of its growth

rate with that of the population. A consequence of this is that the expected

relative fitness is frequency-dependent (Land 2007). This result is important in

correctly defining fitness but, as noted earlier, this does not change the utility

of the geometric mean or long-run growth rate as a metric by which to calculate

the optimal combination of trait values.

1.2.7 Temporally variable, density-dependent environments

From the following discussions the most appropriate measure of fitness is the

invasion exponent. Given the complexity of the interactions it is likely that

analytical solutions will not be typically available and one will have to resort to

simulation analysis. Benton and Grant (2000) investigated the reliability of alter-

nate measures of fitness for models in which there was both density-dependence

and temporally uncorrelated variation. Four models of density-dependence were

investigated: Beverton and Holt-type, Ricker-type, Usher-type with gradual onset

of density-dependence, and Usher-type with sudden onset of density-dependence.

Beverton and Holt-type models produce a stable equilibrium, whereas the Usher-

type with sudden onset of density-dependence generally produces chaotic behav-

ior. The dynamical behavior of the other two depends on parameter values,

though Benton and Grant (2000, p. 773) state that “the vast majority of

other combinations of density-dependence . . . resulted in equilibrium dynamics.”

Given the predicted differences between models with equilibrium versus

12 MOD E L I NG E VO L U T I ON

nonequilibrium dynamics it is unfortunate that the analysis did not divide the

results both according to the four-model types and the two-dynamical behaviors.

Benton and Grant (2000) considered the following “surrogate” measure of fitness:

r, R0, and a estimated both with and without density-dependence effects and the

average (both arithmetic and geometric) population size, K.

First, Benton andGrant simulated constant environments and found, as expected,

that for the chaotic models none of the fitness criteria performedwell. On the other

hand, theDI� R0 andKperformedwell for the Beverton–Holtmodel,whichdoes not

exhibit chaotic behavior. In a stochastic environment the best predictor of the

invasion exponent was K, although it has to be remembered that the density-depen-

dence in the models was a direct function of total population size. The general

message from the analyses is that if the population is expected to show variable

dynamics, either due to environmental fluctuation or intrinsic population dynami-

cal properties, and density-dependence is not a consequence of a response to total

population number. the only viable measure of fitness is the invasion exponent.

However, the result in a model with chaotic population dynamics may also depend

upon the mode of inheritance (compare Scenario 3 of Chapter 3 with Scenario 5

in Chapter 4). In populations showing more or less stable equilibria the density-

independent R0 appeared to be a reasonablemeasure, which is reassuring, given the

considerable number of analyses based on this fitness measure.

1.2.8 Spatially variable environments

Starting with Levene (1953) there has been a considerable number of population

and quantitative genetic analyses of the conditions required for the maintenance

of genetic variation (reviewed in Roff [1997]). So far as I am aware, these analyses

have assumed nonoverlapping generations (i.e., no age structure). The solution to

defining fitness when the environment is spatially variable and there is a stable-

age distribution was enunciated independently by Houston and McNamara (1992)

and Kawecki and Stearns (1993). The critical realization in deriving the solution

was that fitness must be measured over the entire environment simultaneously

and not patch by patch. Thus, if we take r as the appropriate fitness measure

(meaning that we assume an equilibrium population) the measure that selection

will maximize is the rate of growth of the population as a wholeZ
PðhÞ

Z
Vðx; hÞe�rPopxdx ¼ 1 ð1:28Þ

where rPop is the rate of growth of the entire population (as opposed to the rates of

growth within each patch), P(h) is the probability of patch of type h occurring,

and V(x, h) is the value of l(x)m(x) for patch of type h. One would expect that in a

spatially variable world a reaction norm would evolve to modify the life history

patterns in response to the habitat parameters, the evolutionary change obviously

being dependent on the presence and predictability of cues that indicate habitat

type. Nevertheless, the maximization of fitness within each patch is subject to the

constraint imposed by equation (1.28).

OV E R V I EW 13

For density-dependent populations in which equilibrium is attained and for

which density-dependence is assumed to be selectively neutral the appropriate

criterion is the net reproduction rate, R, and the fitness criterion becomes

RPop ¼
Z

PðhÞ
Z

Vðx; hÞdx ð1:29Þ

meaning that selection will favor the life history that maximizes R for the popula-

tion s as a whole (Charlesworth 1994). If density-dependence is not selectively

neutral, then equation (1.29) must include those effects.

1.2.9 Social environment

In the environments so far discussed, the relationship between individuals is of no

consequence because social interactions are absent. In this book I shall not explic-

itly consider the social environment, although it can be accommodated within the

various analytical frameworks. When survival or reproduction depends upon

interactions between individuals that might be related it is necessary to take

into account the increment of fitness accruing to the individual by virtue of

such interactions. Two relatively well-studied social phenomena are altruism

(Koenig 1988; Dugatkin and Reeve 1994, 1998; Thorne 1997; Ratnieks and Wen-

seleers 2008) and “helpers-at-the-nest” behavior (Koenig et al. 1991; Bshary and

Bergmueller 2008; Carranza et al. 2008).

The overall fitness, inclusive of interactions among relatives, was termed inclu-

sive fitness by Hamilton (1964), though, because of the obscurity of Hamilton’s

definition, it was, at least initially, frequently interpreted incorrectly (Grafen

1982). Operationally, inclusive fitness can be defined, or replaced by, Hamilton’s

rule, which states that organisms are selected to perform actions for which

r�b� c > 0 ð1:30Þ
where r* is relatedness, and b, c refer to the effects of an allele on offspring

production: bearers of this allele behave in such a manner that each has c fewer

offspring, and the bearer’s sib has b more offspring (Grafen 1984). Queller (1996)

noted that it is phenotypes that interact not genotypes and suggested replacing r*

with Cov(GA, PO)/Cov(GA, PA), where GA is the genetic value of the “actor” or focal

individual, PA is its phenotypic value, and PO is the phenotypic value of the average

phenotype. For other formulations of the relatedness coefficient see Pepper

(2000). Taylor et al. (2006) expanded Hamilton’s rule to a class-structured model,

while Gardner et al. (2007) provide a multilocus version of the rule. Oli (2002)

provides a method of estimating inclusive fitness in an age-structured population

using a Leslie matrix formulation. For other modifications of Hamilton’s rule that

have been advanced to account for such things as nonadditivity of fitnesses see

Fletcher and Zwick (2006).

More generally, b and c in equation (1.30) are referred to as the benefits and

costs, respectively. A potential problem with using Hamilton’s rule is in opera-

tionally defining these costs and benefits, leading some to attempt to use a more

14 MOD E L I NG E VO L U T I ON

direct definition of inclusive fitness, which in turn has led to discussion over how

to correctly calculate this quantity. The issue lies in the verbal description given by

Hamilton (1964) that inclusive fitness is the sum of the fitness that would be

obtained in the absence of the social environment (e.g., helpers at the nest) and

the added increment due to the presence of the social environment. The problem

is in calculating the former quantity. Creel (1990) pointed out that a potential

paradox can arise if the social environment is essential for successful reproduc-

tion, as is almost the case for the dwarf mongoose, Helogale parvula. Stripping away

the social environment leaves the reproductive individual with zero fitness, all the

fitness being attributed to the helpers. Thus there should be contest to be helpers

and not reproductives, which is clearly not the case and makes no sense geneti-

cally. Creel’s solution to this paradox was shown by Queller (1996) to be inappro-

priate and that the solution resides in recognizing that Hamilton’s rule applies

strictly only when fitnesses are additive, which in the mongoose case they are not.

The paradox is removed when nonadditive versions of Hamilton’s rule are used

(Queller 1996; Pepper 2000; West et al. 2002).

1.2.10 Frequency-dependence

A reasonably general definition of frequency-dependent selection is that given by

Ayala and Campbell (1974, p. 116): “The selective value of a genotype is frequency

dependent when its contribution to the following generation relative to alterna-

tive genotypes varies with the frequency of the genotype in the population.”

There are, however, other definitions, which though similar, can be subtlety

different, or more restrictive in the sense that stable coexistence is required

(Heino et al. 1998). There is no reason why a stable equilibrium frequency of

genotypes should be a requirement of frequency-dependent selection and some

very simple games such as “Rock-Paper-Scissors” which are clearly frequency-

dependent do not have a stable equilibrium (Maynard Smith 1998; see Chapter

6). Most models of frequency-dependent selection assume either competition

between clones or Mendelian inheritance with a fixed generation time. In either

case fitness is defined in terms of the contribution of types (genotype or pheno-

type) to the subsequent generation.

An example of frequency-dependence is the occurrence of two types of males in

several fish species, particularly salmon: One type of male is territorial whereas

the other is typically smaller, matures earlier, cannot maintain a territory, and

attempts to sneak fertilizations (Gross 1982, 1985; Hutchings and Myers 1988).

The analysis of the equilibrium combination of the two types in the population

has either used R0 as the fitness measure (Gross and Charnov 1980) or r (Hutchings

and Myers 1994). A more frequently used approach is that of Game theory, in

which the relative fitness of each type when interacting either with another of its

type or another type is represented by a payoff matrix. The classic example of this

approach is the Hawk-Dove game (Maynard Smith 1982): In this scenario there is a

2 	 2 payoff matrix indicating the payoff to a hawk when it interacts with either

another hawk or a dove and the payoff to a dove when it interacts with either a

OV E R V I EW 15

hawk or a dove. The game is frequency-dependent because although a hawk

interacting with a dove has a higher fitness than the dove, a hawk interacting

with another hawk suffers a decrement in fitness. The equilibrium frequency of

hawks and doves in the population depends upon the relative values in the payoff

matrix and is called an ESS. It is obtained simply by equating the payoff to hawks

with the payoff to doves: at equilibrium the twomust be equal. In simple terms an

ESS is one that cannot be invaded by a mutant playing an alternate strategy (see

Hammerstein [1998] for a more formal definition). Game theoretic models are

discussed in detail in Chapter 6.

1.3 Some general principles of model building

Models are not replicas of nature: If they were they would be just as complicated

and equally hard to understand. The purpose of a model is to extract the essential

elements that define the problem under study. Having done this we investigate

the impact of the model components and compare the predictions of the model

with nature. Should there be an obvious discrepancy we return to the model and

examine the underlying assumptions: A model is simply the logical outcome of

the assumptions and thus any failure to fit reality is a failure of the assumptions.

Having modified the model we again compare predictions and observations,

repeating the process until a satisfactory fit is obtained.

In constructing a model the following should be kept very much to the fore:

1. Keep themodel as simple as possible and focus upon the problem. Modeling the

mechanism for telling time provides an instructive example of this process.

The modern digital watch is a highly complex affair and seemingly vastly

different from the earliest mechanical clocks. Further, when one looks at the

history of clocks and watches one sees an enormous variety of mechanisms. Yet

under all this complexity and variety, all mechanical or electrical clocks have

five elements in common that determine how time is monitored: “(1) a source

of energy (spring or battery); (2) an oscillating controller (balance or quartz

crystal); (3) a counting device (escapement or solid state circuit); (4) transmis-

sion (wheelwork or electric current); (5) display (hands or liquid crystal seg-

ments)” (Landes 1983, p. 377). All mechanical or electrical clocks must satisfy

these requirements. Thus to find out how a clock works one must strip away

the extraneous details such as the size of the clock, whether it gives the date or

altitude or compass direction and look for these five preceding elements.

2. Make assumptions explicit. Verbal models are frequently “preferred” because

they seem less confined than a mathematical model but in reality verbal

models are generally full of “hidden” assumptions that may well result in any

conclusions to come crashing down once these assumptions are noted. In this

book I adopt the policy of beginning with a general conceptual model and then

move to a mathematical construct based on the general assumptions. For

example, we might assume that there is a negative relationship between the

size and number of offspring that a female produces. This statement is very

16 MOD E L I NG E VO L U T I ON

general andmight be sufficient in some analyses but most cases an analysis will

require a more detailed specification such as that the number of offspring is

proportional to the reproductive biomass divided by offspring size.

3. This book is primarily concerned with numerical analysis of models: If an

analytical solution is possible, then it is to be preferred. Such solutions may

be possible only on very simplified versions of the model and numerical

analysis of more complex scenarios may reveal inadequacies in the simple

analytical solution.

4. While simplicity is desirable it is important to maintain a reasonable level of

realism. In this regard it is important to provide operational definitions of all

parameters and variables in themodel. If a variable cannot bemeasured, then it

is not useful and an alternate approach should be sought.

5. As much as possible, write the model incrementally and as a series of modules

that can be examined and debugged separately.

To illustrate these points the next section constructs a model of the evolution of

migration in a spatially and temporally heterogeneous environment.

1.4 An introduction to modeling in R and MATLAB

The purpose of this section is twofold: First, it is to outline, by using a simple

example, the process of creating a model to address an evolutionary question, and

second to illustrate the most important R and MATLAB codes used in the remain-

der of the book.

The problem we shall consider is that of the evolution of migration in a hetero-

geneous environment. As used in all the scenarios throughout this book we begin

first by outlining a conceptual model and then convert this model into one that

can be programmed.

1.4.1 General assumptions

1. The environment is heterogeneous in time and space.

2. This heterogeneity affects population dynamics by causing variation in the vital

statistics of the population (e.g., fecundity and survival) and the carrying capac-

ity of the environment.

These two assumptions are too general to be programmed as such and must be

converted into a suitable form by addressing the underlying mathematical as-

sumptions, which will necessarily restrict the model to some extent. While we

could pose a mathematical model that included the processes outlined above it

would include factors, such as age structure, that may not be important to the

central issue but could complicate the analysis. Thus to start we begin with a very

simple model and ask if in this case spatial and temporal heterogeneity could

be an important selective agent. This does not prove that such variation is an

OV E R V I EW 17

important selective agent but does demonstrate that an empirical investigation is

warranted.

Our first objective is to examine the hypothesis that environmental variation is

plausibly a significant factor in population persistence: If we find this to be the

case then it would seem reasonable to suppose that such variation will favor

particular life histories, the next step being then to examine what trait might be

favored. As noted earlier, we build the computer program incrementally, ensuring

that at each step the model is performing as specified by the mathematical

assumptions. We begin with the simplest possible model, assuming no environ-

mental variation and then add temporal variation. Our initial model assumes the

following.

1.4.2 Mathematical assumptions of model 1

1. There is no age structure.

2. Generations do not overlap.

3. The environment is constant in space and time.

4. Growth per generation is a constant.

An appropriate mathematical model given the above is

Ntþ1 ¼ lNt ð1:31Þ
where Nt is the population size at time t and l is the per generation rate of

increase. The above equation is called a recursive equation. To program this in

R or MATLAB we proceed as follows.

Step 1: Clearing memory

One of the advantages of R and MATLAB is that values are retained in memory

even after the program has finished. This can be very useful in that it allows

programs to be run sequentially, where one program utilizes the output of the

preceding program (e.g., one program might generate values and the second

program display them graphically). On the other hand, it can cause problems if

one runs another unrelated program that contains parameters with the same

name but which have not, due to error, been assigned values (e.g., suppose one

ran a program that contained the parameter Afit and then a second program that

also contained Afit but this parameter was inadvertently not assigned a value). In

this case the program will pick up the wrong parameter values, most probably

leading to incorrect solutions. Unless one wishes to retain values in memory, the

best practice is to wipe thememory at the start of each program by having the first

line of coding read:

R CODE: rm(list=ls())

MATLAB CODE: clear all

18 MOD E L I NG E VO L U T I ON

Step 2: Annotating programs

At the time of writing a computer program the structure and logic might (should)

appear clear. However, upon returning to the code after a week or so it is a

common experience that the lines of coding have reached a level of obscurity

that may necessitate considerable time and effort in clarifying. It is thus very

important to annotate the program to a degree that may well seem absurd while

constructing the original code. In general, every line of code should have an

annotation. Blocks of code that carry out a particular operation should also be

annotated at the beginning with a description of the process. In both R and

MATLAB remarks can either be on their own line or on the same line as but

following a coding instruction. Remarks in R are designated by # and in MATLAB

by %. I also like to try to align the text in the coding for ease of reading. Thus for the

above two codes clearing memory one should type

R CODE: rm(list=ls()) # Clear memory

MATLAB CODE: clear all % Clear memory

Step 3: Assigning values to parameters and variables

A parameter is defined by the Oxford dictionary as a “quantity constant in case

considered, but varying in different cases” whereas a variable is “able to assume

different values.” Thus in equation (1.31), l is a parameter but N is a variable.

However, variables are considered as parameters when passed to a function (dis-

cussed in Step 8), which makes the definitions somewhat murky. The assignment

of values to parameters and variables is the basic operation in any program.

Consider the task of assigning the value 3 to a variable X. In the usual mathemati-

cal notation we write X ¼ 3. This is the method used in MATLAB but in R and

S-PLUS the “=” sign is replaced by an arrow “<−”. (The “=” sign can be used in R but

it has a more restricted definition than “<−”, as described in the R help dialogue:

“The operators<− and¼ assign into the environment in which they are evaluated.

The operator <− can be used anywhere, whereas the operator ¼ is only allowed at

the top level [e.g., in the complete expression typed at the Code prompt] or as one

of the subexpressions in a braced list of expressions.”)

Thus in R we write X <- 3. In like manner any operation on the right is assigned

to the variable on the left: for example, X ¼ a þ b, where a and b are previously

assigned parameter values of, say, 1 and 4, respectively, is written as follows:

R CODE:

a <- 1 # Assign the value of 1 to a

b <- 4 # Assign the value of 4 to b

X <- a þ b # Assign the sum of a and b to X

MATLAB CODE:

a ¼ 1; % Assign the value of 1 to a

b ¼ 4; % Assign the value of 4 to b

X ¼ a þ b; % Assign the sum of a and b to X

OV E R V I EW 19

Notice that in the MATLAB statements each line before the comment statement is

ended with the symbol “;”. If this symbol is not appended to the line MATLAB

echoes the result of the assignment statement. While this can be a simple and

convenientmethod to print results, it can give verymessy output when there are a

lot of lines of coding and iterations.

It is good practice tomake the names of parameters and variables meaningful so

that the code is not too obscure. In the present case we need to assign the number

of generations the model will run, the rate of increase, and the initial population

size. Now it is possible to insert the first two values in all the relevant locations in

the program, but a better approach is to assign the values to parameters, which

means that we need only change a single line when changing either value. This is

not only easier than altering all lines but eliminates the problem of missing a line

and having different values in different parts of the program.

R CODE:

MAXGEN <- 100 # Set maximum number of generations

N.init <- 20 # Initial population size

LAMBDA <- 1.1 # Rate of increase

MATLAB CODE:

MAXGEN ¼ 100; % Set maximum number of generations

N.init ¼ 20; % Initial population size

LAMBDA ¼ 1.1; % Rate of increase

Step 4: Creating space to store the output: c(. . .), vectors, matrices, etc.

For any model there will be information that is generated by the program that we

will want to analyze at the end of the simulation. While it is possible to dynami-

cally allocate space, a better method is to preassign the space at the start of the

simulation. Information can be stored in a matrix, a vector, an array, a data frame,

or a list.

A matrix is a two-dimensional (2-D) structure that contains only information of

the same type (e.g., only numerical information). A vector is simply a matrix with

a single column or row. Examples of a vector and a matrix are as follows:

A:vector ¼
1
3
5

2
4

3
5 A:matrix ¼

1 6 0
2 4 2
4 8 1

2
4

3
5

To assign 1, 3, 5 to the vector A.vectorwe can use the concatenate code c(. . .) in

R and square brackets in MATLAB

R CODE:

A.vector <- c(1, 3, 5) # Assign values

A.vector # print result

20 MOD E L I NG E VO L U T I ON

MATLAB CODE:

A.vector ¼ c[1, 3, 5] % Assign values and print result

which will produce the row vector 1 3 5, or we can use the R matrix code

A.vector <� matrix(c(1,3,5), nrow¼1, ncol¼3)

which will produce the same output. The designators nrow¼ and ncol¼ can be

omitted as R uses the position to determine which are the row and column counts

(putting nrow¼ and ncol¼ in the code does make reading easier). To produce a

column vector we can simply switch row and column counts

A.vector <- matrix(c(1,3,5), nrow¼3, ncol¼1); A.vector

Note that in the above construct the two commands are entered not on separate

lines but separated by a “;”: this can be convenient in compressing code. To create

the matrix A.matrixwe first note that in R the default for filling in a matrix is to

fill by columns and hence the sequence of entries is given column-wise

A.matrix <- matrix(c(1,2,4,6,4,8,0,2,1),3,3); A.matrix

which produces the output

[,1] [,2] [,3]
[1,] 1 6 0
[2,] 2 4 2
[3,] 4 8 1

An array is an extension of the matrix in that there can be more than two

dimensions. A data frame is like a matrix except that it can contain data of

different modes: For example, one column might contain character data such as

population names and another column could contain numeric data. Data frames

are used extensively in statistical analysis but most of the programs in this book

use matrices, because the output is typically numeric only. Finally, a list is a

construction that concatenates a variety of information. Most statistical output

in R comes as a list which can be deconstructed to obtain the relevant pieces of

information: for more on lists, see Steps 11 and 12.

In the present case we want to store the population size at each generation.

There are several possible ways to do this: we shall consider two.

Approach 1: Two vectors

We create two vectors, one that holds the generation number and the second that

holds the population size. We know that the generations will run from 1 to

MAXGEN and hence we can use the following codes:

R CODE:

Generation <- seq(from¼1, to¼MAXGEN) # Generation vector

OV E R V I EW 21

MATLAB CODE:

Generation ¼ 1:MAXGEN; % Generation vector

To create the vector for population size we first create a matrix with 1 column

filled with zeros and then insert our initial population size in the first space.

R CODE:

Npop <- matrix(0,MAXGEN,1) # Generation vector

Npop[1] <- N.init # Store initial population size

MATLAB CODE:

Npop ¼ zeros(MAXGEN); % Generation vector

Npop(1) ¼ N_init; % Store initial population size

Approach 2: One matrix

An alternate approach is to create a matrix, which I shall call OUTPUT, that has

MAXGEN rows and two columns, the first holding the generation number and the

second the population size. This can be done in a single call but for clarity I prefer

splitting the process

R CODE:

OUTPUT <- matrix(0,MAXGEN,2) # Pre-assign output space

OUTPUT[,1] <- seq(from¼1, to¼MAXGEN)# Assign gen nos to col 1

OUTPUT[1,2]<- N.INIT # Assign initial popn size

MATLAB CODE:

OUTPUT ¼ zeros(MAXGEN,2); % Pre-assign output space

OUTPUT(:,1) ¼ 1: MAXGEN); % Assign gen nos to col 1

OUTPUT(1,2) ¼ N_INIT; % Assign initial popn size

Step 5: Iterating over generations: loops

The use of loops is discouraged in any programming language: This is not because

loops are intrinsically bad (in fact, they are frequently the most obvious way of

writing code) but because no one has come up with a method of making them

efficient in terms of speed. R and MATLAB are object-oriented languages and

hence in many cases loops can be replaced with an object-oriented approach:

For example, suppose we have a vector, X, of N values to which we wish to add

the value 3. Using a loop we can write

R CODE:

for (i in 1: N) {X[i] <- X[i]þ3} # Add 3 to X

MATLAB CODE:

for i ¼ 1:N % ; not required here

X(i) ¼ X(i) þ 3; % Add 3 to X

end % end loop

22 MOD E L I NG E VO L U T I ON

In both R and MATLAB the above construct can be replaced by

R CODE:

X <- X þ 3

MATLAB CODE:

X ¼ X þ 3;

However, recursive equations are best dealt with using a loop structure. In the

present case, we wish to iterate from 1 to MAXGEN applying the recursive formula

of equation (1.31). I have omitted the remark statement.

R CODE:

for (i in 2:MAXGEN){Npop[i] <- LAMBDA*Npop[i-1]}

OR for (i in 2:MAXGEN){OUTPUT[i,2] <- LAMBDA*OUTPUT[i-1,2]}

MATLAB CODE:

for i ¼ 2:MAXGEN

Npop(i) ¼ LAMBDA*Npop(i-1);

end

OR for i ¼ 2:MAXGEN

OUTPUT(i,2) ¼ LAMBDA*OUTPUT(i-1,2);

end

Step 6: Plotting the results: 2-D graphs

In general, a graphical output is desirable to see if there is anything obviously

wrongwith the program. There aremany “bells and whistles” that can be added to

the graph. The default is a graph that plots the x, y data as points. Neither R nor

MATLAB is as convenient as a dedicated graphical package such as SigmaPlot and

my own preference is to plot “working graphs” in R and then dump the data into a

text file to create better quality plots using SigmaPlot. The graphs given in this

book are such “working graphs” and while perfectly satisfactory for visual analysis

are not of publishable quality: these are used here to keep the coding simple and

to show the reader what the actual output will look like. In the present program,

we want (a) a line plot and (b) specified labels on the axes. The appropriate

coding is

R CODE:

plot(Generation, Npop, xlab¼‘Generation’, ylab¼‘Population

size’, type¼‘l’)

OV E R V I EW 23

OR

plot(OUTPUT[,1],OUTPUT[,2], xlab¼‘Generation’, ylab¼‘Popula-

tion size’, type¼‘l’)

MATLAB CODE:

plot(Generation, Npop);

xlabel(‘Generation’);

ylabel(‘Population size’);

OR

plot(OUTPUT(:,1),OUTPUT(:,2));

xlabel(‘Generation’);

ylabel(‘Population size’);

Putting all of this together gives the R code

rm(list¼ls()) # Clear memory

MAXGEN <- 100 # Set maximum number of

generations

N.init <- 20 # Initial population

size

LAMBDA <- 1.1 # Rate of increase

Generation <- seq(from¼1, to¼MAXGEN) # Generation vector

Npop <- matrix(0,MAXGEN,1) # Generation vector

Npop[1] <- N.init # Store initial

population size

Iterate over generations

for (i in 2: MAXGEN){ Npop[i] <- LAMBDA*Npop[i-1]}

plot(Generation, Npop, xlab¼‘Generation’, ylab¼‘Population

size’, type¼‘l’)

print(Npop[MAXGEN]) # Print last population size

Note that I have added a print statement to print out the last population size. In

this instance the word print is not required and the same result would be

obtained if I had written Npop[MAXGEN]. However, the print function is required

in some instances, such as within a loop, and so, as a general rule, I prefer to use it.

The graphical output is shown in Figure 1.1. As expected, population growth is

exponential with the printout showing that the population has expanded to

250,556.6 individuals. We now move on to the next step and add temporal

heterogeneity in model 2.

24 MOD E L I NG E VO L U T I ON

1.4.3 Mathematical assumptions of model 2

1. Assumptions 1 and 2 of model 1 remain the same.

2. There is temporal heterogeneity in the rate of increase l. For the present

pedagogical purpose, I shall assume that l is a random uniform variate from

0 to MAX.LAMBDA. The mean value of l, �l�, under this scenario is LAMBDA/2.

If MAX.LAMBDA¼2.2, then �l� ¼ 1.1, the same value as in the constant environ-

ment. As the mean growth rate exceeds unity we might, naively, expect that the

population would still grow without bound. The expected population size after

MAXGEN generations is N.init*LAMBDA (̂MAXGEN�1), which in the present case

would be the same as in model 1, namely 250,556.6. However, as the numerical

analysis will show this is not a correct assessment.

Step 7: Seeding a random number generator

To add temporal variation to the rate increase we use a uniform random number

generator (functions runif in R and rand in MATLAB). All random number

generators are pseudorandom numbers in that they are based on a formula that

generates numbers that are random for at least a subset of numbers (typically, the

generators cycle such that the same sequence is generated after a large number [e.

g., 63,000] of generations). Unless and otherwise specified, the generator takes its

initial value from some varying component such as the computer clock. For the

purposes of debugging a program, it is useful to be able to recreate the same

Generation

P
op

ul
at

io
n

si
ze

0

0
50

,0
00

10
0,

00
0

15
0,

00
0

20
0,

00
0

25
0,

00
0

20 40 60 80 100

Figure 1.1 Output from model 1 showing exponential increase in population size.

OV E R V I EW 25

sequence of random numbers: To do this we “seed” the random number genera-

tor, which means that it always starts at the same point and generates the same

sequence.

R CODE:

set.seed(100) # set seed

MATLAB CODE:

rand(‘twister’, 100); % set seed

In the above code, the integer 100 is arbitrary and set by the user (see the “help”

menus in each language for further details): the important point is that changing

the integer will change the random number sequence generated.

Step 8: Adding a random element: functions runif and rand

According to the earlier assumptions l varies between 0 and MAX.LAMBDA. This

means that we must change the variable LAMBDA from a constant to a vector of

random uniform elements. To do this in R we replace

LAMBDA <- 1.1 # Rate of increase

with

MAX.LAMBDA <- 2.2 # Maximum rate of increase

LAMBDA <- runif(MAXGEN, min¼0, max¼MAX.LAMBDA) # Random

lambdas

In MATLAB we use

MAX_LAMBDA ¼ 2.2; % Maximum rate of increase

LAMBDA ¼ Max_LAMBDA*rand(MAXGEN, 1); % Random lambdas

The new R coding is

rm(list¼ls()) # Clear memory

set.seed(100) # set seed

MAXGEN <- 100 # Set maximum number of generations

N.init <- 20 # Initial population size

MAX.LAMBDA <- 2.2 # Maximum rate of increase

LAMBDA <- runif(MAXGEN, min¼0, max¼ MAX.LAMBDA) # Random

lambdas

Generation <- seq(from¼1, to¼MAXGEN) # Generation vector

Npop <- matrix(0,MAXGEN,1) # Generation vector

Npop[1] <- N.init # Store initial population size

for (i in 2: MAXGEN){ Npop[i] <- LAMBDA[i-1]*Npop[i-1]}

plot(Generation, Npop, xlab¼’Generation’, ylab¼’Population

size’, type¼’l’)

print(Npop[MAXGEN]) # Print last population size

26 MOD E L I NG E VO L U T I ON

Contrary to our naive expectation, the population has a peak at less than 300 and

finishes the simulation at only a population size of 0.09446408,much less than the

expected value of 250,556.6 (Figure 1.2). The question that immediately arises is

whether this is just a fluke of the random number seed we chose: by varying this

seed it is easy to see that this is not the case. It is perhaps unreasonable to allow the

population size to drop below a single individual and we should assume that the

population is extinct at this point.

Step 9: Adding a conditional statement: the while loop

One approach to stop the simulation if the population falls below 1 individual is to

change the loop to a while loop (an alternative possibility is the use of an “if”

statement. In the present case this is slower). The while construct cycles through

the instructions enclosed by { . . . } until a specified condition is met. We could

replace the for loop in the model by a while loop (ignoring for the present the

issue of population sizes less than 1):

R CODE:

Gen <- 1 # Set the generation counter to 1

while (Gen<MAXGEN)

{

Gen <- Genþ1 # Increment the generation counter

Npop[Gen] <- LAMBDA[Gen-1]*Npop[Gen-1] # new population size

} # End of while loop

Generation
0

0
50

10
0P
op

ul
at

io
n

si
ze

15
0

20
0

25
0

20 40 60 80 100

Figure 1.2 Output from a single run of model 2.

OV E R V I EW 27

MATLAB CODE:

Gen ¼ 1; % Set the generation counter to 1

while (Gen<MAXGEN);

Gen ¼ Genþ1; % Increment the generation counter

Npop(Gen) ¼ LAMBDA(Gen-1)*Npop(Gen-1); % new population size

end; % End of while loop

This gives exactly the same output as previously (i.e., Figure 1.3). To add the

population size condition we change the while statement to

while (Gen<MAXGEN && Npop[Gen]>1) # R code

while (Gen<MAXGEN && Npop(Gen)>1); % MATLAB R code

The cycle continues so long as Gen is less than MAXGEN and Npop of the previous

cycle is greater than 1. Because we have preassigned zeros to the population

numbers, if the simulation stops before the maximum number of generations is

reached the plot still shows the population at zero for the remaining generations.

An alternative method would be to plot only the data from 1 to Gen, which is the

last generation of the simulation:

plot(Generation[1:Gen], Npop[1:Gen], xlab¼‘Generation’,

ylab¼‘Population size’, type¼‘l’)

Generation

0

P
op

ul
at

io
n

si
ze

0
5

10
15

20

20 40 60 80 100

Figure 1.3 Output from model 2 using a while loop to stop the simulation if the number
of individuals falls below 1.

28 MOD E L I NG E VO L U T I ON

We now have two types of output from the model, the final population size and

the persistence time (Gen or MAXGEN) for a given run. What we want to do now is

to determine the frequency distribution of population sizes and minimum persis-

tence times. Thus, we need to run many replicates.

Step 10: Running multiple simulations: functions

While we could enclose the above coding in an outside loop that ran through the

iterations we need, a faster method is to write the model as a function and then

use a function such as apply in R (for simplicity I use a loop for MATLAB code).

Functions have already been introduced in terms of those supplied by the program

(e.g., in Rwe have used seq, runif, print, set.seed). Here we create our own

function. As in Los Vegas, what happens in a function stays in the function, unless

passed back to themain program. A function has a name and a set of variables that

can be passed to it. If a variable occurs in the function but is not passed to the

function the R program uses the value set elsewhere. For example, consider a

function called TEST that adds numbers a and b

rm(list¼ls())

TEST <- function(x,y) {xþy} # Function to add two numbers

Main program

a <- 5; b <- 3 # Define numbers

TEST(a,b) # Call function

print(c(a, b, aþb)) # Print a, b and their sum

Running this program gives the output

> TEST(b)

[1] 8

> print(c(a,b, aþb))

[1] 5 3 8

Now suppose we change the function so that only b is passed and a is incremented

within the function

rm(list¼ls())

TEST <- function(y) {a <- aþ1; aþy} # Function to add two numbers

Main program

a <- 5; b <- 3 # Define numbers

TEST(b) # Call function

print(c(a, b, aþb)) # Print a, b and their sum

This program gives

> TEST(b) # Call function

[1] 9

> print(c(a, b, aþb))# Print a, b and their sum

[1] 5 3 8

OV E R V I EW 29

The function correctly sets the initial value of a to 5 and increments it to give the

summed value of 9 but the value of a is not changed in the main program. This

property means that it is not actually necessary to name all variables that are used

in the function: However, it is a good practice and avoids possible errors to pass all

variables in the function call.

In the present model we want the final population size. Thus we do not need to

store the intermediate values. I shall call the function POP (in this book I use all

capitals for “user-supplied” functions to distinguish them from the R-supplied

functions, which are generally in lower case) and pass to it all the initial para-

meters (MAXGEN, Npop, MAX.LAMBDA), and receive back the final population

size and minimum persistence time. Note that the names in the function call are

arbitrary, but it is useful to at least have them similar for readability: thus I have

used (Maxgen, Npop, MAX.Lambda). I could equally have used (MAXGEN, Npop,

MAX.LAMBDA). The important point is that parameter names in the function

match by order the parameter names in the function declaration. The population

size and generation are concatenated into a vector for return to themain program.

The function should be placed above the main program otherwise R will not find

it. However, the clear code (rm(list=ls())) needs to be the first line or it will

delete the function from the workspace. In MATLAB, the function is placed in a

separate file and has a different opening structure.

R CODE:

POP <- function(Maxgen,Npop,MAX.Lambda) # Populationfunction

{

Gen <- 1 # Set the generation counter to 1

Generate Maxgen random lambdas

LAMBDA <- runif(Maxgen, min¼0, max¼ MAX.Lambda)

Cycle through until MAXGEN or extinction

while (Gen<Maxgen && Npop > 1)

{

Gen <- Genþ1 # Increment the generation counter

Npop <- LAMBDA[Gen-1]*Npop # New population size

} # End of while loop

Concatenate and return the final population size and persistence

time

return (c(Npop, Gen))

} # End of function

MATLAB CODE:

function [Npop, Gen]¼ POP(Maxgen, Npop, MAX_Lambda) % Population

function

Gen ¼ 1 % Set the generation counter to 1

% Generate Maxgen random lambdas

LAMBDA ¼ rand(Maxgen, 1)*MAX.Lambda;

30 MOD E L I NG E VO L U T I ON

Cycle through until MAXGEN or extinction

while (Gen<Maxgen && Npop > 1)

Gen ¼ Genþ1; % Increment the generation counter

Npop ¼ LAMBDA(Gen-1)*Npop; % New population size

end % End of while loop

% End of function

To access this function we simply call it with the appropriate parameters.

R CODE:

set.seed(100) # set seed

MAXGEN <- 100 # Set maximum number of generations

N.init <- 20 # Initial population size

MAX.LAMBDA <- 2.2 # Maximum rate of increase

POP(MAXGEN, N.init, MAX.LAMBDA) # Call function POP

MATLAB CODE:

rand(‘twister’,100) % set seed

MAXGEN ¼ 100; % Set maximum number of generations

N_init ¼ 20; % Initial population size

MAX_LAMBDA ¼ 2.2; % Maximum rate of increase

[Npop,Gen] ¼ POP(MAXGEN,N_init,MAX_LAMBDA)% CallfunctionPOP

which gives the output 0.8325039 11.0000000. In this case the population size

should actually be set to zero (and one could argue that the persistence time is 10

not 11): we shall deal with these issues below.

Step 11: Running multiple simulations: the apply function

Suppose we wish to run NREP replicate runs: one way would be to use a loop.

R CODE:

Nrep <- 10 # Set the number of replicates

Pre-assign space for the final popn values and generation values

Column 1 will hold the population and column 2 the generation

Output <- matrix(0,Nrep,2)

for (Irep in 1: Nrep) # Iterate over replicates

{

Output[Irep,] <- POP(MAXGEN, N.init, MAX.LAMBDA) # Call POP

} # End of replicate loop

MATLAB CODE:

Nrep - 10 % Set the number of replicates

% Pre-assign space for the final popn values and generation values

% Column 1 will hold the population and column 2 the generation

Output ¼ zeros(Nrep,2);

OV E R V I EW 31

for (Irep ¼ 1: Nrep) % Iterate over replicates

[Npop, Gen] ¼ POP(MAXGEN, N_init, MAX_LAMBDA); % Call POP

Output[Irep,1:2] ¼ [Npop, Gen]; % Store output

end % End of replicate loop

The full coding in R (lines omitted from POP) is

rm(list¼ls()) # Clear memory

POP <- function(Maxgen, Npop, MAX.Lambda) {enter lines as above}

#################### MAIN PROGRAM ####################

set.seed(100) # set seed

MAXGEN <- 100 # Set maximum number of generations

N.init <- 20 # Initial population size

MAX.LAMBDA <- 2.2 # Maximum rate of increase

Nreps <- 10 # Set the number of replicates

Pre-assign space for the final popn values and generation values

Column 1 will hold the population and column 2 the generation

Output <- matrix(0,Nreps,2)

for (Irep in 1: Nreps) # Iterate over replicates

{

Output[Irep,] <- POP(MAXGEN, N.init, MAX.LAMBDA) # Call POP

} # End of replicate loop

Output # print out matrix called Output

The data are stored in the matrix called Output, the first column holding the

population sizes and the second column the generation times. The last line prints

out the matrix Output:

> Output
[,1] [,2]

[1,] 0.8325039 11
[2,] 0.8863995 5
[3,] 0.4853632 29
[4,] 0.5199308 65
[5,] 0.1201204 18
[6,] 0.4594043 14
[7,] 0.6047426 4
[8,] 0.1101742 17
[9,] 0.4876619 7

[10,] 0.7386976 3

An alternate approach in R that is quicker is the use of the R function apply. Its

use in this instance is somewhat unusual in that it is used simply to generate

replication whereas it is more typically used to apply a function to the rows or

columns of a matrix. The general structure of the function apply is apply(X,

MARGIN, FUN, . . .), where X is the array to be used, MARGIN is a vector giving the

subscripts which the function will be applied over (1 indicates rows, 2 indicates

32 MOD E L I NG E VO L U T I ON

columns, and c(1,2) indicates rows and columns), FUN is the function to be

applied, and . . .denotes optional arguments to FUN.

Before showing how the apply function can be used to run multiple replicates

I shall give an example of its more typical use: suppose we wished to examine the

effect of different maximum rates of increase, specifically, MAX.LAMBDA ¼ 2.1,

2.2, 2.3, and 2.4. First, we create a matrix holding these values:

Maximum.Lambdas <- matrix(c(2.1,2.2,2.3,2.4))

This matrix is the matrix X to be supplied to the apply function. The matrix is a 4

	 1matrix and hence MARGIN=1 (i.e., use rows). The function to be supplied is POP

but we have to make a change to the function declaration sequence because

apply expects the first component of the sequence to be the value supplied

by X: thus we rewrite POP as

POP <- function(MAX.Lambda, Maxgen, Npop)

and supply Maxgen and Npop as optional arguments in apply

Output <- apply(Maximum.Lambdas, 1, POP, MAXGEN, N.init)

The function cycles through the matrix Maximum.Lambdas and applies the func-

tion POP, storing the results in Output. Printing Output gives

> Output
[,1] [,2] [,3] [,4]

[1,] 0.96059 0.8863995 0.9807614 732.6482
[2,] 5.00000 5.0000000 31.0000000 100.0000

R is “intelligent” enough to place the two values returned on each cycle in

separate rows, meaning that population size occupies the first row and generation

number the second row. We can extract these separately by

Npops<- Output[1,1:4];Gens<- Output[2,1:4]# Separateoutput

Returning now to the issue of using apply to runmultiple replicates: We do not

actually wish to supply different values of the three variables in the declaration

sequence but simply to call the function multiple times. Therefore, to do Nreps

replications we create an Nreps	 1 (called, say, MaxL) matrix with the same value

of the first parameter in the function declaration in each cell: so assuming that, as

above, MAX.Lambda is the first parameter we create MaxL using the replicate

function rep

Nreps <- 10 # Set the number of replications

MaxL <- matrix(rep(MAX.LAMBDA, times ¼ Nreps)) # Create

matrix

for

apply

OV E R V I EW 33

We can now call apply using MaxL as the X array

Output<- apply(MaxL, 1, POP, MAXGEN, N.init) # Call apply

Npops <- Output[1,1:Nreps]; Npops # Extract populations

Gens <- Output[2,1:Nreps]; Gens # Extract generations

The full coding reads

rm(list¼ls()) # Clear memory

POP <- function(MAX.Lambda, Maxgen, Npop,) {enter lines as

above}

#################### MAIN PROGRAM ####################

set.seed(100) # set seed

MAXGEN <- 100 # Set maximum number of generations

N.init <- 20 # Initial population size

MAX.LAMBDA <- 2.2 # Maximum rate of increase

Nreps <- 10 # Set the number of replicates

MaxL <- matrix(rep(MAX.LAMBDA, times ¼ Nreps)) # Create matrix

for apply

We can now call apply using MaxL as the X array

Output <- apply(MaxL, 1, POP, MAXGEN, N.init) # Call apply

Npops <- Output[1,1:Nreps]; Npops # Extract populations

Gens <- Output[2,1:Nreps]; Gens # Extract generations

which generates the output

> Npops <- Output[1,1:Nreps]; Npops

[1] 0.8325039 0.8863995 0.4853632 0.5199308 0.1201204 0.4594043

[7] 0.6047426 0.1101742 0.4876619 0.7386976

> Gens <- Output[2,1:Nreps]; Gens

[1] 11 5 29 65 18 14 4 17 7 3

Despite the large expected value, the ten replicates become extinct within less

than 100 generations. To better examine the statistical distribution of these two

types of output we must run many more simulations, 1,000 being a reasonable

number for a first analysis. Before doing this we shall return to the issue of setting

population sizes of those populations that go extinct to zero and decreasing the

displayed generation by 1 to reflect the actual generation at which extinction

occurred.

Step 12: Matrix-wide comparisons

Our object is to change all population values less than 1 to zero and subtract

1 from the generations if the population goes extinct before the end of the

simulation. While the former could be done using a loop and an “if” statement,

a much better approach is to use the following object-oriented construction:

Npops[Npops<1] <- 0 # R Set all pop sizes < 1 to 0

Npops(Npops<1) ¼ 0; % MATLAB Set all pop sizes < 1 to 0

34 MOD E L I NG E VO L U T I ON

This statement can be read as “set all values of Npops less than 1 in the matrix

Npops to zero.” We could do the same for the 2-D matrix Output. In this case we

want to examine only the entries in the first column as it is this column that

contains the population sizes. The appropriate coding is

Output[Output[,1]<1,] <- 0 # Examine all entries in the

first column

Output(Output[:,1]<1,:] ¼ 0; % Examine all entries in the

first column

which would give the output

> Output
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 11 5 29 65 18 14 4 17 7 3

A value of 1 can be subtracted from each element by the matrix-wide operation:

Gens <- Gens-1 # R Subtract 1 from each element of Gens

Gens ¼ Gens-1; % MATLAB Subtract 1 from each element of Gens

OR

Output[2,] <- Output[2,] �1 # R Subtract 1 from each element of

row 2

Output(2,:) ¼ Output[2,:] �1 % MATLAB Subtract 1 from each ele-

ment of row 2

However, this operation would also subtract 1 from those runs in which the

population persisted. To exclude these cases we can write a two-step operation:

R CODE:

Gens <- Gens-1 # Subtract 1 from all generations

Gens[Gens¼¼MAXGEN-1] <- MAXGEN # If generation ¼ MAXGEN-1

set to MAXgEN

MATLAB CODE:

Gens ¼ Gens-1; % Subtract 1 from all genera-

tions

Gens(Gens¼MAXGEN-1) ¼ MAXGEN; % If generation ¼ MAXGEN-1

set to MAXGEN

The first line subtracts 1 from all generations, while the second line restores this

value if the subtraction gives MAXGEN−1, meaning that the simulation had run its

full course in this replicate.

OV E R V I EW 35

Step 13: Summarizing and plotting the results: functions hist, summary,

length

To obtain sufficient replicates to accurately depict the distributions requires at

least 1,000 replicates: here I use 10,000 (i.e., Nreps <� 10000). A simple graphical

display is produced by the histogram function hist in both R and MATLAB. There

are three graphs that are worth producing: (a) the distribution of population sizes

for the entire data set, (b) the distribution of persistence times, and (c) the distri-

bution of population sizes for those populations that persisted the full length

of the simulation. To obtain the third group we extract the data from the full set of

population sizes:

Pops.not.extinct <- Npops[Npops>0] # Extractallpopulationsthat

persisted

For reasons that will become clear I also plot the log of population size of those

populations that persisted. To display all four graphs on the same page we split the

graphics page into four sections using

par(mcol¼c(2,2)) # Split the graphics page into quadrats

which tells R to plot the graphs by columns (thus the sequence of plotting will be

top left, bottom left, top right, and bottom right. To plot across rows use par

(mfrow=c(2,2)). The four histograms are plotted with

hist(Npops) # Histogram of population sizes

hist(Gens) # Histogram of persistence times

hist(Pops.not.extinct) # Histogram of surviving pop sizes

hist(log10(Pops.not.extinct))# Histogram of log surviving pops

It is clear from visual inspection of the histograms (Figure 1.4) that the vast

majority of populations become extinct before the end of the simulation and

that persistence times are generally less than 20 generations. To get a better idea

of the numerical results we use the R function summary (a similar function is

available in the statistics toolbox of MATLAB). This function is a generic function

in that it supplies information depending on the R object supplied to it: Thus

supplying it with a set of numbers, as in this case, causes it to send back a set of

standard summary statistics, whereas supplying it with the object obtained from

an analysis of variance causes it to send back an analysis of variance table and

associated information. In most cases the information is stored as a list but in this

particular case the mode is numeric (to determine the mode of an object use the

code mode(Object name)). The result of being a numeric rather than a list mode

is that the way one extracts information is different. To illustrate the method in

the present case we call summary and store it as an object:

Get summary data

Data.Npops <- summary(Npops)

Data.Pops.not.extinct <- summary(Pops.not.extinct)

Data.Gens <- summary(Gens)

36 MOD E L I NG E VO L U T I ON

To print out the entire summary information we simply type the object name

(I have inserted print statements to make the output more readable):

print(“Summary data for population sizes”) ; Data.Npops

print(“SummarydataforPops.not.extinct”); Data.Pops.not.extinct

print(“Summary data for persistence times”) ; Data.Gens

which generates

> print(“Summary data for population sizes”);Data.Npops

[1] “Summary data for population sizes”

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 0.0 0.0 315.7 0.0 1574000.0

> print(“Summary data for Pops.not.extinct”); Data.Pops.not.ex-

tinct

[1] “Summary data for Pops.not.extinct”

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.498eþ00 5.556eþ00 5.884eþ01 2.896eþ04 1.072eþ03 1.574eþ06

Histogram of Gens

Histogram of Npops

0

0
2,

00
0

6,
00

0
10

,0
00

0
20

40
60

80
10

0
00

50
0

1,
00

0
2,

00
0

5
10

15
20

25
30

500,000

Npops Pops.not.extinct

F
re

qu
en

cy

F
re

qu
en

cy
F

re
qu

en
cy

F
re

qu
en

cy

1,000,000 1,500,000 0 500,000 1,000,000 1,500,000

Histogram of Pops.not.extinct

Histogram of log10(Pops.not.extinct)

log10(Pops.not.extinct)Gens

0 0 1 2 3 4 5 6 720 40 60 80 100

Figure 1.4 Histograms of population sizes and persistence for model 2.

OV E R V I EW 37

> print(“Summary data for persistence times”);Data.Gens

[1] “Summary data for persistence times”

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 6.00 13.00 19.09 25.00 100.00

Before discussing this output let us return to the summary objects. The summary

object in the present case contains six pieces of information: the minimum value,

the first quantile, the median, the mean, the third quantile, and the maximum.

These components can be accessed separately: suppose, for example, we only

wanted the mean value of Npops, which is the fourth entry in Data.Npops: to

get this we simply use Data.Npops[4].

Returning to the above output: the mean population size is only 315.7, which is

far below the expected value of 250,556.6, though the maximum population size

is 1,570,0000, which is far above the expected population size. Unfortunately, the

summary function does not give the sample sizes and so it is not possible from this

information to assess how many populations persisted through the entire simula-

tion. To extract this information we can use the R function length, which gives

the number of elements in an object:

length(Pops.not.extinct) # number of populations that persisted

which gives 109: so out of 10,000 replications only 1.09% persisted for 100 gen-

erations.

Step 14: Further model analysis: more on lists

It is clear that the predicted population size from the deterministic model (model

1) does notmatch the result from the stochastic model with the samemean rate of

increase (model 2). To further illustrate the list construct let us statistically com-

pare the population sizes from model 2 with the size predicted by model 1. For

simplicity I shall use a single sample t-test, recognizing that the extreme skew in

the distribution makes such a test suspect (but this is for illustration of lists not

statistical rigor). This test is available in the statistics toolbox of MATLAB. The

R code, saving the output as an object called T.results, is

Data <- Npops-250556.6 # Subtract predicted value

T.results <- t.test(Data) # T test with null of zero

T.results # Print out results of t test

The result is

One Sample t-test

data: Data

t ¼ �1501.757, df ¼ 9999, p-value < 2.2e�16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

�250567.6 �249914.3

sample estimates:

mean of x

�250240.9

38 MOD E L I NG E VO L U T I ON

Obviously the difference is highly significant, even given the skew in the data. The

object T.results consists of a list of items that can be accessed individually in a

number of ways. First, to determine what items are in the list we issue the code

names(T.results) # Names of the items in the object T.results

with the result

[1]“statistic” “parameter” “p.value” “conf.int” “estimate”

[6] “null.value” “alternative” “method” “data.name”

The estimate is located in position 5 and can be accessed in the following ways:

T.results[5]

T.results[[5]]

T.results$“estimate”

which give three slightly different outputs (but not different values):

> T.results[5]

$estimate

mean of x

�250240.9

- - - - - - - - - - - -

> T.results[[5]]

mean of x

�250240.9

- - - - - - - - - - - -

> T.results$estimate

mean of x

�250240.9

If one wishes to use the resulting variable the second twomethods are preferred

since, for example, T.results[5] 2̂ results in the error message “Error in T.

results[5] 2̂ : non-numeric argument to binary operator”. If onewished

to convert the value to a simple numerical value and eliminate the accompanying

label “mean of x” use the function as.numeric, as in, for example,

a <- as.numeric(T.results$estimate)# Convert value to numeric

Step 15: An analytical aside: what is going on?

The present model results indicate that the arithmetic mean growth rate does not

appear to be a good index of population persistence in a temporally stochastic

environment. If this is the case then perhaps the arithmetic mean growth rate is

also not an appropriate measure of fitness in a stochastic environment. Haldane

and Jayakar (1963) and Cohen (1966) showed that the appropriate measure is the

geometric rate of increase. The reason for this resides in the difference between

the geometric and arithmetic means (Lewontin and Cohen 1969). In our model

population size at time t is given by

OV E R V I EW 39

Ntþ1 ¼ N0l1l2l3. . .lt ¼ N0

Yt
i¼1

li ð1:32Þ

We assumed that li is a random, uncorrelated variable with mean �l�. The expected
population size at time t is then given by the product of the initial population

size, N0, times the expectation of the product l1l2l3 . . . lt. Because the l’s are

uncorrelated, the expected value of the product is equal to the product of the

expected values, giving

EfNtg ¼ N0Ef
Yt
i¼1

lig ¼ N0

Yt
i¼1

Eflig ¼ N0l
�t ð1:33Þ

At first glance the above result suggests that an appropriate measure of fitness is �l�,
which is the arithmetic mean of the finite rates of increase (i.e., l�¼ Pt

i¼1li) not the
geometric,which isgivenasl�g ¼ ðPt

i¼1liÞ
1
t .However, thebehaviorofpopulations ina

temporally randomly varying environment has the curious property that the expec-

tationofpopulationsizewillgrowwithoutboundwhenever�l�> 0but theprobability

of extinctionwithin a few generations can be virtually certain (Lewontin and Cohen

1969; Levins 1969; May 1971, 1973; Turelli 1977). This paradoxical behavior can be

illustrated with a simple example: suppose that l can take two values, 0 or 3, with

equal frequency. The expected value of l is (0 þ 3)/2 ¼ 1.5, and hence the expected

population size increases without bound as t increases. For example, starting from a

single female, after 10 generations E{N10}¼ 1.5010¼ 57.7 but either N10¼ 59,049 or

N10¼0andtheprobability that thepopulationpersists for the10generations is (0.5)10

¼ 0.00098, a very small probability indeed! The geometric mean is always smaller

than the arithmetic and the two are related by the approximation Eðln lÞ � ln l�� s2l
2l2

(Lewontin and Cohen 1969), where E(lnl) is the geometric mean, �l� is the arithmetic

mean, and s2l is the variance. Selection should operate to increase the arithmetic

mean and decrease its variance, which will increase the geometric mean.

Step 16: Adding spatial heterogeneity

The important conclusion from the model so far is that temporal heterogeneity

could be an important selective agent favoring particular types of life history. Our

impetus for this analysis was the hypothesis that migration is an important evolu-

tionary response to environmental heterogeneity. Thus the next step of the analysis

is to introduce spatial variation, initially keeping all subpopulations isolated.

1.4.4 Mathematical assumptions of model 3

1. The habitat is divided into a number of discrete patches.

2. Rates of increase are stochastically variable and uncorrelated among patches.

3. There is no migration of animals among patches.

There is no conceptual difference between this model and the previous model but

there are two avenues by which it could be programmed:

1. Each population is run over its entire simulation within the function as previ-

ously done, with the main program iterating over patches.

40 MOD E L I NG E VO L U T I ON

2. The function could compute the single generation change for all populations

and the function called iteratively for each generation of the simulation.

In the subsequent model we wish to introduce migration between habitats at

each generation which could not be done under the first approach. Thus the

second approach is appropriate in this instance. The coding is a straightforward

extension of the previous approach with the following changes:

1. Within the POP function the number of random LAMBDA values generated is

equal to the number of patches, not the number of generations.

2. The mean population size (called Npop.Sizes) is followed, which is obtained

using the R and MATLAB function mean:

Npop.Sizes[Igen] <� mean(Npop) # R code

Npop_Sizes(Igen) ¼ mean(Npop); % MATLAB code

where Npop is the vector of population sizes at generation Igen.

3. The simulation is stopped when either the maximum number of generations is

reached or themean population size is zero (i.e., all populations are extinct).

4. In addition to mean population size the program also keeps track of the

number of extinct populations over time, N.extinct[Igen] (another exam-

ple of matrix-wide comparison). The R and MATLAB codes are, respectively,

N.extinct[Igen] <� length(Npop[Npop¼¼0]) # Store number of

extinct popns

N.extinct(Igen) ¼ length(Npop(Npop¼0)); % Store number of

extinct popns

The full coding in R is

rm(list=ls()) # Clear memory

POP <- function(MAX.Lambda, Npop, N.patches) # Population

function

{

LAMBDA <- runif(N.patches, min¼0, max¼ MAX.Lambda)# Generate

lambdas

Npop <- Npop*LAMBDA #Generatenewpopulationsizeforallpatches

Npop[Npop<1] <- 0 # Check for extinction

return (Npop) # Return the vector of new population sizes

} # End of function

#################### MAIN PROGRAM ####################

set.seed(100) # set seed

MAXGEN <- 100 # Set maximum number of generations

N.init <- 20 # Initial population size

MAX.LAMBDA <- 2.2 # Maximum value of lambda

N.patches <- 10 # Number of patches

Npop <- matrix(N.init,N.patches,1) # Initialisepopulations

Npop.Sizes <- matrix(0,MAXGEN) # Pre-assign storage for

mean popn size

OV E R V I EW 41

Npop.Sizes[1] <- mean(Npop) # Store first generation mean

popn size

N.extinct <- matrix(0,N.patches,1) # Storagefornosof

extinct popns

Igen <- 1 # Initialize generation counter

while (Igen<MAXGEN && Npop.Sizes[Igen]>0) # Start while loop

{

Igen <- Igenþ1 # Increment generation

Npop <- POP(MAX.LAMBDA, Npop, N.patches)# New population sizes

Npop.Sizes[Igen] <- mean(Npop) # Store mean population size

N.extinct[Igen] <- length(Npop[Npop¼¼0]) # Store number of

extinct popns

} # End of while loop

par(mfcol¼c(1,2)) # Divide graphics page into two

Plot Mean population size over generations and nos extinct per

generation

plot(seq(1, Igen), Npop.Sizes[1:Igen], xlab¼“Generation”,

ylab¼“Mean population size”, type¼“l”)

plot(seq(1, Igen), N.extinct[1:Igen], xlab¼“Generation”,

ylab¼“Mean population size”, type¼“l”, ylim¼c(0,N.patches))

OUTPUT: (Figure 1.5)

Generation

0

0 0
2

4
6

8
10

10
0

20
0

30
0

40
0

20 40 60 80 100 0 20 40 60 80 100

Generation

M
ea

n
po

pu
la

tio
n

si
ze

M
ea

n
po

pu
la

tio
n

si
ze

Figure 1.5 Population size and number of extinct populations for model 3.

42 MOD E L I NG E VO L U T I ON

The output from this model is the same as simply running 10 replicates of

model 2 and thus although persistence time is increased the increase is of little

evolutionary consequence, most populations becoming extinct within 50 genera-

tions. The importance of this model is as a stepping stone to the next model in

which we introduce migration among patches.

Step 17: Adding migration

We shall make the simplest possible assumption concerning migration,

namely that migrants are distributed among the patches in equal numbers.

More complex models are possible (e.g., random assignment, distance-related,

etc.) but one should always begin with the simplest model that is biologically

not unreasonable.

1.4.5 Mathematical assumptions of model 4

1. All the assumptions of model 3 remain the same inmodel 4 except that there is

now migration among patches.

2. Migrants enter a “common” pool and are then distributed in equal number

among the patches.

3. A fixed proportion, Pmig (¼ 0.8 in the present simulation) of the population

migrates.

4. Migrants survive migration at the fixed rate of Psurv (¼ 0.95 in the present

simulation).

5. Reproduction occurs after migration.

From the above assumptions we get the following recursive equation for the

population size in the ith patch at generation tþ1:

Ntþ1;i ¼ lt;i Nt;ið1� PmigÞ þ
PsurvPmig

Pn
j¼1Nt;i

n

" #
ð1:34Þ

where n is the number of patches (N.patches in the coding). The R code for this is

Emigrants <- Npop*P.mig # Nos leaving

Immigrants <- sum(Emigrants)*P.surv/N.patches # Immigrants

per patch

Npop <- Npop - Emigrants þ Immigrants # Distribute migrants

Npop <- Npop*LAMBDA # new population sizes

The full coding in R is

rm(list¼ls()) # Clear memory

POP <- function(MAX.Lambda, Npop, N.patches,P.mig,P.surv)

Pop func

{

LAMBDA <- runif(N.patches, min¼0, max¼ MAX.Lambda) # n random

lambdas

OV E R V I EW 43

Emigrants <- Npop*P.mig # Nos leaving

Immigrants <- sum(Emigrants)*P.surv/N.patches # Immigrants

per patch

Npop <- Npop - Emigrants þ Immigrants # Distribute migrants

Npop <- Npop*LAMBDA # new population sizes

Npop[Npop<1] <- 0 # Check for extinction

return (Npop) # Return the vector of new

population sizes

} # End of function

#################### MAIN PROGRAM ####################

set.seed(100) # set seed

MAXGEN <- 1000 # Set maximum number of

generations

N.init <- 20 # Initial population size

MAX.LAMBDA <- 2.2 # Maximum value of lambda

N.patches <- 10 # Number of patches

P.mig <- 0.5 # Proportion migrating

P.surv <- 0.95 # Survival rate of migrants

Npop <- matrix(N.init,N.patches,1)# Initialisepopulations

Npop.Sizes <- matrix(0,MAXGEN) # Pre-assign storage

Npop.Sizes[1] <- mean(Npop) # Store first generation

mean population size

N.extinct <- matrix(0,N.patches,1) # Storage for nos extinct

popns

Igen <- 1 # Initial generation

while (Igen<MAXGEN && Npop.Sizes[Igen]>0) # Start while loop

{

Igen <- Igenþ1 # Increment generation

Npop <- POP(MAX.LAMBDA, Npop, N.patches, P.mig, P.surv)

New popn sizes

Npop.Sizes[Igen] <- mean(Npop) # Store mean population

size

N.extinct[Igen] <- length(Npop[Npop¼¼0]) # Numberofextinct

populations

} # End of while loop

par(mfcol¼c(1,2)) # Split page into two

plot(seq(1, Igen), log10(Npop.Sizes[1:Igen]), xlab¼“Genera-

tion”, ylab¼“Mean population size”, type¼“l”)

plot(seq(1, Igen), N.extinct[1:Igen], xlab¼“Generation”,

ylab¼“Number of pops extinct”, type¼“l”, ylim¼c(0,N.patches))

OUTPUT: (Figure (1.6)

44 MOD E L I NG E VO L U T I ON

The output is shown in Figure 1.6. The effect of migration is so great that

the plot of population size is best shown on a log scale. Whereas the population

crashed quickly in the absence of migration, the presence of migration

prevents extinction and the population size increases to the unreasonably large

value of 1015.

Step 18: Controlling population growth: model 5

The mean population size reached after the addition of migration is unrealistic

but demonstrates the potential evolutionary importance of migration. Before

considering a model that allows migration rate to evolve we first add a carrying

capacity to constrain population size.

1.4.6 Mathematical assumptions of model 5

1. All assumptions of model 4 apply to model 5 except that there is now a

limitation to population size.

2. Population size is limited to a maximum of 1,000 individuals.

Generation

0

5

0
2

4
6

8
10

10
15

20

200 400 600 800 0 200 400 600 800

M
ea

n
po

pu
la

tio
n

si
ze

N
um

be
r

of
 p

op
s

ex
tin

ct

Generation

Figure 1.6 Population size and number of extinct populations for model 4.

OV E R V I EW 45

Assumption 2 is coded as

Npop[Npop>1000] <- 1000 # R code setting limit at 1000

Npop(Npop>1000) ¼ 1000; % MATLAB code setting limit at 1000

Incorporation of this restriction produces a dramatic drop in population size, an

increase in the number of temporally extinct populations, but no indication of a

significant decline in population persistence (Figure 1.7). The mean population

size over the last 100 generations, obtained from the code mean(Npop.Sizes

[900:1000]) is only 473.2975, which is less than one half of the carrying capaci-

ty. Thus, the imposition of a carrying capacity in a heterogeneous environment

can have profound effects on population size even though a naive census would

suggest that the carrying capacity was not being exceeded (see Roff [1974a,

1974b]).

Step 19: More on graphics: functions expand.grid, outer, contour, persp

Many analyses will require investigation of effects due to variation in multiple

parameters: one method of graphically viewing such variation is to use a contour

plot and a 3-D perspective plot. There are several ways to generate such plot: here

I shall present two approaches. Before applying either method to the present

Generation

N
um

be
r

of
 p

op
s

ex
tin

ct
M

ea
n

of
 p

op
ul

at
io

n
si

ze

Generation

0

0
0

20
0

60
0

2
4

6
8

10

200 400 600 800 1,000

0 200 400 600 800 1,000

Figure 1.7 Population size and number of extinct populations for model 5 (model 4 plus a
carrying capacity). For display purposes the graph page has been split horizontally using
par(mfcol=c(2,1)). Note that population size is not log transformed.

46 MOD E L I NG E VO L U T I ON

model I shall consider a much simpler model to better illustrate the procedures.

The object is to plot the equation of a circle:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2;

p
� 10<x<10; 0< y< 10 ð1:35Þ

First we define the function for z.

R CODE:

FUNC.Z <- function(x,y) {sqrt(x 2̂þy 2̂)}

MATLAB CODE:

function z ¼ FUNC_Z(x,y)

z ¼ sqrt(x 2̂þy 2̂)

The ranges of x and y are divided into 10 parts (this will generate a matrix of 100

values):

R CODE:

n1 <- 4; n2 <- 3

x <- seq(from¼�10, to¼ 10, length¼n1)

y <- seq(from¼0, to ¼ 10, length¼n2)

MATLAB CODE:

n1 ¼ 4;

n2 ¼ 3;

x ¼ linspace(�10, 10, n1);

y ¼ linspace(0, 10, n2);

Now we generate the matrix of z values for all combinations of x and y. In R this

can be done by either of the following:

1. Using the R function expand.gridwhich takes the two vectors and generates

a two-column matrix of all combinations, with the x variable changing most

rapidly:

d <- expand.grid(x,y) # x values vary first

z <- FUNC.Z(d[,1], d[,2]) # Create z

The two-column matrix is now converted into the appropriate matrix:

z.matrix <- matrix(z,n1,n2)

2. An alternate method is to use the function outer

z.matrix <- outer(x, y, func.z)

The equivalent in MATLAB is meshgrid and rather than the function FUNC_Z

described above, I use here vectorization to give

OV E R V I EW 47

[xx,yy] ¼ meshgrid(x, y)

zz ¼ x. 2̂ þ y. 2̂

The data are now in a format suitable for plotting the contours using contour or a

3-D plot using the R function persp (Figure 1.8) or surfc in MATLAB.

R CODE:

par(mfrow¼c(1,2)) # Divide graphics page into two

contour(x,y, z.matrix, xlab¼“x”, ylab¼“y”) # Contour plot

persp(x, y, z.matrix, theta¼30, phi¼10) # 3-D plot

The parameters theta and phi are angles defining the viewing direction: theta

gives the azimuthal direction and phi the colatitude.

MATLAB CODE:

subplot(1,2,1); % Dividegraphicspageintwoandplotcontourinleft

[C,h] ¼ contour(x, y, zz) % Create contour plot

x

x

0
2

4
6

8
10

y

y

z.m
atrix11

4 3
2

8

10

13
129

11

7
5

6

12

–10 –5 0 5 10

Figure 1.8 An example of contour and 3‐D plots.

48 MOD E L I NG E VO L U T I ON

% clabel(C,h) rotates the labels and inserts them in the contour

lines

clabel(C,h);

xlabel(‘x’); ylabel(‘y’); % Add text

subplot(1,2,2); % Divide graphics page in two and plot contour on

right

surfc(xx,yy,zz); % Plot a 3-D surface

xlabel(‘Foraging’);ylabel(‘Vigilance’);zlabel(‘Fitness’)%Addtext

Now consider the analysis of variation in P.mig and P.surv in model 5. In this

case I want to plot variation in mean population size for the ranges

P.mig <- seq(from¼0.1,to¼0.9,length¼10)# Proportionmigrating

P.surv <- seq(from¼0.8, to¼0.9, length¼10) # Survival rate of mi-

grants

To do this I make the previous main program into a function

MAIN.PROG <- function(D)

{

P.mig <- D[1]

P.surv <- D[2]

Same lines as previously except for deletion of plotting codes

} # End of function MAIN.PROG

I have left the set.seed code in MAIN.PROG which means that the same

sequence of random numbers is used for each combination: thus I replicate

exactly the same environmental variation for each simulation. Now I can use

expand.grid to generate the necessary variation and pass this to MAIN.

PROG. However, if I do this exactly as before I will get an error message,

because I need to pass only one combination at a time. To pass only one

combination per run use the R function apply telling the function to use

rows:

d <- expand.grid(P.mig,P.surv)

z <- apply(d, 1, MAIN.PROG)

z.matrix <- matrix(z, length(P.mig), length(P.surv))

par(mfrow¼c(1,2))

contour(P.mig, P.surv,z.matrix, xlab ¼“P.mig”, ylab¼“P.surv”)

persp(P.mig, P.surv, z.matrix, theta¼20, phi¼20)

OUTPUT: (Figure 1.9)

OV E R V I EW 49

The results plotted in Figure 1.9 show that population size increases with

P.surv (not surprisingly) and that it is largest at an intermediate value of P.mig.

Step 20: Adding inheritance: functions pnorm, dnorm and numerical

integration

The observation from the above analysis of the potential importance of migration

in a heterogeneous environment raises the question of what is the optimal

migration rate. This question is made difficult to answer analytically because

at the metapopulation level fitness is frequency-dependent (Roff 1994a). Migrants

can be reasonably assumed to suffer an increased mortality rate (in models 4 and

5) and a decrease in reproductive opportunities by a lack of time and by

the allocation of energy to migration, both in terms of the energy used in migra-

tion and the energy sequested for the capability of migration, as found in wing-

dimorphic insects (Roff 1996; Roff and Fairbairn 2007). For the present analysis

I shall use a threshold model for the genetic basis of migrant and nonmigrant

phenotypes.

P.mig

P
.s

ur
v

0.2

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

0.4 0.6 0.8

250

10
0

50

P.mig

P
.s

ur
v

z.m
atrix

20
0

15
0

Figure 1.9 Contour and perspective plots for model 5.

50 MOD E L I NG E VO L U T I ON

1.4.7 Mathematical assumptions of model 6

1. Assumptions of model 5 hold for model 6 except that migration propensity is

inherited.

2. Mating is at random and occurs prior to migration.

3. Individuals can be divided into two classes, nonmigrants and potential mi-

grants. Individuals in the latter class migrate with a probability Pmig and survive

the migratory episode with probability Psurv. Additionally, potential migrants

suffer a reduction in reproductive fitness because of their allocation of re-

sources to the capability of migration (e.g., presence or absence of a functional

flight apparatus in wing-dimorphic insects).

4. Migratory propensity is inherited as a quantitative trait as specified by the

threshold model. According to this model there is a continuously normally

distributed underlying trait called the liability: individuals above a threshold

develop into one type of morph, while individuals below the threshold develop

into the alternate (Figure 1.10). Without loss of generality, we can set the

threshold at zero and the variance of the distribution at 1. Assuming, again

without loss of generality, that nonmigrants are those individuals lying above

the threshold the proportion of nonmigrants in the population is given by the

normal distribution function

P ¼
Z1
0

f

x� mÞdx;where fðxÞ ¼ 1ffiffiffiffiffiffi

2p
p e�

1
2x

2 ð1:36Þ

where m is the mean value of the liability. This function cannot be integrated

symbolically but there is an R function pnorm and a MATLAB function normcdf

that provide a solution. The integral from zero to infinity, given a mean of Mu

(which can also be vector of values) is obtained as

P <- pnorm(0, mean¼ -Mu, sd¼1) # R code

P ¼ normcdf(0, �Mu, 1);% MATLAB code

Phenotype BPhenotype A

Liability

Threshold

F
re

qu
en

cy

Figure 1.10 Graphical illustration of the threshold model. Individuals with liabilities below
the threshold develop into phenotype A, whereas individuals with liabilities above the
threshold develop into phenotype B.

OV E R V I EW 51

The function �(x) can be calculated using the R function dnorm or the MATLAB

function normcdf. Numerical integration can be done in R using the function

integrate and in MATLAB the functions int or quad (see, e.g., Scenario 4 of

chapter 2). The mean values of nonmigrants, XNM, and potential migrants, XPM,

can be calculated from the respective truncated normal distributions, giving

XNM ¼ mþ fðmÞ
P

; XPM ¼ m� fðmÞ
1� P

ð1:37Þ

Given random mating prior to migration, the phenotypic value of the liability of

nonmigrants, YNM, and potential migrants, YPM, is (Roff 1994)

YNM ¼ mþ fðmÞh2
2P

; YPM ¼ m� fðmÞh2
2ð1� PÞ ð1:38Þ

which can be coded in R as (respectively)

Y.nonmigrants <- Mu þ dnorm(0, mean¼Mu, sd¼1)*h2/(2*P)

Y.migrants <- Mu - dnorm(0, mean¼Mu, sd¼1)*h2/(2*(1-P))

where h2 is the heritability of liability (set at 0.5 in the present model). The mean

phenotypic value of offspring in the ith patch at generation tþ1, mtþ1,i is given by

(Roff 1994)

mtþ1;i ¼
Nt;i½YNM;t;iPt;i þ YPM;t;ið1� Pt;iÞð1� PmigÞC� þ Yt

�
n

Nt;i½ð1� Pt;iÞ þ ð1� PmigÞC� þ Nt;T

n

ð1:39Þ

where n is the number of patches, C is the “cost” incurred by potential migrants for

the ability to migrate (whether done so or not) and set to 0.6 in the present simula-

tion (this cost is consistent with the loss in fecundity of the winged morph of the

sand cricket [Roff 1984a]), Nt,i is the number in the ith patch before migration, Ni,T is

the total number of migrants, and Y�
t is the weighted phenotypic value of the

offspring frommigrants. The latter two variables are defined as

Nt;T ¼ CPsurvPmig

Xn
i¼1

Nt;ið1� Pt;iÞ

Y�
t ¼ CPsurvPmig

Xn
i¼1

Nt;iYPM;t;ið1� Pt;iÞ
ð1:40Þ

Equations (1.39) and (1.40) can be coded in R as

Emigrants <- P.mig*Npop*(1-P) # Nos of emigrants

Nos.migrants <- P.surv*sum(Emigrants) # Nt,T

Y.star <- P.mig*sum(Npop*P.surv*Y.migrants*(1-P))

Mu <- (Npop*(Y.nonmigrants*PþY.migrants*(1-P)*(1-P.

mig)*Cost) þ (Y.star/N.patches))/(Npop*(Pþ (1-

P)*(1-P.mig)*Cost)þ Nos.migrants/N.patches)

Finally, we compute the change in population size within each patch and return

the new population size and new mean liability for each population:

52 MOD E L I NG E VO L U T I ON

New population size before reproduction

Npop <- Npop - Emigrants þ Nos.migrants/N.patches

Npop <- Npop*LAMBDA # Population size before

constraints

Npop[Npop<1] <- 0 # Check for extinction

Npop[Npop>1000] <- 1000 # Carrying capacity

Return the vector of new population sizes and means

return (c(Npop,Mu))

The full coding is

R CODE:

rm(list¼ls()) #Clearmemory

Population and inheritance function

POP <-function(MAX.Lambda,Npop,N.patches,Mu,P.surv,P.mig)

{

h2 <- 0.5; Cost <- 0.6 # parameters

LAMBDA <-runif(N.patches,min¼0,max¼MAX.Lambda)#randomlamb-

das

P <- pnorm(0, mean¼ -Mu, sd¼1) # Proportion of nonmigrants

Y.nonmigrants <- Mu þ dnorm(0,mean¼Mu, sd¼1)*h2/(2*P)

Y.migrants <- Mu - dnorm(0, mean¼Mu, sd¼1)*h2/(2*(1-P))

Emigrants <- P.mig*Npop*(1-P) # vector of surviving

emigrants

Nos.migrants <- P.surv*sum(Emigrants)#¼N(t,T)

Y.star <- P.mig*sum(Npop*P.surv*Y.migrants*(1-P))

Mu <- (Npop*(Y.nonmigrants*PþY.migrants*(1-P)*(1-P.mig)

Cost) þ (Y.star/N.patches))/(Npop(Pþ (1-P)*(1-P.

mig)*Cost) þ Nos.migrants/N.patches)# Calculate Nos in

new populations

Npop <- Npop - Emigrants þ Nos.migrants/N.patches

Npop <- Npop*LAMBDA # Population size before constraints

Npop[Npop<1] 0 # Check for extinction

Npop[Npop>1000] <- 1000 # Carrying capacity

return(c(Npop,Mu))#Returnthevectorofnewpopnsizesandmeans

} # End of function

#################### MAIN PROGRAM ####################

set.seed(100) # set seed

MAXGEN <- 2000 # Set maximum number of generations

N.init <- 20 # Initial population size

MAX.LAMBDA <- 2.2 # Maximum value of lambda

N.patches <- 10 # Number of patches

P.surv <- 0.95 # Survival rate of migrants

P.mig <-.8 # Proportion of potential migrants migrating

Mu <- matrix(0,N.patches,1) # Initial mean liability values

Npop <- matrix(N.init,N.patches,1) # Initialisepopulations

OV E R V I EW 53

Npop.Sizes<- matrix(0,MAXGEN) # Pre-assign storage for means

Npop.Sizes[1] <- mean(Npop) # Store 1st generation

mean population size

N.extinct <- matrix(0,N.patches,1)# Assign storage for nos

extinct

Pre-assign space for mean propn non-migrants

Mean.nonmig<- matrix(0,MAXGEN) # Storage for propn nonmigrants

Mean propn nonmigrants

Mean.nonmig[1] <- mean(pnorm(0, mean¼ -Mu, sd¼1))

Mean.mig <- matrix(0, MAXGEN) # Storage for propn migrants

Mean.mig[1] <- 1-Mean.nonmig[1] # Proportion migrants

Igen <- 1 # Initial generation number

while (Igen<MAXGEN && Npop.Sizes[Igen]>0) # Enter while loop

{

Igen <- Igenþ1 # Increment generation counter

Get new population sizes and mean liabilities

OUT <- POP(MAX.LAMBDA, Npop, N.patches, Mu, P.surv, P.mig)

Npop <- OUT[1:N.patches] # Vector of Population sizes

n1<- N.patchesþ1;n2<-2*N.patches # Rangeformeanliabilities

Mu <- OUT[n1:n2] # Mean liabilities

P.nonmigrants <- pnorm(0, mean¼-Mu, sd¼1) # Vector of prop

nonmigrants

Mean proportion of nonmigrants in metapopulation

Mean.nonmig[Igen] <- sum(Npop*P.nonmigrants)/sum(Npop)

mean proportion of population migrating

Mean.mig[Igen]<-sum(Npop*(1-P.nonmigrants)*P.mig)/sum(Npop)

Npop.Sizes[Igen] <- mean(Npop) # Store mean population size

N.extinct[Igen] <- length(Npop[Npop¼¼0]) #Storenosofex-

tinct popns

}

par(mfcol¼c(2,2)) # Divide graphics page into four quadrants

Gen <- seq(1,Igen) # vector of generation numbers

plot(Gen, Npop.Sizes[1:Igen], xlab¼“Generation”, ylab=“Mean

populationsize”,type¼“l”)# Meanpopulationsizeovergenerations

plot(Gen, N.extinct[1:Igen], xlab¼“Generation”, ylab¼“Number of

pops extinct”, type¼“l”, ylim¼c(0,N.patches)) # Nos extinct

over generations

plot(Gen, Mean.nonmig[1:Igen], xlab¼“Generation”, ylab¼“Mean

Proportionofnonmigrants”,type¼‘l’) # Meanproportionofnonnon-

migrants over generations

plot(Gen, Mean.mig[1:Igen], xlab¼“Generation”, ylab¼“Mean

Proportion of migrants”, type¼‘l’) # Mean proportion of migrants

over generations

OUTPUT: (Figure 1.11)

54 MOD E L I NG E VO L U T I ON

In addition to the population size data the program also plots the mean propor-

tion of nonmigrants and the mean proportion of the population that actually

migrate. As expected from the contour analysis, the system evolves to an interme-

diate level of migration. An interesting question, which I leave the reader to

address is whether or not the evolutionarily stable proportion maximizes popula-

tion size.

1.5 Summary of modeling approaches described in this book

1.5.1 Fisherian optimality analysis (Chapter 2)

Fisher’s general analysis of evolution was based on the characteristic equation and

the maximization of the Malthusian parameter, r (see Section 2.2). This approach

has formed the backbone of much of the study of the evolution of trait variation.

While I do not wish to imply that Fisher used only this approach, I think that he

can be acknowledged as its originator. To distinguish this type of analysis from

others in the book, which are also optimality models in one sense or another,

I shall refer to it as “Fisherian” optimality analysis. The general assumptions of

these models are

Generation

Generation

Generation

Generation

0

0
2

4
6

8
10

0 0.
50

0.
15

0.
25

0.
35

0.
45

0.
60

0.
70

0.
80

20
0

40
0

60
0

80
0

500 1,000 1,500 2,000 0 500 1,000 1,500 2,000

0 500 1,000 1,500 2,0000 500 1,000 1,500 2,000

M
ea

n
P

ro
po

rt
io

n
of

 m
ig

ra
nt

s
M

ea
n

P
ro

po
rt

io
n

of
 n

on
m

ig
ra

nt
s

N
um

be
r

of
 p

op
s

ex
tin

ct
M

ea
n

po
pu

la
tio

n
si

ze

Figure 1.11 Mean population size, mean proportion of nonmigrants and actual migrants,
and number of extinct populations for model 6. For display purposes the graph page has
been split into four quadrats using par(mfcol=c(2,2)).

OV E R V I EW 55

1. Stable-age distribution.

2. If density-dependence occurs it does not affect the trait under study.

3. Selection is frequency-independent.

4. In a stable environment fitness is maximized by r, R0, or a fitness component

whose maximization also maximizes one of the aforementioned fitness mea-

sures. The way these fitness measures are calculated depends upon the type of

environment.

5. In a temporally variable environment the appropriate operational measure of

fitness is the geometric mean of r. With age structure the appropriate fitness

measure is the dominant Lyapunov exponent and is most readily analyzed

using invasibility analysis (see Chapter 3).

6. Spatial variation can be handled by this approach using the framework devel-

oped simultaneously by Houston and McNamara (1992) and Kawecki and

Stearns (1993), as described by equations (1.28) and (1.29). This assumes an

equilibrium population.

Examples: Age at first reproduction and allocation to reproduction.

1.5.2 Invasibility analysis (Chapter 3)

Invasibility analysis is a technique that determines if a clone showing an alternate

suite of characteristics (generally differences in parameter values) can invade a

population. While it can be used for unstructured populations its strength lies

primarily in addressing the evolution of traits in structured populations in which

density-dependence occurs. The general properties are

1. The population is age-structured or stage-structured. Typically, the model is

written in matrix form (e.g., a Leslie matrix).

2. The population may be at equilibrium or show variable behavior (e.g., cyclic or

chaotic). If equilibrium can be assumed, then themodel may be better analyzed

using the methods for “Fisherian” optimality models.

3. Density-dependence may occur and may be an important selective factor.

Examples: Evolution of parameters in density-dependent functions (e.g., the

Ricker function) and delayed maturity in a stage-structured model.

1.5.3 Genetic models (Chapter 4)

The preceding methods of analysis presume that the genetic mode of inheritance

is not an impediment to the population evolving to the optimal combination of

trait values. “Fisherian” optimality analysis focuses upon the optimal combination

and has little to say about the trajectory or time course from one combination to

another. Invasibility analysis can follow the change in frequency of mutant clones

but whether this is relevant to othermodes of inheritance is not addressed (in fact,

as shown in Chapter 3, the genetic mode of inheritance can profoundly influence

56 MOD E L I NG E VO L U T I ON

the outcome of evolution). In Chapter 3 I consider three types of genetic models,

one focused at the population level and the other two focused on individual-based

models. Potential advantages of genetic models are

1. The evolutionary trajectory can be followed.

2. Variation about the equilibrium combination can be assessed.

3. Density-dependence and frequency-dependence are easily incorporated into

the individual-based approaches (examples of the latter are given in Chapter 6).

4. Age structure is readily accommodated (though bookkeeping can be tedious).

5. The model is itself a simple numerical method of locating the optimal combi-

nation. Used in this sense the actual genetic parameters may be irrelevant and

can be selected to minimize the “search” time (e.g., set genetic correlations to

zero). In rare cases parameter values may alter the equilibrium combination,

but this can be easily investigated by varying parameter values.

Examples: Evolution of multiple traits in density-dependent populations and trait

variation under the impact of stabilizing or directional selection.

1.5.4 Game theoretic models (Chapter 5)

Game theoretic models deal with interactions among individuals, typically be-

tween pairs of individuals. Such interactions, or “games,” may be frequency-

independent or frequency-dependent. In both cases fitness is defined by a payoff

matrix that gives the increment (or decrement) in fitness associated with all

possible pairs of interactions. The frequency-independent case is really a subset

of “Fisherian” optimality analysis and most game theoretic models involve fre-

quency-dependent games. General characteristics of game theoretic models are

1. Typically, population dynamics is not an important factor, a stable population

being a frequent, but unspecified, assumption.

2. In simplemodels analytical solutions are possible but inmore complex cases an

individual-based models are used.

3. Clonal or explicit genetic models can be used.

Examples: Hawk-Dove game and territorial–satellite behavior.

1.5.5 Dynamic programming (Chapter 6)

Individuals are continually faced with decisions that affect their fitness. For

example, a parasitic wasp must make a decision (I do not imply that this is a

conscious act) on howmany eggs to lay in a host: Too many larvae could compete

with each other and hence have a reduction in fitness, but the female might not

find another host and so laying too few larvae in the present host could result in a

reduced fitness. In some cases the optimal decision set can be estimated using

one of the previous approaches but in many cases the sequence of decisions to be

made during the life of an organism is so complex that these approaches are

OV E R V I EW 57

inefficient methods of analysis. For such cases the method of dynamic program-

ming is most appropriate. Such models generally include the following ele-

ments:

1. Fitness is a consequence of a series of “decisions” through the life (or specified

period) of the organism. In the case in which only a single “decision” is made,

such as when to leave a nest, “Fisherian” optimality modeling is generally an

easier approach. Dynamic programming is the most appropriate approach

when there are a series of decisions, such as how to distribute eggs in relation

to the age of the female, the quality of patches in which the offspring will grow,

and the time taken to locate suitable patches.

2. Fitness is measured by the maximization or minimization of some terminal

variable, most typically survival or offspring production.

3. Selection is frequency-independent.

4. Population dynamics is assumed not to influence the decisions.

Examples: Optimal foraging and stopovers on a migration route.

58 MOD E L I NG E VO L U T I ON

CHAPTER 2

Fisherian Optimality Models

2.1 Introduction

This type of model is a development of Fisher’s original approach to the study of

evolutionary questions in which he took the Malthusian parameter, r, as the

measure of fitness. As noted in Chapter 1, this measure is inappropriate under

conditions in which a stable age distribution cannot be assumed, density-depen-

dence or frequency-dependence is an important factor in the evolution of the

traits under study, population dynamics is chaotic or fitness depends on the social

setting. Even given these restrictions this type of model has proven to be a highly

productive approach to the analysis of evolutionary questions and the generation

of testable predictions. We first consider, in a little more detail than in Chapter 1,

the fitness metrics assumed by models dealt with in this chapter. Next, I present a

general scenario for analyses followed by illustrative scenarios (summarized in

Table 1), and finally exemplary papers. MATLAB code for the scenarios is given in

Section 2.18.

2.1.1 Fitness measures

The three most commonly used metrics for the type of model examined in this

chapter are the Malthusian parameter, r, net (or lifetime) reproductive success, R0,

and a fitness component whose maximization also maximizes fitness. Of the

three, the first has received the most theoretical study and can be considered to

be the most general (Lande 1982; Charlesworth 1993, 1994). The Malthusian

parameter is the rate of population increase achieved by a population that is in a

stable age distribution and is given by the characteristic, (also called the Euler)

equation

Z1
0

e�rtl
�
x
�
m
�
x
�
dx ¼ 1 ð2:1Þ

where t is age, l(x) is survival to age x, andm(x) is the number of female births at age

x (typically equal sex ratios are assumed but this is not required). In the absence of

density-dependence it is intuitively obvious that amutation that increased rwould

increase in frequency, though proving this mathematically was no mean feat (for

the mathematical justification see Charlesworth [1994]). If there is density-depen-

dence then the appropriate measure of fitness is the relative number of indivi-

duals that pass out of the period in which the density-dependence acts. For

example, suppose density-dependence occurred in the immature stage and that

we wish to compute the fitnesses of two types of individuals, A and B. If the

number of adult A exceeds the number of adult B then the former is necessarily

the most fit. The analysis of such a situation can be made more complicated if the

success through this period depends not simply on density but also on frequency

of types in the population. The models examined in this chapter assume that

density-dependence can be ignored in that it does not influence the traits under

study. This is a reasonable assumption if the density-dependence is uncorrelated

with the traits of interest. For example, suppose types A and B increased at rates rA
and rB but after a specified time increment the sum of the two groups were

reduced to a size N, with mortality being independent of type. In this case the

most fit type would be that type with the highest r.

If the population is not increasing in size then a plausible measure of fitness is

the net reproductive rate

Ro ¼
Z1
0

l
�
x
�
m
�
x
�
dx ð2:2Þ

which is sometimes called expected lifetime reproductive success. The assump-

tion here is that if A has a higher R0 than B then A will have the higher fitness.

Density-dependence is implicitly assumed not to affect the traits of interest. When

there are stochastic fluctuations that move the population out of a stable age

structure neither r nor R0 can be assumed to be an appropriate measure of fitness

(Benton and Grant 2000). This situation is considered in Chapter 3.

In some cases, particularly behavioral studies, our interest is in a particular trait

and to simplify analysis it is assumed that maximization of some component of

the life history is equivalent to maximization of fitness. For example, we might

wish to determine the optimal allocation of foraging time among patches that

vary in resource quality. A common assumption is that the maximization of

resources gathered per unit time is equivalent to maximizing fitness (Roff 1992).

Care needs to be taken, because ignoring other components of the life history may

produce erroneous conclusions. Two famous examples of this error are Cole’s

paradox and the Lack hypothesis.

In his landmark 1954 paper Cole suggested that there was an apparent paradox

because “For an annual species, the absolute gain in intrinsic population growth which could

be achieved by changing to the perennial reproductive habit would be exactly equivalent to

adding one individual to the average litter size” (p. 118, Cole’s italics). If Cole’s assertion

were true wewould expect that perennials would be rare, which they certainly are

not. The problem was that Cole failed to include differences in adult and juvenile

survival, his analysis implicitly assuming survival rates of 1 for both stages (Roff

2002, pp. 190–192).

60 MOD E L I N G E VO L U T I ON

Lack (1947) hypothesized that in birds “the average clutch-size is ultimately deter-

mined by the average maximum number of young which the parents can successfully raise in

the region and season in question” (p. 319). Lack’s hypothesis assumes that the only

important interactions are negative density-dependent interactions between sib-

lings within a clutch and predicts that the most productive clutch should also be

the most frequent clutch observed, which is not the case. Lacking in Lack’s

hypothesis is the possibility that later survival of the offspring and adult survival

will be affected by the number of offspring raised. Experimental manipulation of

brood sizes in birds, mammals, reptiles, fishes, and plants has demonstrated

negative effects of increased brood size on future survival of adults and/or off-

spring (Roff 2002, pp 132–144). Incorporation of such effects predicts that the

optimal brood size will be less than the Lack value (Roff 2002, pp. 243–248).

2.1.2 Methods of analysis: introduction

The focus of analyses is on equilibrium conditions and not the evolutionary

trajectory taken to this (see Chapters 4 and 5 for examples of analyses involving

evolutionary trajectories). As described above, density-dependence is not explicit-

ly considered. Frequency-dependence is also assumed to be absent. The model

formulation we would like to arrive at is

W ¼ f ðy1; y2; . . .; yk; x1; x2; . . .; xnÞ ð2:3Þ
where W is fitness y1, y2, . . . , yk are parameters and x1, x2, . . . , xn are traits. The

above is to be read as “Fitness is a function of k parameters and n traits.” A guiding

rule is “Keep the number of parameters and traits to a minimum.” Suppose we

have five parameters and we decide to examine model performance over all

combinations. Dividing each parameter into 10 parts, which is not an unreason-

able division, will give use 105 ¼ 100,000 combinations to examine! While this is

possible and may be necessary it is certainly not a preferable route, if it can be

avoided.

The fitness function will invariably be made up of a number of component

functions, such as described in Scenario 1, in which fitness is the product of

fecundity and survival and these are functions of body size. These functions may

produce a nice smooth fitness function which can be subject to analysis using the

calculus or the fitness function may have discontinuities or be in some other way

difficult to analyze (i.e., a “rugged” surface) using the calculus. Care needs to be

taken in examining the model for discontinuities and places in which model

components can take physically impossible values. In the first scenario survival

is given as a negative linear function of body size, which means that above a

particular body size survival will become negative, which is not possible. In the

scenario given, this does not become a problem because fitness will be negative in

this case. However, suppose the model contained the product of two survival

functions that could mathematically be less than zero. Now it is possible that

the two negative values will produce a positive and a fitness value that might not

be seen to be wrong.

F I S H E R I A N O P T I MA L I T Y MOD E L S 61

There are three general classes of models: First, fitness can be written as a

function of the traits of interest and differentiation is not a problem; second,

fitness can be written as a function of the traits of interest but differentiation is

problematic; and third, the fitness function cannot be written such that fitness is

isolated.

2.1.3 Methods of analysis: W ¼ f ðy1; y2; . . .; yk; x1; x2; . . .; xnÞ and
well-behaved

Assuming the fitness function to be well behaved and differentiable (a “smooth”

fitness surface), we find the optimal trait value by differentiating with respect to

the trait and setting the resultant to zero.For example, suppose, as in Scenario 1,

the fitness function is a quadratic function:

W ¼ f ðy1; y2; y3; xÞ ¼ y1 þ y2xþ y3x2
dW

dx
¼ y2 þ 2y3x

dW

dx
¼ 0 when x ¼ �y2

2y3

ð2:4Þ

Note that an intermediate fitness maximum requires that y3 < 0 and y2 > 0.

Naively one might be tempted to require simply that y2
y3

< 0: however, the condi-

tion y3 > 0 and y2 < 0 defines a function that in convex and hence the turning

point is aminimumnot amaximum.Wherever possible, the function should be

plotted to ensure that an appropriate turning point exists (see Scenario 12 for a

case in which prior plotting is essential). If the function is complex and/or contains

many terms (e.g., Scenario 3) differentiation can become very tedious and care

must be exercised that terms are not accidentally omitted or signs changed. Both R

and MATLAB have routines for differentiation and it is wise to check one’s results

using one of these.

2.1.3.1 R code for differentiation

The code for R is simple but the output may appear somewhat obscure. As an

example, suppose we wish to differentiate the quadratic a þ bx þ cx2, which has

the derivative of b þ 2cx. The R code, saving the output in a variable y, is

y <- deriv(
 aþb*xþc*x 2̂,“x”) # Compute differential and save in y

y # Print y

The output is

> y <� deriv(
 aþb*xþc*x 2̂,“x”)

> y

expression({

.value <� a þ b * x þ c * x 2̂

.grad <� array(0, c(length(.value), 1L), list(NULL, c(“x”)))

.grad[, “x”] <- b þ c * (2 * x)

62 MOD E L I N G E VO L U T I ON

attr(.value, “gradient”) <- .grad

.value

})

The derivative is given in the line .grad[, “x”] <� b þ c * (2 * x). To actually

calculate the gradient at some value requires a few extra lines of code, as illu-

strated in Scenario 1. In some cases the output is split into separate expressions.

For example, for the derivative of the equation eaxþbxþcx2, which has the deriva-

tive aeaxþbþ2cx, we get

> y <� deriv(
 exp(a*x)þb*xþc*x 2̂,“x”)

> y

expression({

.expr2 <- exp(a * x)

.value <- .expr2 þ b * x þ c * x 2̂

.grad <- array(0, c(length(.value), 1L), list(NULL, c(“x”)))

.grad[, “x”] <- .expr2 * a þ b þ c * (2 * x)

attr(.value, “gradient”) <- .grad

.value

})

The derivative is now found from lines 2 and 5 of expression, namely (.expr2

<� exp(a * x)) and (.grad[, “x”] <� .expr2 * a þ b þ c * (2 * x))

2.1.3.2 MATLAB code for differentiation

The output in MATLAB is simpler than that given by R but all symbolic

variables must be declared as such. Unless told otherwise, MATLAB uses a

built-in hierarchy to decide which is the relevant variable. In the present

example the variable that MATLAB assumes is the one to be used is x. The

code for the first example is

syms x a b c; % Define symbols

y¼diff(aþb*xþc*x 2̂) % Differentiate, save in y and echo result

and the output is

y ¼
bþ2*c*x

The code for the second example is

syms x a b c; % Define symbols

y¼diff (exp(a*x)þb*þc*x 2̂) % Differentiate, save in y and echo

result

and the output is

y ¼
a*exp(a*x)þbþ2*c*x

F I S H E R I A N O P T I MA L I T Y MOD E L S 63

2.1.3.3 General approach

Regardless of the language used, the general pattern of code to solvemodels of this

type is to

1. Define the fitness function.

2. Iterate over values of x to plot W versus x (e.g., Scenarios 1–5). Plotting is an

important first step in the analysis to ensure that a maximum actually does

occur and that there are no discontinuities or odd behaviors that could lead to

erroneous results (see Scenario 9 for such a case). For two traits a contour plot is

produced (W plotted on x1, x2; e.g., Scenarios 9, 12, and 13). Three traits cannot

be readily visualized (e.g., Scenario 14), though pair-wise plots may be useful.

3. If the function has already been differentiated define a function for the differ-

ential.

4. Find the optimum by calling a library routine (e.g., in R uniroot if the

differential is supplied, optimize or nlm, if the turning point is to be found

numerically as shown in Step 6). As an example, suppose the fitness function is

the quadratic 4x�2x2, which has a maximum at x ¼ 1. The differential is 4�4x.

To use uniroot we first define a function for the differential and then call

uniroot.

DIFF <-function(x){x-4*x} # Function defining differential

Call uniroot requesting the value of the root as designated by $root

uniroot(f¼DIFF, interval¼c(�10,10))$root

OUTPUT:

[1] 1

In MATLAB the appropriate function is called solve:

solve(4-4*x)

OUTPUT:

ans ¼ 1

5. If the function has not been differentiated call a library routine, as described

above, to do the differentiation, and then do Step 4.

6. To find the turning point without resorting to differentiation we can use nlm or

optimize. The R function nlm computes the minimum of a function and

hence we take the negative of fitness. The R function optimize can find a

minimum or maximum, the former being the default. Both functions generate

an output set fromwhich we need to extract the relevant data. The $estimate

and $minimum attached to the call does this. We first define a function MINUS.

W that calculates the negative of fitness and then passes this function to nlm or

optimize:

64 MOD E L I N G E VO L U T I ON

MINUS.W <-function(x){2*x 2̂-4*x} # Function to calculate –W

for a given x

Call nlm function passing function and initial estimate called p

nlm(f¼MINUS.W, p¼0)$estimate

Calloptimizefunction,passingfunctionandintervalforparameter

optimize(f¼MINUS.W,interval¼c(�10,10))$minimum

OUTPUT:

> nlm(f¼MINUS.W, p¼0)$estimate

[1] 0.9999998

> optimize(f¼MINUS.W,interval¼c(�10,10))$minimum

[1] 1

In MATLAB the routine fminbnd acts like optimize but only finds a minimum.

To call fminbnd we can either define an anonymous function or an inline

function:

FITNESS ¼@(x)(�(2*x 2̂þ4*x)); % anonymous function

FITNESS ¼ inline(’�(�2*x 2̂þ4*x)’,’x’); % inline function

fminbnd(FITNESS,�10,10) % search limits at �10,10

OUTPUT:

ans ¼ 1.0000

Scenario 1 provides a simple example of the above process.

2.1.4 Methods of analysis: W ¼ f ðy1; y2; . . .; yk; x1; x2; . . .; xnÞ and not
well-behaved

If the function contains discontinuities (e.g., Scenario 12 and Figure 2.12), or is a

set of instructions that define amodel but not an explicit function, or is a recursive

equation (e.g., Scenario 13), differentiation may not be possible or at least not give

reliable answers. For such cases a numerical approach, which I shall refer to as the

“Brute force approach,” can be employed:

1. Follow Steps 1 and 2 as before.

2. Use a library routine that searches for the minimum or maximum of a function

(e.g., in R optimize or nlm and fminbnd in MATLAB) and pass the fitness

function to this routine.

3. If Step 2 fails (e.g., Scenario 12 in which there are abrupt changes) or is not

feasible a brute force approach can be employed (e.g., Scenarios 6, 12, 13, and

14). In the simplest brute force approach we generate a set of estimates sepa-

rated by the smallest difference that we require and pick that combination that

has the largest fitness. For a single trait the process can be made more efficient

by commencing at a value that is known to be to the left of the fitness peak and

iterating until fitness declines. For example, suppose we have a single variable

F I S H E R I A N O P T I MA L I T Y MOD E L S 65

x and we wish to locate the optimum x such that it is within �e of the true

value. From the previous plots we know that the optimum is greater than xmin.

We now iterate from xmin in steps of e until fitness declines. The optimum value

of x is then either this value or the previous value of x, the choice being that

value which gives the highest fitness. In general, the value of e can be selected

such that there is no practical difference in the choice and in the scenarios

presented the code selects the previous value of x. When there are several

variables it may be computationally easier to simply generate all combinations

located within the region of the optimum combination. In this case the

step used must equal the increment that matches the desired accuracy (see

Scenario 12 for an example).

To illustrate this process we shall consider the simple quadratic fitness function

4x�2x2 (a brute force method is obviously not required in this case but it serves to

illustrate the method. For a more complex example see Scenarios 12). The code is

divided into three parts: a function called FITNESS that calculate fitness, a

function called Wdiff that calls the fitness function for x and x þ Step, where

Step is the increment length, and themain program that calls function Wdiff. The

final answer and difference in fitness values between the last two selected values

of x are printed out.

R CODE:

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x){ W¼ 4*x�2*x 2̂} # Fitness given x

WDIFF <- function (x, Step) # W for x and xþStep

{

W1 <- FITNESS(x) # Fitness given x

W2 <- FITNESS(xþStep) # Fitness given xþStep

Wdiff2 <- W2-W1 # Diff between fitnesses

return (Wdiff2) # x will eventually be the best x

}

MAIN PROGRAM

x <- 0 # Set initial x

Step <- 0.001 # Set Step length

DIFF <- WDIFF(x, Step) # Calculate difference between W at two x

while (DIFF>0) # If DIFF > 0 then W still increasing

{

x <- x þ Step # Increment x

DIFF <- WDIFF(x, Step) # Calculate difference in fitness

}

Out of loop and thus x is taken to be optimal

print(c(x,DIFF)) # Print out x and Difference in fitnesses at end

66 MOD E L I N G E VO L U T I ON

OUTPUT:

[1] 1eþ00 �2e�06

MATLAB CODE:

function w¼FITNESS(x) % Fitness at x

w ¼4*x-2*x^

function Wdiff2 ¼ WDIFF(x, Step) % W for x and xþStep

W1 ¼ FITNESS(x); % Fitness given x

W2 ¼ FITNESS(xþStep); % Fitness given xþStep

Wdiff2 ¼ W2�W1; % Diff between fitnesses

% MAIN PROGRAM

clear all;

x ¼ 0; % Set initial x

Step ¼ 0.001; % Set Step length

DIFF ¼ WDIFF(x, Step); % Calculate difference between W at two x

while (DIFF>0) % If DIFF > 0 then W still increasing

x ¼ x þ Step; % Increment x

DIFF ¼ WDIFF(x, Step); % Caluclate difference in fitness

end

% Out of loop and thus x is taken to be optimal

[x,DIFF] % Print out x and Difference in fitnesses at end

OUTPUT:

ans ¼
1.0000 -0.0000

Note that the difference is shown as zero because the default number of digits is

too few.

2.1.5 Methods of analysis: gðWÞ ¼ f ðy1; y2; . . .; yk; x1; x2; . . .; xn;WÞ
In some cases it may not be possible towrite the fitness functionwith fitness on one

side and all other variables and parameters on the other. This is very likely to be the

case when using an age-structured model with r as the measure of fitness (e.g.,

Scenario 5). Differentiation may still be possible using implicit differentiation lead-

ing to W ¼ f ðy1; y2;. . .; yk; x1; x2;. . .; xnÞ or a function hðy1; y2;. . .; yk; x1; x2;. . .; xn;WÞ
that can be set to zero (since it is the differential and the maximum occurs when

dW/dx¼0) and hence solved numerically. A further complication may be that the

fitness function must be integrated, which will usually be the case when using r.

Integration is frequentlymuchmore difficult than differentiation andmay not even

be possible. For such cases we resort either to symbolic integration, which can be

done in MATLAB but not R, or numerical integration, which can be done in either

program. The general model is likely to be of the form

F I S H E R I A N O P T I MA L I T Y MOD E L S 67

Z1
0

e�rt ðy1; y2; . . . ;yk; x1; x2; . . . ; xnÞdt ¼ 1 ð2:5Þ

Thus the steps to follow are

1. Define the fitness function. If the function can be integrated we will arrive

at a function in which fitness, r, is on the left, for example,

r ¼ f ðy1; y2; . . . ;yk; x1; x2; . . . ;xnÞ or a function in which fitness cannot be sepa-

rated, for example, f ðy1; y2; . . . ;yk; x1; x2; . . . ;xn; rÞ ¼ 1:. In the former case the

model can be solved as discussed earlier. For the purposes of generality I shall

assume that r cannot be separated out and that integration of equation (2.5) is to

be done within the program. For clarity I shall consider the particular model

considered in detail in Scenario 5:

Z1
1

e�rt16xe�ð1�0:5xÞtdt ¼ 1 ð2:6Þ

2. The first computer function we define is one which I shall call INTEGRAND

that gives the value of the function to be integrated, for example, in the

above equation the function would give the value of e�rt16xe�ð1�0:5xÞt, which

requires that we pass to it r, t, and x. In R t is a reserved word and so we

rename it as age:

INTEGRAND <- function(age,x,r) { exp(-r*age)*16*x/exp((1-0.5*x)

*age)}

3. The second function, INTEGRAL, is one that calls the R function integrate to

integrate the above with respect to age (the first variable passed) and subtract

1 so that we can use a root-finding function to solve for r:

INTEGRAL<- function(r,x) {1-integrate(INTEGRAND(1,Inf,x,r)$value}

4. The third function, RCALC, calls the R function uniroot to find the value of r

that satisfies equation (2.6) for a given value of x:

RCALC<-function(x){uniroot(INTEGRAL,interval¼c(1e-7,10),x)$root)}

5. All that now remains is to find the value of x that maximizes r. Good practice

dictates that we first iterate over values of x to ensure that r is a concave

function of x. Having satisfied ourselves that this is the case (see Scenario 5)

we use the R function optimize, which can locate either a minimum (the

default) or a maximum:

optimize(f¼RCALC, interval¼c(1.3,1.8), maximum¼TRUE)$maximum

68 MOD E L I N G E VO L U T I ON

2.2 Summary of scenarios (Table 2.1)

1. Scenario 1 illustrates the analysis of the simplest type of optimality model,

namely one in which the interaction of traits produce a concave function of

fitness with the trait of interest. The example used is that in which body size,

the trait of interest, is a positive function of fecundity and a negative function

of survival. A semelparous life history is assumed, making analysis very sim-

ple. Scenarios 2–8 consider variants of Scenario 1.

2. In Scenario 2 age structure is added in such a manner that the analysis is

unaffected, illustrating the principle that additional complications to a model

may be mathematically neutral.

3. Scenario 3 also includes only the addition of age structure but in such a

manner that the optimum trait value is affected.

4. Scenario 4 is the same as Scenario 3 except that the fitness function is a

continuous rather than a discrete function of the trait of interest.

5. In Scenarios 1–4 fitness is measured by R0 which makes analysis relatively

simple. Scenario 5 considers the analysis of the model with r as the fitness

function.

6. Scenarios 1–5 assume that parameter values are constant. Scenarios 6–8 con-

sider models in which one or more of the parameters are variable. Scenario 6

assumes stochasticity in one or more parameters within but not among gen-

erations. In this case fitness is the arithmetic mean fitness. An important point

made by this example is that mean fitness is not calculated simply using the

means of the parameters.

7. Scenarios 7–8 assume that parameter values are temporally variable, in which

case the fitness measure is the geometric mean rather than the arithmetic.

Scenario 7 considers discrete temporal variation parameter values.

8. Scenario 8 examines the consequences of continuous temporal variation in

parameter values.

9. Scenarios 9–14 illustrate the analysis of models in which two traits are of

interest. In Scenario 9 the two traits are vigilance and foraging rate.

10. Scenario 10 illustrates that the two traits of interest may be independent even

though fitness is a function of both.

11. Scenarios 11 and 12 examine a prominent problem in life history theory,

namely the coevolution of propagule and clutch size. Scenario 11 illustrates

a circumstance in which one trait is determined by the value of the second

and hence the problem is reduced to the analysis of a single trait.

12. Scenario 12 expands Scenario 11 such that the two traits (propagule size in

clutches 1 and 2 of a three-clutch life history) covary and cannot be reduced to

a single trait. An important feature of this analysis is the illustration of the

brute force method. It also illustrates the importance of plotting the fitness

surface to determine if it is “smooth” or “rugged”.

F I S H E R I A N O P T I MA L I T Y MOD E L S 69

Table 2.1 Summary of principle model assumptions in the scenarios (S) described in the text

S Focal trait(s) Constraining traits W Scenario feature

1 Body size Fecundity and
survival

R0 Simplest model

...
2 Body size Fecundity and

survival
R0 No effect of age structure

...
3 Body size Fecundity and

age‐specific survival
R0 Discrete age structure and

optimum changed...
4 Body size Fecundity and age‐

specific survival
R0 Continuous age function and

optimum changed...
5 Body size Fecundity and age‐

specific survival
r Fitness cannot be isolated

on one side of fitness
function...

6 Body size Fecundity and age‐
specific survival

Arithmetic
mean R0

Stochastic variation in
parameters...

7 Body size Fecundity and age‐
specific survival

Geometric
mean R0

Discrete temporal variation in
a parameter...

8 Body size Fecundity and age‐
specific survival

Geometric
mean R0

Continuous temporal
variation in a parameter...

9 Vigilance and
foraging rate

Survival Survival Simple two‐trait model

...
10 Body size and

fecundity
Propagule size and
survival

R0 Optima independent and
hence each trait analyzed
separately...

11 Clutch sizes 1 and 2 Reserves, fecundity,
and propagule size

R0 Two traits but analysis
reduces to that of a
single trait...

12 Age‐specific clutch
sizes

Reserves, fecundity,
and propagule size

R0 Importance of plotting to
examine fitness surface and
illustration of a brute force
method...

13 Age at first
reproduction and
single reproductive
allocation

Continuous growth,
weight‐specific
fecundity, and adult
mortality

R0 Recursion dictates use of
brute force approach

...
14 Age at first

reproduction, age‐
specific
reproductive
allocation

Continuous growth,
weight‐specific
fecundity, and adult
mortality

R0 Expansion of analysis to more
than two traits

70 MOD E L I N G E VO L U T I ON

13. Scenario 13 illustrates the analysis ofmodels that involve recursion andwhich

may require a brute force approach. The specific problem considered is that of

finding the optimal age at maturity and allocation to reproduction in an

iteroparous organism.

14. Scenario 14 expands the problem considered in the forgoing scenario by

allowing the allocation to reproduction to change with age, thereby increas-

ing the number of traits to the number of mature age classes plus one (age at

maturity).

2.3 Scenario 1: A simple trade-off model

This scenario illustrates the analysis of the case in which there is no age structure

and fitness is a simple quadratic function of the trait under study. Because of its

simplicity, its visualization and analysis is readily accomplished. Given the ease

with which this type of model can be analyzed it is worthwhile, if possible,

to commence with such a model. Following the analysis of this model further

biological assumptions, such as age structure as in Scenarios 2 and 3, can be added.

This approach allows one to assess the importance of particular assumptions.

The present model considers the case of a semelparous organism in which the

trait under investigation varies positively with one fitness component and nega-

tively with another. A priori, one might be tempted to assume that this will

necessarily result in a function that has a maximum at some intermediate trait

value. This is not necessarily the case, suppose, for example the two fitness

functions are

y1 ¼ eax

y2 ¼ e�bx
ð2:7Þ

where y1 and y2 are two traits such as fecundity and survival, a and b are constants,

and x is the trait under study (e.g., body size). Let us suppose that fitness is the

product of y1 and y2 (which is quite reasonable): fitness, W, is then given by

W ¼ y1y2 ¼ eða�bÞx ð2:8Þ

which has no intermediate optimum. In the scenario discussed below an interme-

diate optimum is not assured but does occur for particular parameter values.

2.3.1 General assumptions

1. The organism is semelparous.

2. Fecundity, F, increases with body size, x.

3. Survival, S, decreases with body size, x.

4. Fitness, W, is a function of fecundity and survival.

F I S H E R I A N O P T I MA L I T Y MOD E L S 71

The above assumptions describe a very general situation. To make a prediction

we must convert these assumptions into mathematical expressions. But even

before doing this we can make a general statement. Because one fitness compo-

nent, fecundity, increases with body size, whereas the second component, surviv-

al, decreases with body size then in many (but not all) circumstances we can

expect that there will be an optimum body size that maximizes fitness. To

investigate this we shall give explicit mathematical expressions to the three

assumptions.

2.3.2 Mathematical assumptions

1. Fecundity increases linearly with body size:

F ¼ aF þ bFx ð2:9Þ

where aF and bF are constants.

2. Survival decreases linearly with body size:

S ¼ aS � bSx ð2:10Þ

3. Fitness, W, is the expected lifetime reproductive success, R0, given as the

product of fecundity and survival:

W ¼ R0 ¼ FS
¼ ðaF þ bFxÞðaS � bSxÞ
¼ aFaS � bFbSx

2 þ ðaSbF � aFbSÞx
ð2:11Þ

The above equation describes a parabola that is concave down, that is, has a

maximum value at some body size, say x*. Thus for this model we already know

that there is an optimal body size, though we do not know if this occurs at a

plausible body size. The first step in the analysis is to plot W versus x to visually

confirm that a maximum exists and show that it occurs at a value to be expected

for the species or taxa under study.

2.3.3 Plotting the fitness function

It is usually a good idea to plot the function to visually examine its behavior.While

we know that in the present case the function is a quadratic that is concave down

we do not know if the optimum trait value is plausible given biologically plausible

parameter values. Thus we must assign parameter values. For the purposes of

illustration, let us suppose that reasonable values are aF ¼ 0, bF ¼ 4, aS¼ 1, bS ¼ 0.5.

The fitness equation can now be written as

72 MOD E L I N G E VO L U T I ON

W ¼ 0	 1� 4	 0:5x2 þ ð1	 4� 0	 0:5Þx
¼ �2x2 þ 4x

ð2:12Þ

R CODE:

rm(list¼ls()) # remove all objects from memory

x <- seq(0,2,length¼ 1000) # Create a vector of length 1000 be-

tween 0, 2

W <- (-2*x 2̂ þ 4*x) # Create a vector W using the fitness function

Plot the data using ’l’ to designate a line

las¼number orientation on axes, lwd ¼ line width

plot(x,W,type¼’l’,xlab¼’Body size, x’, ylab¼’Fitness, W’,

las¼1,lwd¼3)

From the plot of the fitness function (Figure 2.1) it can be seen that there is a

maximum at or around 1.

MATLAB CODE: See Section 2.18.1.

2.3.4 Finding the maximum using the calculus

We can now proceed in one of two ways:

1. Find the optimal body size by the calculus.

2. Use a numerical method without resorting to the calculus (Section 2.3.5).

To obtain x* using the calculus we differentiate the equation, set the result to zero

and find the value of x that satisfies this condition. In the present case the

differentiation can be easily accomplished using the rules given in Appendix 2:

Body size, x

0.0

0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

F
itn

es
s,

 W

Figure 2.1 Scenario 1: Fitness versus body size.

F I S H E R I A N O P T I MA L I T Y MOD E L S 73

dW

dx
¼ �4xþ 4

dW

dx
¼ 0 when � 4xþ 4 ¼ 0; i:e:; x ¼ 1

ð2:13Þ

R CODE:

Symbolic differentiation in R can be done using deriv:

y <- deriv(
-2*x 2̂þ4*x,“x”) # Take the derivative and store in y

As discussed in the Introduction, the output is not particularly clear as it returns

the expression for the evaluation of the derivative:

y # Print y

OUTPUT:

expression({

.value <- -2 * x 2̂ þ 4 * x

.grad <- array(0, c(length(.value), 1L), list(NULL, c(“x”)))

.grad[, “x”] <- 4 - 2 * (2 * x)

attr(.value, “gradient”) <- .grad

.value

})

The value at which the derivative is zero can now be determined using the

function uniroot. We set the derivative as a separate function to be called by

uniroot:

rm(list¼ls()) # remove all objects from memory

Function to obtain the gradient at a value w

FUNC <- function(w)

{

y <- deriv(
�2*x 2̂þ4*x,“x”) # Get the derivative

x <- w # Set x equal to w

z <- eval(y) # Evaluate the derivative at w

d <- attr(z,“gradient”) # Assign the gradient value to d

return(d) # Return d to the main program

}

MAIN PROGRAM

Root must be enclosed by the limits set by the user, here set at

�2 to 4

B <- uniroot(FUNC, interval¼ c(�2,4))

B$root # Print out the value found

MATLAB CODE: See Section 2.18.2.

74 MOD E L I N G E VO L U T I ON

2.3.5 Finding the maximum using a numerical approach

In many cases the function may not be easily differentiable: for example, the

function might consist of a simulation model or it may have discontinuities. We

shall encounter such cases shortly. The present model can be used to illustrate the

general approach.

The available routines typically locate the minimum value of a function. In our

case we wish to find the maximum. To use the minimization routines we simply

take the negative value of our function. Thus, instead of seeking the maximum of

4x�2x2 we seek the minimum of 2x2�4x. There are generally several routines that

find minima. We shall, in this case, use nlm in R (an alternate is optimize) and

fminbnd in MATLAB.

R CODE:

Create function to evaluate fitness function

FITNESS <- function(x) (2*x 2̂-4*x)

nlm(FITNESS, p¼�2) # Call nlm with initial guess for x of �2

MATLAB CODE: See Section 2.18.3.

2.4 Scenario 2: Adding age structure may not affect the
optimum

We increase the complexity of the problem by introducing age-structure, which

wemight expect to change the solution. In fact, they do not: Increasing complex-

ity need not change either the qualitative or quantitative conclusions.

2.4.1 General assumptions

1. The organism is iteroparous.

2. The following assumptions are the same as in Scenario 1.

3. Fecundity, F, increases with body size, x, which does not change after maturity

(e.g., as in insects).

4. Survival, S, decreases with body size, x.

5. Fitness, W, is a function of fecundity and survival.

2.4.2 Mathematical assumptions

1. Maturity occurs at age 1 after which no further growth occurs.

2. Fecundity increases linearly with size at maturity, resulting in fecundity being

a uniform function of age, t:

Ft ¼ aF þ bFx ð2:14Þ

F I S H E R I A N O P T I MA L I T Y MOD E L S 75

3. Survival to the age at first reproduction, here 1, decreases linearly with body

size and is thereafter constant per time unit and independent of body size.

Survival to age t is then given by

St ¼ ðaS � bSxÞe�Mðt�1Þ ð2:15Þ
where M is the instantaneous mortality rate that is independent of age.

4. Fitness, W, is the expected lifetime reproductive success, R0, given as the

cumulative product of survival and fecundity:

W ¼ R0 ¼
X1
t¼1

FtSt ¼
X1
t¼1

ðaF þ bFxÞðaS � bSxÞe�Mðt�1Þ ð2:16Þ

Although the above equation looks a lot more complicated than equation

(2.11) it actually contributes no new information that changes the optimal

size, because those components that depend on size do not depend on

age and hence can be moved out of the summation sign. Consequently,

we have that the fitness equation specified above is simply equation (2.11)

multiplied by a constant. Thus the optimal size remains unchanged.

2.5 Scenario 3: Adding age-specific mortality that affects
the optimum

We retain the same general assumptions as before but introduce a mathematical

change to the survival function that will alter the optimal size.

2.5.1 General assumptions

1. The organism is iteroparous.

2. Fecundity, F, increases with body size, x, which does not change after maturity

(e.g., as in insects).

3. Survival, S, decreases with body size, x.

4. Fitness, W, is a function of fecundity and survival.

2.5.2 Mathematical assumptions

1. Maturity occurs at age 1 after which no further growth occurs.

2. Fecundity increases linearly with size at maturity, resulting in fecundity being

a uniform function of age:

Ft ¼ aF þ bFx ð2:17Þ

76 MOD E L I N G E VO L U T I ON

3. The instantaneous rate of mortality increases linearly with the body size

attained at age 1 and is constant per time unit. Under this assumption, survival

to age t is given by

St ¼ e�ðaSþbSxÞt ð2:18Þ

Note that tomake survival a declining function of body size, given the exponential

function, we replace the previous as�bsx with asþbsx.

4. Fitness, W, is the expected lifetime reproductive success, R0, given as the

cumulative product of survival and fecundity:

W ¼ R0 ¼
X1
t¼1

FtSt ¼
X1
t¼1

ðaF þ bFxÞe�ðaSþbSxÞt ð2:19Þ

We cannot now factor out the age-dependent effects from body size and hence the

optimal body size will not be the same as found previously.

2.5.3 Plotting the fitness function

Before seeking the turning point we first plot the fitness function to verify that it

has a turning point and the function is not oddly shaped such that the routines

locating the maximum will not home in on a single value, regardless of the

starting points. We shall assume the same parameter values as before (aF ¼ 0,

bF ¼ 4, aS ¼ 1, bS ¼ 0.5), and thus W ¼ P14xe�ð1þ0:5xÞt¼1.

R CODE (Figures 2.2 and 2.3):

The above summation is taken to infinity, which is generally not an option with a

numerical analysis. Thus first, we have to decide on howmany ages, n, we need to

consider in the summation. To do this we set body size, x, at some arbitrary but

reasonable value, say x ¼ 1. The following commands do the summation and plot

the results as a function of the number of ages. The program consists of a separate

function called SUMMATION that calculates the value of equation (2.19) from 1 to n.

It does this by

1. Generating an integer sequence from 1 to n and assigning this to a vector called

Age.

2. It then creates another vector called Wt, which is the age-specific component of

equation (2.19), namely 4xe�ð1þ0:5xÞt

3. Finally it computes the sum of the vector Wt using the R function sum.

The main program is as follows:

1. First sets the maximum number of ages, nmax, to use at 20.

2. Creates a single column matrix called n with the integer sequence 1 to nmax.

F I S H E R I A N O P T I MA L I T Y MOD E L S 77

3. While we could use a loop to calculate the summed value for each value of n, a

faster method is the use of the R function apply (whenever possible object-

oriented programming should be used).

4. Finally the results are plotted using the R function plot.

rm(list¼ls()) # remove all objects from memory

Function to calculate the summation of equation (2.19)

SUMMATION <- function(n)

{

x <- 1 # As before we set x ¼ 1

Age <- seq(from¼1, to¼n) # Sequence from 1 to n

Wt <- 4*x*exp(-(1þ0.5*x)*Age) # Vector of fitness at age t

return(sum(Wt)) # Return the summed value

}

MAIN PROGRAM

nmax <- 20 # Set maximum value for n

n <- matrix(seq(from¼1, to¼nmax)) # Vector of n values

W <-apply(n,1,SUMMATION)#ApplyfunctionSUMMATIONtoeachrow

Plot W vs n using ’l’ to designate a line

las¼number orientation on axes, lwd ¼ line width

plot(n,W,type¼’l’, xlab¼’Age, n’, ylab¼’Weight, Wt’, las¼1,

lwd¼3)

The summation quickly approaches its asymptotic value (Figure 2.2) and setting

the maximum age at 20 should be adequate for all reasonable values of x. Now we

change the summation function to sum for different values of x and plot the result

(Figure 2.3):

rm(list¼ls()) # Remove all objects from memory

Function to calculate the summation as a function of x

SUMMATION <- function(x)

{

Age <- seq(from¼1, to¼20) # Sequence from 1 to 20

Wt <- 4*x*exp(-(1þ0.5*x)*Age) # Vector of fitness at age t

return(sum(Wt)) # Return the summed value

}

MAIN PROGRAM

x<-matrix(seq(from¼0,to¼5,length¼100))#Vectorfrom0-5oflength100

W <- apply(x,1,SUMMATION) # Apply function SUMMATION to each row

Plot W vs x using ’l’ to designate a

line

las¼number orientation on axes, lwd

¼ line width

plot(x,W,type¼’l’, xlab¼’Body size, x’, ylab¼’Fitness, W’,

las¼1,lwd¼4)

MATLAB CODE: See Section 2.18.4.

78 MOD E L I N G E VO L U T I ON

2.5.4 Finding the maximum using the calculus

We are now assured that there is a maximal fitness, we know its approximate

value and can thus set the limits of the search. The summation is, in this case,

solvable and so we shall start by examining the exact solution.

A series that frequently occurs in life history models is the geometric series:

X1
i¼1

ai�1 ¼ 1þ aþ a2 þ a3 þ . . . ¼ 1

1� a
ð2:20Þ

where |a|<1 (i.e., absolute value of a is less than one). In the present case the

mortality function is a geometric series. For notational simplicity, let aF þ bFx ¼ A

and as þ bsx ¼ B, which then gives

Body size, x

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5

F
itn

es
s,

 W

Figure 2.3 Scenario 3: Fitness versus body size.

Age, n

W
ei

gh
t,

W
t

5

0.90

0.95

1.00

1.05

1.10

1.15

10 15 20

Figure 2.2 Scenario 3: Effect of varying length of summation on weight.

F I S H E R I A N O P T I MA L I T Y MOD E L S 79

W ¼
X1
t¼1

FtSt ¼
X1
t¼1

ðaF þ bFxÞe�ðasþbsxÞt ¼ A
X1
t¼1

e�Bt ð2:21Þ

To convert this into the form of equation (2.20) we note that e�Bt can be written as

e�Be�B(t�1) and thus a ¼ e�B then equation (2.21) becomes

W ¼ A
X1
t¼1

e�Bt ¼ Ae�B
X1
t¼1

e�Bðt�1Þ ¼ Ae�B

1� e�B
ð2:22Þ

We now have a simple function that can be differentiated, although it is a tedious

process and care has to be taken. The derivative using the chain rule (see Appendix

2) is the rather nasty looking equation:

dW

dx
¼ ðbFÞe�ðaSþbSxÞ

1� e�ðaSþbSxÞ

þ ðaF þ bFxÞ½�bSe
�ðaSþbSxÞ�

1� e�ðaSþbSxÞ

þ ðaF þ bFxÞe�ðaSþbSxÞð�1Þ½bSe�ðaSþbSxÞ�
½1� e�ðaSþbSxÞ�2

ð2:23Þ

We need to find the value of x at which dW
dx ¼ 0;, which allows us to simplify the

equation a little since e�ðaSþbSxÞ
1�e�ðaSþbSxÞ is common to all three terms. So the equation we

have to solve is

ðbFÞ þ ðaF þ bFxÞð�bSÞ þ ðaF þ bFxÞð�1Þ½bSeðaSþbSxÞ�
½1� e�ðaSþbSxÞ� ¼ 0 ð2:24Þ

To solve the above we use uniroot in R and solve in MATLAB.

R CODE:

Define a function FUNC that gives the value of equation (2.24) for a given value of x.

In themain program call uniroot to find the value of x at which FUNC(x) is zero:

Set up function to be evaluated

FUNC <- function(x){(4)þ(0þ4*x)*(�0.5)þ(0þ4*x)*(�1)*(0.5*exp

(�(1þ0.5*x)))/ (1�exp(�(1þ0.5*x)))}

MAIN PROGRAM

B <- uniroot(FUNC, interval¼ c(0,4))# Find root

B$root # Print out the value found

OUTPUT:

[1] 1.682812

Because we are only interested in positive values the lower limit is set at 0,

excluding the possible negative root. If there were two positive roots the one

80 MOD E L I N G E VO L U T I ON

closest to the lower limit would be given. We know in the present case, from the

plot (Figure 2.3) that there is only a single positive root and hence we do not need

to investigate further.

MATLAB CODE: See Section 2.18.5.

2.5.5 Finding the maximum using a numerical approach

For generality, we shall consider only the summation model.

R CODE:

We use the same summation function as before except that we take the negative

value, because the R function nlm finds the minimum of a function. The function,

nlm requires an initial estimate, p, which here we set at 1:

rm(list¼ls()) # Remove all objects from memory

Function to calculate the summation as a function of x

SUMMATION <- function(x)

{

Age <- seq(from¼1, to¼20) # Sequence from 1 to n

Wt <- 4*x*exp(-(1þ0.5*x)*Age) # Vector of fitness at age t

return(�sum(Wt)) #Returnthenegativesummedvalue

}

Main program

nlm(SUMMATION, p¼1)$estimate # Call nonlinear routine nlm

OUTPUT:

[1] 1.682810

MATLAB CODE: See Section 2.18.6.

2.6 Scenario 4: Adding age-specific mortality that affects the
optimum and using integration rather than summation

In using a summation we are making a statement about when the census is

taken, namely at time steps 1, 2, 3, etc. An alternate assumption is that the

process is more continuous and an integral is appropriate. Reiterating the

assumptions:

2.6.1 General assumptions

1. The organism is iteroparous.

2. Fecundity, F, increases with body size, x, which does not change after maturity

(e.g., as in insects).

F I S H E R I A N O P T I MA L I T Y MOD E L S 81

3. Survival, S, decreases with body size, x.

4. Fitness, W, is a function of fecundity and survival.

2.6.2 Mathematical assumptions

1. Maturity occurs at age 1 after which no further growth occurs.

2. Fecundity increases linearly with size at maturity, resulting in fecundity being

a uniform function of age:

Ft ¼ aF þ bFx ð2:25Þ

3. The instantaneous rate of mortality increases linearly with the body size

attained at age 1 and is constant per time unit. Under this assumption, survival

to age t is given by

St ¼ e�ðaSþbSxÞt ð2:26Þ

Note that tomake survival a declining function of body size, given the exponential

function, we replace the previous as�bsx with asþbsx.

4. Fitness, W, is the expected lifetime reproductive success, R0, given as the

cumulative product of survival and fecundity:

W ¼
Z1
1

FtStdt ¼
Z1
1

ðaF þ bFxÞe�ðaSþbSxÞtdt ð2:27Þ

As noted above, we cannot now factor out the age dependent effects from body

size.

2.6.3 Plotting the fitness function

There are two approaches to plottingW versus x: first, we could integrate equation

(2.27) exactly to give W as a function of x, and second, we could use a numerical

integration routine. The former is generally to be preferred but integration is

frequently either not possible or extremely difficult. MATLAB has a symbolic

integration routine but R does not.

Noting that
R
e�Btdt ¼ �e�Bt

B equation (2.27) can be integrated to give

W ¼ ðaF þ bFxÞ �e�ðaSþbSxÞt

aS þ bSx

� 	1
1

¼ 0þ aF þ bFx

aS þ bSx
e�ðaSþbSxÞ ð2:28Þ

R CODE (Figure 2.4):

82 MOD E L I N G E VO L U T I ON

We shall use the numerical integration function integrate, passing to it the

function to be integrated in a function which we shall call INTEGRAND, which

contains the expression to be integrated (i.e., ðaF þ bFxÞe�ðaSþbSxÞt). Note that the

integration is over Age but that x is also needed. Further, note that because we

have to pass a single value of xwe use a loop rather than apply. Parameter values

are Af ¼ 0, Bf ¼ 8, As ¼ 1, and Bf ¼ 0.5.

rm(list¼ls()) # Remove all objects from memory

Function to do numerical integration

INTEGRAND <- function(age,x)

{

Af <- 0; Bf <- 8 ; As <- 1 ;Bs <- 0.5 # parameter values

return ((Af-Bf*x)*exp(-(AsþBs*x)*age)) # return function

}

MAIN PROGRAM

n <- 100 # Number of points

z <- seq(0,3,length¼n) # Create a vector for z 0 to 3

W <- matrix(0,n,1) # Create a vector W to hold results

for (i in 1:n) # Iterate over n “body sizes”

{

x <- z[i] # Set value of x

Integrate from 1 to infinity and add to W

W[i] <- integrate(INTEGRAND,1,Inf,x)$value

}

plot(z,-W,type¼’l’, xlab¼’Body size, x’, ylab¼’Fitness, W’,

las¼1,lwd¼4)

MATLAB CODE: See Section 2.18.7.

Body size, x

F
itn

es
s,

 W

0.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5 1.0 1.5 2.0 2.5 3.0

Figure 2.4 Scenario 4: Fitness versus body size.

F I S H E R I A N O P T I MA L I T Y MOD E L S 83

2.6.4 Finding the maximum using the calculus

Taking the derivative of W with respect to x gives

dW

dx
¼ bF

aS þ bSx
e�ðaSþbSxÞ � ðaF þ bFxÞbS

aS þ bSx
e�ðaSþbSxÞ � ðaF þ bFxÞbS

ðaS þ bSxÞ2
e�ðaSþbSxÞ

¼ e�ðaSþbSxÞ

aS þ bSx

(
bF � ðaF þ bFxÞbs � ðaF þ bFxÞbs

aS þ bSx

) ð2:29Þ

This can also be obtained using deriv in R or diff in MATLAB.

R CODE:

y <- deriv(
(0þ4*x)*exp(-(1þ0.5*x))/(1þ0.5*x),“x”)

y # OUTPUT y

OUTPUT:

expression({

.expr3 <- -0 þ 4 * x

.expr5 <- 1 þ 0.5 * x

.expr7 <- exp(-.expr5)

.expr8 <- .expr3 * .expr7

.value <- .expr8/.expr5

.grad <- array(0, c(length(.value), 1L), list(NULL, c(“x”)))

.grad[, “x”] <- (4 * .expr7 - .expr3 * (.expr7 * 0.5))/.expr5 -

.expr8 * 0.5/.expr5 2̂

attr(.value, “gradient”) <- .grad

.value

})

We do not need to interpret the output, merely store it as a variable, say y. To find

the value of x at which dW
dx ¼ 0, we find the value of x that makes the components

within {} of equation (2.29) equal to zero.

R CODE:

Two possible routes are shown. In the first the derivative is supplied directly in the

function FUNC, whereas in the second the derivative is obtained in FUNC using the

R function deriv. In either case the main program calls uniroot to find the root:

rm(list¼ls()) # Remove all objects from memory

Function to evaluate {} in eqn (2.29)

FUNC <- function(x){4þ0.5*(0-4*x)-(0þ4*x)*0.5/(1þ0.5*x)}

B <- uniroot(FUNC, interval¼ c(0,4))# Set lower interval ¼ 0

B$root # Print out the value found

OR using R to obtain the derivative:

Using R to obtain the derivative

rm(list¼ls()) # Remove all objects from memory

84 MOD E L I N G E VO L U T I ON

Function to obtain the gradient at a value w

FUNC <- function(w)

{

y<-deriv(
(0þ4*x)*exp(-(1þ0.5*x))/(1þ0.5*x),“x”)#Getthederivative

x <� w # Set x equal to w

z <� eval(y) # Evaluate the derivative at w

d <� attr(z,“gradient”) # Assign the gradient value to d

return(d) # Return d to the main program

}

MAIN PROGRAM

#Root must be enclosed by the limits set by the user, here set at 0 to 4

B <- uniroot(FUNC, interval¼ c(0,4))

B$root # Print out the value found

OUTPUT:

[1] 1.236068

In the present scenario we can actually go a step further and find an exact

solution. First we place all terms enclosed by {} in equation (2.29) over asþbsx to

give

bF � ðaF þ bFxÞbS � ðaF þ bFxÞbS
aS þ bSx

¼ �aFbSaS � xðbFbSaS þ aFb
2
SÞ � x2bFb

2
S

aS þ bSx
ð2:30Þ

The numerator is a quadratic equation (ax2þbxþcþ¼0) for which the roots can be

obtained exactly from the standard formula, x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p
2a , which gives 1.236068,

the same as found previously. Notice that the optimum body size, x, is not the

same as found using the summation formula. Whether one uses an integral or a

sum will depend on the biological assumptions. In the present case the integral

model can be more readily solved and thus if there are no strong reasons to prefer

one model over the other then the integral model is clearly the better choice.

Think carefully about the biological assumptions in relation to the ease with

which the model can be solved, but never sacrifice necessary biological realism

for mathematical convenience.

MATLAB CODE: See Section 2.18.8.

2.6.5 Finding the maximum using a numerical approach

R CODE:

We use the two R functions integrate and nlm. The function value for a given

age and x, ðaF þ bFxÞe�ðaSþbSxÞage, is determined from the user-supplied function

INTEGRAND. Remember that we have to return the negative of fitness, because

we are finding the minimum! To obtain the integral the user-supplied function

FUNC, calls the R function integrate, passing to it INTEGRAND. The optimum x is

found by passing FUNC to nlm:

F I S H E R I A N O P T I MA L I T Y MOD E L S 85

rm(list¼ls()) # Remove all objects from memory

Function to supply components for numerical integration

INTEGRAND <- function(age,x) # Calculate function value

{

Af <- 0; Bf <- 4 ; As <- 1 ;Bs <- 0.5 # parameter values

return (-(AfþBf*x)*exp(�(AsþBs*x)*age))# return function value

}

Function to call integration routine

FUNC <- function(x){integrate(INTEGRAND,1,Inf,x)$value}

Minimization routine

nlm(FUNC,p¼1)$estimate

OUTPUT:

[1] 1.236067

MATLAB CODE: See Section 2.18.9.

2.7 Scenario 5: Maximizing the Malthusian parameter, r,
rather than expected lifetime reproductive success, R0

Thus far we have assumed that the appropriate measure of fitness is the expected

lifetime reproductive success, R0. Whereas this measure of fitness may be appro-

priate for a stable population a more general fitness measure is the Malthusian

parameter, r, which is equal to the population rate of increase at a stable age

distribution:

Z1
0

e�rtlðtÞmðtÞdt ¼ 1

X1
t¼1

e�rtltmt ¼ 1

ð2:31Þ

where l(t), lt are the probabilities of survival to age t andm(t),m1 are the age specific

female births (¼ fecundities/2, assuming an equal sex-ratio). The different nota-

tions used in the two equations are generally of little or no consequence (the

difference equation could equally well have been written in the same manner as

the integral equation) and used here simply to illustrate that differences in nota-

tion should not be taken to imply differences in interpretation. Note that the

difference equation is commenced at the end of the first time period, since we

necessarily assume that fecundity is zero at birth (of course we could start from

zero if we simply set m0¼0). Although these equations do not directly encompass

the male contribution we could write a similar equation for males by relating his

mating success to the population growth rate. The assumption underlying the use

of r is that any mutation that increased r would increase in frequency in the

population. This assumption is intuitively reasonable and has been verified

(Lande 1982; Charlesworth 1994).

86 MOD E L I N G E VO L U T I ON

We shall make the same assumptions as in the previous scenario, except that

the fitness measure will be taken to be r.

2.7.1 General assumptions

1. The organism is iteroparous.

2. Fecundity, F, increases with body size, x, which does not change after maturity

(e.g., as in insect).

3. Survival, S, decreases with body size, x.

4. Fitness, W, is a function of fecundity and survival.

2.7.2 Mathematical assumptions

1. Maturity occurs at age 1 after which no further growth occurs.

2. Fecundity increases linearly with size at maturity, resulting in fecundity being

a uniform function of age:

Ft ¼ aF þ bFx ð2:32Þ

3. The instantaneous rate of mortality increases linearly with the body size

attained at age 1 and is constant per time unit. Under this assumption, survival

to age t is given by

St ¼ e�ðaSþbSxÞt ð2:33Þ

Note that tomake survival a declining function of body size, given the exponential

function, we replace the previous as�bsx with asþbsx.

4. Fitness,W, is the Malthusian parameter r. Taking r to be the measure of fitness,

the fitness function is given by the solution of the characteristic equation:

Z1
1

e�rtðaF þ bFxÞe�ðaSþbSxÞtdt ¼ 1 ð2:34Þ

where the initial value of the integral is set at 1, as this is the age of first

reproduction.

The two exponents can be absorbed into a single term, giving

Z1
1

ðaF þ bFxÞe�ðaSþbSxþrÞtdt ¼ 1 ð2:35Þ

Now the above equation has the same general form as equation (2.28) and so can

be integrated to give

1 ¼ ðaF þ bFxÞ �e�ðaSþbSxþrÞt

aS þ bSxþ r

� 	1
1

¼ 0þ aF þ bFx

aS þ bSxþ r
e�ðaSþbSxþrÞ ð2:36Þ

F I S H E R I A N O P T I MA L I T Y MOD E L S 87

2.7.3 Plotting the fitness function

To plot r, our fitness measure, as a function of x we must solve equation (2.35) or

(2.36) for each value of x. We shall first examine methods to estimate r without

ourselves doing the integration (i.e., using equation (2.35)) and then methods

using equation (2.36).

2.7.3.1 Using the program to do the integration

R CODE (Figure 2.5):

We first consider numerical integration to estimate r. The strategy is to iterate

over a range of x and for each value calculate r.

1. INTEGRAND calculatesðaF þ bFxÞe�ðaSþbSxþrÞage.

2. INTEGRAL calls the R function integrate to obtain the integral, passing to it

INTEGRAND.

3. The function RCALC uses the R function uniroot to find the value of r which

satisfies the characteristic equation (2.35) for a given x.

4. The main program creates a single column matrix of x values and uses the R

function apply to use RCALC on each x value (row of matrix x) to get the

requisite value of r, stored in the vector r.

5. The vectors x and r are then used in plot to display the relationship between r

(fitness) and x (body size). In sequence, for a given x, RCALC calls uniroot

which calls INTEGRAL which in turn calls INTEGRAND.

rm(list¼ls()) # Remove all objects from memory

Function to output function to be integrated

INTEGRAND <- function(age,x,r)

{

Af <- 0; Bf <- 4*4 ; As <- 1 ;Bs <- 0.5 # parameter values

return ((AfþBf*x)*exp(�(AsþBs*xþr)*age)) # return function

}

Function to integrate characteristic equation and return 1-its

value

INTEGRAL <- function(r,x)

{ 1-integrate(INTEGRAND,1,Inf,x,r)$value} # 1-Characteristic

equation

Function to find r given x

RCALC <- function(x){uniroot(INTEGRAL, interval¼c(1e-7,10),

x)$root}

MAIN PROGRAM

x <- matrix(seq(0.5,3, length¼100)) # x ranging from 0.5 to 3

length¼100

r <- apply(x,1,RCALC) # Calculate r for given x

plot(x,r,type¼’l’, xlab¼’Body size, x’, ylab¼’Fitness,

r’,las¼1,lwd¼4)

OUTPUT: Plot shown in Figure 2.5.

88 MOD E L I N G E VO L U T I ON

MATLAB CODE: See Section 2.18.10.

2.7.3.2 User supplied solution to the integral

Using the integrated function shown in equation (2.36) is simpler. However,

because many functions cannot be integrated analytically, it is less general.

R CODE (Figure 2.5):

rm(list¼ls()) # Remove all objects from memory

Function to evaluate equation (2.36)

FUNC <- function(r,x)

{

Af <- 0; Bf <- 4*4 ; As <- 1 ;Bs <- 0.5 # Parameter values

S <-exp(-(rþAsþBs*x))*(AfþBf*x)/(AsþBs*xþr)#RHSofequation

return(1-S) # Subtract 1

}

Function to find r given x using uniroot

RCALC <- function(x){uniroot(FUNC, interval¼c(1e-07,10),x)$root}

MAIN PROGRAM – same as previous

x <- matrix(seq(0.5,3, length¼100)) # X ranging from 0.5 to 3

r <- apply(x,1,RCALC) # Calculate r for given x and store

plot(x,r,type¼’l’,xlab¼“Size,x”,ylab¼“Fitness,r”,las¼1,lwd¼4)

MATLAB CODE: See Section 2.18.10.

2.7.4 Finding the maximum using the calculus

Our fitness measure is no longer on one side of the equation, and the equation

cannot be simplified to make this so. The equation can be differentiated using

implicit differentiation (see Appendix 2). For convenience we first take logs to

convert the function into one that is additive:

Body size, x
0.5

0.35

0.40

0.45

0.50

0.55

1.0 1.5 2.0 2.5 3.0

F
itn

es
s,

 r

Figure 2.5 Scenario 5: Fitness versus body size.

F I S H E R I A N O P T I MA L I T Y MOD E L S 89

0 ¼ ln ðaF þ bFxÞ � ðaS þ bSxþ rÞ � lnðaS þ bSxþ rÞ
¼ T1� T2� T3

ð2:37Þ

Now taking each term separately we have

T1 :
dr

dx
¼ bF

aF þ bFx

T2 :
dr

dx
¼ bS þ dr

dx

T3 :
dr

dx
¼ 1

aS þ bSxþ r

0
@

1
A dr

dx

0
@

1
Aþ bS

aS þ bS þ r

ð2:38Þ

Gathering the terms together and rearranging we arrive at

dr

dx
1þ 1

aS þ bSxþ r

� �
¼ bF

aF þ bFx
� bS � bS

aS þ bSxþ r
ð2:39Þ

Now dr
dx ¼ 0 when the right-hand side equals zero, provided the term in parenth-

eses on the left-hand side does not also equal zero, which will not generally be the

case. Thus we can rearrange the right-hand side to make r a function of the

parameters and x:

r� ¼ bSðaF þ bFx
�Þ

bF � bSaF � bSbFx�
� bSx

� � aS ð2:40Þ

where r* is the maximum value of r, obtained at x*. To find x* we substitute

equation (2.40) into equation (2.37) to obtain:

0¼ ln ðaF þ bFx
�Þ � ðaS þ bSx

� þ r�Þ � ln ðaS þ bSx
� þ r�Þ

0¼ ln ðaF þ bFx
�Þ � aS þ bSx

� þ bSðaF þ bFx
�Þ

bF � bSaF � bSbFx�
� bSx

� � aS

2
4

3
5

�ln aS þ bSx
� þ bSðaF þ bFx

�Þ
bF � bSaF � bSbFx�

� bSx
� � aS

2
4

3
5

ð2:41Þ

which can be solved numerically.

R CODE:

I here illustrate three functions that can be used to locate the required value of x.

2.7.4.1 Use of uniroot

The first is uniroot. Note that the limits are set fairly close to the required value.

If the limits are set too far apart (e.g., uniroot(f¼RFUNC,interval¼c

(1.2,3))$root) the function may fail, R returning the error message:

Error in uniroot(f ¼ RFUNC, interval ¼ c(1.2, 3)) :

f.upper ¼ f(upper) is NA

In addition: Warning message:

In log(As þ Bs * x þ r) : NaNs produced

90 MOD E L I N G E VO L U T I ON

The above failure emphasizes the importance of making a preliminary plot to

determine the approximate value of x at which r is a maximum:

rm(list¼ls()) # Remove all objects from memory

Function to calculate value of equation (2.41) for a given value of x

RFUNC <- function(x)

{

Af <- 0;Bf<-4*4;As<-1;Bs<-0.5 # Set parameter va-

lues

r <- Bs*(AfþBf*x)/(Bf-Bs*Af-Bs*Bf*x)-Bs*x-As # r from eqn (2.40)

return(log(AfþBf*x)-(AsþBs*xþr)-log(AsþBs*xþr))

}

MAIN PROGRAM

uniroot(f¼RFUNC,interval¼c(1.2,1.8))$root

OUTPUT:

[1] 1.389974

2.7.4.2 Use of nlm

An alternate approach is to use nlm by taking the absolute value in FUNC, in which

case the minimum must be zero.

rm(list¼ls()) # Remove all objects from memory

Function to calculate value of equation (2.41) for a given value of x

RFUNC <- function(x)

{

Af<-0;Bf<-4*4;As<-1;Bs<-0.5 # Set parameter values

r <- Bs*(AfþBf*x)/(Bf-Bs*Af-Bs*Bf*x)-Bs*x-As # r from eqn (2.40)

return(abs(log(AfþBf*x)-(AsþBs*xþr)-log(AsþBs*xþr)))

}

MAIN PROGRAM

nlm(RFUNC, p¼1.2)$estimate

Because x is not constrained, this method is not very satisfactory and although the

correct answer is found warning messages are generated.

OUTPUT:

[1] 1.389943

Warning messages:

1: In log(As þ Bs * x þ r) : NaNs produced

2: Innlm(RFUNC,p¼1.2):NA/Infreplacedbymaximumpositivevalue

2.7.4.3 Use of optimize

The third method is to use the routine optimize, which can find either a

minimum or maximum and allows one to enter upper and lower limits for the

search. As in the case of nlm we use the absolute value of the function.

F I S H E R I A N O P T I MA L I T Y MOD E L S 91

rm(list¼ls()) # Remove all objects from memory

Function to calculate value of equation (2.41) for a given value of x

RFUNC <- function(x)

{

Af<-0;Bf<-4*4;As<-1;Bs<-0.5 # Set parameter values

r<-Bs*(AfþBf*x)/(Bf-Bs*Af-Bs*Bf*x)-Bs*x-As #rfromeqn(2.40)

return(abs(log(AfþBf*x)-(AsþBs*xþr)-log(AsþBs*xþr)))

}

optimize(f¼RFUNC,interval¼c(1.2,1.8),maximum¼FALSE)$minimum

OUTPUT:

[1] 1.389956

As with nlm, if the limits are too broad a warning message may be generated:

optimize(f ¼ RFUNC, interval ¼ c(1.2,3),maximum ¼ FALSE)$minimum

OUTPUT:

[1] 1.389951

Warning messages:

1: In log(As þ Bs * x þ r) : NaNs produced

2: In optimize(f ¼ RFUNC, interval ¼ c(1.3, 3), maximum ¼ FALSE) :

NA/Inf replaced by maximum positive value

Note that the four outputs are close but not exactly the same.

MATLAB Code: See Section 2.18.11.

2.7.5 Finding the maximum using a numerical approach

We shall consider two approaches: first, using the solved integral equation (2.36)

and second, using numerical integration to solve the original model (equation

[2.35]). The latter method is the most general but will also be the most time

consuming. Even if the integral can be solved, it is good practice to use the latter

method as a check on the correctness of the integration.

2.7.5.1 Using the integrated function (equation [2.36])

The main program uses the R function optimize, giving it RCALC which uses

uniroot to find the root of the function specified in FUNC.

rm(list¼ls()) # Remove all objects from memory

Function to get integral value

FUNC <- function(r,x)

{

Af <- 0; Bf <- 4*4 ; As <- 1 ;Bs <- 0.5 # parameter values

S <- exp(-(rþAsþBs*x))*(AfþBf*x)/(AsþBs*xþr) # Function value

return(1-S)

}

92 MOD E L I N G E VO L U T I ON

Function to find r given x

RCALC <- function(x){uniroot(FUNC, interval¼c(1e-07,10),x)

$root}

MAIN PROGRAM

Use optimize which allows us to constrain the search

Tell optimize that we want the maximum

optimize(f ¼ RCALC, interval ¼ c(.5,3),maximum ¼ TRUE)$maximum

OUTPUT:

[1] 1.389946

2.7.5.2 Using numerical integration of the function.

The main program uses optimize, giving it RCALC which uses uniroot to find

the root of the function specified in FUNC, which itself calls INTEGRAND to obtain

the integral.

rm(list¼ls()) # Remove all objects from memory

Function to do numerical integration of eqn (2.34)

INTEGRAND <- function(age,x,r)

{

Af <- 0; Bf <- 4*4 ; As <- 1 ;Bs <- 0.5 # parameter values

return ((AfþBf*x)*exp(�(AsþBs*xþr)*age)) # return function

}

Function to integrate characteristic equation

FUNC <- function(r,x){1-integrate(INTEGRAND,1,Inf,x,r)$value}

Function to find r given x

RCALC<-function(x){uniroot(FUNC,interval¼c(1e-07,10),x)$root}

MAIN PROGRAM

optimize(f¼RCALC,interval¼c(1.2,1.8),maximum¼TRUE)$maximum

OUTPUT:

[1] 1.389934

MATLAB CODE: See Section 2.18.12.

2.8 Scenario 6: Stochastic variation in parameters

Within any generation there is likely to be stochastic variation in parameter

values. The scenario considered here is that in which one or more parameters

vary within generations according to some probability distribution with the

same distribution among generations. For variation in a single parameter, y,
fitness for a given value of x is given by

R
PðyÞf ðy; xÞdy, where P(y) is the

probability density function and f(y,x) is the fitness function for a given y
and x. A possible model would be a normal density function, so that the

probability of a value of y is given by PðyÞ ¼ 1
sy

ffiffiffiffi
2p

p e
�1

2

y�my
sy

 �2

, where m(y) is the

mean parameter value and s2y is its variance. Such a function could be

F I S H E R I A N O P T I MA L I T Y MOD E L S 93

problematic for traits such as survival that can only vary between zero and

one, because the probability function must either be truncated or values less

than zero set to zero and values greater than one set to one. The problem

with adopting such a model is that the probability distribution could show

unlikely rises at zero and one. Considerable care should be taken in the

selection of a probability function and in general it is advisable to use several

functions or one that can take a wide variety of shapes to ensure that the

results are not uniquely dependent on the function chosen. The analysis of

temporal variation in a single parameter is dealt with in the following two

scenarios, the methods discussed in these scenarios are readily adapted to the

present. Here I shall consider the somewhat more complex case, but that

which is most likely to be appropriate for stochastic variation, in which

several parameters vary. If there is variation in several parameters we need

to take into account possible correlations between parameter values. This

becomes a particular concern when the parameters are themselves traits,

where genetic and phenotypic correlations may be highly likely. For two

parameters the general form is a simple extension of the one trait case,

namely
R R

Pðy1; y2Þf ðy1; y2; xÞdy1dy2. Extension to more parameters is obvious

but solving such equations can prove difficult. A brute force approach will

always work but could be time consuming if the model is very detailed. To

illustrate the general approach using brute force I shall consider the case of

variation in two uncorrelated parameters. The case considered here is con-

ceptually the same as in Scenario 1, except that variation is assumed for

the parameters of the survival function.

2.8.1 General assumptions

1. The organism is semelparous.

2. Fecundity, F, increases with body size, x.

3. Survival, S, decreases with body size, x.

4. Two of the parameters in the functions describing the above two traits are

variable within generations but the same distribution occurs among genera-

tions.

5. Fitness, W, is a function of fecundity and survival.

2.8.2 Mathematical Assumptions

1. As before, fecundity increases linearly with body size:

F ¼ aF þ bFx ð2:42Þ
where aF and bF are constants.

94 MOD E L I N G E VO L U T I ON

2. Survival decreases linearly with body size:

S ¼ aS � bSx ð2:43Þ
where both aS and bS, vary within generations and are specified by independent

probability density functions. We shall assume the simplest probability function,

namely a uniform function, which is defined as P(y) ¼ c, where c is a constant

determined from the minimum, ymin, and maximum, ymax, values of the parame-

ter y by the cumulative probability function:

Zymax

ymin

cy ¼ 1

½y�ymax

ymin
¼ 1

cðymax � yminÞ ¼ 1
c ¼ 1=ðymax � yminÞ

ð2:44Þ

In the present case the two functions are defined as P(as) ¼ cas and P(bs) ¼ cbs.

3. As noted above, the appropriate measure of fitness is the average of the fitness

values:

W ¼
Zamax

amin

Zbmax

bmin

PðaSÞPðbSÞðaF þ bFxÞðaS � bSxÞdaSdbS ð2:45Þ

Because aS and bS are independent one might be led to think that the mean fitness

will indeed be equal to the fitness using the mean values. This would indeed be

true if the variable parameters were aF and bF (i.e., the mean of aFþbFx is simply

equal to maf þ mbf x, where m stands for the mean). However, survival must vary

within the range 0–1 and hence there are combinations in equation (2.45) that are

not permissible (and hence this equation as written is not strictly correct). For any

given x value the set of pairs of aS and bS must be restricted to those that ensure

that survival does not fall outside 0–1. For combinations in which survival is less

than zero, survival is set to zero and for combinations in which survival is greater

than 1, survival is set to 1.

2.8.3 Plotting the fitness function

The basic approach is to generate two vectors containing values of aS and bS
generated from the appropriate probability distributions (or multivariate distribu-

tion if the parameters are correlated). The uniform distribution is generated in

R by runif and in MATLAB by rand. It is generally useful to set the seed prior

(set.seed(n) in R and rand(‘twister’, n) in MATLAB, where n is set by the

user) to the use of any random number generator as this allows the replication of

runs, which can be very useful in debugging. After generation of the two values

F I S H E R I A N O P T I MA L I T Y MOD E L S 95

the vector of survival probabilities is calculated and values checked that they fall

within the acceptable range (0–1). In addition to calculating mean fitness as a

function of x (body size), the following code also calculate fitness using the mean

parameter values. For each parameter vectors of 1,000 random values are gener-

ated. These vectors are then used in calculating the fitness for a given body size x.

The survival vector Surv is 1,000 units long. For simplicity and without loss of

significant run time a loop is used to iterate over values of body size.

R CODE (Figure 2.6):

rm(list¼ls()) # Remove all objects from memory

Af <- 2; Bf <- 2 # Invariant parameter values

Amin <- 0.3; Amax <- 1 # Min and max values of aS

Bmin <- 0; Bmax <- 0.2 # Min and max values of bS

Amean <- (AmaxþAmin)/2 # Mean value of aS

Bmean <- (BmaxþBmin)/2 # Mean value of bS

Calculate n parameter combinations

n <- 1000 # Number of values of aS and bS to generate

We are assuming a uniform distribution of values

set.seed(10) # Set the random number seed

Generate n random numbers from Bmin to Bmax

Bs <- runif(n, min¼Bmin, max¼Bmax)

Generate n random numbers from Amin to Amax

As <- runif(n, min¼Amin, max¼Amax)

x <- seq(from¼0, to¼6, length¼100) # Bodysizesfrom0to6

W <- matrix(0,100,2) # Matrix to take fitness values

for (i in 1: 100) # Iterate over x values

{

Surv <- As�Bs*x[i] # Vector of survivals

Check that no survival < 0. If so then set to zero

Surv[Surv<0] <- 0

Check that no survival > 1. If so then set to 1

Surv[Surv>1] <- 1

Column 1 contains fitness for variable parameters

W[i,1] <- mean((AfþBf*x[i])*Surv)

Col 2 contains fitness using mean parameter values

W[i,2] <- (AfþBf*x[i])*(Amean-Bmean*x[i])

}

Plot fitness¼W vs x for both columns on same graph

plot(x,W[,1], xlab¼’Body size, x’, ylab¼’Fitness, W’,las¼1,

lwd¼4) # Dots

lines(x,W[,2], lwd¼4) # Line

MATLAB CODE: See Section 2.18.13.

Notice that the two parameter vectors are outside of the loop over x. This is impor-

tant for two reasons: first, because only one pair of vectors is calculated, it speeds up

96 MOD E L I N G E VO L U T I ON

the program and second, the fitnesses for the different values of x are compared

against the same set of parameters. It is quite evident from the twoplots in Figure 2.6

that the optimum body size cannot be calculated using the parameter means.

2.8.4 Finding the maximum using the calculus

In some cases it may be possible to integrate the fitness function and then solve

the resultant function either analytically or numerically. In this particular case

this is actually rather difficult because the integration limits are actually functions

of x and there may be discontinuities because of setting survival equal to 1 if the

survival function exceeds 1. Integration of equation (2.45) as written actually leads

to the prediction that the optimal value of x is the same as that using the mean

parameter values, which is clearly incorrect (Figure 2.6). Here I shall use the

numerical integration routines in R and MATLAB. The multidimensional integra-

tion routine in R is called adapt and must be loaded as a separate package (copy

the file from the web source http://cran.r-project.org/web/packages/adapt/index.

html into the library folder of R). It was necessary to adjust some of the default

values in the routines adapt and nlm to get something approaching convergence

to a consistent value. The integration routine adaptworks by generating a grid of

As and Bs values set by Amin, Amax, Bmin, and Bmax and using these to numeri-

cally evaluate the integral, where the function is defined in the function INTEGRAND.

Body size, x

0

1.5

2.0

2.5

1 2 3 4 5 6

F
itn

es
s,

 W

Figure 2.6 Scenario 6: Two measures of fitness versus body size. Solid curve shows results
of using mean values (incorrect) and beaded lines shows correct curve.

F I S H E R I A N O P T I MA L I T Y MOD E L S 97

http://cran.r-project.org/web/packages/adapt/index.html
http://cran.r-project.org/web/packages/adapt/index.html

Note that this function does not consist of a single equation but a series of steps that

evaluate whether survival after being calculated according to As – Bs*x should be

reset to 0 or 1. The function adapt calls INTEGRAND and adapt is called by the

function FITNESS, which is itself called by nlm or optimize in the main program.

R CODE:

rm(list¼ls()) # Remove all objects from memory

library(adapt) # Make sure that adapt is loaded

INTEGRAND <- function(Y,x) # Define function to be integrated

{

Af <- 2; Bf <- 2 # Invariant parameter values

Ca <- 1/0.7; Cb <- 5

Y[1] ¼ As and Y[2] ¼ Bs

Surv <- Y[1]-Y[2]*x # Vector of survivals

Check that no survival < 0. If so then set to zero

Surv[Surv<0] <- 0

Check that no survival > 1. If so then set to 1

Surv[Surv>1] <- 1

return((AfþBf*x)*Surv*Cb*Ca)

}

FITNESS<- function(x) # Function that calls adapt for a given x

{

Amin <- 0.3; Amax <- 1 # Min and max values of aS

Bmin <- 0; Bmax <- 0.2 # Min and max values of bS

W <- adapt(2, lo¼c(Amin,Bmin), up¼c(Amax,Bmax), minpts ¼ 1000,

functn¼INTEGRAND, x¼x)

return(-W$value) # Return negative of fitness

}

MAIN PROGRAM

nlm(FITNESS,p¼1,steptol¼1e-5) #Notechangeinsteptol

optimize(f¼FITNESS,interval¼c(1,4),maximum¼FALSE)#Alternate

method

OUTPUT: (modified slightly)

> nlm(FITNESS,p=1,steptol = 1e-5)
$minimum [1] −2.897318
$estimate [1] 3.324141
$gradient [1] −0.01254321
$code [1] 2
$iterations [1] 13
> optimize(f=FITNESS,interval=c(1,4), maximum=FALSE)
$minimum [1] 3.368978
$objective [1] −2.897131

The two routines nlm and optimize give slightly different answers. The termina-

tion code for nlm indicates that it is not clear that a minimum has been attained.

98 MOD E L I N G E VO L U T I ON

In fact it was necessary to change the default step tolerance steptol from 1e-6

to 1e-5 to achieve this (further changes did not change the result). Notice also that

minpts in adapt has been changed from its default of 100 to 1,000. These

changes were made to try and make the two optimization routines agree as

much as possible. It is very important to carefully check the results of numerical

methods by several pathways, if at all possible.

MATLAB CODE: See Section 2.18.14.

2.8.5 Finding the maximum using a numerical approach

The approach used here is a mixture of a brute force approach and non-linear

optimization. For each value of x 10,000 values are calculated and nlm then used to

locate the value of x at which fitness is maximized (i.e., –W is minimized). To check

on consistency the process is replicated 10 times and the mean and standard

deviation calculated. Note that the random number seed is given outside the

replication loop (or we would just be generating the same sequence each time)

and that the same set of random parameter values are used within a replicate run.

R CODE:

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x,As,Bs)

{

Af <- 2; Bf <- 2 # Invariant parameter values

Surv <- As�Bs*x # Vector of survivals

Check that no survival < 0. If so then set to zero

Surv[Surv<0] <- 0

Check that no survival > 1. If so then set to 1

Surv[Surv>1] <- 1

W <- mean((AfþBf*x)*Surv)

return(-W)

}

MAIN PROGRAM

Amin <- 0.3; Amax <- 1 # Min and max values of aS

Bmin <- 0; Bmax <- 0.2 # Min and max values of bS

Calculate n parameter combinations

n <- 10000 # Number of values of aS and bS to generate

We are assuming a uniform distribution of values

Make several runs. Here we use 10

REP <- matrix(0,10) # Create matrix to hold replicate

set.seed(10) # Set seed for random number generator

for(i in 1:10) # Iterate over replicates

{

Bs <- runif(n, min¼Bmin, max¼Bmax) # Vector of values of Bf

As <- runif(n, min¼Amin, max¼Amax) # Vector of values of As

REP[i]<- nlm(FITNESS,p¼REP[i],As,Bs)$estimate # Optimum for

this run

F I S H E R I A N O P T I MA L I T Y MOD E L S 99

}

print(c(mean(REP), sd(REP))) # Print mean and standard deviation

OUTPUT:

[1] 3.36934528 0.03739426

The mean of the 10 replicate runs closely matches that obtained using optimize

(3.368978). Because of the time required to do the numerical integration, there

was little difference in run time between the two approaches.

MATLAB CODE:See Section 2.18.15.

2.9 Scenario 7: Discrete temporal variation in parameters

In the real world values will vary among generations either because of genetic or

environmental variation. In this scenario we shall consider the consequences of

discrete temporal stochastic variation in a single parameter. Within each genera-

tion the parameter takes a particular value for all individuals. As in Scenario 6, the

particular case is conceptually the same as in Scenario 1, except that a parameter

of the survival function varies temporally.

2.9.1 General assumptions

1. The organism is semelparous.

2. Fecundity, F, increases with body size, x.

3. Survival, S, decreases with body size, x.

4. At least one of the parameters in the functions describing the above two traits is

temporally variable.

5. Fitness, W, is a function of fecundity and survival.

2.9.2 Mathematical assumptions

1. Fecundity increases linearly with body size:

F ¼ aF þ bFx ð2:46Þ

where aF and bF are constants.

2. Survival decreases linearly with body size:

S ¼ aS � bS;ix ð2:47Þ

where bS,i varies from generation to generation, as indexed by i. In this particular

case bS takes one of the following values with the probability, Pi, shown in

parentheses: 0.10 (0.1), 0.12 (0.3), 0.14 (0.4), or 0.2 (0.2). Note that the sum of the

probabilities must be 1.

3. In a deterministic world fitness, W, is the expected lifetime reproductive

success, R0, given as the product of Fecundity and Survival. However, in a

100 MODE L I NG E V O L U T I O N

temporally variable environment the appropriate measure of fitness is the

geometric average (Roff, 2002, chapter 1):

W ¼
Yi¼4

i¼1

½ðaF þ bFxÞðaS � bS;ixÞ�Pi ð2:48Þ

Working with products is generally not a good policy as the numbers can quickly

become very small or large. It is more convenient to take logs, thus converting the

product into a summation:

logW ¼ log

�Yi¼4

i¼1

½ðaF þ bFxÞðaS � bS;ixÞ�P1

¼
Xi¼4

i¼1

Pilog½ðaF þ bFxÞðaS � bS;ixÞ�
ð2:49Þ

As always, we first ask if fitness has a maximum value at an intermediate value

of x.

2.9.3 Plotting the fitness function

Because we have converted the fitness function to a summation there is nothing

new introduced here. Parameter values are given in the function. An important

aspect is that W approaches minus infinity as x approaches 3 and so the range in

x is kept below 3.

R CODE:

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x) # Function to calculate log of fitness

{

Af <- 2; Bf <- 2 ; As <- 0.6 # Parameter values

pBs <- c(0.1,0.3,0.4,0.2) # Vector of probabilities for Bs

Bs <- c(0.1,0.12,0.14,0.2) # Vector of Bs values

W.ind <- (AfþBf*x)*(As�Bs*x) # Fitness values for each Bs value

log.W <- -sum(pBs*log(W.ind)) # log Fitness

return(log.W)

}

MAIN PROGRAM

x <- matrix(seq(0,2.99,length¼100))# Values. Note W ¼INF at x¼3

LOG.W <- apply(x,1,FITNESS) # Calc log(fitness) values

Plot fitness¼exp(-W) vs x

plot(x,exp(-LOG.W),xlab¼“Body size, x”,ylab¼“Fitness, W”,

type¼’l’,las¼1, lwd¼3)

Fitness is maximized in the vicinity of 1.5 (Figure 2.7) and body size can never

equal or exceed 3.0, as fitness becomes negative.

MATLAB CODE: See Section 2.18.16.

F I S H E R I A N O P T IM A L I T Y MOD E L S 101

2.9.4 Finding the maximum using the calculus

To discuss the general approach to the analysis of the type of equation shown in

(2.49) we shall write it in a more general form as

logW ¼
X

Pilog½ f ðyi; xÞ� ð2:50Þ

where f(yi, x) means “a function of x (the trait of interest) and yi the variable

parameter (in the present case ¼ bS,i).” In this form the equation presents no

difficulty as it can readily be differentiated with respect to x for all individual

values of yi:

dlogW

dx
¼

X
Pi
dlog½f ðyi; xÞ�

dx
ð2:51Þ

which in the present scenario gives

0.0

0.8

1.0

1.2

1.4

1.6

1.8

Body size, x

0.5 1.0 1.5 2.0 2.5 3.0

F
itn

es
s,

 W

Figure 2.7 Scenario 7: Fitness versus body size.

102 MODE L I NG E V O L U T I O N

logW ¼
Xi¼4

i¼1

Pilog½ðaF þ bFxÞðaS � bS;ixÞ�

¼
Xi¼4

i¼1

Pilog½aFaS þ ðaSbF � aFbS;iÞx� bFbS;ix
2�

dlogW

dx
¼

Xi¼4

i¼1

Pi
ðaSbF � aFbS;iÞ � bFbS;i2x

aFaS þ ðaSbF � aFbS;iÞx� bFbS;ix2

ð2:52Þ

Below I first present a code to calculate the optimum using equation (2.52) and

secondly, a code which also computes the derivative using the fitness function

directly.

2.9.4.1 Calculating the optimum using equation (2.52)

R CODE (using equation [2.52]):

rm(list¼ls()) # Remove all objects from memory

DERIV <- function(x) # Function to calculate value of derivative

{

Af <- 2; Bf <- 2 ; As <- 0.6 # Parameter values

pBs <- c(0.1,0.3,0.4,0.2) # Vector of probabilities for Bs

Bs <- c(0.1,0.12,0.14,0.2) # Vector of Bs values

Derivative

D <- sum(pBs*(As*Bf-Af*Bs-Bf*Bs*2*x)/((AfþBf*x)*(As�Bs*x)))

return(D)

}

MAIN PROGRAM

uniroot(DERIV,interval¼c(1,2)) # Call uniroot function

OUTPUT: (slightly modified)

$root [1] 1.545735
$f.root [1] 1.355284e�06
$iter [1] 4
$estim.prec [1] 6.103516e�05

The optimal body size is at 1.545735
MATLAB CODE: See Section 2.18.17.

2.9.4.2 Computing the derivative using the fitness function directly

An alternative is to use R or MATLAB to calculate the derivative for us and then use

uniroot in R and fzero in MATLAB.

F I S H E R I A N O P T IM A L I T Y MOD E L S 103

R CODE:

Note that in FUNC the gradient is the sum of the derivatives over all

four values of Bs.

rm(list¼ls()) # Remove all objects from memory

FUNC <- function(w) # Function to obtain the gradient at a value w

{

Af <- 2; Bf <- 2 ; As <- 0.6 # Parameter values

pBs <- c(0.1,0.3,0.4,0.2) # Vector of probabilities for Bs

Bs <- c(0.1,0.12,0.14,0.2) # Vector of Bs values

Iterate over values of Bs and sum values of derivatives

d <- 0 # Derivative value

for(i in 1:4)

{

Bsi <- Bs[i] # Value of Bs

pBsi <- pBs[i] # Probability of this Bs

y <- deriv(
pBsi*log((AfþBf*x)*(As�Bsi*x)),“x”) # Get the

deriva-

tive

x <- w # Set x equal to w

z <- eval(y) # Evaluate the derivative at w

d <- dþattr(z,“gradient”) # Assignthegradientvaluetosummedd

}

return(d) # Return d to the main program

}

MAIN PROGRAM

Root must be enclosed by the limitsset by the user,here set at 1to 2

uniroot(FUNC, interval¼ c(1,2))$root

OUTPUT:

[1] 1.545735

MATLAB CODE: See Section 2.18.17.

2.9.5 Finding the maximum using numerical methods

This is readily done using the function previously used for plotting. For R we can

use either nlm or optimize.

R CODE:

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x){Same code as in plotting function}

MAIN PROGRAM

nlm(FITNESS, p¼1)

optimize(f¼FITNESS,interval¼c(1,2), maximum¼FALSE)

104 MODE L I NG E V O L U T I O N

OUTPUT: (slightly modified)

MATLAB CODE: See Section 2.18.18.

2.10 Scenario 8: Continuous temporal variation in
parameters

In the previous scenario the parameter varied in discrete states (four). A more

likely condition is for the parameter to follow a continuous probability distribu-

tion. Applying this to the former scenario we have the following assumptions.

2.10.1 General assumptions

These remain the same as in Scenario 7.

2.10.2 Mathematical assumptions

1. As before, fecundity increases linearly with body size:

F ¼ aF þ bFx ð2:53Þ

where aF and bF are constants.

2. Survival decreases linearly with body size:

S ¼ aS � bSx ð2:54Þ
where bS varies from generation to generation and is specified by a probability

density function. To avoid undue complexity confusing the approach illustrated

I shall assume the simplest probability function, namely a uniform function,

which is defined as P(bs)¼c, where c is determined as explained in Scenario 6.

Parameters values are set at bmax¼ 0.2 and bmin¼ 0, giving c ¼ 1/0.2 ¼ 5.

3. As before, the appropriate measure of fitness is the geometric average. For

computational convenience we work with logW:

> nlm(FITNESS, p=1)
$minimum [1] −0.6522457
$estimate [1] 1.545738

$gradient [1] −5.264757e–08
$code [1] 1

$iterations [1] 4

w> optimize(f=FITNESS, interval=c(1,2), maximum=FALSE)

$minimum [1] 1.545735

$objective [1] −0.6522457

F I S H E R I A N O P T IM A L I T Y MOD E L S 105

logW ¼
Zbmax

bmin

PðbSÞlog½ðaF þ bFxÞðaS � bSxÞ�dbS

¼
Zbmax

bmin

clog½ðaF þ bFxÞðaS � bSxÞ�dbS
ð2:55Þ

2.10.3 Plotting the fitness function

Integration is generally more “tricky” than differentiation and not all functions

can be integrated. One also has to be careful that the function exists across the

range of integration. This is potentially problematic in the present model, because

the log of a negative number does not exist and thus wemust ensure that this does

not occur. Thus we require the inequality aS � bSx > 0, leading to x < aS
bS
. Using the

limits of bS gives x < 0.6/0 ¼ 1 and x < 0.6/0.2 ¼ 3. There is a symbolic integration

routine in MATLAB, called int but not one in R. Therefore, we shall plot the

function using the numerical integration routine integrate in R, passing to it

the fitness function defined in the function INTEGRAND. A loop is used rather than

apply, because a single value of x has to be passed to INTEGRAND.

R CODE (Figure 2.8):

rm(list¼ls()) # Remove all objects from memory

INTEGRAND <- function(Bs,x) # Functiontodonumericalintegration

{

Af <- 2; Bf <- 2 ; As <- 0.6; c<- 5 # Parameter values

return (c*log((AfþBf*x)*(As�Bs*x))) # return function

}

MAIN PROGRAM

n <- 100 # Number of points

z <- seq(1.0,3,length¼n) # Create a vector for from 1 to 3

log.W <- matrix(0,n,1) # Create a vector log.W to hold results

Bmin <- 0; Bmax <- 0.2 # Limits of integration

for (i in 1:n) # Iterate over n “body sizes”

{

x <- z[i] # Set value of x (body size)

Integrate from Bmin to Bmax and add to W

log.W[i] <- integrate(INTEGRAND,Bmin,Bmax,x)$value

}

Plot fitness¼exp(log.W) vs x

plot(z,exp(log.W),type¼’l’, xlab¼’Body size, x’, ylab¼’Fitness,

W’,las¼1,lwd¼4)

MATLAB CODE: See Section 2.18.19.

106 MODE L I NG E V O L U T I O N

2.10.4 Finding the maximum using a numerical approach

The main program calls both R functions nlm and optimize (to illustrate that

either can be used) passing to the function the user-supplied function FITNESS

which calls the R function integrate (which does the numerical integration

from bmin to bmax), which calls the user-supplied function integrand which

calculates the value of c*log((AfþBf*x)*(As�Bs*x)): nlm (and opti-

mize) calls FITNESS calls integrate calls INTEGRAND

R CODE:

rm(list¼ls()) # Remove all objects from memory

INTEGRAND <- function(Bs,x) # Function for numerical integration

{

Af <- 2; Bf <- 2 ; As <- 0.6; c<- 5 # Parameter values

return (c*log((AfþBf*x)*(As�Bs*x))) # return function

}

Fitness function integrates over limits

FITNESS <- function(x) # Calculate –log fitness

{

Body size, x

F
itn

es
s,

 W

1.0

1.8

1.9

2.0

2.1

2.3

2.2

1.5 2.0 2.5 3.0

Figure 2.8 Scenario 8: Fitness versus body size.

F I S H E R I A N O P T IM A L I T Y MOD E L S 107

Bmin <- 0; Bmax <- 0.2 # Limits of integration

W <- integrate(INTEGRAND,Bmin,Bmax,x)$value # Value of integral

return(-W)

}

MAIN PROGRAM Using two routines

nlm(FITNESS, p¼1)

optimize(f¼FITNESS,interval¼c(1,3), maximum¼FALSE)

OUTPUT: (slightly modified)

MATLAB CODE: See Section 2.18.20.

2.11 Scenario 9: Maximizing two traits simultaneously

Thus far we have considered models in which there is only a single variable to be

optimized.We now examine a case in which there are two variables, vigilance and

foraging rate. Suppose that the probability of surviving through some period, such

as a winter, depends on the amount of resources gathered prior to this period. At

the same time the organism must keep watch for predators. Doing one activity

necessarily detracts from the other. The problem is to find the combination of

vigilance and foraging rate that maximizes survival.

2.11.1 General assumptions

1. Survival through some period depends upon the amount of resources gathered.

Holding all other things constant, survival increases with foraging rate.

2. Survival through some period also depends upon the amount of vigilance.

Holding all other things constant, survival increases with vigilance.

3. There is a trade-off between vigilance and foraging rate.

4. Fitness is measured by the survival through the given period.

> nlm(FITNESS, p=1)
$minimum [1] −0.830392
$estimate [1] 2.032337

$gradient [1] −5.402699e–08
$code [1] 1

$iterations [1] 5

> optimize(f=FITNESS, interval=c(1, 3), maximum=FALSE)

$minimum [1] 2.032344

$objective [1] −0.830392

108 MODE L I NG E V O L U T I O N

2.11.2 Mathematical assumptions

1. Ignoring the trade-off between vigilance and foraging rate, survival, S0, is

proportional to the product of vigilance, x, and foraging rate, y:

S0 ¼ axyxy� a0 ð2:56Þ

The above equation assumes that there is a required minimum amount of vigi-

lance and foraging rate to survive. In the present model axy ¼ 0.4 and a0 ¼ 0.8.

2. Overall survival, which is here also fitness,W, is equal to S0 minus effects due to

the interaction between foraging rate, Sxy, and vigilance Syx:

W ¼ S0 � Sxy � Syx ð2:57Þ
3. The term Sxy is the reduction in survival attributable to forage rate (Figure 2.9):

Sxy ¼ �bxyxþ cxyx
2 ð2:58Þ

where bxy ¼ 0.8 and cxy ¼0.4. From x¼ 0 to x¼ 1 the effect is increasingly negative.

Thus an increase in foraging rate increases survival. However, above x ¼ 1 the

effect reverses because increased foraging causes a decrease in vigilance which

decreases survival with increased foraging.

4. For simplicity I shall assume the same effect of increasing vigilance on survival

(Figure 2.9):

Syx ¼ �byxyþ cyxy
2 ð2:59Þ

where byx ¼ 0.8 and cyx ¼ 0.4.

5. Thus fitness, W (¼ survival) is equal to

W ¼ S0 � Sxy � Syx
¼ axyxy� a0 � ð�bxyxþ cxyx

2Þ � ð�byxyþ cyxy
2Þ

¼ axyxy� a0 þ bxyx� cxyx
2 þ byxy� cyxy

2
ð2:60Þ

The above equation describes an ellipsoid. As noted above, for simplicity we shall

assign the following values to the coefficients: a0 ¼ bxy ¼byx ¼ 0.8 and axy ¼ cxy ¼
cyx ¼ 0.4.

Before proceeding with attempts to plot the function or look for optima given

specific parameter values, we should investigate, if possible, the dependency of

the optimum of one variable on the other. To do this we take the two partial

derivatives (so called because we take the derivative of one variable while keeping

the other one constant). To find the two separate optima we find those combina-

tions at which both partial derivatives are equal to zero (i.e., @W
@x ¼ 0 and @W

@y ¼ 0):

@W

@x
¼ axyyþ bxy � 2cxyx and

@W

@y
¼ axyxþ byx � 2cyxy ð2:61Þ

The derivative can also be determined using MATLAB (see Section 2.18.21). It is

clear from the above that the joint optima depend on both x and y.

F I S H E R I A N O P T IM A L I T Y MOD E L S 109

2.11.3 Plotting the fitness function

The most useful plot is the contour plot, which shows quite clearly the position of

the optimum combination (Figure 2.10). Two alternative plots are first, a plot ofW

versus x for several values of y, and second a three-dimensional (3-D) plot (in R use

persp(x,y,w) and in MATLAB use surfc).

R CODE:

To avoid looping wemake use of the routine expand.gridwhich takes the x and

y vectors and creates a 2 column matrix of all combinations. Following the

calculation of fitnesses for these combinations the vector of fitnesses (Wtemp) is

converted into an n 	 n matrix for plotting.

CONTOUR PLOT

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness, passing parameters to it

FITNESS <- function(X,Axy,A0,Bxy,Cxy,Byx,Cyx)

Vigilance or foraging rate

0.0

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

E
ffe

ct
 o

n
su

rv
iv

al

Figure 2.9 Plot of reduction in survival as a consequence of the interaction between
vigilance or foraging rate. Because the effects are assumed to be the same the independent
variable is either foraging rate or vigilance.

R CODE:

rm(list=ls()) # remove all objects from memory

Set parameter values

A0 <-Bxy <-Byx <- 0.8

Axy <-Cxy <-Cyx <- 0.4

x <- seq(from=0, to=3,length=100) # vector of x

Sxy < - -Bxy*x+Cxy*x^2 # Vector of reduction in survival

plot (x, Sxy, xlab=‘Vigilance of Foraging rate’,ylab=‘Effect on

survival’, type=‘1’, las=1, lwd=3)

110 MODE L I NG E V O L U T I O N

{

x <- X[1] # x ¼ Vigilance

y <- X[2] # y ¼ Foraging

S0 <- Axy*x*y-A0 # Eqn (2.56)

Sxy <- -Bxy*xþCxy*x 2̂ # Eqn (2.58)

Syx <- -Byx*yþCyx*y 2̂ # Eqn (2.59)

W <- S0-Sxy-Syx # Fitness function (2.60)

return(W)

}

MAIN PROGRAM

Parameter values

A0 <- Bxy<-Byx<-0.8 # Assign parameter values

Axy <- Cxy<-Cyx<-0.4 # Assign parameter values

n <- 20 # Matrix for contour plot¼nxn

x <- seq(from¼1, to¼3, length¼n)# Generate Vigilance values

y <- seq(from¼1, to¼3, length¼n)# Generate foraging values

d <- expand.grid(x,y) # Expand to all combinations

Create a vector of fitness values for all combinations

Wtemp <- apply(d,1, FITNESS, 0.4,0.8,0.8,0.4,0.8,0.4)

Convert into matrix

W <- matrix(Wtemp,n,n,byrow¼T)

Set plotting page to put graphs side by side and not distorted

Make plotting surface consist of four panels

par(mfrow¼c(2,2))

Plot contour. las¼orientation of axis labels

lwd¼ line width, labcex¼size of contour labels

contour(x,y,W, xlab¼’Foraging, x’, ylab¼’Vigilance, y’,las¼1,

lwd¼3,labcex¼1)

Plot perspective plot

persp(x,y,W,xlab¼’Foraging, x’, ylab¼’Vigilance, y’, zlab¼’Fit-

ness, W’,theta ¼ 50, phi ¼ 25,lwd¼2)

OUTPUT: (Figure 2.10)

Foraging, x

Foraging, x

F
itness, W

1.0

1.0

1.5

2.0

2.5

3.0

0.
3

0.40

1.5 2.0

0.5

2.5

0.2

3.0

0.3 0

0.6

0.7

V
ig

ila
nc

e,
 y

Vigila
nce

, y

Figure 2.10 Scenario 9: Contour and perspective plots.

F I S H E R I A N O P T IM A L I T Y MOD E L S 111

MATLAB CODE: See Section 2.18.22.

2.11.4 Finding the maximum using the calculus

We have already done the differentiation, which gives us two equations in x and y

to solve, say fxy(x, y) and fyx(y, x). In the present case this can be readily done by

hand. First, we rearrange one of the equations to a form in which one variable is a

function of the other, such as y¼f (x), and then we substitute this into the other

equation to arrive at a single equation in a single unknown. In the present

scenario we can rearrange the first equation to give x ¼ axy þ bxy
2cxy

, which after

substitution in the second equation and rearranging gives

y ¼ �2cxybyx � axybxy
a2xy � 4c2yx

ð2:62Þ

R CODE:

Obviously if one can solve the above equation there is no need to resort to any

computer methods other than simple calculation. However, it may be that the

pair of equations cannot be so easily resolved. The following is a simple way to find

the solution to any pair of equations, assuming that a solution exists, which one

should already know, because of the prior plotting exercise. To find x and y take

the absolute value, jfxyðx; yÞj þ jfyxðy; xÞj, and use nlm:

Solving the equation using the calculus

FUNC <- function(x) {abs(0.4*x[2]þ0.8-2*0.4*x[1])þabs(0.4*x

[1]þ0.8-2*0.4*x[2])}

nlm(FUNC,p¼c(1,1))$estimate # Call nlm to find minimum

OUTPUT:

[1] 1.999986 1.999972

MATLAB CODE: See Section 2.18.23.

2.11.5 Finding the maximum using a numerical approach

The approach here is the same as for the case of a single variable but we pass two

variables rather than one.

R CODE:

rm(list¼ls()) # Remove all objects from memory

Fitness function

FITNESS <- function(x,Axy,A0,Bxy,Cxy,Byx,Cyx)

{

W <- Axy*x[1]*x[2]-A0þBxy*x[1]-Cxy*x[1] 2̂þByx*x[2]-Cyx*x[2]^

2

return(-W) # Return –W so nlm can find minimum

}

MAIN PROGRAM

Find estimates and store in vector called Traits

Note that the coefficient values are passed as extra parameters

112 MODE L I NG E V O L U T I O N

Traits<-nlm(FITNESS,p¼c(.5,.5),0.4,0.8,0.8,0.4,0.8,0.4)$estimate

Calculate fitness at the optimum combination

Wmax <- -FITNESS(Traits,0.4,0.8,0.8,0.4,0.8,0.4)

print(c(Traits, Wmax)) # Print out estimates and fitness value

OUTPUT:

[1] 1.999999 1.999999 0.800000

MATLAB CODE: See Section 2.18.24.

2.12 Scenario 10: Two traits may covary but optima are
independent

It can easily happen that fitness depends on the combined effect of two traits but

the optimum for each trait is independent of the other, in which case the separate

optima can be found using the methods described above for single traits. The

general strategy to test for this is to take the partial derivatives and see if each is

independent.

2.12.1 General assumptions

1. The organism is semelparous.

2. Fecundity increases with final body size.

3. Fecundity is a decreasing function of propagule size (i.e., large propagules

reduce fecundity).

4. Survival to the adult stage decreases with final body size.

5. Small and large propagules have a decreased survival (e.g., small propagules

have few reserves while large propagules attract more predators).

6. Fitness, W, is a function of fecundity and survival from propagule to adult.

2.12.2 Mathematical assumptions

1. Fecundity increases linearly with body size, x:

F ¼ aF þ bFx ð2:63Þ
2. Fecundity is inversely proportional to propagule size, y:

F ¼ aF þ bFx

y
ð2:64Þ

3. Survival decreases linearly with body size:

S ¼ aS � bSx ð2:65Þ

F I S H E R I A N O P T IM A L I T Y MOD E L S 113

4. Propagule survival, SP, is a quadratic function of propagule size:

SP ¼ aP þ bPyþ cPy
2 ð2:66Þ

Propagule survival is zero at the two roots of the above equation:

SP;MIN ¼
�cP þ

ffi
b2P � 4aPcP

q
2cP

; SP;MAX ¼
�cP �

ffi
b2P � 4aPcP

q
2cP

ð2:67Þ

5. There is a minimum positive propagule size below which survival is zero, i.e.,

SP;MIN > 0

6. Fitness, W, is the expected lifetime reproductive success, R0, given as the

product of fecundity and survival:

W ¼ R0 ¼ FSSP
¼ ðaF þ bFxÞðaS � bSxÞðaP þ bPyþ cPy

2Þ=y
¼ ½aFaS � bFbSx

2 þ ðaSbF � aFbSÞx�ðaP þ bPyþ cPy
2Þ=y

ð2:68Þ

As before, the first task is to determine if the two optima are dependent on an

interaction between the two traits. This is readily observable from the above

equation and can be made obvious if we take logs:

lnW ¼ ln½aFaS � bFbSx
2 þ ðaSbF � aFbSÞx� þ lnðaP þ bPyþ cPy

2Þ � lny ð2:69Þ
It can now be seen that ln (W) is made up of a linear combination of terms and that

each term involves only one of either variable. Tomake it clearer still we can write

lnðWÞ ¼ f ðxÞ þ gðyÞ ð2:70Þ
where f (x) stands for the first term and g(y) stands for the second two terms. Taking

the two partial derivatives gives

@W

@x
¼ @f ðxÞ

@x
;
@W

@y
¼ @gðyÞ

@y
ð2:71Þ

Thus we need to proceed no further with respect to the question of covariation,

though the question of individual optima can still be addressed. This latter ques-

tion can be answered using the techniques described in Scenario 1.

2.13 Scenario 11: Two traits may be resolved into a single trait

In some cases it is possible to resolve a fitness function of two variables into a

single variable. Should this be possible the problem is reduced to the analysis of a

single trait. To illustrate this, I shall consider a model by Begon and Parker (1986)

that demonstrates one circumstance in which propagule size decreases with each

clutch produced. For this particular scenario I shall consider an organism that

produces two clutches. The problem is to find the optimum propagule size for

114 MODE L I NG E V O L U T I O N

each clutch. Thus the two variables are propagule size in clutch 1 and propagule

size in clutch 2.

2.13.1 General assumptions

1. An adult female accumulates a total reserve prior to reproduction, to be

distributed among the subsequent clutches.

2. The survival rate is less than one, meaning that the probability of surviving to

produce the second clutch is less than survival to the first.

3. Egg size is invariant within clutches but can vary between clutches.

4. Clutch size is invariant.

5. Each female produces two clutches.

6. The expected fecundity of offspring is an asymptotic function of propagule size.

7. Generations are nonoverlapping and hence fitness is equivalent to the per

generation expected rate of increase.

2.13.2 Mathematical assumptions

1. Given a fixed reserve, R, and an invariant clutch size of N, propagule size is

given by

Nx1 þ Nx2 ¼ R ð2:72Þ

where x1 is the size of propagules in the first clutch and x2 is the size of propagules

in the second clutch.

2. Survival probabilities to the first and second clutches are S1 and S2, respectively,

and S1 > S2.

3. The expected fecundity of offspring from propagules of size xi, F, is the asymp-

totic function:

Fmaxð1� e�axiÞ ð2:73Þ

where Fmax and a are constants.

4. Fitness, W, is equal to the per generation rate of increase:

W ¼ NS1ð1� e�ax1Þ þ NS2ð1� e�ax2Þ ð2:74Þ

The object is to determine the optimal propagule sizes in the first and second

clutches. We first note from equation (2.72) that, because of the constraint of a

fixed resource pool

x2 ¼ R � Nx1
N

¼ R

N
� x1 ð2:75Þ

and hence the problem resolves itself to finding only the optimal value of x1 using

F I S H E R I A N O P T IM A L I T Y MOD E L S 115

W ¼ NS1Fmaxð1� e�ax1Þ þ NS2Fmax 1� e�a R
N�x1ð Þh i

ð2:76Þ

Begon and Parker (1986) predicted that under this model the propagule size in

the second clutch will be less than in the first. It is instructive to continue the

analysis of this scenario to illustrate the computational approach (for a theoretical

justification of the model see Box 4.10 in Roff [2002]). Parameter values are set at

S1 ¼ 0.005, S2 ¼ 0.002, Fmax ¼ 2, a ¼ 1, R ¼ 400, and N ¼ 100.

2.13.3 Plotting the fitness function

Because the total reserve is fixed, the size of the propagules in the first clutch

cannot exceed R/N ¼ 400/100 ¼ 4, and the size of the propagules in the second

clutch cannot exceed (R/N)� x1. If x1 > 4 then fitness is set to zero (this state can be

avoided by not exceeding 4 in the program) and if x2 > (R/N) � x1 the expected

fecundity of offspring from the second clutch is set to zero simply by setting egg

size to zero (Figure 2.11).

R CODE (Figure 2.11):

Note the use of max to ensure that egg size is not smaller than 0.

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x1) # Fitness function

{

Parameter values

S1 <- 0.005; S2 <- 0.002; Fmax <- 2; a <- 1; N <- 100; R <- 400

ExpFec1 <- Fmax*(1-exp(-a*x1)) # Expected fecundity from 1st

clutch

x2 <- (R/N)-x1 # Propagule size in 2nd clutch

x2 <- max(x2,0) # If x2 <0 set x2¼0

ExpFec2 <- Fmax*(1-exp(-a*x2)) # Expected fecundity from 2nd

clutch

W <- N*(S1*ExpFec1þS2*ExpFec2) # Fitness

Check to see if x1 is acceptable size

Xmax <- N*x1

if(Xmax>R) {W<-0 } # if x1 too big set fitness to zero

return(W) # Return fitness

}

MAIN PROGRAM

x <- matrix(seq(from¼0, to¼4, length¼100)) # Vary x1 from 0 to 4

W <- apply(x,1,FITNESS) # Calculate and store W

Plot results

plot(x,W, type¼’l’, xlab¼’Propagule size, x1’, ylab¼’Fitness,

R0’,las¼1,lwd¼3)

MATLAB CODE: See Section 2.18.25.

116 MODE L I NG E V O L U T I O N

2.13.4 Finding the optimum using the calculus

Equation (2.76) can be differentiated with respect to x1 and the optimum value of

x1 found by setting the derivative equal to zero:

dW

dx1
¼ aNFmax S1e

�ax þ S2e
�a

R
�
N
� x1

� �2
64

3
75

dW

dx1
¼ 0 when S1e

�ax þ S2e
�a

R
�
N
� x1

� �
¼ 0

ð2:77Þ

The resultant answer must be checked to ensure that it is within the constraints.

First, we make use of the above derivative directly and second, use R or MATLAB

(see Section 2.18.26) to obtain it.

2.13.4.1 Using the derivative directly

R CODE:

rm(list¼ls()) # Remove all objects from memory

DFUNC <- function(x) # Derivative function

{

Parameter values

S1 <- 0.005; S2 <- 0.002; a <- 1; N <- 100; R <- 400

return(S1*exp(-a*x)-S2*exp(-a*(R/N-x))) # Return deriv value

}

Propagule size, x1

0

0.4

0.6

0.8

1.0

1.2

1 2 3 4

F
itn

es
s,

 R
0

Figure 2.11 Scenario 11: Fitness versus propagule size.

F I S H E R I A N O P T IM A L I T Y MOD E L S 117

X1 <- uniroot(DFUNC,interval¼(c(0,3)))$root # Call uniroot to

find root

Calculate x2 for optimum x1

N <- 100; R<- 400 # Parameter values

X2 <- (R/N)-X1 # Size of 2nd propagule

print(c(X1,X2))

OUTPUT:

[1] 2.458153 1.541847

MATLAB CODE:

function y¼DFUNC(x) % Derivative function

% Parameter values

S1 ¼ 0.005; S2 ¼ 0.002; a ¼ 1; N ¼ 100; R ¼ 400;

y¼(S1*exp(-a*x)-S2*exp(-a*(R/N-x))); % Return deriv value

Call function DFUNC with fzero to locate optimum x:

clear all; % Clear the workspace

fzero(@DFUNC,1) % Call root-finding function with initial value at 1

OUTPUT:

ans ¼ 2.4581

2.13.4.2 Getting the derivative using R or MATLAB

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to obtain the gradient at a value w

FUNC <- function(w)

{

Set parameter values

S1 <- 0.005; S2 <- 0.002;a <- 1; N <- 100; R <- 400; Fmax<- 2

Get the derivative of equation (2.76)

y <- deriv(
 N*(S1*Fmax*(1-exp(-a*x))þS2*Fmax*(1-exp(-a*(R/

N-x)))),“x”)

x <- w # Set x equal to w

z <- eval(y) # Evaluate the derivative at w

d <- attr(z,“gradient”) # Assign the gradient value to d

return(d) # Return d to the main program

}

MAIN PROGRAM

Root must be enclosed by the limitsset by the user, here set at 0to 3

X1 <- uniroot(FUNC, interval¼ c(0,3))$root

Calculate x2 for optimum x1

N <- 100; R<- 400 # Parameter values

X2 <- (R/N)-X1 # Size of 2nd propagule

print(c(X1,X2))

118 MODE L I NG E V O L U T I O N

OUTPUT:

[1] 2.458153 1.541847

As predicted, the optimal size of a propagule in the second clutch is less than that

in the first clutch.

2.13.5 Finding the optimum using a numerical approach

Here we use the routine optimize, setting it to find the maximum. The fitness

function routine is the same as that used for plotting.

R CODE:

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x1){This is the same as given in the plotting section}

MAIN PROGRAM

Calculate the optimum x1 using optimize

X1<-optimize(f¼FITNESS,interval¼c(1,8),maximum¼TRUE)$maximum

Calculate x2 for optimum x1

N <- 100; R<- 400 # Parameter values

X2 <- (R/N)-X1 # Size of 2nd propagule

print(c(X1,X2))

OUTPUT:

[1] 2.458146 1.541854

The results are not exactly equal to the values obtained using the calculus but

certainly close enough.

MATLAB CODE: see Section 2.18.27.

2.14 Scenario 12: The importance of plotting and the utility
of brute force

In the previous scenario we were able to reduce the model to a single trait. We

now examine the same model with the addition of a third clutch. This addition to

the model means that there are two, relatively independent, traits (“relatively,”

because they are free to vary only within specified limits). In all previous plots

there has been a single, well-defined peak on the fitness surface. In this scenario

the surface turns out to be rugged, such that the optimization routines can get

“stuck” at a point that is not the maximum.

2.14.1 General assumptions

The general assumptions remain as in the previous scenario and so will be omitted

here.

F I S H E R I A N O P T IM A L I T Y MOD E L S 119

2.14.2 Mathematical assumptions

1. Given a fixed reserve, R, and an invariant clutch size of N, propagule size is

given by

Nx1 þ Nx2 þ Nx3 ¼ R ð2:78Þ

where xi is the size of a propagule in the ith clutch (i ¼ 1, 2, and 3).

2. Survival probabilities to the first, second, and third clutches are S1, S2, and S3,

respectively, and S1 > S2 > S3.

3. The expected fecundity of offspring from propagules of size xi, F, is given by the

asymptotic function:

Fmaxð1� e�axiÞ ð2:79Þ

where Fmax and a are constants.

4. Fitness, W, is equal to the per generation rate of increase:

W ¼ NS1ð1� e�ax1Þ þ NS2ð1� e�ax2Þ þ NS3ð1� e�ax3Þ
¼ W1 þ W2 þ W3

ð2:80Þ

The object is to determine the optimal propagule sizes in the first and second

clutches. The size of the third clutch is determined by the allocations to the first

two clutches:

x3 ¼ R

N
� ðx1 þ x2Þ ð2:81Þ

As noted previously, Parker and Begon (1986) predicted that under this model

the propagule size in each clutch will be less than in the preceding clutch. For the

present analysis parameter values are set at S1 ¼ 0.035, S2 ¼ 0.030, S3 ¼ 0.025, Fmax

¼ 2, a ¼ 1, R ¼ 400, and N ¼ 100.

2.14.3 Plotting the fitness function

Because the total reserve is fixed, the size of the propagules in the first clutch is

limited by the inequality x1 � R=N or, equivalently, x1N � R: therefore, when this

inequality occurs fitness is set to zero. For the second clutch the propagule size is

limited by the amount remaining after the expenditure on the first clutch:

ðx1 þ x2ÞN � R. If this inequality is not satisfied fitness is equal to the fitness only

from the first clutch (assuming that this is greater than zero). A similar constraint

can be applied to the third clutch.

The fitness surface, as shown by the contour plot is rugged and the R commands

do not easily portray it in three dimensions: therefore, for this purpose, I dumped

the data as x,y,W triplets into a text file and plotted the 3D surface using Sigma-

Plot. Note the use of the R routine expand.grid(x,x), which creates a 2 	 n2

120 MODE L I NG E V O L U T I O N

matrix of all x by x values, with the first column changing most rapidly. Fitness is

then calculated for each row using the R function apply.

R CODE:

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x) # Function to calculate fitness

{

x[1] ¼ Propagule size in 1st clutch

x[2] ¼ Propagule size in 2nd clutch

Set parameter values

N <- 100; R <- 400

S1 <- 0.035; S2 <- 0.030; S3 <- 0.025

Fmax <- 2; a <- 0.1

W1<-W2<-W3<-0 # Set fitnesses to zero. This is not necessary.

Check if first clutch mass exceeds reserves

if(N*x[1]>R) W <- 0 # Propagule too large

else{

Calculate first fecundity

W1 <- N*S1*Fmax*(1-exp(-a*x[1]))

Calculatesizeofpropagulesin2ndclutchandseeifreservesexceeded

if(N*(x[1]þx[2])>R) W <- W1 # Propagules in 2nd clutch too large

else{

W2 <- N*S2*Fmax*(1-exp(-a*x[2])) # Calculate 2nd fecundity

Calculate the size of Propagules in 3rd clutch

Note that there must be reserves remaining at this stage

x3 <- (R-N*(x[1]þx[2]))/N

W3 <- N*S3*Fmax*(1-exp(-a*x3)) # Calculate 3rd fecundity

W <- W1þW2þW3

} # End 2nd else

} # End 1st else

return(-W) # Return negative of fitness

}

MAIN PROGRAM

n <- 20 # Number of rows and columns

x <- seq(from¼1, to¼5, length¼n) # Range for propagule sizes

d <- expand.grid(x,x) # Create a matrix of all combinations

W <- apply(d,1,FITNESS) # Apply FITNESS to each combination

W <- matrix(W,n,n) # Convert W from a vector into a matrix

contour(x,x,-W,xlab¼ ’Propagule size in 1st clutch’,ylab¼’-

Propagule size in 2nd clutch’) # Plot contour making W positive

OUTPUT: (Figure 2.12)

F I S H E R I A N O P T IM A L I T Y MOD E L S 121

It is evident from the contour and 3D plots (Figure 2.12) that there exists an

optimum value, but it is perched precariously close to, or on the edge of, a

dramatic fitness decline, and there is a large parameter space over which there

is little variation in fitness.

MATLAB CODE: see Section 2.18.28.

Size of propagule in 1st clutch Size
 of p

ropagule in
 2nd clu

tch

1
2

3
4

5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Propagule size in 1st clutch

P
ro

pa
gu

le
 s

iz
e

in
 2

nd
 c

lu
tc

h

1

1

2.2

1
2

3
4

5

2

0.
8

2

3

2

2.2

2.2
2

0.2
0.4

0.6
0.8

1.
2

1.
4

1.
6

1.
8

4 5

F
itn

es
s,

 W

4

5

3
2

1

Figure 2.12 Scenario12: Contour and perspective plots. The dot in the 3D plot shows the
approximate position of maximum fitness. The 3‐D was made using SigmaPlot.

122 MODE L I NG E V O L U T I O N

2.14.4 Finding the maximum using the calculus

The first task is to write the fitness function in a form suitable for partial differen-

tiationwith respect to x1 and x2.We can do this by substituting equation (2.81) into

equation (2.80):

W ¼ NS1ð1� e�ax1Þ þ NS2ð1� e�ax2Þ þ NS3 1� e�a R
N�ðx1þx2Þ½ �n o

ð2:82Þ

At this point we ignore the restriction that Nx1þNx2þNx3¼R and proceed with

differentiation

@W

@x1
¼ NS1ae

�ax1 � NS3ae
�a

R
�
N
� ðx1 þ x2Þ

� �

@W

@x2
¼ NS2ae

�ax2 � NS3ae
�a

R
�
N
� ðx1 þ x2Þ

� � ð2:83Þ

Setting
@W

@x1
¼ 0;

@W

@x2
¼ 0 and equating the two equations leads to

x1 ¼ 1

a
ln

S1
S2

� �
þ x2 ð2:84Þ

We can substitute the above equation into equation (2.82) to obtain an equation in

x2, say f (x2) (there is no need here to write out the full equation because it does not

simplify to anything that can be analytically resolved). Now x3 is still defined by

equation (2.81) and must exceed zero: thus only combinations of x1 and x2 that

satisfy this requirement are permitted (i.e., set W ¼ 0 in these cases). Plotting W

versus x2 shows that fitness (W) increases with x2 until a critical value at which

point W drops to zero due to the allocation exceeding the reserves available. The

optimal propagules sizes can be found numerically using the following code, in

which the code for the fitness function differs somewhat from that used in the

plotting routine instructions. The program seeks the optimal propagule size in the

second clutch using the R function nlm subject to the constraints enumerated

above.

2.14.4.1 Using R or MATLAB to find the optima given the differential

This function differs from that used for plotting in that only a single variable,

x2, is passed. The function FITNESS takes x2 as its input, calculates x1 using

equation (2.84) and then x3 subject to the constraint that x3 is positive.

Fitness, W, is calculated according to the rules previously given and –W

returned. The main program uses nlm to locate the optima, using x2 as the

input variable. All three trait values are calculated within FITNESS: these

values can be obtained by simply printing them out within FITNESS or by

writing the results to a file, which is read back after the optimization is

finished. To write the data to a file we must specify the path at the start of

the program: in the present case this is

F I S H E R I A N O P T IM A L I T Y MOD E L S 123

setwd(“C:/Documents and Settings/Administrator/My Documents/

Computer modelling/Chapter 2”)

but the exact path will be user-specific. To write the data to a text file called

PROPAGULE.txt we use

write(c(x1,x2,x3), file¼“PROPAGULE.txt”)

and to retrieve the data to a file called Propagules we use

Propagules <- read.table(file¼“PROPAGULE.txt”)

Note that lines are overwritten and so the data file consists of a single line. To add

lines after the previous lines we need to specify that append is true.

R CODE:

rm(list¼ls()) # Remove all objects from memory

setwd(“C:/Documents and Settings/Administrator/My Documents/

Computer modelling/Chapter 2”) # Set the folder into which to put

the data

FITNESS <- function(x2) # Function to calculate fitness.

Differs from that used in plotting in only a single variable being

input

{

Set parameter values

N <- 100; R <- 400

S1 <- 0.035; S2 <- 0.030; S3 <- 0.025

Fmax <- 2; a <- 0.1

x1 <- 10*log(S1/S2)þx2 # x1 given the value of x2

x3 <- (R-N*(x1þx2))/N # Value of x3

if (x3<0) W<-0 # Check that x3 exists

else{

Check if first clutch mass exceeds reserves

if(N*x1 > R) W <- 0 # Propagule too large

else{

W1 <- N*S1*Fmax*(1-exp(-a*x1)) # Calculate first fecundity

Calculate size of propagules in 2nd clutch and see if reserves

exceeded

if(N*x2 > R) W <- W1 # Propagules in 2nd clutch too large

else{

W2 <- N*S2*Fmax*(1-exp(-a*x2)) # Calculate 2nd fecundity

Calculate the size of Propagules in 3rd clutch

Note that there must be reserves remaining at this stage

W3 <- N*S3*Fmax*(1-exp(-a*x3)) # Calculate 3rd fecundity

W <- W1þW2þW3

} # End 3rd else

} # End 2nd else

} # End 1st else

124 MODE L I NG E V O L U T I O N

print(c(x1,x2,x3))

write(c(x1,x2,x3),file¼“PROPAGULE.txt”)#Printresultsintofile

return(-W) # Return negative of fitness

}

MAIN PROGRAM

Locate optimum x2 and calculate x1 and x3

Note that parameter values are given within function FITNESS

Find optimum values of propagules

nlm(FITNESS, p¼1) # Use nlm to find optimum x2

Propagules <- read.table(file¼“PROPAGULE.txt”) # Read in

results

print(Propagules)

OUTPUT: (format modified slightly)

Here, code ¼ 2, given at the end of the search, means “successive iterates within

tolerance, current iterate is probably solution.” Inspection of the gradient suggests

that it is close to but not exactly at the proper solution. However, given the “cliff

edge” form of the function this is not surprising. As predicted from theory,

propagule size declines across the clutches.

MATLAB CODE: See Section 2.18.29.

2.14.4.2 Using R or MATLAB to do the calculus

The above code assumed that the derivative could be explicitly found. Using the R

function derivwe can get R to evaluate the derivative for us and use this to locate

the optima. Because MATLAB has a symbolic differentiation routine, diff, the

code is somewhat simpler but the conceptual approach remains the same. There

are two user-defined functions.

1. GRADIENT: Finds the absolute difference in the gradient at values w and y,

which in this case are x1 and x2. Thus GRADIENT gets the value

AbsDiff ¼ j @W
@x1

� @W

@x2
j:

2. FITNESS: This is the same function as used above except that x1 is now

estimated by taking the value of x2 and using nlm to find the optimum value

of x1 by passing to it GRADIENT: the optimum is to be found where AbsDiff ¼ 0.

$minimum [1] −2.388036
$estimate [1] 1.229245

$gradient [1] −0.06119668
$code [1] 2

$iterations [1] 24

> Propagules <- read.table(®le=“PROPAGULE.txt”) # Read in results

> print(Propagules)

V1 V2 V3

1 2.770753 1.229246 9.797043e–07

F I S H E R I A N O P T IM A L I T Y MOD E L S 125

After getting the optimum x1 the function calculates the value of x3. It then

checks that the values of x1, x2, and x3 are permissible values. Finally, fitness,W,

is calculated and its negative value returned.

The main program estimates the propagule size of the second clutch by calling

nlmwith FITNESS as the function to be minimized using x2 as the variable. Recall

that FITNESS finds the optimum value of x1 given x2: thus nlm within the main

program locates the set of optimum values of x2. As before, the values of x1, x2, and

x3 can be obtained by simply printing them out within FITNESS or by writing the

results to a file, which is read back after the optimization is finished.

R CODE:

rm(list¼ls()) # Remove all objects from memory

setwd(“C:/Documents and Settings/Administrator/My Documents/

Computer modelling/Chapter 2”) # Set the folder into which to put

the data

Function to obtain the gradient at a value w for a given value of y

GRADIENT <- function(w,y)

{

Set parameter values

N <- 100; R <- 400

S1 <- 0.035; S2 <- 0.030; S3 <- 0.025

Fmax <- 2; a <- 0.1

Calculate derivative, called Dx1x2, with respect to both x1 and x2

x1 is 1st propagule x2 is 2nd propagule

Dx1x2 <- deriv(
(N*S1*Fmax*(1-exp(-a*x1))þN*S2*Fmax*(1-exp

(-a*x2)) þN*S3*Fmax*(1-exp(-a*(R/N-(x1þx2))))),c(“x1”,“x2”))

x1 <- w # Set x1 equal to w

x2 <- y # Set x2 equal to y

z <- eval(Dx1x2) # Evaluate the derivative at w

G <- attr(z,“gradient”) # AssignthegradientvaluestoAbsDiff

AbsDiff <- abs(G[1]-G[2]) # Calculate the absolute difference

return(AbsDiff) # Return AbsDiff to the main program

}

Fitness function given x2, and calling nlm to find x1

FITNESS <- function(x2)

{

Set parameter values

N <- 100; R <- 400

S1 <- 0.035; S2 <- 0.030; S3 <- 0.025

Fmax <- 2; a <- 0.1

Find value of x1 given x2 using nlm to set derivatives to zero

This line is the only difference from the previous FITNESS

function

126 MODE L I NG E V O L U T I O N

x1 <- nlm(GRADIENT,p¼1,x2)$estimate

Now calculate x3 and fitness

x3 <- (R-N*(x1þx2))/N # Determine x2

if (x3<0) W<-0 # Check if x3 exists(>0)

else{

Check if first clutch mass exceeds reserves

if(N*x1 > R) W <- 0 # Propagule too large

else{

W1 <- N*S1*Fmax*(1-exp(-a*x1)) # Calculate first fecundity

Calculate size of propagules

in 2nd clutch and see if re-

serves exceeded

if(N*x2 > R) W <- W1 # Propagules in 2nd clutch too large

else{

W2 <- N*S2*Fmax*(1-exp(-a*x2)) # Calculate 2nd fecundity

Calculate the size of Propagules in 3rd clutch

Note that there must be reserves remaining at this stage

W3 <- N*S3*Fmax*(1-exp(-a*x3)) # Calculate 3rd fecundity

W <- W1þW2þW3 # Sum fitness components

} # End 3rd else

} # End 2nd else

} # End 1st else

print(c(x1,x2,x3))

write(c(x1,x2,x3),file¼“PROPAGULE.txt”)#Printresultsintofile

return(-W)

}

MAIN PROGRAM

Find optimum values of propagules

nlm(FITNESS, p¼1) # Use nlm to find optimum x2

Propagules<- read.table(file¼“PROPAGULE.txt”) # Read in results

print(Propagules)

OUTPUT: (format modified slightly)

$minimum [1] −2.388037
$estimate [1] 1.229246

$gradient [1] 9713.389

$code [1] 3

$iterations [1] 37

> Propagules <- read.table(file=“PROPAGULE.txt”)

> print(Propagules)

V1 V2 V3

1 2.77063 1.229123 0.0002468677

F I S H E R I A N O P T IM A L I T Y MOD E L S 127

Previous estimate:

1 2.770753 1.229246 9.797043e-07

In this case, code ¼ 3, meaning that “ last global step failed to locate a point lower

than estimate. Either estimate is an approximate local minimum of the function

or steptol is too small.” The two sets of estimates are very close, the propagule

size in clutch 3 differing somewhat, but either value is so small as to be effectively

zero.

MATLAB CODE: See Section 2.18.29.

2.14.5 Finding the maximum using a numerical approach

Because of the rugged nature of the fitness surface it is possible that nlm (or

fminsearch) will not home in on the appropriate combination. Therefore, in

addition to the use of this function I shall also present an alternative approach, the

“Brute force” method. First, what results do we get using nlm or fminsearch?

2.14.5.1 Using nlm (R) or fminsearch (MATLAB)

R CODE:

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function(x)# Function to calculate fitness

{This function is the same as that used for plotting}

MAIN PROGRAM

Call nlm passing fitness function with initial estimates

ANS <- nlm(FITNESS, p¼c(0.1,0.1))

X <- ANS$estimate # Store estimates in X

Calculate x3

R <- 400; N <- 100 # Parameter values

x3 <- (R-N*(X[1]þX[2]))/N # x3

ANS # Print out Stats for nlm

print(c(X[1],X[2], x3)) # Propagule sizes

OUTPUT: (modified slightly)

$minimum [1] �2.386848

$estimate [1] 2.621084 1.378914

$gradient [1] 2.948550eþ05 �2.271604e–02

$code [1] 2

$iterations [1] 32

> print(c(X[1],X[2], x3))# Propagule sizes

[1] 2.621084eþ00 1.378914eþ00 2.299669e–06

Previous results:

1 2.770753 1.229246 9.797043e–07 (using derivatives)

1 2.77063 1.229123 0.0002468677 (using R to get derivatives)

128 MODE L I NG E V O L U T I O N

The present results differ from the previous results in giving a smaller x1 and

larger x2. Fitnesses calculated at the three estimates, given in the above order, are

2.388, 2.388, and 2.387. Based on the evaluated fitnesses, the first two approaches

are equivalent and the best, followed closely by the numerical approach.

MATLAB CODE: See Section 2.18.30.

2.14.5.2 The Brute force approach

We now consider the “Brute force” approach. From the initial plotting we know

that the optimum occurs within limits of, say, x1,min to x1,max and x2,min to x2,max.

Suppose we wish to obtain an estimate that is �0.005: we can try all values within

the foregoing ranges that differ by �0.005. The number of combinations we will

need to try is roughly
x1;max � x1;min

0:005

 � x2;max � x2;min

0:005

 �
. Alternatively, we could

simply try a large number of values within the specified range and then, if

necessary, use the resulting output to refine our range. This is illustrated in the

code below where I generate 10,000 combinations. Rather than generate a matrix

to hold W the code below uses the R function expand.grid to generate a two

columnmatrix called d with the appropriate combinations. In R the routine order

is then used to find the row with the highest fitness.

R CODE:

rm(list¼ls()) # remove all objects from memory

FITNESS <- function(x) # Function to calculate fitness

{This function is the same as that used for plotting, except that W

not –W is returned

return(W) }

MAIN PROGRAM

Create vectors to produce an n by n matrix of combinations

n <- 100 # Number of rows and columns

x <- seq(from¼0, to¼5, length¼n)

y <- x

d <- expand.grid(x,y) # Create 2xn2 matrix of all combinations

W <- apply(d,1,FITNESS) # Use apply to calculate fitnesses

Now find position of row that has the highest fitness

Row is stored in first row of Best, Best[1]

Best <- order(W, na.last¼TRUE, decreasing¼TRUE)

x1 <- d[Best[1],1] # Best x1

x2 <- d[Best[1],2] # Best x2

Calculate x3

R <- 400; N <- 100 # Parameter values

x3 <- (R-N*(x1þx2))/N # x3

print(c(x1,x2,x3,W[Best[1]])) # Propagule sizes and W

OUTPUT:

[1] 2.77777778 1.21212121 0.01010101 2.38771586

F I S H E R I A N O P T IM A L I T Y MOD E L S 129

Previous results:

1 2.770753 1.229246 9.797043e–07 (using derivatives)

1 2.77063 1.229123 0.0002468677 (using R to get derivatives)

1 2.621084 1.378914 2.299669e–06 (nlm on fitness function)

Using the brute force results to refine the search (replace with the following lines)

y <- seq(from¼1.0, to¼1.3, length¼n)

x <- seq(from¼2.7, to¼2.8, length¼n)

gives

[1] 2.769697 1.230303 0.000000 2.388037

Fitness at optimum combination:

2.388 (using derivatives)

2.388 (using R to get derivatives)

2.387 (nlm on fitness function)

2.388 (brute force)

2.388 (brute force using first results to shrink ranges)

All methods give essentially the same answer. The one chosen will depend upon

the ease with which the model can be differentiated either symbolically or

numerically. The brute force method is the simplest and guaranteed to work,

even if relatively slow. For this particular model it took only a couple of seconds to

run through the 10,000 combinations. Obviously, as a model gets more complex

the run time will increase and brute force may prove impractical. Nevertheless,

it is certainly worthwhile to keep this approach in mind: it may be crude but it

is very simple and, as shown in the above scenario, it can be very effective.

MATLAB CODE: See Section 2.18.30.

2.15 Scenario 13: Dealing with recursion by brute force

A recursive function is one that calls itself: for example, growth in one year is

typically a function of previous growth, i.e.,Wtþ1 ¼ f ðWtÞ. Recursive functions can
be particularly difficult to deal with except by the brute forcemethod. To illustrate

a possible approach I shall use a simplified model of the optimal age at first

reproduction and reproductive allocation discussed in Roff et al. (2006).

2.15.1 General assumptions

1. The organism is iteroparous.

2. Reproduction occurs annually.

3. Size in year tþ1 is a function of size in year t.

4. The increment in growth is a function of the allocation to reproduction.

130 MODE L I NG E V O L U T I O N

5. Annual mortality is a function of the allocation to reproduction.

6. Fecundity increases with the allocation to reproduction.

7. Fitness is a function of reproduction and survival.

2.15.2 Mathematical assumptions

1. In the absence of reproduction the organism increases in weight by a fixed

amount:

W0 ¼ 0
W1 ¼ W0 þ A
W2 ¼ W1 þ A ¼ 2A
⋮
Wa�1 ¼ Wa�2 þ A ¼ ða� 1ÞA

ð2:85Þ

where a is the age of first reproduction. Note that this growth function ceases at

a�1, because the allocation to reproduction, described below, occurs during the

year preceding maturation.

2. At maturity a female allocates a constant fraction, G, of its biomass to repro-

duction:

Wtþ1 ¼ Wt þ A� GWt; t � a� 1 ð2:86Þ

As noted above, the allocation is made in the year prior to reproduction.

3. Fecundity is proportional to weight and the allocation to reproduction:

Ft ¼ aGWt ð2:87Þ

where a is a constant.

4. In the absence of reproduction, the instantaneous (juvenile) mortality rate is MJ

and hence the annual juvenile survival is e�Mj.

5. The adult mortality rate, MA, is a linear function of the allocation to reproduc-

tion:

MA ¼ MJ þMaG ð2:88Þ

Where Ma is a constant. Thus annual survival, commencing in the year immedi-

ately prior to reproduction, is given by e�MA ¼ e�ðMJþMaGÞ.

6. Fitness, W, is the expected lifetime fecundity:

W ¼
X1
t¼a

aGWte
�MJða�1Þe�MAðt�aþ1Þ ð2:89Þ

The problem we wish to address is that of finding the values of a and G that

maximize fitness. If the recursive equation can be converted into a simple func-

tion the above equation presents no problem, for example, suppose the weight-at-

age function is Wtþ1 ¼ Aþ BWt, then we could write

F I S H E R I A N O P T IM A L I T Y MOD E L S 131

Wtþ1 ¼ W1ð1� e�kÞ þWte
�k ð2:90Þ

where A ¼ W1ð1�e�kÞ and B ¼ e�k. The above equation is a version of the von

Bertalanffy growth function and it is equivalent to the non-recursive function:

Wt ¼ W1ð1�e�ktÞ ð2:91Þ
The present growth model cannot be reduced to such an equation and hence our

analysis must deal with the recursive form. Given only a few terms it is feasible to

apply themethods of calculus, but if, as in the present case, there are many terms,

such an approach would at best be very tedious. A further problem with a

recursive equation is that the function changes by unit steps, which generally

precludes the use of a search routine such as nlm.

2.15.3 Plotting the fitness function

Even though a changes by unit steps we can still use contour (R or MATLAB) to

plot the computed results: it must, however, be remembered that only integer

values are possible and hence that the correct optimum combination is shifted

relative to the peak portrayed in the contour plot. The summation limit is set to an

age of 30, which calculates fitness to within fractions of a percentage point of its

asymptotic value. Parameter values used are given in the function FITNESS.

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness given Alpha

FITNESS <- function(x)

{

G <- x[1] # G values

Alpha <- x[2] # Alpha value

Set parameter values

Mj <- 0.05 # Background mortality rate

Ma <- 0.4 # Constant of mortality function

Age.max <- 30 # Maximum age (arbitrary)

a <- 0.05 # Fecundity constant

A <- 10 # Wt increase/annum without reproduction

A.minus.1 <- Alpha-1 # Year before first reproduction

S <- matrix(0,Age.max) # Annual survival

Growth prior to reproduction is linear

To include cases in which growth is more complex I here use a for

loop

Wt <- matrix(0,Age.max,1) # Initialize Wt vector

S[1] <- exp(-Mj) # Survival to age 1

Calculate Wt and Survival from age 2 to alpha-1

for(i in 2:A.minus.1)

{

Wt[i] <- Wt[i-1]þ A # Weight

S[i] <- S[i-1]*exp(-Mj) # Annual survival

132 MODE L I NG E V O L U T I O N

}

Now calculate change in wt and survival for age alpha to max age

for(i in Alpha:Age.max)

{

Wt[i] <- Wt[i-1]þA-G*Wt[i-1] # Weight

S[i] <- S[i-1]*exp(-(MjþMa*G))# Annual survival

}

W <- a*sum(S[Alpha:Age.max]*Wt[Alpha:Age.max]*G) # Fitness

return(-W) # Return negative of fitness

}

MAIN PROGRAM

n.G <- 11 # Number of G values

G <- seq(from¼0.01, to¼0.5, length¼n.G) # G vector, 0.01 to 0.5

alpha <- seq(from¼3, to¼20) # Alpha vector from 3 to 20

n.alpha <- length(alpha) # Get length of alpha vector

d <- expand.grid(G,alpha) # Expand to a 2xn.g*n.alpha matrix

W <- apply(d,1,FITNESS) # Calc fitness for each combination

W <- matrix(W,n.G,n.alpha)# Convert to a n.g x n.alpha matrix

Contour plot

contour(G,alpha,-W, xlab¼“G”, ylab¼“ALPHA”,las¼1,lwd¼3,

labcex¼1)

OUTPUT: (Figure 2.13)

G

0.0

5

10

A
lp

ha

15

2.6

2.4

1.
4

0.
6

0.
8

1.
8

1.
2

1.
6

2

1.
8

1.
6

2.
2

2.2

20

0.1 0.2 0.3 0.4 0.5

1 2

Figure 2.13 Scenario 13: Contour plot showing fitness as a function of G and a;.

F I S H E R I A N O P T IM A L I T Y MOD E L S 133

Fitness is maximized by combinations at approximately G ¼ 0.12 and a ¼ 10

(Figure 2.13).

MATLAB CODE: See Section 2.18.31.

2.15.4 Finding the maximum using the calculus

This is not a practical method in this case and we move directly to numerical

methods.

2.15.5 Finding the maximum using a numerical approach

The age of first reproduction is an integer and thus it is not possible to use nlm to

find the value of a that maximizes W, but it can be used to find the optimal

allocation for a given a. From the contour plot it is evident that there is a single

peak and hence a simple approach is to begin with a low value of a and increase it

until W decreases below its previous value (code presented at end of section). In

fact, the present model runs so quickly that a simpler approach is to vary a from 3

to 20 and then use the function order to find the best combination.

2.15.5.1 Brute force using many values

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness given Alpha

FITNESS <- function(G,Alpha){This function is the same as in the

plotting code, except that G and Alpha are passed rather than x }

MAIN PROGRAM

Create vector for alpha values

alpha <- seq(from¼3, to¼20) # alpha vector

n.alpha <- length(alpha) # Length of vector

G <- matrix(0,n.alpha) # Create vector to store best G values

W <- matrix(0,n.alpha) # Create vector to store W values

for (i in 1:n.alpha) # Iterate over alpha vector values

{

Find best G for this alpha by calling nlm

G[i] <- nlm(FITNESS,p¼.2,alpha[i])$estimate # Store best G

W[i] <- -FITNESS(G[i],alpha[i])# Get W at best G for given alpha

}

Now locate best combination and write out values

Best <- order(W, na.last ¼ TRUE, decreasing ¼ TRUE)

Alpha.best <- alpha[Best[1]] # Best alpha

G.best <- G[Best[1]] # Best G

W.best <- W[Best[1]] # W at best alpha, best G

print(c(Alpha.best,G.best,W.best))

OUTPUT:

[1] 8.0000000 0.1345672 2.6848553

134 MODE L I NG E V O L U T I O N

MATLAB CODE: See Section 2.18.32.

2.15.5.2 Brute force using iteration

This presumes a single maximum. The strategy here is to compareW at a ¼ twith

W at a¼ tþ 1 (function¼ BESTG): if the difference is negative then the maximum

must be at a ¼ t.

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness given Alpha

FITNESS <- function(G,Alpha) {This function is the same as in the

plotting code, except that G and Alpha are passed rather than x }

Function to get best G for consecutive pairs of alpha

BESTG <- function (alpha)

{

Results for alpha

G1 <- nlm(FITNESS,p¼.1,alpha)$estimate # Best G given alpha

W1 <- -FITNESS(G1,alpha) # Fitness

Results for alphaþ1

G2 <- nlm(FITNESS,p¼.1,alphaþ1)$estimate # Best G given

alphaþ1

W2 <- -FITNESS(G2,alphaþ1) # Fitness

Wdiff <- W2-W1 # Diff between fitnesses

return (c(Wdiff,W1,G1)) # G1 will eventually be the best G

}

MAIN PROGRAM

ALPHA <- 5 # Set initial alpha

DIFF <-BESTG(ALPHA) #CalculatedifferencebetweenWattwoalphas

while (DIFF[1]>0) # If DIFF[1] > 0 then W still increasing

{

ALPHA <- ALPHAþ1

DIFF <- BESTG(ALPHA)

}

Out of loop and thus ALPHA is the best

print(c(ALPHA,DIFF[3],DIFF[2])) #Print out alpha, G, W

OUTPUT: (same as before)

[1] 8.0000000 0.1345672 2.6848553

MATLAB CODE: See Section 2.18.32.

2.16 Scenario 14: Adding a third variable and more

With two variables it is possible to graphically display fitness as a function of both

variables simultaneously. When the model includes three variables this is no

longer possible. A reasonable approach is to plot two variables, keeping the

F I S H E R I A N O P T IM A L I T Y MOD E L S 135

third constant. The general method of analysis is the same as with two variables.

To illustrate this I shall extend the foregoingmodel to include possible variation in

age-specific allocation to reproduction. I shall assume that the organism lives N

years after maturity. Life history theory predicts that, in general, allocation to

reproduction will increase with age (Roff 2002). We commence by considering the

case of N ¼ 2 and thence more than 2.

2.16.1 General assumptions

1. The organism is iteroparous but survives only 2 years following maturity (N¼ 2).

2. Reproduction occurs annually.

3. Size in year t þ 1 is a function of size in year t.

4. The increment in growth is a function of the allocation to reproduction.

5. Annual mortality is a function of the allocation to reproduction.

6. The allocation to reproduction is not constrained to be a constant.

7. Fecundity increases with the allocation to reproduction.

8. Fitness is a function of reproduction and survival.

2.16.2 Mathematical assumptions

1. In the absence of reproduction the organism increases in weight by a fixed

amount:

Wtþ1 ¼ Wt þ A; t < a� 2 ð2:92Þ

where W0 ¼ 0 and a is the age of first reproduction. This growth function is the

same as previous.

2. After maturity a female allocates an age-specific fraction, Gt, of its biomass to

reproduction:

Wtþ1 ¼ Wt þ A� GtWt t � a� 1 ð2:93Þ

Note that, as before, the allocation is made in the year prior to reproduction.

3. Fecundity is proportional to weight and the allocation to reproduction:

Ft ¼ aGtWt ð2:94Þ
where a is a constant.

4. In the absence of reproduction, the instantaneous (juvenile) mortality rate isMJ

and hence the annual juvenile survival is. e–MJ

5. The adult mortality rate,MA, is a linear function of the age-specific allocation to

reproduction.

136 MODE L I NG E V O L U T I O N

MA;t ¼ MJ þMaGt ð2:95Þ

whereMa is a constant. Thus annual survival, commencing in the year immediate-

ly prior to reproduction, is given by e�MA ¼ e�ðMJþMaG1Þ.

6. Fitness, W, is the expected lifetime fecundity:

W ¼
Xaþ1

t¼a

aGtWte
�MJða�1Þe�MA;tðt�aþ1Þ ð2:96Þ

2.16.3 Plotting the fitness function

As we have already seen that an optimal combination exists for a G that is not age-

specific and a, it is not necessary here to plot the data.

2.16.4 Finding the maximum using the calculus

This is not practical in this case and we move directly to numerical methods.

2.16.5 Finding the maximum using a numerical approach

As noted previously, the age of first reproduction is an integer and thus it is not

possible to use nlm to find the value of a that maximizes W. From the previous

contour plot it is evident that there is a single peak and this is likely to hold for

variable G, which can be verified by plotting it for several combinations of G1, G2.

The following code follows the same strategy as previously in beginning with a

low value of a and increasing until W decreases below its previous value. The

fitness function is modified from that given previously as indicated by bold font,

although with slight modification the present code will also work for the previous

case (an illustration that there are generally several ways of coding a program. This

is a good reason to abundantly annotate the code so that one can follow it when

returning after several days, weeks, or months). An important change in the

fitness function is that it now accepts a vector of G values.

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness given Alpha

FITNESS <- function(G,Alpha,N) # G IS NOW A VECTOR WITH N ENTRIES

{

Set parameter values

Mj <- 0.05 # Background mortality rate

Ma <- 0.4 # Constant of mortality function

Age.max <- Alphaþ1 # Maximum age

F I S H E R I A N O P T IM A L I T Y MOD E L S 137

a <- 0.05 # Fecundity constant

A <- 10 # Wt increase/annum without reproduction

A.minus.1 <- Alpha-1 # Year before first reproduction

S <- matrix(0,Age.max) # Annual survival

Growth prior to reproduction is linear

To include cases in which growth is more complex I here use a for

loop

Wt <- matrix(0,Age.max,1) # Initialize Wt vector

S[1] <- exp(-Mj) # Survival to age 1

Calculate Wt and Survival from age 2 to alpha-1

for(i in 2:A.minus.1)

{

Wt[i] <- Wt[i-1]þ A # Weight

S[i] <- S[i-1]*exp(-Mj) # Annual survival

}

Now calculate change in wt and survival for age alpha to max age

Accumulate W. W is now accumulated in the loop rather than after

W <- 0

for (J in 1:N) # Iterate over the adult ages

{

i <- Alpha þ J - 1 # Get age i ¼ Alpha, Alphaþ1

Wt[i] <- Wt[i-1]þ A- G[J]*Wt[i-1] # Wt

S[i] <- S[i-1]*exp(-(MjþMa*G[J]))# Annual survival

W <- W þ a*S[i]*Wt[i]*G[J] # Cumulative fitness

}

return(-W) # Return negative of fitness

}

Now function BESTG

Function to get best G for consecutive pairs of alpha

BESTG <- function (alpha)

{

Results for alpha

N <- 2 # Number of mature ages

G1<-nlm(FITNESS,p¼rep(.1,times¼N),alpha,N)$estimate#Nvalues

of G

W1 <- -FITNESS(G1,alpha,N)

Results for alphaþ1

G2 <- nlm(FITNESS,p¼rep(.1,times¼N),alphaþ1,N)$estimate

W2 <- -FITNESS(G2,alphaþ1,N)

Wdiff <- W2-W1

return (c(Wdiff,W1,G1)) # G1 will eventually be the best G

}

MAIN PROGRAM

ALPHA <- 5 # Set initial alpha

DIFF <-BESTG(ALPHA)#CalculatedifferencebetweenWattwoalphas

while (DIFF[1]>0) # If DIFF[1] > 0 then W still increasing

138 MODE L I NG E V O L U T I O N

{

ALPHA <- ALPHAþ1

DIFF <- BESTG(ALPHA)

}

Out of loop and thus ALPHA is the best

print(c(ALPHA,DIFF)) #Print out alpha, Wdiff, G1, G2..GN

OUTPUT:
[1]19.0000000000�0.00029716701.16930152210.34970195350.4835085056

As predicted, the allocation to reproduction increases with age (i.e., 0.35 versus

0.48). To increase the number of ages and hence the number of variables we

simply alter N in the above code. Suppose we set N<–5, giving 6 variables to be

estimated. The result is

OUTPUT:

[1] 18.000000000 �0.004169547 1.805390129 0.216575802 0.246302065

[6] 0.291752438 0.366635909 0.509802881

Again, as predicted, the allocation to reproduction increases with age (i.e., 0.22,

0.25, 0.29, 0.37, and 0.51). Using the “while” approach as shown in the above code

is much faster than the brute force approach.

MATLAB CODE: See Section 2.18.33.

2.17 Some exemplary papers

Roff, D. A. 1981. On being the right size. American Naturalist 118:405–422.

Problem: Optimal adult size in Drosophila melanogaster

Fitness measure: r

Gilchrist, G. W.1995. Specialists and generalists in changing environments.

I. Fitness landscapes of thermal sensitivity. American Naturalist 146:252–270.

Problem: Evolution of two components of thermal adaptation

Fitness measure: Geometric mean of r

Orzack, S. H. and S. Tuljapurkar. 2001. Reproductive effort in variable envir-

onments, or environmental variation is for the birds. Ecology 82:2659–2665.

Problem: Optimal clutch size in a temporally variable environment

Fitness measure: Long-term growth rate of population

Simons, A. M. and M. O. Johnston. 2003. Suboptimal timing of reproduction

in Lobelia inflata may be a conservative bet-hedging strategy. Journal of Evolu-

tionary Biology 16:233–243.

Problem: Evolution of timing of reproduction in the plant Lobelia inflate

Fitness measure: Fecundity

F I S H E R I A N O P T IM A L I T Y MOD E L S 139

Roff, D. A., E. Heibo, and L. A. Vollestad. 2006. The importance of growth and

mortality costs in the evolution of the optimal life history. Journal of Evolution-

ary Biology 19:1920–1930.

Problem: Evolution of the age at maturity and reproductive effort in fish

Fitness measure: R0

Rudolf, V. H. W. and M. O. Rodel. 2007. Phenotypic plasticity and optimal

timing of metamorphosis under uncertain time constraints. Evolutionary Ecol-

ogy 21:121–142.

Problem: Optimal timing and size at metamorphosis in amphibians

Fitness measure: r

2.18 MATLAB code

2.18.1 Scenario 1: Plotting the fitness function

clear all

ezplot(’-2*x 2̂þ4*x’,[0,2]) % the [0,2] defines the min and max

values of x

xlabel(’Body size’); ylabel(’Fitness’)

OR

clear all

x¼ 0:0.01:2; % Create vector from 0 to .2 in steps of 0.01

plot(x,-2*x. 2̂þ4*x) % Plot function using vector notation

xlabel(’Body size’); % Label x axis

ylabel(’Fitness’); % Label y axis

2.18.2 Scenario 1: Finding the maximum using the calculus

Symbolic differentiation can be done in MATLAB with the command diff:

% To differentiate the function and store the result in y

syms x; y¼diff(-2*x 2̂þ4*x);

% Print solution

y

OUTPUT:

y ¼ -4*xþ4

The value at which the derivative is zero (i.e., y ¼ 0) can now be found using

the command

solve

% Find value at which y ¼ 0

solve(y)

OUTPUT:
ans ¼ 1

140 MODE L I NG E V O L U T I O N

2.18.3 Scenario 1: Finding the maximum using a numerical approach

% Find minimum using the routine fminbnd setting the search limits

at -2, 4

% Define function such that minimum is turning point

% and pass function directly to fminbnd

fminbnd(’-(-2*x 2̂þ4*x)’, -2,4) % search limits at �2, 4

OR

% Define the anonymous function such that minimum is turning point

FITNESS ¼@(x)(-(-2*x 2̂þ4*x));

fminbnd(FITNESS,-2,4) % search limits at �2, 4

OR

% Define the inline function such that minimum is turning point

FITNESS ¼ inline(’-(-2*x 2̂þ4*x)’,’x’);

fminbnd(FITNESS, -2,4) % search limits at �2, 4

2.18.4 Scenario 3: Plotting the fitness function

All commands are placed into themain program and summation is done using the

symbolic summation routine symsum. In this case a loop is used to calculate the

summed value for each value of n.

clear all % Clear workspace

syms t; % Define t as a symbol for the summation routine

nmax¼20; % Set the maximum number of ages

n ¼ 1:nmax; % Create a vector of n from 1 to nmax

% Create an equal length vector to store the sums.

% Present values will be replaced

s ¼ 1: nmax; % Vector called s

x ¼ 1; % Set value of x to 1

for n1 ¼ 1:nmax; %Iterate from n¼1 to n¼nmax

% Call symsum for summation 1,n1

s(n1)¼ symsum(4*x*exp(-(1þ0.5*x)*t),1,n1);

end

plot(n,s) % Plot results

xlabel(’MAXIMUM AGE’); ylabel(’SUM’) % Label axes

The plot is, of course, identical to the previous, from which we concluded that

n ¼ 20 would be a sufficient interval of summation. To plot fitness, W, as a

function of size, x, we proceed as follows:

1. Create a function that makes use of the symbolic summation routine symsum

and store this in an M file called FITNESS.m:

function w¼FITNESS(x) % Function to do symbolic summation

syms t; % Define t as a symbol

w¼symsum(4*x*exp(-(1þ0.5*x)*t),1,20); % Sum over ages 1 to 20

F I S H E R I A N O P T IM A L I T Y MOD E L S 141

OR

Create a function that makes use of sum to do the summation explicitly and store

this in an M file called FITNESS.m.:

function w¼FITNESS(x) % Function to do summation

Age ¼ 1:20; % Create a vector of ages 1 to 20

w ¼ sum(4*x*exp(-(1þ0.5*x)*Age)); % Create vector of fitness

and sum it

2. Use fplot to increment over values of x and plot the result:

clear all % Clear the workspace

fplot(@FITNESS,[0,5])% call FITNESS function lower and upper lim-

its¼0,5

xlabel(’SIZE’); ylabel(’FITNESS’);% Label axes

2.18.5 Scenario 3: Finding the maximum by the calculus

Because the right hand side of the equation is zero it can be omitted in solve:

solve(’(4)þ(0þ4*x)*(-0.5)þ(0þ4*x)*(-1)*(0.5*exp

(-(1þ0.5*x)))/(1-exp(-(1þ0.5*x)))’)

OUTPUT:

ans ¼ 1.6828113208739212756932093160250

�4.2923864412411651704741220570427

2.18.6 Scenario 3: Finding the maximum using a numerical approach

We shall use the explicit summation function. Note that, as above, because wewill

be using a minimization routine, we take the negative value of the sum:

function w¼FITNESS(x) % Function to do summation

Age¼ 1:20; % Create a vector of ages 1 to 20

w ¼ -sum(4*x*exp(-(1þ0.5*x)*Age)); % Create vector of fitness

and sum it

We now use the previously used minimization routine fminbnd, setting the

limits at 0.5 and 2, as found from the graph (Figure 2.3):

fminbnd(@FITNESS,0.5,2) % Note the @ placed before the function

name

OUTPUT:
ans ¼ 1.6828

2.18.7 Scenario 4: Plotting the fitness function

MATLAB has a symbolic integration routine int:

int(’(AfþBf*x)*exp(�(AsþBs*x)*t)’,’t’)

OUTPUT:

ans ¼-1/(AsþBs*x)*(AfþBf*x)*exp(�(AsþBs*x)*t)

142 MODE L I NG E V O L U T I O N

To obtain a somewhat nicer looking output we can use the command pretty:

pretty(int(’(AfþBf*x)*exp(�(AsþBs*x)*t)’,’t’))

OUTPUT:

ans ¼ (Af þ Bf x) exp(-(As þ Bs x) t)

- -------------------------------

As þ Bs x

To use int to plot W versus x we first make a function stored in FITNESS.m:

function w¼FITNESS(x)% Function to evaluate fitness

syms t % Make t a symbol

f ¼ (0þ4*x)*exp(-(1þ0.5*x)*t); % Create function

w¼int(f,1,100); % Call function that calculates integral 1 to 100

We then call this function in the following program:

clear all % Clear the workspace

x ¼ linspace(0,5,100); % 100 equal spaced values from 0 to 5

% Create a vector of fitnesses the same length as x

% Note that these initial entries are replaced

W ¼ x; % Preallocate space to W

for i ¼1:100 % iterate over all values of x

W(i)¼FITNESS(x(i));

end; % End of loop

plot(x, W) % Plot W as a function of size

xlabel(’SIZE’); ylabel(’FITNESS’); % Label axes

If the integral is one that cannot be integrated symbolically then one can use one

of the numerical integration functions, such as quad. First create the fitness

function FITNESS stored in an M file:

function w¼FITNESS(x) % Function to evaluate fitness numerically

% Call function that calculates integral 1 to 100

w¼quad(@(t)(0þ4*x)*exp(-(1þ0.5*x)*t),1,100);

Then to plot we use

clear all % Clear the workspace

fplot(@FITNESS,[0,5])% Call fplot to plot FITNESS function

xlabel(’SIZE’); ylabel(’FITNESS’); % Label axes

2.18.8 Scenario 4: Finding the maximum using the calculus

syms x;

y ¼ diff((0þ4*x)*exp(-(1þ0.5*x))/(1þ0.5*x))

OUTPUT:

y ¼ 4*exp(-1-1/2*x)/(1þ1/2*x)-2*x*exp(-1-1/2*x)/(1þ1/2*x)

-2*x*exp(-1-1/2*x)/(1þ1/2*x) 2̂

F I S H E R I A N O P T IM A L I T Y MOD E L S 143

The above expression is formidable looking but, as with the R code, it can be

stored in y and need not be shown.

As with the R code two routes are possible, supplying the derivative directly and

letting MATLAB calculate it. The roots are then found using solve:

solve(’4-0.5*(0þ4*x)-(0þ4*x)*0.5/(1þ0.5*x)’) % Finding the

roots

OR

syms x;

y ¼ diff((0þ4*x)*exp(-(1þ0.5*x))/(1þ0.5*x))

vpa(solve(y),5) % Find the roots, outputting value to 5 decimal

places

OUTPUT: (from first code, second code giving only 5 decimal places)

ans ¼ -3.2360679774997896964091736687313

1.2360679774997896964091736687313

As before, only the second answer is physically possible.

2.18.9 Scenario 4: Finding the maximum using a numerical approach

First create the function FITNESS:

function w¼FITNESS(x)

w¼-quad(@(t)(0þ4*x)*exp(-(1þ0.5*x)*t),1,100); % Numerical

integra-

tion

We now use the previously used minimization routine fminbnd setting the

limits at 0.5 and 2, as found from the graph (Figure 2.4):

fminbnd(@FITNESS, 0.5, 2)

OUTPUT:

ans ¼ 1.2361

2.18.10 Scenario 5: Plotting the fitness function

Using the program to do the integration

We use the function quad to do the numerical integration of the characteristic

(also called the Euler) function and pass 1 minus its value back. This function does

not accept infinity and so we set the upper integration limit at a large value, here

100. Note that we pass x and r:

function y¼EULER(r,x) % Function to evaluate 1-Euler equation

Af¼0;Bf¼16;As¼1;Bs¼0.5; % Set parameter values

y¼1�quad(@(t)(AfþBf*x)*exp(�(AsþBs*xþr)*t),1,100);%1-integral

144 MODE L I NG E V O L U T I O N

Now we iterate over values of x using fzero to find value of r (¼ fitness ¼ W)

for each value of x:

clear all % Clear the workspace

x¼linspace(0.5,3,100); % Generate 100 values between 0 and 3

W¼x; % Preallocate values to w. Will be changed

for i ¼ 1:100; % Iterate over values of x

% 1-Euler value is in function Euler

W(i)¼fzero(@(r) EULER(r,x(i)),0.5); % Use fzero to calculate r

end;

plot(x,W); % Plot fitness¼r on x

xlabel(’SIZE’); ylabel(’FITNESS’); % Label axes

User supplied solution to the integral

function y¼EULER(r,x) % Function to evaluate fitness

Af¼0;Bf¼16;As¼1;Bs¼0.5; % Set parameter values

y ¼1-exp(-(rþAsþBs*x))*(AfþBf*x)/(AsþBs*xþr); % 1-RHS of

equation

As with the R commands, the MATLAB main program is not changed.

2.18.11 Scenario 5: Finding the maximum using the calculus

First define a function called FITNESS to calculate equation (2.41):

function w¼FITNESS(x); % Function to evaluate fitness

Af¼0;Bf¼16;As¼1;Bs¼0.5; % Set parameter values

r¼ Bs*(AfþBf*x)/(Bf-Bs*Af-Bs*Bf*x)-Bs*x-As; % r from eqn (2.40)

w ¼(log(AfþBf*x)-(AsþBs*xþr)-log(AsþBs*xþr)); % equation (2.41)

Call function with

clear all % Clear the workspace

x¼fzero(@FITNESS,[1.2,1.8]) % Use fzero to calculate r

OUTPUT:

x ¼ 1.3899

2.18.12 Scenario 5: Finding the maximum using a numerical approach

We define two functions, EULER, which calculates 1-characteristic equation given

r and x (two versions given below) and RFUNC which calculate the value of r using

fzero calling EULER. The optimal value of x is found by calling fminbind:

function y¼EULER(r,x) % Function to evaluate 1-Euler equation

Af¼0;Bf¼16;As¼1;Bs¼0.5; % Set parameter values

y¼1�quad(@(t)(AfþBf*x)*exp(�(AsþBs*xþr)*t),1,100); % 1-inte-

gral

OR using the integrated function

function y¼EULER(r,x) % Function to evaluate fitness

F I S H E R I A N O P T IM A L I T Y MOD E L S 145

Af¼0;Bf¼16;As¼1;Bs¼0.5; % Set parameter values

y¼1-exp(-(rþAsþBs*x))*(AfþBf*x)/(AsþBs*xþr);%1-RHSofequation

Above called by

function Rvalue¼RFUNC(x)

Rvalue ¼ fzero(@(r) EULER(r,x),0.5); % Use fzero to calculate r

Rvalue ¼ ¼Rvalue; % Pass –r back

Main Program:

clear all; % Clear the workspace

fminbnd(@RFUNC,1.2,1.8); % Use fminbnd to find minimum of –fitness

OUTPUT:

ans ¼ 1.3899

2.18.13 Scenario 6: Plotting the fitness function

This is essentially the same as the R code.

clear all; % Clear the workspace

Af ¼ 2; Bf ¼ 2; % Invariant parameter values

Amin ¼ 0.3; Amax ¼ 1; % Min and max values of aS

Bmin ¼ 0; Bmax ¼ 0.2; % Min and max values of bS

Amean ¼ (AmaxþAmin)/2; % Mean value of aS

Bmean ¼ (BmaxþBmin)/2; % Mean value of bS

% Calculate n parameter combinations

n ¼ 1000; % Number of values of aS and bS to generate

% We are assuming a uniform distribution of values

rand(’twister’, 10); % Set the random number seed

% Generate n random numbers from Bmin to Bmax

Bs ¼ Bminþ(Bmax-Bmin)*rand(n,1);

% Generate n random numbers from Amin to Amax

As ¼ Aminþ(Amax-Amin)*rand(n,1);

x ¼ linspace(0,6,100); % Body sizes from 0 to 6

W ¼ zeros(100,2); % Matrix to take fitness values

for i ¼ 1: 100 % Iterate over x values

Surv ¼ As�Bs*x(i); % Vector of survivals

% Check that no survival < 0. If so then set to zero

Surv(Surv<0) ¼ 0;

% Check that no survival > 1. If so then set to 1

Surv(Surv>1) ¼ 1;

% Column 1 contains fitness for variable parameters

W(i,1) ¼ mean((AfþBf*x(i))*Surv);

% Col 2 contains fitness using mean parameter values

W(i,2) ¼ (AfþBf*x(i))*(Amean-Bmean*x(i));

end

146 MODE L I NG E V O L U T I O N

% Plot fitness¼W vs x for both columns on same graph

plot(x,W(:,1)) % Plot first line

xlabel(’Body size, x’);ylabel(’Fitness, W’);

hold on % Keep plot for next line

plot(x,W(:,2),’:’) % Plot second line with dashes

2.18.14 Scenario 6: Finding the maximum using the calculus

As with the R code there is a function, INTEGRAND, to generate the fitness value

for a given x and a function, FITNESS, that calls the numerical integration routine

dblquadwhich takes INTEGRAND as its input. Two points are worth noting. First,

we have to pass an extra parameter, x to the integration routine and second we

have to compress the fitness equation given in INTEGRAND into a single line. This

is done by making use of the routines min and max. The survival equation is

As�Bs*x, except that it is bounded at 0 and 1. This is specified by nesting the

min and max routines: min (max ((As�Bs*x), 0), 1). The inner routine

ensures that survival does not go below 0 and the outer routine ensures that it

does not exceed 1 (we could have used the same code in R but it is not as clear and

makes little difference to the speed of execution).

function f¼INTEGRAND(As,Bs,x) % Function to integrate function

Af ¼ 2;Bf ¼2;Ca ¼1/0.7;Cb ¼5; %Invariantparametervalues

f¼(AfþBf*x)*min(max((As�Bs*x),0),1)*Cb*Ca;% Fitness vector

Function to calculate fitness:

function W¼FITNESS(x) % Function to evaluate fitness

Amin ¼ 0.3; Amax ¼ 1; % Min and max values of As

Bmin ¼ 0; Bmax ¼ 0.2; % Min and max values of Bs

% Double integral. Note that x is passed also

W ¼dblquad(@(As,Bs) INTEGRAND(As,Bs,x),Amin,Amax,Bmin,Bmax);

W¼-W; % Negative of fitnessc

Main Program:

clear all; % Clear the workspace

fminsearch(@FITNESS,2) % Find minimum, starting with 2

OUTPUT:

ans ¼ 3.3703

The answer given by MATLAB agrees with that obtained using optimize in R.

2.18.15 Scenario 6: Finding the maximum using a numerical approach

The fitness function uses the same general structure as previously used in INTE-

GRAND:

F I S H E R I A N O P T IM A L I T Y MOD E L S 147

function W¼FITNESS(x,As,Bs) % Function to evaluate fitness given

Alpha

Af¼2; Bf¼2; Ca¼1/0.7; Cb¼5; % Invariant parameter values

W ¼ mean((AfþBf*x)*min(max((As�Bs*x),0),1)*Cb*Ca); % Fitness

vector

W ¼ �W; % Return negative of fitness

Main Program:

clear all; % Clear the workspace

Amin ¼ 0.3; Amax ¼ 1; % Min and max values of As

Bmin ¼ 0; Bmax ¼ 0.2; % Min and max values of Bs

% Calculate n parameter combinations

n ¼ 10000; % Number of values of As and Bs to generate

% We are assuming a uniform distribution of values

% Make several runs. Here we use 10

REP ¼ zeros(10,1); % Create matrix to hold replicate

% We are assuming a uniform distribution of values

rand(’twister’, 100); % Set the random number seed

for i ¼ 1:10 % Iterate over replicates

Bs ¼ Bminþ(Bmax-Bmin)*rand(n,1); % Vector of values of Bf

As ¼ Aminþ(Amax-Amin)*rand(n,1); % Vector of values of As

REP(i)¼ fminsearch(@(x) FITNESS(x,As,Bs), 2); % Pass As,Bs as

well as x

end

[mean(REP) std(REP)] % Print mean and standard deviation

OUTPUT:

ans ¼ 3.3786 0.0516

2.18.16 Scenario 7: Plotting the fitness function

Differs slightly from R code in that W rather than �log W is returned.

function W¼FITNESS(x) % Function to evaluate fitness

Af ¼ 2; Bf ¼ 2 ; As ¼ 0.6; % Parameter values

pBs ¼ [0.1,0.3,0.4,0.2]; % Vector of probabilities for Bs

Bs ¼ [0.1,0.12,0.14,0.2]; % Vector of Bs values

W_ind¼ (AfþBf*x)*(As�Bs*x); % Fitness values for each Bs value

% log Fitness. Note use of “.” to denote element by element multiply

log_W ¼ -sum(pBs.*log(W_ind));

W ¼ exp(-log_W); % Send back fitness

Main Program:

clear all; % Clear the workspace

fplot(@FITNESS, [0,2.999]) % Plot. Note W ¼INF at x¼3

xlabel(’SIZE’); ylabel(’FITNESS’);

148 MODE L I NG E V O L U T I O N

2.18.17 Scenario 7: Finding the maximum using the calculus

Calculating the optimum using equation (2.52)

function D¼DERIV(x) %Function to calculate value of derivative

Af ¼ 2; Bf ¼ 2 ; As ¼ 0.6; % Parameter values

pBs ¼ [0.1,0.3,0.4,0.2]; % Vector of probabilities for Bs

Bs ¼ [0.1,0.12,0.14,0.2]; % Vector of Bs values

% Derivative Note “.” for multiplying element by element

D ¼ sum(pBs.*(As*Bf-Af*Bs-Bf*Bs*2*x)./((AfþBf*x)*(As�Bs*x)));

Main Program:

clear all; % Clear the workspace

fzero(@DERIV,2) % Call fzero to find root

OUTPUT:

ans ¼ 1.5457

Computing the derivative using the fitness function directly

First we get the derivative with respect to x with pBs and Bs entered as

symbolic:

clear all; % Clear the workspace

Af ¼ 2; Bf ¼ 2 ; As ¼ 0.6; % Parameter values

syms x; syms pBs; syms Bs; % Make symbolic parameters

dx ¼ diff(pBs*log((AfþBf*x)*(As�Bs*x)),x) % Get differential

OUTPUT:

dx ¼pBs*(6/5�2*Bs*x�(2þ2*x)*Bs)/(2þ2*x)/(3/5�Bs*x)

We can now use the previous code to find the solution, except that vector

notation is not used (it will supply an answer but not the correct one):

function D¼DERIV(x) %Functiontocalculatevalueofderivative

Af ¼ 2; Bf ¼ 2 ; As ¼ 0.6; % Parameter values

pBs ¼ [0.1,0.3,0.4,0.2];% Vector of probabilities for Bs

Bs ¼ [0.1,0.12,0.14,0.2]; % Vector of Bs values

D¼0; % Set D to zero and sum derivative values

for i¼1:4 % Iterate over Bs values

D ¼ Dþ pBs(i)*(6/5�2*Bs(i)*x�(2þ2*x)*Bs(i))/(2þ2*x)/(3/5-Bs

(i)*x);

end

Main Program:

clear all; % Clear the workspace

fzero(@DERIV,2) % Find root

OUTPUT:

ans ¼ 1.5457

F I S H E R I A N O P T IM A L I T Y MOD E L S 149

2.18.18 Scenario 7: Finding the maximum using numerical methods

function W¼FITNESS(x) % Function to evaluate ®tness

Same as function used in plotting except last line is changed to return the negative

of the fitness:

W ¼ -exp(-log_W); % Send back negative of ®tness

Main Program:

clear all; % Clear the workspace

fminsearch(@FITNESS,2) % Call fminsearch giving 2 as starting

estimate

OUTPUT:

ans ¼ 1.5457

2.18.19 Scenario 8: Plotting the fitness function

There are two approaches, depending on the fitness function:

Approach 1: Fitness function can be integrated

The above fitness function can be simplified for the purposes of integration by

rewriting equation (2.55) as

logW ¼ c

Z
logðA� BbsÞdbs ð2:97Þ

where A ¼ aSðaF þ bFxÞ and B ¼ xðaF þ bFxÞ. Now using MATLAB code

int(’log((A-B*Bs))’,’Bs’)

gives the output

ans ¼ -1/B*log(A-B*Bs)*Aþlog(A-B*Bs)*Bsþ1/B*A-Bs

The definite integral of equation (2.97) is readily obtained from the above

using the following function:

function y¼INTEGRAND(x) % Function to integrate function

Af ¼ 2; Bf ¼ 2; As ¼ 0.6; c¼5; % Parameter values

A¼As*(AfþBf*x);B¼x*(AfþBf*x); % Define A and B

Bmin ¼ 0.0; Bmax¼0.2; % Set limits of integration

% Get upper and lower values of integral

Wmin¼c*(-1/B*log(A-B*Bmin)*Aþlog(A-B*Bmin)*Bminþ1/B*A-Bmin);

Wmax¼c*(-1/B*log(A-B*Bmax)*Aþlog(A-B*Bmax)*Bmaxþ1/B*A-Bmax);

y ¼ exp(Wmax-Wmin); % Fitness

Main Program:

clear all; % Clear the workspace

fplot(@INTEGRAND, [1 3]); % Plot function

xlabel(’Body size’); ylabel(’Fitness’); % Add axis labels

150 MODE L I NG E V O L U T I O N

Approach 2: Fitness function cannot be integrated symbolically

In this case we use the numerical integration routine quad:

function W¼INTEGRAND(x) % Function to integrate function

Af ¼ 2; Bf ¼ 2 ; As ¼ 0.6; c¼5; % Parameter values

Bmin ¼ 0.0; Bmax¼0.2; % Set limits of integration

syms Bs; % Define Bs to be symbolic

y¼quad(@(Bs) c*log((AfþBf*x)*(As�Bs*x)), Bmin, Bmax); % integrate

W¼exp(y)

Main Program:

clear all; % Clear the workspace

fplot(@INTEGRAND, [1 3]); % Call plotting routine

xlabel(‘Body size’); ylabel(‘Fitness’);

2.18.20 Scenario 8: Finding the maximum using a numerical approach

Fitness is calculated using the function INTEGRAND previously used in plotting,

except that the last line is changed to pass the negative of the fitness value:

W ¼ -exp(y). The main program is then

clear all; % Clear the workspace

fminsearch(@INTEGRAND,2) % Find minimum

OUTPUT:

ans ¼ 2.0323

2.18.21 Scenario 9: The derivative can also be determined using MATLAB

clear all % Clear the workspace

% Designate parameters and variables as symbolic

syms Axy; syms A0; syms Bxy;

syms Cxy; syms Byx; syms Cyx;

syms x; syms y;

f ¼ Axy*x*y-A0þBxy*x-Cxy*x 2̂þByx*y-Cyx*y 2̂ % Function

diff(f,x) %Differentiate with respect to x

diff(f,y) %Differentiate with respect to y

OUTPUT:

ans ¼ Axy*yþBxy-2*Cxy*x

ans ¼ Axy*xþByx-2*Cyx*y

2.18.22 Scenario 9: Plotting the fitness function

clear all % Clear the workspace

x ¼ linspace(1, 3, 20); % x from 1 to 3 length 20

F I S H E R I A N O P T IM A L I T Y MOD E L S 151

y ¼ linspace(1, 3, 20); % y from 1 to 3 length 20

[xx,yy]¼meshgrid(x,y); % Create a grid

A0¼0.8; Bxy¼0.8; Byx¼0.8; % parameter values

Axy¼0.4; Cxy¼0.4; Cyx¼0.4; % Parameter values

% Fitness values at each x y coordinate

% Note use of“.”to denote vectors

zz¼(Axy.*xx.*yy-A0)-(-Bxy.*xxþCxy.*xx. 2̂)-(-Byx.*yyþCyx.

*yy. 2̂);

subplot(2,2,1); % Divide graph sheet into 4 and plot contour in

top left

[C,h]¼contour(x,y,zz); % Create contour plot

%clabel(C,h) rotates the labels and inserts them in the contour

lines.

clabel(C,h);

xlabel(’Foraging’); ylabel(’Vigilance’); % Add text

subplot(2,2,2);% Divide graph sheet into 4 and plot 3D in top right

surfc(xx,yy,zz); % Plot a 3D surface

xlabel(’Foraging’); ylabel(’Vigilance’); zlabel(’Fitness’) %

Add text

2.18.23 Scenario 9: Finding the maximum using the calculus

Create function FUNC as in R:

function b¼FUNC(v) % Create same function as in R

x¼v(1);y¼v(2); % Set two values

b¼abs(0.4.*yþ0.8-2*0.4*x)þabs((0.4*xþ0.8-2*0.4*y)); % Value

Now call fminsearch:

clear all; % Clear the workspace

v¼[1,1]; % Initial estimates

fminsearch(@FUNC,v) % Call fminsearch

OUTPUT:

ans ¼ 2.0000 2.0000

2.18.24 Scenario 9: Finding the maximum using a numerical approach

function w¼FITNESS(v) % Function to evaluate fitness

A0¼0.8;Bxy¼0.8;Byx¼0.8; % parameter values

Axy¼0.4;Cxy¼0.4;Cyx¼0.4; % Parameter values

x¼v(1); y¼v(2); % Set two variables

% Remember to pass minus fitness

w¼-((Axy.*x.*y-A0)-(-Bxy.*xþCxy.*x. 2̂)-(-Byx.*yþCyx.*y. 2̂));

Call above function:

clear all; % Clear the workspace

152 MODE L I NG E V O L U T I O N

v¼[1,1]; % Initial values

fminsearch(@FITNESS,v) % Call search routine

OUTPUT:

Ans ¼ 2.0000 2.0000

2.18.25 Scenario 11: Plotting the fitness function

First create fitness function:

function w¼FITNESS(x1) % Function to evaluate fitness

% Parameter values

S1¼0.005; S2 ¼ 0.002; Fmax ¼ 2; a ¼ 1; N ¼ 100; R ¼ 400;

ExpFec1 ¼ Fmax*(1-exp(-a*x1));% Expected fecundity from 1st clutch

x2 ¼ (R/N)-x1; % Propagule size in 2nd clutch

x2 ¼ max(x2,0); % If x2 <0 set x2¼0

ExpFec2¼ Fmax*(1-exp(-a*x2)); % Expected fecundity from 2nd clutch

w ¼ N*(S1*ExpFec1þS2*ExpFec2); % Fitness

% Check to see if x1 is acceptable size

Xmax ¼ N*x1;

if(Xmax>R)

w ¼ 0; % if x1 too big set fitness to zero

end;

Call plotting function:

clear all; % Clear the workspace

fplot(@FITNESS,[0,4]); % Plot fitness function

xlabel(‘Propagule size’); ylabel(‘Fitness’); % Label axes

2.18.26 Scenario 11: Finding the optimum using the calculus

Using the derivative directly

function y¼DFUNC(x) % Derivative function

% Parameter values

S1 ¼ 0.005; S2 ¼ 0.002; a ¼ 1; N ¼ 100; R ¼ 400;

y¼(S1*exp(-a*x)-S2*exp(-a*(R/N-x))); % Return deriv value

Call function DFUNC with fzero to locate optimum x:

clear all; % Clear the workspace

fzero(@DFUNC,1) % Call root-finding function with initial value at 1

OUTPUT:

ans ¼ 2.4581

Getting the derivative using R or MATLAB

clear all; % Clear the workspace

F I S H E R I A N O P T IM A L I T Y MOD E L S 153

S1 ¼ 0.005; S2 ¼ 0.002;a ¼ 1; N ¼ 100; R ¼ 400; Fmax¼ 2;

syms x; % make x symbolic

y¼diff(N*(S1*Fmax*(1-exp(-a*x))þS2*Fmax*(1-exp(-a*(R/N-x))))); %

Differential

x1 ¼ vpa(solve(y),5); % x1 to 5 decimal places

% Calculate x2 for optimum x1

x2¼ (R/N)-x1 ; % Size of 2nd propagule

x1 % print x1

x2 % Print x2

OUTPUT:

x1 ¼ 2.4581

x2 ¼ 1.5419

2.18.27 Scenario 11: Finding the optimum using a numerical approach

The fitness function routine is the same as used for plotting except that we add a

final line to return minus fitness: w¼�w.

We then use fminsearch:

clear all; % Clear the workspace

N ¼ 100; R ¼ 400; Fmax¼ 2; % Set parameter values

x1¼fminsearch(@FITNESS,1); % Call fminsearch with initial esti-

mate of 1

% Calculate x2 for optimum x1

x2¼ (R/N)-x1 ; % Size of 2nd propagule

x1 % print x1

x2 % print x2

OUTPUT:

x1 ¼ 2.4581

x2 ¼ 1.5419

2.18.28 Scenario 12: Plotting the fitness function

Fitness function:

function W¼FITNESS(v) % Function to evaluate fitness

x1¼v(1); % x1 ¼ Propagule size in 1st clutch

x2¼v(2); % x2 ¼ Propagule size in 2nd clutch

% Set parameter values

N ¼ 100; R ¼ 400;

S1 ¼ 0.035; S2 ¼ 0.030; S3 ¼ 0.025;

Fmax ¼ 2; a ¼ 0.1;

W1¼0; W2¼0; W3¼0; % Initial values

% Check if first clutch mass exceeds reserves

if N*x1>R

W ¼ 0; % Propagule too large

154 MODE L I NG E V O L U T I O N

else

% Calculate first fecundity

W1 ¼ N*S1*Fmax*(1-exp(-a*x1));

% Calculate size of propagules in 2nd clutch and see if reserves

exceeded

if N*(x1þx2)>R

W ¼ W1; % Propagules in 2nd clutch too large

else

W2 ¼ N*S2*Fmax*(1-exp(-a*x2)); % Calculate 2nd fecundity

% Calculate the size of Propagules in 3rd clutch

% Note that there must be reserves remaining at this stage

x3 ¼ (R-N*(x1þx2))/N;

W3 ¼ N*S3*Fmax*(1-exp(-a*x3)); % Calculate 3rd fecundity

W ¼ W1þW2þW3;

end % End 2nd else

end % End 1st else

W¼-W; % Return negative of fitness

MATLAB code to call fitness function and make plots:

clear all; % Clear the workspace

n¼20; % Number of divisions to be made

x1 ¼ linspace(1, 5, n); % x1 from 1 to 5 length 20

x2 ¼ linspace(1, 5, n); % x2 from 1 to 5 length 20

z ¼ zeros(n); % Preallocate z matrix

% Fitness values at each x1 x2 coordinate

for i ¼ 1:n

for j ¼ 1:n

z(j,i)¼-FITNESS([x1(i),x2(j)]); % Convert to positive fitness

end

end

subplot(2,2,1) % Divide graph sheet into 2 x 2 panels, contour top

left

[C,h]¼contour(x1,x2,z); % Create contour plot

%clabel(C,h) rotates the labels and inserts them in the contour

lines.

clabel(C,h);

xlabel(’x1’); ylabel(’x2’); % Add text

subplot(2,2,2) % Divide graph sheet into 2 x 2 panels, 3D top right

[xx,yy] ¼ meshgrid(x1,x2); % Create grids for 3D plot

surfc(xx,yy,z); % Plot 3D

xlabel(’x1’); ylabel(’x2’); zlabel(’Fitness’) % Add text

2.18.29 Scenario 12: Finding the maximum using the calculus

Using R or MATLAB to find the optima given the differential

The MATLAB code does not give any warning or error messages. First we write the

fitness function:

F I S H E R I A N O P T IM A L I T Y MOD E L S 155

function W¼FITNESS(x2) % Function to evaluate fitness

% Differs from that used in plotting in only a single variable being

input

% Set parameter values

N ¼ 100; R ¼ 400;

S1 ¼ 0.035; S2 ¼ 0.030; S3 ¼ 0.025;

Fmax ¼ 2; a ¼ 0.1;

x1 ¼ (1/a)*log(S1/S2)þx2; % x1 given the value of x2

x3 ¼ (R-N*(x1þx2))/N; % Value of x3

if x3<0

W¼0; % Check that x3 exists

else

% Check if first clutch mass exceeds reserves

if N*x1 > R

W ¼ 0; % Propagule too large

else

W1 ¼ N*S1*Fmax*(1-exp(-a*x1)); % Calculate first fecundity

% Calculate size of propagules in 2nd clutch and see if reserves

exceeded

if N*x2 > R

W ¼ W1; % Propagules in 2nd clutch too large

else

W2 ¼ N*S2*Fmax*(1-exp(-a*x2)); % Calculate 2nd fecundity

% Calculate the size of Propagules in 3rd clutch

% Note that there must be reserves remaining at this stage

W3 ¼ N*S3*Fmax*(1-exp(-a*x3)); % Calculate 3rd fecundity

W ¼ W1þW2þW3;

end % End 3rd else

end % End 2nd else

end % End 1st else

Propagules ¼[x1,x2,x3]; % Store sizes

save PROPAGULE.txt Propagules -ASCII % Output sizes

W¼ -W; % Return negative of fitness

Main MATLAB Program:

clear all; % Clear the workspace

% Locate optimum x2 and calculate x1 and x3

fminsearch(@FITNESS,1); % Call fminsearch with estimate at 1

load PROPAGULE.txt % Get optima from file

PROPAGULE % Print out results

OUTPUT:

PROPAGULE ¼ 2.7705 1.2290 0.0005

156 MODE L I NG E V O L U T I O N

The MATLAB output gives more or less the same answer as the R output for x1 and

x2 but the slight differences makes a difference to the estimated value of x3, the

MATLAB estimate being larger (9.7 	 10�7 in R and 5 	 10�4 in MATLAB). Though

the difference may seem large, the overall conclusion for the third propagule is

that it will be very, very small.

Using R or MATLAB to do the calculus

We do not have to resort to a numerical derivative since we can use diff to find

the absolute value of the difference between the partial derivatives as functions of

x1 and x2:

clear all % clear the work space

% Set parameter values

N ¼ 100; R ¼ 400;

S1 ¼ 0.035; S2 ¼ 0.030; S3 ¼ 0.025;

Fmax ¼ 2; a ¼ 0.1;

syms x1;syms x2; % make x1 and x2 symbolic

% Differential with respect to x1

dx1¼diff(N*S1*Fmax*(1-exp(-a*x1))þN*S2*Fmax*(1-exp

(-a*x2))þN*S3*Fmax*(1-exp(-a*(R/N-(x1þx2)))),x1);

% Differential with respect to x2

dx2¼diff(N*S1*Fmax*(1-exp(-a*x1))þN*S2*Fmax*(1-exp

(-a*x2))þN*S3*Fmax*(1-exp(-a*(R/N-(x1þx2)))),x2);

dx1-dx2 % output difference

OUTPUT:

ans ¼7/10*exp(-1/10*x1)-3/5*exp(-1/10*x2)

We can now use the same approach as in the R code. First define the

function GRADIENT:

function d¼GRADIENT(x1,x2)

d ¼abs(7/10*exp(-1/10*x1)-3/5*exp(-1/10*x2)); % Abs value of

difference

Next the fitness function:

function W¼FITNESS(x2)

% Fitness function given x2, and calling fminsearch to find x1

% Set parameter values

N ¼ 100; R ¼ 400;

S1 ¼ 0.035; S2 ¼ 0.030; S3 ¼ 0.025;

Fmax ¼ 2; a ¼ 0.1;

% Find value of x1 given x2 using fminsearch to set derivatives to

zero

% Must pass x2 to GRADIENT as an extra parameter

% The next line is the one that differs from the previous code

x1 ¼ fminsearch(@(x) GRADIENT(x,x2),1); % find x1 using fmin-

search

F I S H E R I A N O P T IM A L I T Y MOD E L S 157

% Now calculate x3 and fitness

x3 ¼ (R-N*(x1þx2))/N ; % Determine x2

if (x3 < 0) % Check if x3 exists(>0)

W¼0 ;

else % Check if first clutch mass exceeds reserves

if(N*x1 > R) % Propagule too large

W ¼ 0;

else

W1 ¼ N*S1*Fmax*(1-exp(-a*x1)); % Calculate first fecundity

% Calculate size of propagules in 2nd clutch and see if reserves

exceeded

if(N*x2 > R)

W ¼ W1; %Propagules in 2nd clutch too large

else

W2 ¼ N*S2*Fmax*(1-exp(-a*x2)); % Calculate 2nd fecundity

% Calculate the size of Propagules in 3rd clutch

% Note that there must be reserves remaining at this stage

W3 ¼ N*S3*Fmax*(1-exp(-a*x3)); % Calculate 3rd fecundity

W ¼ W1þW2þW3; % Sum fitness components

end % End 3rd else

end % End 2nd else

end % End 1st else

Propagules ¼[x1,x2,x3]; % Store sizes

save PROPAGULE.txt Propagules –ASCII % Output sizes

W¼ -W; % Return -fitness

Finally the main program:

clear all; % Clear the workspace

% Locate optima

fminsearch(@FITNESS,1); % Call fminsearch with estimate at 1

load PROPAGULE.txt % Get optima from file

PROPAGULE % Print out results

OUTPUT:

PROPAGULE ¼ 2.7705 1.2290 0.0005

As with R, MATLAB gives more or less the same answer as before.

2.18.30 Scenario 12: Finding the maximum using a numerical approach

Using nlm (R) or fminsearch (MATLAB)

function W¼FITNESS(v) % Function to evaluate fitness

{ This function is the same as that used in plotting}

158 MODE L I NG E V O L U T I O N

Main Program:

clear all; % Clear the workspace

% MAIN PROGRAM

% Call fminsearch passing fitness function with initial estimates

X ¼ fminsearch(@FITNESS, [0.1,0.1]);% Store estimates in X

% Calculate x3

R ¼ 400; N ¼ 100; % Parameter values

x3 ¼ (R-N*(X(1)þX(2)))/N; % x3

vpa([X(1),X(2), x3],6) % Output propagule sizes

OUTPUT:

ans ¼[2.77073, 1.22927, .228709e-7]

Previous results:

ans ¼ 2.7705 1.2291 0.0005

ans ¼ 2.7705 1.2291 0.0005

The estimates for x1 and x2 are more or less consistent but the estimate for x3 does

differ, though all estimates of x3 are very small.

The Brute force approach

Where possible, loops are to be avoided. In MATLAB this can be generally done

using vectorization. However, because of the “if statements”, this cannot be done

simply in the present case (it is possible to avoid looping by using filters but these

make very obscure code). Therefore, we shall employ a loop structure, which in

this circumstance runs fast enough not to warrant a more refined approach (clear

code is to be preferred unless it impedes speed excessively). The programworks in

a similar fashion as the R program in generating three vectors, x1, x2, and W and

then using a MATLAB function, max, to locate the maximum value of W and the

associated values of x1 and x2.

function W¼FITNESS(v) % Function to evaluate fitness

{ This function is the same as that used in plotting}

Main Program:

clear all; % Clear the workspace

n¼100; % Number of divisions to be made

x1 ¼ linspace(0, 5, n); % x1 from 1 to 5 length n

x2 ¼ linspace(0, 5, n); % x2 from 1 to 5 length n

m ¼ n 2̂;

W ¼ zeros(m,1); x¼W;y¼W; % Preallocate x,y, W vectors

% Fitness values at each x1 x2 coordinate

row¼0; % Set index value to

% Iterate over all combinations of x1 and x2

for i ¼ 1:n

for j ¼ 1:n

row¼rowþ1; % Increment row

x(row)¼ x1(i); y(row)¼x2(j); % store x1 and x2

F I S H E R I A N O P T IM A L I T Y MOD E L S 159

W(row)¼-FITNESS([x1(i),x2(j)]); % Convert to positive fit-

ness & store

end

end

[C,I] ¼ max(W); % C ¼ max W, I ¼ row in vectors

X1 ¼ x(I); X2 ¼ y(I); % Get values of x1 and x2

% Calculate x3

R ¼ 400; N ¼ 100; % Parameter values

x3 ¼ (R-N*(X1þX2))/N; % x3

[X1,X2,x3,C] % print out x1, x2, x3 and Wmax

OUTPUT:

ans ¼ 2.7778 1.2121 0.0101 2.3877

Using the brute force results to refine the search (replace with the following

lines):

x1 ¼ linspace(2.7, 2.8, n); % x1 from 1 to 5 length n

x2 ¼ linspace(1.0, 1.3, n); % x2 from 1 to 5 length n

gives

ans ¼ 2.7697 1.2303 0 2.3880

Of course the results are the same as obtain in R.

2.18.31 Scenario 13: Plotting the fitness function

The fitness function follows that given in the R code. It is possible to replace the

loops doing the recursion with vectorized code using the function filter but the

code is so obscure that I would recommend it only if there is a real saving in time,

which in this case there certainly isn’t (for an example of using filter to replace

a loop see the online MathWorks support function (http://ww.mathworks.com/

support/tech-notes/1100/1109.html, p. 8).

function W¼FITNESS(x) % Function to evaluate fitness given Alpha

G ¼ x(1); % G values

Alpha ¼ x(2); % Alpha value

% Set parameter values

Mj ¼ 0.05; % Background mortality rate

Ma ¼ 0.4; % Constant of mortality function

Agemax ¼ 30; % Maximum age (arbitrary)

a ¼ 0.05; % Fecundity constant

A ¼ 10; % Wt increase/annum without reproduction

Aminus1 ¼ Alpha-1; % Year before first reproduction

S¼ zeros(Agemax,1); % Pre-allocate vector for annual survival

% Growth prior to reproduction is linear

160 MODE L I NG E V O L U T I O N

http://ww.mathworks.com/support/tech-notes/1100/1109.html
http://ww.mathworks.com/support/tech-notes/1100/1109.html

% To include cases in which growth is more complex I here use a for

loop

Wt ¼ zeros(Agemax,1); % Initialize Wt vector

S(1)¼ exp(-Mj); % Survival to age 1

% Calculate Wt and Survival from age 2 to alpha-1

for i ¼ 2: Aminus1

Wt(i) ¼ Wt(i-1)þ A; % Weight

S(i)¼ S(i-1)*exp(-Mj); % Annual survival

end

% Now calculate change in wt and survival for age alpha to max age

for i ¼ Alpha: Agemax

Wt(i)¼ Wt(i–1)þA-G*Wt(i–1); % Weight

S(i)¼ S(i–1)*exp(-(MjþMa*G)); % Annual survival

end

% Calculate W¼Fitness Note “.” for element by element vector multi-

plication

W ¼ a*sum(S(Alpha:Agemax).*Wt(Alpha:Agemax)*G);

W ¼ �W; % Return negative of fitness

Main Program:

clear all; % Clear the workspace

nG ¼ 11; % Number of G values

G ¼ linspace(0.01, 0.5, nG); % G from 0.01 to 0.5 length nG

nalpha ¼ 20-3þ1; % Number of ages to consider

alpha ¼ linspace(3, 20, nalpha); % x2 from 1 to 5 length 20

z ¼ zeros(nG,nalpha); % Preallocate z matrix

% Fitness values at each G alpha coordinate

for i ¼ 1:nG

for j ¼ 1:nalpha

z(i,j)¼-FITNESS([G(i),alpha(j)]);%Converttopositivefitness

end

end

subplot(2,2,1) % Divide graph sheet into 2 x 2 panels, contour

top left

[C,h]¼contour(alpha,G,z); % Create contour plot

%clabel(C,h) rotates the labels and inserts them in the contour

lines.

clabel(C,h);

xlabel(’Alpha’); ylabel(’G’); % Add text

subplot(2,2,2) % Divide graph sheet into 2 x 2 panels, 3D top right

[xx,yy] ¼ meshgrid(alpha,G); % Create grids for 3D plot

surfc(xx,yy,z); % Plot 3D

xlabel(’Alpha’); ylabel(’x2’); zlabel(’Fitness’) % Add text

F I S H E R I A N O P T IM A L I T Y MOD E L S 161

2.18.32 Scenario 13: Finding the maximum using a numerical approach

Brute force using many values

Because we want to calculate the optimal G for a given Alpha, we must make a

slight modification to the fitness function:

Replace

function W¼FITNESS(x) % Function to evaluate fitness given Alpha

G ¼ x(1); % G values

Alpha ¼ x(2); % Alpha value

with

function W¼FITNESS(G,Alpha) % Function to evaluate fitness given

Alpha

The above changes could have also been made in the plotting section. The

fitness function is called by the main program:

clear all; % Clear the workspace

% Create vector for alpha values

nalpha ¼ 20-3þ1; % Number of ages to consider

alpha¼linspace(3,20,nalpha); %alphavectorfrom1to5length20

G¼ zeros(nalpha,1); % Create vector to store best G values

W ¼ zeros(nalpha,1); % Create vector to store W values

for i ¼ 1:nalpha % Iterate over alpha vector values

% Find best G for this alpha by calling fminsearch

% alpha(i) is passed as a fixed parameter

G(i) ¼ fminsearch(@(G) FITNESS(G,alpha(i)),0.1); % Store best G

W(i) ¼ -FITNESS(G(i),alpha(i)); % Get W at best G for given alpha

end

% Now locate best combination and write out values

[C,I] ¼ max(W); % C ¼ max W, I ¼ row in vectors

Alpha_best ¼ alpha(I); % Best alpha

G_best ¼ G(I % Best G

W_best ¼ C;); % W at best alpha, best G

[Alpha_best,G_best,W_best] % Print out best alpha, G and max W

OUTPUT: Ans ¼ 8.0000 0.1345 2.6849

Brute force using iteration

The fitness function is the same as in the previous code. We also need another

function which I shall call BESTG that calculates the optimal G value for consecu-

tive pairs of Alpha. Note that this function passes back a vector.

% Function to get best G for consecutive pairs of alpha

function Wdiff ¼BESTG(alpha)

% Results for alpha

G1 ¼ fminsearch(@(G) FITNESS(G,alpha),0.1); % Store best G

W1 ¼ -FITNESS(G1,alpha); % Fitness

% Results for alphaþ1

162 MODE L I NG E V O L U T I O N

G2 ¼ fminsearch(@(G) FITNESS(G,alphaþ1),0.1); % Store best G

W2 ¼ -FITNESS(G2,alphaþ1); % Fitness

W3 ¼ W2-W1; % Diff between fitnesses

% return Wdiff, W1, G1 % G1 will eventually be the best G

Wdiff ¼ [W3, W1, G1];

Main Program:

clear all; % Clear the workspace

ALPHA ¼ 5; % Set initial alpha

DIFF ¼ BESTG(ALPHA); % Calculate difference between W at two alphas

while DIFF(1)> 0; % If DIFF[1] > 0 then W still increasing

ALPHA ¼ ALPHAþ1; % Increment alpha

DIFF ¼ BESTG(ALPHA); % Call BESTG and get difference

end

% Out of loop and thus ALPHA is the best

[ALPHA, DIFF(3),DIFF(2)] % Print out alpha, G, W

2.18.33 Scenario 14: Finding the maximum using a numerical approach

MATLAB code changes in bold:

function W¼FITNESS(G,Alpha,N) % Function to evaluate fitness

given Alpha

% G IS NOW A VECTOR WITH N ENTRIES

% Set parameter values

Mj ¼ 0.05; % Background mortality rate

Ma ¼ 0.4; % Constant of mortality function

Age_max ¼ Alphaþ1; % Maximum age

a ¼ 0.05; % Fecundity constant

A ¼ 10; % Wt increase/annum without reproduction

A_minus_1 ¼ Alpha-1; % Year before first reproduction

S ¼ zeros(Age_max,1); % Vector of annual survival

% Growth prior to reproduction is linear

% To include cases in which growth is more complex I here use a for

loop

Wt ¼ zeros(Age_max,1); % Initialize Wt vector

S(1)¼ exp(-Mj); % Survival to age 1

% Calculate Wt and Survival from age 2 to alpha-1

for i ¼ 2 : A_minus_1

Wt(i) ¼ Wt(i-1)þ A; % Weight

S(i) ¼ S(i-1)*exp(-Mj); % Annual survival

end

% Now calculate change in wt and survival for age alpha to max age

% Accumulate W. W is now accumulated in the loop rather than after

W ¼ 0;

for J ¼ 1:N % Iterate over the adult ages

F I S H E R I A N O P T IM A L I T Y MOD E L S 163

i ¼ Alpha þ J - 1; % Get age i ¼ Alpha, Alphaþ1

Wt(i)¼ Wt(i-1)þ A- G(J)*Wt(i-1); % Wt

S(i) ¼ S(i-1)*exp(-(MjþMa*G(J))); % Annual survival

W ¼ W þ a*S(i)*Wt(i)*G(J) ; % Cumulative fitness

end

W¼ -W; % Return negative of fitness

Now function BESTG:

% Function to get best G for consecutive pairs of alpha

function Wdiff ¼ BESTG(alpha)

N ¼ 2; % Nos of mature ages

% Results for alpha Note that G is passed two values

G1¼ fminsearch(@(G)FITNESS(G,alpha,N),[0.1,0.1]);%StorebestG

W1 ¼ -FITNESS(G1,alpha,N); % Fitness

% Results for alphaþ1

G2¼fminsearch(@(G)FITNESS(G,alphaþ1,N),[0.1,0.1]);%StorebestG

W2 ¼ -FITNESS(G2,alphaþ1,N); % Fitness

W3 ¼ W2-W1; % Diff between fitnesses

% return Wdiff,W1,G1 % G1 will eventually be the best G

Wdiff ¼ [W3, W1, G1];

Main program calls BESTG:

clear all; % Clear the workspace

ALPHA ¼ 5; % Set initial alpha

DIFF¼ BESTG(ALPHA);%CalculatedifferencebetweenWattwoalphas

while DIFF(1)> 0; % If DIFF[1] > 0 then W still increasing

ALPHA ¼ ALPHAþ1;

DIFF ¼ BESTG(ALPHA);

end

% Out of loop and thus ALPHA is the best

% Print Alpha, Wdif, G1, G2 . . .GN

[ALPHA,DIFF(1),DIFF(3),DIFF(4)] %Print out alpha, G, W

OUTPUT: (Same as R)

Ans ¼ 19.0000 0�0.0003 0.3497 0.4835

To increase the number of ages and hence the number of variables we alter N in

function BESTG, and modify the following lines given that we wish to set N ¼ 5

(giving 6 variables to be estimated):

N ¼ 6; % Nos of mature ages

G1¼fminsearch(@(G)FITNESS(G,alpha,N),[0.1,0.1,0.1,0.1,0.1,0.1]);

G2¼fminsearch(@(G)FITNESS(G,alphaþ1,N),[0.1,0.1,0.1,0.1,0.1,0.1]);

[ALPHA,DIFF(1),DIFF(3),DIFF(4),DIFF(5),DIFF(6)] %Print out

The result is

ans ¼ 18.0000 �0.0042 0.2166 0.2463 0.2917 0.3666

164 MODE L I NG E V O L U T I O N

CHAPTER 3

Invasibility Analysis

3.1 Introduction

An alternative approach to that used in the last chapter is invasibility analysis,

which consists of asking if a clone displaying an alternate life history can

invade a resident population. While one could compare results for markedly

different life histories, in general, invasibility analysis has been used to locate

the optimal combinations of parameter values rather than qualitatively

different life histories. As with the “Fisherian” optimality approach, sexual repro-

duction is ignored. Invasibility analysis is used extensively, and is most

useful, when fitness is density-dependent and there is age- or stage-structuring

in the model. The method can handle stable, cyclical, and chaotic population

dynamics. In this section I first consider the general structure of age- and stage-

structured models and then describe the two general approaches of invasibility

analysis, namely pairwise-invasibility and multiple-invasibility analysis. For all

that you ever wanted to know about matrix population models see Caswell (2002).

3.1.1 Age- or stage-structured models

Consider the life table shown in Table 3.1.

Table 3.1 Calculation of age‐specific survival probabilities and fertilities for the Leslie matrix.

Age x lx mx
Post‐breeding census Pre‐breeding census

Sx ¼ lx
lx−1

Fx ¼ Sxmx Sx ¼ lxþ1

lx
Fx ¼ Sxmx

0 1 0 – – 0.8 0..
1 0.80 1 0.80 0.8 0.4 0.4..
2 0.20 3 0.40 1.2 0.25 0.75..
3 0.05 4 0.25 1.0 0 0..
4 0.00 1 0.00 0.00 – –

Using the post-breeding census, which is an assumption for the models discussed

in Chapter 2, the number of individuals entering age 1 at time t þ 1 is given by

n1;tþ1 ¼ S1m1n1;t þ S2m2n2;t þ S3m3n3;t þ S4m4n4;t
¼ ð0:8Þð1Þn1;t þ ð0:4Þð3Þn2;t þ ð0:25Þð4Þn3;t þ ð0Þn4;t
¼ 0:8n1;t þ 1:2n2;t þ 1n3;t þ 0n4;t

ð3:1Þ

where ni,t is the number in age class i at time t. The number surviving from t to

t þ 1 is given by

n2;tþ1 ¼ S1n1;t ¼ 0:8n1;t
n3;tþ1 ¼ S2n2;t ¼ 0:4n2;t
n4;tþ1 ¼ S3n3;t ¼ 0:25n3;t

ð3:2Þ

This set of equations can be represented in matrix format as

n1;tþ1

n2;tþ1

n3;tþ1

n4;tþ1

0
BB@

1
CCA ¼

F1 F2 F3 F4
S1 0 0 0
0 S2 0 0
0 0 S3 0

0
BB@

1
CCA

n1;t
n2;t
n3;t
n4;t

0
BB@

1
CCA ð3:3Þ

If a pre-breeding census is assumed, then Sx ¼ lxþ1=lx (Caswell 1989, p. 12). The

matrix can be written in shorthand as

ntþ1 ¼ Ant ð3:4Þ
The matrix A is known as the Leslie matrix after the ecologist who first intro-

duced it into the population biology literature (Leslie 1945). The advantage of

using the matrix notation is that there are well-defined rules for manipulating

matrices, particularly for matrix multiplication. From an evolutionary biologist’s

point of view the important feature of this matrix is that the population rate of

increase at a stable age distribution, l, is given by the first eigenvalue of the

matrix. This value is readily obtained in R or MATLAB. For example, in the life

history specified by equations (3.1) and (3.2) the Leslie matrix is

A ¼
0:8 1:2 1:0 0
0:8 0 0 0
0 0:4 0 0
0 0 0:25 0

0
BB@

1
CCA ð3:5Þ

which can be entered using R as

Leslie.matrix <- matrix(c(0.8, 1.2, 1.0, 0,
0.8, 0.0, 0.0, 0,
0.0, 0.4, 0.0, 0,
0.0, 0.0, 0.25, 0),4,4, byrow=TRUE)

where, for ease of writing, I have aligned the columns. The eigenvalues and

eigenvectors can be obtained with the command eigen (R) or eig (MATLAB).

166 MOD E L I N G E VO L U T I ON

In R the appropriate eigenvalue can be drawn from the list with the suffix

$values[1]. Thus the following commands in R,

Eigen.data <- eigen(Leslie.matrix)

Eigen.data$values[1] # Get first eigenvalue

gives 1.5516.

Equation (3.3) defines the change in population size after one generation. If the

initial population consists of a single gravid female the population size in the next

generation is given by

n1
n2
n3
n4

0
BB@

1
CCA ¼

0:8 1:2 1:0 0
0:8 0 0 0
0 0:4 0 0
0 0 0:25 0

0
BB@

1
CCA

1
0
0
0

0
BB@

1
CCA ¼

0:8
0:8
0
0

0
BB@

1
CCA ð3:6Þ

Matrix multiplication in R is coded by %*%, thus

n <- Leslie.matrix%*%n

gives the multiplication shown in equation (3.6). Progressive application of

matrix multiplication produces the population projection. The following

coding calculates and plots the trajectories of the individual cohorts (ages 1–4)

and the total population size. Additionally, the observed rate of increase, given

by Ntþ1/Nt, and the instantaneous rate of increase, r, given by loge(Ntþ1/Nt) are

plotted.

rm(list¼ls()) # Clear workspace

Leslie.matrix <- matrix(c(0.8, 1.2, 1.0, 0,

0.8, 0.0, 0.0, 0,

0.0, 0.4, 0.0, 0,

0.0, 0.0, 0.25,0),4,4, byrow¼TRUE)

Eigen.data <- eigen(Leslie.matrix)

Lambda <- Eigen.data$values[1] # Get first eigenvalue

Maxgen <- 12 # Number of generations

simulation runs

n <- c(1,0,0,0) # Initial population

Pre-assign matrix to hold cohort number and total population size

Pop <- matrix(0,Maxgen,5)

Pop[1,] <- c(n[1:4], sum(n)) # Store initial population

Pre-assign storage for observed lambda

Obs.lambda <- matrix(0,Maxgen,5)

for (Igen in 2:Maxgen) # Iterate over generations

{

n <- Leslie.matrix%*%n # Apply matrix multiplication

I N V A S I B I L I T Y ANA L Y S I S 167

Pop[Igen,1:4]<- n[1:4] # Store cohorts

Pop[Igen,5] <- sum(n) # Store total population size

Obs.lambda[Igen,] <- Pop[Igen,]/Pop[Igen-1,] # Store observed

lambda

} # End of Igen loop

Print out observed lambda in last generation and ratio

print(c(Obs.lambda[Maxgen], Obs.lambda[Maxgen]/Lambda))

par(mfrow¼c(2,2)) # Make 2x2 layout of plots

Generation <- seq(from¼1, to¼Maxgen) # Vector of generation

number

Plot population and cohort trajectories

ymin <- min(Pop); ymax <- max(Pop) # get minimum and maximum pop

sizes

plot(Generation, Pop[,1], type¼’l’,ylim¼c(ymin,ymax),

ylab¼’Population and cohort sizes’) # Cohort 1

for(i in 2:4) {lines(Generation, Pop[,i]) } # Cohorts 2-4

lines(Generation, Pop[,5], lty¼2) # Total population

Plot log of population and cohort trajectories

Log zero is undefined so remove these

x <- matrix(Pop,length(Pop),1) # Convert to one dimensional

matrix

ymin <- min(log(x[x!¼0])) # minimum log value

ymax <- max(log(Pop)) # get minimum and maximum pop sizes

plot(Generation, log(Pop[,1]), type¼’l’, ylim¼c(ymin,ymax),

ylab¼’log Sizes’)

for(i in 2:4) {lines(Generation, log(Pop[,i]))}

lines(Generation, log(Pop[,5]), lty¼2) # Total population

Plot Observed lambdas

plot(Generation, Obs.lambda[,1], type¼’l’, ylab¼’Lambda’)

for(i in 2:4) {lines(Generation, Obs.lambda[,i])}

lines(Generation, Obs.lambda[,5], lty¼2) # Total population

Plot observed r

plot(Generation, log(Obs.lambda[,1]), type¼’l’, ylab¼’r’)

for(i in 2:4) {lines(Generation, log(Obs.lambda[,i]))}

lines(Generation, log(Obs.lambda[,5]), lty¼2)

Total population

OUTPUT: (Figure 3.1)

168 MOD E L I N G E VO L U T I ON

> print(c(Obs.lambda[Maxgen], Obs.lambda[Maxgen]/Lambda))

[1] 1.5516186þ0i 0.9999971þ0i

The simulation shows that the population quickly reaches a stable age distribu-

tion, shown by the linearity of the plot of log(population or cohort size) on time

and the constancy of the observed l (Figure 3.1).

3.1.2 Modeling evolution using the Leslie matrix

Because the population quickly reaches a stable age distribution and there is no

density-dependence the methods presented in Chapter 2 can be used to analyse

models defined by a Leslie matrix. However, because of the ease with which l or r
(¼ logel) is calculated from a Leslie matrix, a matrix approach can sometimes be a

more easily programmed method than those used in Chapter 2. Scenario 1 gives

an example of finding the optimal life history using the Leslie matrix compared to

the approach used in Chapter 2.

Generation Generation

GenerationGeneration
2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 122 4 6 8 10 12

La
m

bd
a

P
op

ul
at

io
n

an
d

co
ho

rt
 s

iz
es

Lo
g

S
iz

es
r

0.
0

–0
.2

0.
0

0.
2

0.
4

0.
6

–2
0

2
4

0
20

40
60

80
12

0
0.

5
1.

0
1.

5
2.

0

Figure 3.1 Trajectories of cohort (solid lines) and population sizes (dotted line) and the
observed values of l and r.

I N V A S I B I L I T Y ANA L Y S I S 169

3.1.3 Stage-structured models

In many cases a life cycle is better classified according to stages rather than

ages: for example, the transition from juvenile to adult is probably more frequent-

ly dependent on passing some size-threshold than a particular age. Suppose we

have a population in which maturity depends upon reaching a minimum size,

after which there are two adult stages. The two adult stages differ and passage

from one to another is also size dependent (e.g., in the first adult stage males

might be too small to compete for territories and adopt a satellite strategy. Note

that in this case the symbol F refers to reproductive success). The three transition

equations are

n1;tþ1 ¼ P1n1;t þ F2n2;t þ F3n3;t
n2;tþ1 ¼ S1n1;t þ P2n2;t
n3;tþ1 ¼ S2n2;t

ð3:7Þ

where Pi is the surviving proportion that remain in the ith stage and Si is the

proportion that pass from stage i and survive to the next stage. These equations

can be converted into the matrix

n1;tþ1

n2;tþ1

n3;tþ1

0
@

1
A ¼

P1 F2 F3
S1 P2 0
0 S2 0

0
@

1
A n1;t

n2;t
n3;t

0
@

1
A ð3:8Þ

There is no fundamentalmathematical difference between age and stage-structured

models and the latter can be analyzed using the “Fisherian” optimality approach.

Difficulties arise when fitness is density-dependent, a topic to which we now turn.

3.1.4 Adding density-dependence

The Leslie matrix or its stage-based analogue can be readily modified to accommo-

date density-dependent effects. There are many ways that a density-dependent

effect can be entered, for example, fertility might only be affected or survival or

both. Only one age class might be affected or the effect spread over several or all

age classes. Two common functions are the Beverton–Holt function and the Ricker

function (both named after the fisheries biologists who suggested it). The Bever-

ton–Holt function is compensatory in that it progresses smoothly to an asymptotic

value, whereas the Ricker function is overcompensatory in that for some portion

of the curve Ntþ1 is less than Nt. The standard forms of these two models for an

unstructured population are

Ntþ1 ¼ Nt
c1

1þ c2Nt
Beverton�Holt

Ntþ1 ¼ Ntae�bNt Ricker

ð3:9Þ

The Beverton–Holt model asymptotes at an equilibrium population, whereas the

Ricker model can equilibrate, cycle, or show chaotic behavior (Figure 3.2). In

applying these functions the population size terms immediately adjacent to the

170 MOD E L I N G E VO L U T I ON

Generation, t

Generation, t

Generation, t

N(t)

N
(t

)

N
(t

+
1)

N
(t

+
1)

N
(t

+
1)

N
(t

)
N

(t
)

N(t)

N(t)

0

0 0
20

,0
00

40
,0

00

0 0
0

20
,0

00
40

,0
00

1,
00

0
3,

00
0

0
20

,0
00

40
,0

00
1,

00
0

3,
00

0
20

,0
00

40
,0

00

10 20 30 40

0 10 20 30 40

0 2,000 4,000 6,000 8,000 10,000

0 2,000 4,000 6,000 8,000 10,000

02015105 1,000 2,000 3,000 4,000 5,000

Figure 3.2 Examples of population trajectories for the Beverton–Holt (first row) and
Ricker models. Depending on parameter values, the Ricker model may reach a stable
equilibrium (second row), or show cyclical behavior (not shown) or chaotic behavior (third
row). Plots on the right show the change in population size as a function of the
previous population. The R coding to produce these plots is as follows:

rm(list=ls()) # Clear workspace

par(mfrow=c(3,2)) # Divide page into 6 panels

BH.FUNCTION <- function(n,c1,c2) {c1/(1+c2*n)}

RICKER.FUNCTION <- function(n, ALPHA, BETA) {ALPHA*exp

(-BETA*n)}

################### MAIN PROGRAM ###################

########## Beverton Holt function ##########

c1 <- 100; c2 <- 2*10^-3 # B-H parameters

Plot N(t) on t

Maxgen <- 20; N.t <- matrix(0,Maxgen); N.t[1] <- 1

for (i in 2:Maxgen)

{N.t[i] <- N.t[i-1]*BH.FUNCTION(N.t[i-1], c1,c2)}

plot(seq(from=1, to=Maxgen), N.t, xlab = ’Generation, t’, ylab

=’N(t)’,type=’l’)

Plot N(t+1) on N(t)

MaxN <- 5000; N.t <- matrix(seq(from=1, to=MaxN))

N.tplus1 <- N.t*apply(N.t,1,BH.FUNCTION, c1,c2)

(cont'd)

I N V A S I B I L I T Y ANA L Y S I S 171

equality sign are replaced by fertility and/or survival terms. Thus if fertility in the

previously described Leslie matrix is modified by a Ricker density dependent

function that affects all ages we have

At ¼
0:8ae�bNt 1:2ae�bNt 1:0ae�bNt 0ae�bNt

0:8 0 0 0
0 0:4 0 0
0 0 0:25 0

0
BB@

1
CCA ð3:10Þ

where Nt may be the total population size or some particular set of ages (see

example below). How one introduces the density-dependent function is deter-

mined by the biological assumptions. Similarly, the particular density-dependent

function is a function of the particular biological scenario envisaged. If one wishes

to do a general analysis, both functions, with a range of parameter values, should

be tried. Another suggested density-dependent function is the Usher function:

1

1þ eaNþb
ð3:11Þ

which produces a sigmoidal growth curve. Benton and Grant (1999) modified this

function to produce a gradual or sudden onset of density-dependence:

1

1þ e1:25bN
� 50; 000b gradual onset

1

1þ e12:5bN
� 500; 000b sudden onset

ð3:12Þ

Fig 3.2 (cont'd)

plot(N.t, N.tplus1, xlab = ’N(t)’, ylab=’N(t+1)’, type=’l’)

########## Ricker function ##########

ALPHA <-c(6, 60); BETA <- .0005 # Parameter values

Plot N(t) on t for 2 values of ALPHA

Maxgen <- 40

for (j in 1:2)

{

N.t <- matrix(0,Maxgen,1); N.t[1] <- 1

for (i in 2:Maxgen)

{N.t[i]<- N.t[i-1]*RICKER.FUNCTION(N.t[i-1], ALPHA[j], BETA)}

plot(seq(from=1, to=Maxgen), N.t, xlab = ’Generation, t’, ylab

=’N(t)’, type=’l’)

Plot N(t+1) on N(t)

MaxN <- 10000; N.t <- matrix(seq(from=1, to=MaxN))

N.tplus1 <- N.t*apply(N.t, 1, RICKER.FUNCTION, ALPHA[j],BETA)

plot(N.t, N.tplus1, xlab=’N(t)’, ylab=’N(t+1)’, type=’l’)

lines(N.t, N.t)

} # End of j loop

172 MOD E L I N G E VO L U T I ON

where b¼ 2	 10�5. None of the above equations are sacrosanct and in the absence

of detailed information any function that produces a density-dependent effect

might be tried. In general, the Beverton–Holt and Ricker functions do cover a wide

range of behaviors and are reasonable functions to use.

A simple example of a stage structured model that includes density-dependence

is that for Tribolium spp. proposed by Dennis et al. (1995) and further analyzed by

Grant and Benton (2003). The life cycle of the beetle is divided into three stages,

larval, pupal, and adult with transitions between stages governed by the following

assumptions:

1. The number of larvae at time tþ 1, Lt þ 1 is determined by the number of adults

at time t, At, the rate at which eggs are cannibalized by adults, cA.eggs, and the

rate of cannibalization by the larvae, cL.eggs. These effects can be modeled by a

Ricker function.

Ltþ1 ¼ bAte
�ðcA:eggsAtþcL:eggsLtÞ ð3:13Þ

where b is a constant.

2. The number of pupae that survive to time t þ 1 is

Ptþ1 ¼ LtSL ð3:14Þ
where SL is the survival probability of non-cannibalized larvae.

3. The number of adults is a function of the number of pupae that are canniba-

lized by the adults (a Ricker function) and the survival of adults (SA):

Atþ1 ¼ Pte
�cA:pupaeAt þ AtSA ð3:15Þ

These three equations can be written in matrix form as

Ltþ1

Ptþ1

Atþ1

0
@

1
A ¼

0 0 be �ðcA:eggsAtþcL:eggsLtÞ

SL 0 0
0 e

�c
A:pupaeAt SA

0
@

1
A Lt

Pt
At

0
@

1
A ð3:16Þ

3.1.5 Estimating fitness

If density-dependence is not a function of the trait of interest and the population

is stable then an appropriate measure of fitness is R0, which will generally be

much easier to evaluate than using an invasibility approach (see Scenario 2). The

operational definition of fitness for invasibility analysis is the ability of a novel

clone (the invader) to invade a resident population. However, this does mean

that the invader will replace the resident population as it could coexist with the

resident. The fitness of the invader is the long-term growth rate of the invader

population, which can be equated to the dominant Lyapunov exponent of the

matrix. In most cases relevant to this book this exponent, also called the invasion

exponent, has to be estimated by simulation. Two approaches for determining the

equilibrium set of trait variables are pairwise invasibility analysis and multiple

invasibility analysis.

I N V A S I B I L I T Y ANA L Y S I S 173

3.1.6 Pairwise invasibility analysis

This is a graphical method that identifies putative Evolutionarily Stable Strategies

(ESS) on a surface comprising the set of combinations of resident and invader trait

values. There are four possible outcomes, diagrammed in Figures 3.3 and 3.4. The

x-axis is the set of trait values for the resident and the y-axis is the same set of trait

values representing the trait values of the invader. For each combination we

estimate the long-term growth rate of the invader. The hypothetical long-term

growth rate of the invader in the stationary resident population is given by

the dominant Lyapunov exponent, called by Rand et al. (1994) the invasion

exponent, #:

¼ lim
t!1

1

t
ln

Nt

N0
ð3:17Þ

Because of the small population size of the invader population, the invasion

exponent can be estimated by assuming that the invader population will either

increase or decrease exponentially (at least measured over a sufficient time

period):

Ntþ1 ¼ N0e
rinvadert ¼ N0l

t
invader

lnNtþ1 ¼ lnN0 þ t lnlinvader
ð3:18Þ

Thus after some specified number of iterations the growth rate of the invader

population, #, can be estimated from a linear regression of log(invader population

size) on generation.

Two contour lines are shown on the invasibility plots of Figure 3.3. Both lines

denote the set of combinations at which the growth rate of the invader is zero.

Obviously when the parameter value of the invader is the same as that of the

resident then the invader will neither increase nor decrease: this is the x ¼ y line

shown in the plots. Now consider a trait combination that lies very close to the

origin but above the line of equality: at this point the growth rate of the invader is

positive and it increases in frequency and eventually becomes the resident popu-

lation. For a combination that lies in the upper right of the plots the growth rate of

the invader is negative and it cannot penetrate the resident population. Thus at

some combinations other than x ¼ y the growth rate of the invader must equal

that of the resident population. The point at which this second zero isocline

crosses the line of equality is the putative ESS. Several such points could exist or

there could be zero isoclines that do not intersect the line of equality (e.g., see

White et al. [2006]). Whether the putative ESS is a stable ESS (termed a conver-

gence stable ESS) or an unstable equilibrium depends on the shape of the second

zero isocline: if the slope of the second isocline is greater than 90� as measured in

relation to the x and y-axes (see top plots in Figure 3.3) the intersection is an ESS,

otherwise the equilibrium is unstable and subject to invasion (bottom panels of

Figure 3.3). The plot on the left of Figure 3.3 shows a case in which the putative ESS

is a convergence stable ESS, while that on the right shows a case in which the

intersection defines an unstable equilibrium termed an evolutionary branching

174 MOD E L I N G E VO L U T I ON

Trait value of resident

Invader
successful

Invader
fails

Invader
successful

Invader
fails

T
ra

it
va

lu
e

of
 in

va
de

r
E

la
st

ic
ity

In
va

si
on

 e
xp

on
en

t

Trait value of resident

Trait value of invader

Figure 3.3 Hypothetical examples of pairwise invasibility plots (top panels) in which there
is convergence but not necessarily an ESS. The panels on the left show a convergence stable
ESS and those on the right show an evolutionary branching point. A “+” denotes a positive
long‐term growth rate of the invader population (i.e., invasion successful) and a “−” indicates
a negative long‐term growth rate (i.e., invasion unsuccessful). The dotted lines paralleling the
x = y line indicate the values used in the elasticity analysis and the vertical dotted lines show
examples of the elasticity values obtained at those points. The shaded areas indicate the
zones that are relevant for plotting the invasion exponent of the invader against the
putative ESS value of the resident as shown in the bottom panels. Panels below the first row
show the elasticity analyses. In the middle panels the trait value of the invader is set at some
fraction slightly smaller than 1 (e.g., 0.995) of the trait value of the resident. This analysis is
used to determine the putative ESS value. In the bottom panels the trait value of the
resident is set at the putative ESS. This analysis determines if the putative ESS value is
resistant to invasion. The cross‐hatched areas indicate those resident–invader combinations
which lead to extinction of the invader. The horizontal hatched areas indicate trait values
for which invasion occurs when the resident population is at its putative ESS. In the left‐
hand column there are no values for which invasion is successful when the resident
population is at the putative ESS, whereas in the right‐hand plot there are values for which
invasion is successful.

I N V A S I B I L I T Y ANA L Y S I S 175

T
ra

it
va

lu
e

of
 in

va
de

r

Trait value of resident

Trait value of resident

Trait value of invader

E
la

st
ic

ity
In

va
si

on
 e

xp
on

en
t

Invader
successful

Invader
fails

Invader
successful

Invader
fails

Figure 3.4 Hypothetical examples of pairwise invasibility plots (top panels) in which there
is neither convergence nor a stable ESS. The panels on the right show an invasible repellor
and those on the left show a Garden‐of‐Eden ESS. A “+” denotes a positive long‐term
growth rate of the invader population (i.e., invasion successful) and a “−” indicates a negative
long‐term growth rate (i.e., invasion unsuccessful). The dotted lines paralleling the x = y line
indicate the values used in the elasticity analysis and the vertical dotted lines show examples
of the elasticity values obtained at those points. The shaded areas indicate the zones that
are relevant for plotting the invasion exponent of the invader against the putative ESS value
of the resident as shown in the bottom panels. Panels below the first row show the elasticity
analyses. In the middle panels the trait value of the invader is set at some fraction slightly
smaller than 1 (e.g., 0.995) of the trait value of the resident. This analysis is used to
determine the putative ESS value. In the bottom panels the trait value of the resident is set
at the putative ESS. This analysis determines if the putative ESS value is resistant to invasion.
The cross‐hatched areas indicate those resident‐invader combinations which lead to
extinction of the invader. The horizontal hatched areas indicate trait values for which
invasion is indicated by both the analysis of elasticity with respect to the trait value of the
resident (middle panels) and with respect to the trait value of the invader (bottom panels).
In both cases there are combinations from both the elasticity and invasion exponent plots
for which invasion is successful.

176 MOD E L I N G E VO L U T I ON

point. In theory the ESS is not resistant to mutants and polymorphisms will occur

(however, see Scenario 5 of Chapter 4, in which the “unstable” ESS of Scenario 3 of

this chapter is stable when parameters are inherited according to a quantitative

genetic model). The plot of elasticity versus the trait value of the resident shows

that there is convergence but the invasion exponent plotted against the trait value

of the invader shows that invasion is possible in the rightmost scenario. There are

two other possible pairwise invasibility plots, obtained if the areas defining the

positive and negative growth of the invader are reversed (Figure 3.4). In both cases

the elasticity plotted against the trait value of the resident shows that there is no

convergence and the invasion exponent versus the trait value of the invader

shows that invasion is possible in both scenarios. The scenario on the left is

termed an invasibility repellor and that on the right a Garden-of-Eden ESS.

Suppose the trait under study, say X, can reasonably range from Xmin to Xmax. To

produce a pairwise invasibility plot we proceed as follows:

Step 1: Divide Xmin to Xmax. into Ninc increments. This set of values will be applied

to residents and invaders: for example, in R

X.Resident <- seq(from¼X.min, to¼X.max, length¼N.inc)

X.Invader <- X.residents

Step 2: Create the set of all combinations for resident and invader types. This can

be done using the R function expand.grid

Combinations <- expand.grid(X.Resident, X.Invader)

Step 3: For each combination calculate the population growth rate of the invader

entering a resident population. If this growth rate is positive then the invader trait

value has a higher fitness than the resident trait value. The calculation of the

invader growth rate will typically be estimated by calling some function, say POP.

DYNAMICS that has the following elements in sequence:

a. The call to function POP.DYNAMICS passes the parameter value, in this case

ALPHA, and the multiplier for the invader parameter value, in this case called

Coeff. These two parameters could be passed as a vector of length 2 or, as done

below, as separate elements.

POP.DYNAMICS <- function(ALPHA, Coeff)

ALPHA.resident <- ALPHA # Alpha for resident

ALPHA.invader <- ALPHA*Coeff # Alpha for invader

b. Iteration of population growth of the resident population alone until it has

passed any effects due to initial starting conditions (this does not necessarily mean

that the population will be at equilibrium as it might exhibit cyclical or chaotic

behavior or subject to environmental fluctuations). For example, suppose we run

the resident-only time trace for 50 generations and the time trace after the invader

is introduced for 300 generations. To hold the entire trace, which we might wish

to do for later plotting, we need a matrix of 350 rows.

I N V A S I B I L I T Y ANA L Y S I S 177

Maxgen1 <- 50 # Generations when only resident present

Maxgen2 <- 300 # Generations after invader introduced

Tot.Gen <- Maxgen1þMaxgen2 # Total number of generations

N.resident <- N.invader <- matrix(0,Tot.Gen) # Allocate space

N.resident[1] <- 1 # Initial number of resident

N.invader[Maxgen1] <- 1 # Initial number of invader

for (Igen in 2:Maxgen1) # Iterate over only resident

{

N <- N.resident[Igen-1] # For typing convenience

N.resident[Igen] <- DD.FUNCTION (ALPHA.resident, N, N)

} # End of resident only period

The density-dependent function, DD.FUNCTION, takes the parameter value, the

population size of the focal type (resident or invader), and the total population

size. In the present case these are the same. An example of the density dependent

function, which is that used in Scenario 3, is

DD.FUNCTION <- function(ALPHA,N1,N2) # Density-dependence

function

{

BETA <- ALPHA*0.001 # Set value of beta

N <- N1*ALPHA*exp(-BETA*N2) # New population size

return(N)

} # End of DD.FUNCTION

c. Introduction of a single invader into the resident population, which should be

large so that the initial population size of the invader has no significant effect on

the density-dependent effect. Note that now the call to the density-dependent

function passes the total population size as the third element. Although the

number of invaders should be sufficiently small that they contribute insignifi-

cantly to the density-dependence I prefer to include their number in the total

population size as it seems more biologically realistic.

Now add invader

J <- Maxgen1þ1 # Starting generation of this period

for (Igen in J:Tot.Gen) # Iterate after introduction of invader

{

N.tot <- N.resident[Igen-1]þ N.invader[Igen-1] # Total

popn size

N.resident[Igen] <- DD.FUNCTION(ALPHA.resident, N.resident

[Igen-1], N.tot)

N.invader[Igen] <- DD.FUNCTION(ALPHA.invader, N.invader

[Igen-1], N.tot)

} # End of invasion period

178 MOD E L I N G E VO L U T I ON

d. As noted above the hypothetical long-term growth rate of the invader in the

stationary resident population is estimated by the slope of a linear regression of

log (invader population size) on generation. Because of initial fluctuations in the

invader population due to initial population composition, it may be necessary to

ignore the first few generations (in the example coding below I ignore the first 10

generations). The number of generations that the model must be run to get an

accurate estimate of the growth of the invader population will depend on the

dynamics of the population – if there are fluctuations due to intrinsic population

properties (e.g., a Ricker function) or environmental factors the number of gen-

erations may be large (e.g., 500) whereas if the model shows little fluctuation only

50 generations might be required. The appropriate number can be assessed by

trial and error: lack of smoothness in the curves constructed from the simulated

data will generally indicate an insufficient number of generations.

Generation <- seq(from¼1, to¼Tot.Gen) # Generation sequence

N0 <- 10 þ Maxgen1 # Starting point for regression

Regression model

Invasion.model <- lm(log(N.invader[N0:Tot.Gen])
 Generation

[N0:Tot.Gen])

Elasticity <- Invasion.model$coeff[2] # Elasticity

return(Elasticity)

} # End of POP.DYNAMICS function

e. The function passes the estimated growth rate of the invader to the main

program. The growth rate of the invader is estimated for all combinations and the

result converted into matrix form from which a contour plot can be constructed

z <- apply(Combinations,1,POP.DYNAMICS)

z.matrix <- matrix(z, N.inc, N.inc) # Convert to a matrix

Plot contours

contour(X.Resident, X.Invader, z.matrix, xlab¼“Resident”,

ylab¼“Invader”)

Step 4: If there is an ESS there will be at least two relevant zero isoclines. The first

is the line described by the equation X.Resident ¼ X.Invader (obviously if the

invader trait equals the resident trait it has the same fitness as the resident).

Suppose there is a single ESS, this implies that theremust be a second zero isocline

that intersects the first (Figure 3.3). The two zero isoclines divide the plane into

four quadrats as shown in Figure 3.3, where the shape of the second zero isocline

will depend upon the details of the model.

Step 5: The putative ESS value can be read off the graph and its stability gauged

from the isocline shapes.

While the above approach may demonstrate the existence of an equilibrium

point it does not provide a ready means of determining the trait value. One way to

examine the stability of the point and to numerically obtain its value is the

elasticity approach of Grant (1997).

I N V A S I B I L I T Y ANA L Y S I S 179

3.1.7 Elasticity analysis

To understand the mechanics of this method we need only consider how to

estimate the putative ESS from the pairwise invasibility plot. Suppose we start at

Xmin for the resident population and set the trait value of the invader at some

value slightly below that of the resident population (dotted lines in Figures 3.3

and 3.4) say 0.995 Xmin, which is the value suggested by Benton and Grant (1999).

At this point the growth rate of the invader population is negative and the invader

cannot invade. We now sequentially advance the value of the resident trait value,

increasing that of the invader by the same proportion of the resident value as

before (the dotted lines shown in Figures 3.3 and 3.4). When the resident trait

value exceeds the putative ESS value the sign of the invader growth rate changes

we have passed the putative ESS point and we have fixed the ESS value within the

limits set by the increments by which we increased the invader trait value (middle

panels in Figures 3.3 and 3.4)

The growth rate of the invader population in the above situation is called

the elasticity (see Chapter 1) of the invasion exponent to a change in the

resident trait value. Provided that the elasticity is a monotonic function of the

trait value, as shown in Figure 3.3, the point at which the elasticity is zero,

which is the ESS value, can be found using a numerical search routine such

as uniroot.

Optimum<-uniroot(POP.DYNAMICS,interval¼c(X.min,X.max),0.995)

Best.E <- Optimum$root # Store the optimum reproductive effort

print(Best.E) # Print optimum E

As always it is good practice to use a graphical analysis to confirm the above

answer:

Create plot of elasticity versus E

N.int <- 30 # Nos of increments

Create sequence of X from X.min to X.max in N.int increments

X <- matrix(seq(from¼X.min, to¼X.max, length¼N.int),

N.int,1)

Create vector of elasticities using apply function

Elasticity <- apply(X, 1, POP.DYNAMICS, 0.995)

plot(E, Elasticity, type¼’l’) # Plot elasticity vs E

lines(c(X.min,X.max), c(0,0)) # Add horizontal line at zero

As a final check we plot the invasion exponent of the invader (# ¼ long-term

growth rate) relative to a resident population with the predicted optimum trait

value. The sign of this is indicated by the shaded areas in Figures 3.3 and 3.4. If, as

in the left-hand example shown in Figure 3.3, the predicted value is the ESS then

all # not equal to the ESS value should be negative and #¼0 at the ESS value. If the

putative ESS is not resistant to invasion, as in the right-hand example of Figure 3.3

180 MOD E L I N G E VO L U T I ON

and the plots in Figure 3.4, the invasion exponent will not be negative for all

values other than the putative ESS value (Figures 3.3, 3.4 and Scenario 6).

R CODE:

Now plot Invasion exponent when resident is optimal

Coeff <- E/Best.E # Coeff of invader DD function

Invasion.exponent <- matrix(0,N.int,1) # pre-allocate space

Iterate and calculate invasion exponent

Note that a loop is used rather than apply because it is coefficient

that is changing

for (i in 1:N.int){ Invasion.exponent[i] <- POP.DYNAMICS

(Best.E, Coeff[i])

}

plot(E, Invasion.exponent, ylab¼’Invasion exponent’, type¼’l’)

points(Best.E,0, cex¼2) # Plot point at previously estimated

optimum E

In the scenarios that follow I have commenced the analysis by producing graphi-

cal output using pairwise invasibility analysis, but have placed on the graph the

combination subsequently found with elasticity analysis.

3.1.8 Multiple invasibility analysis

An alternative approach that has been adopted is to introduce mutant clones at

each generation into the population. This approach potentially permits the accu-

mulation ofmultiple types in a population and thus demonstrates the existence of

polymorphic populations but has the disadvantage that it is extremely computer

intensive. The general approach is as follows:

1. We need to follow the sizes of cohorts with particular parameter values. There

are twoways in which this can be accomplished. The first and simplest way is to

turn the range of the parameter value into discrete units, for example, suppose

the parameter, X, can vary from 2 to 15. This range can be divided into some

specified number of intervals, say 50:

X <- sequence(from¼2, to¼15, length¼50)

The number of individuals in each class can be placed in a separate vector, or the

two can be combined into a single matrix with the class values in the first column

and the numbers in the second. Suppose we commence with a single individual in

the middle of the range (more or less)

Data <- matrix(0, 50, 2) # Allocate apace

Data[,1] <- sequence(from¼2, to¼15, length¼50) # Set X values

Data[25,2] <- 1 # Initial population

I N V A S I B I L I T Y ANA L Y S I S 181

An alternate method is to generate types and follow them through time. The

advantage of this alternate approach is that it permits the population to move to

its ESS exactly. The disadvantage of this method is that it complicates the

bookkeeping and it may be necessary at specified intervals to purge types that

are in low numbers or the number of types to be kept track of will become

exorbitant. This problem can be resolved in the former method by increasing the

number of divisions though this will, of course, increase computational time.

Because the only difference is one of bookkeeping I shall use only the former

approach.

2. A density-dependent function must be specified. As an example, suppose that

population size is determined by a Ricker function,

Ntþ1 ¼ aNte
�bNtotal ð3:19Þ

in which there is a trade-off between the density-independent component a and

the density dependent component b. This trade-off is actually specified by a

positive relationship such as b ¼ 0.001a, which is used in Scenario 3. Coding for

this function is as follows:

DD.FUNCTION<-function(X,N.total) #Density-dependencefunction

{

Set parameter values

ALPHA <- X[1] # Set alpha

N <- X[2] # Population size for this

alpha

BETA <- ALPHA*0.001 # Set value of beta

N <- N*ALPHA*exp(-BETA*N.total) # New cohort size

return(N)

} # End of function

3. New cohort sizes are generated by using the R function apply, providing it

with the density-dependent function, DD.FUNCTION:

N.total <- sum(Data[,2]) # Total population

size

Data[,2] <- apply(Data,1,DD.FUNCTION, N.total) # New population

sizes

4. The above is enclosed within a loop that iterates over generations. After

each generation new types are introduced at a low frequency. These are

generally referred to as “mutations” but this assumes a biological scenario

that can be misleading. The object of the analysis is to examine the

placement of the optimal trait value, should it exist, and its stability. As

written, the model assumes a clonal structure, which may apply to some

organisms but generally not to the ones for which the analysis is supposed

182 MOD E L I N G E VO L U T I ON

to apply. The assumption is that the results will apply in general to both

clonal and sexual organisms. A comparison of Scenario 6 in this chapter

with Scenario 5 of the next chapter, in which the same scenario is exam-

ined using a quantitative genetic perspective scenario, suggests that this

assumption may, in some instances, be erroneous. Given this, I believe that

it is better to regard the analysis not as a biological scenario but simply as

a mathematical means of judging potential evolutionary history in the

sense of movement to a single ESS, maintenance of polymorphisms or

the existence of multiple equilibria. In the two examples presented in

the subsequent scenarios I assume that a new type is introduced into the

population at each generation: should this be judged too liberal, it is easy

to alter the coding to make the introduction of a new type a probabilistic

event (e.g., the type of “mutation” could be depend on the frequency of

types already present in the population). Based on the assumption that a

new type appears at each generation and is a random draw from all the

possible types (this could also be changed such that the frequency distribu-

tion is, say, normal rather than uniform), coding is

for (Igen in 1:Maxgen)

{

N.total <- sum(Data[,2]) # Total population size

Data[,2] <- apply(Data,1,DD.FUNCTION, N.total) # New cohort

Keeptrackofpopulationsize,meantraitvalueandSDoftraitvalue

Stats[Igen,2] <- sum(Data[,1]*Data[,2])/sum(Data[,2]) # Mean

S <- sum(Data[,2]) # Popn size

Stats[Igen,1] <- S # Popn size

SX1 <- sum(Data[,1]^2*Data[,2])

SX2 <- (sum(Data[,1]*Data[,2]))^2/S

Stats[Igen,3] <- sqrt((SX1-SX2)/(S-1)) # SD of trait

Introduce a mutant by picking a random integer between 1 and 50

Mutant <- ceiling(runif(1, min¼0, max¼50))

Data[Mutant,2] <- Data[Mutant,2]þ1 # Add mutant to class

} # End of Igen loop

In the above coding the program keeps track of the total population size, Stats

[Igen,1], the mean trait value, Stats[Igen,2], and its standard deviation,

Stats[Igen,3]. If there is a unique equilibrium the mean value should asymp-

tote to this value and the standard deviation should equilibrate at a value deter-

mined by the difference between adjacent bins of the trait value (i.e., Data[,1]).

If there are multiple equilibria the mean should fluctuate and the standard devia-

tion should not reach a small limiting value. A plot of trait value class on popula-

tion size (called a frequency polygon) is useful to provide a visual indication of the

spread of the trait values.

I N V A S I B I L I T Y ANA L Y S I S 183

Multiple invasibility analyses are given in Scenario 3, where there is a unique

equilibrium and in Scenario 6, where the trait value fluctuates wildly.

3.2 Summary of scenarios

Scenario 1: Illustrates the use of the Leslie matrix to solve Scenario 5 of Chapter 2,

in which there is no density-dependence and the population achieves a stable age

distribution.

Scenario 2: Takes Scenario 1 and adds density-dependence that is independent of

body size, which changes the fitness measure and thus the optimum body size.

Scenario 3: Considers a model in which population dynamics is governed by the

Ricker functionwith a dependency between the components of the Ricker function.

Scenario 4: Gives another example of an age-structured model with density-

dependence affecting the trait of interest. In this case the trait under study is

the optimal reproductive effort.

Scenario 5: A stage-structured model in which the immature stage may delay

moving into the adult stage. Depending on the proportion delaying maturity, the

density dependent function can induce cyclical population dynamics which great-

ly affects the required number of generations that must be followed in the

elasticity analysis.

Scenario 6: A model demonstrating the coexistence of multiple types in a popu-

lation.

3.3 Scenario 1: Comparing approaches

To Illustrate and compare the approach used in Chapter 2 with that using amatrix

modeling approach I shall use the example given in Scenario 5 of Chapter 2, with

the change that a discrete time model rather than an integral model is used.

3.3.1 General assumptions

1. The organism is iteroparous.

2. Fecundity, F, increases with body size, x, which does not change after maturity

(e.g., as in insect).

3. Survival, S, decreases with body size, x.

4. Fitness, W, is a function of fecundity and survival.

3.3.2 Mathematical assumptions

1. Maturity occurs at age 1 after which no further growth occurs.

184 MOD E L I N G E VO L U T I ON

2. Fecundity increases linearly with size at maturity, resulting in fecundity being

a uniform function of age:

Ft ¼ aF þ bFx ð3:20Þ

3. The instantaneous rate of mortality increases linearly with the body size

attained at age 1 and is constant per time unit. Under this assumption, survival

to age t is given by

St ¼ e�ðasþbsxÞt ð3:21Þ

4. Taking r to be the measure of fitness, the fitness function is given by the

solution of the characteristic equation

X1
t¼1

e�rtðaF þ bFxÞe�ðasþbsxÞt ¼ 1 ð3:22Þ

where the initial value of the summation is set at 1, as this is the age of first

reproduction.

3.3.3 Solving using the methods of Chapter 2

The two exponents can be absorbed into a single term, giving

X1
t¼1

ðaF þ bFxÞe�ðasþbsxþrÞt ¼ 1 ð3:23Þ

The above equation is a geometric series (see Section 2.5.2 for a discussion) and can

be reduced to

ðaF þ bFxÞe�ðasþbsxþrÞ

1� e�ðasþbsxþrÞ ¼ 1 ð3:24Þ

For convenience in the following derivation let A ¼ aF þ bFx and B ¼ aS þ bSx giving

Ae�ðBþrÞ

1� e�ðBþrÞ ¼ 1

Ae�ðBþrÞ ¼ 1� e�ðBþrÞ

e�ðBþrÞðAþ 1Þ ¼ 1
�ðBþ rÞ þ logeðAþ 1Þ ¼ 0
r ¼ logeðAþ 1Þ � B

¼ logeðaF þ bFxþ 1Þ � ðas þ bsxÞ

ð3:25Þ

Thus we have an explicit expression for r as a function x (body size). Following the

recipes given in Chapter 2 (e.g., Scenario 3, Section 2.5.2) the optimal body size is

readily found. We define a function RCALC to calculate r using equation (3.25) and

the call the R function optimize to locate the value of x at which fitness (r) is

maximized:

I N V A S I B I L I T Y ANA L Y S I S 185

rm(list¼ls()) # Clear workspace

RCALC <- function(x) # Function to calculate r

Af <-0; Bf<-16; As<-1; Bs<-0.5 # parameter values

r <- log(AfþBf*xþ1)-(AsþBs*x) # r

return(r) # return value

}

Call optimize to find best x

optimize(f¼RCALC,interval¼ c(0.1,3), maximum¼TRUE)$maximum

OUTPUT:

[1] 1.937494

If the fitness equation (3.22) cannot be resolved into a simple function of r it may

be necessary to locate r by numerical means as done in Section 2.3.5. Note that this

requires that we use a finite sum. Because of the rapid decline in survival with age

only about 10 age classes are necessary: however, it is advisable to try several

values to ensure that the result is not altered. Here I use 50, which gives essentially

the same as answer as 10. Plotting r versus x (not shown) indicates that the

optimum x lies between 1 and 3. This interval is passed to optimize.

rm(list¼ls()) # Clear workspace

Define function to sum characteristic eqn given r and x

SUMMATION <- function(r,x)

{

Maxage <- 50 # Maximum age

age <- seq(from¼1, to¼Maxage) # Vector of ages

Af <- 0; Bf <- 16; As <- 1 ; Bs <- 0.5 # Parameter values

m <- rep(AfþBf*x, times¼ Maxage) # number of female offspring

l <- exp(-(AsþBs*x)*age) # Survival to age

Sum <- sum(exp(-r*age)*l*m) # Characteristic eqn sum

return(1-Sum) # Subtract 1 and return

}

Define function to find r given x

RCALC <- function(x){uniroot(SUMMATION, interval¼c(-1,2),x)

$root}

Calculate the best x by calling optimize, which calls RCALC

optimize(f¼RCALC,interval¼ c(0.1,3), maximum¼TRUE)

OUTPUT:

[1] 1.937458

The result matches to three decimal places that obtained using the exact equation.

3.3.4 Solving using the eigenvalue of the Leslie matrix

The first task is to convert the life table specified by the model into a Leslie matrix.

The coding is contained within the function RCALC which passes back the

186 MOD E L I N G E VO L U T I ON

estimates r, calculated as the log of the first eigenvalue. This function is called by

the R function optimize. Important points to note are

1. The age-specific survival (i.e., survival from age t to tþ 1), S(t) is given by l(tþ 1)/l

(t), except for the last age which must be zero.

2. The top row of the Leslie matrix is not m but m(t)S(t), often referred to as the

fertility.

3. To create the Leslie matrix we first create a matrix that is one row and one

column smaller than required and use the R function diag to assign the

survivals. This matrix is then inserted into the required spaces of the Leslie

matrix. An alternate method using a loop is also shown in the coding below.

4. The value of r is obtained by taking the log of l. For reasons that are not clear if
log(Lambda) is returned the R function optimize gives the following error

message:

Error in optimize(RCALC, interval ¼ c(1, 3), maximum ¼ TRUE):

invalid function value in ’optimize’

However, abs(log(Lambda)) does not produce this error, even though all

values of log(lambda) are already positive (the same error message is generated

if Lambda alone is returned.

5. As suggested in Chapter 2, the relationship of r to body size is plotted to check

graphically that the optimum is more or less at the value given by optimize.

R CODE:

rm(list¼ls()) # Clear workspace

RCALC <- function(x) # Function to generate Lelsie matrix and

eigenvalue

{

Maxage <- 50 # Maximum age

M <- Maxage- 1 # 1 less than the maximum

age

age <- seq(from¼1, to¼Maxage) # vector of ages

Af <- 0 ;Bf <- 16; As <-1 ; Bs <- 0.5 # Parameter values

m <- rep(AfþBf*x, times¼Maxage) # number of female

offspring

l <- exp(-(AsþBs*x)*age) # Survival to age

S <- matrix(0,Maxage,1) # Pre-assign space for

age-specific survival

S[1] <- l[1] # Survival to age 1

Calculate the survival from t to tþ1

for (i in 2:M) {S[i] <- l[i]/l[i-1]}

Fertility <- m*S # Top row of Leslie matrix

Dummy <- matrix(0,M,M) # Create a temporary matrix

I N V A S I B I L I T Y ANA L Y S I S 187

diag(Dummy) <- S[1:M] # Assign survivals to diagonal

Leslie.matrix <- matrix(0, Maxage, Maxage) # Pre-assign space

Leslie.matrix[1,] <- Fertility # Add fertilities to top row

Leslie.matrix[2:Maxage,1:M] <- Dummy # Add dummy to appropriate

space

An alternate approach using a loop is shown below

#j <- 0; for (i in 2:Maxage){j <- jþ1 ;Leslie.matrix[i,j] <- S

[i-1]}

Eigen.data <- eigen(Leslie.matrix) # Call eigen

Lambda <- Eigen.data$values[1] # Get first eigenvalue

return(abs(log(Lambda))) # Return r

}

Optimum <- optimize(RCALC, interval¼ c(1,3), maximum¼TRUE)

Best.X <- Optimum$maximum # Optimum body size

Best.r <- Optimum$objective # Maximum r

Print out results to 6 significant digits

print(c(’Best x ¼ ’, signif(Best.X, 6), ’Best r ¼ ’, signif

(Best.r,6)))

Plot r.est vs x

n <- 50 # Nos of increments

x <- matrix(seq(from¼1, to¼2.5, length¼n)) # Values of x

r.est <- apply(x,1,RCALC) # Get values of r

plot(x, r.est,xlab¼“Body size, x”, ylab¼“r.est”, type¼’l’)

points(Best.X, Best.r, cex¼2) # Add point to graph at optimum

OUTPUT:

Figure not shown but same as Figure 2.5, except for added point at optimum.

[1] “Best x ¼ ” “1.93751” “Best r ¼ ” “1.49699”

which agrees, as expected, with the previous results. The matrix approach is

somewhat simpler in its coding compared to the summation approach of

the last section but not to that using the explicit function that relates r to x

(equation (3.25)).

3.4 Scenario 2: Adding density-dependence

We continue with the previous model but add density-dependence and use pair-

wise invasibility and elasticity analyses to locate the optimum body size.

3.4.1 General assumptions

1. All assumptions given in Scenario 1 hold.

2. Population size is limited by density-dependence.

188 MOD E L I N G E VO L U T I ON

3.4.2 Mathematical assumptions

1. All assumptions given in Scenario 1 hold.

2. Population size is controlled by a Ricker density-dependent function:

F�t ¼ Ftae�bNt ð3:26Þ

where Nt is total population size, Fi is the density-independent component of

fertility as defined by equation (3.20), and Ft* is the density-dependent fertility.

3.4.3 Solving using R0 as the fitness measure

Because the density-dependence does not directly affect the trait under consider-

ation the appropriate measure of fitness is not r but R0. The relevant equation is

equation (3.24) rewritten as

ðaF þ bFxÞe�ðaSþbSxÞ

1� e�ðaSþbSxÞ ¼ R0 ð3:27Þ

We can use the previous coding, modified for the change in function, to find the

value of x that maximizes R0 (alternatively, one could find x such that dR0
dx ¼ 0).

R CODE:

rm(list¼ls()) # Clear workspace

RCALC <- function(x) # Function to calculate r

{

Af <-0; Bf<-16; As<-1; Bs<-0.5 # parameter values

A <- AfþBf*x; B <- AsþBs*x # For convenience

R0 <- A*exp(-B)/(1-exp(-B)) # R0

return(R0) # return value

}

Call optimize to find best x

optimize(f¼RCALC,interval¼ c(0.1,3), maximum¼TRUE)$maximum

OUTPUT:

[1] 1.682795

Although the density-dependence does not directly involve body size it changes

the operational fitness measure and hence also the optimal body size. We now

examine the approaches of invasibility and elasticity analyses.

3.4.4 Pairwise invasibility analysis

The program follows the pattern outlined in the introductionwithminor changes.

A general description of the functions follows:

1. LESLIE <- function(x,Maxage): This is the same function as in the previ-

ous scenario and constructs the Leslie matrix from the relevant equations.

I N V A S I B I L I T Y ANA L Y S I S 189

2. DD.FUNCTION <- function(ALPHA, BETA, Fi, n) {Fi*ALPHA*exp

(-BETA*n)}: This passes the two density dependent parameters, the DI (densi-

ty-independent) fertility coefficient and total population size, and passes back

the new fertility as defined by equation (3.26). Parameter values are set at a¼ 1, b
¼ 2 	 10�5, which produces a stable equilibrium of 80782.

3. POP.DYNAMICS <- function(X): X contains the body size of the resident and

the body size of invader (this differs from the example in the introduction

which passed the multiplier for the invader). The function calculates the

growth rate of the invader. Unlike the example given in the introduction the

trajectory of the resident-only population is not followed.

4. Main program: This follows the approach outlined in the introduction. The

body size obtained from the elasticity analysis that follows is plotted onto the

contour surface.

R CODE:

rm(list¼ls()) # Clear workspace

LESLIE <- function(x,Maxage) # Function to generate Leslie matrix

{

M <- Maxage-1 # 1 less than the maximum age

age <- seq(from¼1, to¼Maxage) # vector of ages

Af <- 0 ;Bf <- 16; As <-1 ; Bs <- 0.5 # Parameter values

m <- rep(AfþBf*x, times¼Maxage) # number of female offspring

l <- exp(-(AsþBs*x)*age) # Survival to age

S <- matrix(0,Maxage,1) # Space for age-specific survival

S[1] <- l[1] # Survival to age 1

Calculate the survival from t to tþ1

for (i in 2:M) {S[i] <- l[i]/l[i-1]}

Fertility <- m*S # Top row of Leslie matrix

Dummy <- matrix(0,M,M) # Create a temporary matrix

diag(Dummy) <- S[1:M] # Assign survivals to diagonal

Leslie.matrix <- matrix(0, Maxage, Maxage) # Pre-assign space

Leslie.matrix[1,] <- Fertility # Add fertilities to top row

Leslie.matrix[2:Maxage,1:M]<- Dummy # Adddummytoappropriate

space

return(Leslie.matrix)

} # End of Leslie function

############### Density-dependence function ###############

DD.FUNCTION <- function(ALPHA,BETA,Fi,n) {Fi*ALPHA*exp

(-BETA*n)}

###############Population dynamics function ###############

POP.DYNAMICS <- function(X)

{

X.Resident <- X[1] # Body size of resident population

X.invader <- X[2] # Body size of invader

ALPHA <- 1 ; BETA <- 2*10 -̂5 # Density dependence parameters

Maxage <- 50 # Maximum age

190 MOD E L I N G E VO L U T I ON

Resident.matrix <- LESLIE(X.Resident, Maxage) # Resident Leslie

matrix

Invader.matrix <- LESLIE(X.invader, Maxage)# Invader leslie

matrix

F.resident <- Resident.matrix[1,] # Resident DI fertility

F.invader <- Invader.matrix[1,] # Invader DI fertility

Maxgen <- 30 # Nos of gens to run

n.resident <- matrix(0,Maxage,1) # Resident population vector

n.resident[1] <- 1 # Initial resident popn size

for (Igen in 2:Maxgen) # Iterate over generations

{

N <- sum(n.resident) # Total popn size

Get DD fertility for resident population at time Igen

Resident.matrix[1,] <- DD.FUNCTION(ALPHA, BETA, F.resident, N)

n.resident <- Resident.matrix%*%n.resident # Resident popn

} # End of first Igen loop

Introduce invader

Maxgen <- 100 # Number of generations to run

Pre-allocate space for storage of invader population numbers

Pop.invader <- matrix(0,Maxgen,1)

Pre-allocate space for invader vector

n.invader <- matrix(0,Maxage,1)

n.invader[1] <- 1 # Initial number of invaders

Pop.invader[1,1] <- n.invader[1] # Store initial numbers of

invaders

for (Igen in 2:Maxgen) # Iterate over generations

{

Total number in population.

N <- sum(n.resident) þ sum(n.invader)

DD fertility of resident

Resident.matrix[1,] <- DD.FUNCTION(ALPHA, BETA, F.resident, N)

New resident vector

n.resident <- Resident.matrix%*%n.resident

DD fertility of invader

Invader.matrix[1,] <- DD.FUNCTION(ALPHA, BETA, F.invader, N)

New invader vector

n.invader <- Invader.matrix%*%n.invader

Pop.invader[Igen] <- sum(n.invader) # Store invader popn size

} # End of second Igen loop

Now do linear regression of log(Pop.invader) on Generation

Generation <-seq(from¼1,to¼Maxgen)#Generategenerationvector

Nstart <- 20 # Generations to ignore

Linear regression

Invasion.model <-

lm(log(Pop.invader[Nstart:Maxgen])
Generation[Nstart:Maxgen])

I N V A S I B I L I T Y ANA L Y S I S 191

Elasticity value ¼ regression slope

Elasticity <- Invasion.model$coeff[2]

} # End of POP.DYNAMICS function

####################### MAIN PROGRAM #######################

N1 <- 30 # Nos of increments

X.Resident <-seq(from¼1,to¼3,length¼N1)#Residentbodysizes

X.Invader <- X.Resident # Invader body sizes

d <- expand.grid(X.Resident, X.Invader) # Combinations

Generate values at combinations

z <- apply(d,1,POP.DYNAMICS)

z.matrix <- matrix(z, N1, N1) # Convert to a matrix

Plot contours

contour(X.Resident, X.Invader,z.matrix, xlab¼“Resident”,

ylab¼“Invader”)

Place circle at predicted optimal body size

points(1.68703, 1.68703, cex¼3) # cex triples size of circle

OUTPUT: (Figure 3.5)

Resident

In
va

de
r

1.0

1.
0

1.
5

2.
0

2.
5

3.
0

1.5 2.0 2.5 3.0

–0.14

–0.12

–0.1

–0.08

–0.06

–0.06

–0.04

–0.04

–0.02

–0
.0

8
0.

06
0.

04 0.
02

0.02
0.04

0.06
0.08

0.01

0

0

0

0

–0.02

Figure 3.5 Pairwise invasibility plot for Scenario 2. The circle indicates the value obtained
from the elasticity analysis.

192 MOD E L I N G E VO L U T I ON

There is a single putative ESS, which, as shown by the circle, is confirmed by the

elasticity analysis described below.

3.4.5 Elasticity analysis

The program consists of the same components with the following changes

1. POP.DYNAMICS(X, Coeff): The body size of the resident and the multiplier

for the invader is passed to POP.DYNAMICS. As suggested by Benton and Grant

(1999), the value of the invader trait is set at 0.995 times that of the resident

(Coeff¼ 0.995 in call to POP.DYNAMICS and hence X.invader¼ 0.995*X.

resident). The change in population size of the invader population, Pop.

invader is stored and after the specified number of generations (Maxgen)

the elasticity is estimated as the slope of the linear regression of log(Pop.

invader)on Generation. To avoid poor estimates due to the initial stabiliza-

tion of the invader population the regression ignores the first 20 generations.

2. The optimumbody size is that value at which elasticity is zero. This is estimated

first by calling the R function uniroot and then visually checked by plotting

elasticity versus body size and also the invasion exponent versus body size.

R CODE:

rm(list¼ls()) # Clear workspace

LESLIE <- function(x,Maxage) # Function to generate Leslie

matrix

{

CODING SAME AS IN INVASIBILITY ANALYSIS

} # End of Leslie function

############### Density-dependence function ###############

DD.FUNCTION <- function(ALPHA,BETA,Fi,n) {Fi*ALPHA*exp

(-BETA*n)}

###############Population dynamics function ###############

POP.DYNAMICS <- function(X, Coeff)

{

X.Resident <- X # Body size of resident population

X.invader <- X.Resident*Coeff # Body size of invader

REST OF CODE SAME AS IN INVASIBILITY ANALYSIS

} # End of POP.DYNAMICS function

####################### MAIN PROGRAM #######################

par(mfrow¼c(2,2)) # Divide graphics page into quarters

Plot elasticity vs x

N.int <- 20 # Number of increments

X <- matrix(seq(from¼.5, to¼3, length¼N.int)) # Sequence of

body sizes

Calculate elasticities for sequence

Elasticity <- apply(X,1,POP.DYNAMICS,0.995)

I N V A S I B I L I T Y ANA L Y S I S 193

plot(X, Elasticity, type¼’l’) # Plot elasticity as a function of X

lines(c(.5,3), c(0,0)) # Add horizontal line at zero

Calculate the optimum by calling uniroot

Optimum <- uniroot(POP.DYNAMICS, interval¼c(0.5,3),0.995)

Best.X <- Optimum$root # Save optimum X

print(c(“Optimumbodysize¼”,signif(Best.X,6)))#Printoutvalue

Now plot Invasion exponent when resident is optimal

Note that because of order in call cannot use apply here

Convert the X sequence to coefficients for call to POP.DYNAMICS

Coeff <- X/Best.X

Invasion.exponent <- matrix(0,N.int,1) # Pre-allocate space

Loop through values of X comparing to Best.X

for (i in 1:N.int){Invasion.exponent[i] <- POP.DYNAMICS(Best.X,

Coeff[i]) }

plot(X,Invasion.exponent,type¼’l’) #Plotinvasionexponentvsx

points(Best.X, 0, cex¼2) # Plot point at predicted

optimum

OUTPUT: (Figure 3.6)

[1] “Optimum body size ¼” “1.68703”

The results from uniroot indicate that the optimum under density-dependent

regulation is smaller than in the density-independent case (Scenario 1). The plot

of invasion exponent on body size confirms that the putative ESS is indeed

an ESS.

3.5 Scenario 3: Functional dependence in the Ricker model

Ebenman et al. (1996) studied a stage-structured model in which selection favors

stability, whereas oscillatory behavior is favored in the age-structure model

X X

0.5

E
la

st
ic

ity

In
va

si
on

. e
xp

on
en

t

–0
.0

02
0.

00
0

0.
00

2

1.0 1.5 2.0 2.5 3.0 0.5

–0
.3

0
–0

.2
0

–0
.1

0
0.

00

1.0 1.5 2.0 2.5 3.0

Figure 3.6 Graphical analysis of elasticity and invasion exponent as a function of body
size as determined by an analysis of Scenario 2. The circle demarks the position of
the predicted optimum.

194 MOD E L I N G E VO L U T I ON

studied by Greenman et al. (2005). In this model we consider how evolution will

shape population dynamics by an analysis of the optimal parameter values in the

Ricker model. No age or stage structure is assumed.

3.5.1 General assumptions

1. The organism is semelparous.

2. Recruitment is governed by a density-dependence function that allows for

cyclical or chaotic population dynamics.

3. The parameters of the recruitment function are related such that the density-

independent component is negatively related to the density-dependent

component.

3.5.2 Mathematical assumptions

1. Population at time t þ 1 is a Ricker function of the population at time t:

Ntþ1 ¼ Ntae�bNt ð3:28Þ
2. The parameter a is a measure of density-independent recruitment whereas b is

a measure of the density-dependent effect: increases in a increase recruitment

but increases in b decrease recruitment by increasing the density-dependent

component, e�bNt . Thus a positive functional relationship between a and b is

indicative of a trade-off between the two recruitment components. For this

scenario I shall assume the relationship

b ¼ 0:001a ð3:29Þ

Examples of the population dynamics for increasing values of a are shown in

Figure 3.7. For low values of a the population reaches a stable equilibrium but as a
is increased the dynamics first become cyclical and then chaotic.

3.5.3 Pairwise invasibility analysis

The coding follows the general pattern of that in Scenario 2, again plotting the

value from the subsequent elasticity analysis on the contour plot. The DD.FUNC-

TION passes back the new population size using equation (3.28).

R CODE:

rm(list¼ls()) # Clear memory

DD.FUNCTION <- function(ALPHA,N1,N2) # Density-dependence

function

{

BETA <- ALPHA*0.001 # Set value of beta

N <- N1*ALPHA*exp(-BETA*N2) # New population size

return(N)

} # End of DD.FUNCTION

I N V A S I B I L I T Y ANA L Y S I S 195

N(t)

N
(t

+1
)

0 0 20 40 60 80 100

0
10

0
20

0
30

0

N
(t

+1
)

0
10

0
20

0
30

0

N
(t

+1
)

0
10

0
20

0
30

0

N

0
10

0
20

0
30

0

N

0
10

0
20

0
30

0

N

0
10

0
20

0
30

0

200 400 600 800 1,000

N(t)

0 200 400 600 800 1,000

Generation

0 20 40 60 80 100

Generation

N(t)
0 200 400 600 800 1,000 0 20 40 60 80 100

Generation

Figure 3.7 Population dynamics in the Ricker model in which b = 0.001a. From top to
bottom the values of a are 2, 10, and 20.

R CODING:
rm(list=ls()) # Clear workspace
par(mfrow=c(3,2)) # Divide graphics page into 3x2 panels
DD.FUNCTION <- function(n,ALPHA, BETA) {ALPHA*exp(-BETA*n)}

main program
A <- c(2,10,20) # Values of alpha
for(j in 1:3) # Iterate over values of alpha

{
N.t <- seq(from=0, to=1000) # Population sizes
ALPHA <-A[j] # alpha
BETA <- ALPHA*0.001 # Beta

Plot N(t+1) vs N(t)
N <- length(N.t) # Nos of values of N(t)
N.tplus1 <- matrix(0,N) # Pre-allocate space for N(t+1)
for (i in 1:N) # Iterate over values of N

{
N.tplus1[i] <- N.t[i]*DD.FUNCTION(N.t[i],ALPHA,BETA)

} # End of N(t+1) on N(t) calculation
plot(N.t, N.tplus1, type=’l’, xlab=’N(t)’,ylab=’N(t+1)’)
lines(N.t, N.t) # Plot the line of equality

Plot N(t) vs t
Maxgen <- 100 # Number of generations
N <- matrix(0, Maxgen) # Pre-allocate space for N(t)
N[1] <- 1 # Initial vale of N
for (Igen in 2:Maxgen) # Iterate over generations

{
N[Igen] <- N[Igen-1]*DD.FUNCTION(N[Igen-1],ALPHA,BETA)

} # End of Igen loop
Generation <- seq(1,Maxgen) # Vector of generation numbers
plot(Generation, N, type=’l’) # Plot population trajectory

} # End of j loop

Function specifying population dynamics

POP.DYNAMICS <- function(ALPHA)

{

ALPHA.resident <- ALPHA[1] # Alpha for resident

ALPHA.invader <- ALPHA[2] # Alpha for invader

Maxgen1 <- 50 # Generations when only invader

present

Maxgen2 <- 300 # Generations after invader

introduced

Tot.Gen <- Maxgen1þMaxgen2 # Total number of generations

N.resident <- N.invader <- matrix(0,Tot.Gen) # Allocate space

N.resident[1] <- 1 # Initial number of resident

N.invader[Maxgen1]<- 1 # Initial number of invader

for (Igen in 2:Maxgen1) # Iterate over only resident

{

N.resident[Igen] <- DD.FUNCTION(ALPHA.resident, N.resident

[Igen-1], N.resident[Igen-1])

} # End of resident only period

Now add invader

J <- Maxgen1þ1 # Staring generation of this period

for (Igen in J:Tot.Gen) # Iterate after introduction of invader

{

N.total <- N.resident[Igen-1]þ N.invader[Igen-1] # Total popn

size

Resident population size

N.resident[Igen] <- DD.FUNCTION(ALPHA.resident, N.resident

[Igen-1],N.total)

Invader population size

N.invader[Igen] <- DD.FUNCTION(ALPHA.invader, N.invader[Igen-

1],N.total)

} # End of invasion period

Generation <- seq(from¼1, to¼Tot.Gen) # Generation sequence

Nstart <- 10 þ Maxgen1 # Starting point for regression

Regression model

Invasion.model <- lm(log(N.invader[Nstart:Tot.Gen])~ Genera-

tion[Nstart:Tot.Gen])

Elasticity <- Invasion.model$coeff[2] # Elasticity

return(Elasticity)

} # End of POP.DYNAMICS function

############# MAIN PROGRAM #############

N1 <- 30 # Nos of increments

A.Resident <- seq(from¼2, to¼ 4, length¼N1) # Resident alpha

A.Invader <- A.Resident # Invader alpha

I N V A S I B I L I T Y ANA L Y S I S 197

d <- expand.grid(A.Resident, A.Invader) # Combinations

Generate values at combinations

z <- apply(d,1,POP.DYNAMICS)

z. matrix <- matrix(z, N1, N1) # Convert to a matrix

Plot contours

contour(A.Resident, A.Invader,z.matrix, xlab¼“Resident”,

ylab¼“Invader”)

Place circle at predicted optimal body size

points(2.725109, 2.725109, cex¼3) # cex triples size of circle

OUTPUT: (Figure 3.8)

There is a single putative ESS which corresponds to the value obtained from the

elasticity analysis described below.

3.5.4 Elasticity analysis

In addition to the two plots produced from the elasticity analysis two further plots

are produced, N(tþ1) on N(t) and N(t) on t. These plots show the population

dynamics as a function of the optimal value of a.

Resident

In
va

de
r

2.0

2.
0

2.
5

3.
0

3.
5

4.
0

2.5 3.0 3.5 4.0

–0.08

–0.06

–0.04

–0.02

0.04

0.02
–0.02

0

0

0

0

0

0.
02

0.
04

–0.04

Figure 3.8 Paiwise invasibility plot for Scenario 3. The circle demarks the combination
obtained from the elasticity analysis.

198 MOD E L I N G E VO L U T I ON

R CODE:

DD.FUNCTION <- function(ALPHA,N1,N2) # Density-dependence

function

{

BETA <- ALPHA*0.001 # Set value of beta

N <- N1*ALPHA*exp(-BETA*N2) # New population size

return(N)

} # End of DD.FUNCTION

Function specifying population dynamics

POP.DYNAMICS <- function(ALPHA, Coeff)

{

ALPHA.resident <- ALPHA # Alpha for resident

ALPHA.invader <- ALPHA.resident*Coeff # Alpha for invader

REST OF CODING SAME AS IN INVASIBILITY ANALYSIS

} # End of POP.DYNAMICS function

############### MAIN PROGRAM ###############

par(mfrow¼c(2,2)) # Divide graphics page into quadrats

Call uniroot to find optimum

minA <-1; maxA <-10 # Limits for search

Optimum <- uniroot(POP.DYNAMICS, interval¼c(minA,

maxA),0.995)

Best.Alpha <- Optimum$root # Store optimum Alpha

print(Best.Alpha) # Print out optimum

Plot Elasticity vs alpha

N.int <- 30 # Nos of intervals for plot

Alpha <- matrix(seq(from¼minA, to¼maxA, length¼N.int),

N.int,1)

Elasticity <- apply(Alpha,1,POP.DYNAMICS, 0.995) # Get elastici-

ties

plot(Alpha, Elasticity, type¼’l’)

lines(c(minA,maxA), c(0,0)) # Add horizontal line at zero

Plot Invasion exponent when resident is optimal

Coeff <- Alpha/Best.Alpha # Convert alpha to coefficient

Invasion.coeff <- matrix(0,N.int,1) # Allocate space

Calculate invasion coefficient

for (i in 1:N.int){ Invasion.coeff[i] <- POP.DYNAMICS(Best.

Alpha, Coeff[i]) }

plot(Alpha, Invasion.coeff, type¼’l’) # Plot invasion coeff on

alpha

points(Best.Alpha,0, cex¼2) # Plot optimum alpha on graph

Plot N(tþ1) on N(t) for optimum alpha

maxN <- 1000 # Number of N

N.t <- seq(from¼1, to¼maxN) # Values of N(t)

I N V A S I B I L I T Y ANA L Y S I S 199

N.tplus1 <- matrix(0,maxN) # Allocate space for N(tþ1)

for (i in 1:maxN) # Iterate over values of N

{

N.tplus1[i] <- DD.FUNCTION(Best.Alpha, N.t[i], N.t[i])

} # End of i loop

plot(N.t, N.tplus1, type¼’l’, xlab¼’N(t)’, ylab¼’N(tþ1)’)

Plot N(t) on t

N <- matrix(1,100) # Allocate space. Note reuse of N

for (i in 2:100){N[i]<- DD.FUNCTION(Best.Alpha, N[i-1], N[i-1])}

plot(seq(from¼1, to¼100), N, type¼’l’, xlab¼’Generation’,

ylab¼’Population’)

OUTPUT: (Figure 3.9)

> print(Best.Alpha) # Print out optimum

[1] 2.725107

At the optimal value of a the population reaches a stable equilibrium (Figure 3.9).

Thus in this case selection favors stability.

N(t)

0 0

2 4 6 8 102

–0
.0

06

–1
.4

–1
.0

–0
.6

–0
.2

–0
.0

02
0.

00
2

0.
00

6

4 6 8 10

20 40 60 80 100

0
10

0
20

0

N
(t

+1
)

E
la

st
ic

ity

In
va

si
on

.c
oe

ff
P

op
ul

at
io

n

30
0

0
10

0
20

0
30

0

200 400 600 800 1,000

Alpha Alpha

Generation

Figure 3.9 Output from the elasticity analysis of Scenario 3.

200 MOD E L I N G E VO L U T I ON

3.5.5 Multiple invasibility analysis

The program follows the outline previously given and introduces a single random

mutant in each generation. The simulation is run for 5,000 generations.

R CODE:

rm(list¼ls()) # Clear memory

DD.FUNCTION<- function(X, N.total) # Density-dependence

function

{

Set parameter values

ALPHA <- X[1] # Set alpha

N <- X[2] # Population size for this alpha

BETA <- ALPHA*0.001 # Set value of beta

N <- N*ALPHA*exp(-BETA*N.total) # New cohort size

return(N)

} # End of function

############## MAIN PROGRAM ##############

set.seed(10) # Initialize the random number seed

Maxgen <- 5000 # Number of generations run

Stats <- matrix(0,Maxgen,3) # Allocate space for statistics

MaxAlpha <- 4 # maximum value of alpha

Ninc <- 50 # Number of classes for alpha

Allocate space to store data for each generation

Store <- matrix(0,Maxgen, Ninc)

Allocate space for alpha class and population size

Data <- matrix(0,Ninc,2)

Data[24,2] <- 1 # Initial population size and alpha class

ALPHA <- matrix(seq(from¼2, to¼MaxAlpha, length¼Ninc),

Ninc,1) # Set Alpha

Data[,1] <- ALPHA # Place alpha in 1st column

for (Igen in 1:Maxgen) # Iterate over generations

{

N.total <- sum(Data[,2]) # Total population size

Data[,2] <- apply(Data,1,DD.FUNCTION, N.total) # New cohort

Store[Igen,] <- Data[,2] # Store values for this generation

Keep track of population size, mean trait value and SD of trait

value

Stats[Igen,2] <-sum(Data[,1]*Data[,2])/sum(Data[,2]) #Mean

S <- sum(Data[,2]) # Population size

Stats[Igen,1] <- S # Population size

SX1 <- sum(Data[,1] 2̂*Data[,2])

SX2 <- (sum(Data[,1]*Data[,2])) 2̂/S

Stats[Igen,3] <- sqrt((SX1-SX2)/(S-1)) # SD of trait

I N V A S I B I L I T Y ANA L Y S I S 201

Introduce a mutant by picking a random integer between 1 and 50

Mutant <- ceiling(runif(1, min¼0, max¼50))

Data[Mutant,2] <- Data[Mutant,2]þ1 # Add mutant to class

} # End of Igen loop

par(mfrow¼c(2,2)) # Split graphics page into quadrats

Plot last row of Store

plot(ALPHA, Store[Maxgen,], type¼’l’, xlab¼’Alpha’,

ylab¼’Number’)

plot(Data.out[,1], Data.out[,2],

Generation <- seq(from¼1, to¼Maxgen)

N0 <- 1

plot(Generation[N0:Maxgen], Stats[N0:Maxgen,1], ylab¼’Pop-

ulation size’, type¼’l’)

plot(Generation[N0:Maxgen], Stats[N0:Maxgen,2], ylab¼’Mean’,

type¼’l’)

plot(Generation[N0:Maxgen], Stats[N0:Maxgen,3], ylab¼’SD’,

type¼’l’)

print(c(’Mean alpha in last gen ¼ ’,Stats[Maxgen,2]))

print(c(’SD of alpha in last gen ¼ ’,Stats[Maxgen,3]))

OUTPUT: (Figure 3.10)

Generation[N0:Maxgen]

Alpha

N
um

be
r

P
op

ul
at

io
n

si
ze

0

2.0

0 0
10

0
20

0
30

0

20
40

60
80

2.5 3.0 3.5 4.0

1,000 2,000 3,000 4,000 5,000 0

0.
00

2.
75

2.
80

2.
85

2.
90

2.
95

S
D

M
ea

n

0.
10

0.
20

1,000 2,000 3,000 4,000 5,000

Generation[No:Maxgen]

0 1,000 2,000 3,000 4,000 5,000
Generation[No:Maxgen]

Figure 3.10 Results of multiple invasibility analysis for Scenario 3. Top panels show a
frequency polygon of the distribution of a at the last generation and the population size over
the simulation. The bottom row shows the change in the mean and standard deviation of a.

202 MOD E L I N G E VO L U T I ON

> print(c(’Mean alpha in last gen ¼ ’,Stats[Maxgen,2]))

[1] “Mean alpha in last gen ¼ ” “2.74127304258184”

> print(c(’SD of alpha in last gen ¼ ’,Stats[Maxgen,3]))

[1] “SD of alpha in last gen ¼ ” “0.198511654428470”

As indicated by the previous analyses, the population evolves to a single equilibri-

um. While there is variation about the mean value, it is not significantly different

from that obtained from the elasticity analysis (2.74 in this analysis compared to

2.73 in the last).

3.6 Scenario 4: The evolution of reproductive effort

Complexity is added in this scenario by the addition of age structure and density-

dependence that affects the parameter of interest, which here is reproductive

effort. This scenario is taken from Benton and Grant (1999).

3.6.1 General assumptions

1. The population is composed of two age classes.

2. Fecundity increases with reproductive effort.

3. Survival decreases with reproductive effort.

4. Fecundity is a negative function of population size.

3.6.2 Mathematical assumptions

1. Fecundity, Fi, is defined as the number of offspring born to an individual that

survive to the next age or stage.

2. Fecundity is the following function of reproductive effort, E, and population

size:

FiEae�bN ð3:30Þ
where N is the total population size (¼ n1 þ n2).

3. Survival is governed by the relationship

Sið1� EZÞ ð3:31Þ

The matrix model is thus

n1;tþ1

n2;tþ1

	
¼ F1Eae�bN F2Eae�bN

S1ð1� EZÞ S2ð1� EZÞ
	

n1;t
n2;t

	���
ð3:32Þ

The value of Z was set at 6 which matches approximately and corresponds to the

mean value found in lowland birds (Benton and Grant 1999). The Ricker

I N V A S I B I L I T Y ANA L Y S I S 203

parameters were set at � ¼ 1 and b ¼ 2 	 10�5: these parameters produce a stable

population.

3.6.3 Pairwise invasibility analysis

The function DD.FUNCTION calculates the density-dependent fertilities according

to equation (3.30); otherwise the program follows the same pattern as in the

previous two scenarios.

R CODE:

rm(list¼ls()) # Clear workspace

Density-dependent function

DD.FUNCTION <- function(ALPHA, BETA, F.DI, Ei, n)

{Ei*F.DI*ALPHA*exp(-BETA*n)}

Function to calculate dynamics of invasion

POP.DYNAMICS <- function(E)

{

E.resident <- E[1] # E for resident

E.invader <- E[2] # E for invader

F.DI <- c(4, 10) # DI Fertilities

S.DI <- c(0.6,0.85) # DI Survivals

ALPHA <- 1; BETA <- 2*10 -̂5 # DD parameter values

z <- 6 # RE survival parameter value

Preallocate space for matrices

Resident.matrix <-matrix(0,2,2) #Pre-assign spacefor matrix

Invader.matrix <-matrix(0,2,2) #Pre-assign spacefor matrix

Apply reproductive effort to F

Resident.matrix[1,] <- E.resident*F.DI

Invader.matrix[1,] <- E.invader*F.DI

Apply reproductive effort to S

Resident.matrix[2,] <- (1-E.resident ẑ)*S.DI

Invader.matrix[2,] <- (1-E.invader ẑ)*S.DI

Run Maxgen generation with resident only

Maxgen <- 20 # Nos of generations

n.resident <- c(1,0) # Initial population vector

for (Igen in 2:Maxgen) # Iterate over generations

{

Calculate the new entries

N <- sum(n.resident) # Pop size of residents

Resident.matrix[1,]<- DD.FUNCTION(ALPHA, BETA, F.DI, E.resi-

dent, N) # New Fs

n.resident <- Resident.matrix%*%n.resident # New pop vector

} # End of first Igen loop

204 MOD E L I N G E VO L U T I ON

Introduce invader

Maxgen <- 100 # Set nos of generations to run

Pop.invader <-matrix(0,Maxgen,1) #pre-allocatespaceofpopsize

Pop.invader[1,1] <- 1 # Initial population size

n.invader <- c(1,0) # Initiate invader pop vector

for (Igen in 2:Maxgen) # Iterate over generations

{

N <- sum(n.resident) þ sum(n.invader) # Total pop

Apply density dependence to fertilities

Resident.matrix[1,] <-DD.FUNCTION(ALPHA,BETA,F.DI,E.resident,N)

Invader.matrix[1,] <-DD.FUNCTION(ALPHA,BETA,F.DI,E.invader,N)

Calculate new population vectors

n.resident <- Resident.matrix%*%n.resident

n.invader <- Invader.matrix%*%n.invader

Pop.invader[Igen] <- sum(n.invader) # Store pop size of invader

} # End of second Igen loop

Generation <- seq(from¼1, to¼Maxgen) # Create vector of

generations

Get growth of invader starting at generation 20

Invasion.model <- lm(log(Pop.invader[20:Maxgen])
Generation

[20:Maxgen])

Elasticity ¼ slope of regression

Elasticity <- Invasion.model$coeff[2]

return(Elasticity)

} # End of function

######################## MAIN PROGRAM ########################

par(mfrow¼c(1,1))

N1 <- 30 # Nos of increments

E.Resident <- seq(from¼.2, to¼ .9, length¼N1)# Resident body sizes

E.Invader <- E.Resident # Invader body sizes

d <- expand.grid(E.Resident, E.Invader) # Combinations

Generate values at combinations

z <- apply(d,1,POP.DYNAMICS)

z.matrix <- matrix(z, N1, N1) # Convert to a matrix

Plot contours

contour(E.Resident, E.Invader,z.matrix, xlab¼“Resident”, ylab

¼“Invader”)

Place circle at predicted optimal body size

points(0.5651338, 0.5651338, cex¼3) # cex triples size of circle

OUTPUT: (Figure 3.11)

I N V A S I B I L I T Y ANA L Y S I S 205

A single putative ESS is identified, corresponding to the predicted value from the

following elasticity analysis.

3.6.4 Elasticity analysis

R CODE:

rm(list¼ls()) # Clear workspace

Density-dependent function

DD.FUNCTION <- function(ALPHA, BETA, F.DI, Ei, n)

{Ei*F.DI*ALPHA*exp(-BETA*n)}

Function to calculate dynamics of invasion

POP.DYNAMICS <- function(E, Coeff)

{

E.resident <- E # E for resident

E.invader <- E*Coeff # E for invader

REMAINDER OF CODING AS IN INVASIBILITY ANALYSIS

} # End of function

Resident

In
va

de
r

0.2

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.3 0.4

–0.05

0.05
0.1

0.
1

0

–0.05

–0.15

–0.25
–0.3

–0.4–0.35

–0.2

–0.1
0.06

0.1

0

0.5 0.6 0.7 0.8 0.9

Figure 3.11 Pairwise invasibility plot for Scenario 4. The circle demarks the combination
obtained from the elasticity analysis.

206 MOD E L I N G E VO L U T I ON

##################### MAIN PROGRAM #####################

par(mfrow¼c(2,2)) # Divide graphics page into quarters

Locate value at which elasticity equals zero

Optimum <- uniroot(POP.DYNAMICS, interval¼c(0.01,0.9),0.995)

Best.E <- Optimum$root # Store the optimum reproductive effort

print(Best.E) # Print optimum E

Create plot of elasticity vs E

N.int <- 30 # Nos of increments

Create sequence of E from .1 to 0.9 in N.int increments

E <- matrix(seq(from¼0.2, to¼.9, length¼N.int), N.int,1)

Create vector of elasticities using apply function

Elasticity <- apply(E,1,POP.DYNAMICS, 0.995)

plot(E, Elasticity, type¼’l’) # Plot elasticity vs E

lines(c(.2,.9), c(0,0)) # Add horizontal line at zero

Now plot Invasion exponent when resident is optimal

Coeff <- E/Best.E # Coefficient of invader DD function

Invasion.exponent <- matrix(0,N.int,1) # pre-allocate space

Iterate and calculate invasion exponent

Note that a loop is used rather than apply because it is coeffi-

cient that

is changing

for (i in 1:N.int){Invasion.exponent[i] <- POP.DYNAMICS(Best.

E, Coeff[i])

}

plot(E, Invasion.exponent, ylab¼’Invasion exponent’, type¼’l’)

points(Best.E,0, cex¼2) # Plot point at previously estimated

optimum E

OUTPUT: (Figure 3.12)

E

E
la

st
ic

ity

In
va

si
on

 e
xp

on
en

t

0.2

0.
00

0

–0
.4

–0
.3

–0
.2

–0
.1

0.
0

0.
00

4
0.

00
8

0.
01

2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E

Figure 3.12 Output from elasticity analysis of Scenario 4.

I N V A S I B I L I T Y ANA L Y S I S 207

> print(Best.E)# Print optimum E

[1] 0.5651338

The results indicate that under this scenario a medium reproductive effort is

optimal. Benton and Grant (1999) explored a range of scenarios in which both

the density-dependent function and traits affected were varied. The results are

given in Table 1 of their paper: I suggest that the reader modify the above coding

to replicate the results of that table.

3.7 Scenario 5: A two stage model

The primary purpose of this scenario is to illustrate the importance of correctly

setting the number of generations over which the invader population growth rate

is estimated. The problem is to estimate the optimal proportion of a population

delayingmaturity (or equivalently the proportion of immatures entering diapause

or dormancy as found in many invertebrates and plants). For a detailed discussion

of the model see van Dooren and Metz (1998). In this case I present the elasticity

analysis first. Because the coding formultiple invasibility analysis is essentially the

same as in previous scenarios, I have omitted it here.

3.7.1 General assumptions

1. The population consists of two stages with reproduction in the second stage.

2. A proportion of the first stage remains in that stage for more than one popula-

tion cycle.

3. Fecundity is density dependent.

3.7.2 Mathematical assumptions

1. The proportion showing delayed maturity is P and the survival between stages

is S.

2. Fecundity is determined by the Ricker function as ae�bAt .

The matrix model is thus

Itþ1

Atþ1

	
¼ SP ae�bAt

Sð1� PÞ 0

	
It
A2

	���
ð3:33Þ

Parameter values are set at S¼ 0.8, �¼ 18, and b¼ 0.01. The dynamics of the adult

population depend critically on the proportion delaying maturity. Low values of P

produce cyclical behavior and larger values produce a stable equilibrium, with the

time attaining the equilibrium becoming shorter as P gets bigger (Figure 3.13). As a

consequence the dynamics of the resident and invader populations, both may

208 MOD E L I N G E VO L U T I ON

Generation Generation

GenerationGeneration

0

0 0
50

10
0

20
0

10
0

20
0A
du

lts

A
du

lts

0
50

10
0

20
0

A
du

lts

0
50

10
0

15
0

A
du

lts

30
0

40
0

50
0

20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

Figure 3.13 Population dynamics for the stage‐dependent model of Scenario 5. Values of P
from right to left and top to bottom are 0.1, 0.5, 0.7, and 0.9.

rm(list=ls()) # Clear workspace

par(mfrow=c(2,2)) # Divide graphics page into quarters

ALPHA <- 18 ; BETA <- 0.01; S <- 0.8 # Parameter values

Ps <- c(.1,.5,.7,.9) # Values of P

for (Ith.P in 1:4) # Iterate over P values

{

P <- Ps[Ith.P] # Select P value

Stage <- c(0,1) # Start with one Adult

Initialize matrix

Stage.matrix <- matrix(c(S*P, S*(1-P), ALPHA*exp(-BETA*Stage

[2]),0),2,2)

Maxgen <- 100 # Nos of generations to run simulation

Store.Stage<-matrix(0,Maxgen,2)# Preallocatespaceforstorage

Store.Stage[1,] <- Stage # Store generation 1

for (Igen in 2:Maxgen) # Iterate over generations

{

Stage <- Stage.matrix%*%Stage # New matrix

Stage.matrix[1,2] <- ALPHA*exp(-BETA*Stage[2]) # Apply DD func-

tion

Store.Stage[Igen,]<- Stage # Store data

} # End of Igen loop

plot(seq(from=1, to=Maxgen), Store.Stage[,2],xlab=’Genera-

tion’, ylab=’Adults’, type=’l’)

} # End of Ith.P loop

fluctuate, leading to uncertainty in the outcome of an invasion unless the time

span is sufficiently long. Further, the variable dynamics may generate polymorph-

isms or multiple equilibria.

3.7.3 Elasticity analysis

Program coding follows the same pattern as in the previous scenario, except that

the density dependence function is placed directly in the function POP.DYNAM-

ICS. The line of coding shown in bold font is critical in this case.

R CODE:

rm(list¼ls()) # Clear workspace

par(mfrow¼c(1,1)) # Divide graphics page into quarters

POP.DYNAMICS <- function(P, P.invader.coeff)

{

P.resident <- P # Resident delay

P.invader <- P*P.invader.coeff # Invader delay

ALPHA <- 18; BETA <- 0.01; S <- 0.8 # parameter values

Resident.Stage <- c(1,1) # Initial resident population

Invader.Stage <- c(1,1) # Initial invader population

Initiate resident and invader matrices

Resident.matrix <-matrix(c(S*P.resident,S*(1-P.resident),

ALPHA*exp(-BETA*Resident.Stage[2]),0),2,2)

Invader.matrix <- matrix(c(S*P.invader, S*(1-P.invader),

ALPHA*exp(-BETA*Invader.Stage[2]),0),2,2)

Maxgen <- 100 # Generations with resident alone

Store.Invader <- matrix(0,Maxgen,2)

Store.Invader[1,] <- Invader.Stage

for (Igen in 2:Maxgen) # Iterate until resident is stable

{

Resident.Stage <- Resident.matrix%*%Resident.Stage # New matrix

Resident.matrix[1,2] <- ALPHA*exp(-BETA*Resident.Stage[2])

DD effect

} # End of 1st Igen loop

Now enter invader

Pop.invader <- matrix(0,Maxgen,1)

Maxgen <- 100 # Set number of generations for invasion
for (Igen in 1:Maxgen)# Iterate over generations after invasion

{

N <- Resident.Stage[2]þ Invader.Stage[2]# Adult population size

Resident.matrix[1,2] <-ALPHA*exp(-BETA*N) #ApplyDDtoresident

Invader.matrix[1,2] <- ALPHA*exp(-BETA*N) # Apply DD to invader

New matrices

Resident.Stage <- Resident.matrix%*%Resident.Stage

Invader.Stage <- Invader.matrix%*%Invader.Stage

210 MOD E L I N G E VO L U T I ON

Pop.invader[Igen] <- Invader.Stage[2] # Store invader adult pop

} # End of 2nd Igen loop

Generation <-seq(from¼20,to¼Maxgen) #Generationvector

Get invasion exponent from linear regression

Invasion.model <- lm(log(Pop.invader[20:Maxgen])
Generation

[20:Maxgen])

Elasticity <- Invasion.model$coeff[2]

} # End of POP.DYNAMICS

#################### MAIN PROGRAM ####################

par(mfrow¼c(2,2)) # Divide graphics page into 4 quadrats

Call uniroot to find optimum

Optimum <- uniroot(POP.DYNAMICS, interval¼c(0.1,0.6),0.995)

Best.P <- Optimum$root # Store optimum P

print(Best.P) # Print out optimum

N.int <- 30 # Nos of intervals for plot

P <-matrix(seq(from¼0.1,to¼.6,length¼N.int),N.int,1)

Elasticity <- apply(P,1,POP.DYNAMICS, 0.995)

plot(P, Elasticity, type¼’l’)

lines(c(.01,.9), c(0,0)) # Add horizontal line at zero

Now plot Invasion exponent when resident is optimal

Coeff <- P/Best.P # Convert P to coefficient

Invasion.coeff <- matrix(0,N.int,1)

for (i in 1:N.int){ Invasion.coeff[i] <- POP.DYNAMICS(Best.P,

Coeff[i])}

plot(P, Invasion.coeff, type¼’l’)

points(Best.P,0, cex¼2)

OUTPUT:

> print(Best.P) # Print out optimum

[1] 0.3506968

The R function uniroot is successful in finding a root but it is quite clear from the

graphical output (upper panels of Figure 3.14) that this is not the optimum. At first

glance one might suppose that there are multiple ESS values, however, this

variation disappears if the invader population is monitored for 2,000 generations

and a single ESS value of 0.307579 is found (lower panels of Figure 3.14).

3.7.4 Pairwise invasibility analysis

Coding is omitted as it is essentially the same as in the previous two scenarios.

What is important is that the plot generated after only 100 generations gives a

remarkably accurate graphical estimate (Figure 3.15), as indicated by the super-

imposed plot from the elasticity analysis.

I N V A S I B I L I T Y ANA L Y S I S 211

P

0.1 0.2 0.3 0.4 0.5 0.6

P

0.1 0.2 0.3 0.4 0.5 0.6

P

0.1

–0
.0

12

–2
e-

04
2e

-0
4

E
la

st
ic

ity
E

la
st

ic
ity

6e
-0

4
1e

-0
3

–0
.0

02
0.

00
0

0.
00

2

–0
.0

08

In
va

si
on

.c
oe

ff
In

va
si

on
.c

oe
ff

–0
.0

04
0.

00
0

–0
.0

25
–0

.0
15

–0
.0

05
0.

00
5

0.2 0.3 0.4 0.5 0.6

P

0.1 0.2 0.3 0.4 0.5 0.6

Figure 3.14 Elasticity analysis of Scenario 4. Top row shows results when invader is
monitored for 100 generations and bottom row shows the results of monitoring for 2,000
generations.

Resident
0.2

0.
2

0.
4

In
va

de
r

0.
6

0.
8

0.4 0.6 0.8

–0.14

–0.12

–0.1

–0.08

–0.06

–0.04

0.
04

0.
04

0.
02

0.
02

–0.02

0.
02

0.
04

0.04

0

0 –0

Figure 3.15 Pairwise invasibility plot of Scenario 5. The invading population was monitored
for only 100 generations. Superimposed is the value (circle) predicted from the elasticity
analysis run for 2,000 generations.

212 MOD E L I N G E VO L U T I ON

3.8 Scenario 6: A case in which the putative ESS is not stable

This scenario is discussed in detail in White et al. (2006). The present model is

slightly modified to ensure that population size is reasonably large (>20). The

results illustrate the importance of both an invasibility analysis and an elasticity

analysis. The coding is essentially same as in previous scenarios.

3.8.1 General assumptions

1. Population size is governed by both density dependent and density-indepen-

dent factors.

2. The density-independent components of fecundity and survival are negatively

related.

3. The above function generates complex population dynamics.

3.8.2 Mathematical assumptions

1. Population size at time t þ 1, Ntþ1, is given by the equation

Ntþ1 ¼ Ntðae�bNt þ SaÞ ð3:34Þ
where S� is survival as a function of a:

S� ¼
ðSmax � SminÞ 1� ���min

�max��min

 �
1þ a ���min

�max��min

ð3:35Þ

Depending on the value of �, S� is a concave, convex, or linear function of a. In
the present example parameter values are set as Smin ¼ 0, Smax ¼ 0.9, �max ¼ 50,

�min ¼ 1, a ¼ 20, and b ¼ 0.01.

3.8.3 Pairwise invasibility analysis

R CODE:

rm(list¼ls()) # Clear memory

DD.FUNCTION<- function(ALPHA,N1,N2) # Density-dependence

function

{

Set parameter values

Amin <- 1; Amax <- 50; Bmin <- 0; Bmax <- 0.9; a <- 20; BETA <- 0.01

AA <- (ALPHA-Amin)/(Amax-Amin) # For convenience

S <- (Bmax-Bmin)*(1-AA)/(1þa*AA) # Survival

N <- N1*(ALPHA*exp(-BETA*N2)þS) # new population

return(N)

} # End of function

I N V A S I B I L I T Y ANA L Y S I S 213

################ POP.DYNAMICS FUNCTION ################

POP.DYNAMICS <- function(ALPHA)

{

ALPHA.resident <- ALPHA[1] # Resident value

ALPHA.invader <- ALPHA[2] # Invader value

Maxgen1 <- 50 # Nos ofgenerations for resident only

Maxgen2 <- 300 # Nos of generations after invasion

Tot.Gen <-Maxgen1þMaxgen2 #Totalnumberofgenerations

N.resident <- N.invader <- matrix(0,Tot.Gen) # Allocate space

N.resident[1] <- 1 # Initial pop size of resident

N.invader[Maxgen1]<- 1 # Initial pop size of invader

for (Igen in 2:Maxgen1) # Iterate over generations with

resident only

{

N <- N.resident[Igen-1]

N.resident[Igen] <- DD.FUNCTION(ALPHA.resident, N, N)

} # End of 1st Igen loop

Now add invader

J <- Maxgen1þ1 # Starting generation

for (Igen in J:Tot.Gen) #Iterateovergenerationswithinvader

{

N <- N.resident[Igen-1]þ N.invader[Igen-1] # Total pop size

N.resident[Igen] <- DD.FUNCTION(ALPHA.resident, N.resident

[Igen-1], N)

N.invader[Igen] <-DD.FUNCTION(ALPHA.invader,N.invader[Igen-

1], N)

} # End of 2nd Igen loop

Generation <- seq(from¼1, to¼Tot.Gen) # Vector of generation

numbers

N0 <- 10þMaxgen1 # Genatwhichtostart regressionanalysis

Invasion.model <- lm(log(N.invader[N0:Tot.Gen])
 Generation

[N0:Tot.Gen])

Elasticity <- Invasion.model$coeff[2] # Elasticity coefficient

return(Elasticity)

} # End of function

##################### MAIN PROGRAM #####################

N1 <- 30 # Nos of increments

A.Resident <- seq(from¼5, to¼ 45, length¼N1) # Resident alphas

A.Invader <- A.Resident # Invader alphas

d <- expand.grid(A.Resident, A.Invader) # Combinations

Generate values at combinations

z <- apply(d,1,POP.DYNAMICS)

z.matrix <- matrix(z, N1, N1) # Convert to a matrix

Plot contours

214 MOD E L I N G E VO L U T I ON

contour(A.Resident, A.Invader, z.matrix, xlab¼“Resident”,

ylab¼“Invader”)

Place circle at predicted optimal alpha

points(24.21837, 24.21837, cex¼3) # cex triples size of circle

OUTPUT: (Figure 3.16)

There is a single putative ESS value that is at the point predicted by the elasticity

analysis given below but the surface appears complex, with zero isoclines that do

not intersect the x¼ y line. Further, the one that does intersect the x¼ y line is less

than 90�, suggesting that the putative ESS is not stable (compare with the right-

hand plots of Figure 3.3).

3.8.4 Elasticity analysis

R CODE:

rm(list¼ls()) # Clear memory

DD.FUNCTION <- function(ALPHA,N1,N2) # Density-dependence

function

{

SAME AS IN INVASIBILITY ANALYSIS

} # End of function

Resident

In
va

de
r

10

10
20

30
40

20 30 40

–0.05

–0.05

–0.1

–0.20

0

0

0

–0.05

–0.1
–0.15

–0.2

0.
25

–-
0.

3

–0.3

0

–0.1
–0.15 0

Figure 3.16 Pairwise invasibility plot for Scenario 6. The circle indicates the optimum
obtained from the elasticity analysis.

I N V A S I B I L I T Y ANA L Y S I S 215

################ POP.DYNAMICS FUNCTION ################

POP.DYNAMICS <- function(ALPHA, Coeff)

{

ALPHA.resident <- ALPHA # Resident value

ALPHA.invader <- ALPHA*Coeff # Invader value

REMAINDER THE SAME AS IN INVASIBILITY ANALYSIS

} # End of function

#################### MAIN PROGRAM ####################

par(mfrow¼c(2,2)) # Divide graphics page into quadrats

Call uniroot to find optimum

minA <-10; maxA <-40 # Limits of search for alpha

Optimum <- uniroot(POP.DYNAMICS, interval¼c(minA,

maxA),0.995)

Best.A <- Optimum$root # Store optimum Alpha

print(Best.A) # Print out optimum

N.int <- 30 # Nos of intervals for plot

A <- matrix(seq(from¼minA, to¼maxA, length¼N.int), N.int,1)

Elasticity <- apply(A,1,POP.DYNAMICS, 0.995)

plot(A, Elasticity, type¼’l’)

lines(c(minA, maxA), c(0,0)) # Add horizontal line at zero

Now plot Invasion exponent when resident is optimal

Coeff <- A/Best.A # Convert A to coefficient

Invasion.coeff <- matrix(0,N.int,1) # Allocate space

Calculate invasion coefficient

for (i in 1:N.int){ Invasion.coeff[i] <- POP.DYNAMICS(Best.A,

Coeff[i])}

plot(A,Invasion.coeff,type¼’l’) #Plotinvasioncoeffvsalpha

points(Best.A,0, cex¼2) # Add predicted optimum

Plot N(tþ1) on N(t) for best model

N <- 1000 # Nos of data points

N.t <- seq(from¼1, to¼N) # Values of N(t)

N.tplus1 <- matrix(0,N) # Allocate space

Iterate to get N(tþ1) on N(t)

for (i in 1:N){N.tplus1[i] <- DD.FUNCTION(Best.A, N.t[i], N.t

[i])}

plot(N.t, N.tplus1, type¼’l’) # Plot N(tþ1) on N(t)

Plot N(t) on t

N <- matrix(0,100) # Allocate space

N[1] <- 1 # Initial value of N(t)

for (i in 2:100){N[i]<- DD.FUNCTION(Best.A, N[i-1], N[i-1])}

plot(seq(from¼1, to¼100), N, type¼’l’, xlab¼’Generation’,

ylab¼’Population’)

OUTPUT: (Figure 3.17)

216 MOD E L I N G E VO L U T I ON

> print(Best.A) # Print out optimum

[1] 24.21837

The putative ESS is consistent with the pairwise invasibility analysis but the

elasticity analysis does not indicate that the invasion coefficient is negative for

values different from the putative ESS. In fact, the elasticity analysis suggests that

invasion is highly likely. To view the population dynamics we can simply insert

plot commands into the function POP.DYNAMICS (shown in bold font) and call

this for the optimum a and a value for an invader.

R CODE:

rm(list¼ls()) # Clear memory

DD.FUNCTION <- function(ALPHA,N1,N2) # Density-dependence

function

{

SAME AS IN PREVIOUS

} # End of function

################ POP.DYNAMICS FUNCTION ################

POP.DYNAMICS <- function(ALPHA, Coeff)

{

ALPHA.resident <- ALPHA # Resident value

ALPHA.invader <- ALPHA*Coeff # Invader value

Maxgen1 <- 50 # Nos of generations for resident only

Maxgen2 <- 300 # Nos of generations after invasion

Tot.Gen <- Maxgen1þMaxgen2 # Total number of generations

N.t Generation

N
.tp

lu
s1

E
la

st
ic

ity

0 0 20 40 60 80 100

AA

10 15 20 25 30 35 4010 15 20 25 30 35 40

0
20

0
40

0
60

0
80

0

P
op

ul
at

io
n

In
va

si
on

.c
oe

ff

0
20

0
40

0
60

0
80

0

–0
.0

03

0.
00

0
0.

00
2

0.
00

4
0.

00
6

–0
.0

01
0.

00
1

200 400 600 800 1,000

Figure 3.17 Elasticity analysis of Scenario 6.

I N V A S I B I L I T Y ANA L Y S I S 217

N.resident <- N.invader <- matrix(0,Tot.Gen) # Allocate space

N.resident[1] <- 1 # Initial pop size of resident

N.invader[Maxgen1] <- 1 # Initial pop size of invader

for (Igen in 2:Maxgen1) # Iterate over generations with resident

only

{

N <- N.resident[Igen-1]

N.resident[Igen] <- DD.FUNCTION(ALPHA.resident, N, N)

} # End of 1st Igen loop

Now add invader

J <- Maxgen1þ1 # Starting generation

for (Igen in J:Tot.Gen) # Iterate over generations with invader

{

N <- N.resident[Igen-1]þ N.invader[Igen-1] # Total pop size

N.resident[Igen] <- DD.FUNCTION(ALPHA.resident, N.resident

[Igen-1], N)

N.invader[Igen] <- DD.FUNCTION(ALPHA.invader, N.invader[Igen-

1], N)

} # End of 2nd Igen loop

Generation <- seq(from¼1, to¼Tot.Gen) # Vector of generation

numbers

plot (Generation, N.resident, xlab¼’Generation’, ylab¼’Resident

N’, type¼’l’)

plot (Generation, N.invader, xlab¼’Generation’, ylab¼’Invader

N’, type¼’l’)

} # End of function

############## MAIN PROGRAM ##############

par(mfrow¼c(2,2)) # Divide graphics page into quadrats

Best.A <- 24.21635 # Best alpha from elasticity analysis

Invader.A <- 10 # Alpha for invader

Coeff <- Invader.A/Best.A # Calculate relevant coefficient

POP.DYNAMICS(Best.A,Coeff) # Call functiom

OUTPUT: (Figure 3.18)

Generation

R
es

id
en

t N

In
va

de
r

N

0

0 0
10

20
30

40
50

60

20
0

40
0

60
0

80
0

50 100 200 300
Generation

0 50 100 200 300

Figure 3.18 Temporal plots of resident and invader populations. Left‐hand plot shows the
population trajectory for the optimum a and the right‐hand plot shows the population
trajectory for an invader with a = 10.

218 MOD E L I N G E VO L U T I ON

It is evident from the output that an invader with � ¼ 10 can invade the popula-

tion but not replace the resident population. This explains the relation between

the invasion coefficient and the optimum � and emphasizes the importance of

elasticity analysis in conjunction with pairwise invasibility analysis.

3.8.5 Multiple invasibility analysis

The program is the same as in Scenario 6 except for: (a) it is run 10,000 generations

to ensure sufficient time for equilibrium to be attained (if possible), (b) because the

elasticity analysis indicated that a single equilibrium is unlikely, frequency poly-

gons are plotted for the last three generations.

R CODE:

rm(list¼ls()) # Clear memory

DD.FUNCTION<-function(X,N.total) #Density-dependencefunction

{

Set parameter values

ALPHA <- X[1]; N <- X[2]

Amin <- 1; Amax<- 50; Bmin<- 0; Bmax<- 0.9; a<- 20; BETA<- 0.01

AA <- (ALPHA-Amin)/(Amax-Amin) # For convenience

S <- (Bmax-Bmin)*(1-AA)/(1þa*AA) # Survival

N <- N*(ALPHA*exp(-BETA*N.total)þS) # new population

N <- max(0,N) # N cannot be negative

return(N)

} # End of function

############## MAIN PROGRAM ##############

set.seed(10) # Initialize the random number seed

Maxgen <- 10000 # Number of generations run

Stats <- matrix(0,Maxgen,3) # Allocate space for statistics

MaxAlpha <- 50 # maximum value of alpha

Ninc <- 50 # Number of classes for alpha

Allocate space to store data for each generation

Store <- matrix(0,Maxgen, Ninc)

Allocate space for alpha class and population size

Data <- matrix(0,Ninc,2)

Data[24,2] <- 1 # Initial population size and alpha class

ALPHA <- matrix(seq(from¼1, to¼MaxAlpha, length¼Ninc),Ninc,1)

Set Alpha

Data[,1] <- ALPHA # Place alpha in 1st column

for (Igen in 1:Maxgen) # Iterate over generations

{

N.total <- sum(Data[,2]) # Total population size

Data[,2] <- apply(Data,1,DD.FUNCTION, N.total) # New cohort

Store[Igen,] <- Data[,2] # Store values for this generation

Keeptrackofpopulationsize, meantraitvalue andSDoftraitvalue

Stats[Igen,2] <- sum(Data[,1]*Data[,2])/sum(Data[,2]) # Mean

S <- sum(Data[,2]) # Population size

Stats[Igen,1] <- S # Population size

I N V A S I B I L I T Y ANA L Y S I S 219

SX1 <- sum(Data[,1] 2̂*Data[,2])

SX2 <- (sum(Data[,1]*Data[,2])) 2̂/S

Stats[Igen,3] <- sqrt((SX1-SX2)/(S-1)) # SD of trait

Introduce a mutant by picking a random integer between 1 and 50

Mutant <- ceiling(runif(1, min¼0, max¼50))

Data[Mutant,2]<- Data[Mutant,2]þ1 # Add mutant to class

} # End of Igen loop

par(mfrow¼c(3,2)) # Split graphics page into 3 x 2 panels

for (Row in 9998:Maxgen) # Select rows to be plotted

{

plot(ALPHA, Store[Row,], type¼’l’, xlab¼’Alpha’, ylab¼’Number’)

} # End of frequency polygon plots

Generation <- seq(from¼1, to¼Maxgen) # Vector of generations

N0 <- 9900 # Starting value for plots

plot(Generation[N0:Maxgen], Stats[N0:Maxgen,1], ylab¼’Popula-

tion size’,xlab¼’Generation’, type¼’l’)

plot(Generation[N0:Maxgen], Stats[N0:Maxgen,2], ylab¼’Mean’,

xlab¼’Generation’, type¼’l’)

plot(Generation[N0:Maxgen], Stats[N0:Maxgen,3], ylab¼’SD’,

xlab¼’Generation’, type¼’l’)

print(c(’Mean alpha in last gen ¼ ’,Stats[Maxgen,2]))

print(c(’SD of alpha in last gen ¼ ’,Stats[Maxgen,3]))

OUTPUT: (Figure 3.19)

Generation
9,900

0

0
0 0

40
80

12
0

20
40

60
80

10
0

30
0

10 20
Alpha

30 40 50

0 10 20
Alpha

30 40 50 0 10 20
Alpha

30 40 50

10

10
20

0
60

0
1,

00
0

15
20

S
D

20M
ea

n
N

um
be

r
N

um
be

r

N
um

be
r

P
op

ul
at

io
n

si
ze

30
40

9,920 9,940 9,960 9,980 10,000
Generation

9,900 9,920 9,940 9,960 9,980 10,000

Generation
9,900 9,920 9,940 9,960 9,980 10,000

Figure 3.19 Results of multiple invasibility analysis of Scenario 6. The three frequency
polygons show results for generation 9,998, 9,999 and 10,000.

220 MOD E L I N G E VO L U T I ON

> print(c(’Mean alpha in last gen ¼ ’,Stats[Maxgen,2]))

[1] “Mean alpha in last gen ¼ ” “40.6067676012847”

> print(c(’SD of alpha in last gen ¼ ’,Stats[Maxgen,3]))

[1] “SD of alpha in last gen ¼ ” “17.8941418836399”

The frequency polygon plots for the last three generations show dramatic shifts in

the mean and modal values of �. As indicated by the previous analyses, the

equilibrium from the pairwise invasibility analysis is highly unstable and is un-

likely to be ever attained, since any small deviations set the population into

extreme fluctuations. The population consists of different clones, with their

frequencies changing through time.

3.9 Some exemplary papers

Katsukawa, Y., T. Katsukawa, and H. Matsuda. 2002. Indeterminate growth is

selected by a trade-off between high fecundity and risk avoidance in stochas-

tic environments. Population Ecology 44:265–272.

Problem: Optimal allocation of energy to growth, survival, and reproduction when

survival is temporally variable

Model type: Two age/stage

Density-dependence: None

Trade-off: Total allocation of energy to survival, growth, and reproduction fixed

Analysis: Maximization of l

Reference scenario: Scenario 1

Ebenman, B., A. Johansson, T. Jonsson, and U. Wennergren. 1996. Evolution

of stable population dynamics through natural selection. Proceedings of the

Royal Society of London – Series B: Biological Sciences 263:1145–1151.

Problem: Optimal combination of density-dependent parameters when population

dynamics can range from a fixed equilibrium to chaotic

Model type: Two-stage

Density-dependence: Ricker function applied to maturation rate and juvenile

survival

Trade-off: Maturation rate and juvenile survival

Analysis: Invasibility analysis

Reference scenario: Scenarios 3 and 5

Lalonde, R. G. and B. D. Roitberg. 2006. Chaotic dynamics can select for long-

term dormancy. American Naturalist 168:127–131.

Problem: The optimal dormancy when population dynamics are chaotic

Model type: Up to 13 generations of dormancy

Density-dependence: Ricker function

Trade-off: No explicit trade-off

I N V A S I B I L I T Y ANA L Y S I S 221

Analysis: Multiple invasibility analysis

Reference scenario: Scenarios 3 and 6

Johst, K., M. Doebeli, and R. Brandl. 1999. Evolution of complex dynamics in

spatially structured populations. Proceedings of the Royal Society of London –

Series B: Biological Sciences 266:1147–1154.

Problem: The optimal density-dependent and density-independent dispersal rates

Model type: One generation per time step

Density-dependence: Fecundity varies with density using an equation that can take a

variety of shapes

Trade-off: No explicit trade-offs

Analysis: Multiple invasibility analysis

Reference scenario: Scenarios 3 and 6

Benton, R. A. and A. Grant. 1999. Optimal reproductive effort in stochastic,

density-dependent environments. Evolution 53:677–688.

Problem: Optimal reproductive effort

Model type: Two age/stage class

Density-dependence: Various

Trade-off: Various combinations of reproductive effort and survival at age with or

without temporal variation

Analysis: Elasticity analysis

Reference scenario: Scenario 4

Wilbur, H. M. and V. H. W. Rudolf. 2006. Life-history evolution in uncertain

environments: Bet hedging in time. American Naturalist 168:398–411.

Problem: Optimal iteroparity and delayed maturity in a stochastic environment

Model type: Two-stage

Density-dependence: Ricker function applied to fertility with parameters selected to

ensure a stable population in a deterministic environment

Trade-off: Adult survival and clutch size in some model variants

Analysis: Invasibility analysis

Reference scenario: Scenarios 4 and 5

White, A., J. V. Greenman, T. G. Benton, and M. Boots. 2006. Evolutionary

behaviour in ecological systems with trade-offs and non-equilibrium popula-

tion dynamics. Evolutionary Ecology Research 8:387–398.

Problem: Optimal reproductive effort when population dynamics are complex

Model type: No explicit age structure

Density-dependence: Ricker function

Trade-off: Density-independent fecundity and survival

Analysis: Invasibility analysis

Reference scenario: Scenario 6

222 MOD E L I N G E VO L U T I ON

CHAPTER 4

Genetic Models

4.1 Introduction

The “Fisherian” optimality approach determines the optimal combination of trait

values but not the evolutionary trajectory nor, in general, the variation to be

expected about the optimal combination. Invasibility analysis is also primarily

concerned with the Evolutionarily Stable Strategy (ESS) values; though assuming

clonal inheritance, it can give insight into the temporal evolution of trait values.

Whether such analyses can be extended to organisms with other modes of inheri-

tance is not clear, though the analysis presented in Scenario 5 of this chapter

suggests that caution is warranted in applying the results of invasibility analysis to

sexually reproducing organisms.

There are basically three ways to implement a genetic model, which I shall refer

to as (a) the population variance components approach, (b) the individual variance

components approach, and (c) the individual locus approach. The first two are

primarily for quantitative genetic modeling whereas the last can be used for both

quantitative genetic modeling and modeling simple Mendelian inheritance (e.g.,

single locus). The advantages of an individual-based model (IBM) are that it is easy

to incorporate complex population dynamics, frequency-dependence, and func-

tional constraints. IBMs are, however, relatively computer-intensive (particularly

individual locus models).

4.1.1 Population variance components (PVC) models

Rather than focus upon individual loci this method tackles the problem by focus-

ing at the population level upon the variances and covariances of the traits. The

phenotypic value, X, of a trait can be decomposed into the sum of genetic, G, and

environmental, E, components:

X ¼ Gþ E ð4:1Þ
where it is assumed that G and E are uncorrelated and normally distributed, the

latter with a zero mean. The phenotypic variance, s2P is thus also composed of the

sum of the genetic, s2G, and the environmental, s2E, variances

s2P ¼ s2G þ s2E ð4:2Þ

The genetic variance can itself be broken down into additive, dominance, and

epistatic components, but I shall ignore the latter two, as is typically done.

Heritability is a measure of the extent to which the resemblance between rela-

tives is due to additive genetic effects. A simple way to estimate heritability is to

regress the average trait value of offspring on the mid-parent value. Provided that

there are no maternal (or paternal) effects or environmental effects due to simi-

larity in the rearing environment within but not among families, the slope of this

regression is equal to the heritability of the trait. The general definition of herita-

bility, h2, is the ratio of additive genetic variance to phenotypic variance:

h2 ¼ s2G
s2P

ð4:3Þ

Heritabilitymeasures the proportion of the total variance that can be ascribed to the

additive effect of genes. A zero heritability means that variation is entirely environ-

mental whereas a heritability of one means that the variation is entirely due to

the additive effects of genes. The general relationship between offspring and par-

ents is

mOffspring ¼ ð1� h2ÞmPopulation þ h2mParents ð4:4Þ

where m refers to the mean values. Under directional selection the mean value of

parents is greater or less that of the population, depending on the direction of

selection, and by rearranging equation 4.4 we get the response to the selection as

mOffspring � mPopulation ¼ h2ðmParents � mOffspringÞ
R ¼ h2S ¼ s2G

s2P
S ð4:5Þ

where S is the selection differential. The above equation is referred to as the

Breeder’s equation. It is frequently more convenient to write S in terms of

phenotypic standard deviations:

S ¼ isP ð4:6Þ
where i is called the selection intensity,

i ¼ S

sP
¼ z

P
ð4:7Þ

P is the proportion selected for each generation and z is the ordinate at the point of

truncation. Suppose we wish to apply truncation selection by selecting the top P

proportion of the population, the selection intensity can be calculated using the

following R code:

Vp <- 1 # Phenotypic variance

P <- 0.2 # Proportion selected

x <- -qnorm(P, mean ¼ 0, sd ¼ 1) # x value

z <- exp(-0.5*x^2)/(sqrt(2*pi)) # z

224 MOD E L I N G E VO L U T I ON

i <- z/P # Selection intensity

S <- i*sqrt(Vp) # Selection differential

The change per generation is a constant and hence a plot of mean trait value on

generation will give a straight line (i.e., mtþ1 ¼ mt þ h2S).

In nature, selection is likely to be generally stabilizing rather than directional.

Two functions often used for such a scenario are a quadratic fitness function and a

Gaussian fitness function. Under the latter function the fitness of a trait,W, can be

written as

W ¼ e�
1
2

ðx�yÞ2
o

� �
ð4:8Þ

where y is the value at which fitness is maximized and o is a measure of the

strength of stabilizing selection, the strength of selection decreasing with increas-

ing o. Stabilizing selection can be incorporated into the single trait model as

Rt ¼ s2G
oþ s2P

ðy� mPopulation;tÞ ð4:9Þ

Note that the response to selection is now a function of the distance from the

optimum value and hence is a function of generation. Over time the population

moves smoothly to the optimum value.

Extension of the above model to multiple traits requires the introduction of the

correlation between traits. Correlations can arise because genes may affect several

traits (called pleiotropy), be associated because of linkage or because of environ-

mental factors. Assuming, as is generally done, that the environmental and genet-

ic covariances are independent we can break the phenotypic covariance between

traits X and Y, sPXY, into the sum of the two covariances:

sPXY ¼ sGXY þ sEXY ð4:10Þ
Noting that a correlation, r, is equal to

r ¼ sXY
sXsY

ð4:11Þ

the phenotypic correlation can be obtained from the above relationship as

rPXY ¼ rG
sGXsGY
sPXsPY

þ rE
sEXsEY
sPXsPY

¼ rG

ffiffiffiffiffiffiffiffiffiffi
h2Xh

2
Y

q
þ rE

ffi
ð1� h2XÞð1� h2YÞ

q ð4:12Þ

For multiple traits the Breeder’s equation can be expanded using matrix nota-

tion as

D z�¼ GP�1S ð4:13Þ
where is D�z the vector of changes in trait means,G is the additive genetic variance–

covariancematrix,P is the phenotypic variance–covariancematrix, S is the vector of

G EN E T I C MOD E L S 225

selection differentials, and the�1means thematrix inverse. For two traits, labeled 1

and 2, equation (4.13) can be written in explicit matrix format as

D�z1
D�z2

� �
¼ s2G1 sG12

sG21 s2G2

� �
s2P1 sP12
sP21 s2P2

� ��1
S1
S2

� �
ð4:14Þ

The diagonal elements of the genetic and phenotypic matrices hold the variances

and the off-diagonals the covariances (note that the matrices are symmetrical and

hence sij ¼ sji). The response to directional truncation selection is the same as in

the single trait model, in that both traits change by a fixed amount per generation,

though in this case the amount is a function of the selection differential and the

correlation between the traits.

To set the values in equation (4.14) it is generally easier to commence with the

heritabilities, phenotypic variances, and correlations, and then make use of

equations (4.3) and (4.12). For two traits the coding is simple: for example,

h2 <- c(0.2,0.4) # Set heritabilities

Vp <- c(1,2) # Set phenotypic variances

Rp <- 0.4 # Set phenotypic correlation

Ra <- 0.15 # Set genetic correlation

Va <- h2*Vp # Using h2 ¼Va/Vp

Covp <- Rp*sqrt(Vp[1]*Vp[2]) # Using r ¼ Cov/SD1SD2

Cova <- Ra*sqrt(Va[1]*Va[2]) # Using r ¼ Cov/SD1SD2

Gmatrix <- matrix(c(Va[1],Cova, Cova, Va[2]),2,2) # G matrix

Pmatrix <- matrix(c(Vp[1],Covp, Covp, Vp[2]),2,2) # P matrix

The environmental correlation must lie between �1 and þ1, which is not

guaranteed by the above coding. It is therefore necessary to put in a check,

using equation (4.12) and stop the program if rE falls outside the permissible

limits:

Check that Re is possible

Re<- (Rp-Ra*sqrt(h2[1]*h2[2]))/sqrt((1-h2[1])*(1-h2[2]))

if(abs(Re) >1) stop (c(“problem with Re”))

The value of the heritability is unlikely to matter in terms of the final equilibrium

but will certainly affect the time taken to reach this value, should it exist, and the

variation about the value.

With more than two traits the above coding can be tedious but it can be

replaced by the following more general code. Suppose we have three traits. First

we construct a matrix, which I have called H2, which holds the heritabilities on

the diagonal, the genetic correlations above the diagonal and the phenotypic

correlations below the diagonal. We then use this matrix in conjunction with

the phenotypic variances (assumed to be 1.5, 1.0, and 0.5 in the example below) to

construct the necessary covariance matrices:

226 MOD E L I N G E VO L U T I ON

NX <- 3 # Number of traits

Matrix of heritabilities and correlations.

Values in bold are the heritabilities

Genetic correlations are above the diagonal, phenotypic correl-

ations below

H2 <- matrix (c (0.4, 0.7, 0.3,

0.6, 0.5, 0.1,

0.4, 0.6, 0.3), NX, NX, byrow¼TRUE)

Construct the Phenotypic Covariance matrix

Note that initial covariances are set to 1 (arbitrary)

CovP <- matrix (1, NX, NX) # Phenotypic variances

diag(CovP)<-c(1.5,1.0,0.5)# Setsdiagonalelements¼variances

Establish CovA from h2 and CovP and CovE from CovA and CovP

CovA <- matrix (0, NX, NX) # Allocate space

CovE <- matrix (0, NX, NX) # Allocate space

for (i in 1:NX) # Iterate over cells

{

CovA[i,i] <- CovP[i,i]*H2[i,i] # ¼ Vp*h2

CovE[i,i] <- CovP[i,i]-CovA[i,i] # Variances

Check that environmental variance is positive

if (CovE[i,i] < 0) stop (c(“Problem with CovE”))

}

Phenotypic and genetic covariances

N. minus. 1 <- NX-1

for (i in 1:N.minus.1)

{

jj <- iþ1

for (j in jj:NX)

{

Phenotypic covariances

CovP [i,j] <- H2[j,i]*sqrt (CovP[i,i]*CovP[j,j])

CovP[j,i] <- CovP[i,j]

CovA[i,j] <-H2[i,j]*sqrt(CovA[i,i]*CovA[j,j]) #Ra*sqrt(VaxVay)

CovA j,i] <- CovA [i,j]

CovE[i,j] <- CovP [i,j]-CovA[i,j] # By difference

CovE[j,i] <- CovE [i,j]

}

}

Stabilizing selection can be incorporated using a third matrix (Lande 1980),

D �z¼ GðW þ PÞ�1Sðm� uÞ ð4:15Þ
where W is a positive semidefinite matrix, m is a vector of trait means, and y is a

vector of optimal trait values. The diagonal elements of W are measures of the

strength of stabilizing selection acting directly on the character (e.g., o in

G EN E T I C MOD E L S 227

the Gaussian fitness function, see equation (4.8)) while the off-diagonals measure

the strength of correlational selectionwhich is the extent to which selection acts

jointly on two characters. If W is a semidefinite positive matrix then its eigenva-

lues are all nonnegative: this can be checked by the call eigen(Wmatrix)

$values which will print out the eigenvalues of the matrix, here, called Wma-

trix. Care has to be taken in programming (W þ P)�1: the code (WþP)̂�1 takes

the reciprocal of all the matrix elements, which is not the same as matrix inver-

sion. The correct call is solve (WþP).

For some species maternal effects and/or common environment may be very

important and can significantly affect the evolutionary trajectory but not the final

outcome. For methods of incorporating these effects in a matrix formulation see

Kirkpatrick and Lande (1989) and for a summary see Roff (1997, pp. 250–257).

The above approach assumes an infinitely large population and may be difficult

to implement in scenarios that contain functional constraints. An alternate ap-

proach is that of an IBMs. In this chapter two such classes are considered: individ-

ual variance components (IVC) models and the individual locus (IL) models.

4.1.2 Individual variance components (IVC) models

As noted earlier, the phenotypic value is the sum of a genetic value and an

environmental value. Both components are normally distributed (or the trait can

be transformed to be so), the former with some mean that varies as a result of

selection and drift and the latter with a zero mean. The phenotypic value of an

individual can be created by generating random normal values from normal

generating functions with the appropriate means and variances. Genetic domi-

nance can be introduced by using the theoretical contribution of the additive and

dominance components given a known pedigree, but for simplicity, I shall con-

sider only additive effects. I shall also assume that the genetic variances do not

change as evolution proceeds. The extension of equation (4.1) to multiple traits

simply requires a move from the normal distribution (rnorm in R) to the multi-

variate normal distribution (mvrnorm in R).

The advantages of the individual variance-components approach over the popu-

lation-based approach are that changes in both means and the phenotypic dis-

tributions can be assessed and functional constraints (e.g., thresholds, see later)

are readily accommodated. Application of the approach is straightforward for

many phenotypic traits. However, there are three types of traits that require

specialized treatment. For these traits, the phenotypic value as defined by the

sum of the normally distributed additive genetic and environmental values is not

the value of the phenotype that is actually expressed (hereafter the “realized

phenotype”). The first is a class of traits known as threshold traits in which the

realized phenotype consists of two or more discrete forms or states, examples

include wing dimorphism in insects, horn dimorphism in some species of beetles,

and susceptibility to disease (reviewed in Roff [1996]). The threshold model re-

solves the apparent paradox of polygenic determination of discrete morphs by

assuming an underlying normally distributed trait called the liability. Individuals

228 MOD E L I N G E VO L U T I ON

with liability values exceeding a critical threshold develop into one morph and

those below the threshold develop into the alternate morph (Figure 1.10).

The second circumstance in which the realized phenotype is not the sum of the

genetic and environmental values is when the trait has a limiting boundary, for

example, fecundity cannot be less than zero. The threshold concept resolves this

problem by assuming that values less than the limiting boundary have values

equal to the limiting boundary, which in the case of fecundity would be zero. The

phenotypic value on the underlying scale is thus continuously distributed but the

realized phenotype may appear as a bimodal distribution as the mean trait value

approaches the limiting boundary.

Finally, trait expression may be sex or morph-specific. For example, in most

wing-dimorphic insects the development of the flight muscles is suppressed in

short-winged individuals. In a simulation model, flight muscle weight would thus

be set to zero in this morph. These three categories of traits are easily incorporated

into an IBM.

The individual variance-components approach has been used extensively to

study the performance of statistical methods for estimating genetic parameters

such heritability and genetic correlations (e.g., Ronningen [1974]; Olausson and

Ronningen [1975]; Roff and Preziosi [1994]; Lynch [1999]; Roff [2001]; Roff and

Reale [2004]) but has been rarely used tomodel evolution in general. However, this

approach can also be extremely useful in simulating evolutionary responses

(Gilchrist 2000), and specifically, in predicting the trajectory of experimental

evolution (Roff and Fairbairn 2007, 2009). By taking an individual-based modeling

approach one is able to directly incorporate functional constraints, complexities

of genetic architecture (such as the inclusion of threshold traits, continuously

manifested traits and simple Mendel single locus models), and trait distributions

that may be far from normal at the realized phenotypic level.

To implement this approach we commence in the same manner as with the

population variance-components approach, namely by defining the genetic and

environmental variance–covariance matrices. For a single trait we need only the

genetic variance, the environmental variance, and themean genotypic trait value:

these are most easily obtained by specifying the two measurable quantities heri-

tability and phenotypic variance. The genotypic mean is set at an arbitrary value

that will generally be set close to the presumed equilibrium value. Sample coding

assuming a heritability of 0.5, a phenotypic variance of 1, and a mean genotypic

value of 3 follows:

h2 <- 0.5 # Heritability

Vp <- 1 # Phenotypic variance

Va <- h2*Vp # Additive genetic variance

Ve <- Vp-Va # Environmental variance

SD.A <- sqrt(Va) # Additive genetic standard deviation

SD.E <- sqrt(Ve) # Environemtal standard deviation

mu <- 3 # Mean genotypic value

G EN E T I C MOD E L S 229

To generate a population of size N with these parameters we first set the seed to

ensure that the simulation can be repeated exactly (useful for debugging), then

generate the genetic and environmental values and finally add them to get a

vector of phenotypic values:

set.seed(10) # Initiate random number generator

N <- 1000 # Population size

G.X <- rnorm(N, mean¼mu, sd¼SD.A) # Genetic values

E.X <- rnorm(N, mean¼0, sd¼SD.E) # Environmental values

P.X <- G.X þ E.X # Phenotypic values

With more than one trait the variance—covariances matrices are generated as

previously described and the values are obtained from mvrnorm. A requirement

for this function is that the covariance matrix is positive definite, which means

that all the eigenvalues must be positive, if it is not then an error message is

generated. For a two trait model this means that the correlation cannot be�1: this

is not a restriction since in this case there is actually only a single trait as each

trait’s genetic value bears an exact algebraic relationship to the other. To check for

a matrix that is not positive definite insert the following code:

a <- eigen(CovA)$values # Get eigenvalues of CovA

print(a) # print out

for (i in 1:NX){ if (a[i]<0) stop (c(“CovA not positive

definite”)) }

a <- eigen(CovE)$values # Get eigenvalues of CovE

print(a)

for (i in 1:NX){ if (a[i]<0) stop (c(“CovE not positive

definite”)) }

Assuming the previously defined parameter values for 3 traits and genetic means

of 1, 2, and 3 we can generate a population of 5 individuals by

mu <- c(1,2,3) # trait means

G.X <- mvrnorm(n ¼ 5, mu¼mu, Sigma¼CovA) # Genetic values

E.X <-mvrnorm(n¼5,mu¼c(0,0,0),Sigma¼CovE) #Getenvironmen-

tal values

P.X <- G.X þ E.X # Phenotypic values

P.X

which prints out

[,1] [,2] [,3]
[1,] 0.6530183 1.814369 4.541958
[2,] 1.8563797 2.311612 2.720842
[3,] −0.6034434 1.097827 3.708289
[4,] 2.7797293 3.360863 2.851850
[5,] 1.2532598 2.336497 3.578804

where the columns represent the trait values and the rows the individuals.

230 MOD E L I N G E VO L U T I ON

Having produced a population of individuals with phenotypic values it is now

necessary to impose selection. Three common types of selection are stabilizing

selection, rank-order selection, and threshold selection. Stabilizing selection can

be incorporated using the matrix model (Jones et al. 2003)

WðzÞ ¼ exp �1

2
ðz� yÞTo�1ðz� yÞ

� 	
ð4:16Þ

where z is a vector of trait values, y is a column vector of trait optima, the

superscript T indicates matrix transposition and o is a matrix that describes the

selection surface, the diagonal elements describing the strength of stabilizing

selection (analogous to the variance of a bivariate normal distribution) and the

off-diagonals the strength of correlational selection. Suppose ourmodel consists of

two traits for which there is (a) no correlational selectional and stabilizing

selection with strengths 2 and 3, respectively, and (b) independent optima of 1

and 4. In the main program we define the relevant two matrices as

Theta <- c(1,4) # This is y
w.matrix <- matrix(c(2,0,0,3,2,2)) # This is o

The user-defined function SELECTION takes these two matrices plus a vector of

phenotypic trait values, Z, for a given individual and computes its fitness:

SELECTION <- function(z, Theta, w.matrix)

{

Diff <- z-theta

Fitness <- exp(-0.5*t(Diff)%*%solve(w.matrix)%*%Diff)

return(Fitness)

}

The vector of fitnesses of all individuals is computed in the main program using

the R function apply:

W <- apply(X¼P.X, MARGIN¼1, FUN¼SELECTION, Theta, w.matrix)

In the case of rank-order selection, which is typically done in artificial selection

experiments, the individuals are ranked according to some phenotypic value,

which might be a particular trait or a function of several traits (referred to as

index selection), and the top or bottom assigned proportion selected to be parents

of the next generation. The sample coding below assumes that the smallest 25% of

100 individuals is selected based on the value of the first phenotypic trait (i.e., first

column of P.X):

Select the smallest 25% of individuals

P.selected <- 0.25 # Proportion selected

N.Pop <- 100 # Population size before selection

Calculate the number selected. Must be integral

G EN E T I C MOD E L S 231

N.selected <- round(P.selected*N.Pop)

Ranked.Data <- order(P.X[,1])# Find ranking indexes

P.X <- MP.X[Ranked.Data,] # Reorder P.X in ascending order

Threshold selection is the easiest method to impose as it only requires selecting

those individuals that lie above or below a threshold value (e.g., Scenarios 4 and 7).

In the sample coding individuals below the threshold with respect to a phenotypic

trait, T0, are assigned fitness of 0 and those above are assigned a fitness of 1:

SELECTION(Phenotype, T0)

{

n<-length(Phenotype) #NumberofindividualsinvectorPhenotype

W <- matrix(0,n) # Assign all inds an initial fitness of zer0

W[Phenotype>T0] <- 1 # Assign 1 to those above threshold

return(W) # Return fitnesses

}

The new genetic mean is calculated from the vector of fitnesses passed back to the

main program. On the simple assumption of random mating and no sex differ-

ences in the trait the new genetic mean of the population is given by

m ¼
PN
i¼1

WiGi

PN
i¼1

Wi

ð4:17Þ

where Wi is the fitness of the ith individual and Gi is its genetic value. Coding for

this is simply

mu <- sum(Fitness*G.X)/sum(Fitness)

If there are differences between the sexes either in trait values or selection then

two vectors are required, one for each sex. The two vectors might be passed to the

selection function as

Fitness <- SELECTION(P.Xmale, P.Xfemale)

Given random mating, the new genetic mean would be

m ¼ 1

2

PNMale

i¼1

Wi;MaleGi;Male

PNMale

i¼1

Wi;Male

þ
PNFemale

i¼1

Wi;FemaleGi;Female

PNMale

i¼1

Wi;Female

0
BBB@

1
CCCA ð4:18Þ

232 MOD E L I N G E VO L U T I ON

4.1.3 Individual locus (IL) models

In this approach to model the evolution of traits an explicit Mendelian model

is used. In the simplest case this would be a single locus with two alleles.

Complexity can be introduced first by the addition of more alleles and second

by the addition of more loci. In the second case one has to consider the

possibility of linkage and epistasis. If the time course of the simulation is

small (less than 100 generations) and the population is small (say less than a

hundred) mutation will generally not have to be incorporated. For the most

complex cases in which linkage and epistasis is assumed neither R nor

MATLAB is generally fast enough to be useful. Epistasis can be incorporated

in simple models (e.g., two locus models) but can become difficult to incorpo-

rate in models with many loci and alleleles.

The major problem with explicit Mendelian models is primarily one of book-

keeping, which can be very time-consuming both in terms of creating the pro-

grams and in running them. Here I shall consider the case of modeling a

quantitative trait by assuming that each trait is composed of multiple (from 2 to

hundreds) of loci with two or more alleles per locus. For the simplest case of a

strictly additive model individuals are explicitly modeled with their trait values

determined from the sum of the allelic values plus a normally distributed envi-

ronmental value with a mean of zero and a variance necessary to generate the

required heritability. Genetic correlations due to pleiotropy are created by some

genes affecting more than one trait. Examples are given by Mani et al. (1990),

Reeve (2000), Reeve and Fairbairn (2001), and Jones et al. (2003, 2004).

To illustrate the general approach I shall consider the problem of programming

a simple additive model consisting of two correlated traits, say X and Y. For

simplicity, I shall ignore the two sexes but assume a diploid organism, which

means that individuals are hermaphrodites (the inclusion of separate sexes only

complicates the bookkeeping and for most cases does not change the answer).

Genetic correlation between these two traits is caused by loci that affect both

traits. Let the number of loci unique to X (“x” loci) be nx, the number unique to

Y (“y” loci) be ny, and the number that are in common (“c” loci) be nc. All loci are

assumed unlinked and no epistasis. The trait genotypic means are then

mX ¼ 2nxmx þ 2ncmc
mY ¼ 2nymy � 2ncmc

ð4:19Þ

where mk is the mean at the “k”th type of locus (x, y, c and X, Y). The � sign is given

for trait Y because the sign depends on whether the traits are positively (thus a “þ”

sign) or negatively correlated (thus a “�” sign). Trait genetic variances, s2GX and,

s2GY , are

s2GX ¼ 2nxs2x þ 2ncs2c
s2GY ¼ 2nys2y þ 2ncs2c

ð4:20Þ

G EN E T I C MOD E L S 233

where s2Gk is the variance at the “k”th type of locus (x, y, c). The only loci that

contribute directly to the covariance are those that are in common. Thus for a

positive correlation the genetic covariance, sGXY, is

sGXY¼ E½ðx�mXÞðy�myÞ�
¼ Ef½ðxþ cÞ�ðnxmxþncmcÞ�½ðyþ cÞ�ðnymyþncmcÞ�g
¼ E½ðx�nxmÞðy�nymyÞ�þE½ðx�nxmxÞðc�ncmcÞ�þE½ðy�nymyÞðc�ncmcÞ�þE½ðc�ncmcÞ2�
¼ 0þ0þ0þE½ðc�ncmcÞ2�
¼ 2ncsc

ð4:21Þ
and for a negative correlation the result is simply sGXY ¼ �2ncs2c

The G matrix is therefore

2nxs2x þ 2ncs2c �2ncs2c
�2ncs2c 2nys2y � 2ncs2c

� �
ð4:22Þ

In principle we could analyze the model using the methods outlined in Section 1.

However, if we are interested in following changes in genetic variances or covar-

iances an individual locus model is required.

To program the above model each trait consists of two matrices (one for the

unique loci and one for the common loci, making three matrices in total for

the two traits), where the columns correspond to the loci and the rows to indivi-

duals. Assuming a diploid organism the first half of the columns represent one set

of loci and the second half the other set of loci. Suppose we take the simplest

model in which there are two alleles at each locus one contributing 0 and the

other 1 to the genetic value. Using equations (4.19–4.21) the parameter values are

mX ¼ 2nxpx þ 2ncpc
s2GX ¼ 2nxpxð1� pxÞ þ 2ncpcð1� pcÞ
sGXY ¼ �2ncpcð1� pcÞ

ð4:23Þ

with similar terms for trait Y (note that mY ¼ 2nypy � 2ncpc). The number of loci is

assigned by the user and the initial allele frequencies are set to generate the

appropriate genetic correlation. I shall assume that nx ¼ ny ¼ n. Given this, the

genetic correlation, rG, is

rG ¼ � ncpcð1� pcÞ
np

1� pÞ þ ncpcð1� pcÞ

ð4:24Þ

where p is the frequency of the loci unique to each trait. A simple approach to

fixing pc and p is to iterate over the range and pick a value that gives the appropri-

ate genetic correlation. The coding below does this for n ¼ 30 and nc ¼ 25. The

program components are

1. A function called RG that calculates the genetic correlation given p, pc (passed in

vector P), n and nc (passed as n and nc).

234 MOD E L I N G E VO L U T I ON

2. A function called TRAIT that calculates the trait mean given the above para-

meters.

3. Amain program in which contourmaps of genetic correlations and trait means

are constructed. The data for the genetic correlations are also sorted into

ascending order and printed, allowing for the selection of allele frequencies

that give the appropriate genetic correlation.

R CODE:

rm(list¼ls()) # Remove all objects from memory

RG <- function(P,n,nc){nc*P[2]*(1-P[2])/(n*P[1]*(1-P[1])þnc*P

[2]*(1-P[2]))}

TRAIT <- function(P,n,nc){2*(P[1]*nþP[2]*nc)}

ninc <- 20 # Number of increments in which frequency range is

divided

P.unique <- seq(0.01, 0.99, length¼ninc) # Loci unique to a trait

P.common<-seq(0.01,0.99,length¼ninc) #Locicommontoboth

traits

Create all combinations

Combinations <- expand.grid(P.unique, P.common)

N.unique <- 30 # Nos of unique loci per trait

N.common <- 25 # Nos of common loci per trait

Calculate Rg for all combinations

Rg <- apply(X¼Combinations, MARGIN¼1, FUN¼RG, N.unique, N.

common)

Create matrix of Rg for contour plotting

Columns ¼ changing P.common, Rows ¼ changing P.unique

Rg.matrix <- matrix(Rg,ninc,ninc)

par(mfrow¼c(2,2)) # Divide graphics page

contour(P.unique, P.common, Rg.matrix, xlab¼“Freq of unique al-

leles”, ylab ¼“Freq of common alleles”)

Calculate trait values

Trait <- apply(X¼Combinations, MARGIN¼1, FUN¼TRAIT, N.unique,

N.common)

Trait.matrix <- matrix(Trait,ninc,ninc) # Convert to matrix

contour(P.unique, P.common, Trait.matrix, xlab¼“Freq of unique

alleles”, ylab ¼“Freq of common alleles”)

h <- cbind(Combinations, Rg, Trait)# Combine combinations and Rg

y <- order(Rg) # Get order for Rg

x <- h[y,] # Create an ordered set

x # Print set

OUTPUT: (Figure 4.1)

G EN E T I C MOD E L S 235

The printed output is not shown. Suppose we wanted a genetic correlation of

�0.9, given the above ranges the values from the printout closest to 0.9 are

41 0.01000000 0.11315789 0.89414895 6.257895
60 0.99000000 0.11315789 0.89414895 65.057895

341 0.01000000 0.88684211 0.89414895 44.942105
360 0.99000000 0.88684211 0.89414895 103.742105

Note that there are a range of combinations that give the same genetic correlation

and that they result in different trait means. The particular combination chosen

will likely affect the rate of change of genetic parameters such as the heritabilities

and genetic correlation. Values closer to 0.9 can be found by varying the number

of increments and the ranges. An alternative method is to rearrange equation

(4.24) to give

p2 � pþ 1� rG
rG

� �
nc
n

 �
pcð1� pcÞ ¼ 0 ð4:25Þ

which can be readily solved for p, given the other parameter values. A solution is

not guaranteed and so it is worthwhile to construct the contour graph to ensure

that the values do permit a sensible solution. For example, from Figure 4.1 it can

be seen that it is not possible to get a value of p for rG ¼ 0.9 and pc ¼ 0.5.

We get the environmental variance by rearranging the formula

h2 ¼ s2G=ðs2G þ s2EÞ to give

s2E ¼ ð1� h2Þs2G
h2

ð4:26Þ

Next we need to specify the phenotypic correlation as this determines the covari-

ance between the environmental values. To obtain the latter we first rearrange the

formula relating the phenotypic correlation to the genetic and environmental

correlations (equation (4.12)) to give

Freq of unique alleles
0.0 0.2 0.4 0.6 0.8 1.0

Freq of unique alleles
0.0

0.
0

F
re

q
of

 c
om

m
on

 a
lle

le
s

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

F
re

q
of

 c
om

m
on

 a
lle

le
s

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.4 0.6 0.8 1.0

0.1

0.1

0.5
0.7

0.2

0.20.
5

0.
7

0.
9

0.9

0.8

0.
8

0.6 0.
60.3

0.3

0.4

0.4

10

20

30
40

50

60
70

80

90
100

Figure 4.1 Contour plots showing the effect of varying the frequencies of unique and
common alleles in an individual locus model.

236 MOD E L I N G E VO L U T I ON

rE ¼
rP � rG

ffiffiffiffiffiffiffiffiffiffi
h2Xh

2
Y

q
ffi
ð1� h2XÞð1� h2YÞ

q ð4:27Þ

We then rearrange the formula for the correlation to give us

sEXY ¼ rEsEXsEY ð4:28Þ

In the following coding an additional parameter value to be assigned by the user is

the total population size at each generation (set at 6 in the coding below). In the

sample coding the initial allele frequencies

Pxy <- 0.16 # Proportion at x or y loci

Pc <- 0.63 # Proportion of c loci

are set to give a genetic correlation of about 0.5 (actual value from code ¼
0.5099541), given that the number of unique loci per trait is 5 and the

number of loci common to both traits is 3. The allele frequencies are set in

the function ASSIGN.LOCI which determines whether an allele takes the

value of 0 or 1 based on a random number. For example, if Pxy ¼ 0.16 then

a random number that is less than 0.16 generates an allelic value of 1

whereas a random number greater than 0.16 generates an allelic of zero.

Thus summing over all loci will give an expected frequency 0.16. The initial

mean trait value is 5.38 for both traits (if the genetic correlation were

negative the initial means would differ as per equation (4.19)).

rm(list¼ls()) # Remove all objects from memory

ASSIGN.LOCI <- function(G.loci, N.Pop, P)

{

Total.loci <-N.Pop*2*G.loci #Totalnumberoflociinpopulation

Alleles <- runif(Total.loci) # Generate random number 0-1

Alleles[Alleles<P] <- 0 # Set appropriate alleles to 0

Alleles[Alleles>P] <- 1 # Set appropriate alleles to 1

return(Alleles)

} # End of function

####################### Main Program #######################

set.seed(10) # Initialize random number generator

N.Pop <- 6 # Population size at each generation

X.loci <- Y.loci <- 5 # Loci per gamete unique to X or Y

C.loci <- 3 # Loci per gamete common to X and Y

h2.X <- 0.5 # heritability of X

h2.Y <- 0.25 # Heritability of Y

Rp <- 0.25 # Phenotypic correlation

S <- 1 # Sign of genetic correlation

Pxy <- 0.16 # Proportion unique to x or y loci

Pc <- 0.63 # Proportion of c loci

G EN E T I C MOD E L S 237

Trait.X <- 2*(Pxy*X.loci þ Pc*C.loci) # Mean value of X

Trait.Y <- 2*(Pxy*Y.loci þ S*Pc*C.loci) # Mean value of Y

Genetic variance of iX/i and Y

VarGX <- 2*(X.loci*Pxy*(1-Pxy)þ C.loci*Pc*(1-Pc))

VarGY <- 2*(Y.loci*Pxy*(1-Pxy)þ C.loci*Pc*(1-Pc))

CovGXY <- 2*C.loci*Pc*(1-Pc) # Genetic covariance

Rg <- S*CovGXY/sqrt(VarGX*VarGY) # Genetic correlation

print(c(Rg, VarGX, VarGY, Trait.X, Trait.Y)) # Print out values

Calculate the environmental correlation

Re <- (Rp - Rg*sqrt(h2.X*h2.Y))/sqrt((1-h2.X)*(1-h2.Y))

Check that this Re is possible

if (abs(Re)>1) stop (c(“Re not possible”))

Environmental Variances and Standard deviations

Ve.X <- (1-h2.X)*VarGX/h2.X # Environmental variance for X

SDe.X <- sqrt(Ve.X) # Environmental SD for X

Ve.Y < (1-h2.Y)*VarGY/h2.Y # Environmental variance for Y

SDe.Y <- sqrt(Ve.Y) # Environmental SD for Y

CovE <- Re*SDe.X*SDe.Y # Environmental covariance

Ematrix <- matrix(c(Ve.X,CovE,CovE,Ve.Y),2,2) # Covariance

matrix

Nos of loci in each category

Nx.Alleles <-ASSIGN.LOCI(X.loci,N.Pop,Pxy)#AllelesuniquetoX

Ny.Alleles<-ASSIGN.LOCI(Y.loci,N.Pop,Pxy)#AllelesuniquetoY

Nc.Alleles<-ASSIGN.LOCI(C.loci,N.Pop,Pc)#AllelescommontoX&Y

Now make three matrices for loci in individuals

G.Xmatrix <- matrix(Nx.Alleles,N.Pop, 2*X.loci) # X composition

G.Ymatrix <- matrix(Ny.Alleles, N.Pop, 2*Y.loci) # Y composition

G.Cmatrix <- matrix(Nc.Alleles, N.Pop, 2*C.loci) # C composition

The above coding generates the three matrices. A sample output for G.Xmatrix is

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 0 1 1 1 1 0 0 1
[2,] 1 1 1 1 1 0 1 1 1 1
[3,] 1 1 1 1 1 1 1 1 1 1
[4,] 1 1 1 1 1 1 1 1 1 1
[5,] 0 1 0 1 1 1 1 0 1 1
[6,] 1 1 1 1 1 1 1 1 1 1

Note that there are 6 rows, corresponding to 6 individuals, and 10 columns,

corresponding to 5 diploid loci. We can get the actual genetic variances using

the two R functions rowSums, which calculates the sum of the values in each row

(which is the genetic value of the individual), and var, which calculates the

variances among these sums:

238 MOD E L I N G E VO L U T I ON

Get actual genotypic values

G.X <- rowSums(G.Xmatrix) þ rowSums(G.Cmatrix) # X Genotypic

values

VarGX <- var(G.X) # Vg for X

G.Y<-rowSums(G.Ymatrix)þrowSums(G.Cmatrix) #YGenotypicvalues

VarGY <- var(G.Y) # Vg for Y

print(c(VarGX, VarGY))

For a population size of 1,000 the output from the above code is [1] 2.724881

2.594794, as compared to the expected 2.7426 for both traits. To create the

phenotypic values we add an environmental value to each individual. The

environmental values are correlated and hence we use the function mvrnorm to

generate an N.Pop x 2matrix of environmental values the first column giving the X

valuesandthesecondcolumngivingtheYvalues (remembertoloadthe libraryMASS):

Create phenotypic values

Env <- mvrnorm(n¼N.Pop, mu¼c(0,0), Sigma¼Ematrix) # Environmen-

tal values

P.X <- G.X þ Env[,1] # Vector of X phenotypes

P.Y <- G.Y þ Env[,2] # Vector of Y phenotypes

VarPX <- var(P.X) # Phenotypic variance of X

VarPY <- var(P.Y) # Phenotypic variance of Y

The actual heritabilities are thus given by

h2.X <- VarGX /VarPX # Heritability of X

h2.Y <- VarGY/VarPY # Heritability of Y

print(c(h2.X, h2.Y)) # Print results

For the same population of 1,000, as used above, the output is [1] 0.4708531

0.2582277, the expected values being 0.5 and 0.25. The correlations are readily

obtained using the R function cor:

Rg <- cor(G.X, G.Y) # Genetic correlation

Rp <- cor(P.X, P.Y) # Phenotypic correlation

print(c(Rg, Rp))

which gives [1] 0.4947939 0.1973116, where the expected values are 0.5 and

0.25, respectively.

The next process to consider is that of selection. Here I shall assume a threshold

regime inwhich individuals with anX trait value greater than T0 are selected. In the

coding below T0 is set at the initialmean trait value (Trait.X):

SELECTION <- function(Phenotype, Genotype, T0) # Selection

function

{

Selected <- Genotype[Phenotype>T0,] # Selection

return(Selected) # Return matrix of selected genotypes

} # End function

G EN E T I C MOD E L S 239

In themain program the above function is called three times to select from the three

genotypic matrices according to the values of the phenotypes, in this case the X

phenotype:

ParentX <-SELECTION(P.X,G.Xmatrix,Trait.X)#SelectfromtheXmatrix

ParentY <-SELECTION(P.X,G.Ymatrix,Trait.X)#SelectfromtheYmatrix

ParentC <-SELECTION(P.X,G.Cmatrix,Trait.X)#SelectfromtheCmatrix

ParentX #Printselectedmatrix

ParentY #Printselectedmatrix

ParentC #Printselectedmatrix

In theaboveexampleselection involvesonlya single trait: selectiononmultiple traits

can alsobedoneby, for example, using sequential cullingor an index. Startingwith a

population size of 6 (as in the coding above) the following individuals were selected:

> ParentX # Print selected matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 0 1 1 1 1 0 0 1
[2,] 1 1 1 1 1 0 1 1 1 1
[3,] 1 1 1 1 1 1 1 1 1 1
[4,] 1 1 1 1 1 1 1 1 1 1
[5,] 0 1 0 1 1 1 1 0 1 1
[6,] 1 1 1 1 1 1 1 1 1 1

> ParentY# Print selected matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 1 1 1 1 1 1 1 1
[2,] 0 1 1 1 0 1 1 1 1 1
[3,] 1 0 0 1 1 1 1 1 1 1
[4,] 1 1 1 1 1 1 0 1 1 1
[5,] 1 0 1 1 1 1 1 1 1 1
[6,] 1 1 1 1 1 1 0 1 1 1

> ParentC # Print selected matrix

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 1 1 0 0 1
[2,] 0 0 0 0 1 0
[3,] 0 1 0 1 0 0
[4,] 0 1 0 0 0 0
[5,] 0 1 1 0 0 0
[6,] 0 0 1 1 1 0

The third process to consider is that of offspring production. Given that each

locus is independent and of equal value (0 or 1) I shall simplify the problem of

forming a gamete pool by ignoring the distinction among loci (i.e., that the first

G.loci represent one set and the second half of the row represents the other set)

and drawing from each individual G.loci from each category at random. For

example, suppose the set of loci for an individual with 5 X loci is given by the

vector

240 MOD E L I N G E VO L U T I ON

Column number 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 1 1 0 0 0

To exactly mimic sexual reproduction we would select at random between

alleles at positions 1 and 6, 2 and 7, 3 and 8, 4 and 9, 5 and 10. A simpler

approach that should be adequate unless loci differ in their contributions is to

select at random, without replacement, 5 alleles from the set and assign them to

the gamete pool:

GAMETE<-function(X, G.loci) #Picklociforgametepool

{

Y<-sample(x¼X,size¼G.loci,replace¼FALSE)#RandomlyselectG.loci

return(Y)

}

This function is called from the main program using the R function apply. Note

that the resulting matrix has to be transposed to conform to the correct matrix

structure:

Form Gamete pool

GameteX <- apply(ParentX, 1, GAMETE, X.loci)

GameteX <- t(GameteX) # Convert to proper matrix

GameteY <- apply(ParentY, 1, GAMETE, Y.loci)

GameteY <- t(GameteY) # Convert to proper matrix

GameteC <- apply(ParentC, 1, GAMETE, C.loci)

GameteC <- t(GameteC) # Convert to proper matrix

From the gamete pool we now select 2*N.Pop gametes which are combined at

random to form the next generation of individuals. To do this we first create a

sequence from 1 to N.Parents, where N.Parents is the number of selected

individuals. We next sample at random, with replacement, from this sequence

2*N.Pop values, which become the index values defining the gametes to be

combined to give the next generation. This matrix is called S.GameteJ, where

J ¼ X, Y, or C and consists of 2*N.Pop rows and columns equal to the number of

loci in the relevant category. Individuals are formed by combining the first N.Pop

rows with the second set of rows.

N.Parents <- nrow(ParentX) # Number of available parents

n <- seq(1, N.Parents) # sequence 1 to N.Parents

Get 2*N.Pop random indices with replacement

G.Index <- sample(x¼n, size¼2*N.Pop, replace¼TRUE)

Get gametes from gamete pool

S.GameteX <- GameteX[G.Index,]

S.GameteY <- GameteY[G.Index,]

S.GameteC <- GameteC[G.Index,]

Next generation

G EN E T I C MOD E L S 241

n1 <- N.Popþ1

n2 <- 2*N.Pop

G.Xmatrix <- cbind(S.GameteX[1:N.Pop,], S.GameteX[n1:n2,])

G.Ymatrix <- cbind(S.GameteY[1:N.Pop,], S.GameteY[n1:n2,])

G.Cmatrix <- cbind(S.GameteC[1:N.Pop,], S.GameteC[n1:n2,])

At this point we introduce mutation into the scenario. One method is to iterate

over all loci and use a random number generator to determine if the allele at the

locus changes. Such an approach is very time consuming. An alternate approach is

to first generate the number of mutations occurring in this particular set of loci.

Given that the probability of amutation at a locus is very small the total number of

mutations will follow a Poisson distribution:

PðxÞ ¼ e�lx

l!
ð4:29Þ

where x is the number of mutations and l is themean, given as l¼ PMNPop2nloci, in

which PM is the per locus mutation rate, NPop is the population size, and nloci is the

number of loci in the relevant category. The distribution of the number of

mutations is given by the R function rpois and thus for each generation the

number of mutations can be generated by the call

N.mutations <- rpois(1,lambda)

To select and convert alleles we pass the matrix G.Xmatrix, G.Ymatrix, or

G.Cmatrix to the use function MUTATION, which does the following:

1. Convert the matrix of alleles, called X in the function, into a column vector,

Temp, of length 2*N. inds*G. loci¼T. loci, where G. loci is X. loci, Y.

loci, or C. loci and N. inds is the number of individuals (here N. Pop):

Temp <- matrix(X) # Convert X to a vector

2. Generate N.mutations random integers between 1 and T. loci using the

uniform generator R function runif and the R function ceiling:

Row <- ceiling (runif (N.mutations, min¼0, max¼T. loci))

3. This set of integers represents the rows of the vectors that are affected by

mutation. In principle it is possible to pick the same row twice, though this is

highly unlikely given the low probability of mutation (say 10�4 or less). At each

of these rows the value is changed, 0 to 1 or 1 to 0:

Temp[Row] <- (abs(Temp[Row]-1))

4. The vector is now converted back into a matrix and passed back to the main

program:

X <- matrix(Temp, N.inds, 2*G.loci)

242 MOD E L I N G E VO L U T I ON

The complete function (where Pmut is the mutation probability) is

MUTATION <- function(X, Pmut, G.loci, N.inds)

{

T.loci <- N.inds*2*G.loci # Total number of alleles

lambda <- Pmut*T.loci # Mean number of mutations in population

N.mutations <- rpois(1,lambda) # Number of mutations

Row <- ceiling(runif(N.mutations, min¼0, max¼T.loci))

Temp <- matrix(X) # Convert matrix to a vector

Temp[Row] <- (abs(Temp[Row]-1)) # Change relevant row entries

X <- matrix(Temp, N.inds, 2*G.loci) # Convert back to a matrix

return(X)

} # End function

This completes a single generation of selection. Multiple generations are

simulated by the appropriate inclusion of an iteration loop. The complete pro-

gram is discussed in scenarios 4 and 7.

4.2 Summary of scenarios

Scenario 1: Illustration of the use of a PVC model to plot the trajectory of two

traits under stabilizing selection

Scenario 2: Usage of an IVC model to solve the life history model examined in

Scenario 1 of Chapter 2

Scenario 3: Demonstration of the use of an IVC model to analyze the effect of

directional selection on a single trait

Scenario 4: Illustration of the use of an individual locus model to analyze the

effect of directional selection on a single trait

Scenario 5: An IVC model of Scenario 3 of Chapter 3, namely density-dependent

selection in the evolution of a parameter in the Ricker function

Scenario 6: Analysis of directional selection on a trade-off using an IVC model

Scenario 7: Analysis of directional selection on a trade-off using an individual

locus model

4.3 Scenario 1: Stabilizing selection on two traits using a PVC
model

This scenario explores the consequences of stabilizing selection acting on two

traits as expressed by equation (4.15).

G EN E T I C MOD E L S 243

4.3.1 General assumptions

1. Both traits are quantitative with non-zero heritabilities.

2. Selection is stabilizing.

3. Generations do not overlap.

4.3.2 Mathematical assumptions

1. The change in trait values is governed by equation (4.15).

2. For the purposes of this example the heritabilities are set at 0.2 and 0.4, the

phenotypic correlation at 0.4, the genetic correlation at 0.15, and the pheno-

typic variances at 1 and 2. The diagonal elements of the W matrix are set at

2 and 3 and the off-diagonal elements at 0, giving no correlational selection.

The optimum trait values are both set at 2 and the initial trait values at 10.

4.3.3 Analysis

R CODE:

rm(list¼ls()) # Clear workspace

h2 <- c(0.2,0.4) # Set heritabilities

Vp <- c(1,2) # Set phenotypic variances

Rp <- 0.4 # Set phenotypic correlation

Ra <- 0.15 # Set genetic correlation

Check that Re is possible

Re <- (Rp-Ra*sqrt(h2[1]*h2[2]))/sqrt((1-h2[1])*(1-h2[2]))

if(abs(Re) >1)

{

print (c(“problem with Re”, Re))

stop

}

Va <- h2*Vp # Using h2 ¼Va/Vp

Covp <- Rp*sqrt(Vp[1]*Vp[2]) # Using r ¼ Cov/SD1SD2

Cova <- Ra*sqrt(Va[1]*Va[2]) # Using r ¼ Cov/SD1SD2

Gmatrix <- matrix(c(Va[1],Cova,Cova,Va[2]),2,2) # G matrix

Pmatrix <- matrix(c(Vp[1],Covp,Covp,Vp[2]),2,2) # P matrix

Theta <- c(2,2) # Optimum trait values

Maxgen <- 100 # Number of generations

par(mfrow¼c(2,2)) # Divide graphic page

Wmatrix <- matrix(c(2,0,0,3), 2,2) # Set the W matrix

Trait <- matrix(0,Maxgen,2) # Pre-assign space for trait values

Trait[1,] <- 10 # Initial trait values

for (Igen in 2:Maxgen) # Iterate over generations

{

Delta z

Delta.Z <- Gmatrix%*%solve(WmatrixþPmatrix)%*%(Trait[Igen-

1,]-Theta)

244 MOD E L I N G E VO L U T I ON

Trait[Igen,] <- Trait[Igen-1,]- Delta.Z # New trait value

} # End of Igen loop

Set axis values for graphing

min.y <- min.x <- min(Trait); max.y <- max.x <- max(Trait)

Plot by generation

Generation <- seq(from¼1, to¼Maxgen)

plot(Generation, Trait[,1], ylim <- c(min.y, max.y), xlim¼c(0,

Maxgen), ylab¼‘Trait’, type¼‘l’)

lines(seq(from¼1,to¼Maxgen),Trait[,2],lty¼2)

Plot Trait 2 on Trait 1
plot(Trait[,1], Trait[,2])

lines(Trait[,1],Trait[,2])

print(c(Rp,Ra,Re))

eigen(Wmatrix)$values

OUTPUT: (Figure 4.2)

> print(c(Rp,Ra,Re))

[1] 0.400000 0.150000 0.516113

> eigen(Wmatrix)$values

[1] 3 2

Both traits eventually reach their respective optima, although it takes quite a few

generations.

4.4 Scenario 2: Stabilizing selection using an IVC model

This scenario is an individual-based quantitative genetic model of Scenario 1 of

Chapter 2.

Generation
0 20 40 60 80 100 2

2
4

T
ra

it
[,

 2
]

Trait [, 1]

6
8

10

2
4

T
ra

it

6
8

10

4 6 8 10

Figure 4.2 Output from Scenario 1 showing the time course of stabilizing selection on two
traits (left) and their joint evolution (right).

G EN E T I C MOD E L S 245

4.4.1 General assumptions

1. The organism is semelparous.

2. Fecundity, F, increases with body size, x.

3. Survival, S, decreases with body size, x.

4. Fitness, W, is a function of fecundity and survival.

5. Body size is inherited as a quantitative trait.

4.4.2 Mathematical assumptions

1. Fecundity increases linearly with body size:

F ¼ aF þ bFx ð4:30Þ
where aF and bF are constants.

2. Survival decreases linearly with body size:

S ¼ aS � bSx ð4:31Þ
3. Fitness, W, is the expected lifetime reproductive success, R0, given as the

product of fecundity and survival:

W ¼ R0 ¼ FS
¼ ðaF þ bFxÞðaS � bSxÞ
¼ aFaS � bFbSx

2 þ ðaSbF � aFbSÞx
ð4:32Þ

The above equation describes a parabola that is concave down. As in the optimality

analysis parameter values are set at aF ¼ 0, bF ¼ 4, aS ¼ 1, and bS ¼ 0.5. The fitness

equation can now be written as

W ¼ 0	 1� 4	 0:5x2 þ ð1	 4� 0	 0:5Þx
¼ �2x2 þ 4x

ð4:33Þ

which has a maximum at x ¼ 1.

4.4.3 Analysis

Because it is not possible for individuals to have negative body sizes it may be

necessary to either eliminate these from the population or set them at some mini-

mal value. In the present example this possibility is highly unlikely as the optimal

body size is 10 phenotypic standard deviations from zero. However, to be sure, I set

all negative fecundities, which would correspond to negative body sizes, to zero,

giving such individuals zero fitness. I also insert a check on survival to ensure that it

is always positive. The calculation of the new genetic mean is done within the

function SELECTION. The matrix X passed to SELECTION contains the phenotypic

values in the first column and the genetic values in the second. The long-termmean

phenotype is calculated ignoring the first 500 generations of selection.

R CODE:

rm(list¼ls()) # Remove all objects from memory

246 MOD E L I N G E VO L U T I ON

SELECTION <- function(X) # Function to calculate new mean value

{

As <- 1; Bs <- 0.5; Af <- 0; Bf <- 4 # Parameter values

Survival <- As-Bs*X[,1] # Survival

Survival[Survival<0] <- 0 # Check on sign

Fecundity <- AfþBf*X[,1] # Fecundity

Fecundity[Fecundity<0] <- 0 # Check on sign

X.Fitness <- Survival*Fecundity # Fitness

mu <- sum(X.Fitness*X[,2])/sum(X.Fitness)

return(mu)

} # End of selection function

################# Main program #################

set.seed(100) # Initialize random number generator

N <- 100 # Set population size

MaxGen <- 2000 # Number of generations

Output <- matrix(0,MaxGen,2) # Create file for output

h2 <- 0.5 # Set heritability

Vp <- (.1)^2 # Set Phenotypic variance

Va <- Vp*h2 # Calculate Additive genetic variance

Ve <- Vp-Va # Calculate Environmental variance

mu <- 1.5 # Initial trait mean genetic value

SDa <- sqrt(Va) # SD of Va

SDe <- sqrt(Ve) # SD of Ve

for (Igen in 1:MaxGen) # Iterate over generations

{

Generate Genetic and environmental values using normal distri-

bution

GX <- rnorm(N, mean¼mu, sd¼SDa) # Genetic values

EX <- rnorm(N, mean¼0, sd¼SDe) # Environmental values

PX <- GX þ EX # Phenotypic values

Combine phenotypic and genetic values

X <- cbind(PX,GX)

Output[Igen,1] <- Igen # Store generation

Output[Igen,2] <- mean(PX) # Store mean phenotype

Calculate new mean genetic value by applying fitness criterion

mu <- SELECTION(X) # apply SELECTION

} # End of Igen loop

Plot trajectory over generations

plot(Output[1:MaxGen,1], Output[1:MaxGen,2], type¼‘l’,

xlab¼‘Generation’, ylab¼‘Trait value’)

mean(Output[500:MaxGen,2]) # Mean phenotype

sd(Output[500:MaxGen,2]) # SD of mean

OUTPUT: (Figure 4.3)

G EN E T I C MOD E L S 247

> mean(Output[500:MaxGen,2])

[1] 1.017443

> sd(Output[500:MaxGen,2])

[1] 0.04910655

The trait value evolves toward the value predicted by the optimality approach (1)

and clearly fluctuates about this value (mean � 2SD encloses 1). Obviously the

optimality approach is better for efficiently determining the equilibrium value,

but gives no idea of how long this might take or how much the trait value might

fluctuate. The quantitative genetic approach can address these questions and

herein lies its value in the present case.

4.5 Scenario 3: Directional selection using an IVC model

In this scenario we analyze directional selection on a single trait. For the general

quantitative trait the breeder’s equation is adequate if the population size is large.

However, for small populations there will be stochastic variation which will

reduce the rate of change. Formulae to calculate the expected variance about

the response to selection have been worked out for the typical cases (see Roff

[1997], pp. 137–143) but an individual-based quantitative genetic model can be

useful in the case of unusual modes of selection or with traits, such as threshold

traits, that are not normally distributed on the expressed scale. The model

0

0.
9

1.
0

1.
1

T
ra

it
va

lu
e

1.
2

1.
3

1.
4

1.
5

500
Generation

1,000 1,500 2,000

Figure 4.3 Time trace for Scenario 2.

248 MOD E L I N G E VO L U T I ON

examined here assumes selection on a threshold trait, but it can be easilymodified

to accommodate other types of traits or selection scenarios.

4.5.1 General assumptions

1. The trait under selection has two phenotypic expressions but is determined by

an underlying normally distributed liability.

2. Only one morph is allowed to contribute to the next generation.

4.5.2 Mathematical assumptions

1. Males and females do not differ in the expression of the trait. They will,

nevertheless, be considered separately.

2. Mating between selected individuals is at random.

3. Selected individuals do not differ in their fitness.

4. The two morphs are coded as 0 and 1, with the morph coded as 1 being that

which is selected. This coding means that the morph code also corresponds to

the morph fitness and the mean genetic value of the parents of the next

generation is given by equation (4.18), where fitness, W, is either 0 or 1.

4.5.3 Analysis

In the present coding I have assumed that the trait is wing morph with the short-

winged morph being favored (i.e., short-winged individuals are coded as 1 and

long-winged individuals are coded as 0). The function SELECTION calculates the

new genetic mean liability value using equation (4.18). Although not required, the

phenotypic values of the liability are also passed to the selection function: this is

done here so that the present coding can bemore easilymodified for selection on a

normally distributed trait that is phenotypically expressed.

At the start of the main program the initial proportion of the two morphs is set

and the required threshold value, Z.LW, calculated assuming, without loss of

generality, a normal distribution with a mean of 0 and a standard deviation of 1

(use the R function qnorm). Male and female short-winged proportions are shown

on the same graph with the values labeled as M or F.

R CODE:

rm(list¼ls()) # Remove all objects from memory

SELECTION <- function(Male, Female) # Function to calculate new

mean value

{

Mean genetic value of males, mu.M, and females, mu.F

Col1 ¼ Phenotypic value, col 2 ¼ Genetic value, col 3 ¼ Morph code

mu.M <- sum(Male[,3]*Male[,2])/sum(Male[,3])

mu.F <- sum(Female[,3]*Female[,2])/sum(Female[,3])

mu <- (mu.M þ mu.F)/2 # New population mean

return(mu)

}

G EN E T I C MOD E L S 249

######################## Main program ########################

set.seed(100) # Initialize random number generator

N <- 100 # Set population size

Prop.LW <- 0.85 # Set initial proportion LW

Z.LW <- -qnorm(Prop.LW) # Threshold. Values greater are LW

MaxGen <- 10 # Number of generations

Output <- matrix(0,MaxGen,4) # Create file for output

h2 <- 0.5 # Set heritability of liability

Vp <- 1 # Set Phenotypic variance

Va <- Vp*h2 # Calculate Additive genetic variance

Ve <- Vp-Va # Calculate Environmental variance

mu <- 0 # Initial mean genetic liability

SDa <- sqrt(Va) # SD of Va

SDe <- sqrt(Ve) # SD of Ve

for (Igen in 1:MaxGen) # Iterate over generations

{

Generate Genetic and environmental values using normal distribu-

tion

GM <- rnorm(N, mean¼mu, sd¼SDa) # Genetic values of males

GF <- rnorm(N, mean¼mu, sd¼SDa) # Genetic values of females

EM <- rnorm(N, mean¼0, sd¼SDe) # Environmental values of

males

EF <- rnorm(N,mean¼0,sd¼SDe) #Environmental value offemales

PM <- GM þ EM # Phenotypic value of males

PF <- GF þ EF # Phenotypic value of females

Calculate wing morphs by comparing liability to threshold

Male.Morph <- matrix(1,N) # Set all initially to SW (¼1)

Male.Morph[PM > Z.LW] <- 0 # Set LW to 0

Female.Morph <- matrix(1,N) # Set all initially to SW (¼1)

Female.Morph[PF > Z.LW] <- 0 # Set LW to 0

Combine phenotypic and genetic values

Male <- cbind(PM, GM, Male.Morph)

Female <- cbind(PF, GF, Female.Morph)

Store data

Output[Igen,1] <- Igen # Generation

Output[Igen,2] <- mean(PMþPF)/2 # Mean liability

Output[Igen,3] <- sum(Male.Morph)/N # Proportion of SW males

Output[Igen,4] <- sum(Female.Morph)/N # Proportion of SW females

Calculate new mean genetic value by applying fitness criterion

mu <- SELECTION(Male,Female)

} # End of Igen loop

par(mfrow¼c(2,2)) # Divide graphics page into quadrats

Plot proportion of SW males, and SW females over generation on same

graph

250 MOD E L I N G E VO L U T I ON

plot(Output[,1], Output[,3],pch¼“M”, xlab¼‘Generation’,

ylab¼‘Proportion Short Wings’)

lines(Output[,1], Output[,3]) # Males

points(Output[,1],Output[,4], pch¼“F”) # Females

lines(Output[,1], Output[,4]) # Females

plot(Output[,1], Output[,2], xlab¼‘Generation’, ylab¼‘Mean

liability’)

lines(Output[,1], Output[,2])

OUTPUT: (Figure 4.4)

Note that the response to selection is not constant at either the expressed level or

on the underlying liability scale. The reason for this is that the selection intensity

decreases as the proportion of the selected morph increases in the population. For

experimental data showing this process see Roff (1990).

4.6 Scenario 4: Directional selection using an IL model

The previous scenario is here repeated using an individual locus model. The basic

approach is the same as outlined in Section 1.3. This model is a simplified version

of that described in Roff (1994b, 1998a, b).

4.6.1 General assumptions

1. The trait under selection has two phenotypic expressions but is determined by

an underlying normally distributed liability.

2. Only one morph is allowed to contribute to the next generation.

Generation
2 4 6 8 10

Generation

P
ro

po
rt

io
n

S
ho

rt
 W

in
gs

M
ea

n
lia

bi
lit

y

2

0.
2

–2
.5

–2
.0

–1
.5

–1
.0

–0
.5

0.
0

0.
4

0.
6

0.
8

1.
0

F

4 6 8 10

M

M

M

M

M

M
M

M M

M

F

F

F

F

F
F F

F

F

Figure 4.4 Results for Scenario 3. Response by females labeled “F” and that of males by “M.”

G EN E T I C MOD E L S 251

4.6.2 Mathematical assumptions

1. Males and females do not differ in the expression of the trait. They are not

separately distinguished in this model.

2. Mating between selected individuals is at random and can include selfing.

3. Selected individuals do not differ in their fitness.

4. The two morphs are coded as 0 and 1, with the morph coded as 1 being that

which is selected. This coding means that the morph code also corresponds to

the morph fitness and the mean genetic value of the parents of the next

generation is given by equation (4.18), where fitness, W, is either 0 or 1.

5. The phenotypic value is the sum of allelic values and 100 loci, which take

values of 0 or 1, plus an environmental deviation.

4.6.3 Analysis

In Section 1.3 a bivariate model was described: the coding below is a simplified

version of this model. The initial population is started with a random selection of

alleles but the threshold for morph expression is set to 0.85 for long-winged

individuals, as in the previous scenario. Prior to the selection the population is

run for 10 generations to establish an equilibrium distribution of genotypes. The

switch to a selection regime is determined using an “if” statement. A more

efficient method is shown in Scenario 7.

R CODE:

rm(list¼ls()) # Clear memory

SELECTION <- function(Morph, Genotype)

{

Selected <- Genotype[Morph¼¼1,] # 1¼SW, 0¼LW

return(Selected)

} # End function

################## Function Mutation ##################

MUTATION <- function(X, N.mutations, Total.loci, N.ind)

{

Apply mutation by randomly selecting N.mutations

Row <- ceiling(runif(N.mutations, min¼0, max¼Total.loci))

Temp <- matrix(X)

Temp[Row] <- (abs(Temp[Row]-1))

X <- matrix(Temp,N.ind,N.loci)

return(X)

} # End function

################## Function Gamete ##################

GAMETE <- function(X, G.loci, N.loci) # Pick loci for gamete

{

Y <- sample(x¼X, size¼G.loci, replace¼FALSE) # Random G.loci

from N.loci

return(Y)

}

252 MOD E L I N G E VO L U T I ON

##################### Main Program ######################

set.seed(100) # Initialize random number generator

P <- 0.0001 # Probability of mutation at a locus

N.Pop <- 1000 # Population size at each generation

G.loci <- 100 # Loci per gamete

N.loci <- G.loci*2 # Loci per individual

Total.loci <- N.Pop*N.loci # Total number of loci in population

H2 <- 0.5 # Heritability

Vg <- 0.5*G.loci # Additive genetic variance

Ve <- (1-H2)*Vg/H2 # Environmental variance

SD.E <- sqrt(Ve) # Environmental SD

Prop.LW <- 0.85 # Set initial proportion LW

Set Threshold value. Values greater than Z.LW are LW

Z.LW <- qnorm(1-Prop.LW, mean¼G.loci, sd¼sqrt(VgþVe))

Generate matrix of individuals in which

rows hold individuals while columns hold loci. Allelic values are

1 and 0

Randomly generate Total.loci number of loci with values of 0 & 1

Dl <- round(runif(Total.loci))

Genetic composition of individuals

Genotype <- matrix(Dl, N.Pop, N.loci)

Maxgen <- 30 # Number of generations simulation runs

Output <- matrix(0,Maxgen,5) # Allocate space for output

Output[,1] <- seq(from¼1, to¼Maxgen) # First col¼generation

for (Igen in 1:Maxgen) # Iterate over generations

{

Env.X <- rnorm(N.Pop, mean¼0, sd¼SD.E) # Environmental de-

viations

Phenotypic values of liability

Phenotype <- rowSums(Genotype) þ Env.X

Vg <- var(rowSums(Genotype)) # Calculate the genetic

variance

Vp <- var(Phenotype) # Phenotypic variance

H2 <- Vg/Vp # heritability

Morph <- matrix(1,N.Pop) # Set morphs initially to SW

Morph[Phenotype> Z.LW] <- 0 # Change relevant individuals

to LW

Prop.SW <- sum(Morph)/N.Pop # Proportion SW

Output[Igen,2] <- Prop.SW # Store proportion SW

Output[Igen,3] <- H2 # Store heritability

#################### Apply Selection ####################

if (Igen < 10) # No selection until after generation 10

{

Parents <- Genotype # No selection

}else

G EN E T I C MOD E L S 253

{

Parents <- SELECTION(Morph, Genotype) # Apply selection

}

N.Parents <- nrow(Parents) # Number of parents

Form next Generation

Apply Mutation

Mean number of mutations in population

lambda <- P*N.Parents*N.loci

Number of mutations using a Poisson distribution

N.mutations <- rpois(1,lambda)

Output[Igen,4] <- N.mutations # Store number of mutations this

generation

Apply function MUTATION to generate mutant loci

Genotype <- MUTATION(Genotype, N.mutations, Total.loci, N.Pop)

Mating

Produce gametes for female offspring

Select from each row G.loci at random

We do not distinguish individual loci

Note that this creates a matrix of G.loci rows and N.Females

columns

The matrix is transposed to produce the required matrix

Gametes <- apply(Parents, 1, GAMETE, G.loci, N.loci)

Gametes <- t(Gametes) # Convert to proper matrix

Produce N.Pop offspring by selecting at random with replacement

Output [Igen,5]<- N.Parents

Get N.Pop gametes from “females”

n <- seq(1, N.Parents)

G.Index <- sample(x¼n, size¼ N.Pop, replace¼TRUE)

F.Gametes <- Gametes[G.Index,]

Get N.Pop gametes from “males”

G.Index <- sample(x¼n, size¼ N.Pop, replace¼TRUE)

M.Gametes <- Gametes[G.Index,]

New Genotypes

Genotype <- cbind(F.Gametes, M.Gametes) # Combine gametes

}

par(mfrow¼c(2,2)) # Divide graph page into four quadrats

plot(Output[,1], Output[,2], xlab¼‘Generation’, ylab¼‘Propor-

tion SW’, type¼‘l’)

plot(Output[,1], Output[,3], xlab¼‘Generation’, ylab¼‘Herit-

ability’,type¼‘l’)

plot(Output[,1], Output[,4], xlab¼‘Generation’, ylab¼‘Nos of

mutations’,type¼‘l’)

plot(Output[,1], Output[,5], xlab¼‘Generation’, ylab¼‘Nos of

Parents’,type¼‘l’)

OUTPUT: (Figure 4.5)

254 MOD E L I N G E VO L U T I ON

The general response is the same as in Scenario 3. The primary difference is

that selection leads to a loss in genetic variation, though the effect is slight

and would be very hard to experimentally detect. Also note that after a brief

period following the initiation of selection the population returns very close

to its starting value.

4.7 Scenario 5: A quantitative genetic analysis of the Ricker
model

This scenario investigates the influence of density-dependent selection in the

evolution of a parameter of the Ricker function. It is an individual-based quantita-

tive genetic model of Scenario 3 of Chapter 3.

4.7.1 General assumptions

1. The organism is semelparous.

2. Recruitment is governed by a density-dependence function that allows for

cyclical or chaotic population dynamics.

Generation

N
os

 o
f m

ut
at

io
ns

P
ro

po
rt

io
n

S
W

N
os

 o
f P

ar
en

ts
H

er
ita

bi
lit

y

0

5

20
0

40
0

60
0

80
0

1,
00

0
0.

420.
2

0.
4

0.
6

0.
8

1.
0

0.
46

0.
50

10
15

20
25

5 10 15 20 25 30

Generation

0 5 10 15 20 25 30

Generation

0 5 10 15 20 25 30

Generation

0 5 10 15 20 25 30

Figure 4.5 Results for Scenario 4.

G EN E T I C MOD E L S 255

3. The parameters of the recruitment function are related such that the density-

independent component is negatively related to the density-dependent compo-

nent.

4. These parameters are inherited.

4.7.2 Mathematical assumptions

1. Population at time t þ 1 is a Ricker function of the population at time t:

Ntþ1 ¼ Ntae�bNt ð4:34Þ

2. The parameter a is a measure of density-independent recruitment whereas b is

a measure of the density-dependent effect: increases in a increase recruitment

but increases in b decrease recruitment by increasing the density-dependent

component, e�bNt . Thus a positive functional relationship between a and b is

indicative of a trade-off between the two recruitment components. For this

scenario I shall assume the relationship

b ¼ 0:001a ð4:35Þ
3. The parameter a is a quantitative genetic trait. By the previous assumption, the

correlation between a and b is 1. Note that the genetic correlation could still be

one but that the phenotypic value might still be influenced by a separate

environmental value, in which case we would have

b ¼ 0:001aþ e ð4:36Þ
where e is a random normal variable with mean zero. For simplicity, and to

maintain comparison with the clonal model of Chapter 3, I shall set e ¼ 0.

4. Fitness is the number of offspring left by each individual. Thus individual

fitness, Wi, which also equates to cohort size, Ni, is

Wi ¼ Ni ¼ aie�biNPop ð4:37Þ
and the new mean trait value and population size are (subscripts for generation

omitted for simplicity)

ma ¼

XNPop

i¼1

WiGa;i

XNPop

i¼1

Wi

NPop ¼
XNPop

i¼1

Wi

ð4:38Þ

where NPop is the total population size and Ga,i is the genetic value of the ith

individual.

256 MOD E L I N G E VO L U T I ON

4.7.3 Analysis

The selection function SELECTION requires both the X matrix (consisting of the

phenotypic and genetic values) and the total population size, N. Population size

must be an integer and so is rounded to the nearest integer value. The simulation

is run for 10,000 generations and the mean trait value is calculated after the first

2,000 generations, which appears to be the approximate number of generations

required to achieve the equilibrium value, given the starting value, which is quite

far removed from the optimal value.

R CODE:

rm(list¼ls()) # Remove all objects from memory

SELECTION <- function(X,N) # Function to calculate new mean value

{

BETA <- X[,1]*0.001 # Beta

X.Fitness <- X[,1]*exp(-BETA*N) # Fitness

mu <- sum(X.Fitness*X[,2])/sum(X.Fitness) # New mu

N <- round(sum(X.Fitness)) # Popn size

return(c(mu, N)) # Return values

} # End of selection function

##################### Main program #####################

set.seed(100) # Initialize random number generator

N <- 100 # Set population size

MaxGen <- 10000 # Number of generations

Output <- matrix(0,MaxGen,3) # Create file for output

h2 <- 0.5 # Set heritability

Vp <- .1 # Set Phenotypic variance

Va <- Vp*h2 # Calculate Additive genetic variance

Ve <- Vp-Va # Calculate Environmental variance

mu <- 10 # Trait mean genetic value

SDa <- sqrt(Va) # SD of Va

SDe <- sqrt(Ve) # SD of Ve

for (Igen in 1:MaxGen) # Iterate over generations

{

GenerateGeneticandenvironmentalvaluesusingnormaldistribution

GX <- rnorm(N, mean¼mu, sd¼SDa) # Genetic values

EX <- rnorm(N, mean¼0, sd¼SDe) # Environmental values

PX <- GX þ EX # Phenotypic values

Combine phenotypic and genetic values

X <- cbind(PX,GX)

Output[Igen,1] <- Igen # Store generation

Output[Igen,2] <- mean(PX) # Store mean phenotype

Output[Igen,3] <- N # Store popn size

G EN E T I C MOD E L S 257

Calculate new mean genetic value by applying fitness criterion

B <- SELECTION(X,N)

mu <- B[1] # New mu

N <- B[2] # New population size

} # End of Igen loop

par(mfrow¼c(2,2)) # Divide graphics page into quadrats

plot(Output[10:MaxGen,1], Output[10:MaxGen,2], type¼‘l’,

xlab¼‘Generation’, ylab¼‘Trait value’)

plot(Output[10:MaxGen,1], Output[10:MaxGen,3],type¼‘l’,

xlab¼‘Generation’,ylab¼‘Population Size, N’)

Print out mean trait value and mean population size

c(mean(Output[2000:MaxGen,2]), mean(Output[1000:MaxGen,3]))

OUTPUT: (Figure 4.6)

> c(mean(Output[2000:MaxGen,2]), mean(Output[1000:MaxGen,3]))

[1] 2.752786 364.705144

After considerable fluctuation both the trait value (a) and population size settle

down to values more or less the same as those equilibria obtained in the invasi-

bility and elasticity analyses (2.73 and 368 [latter not previously given]).

4.8 Scenario 6: Evolution of two traits using an IVC model

The advantage of an IBM using a variance components approach is that it readily

accommodates scenarios that are difficult to incorporate in a population variance

components approach, particularly if one is interested in the effect of small popula-

tion sizes. The following scenario assumes selection on one trait that is negatively

correlated with another trait. The component that is difficult to incorporate in a

population variance components approach is that fitness is a truncated distribution.

Generation

0 2,000 4,000 6,000 8,000 10,000

Generation

0

10
0

4
6

8
10

20
0

P
op

ul
at

io
n

S
iz

e,
 N

T
ra

it
va

lu
e 30

0

2,000 4,000 6,000 8,000 10,000

Figure 4.6 Results for Scenario 5.

258 MOD E L I N G E VO L U T I ON

4.8.1 General assumptions

1. Generations are non-overlapping.

2. There is a negative correlation (both genetic and phenotypic) between the two

traits X and Y.

3. Fitness is equal to the value of trait X for X > 0. If trait X is negative fitness is

zero. A simple example of this is if the realized manifestation of trait X is itself

fecundity.

4.8.2 Mathematical assumptions

1. The two traits follow the usual quantitative genetic assumptions.

2. Males and females have the same phenotypic values and subject to the same

selection. Thus the fitness of an individual, Wi, with trait value Xi is given by

if Xi > 0 zi ¼ Xi else zi ¼ 0

Wi ¼ ziXNPop

i¼1

zi

ð4:39Þ

where NPop is the number of individuals in the population.

3. Mating is random. Because males and females are identical in this scenario the

new genetic mean of trait X, mGX, is

mGX ¼
PNPop

i¼1

WiXGXi

PNPop

i¼1

Wi

ð4:40Þ

where XGXi is the genetic value of the ith individual. Because of the selection on

trait X, the mean genetic value of trait Y is given by

mGY ¼
PNPop

i¼1

WiXGYi

PNPop

i¼1

Wi

ð4:41Þ

4.8.3 Analysis

For the purpose of illustration the heritabilities are set at 0.4 and 0.5 for X and Y,

respectively. The genetic and phenotypic correlations are set at �0.8 and �0.7,

respectively. From these values plus the phenotypic variances (set at 1 and 0.5) the

genetic, and environmental variance–covariance matrices are calculated as de-

scribed in Section 1.2. Remember to load the library MASS, which is required for

the multivariate normal routine. The general flow of the program is

G EN E T I C MOD E L S 259

1. Selection function

2. Set parameter values

3. Enter loop for iterating over generations

4. Generate genetic, environmental, and phenotypic values using mvrnorm

5. Apply selection

6. Next generation

7. Plot results

R CODE:

rm(list¼ls()) # Clear workspace

library(MASS) # Load library MASS

SELECTION <- function(Trait.P, Trait.A)

{

Determine fitness from trait X (¼trait 1)

Traits with negative value have zero fitness, e.g. zero fecundity

Fec <- Trait.P[,1] # Preliminary fecundities

Fec[Trait.P[,1]<00] <- 0 # Adjust fecundity of individuals

Total.Fec <- sum(Fec) # Total fecundity of popn

NewX1 <- sum(Fec*Trait.A[,1])/Total.Fec # New mean X

NewX2 <- sum(Fec*Trait.A[,2])/Total.Fec # New mean Y

Mean.A <- c(NewX1, NewX2) # Combine

return(Mean.A)

} # End of function

####################### MAIN PROGRAM #######################

set.seed(100) # Initialize random number generator

Npop <- 1000 # Population size

MaxGen <- 10 # Nos of generations for simulation

Output <- matrix(0,MaxGen,3) # Allocate storage for trait

################### Create initial matrices ###################

In this version the sexes are ignored

This assumes that selection acts equally

Give.Hmatrix is a dataframe with genetic correlations in upper

diagonal

heritabilities along the diagonal and phenotypic correlations in

the lower diagonal

NX <- 2 # Number of traits

Matrix of heritabilities and correlations

H2 <- matrix(c(0.4,-0.8,

-0.7, 0.5), 2,2, byrow¼TRUE)

Mean.A <- c(3, 3) # Initial additive genetic means

Mean.E <- c(0,0) # Environmental means

Var.P <- c(1, 0.5) # Phenotypic variances

Phenotypic Covariance matrix

Note that initial covariances set to 1 (arbitrary)

CovP <- matrix(1,NX,NX) # Phenotypic variances

260 MOD E L I N G E VO L U T I ON

diag(CovP) <- Var.P # Diagonal elements ¼ variances

Establish CovA from h2 and CovP and CovE from CovA and CovP

CovA <- matrix(0,NX,NX) # Allocate memory for genetic matrix

CovE <- matrix(0,NX,NX) # Allocate memory for envir. matrix

for (i in 1:NX) # Iterate over components of (co)variance matrix

{

CovA[i,i] <- CovP[i,i]*H2[i,i] # Genetic variance ¼ Vp*h2

CovE[i,i] <- CovP[i,i]-CovA[i,i] # Environmental covariances

if(CovE[i,i]< 0) stop (print(c(“CovE cannotbe”,i,j,CovE[i,i])))

}

Phenotypic and genetic covariances

N.minus.1 <- NX-1

for(i in 1:N.minus.1)

{

jj <- iþ1

for(j in jj:NX)

{

CovP[i,j] < CovP[j,i] <- CovP[i,j] # Matrix symmetrical

CovA[i,j] <-H2[i,j]*sqrt(CovA[i,i]*CovA[j,j])#Geneticcovariance

CovA[j,i] <-CovA[i,j] #Matrixsymmetrical

CovE[i,j] <-CovP[i,j]-CovA[i,j] #Environ.covariance

CovE[j,i] <-CovE[i,j]

} # End of j loop

} # End of i loop

###################### Start Simulation ######################

for (Igen in 1:MaxGen) # Iterate to MaxGen

{

Generate additive and environmental values

Trait.E <- mvrnorm(Npop, mu¼Mean.E, Sigma¼CovE) # Environ.

Trait.A <- mvrnorm(Npop, mu¼Mean.A, Sigma¼CovA) # Genetic

Trait.P <- Trait.A þ Trait.E # Phenotypic

Store data

Output[Igen,1] <- Igen

Output[Igen,2] <- mean(Trait.P[,1]) # X

Output[Igen,3] <- mean(Trait.P[,2]) # Y

Mean.A <- SELECTION(Trait.P, Trait.A) # New X and Y

} # End of Igen loop

Plot results

ymin <- min(Output[,2:3]); ymax <- max(Output[,2:3]) # Trait X

plot(Output[,1], Output[,2], xlab¼“Generations”, ylab¼“Trait

X (solid) and Y (dotted)”, type¼‘l’, ylim¼ c(ymin, ymax)) # Trait

X on generation

lines(Output[,1], Output[,3], lty¼2) # Trait Y on generation

OUTPUT: (Figure 4.7)

G EN E T I C MOD E L S 261

The figure shows that selection on trait X increases trait X but, because of the

negative correlation, trait Y declines in value.

4.9 Scenario 7: Evolution of two traits using an IL model

The general scenario is similar to Scenario 4 in which fitness is a threshold

function and to Scenario 6 in which two negatively correlated traits are modeled.

The basic coding follows which is similar to the one discussed in Section 1.3.

4.9.1 General assumptions

1. Generations are non-overlapping.

2. There is a negative correlation (both genetic and phenotypic) between the two

traits X and Y.

3. Fitness is a threshold value, such that individuals above some threshold

T0 contribute equally to the next generation whereas individuals below T0

have zero fitness.

4.9.2 Mathematical assumptions

1. Males and females do not differ in the expression of the trait. They are not

separately distinguished in this model.

2. Mating between selected individuals is at random and can include selfing.

3. Selected individuals do not differ in their fitness.

Generations
2

2.
5

3.
0

T
ra

it
X

 (
so

lid
)

an
d

Y
 (

do
tte

d)

3.
5

4.
0

4 6 8 10

Figure 4.7 Results for Scenario 6.

262 MOD E L I N G E VO L U T I ON

4. The threshold for selection is set at the initial mean value of trait X

5. The phenotypic value is the sum of allelic values, which take values of 0 or 1,

plus an environmental deviation.

6. Parameter values are as follows:

a. Population size is 1,000.

b. Number of unique loci is 30.

c. Number of loci in common is 25.

d. Initial frequency at unique loci is 0.68.

e. Initial frequency at common loci is 0.47.

f. Initial genetic correlation given the forgoing values is �0.488.

g. Initial trait value of X is 64.3 and of Y is 17.3.

h. Initial heritabilities are 0.4 and 0.5.

i. Initial phenotypic correlation is �0.7.

4.9.3 Analysis

The general flow of the model is described in detail in Section 1.3. Simulation

proceeds in the following steps:

1. Assign parameter values as given above.

2. Calculate other required parameters (e.g., rE).

3. Set up initial genotypes using function ASSIGN.LOCI.

4. Set up selection threshold for required generations of selection (matrix T0). The

threshold is set for the first generations such that there is no selection, allowing

the stabilization of genotypic frequencies. After five generations the threshold

is set to the initial value of X (Trait.X).

5. Iterate over generations. Within this loop we

5a. Calculate genotypic values using rowSums

5b. Create environmental values using mvrnorm

5c. Add the environmental values to generate phenotypic values

5d. Apply function SELECTION

5e. Create the gamete pool using function GAMETE

5f. Get gametes from pool and create the next generation of genotypes

5g. Apply function MUTATION

6. Plot results.

R CODE:

rm(list¼ls()) # Remove all objects from memory

ASSIGN.LOCI <- function(G.loci, N.Pop, P)

{

G EN E T I C MOD E L S 263

Total.loci<-N.Pop*2*G.loci #Totalnumberoflociinpopulation

Alleles <- runif(Total.loci) # Generate random number 0-1

Alleles[Alleles < P] <- 0 # Allocate to 0s

Alleles[Alleles > P] <- 1 # Allocate to 1s

return(Alleles)

} # End of function

####################### SELECTION #######################

SELECTION <- function(Phenotype, Genotype, T0) # Selection

function

{

Selected <- Genotype[Phenotype >T0,] # Selection

return(Selected) # Return selected genotypes

} # End function

####################### GAMETE #######################

GAMETE <- function(X, G.loci) # Pick loci for gamete pool

{

Y<-sample(x¼X,size¼G.loci,replace¼FALSE)#RandomlyselectG.loci

return(Y)

}

################## Function Mutation ##################

MUTATION <- function(X, Pmut, G.loci, N.inds)

{

T.loci <- N.inds*2*G.loci

lambda <- Pmut*T.loci # Mean number of mutations in population

Number of mutations using a Poisson distribution

N.mutations <- rpois(1,lambda)

Randomly select N.mutations rows

Row <- ceiling(runif(N.mutations, min¼0, max¼T.loci))

Temp <- matrix(X) # Convert to a vector

Temp[Row] <- (abs(Temp[Row]-1)) # Convert mutated rows

X <- matrix(Temp, N.inds, 2*G.loci) # Convert back to matrix

return(X)

} # End function

####################### Main Program #######################

set.seed(10) # Initialize random number generator

N.Pop <- 1000 # Population size at each generation

X.loci <- Y.loci<- 30 # Loci per gamete unique to X

C.loci <- 25 # Loci per gamete common to X and Y

h2.X <- 0.4 # heritability of X

h2.Y <- 0.5 # Heritability of Y

S <- -1 # Sign of genetic correlation

Rp <- -0.7 # Phenotypic correlation

Pxy <- 0.68 # Proportion at x or y loci

Pc <- 0.47 # Proportion of c loci

TraitX<-2*(Pxy*X.lociþPc*C.loci) #InitialmeantraitvalueofX

264 MOD E L I N G E VO L U T I ON

TraitY<-2*(Pxy*X.lociþS*Pc*C.loci)#InitialmeantraitvalueofY

VarGX <- 2*(X.loci*Pxy*(1-Pxy)þ C.loci*Pc*(1-Pc)) # Vg of X

VarGY <- VarGX # Vg of Y

CovGXY <- 2*C.loci*Pc*(1-Pc) # Genetic covariance

Rg <- S*CovGXY/sqrt(VarGX*VarGY) # Genetic correlation

print(c(Rg, TraitX, TraitY)) # Print values

Calculate the environmental correlation

Re <- (Rp - Rg*sqrt(h2.X*h2.Y))/sqrt((1-h2.X)*(1-h2.Y))

Check that this Re is possible

if (abs(Re)>1) stop (c(“Re not possible”))

Environmental Variances and Standard deviations

Ve.X <- (1-h2.X)*VarGX/h2.X # Environmental variance for X

SDe.X <- sqrt(Ve.X) # Environmental SD for X

Ve.Y <- (1-h2.Y)*VarGY/h2.Y # Environmental variance for Y

SDe.Y <- sqrt(Ve.Y) # Environmental SD for Y

CovE <- Re*SDe.X*SDe.Y # Environmental covariance

Ematrix <- matrix(c(Ve.X,CovE,CovE,Ve.Y),2,2) # Covariance ma-

trix

Nos of loci in each category

Nx.Alleles<-ASSIGN.LOCI(X.loci,N.Pop,Pxy)#AllelesuniquetoX

Ny.Alleles<-ASSIGN.LOCI(Y.loci,N.Pop,Pxy)#AllelesuniquetoY

Nc.Alleles<-ASSIGN.LOCI(C.loci,N.Pop,Pc) #AllelescommontoX&Y

Now make three matrices for loci in individuals

G.Xmatrix <-matrix(Nx.Alleles,N.Pop,2*X.loci) #Xcomposition

G.Ymatrix <-matrix(Ny.Alleles,N.Pop,2*Y.loci) #Ycomposition

G.Cmatrix <-matrix(Nc.Alleles,N.Pop,2*C.loci) #Ccomposition

################## Iterate over generations ##################

Maxgen <- 40 # Number of generations simulation runs

Output <- matrix(0, Maxgen,9) # Allocate space for output

T0 <- matrix(TraitX,Maxgen,1) # Set T0 for generations

T0[1:5] <- -100 # Set T0 so that 1st 5 gens there is no selection

for (Igen in 1:Maxgen) # Iterate over generations

{

Get actual genotypic values

G.X <-rowSums(G.Xmatrix)þrowSums(G.Cmatrix)#XGenotypicvalues

VarGX <- var(G.X) # Vg for X

G.Y <-rowSums(G.Ymatrix)þ S*rowSums(G.Cmatrix)#YGenotypicvalues

VarGY <- var(G.Y) # Vg for Y

Create phenotypic values

Env <-mvrnorm(n¼N.Pop,mu¼c(0,0),Sigma¼Ematrix)#Environmental

values

P.X <- G.X þ Env[,1] # Vector of X phenotypes

P.Y <- G.Y þ Env[,2] # Vector of Y phenotypes

VarPX <- var(P.X) # Phenotypic variance of X

VarPY <- var(P.Y) # Phenotypic variance of Y

h2.X <- VarGX /VarPX # Heritability of X

G EN E T I C MOD E L S 265

h2.Y <- VarGY/VarPY # Heritability of Y

Rg <- cor(G.X, G.Y) # Genetic correlation

Rp <- cor(P.X, P.Y) # Phenotypic correlation

Store results

Output[Igen,1:9] <- c(Igen, VarGX, VarGY, mean(P.X), mean(P.Y),

h2.X, h2.Y, Rg, Rp)

Apply Selection. Note that selection here is only a function of X

ParentX <- SELECTION(P.X, G.Xmatrix, T0[Igen])

ParentY <- SELECTION(P.X, G.Ymatrix, T0[Igen])

ParentC <- SELECTION(P.X, G.Cmatrix, T0[Igen])

Form Gamete pool

GameteX <- apply(ParentX, 1, GAMETE, X.loci)

GameteX <- t(GameteX) # Convert to proper matrix

GameteY <- apply(ParentY, 1, GAMETE, Y.loci)

GameteY <- t(GameteY) # Convert to proper matrix

GameteC <- apply(ParentC, 1, GAMETE, C.loci)

GameteC <- t(GameteC) # Convert to proper matrix

N.Parents <- nrow(ParentX) # Number of available parents

n <- seq(1, N.Parents) # sequence 1 to N.Parents

Get 2*N.Pop random indices with replacement

G.Index <- sample(x¼n, size¼2*N.Pop, replace¼TRUE)

Get gametes from gamete pool

S.GameteX <- GameteX[G.Index,]

S.GameteY <- GameteY[G.Index,]

S.GameteC <- GameteC[G.Index,]

Form next generation

n1 <- N.Popþ1

n2 <- 2*N.Pop

G.Xmatrix <- cbind(S.GameteX[1:N.Pop,], S.GameteX[n1:n2,])

G.Ymatrix <- cbind(S.GameteY[1:N.Pop,], S.GameteY[n1:n2,])

G.Cmatrix <- cbind(S.GameteC[1:N.Pop,], S.GameteC[n1:n2,])

Mutations

Pmut <- 0.0001 # Mutation probability

G.Xmatrix <- MUTATION(G.Xmatrix, Pmut, X.loci, N.Pop)

G.Ymatrix <- MUTATION(G.Ymatrix, Pmut, Y.loci, N.Pop)

G.Cmatrix <- MUTATION(G.Cmatrix, Pmut, C.loci, N.Pop)

} # Next generation

par(mfrow¼c(2,2))

Plot phenotypic value on generation

ymin<- min(Output[,4:5]); ymax<- max(Output[,4:5]) # Limits on y

plot(Output[,1], Output[,4], xlab¼‘Generation’, ylab¼‘Pheno-

types’, type¼‘l’, ylim¼c(ymin,ymax))

lines(Output[,1], Output[,5], lty¼2)

Plot genetic variances on generation

ymin<- min(Output[,2:3]); ymax<- max(Output[,2:3]) # Limits on y

266 MOD E L I N G E VO L U T I ON

plot(Output[,1], Output[,2], xlab¼‘Generation’, ylab¼‘Genetic

variances’, type¼‘l’, ylim¼c(ymin,ymax))

lines(Output[,1], Output[,3], lty¼2)

Plot heritabilities on generation

ymin<- min(Output[,6:7]); ymax<- max(Output[,6:7]) # Limits on y

plot(Output[,1], Output[,6], xlab¼‘Generation’, ylab-

¼‘Heritabilities’, type¼‘l’, ylim¼c(ymin,ymax))

lines(Output[,1], Output[,7], lty¼2)

Plot correlations on generation

ymin<- min(Output[,8:9]); ymax<- max(Output[,8:9]) # Limits on y

plot(Output[,1], Output[,8], xlab¼‘Generation’, ylab-

¼‘Correlations’,type¼‘l’, ylim¼c(ymin,ymax))

lines(Output[,1], Output[,9], lty¼2)

OUTPUT: (Figure 4.8)

Generation

0

–0
.7

–2
0

15
20

25

0
20

40
60

80
0.

30
0.

40
0.

50

–0
.5

C
or

re
la

tio
ns

G
en

et
ic

 v
ar

ia
nc

es

H
er

ita
bi

lit
ie

s
P

he
no

ty
pe

s

–0
.3

10 20 30 40

Generation

0 10 20 30 40

Generation

0 10 20 30 40

Generation

0 10 20 30 40

Figure 4.8 Results for Scenario 7. Solid lines shows results for trait X and dotted line shows
results for trait Y, except for the plot of correlations in which case the solid line gives
the genetic correlation and the dotted line the phenotypic correlation.

G EN E T I C MOD E L S 267

As in Scenario 6, selection on trait X increases trait X but decreases trait Y. There is

an initial decline in the genetic variances and heritabilities followed by stabiliza-

tion. The genetic correlation actually increases. Because of the threshold selection,

the divergence slowly declines as the proportion of the population exceeding the

threshold increases. With rank-order selection we would expect a continuous

decline in the genetic variances ultimately leaving the genetic variance at muta-

tion-selection balance.

4.10 Some exemplary papers

Via, S. and R. Lande. 1985. Genotype-environment interaction and the evolu-

tion of phenotypic plasticity. Evolution 39:505–522.

Type of model: Population variance components

Characteristics: Single trait, two habitats

Object: To examine the evolution of phenotypic plasticity

Roff, D. A. and D. J. Fairbairn. 2007. Laboratory evolution of the migratory

polymorphism in the sand cricket: combining physiology with quantitative

genetics. Physiological and Biochemical Zoology 80:358–369.

Type of model: Individual variance components

Characteristics: Three traits (one threshold), directional selection

Object: To predict the evolution of traits in a laboratory population of the cricket,

Gryllus firmus

Roff, D. A. and D. J. Fairbairn. 2009. Modeling experimental evolution using

individual-based variance-componentsmodels, inT.GarlandandM.Rose (eds.),

Experimental Evolution. University of California Press, Berkeley, California.

Type of Model: Individual variance components

Characteristics: Multiple examples

Object: To illustrate the use of IVC models for the analysis of experimental evolu-

tion experiments

Reeve, J. P. 2000. Predicting long-term response to selection. Genetical Research

75:83–94.

Type of model: Independent locus

Characteristics: Three traits, mutation, no linkage, stabilizing, correlational and

directional selection

Object: Compare predictions with a population variance component models

Jones, A. G., S. J. Arnold, and R. Borger. 2003. Stability of the G-matrix in a

population experiencing pleiotropic mutation, stabilizing selection, and ge-

netic drift. Evolution 57:1747–1760.

Type of model: Independent locus

268 MOD E L I N G E VO L U T I ON

Characteristics: Two traits, mutation, stabilizing selection, no linkage

Object: To examine the stability of the G matrix, particularly with respect to

orientation

Guillaume, F. and M. C. Whitlock. 2007. Effects of migration on the genetic

covariance matrix. Evolution 61:2398–2409.

Type of model: Independent locus

Characteristics: Two traits, mutation, stabilizing selection, no linkage, two popula-

tions

Object: Evolution of the G matrix

Boulding, E. G., T. Hay, M. Holst, S. Kamel, D. Pakes, and A. D. Tie. 2007.

Modelling the genetics and demography of step cline formation: gastropod

populations preyed on by experimentally introduced crabs. Journal of Evolu-

tionary Biology 20:1976–1987.

Type of model: Independent locus

Characteristics: One trait, no mutation, stabilizing selection, no linkage, clinal

populations

Object: To predict the evolution of shell thickness along a cline in a snail subject to

predation by crabs

G EN E T I C MOD E L S 269

This page intentionally left blank

CHAPTER 5

Game Theoretic Models

5.1 Introduction

Thus far, frequency-dependent interactions have been assumed not to be present,

although they are undoubtedly important in nature (Clarke 1969, 1979; Endler

1986, 1988; Sherratt and Harvey 1993; Sinervo and Calsbeek 2006; Bond 2007).

Putative examples of traits under frequency-dependent selection in natural

populations are resource polymorphisms (Smith and Skulason 1996), mating

polymorphisms (Sinervo and Lively 1996), color polymorphisms (Bond 2007),

plant defenses (Núñez-Farfán et al. 2007), and blood group antigen genes

(Fumagalli et al. 2009). Analysis of models involving frequency-dependence

is the domain of game theory. In a general sense, game theory is concerned with

interactions between individuals: The basic scenario is one in which two indivi-

duals, called the players, meet and interact and either suffer a loss in fitness or an

increase in fitness, called in either case the payoff. The important element of

game theory is the Payoff matrix, which designates the increase or decrease

in fitness to each player. Analysis consists in locating the Evolutionarily Stable

Strategy (ESS), which, as previously noted, is defined as that strategy (or pheno-

type) which if adopted by all members of a population cannot be invaded by a

mutant strategy (or phenotype) (Maynard Smith 1982). In general, game theoretic

models are frequency-dependent but this is not an essential element of such

models. Kokko (2007) gives an example of a frequency-independent model that

involves the optimal growth rate of two neighboring trees. This case is considered

in detail in Scenario 1. Here I shall examine the general elements of the analysis.

5.1.1 Frequency-independent models

The scenario is one in which two trees grow sufficiently close to each other that

they interfere with each other’s growth. The taller tree has an advantage over the

smaller one in that it potentially captures more light (i.e., overshadows the other

tree). However, to increase height requires an allocation into structures other

than leaves and hence this potentially decreases the light-gathering ability of the

tree. Let the payoff, which in this instance equates directly to fitness, to tree A of

height hA when competing against tree B of height hB be designated by the

function P(hA,hB). Table 5.1 shows a payoff matrix for the particular functions

examined in Scenario 1, the mathematical details of which do not matter at this

time. The first entry in each cell of the matrix shows the payoff to tree A for the

given combination of heights and the second entry shows the payoff to tree B.

The payoff matrix is symmetrical and at equilibrium both trees must be of the

same height. Both trees can achieve their best common payoff when they both

have zero heights. However, either tree can increase its payoff by increasing its

height provided the other tree does not do likewise. Now consider the possible

equilibrium of 0.333 for both trees: notice that the changes in payoffs are not

symmetrically distributed about this cell, meaning that this equilibrium is not

stable. In contrast, the changes in payoffs about the height 0.666 are symmetrical

indicating that a stable equilibrium exists in this region. While the equilibrium

value can be numerically estimated by graphically plotting the best responses for

each tree when faced with a second tree of a given height (see Scenario 1 for

details), it can be readily found analytically as follows:

1. Differentiate the payoff function with respect to one of the tree heights (say

tree A):

@PðhA; hBÞ
@hA

ð5:1Þ

2. Set hB ¼ hA ¼ h (because at equilibrium this must be true).

3. Find the value h at which the above differential is zero. This is the ESS.

Table 5.1 Payoff matrix for two trees growing and competing according to the model described in

Scenario 1

Height of tree A Height of tree B

0.000 0.333 0.666 1.000

0.000 0.62, 0.62 0.37, 0.85 0.28, 0.69 0.25, 0.00...
0 − − +...

0.333 0.85, 0.37 0.60, 0.60 0.36, 0.62 0.27, 0.00...
+ 0 − +...

0.666 0.68, 0.27 0.62, 0.36 0.44, 0.44 0.26, 0.00...
+ + 0 +...

1.000 0.00, 0.25 0.00, 0.27 0.00, 0.26 0.00, 0.00...
− − − 0

Note: In each cell the payoff to tree A is placed first and the payoff to tree B is placed second.
The sign of the difference of A minus B is shown in the table.

Source: Adapted from Kokko (2007).

272 MOD E L I N G E VO L U T I ON

5.1.2 Frequency-dependent models

A more usual scenario considered by evolutionary game theory is that in which

the ESS is frequency-dependent. The “classic” example of this type of game is the

Hawk-Dove game. In this scenario there are two responses to a meeting between

two individuals: A hawk response is aggressive, whereas a dove response is passive

or at least less aggressive. Plausible biological examples of this scenario are

fights for territories, food resources, mates, or some other resource that affects

fitness. The simplest payoff matrix for this situation is given in Table 5.2. A hawk

interacting with a dove receives a gain in fitness of Vwhereas the dove receives no

fitness increment (in fact it might loose fitness). Two doves interacting split the

potential gain in fitness and both receive V/2. Two hawks interacting also split

the potential fitness which is Vminus an amount C that is the cost to fighting: thus

the payoff to each hawk is (V � C)/2. It is important to remember that the payoff

is not fitness but the change in fitness. Thus the fitness of an individual after an

encounter is W0 � payoff, where W0 is the initial fitness.

At one extreme a population could consists of only one type of individual that

adopts a Hawk strategy at an encounter with some probability, p, and thus a

Dove strategy with probability 1 � p: such a strategy is termed a Mixed strategy.

At the other extreme the role might be fixed in the population, there being

p hawks and 1 � p doves. This is a Pure strategy because the behavior is fixed

within a morph. This makes no difference to the ESS but, as is discussed below,

is important in numerical analyses. At the ESS the fitness of hawks must match

the fitness of doves. Assuming only a single encounter the two fitnesses, W(Hawk)

and W(Dove) are

WðHawkÞ¼ W0 þ p
1

2
ðV � CÞ þ ð1� pÞV

WðDoveÞ ¼ W0 þ p0þ ð1� pÞ 1
2
V

ð5:2Þ

At equilibrium

WðHawkÞ ¼ WðDoveÞ
W0 þ p

1

2
ðV � CÞ þ ð1� pÞV ¼ W0 þ p0þ ð1� pÞ 1

2
V

p¼ V

C

Table 5.2 Payoff matrix for the Hawk‐Dove game

Hawk Dove

Hawk ½(V−C) V...
Dove 0 ½V

Note: The payoffs are those achieved by the individuals in the left-hand
column when interacting with an individual along the given row.

GAME TH EO R E T I C MOD E L S 273

If an equilibrium exists (i.e., 0 < p < 1) then V < C, which means that the cost of

fighting must exceed the gains or else the population will consist only of one

type.Wecannot stopherebecause the equilibriummightnotbe stable (e.g., a billiard

ball balanced at the end of a cue is at equilibrium only so long as it is not moved

fractionally).Whatweneed to show is that if theproportionofhawks increased their

overall fitnesswould decrease, and similarly, any increase in the proportion of doves

would decrease their overall fitness. To do this we consider two situations:

1. Payoff in the mixed equilibrium population when a dove is encountered: from

Table 5.2 this is pV þ ð1� pÞ 12V ¼ 1
2Vð1þ pÞ. The payoff to a pure dove popula-

tion is 1
2V , which is clearly less than the payoff in the mixed population and

hence an increase in the proportion of doves will be opposed by natural

selection.

2. Payoff in a mixed population when a hawk is encountered is p 1
2 ðV � CÞ and the

payoff to a pure hawk population is 1
2 ðV � CÞ. Because V < C the payoff to the

mixed population is greater than that in a pure hawk population and hence

an increase in the proportion of hawks will be opposed by natural selection.

The Hawk-Dove game exemplifies the general strategy for finding the ESS in

frequency-dependent games. In some games not all possible interactions might

occur: For example, in some animal species certain individuals hold territories

while others act as satellites and attempt to sneak insemination of the female

attracted to the territorial male. In this situation, the interactions between indivi-

duals of the same type are typically not considered. Examples of this type of

scenario are Atlantic salmon, bluegill sunfish, and certain cricket species (Roff

1996). The analysis of this type of game is illustrated in Scenario 8.

As described earlier, the Hawk-Dove game is a very simple game and there are a

large number of complications one could add tomake themodel more biologically

realistic. Of particular importance for which numerical analyses may be a fruitful

approach are (a) the size of the population, (b) the mode of inheritance, and (c) the

number of different strategies.

5.1.3 The size of the population

In general, population size is assumed to be infinite thus eliminating stochastic

variation. However, population sizes may be quite small (see table 8.3 in Roff

[1997]), particularly in experimental situations. Recent theoretical work has

shown that in a finite population evolution to the ESS, even if it exists for the

infinite population, is not assured (Lessard 2005; Orzack and Hines 2005). Thus, it

is highly advisable to study the stability of the ESS as a function of population size.

5.1.4 The mode of inheritance in two-strategy games

In Chapter 4 genetic models were used to establish the evolutionary trajectory

of traits in density-dependent models. Such models are excellent also for the

274 MOD E L I N G E VO L U T I ON

analysis of frequency-dependentmodels. For convenience of discussion, I shall use

the Hawk-Dove game as a model, but the following applies to any game with

two types of players. There are four possible ways in which two types might be

determined:

1. There is no genetic variation in the population, the role taken by an individual

being entirely probabilistic. This is a highly unlikely situation since there could

be no evolution to the ESS. However, this does not preclude an entirely pheno-

typic analysis based on this assumption if we further assume that the genetic

mechanism is not a bar to the evolution. The numerical analysis in this case

can be tedious as it requires the introduction of “mutants” into the population,

which can be computationally intensive. One approach would be to introduce

a learning function which would allow individuals to locate their optimal

behavior within the population. Harley (1981) has considered the issue of

learning in this context but as discussed in Scenario 9, this approach does not

seem viable for numerically locating the ESS, though it gives considerable

insight into the variation expected in a population.

2. The population consists of two or more clones, each clone being either a hawk

or a dove.

3. The determination of each type could be programmed by a simple Mendelian

inheritance pattern such as a single locus with two alleles. The programming in

this case could be quite varied: For example, we might have HH, HD, and DD

being three genotypes with HH being hawk, DD being dove, and HD a mixture,

or the genotypes might program a propensity to adopt one strategy. Depending

on the details of the genetic model it is possible that the ESS might not be

attainable (Maynard Smith 1982). Working out the equilibrium frequency

given a Mendelian mode of inheritance can be difficult analytically but can be

resolved numerically (see Scenarios 3 and 6).

4. The determination of each type is a function of many loci making a quantita-

tive genetic approach appropriate. A simple quantitative genetic model that

has been applied to many cases of dimorphic morphological variation and

could equally well be applied to other dimorphisms is the threshold model,

described in Chapter 4. In this model, we assume that there is an underlying

normally distributed trait called the liability and a threshold of expression:

individuals below the threshold display one morph while individuals above

display the alternate morph (Figure 1.10). Under this model there is no con-

straint to the population achieving the ESS (e.g., Scenario 4). While it is possible

to determine the equilibrium proportions using the threshold model, there is

no advantage to be gained over using the more easily analyzed phenotypic

model. The specific case in which this is not so is when the population is finite

and one is interested in investigating the degree of population fluctuations (see

Scenario 4).

GAME TH EO R E T I C MOD E L S 275

5.1.5 The number of different strategies

Games with just two morphs are relatively simple but the addition of more

strategies can complicate analysis. The Hawk–Dove game can be extended by

introducing a third strategy, which Maynard Smith called “Bourgeois,” in which

the role taken depends on the circumstance: For example, if the fight is over

territory, the Bourgeois strategy is be Hawk if the owner and Dove if the intruder.

In the numerical example given by Maynard Smith the Bourgeois strategy is an

ESS and hence the population is reduced to a single type. While the ESS of games

with multiple roles might be resolved analytically, a numerical approach can be

useful in checking on the result and looking for dynamical behavior such

as cycles. An interesting example of a three-role game is the Rock-Paper-Scissors

(R-P-S) game, which has recently been applied by Sinervo and Lively (1996) to the

case of three-color morphs in the side-blotched lizard (this game is examined in

detail in Scenarios 5, 6, and 7).

As with the two-role game, the analysis of the phenotypic model is relatively

straightforward, although, as exemplified by the R-P-S game, there may not be a

single stable equilibrium. Numerical analysis can be helpful in testing for such

behaviors. Potential difficulty arises when attempting to assign a genetic model

to multiple role games. The clonal model is simple and presents no difficulty in

assigning roles but in any Mendelian model there are potentially a large number

of ways of assigning phenotypes to genotypes. The simplest Mendelian model is

one in which there is a single locus with three alleles, eventhough in this

model there are three heterozygotes which have to be assigned phenotypes.

Unless there is empirical data to suggest a plausible model one must question

the merit of such an investigation. Even greater difficulties arise with a quantita-

tive genetic model. The general threshold model for polymorphisms is to assign

several thresholds. This model seems appropriate for cases where the morphs

are actual multiples of each other, as in the case of multiple digits in guinea

pigs but is harder to justify in the case of qualitatively distinct morphs. Further-

more, the range of combinations of morph types is severely restricted in the

multiple threshold model and an ESS may not, in general, be possible. An alterna-

tive model is to have three separate traits that are normally distributed with

the morph being “decided” by the trait with the highest value. A plausible

model for this could be three hormones or other physiological products that direct

development or behavior, with the expression being dictated by the largest prod-

uct. A variant on this would be to have the probability of expression of a morph

being a function of the relative values of the three traits. Coding for these models

is given in Scenario 7.

5.2 Summary of scenarios

Scenario 1:Describes the application of the game theory approach to a frequency-

independent game. competition between neighboring trees are discussed in

Section 1.1.

276 MOD E L I N G E VO L U T I ON

Scenarios 2–4: In these scenarios the Hawk-Dove game is analyzed using three

modes of transmission between generations: a clonal model (Scenario 2), a simple

Mendelian model (Scenario 3), and a quantitative genetic model (Scenario 4).

Scenarios 5–7: Model complexity is increased by the possibility of three beha-

viors. The particular scenario is the R-P-S game discussed by Sinervo (2001) in

relation to the interactions among lizard morphs. As in the Hawk-Dove game,

three modes of transmission are considered: a clonal model (Scenario 5), a simple

Mendelian model (Scenario 6), and a quantitative genetic model (Scenario 7).

Scenario 8: In the previous scenarios any morph could interact with any other

morph. In some cases only a limited set of interactions might be possible: For

example, with territorial and satellite behaviors the set of possible interactions

may not include territorial versus territorial.

Scenario 9: Behavioral responses may change with learning. This scenario de-

scribes the coding for the model presented by Harley (1981).

5.3 Scenario 1: A frequency-independent game

Frequency-independent games are not as common as those involving frequency-

dependence and are more readily solved. The illustrative example given here is

taken from Kokko (2007) and considers the optimal growth strategies of two trees

that interfere with each other.

5.3.1 General assumptions

1. Two trees grow sufficiently close to each other that they interfere with each

other’s growth.

2. Growth is positively related to the amount of leaf tissue and the amount of this

that can photosynthesize.

3. The amount of leaf tissue is a function of the allocation to growth in height

versus the growth in leaf tissue.

4. The proportion of leaf tissue declines as biomass is allocated to increasing plant

height.

5. The amount of photosynthesis is a function of the difference in height of the

trees, the larger tree being potentially capable of having greater photosynthesis

per leaf.

6. Fitness is a function of the payoff matrix, being greatest for the plant with the

highest payoff.

5.3.2 Mathematical assumptions

1. The proportion of leaf tissue declines monotonically with plant height, h,

according to the equation

GAME TH EO R E T I C MOD E L S 277

f ðhÞ ¼ 1� ha ð5:4Þ
where a is a constant. This equation is arbitrary except that it satisfies the criteria

that at zero height f(h) ¼ 0 (all tissue is leaf tissue) and at maximum height (h ¼ 1)

f(h) ¼ 0 (no allocation to leaf tissue).

2. Photosynthesis per leaf increases in the focal tree as the difference in height,

Dh, increases, having a minimum at a value of PL and a maximum at PH

gðDhÞ ¼ PL þ PH � PL
1þ e�5Dh ð5:5Þ

As with equation (5.4) the particular form of the equation is arbitrary except for

satisfying the two criteria stated above and showing a sigmoidal shape.

3. Designating the two trees as A and B, the difference in height is haA � haB and

the payoff to tree A and B (PA and PB, respectively) is

PA ¼ ð1� haAÞ PL þ PH � PL
1þ e�5ðhaA�haBÞ

2
4

3
5

PB ¼ ð1� haBÞ PL þ PH � PL
1þ e�5ðhaB�haAÞ

2
4

3
5 ð5:6Þ

Values for the constants were set at a¼ 3, PL¼ 0.25, and PH¼ 1. These are arbitrary

but reasonable.

4. Fitness is equated to the payoff.

5.3.3 Plotting the fitness curves

The first thing to note about the payoffs to A and B is that they are symmetrical.

Therefore, we only have to find the optimal fitness curves for one of the trees as,

by symmetry, this must be the same for the other tree, though care is needed

in converting it to a form that can be plotted on the same graph. To do this we

create a function for the payoff matrix and call this over a range of heights for

trees A and B.

A simple way to code the problem would be to use two loops. While this

is intuitively clear it is relatively slow and a faster way is to make use of the

R function expand.grid, which takes the x and y vectors (here denoted by Height,

because both vectors are identical) and creates a two-column matrix of all combi-

nations. Following the calculation of the payoffs for these combinations, the

vector of payoffs is converted into an n	n matrix, where n is the number

of points into which Height has been divided. We then must find the highest

278 MOD E L I N G E VO L U T I ON

payoff for each value of Height, which we do using the R function order. The first

call finds the optimal response of tree B to a given height of tree A. To obtain the

reverse response we simply reverse the coordinates in the call to the plotting

routine.

R CODE:

rm(list=ls())

PAYOFF <- function(X) # Function to calculate the payoff

{

Set constants. Note that these could be passed to the function

alpha <- 3; Pl <- 0.25; Ph <- 1

Note that X[2] is the first height to ensure that payoff matrix

corresponds to the shape shown in Table 5.1

f <- (1-X[2]^alpha) # Calculate f

g <- Pl þ (Ph-Pl)/(1þexp(-5*(X[2]-X[1]))) # Calculate g

Pay <- f*g # Calculate payoff

return(Pay) # Return payoff

}

################ Main Program ##############

n <- 200 # Number of divisions

Height <- seq(0,1, length=n) # Vector of heights for each tree

d <- expand.grid(Height, Height) # Create matrix of all comb-

inations

Paytemp <- apply(d,1,PAYOFF) # Get payoff matrix for tree

Payoff <- matrix(Paytemp, n, n, byrow=T) # Convert to a matrix

BestResponse <- matrix(0,n,1) # Create a vector to take

best response

for (i in 1:n) # Iterate over each value of Height

{

Get order of indexes (Highest first) for Payoffs to Tree B for a

given Height of tree A. Get order by column200

Index <- order(Payoff[,i], na.last¼TRUE, decreasing=TRUE)

Store best Payoff for Tree B against tree A

BestResponse[i] <- Height[Index[1]]

}

Plot the best response of tree B against tree A as a solid line

plot(Height, BestResponse, type¼’l’, xlab¼’Height of tree A’,

ylab¼’Height of tree B’, xlim¼c(0,1), ylim¼c(0,1))

Plot the best response of tree A against tree B as a dashed line

Note that because of symmetry this is done by reversing the axes

lines(BestResponse, Height, lty¼2)

OUTPUT: (Figure 5.1)

GAME TH EO R E T I C MOD E L S 279

Reading from the graph, the optimum is in the region of 0.6 as previously

surmised from Table 5.1. We now consider an analytical solution.

5.3.4 Finding the ESS using the calculus

5.3.4.1 Using the derivative directly

We begin by differentiating PA with respect to hA. To utilize the chain rule

(Appendix 2) I find that it is easier to rewrite the function as

PA ¼ ð1� haAÞ
�
PL þ ðPH � PLÞ½1þ e�5ðhA�hBÞ��1

ð5:7Þ

And thus

@PA
@hA

¼ �aha�1
A PL þ PH � PL

1þ e�5ðhA�hBÞ

� 	
þð1� haAÞðPH�PLÞð�1Þ½�5e�5ðhA�hBÞ�½1þ e�5ðhA�hBÞ��2

ð5:8Þ
At equilibrium hA ¼ hB and hence e�5ðhA�hBÞ ¼ 1, reducing the above equation to

@PA
@hA

¼ �aha�1
A PL þ PH � PL

1þ 1

0
@

1
Aþ ð1� haAÞðPH � PLÞð�1Þð�5Þð1þ 1Þ�2

¼ �aha�1
A PL þ PH � PL

2

0
@

1
Aþ ð1� haAÞðPH � PLÞ 5

4

0
@

1
A

ð5:9Þ

Substituting values for the constants (a ¼ 3, PL ¼ 0.25, and PH ¼ 1) and setting

@PA
@hA

¼ 0 gives

Height of tree A
0.0

0.
0

0.
2

0.
4

0.
6

H
ei

gh
t o

f t
re

e
B

0.
8

1.
0

0.2 0.4 0.6 0.8 1.0

Figure 5.1 Optimal response of one tree given the height of its neighbor. The solid line
shows the best response of tree B given the height of tree A. The dashed line shows the best
response of tree A given the height of tree B. The ESS is at the point of intersection.

280 MOD E L I N G E VO L U T I ON

�1:875h2A þ ð1� h3AÞ0:9375 ¼ 0 ð5:10Þ
which can be solved numerically using nlm in R.

R CODE:

rm(list=ls()) # Clear workspace

Function to calculate payoff Note that we pass the absolute value

of the payoff because nlm seeks the minimum

PAYOFF <- function(x) {abs(�1.875*x^2þ(1-x^3)*0.9375)}

nlm(PAYOFF,p=.5)#Callnlmtofindminimumwithstartingguessat0.5

OUTPUT:

$minimum 7.793257e–08

$estimate 0.618034

$gradient 0.001140648

$code 2

$iterations 5

This is slightly modified for display and shows that the ESS is 0.618, which agrees

visually with the graphic output.

5.3.4.2 Getting the derivative using R

Obtaining the differential can be tedious but can be done either by R or MATLAB

(e.g., see Scenario 1 of Chapter 2). Coding in R is a little obscure but relatively

simple: we first construct a function, FUNC that takes a value w, differentiates the

payoff function with respect to hA, sets hB ¼ w, and calculates the gradient at this

point (grad). The main program finds the value of hA that is the ESS by using the

R function uniroot to locate the value of hA at which the derivative as defined in

FUNC is zero.

R CODE:

rm(list=ls()) # Clear workspace

Function to obtain the gradient at a value w

FUNC <- function(w)

{

Get the derivative with respect to hA and assign to y

y <-deriv(
(1-hA^3)*(0.25þ(1-0.25)/(1þexp(-5*(hA-hB)))),“hA”)

hA <- w # Set hA to w

hB <- w # Set hB to w

Z <- eval(y) # Evaluate the derivative at w

grad <- attr(Z, “gradient”) # Assign gradient value to grad

return(grad)

}

############ MAIN PROGRAM ##############

Call uniroot setting limits from 0 to 1

uniroot(FUNC, interval=c(0, 1))

GAME TH EO R E T I C MOD E L S 281

OUTPUT:

$root 0.6180355

$f.root hA

-5.215027e-06

$iter 6

$estim.prec 6.103516e-05

This is slightly modified for display. The ESS value is 0.618 and the estimated

gradient at this value is �5.215e�06. The ESS was found in 6 iterations with an

approximate precision of 6.104e�05.

5.3.5 Finding the ESS using a numerical approach

The ESS can be found numerically using the same program as for plotting. The ESS

occurs at the height at which the height at the best payoff for A minus the

height at the best payoff for B is zero. To find this create the vector Height-

BestResponse and find the location, say k, at which this difference is closest

to zero: the height that is the ESS is Height[k].

R CODE:

{First lines the same as for plotting. Can delete call to plot}

DIFF <- abs(Height-BestResponse) # Make vector of absolute

differences

Index <- order(DIFF) # Find index value for smallest DIFF

Best.Height <- Height[Index[1]] # Find Height at Index[1]

Best.Height # Print out best height

OUTPUT:

[1] 0.6180905

5.4 Scenario 2: Hawk-Dove game: a clonal model

This game is probably the one that is most often given as an illustration of

game theory. Its analytical solution is trivial for the infinite population but the

consequences of a finite population are not so readily obvious. In this and

the next two scenarios we shall examine how to incorporate genetic inheritance

into the model and examine the consequences of both the type of inheritance and

the population size.

5.4.1 General assumptions

1. The population consists of two types of clones, one which adopts a hawk

behavior and another that adopts the dove behavior.

2. A hawk interacting with a dove always wins.

282 MOD E L I N G E VO L U T I ON

3. A hawk interacting with a hawk earns a negative payoff.

4. A dove interacting with a dove divides the payoff.

5. Fitness is equal to some initial quantity plus the payoff.

5.4.2 Mathematical assumptions

1. The payoff matrix is as shown in Table 5.2.

2. Population size is finite.

3. Only one interaction occurs per individual.

4. Population size is constant with the contribution to the next generation being

determined by the fitness measure

NHðtþ 1Þ ¼ NPop

PNHðtÞ
i¼1 WH;iPNHðtÞ

i¼1 WH;i þ
PNDðtÞ

j¼1 WD;j

ð5:11Þ

where NPop is the number of individuals in the population, NH(t) is the number

of hawks at time t, ND(t) is the number of doves at time t, WH,i is the fitness of the

ith hawk at time t, and WD,i is the fitness of the ith dove at time t.

5.4.3 Finding the ESS using a numerical approach

The important part of the coding is arranging the interaction between individuals.

The population of individuals consists of a vector called Morph of length Npop

with Hawks coded as 1 and Doves coded as 2. This arrangement allows direct

access to the payoff matrix since, for example, a Hawk interacting with a Hawk

gives the combination 1,1 which corresponds to the position in the payoff matrix.

To create a vector of opponents we randomize Morph assigning the outcome to

the vector Opponent. Thus, we have two vectors which might look as shown

below for a population of size 4 individuals. Note that this method does potentially

mean that an individual could interact with itself. This is unlikely unless the

population size is very small (as below) and it is probably not worth inserting a

check to prevent this from happening.

Morph Opponent
1
2
2
1

2
664

3
775

2
1
1
2

2
664

3
775

In the above example the payoffs to the individuals in the vector Morph are given

from the payoff matrix at positions 1,2:2,1:2,1:1,2. One way to do this would be to

iterate over individuals using a loop of length Npop. To each value we add the

initial fitness (in this case 3). A much quicker method is to iterate over all four

GAME TH EO R E T I C MOD E L S 283

possible combinations of the payoff matrix and assign fitnesses based on the

values of Morph and Opponent in the following way:

Fitness <- matrix(0,Npop,1) # Pre-assign space for Fitness

vector

Iterate over the Payoff matrix

for (Receiver in 1:2) # Individual receiving payoff

{

for (I.Opponent in 1:2) # Opponent

{

Fitness[Morph==Receiver & Opponent==

I.Opponent]<- 3 þ PayoffMatrix[Receiver,I.Opponent]

} # End of I.opponent loop

} # End of Receiver loop

The proportion of hawks is then calculated from the sum of fitnesses for hawks

over the total sum of fitnesses:

P.Hawk <- sum(Fitness[Morph¼¼1])/sum(Fitness)

The above operations are placed in a separate function called FITNESS. The

remainder of the program is straightforward bookkeeping. The payoff matrix is

set such that the optimum proportion is 0.2 hawks with the initial fitness being 3.

The number in the population is set at 100 and the initial proportion of hawks

is set at 0.5. To see if the proportion of hawks converges to the correct value,

the observed proportion after generation 20 is tested against the expected propor-

tion of 0.8 using a t-test. (Strictly, an arcsine-square-root transformation should

be used, but in this model and the subsequent models there is no qualitative

difference and the t-test on the raw data is useful in that it gives the 95% confi-

dence limits.)

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate new proportion of Hawks

FITNESS <- function(Morph, Npop, PayoffMatrix)

{

Match males up to find fitness for each male

Create a randomized vector of opponents

Opponent <- sample(Morph)

Fitness <- matrix(0,Npop,1) # Preassign space for Fitness vector

Iterate over the Payoff matrix

for (Receiver in 1:2) # Individual receiving payoff

{

for (I.Opponent in 1:2) # Opponent

{

Fitness[Morph==Receiver & Opponent==

I.Opponent]<- 3 þ PayoffMatrix[Receiver,I.Opponent]

284 MOD E L I N G E VO L U T I ON

} # End of I.opponent loop

} # End of Receiver loop

#Nowcalculatetherelativefitnessofhawks¼NewproportionofHawks

P.Hawk <-sum(Fitness[Morph==1])/sum(Fitness)#MeanfitnessofHawkmales

return(P.Hawk)

}

####################### Main program #######################

set.seed(100) # Initialize random number generator

Npop <- 100 # Set population size

MaxGen <- 100 # Number of generations

Output <- matrix(0,MaxGen,2) # Create file for output

P.Hawk <- 0.5 # Initial proportion of Hawks

Nos.of.Hawks <- Npop*P.Hawk # Initial number of Hawks

Set up morph vector initially with all doves

Morph <- matrix(2,Npop,1)

Convert first Nos.of.Hawks rows to Hawks

Morph[1:Nos.of.Hawks] <- 1

PayoffMatrix <- matrix(c(-1,0,8,4),2,2) # Set up fitness matrix

Calculate theoretical frequency

a <- PayoffMatrix[1,1]

b <- PayoffMatrix[1,2]

c <- PayoffMatrix[2,1]

d <- PayoffMatrix[2,2]

P.Hawks <- (b-d)/(bþc-a-d)

for (Igen in 1:MaxGen) # Iterate over generations

{

Output[Igen,1] <- Igen # Store Generation number in 1st column

Calculate the proportion of each type

Nos.of.Hawks <- length(Morph[Morph==1]) # Number of hawks

Output[Igen,2] <- Nos.of.Hawks/Npop # Proportion of Hawks

Calculate new proportion of hawks by applying fitness criterion

P.Hawk <- FITNESS(Morph, Npop, PayoffMatrix)

Calculate the new population, making sure Nos.of.Hawks is an

integer

Nos.of.Hawks <- round(Npop*P.Hawk)

Morph[1:Npop,1] <- 2 # Initially set rows to Dove

Morph[1:Nos.of.Hawks,1] <- 1 # Convert first Nos.of.Hawks rows

to hawks

} # End of Igen loop

Plot Output

plot(Output[,1], Output[,2],type=’l’, xlab=’Generation’,

ylab=’Proportion of hawks’)

lines(Output[,1], rep(P.Hawks,MaxGen)) # Plot theoretical

expectation

Do t test on proportion after generation 20 to see if it conforms

GAME TH EO R E T I C MOD E L S 285

to the expected value

print(c(mean(Output[20:MaxGen,2]), sd(Output[20:MaxGen,2]),

P.Hawks))

t.test(Output[20:MaxGen,2], mu¼P.Hawks) # Test for variation

from P.Hawks

OUTPUT: (Figure 5.2)

Mean proportion SD Predicted

[1] 0.81160494 0.02938779 0.80000000

> t.test(Output[20:MaxGen,2], mu=P.Hawks) # Test for variation

from P.Hawks

One Sample t-test

data: Output[20:MaxGen, 2]

t ¼ 3.554, df ¼ 80, p-value ¼ 0.0006401

alternative hypothesis: true mean is not equal to 0.8

95 percent confidence interval:

0.8051068 0.8181031

The proportion of hawks quickly rises and bounces around its expected value

though the t-test indicates that it is significantly different from the predicted

value. This is a consequence of the finite size and the conversion from the

proportion to the number of hawks each generation. To demonstrate this we

Generation
0

0.
5

0.
6P

ro
po

rt
io

n
of

 h
aw

ks
0.

7
0.

8

20 40 60 80 100

Figure 5.2 Proportion of hawks in a population in which inheritance is clonal and the ESS
predicted proportion is 0.8 hawks (Scenario 2).

286 MOD E L I N G E VO L U T I ON

can increase the population size, which should eliminate this effect. Increasing

the population size to 1,000 does in fact show the following:

[1] 0.80160494 0.01044232 0.80000000

> t.test(Output[20:MaxGen,2], mu=P.Hawks) # Test for variation

fromP.Hawks

One Sample t-test

data: Output[20:MaxGen, 2]

t ¼ 1.3833, df ¼ 80, p-value ¼ 0.1704

alternative hypothesis: true mean is not equal to 0.8

95 percent confidence interval:

0.799296 0.803914

5.5 Scenario 3: Hawk-Dove game: a simple Mendelian model

This scenario is the same as the previous one except that the morph is determined

by a single locus with two alleles. The immediate issue in such a model is the

decision on what morph are heterozygotes. For this illustration I shall assume that

heterozygotes are hawks: Alternate scenarios would have heterozygotes being

all doves or heterozygotes being hawk or dove with some fixed probability.

5.5.1 General assumptions

1. The population consists of twomorphs, one which adopts a hawk behavior and

another that adopts the dove behavior.

2. Morph is determined by a single locus with two alleles, H and D.

3. The results of interactions are as specified in Scenario 2.

4. Fitness is equal to some initial quantity plus the payoff.

5.5.2 Mathematical assumptions

1. The payoff matrix is as shown in Table 5.2.

2. Population size is finite.

3. Only one interaction occurs per individual.

4. Genotypes HH and HD are hawks, whereas genotype DD is dove.

5. Population size is constant.

6. The contribution to the next generation is determined by the relative fitnesses

as described below.

5.5.3 A graphical analysis

For this analysis we want to plot the change in one generation in the proportion of

hawks (and possibly the allele frequency) as a function of this value. A potentially

stable equilibrium is indicated by the curve crossing the zero line such that

GAME TH EO R E T I C MOD E L S 287

increases in the proportion lead to a decrease in the next generation after this

point but an increase below it. It is possible to work out an exact analysis of this

using the genotype frequencies and taking into account the relationship between

genotype and phenotype. Such an analysis is specific to the given model and does

not extend readily to other models. Here I shall present a more computer-inten-

sive method that extends very easily to other Mendelian models (e.g., the R-P-S

model described in Scenario 6) and is the basis for the model that follows the

change in proportions over time. The essential element in the analysis is the use of

an individual-based population model.

We calculate the number of H and D alleles using

nHðtþ 1Þ ¼ 2
XnHHðtÞ

i¼1

WHH;i þ
XnHDðtÞ

i¼1

WHD;i

nDðtþ 1Þ ¼ 2
XnDDðtÞ
i¼1

WDD;i þ
XnHDðtÞ

i¼1

WHD;i

ð5:12Þ

where nH(tþ 1) is the number of H alleles at time tþ 1, nD(tþ 1) is the number of D

alleles at time tþ 1,WHH,i is the fitness of the ith HH genotype,WHD,i is the fitness

of the ith heterozygote, WDD,i is the fitness of the ith DD genotype, nHH(t) is

the number of HH genotypes at time t, nHD(t) is the number of HD genotypes

at time t, and nDD(t) is the number of DD genotypes at time t. The frequency of

H alleles, pH(t þ 1), is given by

pHðtþ 1Þ ¼ nHðtþ 1Þ
nHðtþ 1Þ þ nDðtþ 1Þ ð5:13Þ

Assuming random mating the frequency of the three genotypes is given by the

Hardy–Weinberg formulae:

pHHðtþ 1Þ ¼ pHðtþ 1Þ2
PHDðtþ 1Þ ¼ 2pHðtþ 1Þ½1� pHðtþ 1Þ�
PDDðtþ 1Þ ¼ ½1� pHðtþ 1Þ�2

ð5:14Þ

An important assumption in the above formulation is that the vector of morphs

represents both males and females and that the payoff matrix for male versus

male, female versus female, and male versus female are the same.

The R coding is very similar to that of Scenario 2. The calculation of the fitnesses

of the two morphs is done exactly as before. Importantly, the vector Morph

is constructed such that the first nHH rows are the HH genotypes, the subsequent

nHD rows are heterozygotes, and the final nDD rows are the DD genotypes: Thus

the first nHHþnHD rows are hawks. This allows us to easily compute the

summed fitnesses of the H and D alleles using equation (5.12). The proportion of

H alleles is then passed from the function FITNESS back to the main program.

As shown in the R-P-S game (Scenario 6) this model can easily be extended

tomorecomplexMendelianmodels. It ismostconvenient to iterateover the frequen-

cy of the hawk allele and then convert this to the proportion of hawks for plotting.

The present coding also plots the frequency of theH allele on the same graph.

288 MOD E L I N G E VO L U T I ON

Because we are using a finite population model there is stochastic variation

in the change in the proportion. While this can be reduced by increasing the size

of the population the increase in computer time can become irksome. An alterna-

tive method, employed here, is to use a modest population size (2,000) and use a

curve-fitting routine to obtain a refined function. A suitable method is the R

function smooth.spline.

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate new frequency of H allele

FITNESS <- function(Morph, PayoffMatrix, HH, HD, Npop)

{

HH ¼ number of HH genotypes HD ¼ Number of Heterozygotes

Npop ¼ Population size

Match males up to find fitness for each male

Create a randomized vector of opponents

Opponent <- sample(Morph)

Fitness <- matrix(0,Npop,1) # Pre-assign space to Fitness

Iterate over the Payoff matrix

for (Receiver in 1:2) # Individual receiving payoff

{

for (I.Opponent in 1:2) # Opponent

{

Fitness[Morph==Receiver & Opponent==

I.Opponent]<- 3 þ PayoffMatrix[Receiver,I.Opponent]

}} # End of the two loops

Now we know that 1-HH are hawks

Calculate range for heterozygotes

n1 <- HHþ1 # Starting row of heterozygotes

n2 <- n1þHD-1 # Ending row of heterozygotes

Number of H alleles

H.alleles <- 2*sum(Fitness[1:HH]) þ sum(Fitness[n1:n2])

n3 <- n2þ1 # Starting row of DD homozygotes

Number of D alleles

D.alleles <- sum(Fitness[n1:n2]) þ 2*sum(Fitness[n3:Npop])

Prop.H <- H.alleles/(H.alleles þ D.alleles) # Proportion H

alleles

return(Prop.H)

} # End of function

####################### Main program #######################

set.seed(100) # Initialize random number generator

Npop <- 2000 # Set population size

Morph <- matrix(2,Npop,1) # Set up matrix initially with doves

MaxProp <- 100 # Nos of divisions for proportions

Data <- matrix(0,MaxProp,4) # Create file for output

GAME TH EO R E T I C MOD E L S 289

Col 1=Prop.H, col 2=Delta Prop.H, col3=P.Hawks, 3=Delta P.Hawks

PayoffMatrix <- matrix(c(-1,0,8,4),2,2) # Set up Payoff matrix

Calculate theoretical frequency

a <- PayoffMatrix[1,1]

b <- PayoffMatrix[1,2]

c <- PayoffMatrix[2,1]

d <- PayoffMatrix[2,2]

P.Hawks <- (b-d)/(bþc-a-d) # Expected proportion of hawks

Data[,1]<- seq(from=0.01,to=0.95, length=MaxProp) # Propn ofH

allele

for (Prop in 1:MaxProp) # Iterate over Proportions

{

Calculate the number of each genotype as integers

Prop.H <- Data[Prop,1] # Get Proportion of H allele

HH <- round(Prop.H^2*Npop) # Number of HH genotypes

HD <- round(2*Prop.H*(1-Prop.H)*Npop)# Number of HD genotypes

Morph[1:Npop] <- 2 # Set initially to doves

Nos.of.Hawks <- HH þ HD # Assuming that HD is a Hawk

Morph[1:Nos.of.Hawks] <- 1 # Set rows 1 to Nos.of.Hawks to hawks

Nos.of.Hawks <- sum(Morph[Morph==1]) # The nos of Hawks

Calculate new proportion of H allele by applying fitness criterion

New.Prop.H <- FITNESS(Morph, PayoffMatrix, HH, HD, Npop)

Data[Prop,2] <- New.Prop.H - Prop.H # Changein propn of H allele

Data[Prop,3]<- Prop.H^2þ 2*Prop.H*(1-Prop.H) # P.Hawks

New.Hawks<-New.Prop.H^2þ 2*New.Prop.H*(1-New.Prop.H)#NewP.Hawks

Data[Prop,4] <- New.Hawks - Data[Prop,3] # Delta P.Hawks

} # End of Prop loop

Plot Change in proportions as a function of P.Hawks

Ymax <- max(Data[,2],Data[,4]) # Maximum Y value

Ymin <- min(Data[,2],Data[,4]) # Minimum Y value

Plot Change in Proportion of H allele

plot(Data[,1], Data[,2], type=’l’,lty=2, xlab=’Initial

Proportion (P or P.Hawks)’, ylab=’Change (in P or P.Hawks)’,

ylim=c(Ymin,Ymax))

lines(Data[,3], Data[,4], type=’l’) # Plot change in proportion

of Hawks

lines(Data[,1], rep(0,MaxProp)) # Plot theoretical ESS as

horizontal line

points(P.Hawks, 0, pch=“X”, cex=2) # Plot X at ESS. cex sets size

of X

Apply smooth spline to smooth out curves

lines(smooth.spline(Data[,1],Data[,2]))

lines(smooth.spline(Data[,3],Data[,4]))

OUTPUT: (Figure 5.3)

290 MOD E L I N G E VO L U T I ON

Figure 5.3 shows that there is a potentially stable equilibrium at a hawk propor-

tion of 0.8.

5.5.4 Finding the ESS using a numerical approach

The program is much the same as in the previous section, the primary difference

being that iterations are over generations rather than initial proportions. At the

end of the simulation deviations from the expected proportion of hawks is tested

using a simple one-sample t-test.

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate new frequency of H allele

FITNESS <- function(Morph, PayoffMatrix, HH, HD, Npop)

{

CODING FOR THIS FUNCTION IS THE SAME AS IN THE PREVIOUS SECTION

}

Initial Proportion (P or P.Hawks)
0.0

–0
.0

2
0.

00
0.

02

C
ha

ng
e

(in
 P

 o
r

P
.H

aw
ks

)

0.
04

0.
06

0.
08

0.2 0.4 0.6 0.8

Figure 5.3 Change after one generation in the proportion of the H allele (dashed line) and
proportion of hawks (solid line) as a function of the initial proportion. The X marks the
theoretical ESS and the solid horizontal line the value of no change. The smooth solid lines
are the smoothed functions fitted using the R routine smooth.spline.

GAME TH EO R E T I C MOD E L S 291

####################### Main program #######################

set.seed(100) # Initialize random number generator

Npop <- 100 # Set population size

MaxGen <- 100 # Number of generations

Output <- matrix(0,MaxGen,2) # Create file for output

Prop.H <- 0.5 # Initial Propn of H alleles in popn

Morph <- matrix(2,Npop,1) # Set up matrix initially with doves

PayoffMatrix <- matrix(c(-1,0,8,4),2,2) # Set up Payoff matrix

Calculate theoretical frequency

a <- PayoffMatrix[1,1]

b <- PayoffMatrix[1,2]

c <- PayoffMatrix[2,1]

d <- PayoffMatrix[2,2]

P.Hawks <- (b-d)/(bþc-a-d) # Expected proportion of hawks

for (Igen in 1:MaxGen) # Iterate over generations

{

Calculate the number of each genotype as integers

HH <- round(Prop.H^2*Npop) # Number of HH genotypes

HD <- round(2*Prop.H*(1-Prop.H)*Npop) # Number of HD genotypes

Morph[1:Npop] <- 2 # Set initially to doves

Nos.of.Hawks <- HH þ HD # Assuming that HD is a Hawk

Morph[1:Nos.of.Hawks] <- 1 # Set rows 1 to Nos.of.Hawks to hawks

Output[Igen,1] <- Igen # Store generation number

Calculate and store the proportion of Hawks

Nos.of.Hawks <- sum(Morph[Morph==1])

Output[Igen,2] <- Nos.of.Hawks/Npop # Proportion of Hawks

Calculate new proportion of H allele by applying fitness criterion

Prop.H <- FITNESS(Morph, PayoffMatrix, HH, HD, Npop)

} # End of Igen loop

Plot time trace

plot(Output[,1], Output[,2], type=’l’, xlab=’Generation’,

ylab=’Proportion of hawks’)

lines(Output[,1], rep(P.Hawks,MaxGen)) # Plot theoretical ex-

pectation

Print out mean proportion hawks, SD and expected proportion

starting at gen 20

print(c(mean(Output[20:MaxGen,2]), sd(Output[20:MaxGen,2]),

P.Hawks))

t test against expected proportion

t.test(Output[20:MaxGen,2], mu=P.Hawks)

OUTPUT: (Figure 5.4)

292 MOD E L I N G E VO L U T I ON

Mean proportion SD Predicted

[1] 0.81814815 0.03808251 0.80000000

> t.test(Output[20:MaxGen,2], mu=P.Hawks)

One Sample t-test

data: Output[20:MaxGen, 2]

t ¼ 4.2889, df ¼ 80, p-value ¼ 4.98e-05

alternative hypothesis: true mean is not equal to 0.8

95 percent confidence interval:

0.8097274 0.8265689

As before, the population approaches the predicted ESS but is significantly

different (with or without a transformation). The degree of fluctuation is also

greater (SD of 0.029 for the clonal model and 0.038 for the Mendelian model).

Increasing the population size to 1,000 decreases to nonsignificance the

discrepancy between predicted and observed proportion.

[1] 0.80092593 0.01181289 0.80000000

> # t test against expected proportion

> t.test(Output[20:MaxGen,2], mu=P.Hawks)

One Sample t-test

data: Output[20:MaxGen, 2]

Generation
0

0.
75

0.
80

P
ro

po
rt

io
n

of
 h

aw
ks

0.
85

0.
90

20 40 60 80 100

Figure 5.4 Proportion of hawks in a population in which inheritance is due to a single
locus with two alleles, H and D, where HH and HD genotypes are hawks. The ESS predicted
proportion is 0.8 hawks.

GAME TH EO R E T I C MOD E L S 293

t ¼ 0.7054, df ¼ 80, p-value ¼ 0.4826

alternative hypothesis: true mean is not equal to 0.8

95 percent confidence interval:

0.7983139 0.8035380

By successive increases in population size one can see that the fluctuations

decrease and that in an infinite population fluctuations about the equilibrium

would cease.

5.6 Scenario 4: Hawk-Dove game: a quantitative genetic
model

The formulation for this model follows that of the quantitative model described in

Chapter 3 (individual variance components models).

5.6.1 General assumptions

1. The population consists of two morphs, one that adopts a hawk behavior and

another that adopts the dove behavior.

2. Morph is determined by the action of multiple genes.

3. The results of interactions are as specified in Scenario 4.

4. Fitness is equal to some initial quantity plus the payoff.

5.6.2 Mathematical assumptions

1. The payoff matrix is as shown in Table 5.2.

2. Population size is finite.

3. Only one interaction occurs per individual.

4. Morph is determined by the threshold model of quantitative genetics

(described below).

5. Interactions occur only between males and females mate randomly with

males (only a simple adjustment, described below, is required to convert the

model into one in which both males and females interact, as assumed in

the Mendelian model).

6. Population size is constant.

7. The genetic mean values of males and females, �mM and �mF, respectively are

�mMðtþ 1Þ ¼
PN
i¼1

WiðtÞmM;iðtÞ
PN
i¼1

WiðtÞ
�mFðtþ 1Þ ¼ �mðtÞ ð5:15Þ

294 MOD E L I N G E VO L U T I ON

where Wi(t) is the fitness of the ith male at time t and N is the number of males.

Themean genetic value of males is weighted by the fitnesses whereas, because the

females are not under direct selection, the mean female value is equal to the

population mean �m.

8. The population mean is the average of the male and female genetic values:

�mðtþ 1Þ ¼ 1

2
½�mMðtÞ þ �mFðtÞ� ð5:16Þ

5.6.3 A graphical analysis

The same approach as in the previous graphical analysis is used. In this case, a

larger population size (10,000 rather than 2,000) was required to reduce fluctua-

tions but as the program runs faster this is not a significant problem.

Hawk and dove behavior is assumed to be controlled by an underlying normally

distributed trait called the liability. Individuals with liabilities greater than a

threshold display hawk behavior, whereas those below the threshold display

dove behavior. This designation is entirely arbitrary and has no effect on the

model behavior. Without loss of generality we can also assume that the phenotyp-

ic variance of the liability is 1 and that the threshold, T0, is set by the initial

proportion of hawks, PH, given a mean population liability of zero: thus we need

to find T0 such that

PH ¼ 1ffiffiffiffiffiffi
2p

p
Z1
T0

e�
1
2x

2

dx ð5:17Þ

In R this can be found by calling the R function qnorm:

T.zero <�qnorm(P.Hawk)

where P.Hawk is the initial proportion of hawks, here set at 0.5. The additive

genetic variance of the liability, Va, is determined from the user-assigned herita-

bility, h2 (here 0.5), and phenotypic variance, Vp (1, as noted above):

Va <� Vp*h2

The environmental variance is the difference between Vp and Va

Ve <� Vp�Va

The genetic value of an individual is determined by drawing a random normal

variate, with males and females considered separately (vectors GM and GF, respec-

tively):

GM <� rnorm(N, mean¼mu, sd¼Sda) # Genetic values of males

GF <� rnorm(N, mean¼mu, sd¼Sda) # Genetic values of females

where N is the number of males and the number of females, mu is the population

mean, changing under selection, and Sda is the additive genetic standard devia-

tion. The above code assumes no sex-linkage and random mating. The

GAME TH EO R E T I C MOD E L S 295

environmental deviations are constructed by drawing random normal variates

from a normal distribution with a mean of zero and an environmental standard

deviation (SDe <� sqrt(Ve)). The phenotypic values of the male liabilities are

the sums of the additive and environmental values. Because females do not take a

behavioral role it is not necessary to consider their phenotypic values. The ob-

served phenotypicmorph of themales is determined from the phenotypic liability

value and the threshold: phenotypic liabilities greater than the threshold become

hawks and those below become doves:

PM.Morph[PM > T.zero] <- 1 # Hawks

PM.Morph[PM <¼ T.zero] <- 2 # Doves

In accordance with the previous Hawk-Dovemodels, a separate function FITNESS

is used to compute the fitnesses from the randomized set of pairwise interactions

and the payoff matrix. The mean genetic value of the next generation is

then computed as described above. If one wished to assume both males and

females interact as in the clonal model then one could simply drop the

female vector, regard the “male” vector as the vector of males and females, and

calculate the next generation from the mean “male” genetic values (i.e., replace

mu <� (mu.Mþ mu.F)/2with mu <� mu.M). Once the newmean, mu, is computed

and passed back to the main program it is used to calculate the new proportion of

hawks, which in R is given by

1-pnorm (q=T.zero, mean=mu, sd=1)

The change in the proportion of hawks is computed by subtraction and stored.

Finally, the functions are plotted as previously.

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate new mean value

FITNESS <- function(GM, GF, PM.Morph, PayoffMatrix, N)

{

Match males up to find fitness for each male

Create a randomized vector of opponents

Opponent <- sample(PM.Morph)

Fitness <- matrix(0,N,1)

Iterate over the Payoff matrix

for (Receiver in 1:2) # Individual receiving payoff

{

for (I.Opponent in 1:2) # Opponent

{

Fitness[PM.Morph==Receiver & Opponent==

I.Opponent]<- 3 þ PayoffMatrix[Receiver,I.Opponent]

}} # End Of two loops

296 MOD E L I N G E VO L U T I ON

mu.M<- sum(Fitness*GM)/sum(Fitness)# Meangenetic value of males

mu.F <- mean(GF) # Mean genetic value of females

mu <- (mu.M þ mu.F)/2 # New population mean

return(mu)

}

#########################Main program#########################

set.seed(100) # Initializerandomnumbergenerator

N <- 10000 # Set population size

PM.Morph <- matrix(0,N,1) # Create file for male phenotypes

h2 <- 0.5 # Set heritability

Vp <- 1 # Set Phenotypic variance

Va <- Vp*h2 # Calculate Additive genetic variance

Ve <- Vp-Va # Calculate Environmental variance

mu <- 0 # Trait mean value

Note that mu is both the genetic mean and the phenotypic mean

because the mean environmental value is by definition zero

SDa <- sqrt(Va) # SD of Va

SDe <- sqrt(Ve) # SD of Ve

PayoffMatrix <- matrix(c(-1,0,8,4),2,2) # Set up Payoff matrix

Calculate theoretical frequency

a <- PayoffMatrix[1,1]

b <- PayoffMatrix[1,2]

c <- PayoffMatrix[2,1]

d <- PayoffMatrix[2,2]

P.Hawks <- (b-d)/(bþc-a-d)

MaxProp <- 20 # Nos of divisions for proportions

Data <- matrix(0,MaxProp,2) # Create file for output

Data[,1] <- seq(from=0.01, to=0.95, length=MaxProp) # Propn of

Hawks

for (Prop in 1:MaxProp) # Iterate over Proportions

{

P.Hawk <- Data[Prop,1] ‘‘ ‘‘ ‘‘ # Initial proportion of Hawks

T.zero <--qnorm(P.Hawk,mean=0,sd=1)#Threshold.Hawks>T.zero

Generate Genetic and environmental values using normal distribu-

tion

mu <- 0

GM <- rnorm(N, mean=mu, sd=SDa) # Genetic values of males

GF <- rnorm(N, mean=mu, sd=SDa) # Genetic values of females

EM <- rnorm(N, mean=0, sd=SDe) # Environmental values of males

PM <- GM þ EM # Phenotypic value of males

Combine phenotypic and genetic values

PM.Morph[PM > T.zero] <- 1 # Hawks

PM.Morph[PM <¼ T.zero] <- 2 # Doves

GAME TH EO R E T I C MOD E L S 297

Calculate the proportion of each type

Nos.of.Hawks <- sum(PM.Morph[PM.Morph==1])

Calculate new mean genetic value by applying fitness criterion

mu <- FITNESS(GM, GF, PM.Morph, PayoffMatrix, N)

Store change in proportion

Data[Prop,2] <- 1-pnorm(q=T.zero, mean=mu, sd=1)-Data[Prop,1]

} # End of Prop loop

Plot Change in Proportion of Hawks

plot(Data[,1], Data[,2], type=’l’,lty=2, xlab=’Initial propor-

tion of Hawks’, ylab=’Changein proportion ofHawks’)

lines(Data[,1], rep(0,MaxProp)) # Plot theoretical ESS as hori-

zontalline

points(P.Hawks,0,pch=“X”, cex=2) #PlotX atESS.cex sets size ofX

Apply smooth spline to smooth out curves

lines(smooth.spline(Data[,1],Data[,2]))

OUTPUT: (Figure 5.5)

Initial proportion of Hawks
0.0

0.
00

0
0.

00
5

C
ha

ng
e

in
 p

ro
po

rt
io

n
of

 H
aw

ks

0.
01

0
0.

01
5

0.2 0.4 0.6 0.8

Figure 5.5 Change after one generation in the proportion of hawks (dashed line) as a
function of the initial proportion in the quantitative genetic model (Scenario 6). The X
marks the theoretical ESS and the solid horizontal line the value of no change. The smooth
solid line is the smoothed functions fitted using the R routine smooth.spline.

298 MOD E L I N G E VO L U T I ON

The results are plotted in Figure 5.5. There is a predicted equilibrium at 0.8, which

is that expected from the general phenotypic analysis.

5.6.4 Finding the ESS using a numerical approach

Because the population takes longer to reach an equilibrium than in the previous

models, the simulation is run for 200 generations andmeanproportion of hawks are

calculated fromgeneration 100. Population size is set at 100. Theprogram is changed

so that themodel is iterated over generations rather thanvarying initial proportions.

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate new mean value

FITNESS <- function(GM, GF, PM.Morph, PayoffMatrix, N)

{

CODING THE SAME AS IN PREVIOUS SECTION

}

######################### Main program #########################

set.seed(100) # Initialize random number generator

N <- 100 # Set population size

PM.Morph <- matrix(0,N,1) # Create file for male phenotypes

P.Hawk <- 0.5 # Initial proportion of Hawks

T.zero <- -qnorm(P.Hawk) # Threshold. Hawks > T.zero

h2 <- 0.5 # Set heritability

Vp <- 1 # Set Phenotypic variance

Va <- Vp*h2 # Calculate Additive genetic variance

Ve <- Vp-Va # Calculate Environmental variance

mu <- 0 # Trait mean value

Note that mu is both the genetic mean and the phenotypic mean

because the mean environmental value is by definition zero

SDa <- sqrt(Va) # SD of Va

SDe <- sqrt(Ve) # SD of Ve

PayoffMatrix <- matrix(c(-1,0,8,4),2,2) # Set up Payoff matrix

Calculate theoretical frequency

a <- PayoffMatrix[1,1]

b <- PayoffMatrix[1,2]

c <- PayoffMatrix[2,1]

d <- PayoffMatrix[2,2]

P.Hawks <- (b-d)/(bþc-a-d)

MaxGen <- 200 # Number of generations

Output <- matrix(0,MaxGen,2) # Create file for output

for (Igen in 1:MaxGen) # Iterate over generations

GAME TH EO R E T I C MOD E L S 299

{

GenerateGeneticandenvironmentalvaluesusingnormaldistribution

GM <- rnorm(N, mean=mu, sd=SDa) # Genetic values of males

GF <- rnorm(N, mean=mu, sd=SDa) # Genetic values of females

EM <- rnorm(N, mean=0, sd=SDe) # Environmental values of males

PM <- GM þ EM # Phenotypic value of males

Combine phenotypic and genetic values

PM.Morph[PM > T.zero] <- 1 # Hawks

PM.Morph[PM <¼ T.zero] <- 2 # Doves

Output[Igen,1] <- Igen # Initial generation

Calculate the proportion of each type

Nos.of.Hawks <- sum(PM.Morph[PM.Morph==1])

Output[Igen,2] <- Nos.of.Hawks/N # Proportion of Hawks

Calculate new mean genetic value by applying fitness criterion

mu <- FITNESS(GM, GF, PM.Morph, PayoffMatrix, N)

} # End of Igen loop

Start <- 100 # Starting row for calculating mean proportion

plot(Output[,1], Output[,2],type=’l’, xlab=’Generation’,

ylab=’Proportion of hawks’)

lines(Output[,1],rep(P.Hawks,MaxGen))#Plottheoreticalexpectation

print(c(mean(Output[Start:MaxGen,2]), sd(Output[Start:Max-

Gen,2]), P.Hawks)) # Mean proportion, SD, Expected proportion

t.test(Output[Start:MaxGen,2], mu¼P.Hawks)

OUTPUT: (Figure 5.6)

Generation
0

0.
5

0.
6

0.
7

P
ro

po
rt

io
n

of
 h

aw
ks 0.

8
0.

9

50 100 150 200

Figure 5.6 Proportion of hawks in a population in which behavior is a quantitative genetic
trait (Scenario 6). The solid line shows the predicted ESS, which is 0.8 hawks.

300 MOD E L I N G E VO L U T I ON

Mean proportion SD Predicted

[1] 0.79544554 0.06787525 0.80000000

> t.test(Output[Start:MaxGen,2], mu¼P.Hawks)

One Sample t-test

data: Output[Start:MaxGen, 2]

t ¼ -0.6744, df ¼ 100, p-value ¼ 0.5016

alternative hypothesis: true mean is not equal to 0.8

95 percent confidence interval:

0.7820461 0.8088450

There is no significant difference between the observed mean and the predicted

ESS after 100 generations. However, the fluctuations are considerably larger

than in either the clonal or Mendelian models (0.029, 0.038, and 0.068 for

the clonal, simple Mendelian, and quantitative genetic models, respectively).

The increased fluctuations are due in part to the heritability (the larger the

heritability the greater the fluctuations). Changing the model such that males

and females interact increases the fluctuations. Increasing population size

decreases the fluctuations.

5.7 Scenario 5: Rock-Paper-Scissors: a clonal model

The R-P-S game is an excellent example of a multiple-strategy game. It is

also relevant because it has recently been invoked to explain the fluctuations of

the tricolor morphs of male side-blotched lizards (Uta stansburiana; Sinervo

and Lively 1996). Males with orange throats are the most aggressive and

defend large territories. Males with dark blue throats are less aggressive

and defend smaller territories while males with yellow-striped throats do not

defend territories but attempt to sneak copulations. According to Sinervo (2001),

the large territories of the orange-throated males can be invaded by the

sneaker (yellow-striped males), the orange-throated males oust the less aggressive

blue-throated males but these latter males can resist the incursions of the yellow-

striped males. Sinervo (2001) has examined the behavior of this model using

a clonal model and ones with simple Mendelian determination. We shall

consider simple versions of the game using a clonal model, a simple Mendelian

model (Scenario 6), and a quantitative genetic model (Scenario 7). At first glance

we might expect an ESS at 1/3, 1/3, and 1/3. However, if contests between

like individuals result in a loss or the trait is genetically polymorpic, then there

may be no stable ESS but fluctuations in each morph proportion (Maynard Smith

1982). For this reason numerical solutions will generally be required.

5.7.1 General assumptions

1. The population consists of three types of clones, one which adopts a “Rock”

behavior, another which adopts a “Paper” behavior, and yet another that

adopts a “Scissors” behavior.

GAME TH EO R E T I C MOD E L S 301

2. The payoffs are symmetrical, a numerical example of which is given in Table

5.3. As per Maynard Smith (1982) I assume that an interaction between two

players of the same morph incurs a fitness deficit of e.
3. Fitness is equal to some initial quantity plus the payoff.

5.7.2 Mathematical assumptions

1. The payoff matrix is as shown in Table 5.3 with e ¼ 0.1.

2. Population size is finite.

3. Only one interaction occurs per individual.

4. Population size is constant with the contribution to the next generation being

determined by the relative fitnesses. Thus the number of “Rock” individuals in

the next generation is given by

NRðtþ 1Þ ¼ NPop

PNRðtÞ
i¼1 WR;iPNRðtÞ

i¼1 WR;i þ
PNPðtÞ

j¼1 WP;j þ
PNSðtÞ

k¼1 WS;k

ð5:18Þ

where NPop is the number of individuals in the population, NR(t) is the number of

“Rocks” at time t, NP(t) is the number of “Papers” at time t, NS(t) is the number

of “Scissors” at time t,WR,i is the fitness of the ith “Rock” at time t,WP,j is the fitness

of the jth “Paper” at time t, andWS,k is the fitness of the kth “Scissor” at time t.

5.7.3 Finding the ESS using a numerical approach

The general approach is the same as the two-strategy clonal model. The payoff

matrix is increased to a 3 	 3 matrix and the initial fitness is set to 5 (values were

chosen arbitrarily to illustrate the model behavior). In the Hawk-Dove game the

morphs were designated 1 and 2; here the three morphs are designated 1, 2, and 3

to access the payoff matrix. To approach a deterministic solution population size

is set 1,000 individuals and the model run for 1,000 generations, which prelimi-

nary runs showed was sufficient to demonstrate the model’s behavior. The initial

proportions were set at 0.33 the ESS values. Approximate equilibrium was ob-

tained at about generation 400 and so the mean proportion of each morph was

calculated from this point. Four different plots are output:

Table 5.3 Payoff matrix for the R‐P‐ game

Rock Paper Scissors

Rock −e 1 −1..
Paper −1 −e 1..
Scissors 1 −1 −e

Note: The payoffs are those achieved by the individuals in the left-hand
column when interacting with an individual along the given row.
Source: Adapted from Maynard Smith (1982).

302 MOD E L I N G E VO L U T I ON

1. The proportion of each morph versus generation. If plotted on the same scale

the individual time traces are difficult to discern. For clarity, I added 0.25 and

0.55 to the scissors and papers, respectively; thus the proportions are actually

Propn þ 0.00, Propn þ 0.25, and Propn þ 0.55, as indicated by the y-axis label.

The “predicted” (only in the long-term sense since we expect instability) ESS

values (0.333, increased by 0.25 and 0.55 for scissors and papers to account for

the amount added to these) are also plotted.

2. A phase plot of scissors on rock starting with generation 400, the generation at

which the proportions appear to oscillate about a constant average value.

3. Two phase plots of the other two combinations of pairwise proportions, plot-

ting from generation 1 to show the full temporal dynamics.

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate new fitness values and morph proportions

FITNESS <- function(Morph, PayoffMatrix, Npop)

{

Match individuals up to find fitness for each male

Opponent<-sample(Morph) #Createarandomizedvectorofopponents

Fitness <- matrix(0,Npop,1) # Allocate space for fitness vector

Iterate over the Payoff matrix

Individual receiving payoff 1=Rock 2 ¼ Scissors 3¼Paper

for (Receiver in 1:3)

{

for (I.Opponent in 1:3) # Opponent 1=Rock 2 ¼ Scissors 3=Paper

{

Fitness[Morph==Receiver & Opponent==

I.Opponent] <- 5 þ PayoffMatrix[Receiver,I.Opponent]

}}

Mean fitness of Rocks

Prop.Rocks <- sum(Fitness[Morph==1])/sum(Fitness)

Mean fitness of Scissors

Prop.Scissors <- sum(Fitness[Morph==2])/sum(Fitness)

return(c(Prop.Rocks, Prop.Scissors))

}

##################### Main program #####################

set.seed(100) # Initialize random number generator

Npop <- 1000 # Set population size

MaxGen <- 1000 # Number of generations

Output <- matrix(0,MaxGen,4) # Create file for output

Set up threshold values for Rocks and Scissors

Prop.Rocks <- 0.33 # Initial proportion Rocks

Nos.of.Rocks <- Prop.Rocks*Npop # Nos of rocks

GAME TH EO R E T I C MOD E L S 303

Prop.Scissors <- 0.33 # InitialproportionScissors

Nos.of.Scissors <- Prop.Scissors*Npop # Nos of Scissors

Set up morph vector initially with all Papers (¼3s)

Morph <- matrix(3,Npop,1)

Set up fitness matrix. Note column-wise fill

Epsilon <- 0.1 # Deficit when the same morph types in-

teract

PayoffMatrix <- matrix(c(-Epsilon,-1,1,1,-Epsilon,-1,-1,1,-

Epsilon),3,3)

for (Igen in 1:MaxGen) # Iterate over generations

{

Output[Igen,1] <- Igen # Store Generation number(1st column)

Calculate the proportion of each type

Morph[1:Npop] <- 3 # First put 3 in all rows

Convert first Nos.of.Rocks rows to Rocks

Morph[1:Nos.of.Rocks] <- 1

Fill in rows corresponding to Scissors

n1 <- Nos.of.Rocksþ1

n2 <- n1þ Nos.of.Scissors

Morph[n1:n2] <- 2

Nos.of.Rocks <- length(Morph[Morph==1]) # Number of Rocks

Nos.of.Scissors <- length(Morph[Morph==2]) # Number of Scissors

Nos.of.Papers <- length(Morph[Morph==3]) # Number of Papers

Output[Igen,2] <- Nos.of.Rocks/Npop # Proportion of Rocks

Output[Igen,3] <- Nos.of.Scissors/Npop # Proportion of Scissors

Output[Igen,4] <- Nos.of.Papers/Npop # Proportion of Papers

Calculatenewproportionofeachmorphbyapplyingfitnesscriterion

Propns <- FITNESS(Morph,PayoffMatrix,Npop)

Nos.of.Rocks <- round(Npop*Propns[1]) # Nos.of.Rocks is an

integer

Nos.of.Scissors <- round(Npop*Propns[2]) # Nos.of.Scissors is

an integer

} # End of Igen loop

par(mfrow=c(2,2)) # 4 plots per page

plot(Output[,1], Output[,2],type=’l’, xlab=’Generation’,

ylab=’Propns (þX)’,ylim=c(0.0,1.0)) # Plot Rocks

lines(Output[,1], Output[,3]þ0.25) # Add Scissorsþ0.25 to plot

lines(Output[,1], Output[,4]þ0.55) # Add Papersþ0.55 to plot

Add predicted lines to plots

lines(Output[,1], rep(0.3333,MaxGen)) # Predicted Rocks

lines(Output[,1],rep(0.3333þ0.25,MaxGen))#PredictedScissors

lines(Output[,1], rep(0.3333þ0.55,MaxGen)) # Predicted Papers

304 MOD E L I N G E VO L U T I ON

Phase plots showing proportion of two morphs

plot(Output[400:MaxGen,2],Output[400:MaxGen,3],type=’l’,

xlab=’Rocks’,

ylab=’Scissors’)

plot(Output[,2],Output[,4],type=’l’,xlab=’Rocks’,ylab=’Papers’)

plot(Output[,3],Output[,4],type=’l’,xlab=’Scissors’,ylab=’Papers’)

print(’ Mean proportions (R,P,S) from Generation 400 to MaxGen’)

Print mean proportions starting at generation 400

print(’ Mean proportions (R,P,S) from Generation 400 to MaxGen’)

c(mean(Output[400:MaxGen,2]),mean(Output[400:MaxGen,3]),

mean(Output[400:MaxGen,4]))

OUTPUT: (Figure 5.7)

Rocks
0.25

0 200 400 600 800 1,000

0.
25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
30

0.
35

P
ap

er
s

P
ro

pn
s

(+
X

)
0.

40
0.

45

0.
25

0.
30

0.
35

P
ap

er
s

0.
40

0.
45

0.
25

0.
30

0.
35

S
ci

ss
or

s
0.

40
0.

45

0.30 0.35 0.40 0.45

RocksGeneration
0.25 0.30 0.35 0.40 0.45

Scissors
0.25 0.30 0.35 0.40 0.45

Figure 5.7 Output from the clonal model of the R‐P‐S game. The traces for the three
proportions over time have been separated by adding 0.25 to scissors (middle trace) and
0.55 to papers (top trace). Predicted ESS values are shown as the horizontal lines (ESS =
0.333 but increased for display purposes by 0.25 and 0.55 for scissors and papers,
respectively). The phase plot for rocks versus scissors starts at generation 400, whereas the
other two start at generation zero.

GAME TH EO R E T I C MOD E L S 305

[1] “Mean proportions (R,P,S) from Generation 400 to MaxGen”

[1] 0.3427022 0.3290266 0.3282712

After approximately 400 generations the morphs appear to fluctuate about a long-

term mean of 1/3 for each morph, though it is not clear if the fluctuations are

complex cycles or chaotic. Increasing e to 0.5 does appear to produce chaotic

behavior but with a very small amplitude (approximately 0.32–0.35).

5.8 Scenario 6: Rock-Paper-Scissors: a simple Mendelian
model

Here we shall consider the simplest possible model, namely one in which there is

a single locus with three alleles, designated R, P, and S. See Sinervo (2001) for other

simple Mendelian models.

5.8.1 General assumptions

These assumptions are the same as given in Scenario 5.

5.8.2 Mathematical assumptions

1. The payoff matrix is shown in Table 5.3 with e ¼ 0.1.

2. Population size is finite.

3. Only one interaction occurs per individual.

4. Morph is determined by a single locus with three alleles, designated R, P, and S.

5. Genotype is translated into phenotype as follows: RR ¼ “Rock,” PP ¼ “Paper,”

and SS ¼ “Scissors.” There are a large number of ways in which heterozygotes

could be classified. I have selected a simple dominance model in which RS and

RP are “Rock” phenotypes and SP is the “Scissors” phenotype.

6. Mating is at random and genotypes at each generation are determined from the

Hardy–Weinberg proportions. For simplicity males and females are not distin-

guished, meaning that the fitnesses apply equally to each sex. In the lizard case

it might be more proper to assume that the R-P-S fitnesses apply to the males

and that the female allele fitnesses are equal. This would require separate

coding for males and females. Because this is a simple bookkeeping chore, for

clarity, I omit this possibility here.

7. Population size is constant with the contribution to the next generation being

determined by the relative fitnesses. Thus, the total absolute fitness of each

allele is

306 MOD E L I N G E VO L U T I ON

WRðtþ 1Þ ¼ 2
XNRR

i¼1

WRR;iðtÞ þ
XNRS

j¼1

WRS;jðtÞ þ
XNRP

k¼1

WRP;kðtÞ

WPðtþ 1Þ ¼ 2
XNPP

i¼1

WPP;iðtÞ þ
XNRP

j¼1

WRP;jðtÞ þ
XNPS

k¼1

WPS;kðtÞ

WSðtþ 1Þ ¼ 2
XNSS

i¼1

WSS;iðtÞ þ
XNRS

j¼1

WRS;jðtÞ þ
XNPS

k¼1

WPS;kðtÞ

ð5:19Þ

where WR, WP, and WS are the fitnesses of R, P, and S alleles, respectively. Note

that the homozygotes contribute two alleles but the heterozygotes contribute

only one allele to each of the relevant two allele fitnesses. The proportion of R

alleles, for example, is thus

PRðtþ 1Þ ¼ WRðtþ 1Þ
WRðtþ 1Þ þWPðtþ 1Þ þWSðtþ 1Þ ð5:20Þ

5.8.3 A graphical analysis

At equilibrium we expect that the proportions of the three morphs should be

equal, though the frequency of the three alleles will depend upon the genotype to

phenotype map. In the graphical analysis of the Mendelian Hawk-Dove model we

varied the allele frequency and calculated the change after one generation. In the

present case we vary two frequencies, here (arbitrarily) R and S compute the

changes in the allele and morph frequencies. The three zero isoclines are plotted

and the equilibrium frequencies are obtained from the common point of intersec-

tion: should no point exist there can be no stable equilibrium.

The integral number of each genotype is calculated from the Hardy–Weinberg

formula and for clarity designated initially by their genotype codes (e.g., RR is the

number of RR genotypes). These calculations are done in the function GENOTYPE,

which passes back both the numbers of each genotype and the proportions of

rocks, papers, and scissors.

These numbers are then placed in the vector

Genotypes <� c(RR, RS, RP, SS, SP, PP)

As noted earlier, the rock phenotype is RR, RS, and RP while the scissors pheno-

type is RP and SP. We now construct a vector of morphs where the first RR þ RS þ
RP rows are rocks (¼ 1), the next RS þ RP rows are scissors (¼ 2), and the last PP

rows are papers (¼ 3). The fitnesses of these morphs can now be calculated using

the same FITNESS function as in the earlier model. In this function we must

calculate the fitnesses of the alleles. This is easily done using the numbers given by

the vector Genotypes, because we have allocated the genotypes in a stacked

fashion of RR, RS, RP, SS, SP, and PP. After calculating the fitnesses the proportions

are calculated as per equation (5.20).

GAME TH EO R E T I C MOD E L S 307

The set of combinations of R and S are generated using the R function expand.

grid. Because we require the storage of three different values it is most conve-

nient to iterate over these combinations rather than using the apply function.

Combinations that are not physically possible (total proportion exceeding 1) are

skipped. The three resulting vectors are converted into a matrix for contour

plotting and the three zero isoclines of allele frequencies (use levels=0 in call

to contour function) are plotted on the same plot (after the first plot add draw-

labels=FALSE to the call to the contour function). The calculation of the con-

tours for the proportions of rocks, papers, and scissors is a little trickier because

we have to convert the allele frequencies into morph frequencies. To do this we

make use of the R function contourLines, which calculates the set of x,y

coordinates for the user-specified contour lines. In this case we want only the

zero contours (so pass levels=0). First we obtain the relevant coordinates for the

matrix X (say), which has dimensions Proportion by Proportion:

Data <�contourLines(Proportion, Proportion, X, levels=0)

The object Data is a list from which we must extract the relevant vectors. This is

done using the R function unlist. An added complication is that contourLines

might construct several zero isocline combinations: each set has to be extracted

separately. Once this is done the isocline can be plotted using the x,y coordinates.

This is done in the user-supplied function ISOCLINE.

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate new proportions

FITNESS <- function(Morph, PayoffMatrix, Genotypes)

{

To take account of integer values Npop is recalculated here

Npop <- sum(Genotypes)

Match individuals up to find fitness for each

Create a randomized vector of opponents

Opponent <- sample(Morph)

Fitness <- matrix(0,Npop,1) # Allocate space for Fitness vector

Iterate over the Payoff matrix

for (Receiver in 1:3) # Ind receiving payoff 1=Rock 2 ¼ Scissors

3=Paper

{

for (I.Opponent in 1:3) # Opponent 1=Rock 2 ¼ Scissors 3=Paper

{

Fitness[Morph==Receiver & Opponent==

I.Opponent]<- 5 þ PayoffMatrix[Receiver,I.Opponent]

}}

Calculate ranges for genotypes to count alleles

n0 <- Genotypes[1] # Nos of RR. This is for completness

n1 <- n0þ1 # Starting row of RS

308 MOD E L I N G E VO L U T I ON

n2 <- n1þGenotypes[2]-1 # Ending row of RS

n3 <- n2þ1 # Starting row of RP

n4 <- n3þGenotypes[3]-1 # Ending row of RP

Sum R alleles RR RS RP

R.alleles <- 2*sum(Fitness[1:n0])þsum(Fitness[n1:n2])þsum

(Fitness[n3:n4])

Number of S alleles

R.alleles <- 2*sum(Fitness[1:n0])þsum(Fitness[n1:n2])þsum

(Fitness[n3:n4])

Number of S alleles

n5 <- n4þ1 # Starting row of SS

n6 <- n5þGenotypes[4]-1 # Ending row of SS

n7 <- n6þ1 # Staring row of SP

n8 <- n7þGenotypes[5]-1 # Ending row of SP

Sum S alleles SS RS SP

S.alleles <- 2*sum(Fitness[n5:n6])þsum(Fitness[n1:n2])þsum

(Fitness[n7:n8])

Number of P alleles

n9 <- n8þ1 # Starting row of PP

Number of P alleles PP RP SP

P.alleles <- 2*sum(Fitness[n9:Npop])þsum(Fitness[n3:n4])þ
sum(Fitness[n7:n8])

Proportion of each allele

Prop.R <- R.alleles/(R.allelesþ S.allelesþ P.alleles) # Propn R

allele

Prop.S <- S.alleles/(R.allelesþ S.allelesþ P.alleles) # Propn S

allele

Prop.P <- P.alleles/(R.allelesþ S.allelesþ P.alleles) # Propn P

allele

return(c(Prop.R,Prop.S,Prop.P)) #Returnproportionofalleles

} # End of function

###################### FUNCTION GENOTYPE ######################

GENOTYPE <- function(Prop.R, Prop.S, Prop.P, Npop)

{

Calculate the genotypes

First all genotypes that have Rock phenotype

RR <- round(Prop.R^2*Npop) # Number of RR genotypes

RS <- round(2*Prop.R*Prop.S*Npop) # Number of RS genotypes

RP <- round(2*Prop.R*Prop.P*Npop) # Number of RP genotypes

Genotypes that have Scissors phenotype

SS <- round(Prop.S^2*Npop) # Number of SS genotypes

SP <- round(2*Prop.S*Prop.P*Npop) # Number of SP genotypes

Genotypes that have Paper phenotype

PP <- round(Prop.P^2*Npop) # Number of PP genotypes

N <- RRþRSþRPþSSþSPþPP # To account for rounding effects

GAME TH EO R E T I C MOD E L S 309

P.Rocks <- (RRþRSþRP)/N # Proportion of Rocks

P.Scissors <- (SSþSP)/N # Proportion of Scissors

P.Paper <- PP/N # Proportion of Paper

return(c(RR, RS, RP, SS, SP, PP, P.Rocks, P.Scissors, P.Paper))

} # End of function

###################### FUNCTION ISOCLINE ######################

ISOCLINE <- function(X, ADD, LTY) # Function to plot zero isoclines

{

X is the matrix of changes in proportion

ADD is a flag. ADD=0 tells function to start a new plot

LTY is the type of line to be drawn

CallRfunctioncontourLinestogetxycoordinatesofzeroisoclines

Data <- contourLines(Proportion, Proportion, X, levels=0)

b <- data.frame(unlist(Data)) # Unlist Data and convert to a

data frame

N.zeros <- length(b[b==0]) # Number of zero isoclines

for (i in 1:N.zeros) # Iterate over isoclines

{

Prop.R <- Data[[i]]$x # Proportion R allele

Prop.S <- Data[[i]]$y # Proportion S allele

Prop.P <- 1- Prop.R - Prop.S # Proportion P allele

RR <- Prop.R^2 # Frequency of RR genotypes

RS <- 2*Prop.R*Prop.S # Frequency of RS genotypes

RP <- 2*Prop.R*Prop.P # Frequencyof RP genotypes

P.Rocks <- RRþRSþRP # Proportion of Rocks

SS <- Prop.S^2 # Frequency of SS genotypes

SP <- 2*Prop.S*Prop.P # Frequency of SP genotypes

P.Scissors <- SSþSP # Proportion of Scissors

Plot lines (Have to check if new plot is requested)

if(i==1 && ADD==0) {plot(P.Rocks,P.Scissors, type=’l’,

xlab=“Proportion of Rock”, ylab=“Proportion of Scissors”,

xlim=c(0,1), ylim=c(0,1),lty=LTY)}

else{ lines(P.Rocks,P.Scissors, lty=LTY) }

}

} # end of function

##################### MAIN PROGRAM #####################

set.seed(100) # Initialize random number generator

Npop <- 2000 # Set population size

Create a sequence of proportions for the two R and S alleles

Nos.P <- 30 # Number of divisions

Proportion <- seq(from=0.01, to=0.95, length=Nos.P)

310 MOD E L I N G E VO L U T I ON

Use expand.grid to generate all possible combinations

RxS <- expand.grid(Proportion, Proportion)

Data.Rocks <- matrix(9,Nos.P*Nos.P,1) # Allocate space for R

output

Data.Scissors <- Data.Rocks # Allocate space for S output

Data.Paper <- Data.Rocks # Allocate space for P output

Morph <- matrix(0,Npop,1) # Allocate space for Phenotype

vector

Set up fitness matrix. Note column-wise fill

Epsilon <- 0.1 # Deficit when the same morph types interact

PayoffMatrix <- matrix(c(-Epsilon,-1,1,1,-Epsilon,-1,-1,1,

-Epsilon),3,3)

Iterate over all possible combinations

Total.Combinations<-Nos.P*Nos.P #Totalnumberofcombinations

for (Ith.comb in 1:Total.Combinations)

{

Prop.R <- RxS[Ith.comb,1] # Proportion of R allele

Prop.S <- RxS[Ith.comb,2] # Proportion of S allele

Prop.P <- 1-Prop.R-Prop.S # Proportion of P allele

Total <- Prop.RþProp.SþProp.P # Sum of proportions

if(Total > 0) # Check that combination is permissable

{

D1 <- GENOTYPE(Prop.R, Prop.S, Prop.P, Npop) # Calculate the

genotypes

Genotypes <- D1[1:6] # Numbers of each genotype

Prop.Morphs <- D1[7:9] # Proportions of each morph

Morph[1:Npop] <- 3 # Set initially to Paper

Nos.of.Rocks <- sum(Genotypes[1:3]) # RRþRSþRP

Nos.of.Scissors <- sum(Genotypes[4:5]) # SSþSP

Nos.of.Papers <- Genotypes[6] # PP genotype

Morph[1:Nos.of.Rocks] <- 1 # Set rows 1 to Nos.of.Rocks to Rocks

n1 <- Nos.of.Rocksþ1 # Starting row for Scissors

n2 <- n1þNos.of.Scissors-1 # Ending row for Scissors

Morph[n1:n2] <- 2 # Set these rows to Scissors (¼2)

Calculate new proportions by applying fitness criterion

Propns <- FITNESS(Morph,PayoffMatrix,Genotypes)

D2 <- GENOTYPE(Propns[1], Propns[2], Propns[3], Npop)

Data.Rocks[Ith.comb] <- D1[7]-D2[7] # Change in proportion of

Rocks

Data.Scissors[Ith.comb] <- D1[8]-D2[8] # Change in propor-

tion of Scissors

Data.Paper[Ith.comb] <- D1[9]-D2[9] # Change in propor-

tion of Paper

GAME TH EO R E T I C MOD E L S 311

} # End of if statement

} # End of Ith.comb loop

Convert vectors to matrices Note that fill is by column not row

Delta.Rocks <- matrix(Data.Rocks, Nos.P, Nos.P, byrow=F)

Delta.Scissors <- matrix(Data.Scissors, Nos.P, Nos.P, byrow=F)

Delta.Paper <- matrix(Data.Paper, Nos.P, Nos.P, byrow=F)

par(mfrow=c(2,2)) # 4 plots per page

Plot zero isoclines for alellic frequencies

contour(Proportion, Proportion, Delta.Rocks, xlab=“Proportion

of R allele”, ylab=“Proportion of S allele”, levels=0, drawla-

bels=FALSE)

contour(Proportion, Proportion, Delta.Scissors,lty=2,

levels=0, add=TRUE, drawlabels=FALSE)

contour(Proportion, Proportion, Delta.Paper, lty=3, levels=0,

add=TRUE, drawlabels=FALSE)

Get zero isoclines for proportion of each morph

ISOCLINE(Delta.Rocks, 0, 1) # Plot Rock zero isocline

ISOCLINE(Delta.Scissors, 1, 2) # Plot Scissors zero isocline

ISOCLINE(Delta.Paper, 1, 3) # Plot Paper zero isocline

points(0.333,0.333, cex=2) # Add predicted ESS. cex ¼ large

symbol

OUTPUT: (Figure 5.8)

The graphical output shows that an equilibrium is possible. Note that the allele

frequencies differ from each other, as expected from the genotype–phenotype

map.

Proportion of R allele
0.0 0.2 0.4 0.6 0.8

Proportion of Rock

P
ro

po
rt

io
n

of
 S

ci
ss

or
s

0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

po
rt

io
n

of
 S

 a
lle

le

0.
0

0.
2

0.
4

0.
6

0.
8

0.2 0.4 0.6 0.8 1.0

Figure 5.8 Zero isoclines for the R‐P‐S Mendelian model (Scenario 6): solid line, rock;
dashed line, scissors; and dotted line, paper. The broken line at 45° can be ignored.
The predicted ESS is indicated by the circle in the right‐hand plot.

312 MOD E L I N G E VO L U T I ON

5.8.4 Finding the ESS using a numerical approach

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate new proportions

FITNESS <- function(Morph,PayoffMatrix,Npop,Genotypes)

{

SAME AS PREVIOUS CODING

}

GENOTYPE <- function(Prop.R, Prop.S, Prop.P, Npop)

{

SAME AS PREVIOUS CODING

}

##################### Main program #####################

set.seed(100) # Initialize random number generator

Npop <- 2000 # Set population size

MaxGen <- 2000) # Number of generations

Output <- matrix(0,MaxGen,7) # Create file for output

Prop.R <- 0.33 # Proportion Rocks

Prop.S <- 0.33 # Proportion Scissors

Prop.P <- 1-Prop.R-Prop.S # Proportion Papers

Morph <- matrix(0,Npop,1) # Allocate space for Phenotype

vector

Set up fitness matrix. Note column-wise fill

Epsilon <- 0.1 # Deficit when the same morph types interact

PayoffMatrix <- matrix(c(-Epsilon,-1,1,1,-Epsilon,-1,-1,1,

-Epsilon),3,3)

for (Igen in 1:MaxGen) # Iterate over generations

{

D1 <- GENOTYPE(Prop.R, Prop.S, Prop.P, Npop) # Calculate the

genotypes

Genotypes <- D1[1:6] # Numbers of each genotype

Prop.Morphs <- D1[7:9] # Proportions of each morph

Morph[1:Npop] <- 3 # Set initially to Paper

Nos.of.Rocks <- sum(Genotypes[1:3]) # RRþRSþRP

Nos.of.Scissors <- sum(Genotypes[4:5]) # SSþSP

Nos.of.Papers <- Genotypes[6] # PP genotype

Morph[1:Nos.of.Rocks] <- 1 # Set rows 1 to Nos.of.Rocks to Rocks

n1 <- Nos.of.Rocksþ1 # Starting row for Scissors

n2 <- n1þNos.of.Scissors-1 # Ending row for Scissors

Morph[n1:n2] <- 2 # Set these rows to Scissors(¼2)

Output[Igen,1] <- Igen # Store Generation number

N <- sum(Genotypes) # To avoid rounding problems

GAME TH EO R E T I C MOD E L S 313

Output[Igen,2] <- Nos.of.Rocks/N # Proportion of Rocks

Output[Igen,3] <- Nos.of.Scissors/N # Proportion of Scissors

Output[Igen,4] <- Nos.of.Papers/N # Proportion of Papers

Output[Igen,5] <- Prop.R # Frequency of allele R

Output[Igen,6] <- Prop.S # Frequency of allele S

Output[Igen,7] <- Prop.P # Frequency of allele P

Calculate new proportion of Rocks by applying fitness criterion

Propns <- FITNESS(Morph,PayoffMatrix,Genotypes)

Prop.R <- Propns[1] # Frequency of allele R

Prop.S <- Propns[2] # Frequency of allele R

Prop.P <- Propns[3] # Frequency of allele R

} # End of Igen loop

par(mfrow=c(2,2)) # 4 plots per page

plot(Output[,1], Output[,2], type=’l’, xlab=’Generation’,

ylab=’Morph Proportions þ X’, ylim=c(0.0,1.8)) # Plot Rocks

lines(Output[,1], Output[,3]þ0.5, lty=2) # Add Scissors to plot

lines(Output[,1], Output[,4]þ1.0, lty=3) # Add Papers to plot

Add predicted line to plots

lines(Output[,1], rep(0.3333,MaxGen)) # “Predicted” ESS

lines(Output[,1], rep(0.3333þ0.5,MaxGen)) # “Predicted” ESS

lines(Output[,1], rep(0.3333þ1,MaxGen)) # “Predicted” ESS

Plot Allele frquencies

plot(Output[,1], Output[,5], type=’l’, xlab=’Generation’,

ylab=’Allele Proportions’, ylim=c(0.0,1)) # Plot Rocks

lines(Output[,1], Output[,6], lty=2) # Add Scissors to plot

lines(Output[,1], Output[,7], lty=3) # Add Papers to plot

Phase plots showing proportion of two morphs

plot(Output[,2],Output[,3],type=’l’, xlab=’Rocks’, ylab=’S-

cissors’)

plot(Output[,2],Output[,4],type=’l’, xlab=’Rocks’, ylab=’Pa-

pers’)

plot(Output[,3],Output[,4],type=’l’, xlab=’Scissors’, ylab=’

Papers’)

Print mean proportions starting at generation 400

print(’ Mean proportions (R,P,S) from Generation 400 to MaxGen’)

c(mean(Output[400:MaxGen,2]),mean(Output[400:MaxGen,3]),

mean(Output[400:MaxGen,4]))

print(’ Mean allele freqs (R,P,S) from Generation 400 to MaxGen’)

c(mean(Output[400:MaxGen,5]),mean(Output[400:MaxGen,6]),

mean(Output[400:MaxGen,7]))

OUTPUT: (Figure 5.9)

314 MOD E L I N G E VO L U T I ON

[1] “Mean proportions (R,P,S) from Generation 400 to MaxGen”

[1] 0.33980440.32908460.3311111

[1] “Mean allele freqs (R,P,S) from Generation 400 to MaxGen”

[1] 0.18938080.23929430.5713249

Both the allelic and morph frequencies show damped cyclic trajectories, with

means being as indicated from the earlier graphical analysis (see Figure 5.9). The

proportion of each morph oscillates about 1/3 but the allelic frequencies fluctuate

about 0.19 (R), 0.24 (S), and 0.57 (P).

5.9 Scenario 7: Rock-Paper-Scissors: a quantitative genetic
model

Although one might imagine this to be a more difficult model to code than

the Mendelian model it actually turns out to be somewhat simpler. As

with the Mendelian model, there are a number of ways in which genotype can

Rocks
0.1

0.
1

0.
2

0.
3

S
ci

ss
or

s
0.

4
0.

5
0.

6

0.
1

0.
2

0.
3P
ap

er
s

0.
4

0.
5

0.
6

0.2 0.3 0.4 0.5 0.6
Rocks

Generation

0.1

0 500 1,000 1,500 2,000
Generation

0

0.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
or

ph
 P

ro
po

rt
io

ns
 +

 X

A
lle

le
 P

ro
po

rt
io

ns

0.
5

1.
0

1.
5

500 1,000 1,500 2,000

0.2 0.3 0.4 0.5 0.6

Figure 5.9 Output from the Mendelian model of the R‐P‐S game. The traces for the
three proportions over time have been separated by adding 0.5 to the scissors
(middle trace) and 1.0 to papers (top trace). Predicted ESS values are shown as the
horizontal lines (ESS = 0.333 but increased for display purposes by 0.5 and 1.0 for
scissors and papers, respectively). Allele proportions have not been separated. The two
phase plots start at generation zero.

GAME TH EO R E T I C MOD E L S 315

translate into phenotype. I shall assume here a simple model in which the three

morphs are determined by three different traits that are uncorrelated.

5.9.1 General assumptions

These are the same as that of Scenario 5.

5.9.2 Mathematical assumptions

1. The payoff matrix is as shown in Table 5.3. In this case when e ¼ 0.1 the model

was completely unstable, one of the morphs eventually reaching 100%, which

one depending on chance (i.e., initial starting conditions such as the random

number generator). More interesting behavior was found with e ¼ 0.5 and so

this is what is used here. However, it is important to note that analyses need to

consider a range of values in order to arrive at generalities.

2. Population size is finite and constant.

3. Only one interaction occurs per individual.

4. Morph is determined by a polygenetic system in the following manner:

There are three uncorrelated traits, each of which is a standard quantitative

trait (i.e., normally distributed). The trait RU underlies the rock morph, the trait

SU underlies the scissors morph, and the trait PU underlies the paper morph.

The morph that is phenotypically expressed is that with the highest value:

a plausible biological scenario for this could be the action of three hormones.

5. Mating is at random and genotypes at each generation are determined from

the multivariate normal distribution of genetic and environmental values (see

Chapter 5 for details of the quantitative genetic model). As with the previous

model, for simplicity, males and females are not distinguished, meaning that

the fitnesses apply equally to each sex. In the lizard case it might be more

proper to assume that the R-P-S fitnesses apply to the males and that the female

allele fitnesses are equal. This would require separate coding for males and

females (see the Hawk-Dove model for how this can be implemented).

6. The mean genetic value of the next generation is determined from the weight-

ed (by fitness) average of the previous genetic values. Thus the mean genetic

value of rock, �RU;A, is

�RUAðtþ 1Þ ¼
PNPop

i¼1 WiðtÞGiðtÞPNPop

i¼1 WiðtÞ
ð5:21Þ

where Wi(t) is the fitness of the ith phenotype at generation t, Gi(t) is the genetic

value of the ith phenotype at generation t, and NPop is the population size.

5.9.3 A graphical analysis

A graphical analysis is not worthwhile in this case. There are three traits which

can vary, in principle, over an infinite range. Equilibrium is expected whenever

316 MOD E L I N G E VO L U T I ON

the means of all three traits are the same. There is no simple way to graphically

display the result varying over the three parameter space. Therefore, we proceed

directly to the analysis over time.

5.9.4 Finding the ESS using a numerical approach

The initial variance–covariance matrices are determined by first creating the

matrix H2 that contains the heritability of the three traits (here 0.5) along the

diagonal, the correlations (here 0) on the off-diagonals:

H2 ¼
0:5 0 0
0 0:5 0
0 0 0:5

2
4

3
5 ð5:22Þ

which in R code is given by

H2 <- matrix(c(0.5, 0, 0, 0, 0.5, 0, 0, 0, 0.5), 3,3)

Without loss of generality, the phenotypic variances are set at 1. The mean

environmental values are, by definition, equal to zero throughout the

simulation. Initially, the mean additive genetic values are set to zero; these

change as a result of selection. The diagonal elements of the covariance matrices

are the variances: hence for the phenotypic variance–covariancematrix, CovP, we

have

diag(CovP)<- c(vars[1], vars[2], vars[3])

where vars[1]<� vars[2]<� vars[3]<� 1.

The additive genetic variances, VA, are obtained from the formula VA ¼ VPh
2,

where VP is the phenotypic variance and h2 is the heritability. The

environmental variance, VE, is the difference between the phenotypic and

genetic variances VE ¼ VA � VP. It is necessary to put a check in the coding since

VE must be positive. In R we can code this as

for (i in 1:NX) # Iterate over traits

{

CovA[i,i] <- CovP[i,i]*H2[i,i] # ¼ Vp*h2

CovE[i,i] <- CovP[i,i]-CovA[i,i] # Environmental Variance

if(CovE[i,i]< 0)stop(print(c(“CovEcannotbe”,i,j,CovE[i,i])))

} # end of i 1:NX loop

The covariances (off-diagonal elements) of the phenotypic and genetic covariance

matrices are obtained from the relationship CovXY ¼ rXYVXVY , where X and Y are

the two traits and r is the correlation. The environmental covariance is obtained

by subtraction: coding in R is

N.minus.1 <- NX-1

for(i in 1:N.minus.1)

{

jj <- iþ1

for(j in jj:NX)

GAME TH EO R E T I C MOD E L S 317

{

CovP[i,j] <- H2[j,i]*sqrt(CovP[i,i]*CovP[j,j]) # Phenotypic

covariance

CovP[j,i] <- CovP[i,j] # Phenotypic covariance

CovA[i,j]<-H2[i,j]*sqrt(CovA[i,i]*CovA[j,j])#Geneticcovariance

CovA[j,i] <- CovA[i,j] # Genetic covariance

CovE[i,j] <- CovP[i,j]-CovA[i,j] # Environmental covariance

CovE[j,i] <- CovE[i,j] # Environmental covariance

} # End of j jj:NX loop

} # End of i 1:N.minus.1 loop

Covariances can be negative and hence no check is required in this case. Note that

these calculations have to be done only once. We now enter the loop that iterates

over generations. At each generation we use the multivariate random normal

generator mvrnorm to create matrices (size NPop	 3) of environmental and genetic

values (remember to load the library MASS for access to this function). These are

added together to get the phenotypic values:

Trait.E <- mvrnorm(Npop, mu¼Mean.E, Sigma¼CovE) # Envir. value

Trait.A <- mvrnorm(Npop, mu¼Mean.A, Sigma¼CovA) # Genetic value

Trait.P <- Trait.A þ Trait.E # Phenotype

These phenotypic values are those of the underlying traits (to be coded as previ-

ously with Rock ¼ 1, Scissors ¼ 2, and Paper ¼ 3). To obtain the expressed morph

we have to find the trait for each individual that has the highest value. I have

done this here by a sequence of comparisons, which may not be the fastest

solution but it is the clearest: so, for example

Morph[Trait.P[,1]>Trait.P[,2]&Trait.P[,1]>Trait.P[,3]]<-1#Rock

The new mean genetic values are obtained by calling the function FITNESS,

which computes the fitnesses in the same manner as in the previous models.

Finally, the newmeans are calculated using equation (5.21): the newmean for the

underlying Rock trait, mu.X1, is computed as

mu.X1 <- sum(Fitness*Trait.A[,1])/sum(Fitness) # Mean Rock

with similar coding for the other two traits.

R CODE:

rm(list=ls()) # Remove all objects from memory

library(MASS) # Make sure MASS library is loaded

FITNESS <- function(Morph, Trait.A, Npop, PayoffMatrix)

{

Opponent <- sample(Morph) # Create a randomized vector of

opponents

Fitness <- matrix(0,Npop,1) # Allocate space for fitnesses

Iterate over the Payoff matrix

for (Receiver in 1:3) # Ind receiving payoff 1=Rock 2 ¼ Scis-

sors 3=Paper

318 MOD E L I N G E VO L U T I ON

{

for (I.Opponent in 1:3) # Opponent 1=Rock 2 ¼ Scissors 3=Paper

{

Fitness[Morph==Receiver & Opponent==

I.Opponent]<- 3 þ PayoffMatrix[Receiver,I.Opponent]

}} # End of loops

Calculate mean genetic values

mu.X1 <- sum(Fitness*Trait.A[,1])/sum(Fitness)# Mean Rock

mu.X2 <-sum(Fitness*Trait.A[,2])/sum(Fitness) # MeanScissors

mu.X3 <-sum(Fitness*Trait.A[,3])/sum(Fitness) # MeanPaper

return(c(mu.X1,mu.X2,mu.X3)) # Return new mean genetic values

}

##########################MAIN PROGRAM##############################

set.seed(10) # Set seed for random number generator

Npop <- 500 # Population size

MaxGen <- 1000 # maximum number of generations

Output <- matrix(0,MaxGen,4) # Allocate space for output

NX <- 3 # Number of traits

Matrix of heritabilities and correlations all h2=0.5, all r=0

H2 <- matrix(c(0.5, 0, 0, 0, 0.5, 0, 0, 0,0.5), 3,3)

mu <- c(0,0,0) # Genetic means. Set initially to zero

vars <- c(1,1,1) # Variances. Set and remain at 1

Mean.A <-c(mu[1],mu[2],mu[3]) # InitialAdditivegeneticmeans

Mean.E <- c(0,0,0) # Environmental means

Phenotypic Covariance matrix

Note that initial covariances are set to 1 (arbitrary)

CovP <- matrix(1,NX,NX) # Phenotypic variances

Set diagonal elements ¼ variances

diag(CovP)<- c(vars[1], vars[2], vars[3])

Establish CovA from h2 and CovP and CovE from CovA and CovP

CovA <- matrix(0, NX, NX) # Allocate space for CovA

CovE <- matrix(0, NX, NX) # Allocate space for CovE

Calculate environmental and genetic variances

for (i in 1:NX) # Iterate over traits

{

CovA[i,i] <- CovP[i,i]*H2[i,i] # ¼ Vp*h2

CovE[i,i] <- CovP[i,i]-CovA[i,i] # Environmental Variance

if(CovE[i,i] <0) stop (print(c(“CovEcannotbe”,i,j,CovE[i,i])))

} # end of i 1:NX loop

Calculate phenotypic, environmental and genetic covariances

N.minus.1 <- NX-1

for(i in 1:N.minus.1)

{

jj <- iþ1

for(j in jj:NX)

{

CovP[i,j] <- H2[j,i]*sqrt(CovP[i,i]*CovP[j,j]) # Phenotypic

covariance

GAME TH EO R E T I C MOD E L S 319

CovP[j,i] <- CovP[i,j] # Phenotypic covariance

CovA[i,j] <- H2[i,j]*sqrt(CovA[i,i]*CovA[j,j]) # Genetic co-

variance

CovA[j,i] <- CovA[i,j] # Genetic covariance

CovE[i,j] <- CovP[i,j]-CovA[i,j] # Environmentalcovariance

CovE[j,i] <- CovE[i,j] # Environmental covariance

} # End of j jj:NX loop

} # End of i 1:N.minus.1 loop

Epsilon <-0.5 # Decrementinfitnessforsamemorphinteraction

Set up fitness matrix. Note column-wise fill

PayoffMatrix <- matrix(c(-Epsilon,-1,1,1,-Epsilon,-1,-1,1,-Epsi-

lon),3,3)

Morph <-matrix(3,Npop,1) # SetupinitialmorphsasallPaper

for (Igen in 1:MaxGen) # Iterate over generations

{

Output[Igen,1] <- Igen # Store generation

Generate additive and environmental values by calling mvrorm

Trait.E <- mvrnorm(Npop,mu=Mean.E,Sigma=CovE) # Envir.value

Trait.A <- mvrnorm(Npop,mu=Mean.A,Sigma=CovA) # Geneticvalue

Trait.P <- Trait.A þ Trait.E # Phenotype

Determine morphs from trait with maximum value

Morph[Trait.P[,1]>Trait.P[,2]&Trait.P[,1]>Trait.P[,3]]<-1#Rock

Morph[Trait.P[,1]>Trait.P[,2]&Trait.P[,1]<Trait.P[,3]]<-3#Paper

Morph[Trait.P[,1]<Trait.P[,2]&Trait.P[,1]>Trait.P[,3]]<-2#Scis-

sors

Morph[Trait.P[,2]>Trait.P[,1]&Trait.P[,2]>Trait.P[,3]]<-2#Scis-

sors

Morph[Trait.P[,2]>Trait.P[,1]&Trait.P[,2]<Trait.P[,3]]<-3#Paper

Morph[Trait.P[,2]<Trait.P[,1]&Trait.P[,2]>Trait.P[,3]]<-1#Rock

Morph[Trait.P[,3]>Trait.P[,1]&Trait.P[,3]>Trait.P[,2]]<-3

#Paper

Morph[Trait.P[,3]>Trait.P[,1]&Trait.P[,3]<Trait.P[,2]]<-2

#Scissors

Morph[Trait.P[,3]<Trait.P[,1]&Trait.P[,3]>Trait.P[,2]]<-1#Rock

Nos.of.Rocks <- length(Morph[Morph==1]) # Number of Rocks

Nos.of.Scissors<- length(Morph[Morph==2]) # NumberofScissors

Nos.of.Papers <- length(Morph[Morph==3]) # NumberofPapers

Output[Igen,2] <- Nos.of.Rocks/Npop # ProportionofRocks

Output[Igen,3] <- Nos.of.Scissors/Npop # ProportionofScissors

Output[Igen,4]<- Nos.of.Papers/Npop # ProportionofPapers

Apply selection

Mean.A <- FITNESS(Morph, Trait.A, Npop, PayoffMatrix)

} # End of generation loop

par(mfrow=c(2,2)) # 4 plots per page

plot(Output[,1], Output[,2], type=’l’, xlab=’Generation’, ylab=’-

Propnþ
X’, ylim=c(0,2)) # Plot Rocks

lines(Output[,1], Output[,3]þ0.5) # Plot Scissors þ 0.5

320 MOD E L I N G E VO L U T I ON

lines(Output[,1], Output[,4]þ1.0) # Plot Papers þ 1

Add “predicted” lines to plots

lines(Output[,1], rep(0.3333,MaxGen)) # Predicted Rocks

lines(Output[,1],rep(0.3333þ0.5,MaxGen)) # PredictedScissors

lines(Output[,1],rep(0.3333þ1.0,MaxGen)) # PredictedPapers

Phase plots

plot(Output[400:MaxGen,2], Output[400:MaxGen,3], type=’l’,

xlab=’Rocks’, ylab=’Scissors’)

plot(Output[,2],Output[,4],type=’l’, xlab=’Rocks’, ylab=’Pa-

pers’)

plot(Output[,3],Output[,4],type=’l’, xlab=’Scissors’, ylab=’-

Papers’)

Print mean proportions starting at generation 400

print(’ Mean proportions (R,P,S) from Generation 400 to MaxGen’)

c(mean(Output[400:MaxGen,2]),mean(Output[400:MaxGen,3]),

mean(Output[400:MaxGen,4]))

OUTPUT: (Figure 5.10)

Rocks

0.2 0.3 0.4 0.5
Scissors

RocksGeneration

0.2

0.200

0.
0

0.
5

1.
0

1.
5

2.
0

200 400 600 800 1,000 0.30 0.40 0.50

0.
20

0.
20

0.
30

0.
40

0.
30P

ap
er

s
S

ci
ss

or
s

0.
40

0.
50

0.
20

0.
30P

ap
er

s
P

ro
pn

 +
 X

0.
40

0.
50

0.3 0.4 0.5 0.6

Figure 5.10 Output from the quantitative genetic model of the R‐P‐S game (Scenario 7).
The traces for the three proportions over time have been separated by adding 0.5 to the
scissors (middle trace) and 1.0 to papers (top trace). “Predicted” ESS values are shown as the
horizontal lines (ESS = 0.333 but increased for display purposes by 0.5 and 1.0 for scissors
and papers, respectively). The phase plot for rocks versus scissors starts at generation 400,
whereas the other two start at generation zero.

GAME TH EO R E T I C MOD E L S 321

[1] “ Mean proportions (R,P,S) from Generation 400 to MaxGen”

[1] 0.3366489 0.3304027 0.3329484

The proportions show what appear to be small but chaotic fluctuations about 1/3.

Unlike the case of e ¼ 0.1, where the fluctuations increase over time leading to

monomorphism (the three underlying traits remain but one has such a high value

that the others are never expressed), there appears to be persistence of all three

morphs.

5.10 Scenario 8: Frequency-dependence with limited
interactions

In the forgoing scenarios it was assumed that all interactions were possible, but in

some cases interactions may be limited to specific combinations. A plausible

example of this is the situation in which there are territorial and satellite males.

In a simple model territorial males might not interact with other territorial males

whereas there will obviously be interactions between satellite males and territori-

al males and between satellite males. I present here a very simple model for

this scenario: further complexity to the model can be added using the approaches

outlined in the previous scenarios.

5.10.1 General assumptions

1. A population consists of territorial and satellite males, the latter attempting to

sneak copulations rather than defending a territory. A population can consist of

only territorial males but not solely satellite males.

2. Territorial males do not interact with each other but satellite males interact

with territorial males and other satellite males.

3. Territorial males are more successful at obtaining mates but suffer a reduction

in fitness as a consequence of some other factor. For example, territorial males

of certain cricket species are subject to parasitism by an acoustically orienting

fly (Cade 1975, 1984) and territorial males of some fish species must delay

maturity to achieve a size at which they are able to defend a territory.

4. The fitness of a satellite male is reduced by the presence of other satellite males

attached to the “focal” territorial male.

5. The fitness of a territorial male is reduced by the presence of satellite males.

5.10.2 Mathematical assumptions

1. The fitness of a territorial male without satellite males is 1.

2. The fitness of a territorial male with satellite males is 0.8 (or some other user-

defined value less than 1). The total fitness of all territorial males at generation

t, WT,t, is thus

322 MOD E L I N G E VO L U T I ON

WT;t ¼ ðNT;t � NT;S;tÞ þ 0:8NT;S;t ð5:23Þ

where NT,t is the number of territorial males and NT,S is the number of territorial

males with satellite males.

3. The fitness of a satellite male is a decreasing function of the number of satellite

males, NS,t, attached to a given male. In the present model I use the simple

function 5/NS,t, meaning that the fitness accruing to all NS,t males is 5/NS,t, not

that each satellite male achieves this fitness. The total fitness of satellite males

at generation t, WS,t, is

WS;t ¼
XNS;t

i¼1

fi;t
5

i
ð5:24Þ

where fi,t is the frequency of occurrences of territorial males with i satellite males.

Note that a single satellite male has a greater fitness than a territorial male (in fact,

in this model a group of up to 5 satellite males have a fitness that is greater or

equal to that of a territorial male): if this were not the case then the satellite male

strategy could not invade the population. However, a satellite male has zero

fitness in the absence of territorial males.

4. Satellite males are distributed at random among the territorial males. Under

this scenario the probability of a satellite male being assigned to a given

territorial male is 1/NT and the number of satellites per territorial male follows

a binomial distribution: thus the probability, PS, of S satellites on around a

male is

PS¼NSCsp
sð1� pÞNS�S ð5:25Þ

where p ¼ 1/NT. Note that, in principle, a single territorial male could have all NS

satellite males around him. An alternate scenario would be to have satellite males

equally distributed, an ideal free distribution, given equality among territorial

males. This latter assumption greatly simplifies the analysis but may not be as

realistic as the former and we shall examine both.

5. The proportion of territorial males in the next generation, PT,tþ1, is proportion-

al to the two fitnesses:

PT;tþ1 ¼ WT;t

WT;t þWS;t
ð5:26Þ

5.10.3 Finding the ESS analytically

Assuming that each territorial male receives the same number of satellites and the

proportion of territorial males at generation t is rt, the two fitnesses are

GAME TH EO R E T I C MOD E L S 323

WT;tþ1 ¼ 0:8NT;t ¼ 0:8rtNt

WS;tþ1 ¼ NT;t
5

NS;t=NT;t
¼ N2

T;t

5

NS;t
¼ r2t N

2
t

5

ð1� rtÞNt
¼ 5r2t Nt

ð1� rtÞ
ð5:27Þ

where Nt is the total population size at time t. The change in the proportion of

territorial males is equal to

Drtþ1;t ¼ rt �
WT;tþ1

WT;tþ1 þWS;tþ1
ð5:28Þ

At equilibrium Drtþ1;t ¼ 0. Substituting the relevant fitnesses from equation (5.27)

into equation (5.28) gives

Drtþ1;t ¼ rt �
0:8rtNt

0:8rtNt þ 5r2t Nt

ð1� rtÞ
¼ rt �

0:8

0:8þ 5rt
1� rt

¼ rt �
0:8ð1� rtÞ

0:8ð1� rtÞ þ 5rt

¼ r2t ð5� 0:8Þ þ ð2Þð0:8Þrt � 0:8

0:8ð1� rtÞ þ 5rt

ð5:29Þ

The equilibrium value is found by setting the numerator equal to zero. This is a

simple quadratic equation for which the solution is

r ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
ð5:30Þ

where a¼ 5� 0.8, b¼ (2)(0.8), and c¼�0.8. The solution can be obtained from the

R coding

a <- 5-0.8; b <- 2*0.8; c <- -0.8

p1 <- (-b-sqrt(b^2 - 4*a*c))/(2*a)

p2 <- (-bþsqrt(b^2 - 4*a*c))/(2*a)

print(c(p1, p2))

which gives the output as �0.6666667 0.2857143. The first solution is clearly

not physically possible, leaving the only equilibrium to be 28.57% territorial males.

Solving equation (5.29) is tedious and errors are likely to occur: thus it is good

practice to also calculate the equilibrium directly from equation (5.28). The R

function uniroot can be used to locate the equilibrium value: for good measure

we also plot Dr as a function of r (either the apply function or a loop could be

used, both are given in the sample code below). Note that we have to designate a

population size: from the above analysis the actual size should be of no conse-

quence, which can be verified by running the model with various values (it is clear

from the coding that population size could be factored out).

324 MOD E L I N G E VO L U T I ON

R CODE:

rm(list=ls()) # Remove all objects from memory

FUNC <- function(P.T) # Function to calculate the change in rho

{

N <- 1000 # Population size

N.T <- P.T*N # Number of territorial males

N.S <- (1-P.T)*N # Number of satellite males

N.S.per.T <- N.S/N.T # Satellite males per territori-

al male

Sat.Fitness <- 5/N.S.per.T # Fitness of satellite

F.S <- N.T*Sat.Fitness # Total Fitness of satellites

F.T <- 0.8*N.T # Total Fitness of territorials

Delta <- P.T - F.T/(F.TþF.S) # Change in rho

return(Delta)

}

##################### MAIN PROGRAM #####################

First plot change in rho against rho

P <- matrix(seq(from=0.01, to=0.99, length=20),20,1) # Propn sa-

tellites

Using a loop

FF <- matrix(0,20,1): for (i in 1:20){FF[i] <- FUNC(P[i])}

FF <- apply(P,1,FUNC) # Using the apply function

Plot the change in rho against rho

plot(P,FF, xlab=’Proportion territorial males, rho’, ylab=’-

Change in rho’)

lines(c(0,1),c(0,0)) # Draw a horizontal line at zero

uniroot(FUNC,interval=c(.01,.99))$root # Get solution using

uniroot

OUTPUT:

[1] 0.2857115

The above output agrees with the quadratic solution and the graphical output (not

shown) shows a single zero value at about this point. Thus we can be assured that

our analysis is correct.

We shall now consider the slightly more complex problem of variation in

the numbers per satellite male. As indicated by equation (5.25), to obtain the

assumed distribution of satellites per territorial male we need to calculate the

binomial probabilities, which can be done using the R function dbinom. It is most

convenient to set this up as a user-supplied function, here called BINOM, to be

called by the apply function (an alternative method using a loop is also given in

the code below). There is a not-so-obvious correction that has to be made to the

binomial probabilities. First we calculate the proportion of territorial males that

do not have satellites, which is given by the simple binomial probability

GAME TH EO R E T I C MOD E L S 325

P0¼NSC0p
0ð1� pÞNS�0 ¼ ð1� pÞNS ð5:31Þ

The R code to do this is

probty <- 1/N.T ‘‘ # Probability for binomial model

P.zero <- dbinom(x=0, size=N.S, probty) # Probty of no satellites

where N.T is the number of territorial males and N.S is the number of satellite

males.

Nowwe calculate the probability that males with satellites have 1, 2, 3, etc. or NS

satellites: this set of probabilities is required to determine the fitness of the

satellite males. Thus we have to exclude the zero probability from our calculations

(i.e., we are dealing with a truncated distribution). Probabilities must add up

to 1 and hence to achieve this for our truncated distribution we divide throughout

by the sum of the binomial probabilities from 1 to NS, which is done by dividing

1 � P0

PS ¼
NSCSp

Sð1� pÞNS�S

1� P0
ð5:32Þ

where for convenience, and hopefully without causing confusion, I have retained

the same symbol, PS, for the probability. The fitnessess of the two types of males is

thus

WT;tþ1 ¼ P0NT;t þ 0:8ð1� P0ÞNT;t

WS;tþ1 ¼ ðNT;t � NT;S;tÞ
XNS;t

i¼1

Cip
ið1� pÞNS�i

1p0

5

i
ð5:33Þ

The coding for the fitness of satellites (with explanation following) is

Sat.nos <- matrix(seq(from¼1, to¼N.S), N.S, 1)

Prob.x <- apply(Sat.nos,1, BINOM, N.S, probty)

Sat.Fitness <- 5/Sat.nos

Freq <- (Prob.x*(N.T-N.T.zero))/(1-P.zero)

F.S <- sum(Freq*Sat.Fitness)

The sequence of operations by line is

1. Generate a vector of the sequence 1 through N.S to be used by the R function

apply as the vector of index values

2. Use the apply function to generate the binomial probabilities

3. Calculate the vector of fitness values for each grouping of satellite males

4. Calculate the “corrected” probability of each grouping and multiply by the

number of territorial males with satellites

5. Sum the above to obtain the total fitness of satellite males

6. Putting this all together we have

326 MOD E L I N G E VO L U T I ON

R CODE:

rm(list=ls()) # Remove all objects from memory

Set up a function for the binomial

BINOM <- function(x, NN, probty) {dbinom(x, size=NN, probty)}

FUNC <- function(P.T) # Function to calculate the change in rho

{

N <- 1000 # Population size

N.T <- round(P.T*N) # Integer number of territorials

N.S <- N-N.T # Number of satellites

probty <- 1/N.T # Probability for binomial model

P.zero <- dbinom(x=0,size=N.S,probty) # Probtyofnosatellites

N.T.zero <- N.T*P.zero # Nosofterritorialswithoutsatellites

Iterate over all territorial male counts > 0

Line below shows how to do it using a loop

#Prob.x <- matrix(0, N.S,1);for (x in 1:N.S){ Prob.x[x] <-

dbinom(x, size=N.S, probty) }

Better approach is to use the apply function

Generate a vector with number of satellites per territorial 1 . . .N.S

Sat.nos <- matrix(seq(from=1, to=N.S), N.S, 1)

Probability of 1,2,3..N.S satellites

Prob.x <- apply(Sat.nos,1, BINOM, N.S, probty)

Fitness of satellite for each number per territorial

Sat.Fitness <- 5/Sat.nos

Frequency distribution of satellites per territorial

Freq <- (Prob.x*(N.T-N.T.zero))/(1-P.zero)

F.S <- sum(Freq*Sat.Fitness) # Fitness of satellites

F.T <-(1*N.T*P.zeroþ 0.8*N.T*(1-P.zero))#Fitnessofterritorials

Delta <- P.T - F.T/(F.TþF.S) # Change in proportion of territial

males

return(Delta)

}

##################### MAIN PROGRAM #####################

{ SAME AS IN PREVIOUS PROGRAM}

OUTPUT:

[1] 0.27029

The ESS, supported by the graphical output (not shown), is predicted to be 27.03%

territorial males. This result is quite close to that obtained from the simpler model

in which an equal number of satellites per males was assumed. Before tackling

complex models it is advisable to begin with simple models. This not only makes

initial analysis easier but also serves to indicate whether the added complexity is

an important addition. In this case there is comparatively little difference between

the two models.

GAME TH EO R E T I C MOD E L S 327

5.10.4 Finding the ESS using a numerical approach

Analysis of the binomial model is “tricky” in the sense that if one does not

realize that a truncated distribution is required the wrong solution is

obtained. A numerical analysis can circumvent this problem by providing

a more direct calculation. As with the two previous scenarios the numerical

approach uses an individual-based modeling approach. The crux of the problem

is to assign the N.S satellite males to the N.T number of territorial males. This

is done as follows:

1. Generate a vector of integers from 1 to N.T:

X <� seq(from=1, to=N.T)

This sequence of integers represents the population of territorial males, each

given a unique number.

2. Pick at random with replacement N.S integers from the range 1 to N.T:

Matches <� sample(X, N.S, replace=TRUE)

These numbers represent the territorial males assigned to each satellite male. For

example, suppose the integer 4 occurs 3 times: this means that territorial male

number 4 has 3 satellite males.

3. Use the R function table to tabulate the number of times territorial males

with satellites occur. Store the resulting list in an object we shall call TABLE:

TABLE <� table(Matches)

As an example, consider the following result for a population size of 20 with 65%

territorial males (¼ 13 individuals):

print(TABLE)

Matches

1 2 5 7 9 10

1 1 1 1 1 2

The above output shows that territorial males labeled 1, 2, 5, 7, 9, and 10 received

satellites, with the first 5 males receiving a single satellite while the last male

received 2 satellites.

4. Convert the list entries (e.g., 1 1 1 1 1 2 in the above) into a vector:

TABLE.MATRIX <� matrix(TABLE,,1)

5. Calculate the total fitness of satellites, W.S, by summing over the above matrix,

applying the fitness formula for the satellites per territorial male, as given by

328 MOD E L I N G E VO L U T I ON

equation (5.24). Note that the frequency fi,t does not apply in this case because

each individual is kept separate.

W.S <� sum(5/TABLE.MATRIX)

6. Calculate the total fitness of territorial males. First we must calculate

the number of territorial males that receive satellites, N.T.S, which is

simply obtained by the number of entries in the list TABLE (or vector TABLE.

MATRIX):

N.T.S <� length(TABLE)

Total fitness of territorial males is given by equation (5.23).

R CODE:

rm(list=ls()) # Remove all objects from memory

Function to calculate the fitness of satellite and territorial

males

FITNESS <- function(P.T, Npop)

{

N.T <- round(Npop*P.T) # Integral nos of territorial males

N.S <- Npop - N.T # Nos of satellite males

X <- seq(from=1, to=N.T) # Label Territorial males

Draw at random with replacement N.S integers of vector X. This

represents

the territorial males assigned to the satellite males

Matches <- sample(X, N.S, replace=TRUE)

Now have to find out how many satellites for each territorial

Use function table to find number of satellites of territorial

males

TABLE <- table(Matches)

Get number of satellite matings ¼ number of picked territorial

males

N.T.S <- length(TABLE)

TABLE <- matrix(TABLE,,1) # Convert TABLE to vector

W.S <- sum(5/TABLE) # Calculate total fitness of satel-

lite males

W.T <- (N.T-N.T.S)*1 þ N.T.S*0.8 # Total fitness of territori-

al males

W <- W.T þ W.S # Total fitness

P.T <- W.T/W # Frequency of Territorial males

return(P.T) # Return frequency of territorial males

GAME TH EO R E T I C MOD E L S 329

}

########################### MAIN PROGRAM #######################

set.seed(1000) # Set seed for random number generator

Npop <- 1000 # Population size

P.T <- 0.25 # Initial proportion of territorial males

Maxgen <- 100 # Number of generations simulation runs

Output <- matrix(0,Maxgen,2) # Pre-assign space for output

Output[,1] <- seq(from¼1, to¼Maxgen) # Store generation number

for (Igen in 1: Maxgen) # Iterate over generations

{

Call function FITNESS to find new proportion of territorial males

P.T <- FITNESS(P.T, Npop)

Output[Igen,2] <- P.T # Store result

} # End of Igen loop

Plot frequency of territorial males against generation number

plot(Output[,1], Output[,2], type¼’l’, xlab¼’Generation’,

ylab¼’Proportion Territorials’) # Plot output

mean(Output[40:Maxgen,2]) # Mean frequency averaged from gener-

ation 40

OUTPUT: (Figure 5.11)

Generation
0

0.
25

0.
26

0.
27

P
ro

po
rt

io
n

T
er

rit
or

ia
ls

0.
28

0.
29

20 40 60 80 100

Figure 5.11 Temporal variation in proportion of territorial males (Scenario 8).

330 MOD E L I N G E VO L U T I ON

[1] 0.2696347

The frequency of territorial males fluctuates approximately between 0.29 and 0.25

with a mean of 0.27, matching the result expected from the analytical solution.

The mean percentage of territorial males does not depend on the population size,

but the fluctuations decrease with population size. One advantage of this model-

ing approach is that it becomes relatively easy to incorporate different constraints

on the distribution of territorial males and the possibility of dynamical choices by

the satellites.

5.11 Scenario 9: Learning the ESS

The previous scenarios assumed that individuals do not learn. However, in many

cases the response of an individual is conditioned on previous experience. Thus

the introduction of a learning function enhances realism, at least for some scenar-

ios. We might also ask if this approach is a useful method to determine the

optimal ESS. To illustrate the approach I shall use the learning model of Harley

(1981) in the context of the Hawk-Dove game.

5.11.1 General assumptions

1. The population consists of individuals that adopt a hawk or dove behavior with

a probability that is contingent on previous experience.

2. The payoff matrix resembles that given in Table 5.2 in as much as the relative

magnitudes are the same but the absolute values are not constrained by the

formulae given in Table 5.2. Thus a dove interacting with a hawk may receive

some positive payoff. Similarly, a dove interacting with a dove receives an

amount that is intermediate between the payoffs that doves receive interacting

with a hawk (rather than equal to V/2).

3. Fitness is equated with the payoff.

5.11.2 Mathematical assumptions

1. The payoff matrix is

H D
H 0 18
D 12 15

2. Population size is finite.

3. An individual experiences a sequence of interactions and uses the Relative

Payoff Sum (RPS) learning rule to determine its behavior at each interaction.

This rule, suggested by Harley (1981), is based on the following general rule. Adjust

the frequency of adopting a given behavior according to the cumulative amount

received from this behavior relative to the total cumulative payoff. An additional

GAME TH EO R E T I C MOD E L S 331

factor added to this rule is a “memory” factor,m, such that themost recent payoffs

have greater weight. Letting the probability of adopting behavior i at interaction

t be Pi(t) then at the first encounter adopt this behavior according to the rule

PiðtÞ ¼ riPn
j¼1rj

ð5:34Þ

where ri is the “residual” value associated with behavior i and there are n possible

behaviors (2 in the case of hawk and dove). In the absence of any information one

might expect all residuals to be equal and thus at the first interaction each

behavior has the same probability of being adopted. At each interaction the

probability is modified according to the accumulating payoffs

PiðtÞ ¼ ri þ
Pt�1

t¼1m
t�t�1Payoff iðtÞPn

j¼1½rj þ
Pt�1

t¼1m
t�t�1Payoff jðtÞ�

ð5:35Þ

The summation in the numerator is the value of adopting behavior i over the time

interval elapsed weighted by the memory factor, m. The denominator is the sum

over all behaviors.

5.11.3 Finding the ESS using a numerical approach

For convenience I shall label the hawk behavior as 1 and dove behavior as 2. Thus

equation can be written for the probability of adopting the hawk behavior as

P1ðtÞ ¼ r1 þ
Pt�1

t¼1m
t�t�1Payoff1ðtÞ

r1 þ
Pt�1

t¼1m
t�t�1Payoff1ðtÞ þ r2 þ

Pt�1
t¼1m

t�t�1Payoff2ðtÞ

¼ r þPt�1
t¼1m

t�t�1Payoff0ðtÞ
2r þPt�1

t¼1m
t�t�1Payoff1ðtÞ þ

Pt�1
t¼1m

t�t�1Payoff2ðtÞ

ð5:36Þ

where I have assumed that the residual values are equal (r1 ¼ r2 ¼ r).

At equilibrium the average probability of adopting the dove behavior should be

such that the expected payoff equals that from adopting the hawk behavior.

Following the protocol set out in Section 5.1.2 this can be shown to be achieved

when P0(t) ¼ (18 � 15)/(18 þ 12 � 0 � 15) ¼ 0.2.

5.11.3.1 Coding P0(t)

Although equation 5.36 looks rather formidable it is not difficult to program. First

we consider the history for a single individual which is contained in a matrix

called Payoff of dimensions Trial	 2 in which the payoffs for being a hawk are

stored in column 1 and the payoffs for being a dove are stored in column 2 and the

number of rows (Trial) is equal to the number of interactions (¼ t in the above

equation). For each trial one entry must be zero as an individual can only adopt a

single behavior. Thematrix Payoff is initiated with zeros in every entry and then

modified as a behavior is adopted. Thus the first 10 trials for an individual could be

(comments attached are not in the matrix)

332 MOD E L I N G E VO L U T I ON

> Payoff[1:10]

[,1] [,2]

[1,] 18 0 Hawk behavior adopted and individual interacts with a Dove

[2,] 0 0 Hawk behavior adopted and individual interacts with another Hawk

[3,] 0 0 Hawk behavior adopted and individual interacts with another Hawk

[4,] 18 0 Hawk behavior adopted and individual interacts with a Dove

[5,] 18 0 Hawk behavior adopted and individual interacts with a Dove

[6,] 0 12 Dove behavior adopted and individual interacts with a Hawk

[7,] 18 0 Hawk behavior adopted and individual interacts with a Dove

[8,] 0 15 Dove behavior adopted and individual interacts with another Dove

[9,] 0 0 Hawk behavior adopted and individual interacts with another Hawk

[10,]0 12 Dove behavior adopted and individual interacts with a Hawk

Equation (5.36) can now be coded as

Hawk <- 0; Dove <- 0 # Set sums initially to zero

MaxT <- Trial-1 # Set t-1

for (Time in 1: MaxT) # Iterate from 1 to t-1

{

Hawk <- Hawk þ m^(Trial-Time-1)*Payoff[Time,1] # Hawk sum

Dove <- Dove þ m^(Trial-Time-1)*Payoff[Time,2] # Dove sum

}

P1.t <- (r þ Hawk)/(2*r þ Hawk þ Dove)

To find the mean probability we must iterate over a number of individuals, say

Npop ¼ 30. Thus we modify the above to accommodate Npop individuals:

MaxT <- Trial-1 # Set t-1

for (Ind in 1:Npop) # Iterate over individuals

{

Hawk <- 0; Dove <- 0 # Set sums initially to zero

for (Time in 1: MaxT) # Iterate from 1 to t-1

{

Hawk <- Hawk þ m^(Trial-Time-1)*Payoff[Time,1,Ind] # Hawk sum

Dove <- Dove þ m^(Trial-Time-1)*Payoff[Time,2,Ind] # Dove sum

} # End of Time loop

P1.t[Ind] <- (r þ Hawk)/(2*r þ Hawk þ Dove)

} # End of Individual loop

The primary changes to the coding are (a) making the payoff matrix into an array

in which the third dimension stores the individual number, and (b) storing the

probability in a vector (P1.t[Ind]). It is possible to replace the Ind loop with

GAME TH EO R E T I C MOD E L S 333

the apply function but the coding gets a little more obscure and there does not

appear to be a significant saving in time.

5.11.3.2 Determining the behavior adopted at a trial

The next step is to determine the entries for the payoff array. To do this we must

first assign the behavior adopted at any given trial. For this purpose we create a

function called MORPH, passing to it the vector of probabilities for the population

and the population size. Within this function three steps are followed:

1. Create a vector Morph of length Npop in which all individuals are assigned the

dove behavior, which is coded as 2.

2. Generate a vector of Npop uniform random numbers lying between 0 and 1.

3. If individual ¼ Ind receives a random number less than P1.t[Ind], then it is

given a value of 1 denoting that it has adopted the hawk behavior.

MORPH <� function(P1.t, Npop) # Function to determine behaviors

{

Set up morph vector initially with all doves

Morph <� rep(2,Npop)

Calculate behavior adopted by using random number generator

Flag <� runif(Npop, min=0, max=1)

Values of Flag < P1.t become Hawks

Morph[P1.t > Flag] <� 1

return(Morph)

} # End of function

5.11.3.3 Calculating the payoffs

The same procedure as used in the other Hawk-Dove models can be used for this.

First, in the main program, we create the payoff matrix

PayoffMatrix <- matrix(c(0,12,18,15),2,2) # Set up payoff matrix

for P=0.2

After determining the behaviors adopted by the individuals (i.e., the matrix

Morph) we pass this to the previously described function FITNESS (see

Scenario 2) which calculates the fitnesses:

FITNESS <- function(Morph, PayoffMatrix, Npop) # Function to gen-

erate payoffs

{

Match males up to find fitness for each male

Create a randomized vector of opponents

Opponent <- sample(Morph)

334 MOD E L I N G E VO L U T I ON

Iterate over the Payoff matrix

Fitness <- rep(0,Npop) # Assign space for fitness

for (Receiver in 1:2) # Individual receiving payoff

{

for (I.Opponent in 1:2) # Opponent

{

Fitness[Morph==Receiver & Opponent==I.Opponent]<- PayoffMatrix

[Receiver,I.Opponent]

} # End of I.opponent loop

} # End of Receiver loop

return(Fitness)

} # End of function

5.11.3.4 The main program

To calculate the preceding we need to keep track of the entire behavioral history

of each individual and for the final output the mean probability of adopting the

Hawk behavior. This is a simple bookkeeping problem but care should be taken to

ensure correct indexing. Parameter values were set at the values used by Harley

(1981). After setting up the parameter values and preassigning space for the

various matrices the results for the first trial are calculated and then the remain-

ing trials addressed using a loop. The coding for the main program is

######################## MAIN PROGRAM #########################

set.seed(100) # Initialize random number generator

Npop <- 30 # Set population size

MaxTrial <- 200 # Number of generations

r <- 14.4 # Residual value

m <- 0.99 # Memory coefficient

Set up a matrix for the output

Rows ¼ trial number Col 1 ¼ trial number, Cols 2- Npopþ1 ¼ Indivi-

duals

Nplusl <- Npopþ1 # Extra col for trial number

Output <- matrix(0,MaxTrial,Nplus1)# Create file for output

P1.t <- matrix(0.5,Npop,1) # Vector of Learned Probabil-

ities

Mean.P1.t <- matrix(0,MaxTrial,1) # matrix for Mean of Pi(t)

Set up array for payoffs

1st dimension ¼ trial, 2nd dimension ¼ Behavior, 3rd dimension ¼
Individual

Payoff <- array(0, c(MaxTrial,2,Npop)) # Array of payoffs

PayoffMatrix <- matrix(c(0,12,18,15),2,2) # Set up payoff matrix

P=0.2

############### Calculate Payoffs for first trial ###############

Output[1,1] <- 1 # Store Trial number in first column

Output[1,2:Nplus1] <-P1.t #StoreProbabilityforeachindividual

Morph<- MORPH(P1.t, Npop) # Call functionto determine behaviors

GAME TH EO R E T I C MOD E L S 335

Fitness<- FITNESS(Morph, PayoffMatrix, Npop) # Determine payoffs

Move Payoffs into Payoff matrix

for (Ind in 1:Npop) # Iterate over individuals

{

Payoff[1, Morph[Ind], Ind] <- Fitness[Ind] # Store fitnesses in

array

} # End of Ind loop

Mean.P1.t[1] <- mean(P1.t) # Save mean Pi(t)

########################SubsequentTrials########################

for (Trial in 2:MaxTrial) # Iterate over trials

{

Morph <- MORPH(P1.t, Npop) # Call function to determine behaviors

Fitness<- FITNESS(Morph, PayoffMatrix, Npop) # Determine payoffs

MaxT <- Trial-1 # Set t-1

for (Ind in 1:Npop) # Iterate over individuals

{

Payoff[Trial, Morph[Ind], Ind] <- Fitness[Ind] # Pass payoffs to

array

} # End of Ind loop

Calculate the new P1.t

for (Ind in 1:Npop) # Iterate over individuals

{

Hawk <- 0; Dove <- 0 # Set sums initially to zero

for (Time in 1: MaxT) # Iterate from 1 to t-1

{

Hawk <- Hawk þ m^(Trial-Time-1)*Payoff[Time,1,Ind] # Hawk sum

Dove <- Dove þ m^(Trial-Time-1)*Payoff[Time,2,Ind] # Dove sum

} # End of Time loop

P1.t[Ind] <- (r þ Hawk)/(2*r þ Hawk þ Dove)

} # End of Individual loop

Store Data

Output[Trial,1] <- Trial # Store Generation number in 1st column

Output[Trial,2:Nplus1]<-P1.t#StoreProbabilityforeachindividual

Mean.P1.t[Trial] <- mean(P1.t) # Store mean Pi(t)

} # End of Trial loop

Plot Output

Plot first individual

plot(Output[,1], Output[,2],type¼’l’, xlab¼’Trial number’,

ylab¼’Hawk P1.t’, ylim ¼c(0,1))

for (i in 3: Nplus1) # Plot all remaining individuals

{

lines(Output[,1], Output[,i],type¼’l’)

}

points(Output[,1], Mean.P1.t) # Plot trajectory of mean probty

of hawk

OUTPUT: (Figure 5.12)

336 MOD E L I N G E VO L U T I ON

The results from the above program are shown in Figure 5.12. As noted by Harley

(1981) there is an enormous variation among individuals and approach to the

expected mean value is extremely slow. The importance of this type of simulation

is that it shows how difficult it may be to experimentally test predictions of game

theory if learning is involved or sample sizes are relatively small.

5.12 Some exemplary papers

O’Brien, E. E. and J.S Brown. 2008.Games roots play: effects of soil volume and

nutrients. Journal of Ecology 96:438–446.

Problem: To find the ESS for root production for two plants growing within each

others area of nutrient extraction.

Approach: The situation that is a variant of Scenario 1. The solution is approached

using the calculus but the resulting equation has to be solved numerically.

Ruxton, G. D. and M. Broom. 1999. Evolution of kleptoparasitism as a war of

attrition. Journal of Evolutionary Biology 12:755–759.

Problem: The evolution of kleptoparasitism (defined as the stealing of resources

gathered by another individual).

Approach: The “war of attrition” framework. Results are derived analytically by

keeping assumptions simple and somewhat restrictive. As noted by the authors, it

could be of considerable interest and biological significance to use an individual-

Trial number
0

0.
0

0.
2

0.
4

P
1.

t
0.

6
0.

8
1.

0

50 100 150 200

Figure 5.12 Individual trajectories using the RPS learning rule in the Hawk‐Dove game
(Scenario 9). The series of circles shows the mean value of P1(t).

GAME TH EO R E T I C MOD E L S 337

based model to examine the consequences of variation among individuals. The

approaches used in Scenarios 2–7 could be readily adopted for this purpose.

Servedio, M. R. and M. E. Hauber. 2006. To eject or to abandon? Life history

traits of hosts and parasites interact to influence the fitness payoffs of alter-

native anti-parasite strategies. Journal of Evolutionary Biology 19:1585–1594.

Problem: Under what conditions is the fitness payoff of egg ejection greater than

nest abandonment?

Approach: Single generation model based on a normal distribution of phenotypes.

The appendix gives a detailed account of the necessary equations. The results are

determined numerically. As noted by the authors, themodel does not consider the

possibility of both behaviors in the population. This deficiency could be remedied

using an individual-based model as described in Scenarios 2 –7.

Eadie, J. M. and J. M. Fryxell. 1992. Density dependence, frequency-dependence,

and alternative nesting strategies in goldeneyes.AmericanNaturalist 140:621–641.

Problem: Influence of frequency- and density-dependence on the evolution of

alternative nesting behaviors (brood parasitism females and parental females) in

the goldeneye.

Approach: Analytical solutions of frequency- and density-dependence are taken

separately followed by a simulation incorporating both effects. In the simulation

clonal inheritance is implicitly assumed with each female producing daughters

that have the same behavior as their mother. The model shows that both beha-

viors can be maintained in the population. Results compare favorably with the

observed data on goldeneyes.

Sinervo, B. 2001. Runaway social games, genetic cycles driven by alternative

male and female strategies, and the origin of morphs. Genetica 112–

113:417–443.

Problem: To explain the persistence of three alternative male strategies in various

lizard species (notably Uta stansburiana).

Approach: Simulation models using either clonal or simple Mendelian models of

inheritance. The models are analogous to the R-P-S models discussed in this

chapter. The results are compared to the observed dynamics of lizard populations.

Wakano, J. Y. and Y. Ihara. 2005. Evolution of male parental care and female

multiple mating: Game-theoretical and two-locus diploid models. American

Naturalist 166:E32–E44.

Problem: The evolution of male parental care and female multiple mating.

Approach: An analytical solution is derived for the case of clonal inheritance and

simulation used to analyze an individual-based model in which inheritance was

determined by a two-allelic, two-locus model. Under some parameter combina-

tions predictions of the two models differed significantly.

338 MOD E L I N G E VO L U T I ON

Beauchamp, G. U. Y. 2000. Learning rules for social foragers: implications for

the producer-scrounger game and ideal free distribution theory. Journal of

Theoretical Biology 207:21–35.

Problem: To determine the ability of various learning rules to predict the behavior

of social foragers under two types of scenarios: a producer-scrounger game and an

ideal free distribution game.

Approach: Simulation of various learning rules in the two scenarios. The ESS was

located numerically by varying the probability of displaying a behavior. By intro-

ducing a mutant using a different learning rule the stability of the ESS was

examined.

GAME TH EO R E T I C MOD E L S 339

This page intentionally left blank

CHAPTER 6

Dynamic Programming

6.1 Introduction

Many, if not most, traits display phenotypic plasticity, that is, the phenotypic

expression of the trait is contingent on the environment. In some cases, such as

adult morphology, the development of the trait is determined in part by the

environment but does not vary once the trait is established. On the other hand,

other traits, particularly behavioral traits, may be extremely labile. For example,

foraging, oviposition, migration, and parental allocation decisions are all traits

that are typically state-dependent. The techniques presented in Chapter 2 may be

used to analyze such models in some cases (e.g., Scenario 12, which examined the

relationship between propagule size and age), but more frequently a dynamic

programming approach is required, or is at least more efficient. For detailed

discussions on dynamic programming, see Mangel and Clark (1988), Houston

and McNamara (1999), and Clark and Mangel (2000). To illustrate the method I

shall use the patch-foragingmodel described by Mangel and Clark (1988). As in the

previous chapters I shall set the scenario both in general terms and then with

specific mathematical functions. MATLAB code is provided at the end of the

chapter.

6.1.1 General assumptions in the patch-foraging model

1. The habitat is divided into a number of patches.

2. The animal in question forages among the patches for food or some other

fitness-related resource.

3. Patches vary in quality and hence the benefits obtained by the animal vary with

patch type.

4. There is a metabolic cost to foraging.

5. Independent of the metabolic cost there is a probability of dieing from some

external cause such as a predator or inclement weather conditions. This proba-

bility may vary among patches.

6. Fitness is measured as the probability of being alive at the end of some

time interval (e.g., in a small terrestrial vertebrate this may be the summer

period, the end of the season being the time at which hibernation is entered).

6.1.2 Mathematical assumptions in the patch-foraging model

1. There are three types of patches, which vary with respect to

a. Benefits of the resource, Benefiti, if found

b. Probability of obtaining the benefit (e.g., food), Pbenefiti

c. Probability of mortality, Pmortalityi

2. The cost to foraging, Cost, is fixed and independent of patch type.

3. There is a minimum state, Xcritical, at or below which the animal cannot

survive. The minimum state at which an animal can survive is Xmin.

4. There is limit to the state (e.g., space for storing the resource is limiting), Xmax.

5. Fitness is equal to the maximum probability of surviving until time T, the end

of the season (or some other designated point).

6.1.3 A first look at the model

Specific values for the parameters defined above are Xcritical ¼ 3, Xmax ¼ 10, and

for each patch:

Patch 1 is empty of resources but is a safe haven from sources ofmortality other than

that of dieing because the animal’s state is at or below Xcritical. In contrast, patch 3 is

relatively rich in resources but there is also a relatively highprobability of dieing.We

can define two transition states, depending on whether the resource is located:

Resource found in patch:

Xtþ1 ¼ Xt � Costþ Benefit; if Xtþ1 > Xmax then Xtþ1 ¼ Xmax
OR

if Xtþ1 � Xcritical then animal dies

Resource not found in patch:

Xtþ1 ¼ Xt � Cost; if Xtþ1 � Xcritical then animal dies

Given some starting state we ask “What is the set of decisions that will maxi-

mize the probability of the animal reaching the end of the period?” Because there

are three patches and each patch has itself two states (resource found or resource

not found), there are an extremely large number of possible paths from the start to

the end, most of which will be suboptimal. In mathematical notation we can state

the problem as follows:

Fðx; TÞ ¼ max Pr ðsurvive from t to TjXt ¼ xÞ ð0:1Þ

Patch type Benefit Pbenefit Pmortality Cost

1 0 0.0 0.000 1...
2 3 0.4 0.004 1...
3 5 0.6 0.020 1

342 MOD E L I N G E VO L U T I ON

which can be stated in words as “Maximize the probability of surviving from

t until T given that the state of the animal at time t (¼ Xt), is equal to x” (throughout

this chapter Xwill refer to the state variable while xwill refer to a particular value

of the state variable). Now we do know what the final state should be, namely

survival and hence we can write down the value of F(x, T) as

Fðx; TÞ ¼ 1 if x > Xcritical
0 if x � Xcritical

�
ð0:2Þ

that is, the probability of being alive at time T is certain if the animal’s state

exceeds the lower critical value and is zero if it falls below that value. At time T� 1

the animal must pick a patch that maximizes its probability of being alive at the

end of the next (last) interval.

Suppose at time T� 1 the animal is in state XT � 1 ¼ x¼ 4: there are six scenarios

we have to analyze.

The animal should choose patch 3 to maximize its survival probability. Note that

this does not guarantee its survival. Suppose the animal is in state XT � 1 ¼ x ¼ 5:

The appropriate patch is now patch 1, because, although the animal does not

accumulate any resources, it has a 100% probability of surviving to T. In fact,

provided that the animal’s state exceeds 4, the best choice will always be patch

1 in this time interval. Of course, survival may not be the only consideration: for

example, the amount of resources accumulated by T may also be important (we

consider this in Scenario 1).

To begin the process with survival as our fitness criterion we note, as given

above, that for all final values of x from Xmin to Xmax, where Xmin ¼ Xcritical þ 1,

Fðx; TÞ ¼ 1 ð6:3Þ

Patch Xt+1 Probablity Probability of Survival

Benefit No Benefit Pbenefit 1–Pbenefit

Patch 1 4 − 1 + 0 = 3 4 − 1 = 3 0.0 1.0 0 because Xt + 1 ≤Xcritical...
Patch 2 4 − 1 + 3 = 6 4 − 1 = 3 0.4 0.6 (0.996)(0.4 + 0) = 0.3984...
Patch 3 4 − 1 + 5 = 8 4 − 1 = 3 0.6 0.4 (0.98)(0.6 + 0) = 0.588

Patch Xt+1 Probablity Probability of Survival

Benefit No Benefit Pbenefit 1–Pbenefit

Patch 1 5 − 1 + 0 = 4 5 − 1 = 4 0.0 1.0 (1)(0+1)=1...
Patch 2 5 − 1 + 3 = 7 5 − 1 = 4 0.4 0.6 (0.996)(0.4+0.6)=0.996...
Patch 3 5 − 1 + 5 = 9 5 − 1 = 4 0.6 0.4 (0.98)(0.6 + 0.4) = 0.98

D YNAM I C P R OG R AMM I NG 343

that is, we are only interested in those individuals that are alive at the end of the

time period.

We now step back one time unit and consider the survival from time T � 1 to T

for a particular value of x at time T � 1 (say x). Depending on whether the animal

finds food or not the value of xwill change to xFood or xNoFood, the particular values

depending on the patch: let these survivals be designated as S(xFood, i, T � 1) and

S(xNoFood, i, T� 1), where i is the patch number. Fitness for each patch,W(x, i, T� 1)

is then given by

Wðx; i; T � 1Þ ¼ ð1� PmortalityÞ½SðxFood; i; T � 1ÞFðxFood; T � 1Þ
þSðxNoFood; i; T � 1ÞFðxNoFood; T � 1Þ� ð6:4Þ

The (1 � Pmortality) is the probability of survival, irrespective of the patch. There

are now k fitness values, of which we choose the largest, the associated patch

being the optimal patch choice. The value of Fðx; T � 1Þ is given by

Fðx; T � 1Þ ¼ maxfWðx; 1; T � 1Þ;Wðx; 2; T � 1Þ;Wðx; 3; T � 1Þg ð6:5Þ
The above algorithm can be repeated for all possible values of the penultimate

state, which in this case are unit steps from x ¼ 4 to x ¼ 10. Thus we arrive at the

optimal set of decisions in the last period for all possible states the animal can be

in at the start of this period.

We now have the best decision for the last time period and the probability

of survival from this period to the end. At this point we can move one

step backward and calculate the best decision for this period. The process is

repeated until the first time period is arrived at. Going backward in this way

we build up a decision matrix in which the columns give the state (Xmin to

Xmax) and the rows give the time. Such a matrix is shown in Table 6.1, with

the bottom half of the table showing F(x, t) (i.e., the probability of surviving

from t to T given the optimal path). To see how this matrix can be used let

us assume that the animal commences in state 7. In the first time period

the animal should select patch 3 which, if the animal survives, will change its

state from 7 to 7 � 1 þ 5 ¼ 13, if resources are found or from 7 to 7 � 1 ¼ 6 if

resources are not found. In the first case, the total accumulated exceeds the

capacity of the animal and so its state is set to its maximum of 10 and in

the next time interval the animal selects patch 1. In the second case (no resources

found) the animal selects patch 2.

6.1.4 An algorithm for constructing the decision matrix

The example outlined above is a simple but general example of the type of model

for which dynamic programming is appropriate. The following algorithm can

bemodified, as shown in later examples, to deal withmost dynamic programming

problems. For convenience the program is divided into the main program

and three functions, called FITNESS, OVER.PATCHES and OVER.STATES. FIT-

NESS calculates the survival probability (fitness) for a given state in a given patch.

The other two functions iterate over patches, where patches may be physical or

344 MOD E L I N G E VO L U T I ON

Table 6.1 Decision matrix (top) and probability of survival, F(x,t,T) (bottom) for foraging model

State (Shown along bottom row)

Time [,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 3 3 3 3 2 2 1...
[2,] 3 3 3 3 2 2 1...
[3,] 3 3 3 3 2 2 1...
[4,] 3 3 3 3 2 2 1...
[5,] 3 3 3 3 2 2 1...
[6,] 3 3 3 3 2 2 1...
[7,] 3 3 3 3 2 2 1...
[8,] 3 3 3 3 2 2 1...
[9,] 3 3 3 3 2 2 1...
[10,] 3 3 3 3 2 2 1...
[11,] 3 3 3 3 2 2 1...
[12,] 3 3 3 3 2 2 1...
[13,] 3 3 3 3 2 2 2...
[14,] 3 3 3 3 2 2 1...
[15,] 3 3 3 3 2 1 1...
[16,] 3 3 3 3 1 1 1...
[17,] 3 3 3 1 1 1 1...
[18,] 3 3 1 1 1 1 1...
[19,] 3 1 1 1 1 1 1...
[20,] 4 5 6 7 8 9 10...

[,1] [,2] [,3] [,4] [,5] [,6] [,7]...
[1,] 0.514 0.724 0.812 0.846 0.866 0.878 0.886...
[2,] 0.518 0.73 0.819 0.854 0.874 0.886 0.893...
[3,] 0.523 0.737 0.826 0.861 0.881 0.893 0.901...
[4,] 0.527 0.743 0.833 0.869 0.889 0.901 0.909...
[5,] 0.532 0.75 0.84 0.876 0.897 0.909 0.917...
[6,] 0.537 0.756 0.848 0.884 0.904 0.917 0.925...
[7,] 0.541 0.763 0.854 0.891 0.912 0.925 0.933...
[8,] 0.546 0.769 0.863 0.9 0.921 0.933 0.941...
[9,] 0.55 0.776 0.871 0.908 0.928 0.941 0.95...
[10,] 0.556 0.784 0.878 0.914 0.935 0.95 0.959...
[11,] 0.561 0.79 0.884 0.921 0.945 0.959 0.966...
[12,] 0.566 0.794 0.888 0.933 0.955 0.966 0.974...
[13,] 0.566 0.794 0.909 0.944 0.963 0.974 0.98...
[14,] 0.566 0.818 0.909 0.944 0.963 0.974 1...
[15,] 0.588 0.818 0.909 0.944 0.963 1 1...
[16,] 0.588 0.818 0.909 0.944 1 1 1...

(continued)

D YNAM I C P R OG R AMM I NG 345

particular decisions such as “forage” or “not forage” (see Scenario 2), and states,

respectively.

The most complex part of the program is the bookkeeping of the survival

probabilities. To do this we first create a matrix called F.vectors that consists

of two columns with the number of rows typically being equal to the number of

states to be analyzed. In the present case, the state variable ranges from 3 (¼ dead)

to 10 (Xmax) and it is most convenient here to create the matrix with the number

of rows going from 1 to Xmax. The reason for this is that the row number then

corresponds to the state and indexing is simple (I consider the case later where the

states cannot be so easily indexed, because they are not integers). The first

column of the matrix contains the values of F(x, t) and the second contains the

values of F(x, t þ 1): Another way to look at it is that the second column contains

the values used in the calculations and the first column contains the updated

values, which are then passed into the second column once all the states have

been processed (the apparent “backward” nature of the indexing is because we

are going backward in time). Initially, all entries in the first column are set to

zero, while in the second column rows 1 to Xcritical are set to zero and the

remaining rows to 1, which is the terminal fitness value. Entries in this matrix

are changed as the program runs.

The program iterates over time commencing with the last interval: this is

accomplished using a while loop:

Horizon <– 20 # Number of time steps

Time <– Horizon # Initialize Time

while (Time > 1)

{

Time <– Time − 1 # Decrement Time by 1 unit

Lines of coding

}# End of Time loop

At each value of Time the following steps are made:

Table 6.1 (Continued)

State (Shown along bottom row)

Time [,1] [,2] [,3] [,4] [,5] [,6] [,7]

[17,] 0.588 0.818 0.909 1 1 1 1...
[18,] 0.588 0.818 1 1 1 1 1...
[19,] 0.588 1 1 1 1 1 1...
[20,] 4 5 6 7 8 9 10

Note: Output from R is slightly modified for display purposes.

346 MOD E L I N G E VO L U T I ON

Step 1: Call function OVER.STATES to iterate through values of state variables.

The first state is Xmin.

Step 2: Call function OVER.PATCHES to iterate through patch types. The first

patch type is patch 1.

Step 3: Call function FITNESS to calculate the fitness (¼ survival) in the selected

patch (presently patch 1) given the selected state (presently Xmin). First we calcu-

late the two new states the animal can achieve, which are labeled X.Food and X.

NoFood, corresponding, respectively, to the situations in which the resource is

found and that in which it is not found. As a general approach we first write down

an Outcome Chart that details the various outcomes (“�” indicates that this

condition is not applicable):

The “tricky” part now is to calculate the probability that the animal survives from

this time to the end. At the start of the analysis we are at the end of the time period

and hence we know that this has a probability of one, which is what the second

column of F.vectors contains (except for rows below Xmin, which are zero

since animals in these states are dead). The survival probability for an animal in

state X.Food is thus equal to the probability at F.vectors[X.Food,2], that is,

the row that corresponds to state X.Food. Similarly, the survival probability for an

animal in state X.NoFood is equal to the probability at F.vectors[X.No-

Food,2], that is, the row that corresponds to state X.NoFood. Both of these

will initially be 1. In symbolism, survival if patch i is chosen is given as

Wðx; i; t� 1Þ ¼ ð1� PmortalityiÞ½PbenefitiFðxFood; tÞ þ ð1� PbenefitiÞFðxNoFood; tÞ�
ð6:6Þ

In R code survival is given by

Term1 <- Pbenefit*F.vectors[X.Food,2] # If food is found

Term2 <-(1-Pbenefit)*F.vectors[X.NoFood,2] # Iffoodisnotfound

W <- (1 - Pmortality)*(Term1 þ Term2) # Survival in patch

Note that the survival is the probability of surviving this time increment multi-

plied by the probability of surviving from then to T given the optimal patch

choice.

Step 4: Fitness is passed back to OVER.PATCHES where it is stored in a vector

called RHS. The row number of this vector corresponds to the patch type and the

value stored is the fitness (survival).

Food found x > Xcritical Survives x

Yes — Yes min(x – Cost + Benefiti, Xmax)...
No Yes Yes x – Cost...
No Yes No Set at Xcritical...
No No ‐ Set at Xcritical

D YNAM I C P R OG R AMM I NG 347

Step 5: The next patch type is selected and Steps 3 and 4 repeated.

Step 6: After the fitnesses of all patch types have been calculatedthe patch giving

the highest fitness is selected. The optimal patch value is the value of i that gives

the maximum value of Wðx; i; t� 1Þ:
Fðx; t� 1Þ ¼ maxfWðx; 1; t� 1Þ;Wðx; 2; t� 1Þ;Wðx; 3; t� 1Þg ð6:7Þ

If there were k patches then the choice would be among the k survivals. The R

code is

Now find optimal patch. Best row is in Best[1]

Best <- order(RHS, na.last¼TRUE, decreasing¼TRUE)

Best.Patch <- Best[1]

The “best” survival is stored in the cell of the first column of the appropriate row

of F.vectors, that is F.vectors[X,1] <� RHS[Best[1]].

Step 7: We now pass back themodifiedmatrix F.vectors, themodified value of

F.vectors[X,1], and the best patch number, Best.Patch, back to OVER.

STATES. This is done by concatenating F.vectors[X,1] and Best.Patch to-

gether to form a 1 	 2 matrix called Temp and then concatenating F.vectors

and Temp together:

Concatenate F(x,t,T) and the optimal patch number

Temp <- c(F.vectors[X,1], Best.Patch)

Add Temp to bottom of F.vectors and rename to Temp

Temp <- rbind(F.vectors, Temp)

return (Temp)

Step 8: Temp is passed back to OVER.STATES (where it is also called Temp, but this

is arbitrary), where F.vectors is updated and the optimal patch number and

survival are stored in a two-columnmatrix called Store. Note that the updating of

F.vectors does not affect further calls to OVER.PATCHES, because only the

second column of F.vectors is used. The first column is being used to store

the values to be used in the next iteration of Time.

Step 9: Another state is selected, which now would be Xmin þ 1 and Steps 2–8 are

repeated.

Step 10: After all state values have been examined F.vectors and Store are

concatenated into a four-column matrix called Temp, the first two columns

containing F.vectors, the third column F(x, t), the survival, and the fourth

column the best patch number. Temp is passed back to the main program.

Step 11: To store the values of F(x, t), and the best patch number two matrices,

named FxtT and Best.patch, respectively, were created at the start of themain

program. Each matrix consists of Horizon number of rows (20 here) and Xmax

columns. Thus, rows correspond to time and columns to states. The first Xcritical

columns are redundant as they are never used. However, setting up the matrices

in this manner is convenient because columns then correspond to state values.

The values from OVER.STATES are passed back into a matrix called Temp, which

348 MOD E L I N G E VO L U T I ON

is then disassembled into the components corresponding to F.vectors (called

TempF), survival, and the best patch. The values in the second column of F.vectors

are updated using the values in the first column of TempF. This updating

means that in the new round the survival probability calculated in FITNESS is

the survival from time t to time T (¼Horizon) given the optimal choice of patches.

The lines of coding are

Extract F.vectors

TempF <- Temp[,1:2]

Update F1

for (J in Xmin: Xmax) { F.vectors[J,2] <- TempF[J,1]}

Store results

Best.Patch[Time,] <- Temp[,4]

FxtT[Time,] <- Temp[,3]

Step 12: Delete one unit from Time and repeat all previous steps. Once Time is

less than one we exit the while loop and print out the two matrices, as shown in

Table 3.1.

The complete coding in R and MATLAB is given below (note that the coding

here, and throughout this chapter, is very similar and differs primarily as a

consequence of syntax or the name of the built-in functions).

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness when organism is in state X

FITNESS <- function(X, Xcritical, Xmax, Xmin, Cost, Benefit,

Pbenefit, Pmortality, F.vectors)

{

State in patch if forager finds food

X.Food <- X - Cost þ Benefit

If X.Food greater than Xmax then X.Food must be set to Xmax

X.Food <- min(X.Food, Xmax)

If X.Food less than or equal to Xcritical then set to Xcritical

X.Food <- max(X.Food, Xcritical)

State in patch if forager does not find food

X.NoFood <- X - Cost

If X.NoFood is less than Xcritical set X.NoFood to Xcritical

X.NoFood <- max(X.NoFood, Xcritical)

Term1 <- Pbenefit*F.vectors[X.Food,2] # If food is found

Term2 <- (1-Pbenefit)*F.vectors[X.NoFood,2] # If food is

not found

W <- (1- Pmortality)*(Term1þ Term2) # Survival in patch

return(W) # Return Fitness

} # End of function

..

Function to iterate over patches

OVER.PATCHES <- function(X, F.vectors, Xcritical,Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

D YNAM I C P R OG R AMM I NG 349

{

RHS <- matrix(0,Npatch,1) # Pre-allocate Right Hand Side of equn

for (i in 1: Npatch) # Cycle over patches

{

Call Fitness function

RHS[i] <- FITNESS(X, Xcritical, Xmax, Xmin, Cost, Benefit[i],

Pbenefit[i], Pmortality[i], F.vectors)

} # End of i loop

Now find optimal patch Best row is in Best[1]

Best <- order(RHS, na.last¼TRUE, decreasing¼TRUE)

F.vectors[X,1] <- RHS[Best[1]]

Best.Patch <- Best[1]

Concatenate F(x,t) and the optimal patch number

Temp <- c(F.vectors[X,1], Best.Patch)

Add Temp to bottom of F.vectors and rename to Temp

Temp <- rbind(F.vectors, Temp)

return (Temp)

} # End of function

..

Function to iterate over states of X

OVER.STATES <- function(F.vectors, Xcritical, Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

{

Store <- matrix(0,Xmax,2) # Create matrix for output

for (X in Xmin : Xmax) # Iterate over states of X

{

For given X call Over.Patches to determine F(x,t) and best patch

Temp <- OVER.PATCHES(X, F.vectors, Xcritical, Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

Extract components. Last row is F(x,t) and best patch

n <- nrow(Temp)-1

F.vectors <- Temp[1:n,]

Store[X,] <- Temp[nþ1,] # Save F(x,t) and best patch

} # End of X loop

Add Store values to end of F.vectors for pass back to main program

Temp <- cbind(F.vectors, Store) # Combined by columns

return(Temp) # Return F.vectors and Store

} # End of function

..

MAIN PROGRAM

Initialize parameters

Xmax <- 10 # Maximum value of X

Xcritical <- 3 # ValueofXatwhichdeathoccurs

Xmin <- Xcriticalþ1 # Smallest value of X allowed

Cost <- 1 # Cost per period

Pmortality <- c(0, 0.004, 0.02)# Probability of mortality

Pbenefit <- c(1, 0.4, 0.6) # Probability of finding food

350 MOD E L I N G E VO L U T I ON

Benefit <- c(0, 3, 5) # Benefit if food is discovered

Npatch <- 3 # Number of patches

Horizon <- 20 # Number of time steps

Set up matrix for fitnesses

Column 1 is F(x, t). Column 2 is F(x,tþ1)

F.vectors <- matrix(0, Xmax,2) # Set all values to zero

F.vectors[Xmin:Xmax,2] <- 1 # Set values > Xmin equal 1

Create matrices for output

FxtT <- matrix(0,Horizon,Xmax) # F(x,t)

Best.Patch <- matrix(0,Horizon,Xmax) # Best patch number

Start iterations

Time <- Horizon # Initialize Time

while (Time > 1)

{

Time <- Time -1 # Decrement Time by 1 unit

Call OVER.STATES to get best values for this time step

Temp <- OVER.STATES(F.vectors, Xcritical, Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

Extract F.vectors

TempF <- Temp[,1:2]

Update F1

for (J in Xmin: Xmax) { F.vectors[J,2] <- TempF[J,1]}

Store results

Best.Patch[Time,] <- Temp[,4]

FxtT[Time,] <- Temp[,3]

} # End of Time loop

Output information. For display add states (¼wts) to last row of

matrices

X <- seq(from¼1, to¼Xmax)

Best.Patch[Horizon,] <- X

FxtT[Horizon,] <- X

Best.Patch[,Xmin:Xmax] # Print Decision matrix

signif(FxtT[,Xmin:Xmax],3) # Print Fxt of Decision matrix: 3

sig places

OUTPUT:

See Table 6.1.

MATLAB CODE: See Section 6.9.1.

6.1.5 Using the decision matrix: individual prediction

From Table 6.1 it can be seen that an animal that starts in a low state is forced to

take risks, whereas an animal that starts in a high state plays it safe. This behavior

is intuitively obvious but it is not obvious what parameter values will induce the

D YNAM I C P R OG R AMM I NG 351

different behaviors: the decision matrix makes this clear. Most importantly, dy-

namic programming can show what behaviors will never be favored given a set of

parameter values and also the pattern of changes. The pattern of changes in the

present example is, as noted, intuitively obvious but, as further examples will

show, this is not always the case.

Having created the decision matrix we would now want to explore the actual

sequence of behaviors. To do this we run the model forward, as shown by the

coding given below. There are two instances in which a probability has to be

evaluated: Pmortality and Pbenefit. In each case, a random number between

0 and 1 is generated: If the value of this number is less than the value of the

parameter, then the action specified by the parameter is taken. For example,

suppose Pmortality ¼ 0.02 and the random number generated equals 0.01:

in this case the animal dies. Now suppose the random number generated equals

0.4: in this case the animal survives.

R CODE:

The coding assumes that the decision matrix has been generated. It is only

necessary to generate the matrix once by running the previous program.

Provided the command to clear the workspace is not issued the matrix will

remain in memory and the following program or variations can be run

successively:

Initialize parameters

set.seed(10) # Set random number seed

Xmax <- 10 # Maximum value of X

Xcritical <- 3 # ValueofXatwhichdeathoccurs

Xmin <- Xcriticalþ1 # Smallest value of X allowed

Cost <- 1 # Cost per period

Pmortality <- c(0, 0.004, 0.02) # Probability of mortality

Pbenefit <- c(1, 0.4, 0.6) # Probability of finding food

Benefit <- c(0, 3, 5) # Benefitiffoodisdiscovered

Npatch <- 3 # Number of patches

Horizon <- 15 # Number of time steps

Output <- matrix(0,Horizon,10) # Matrix to hold output

Time <- seq(1, Horizon) # Values for x axis in plot

par(mfrow¼c(5,2)) # Dividegraphpageinto5x2panels

for (Replicate in 1: 10) # Iterate over 10 replicates

{

X <- 4 # Animal starts in state 4

for (i in 1:Horizon) # Iterate over time

{

if(X > Xcritical) # Check that animal still alive

{

Patch <- Best.Patch[i,X] # Select patch

Check if animal survives predation

Generate random number

352 MOD E L I N G E VO L U T I ON

if(runif(1) < Pmortality[Patch]) print(“Dead from predator”)

Now find new weight

Set multiplier to zero, which corresponds to no food found

Index <- 0

if (runif(1) < Pbenefit[Patch]) Index <- 1 # food is discovered

X <- X - Cost þ Benefit[Patch]*Index

If X greater than Xmax then X must be set to Xmax

X <- min(X, Xmax)

If X less than X then animal dies

if(X< Xmin) print(“Dead from starvation”)

Output[i,Replicate] <- Patch # Store data

} # End of if(X > Xcritical)

} # End of time loop

plot(Time,Output[,Replicate],type¼‘l’,ylab¼‘Patchselected’)

} # End of replicate loop

OUTPUT: (Figure 6.1)

Time
2

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

4 6 8 10 12 14
Time

2 4 6 8 10 12 14

0.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

1.
0

P
at

ch
 s

el
ec

te
d

3.
0

Time
2 4 6 8 10 12 14

Figure 6.1 Output from running simulations using the decision matrix shown in Table
6.1, with a starting initial state of X = 4.

D YNAM I C P R OG R AMM I NG 353

In one case the animal died from starvation by the second time unit, but in all

other cases the animal survived the full period. There is considerable movement

between patch types, which could not be predicted without the dynamic program

solution.

MATLAB CODE: See Section 6.9.2.

6.1.6 Using the decision matrix: expected state

The traces shown in Figure 6.1 might indicate the outcome of an experiment in

which one is individual is followed 10 times or 10 individuals are followed once. To

ascertain the distribution of states we could run this program many times using

different starting inputs. However, we can more readily compute the expected

distribution of states using the following approach:Webegin by asking “Given that

an animal is in state z at t � 1, what is the probability that following the optimal

behavior itmoves into state x at time t?”Mangel and Clark (1988) refer to this as the

transition density and using their mathematical symbolism it is written as

wðx; tjzÞ. Next we can calculate the probability that the animal will be in state x at

time t, P(x, t), by summing over all z values weighted by their representation in the

initial population (i.e., time t � 1): in the notation of Mangel and Clark

Pðx; tÞ ¼
X
z

wðx; tjzÞPðz; t� 1Þ ð6:8Þ

If there is only a single animal or all animals commence in the same state, say z*,

then Pðz; t� 1Þ ¼ Pðz�; t� 1Þ ¼ 1.

To calculate the transition density matrix we proceed as follows: Using the

decision matrix we select x given z: for each transition, provided z is greater

than Xcritical, there are four possible outcomes, with the subscript i designating

the best choice from the decision matrix (Table 6.2). To calculate the transition

density matrix we begin with an N 	 N matrix, where N is the number of possible

states (in this case N would be Xmax – Xcritical þ 1), filled with zeros. If an animal

does not survive, then its state is set at Xcritical and the probability inserted in this

cell. Next we iterate across all possible values of z (i.e., Xmin � z � Xmax) and for

Table 6.2 Transition densities for the simple foraging model

Food
found

x
>Xcritical Survives x w(x,t|z)

Yes — Yes min(z – Cost + Benefiti,
Xmax)

(1 – Pmortalityi)Pbenefiti

..
No Yes Yes z – Cost (1 – Pmortalityi)(1 –Pbenefiti)..
No Yes No Set at Xcritical Pmortalityi..
No No — Set at Xcritical Pmortalityi + (1 – Pmortalityi)

(1 – Pbenefiti)

Note: The source of mortality may be anything other than being less than Xcritical.

354 MOD E L I N G E VO L U T I ON

each value of zwe calculatewðx; tjzÞ using the rules given in Table 6.2. Note that we

enter the decision matrix at the appropriate time, because the transition density

function is a function of the current state.

R CODE:

Because Xcritical is close to zero it is convenient to make the transition density

matrix here go from zero to Xmax, thus making each row and column correspond

to the value of x, as in the decision matrix. In the program below the rows

correspond to z and the columns to x. Because we want to use the decision

matrix, the workspace is not cleared. The decision matrix program is first run

and then the following:

Set initial parameter values

Xmax <- 10 # Maximum value of state

Xcritical <- 3 # Critical value of state

Xmin <- Xcriticalþ1 # Lowest value of state

Cost <- 1 # Metabolic cost

Time <- 2 # Currentstatetobeconsidered

Npatch <- 3 # Npatch is number of patches

Pmortality <- c(0, 0.004, 0.02)# Probability of mortality Beta

Pbenefit <- c(1, 0.4, 0.6) # Probability of finding food

Lambda

Benefit <- c(0, 3, 5) # BenefitiffoodisdiscoveredY

Set transition density matrix to zero

Trans.density <- matrix(0, Xmax, Xmax)

Step 1 Cycle over all values of z from Xmin to Xmax

for (z in Xmin : Xmax) # Iterate over states

{

Select the best patch from the Decision matrix at row Time

K <- Best.Patch[Time,z] # Decision matrix is called Best.Patch

Calculate w(x,t|z)

Found food and survives predator

x <- min(z - Cost þ Benefit[K], Xmax)

Assign probability

Trans.density[z,x]<- (1-Pmortality[K])*Pbenefit[K]

Food not found

x <- z - Cost

State exceeds the critical value

if(x > Xcritical)

{

Animal survives

Trans.density[z,x]<- (1-Pmortality[K])*(1-Pbenefit[K])

Animal does not survive

Trans.density[z,Xcritical]<- Pmortality[K]

} # end of if statement

State is less than critical

D YNAM I C P R OG R AMM I NG 355

else{ # Note that in R the { immediately follows else

Trans.density[z,Xcritical]<- Pmortality[K]þ(1-Pmortality[K])*

(1-Pbenefit[K])

} # End of else statement

} # end of z loop

Trans.density # Write out matrix

OUTPUT: (Table 6.3)

For this particular example the transition density matrix remains the same for all

times less than 13. Consider an animal (or population) commencing in state 4: it

will move to state 8 with a probability of 0.588 (or 58.8% of the population will be

in state 8), while there is a 0.412 probability that the animal will die (arbitrarily set

into state 3, Xcritical, which ensures no further progress). For an animal commenc-

ing in state 5 there is 0.02 probability of dieing, a 0.392 probability of passing into

state 4, and a 0.588 probability of passing into state 9 (Table 6.3).

MATLAB CODE: See Section 6.9.3.

6.1.7 Using the decision and transition density matrices to get expected
choices

The forgoing analyses determine the expected state an animal (or population) will

be in after some time steps. Of particular interest is the distribution of choices, as

this is what an experimenter will likely measure. To illustrate how these values

are calculated let us assume that at time t ¼ 2 our population is distributed among

the states, from x ¼ 4 to x ¼ 9 as follows: 0.1, 0.1, 0.2, 0.3, 0.2, and 0.1, respectively.

Table 6.3 Transition density matrix for foraging model at time t = 2

Values of x

Values of z [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 0 0 0 0 0 0 0 0 0..
[2,] 0 0 0 0 0 0 0 0 0 0..
[3,] 0 0 0 0 0 0 0 0 0 0..
[4,] 0 0 0.412 0 0 0 0 0.588 0 0..
[5,] 0 0 0.02 0.392 0 0 0 0 0.588 0..
[6,] 0 0 0.02 0 0.392 0 0 0 0 0.588..
[7,] 0 0 0.02 0 0 0.392 0 0 0 0.588..
[8,] 0 0 0.004 0 0 0 0.5976 0 0 0.3984..
[9,] 0 0 0.004 0 0 0 0 0.5976 0 0.3984..
[10,] 0 0 0 0 0 0 0 0 0 0

Note: Each cell gives the probability, given that an animal is in state z at time t −1, that by
following the optimal behavior it moves into state x at time t. Output from R program is slightly

modified for display purposes.

356 MOD E L I N G E VO L U T I ON

Calculations are shown in Table 6.4. The optimal patch choice (“Best Patch” in Table

6.4) for each state is obtained from the decisionmatrix (Table 6.1) and the transition

probabilities (P(x, t) in Table 6.4) are obtained from the transition density matrix

(Table 6.3). In the present example two patches are expected to be chosen, patches

2 and 3. Assuming that animals that die are not counted (if they are counted then

column x ¼ 3 is included in subsequent calculations) the predicted proportions

are calculated by summing across rows from x¼ 4 to x = 10,multiplying each cell by

P(z,t � 1) as shown in the penultimate column of Table 6.4, and then correcting for

the loss of animals by dividing by the sum of this column, as shown in the

last column of Table 6.4. Finally, the proportion in each patch is calculated by

summing the probabilities for the individual patches. Thus, in the present example

68.4% of animals are expected to be found in patch 3 and 31.6% in patch 2.

6.1.8 Adjusting state values to correspond to index values

In the example considered the state values corresponded to the index values,

namely the positions in the relevant matrices (thus Xcritical ¼ 3 is both the critical

value and the cell index). This will generally not be the case and we have to

transform between state and index values. An example is shown in Table 6.5:

the lowest state (0.1–0.3 with midpoint 0.2) is assumed to be the “dead” state, that

is, Xcritical. The lowest state we assign to the first index (1) and then increment in

unit steps, the index value is then determined from

Index ¼ 1þ x� Xcritical

Xinc
ð6:9Þ

where Xinc is the increment (0.2 in Table 6.5). Conversion from the index value to

state X is obviously

x ¼ ðIndex� 1Þ � Xincþ Xcritical ð6:10Þ
Examples of the use of these transformations are given in Scenarios 3–5.

6.1.9 Linear interpolation to adjust for non-integer state variables

Dynamic programming works with discrete values but state variables may change

by amounts not equal to the assigned interval as described in the previous section.

For example, suppose the increments are 1 and states x ¼ 5 and x ¼ 6 correspond

to index values 6 and 7 (because the first cell is reserved for Xcritical) but for

some value of x with index value I the new state variable is 5.36, meaning

that the fitness lies between F(6, t) and F(7, t). To estimate F(x, t) we can use linear

interpolation (Figure 6.2; Mangel, personal communication). To derive the formu-

la we translate the origin of the x-axis to xI and the y-axis to F(xI, t) giving the slope

of the linear interpolation to be (Figure 6.2)

FðxIþ1; tÞ � FðxI; tÞ ð6:11Þ

D YNAM I C P R OG R AMM I NG 357

Table 6.4 Calculating the expected distribution of patch choice for the foraging model at time t = 2

Probability of x = P(x, t)

State,
z

Proportion,
P(z, t – 1)

Best
Patch 3 4 5 6 7 8 9 10

P10
x¼4Pðx; tÞPðz; t� 1Þ

Predicted
proportionaa

4 0.1 3 0.412 0 0 0 0 0.588 0 0 0.059 0.062..
5 0.1 3 0.020 0.392 0 0 0 0 0.588 0 0.098 0.104..
6 0.2 3 0.020 0 0.392 0 0 0 0 0.588 0.196 0.207..
7 0.3 3 0.020 0 0 0.392 0 0 0 0.588 0.294 0.311..
8 0.2 2 0.004 0 0 0 0.5976 0 0 0.3984 0.199 0.211..
9 0.1 2 0.004 0 0 0 0 0.5976 0 0.3984 0.100 0.105..

0.946 1.000

Note: The column x =3 is ignored because animals in this category do not survive.
aPredicted proportion = value in preceding cell divided by the sum of the preceding column (0.946), that is, 0.07 = 0.059/0.946.
The predicted proportion in patch 3 is 0.062 + 0.104 + 0.207 + 0.311 = 0.684.
The predicted proportion in patch 2 is 0.211 + 0.105 = 0.316.

where I is the lower integer value and xI is the values of x for index value I. The new

value of x is x � xI ¼ q. The value of F(x, t) with respect to the new origin is simply

½FðxIþ1; tÞ � FðxI; tÞ�q ð6:12Þ
And to translate back to the original scale we add F(xI, t) to give

Fðx; tÞ � ½FðxIþ1; tÞ � FðxI; tÞ�qþ FðxI; tÞ ¼ qFðxIþ1; tÞ þ ð1� qÞFðxI; tÞ ð6:13Þ
Examples of this are given in Scenarios 3 and 5. The above formula is problematic

when xI ¼ Xmax, because in this case xI þ1 is greater than Xmax and will cause a

“subscript too large” error, even though qx is zero, and hence this term does not

contribute. To resolve this, insert a test such as xIþ 1 ¼ min(xIþ 1, Xmax).

The interpolation formula can be extended to two state variables, x and y:

Table 6.5 Example of a non-integer state distribution and its conversion to an integer index

State interval Midpoint = State Index Converting state to index

0.1−0.3 0.2 1 1+(0.2−0.2)/0.2=1...
0.3−0.5 0.4 2 1+(0.4−0.2)/0.2=2...
0.5−0.7 0.6 3 1+(0.6−0.2)/0.2=3...
0.7−0.9 0.8 4 1+(0.8−0.2)/0.2=4...
0.9−1.1 1.0 5 1+(1.0−0.2)/0.2=5

q = x–xI0
0

xI + 1−xI

xI + 1xI x

Slope =
F(xI + 1, t) − F(xI, t)

F(xI + 1, t) − F(xI, t)

F(xI + 1, t)

F(xI, t)

F(x, t)

F(x, t) − F(xI, t)

Figure 6.2 Linear interpolation to account for non‐integer values in the state variable.
The value of F(x, t, T) is approximated by a straight line drawn through the two
enclosing integer values of the state variable.

D YNAM I C P R OG R AMM I NG 359

FðxI; yJ; tÞ � qxqyFðxIþ1; yJþ1; tÞ þ qxð1� qyÞFðxIþ1; yJ; tÞþ
ð1� qxÞqyFðxI; yJþ1; tÞ þ ð1� qxÞð1� qyÞFðxI; yJ; tÞ ð6:14Þ

where qx ¼ x� xI and qy ¼ y� yI.

We now consider five scenarios showing how the basic patch-foraging model

can be modified to fit a range of biological situations.

6.2 Summary of scenarios

Scenario 1: In this scenario the fitness measure is changed from survival to the

accumulated value of some state variable, such as energy store, at the end of the

time period.

Scenario 2: The basic scenario considered in Chapter 1 is based on foraging among

patches. In the second scenario I show how “patches” can be considered simply as

“options” and hence how the basic scenario can be readily expanded.

Scenario 3: In the previous scenarios there were unique choices at each step,

the state variable could be directly related to its position in the relevant

vector and took integer values. In this scenario the problem of equivalent

choices is considered and the concepts of indexing and interpolation are illustrated.

Scenario 4: The state variable in all the above scenarios increased over time (e.g.,

accumulation of resources). In many cases fitness may be equated to the number

of eggs laid over the time period, in which case the state variable decreases over

time. This circumstance is illustrated using host choice in parasitoid wasps.

Scenario 5: This scenario considers the problem of solving for two state variables,

in this case egg size and number.

6.3 Scenario 1: A different terminal fitness

In the patch-foragingmodel examined above it was assumed that fitness was equal

to survival at the terminal period. In many cases fitness will depend not simply

upon survival but also upon the accumulation of resources, which might be used

to survive the following period or invested in offspring.

6.3.1 General assumptions

Assumptions 1–5 are the same as previously given.

6. Fitness is a function of the state variable at the end of some time interval (e.g., in

a small terrestrial vertebrate this may be the summer period, the end of the season

being the time at which hibernation is entered, or it could be the reproductive

episode).

360 MOD E L I N G E VO L U T I ON

6.3.2 Mathematical assumptions

Assumptions 1–5 are the same as previously given.

6. Fitness is equal to the expected value of the state variable at time T.

6.3.3 Outcome chart and expected lifetime fitness function

This is exactly the same as previously given.

6.3.4 Calculating the decision matrix

At time T we assume that the animal is alive and hence its fitness according to

assumption 6 above is equal to the value of the state variable. Thus the only change

we have to make to the coding in R is to adjust the terminal fitness function from

F.vectors[Xmin:Xmax,2] <- 1

to

F.vectors[Xmin:Xmax,2] <- seq(from¼Xmin, to¼Xmax)

or in MATLAB

F_vectors[Xmin:Xmax,2] ¼ 1

to

F_vectors[Xmin:Xmax,2] = Xmin:Xmax

that is, the terminal fitness is now equal to the state variable,X. This principle is quite

general and enables the previous coding to be used for anynumber of terminal fitness

definitions. The effect of changing the fitness definition in this instance is to change

the decisions for animals late in the season and already of high value (Table 6.6).

6.4 Scenario 2: To forage or not to forage when patches
become options

This example illustrates how the basic patch-foragingmodel can be modified to fit

a scenario in which “patches” are equated to options. The scenario is based

on Kokko (2007), who presents MATLAB coding to analyze the model: For the

interested reader I suggest comparing the two approaches, simply to see how

the same result can be obtained by visually very different coding. The general

scenario is that of a bird that must gather resources during a given period, say

a winter day, to survive the following period, say the winter night.

6.4.1 General assumptions

1. During the day the bird can decide to forage or remain sedentary during any

given period.

2. A non-foraging bird risks losing condition.

D YNAM I C P R OG R AMM I NG 361

3. A foraging bird faces a predation risk that is a function of its condition, well-fed

birds being more susceptible.

4. Fitness is a function of condition at the end of the period (day).

6.4.2 Mathematical assumptions

1. The condition of a bird ranges in unit increments from 1 to 7.

2. A bird in condition 1 is dead.

3. A non-foraging bird losing one unit of condition with some fixed probability,

Ploss.

4. A foraging bird gains one unit of condition with some fixed probability, Pgain.

5. A foraging bird suffers a mortality probability from predators at a rate that is a

linear function of condition:

Pmortality ¼ aþ bx ð6:15Þ

Table 6.6 Decision matrices for foraging model with different fitness criteria (survival vs. expected

state value, the fitness criteria considered in Scenario 1)

State (Shown along bottom row)

Time [,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 3 3 3 3 2 2 1...
[2,] 3 3 3 3 2 2 1...
[3,] 3 3 3 3 2 2 1...
[4,] 3 3 3 3 2 2 1...
[5,] 3 3 3 3 2 2 1...
[6,] 3 3 3 3 2 2 1...
[7,] 3 3 3 3 2 2 1...
[8,] 3 3 3 3 2 2 1...
[9,] 3 3 3 3 2 2 1...
[10,] 3 3 3 3 2 2 1...
[11,] 3 3 3 3 2 2 1...
[12,] 3 3 3 3 2 2 1...
[13,] 3 3 3 3 2 2 2...
[14,] 3 3 3 3 2 2 1...
[15,] 3 3 3 3 2 1,2 1...
[16,] 3 3 3 3 1,2 1,2 1,2...
[17,] 3 3 3 1,3 1,2 1,2 1,2...
[18,] 3 3 1,3 1,3 1,3 1,3 1,2...
[19,] 3 1,3 1,3 1,3 1,3 1,3 1,3...
[20,] 4 5 6 7 8 9 10

Note: Where decisions differ, the second fitness criterion is given second.

362 MOD E L I N G E VO L U T I ON

where mortality at X ¼ 2 is 0 and Pmax at x ¼ Xmax, the constants a and b being

determined accordingly.

6. A non-foraging bird is not susceptible to predators.

7. Fitness is the expected state value (i.e., condition) at the end of the day.

6.4.3 Outcome chart and expected lifetime fitness function

Although, at first glance, this model may not appear to resemble the patch-

foraging model it is actually mathematically equivalent. First, we note that a

“patch” in this scenario is simply the decision to “not forage” (patch 1) or to

“forage” (patch 2). Second, the benefits in the previous foraging model are repre-

sented here by the loss or gain condition. Thus we can write the model using the

same outline as in the patch-foraging model.

The outcome chart can thus be written as (“—” indicates that this condition is not

applicable).

The expected lifetime fitness function is the same as the patch-foraging model

minus the Cost component.

6.4.4 Calculating the decision matrix

The changes to the program are shown in bold font. The most significant change

is the addition of the state-dependent mortality function. To code this function we

construct a matrix of two rows and Xmax columns. Row 1 contains the probability

of being depredated if not foraging, which is zero for all values of x, coded by

Pnoforage <- rep(0,Xmax)

Row 2 contains the probability of being depredated if foraging. It is zero in column

1, because that corresponds to dead animals. According to assumption 5 it is zero

in column 2, the minimum condition, and Pmax in column 7. To construct this

function we make use of the seq function:

Patch type Benefit Pbenefit Pmortality Cost

1 = “Not forage” −1 Ploss 0 Not applicable...
2 = “Forage” 1 Pgain a + bx Not applicable

Forage x >Xcritical Survives x

Yes — Yes min(x + Benefiti, Xmax)...
Yes — No Set at Xcritical...
No Yes — x + Benefiti...
No No — Set at Xcritical

D YNAM I C P R OG R AMM I NG 363

Pforage <- c(0,seq(from¼Pmin, to¼Pmax, length¼Xmax-1))

We then bind the two vectors together to form the predation matrix:

Pmortality <- rbind(Pnoforage,Pforage)

The probability of mortality is then passed to the fitness function as Pmortality

[i,X].

Other changes consist of ignoring the parameter Cost (we could have deleted it

from the program but as it is not used there is no harm in leaving it in the

program) and resetting the initial values. Here we set Ploss ¼ 0.4 and Pgain ¼ 0.8

using the vector Pbenefit:

Pbenefit <– c(0.4,0.8) # Probability of “Benefit”

Benefit <– c(�1,1) # “Benefit”

Finally, as in Scenario 1, we set the terminal fitness to be equal to the expected

state value:

F.vectors[Xmin:Xmax,2] <- seq(from ¼ Xmin, to ¼ Xmax)

The program is thus

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness when organism is in state X

FITNESS <- function(X, Xcritical, Xmax, Xmin, Cost, Benefit,

Pbenefit, Pmortality, F.vectors)

{

Benefit gained

State in patch if “Benefit” gained. Note that “Benefit” can be -1

X.Food <- X þ Benefit # Note that Cost is omitted

If X.Food greater than Xmax then X.Food must be set to Xmax

X.Food <- min(X.Food, Xmax)

If X.Food less than or equal to Xcritical then set to Xcritical

X.Food <- max(X.Food, Xcritical)

State in patch if forager does not gain “Benefit”

X.NoFood <- X # Note that Cost is omitted

If X.NoFood is less than Xcritical set X.NoFood to Xcritical

X.NoFood <- max(X.NoFood, Xcritical)

Now gather terms together

Term1 <- Pbenefit*F.vectors[X.Food,2] # If benefit gained

Term2 <- (1-Pbenefit)*F.vectors[X.NoFood,2] # If no benefit

gained

W <- (1 - Pmortality)*(Term1þ Term2) # Fitness in patch

return(W) # Return Fitness

} # End of function

.

Function to iterate over patches

OVER.PATCHES <- function(X, F.vectors, Xcritical,Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

364 MOD E L I N G E VO L U T I ON

{

RHS <- matrix(0,Npatch,1) # Set matrix for Right Hand Side of equn

for (i in 1: Npatch) # Cycle over patches

{

Call Fitness function. Note that mortality a function of patch and X

RHS[i] <- FITNESS(X, Xcritical, Xmax, Xmin, Cost, Benefit[i],

Pbenefit[i], Pmortality[i,X], F.vectors)

} # End of i loop

Now find optimal patch Best row is in Best[1]

Best <- order(RHS, na.last¼TRUE, decreasing¼TRUE)

F.vectors[X,1] <- RHS[Best[1]]

Best.Patch <- Best[1]

Concatenate F(x,t,T) and the optimal patch number

Temp <- c(F.vectors[X,1], Best.Patch)

Add Temp to bottom of F.vectors and rename to Temp

Temp <- rbind(F.vectors, Temp)

return (Temp)

} # End of function

..

Function to iterate over states of X

OVER.STATES<- function(F.vectors, Xcritical, Xmax, Xmin, Npatch,

Cost, Benefit, Pbenefit, Pmortality)

{

These lines are the same as in the patch-foraging model:

} # End of function

..

MAIN PROGRAM

Initialize parameters

Xmax <- 7 # Maximum value of X

Xcritical <-1 # Value of X at which death occurs

Xmin <- Xcriticalþ1 # Smallest value of X allowed

Cost <- 0.0 # Dummy not required but kept

Probability of mortality if foraging

Pmin <- 0

Pmax <- 0.01

Create mortality function. Make Pmin at state 2

Probability of mortality if not foraging

Pnoforage <- rep(0,Xmax)

Foraging mortality

Pforage <- c(0,seq(from¼Pmin, to¼Pmax, length¼Xmax-1))

Pmortality <- rbind(Pnoforage,Pforage) # Mortality function

Probability of foraging

Pbenefit <- c(0.4,0.8) # Probability of “Benefit”

Benefit <- c(-1,1) # “Benefit”

Npatch <- 2 # Number of patches ¼ resting or foraging

D YNAM I C P R OG R AMM I NG 365

Horizon <- 6 # Number of time steps

Set up matrix for fitnesses

Column 1 is F(x,tþ1). Column 2 is F(x,t)

F.vectors <- matrix(0, Xmax,2)

F.vectors[Xmin:Xmax,2] <- seq(from¼Xmin, to¼Xmax) # Final wts

Create matrices for output

FxtT <- matrix(0,Horizon,Xmax) # F(x,t,T)

Best.Patch <- matrix(0,Horizon,Xmax) # Best patch number

Start iterations

Time <- Horizon # Initialize Time

while (Time > 1)

{

Time <- Time -1 # Decrement Time by 1 unit

Call OVER.STATES to get best values for this time step

Temp <- OVER.STATES(F.vectors, Xcritical, Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

Extract F.vectors

TempF <- Temp[,1:2]

Update F1

for (J in Xmin: Xmax) { F.vectors[J,2] <- TempF[J,1]}

Store results

Best.Patch[Time,] <- Temp[,4]

FxtT[Time,] <- Temp[,3]

} # End of Time loop

Output information. For display add wts to last row of matrices

X <- seq(from¼1, to¼Xmax)

Best.Patch[Horizon,] <- X

FxtT[Horizon,] <- X

Best.Patch[,Xmin:Xmax] # Print Decision matrix

signif(FxtT[,Xmin:Xmax],3) # Print Fxt of Decision matrix: 3 sig

places

OUTPUT:

Table 6.7 Decision matrix for the daily foraging model (Scenario 3)

State (Shown along bottom row)

Time [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2 2 2 2 1 1..
[2,] 2 2 2 2 2 1..
[3,] 2 2 2 2 2 1..
[4,] 2 2 2 2 2 2..
[5,] 2 2 2 2 2 2..
[6,] 2 3 4 5 6 7

Note: Decision “1” means do not forage, whereas decision “2” means forage.

366 MOD E L I N G E VO L U T I ON

The decision matrix is shown in Table 6.7. Birds beginning in states 2–5 forage

throughout the day but birds in state 6 do not forage in the first period and birds in

state 7 do not forage for the first three periods.

MATLAB CODE: See Section 6.9.4.

6.5 Scenario 3: Testing for equivalent choices, indexing, and
interpolation

Thus far we have assumed that among the choices at each time step that there will

be one that is superior to all others. However, it is possible that two or more

choices may be equivalent in which case the programmer must decide if there is a

method to resolve the tie or if indeed the choice is simply made by “tossing a

coin.” The present scenario is taken from chapter 3 of Mangel and Clark (1988).

The object of the analysis is to determine the circumstances in which it would

profit animals to hunt in packs rather than singly. The specific case studied

by Mangel and Clark was that of lions hunting Thomson’s gazelle or zebra.

Parameters used here are for Thomson’s gazelle. The scenario can be placed

within the framework of the patch-foraging model by noting that patches can

be equated with pack (¼ pride in lions) size (i.e., a group of size 2 is a “patch” of

value 2). In addition to the question of equivalence of choices, this scenario

introduces two other new components: the transformation between index

value and state variable value; the use of interpolation to estimate fitness when

the index value of the state variable is not an integer.

6.5.1 General assumptions

1. The animal can hunt singly or in packs, changing pack size at each time

increment.

2. Each animal has a daily food requirement.

3. An animal whose gut contents fall below a critical value dies.

4. Food within the pack is shared equally.

5. Capture probability increases with the size of the pack (possibly to a limit).

6. Fitness is a function of the probability of surviving some specified time interval.

6.5.2 Mathematical assumptions

1. Pack (patch) size varies from 1 to N.

2. Each prey animal is of a fixed size, Y.

3. The daily food requirement per individual is the same, irrespective of pack size.

4. The probability of making a kill, pi, is a function of pack size, i.

D YNAM I C P R OG R AMM I NG 367

5. Up to three kills can be made per day: designate the number of kills as k, where

k ¼ 0, 1, 2, and 3.

6. The probability of each kill is independent and hence the number of kills per

day is a binomial variable:

P Z ¼ kY

i

� �
¼ Pkilli;k ¼ 3

k

� �
pki ð1� piÞ3�k ð6:16Þ

where Z is the amount per individual per day.

7. An animal whose gut contents fall to or below Xcritical (i.e., x� Xcritical) is dead.

8. Gut capacity has a maximum value of Xmax.

9. Fitness is the survival probability to the end of some specified time interval, T.

6.5.3 Outcome chart and expected lifetime fitness function

To equate this scenario with the patch-foraging model, we note that pack size is

equivalent to patch identity and thus for each pack size, i, and kill number, k:

Benefit is a function of pack size and number of kills. We require twomatrices, one

for the benefits and one for the probability, in which the rows correspond to pack

size and the columns to kills. For simplicity, we shall set pack size from 1 to 4. The

probabilities of a kill in relation to these pack sizes are 0.15, 0.31, 0.33, and 0.33,

respectively. Prey size is set at 11.25 kg.

R CODE:

rm(list¼ls()) # Remove all objects from memory

Benefit <- matrix(0,4,4) # Rows ¼ pack size, Columns ¼ number

of killsþ1

Pbenefit <- matrix(0,4,4) # Rows ¼ pack size, Columns ¼ number

of killsþ1

Pi <- c(0.15, 0.31, 0.33, 0.33) # Probability of single

kill for pack size

Y <- 11.25 # Size of single prey

k <- c(0,1,2,3) # Number of kills

for (PackSize in 1:4) # Iterate over pack sizes

{

Calculate binomial probabilities using function dbinom

Pbenefit[PackSize,] <- dbinom(x¼k, size¼3, prob¼Pi[Pack-

Size])

Kill made x > Xcritical Survives X

Yes — Yes min(x – Cost + Benefiti,k, Xmax)..
No Yes Yes x – Cost..
No Yes No Set at Xcritical..
No No — Set at Xcritical

368 MOD E L I N G E VO L U T I ON

Calculate benefits

Benefit[PackSize, 2:4] <- k[2:4]*Y/PackSize

}

Benefit # Print out Benefit matrix

Pbenefit # Print out Probability matrix

OUTPUT: (Table 6.8)

TheMATLAB coding is given in the coding for the entire program (see section 6.9.5).

The value of Xcritical is assumed to be zero, that is, animals with no gut contents

have starved to death. This presents a minor difficulty in coding as now the index

value does not correspond to the state value. In this case, given that Xmax¼ 30, we

could simply raise Xcritical to 1. However, to illustrate the general approach we

shall here retain Xcritical ¼ 0 and use the method of index adjustment previously

given. The parameter Xmin is replaced by Xinc, which is used to translate from x

to the index value. Note that the maximum value of the index, Max.Index, is

passed to function OVER.STATES.

A second complication is that changes in x do not follow unit steps: I shall follow

the suggestion of Mangel and Clark (1988) and use linear interpolation as dis-

cussed above and graphically illustrated in Figure 6.2. The coding for this is given

in the function FITNESS. The parameter Pmortality has been deleted as it is not

used.

Survival (¼ fitness) for each pack size is given by

Wðx; i; t� 1Þ ¼
X3
k¼0

Pbenefiti;kFðx; tÞ ð6:17Þ

and the optimal pack size is that pack size which maximizes survival, the fitness

being

Fðx; t� 1Þ ¼ maxfWðx; 0; tÞ;Wðx; 1; tÞ; . . . ;Wðx; 4; tÞg ð6:18Þ
The final complication is that there may be several pack sizes that give the same

fitness. I shall not here consider whether there is a biologically reasonable way to

resolve this question but deal with the problem of locating those transitions

Table 6.8 Matrices showing benefits and probability of benefits as a function of pack size

Pack Size Number of kills + 1 Probablity

[,1] [,2] [,3] [,4] [,1] [,2] [,3] [,4]

[1,] 0.00 11.25 22.5 33.75 0.6141 0.3251 0.0574 0.0034..
[2,] 0.00 5.625 11.25 16.875 0.3285 0.4428 0.1989 0.0298..
[3,] 0.00 3.75 7.5 11.25 0.3008 0.4444 0.2189 0.0359..
[4,] 0.00 2.8125 5.625 8.4375 0.3008 0.4444 0.2189 0.0359

Note: R output is slightly modified for clarity.

D YNAM I C P R OG R AMM I NG 369

where this occurs. At the start of the simulation we create a matrix called

CHOICES that holds a flag indicating whether there are several equivalent choices:

arbitrarily I designate 0 to indicate only one choice and 1 to indicate more than

one equivalent choice. At the commencement of the simulation all cells are set to

0. The actual test for equivalent choices is done in the function OVER.PATCHES.

The matrix passed back from this function has two columns and so we create a

1 	 2 vector called Choice that consists of two zeros:

Choice <- c(0,0)

one of these simply being a dummy to permit concatenation. Next we test if the

fitnesses in the first two rows of the sorted values are the same and if they are the

same we set the values in Choice to ones:

if(RHS[Best[1]]¼¼RHS[Best[2]]) Choice <- c(1,1)

This vector is then added to the bottom of the matrix Temp that is passed back to

OVER.STATES:

Temp <- rbind(Temp,Choice)

The data are then extracted, passed back to the main program, and stored in

CHOICES.

6.5.4 Calculating the decision matrix

R CODE:

rm(list¼ls()) # Remove all objects from memory

Function to calculate fitness when organism is in state X

FITNESS <- function(X, Xcritical, Xmax, Xinc, Cost, Benefit,

Pbenefit, F.vectors)

{

Note that the state value X is passed

Note also that in this function Benefit and Pbenefit are vectors

Iterate over the four kill values (0,1,2,3)

Max.Index <- 1 þ (Xmax-Xcritical)/Xinc # Get maximum index value

W <-0 # Set Fitness to zero

Xstore <- X # Set X to Xstore to preserve value through loop

for (I.Kill in 1:4) # Begin loop

{

X <- Xstore - Cost þ Benefit[I.Kill] # Calculate new state

value

If X greater than Xmax then X must be set to Xmax

X <- min(X, Xmax)

If X less than or equal to Xcritical then set to Xcritical

X <- max(X, Xcritical)

Convert to Index value

370 MOD E L I N G E VO L U T I ON

Index <- 1þ(X-Xcritical)/Xinc

Index value probably not an integer

So consider two integer values on either size of X

Index.lower <- floor(Index) # Choose lower integer

Index.upper <- Index.lower þ 1 # Upper integer

Must stop index exceeding Max.Index. Not that Qx¼0 in this case

Index.upper <- min(Index.upper, Max.Index)

Qx <- X – floor(X) # qx for linear interpolation

W <- W þ Pbenefit[I.Kill]*(Qx*F.vectors[Index.upper,2]þ(1-Qx)

*F.vectors[Index.lower,2])

} # End of I.Kill loop

return(W) # Return Fitness

} # End of function

..

Function to iterate over patches i.e. over PACKS

OVER.PATCHES <- function(X, F.vectors, Xcritical,Xmax, Xinc,

Npatch, Cost, Benefit, Pbenefit)

{

RHS <- matrix(0,Npatch,1) # Set matrix for Right Hand

Side of equn

for (i in 1: Npatch) # Cycle over patches ¼ pack

sizes

{

Call Fitness function. Pass Benefit and Pbenefit as vectors

RHS[i] <- FITNESS(X, Xcritical, Xmax, Xinc, Cost, Benefit[i,],

Pbenefit[i,], F.vectors)

} # End of i loop

Now find optimal patch Best row is in Best[1]

Best <- order(RHS, na.last¼TRUE, decreasing¼TRUE)

Index <- 1þ(X-Xcritical)/Xinc # Get Index value

F.vectors[Index,1]<- RHS[Best[1]] # Get best W ¼ F(x,t,T)

Get best patch (¼pack). Remember to convert from index value

Best.Patch <- Best[1]

Concatenate F(x,t) and the optimal patch (¼pack) number

Temp <- c(F.vectors[Index,1], Best.Patch)

Add Temp to bottom of F.vectors and rename to Temp

Temp <- rbind(F.vectors, Temp)

Create 1x2 vector to hold decision on more than one choice

We only need one cell but it is convenient to use 2 for concatena-

tion onto Temp, as indicated below

Set Choice to zero

Choice <- c(0,0)

if(RHS[Best[1]]¼¼RHS[Best[2]]) Choice <- c(1,1) # Equal

fitnesses

D YNAM I C P R OG R AMM I NG 371

Temp <- rbind(Temp,Choice) # Bind to bottom of matrix

return (Temp)

} # End of function

..

Function to iterate over states of X

OVER.STATES <- function(F.vectors, Xcritical, Xmax, Xinc, Npatch,

Cost, Benefit, Pbenefit, Max.Index)

{

Store <- matrix(0,Max.Index,3) # Create matrix for output

for (Index in 2 : Max.Index) # Iterate over states of X

{

For given X call Over.Patches to determine F(x,t) and best patch

X <- (Index-1)*Xinc þ Xcritical

Temp <- OVER.PATCHES(X, F.vectors, Xcritical, Xmax, Xinc,

Npatch, Cost, Benefit, Pbenefit)

Extract components. Penultimate row is F(x,t,T) and best patch

n <- nrow(Temp)-2

F.vectors <- Temp[1:n,]

Store[Index,1:2] <- Temp[nþ1,] # Save F(x,t,T) and best patch

Store[Index,3] <- Temp[nþ2,1] # Save Flag for several choices

} # End of X loop

Add Store values to end of F.vectors for pass back to main program

Temp <- cbind(F.vectors, Store) # Combined by columns

return(Temp) # Return F.vectors and Store

} # End of function

..

MAIN PROGRAM

Initialize parameters

Xmax <- 30 # Maximum value of X ¼ gut capacity

Xcritical <- 0 # Value of X at which death occurs

Xinc <- 1 # Increment in state variable

Max.Index <- 1 þ (Xmax-Xcritical)/Xinc # Maximum index value

Cost <- 6 # Cost ¼ Daily food requirement

Npatch <- 4 # Number of patches¼ packs

Calculate benefit as a function of pack size (rows)

and number of kills (columns)

Benefit <- matrix(0,4,4) # Rows ¼ pack size, Columns

¼ number of killsþ1

Pbenefit <- matrix(0,4,4) # Rows ¼ pack size, Columns ¼
number of killsþ1

Probability of single kill for pack size

Pi <- c(0.15, 0.31, 0.33, 0.33)

Y <- 11.25 # Size of single prey

372 MOD E L I N G E VO L U T I ON

k <- c(0,1,2,3) # Number of kills

for (PackSize in 1:4) # Iterate over pack sizes

{

Calculate binomial probabilities using function dbinom

Pbenefit[PackSize,] <- dbinom(x¼k, size¼3, prob¼Pi

[PackSize])

Calculate benefits ¼ amount per individual

Benefit[PackSize, 2:4] <- Y*k[2:4]/PackSize

}

Horizon <- 31 # Number of time steps

Set up matrix for fitnesses

Column 1 is F(x, t). Column 2 is F(x, tþ1)

F.vectors <- matrix(0, Max.Index,2)

F.vectors[2:Max.Index,2] <- 1 # Cell 1,2 ¼ 0 ¼ Dead

Create matrices for output

FxtT <- matrix(0,Horizon,Max.Index) # F(x,t,T)

Best.Patch <- matrix(0,Horizon,Max.Index) # Best patch

number

Matrix for flag indicating multiple equivalent choices

0 ¼ only one choice, 1 ¼ more than one choice

CHOICES <- matrix(0,Horizon,Max.Index)

Start iterations

Time <- Horizon # Initialize Time

while (Time > 1)

{

Time <- Time - 1 # Decrement Time by 1 unit

Call OVER.STATES to get best values for this time step

Temp <- OVER.STATES(F.vectors, Xcritical, Xmax, Xinc,

Npatch, Cost, Benefit, Pbenefit, Max.Index)

Extract F.vectors

TempF <- Temp[,1:2]

Update F1

for (J in 2: Max.Index) { F.vectors[J,2] <- TempF[J,1]}

Store results

Best.Patch[Time,] <- Temp[,4]

FxtT[Time,] <- Temp[,3]

CHOICES[Time,] <- Temp[,5]

} # End of Time loop

Output information. For display add states to last row of matrices

Note that state variable conversion from index value

Index <- seq(from¼1, to¼Max.Index)

Best.Patch[Horizon,] <- (Index-1)*XincþXcritical

FxtT[Horizon,] <- (Index-1)*XincþXcritical

Best.Patch[,1:Max.Index] # Print Decision matrix

D YNAM I C P R OG R AMM I NG 373

signif(FxtT[,1:Max.Index],3) # Print Fxt of Decision

matrix: 3 sig places

CHOICES[,1:Max.Index] # Print matrix indicating choice flag

Plot data

y <- Best.Patch[Horizon,2:Max.Index]

x <- seq(from¼1, to¼Horizon-1)

par(mfrow¼c(2,2))

persp(x, y, Best.Patch[1:30,2:Max.Index], xlab¼‘Time’,

ylab¼‘x ¼ Gut contents’, zlab¼‘Optimal Pack size’, theta¼20,

ph¼25, lwd¼1) # 3D plot

image(x, y, Best.Patch[1:30,2:Max.Index], col¼terrain.colors

(50), xlab¼‘Time’, ylab¼‘x ¼ Gut contents’, las¼1) # Colored grid

image(x, y, CHOICES[1:30,2:Max.Index], col¼terrain.colors

(50), xlab¼‘Time’, ylab¼‘x ¼ Gut contents’, las¼1) # Colored grid

OUTPUT: (Figure 6.3)

One Pack size optimal

Pack size = 1

Pack size = 2

5

5

10

15

x
=

 G
ut

 c
on

te
nt

s

x
=

G
ut

 c
on

te
nt

s

20

25

30

5

10

15

x
=

 G
ut

 c
on

te
nt

s

20

25

30

Time

O
ptim

al P
ack size

10 15

Time

20 25 30

5 10 15

Time

20 25 30

Figure 6.3 Results for Scenario 3: Top shows two graphical representation of the
decision matrix (unlabeled color = optimal pack size of 3) and bottom a visualization of
the choice matrix (unlabeled color = more than one optimal choice).

374 MOD E L I N G E VO L U T I ON

The decision matrix, the matrix of fitnesses, and the matrix indicating the pres-

ence of multiple equivalent choices are printed out but not shown here. Figure 6.3

shows two visualizations of the decision matrix and a visualization of the matrix

CHOICE. Over most of state space a pack size of 2 is optimal. The number of cases

in which there are multiple equivalent choices increase with the state value and

the approach of the end of the time span.

MATLAB CODE: see Section 6.9.5

6.6 Scenario 4: Host choice in parasitoids: fitness
decreases with time

A frequent use of dynamic programming is to examine oviposition behavior in

organisms such as parasitoids that lay clutch sizes that depend upon host or patch

quality. The important change in this scenario compared to the previous ones is that

the value of the state variable increases as we move toward t ¼ 1, rather than

decreasing.

6.6.1 General assumptions

1. The animal commences the time period with some fixed quantity of eggs, as

occurs, for example, in some Lepidoptera. In general, animals can be classified

into capital breeders that use only, or primarily, resources gathered prior to

maturity and income breeders that garner resources for reproduction after

maturity. The present model applies to capital breeders, though it can easily

be adapted for income breeders.

2. Patches or hosts vary in quality.

3. The survival and growth of larvae depend on the number in the clutch and host

quality.

4. Variation in host quality can be detected by the ovipositing females.

5. Survival of the female may or may not change over time. For computational

simplicity, we assume that the sequence of events is that egg-laying precedes

the determination of survival over the time period.

6. Only one host at most is encountered per time interval.

7. Hosts already with eggs are not encountered.

8. Fitness is a function of the number of offspring.

6.6.2 Mathematical assumptions

1. There are four types of host.

2. The single host fitness can be modeled by a cubic function:

D YNAM I C P R OG R AMM I NG 375

Benefiti;n ¼ ai þ binþ cin
2 þ din

3 ð6:19Þ
where n is the number of eggs laid on a host, the subscript i refers to host type, and

the coefficients vary according to host type. In this case we have not explicitly

defined fitness in relation to the components of offspring survival and future

reproduction, but have absorbed these into a single function empirically derived

by Charnov and Skinner (1984) for the parasitoid wasp Nasonia vitipennis. An

important feature of this function is that it has an intermediate optimum, but

the fitness curve for host type 1 is clearly incorrect and derives from the fact that

the model is extended beyond the observed range (Figure 6.4). It will never be

optimal to increase clutch size beyond the local maximum (see below for

Cluth size

F
em

al
e

F
itn

es
s

0

0

5

10

15

20

25

30

10 20 30 40

Figure 6.4 Fitness increments on each type of host parasitized by the wasp Nasonia
vitripennismodeled by a cubic function. Coefficients from Table 4.1 of Mangel and Clark
(1988). Coding to generate Benefits matrix and plot data prior to setting values greater
than n* (the single host maximum) to zero. Because zero occupies the first column we
apply an index transformation.

rm(list=ls()) # Remove all objects from memory

Xmax <- 40 # Maximum value of X = eggs

Xcritical <- 0 # Lowest value of X = 0 eggs

Xinc <- 1 # Increment in state variable

Max.Index <- 1 + (Xmax-Xcritical)/Xinc # Max Index value

Create host coefficient matrix from which to get Benefits

Host.coeff <- matrix(0,4,4)

Host.coeff[1,] <- c(-0.2302, 2.7021, -0.2044, 0.0039)

Host.coeff[2,] <- c(-0.1444, 2.2997, -0.1170, 0.0013)

376 MOD E L I N G E VO L U T I ON

derivation) and hence all values greater than this can be set to zero (coding given

in figure caption). A plausible model for this type of function (i.e., single maxi-

mum) is that offspring survival and body size, which controls future fecundity,

decreases with clutch size but, because fitness is equal to clutch size times, the

expected fecundity of each offspring, fitness initially increases with clutch size.

The optimum clutch size for a single clutch can be obtained from the calculus

dBenefiti;n
dn

¼ bi þ 2cinþ 3din
2 ð6:20Þ

The optimum clutch size is then found by setting dBenefiti;n=dn ¼ 0 and solving the

resultant quadratic (see Scenario 1 of Chapter 2), say n*. It will never be optimal for

a female to lay more eggs than n*, but it could be optimal to lay fewer eggs if the

host is of poor quality and the female is likely to find higher quality hosts in the

future. As noted above, to avoid the unreal behavior of at least one of the single

host fit we set values greater than n* equal to zero.

3. The probability of encountering a host is constant but different for each host,

designated as Pbenefiti, where i is the ith host type. Thus the probability of not

encountering a host, P0, is

Host.coeff[3,] <- c(-0.1048, 2.2097, -0.0878, 0.0004222)

Host.coeff[4,] <- c(-0.0524, 2.0394, -0.0339, -0.0003111)

Calculate benefit as a function of

clutch size (rows) and Host type (columns)

Clutch <- seq(from = 0, to = Xmax)

Benefit <- matrix(0, Max.Index, 4) # Zero to Xmax

for (I.Host in 1:4) # Iterate over host types

{

Benefit[,I.Host] <- Host.coeff[I.Host,1] + Host.coeff[I.

Host,2]*Clutch + Host.coeff[I.Host,3]*Clutch^2 + Host.coeff[I.

Host,4]*Clutch^3

}

Plot data

plot(Clutch, Benefit[,1],type=‘l’, xlab=‘Clutch size’,ylab=“-

Female Fitness”, las=1, lwd=4)

lwd = line width, lty = line type,1=solid, 2=dashed, 3=dotted,

4=dotdash,

for (i in 2:4){lines(Clutch, Benefit[,i],type=‘l’, lwd=4,

lty=i)}

SHM <- c(9,12,14,23) # Set single host maximum. See text for

derivation

Make all values > than SHM=0. Note that we use 1 because of zero

class

for (i in 1:4){Benefit[(SHM[i]+1):Max.Index,i] <- 0}

D YNAM I C P R OG R AMM I NG 377

P0 ¼ 1�
X4
i¼1

Pbenefiti ð6:21Þ

4. We shall assume a constant mortality per unit time, Pmortality ¼ 0.01. At the

end of the season no further eggs can be laid, meaning that the female is, from

the point of view of natural selection, dead. For computational simplicity we

shall use Psurvival ¼ 1 � Pmortality. Thus

Psurvival ¼ 0:99 for t < T � 1
0:00 for t ¼ T � 1

�
ð6:22Þ

5. Overall fitness is the sum of the fitness increments obtained from each host.

6.6.3 Outcome chart and expected lifetime fitness function

The important feature of this model that differentiates it from previous models is

that the value of the state variable increases as we move toward t ¼ 1, rather than

decreasing. Because no eggs are laid beyond time T, the terminal fitness is F(x, T) ¼
0. Because eggs are laid prior to the calculation of survival, even if the female does

not survive, the state variable takes a positive value. Thus at each time step there

are two possible outcomes, a host is found or a host is not found:

From the above,wehave thatfitness at time t� 1 ismadeupof two functions, f and g:

Fðx; t� 1Þ ¼ f ðNo host encounteredÞ þ gðHost encounteredÞ ð6:23Þ
The function for “No host encountered” is

f ðNo host encounteredÞ ¼ 0:99P0Fðx; tÞ ð6:24Þ
The function for “Host encountered” is more complicated. The fitness increment

for each combination of host type i and clutch size, c, where c varies from 0 to x, is

Fi;c ¼ Benefiti;c þ 0:99 � Fðx� c; tÞ ð6:25Þ
that is, the benefit from the present clutch plus the fitness expected from the

remaining eggs (x � c). Note that this particular formulation requires estimating

F(0, t), which means that we have to use an index transformation in the coding, as

done in the last scenario. From the series generated by equation (6.25) we obvious-

ly choose the maximum value: thus for the ith host and x ¼ 4, we pick

Host found Survives X

Yes Yes x‐Benefiti,n...
Yes No x‐Benefiti,n...
No Yes X...
No No X

378 MOD E L I N G E VO L U T I ON

Fi;max ¼ maxfFi;0; Fi;1; Fi;2; Fi;3; Fi;4g ð6:26Þ
The expected maximum fitness increment over all host types is then given by

gðHost encounteredÞ ¼
X4
i¼1

PbenefitiFi;max ð6:27Þ

and F(x, t � 1) is thus

Fðx; t� 1Þ ¼ 0:99P0Fðx; tÞ þ
X4
i¼1

PbenefitiFi;max ð6:28Þ

Mangel and Clark (1988) make the following predictions for this scenario:

Prediction 1: For a fixed number of remaining eggs, older insects should lay larger

clutches than younger insects. The rationale for this prediction is that older

insects are closer to the end of the duration and hence their expected future

fitness is reduced relative to younger females, thereby making present allocation

a higher contribution to overall fitness.

Prediction 2: It also follows from the preceding rationale that older insects are

more likely to choose inferior hosts.

Prediction 3: Because of differing host encounters there will be a distribution of

clutch sizes at any given time.

Prediction 4: As the per period survival decreases, larger clutches will be

observed. This follows from the fact that survival discounts future reproduction

(i.e., Psurvival � Fðx� c; tÞ).
Prediction 2 is not directly addressed by this model, because females only locate

one type of host at a time. Prediction 3 is not directly addressed by the decision

matrix but can be addressed using the decision matrix and simulating the behav-

ior of individual females, as described below.

6.6.4 Calculating the decision matrix

It is more convenient to place the calculations of fitness directly into the function

OVER.PATCHES, which iterates over host types. Rather than storing all cases in

which there aremultiple choices of the greatest fitness, the program simply prints

out when these occur: in this example no such cases occur (such cases are more

likely to occur when survival is the fitness criterion). Except for these two changes,

the basic program is the same as the patch-foraging model. (Because the state

variable, number of eggs, is an integer and varies in unit steps, no interpolation is

required.) While one could calculate the single host fitness functions using the

cubic functions within OVER.PATCHES it is more efficient to calculate a Benefits

matrix as given in Figure 6.3 and pass this matrix. The decision matrix gives the

D YNAM I C P R OG R AMM I NG 379

optimal clutch size but what is likely to be of greater interest is the decisionmatrix

for each host type, as it is this that is required to address Predictions 1 and 4. The

decision matrix for a single host type can be obtained very easily by storing this

value in place of the overall clutch size, that is, to get the decision matrix for host

type 3 use (in OVER.PATCHES)

Temp <- c(F.vectors[Index,1], Best.Clutch[3])

To output the decision matrix for all host types simultaneously requires more

complicated bookkeeping that I leave to the reader. (Given how quickly the

program runs one can simply run the model four times, changing the index

value of Best.Clutch[3] or use the approach given in Scenario 5.) To illustrate

the validity of Predictions 1 and 2, I stored the output for the x ¼ 40 column of the

decision matrix for host type 3 and ran the model with three values of Psurvival:

0.99, 0.90, and 0.80. I then plotted the results using SigmaPlot.

R CODE:

rm(list¼ls()) # Remove all objects from memory

Set up path for output of text files

setwd(“C:/Documents and Settings/Derek Roff/My Documents/ Mod-

elling Evolution/DYNAMIC PROGRAMMING”) # This will have to be

changed for specific paths

Function to iterate over patches i.e. over Hosts

OVER.PATCHES <- function(X, F.vectors, Xcritical, Xmax, Xinc,

Npatch, Benefit, Pbenefit, Psurvival)

{

Create matrix for storing best clutch size for each host type

Best.Clutch <- matrix(0,Npatch)

Index <- 1 þ (X-Xcritical)/Xinc # Index for X is Xþ1

Vector of clutch sizes to Index-1

Clutch <- seq(from ¼1, to ¼ Index-1)

Start fitness accumulation with component for case of not finding

a host

W <- Psurvival*(1-sum(Pbenefit))*F.vectors[Index,2]

for (i in 1: Npatch) # Cycle over patches ¼ Hosts

{

Calculate “partial” fitness, W.partial for each clutch size

W.partial <- Benefit[2:Index,i] þ Psurvival*F.vectors[Index-

Clutch,2]

Find largest W.partial and hence best clutch size

Best <- order(W.partial, na.last¼TRUE, decreasing¼TRUE)

Best.Clutch[i] <- Best[1] # Store value of best clutch for

host i

380 MOD E L I N G E VO L U T I ON

Increment fitness

W <- W þ Pbenefit[i]*W.partial[Best[1]]

Test for several equal optimal choices

Only examine W.partial that contain more than one entry

if(length(W.partial)>1&W.partial[Best[1]]¼¼W.partial[Best[2]])

{print(“Several possible equal choices”)}

} # End of i loop

F.vectors[Index,1] <- W # Update F(x,t)

Concatenate F(x,t,T) and the optimal clutch values for host type 2

Temp <- c(F.vectors[Index,1], Best.Clutch[2])

Add Temp to bottom of F.vectors and rename to Temp

Temp <- rbind(F.vectors, Temp)

return (Temp)

} # End of function

..

Function to iterate over states of X

OVER.STATES <- function(F.vectors, Xcritical, Xmax, Xinc,

Npatch, Benefit, Pbenefit, Psurvival, Max.Index)

{

Store <- matrix(0,Max.Index,2) # Create matrix for output

for (Index in 2 : Max.Index) # Iterate over states of X

{

For given X call Over.Patches to determine F(x,t,T) and best patch

X <- (Index-1)*Xinc þ Xcritical

Temp <- OVER.PATCHES(X, F.vectors, Xcritical, Xmax, Xinc,

Npatch, Benefit, Pbenefit, Psurvival)

Extract components. Last row is F(x,t) and best clutch size for

host 2

n <- nrow(Temp)-1

F.vectors <- Temp[1:n,]

Store[Index,] <- Temp[nþ1,] # Save F(x,t,T) and best clutch

size

} # End of X loop

Add Store values to end of F.vectors for pass back to main program

Temp <- cbind(F.vectors, Store) # Combined by columns

return(Temp) # Return F.vectors and

Store

} # End of function

D YNAM I C P R OG R AMM I NG 381

..

MAIN PROGRAM

Initialize parameters

Xmax <- 40 # Maximum value of X ¼ eggs

Xcritical <- 0 # Lowest value of X ¼ 0 eggs

Xinc <- 1 # Increment in state variable

Max.Index <- 1 þ (Xmax-Xcritical)/Xinc # Max Index value

Psurvival <- 0.99 # Survival probty per time increment

Npatch <- 4 # Number of patches ¼ hosts

Create host coefficient matrix from which to get Benefits

Host.coeff <- matrix(0,4,4)

Host.coeff[1,] <- c(-0.2302, 2.7021, -0.2044, 0.0039)

Host.coeff[2,] <- c(-0.1444, 2.2997, -0.1170, 0.0013)

Host.coeff[3,] <- c(-0.1048, 2.2097, -0.0878, 0.0004222)

Host.coeff[4,] <- c(-0.0524, 2.0394, -0.0339, -0.0003111)

Calculate benefit as a function of

clutch size (rows) and Host type (columns)

Clutch <- seq(from ¼ 0, to ¼ Xmax)

Benefit <- matrix(0, Xmaxþ1, 4) # Zero to Xmax

for (I.Host in 1:4) # Iterate over host types

{

Benefit[,I.Host] <- Host.coeff[I.Host,1] þ Host.coeff[I.

Host,2]*Clutch þ Host.coeff[I.Host,3]*Clutch 2̂ þ Host.coeff[I.

Host,4]*Clutch 3̂

}

Benefit[1,] <- 0 # Reset first row to zero

SHM <- c(9,12,14,23) # Set single host maximum. See text for deri-

vation

Make all values > than SHM¼0. Note that we use 2 because of zero

class

for (i in 1:4){Benefit[(SHM[i]þ2):Max.Index,i] <- 0}

Probability of encountering host type

Pbenefit <- c(0.05, 0.05, 0.1, 0.8)

Horizon <- 21 # Number of time steps

Set up matrix for fitnesses

Column 1 is F(x, t). Column 2 is F(x, tþ1) Both are zero

F.vectors <- matrix(0, Max.Index,2)

Create matrices for output

FxtT <- matrix(0,Horizon,Max.Index) # F(x,t,T)

Best clutch size for host 2

Best.Patch <- matrix(0,Horizon,Max.Index)

382 MOD E L I N G E VO L U T I ON

Start iterations

Time <- Horizon # Initialize Time

while (Time > 1)

{

Time <- Time -1 # Decrement Time by 1 unit

Call OVER.STATES to get best values for this time step

Temp <- OVER.STATES(F.vectors, Xcritical, Xmax,

Xinc, Npatch, Benefit, Pbenefit, Psurvival, Max.Index)

Extract F.vectors

TempF <- Temp[,1:2]

Update F1

for (J in 2: Max.Index) {F.vectors[J,2] <- TempF[J,1]}

Store results

Best.Patch[Time,]<- Temp[,4]

FxtT[Time,] <- Temp[,3]

} # End of Time loop

Output information. For display add states to last row of matrices

Index <- seq(from¼1, to¼Max.Index)

Best.Patch[Horizon,] <- (Index-1)*XincþXcritical

FxtT[Horizon,] <-(Index-1)*XincþXcritical

Best.Patch[,1:Max.Index] # Print Decision matrix

signif(FxtT[,1:Max.Index],3) # Print Fxt of Decision matrix:

3 sig places

Plot data as 3d plot and colored grid

y <- Best.Patch[Horizon,2:Max.Index]

x <- seq(from¼1, to¼Horizon-1)

par(mfrow¼c(2,2))

persp(x, y, Best.Patch[1:20,2:Max.Index], xlab¼‘Time’,

ylab¼‘x’, zlab¼‘Optimal clutch size’, theta¼20, ph¼25, lwd¼1) #

3D plot

image(x, y, Best.Patch[1:20,2:Max.Index], col¼terrain.colors

(50), xlab¼‘Time’, ylab¼‘x’, las¼1) # Colored grid

Output text file for future plotting to test predictions

DATA <- cbind(x, Best.Patch[1:Horizon-1,41])

DATA <- t(DATA)

write(DATA,file¼“OVIPOSITION.txt”,nc¼2)

OUTPUT: (Figure 6.5)

D YNAM I C P R OG R AMM I NG 383

Time

Time

O
ptim

al clutch size

5 10

10

20x

x

30

40

15 20

Figure 6.5 Results for Scenario 4: Top shows two graphical representation of the
decision matrix and bottom a reduced decision matrix for host type 3.

State variable, x

Time 1 2 3 4 5 10 15 20 25 30 35 40

1 1 1 2 2 2 2 2 2 3 3 3 3...
2 1 1 2 2 2 2 2 2 3 3 3 3...
3 1 1 2 2 2 2 2 2 3 3 3 3...
4 1 1 2 2 2 2 2 2 3 3 3 3...
5 1 1 2 2 2 2 2 2 3 3 3 3...
6 1 1 2 2 2 2 2 2 3 3 3 3...
7 1 1 2 2 2 2 2 2 3 3 3 3...
8 1 1 2 2 2 2 2 2 3 3 3 3...
9 1 1 2 2 2 2 2 2 3 3 3 3...
10 1 1 2 2 2 2 2 2 3 3 3 3...
11 1 1 2 2 2 2 2 2 3 3 3 3...
12 1 1 2 2 2 2 2 2 3 3 3 4...
13 1 1 2 2 2 2 2 3 3 3 4 4...
14 1 1 2 2 2 2 2 3 3 3 4 4...
15 1 1 2 2 2 2 2 3 3 4 4 5...
16 1 1 2 2 2 2 3 3 4 4 5 6...
17 1 1 2 2 2 2 3 4 5 6 6 7...
18 1 1 2 2 2 3 4 5 6 7 9 10...
19 1 1 2 2 2 4 6 8 10 11 13 14...
20 1 2 3 4 5 10 14 14 14 14 14 14

384 MOD E L I N G E VO L U T I ON

The decision matrix is printed out but not shown here. Figure 6.5 shows a reduced

version of this matrix for host type 3 alongwith two visualizations of the complete

matrix. The most striking point is that, as predicted (Prediction 1), the optimal

clutch size increases with age. Figure 6.6 shows the effect of varying Psurvival: as

predicted (Prediction 3), the optimum clutch size increases as survival per unit

time decreases.

MATLAB CODE: See Section 6.9.6.

6.6.5 Using the decision matrix: individual prediction

Although the distribution of clutch sizes over time can be calculated using the

transition density matrix the construction is very tedious in comparison to using

the individual prediction approach. By running a large number of individuals

(e.g., 1,000–10,000) the resulting distribution will closely approximate the

expected distribution. To obtain the decision matrix for all four hosts the pre-

ceding program was run four times and the decision matrices dumped as text

files labeled

DM1.txt, DM2.txt, DM3.txt and DM4.txt, the appropriate coding being

DATA <- Best.Patch[1:Horizon-1,2:41]

DATA <- t(DATA)

write(DATA, file¼“DM4.txt”,nc¼40)

The four files were read back and placed into an array called DM in which the

dimensions represent x, time, and host type. At each iteration over individual and

time a host type has to be allocated based on its probability of occurrence (Pbenefit).

To do this we proceed as follows:

Psurvival = 0.99
Psurvival = 0.95
Psurvival = 0.80

Time

5
2

4

6

8

10

O
pt

im
al

 C
lu

tc
h

S
iz

e

12

14

16

10 15 20

Figure 6.6 Effect of varying Psurvival on the optimal clutch size for host type 3 given x =
40. Plot generated using SigmaPlot.

D YNAM I C P R OG R AMM I NG 385

Step 1: Multiply all probabilities by a common factor so that they are integers. In

the present case the set of probabilities are 0.05, 0.05, 0.1, and 0.8, and hence the

appropriate multiplier is 100, giving 5, 5, 10, and 80, respectively. Create a vector

with these numbers:

Times <- c(5,5,10,80).

Step 2: Create a vector, Host.Type, in which there are 5 “1”s, 5 “2”s, 10 “3”s, and 80

“4”s:

Host.Type <- c(rep(1,Times[1]), rep(2,Times[2]), rep(3,Times

[3]), rep(4,Times[4]))

Step 3: For each individual create a vector of length Horizon (the total number of

time increments) of random integers between 1 and 100:

Host <- ceiling(100*runif(Horizon))

Step 4: The host type chosen at time interval i is Host.Type[Host[i]]. The

probability of occurrence is equal to the probabilities given by Pbenefit. Survival

is computed by generating a vector of (length ¼ Horizon) random numbers

between 0 and 1: values greater than 0.99 indicate that the female dies in that

time period and are set to zero, all other values then being set to 1:

Survival <- runif(Horizon) # Vector of survival probabilities

Survival[Survival>Psurvival] <- 0

Survival[Survival!¼0] <- 1 # Set all other values to 1

The initial distribution of egg complement (x) is set as a normal distribution with

mean 20 and standard deviation of 5, and converted to integer values:

x.init <- ceiling(rnorm(N.Ind, mean¼20, sd¼5))

Because clutch sizes are integral, the results are plotted using the bar graph

routine rather than the histogram routine.

R CODE:

rm(list¼ls()) # Remove all objects from memory

setwd(“C:/Documents and Settings/Derek Roff/My Documents/Mod-

elling Evolution/DYNAMIC PROGRAMMING”)

Xmax <- 40 # Maximum value of X ¼ eggs

DM1 <- read.table(file¼“DM1.txt”) # Cols ¼ x rows¼time

DM2 <- read.table(file¼“DM2.txt”)

DM3 <- read.table(file¼“DM3.txt”)

DM4 <- read.table(file¼“DM4.txt”)

Create an array for Decision matrix

DM <- array(0,c(20,Xmax,4)) # time, state, host

for (i in 1:20)

{

for (j in 1:Xmax)

386 MOD E L I N G E VO L U T I ON

{

DM[i,j,1] <- DM1[i,j]; DM[i,j,2] <- DM2[i,j]

DM[i,j,3] <- DM3[i,j];DM[i,j,4] <- DM4[i,j]

}}

Probability of encountering host type

Pbenefit <- c(0.05, 0.05, 0.1, 0.8)

Times <- c(5,5,10,80)

Create Vector for Host type probability

Host.Type <- c(rep(1,Times[1]),rep(2,Times[2]),rep(3,

Times[3]), rep(4,Times[4]))

Psurvival <- 0.99 # Survival probability per time increment

Horizon <- 10 # Number of time steps

set.seed(10) # Initialise random number generator

N.Ind <- 1000 # Number of individuals

Output <- matrix(0,N.Ind,Horizon) # Allocate space for output

Generate initial values of x from normal distribution

x.init <- ceiling(rnorm(N.Ind, mean¼20, sd¼5))

for (Ind in 1:N.Ind) # Iterate over individuals

{

Generate vectors for choosing the Host type and probability of

survival

Host <- ceiling(100*runif(Horizon)) # Vector of host types

Survival <- runif(Horizon) # Vector of survival probabilities

Set all values of Survival > Psurvival ¼ 0

Survival[Survival>Psurvival] <- 0

Survival[Survival!¼0] <- 1 # Set all other values to 1

x <- x.init[Ind] # Initial value of x

for (Time in 1:Horizon) # Iterate over time periods

{

if(x>0) # If eggs remaining calculate clutch size using DM

{

Clutch.Size <- DM[Time,x,Host.Type[Host[Time]]]

Output[Ind,Time] <- Clutch.Size # Store clutch size

Compute new value of x

x <- x-Clutch.Size

}

x <- x*Survival[Time] # Set x¼0 if female does not survive

} # end of Time loop

} # End of Ind loop

par(mfcol¼c(5,2)) # Set graphics page to 5 rows and 2 columns

Iterate over time and plot bar graphs of clutch size

for (i in 1:10)

{

Data <- Output[,i]; Data <- Data[Data>0] # Eliminate zeroes

xbar <- mean(Data) # Mean clutch size

D YNAM I C P R OG R AMM I NG 387

print(c(i, mean(Data))) # Time, Output mean clutch size

Data <- table(Data) # Tabulate data

Plot data using a bar graph, because x is integral

barplot(Data, xlab¼“Clutch Size”, space¼0, xlim¼c(0,5), main ¼
paste(“Time ¼ ”,i), col¼1)

}

OUTPUT: (Figure 6.7)

Clutch Size

Time = 5 Time = 10

1

0
50

0

2 3
Clutch Size

1

0
40

0

2

Time = 9

Clutch Size
1

0
40

0

2 3

Time = 8

Clutch Size
1

0
40

0

2 3

Time = 7

Clutch Size
1

0
50

0

2 3

Time = 6

Clutch Size
1

0
60

0

2 3

Time = 1

Clutch Size
2

0
40

0

3 4

Time = 2

Clutch Size
1

0
50

0

2 3 4

Time = 3

Time = 4

Clutch Size
1

0
50

0

2 3 4

Clutch Size
1

0
40

0

2 3 4

Figure 6.7 Bar graphs of clutch size over time using the decision matrix to predict
oviposition behavior.

388 MOD E L I N G E VO L U T I ON

[1] 1.000000 3.036
[1] 2.000000 2.774619
[1] 3.000000 2.626927
[1] 4.000000 2.444906
[1] 5.000000 2.216842
[1] 6.000000 1.965921
[1] 7.000000 1.779978
[1] 8.000000 1.588661
[1] 9.000000 1.362360
[1] 10.00000 1.172745

The bar graphs (Figure 6.7) show an initial variation for clutch sizes from 2–4,

with a diminishing of the mean size over time (see means above). This reduction

is due to the female running out of eggs. If females were prevented from laying

eggs, we would expect that the mean clutch size would increase. To test this

prediction I commenced the simulation at time 16, essentially preventing the

simulated females from laying any eggs until this time. The mean clutch sizes

still show the same decrease over time (4.64, 4.38, 4.16, 3.85, and 3.55), but the

proportion of females laying larger clutches increases (e.g., at t ¼ 16 no females

lay a clutch size of 9 eggs but some do so at t ¼ 30, Figure 6.8). For a fuller

discussion of this model see Mangel and Clark (1988, chapter 4).

MATLAB CODE: See Section 6.9.7.

6.7 Scenario 5: Optimizing egg and clutch size: dealing
with two state variables

Thus far we have assumed only a single state variable: however, there may be

many circumstances in which there are multiple state variables. In this scenario

we shall examine an extension of the previous scenario in which fitness depends

upon both egg size and egg number. To better focus upon the method of dealing

with two state variables the previous scenario is somewhat simplified.

6.7.1 General assumptions

1. The animal commences the time period with some fixed quantity of resources

that can be divided into clutches and eggs of different sizes. Thus although we

have two state variables, egg size, and clutch size, these can be combined

operationally into a single variable, reproductive biomass X.

2. Patches or hosts vary in quality.

3. The survival and growth of larvae depend on the number in the clutch, egg size,

and host quality.

4. Variation in host quality can be detected by the ovipositing females.

D YNAM I C P R OG R AMM I NG 389

5. Survival of the female may or may not change over time. For computational

simplicity, I shall assume that the sequence of events is that egg-laying precedes

the determination of survival over the time period.

6. One host is encountered per time interval.

7. Hosts already with eggs are not encountered.

8. Fitness is a function of the number and size of offspring.

Clutch Size

Time = 20

1

0
25

0

2 3 4 5 6 7 8 9 10

Clutch Size

Time = 18

1

0
20

0

2 3 4 5 6 7 8 9

Clutch Size

Time = 17

1

0
25

0

2 3 4 5 6 7 8 9

Clutch Size

Time = 16

0
20

0
2 3 4 5 6 7 8 9

Clutch Size

Time = 19

1

0
25

0

2 3 4 5 6 7 8

Figure 6.8 Bar graphs of clutch size over time using the decision matrix to predict
oviposition behavior when females are not allowed to oviposit until t = 16.

390 MOD E L I N G E VO L U T I ON

6.7.2 Mathematical assumptions

1. There are two types of host.

2. The amount of reproductive biomass available at time t is Bt which is equal to

the product of egg size and clutch size,

xt ¼ xExC ð6:29Þ
where xE is the egg size and xC is the clutch size.

3. The single host fitness can be modeled by the function

Benefiti;E;C ¼ Wmax;i �
ffi
aE;iðxE � bE;iÞ2 þ aC;iðxC � bC;iÞ2

q
ð6:30Þ

where the subscript i refers to host type and the coefficientsWmax;i; aE;i; aC;i; bE;i; bC;i
vary according to host type. The maximum benefit on host type i is Wmax,i and is

obtained when egg size equals bE,i and clutch size is bc,i. Parameter values used in

this example are

Thus on host type 1 the single host optimum is a larger egg size but smaller clutch

size than is optimal on host type 2 (Figure 6.9). The parameter space (i.e., combi-

nation space) over which fitness is positive is small on host type 1 but relatively

large on host type 2.

4. A host is encountered during each time step: the probability of encountering

host type 1 is P1 ¼ 0.5 and hence the probability of encountering host type 2 is

P2 ¼ 1 � P1 ¼ 0.5.

5. We shall assume a constant mortality per unit time, Pmortality¼ 0.1. At the end

of the season no further eggs can be laid, meaning that the female is, from the

point of view of natural selection, dead. For computational simplicity we shall

use Psurvival ¼ 1 � Pmortality. Thus

Psurvival ¼ 0:90 for t < T � 1
0:00 for t ¼ T � 1

�
ð6:31Þ

6. Overall fitness is the sum of the fitness increments obtained from each host.

6.7.3 Outcome chart and expected lifetime fitness function

As in the previous example, an important feature of this model that differentiates

it from Scenarios 1–3 is that the value of the state variable increases as we move

toward t ¼ 1, rather than decreasing. Because no eggs are laid beyond time T, the

terminal fitness is F(x, T) ¼ 0. Because eggs are laid prior to the calculation of

Host Wmax aE aC bE bC

1 10 100 1 2 5...
2 20 100 1 1 10

D YNAM I C P R OG R AMM I NG 391

Egg size, x

C
lu

tc
h

si
ze

, y

0.0

0

5

10

15

20

25

30

C
lu

tc
h

si
ze

, y

0

5

10

15

20

25

30

0.5 1.0 1.5 2.0 2.5 3.0

Egg size, x

0.0 0.5 1.0 1.5

5

0

0
2

810

16

128

4

6

14

–2 –6

F
itness, W

F
itness, W

Egg size, x

Egg size, x

Clutch
 si

ze
, y

Clutch
 si

ze
, y

–5

–10

–15

2.0 2.5 3.0

Figure 6.9 Single host fitness surfaces for Scenario 5. R code to produce graph is

rm(list=ls()) # Remove all objects from memory

Function to calculate fitness, passing parameters to it

FITNESS <- function(X, Wmax, Xegg, Xclutch, ax, ay)

{

W <- Wmax-sqrt(ax*(X[1]-Xegg)^2 + ay*(X[2]-Xclutch)^2)

}

MAIN PROGRAM

Parameter values

Wmax <- c(10,20); Xegg <- c(2,1); Xclutch <- c(5,10); ax <-

100; ay <- 1

n <- 20 # Number of intervals for egg and clutch sizes

x <- seq(from=0, to=3, length=n) # Generate egg sizes

y <- seq(from=0, to=30, length=n) # Generate clutch size

d <- expand.grid(x,y) # Expand to all combinations

Set plotting page to put graphs side by side and not distorted

Make plotting surface consist of four panels

par(mfrow=c(2,2))

for (i in 1:2)

392 MOD E L I N G E VO L U T I ON

survival, even if the female does not survive, the state variable takes a positive

value. Thus at each time step there is only one possible outcome, a host is found.

Because the model assumes that a host is encountered each time step the fitness

function is somewhat simpler than in the previous scenario. The fitness incre-

ment for each combination of host type i, egg size xE,i, and clutch size xC,i is

Fi;E;C ¼ Benefiti;E;C þ 0:90 � Fðx� xE;ixC;i; tÞ ð6:32Þ
The term x� xE;ixC;i is unlikely to be an index and hence interpolation is neces-

sary. Note that the egg–clutch size combinations are restricted to those values less

than or equal to xi, the size of the state variable at time i. Clutch sizes must be

integer, but egg sizes are continuous. For each clutch size we find the egg size that

maximizes Fi,E,C and then compare different clutch sizes to get the global maxi-

mum, Fi,max. Fitness for state variable x at time t � 1 is given by

Fðx; t� 1Þ ¼ P1F1;max þ ð1� P1ÞF2;max ð6:33Þ

6.7.4 Calculating the decision matrix

Unlike the previous scenario it is better to place the calculation of fitness in a

separate function called FITNESS, as was done in Scenarios 1–3. Two features of

note in the programming of this scenario is the relatively extensive bookkeeping

that is necessary and the use of interpolation. While it could be possible to place

the output in a single array I prefer to make separate matrices, because the coding

is clearer. The program runs in the following sequence:

Step 1: Input parameter values and the 7 matrices for storing the following

output: the state value (FxtT), the optimal clutch sizes for the two hosts (Best.

{

Create a vector of fitness values for all combinations

Wtemp <- apply(d,1, FITNESS,Wmax[i], Xegg[i],Xclutch[i],ax,ay)

Convert into matrix

W <- matrix(Wtemp,n,n,byrow=F)

Plot contour. las=orientation of axis labels

lwd= line width, labcex=size of contour labels

contour(x,y,W, xlab=‘Egg size, x’, ylab=‘Clutch size,y’, las=1,

lwd=3, labcex=1)

#Plot perspective plot

persp(x,y,W,xlab=‘Egg size, x’, ylab=‘Clutch size, y’, zlab=‘Fit-

ness, W’,theta = 50, phi = 25,lwd=2)}

Host found Survives X

Yes Yes x‐BeniftitiE,C...
Yes No x‐BeniftitiE,C

D YNAM I C P R OG R AMM I NG 393

Clutch1, Best.Clutch2), the optimal egg sizes for the two hosts (Best.Egg1,

Best.Egg2), and two matrices indicating whether there are at least two choices

of maximal fitness for a given host type (Choice.H1, Choice.H2, 1 will signify a

single optimum and 2 that there are at least two optima).

Step 2: Iterate over time.

Step 3: Call the function OVER.STATES to iterate over values of the state variable.

This function is the same as in the previous scenario except that the number of

columns in the storage matrix Store is increased to 7 to hold the increased

number of output variables.

Step 4: Call the function OVER.PATCHES to calculate the optimum decision over

host types for the given value of the state variable. Iterate over each host (patch)

and for each do the following.

Step 5: Create a 3 	 11 matrix to store the fitness for the optimum egg size at a

given clutch size.

Step 6: Iterate over clutch sizes from 1 to 11.

Step 7: Pass the function FITNESS to optimize to find the optimal egg size.

Step 8. In FITNESS the following steps are applied:

Step 8a: Calculate the reproductive biomass for this combination (¼Biomass).

Step 8b: Check that this is a permissible biomass in that it is less than the present

valueof thestatevariableX. If this test isnotpassedthensetfitnessW tozeroandreturn.

Step 8c: If step 8b is passed first calculate F(x, t). Because the index value of

Biomassmay not be an integer interpolation is used, the interpolated value being

designated Fxt.interpolated.

Step 8d: Calculate the fitness on the given host using equation (6.30). Set to zero

if negative.

Step 8e: Calculate fitness using equation (6.32) and return.

Step 9: Store fitness, clutch size, and egg size in W.host.

Step 10: After iteration over clutch sizes is completed find the combination with

the highest fitness. Store in Best.in.Patch. Test if “second-best” combination

has the same fitness as the “best”: if so store result as 2 in matrix Choice.Flag.

Step 11: After iterating over both hosts calculate the fitness using equation (6.33).

Step 12: Concatenate the vector F.vectors with the relvant output information

and pass back to OVER.STATES where it is stored and a new state value is passed

to OVER.PATCHES.

Step 13: After iterating over patches, state values, and time, output matrices.

R CODE:

To ensure that “interesting” results were obtained I set the state variable,

reproductive biomass, within a range, 1–10, over which the egg–clutch size

394 MOD E L I N G E VO L U T I ON

combinations for a single host cannot be achieved (a useful method of testing

that the model is performing correctly is to set the state variable so high that

the optimum combinations for the two hosts can be achieved).

rm(list¼ls()) # Remove all objects from memory

FITNESS <- function (Egg, Clutch, X, F.vectors, Xcritical, Xmax,

Xinc, Psurvival, Wmax, A, Xegg, Xclutch, Ith.Patch)

{

W <- 0 # Set fitness to zero

Biomass <- Clutch*Egg # Biomass of clutch/Egg size

combination

if(Biomass < X) # Continue only if Biomass < X

{

Max.Index <- 1þ (Xmax-Xcritical)/Xinc # Get maximum index

value

Index value for biomass

Index <- 1þ(Biomass-Xcritical)/Xinc

Get fitness at lower and upper integer value of Biomass

Index.lower <- floor(Index)

Index.upper <- Index.lower þ 1

Must stop index exceeding Max.Index. Note that Qx ¼ 0 in this case

Index.upper <- min(Index.upper, Max.Index)

Qx <- Biomass - floor(Biomass)

Fxt.lower <- F.vectors[Index.lower,2]

Get fitness at upper integer value of

Fxt.upper <- F.vectors[Index.upper,2]

Fxt.interpolated<-Qx*Fxt.upperþ (1-Qx)*Fxt.lower#Iterpolated

value

Calculate the fitness for this particular egg-clutch size combi-

nation

W <- Wmax[Ith.Patch]-sqrt(A[1]*(Egg-Xegg[Ith.Patch]) 2̂þ A[2]*

(Clutch-Xclutch[Ith.Patch]) 2̂)

W <- max(0, W) # Set to zero if negative

W <- W þ Psurvival*Fxt.interpolated # Fitness

W <- max(0, W) # Set to zero if negative

} # End of if

return(W)

} # End of function

..

Function to iterate over patches i.e. over Hosts

OVER.PATCHES <- function(X, F.vectors, Xcritical, Xmax, Xinc,

Npatch, Psurvival, Wmax, A, Xegg, Xclutch,P1)

{

X is the total biomass available Get index value for X

Index <- 1þ(X-Xcritical)/Xinc

D YNAM I C P R OG R AMM I NG 395

Allocate storage of best combinations for each patch

Columns will contain

Fitness, Clutch, Egg

Choice.Flag <- matrix(0,2) # Store information on

number of choices

Best.in.Patch <- matrix(0,2,3) # Allocate storage for Best

Decision

Iterate over patches

for (Ith.Patch in 1:Npatch) # Iterate over the two hosts (¼
patches)

{

Make a matrix called W.host with the following 3 columns:

Fitness, Egg size, Clutch size

W.host <- matrix(0,11,3)

for (Clutch in 1:11) # Iterate over clutch size

{

W.host[Clutch,2] <- Clutch # Store clutch size

Call optimize to find best egg size

B <- optimize(f ¼FITNESS, interval ¼c(0.01,3),Clutch, X,F.vec-

tors, Xcritical, Xmax, Xinc, Psurvival, Wmax, A, Xegg, Xclutch,

Ith.Patch, maximum¼TRUE)

W.host[Clutch,1] <- B$objective # Fitness

W.host[Clutch,3] <- B$maximum # Egg size

} # End of clutch size loop

Get best combination for this host

R <- W.host[,1]

Best <- order(R, na.last¼TRUE, decreasing¼TRUE)

Best.in.Patch[Ith.Patch,] <- W.host[Best[1],] # Store best

choice

Test for several equal optimal choices

if(W.host[Best[1],1]¼¼W.host[Best[2],1])Choice.Flag[Ith.

Patch] <- 2

} # Next host

Overall fitness

W <- P1*Best.in.Patch[1,1] þ(1-P1)*Best.in.Patch[2,1]

F.vectors[Index,1]<- W # Update F(x,t,T)

Concatenate F(x,t) and the optimal egg and clutch values for both

hosts

We add to the bottom of the two column matrix F.vectors the

following

F.vectors[Index,1], 1 The second entry is simply a dummy variable

Best.in.Patch[1,2] Best.in.Patch[1,3] # Host 1 Egg size Clutch

size

Best.in.Patch[2,2] Best.in.Patch[2,3] # Host 2 Egg size Clutch

size

396 MOD E L I N G E VO L U T I ON

Choice.Flag[1:2] # Flag for multiple optima

Temp1 <- c(F.vectors[Index,1], 1)

Temp2 <- c(Best.in.Patch[1,2], Best.in.Patch[1,3])

Temp3 <- c(Best.in.Patch[2,2], Best.in.Patch[2,3])

Add Temp1, Temp2, Temp3 & Choice to bottom of F.vectors and rename

to Temp

Temp <- rbind(F.vectors, Temp1, Temp2, Temp3, Choice.Flag[1:2])

return (Temp)

} # End of function

..

Function to iterate over states of X

OVER.STATES <- function(F.vectors, Xcritical, Xmax, Xinc,

Npatch, Psurvival, Max.Index, Wmax, A, Xegg, Xclutch, P1)

{

Create matrix for output. Note that we use seven columns

Store <- matrix(0, Max.Index,7)

Iterate over X ¼ Biomass X[1] is zero so skip

for (Index in 2 : Max.Index) # Iterate over states of X

{

For given X call Over.Patches to determine F(x,t) and best patch

X <- (Index-1)*Xinc þ Xcritical

Temp <- OVER.PATCHES(X, F.vectors, Xcritical, Xmax, Xinc,

Npatch, Psurvival,Wmax, A, Xegg, Xclutch, P1)

Extract components. Last row-2 is F(x,t) and dummy variable

Last row-1 is best clutch and egg size for host type 1

Last row is best clutch and egg size for host type 2

Last row is flage indicating multiple equal choices

n <- nrow(Temp)-4

F.vectors<- Temp[1:n,] # Extracting F.vectors

Add the seven output values (omit dummy) to storage

Store[Index,] <- c(Temp[nþ1,1], Temp[nþ2,1:2], Temp[nþ3,1:2],

Temp[nþ4, 1:2])

} # End of X loop

Add Store values to end of F.vectors for pass back to main program

Temp <- cbind(F.vectors, Store) # Combined by columns

return(Temp) # Return F.vectors and Store

} # End of function

..

MAIN PROGRAM

Initialize parameters

Create the state variable (X¼reproductive biomass)

Xmax <- 10; Xcritical <- 0; Xinc <- 1

Max.Index <- 1 þ (Xmax-Xcritical)/Xinc

Parameter values on the two hosts

Wmax <- c(10, 20) # Maximum fitness

D YNAM I C P R OG R AMM I NG 397

A <- c(100, 1) # a coefficients

Xegg <- c(2, 1) # “optimum” egg size

Xclutch <- c(5, 10) # “Optimum” clutch size

P1 <- 0.5 # Probability of host 1

Psurvival <- 0.90 # Survival probability per time increment

Npatch <- 2 # Number of patches¼ hosts

Horizon <- 10 # Number of time steps

Set up matrix for fitnesses

Column 1 is temporary F(x, tþ1). Column 2 is F(x, tþ1) Both are

zero

F.vectors <- matrix(0, Max.Index,2)

Create matrices for output

FxtT <- matrix(0,Horizon,Max.Index)# F(x,t)

Best.Clutch1 <- matrix(0,Horizon,Max.Index)# Best clutch size

for host 1

Best.Clutch2 <- matrix(0,Horizon,Max.Index)# Best clutch size

for host 2

Best.Egg1<-matrix(0,Horizon,Max.Index)#Besteggsizeforhost1

Best.Egg2<-matrix(0,Horizon,Max.Index)#Besteggsizeforhost2

Choice.H1 <- matrix(1,Horizon,Max.Index)# 1 or 2 choices for

host type 1

Choice.H2 <- matrix(1,Horizon,Max.Index)# 1 or 2 choices for

host type 2

Start iterations

Time <- Horizon # Initialize Time

while (Time > 1)

{

Time <- Time - 1 # Decrement Time by 1 unit

Call OVER.STATES to get best values for this time step

Temp <- OVER.STATES(F.vectors, Xcritical, Xmax, Xinc, Npatch,

Psurvival, Max.Index, Wmax, A, Xegg, Xclutch, P1)

Extract F.vectors

TempF <- Temp[,1:2]

Update F1

for (J in 2: Max.Index) { F.vectors[J,2] <- TempF[J,1]}

Store results

FxtT[Time,] <- Temp[,3]

Best.Clutch1[Time,] <- Temp[,4]

Best.Egg1[Time,] <- Temp[,5]

Best.Clutch2[Time,] <- Temp[,6]

Best.Egg2[Time,] <- Temp[,7]

Choice.H1[Time,] <- Temp[,8]

Choice.H2[Time,] <- Temp[,9]

} # End of Time loop

Output information. For display add states to last row of matrices

398 MOD E L I N G E VO L U T I ON

Index <- seq(from¼1, to¼Max.Index)

FxtT[Horizon,] <- (Index-1)*XincþXcritical

Best.Clutch1[Horizon,] <- (Index-1)*XincþXcritical

Best.Clutch2[Horizon,] <- (Index-1)*XincþXcritical

Best.Egg1[Horizon,] <- (Index-1)*XincþXcritical

Best.Egg2[Horizon,] <- (Index-1)*XincþXcritical

Choice.H1[Horizon,] <- (Index-1)*XincþXcritical

Choice.H2[Horizon,] <- (Index-1)*XincþXcritical

Print Best clutch, best egg choice flag and decision matrix

Best.Clutch1[,1:Max.Index] # Best clutch on host 1

Best.Clutch2[,1:Max.Index] # Best clutch on host 2

signif(Best.Egg1[,1:Max.Index],3) # Best egg on host 1

signif(Best.Egg2[,1:Max.Index],3) # Best egg on host 2

Choice.H1[,1:Max.Index] # 1¼only 1 choice 2 ¼1þ
Choice.H2[,1:Max.Index] # 1¼only 1 choice 2 ¼1þ
signif(FxtT[,1:Max.Index],3) # Print Fxt of Decision

matrix: 3 sig places

OUTPUT:

The optimum egg–clutch size combinations are shown in Table 6.9. Multiple

optima occur only at the very lowest value of reproductive biomass. Variation in

clutch size is evident across reproductive biomass but not over the time period.

Egg size varies primarily with reproductive biomass but not time. When repro-

ductive biomass is relatively low the optimum egg size tends to be larger than the

single host optimum (cf. Figure 6.9).

MATLAB CODE: See Section 6.9.8.

6.8 Some exemplary papers

Harris, W. E. and J. R. Lucas. 2002. A state-based model of sperm allocation in

a group-breeding salamander. Behavioral Ecology 13:705–712.

Question: How should males of the small-mouthed salamander allocate spermato-

phores in the face of competitors and a variable number of females?

State variable: Number of spermatophores a male has available at any time during

the breeding season. Spermatophore number is set at the start of the breeding

season.

Fitness: Maximization of reproductive success ¼ Number of clutches fertilized

Terminal fitness: F(x, T) ¼ 0

Forward simulation: Yes

Experimental test: Yes

D YNAM I C P R OG R AMM I NG 399

Table 6.9 Optimal clutch and egg sizes as a function of reproductive biomass and time (bold italic) on the two types of host modeled in Scenario 5

X=Time 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Optimum clutch size on host 1 Optimum clutch size on host 2

1 1 1 2 2 3 3 4 4 4 5 1 1 2 3 4 5 6 6 7 8..
2 1 1 2 2 3 3 4 4 4 5 1 1 2 3 4 5 6 6 7 8..
3 1 1 2 2 3 3 4 4 4 5 1 1 2 3 4 5 6 6 7 8..
4 1 1 2 2 3 3 4 4 4 5 1 1 2 3 4 5 6 6 7 8..
5 1 1 2 2 3 3 4 4 4 5 1 1 2 3 4 5 6 6 7 8..
6 1 1 2 2 3 3 4 4 4 5 1 1 2 3 4 5 6 6 7 8..
7 1 1 2 2 2 3 3 4 4 5 1 1 2 3 4 5 6 6 7 8..
8 1 1 1 2 2 3 3 4 4 5 1 1 2 3 4 5 6 6 7 8..
9 1 1 1 2 2 3 3 4 4 5 1 1 2 3 4 5 6 6 7 8..

Optimum egg size on host 1 Optimum egg size on host 2..
1 3 2 1.5 2 1.67 2 1.75 2 2.04 2 3 2 1.5 1.33 1.25 1.2 1.17 1.33 1.26 1.25..
2 3 2 1.5 2 1.67 2 1.75 2 2.04 2 3 2 1.5 1.33 1.25 1.2 1.17 1.33 1.26 1.25..
3 3 2 1.5 2 1.67 2 1.75 2 2.04 2 3 2 1.5 1.33 1.25 1.2 1.17 1.33 1.26 1.25..
4 3 2 1.5 2 1.67 2 1.75 2 2.04 2 3 2 1.5 1.33 1.25 1.2 1.17 1.33 1.25 1.25..
5 3 2 1.5 2 1.67 2 1.75 2 2.04 2 3 2 1.5 1.33 1.25 1.2 1.17 1.33 1.24 1.25..
6 3 2 1.5 2 1.67 2 1.75 2 2.04 2 3 2 1.5 1.33 1.24 1.2 1.17 1.33 1.22 1.25..
7 3 2 1.5 2 2.05 2 2.04 2 2.03 2 3 2 1.45 1.33 1.2 1.2 1.17 1.24 1.16 1.25..
8 3 2 2.02 2 2.03 2 2.03 2 2.02 2 3 2 1.07 1.2 1.11 1.2 1.11 1.11 1.1 1.21..
9 3 2 2 2 2 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1

Note: Combinations in which simulation gave more than one optimal choice are shown in bold font.

Peterson, J. H., B. D. Roitberg, and R. C. Ydenberg. 2007. When nesting in-

volves two sequential, mutually exclusive activities: what’s a mother to do?.

Evolutionary Ecology Research 9:1187–1197.

Question: When should hymenopteran parents stop provisioning the current nest

and decide whether to seal the entrance to the nest?

State variables: (a) Current pollen value collected and (b) current nest value

Fitness: Number of copies of alleles passed on (sons are haploid, females diploid).

Terminal fitness: F(x1, x2, T) ¼ 0

Forward simulation: No

Experimental test: No

Kerkhoff, A. J. 2004. Expectation, explanation andmasting. Evolutionary Ecolo-

gy Research 6:1003–1020.

Question: How should trees allocate energy to growth and reproduction?

State variables: (a) Mass and (b) stored reserves

Fitness: Total lifetime reproductive output

Terminal fitness: F(x1, x2, T) ¼ 0

Forward simulation: Yes

Experimental test: No

Lessells, C. M. 2005.Why are males bad for females? Models for the evolution

of damaging male mating behavior. American Naturalist 165:S46–S63.

Question: Given that a male damages a female during mating, which reduces her

survival, what is the optimal female age-specific behavior (mate or do not mate;

oviposition rate)?

State variable: Level of damage

Fitness: Lifetime egg production

Terminal fitness: F(x, T) ¼ 0

Forward simulation: Yes

Experimental test: No

Weber, T. P., B. J. Ens, and A. I. Houston. 1998. Optimal avian migration: A

dynamic model of fuel stores and site use. Evolutionary Ecology 12:377–401.

Question: What is the optimal decision (stay or depart) for a migrating bird at

location i at time t?

State variable: Amount of fuel as a percentage of lean body mass

Fitness: Function of amount of fuel at final arrival, R(x), arrival time K(t), and a

constant, B

Terminal fitness: R(x)K(T) þ B

Forward simulation: Yes

Experimental test: No

D YNAM I C P R OG R AMM I NG 401

Galvani, A. and R. Johnstone. 1998. Sperm allocation in an uncertain world.

Behavioral Ecology and Sociobiology 44:161–168.

Question: What is the optimal allocation of sperm when females of varying quality

are encountered at random?

State variable: (a) Quantity of sperm and (b) female quality

Fitness: Cumulative payoff function that for each allocation decision depends on

sperm quantity and female quality

Terminal fitness: F(x1, x2, T) ¼ 0

Forward simulation: Yes

Experimental test: No

Wajnberg, E., P. Bernhard, F. Hamelin, and G. Boivin. 2006. Optimal patch

time allocation for time-limited foragers. Behavioral Ecology and Sociobiology

60:1–10.

Question: What is the relationship between patch residence time and age for a

parasitoid searching for host on which to oviposit?

State variable: Age

Fitness: Accumulated number of offspring

Terminal fitness: F(x, T) ¼ 0

Forward simulation: Yes

Experimental test: Yes

6.9 MATLAB code

6.9.1 An algorithm for constructing the decision matrix

Function to calculate fitness when organism is in state X

function W ¼FITNESS(X, Xcritical, Xmax, Xmin, Cost, Benefit, Pbe-

nefit, Pmortality, F_vectors)

% State in patch if forager finds food

X_Food ¼ X - Cost þ Benefit;

% If X_Food greater than Xmax then X_Food must be set to Xmax

X_Food ¼ min(X_Food, Xmax);

% If X_Food less than or equal to Xcritical then set to Xcritical

X_Food ¼ max(X_Food, Xcritical);

% State in patch if forager does not find food

X_NoFood ¼ X - Cost;

% If X_NoFood is less than Xcritical set X_NoFood to Xcritical

X_NoFood ¼ max(X_NoFood, Xcritical);

Term1 ¼ Pbenefit*F_vectors(X_Food,2); % If food is found

Term2¼(1-Pbenefit)*F_vectors(X_NoFood,2);%Iffoodisnotfound

W ¼ (1 - Pmortality)*(Term1 þ Term2); % Survival in patch

% End of function

402 MOD E L I N G E VO L U T I ON

% .

% Function to iterate over patches

function Temp ¼ OVER_PATCHES(X, F_vectors, Xcritical,Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

RHS ¼ zeros(Npatch); % Pre-allocate matrix for Right Hand Side of

equn

for i ¼ 1: Npatch; % Cycle over patches

% Call Fitness function

RHS(i) ¼ FITNESS(X, Xcritical, Xmax, Xmin, Cost, Benefit(i),

Pbenefit(i), Pmortality(i), F_vectors);

end % End of i loop

% Now find optimal patch C¼Highest RHS, I¼Row¼patch number

[C,I] ¼ max(RHS);

F_vectors(X,1) ¼ C(1);

Best_Patch ¼ I(1);

% Concatenate F(x,t,T) and the optimal patch number

Temp ¼ [F_vectors(X,1), Best_Patch];

% Add Temp to bottom of F.vectors and rename to Temp

Temp ¼ vertcat(F_vectors, Temp);

% End of function

% ..

% Function to iterate over states of X

function Temp¼OVER_STATES(F_vectors, Xcritical, Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

Store ¼ zeros(Xmax,2); % Create matrix for output

for X ¼ Xmin : Xmax % Iterate over states of X

% For given X call Over_Patches to determine F(x,t) and best patch

Temp ¼ OVER_PATCHES(X, F_vectors, Xcritical, Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality);

% Extract components_ Last row is F(x,t) and best patch

n ¼ size(Temp,1)-1;

F_vectors ¼ Temp(1:n,1:2);

Store(X,1:2) ¼ Temp(nþ1,1:2); % Save F(x,t,T) and best patch

end % End of X loop

% Add Store values to end of F_vectors for pass back to main program

Temp ¼ horzcat(F_vectors, Store); % Combined by columns

% End of function

% ..

% MAIN PROGRAM

% Initialize parameters

Xmax ¼ 10 ; % Maximum value of X

Xcritical ¼ 3; % Value of X at which death occurs

Xmin ¼ Xcriticalþ1; % Smallest value of X allowed

Cost ¼ 1; % Cost per period

Pmortality ¼ [0, 0.004, 0.02]; % Probability of mortality

D YNAM I C P R OG R AMM I NG 403

Pbenefit ¼ [1, 0.4, 0.6]; % Probability of finding food

Benefit ¼ [0, 3, 5]; % Benefit if food is discovered

Npatch ¼ 3; % Number of patches

Horizon ¼ 20; % Number of time steps

% Set up matrix for fitnesses

% Column 1 is F(x, tþ1)_ Column 2 is F(x, t)

F_vectors ¼ zeros(Xmax,2);

F_vectors(Xmin:Xmax,2) ¼ 1;

% Create matrices for output

FxtT ¼ zeros(Horizon,Xmax); % F(x,t,T)

Best_Patch ¼ zeros(Horizon,Xmax); % Best patch number

% Start iterations

Time ¼ Horizon; % Initialize Time

while (Time > 1);

Time ¼ Time -1; % Decrement Time by 1 unit

% Call OVER_STATES to get best values for this time step

Temp ¼ OVER_STATES(F_vectors, Xcritical, Xmax, Xmin, Npatch,

Cost, Benefit, Pbenefit, Pmortality);

% Extract F_vectors

TempF ¼ Temp(:,1:2);

% Update F1

for J ¼ Xmin: Xmax

F_vectors(J,2) ¼ TempF(J,1);

end % End of J loop

% Store results

Best_Patch(Time,:) ¼ Temp(:,4);

FxtT(Time,:) ¼ Temp(:,3);

end % End of Time loop

% Output information_ For display add wts to last row of matrices

X ¼ 1: Xmax;

Best_Patch(Horizon,:) ¼ X;

FxtT(Horizon,:) ¼ X;

Best_Patch(:,Xmin:Xmax) % Print Decision matrix

vpa(FxtT(:,Xmin:Xmax),3) % Print Fxt of Decision matrix: 3 sig

places

6.9.2 Using the decision matrix: individual prediction

Because the random number generator is not the same, the output will not be

exactly the same as for the R output. As with the R coding the decision matrix is

first generated by running the previous program and then the following (do not

issue a clear all command):

% Initialize parameters

rand(‘twister’,10); % Set random number seed

404 MOD E L I N G E VO L U T I ON

Xmax ¼ 10; % Maximum value of X

Xcritical ¼ 3; % Value of X at which death occurs

Xmin ¼ Xcriticalþ1; % Smallest value of X allowed

Cost ¼ 1; % Cost per period

Pmortality ¼ [0, 0.004, 0.0]; % Probability of mortality

Pbenefit ¼ [1, 0.4, 0.6]; % Probability of finding food

Benefit ¼ [0, 3, 5]; % Benefit if food is discovered

Npatch ¼ 3; % Number of patches

Horizon ¼ 15; % Number of time steps

Output ¼ zeros(Horizon,10);% Matrix to hold output

Time ¼ 1: Horizon; % Values for x axis in plot

for Replicate ¼ 1: 10; % Iterate over 10 replicates

X ¼ 4; % Animal starts in state 4

for i ¼ 1:Horizon; % Iterate over time

if(X > Xcritical); % Check that animal still alive

Patch ¼ Best_Patch(i,X); % Select patch

% Check if animal survives predation

% Generate random number

if rand(1) < Pmortality(Patch)

‘Dead from predator at Replicate and time ¼ ’

[Replicate, i]

end % end if

% Now find new weight

% Set multiplier to zero, which corresponds to no food found

Index ¼ 0;

if rand(1) < Pbenefit(Patch)

Index ¼ 1; % food is discovered

end % end if

X ¼ X - Cost þ Benefit(Patch)*Index;

% If X greater than Xmax then X must be set to Xmax

X ¼ min(X, Xmax);

% If X less than X then animal dies

if(X< Xmin)

‘Dead from starvation at Replicate and time ¼’

[Replicate, i]

end % end if

Output(i,Replicate) ¼ Patch; % Store data

end % End of if(X > Xcritical)

end % End of time loop

% subplot divides the current figure into rectangular panes that

are

% numbered row-wise. Each pane contains an axes object.

% Subsequent plots are output to the current pane.

subplot(5,2,Replicate); % Divide graph page into 5x2 panels

plot(Time, Output(:,Replicate))

D YNAM I C P R OG R AMM I NG 405

xlabel(‘Time’); ylabel(‘Patch selected’)

axis([0 15 0 4])

end % End of replicate loop

6.9.3 Using the decision matrix: expected state

% Initialize parameters

Xmax ¼ 10; % Maximum value of X

Xcritical ¼ 3; % Value of X at which death occurs

Xmin ¼ Xcriticalþ1; % Smallest value of X allowed

Cost ¼ 1; % Cost per period

Time ¼ 2; % Current state to be considered

Pmortality ¼ [0, 0.004, 0.02]; % Probability of mortality

Pbenefit ¼ [1, 0.4, 0.6]; % Probability of finding food

Benefit ¼ [0, 3, 5]; % Benefit if food is discovered

% Set transition density matrix to zero

Trans_density ¼ zeros(Xmax, Xmax);

% Step 1 Cycle over all values of z from Xmin to Xmax

for z ¼ Xmin : Xmax % Iterate over states

% Select the best patch from the Decision matrix at row Time

K ¼ Best_Patch(Time,z); % Decision matrix is called Best_Patch

% Calculate w(x,t|z)

% Found food and survives predator

x ¼ min(z - Cost þ Benefit(K), Xmax);

% Assign probability

Trans_density(z,x)¼ (1-Pmortality(K))*Pbenefit(K);

% Food not found

x ¼ z - Cost;

% State exceeds the critical value

if x > Xcritical

% Animal survives

Trans_density(z,x)¼ (1-Pmortality(K))*(1-Pbenefit(K));

% Animal does not survive

Trans_density(z,Xcritical)= Pmortality(K);

% State is less than critical

else

Trans_density(z,Xcritical)= Pmortality(K)þ(1-Pmortality(K))

*(1-Pbenefit(K)); % All one line

end % End of if

end % end of z loop

Trans_density % Write out matrix

406 MOD E L I N G E VO L U T I ON

6.9.4 Scenario 2: Calculating the decision matrix

% Function to calculate fitness when organism is in state X

function W ¼FITNESS(X, Xcritical, Xmax, Xmin, Cost, Benefit,

Pbenefit, Pmortality, F_vectors)

% State in patch if forager finds food

X_Food ¼ X þ Benefit; % Eliminate Cost

% If X_Food greater than Xmax then X_Food must be set to Xmax

X_Food ¼ min(X_Food, Xmax);

% If X_Food less than or equal to Xcritical then set to Xcritical

X_Food ¼ max(X_Food, Xcritical);

% State in patch if forager does not find food

X_NoFood ¼ X; % Eliminate Cost

% If X_NoFood is less than Xcritical set X_NoFood to Xcritical

X_NoFood ¼ max(X_NoFood, Xcritical);

Term1 ¼ Pbenefit*F_vectors(X_Food,2); % If food is found

Term2 ¼ (1-Pbenefit)*F_vectors(X_NoFood,2); % If food is not

found

W ¼ (1 - Pmortality)*(Term1 þ Term2); % Survival in patch

% End of function

% .

% Function to iterate over patches

function Temp ¼ OVER_PATCHES(X, F_vectors, Xcritical,Xmax,

Xmin, Npatch, Cost, Benefit, Pbenefit, Pmortality)

RHS ¼ zeros(Npatch,1); % Pre-allocate matrix for Right Hand Side

of eqn

for i ¼ 1: Npatch; % Cycle over patches

% Call Fitness function

RHS(i) ¼ FITNESS(X, Xcritical, Xmax, Xmin, Cost, Benefit(i),

Pbenefit(i), Pmortality(i,X), F_vectors);

end % End of i loop

% Now find optimal patch C¼Highest RHS, I¼Row¼patch number

[C,I] ¼ max(RHS);

F_vectors(X,1) ¼ C;

Best_Patch ¼ I;

% Concatenate F(x,t) and the optimal patch number

Temp ¼ [F_vectors(X,1), Best_Patch];

% Add Temp to bottom of F.vectors and rename to Temp

Temp ¼ vertcat(F_vectors, Temp);

% End of function

% .

% Function to iterate over states of X

function Temp¼OVER_STATES(F_vectors, Xcritical, Xmax, Xmin,

Npatch, Cost, Benefit, Pbenefit, Pmortality)

D YNAM I C P R OG R AMM I NG 407

These lines remain the same as in the patch-foraging model:

% End of function

% ..

% MAIN PROGRAM

% Initialize parameters

Xmax ¼ 7; % Maximum value of X

Xcritical ¼ 1; % Value of X at which death occurs

Xmin ¼ Xcriticalþ1; % Smallest value of X allowed

Cost ¼ 0; % Not required but kept

% Probability of mortality if foraging

Pmin ¼ 0;

Pmax ¼ 0.01;

% Create mortality function. Make Pmin at state 2

% Probability of mortality if not foraging

Pnoforage ¼ zeros(1,Xmax);

% Foraging mortality

Pforage ¼ [0, linspace(Pmin, Pmax, Xmax-1)];

Pmortality ¼ vertcat(Pnoforage,Pforage); % Mortality function

% Probability of foraging

Pbenefit ¼ [0.4,0.8]; % Probability of “Benefit”

Benefit ¼ [-1, 1]; % “Benefit”

Npatch ¼ 2; % Number of patches ¼ resting or foraging

Horizon ¼ 6; % Number of time steps

% Set up matrix for fitnesses

% Column 1 is F(x, t)_ Column 2 is F(x, tþ1)

F_vectors ¼ zeros(Xmax,2);

F_vectors(Xmin:Xmax,2) ¼ Xmin:Xmax; % Final wts

% Create matrices for output

FxtT ¼ zeros(Horizon,Xmax); % F(x,t,T)

Best_Patch ¼ zeros(Horizon,Xmax); % Best patch number

% Start iterations

Time ¼ Horizon; % Initialize Time

while (Time > 1);

Time ¼ Time -1; % Decrement Time by 1 unit

% Call OVER_STATES to get best values for this time step

Temp ¼ OVER_STATES(F_vectors, Xcritical, Xmax, Xmin, Npatch,

Cost, Benefit, Pbenefit, Pmortality);

% Extract F_vectors

TempF ¼ Temp(:,1:2);

% Update F1

for J ¼ Xmin: Xmax

F_vectors(J,2) ¼ TempF(J,1);

end % End of J loop

% Store results

408 MOD E L I N G E VO L U T I ON

Best_Patch(Time,:) ¼ Temp(:,4);

FxtT(Time,:) ¼ Temp(:,3);

end % End of Time loop

% Output information_ For display add wts to last row of matrices

X ¼ 1: Xmax;

Best_Patch(Horizon,:) ¼ X;

FxtT(Horizon,:) ¼ X;

Best_Patch(:,Xmin:Xmax) % Print Decision matrix

vpa(FxtT(:,Xmin:Xmax),3) % Print Fxt of Decision matrix: 3 sig

places

6.9.5 Scenario 3: Calculating the decision matrix

% Function to calculate fitness when organism is in state X

function W¼FITNESS(X, Xcritical, Xmax, Xinc, Cost, Benefit,

Pbenefit, F_vectors)

% Note that the state value X is passed

% Note also that in this function Benefit and Pbenefit are vectors

% Iterate over the four kill values (0,1,2,3)

Max_Index ¼ 1þ(Xmax-Xcritical)/Xinc; % Get maximum index value

W ¼ 0; % Set Fitness to zero

Xstore ¼ X; % Set X to Xstore to preserve value through loop

for I_Kill ¼ 1:4 % Begin loop

X ¼ Xstore - Cost þ Benefit(I_Kill); % Calculate new state value

% If X greater than Xmax then X must be set to Xmax

X ¼ min(X, Xmax);

% If X less than or equal to Xcritical then set to Xcritical

X ¼ max(X, Xcritical);

% Convert to Index value

Index ¼ 1þ(X-Xcritical)/Xinc;

% Index value probably not an integer

% So consider two integer values on either size of X

Index_lower ¼ floor(Index); % Choose lower integer

Index_upper ¼ Index_lower þ 1; % Upper integer

% Must stop index exceeding Max.Index. Note that Qx¼0 in this case

Index_upper ¼ min(Index_upper, Max_Index);

Qx ¼ X - Floor(X) % qx for intepolation

W ¼ W þ Pbenefit(I_Kill)*(Qx*F_vectors(Index_upper,2)þ(1-Qx)

*F_vectors(Index_lower,2));

end % End of I.Kill loop

% End of function ..

% Function to iterate over patches i.e. over PACKS

function Temp¼ OVER_PATCHES(X, F_vectors, Xcritical, Xmax,

Xinc, Npatch, Cost, Benefit, Pbenefit)

D YNAM I C P R OG R AMM I NG 409

RHS ¼ zeros(Npatch,1); % Set matrix for Right Hand Side of equn

for i ¼ 1: Npatch % Cycle over patches ¼ pack sizes

% Call Fitness function. Pass Benefit and Pbenefit as vectors

RHS(i) ¼ FITNESS(X, Xcritical, Xmax, Xinc, Cost, Benefit(i,:),

Pbenefit(i,:), F_vectors);

end % End of i loop

% Now find optimal patch Sorted_RHS(1)¼Highest RHS, I¼Row¼patch

number

[Sorted_RHS,I] ¼ sort(RHS,‘descend’); % Sorts into descending

col

Index ¼ 1þ(X-Xcritical)/Xinc; % Get Index value

F_vectors(Index,1) ¼ Sorted_RHS(1);

Best_Patch ¼ I(1);

% Concatenate F(x,t,T) and the optimal patch number

Temp ¼ [F_vectors(Index,1), Best_Patch];

% Add Temp to bottom of F.vectors and rename to Temp

Temp ¼ vertcat(F_vectors, Temp);

% Create 1x2 vector to hold decision on more than one choice

% We only need one cell but it is convenient to use 2 for concatena-

tion

% onto Temp, as indicated below

Choice =[0,0];

if Sorted_RHS(1)== Sorted_RHS(2) % Equal fitnesses

Choice ¼ [1,1]; % Equal fitnesses

end

Temp ¼ vertcat(Temp, Choice);

% End of function

% ..

% Function to iterate over states of X

function Temp¼OVER_STATES(F_vectors, Xcritical, Xmax, Xinc,

Npatch, Cost, Benefit, Pbenefit, Max_Index)

Store ¼ zeros(Max_Index,3); % Create matrix for output

for Index ¼ 2 : Max_Index % Iterate over states of X

% For given X call Over_Patches to determine F(x,t,T) and best patch

X ¼ (Index-1)*Xinc þ Xcritical;

Temp ¼ OVER_PATCHES(X, F_vectors, Xcritical, Xmax, Xinc,

Npatch, Cost, Benefit, Pbenefit);

% Extract components_ Penultimate row is F(x,t,T) and best patch

n ¼ size(Temp,1)-2;

F_vectors ¼ Temp(1:n,1:2);

Store(Index,1:2)¼ Temp(nþ1,1:2); % Save F(x,t,T) and best patch

Store(Index,3) ¼ Temp(nþ2,1); % Save flag indicating choices

end % End of X loop

% Add Store values to end of F_vectors for pass back to main program

Temp ¼ horzcat(F_vectors, Store); % Combined by columns

410 MOD E L I N G E VO L U T I ON

% End of function

% ..

clear all % Empty workspace

% MAIN PROGRAM

% Initialize parameters

Xmax ¼ 30; % Maximum value of X ¼ gut capacity

Xcritical ¼ 0; % Value of X at which death occurs

Xinc ¼ 1; % Increment in state variable

Max_Index ¼ 1 þ (Xmax-Xcritical)/Xinc; % Maximum index value

Cost ¼ 6; % Cost ¼ Daily food requirement

Npatch ¼ 4; % Number of patches¼ packs

% Calculate benefit as a function of pack size (rows)

% and number of kills (columns)

Benefit ¼ zeros(4,4); % Rows ¼ pack size, Columns ¼ number of

killsþ1

Pbenefit ¼ zeros(4,4); % Rows ¼ pack size, Columns ¼ number of

killsþ1

% Probability of single kill for pack size

Pi ¼ [0.15, 0.31, 0.33, 0.33];

Y ¼ 11.25; % Size of single prey

k ¼ [0,1,2,3]; % Number of kills

for PackSize ¼ 1:4 % Iterate over pack sizes

% Calculate binomial probabilities using function binopdf

Pbenefit(PackSize,:) ¼ binopdf(k, 3, Pi(PackSize));

% Calculate benefits ¼ amount per individual

Benefit(PackSize, 2:4) ¼ Y*k(2:4)/PackSize;

end % End PackSize loop

Horizon ¼ 31; % Number of time steps

% Set up matrix for fitnesses

% Column 1 is F(x, t). Column 2 is F(x, tþ1)

F_vectors ¼ zeros(Max_Index,2);

F_vectors(2:Max_Index,2) ¼ 1; % Cell 1,2 ¼ 0 ¼ Dead

% Create matrices for output

FxtT ¼ zeros(Horizon,Max_Index); % F(x,t,T)

Best_Patch ¼ zeros(Horizon,Max_Index); % Best patch number

CHOICES ¼ zeros(Horizon,Max_Index); % Flag for choices

% Start iterations

Time ¼ Horizon; % Initialize Time

while (Time > 1)

Time ¼ Time - 1; % Decrement Time by 1 unit

% Call OVER.STATES to get best values for this time step

Temp ¼ OVER_STATES(F_vectors, Xcritical, Xmax, Xinc, Npatch,

Cost, Benefit, Pbenefit, Max_Index);

% Extract F.vectors

TempF ¼ Temp(:,1:2);

D YNAM I C P R OG R AMM I NG 411

% Update F1

for J ¼ 2: Max_Index

F_vectors(J,2) ¼ TempF(J,1);

end % End J loop

% Store results

Best_Patch(Time,:)= Temp(:,4);

FxtT(Time,:) ¼ Temp(:,3);

CHOICES(Time,:) ¼ Temp(:,5);

end % End of Time loop

% Output information. For display add states to last row of matrices

% Note that state variable conversion from index value

Index ¼ 1 :Max_Index;

Best_Patch(Horizon,:) ¼ (Index-1)*XincþXcritical;

FxtT(Horizon,:) ¼ (Index-1)*XincþXcritical;

Best_Patch(:,1:Max_Index) % Print Decision matrix

vpa(FxtT(:,1:Max_Index),3) % Print Fxt of Decision matrix: 3 sig

places

CHOICES(:,1:Max_Index) % Print out matrix for choice flag

% Plot results

% Note that the orientation of the plots different from the R plot

y = Best_Patch(Horizon,2:Max_Index);

x = 1:Horizon-1 ;

[xx,yy] = meshgrid(x,y); % Create grid for 3D plot

subplot(2,2,1); % 4x4 grid with 3D plot in top left

surfc(xx, yy, Best_Patch(1:30,2:Max_Index)) % 3D plot

% Add labels

ylabel(‘Time’); xlabel(‘x ¼ Gut contents’); zlabel(‘Optimal

Pack size’);

subplot(2,2,2); % 4x4 grid with plot in top right

image(x,y,Best_Patch(1:30,2:Max_Index)) % Image plot

xlabel(‘x ¼ Gut contents’); ylabel(‘y ¼ Time’); % Labels

subplot(2,2,3); % 4x4 grid with plot in bottom left

image(x,y,CHOICES(1:30,2:Max_Index)þ1) % image plot of choice

flag

colormap(flag); % Set color map

xlabel(‘x ¼ Gut contents’); ylabel(‘Time’); % Labels

Interestingly, the MATLAB output gives a different decision for those cases in

which there are multiple equivalent choices: this is a result of the sort routines

handling ties differently. In those cases in which at least two choices are optimal,

the R program specifies a pack size of 2, whereas the MATLAB program specifies a

pack size of 1.

412 MOD E L I N G E VO L U T I ON

6.9.6 Scenario 4: Calculating the decision matrix

Before running the program, make sure that the current directory is set for the

place you want the output to go.

% Function to iterate over patches i_e_ over Hosts

function Temp¼OVER_PATCHES(X, F_vectors, Xcritical, Xmax,

Xinc, Npatch, Benefit, Pbenefit, Psurvival)

% Create zeros for storing best clutch size for each host type

Best_Clutch ¼ zeros(Npatch,1);

Index ¼ 1 þ (X-Xcritical)/Xinc; % Index for X is Xþ1

% Vector of clutch sizes to Index-1

Clutch ¼ 1:Index-1;

% Start fitness accumulation with component for case of not finding

a host

W ¼ Psurvival*(1-sum(Pbenefit))*F_vectors(Index,2);

for i ¼ 1: Npatch % Cycle over patches ¼ Hosts

W_partial ¼ Benefit(2:Index,i) þ Psurvival*F_vectors(Index-

Clutch,2);

% Find largest W_partial and hence best clutch size

% Use sort because we need to inspect best two

[Sorted_Clutch,I] ¼ sort(W_partial, ‘descend’); % Sorts into

descending col

Best_Clutch(i) ¼ I(1); % Store value of best clutch for host i

% Increment fitness

W ¼ W þ Pbenefit(i)*Sorted_Clutch(1);

% Test for several equal optimal choices

% Only examine W_partial that contain more than one entry

if length(W_partial) >1 && Sorted_Clutch(1)== Sorted_Clutch(2)

‘Several possible equal choices’

end % End if construct

end % End of i loop

F_vectors(Index,1) ¼ W; % Update F(x,t,T) ;

% Concatenate F(x,t) and the optimal clutch values for host type 2

Temp ¼ [F_vectors(Index,1), Best_Clutch(3)];

% Add Temp to bottom of F_vectors and rename to Temp

Temp ¼ vertcat(F_vectors, Temp);

% End of function

% ..

% Function to iterate over states of X

function Temp ¼OVER_STATES(F_vectors, Xcritical, Xmax, Xinc,

Npatch, Benefit, Pbenefit, Psurvival, Max_Index)

Store ¼ zeros(Max_Index,2); % Create zeros for output

for Index ¼ 2 : Max_Index % Iterate over states of X

% For given X call Over_Patches to determine F(x,t) and best patch

X ¼ (Index-1)*Xinc þ Xcritical;

D YNAM I C P R OG R AMM I NG 413

Temp ¼ OVER_PATCHES(X, F_vectors, Xcritical, Xmax, Xinc,

Npatch, Benefit, Pbenefit, Psurvival);

% Extract components_ Last row is F(x,t,T) and best clutch size for

host 2

n ¼ size(Temp,1)-1;

F_vectors ¼ Temp(1:n,:);

Store(Index,1:2) ¼ Temp(nþ1,1:2); % Save F(x,t,T) and best

clutch size

end % End of X loop

% Add Store values to end of F_vectors for pass back to main program

Temp ¼ horzcat(F_vectors, Store); % Combined by columns

% End of function

% ..

% MAIN PROGRAM

clear all

% Initialize parameters

Xmax ¼ 40; % Maximum value of X ¼ eggs

Xcritical ¼ 0; % Lowest value of X ¼ 0 eggs

Xinc ¼ 1; % Increment in state variable

Max_Index ¼ 1 þ (Xmax-Xcritical)/Xinc; % Max Index value

Psurvival ¼ 0.99; % Survival probty per time increment

Npatch ¼ 4; % Number of patches¼ hosts

% Create host coefficient zeros from which to get Benefits

Host_coeff ¼ zeros(4,4);

Host_coeff(1,1:4) ¼ [-0.2302, 2.7021, -0.2044, 0.0039];

Host_coeff(2,1:4) ¼ [-0.1444, 2.2997, -0.1170, 0.0013];

Host_coeff(3,1:4) ¼ [-0.1048, 2.2097, -0.0878, 0.0004222];

Host_coeff(4,1:4) ¼ [-0.0524, 2.0394, -0.0339, -0.0003111];

% Calculate benefit as a function of

% clutch size (rows) and Host type (columns)

Clutch ¼ 0:Xmax; % Create sequence from 0 to Xmax

Max ¼ Xmaxþ1; % Number of rows

Benefit ¼ zeros(Xmaxþ1, 4); % Zero to Xmax

for I_Host ¼ 1:4 % Iterate over host types

for I_Clutch ¼ 1:Max

Benefit(I_Clutch,I_Host) ¼ Host_coeff(I_Host,1) þ Host_coeff

(I_Host,2)*Clutch(I_Clutch) þ Host_coeff(I_Host,3)*Clutch

(I_Clutch) 2̂ þ Host_coeff(I_Host,4)*Clutch(I_Clutch) 3̂;

end % end clutch loop

end % End Benefit loop

Benefit(1,:) ¼ 0; % Reset first row to zero

SHM¼[9,12,14,23];%Setsinglehostmaximum_Seetextforderivation

% Make all values > than SHM¼0_ Note that we use 2 because of zero

class

for i ¼ 1:4

414 MOD E L I N G E VO L U T I ON

Benefit((SHM(i)þ2):Max_Index,i) ¼ 0;

end % End I loop

% Probability of encountering host type

Pbenefit ¼ [0.05, 0.05, 0.1, 0.8];

Horizon ¼ 21; % Number of time steps

% Set up zeros for fitnesses

% Column 1 is F(x, t)_ Column 2 is F(x, tþ1) Both are zero

F_vectors ¼ zeros(Max_Index,2) ;

% Create matrices for output

FxtT ¼ zeros(Horizon,Max_Index) ; % F(x,t)

% Best clutch size for host 2

Best_Patch ¼ zeros(Horizon,Max_Index);

% Start iterations

Time ¼ Horizon; % Initialize Time

while (Time > 1)

Time ¼ Time -1; % Decrement Time by 1 unit

% Call OVER_STATES to get best values for this time step

Temp ¼ OVER_STATES(F_vectors, Xcritical, Xmax, Xinc, Npatch,

Benefit, Pbenefit, Psurvival, Max_Index);

% Extract F_vectors

TempF ¼ Temp(:,1:2);

% Update F1

for J ¼ 2: Max_Index

F_vectors(J,2) ¼ TempF(J,1);

end % End of J loop

% Store results

Best_Patch(Time,1:Max_Index) ¼ Temp(:,4);

FxtT(Time,:) ¼ Temp(:,3);

end % End of Time loop

% Output information_ For display add states to last row of matrices

Index ¼ 1:Max_Index;

Best_Patch(Horizon,:) ¼ (Index-1)*XincþXcritical;

FxtT(Horizon,:) ¼ (Index-1)*XincþXcritical;

Best_Patch(:,1:Max_Index) % Print Decision zeros

vpa(FxtT(:,1:Max_Index),3)% Print Fxt of Decision zeros: 3 sig

places

x ¼ Best_Patch(Horizon,2:Max_Index);

y ¼ 1:Horizon-1 ;

[xx,yy] ¼ meshgrid(x,y); % Create grid for 3D plot

subplot(2,2,1); % Divide page into four an plot in top left

surfc(xx, yy, Best_Patch(1:20,2:Max_Index)) % 3D plot

% Add labels

ylabel(‘Time’); xlabel(‘x ¼ Eggs’); zlabel(‘Optimal Clutch

size’);

subplot(2,2,2) ; % 4x4 grid with plot in top right

D YNAM I C P R OG R AMM I NG 415

image(x,y,Best_Patch(1:20,2:Max_Index)) % Image plot

xlabel(‘x ¼ Eggs’);ylabel¼(‘Time’); % labels

colormap(flag); % Set color map

% Get components of Decision matrix for saving

Data ¼Best_Patch(1:Horizon-1,2:41);

save oviposition.txt Data -ASCII % Save to text file

6.9.7 Scenario 4: Using the decision matrix: individual prediction

clear all; % Remove all objects from memory

Xmax ¼ 40; % Maximum value of X ¼ eggs

load DM1.txt % Cols ¼ x rows¼time

load DM2.txt

load DM3.txt

load DM4.txt

% Create an array for Decision matrix

DM ¼ zeros(20,Xmax,4); % time, state, host

for i ¼ 1:20

for j ¼ 1:Xmax

DM(i,j,1) ¼ DM1(i,j); DM(i,j,2) ¼ DM2(i,j);

DM(i,j,3) ¼ DM3(i,j);DM(i,j,4) ¼ DM4(i,j);

end % end i loop

end % end j loop

% Probability of encountering host type

Pbenefit ¼ [0.05, 0.05, 0.1, 0.8];

Times ¼ [5,5,10,80];

% Create Vector for Host type probability

Host_Type ¼ vertcat(ones(Times(1),1),2*ones(Times(2),1),

3*ones(Times(3),1), 4*ones(Times(4),1));

Psurvival ¼ 0.99; % Survival probability per time increment

Horizon ¼ 10; % Number of time steps

rand(‘twister’,10) % Initialise random number generator

N_Ind ¼ 1000; % Number of individuals

Output ¼ zeros(N_Ind,Horizon,1);% Allocate space for output

% Generate initial values of x from normal distribution

x_init ¼ ceil(random(‘Normal’, 20,5, N_Ind,1));

for Ind ¼ 1:N_Ind % Iterate over individuals

% Generate vectors for choosing the Host type and probability of

survival

Host ¼ ceil(100*rand(Horizon,1)); % Vector of host types

Survival ¼ rand(Horizon,1); % Vector of survival probabilities

% Set all values of Survival > Psurvival ¼ 0

Survival(Survival>Psurvival) ¼ 0;

Survival(Survival
¼0) ¼ 1; % Set all other values to 1

416 MOD E L I N G E VO L U T I ON

x ¼ x_init(Ind); % Initial value of x

for Time ¼ 1:Horizon % Iterate over time periods

if(x>0) % If eggs remaining calculate clutch size using DM

Clutch_Size ¼ DM(Time,x,Host_Type(Host(Time)));

Output(Ind,Time) ¼ Clutch_Size; % Store clutch size

x ¼ x-Clutch_Size; % Compute new value of x

end % End of if

x ¼ x*Survival(Time); % Set x¼0 if female does not survive

end % end of Time loop

end % End of Ind loop

% Iterate over time and plot bar graphs of clutch size

% Set up vector to plot by columns

Plot_position ¼ [1,3,5,7,9,2,4,6,8,10];

Mean_Clutch ¼ zeros(10,2); % Allocate space for mean clutch size

for i ¼ 1:10

% Set graphics page to 5 rows and 2 columns

subplot(5,2,Plot_position(i))

Data ¼ Output(:,i); Data ¼ Data(Data>0);% Eliminate zeroes

xbar ¼ mean(Data); % Mean clutch size

Mean_Clutch(i,:)= [i, mean(Data)];% Time, Outputmeanclutch size

Data ¼ tabulate(Data); % Tabulate data

bar(Data(:,1), Data(:,2)) % Draw bar plots

xlabel(‘Clutch size’) % X label

end % end of i loop

Mean_Clutch % Output data

6.9.8 Scenario 5: Calculating the decision matrix

function W¼FITNESS(Egg, Clutch, X, F_vectors, Xcritical, Xmax,

Xinc, Psurvival, Wmax, A, Xegg, Xclutch, Ith_Patch)

W ¼ 0; % Set fitness to zero

Biomass ¼ Clutch*Egg; % Biomass of clutch/Egg size combination

if(Biomass < X) % Continue only if Biomass < X

Max_Index ¼ 1 þ (Xmax-Xcritical)/Xinc; % Get maximum index value

% Index value for biomass

Index ¼ 1þ(Biomass-Xcritical)/Xinc;

% Get fitness at lower and upper integer value of Biomass

Index_lower ¼ floor(Index);

Index_upper ¼ Index_lower þ 1;

% Must stop index exceeding Max_Index_ Note that Qx ¼ 0 in this case

Index_upper ¼ min(Index_upper, Max_Index);

Qx ¼ Biomass - floor(Biomass);

Fxt_lower ¼ F_vectors(Index_lower,2);

% Get fitness at upper integer value

D YNAM I C P R OG R AMM I NG 417

Fxt_upper ¼ F_vectors(Index_upper,2);

Fxt_interpolated ¼ Qx*Fxt_upper þ (1-Qx)*Fxt_lower; % Iterpo-

lated value

% Calculate the fitness for this particular egg-clutch size combi-

nation

W ¼ Wmax(Ith_Patch)-sqrt(A(1)*(Egg-Xegg(Ith_Patch)) 2̂ þ A(2)*

(Clutch-Xclutch(Ith_Patch)) 2̂);

W ¼ max(0, W); % Set to zero if negative

W ¼ W þ Psurvival*Fxt_interpolated; % Fitness

W ¼ max(0, W); % Set to zero if negative

end % End of if

W ¼ -W; % Make Fitness negative for fminbnd function

% ———

function Temp¼OVER_PATCHES(X, F_vectors, Xcritical, Xmax,

Xinc, Npatch, Psurvival, Wmax, A, Xegg, Xclutch,P1)

% Function to iterate over patches i_e_ over Hosts

Index ¼ 1þ(X-Xcritical)/Xinc;

% Allocate storage of best combinations for each patch

% Columns will contain

% Fitness, Clutch, Egg

Choice_Flag ¼ zeros(2,1); % Store information on number of

choices

Best_in_Patch ¼ zeros(2,3); % Allocate storage for Best Decision

% Iterate over patches

for Ith_Patch ¼ 1:Npatch % Iterate over the two hosts (¼ patches)

% Make a matrix called W_host with the following 3 columns:

% Fitness, Egg size, Clutch size

W_host ¼ zeros(11,3);

for Clutch ¼ 1:11 % Iterate over clutch size

W_host(Clutch,2) ¼ Clutch; % Store clutch size

% Call fminbnd to find best egg size Note that this is finding a

minimum

x ¼ fminbnd(@(x) FITNESS(x,Clutch, X,F_vectors, Xcritical,

Xmax,Xinc,Psurvival,Wmax,A,Xegg,Xclutch,Ith_Patch),0.01,3);

W_host(Clutch,1) ¼ -FITNESS(x,Clutch, X,F_vectors, Xcritical,

Xmax,Xinc,Psurvival,Wmax,A,Xegg,Xclutch,Ith_Patch);%Fitness

W_host(Clutch,3) ¼ x; % Egg size

end % End of clutch size loop

% Get best combination for this host

% Use sort because we need to inspect best two

R ¼ W_host(:,1);

[Sorted_W_host,I]¼sort(R,‘descend’);%Sortsintodescendingcol

Best_in_Patch(Ith_Patch,:) ¼ W_host(I(1),:); % Store best

choice

% Test for several equal optimal choices

418 MOD E L I N G E VO L U T I ON

if(W_host(I(1),1)¼¼W_host(I(2),1))

Choice_Flag(Ith_Patch) ¼ 2;

end % end if

end % Next host

% Overall fitness

W ¼ P1*Best_in_Patch(1,1) þ(1-P1)*Best_in_Patch(2,1);

F_vectors(Index,1)= W ; % Update F(x,t,T)

% Concatenate F(x,t) and the optimal egg and clutch values for both

hosts

% We add to the bottom of the two column matrix F_vectors the follow-

ing

% F_vectors(Index,1), 1 The second entry is simply a dummy variable

% Best_in_Patch(1,2) Best_in_Patch(1,3) % Host 1 Egg size Clutch

size

% Best_in_Patch(2,2) Best_in_Patch(2,3) % Host 2 Egg size Clutch

size

% Choice_Flag(1:2) % Flag for multiple optima

Temp1 ¼ horzcat(F_vectors(Index,1), 1);

Temp2 ¼ horzcat(Best_in_Patch(1,2), Best_in_Patch(1,3));

Temp3 ¼ horzcat(Best_in_Patch(2,2), Best_in_Patch(2,3));

% Add Temp1, Temp2, Temp3 & Choice to bottom of F_vectors and rename

to Temp

Choice ¼ Choice_Flag’ % Convert into column matrix

Temp ¼ vertcat(F_vectors, Temp1, Temp2, Temp3, Choice);

% End of function

%———

function Temp¼OVER_STATES(F_vectors, Xcritical, Xmax, Xinc,

Npatch, Psurvival, Max_Index, Wmax, A, Xegg, Xclutch, P1)

% Function to iterate over states of X

% Create matrix for output. Note that we use seven columns

Store ¼ zeros(Max_Index,7);

% Iterate over X ¼ Biomass X(1) is zero so skip

for Index ¼ 2 : Max_Index % Iterate over states of X

% For given X call Over_Patches to determine F(x,t) and best patch

X ¼ (Index-1)*Xinc þ Xcritical;

Temp ¼ OVER_PATCHES(X, F_vectors, Xcritical, Xmax, Xinc,

Npatch, Psurvival,Wmax, A, Xegg, Xclutch, P1);

% Extract components_ Last row-2 is F(x,t) and dummy variable

% Last row-1 is best clutch and egg size for host type 1

% Last row is best clutch and egg size for host type 2

% Last row is flage indicating multiple equal choices

n ¼ size(Temp,1)-4;

F_vectors ¼ Temp(1:n,:); % Extracting F_vectors

% Add the seven output values (omit dummy) to storage

D YNAM I C P R OG R AMM I NG 419

Store(Index,:) ¼ horzcat(Temp(nþ1,1), Temp(nþ2,1:2), Temp

(nþ3,1:2), Temp(nþ4, 1:2));

end % End of X loop

% Add Store values to end of F_vectors for pass back to main program

Temp ¼ horzcat(F_vectors, Store); % Combined by columns

% End of function

%——

% MAIN PROGRAM

clear all % Remove all objects from memory

% Initialize parameters

% Create the state variable (X¼reproductive biomass)

Xmax ¼ 10; Xcritical ¼ 0; Xinc ¼ 1;

Max_Index ¼ 1 þ (Xmax-Xcritical)/Xinc;

% Parameter values on the two hosts

Wmax ¼ [10, 20]; % Maximum fitness

A ¼ [100, 1]; % a coefficients

Xegg ¼ [2, 1]; % “optimum” egg size

Xclutch ¼ [5, 10]; % “Optimum” clutch size

P1 ¼ 0.5; % Probability of host 1

Psurvival¼ 0.90; % Survival probability per time increment

Npatch ¼ 2; % Number of patches¼ hosts

Horizon ¼ 10; % Number of time steps

% Set up matrix for fitnesses

% Column 1 is temporary F(x, t)_ Column 2 is F(x, tþ1) Both are zero

F_vectors ¼ zeros(Max_Index,2) ;

% Create matrices for output

FxtT ¼ zeros(Horizon,Max_Index);% F(x,t)

Best_Clutch1 ¼ zeros(Horizon,Max_Index);% Best clutch size

for host 1

Best_Clutch2 ¼ zeros(Horizon,Max_Index);% Best clutch size for

host 2

Best_Egg1 ¼ zeros(Horizon,Max_Index);% Best egg size for

host 1

Best_Egg2 ¼ zeros(Horizon,Max_Index);% Best egg size for

host 2

Choice_H1 ¼ ones(Horizon,Max_Index);% 1 or 2 choices for host

type 1

Choice_H2 ¼ ones(Horizon,Max_Index);% 1 or 2 choices for host

type 2

% Start iterations

Time ¼ Horizon; % Initialize Time

while (Time > 1)

Time ¼ Time � 1; % Decrement Time by 1 unit

% Call OVER_STATES to get best values for this time step

420 MOD E L I N G E VO L U T I ON

Temp ¼ OVER_STATES(F_vectors, Xcritical, Xmax, Xinc, Npatch,

Psurvival, Max_Index, Wmax, A, Xegg, Xclutch, P1);

% Extract F_vectors

TempF ¼ Temp(:,1:2);

% Update F1

for J ¼ 2: Max_Index

F_vectors(J,2) ¼ TempF(J,1);

end % end j loop

% Store results

FxtT(Time,:) ¼ Temp(:,3);

Best_Clutch1(Time,:) ¼ Temp(:,4);

Best_Egg1(Time,:) ¼ Temp(:,5);

Best_Clutch2(Time,:) ¼ Temp(:,6);

Best_Egg2(Time,:) ¼ Temp(:,7);

Choice_H1(Time,:) ¼ Temp(:,8);

Choice_H2(Time,:) ¼ Temp(:,9);

end % End of Time loop

% Output information_ For display add states to last row of matrices

Index ¼ 1:Max_Index;

FxtT(Horizon,:) ¼ (Index-1)*XincþXcritical;

Best_Clutch1(Horizon,:)¼ (Index-1)*XincþXcritical;

Best_Clutch2(Horizon,:)¼ (Index-1)*XincþXcritical;

Best_Egg1(Horizon,:) ¼ (Index-1)*XincþXcritical;

Best_Egg2(Horizon,:) ¼ (Index-1)*XincþXcritical;

Choice_H1(Horizon,:) ¼ (Index-1)*XincþXcritical;

Choice_H2(Horizon,:) ¼ (Index-1)*XincþXcritical;

% Print Best clutch, best egg choice flag and decision matrix

Best_Clutch1(:,1:Max_Index) % Best clutch on host 1

Best_Clutch2(:,1:Max_Index) % Best clutch on host 2

vpa(Best_Egg1(:,1:Max_Index),3) % Best egg on host 1

vpa(Best_Egg2(:,1:Max_Index),3) % Best egg on host 2

Choice_H1(:,1:Max_Index) % 1¼only 1 choice 2 ¼1þ
Choice_H2(:,1:Max_Index) % 1¼only 1 choice 2 ¼1þ
vpa(FxtT(:,1:Max_Index),3)% Print Fxt of Decision matrix: 3 sig

places

D YNAM I C P R OG R AMM I NG 421

This page intentionally left blank

Appendix 1

R functions used in this book with equivalent MATLAB codes where applicable.

Except for the first four rows, rows are arranged in alphabetical order of the R code

(na ¼ not applicable for this book).

R MATLAB Operation

Comment % Comment Comment...
<- = Assigns variable...
X%*%Y X*Y Matrix multiplication

of X and Y...
X*Y X.*Y Element by element

multiplication...
abs(X) abs(X) Absolute value of X...
adapt dblquad Multidimensional

integration...
apply use loop construct Applies function to

rows, cols or both...
as.numeric(X) na Make X numeric...
barplot(….) bar(…) Make a bar plot...
Best <- X[Y[1]] Best=X(I(1))...
cbind horzcat Bind columns...
ceiling(X) ceil(X) Nearest larger integer...
contour.(x, y, z.
matrix)

contour(x, y,
zmatrix)

Contour plot

...
contourLines na Set of x,y coordinates

for user-specified
contour lines...

cor(X,Y) Correlation between X
and Y...

c(x1, x2, x3…xn) [x1, x2, x3…..xn] Concatenate into a
vector...

data.frame na Matrix that can take
variables of mixed type...

dbinom(x=k,
size=3, prob=Pi
(PackSize))

binopdf(k, 3, Pi
(PackSize))

Binomial distribution

...
deriv diff Derivative...

(continued)

R MATLAB Operation

diag(X) diag(X,0) Diagonal elements of
matrix X...

dnorm(x=, mean=,
sd=)

normpdf(x, mu, sd) Density at x of the
normal distribution...

eigen(X) eig Eigen values and other
stats of X...

exp(x) exp(x) e^x...
expand.grid(X,Y) meshgrid Matrix of all

combinations of X and Y...
floor(X) floor(X) Integer part of X...
for (i in 1:n) for i = 1:n Loop
{ lines of coding} lines of coding

end...
FUNCTION NAME <−
function(Input
parameters)

function Output
=FUNCTION NAME
(Input parameters)

Function definition

{ Lines of code Last line gives
output parameters

Return output
parameters(s) }...
X <- FUNCTION NAME
(input
parameters)

X = FUNCTION NAME
(Input parameters)

Function call

...
hist(X) hist(X) Histogram of X...
if (X > Y) if X>y If construct
{ Lines of coding
Lines of coding end
}...
if (X > Y) if X > Y If else construct
{ Lines of coding
Lines of coding} end
} else
else{ Lines of
coding

lines of coding

} end...
Lines of coding}...
integrate int, quad Integration...
length(X) length(X) Number of elelments

in X...
lines(x,y,
optional
parameters)

plot Plot a line on an
existing plot

...
lm(y~x) na Linear regression of y

on x...

424 MODE L I NG E V O L U T I O N

R MATLAB Operation

log(X) log(X) Natural log of X...
matrix(0,n) zeros(n) Column matrix of n

zeros...
matrix(0,n1,n2) zeros(n1,n2) n1 x n2 matrix of zeros...
max(X) max(X) Maximum of values in X...
mean(X) mean(X) Mean of values in X...
min(X) min(X) Minimum of values in X...
mvrnorm(n=, mu=,
Sigma=)

mvnrnd(MU,SIGMA) Random multivariate
normal deviates...

nlm, optimize fminsearch, fminbnd Non-linear
optimization...

ncol(X) size(X,2) Nos of columns in X...
nrow(X) size(X,1) Nos of rows in X...
order(X) [C,I]=max(X) Get indexes of X that

indicate sort
structure...

outer(x, y, FUNC=) na All combinations of x
and y applying
FUNC=function...

par(mfcol=c
(1,2))

subplot(2,1,1) Divide graphics page in
two...

par(mfrow=c
(2,2))

subplot(2,2,2) ivide graphics page
into quadrats...

persp(x, y, z.
matrix)

surfc(x, y, zmatrix) 3D plot

...
plot(x,y,
optional
parameters)

plot, ezplot, fplot 2D plot

...
pnorm(x, mean=,
sd=)

1−normcdf(X,mu,
sigma)

Integral from x to
infinity of normal
distribution...

points(x, y) holdonplot(x,y,´:´) Plot points on an
existing plot...

print(X) X Print X...
print(c(x1, x2,
x3))

[x1, x2, x3] Print x1, x2, x3

...
qnorm(P, mean=,
sd=)

na normal distribution
function...

read.table
(file=“Filename.
txt”)

load Filename.txt Read data from text
file

...

(continued)

A P P E ND I X 1 425

R MATLAB Operation

rep(x, times=) na Replicate x for times=...
rbind vertcat Bind rows...
rm(list=ls()) clear all Clears workspace...
rnorm(n, mean=,
sd=)

na Random normal deviates

...
rowSums(X) na Row sums of X...
round(X) round(X) Round X to nearest

integer...
rpois(n=, lambda=
)

na Random deviate from a
Poisson distribution...

runif(n, min=X1,
max=X2)

X1 + (X2−X1)*rand
(n,1)

n uniform random
numbers between X1 and
X2...

sample(x=, size=,
replace=)

na Random sample from X

...
sd(X) Standard deviation of X...
setwd(“C:/……”) set directory in gui Set path for output...
set.seed(x) rand(‘twister’, x) Set seed for random

number...
seq(from=x1,
to=x2, length=n)

linspace(x1, x2, n) Sequence generator

...
seq(from=x1,
to=x2, 1)

x1:x2 Sequence generator

...
smooth.spline na Fits a cubic smoothing

spline to the supplied
data...

solve(X) Invert matrix X...
sqrt(X) sqrt(X) Square-root of X...
sum symsum Sum X...
summary(X) na Summary statistics of X...
table(X) na Tabulate X...
t(X) na Transpose X...
t.test(X,
optional
parameters)

na t test

...
uniroot fzero, solve Find root...
unlist(X) na reduce to a vector of

atomic components of x...

426 MODE L I NG E V O L U T I O N

R MATLAB Operation

var(X) na Variance of X...
while (Condition) while (Condition) While loop
{ Lines of coding Lines of coding
} end...
write(X,
file=“filename.
txt”)

save Filename.txt Write to text file See
setwd

A P P E ND I X 1 427

Appendix 2

2.1 Brief review of differentiation

The calculus is particularly important for “Fisherian” optimality analysis, but it

can also occur in other methods. While ways can be found to do most problems

without the calculus, it is generally true that if the problem lends itself to the

calculus it will be the most efficient approach. Both R and MATLAB have differen-

tiation routines (see Chapter 2) but these can be frequently rather clumsy, partic-

ularly if one is searching for a symbolic solution. The following is an overview of

the rules of differentiation that are likely to be used in the types of analyses

presented in this book.

2.1.1 Differentiation of a sum of functions

y ¼ f ðxÞ þ gðxÞ

dy

dx
¼ df ðxÞ

dx
þ dgðxÞ

dx

Examples:

y ¼ ax2 þ bx3

dy

dx
¼ 2ax þ 3bx2

1:

y ¼ axn þ be�cx

dy

dx
¼ naxn�1 � bce�cx

2:

2.1.2 The chain rule

An equation such as y ¼ ðx5 þ 4Þ3can be represented as two functions of x:

gðxÞ ¼ x5 þ 4 and u ¼ gðxÞ3. The derivative of y with respect to x can be obtained

from the chain rule

dy

dx
¼ dy

du
: du

dx

Examples:

y ¼ ðx5 þ 4Þ3
u ¼ ðx5 þ 4Þ
y ¼ u3

dy

du
¼ 3u2

du

dx
¼ 5x4

dy

dx
¼ ð3u2Þð5x4Þ ¼ ½3ðx5 þ 4Þ2�ð5x4Þ ¼ 15x4ðx5 þ 42Þ

1:

y ¼ ð1� e�kxÞ2
u ¼ 1� e�kx

y ¼ u2

dy

du
¼ 2u

du

dx
¼ ke�kx

dy

dx
¼ ð2uÞðke�kxÞ ¼ 2ð1� e�kxÞke�kx

2:

2.1.3 Differentiation of the product of functions

y ¼ f ðxÞgðxÞ
dy

dx
¼ f ðxÞ dgðxÞ

dx
þ gðxÞ df ðxÞ

dx

Examples:

y ¼ ebxð1� e�kxÞ
f ðxÞ ¼ ebx and gðxÞ ¼ ð1� e�kxÞ
dy

dx
¼ ebxke�kx þ ð1� e�kxÞbebx

1:

y ¼ ax2lnðxÞ
f ðxÞ ¼ ax2 and gðxÞ ¼ lnðxÞ
dy

dx
¼ ax2

1

x
þ lnðxÞ2x

2:

2.1.4 Differentiation of quotients

Done using the previous two rules. For example, suppose we have

y ¼ f ðxÞ
gðxÞ

then we write y as

y ¼ f ðxÞgðxÞ�1 ¼ f ðxÞu�1 where u ¼ gðxÞ

A P P E ND I X 2 429

From the previous two rules we have

dy

dx
¼ f ðxÞ �u�2 du

dx

� �
þ gðxÞ�1 df ðxÞ

dx

Given that
du

dx
¼ dgðxÞ

dx
we can expand the above equation to

dy

dx
¼ f ðxÞ �gðxÞ�2 dgðxÞ

dx

� 	
þ gðxÞ�1 df ðxÞ

dx

Examples:

y ¼ x2

1þ x2

¼ x2ð1þ x2Þ�1 where f ðxÞ ¼ x2 gðxÞ ¼ 1þ x2

dy

dx
¼ x2½�ð1þ x2Þ�22x� þ ð1þ x2Þ�12x

¼ �2x3 þ ð1þ x2Þ2x
ð1þ x2Þ2 ¼ 1

ð1þ x2Þ2

1:

y ¼ axn

1� e�kx

¼ axnð1� e�kxÞ�1 where f ðxÞ ¼ axn and gðxÞ ¼ 1� e�kx

dy

dx
¼ axn½�ð1� e�kxÞ�2

ke�kx � þ ð1� e�kxÞ�1
naxn�1

¼ axn

ð1� e�kxÞ2

2
4

3
5½�ke�kx þ ð1� e�kxÞnx�1�

2:

2.1.5 Implicit differentiation

If the relationship between x and y is of the form hðyÞ ¼ f ðxÞ, where f and h denote

functions and the equation cannot be converted into a form y = some function of x,

then implicit differentiation must be employed: For example, the equation

2y3 þ y2 � 1 ¼ x5 þ 3x cannot be so converted. Making use of the chain rule we

can write

dy

dx
:
dhðyÞ
dy

¼ df ðxÞ
dx

Hence

dy

dx
¼ dhðyÞ

dy

� 	�1
df ðxÞ
dx

430 MODE L I NG E V O L U T I O N

Examples:

2y3 þ y2 � 1 ¼ x5 þ 3x

hðyÞ ¼ 2y3 þ y2 � 1 f ðxÞ ¼ x5 þ 3x

dhðyÞ
dy

¼ 6y2 þ 2y
df ðxÞ
dx

¼ 5x4 þ 3

dy

dx
¼ 5x4 þ 3

6y2 þ y

1:

eay þ y ¼ lnx þ x2

hðyÞ ¼ eay þ y f ðxÞ ¼ lnx þ x2

dhðyÞ
dy

¼ aeay
df ðxÞ
dx

¼ 1

x
þ 2x

dy

dx
¼ x�1 þ 2x

aeay

2:

2.1.6 Putting it all together

The use of the above rules can be illustrated by the analysis of the optimal age of

maturation in fish given in Roff (1984b; see also Roff [2002]). The assumptions of

this model are

1. Growth can be described by the von Bertalanffy function:

LðxÞ ¼ L1ð1� e�kxÞ
where L(x) is the length at age x and L1 and k are parameters.

2. Fecundity is proportional to the cube of length.

3. Assuming an equal sex ratio the number of female births at age x, m(x), is

mðxÞ ¼ c½L1ð1� e�kxÞ�3
where c is a species- or population-specific constant.

4. Mortality can be divided into two components: an “instantaneous” egg and

larval mortality (i.e., this period is very short compared to the rest of the life and

hence can be assumed to be a point event in time) and a subsequent constant

instantaneous mortality rate. Thus the proportion surviving to adult age x is

l ðxÞ ¼ pe�Mx

where p is the proportion surviving the egg–larval period and M is the mortality

rate thereafter.

5. Fitness is measured by the Malthusian parameter r, which for a semelparous

life history is given by (Roff 1992)

r ¼ ln lðaÞmðaÞ
a

where a is the age at reproduction. For the present model we thus have

A P P E ND I X 2 431

r ¼ lnfpe�Mac½L1ð1� e�kaÞ�3g
a

¼ lnpcL31 �Maþ 3lnð1� e�kaÞ
a

To differentiate the above, for convenience, we divide the equation into three

components:

r ¼ ln pcL31
a

�M þ 3lnð1� e�kaÞ
a

¼ f ðaÞ þ gðaÞ þ hðaÞ
df ðaÞ
da

¼ �a2;
dgðaÞ
da

¼ 0;
dhðaÞ
da

¼ �a�23lnð1� e�kaÞ þ 3ke�kað1� e�kaÞ�1a�1

dr

da
¼ � 1

a2
� 3ke�ka

að1� e�kaÞ
The value at which dr

da ¼ 0 can be found numerically, using the methods described

in Chapter 2.

To illustrate the use of implicit differentiation in addition to the other rules we

make two changes in the model: (a) the life history is iteroparous, with a being the

age at first reproduction and (b) growth ceases at a. The characteristic equation is

X1
x¼a

pe�MxcL31ð1� e�kaÞ3 ¼ 1

The above construct is a geometric series (see Section 2.5.4), which can be solved

to give

e�aðrþMÞð1� e�kaÞ3cL31
1� e�ðrþMÞ ¼ 1

For convenience we take logs to make an additive equation

ar þ aM � 3lnð1� e�kaÞ � ln cL31 þ ln½1� e�ðrþMÞ� ¼ 0

Differentiating term by term

ar: This requires implicit differentiation

dr

da
¼ r þ a

dr

da
aM: This is simply

dr

da
¼ M

3lnð1� e�kaÞ: Using the chain rule gives

dr

da
¼ 3ke�ka

1� e�ka

ln cL31:

dr

da
¼ 0

ln½1� e�ðrþMÞ�: Using implicit differentiation

432 MODE L I NG E V O L U T I O N

dr

da
¼ e�ðrþMÞ

1� e�ðrþMÞ
dr

da
Thus we have

r þ a
dr

da
þM � 3ke�ka

1� e�ka � 0þ e�ðrþMÞ

1� e�ðrþMÞ
dr

da
¼ 0

Rearranging

dr

da
aþ e�ðrþMÞ

1� e�ðrþMÞ

� 	
¼ 3ke�ka

1� e�ka � r �M

Provided the term in the parentheses on the left-hand side of the equation is not

zero

dr

da
¼ 0 when

3ke�ka

1� e�ka � r �M ¼ 0

i:e:; r ¼ 3ke�ka

1� e�ka �M

We now have the optimum age at first reproduction, a, as a function of r. To find

the optimum awe insert the function of r back into the original equation, or its log

transform (which is more convenient):

aG � 3lnð1� e�kaÞ � lncL31 þ lnð1� e�GÞ

where G ¼ 3ke�ka

1� e�ka

The optimal value of a can now be found numerically.

A P P E ND I X 2 433

This page intentionally left blank

References

Ayala, F. J., and C. A. Campbell. 1974. Frequency-dependent selection. Annual Review of Ecology
and Systematics 5: 115–138.

Beauchamp, G. U. Y. 2000. Learning rules for social foragers: Implications for the producer-
scrounger game and ideal free distribution theory. Journal of Theoretical Biology 207:
21–35.

Begon, M., and G. A. Parker. 1986. Should egg size and clutch size decrease with age? Oikos
47: 293–302.

Benton, R. A., and A. Grant. 1999. Optimal reproductive effort in stochastic, density-
dependent environments. Evolution 53: 677–688.

Benton, T. G., and A. Grant. 2000. Evolutionary fitness in ecology: comparing measures of
fitness in stochastic, density-dependent environments. Evolutionary Ecology Research 2:
769–789.

Bond, A. B. 2007. The evolution of color polymorphism: Crypticity searching images, and
apostatic selection. Annual Review of Ecology Evolution and Systematics 38: 489–514.

Boulding, E. G., T. Hay, M. Holst, S. Kamel, D. Pakes, and A. D. Tie. 2007. Modelling the
genetics and demography of step cline formation: Gastropod populations preyed on
by experimentally introduced crabs. Journal of Evolutionary Biology 20: 1976–1987.

Brommer Jon, E. 2000. The evolution of fitness in life-history theory. Biological Reviews
(Cambridge) 75: 377–404.

——, J. Merilä, and H. Kokko. 2002. Reproductive timing and individual fitness. Ecology Letters
5: 802–810.

Bshary, R., and R. Bergmueller. 2008. Distinguishing four fundamental approaches to the
evolution of helping. Journal of Evolutionary Biology 21: 405–420.

Cade,W. 1975. Acoustically orienting parasitoids: Fly phonotaxis to cricket song. Science 190:
1312–1313.

—— 1984. Effects of fly parasitoids on nightly calling duration in field crickets. Canadian
Journal of Zoology 62: 226–228.

Carranza, J., V. Polo, J. Valencia, C. Mateos, and C. de la Cruz. 2008. How should breeders
react when aided by helpers? Animal Behaviour 75: 1535–1542.

Caswell, H. 1989. Matrix Population Models. Sinauer Associates, Inc., Sunderland, MA.
—— 2001. Matrix Population Models. Sinauer, Sunderland, MA.
—— 2002. Matrix Population Models: Construction, Analysis and Interpretation, 2nd edition.

Sinauer, Sunderland, MA.
——, T. Takada, and C. M. Hunter. 2004. Sensitivity analysis of equilibrium in density-

dependent matrix population models. Ecology Letters 7: 380–387.
Charlesworth, B. 1970. Selection in populations with overlapping generations. 1. The use of

Malthusian parameters in population genetics. Theoretical Population Biology 1: 352–370.
—— 1972. Selection in populations with overlapping generations. III Conditions for genetic

equilibrium. Theoretical Population Biology 3: 377–395.
—— 1993. Natural selection on multivariate traits in age-structured populations. Proceedings

of the Royal Society of London 251: 47–52.
—— 1994. Evolution in Age Structured Populations. Cambridge University Press, Cambridge.
Charnov, E. L. 1993. Life History Invariants. Oxford University Press, Oxford.
——, and S. W. Skinner. 1984. Evolution of host selection and clutch size in parasitoid

wasps. Florida Entomologist 67: 5–21.

Clarke, B. 1969. The evidence for apostatic selection. Heredity 24: 347–352.
—— 1979. The evolution of genetic diversity. Proceedings of the Royal Society of London 205:

453–474.
Clarke, C. W., and M. Mangel. 2001. Dynamic State Variable Models in Ecology: Methods and

Applications. Oxford University Press, Oxford.
Clutton-Brock, T. H. (ed.) 1988. Reproductive Success. University of Chicago Press, Chicago, IL.
Cohen, D. 1966. Optimizing reproduction in a randomly varying environment. Journal of

Theoretical Biology 12: 119–129.
Cole, L. C. 1954. The population consequences of life history phenomena. Quarterly Review of

Biology 29: 103–137.
Crawley, M. J. 2002. Statistical Computing: An Introduction to Data Analysis using S-Plus. John

Wiley & Sons Ltd., Chichester, UK.
—— 2007. The R Book. John Wiley & Sons Ltd., Chichester, UK.
Creel, S. 1990. How to measure inclusive fitness. Proceedings of the Royal Society of London 241:

229–231.
Crow, J. F., and M. Kimura. 1970. An Introduction to Population Genetics Theory. Harper and Row,

New York.
Demetrius, L., and M. Ziehe. 2007. Darwinian fitness. Theoretical Population Biology 72:

323–345.
Den Boer, P. J. 1968. Spreading of risk and stabilization of animal numbers. Acta Biotheoretica

18: 165–194.
Dennis, B., R. A. Desharnais, J. M. Cushing, and R. F. Constantino. 1995. Nonlinear demo-

graphic dynamics – mathematical models, statistical methods, and biological experi-
ments. Ecological Monographs 65: 261–281.

Dugatkin, L. A., and H. K. Reeve. 1994. Behavioral ecology and levels of selection – dissolving
the group selection controversy. Advances in the Study of Behavior, Vol 23, pp. 101–133.
Academic Press Inc, San Diego, CA.

——, and —— 1998. Game Theory & Animal Behavior. Oxford University Press, Oxford.
Eadie, J. M., and J. M. Fryxell. 1992. Density dependence, frequency-dependence, and

alternative nesting strategies in goldeneyes. American Naturalist 140: 621–641.
Ebenman, B., A. Johansson, T. Jonsson, and U. Wennergren. 1996. Evolution of stable

population dynamics through natural selection. Proceedings of the Royal Society of London –
Series B: Biological Sciences 263: 1145–1151.

Endler, J. A. 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.
—— 1988. Frequency-dependent predation, crypsis and aposematic coloration. Philosophical

Transactions of the Royal Society of London B 319: 505–523.
Ferriere, R., and G. A. Fox. 1995. Chaos and evolution. Trends In Ecology & Evolution 10: 480–485.
Ferriere, R., and M. Gatto. 1995. Lyapunov exponents and the mathematics of invasion in

oscillatory or chaotic populations. Theoretical Population Biology 48: 126–171.
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Claredon Press, Oxford.
Fletcher, J. A., and M. Zwick. 2006. Unifying the theories of inclusive fitness and reciprocal

altruism. American Naturalist 168: 252–262.
Fumagalli, M., R. Cagliani, U. Pozzoli, S. Riva, G. P. Comi, G. Menozzi, N. Bresolin, and

M. Sironi. 2009. Widespread balancing selection and pathogen-driven selection at
blood group antigen genes. Genome Research 19: 199–212.

Galvani, A., and R. Johnstone. 1998. Sperm allocation in an uncertain world. Behavioral
Ecology and Sociobiology 44: 161–168.

Gardner, A., S. A. West, and N. H. Barton. 2007. The relation between multilocus population
genetics and social evolution theory. American Naturalist 169: 207–226.

Gilchrist, G. W. 1995. Specialists and generalists in changing environments. I. Fitness land-
scapes of thermal sensitivity. American Naturalist 146: 252–270.

—— 2000. The evolution of thermal sensitivity in changing environments. In J. M. Storey,
and K. B. Storey (eds.), Cell and Molecular Responses to Stress. Vol. 1, Environmental Stressors
and Gene Responses, pp. 55–70. Elsevier Science, Amsterdam, the Netherlands.

436 R E F E R E N C E S

Gillespie, J. 1974. The role of environmental grain in the maintenance of genetic variation.
American Naturalist 108: 831–836.

—— 2006. Stochastic processes in evolution. In C. W. Fox, and J. B. Wolf (eds.), Evolutionary
Genetics. Oxford University Press, Oxford.

Gillespie, J. H. 1977. Natural selection for variance in offspring numbers: A new evolution-
ary principle. American Naturalist 111: 1010–1014.

Grafen, A. 1982. How not to measure inclusive fitness. Nature 298: 425–426.
—— 1984. Natural selection, kin selection and group selection. In J. R. Krebs, and N. B.

Davies (eds.), Behavioural Ecology, pp. 62–84. Sinauer Associates Inc, Sunderland, MA.
—— 1997. Selection pressures on vital rates in density dependent populations. Proceedings of

the Royal Society 264: 303–306.
——, and T. G. Benton. 2000. Elasticity analysis for density-dependent populations in

stochastic environments. Ecology 81: 680–693.
——, and —— 2003. Density-dependent populations require density-dependent elasticity

analysis: An illustration using the LPA model of Tribolium. Journal of Animal Ecology
71: 94–105.

Greenman, J. V., T. G. Benton, M. Boots, and A. R. White. 2005. The evolution of oscillatory
behavior in age-structured species. American Naturalist 166: 68–78.

Gross, M. R. 1982. Sneakers, satellites and parentals: Polymorphic mating strategies in
North American sunfishes. Zeitschrift fuer Tierpsychologie 60: 1–26.

—— 1985. Disruptive selection for alternative life histories in salmon. Nature 313: 47–48.
——, and E. L. Charnov. 1980. Alternative male life histories in bluegill sunfish. Proceedings of

the National Academy of Sciencess, (USA) 77: 6937–6940.
Guillaume, F., and M. C. Whitlock. 2007. Effects of migration on the genetic covariance

matrix. Evolution 61: 2398–2409.
Haldane, J. B. S., and S. D. Jayakar. 1963. Polymorphism due to selection of varying direction.

Journal of Genetics 58: 237–242.
Hamilton, W. D. 1964. The genetical evolution of social behavior. I. Journal of Theoretical

Biology 7: 1–16.
Hammerstein, P. 1998.What is evolutionary game theory? In L. A. Dugatkin, and H. K. Reeve

(eds.), Game Theory and Animal Behavior, pp. 3–15. Oxford University Press, New York.
Harley, C. B. 1981. Learning the evolutionary stable strategy. Journal of Theoretical Biology

89: 611–633.
Harris, W. E., and J. R. Lucas. 2002. A state-based model of sperm allocation in a group-

breeding salamander. Behavioral Ecology 13: 705–712.
Hedrick, P. W. 2000. Genetics of Populations. Jones and Bartlett Publishers, Sudbury, MA.
Heino, M., A. J. Metz Johan, and V. Kaitala. 1998. The enigma of frequency-dependent

selection. Trends in Ecology & Evolution 13: 367–370.
Houston, A. I., and J. M. McNamara. 1992. Phenotypic plasticity as a state-dependent life-

history decision. Evolutionary Ecology 6: 243–253.
——, and —— 1999. Models of Adaptive Behaviour. Cambridge University Press, Cambridge.
Hutchings, J. A., and R. A. Myers. 1988. Mating success of alternative maturation phenotypes

in male Atlantic salmon, Salmo salar. Oecologia 75: 169–174.
Johst, K., M. Doebeli, and R. Brandl. 1999. Evolution of complex dynamics in spatially

structured populations. Proceedings of the Royal Society of London – Series B: Biological Sciences
266: 1147–1154.

Jones, A. G., S. J. Arnold, and R. Bürger. 2003. Stability of the G-matrix in a population
experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution
57: 1747–1760.

——, ——, and ——. 2004. Evolution and stability of the G-matrix on a landscape with a
moving optimum. Evolution 58: 1639–1654.

Katsukawa, Y., T. Katsukawa, and H. Matsuda. 2002. Indeterminate growth is selected by
a trade-off between high fecundity and risk avoidance in stochastic environments.
Population Ecology 44: 265–272.

R E F E R EN C E S 437

Kawecki, T. J., and S. C. Stearns. 1993. The evolution of life histories in spatially heteroge-
neous environments: Optimal reaction norms revisited. Evolutionary Ecology 7: 155–174.

Kerkoff, A. J. 2004. Expectation, explanation and masting. Evolutionary Ecology Research 6:
1003–1020.

King, O. D., and J. Masel. 2007. The evolution of bet-hedging adaptations to rare scenarios.
Theoretical Population Biology 72: 560–575.

Kirkpatrick, M., and R. Lande. 1989. The evolution of maternal characters. Evolution 43:
485–503.

Koenig, W. D. 1988. Reciprocal altruism is birds – a critical review. Ethol.ogy and Sociobiol.ogy
9: 73–84.

——, S. S. Albano, and J. L. Dickinson. 1991. A comparison of methods to partition selection
acting via components of fitness: Do larger male bullfrogs have greater hatching
success? Journal of Evolutionary Biology 4: 309–320.

Kokko, H. 2007. Modelling for Field Biologists. Cambridge University Press, Cambridge.
Krause, A., and M. Olson. 2002. The Basics of S-PLUS, 3rd edition. Springer, New York.
Lack, D. 1947. The significance of clutch size 1. Intraspecific variation. Ibis 89: 302–352.
Lalonde, R. G., and B. D. Roitberg. 2006. Chaotic dynamics can select for long-term dorman-

cy. American Naturalist 168:127–131.
Lande, R. 1980. Genetic-variation and phenotypic evolution during allopatric speciation.

American Naturalist 116: 463–479.
Lande, R. 1982. A quantitative genetic theory of life history evolution. Ecology 63: 607–615.
—— 2007. Expected relative fitness and the adaptive topography of fluctuating selection.

Evolution 61: 1835–1846.
Landes, D. S. 1983. Revolution in Time. Belknap Press, Cambridge, MA.
Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33:

183–212.
Lessard, S. 2005. Long-term stability from fixation probabilities in finite populations:

New perspectives for ESS theory. Theoretical Population Biology 68: 19–27.
Lessells, C. M. 2005. Why are males bad for females? Models for the evolution of damaging

male mating behavior. American Naturalist 165: S46–S63.
Levene, H. 1953. Genetic equilibrium when more than one ecological niche is available.

American Naturalist 87: 331–333.
Levins, R. 1969. The effect of random variations of different types on population growth.

Proceedings of the National Academy of Sciencess, (USA) 62: 1061–1065.
Lewontin, R. C., and D. Cohen. 1969. On population growth in a randomly varying environ-

ment. Proceedings of the National Academy of Sciences (USA) 62: 1056–1060.
Lotka, A. J. 1907. Studies on the mode of growth of material aggregates. American Journal of

Science 24: 199–216.
Lynch, M. 1999. Estimating genetic correlations in natural populations. Genetical Research

74: 255–264.
Malthus, T. 1798. An Essay on the Principle of Population. J. Johnson, London.
Mangel, M., and C. W. Clark. 1988. Dynamic Modeling in Behavioral Ecology. Princeton Universi-

ty Press, Princeton, NJ.
Mani, G. S., B. C. Clarke, and P. R. Sheltom. 1990. A model of quantitative traits under

frequency-dependent balancing selection. Proceedings of the Royal Society of London
240: 15–28.

May, R. M. 1971. Stability inmodel ecosystems. Proceedings of the Ecological Society of Australia 6:
18–56.

—— 1973. Stability in randomly fluctuating versus deterministic environments. American
Naturalist 107: 621–650.

Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge University Press,
Cambridge.

—— 1998. Evolutionary Genetics. Oxford University Press, Oxford.
Metz, J. A. J., M. Nisbet Roger, and S. A. H. Geritz. 1992. How should we define ‘fitness’ for

general ecological scenarios? Trends in Ecology & Evolution 7: 198–202.

438 R E F E R E N C E S

Mylius, S. D., and O. Diekmann. 1995. On evolutionarily stable life histories, optimization
and the need to be specific about density dependence. Oikos 74: 218–224.

Nunez-Farfan, J., J. Fornoni, and P. L. Valverde. 2007. The evolution of resistance and
tolerance to herbivores. Annual Review of Ecology Evolution and Systematics 38: 541–566.

O’Brien, E. E., and J. S. Brown. 2008. Games roots play: Effects of soil volume and nutrients.
Journal of Ecology 96: 438–446.

Olausson, A., and K. Ronningen. 1975. Estimation of genetic parameters for threshold
characters. Acta Agriculturae Scandinavica 25: 201–208.

Oli, M. K. 2002. Hamilton goes empirical: Estimation of inclusive fitness from life-history
data. Proceedings of the Royal Society of London – Series B: Biological Sciences 270: 307–311.

Orzack, S. H., and W. G. S. Hines. 2005. The evolution of strategy variation: Will an ESS
evolve? Evolution 59: 1183–1193.

—— and S. Tuljapurkar. 1989. Population dynamic in variable environments. VII. The
demography and evolution of iteroparity. American Naturalist 133: 901–923.

———— 2001. Reproductive effort in variable environments, or environmental variation is
for the birds. Ecology 82: 2659–2665.

Pepper, J. W. 2000. Relatedness in trait group models of social evolution. Journal of Theoretical
Biology 206: 355–368.

Peterson, J. H., B. D. Roitberg, and R. C. Ydenberg. 2007. When nesting involves two
sequential, mutually exclusive activities: What’s a mother to do? Evolutionary Ecology
Research 9: 1187–1197.

Queller, D. C. 1996. The measurement andmeaning of inclusive fitness. Animal Behaviour 51:
229–232.

Rand, D. A., H. B. Wilson, and J. M. McGlade. 1994. Dynamics and evolution: Evolutionarily
stable attractors, invasion exponents and phenotypic dynamics. Philosophical Transac-
tions of the Royal Society of London – Series B: Biological Sciences 343: 261–283.

Ratnieks, F. L. W., and T. Wenseleers. 2008. Altruism in insect societies and beyond:
Voluntary or enforced? Trends in Ecology & Evolution 23: 45–52.

Reeve, J. P. 2000. Predicting long-term response to selection. Genetical Research 75: 83–94.
——, and D. J. Fairbairn. 2001. Predicting the evolution of sexual size dimorphism. Journal of

Evolutionary Biology 14: 244–254.
Roff, D. A. 1974. The analysis of a population model demonstrating the importance of

dispersal in a heterogeneous environment. Oecologia 15: 259–275.
—— 1974. Spatial heterogeneity and the persistence of populations. Oecologia 15: 245–258.
—— 1980. Optimizing development time in a seasonal environment: The “ups and downs”

of clinal variation. Oecologia 45: 202–208.
—— 1981. On being the right size. American Naturalist 118: 405–422.
—— 1984a. The cost of being able to fly: A study of wing polymorphism in two species of

crickets. Oecologia 63: 30–37.
—— 1984b. The evolution of life history parameters in teleosts. Canadian Journal of Fisheries

and Aquatice Sciences 41: 984–1000.
—— 1990. Selection for changes in the incidence of wing dimorphism in Gryllus firmus.

Heredity 65: 163–168.
—— 1992. The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York.
—— 1994a. Habitat persistence and the evolution of wing dimorphism in insects. American

Naturalist 144: 772–798.
—— 1994b The evolution of dimorphic traits: Effect of directional selection on heritability.

Heredity 72: 36–41.
—— 1996. The evolution of threshold traits in animals. Quarterly Review of Biology 71: 3–35.
—— 1997. Evolutionary Quantitative Genetics. Chapman and Hall, New York.
—— 1998a. Evolution of threshold traits: The balance between directional selection, drift

and mutation. Heredity 80: 25–32.
—— 1998b. The maintenance of phenotypic and genetic variation in threshold traits by

frequency-dependent selection. Journal of Evolutionary Biology 11: 513–529.

R E F E R EN C E S 439

—— 2001. The threshold model as a general purpose normalizing transformation. Heredity
86: 404–411.

—— 2002. Life History Evolution. Sinauer Associates, Sunderland, MA.
—— 2006. Introduction to Computer-Intensive Methods of Data Analysis in Biology. Cambridge

University Press, Cambridge.
——, and D. J. Fairbairn. 2007. Laboratory evolution of the migratory polymorphism in

the sand cricket: Combining physiology with quantitative genetics. Physiological &
Biochemical Zoology 80: 358–369.

Roff, D. A. and—— 2009. Modeling experimental evolution using individual-based variance-
components models. In T. Garland, and M. Rose (eds.), Experimental Evolution. University
of California Press, Berkeley, CA.

——, and D. Reale. 2004. The quantitative genetics of fluctuating asymmetry: A comparison
of two models. Evolution 58: 47–58.

——, and R. Preziosi. 1994. The estimation of the genetic correlation: The use of the
jackknife. Heredity 73: 544–548.

——, E. Heibo, and L. A. Vollestad. 2006. The importance of growth andmortality costs in the
evolution of the optimal life history. Journal of Evolutionary Biology 19: 1920–1930.

Ronningen, K. 1974. Monte carlo simulation of statistical-biological models which are of
interest in animal breeding. Acta Agriculturae Scandinavica 24: 135–142.

Rudolf, V. H. W., and M. O. Rodel. 2007. Phenotypic plasticity and optimal timing of
metamorphosis under uncertain time constraints. Evolutionary Ecology 21: 121–142.

Ruxton, G. D., and M. Broom. 1999. Evolution of kleptoparasitism as a war of attrition.
Journal of Evolutionary Biology 12: 755–759.

Sharpe, F. R., and A. J. Lotka. 1911. A problem in age-distribution. Philosophical Magazine 21:
435–438.

Sherratt, T. N., and I. F. Harvey. 1993. Frequency-dependent food selection by arthropods – a
review. Biological Journal of the Linnean Society 48: 167–186.

Simons, A. M., and M. O. Johnston. 2003. Suboptimal timing of reproduction in Lobelia inflata
may be a conservative bet-hedging strategy. Journal of Evolutionary Biology 16: 233–243.

Sinervo, B. 2001. Runaway social games, genetic cycles driven by alternative male and
female strategies, and the origin of morphs. Genetica (Dordrecht) 112–113: 417–434.

——, and R. Calsbeek. 2006. The developmental, physiological, neural, and genetical causes
and consequences of frequency-dependent selection in the wild. Annual Review of Ecology
Evolution and Systematics 37: 581–610.

——, and C. M. Lively. 1996. The rock-paper-scissors games and the evolution of alternative
male strategies. Nature 380: 240–243.

Slatkin, M. 1974. Hedging one’s evolutionary bets. Nature 250: 704–705.
Smith, T. B., and S. Skulason. 1996. Evolutionary significance of resource polymorphisms in

fishes, amphibians, and birds. Annual Review of Ecology and Systematics 27: 111–133.
Stearns, S. C. 1992. The Evolution of Life Histories. Oxford University Press, New York.
Tabachnick, B. G., and L. S. Fidell. 2001. Using Multivariate Statistics. Allyn and Bacon, Boston,

MA.
Taylor, P. D., G. Wild, and A. Gardner. 2006. Direct fitness or inclusive fitness: How shall we

model kin selection? Jourunal of Evolutionary Biology 20: 301–309.
Thorne, B. L. 1997. Evolution of eusociality in termites. Annual Review of Ecology and Systematics

28: 27–54.
Tuljapurkar, S. D. 1982. Population-dynamics in variable environments. III. Evolutionary

dynamics of r-selection. Theoretical Population Biology 21: 141–165.
—— 1989. An uncertain life: Demography in random environments. Theoretical Population

Biology 35: 227–294.
—— 1990. Population Dynamics in Variable Environments. Springer-Verlag, Berlin, Germany.
——, and S. H. Orzack. 1980. Population-dynamics in variable environments. 1. Long-run

growth-rates and extinction. Theoretical Population Biology 18: 314–342.
Turelli, M. 1977. Random environments and stochastic calculus. Theoretical Population Biology

12: 140–178.

440 R E F E R E N C E S

van Dooren, T. J. M., and J. A. J. Metz. 1998. Delayed maturation in temporally structured
populations with non-equilibrium dynamics. Journal of Evolutionary Biology 11: 41–62.

van Tienderen, P. H. 2000. Elasticities and the link between demographic and evolutionary
dynamics. Ecology 81: 666–679.

Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics. Springer, New York.
Via, S., and R. Lande. 1985. Genotype-environment interaction and the evolution of pheno-

typic plasticity. Evolution 39: 505–522.
Wajnberg, E., P. Bernhard, F. Hamelin, and G. Boivin. 2006. Optimal patch time allocation

for time-limited foragers. Behavioral Ecology and Sociobiology 60: 1–10.
Wakano, J. Y., and Y. Ihara. 2005. Evolution of male parental care and female multiple

mating: Game-theoretical and two-locus diploid models. American Naturalist 166: E32–
E44.

Weber, T. P., B. J. Ens, and A. I. Houston. 1998. Optimal avianmigration: A dynamic model of
fuel stores and site use. Evolutionary Ecology 12: 377–401.

West, A. S., I. Pen, and A. S. Griffin. 2002. Cooperation and competition between relatives.
Science 296: 72–75.

White, A., J. V. Greenman, T. G. Benton, and M. Boots. 2006. Evolutionary behaviour in
ecological systems with trade-offs and non-equilibrium population dynamics. Evolution-
ary Ecology Research 8: 387–398.

Wilbur, H. M., and V. H. W. Rudolf. 2006. Life-history evolution in uncertain environments:
Bet hedging in time. American Naturalist 168: 398–411.

Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.
—— 1969. The theoretical course of directional selection. American Naturalist 103: 561–574.

R E F E R EN C E S 441

This page intentionally left blank

Author Index

A
Albano, S. S. 14

Arnold, S. J. 231, 233, 268

Ayala, F.J. 15

B
Barton, N. H. 14

Beauchamp, G. U.Y. 339

Begon, M. 116, 120

Benton, R. A. 8, 12 13, 60, 172, 173, 180,

193, 203, 208, 222

Benton, T. G. 174, 195, 213, 222

Bergmueller, R. 14

Bernhard, P. 402

Boivin, G. 402

Bond, A. B. 271

Boots, M. 174, 195, 213, 222

Boulding, E.G. 269

Brandl, R. 222

Bresolin, N. 271

Brommer, Jon. E 3

Broom, M. 337

Brown, J. S. 337

Bshary, R. 14

Bürger, R. 231, 233, 268

C
Cade, W. 322

Cagliani, R. 271

Calsbeek, R. 271

Campbell, C. A. 15

Carranza, J. 14

Caswell, H. 8, 10, 165, 166

Charlesworth, B. 4, 5, 6, 59, 60, 86

Charnov, E. L. 4, 15, 376

Clarke, B. 271

Clarke, B. C. 233

Clarke,C.W. 341,354,367,369,376,379,389

Clutton-Brock, T. H. 4

Cohen, D. 10, 39, 40

Cole, L. C. 60

Comi, G. P. 271

Constantino, R. F. 173

Crawley, M. J. 1

Creel, S. 15

Crow, J. F. 5

Cushing, J. M. 173

D
De la Cruz, C. 14

Demetrius, L. 5, 11

den Boer, P. J. 11

Dennis, B. 173

Desharnais, R. A. 173

Dickinson, J. L. 14

Diekmann, O. 8

Doebeli, M. 222

Dugatkin, L. A. 14

E
Eadie, J. M. 338

Ebenman, B. 194, 221

Endler, J. A. 271

Ens, B. J. 401

F
Fairbairn, D. J. 50, 229, 233, 268

Ferriere, R. 7

Fisher, R. A. 3, 5

Fletcher, J. A. 14

Fornoni, J. 271

Fryxell, J. M. 338

Fumagalli, M. 271

G
Galvani, A. 402

Gardner. A. 14

Gatto, M. 7

Geritz, S. A. H. 7

Gilchrist, G. W. 139, 229

Gillespie, J. 5, 11

Gillespie, J. H. 11

Grafen, A. 14

Grant, A. 8, 12 13, 60, 172, 173, 180, 193,

203, 208, 222

Greenman, J. V. 174, 195, 213, 222

Griffin, A. S. 15

Gross, M. R. 15

Guillaume, F. 269

H
Haldane, J. B. S. 39

Hamelin, F. 402

Hamilton, W. D. 14

Hammerstein, P. 15

Harley, C. B. 177, 275, 331, 335, 337

Harris, W. E. 399

Harvey, I. F. 271

Hay, T. 269

Hedrick, P. W. 5

Heibo, E. 130, 140

Heino, M. 15

Hines, W. G. S. 274

Holst, M. 269

Houston, A. I. 13, 341, 401

Hunter, C. M. 8

Hutchings, J. A. 15

I
Ihara, Y. 338

J
Jayaker, S. D. 39

Johansson, A. 194, 221

Johst, K. 222

Johnston, M. O. 139

Johnstone, R. 402

Jones, A. G. 231, 233, 268

Jonsson, T. 194, 221

K
Kaitala, V. 15

Kamel, S. 269

Katsukawa, Y. 221

Katsukawa, T. 221

Kawecki, T. J. 13

Kerkhoff, A. J. 401

Kimura, M. 5

King, O. D. 11

Kirkpatrick, M. 228

Koenig, W. D. 14

Kokko, H. 3, 271, 272, 277, 361

Krause, A. 1

L
Lack, D. 61

Lalonde, R. D. 221

Lande, R. 5, 12, 59, 86, 227, 228, 268

Landes, D. S. 16

Leslie, P. H. 166

Lessard, S. 274

Lessells, C. M. 401

Levene, H. 13

Levins, R. 40

Lewontin, R. C. 10, 39, 40

Lively, C. M. 271, 276, 301

Lotka, A. J. 4

Lucas, J. R. 399

Lynch, M. 229

M
Malthus, T. 4

McGlade, J. M. 7, 174

444 AU THOR I N D E X

McNamara, J. M. 13, 341

Mangel,M. 341, 354, 367, 369, 376, 379, 389

Mani, G. S. 233

Masel, J. 11

Mateos, C. 14

Matsuda, H. 221

May, R. M. 40

Maynard Smith, J. 15, 271, 275, 301, 302

Menozzi, G. 271

Merilä, J. 3

Metz Johan, A. J. 7, 15, 208

Myers, R. A. 15

Mylius, S. D. 8

N
Nisbet Roger, M. 7

Nunez-Farfan, J. 271

O
O’Brien, E. E. 337

Olausson, A. 229

Oli, M. K. 14

Olson, M. 1

Orzack, S. H. 10, 11, 139, 274

P
Pakes, D. 269

Parker, G. A. 116, 120

Pen, I. 15

Pepper, J. W. 14, 15

Peterson, J. H. 401

Polo, V. 14

Pozzoli, U. 271

Preziosi, R. 229

Q
Queller, D. C. 14, 15

R
Rand, D. A. 7, 174

Ratnieks, F. L. W. 14

Reale, D. 229

Reeve, H. K. 14

Reeve, J. P. 233, 268

Ripley, B. D. 1

Riva, S. 271

Rodel, M. O. 139

Roff, D. A. 1, 4, 6, 7, 13, 50, 52, 60, 61,

101, 116, 130, 136, 139, 140, 228,

229, 248, 251, 268, 274, 431

Roitberg, B. D. 221, 401

Ronningen, K. 229

Rudolf, V. H. W. 139, 222

Ruxton, G. D. 337

S

Sharpe, F. R. 4

Sheltom, P. R. 233

Sherratt, T. N. 271

Simons, A. M. 139

Sinervo 271, 276, 277, 301, 306, 338

Sironi, M. 271

Skinner, S. W. 376

Skulason, S. 271

Slatkin, M. 11

Smith, T. B. 271

Stearns, S. C. 4, 13

T

Takada, T. 8

Taylor, P. D. 14

Thorne, B. L. 14

Tie, A. D. 269

Tuljapurkar, S. 10, 11, 274

Turelli, M. 40

V

Valencia, J. 14

Valverde, P. L. 271

van Dooren, T. J. M. 7, 208

Venables, W. N. 1

Via, S. 268

Vollestad, L. A. 130, 140

AUTHOR INDEX 445

W
Wajnberg, E. 402

Wakano, J. Y. 338

Weber, T. P. 401

Wennergren, U. 194, 221

Wenseleers, T. 14

West, A. S. 15

West, S. A. 14

White, A. R. 174, 195, 213, 222

Whitlock, M. C. 269

Wilbur, H. M. 222

Wild, G. 14

Wilson, H. B. 7, 174

Wright, S. 5

Y
Ydenberg, R. C. 401

Z
Ziehe, M. 5, 11

Zwick, M. 14

446 AU THOR I N D E X

Subject Index

A
Altruism 14

B
Bet-hedging 11

Beverton-Holt function 170, 173

binomial distribution 323, 368

Bourgeois strategy 276

Breeder’s equation 224

Brute force approach 65, 71, 94

And MATLAB 159–164

and recursion 130

example of 99–100, 129–139

C
Capital Breeders 375

Chain Rule 80

Chaotic behavior 170

Chaotic fluctuations 9

Characteristic equation 3, 4, 59, 87, 185

Clearing memory 18

Cole’s paradox 60

Convergent stable ESS

defined 174

Correlational selection 231

defined 228

Critical age group 7

D
Darwinian fitness 3

Data frame

defined 21

Decision Matrix

defined 344

Demographic entropy 6

Demographic stochasticity 5–6

Demographic variance 6

Demographic weak ergodicity 10

Density-dependence

and R0 8

Density-dependence and fitness 12

Directional selection 224

IL model 251–255

IVC model 248–251

Directional Truncation Selection 226

Dominant Eigenvalue 5, 8, 11

Dominant Lyapunov Exponent 7, 173,

174

Drosophila melanogaster 139

Dwarf mongoose 15

E
Effective equilibrium density 8

Eigenvalue

and Leslie matrix 187

and rate of increase 166

and semidefinite positive matrix 228

dominant 5

Elasticity

defined 8

example of 175

of the invasion exponent 180

Elasticity analysis

described 180–181

Epistasis 233

ESS 8, 16, 174, 177, 179, 180

Euler equation 3, 59

Evolutionary branching point 174–177

Evolutionary entropy 6

Evolutionary Stable Strategy 174

defined 8, 16, 271

Expected lifetime reproductive success 86

defined 60

example of 76, 77, 82, 114

F
Frequency-dependent selection

defined 15

Functions

defined 29–31

G
Gamma distribution 11

Garden-of-Eden ESS 176, 177

Gaussian fitness function

defined 225

Geometric mean 10, 11, 40, 56, 69,

70, 139

Geometric Series 79, 185, 432

Goldeneye 338

H
Hamilton’s rule 14

Hardy-Weinberg 288, 306, 307

Hawk-Dove game 15, 58, 282–301

described 273

Helogale parvula 15

Heritability

defined 224

I
Ideal Free Distribution 323, 339

Inclusive fitness 14–15

Income Breeders 375

Index selection 231

Intrinsic rate of increase 4

Invasibility

and the Lyapunov exponent 7

defined 173

Invasibility repellor 176, 177

Invasion exponent 7, 9, 10, 13, 173

and sensitivity 8

defined 174

L

Lack hypothesis 60

Leslie matrix 5, 11, 57, 165, 169, 170,

184, 187, 189

and inclusive fitness 14

Liability 51, 228, 249, 275, 295

Linkage 225, 233

Lions 367

Lists

defined 38–39

Lobelia inflate 139

Lyapunov exponent 7

dominant 7, 56

M

Malthusian parameter 4, 6, 10, 56,

59, 86

and the the invasion exponent 7

Maternal effects 228

Matrix

defined 20

object-oriented use of 34, 46, 98

Mixed strategy

defined 273

Multiple invasibility analysis

181–184

N

Nasonia vitipennis 376

Net reproduction rate 7, 8, 13

Net reproductive index 6

O

Outcome Chart

defined 347

448 S U B J E C T I ND E X

P
Parabola 72

Path

setting 124

Payoff

defined 271

Payoff matrix

defined 271

Pleiotropy 225, 233

Poisson distribution 242

Producer-scrounger Game 339

Pure strategy

defined 273

Q
Quadratic Equation

solution to 324

Quadratic Fitness Funtion 225

R
Rank-Order Selection

defined 231

Reaction norm 13

Recursive equation 18, 43, 65, 131

Relative Payoff Sum 331

Reproductive potential 6

Ricker function

9,57,170,173,179,182,184,189,

195, 208, 243, 256

Ricker model

quantitative genetic analysis 255–258

Robustness 6

Rock-Paper-Scissors 15

S
Satellite Strategy 170

Selection differential 224

Selection intensity 224

Spreading the Risk 11

Stabilizing selection 225, 227, 231

IVC model 245–248

PVC model 243–245

T
Taylor series 10

Thomson’s gazelle 367

Threshold model 51, 275

Threshold selection 231

Threshold trait 228

Transition Density

defined 354

Tribolium spp 173

Truncation selection

defined 224

U
Univoltine life cycle 7

Usher function 172

Uta stansburiana 338

V
Vector

defined 20

von Bertalanffy growth equation 132, 431

W
writing to a text file 124

Z
zebra 367

SUB JECT INDEX 449

Coding Index

R Code (gives examples of the use of R and MATLAB code.
Some of the simpler codes have been omitted)

adapt 97, 98

apply 31–34, 78, 88, 89, 116, 129, 133, 171,

179, 180, 182, 192, 193, 198, 201, 205, 207,

214, 216, 219, 231, 235, 241, 254, 279, 325,

326, 393

array 21, 335, 386

barplot 388

cbind 235, 242, 247, 250, 257, 372, 381, 397

ceiling 183, 202, 220, 242, 243, 252, 264,

386

contour 46–50, 111, 121, 123, 133, 179,

192, 198, 205, 215, 235, 312, 393

contourLines 308

cor 239, 266

dbinom 326, 327, 368, 373

deriv 62–63, 74, 84, 104, 118, 126

diag 188, 190, 227, 261, 317, 319

dnorm 52

eigen 166, 167, 188, 228, 230, 245

expand.grid 46–50, 121, 129, 133, 177, 192,

198, 205, 214, 235, 279, 311, 392

floor 371

hist 36

image 374, 383

integrate 68, 83, 86, 88, 89, 106, 108,

length 38

lm 179, 191, 197, 205, 211, 214

mvrnorm 230, 261, 265, 318

nlm 64, 65, 75, 81, 91, 98, 104, 105, 108,

112, 113, 125, 128, 134, 135, 138, 281

normdcf 52

optimize 64, 65, 75, 68, 91–93, 98, 104, 108,

119, 186, 189, 396

order 129, 134, 232, 235, 279, 282, 348,

350, 356, 371, 396

outer 46–50

persp 46–50, 374, 383, 393

pnorm 52, 296, 298

qnorm 224, 250, 253, 295

rbind 348, 364, 365, 370, 371, 372

read.table 124, 127, 386

rep 334, 335, 386

rnorm 230, 247, 253, 257, 295,

300, 386

round 232, 253, 257, 285, 290

rowSums 328, 239,

253, 265

rpois 242, 243, 254, 264

runif 26, 41, 53, 95, 96, 99, 183, 237, 242,

252, 253, 264, 334, 353, 386

sample 241, 252, 254, 264, 266, 289, 296,

308, 328, 329, 334

seq 22, 235, 241, 253, 254, 279, 311, 328,

329, 364, 373, 383, 392, 399

setwd 380

signif 374, 383, 393

smooth.spline 289, 290, 291, 298

solve 231, 244

sum 44, 53, 55, 232, 247, 249, 253, 257,

260, 289, 290, 292, 297, 300, 303,

308, 313, 319, 326

summary 36

table 328, 329

uniroot 64, 68, 74, 84–85, 88, 93, 103,

104, 118, 186, 194, 199, 207, 211, 216,

281, 325

var 238, 239, 253

while loop 27, 30, 66, 111, 135, 138, 346,

351, 383, 398

write 124, 127, 385

MATLAB code

contour 155, 161

dblquad 147

diff 63, 125, 140, 149, 151, 157

eig 166

ezplot 140

fminbnd 65, 141, 142, 418

fminsearch 128, 147, 150–153, 156, 159,

162, 164

fzero 103, 118, 145, 146, 149, 153

inline 65

int 106, 150

load 158, 416

meshgrid 161, 412, 415

pretty 143

quad 143, 144, 151

rand 26, 95, 146, 148, 404,

405, 416

save 158, 416

solve 64, 142, 144

sum 142, 413

surfc 46–50, 152, 155, 161, 412, 415

symsum 141

CODING INDEX 451

	Contents
	1 Overview
	1.1 Introduction
	1.1.1 The aim of this book
	1.1.2 Why R and MATLAB?

	1.2 Operational definitions of fitness
	1.2.1 Constant environment, density-independent, stable-age distribution
	1.2.2 Demographic stochasticity
	1.2.3 Environments of fixed length (e.g., deterministic seasonal environments)
	1.2.4 Constant environment, density-dependence with a stable equilibrium
	1.2.5 Constant environment, variable population dynamics
	1.2.6 Temporally stochastic environments
	1.2.7 Temporally variable, density-dependent environments
	1.2.8 Spatially variable environments
	1.2.9 Social environment
	1.2.10 Frequency-dependence

	1.3 Some general principles of model building
	1.4 An introduction to modeling in R and MATLAB
	1.4.1 General assumptions
	1.4.2 Mathematical assumptions of model 1
	1.4.3 Mathematical assumptions of model 2
	1.4.4 Mathematical assumptions of model 3
	1.4.5 Mathematical assumptions of model 4
	1.4.6 Mathematical assumptions of model 5
	1.4.7 Mathematical assumptions of model 6

	1.5 Summary of modeling approaches described in this book
	1.5.1 Fisherian optimality analysis (Chapter 2)
	1.5.2 Invasibility analysis (Chapter 3)
	1.5.3 Genetic models (Chapter 4)
	1.5.4 Game theoretic models (Chapter 5)
	1.5.5 Dynamic programming (Chapter 6)

	2 Fisherian optimality models
	2.1 Introduction
	2.1.1 Fitness measures
	2.1.2 Methods of analysis: introduction
	2.1.3 Methods of analysis: W = f(θ[sub(1)], θ[sub(2}],...,θ[sub(k)], x[sub(1)], x[sub(2)],...,x[sub(n)]) and well-behaved
	2.1.4 Methods of analysis: W = f(θ[sub(1)],θ[sub(2)],...,θ[sub(k)],x[sub(1)],x[sub(2)],...,x[sub(n)]) and not well-behaved
	2.1.5 Methods of analysis: g(w) = f(θ[sub(1)],θ[sub(2)],...,θ[sub(k)],x[sub(1)],x[sub(2)],...,x[sub(n)],W)

	2.2 Summary of scenarios (Table 2.1)
	2.3 Scenario 1: A simple trade-off model
	2.3.1 General assumptions
	2.3.2 Mathematical assumptions
	2.3.3 Plotting the fitness function
	2.3.4 Finding the maximum using the calculus
	2.3.5 Finding the maximum using a numerical approach

	2.4 Scenario 2: Adding age structure may not affect the optimum
	2.4.1 General assumptions
	2.4.2 Mathematical assumptions

	2.5 Scenario 3: Adding age-specific mortality that affects the optimum
	2.5.1 General assumptions
	2.5.2 Mathematical assumptions
	2.5.3 Plotting the fitness function
	2.5.4 Finding the maximum using the calculus
	2.5.5 Finding the maximum using a numerical approach

	2.6 Scenario 4: Adding age-specific mortality that affects the optimum and using integration rather than summation
	2.6.1 General assumptions
	2.6.2 Mathematical assumptions
	2.6.3 Plotting the fitness function
	2.6.4 Finding the maximum using the calculus
	2.6.5 Finding the maximum using a numerical approach

	2.7 Scenario 5: Maximizing the Malthusian parameter, r, rather than expected lifetime reproductive success, R[sub(o)]
	2.7.1 General assumptions
	2.7.2 Mathematical assumptions
	2.7.3 Plotting the fitness function
	2.7.4 Finding the maximum using the calculus
	2.7.5 Finding the maximum using a numerical approach

	2.8 Scenario 6: Stochastic variation in parameters
	2.8.1 General assumptions
	2.8.2 Mathematical assumptions
	2.8.3 Plotting the fitness function
	2.8.4 Finding the maximum using the calculus
	2.8.5 Finding the maximum using a numerical approach

	2.9 Scenario 7: Discrete temporal variation in parameters
	2.9.1 General assumptions
	2.9.2 Mathematical assumptions
	2.9.3 Plotting the fitness function
	2.9.4 Finding the maximum using the calculus
	2.9.5 Finding the maximum using numerical methods

	2.10 Scenario 8: Continuous temporal variation in parameters
	2.10.1 General assumptions
	2.10.2 Mathematical assumptions
	2.10.3 Plotting the fitness function
	2.10.4 Finding the maximum using a numerical approach

	2.11 Scenario 9: Maximizing two traits simultaneously
	2.11.1 General assumptions
	2.11.2 Mathematical assumptions
	2.11.3 Plotting the fitness function
	2.11.4 Finding the maximum using the calculus
	2.11.5 Finding the maximum using a numerical approach

	2.12 Scenario 10: Two traits may covary but optima are independent
	2.12.1 General assumptions
	2.12.2 Mathematical assumptions

	2.13 Scenario 11: Two traits may be resolved into a single trait
	2.13.1 General assumptions
	2.13.2 Mathematical assumptions
	2.13.3 Plotting the fitness function
	2.13.4 Finding the optimum using the calculus
	2.13.5 Finding the optimum using a numerical approach

	2.14 Scenario 12: The importance of plotting and the utility of brute force
	2.14.1 General assumptions
	2.14.2 Mathematical assumptions
	2.14.3 Plotting the fitness function
	2.14.4 Finding the maximum using the calculus
	2.14.5 Finding the maximum using a numerical approach

	2.15 Scenario 13: Dealing with recursion by brute force
	2.15.1 General assumptions
	2.15.2 Mathematical assumptions
	2.15.3 Plotting the fitness function
	2.15.4 Finding the maximum using the calculus
	2.15.5 Finding the maximum using a numerical approach

	2.16 Scenario 14: Adding a third variable and more
	2.16.1 General assumptions
	2.16.2 Mathematical assumptions
	2.16.3 Plotting the fitness function
	2.16.4 Finding the maximum using the calculus
	2.16.5 Finding the maximum using a numerical approach

	2.17 Some exemplary papers
	2.18 MATLAB code
	2.18.1 Scenario 1: Plotting the fitness function
	2.18.2 Scenario 1: Finding the maximum using the calculus
	2.18.3 Scenario 1: Finding the maximum using a numerical approach
	2.18.4 Scenario 3: Plotting the fitness function
	2.18.5 Scenario 3: Finding the maximum by the calculus
	2.18.6 Scenario 3: Finding the maximum using a numerical approach
	2.18.7 Scenario 4: Plotting the fitness function
	2.18.8 Scenario 4: Finding the maximum using the calculus
	2.18.9 Scenario 4: Finding the maximum using a numerical approach
	2.18.10 Scenario 5: Plotting the fitness function
	2.18.11 Scenario 5: Finding the maximum using the calculus
	2.18.12 Scenario 5: Finding the maximum using a numerical approach
	2.18.13 Scenario 6: Plotting the fitness function
	2.18.14 Scenario 6: Finding the maximum using the calculus
	2.18.15 Scenario 6: Finding the maximum using a numerical approach
	2.18.16 Scenario 7: Plotting the fitness function
	2.18.17 Scenario 7: Finding the maximum using the calculus
	2.18.18 Scenario 7: Finding the maximum using numerical methods
	2.18.19 Scenario 8: Plotting the fitness function
	2.18.20 Scenario 8: Finding the maximum using a numerical approach
	2.18.21 Scenario 9: The derivative can also be determined using MATLAB
	2.18.22 Scenario 9: Plotting the fitness function
	2.18.23 Scenario 9: Finding the maximum using the calculus
	2.18.24 Scenario 9: Finding the maximum using a numerical approach
	2.18.25 Scenario 11: Plotting the fitness function
	2.18.26 Scenario 11: Finding the optimum using the calculus
	2.18.27 Scenario 11: Finding the optimum using a numerical approach
	2.18.28 Scenario 12: Plotting the fitness function
	2.18.29 Scenario 12: Finding the maximum using the calculus
	2.18.30 Scenario 12: Finding the maximum using a numerical approach
	2.18.31 Scenario 13: Plotting the fitness function
	2.18.32 Scenario 13: Finding the maximum using a numerical approach
	2.18.33 Scenario 14: Finding the maximum using a numerical approach

	3 Invasibility analysis
	3.1 Introduction
	3.1.1 Age-or stage-structured models
	3.1.2 Modeling evolution using the Leslie matrix
	3.1.3 Stage-structured models
	3.1.4 Adding density-dependence
	3.1.5 Estimating fitness
	3.1.6 Pairwise invasibility analysis
	3.1.7 Elasticity analysis
	3.1.8 Multiple invasibility analysis

	3.2 Summary of scenarios
	3.3 Scenario 1: Comparing approaches
	3.3.1 General assumptions
	3.3.2 Mathematical assumptions
	3.3.3 Solving using the methods of Chapter 2
	3.3.4 Solving using the eigenvalue of the Leslie matrix

	3.4 Scenario 2: Adding density-dependence
	3.4.1 General assumptions
	3.4.2 Mathematical assumptions
	3.4.3 Solving using R[sub(o)] as the fitness measure
	3.4.4 Pairwise invasibility analysis
	3.4.5 Elasticity analysis

	3.5 Scenario 3: Functional dependence in the Ricker model
	3.5.1 General assumptions
	3.5.2 Mathematical assumptions
	3.5.3 Pairwise invasibility analysis
	3.5.4 Elasticity analysis
	3.5.5 Multiple invasibility analysis

	3.6 Scenario 4: The evolution of reproductive effort
	3.6.1 General assumptions
	3.6.2 Mathematical assumptions
	3.6.3 Pairwise invasibility analysis
	3.6.4 Elasticity analysis

	3.7 Scenario 5: A two stage model
	3.7.1 General assumptions
	3.7.2 Mathematical assumptions
	3.7.3 Elasticity analysis
	3.7.4 Pairwise invasibility analysis

	3.8 Scenario 6: A case in which the putative ESS is not stable
	3.8.1 General assumptions
	3.8.2 Mathematical assumptions
	3.8.3 Pairwise invasibility analysis
	3.8.4 Elasticity analysis
	3.8.5 Multiple invasibility analysis

	3.9 Some exemplary papers

	4 Genetic models
	4.1 Introduction
	4.1.1 Population variance components (PVC) models
	4.1.2 Individual variance components (IVC) models
	4.1.3 Individual locus (IL) models

	4.2 Summary of scenarios
	4.3 Scenario 1: Stabilizing selection on two traits using a PVC model
	4.3.1 General assumptions
	4.3.2 Mathematical assumptions
	4.3.3 Analysis

	4.4 Scenario 2: Stabilizing selection using an IVC model
	4.4.1 General assumptions
	4.4.2 Mathematical assumptions
	4.4.3 Analysis

	4.5 Scenario 3: Directional selection using an IVC model
	4.5.1 General assumptions
	4.5.2 Mathematical assumptions
	4.5.3 Analysis

	4.6 Scenario 4: Directional selection using an IL model
	4.6.1 General assumptions
	4.6.2 Mathematical assumptions
	4.6.3 Analysis

	4.7 Scenario 5: A quantitative genetic analysis of the Ricker model
	4.7.1 General assumptions
	4.7.2 Mathematical assumptions
	4.7.3 Analysis

	4.8 Scenario 6: Evolution of two traits using an IVC model
	4.8.1 General assumptions
	4.8.2 Mathematical assumptions
	4.8.3 Analysis

	4.9 Scenario 7: Evolution of two traits using an IL model
	4.9.1 General assumptions
	4.9.2 Mathematical assumptions
	4.9.3 Analysis

	4.10 Some exemplary papers

	5 Game theoretic models
	5.1 Introduction
	5.1.1 Frequency-independent models
	5.1.2 Frequency-dependent models
	5.1.3 The size of the population
	5.1.4 The mode of inheritance in two-strategy games
	5.1.5 The number of different strategies

	5.2 Summary of scenarios
	5.3 Scenario 1: A frequency-independent game
	5.3.1 General assumptions
	5.3.2 Mathematical assumptions
	5.3.3 Plotting the fitness curves
	5.3.4 Finding the ESS using the calculus
	5.3.5 Finding the ESS using a numerical approach

	5.4 Scenario 2: Hawk-Dove game: a clonal model
	5.4.1 General assumptions
	5.4.2 Mathematical assumptions
	5.4.3 Finding the ESS using a numerical approach

	5.5 Scenario 3: Hawk-Dove game: a simple Mendelian model
	5.5.1 General assumptions
	5.5.2 Mathematical assumptions
	5.5.3 A graphical analysis
	5.5.4 Finding the ESS using a numerical approach

	5.6 Scenario 4: Hawk-Dove game: a quantitative genetic model
	5.6.1 General assumptions
	5.6.2 Mathematical assumptions
	5.6.3 A graphical analysis
	5.6.4 Finding the ESS using a numerical approach

	5.7 Scenario 5: Rock-Paper-Scissors: a clonal model
	5.7.1 General assumptions
	5.7.2 Mathematical assumptions
	5.7.3 Finding the ESS using a numerical approach

	5.8 Scenario 6: Rock-Paper-Scissors: a simple Mendelian model
	5.8.1 General assumptions
	5.8.2 Mathematical assumptions
	5.8.3 A graphical analysis
	5.8.4 Finding the ESS using a numerical approach

	5.9 Scenario 7: Rock-Paper-Scissors: a quantitative genetics model
	5.9.1 General assumptions
	5.9.2 Mathematical assumptions
	5.9.3 A graphical analysis
	5.9.4 Finding the ESS using a numerical approach

	5.10 Scenario 8: Frequency-dependence with limited interactions
	5.10.1 General assumptions
	5.10.2 Mathematical assumptions
	5.10.3 Finding the ESS analytically
	5.10.4 Finding the ESS using a numerical approach

	5.11 Scenario 9: Learning the ESS
	5.11.1 General assumptions
	5.11.2 Mathematical assumptions
	5.11.3 Finding the ESS using a numerical approach

	5.12 Some exemplary papers

	6 Dynamic programming
	6.1 Introduction
	6.1.1 General assumptions in the patch-foraging model
	6.1.2 Mathematical assumptions in the patch-foraging model
	6.1.3 A first look at the model
	6.1.4 An algorithm for constructing the decision matrix
	6.1.5 Using the decision matrix: individual prediction
	6.1.6 Using the decision matrix: expected state
	6.1.7 Using the decision and transition density matrices to get expected choices
	6.1.8 Adjusting state values to correspond to index values
	6.1.9 Linear interpolation to adjust for non-integer state variables

	6.2 Summary of scenarios
	6.3 Scenario 1: A different terminal fitness
	6.3.1 General assumptions
	6.3.2 Mathematical assumptions
	6.3.3 Outcome chart and expected lifetime fitness function
	6.3.4 Calculating the decision matrix

	6.4 Scenario 2: To forage or not to forage: when patches become options
	6.4.1 General assumptions
	6.4.2 Mathematical assumptions
	6.4.3 Outcome chart and expected lifetime fitness function
	6.4.4 Calculating the decision matrix

	6.5 Scenario 3: Testing for equivalent choices, indexing, and interpolation
	6.5.1 General assumptions
	6.5.2 Mathematical assumptions
	6.5.3 Outcome chart and expected lifetime fitness function
	6.5.4 Calculating the decision matrix

	6.6 Scenario 4: Host choice in parasitoids: fitness decreases with time
	6.6.1 General assumptions
	6.6.2 Mathematical assumptions
	6.6.3 Outcome chart and expected lifetime fitness function
	6.6.4 Calculating the decision matrix
	6.6.5 Using the decision matrix: individual prediction

	6.7 Scenario 5: Optimizing egg and clutch size: dealing with two state variables
	6.7.1 General assumptions
	6.7.2 Mathematical assumptions
	6.7.3 Outcome chart and expected lifetime fitness function
	6.7.4 Calculating the decision matrix

	6.8 Some exemplary papers
	6.9 MATLAB Code
	6.9.1 An algorithm for constructing the decision matrix
	6.9.2 Using the decision matrix: individual prediction
	6.9.3 Using the decision matrix: expected state
	6.9.4 Scenario 2: Calculating the decision matrix
	6.9.5 Scenario 3: Calculating the decision matrix
	6.9.6 Scenario 4: Calculating the decision matrix
	6.9.7 Scenario 4: Using the decision matrix: individual prediction
	6.9.8 Scenario 5: Calculating the decision matrix

	Appendix 1
	Appendix 2
	References
	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Coding Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

