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Preface

It is widely recognized that the field of biology is in the midst of a ‘data

explosion’. A series of technical advances in recent years has increased

the amount of data that biologists can record about different aspects of

an organism at the genomic, transcriptomic and proteomic levels. This

data is, of course, vital to advancing our knowledge. In recent years, the

discipline of bioinformatics has allowed biologists to make full use of the

advances in computer science and computational statistics in analysing

this data. However, as the volume of data grows, the techniques used must

become more sophisticated to cater for large-scale data and noise. Also,

given the growth in biological data, there is a need to extract information

that was not previously known from these databases to supplement cur-

rent knowledge. Large databases may contain interesting patterns that, if

identified and authenticated by further laboratory and clinical work, can

lead to novel theories about the causes of various diseases and also possi-

bly to new drugs for their treatment. The discipline of bioinformatics has

reached the end of its first phase, and the motivation behind this book

is to characterize the principles that may underlie second phase bioin-

formatics. That is, second phase bioinformatics is when the discipline,

instead of being informed by just computer science and computational

statistics, is also informed by artificial intelligence techniques.

As we show in this book, there are problems in bioinformatics and

many other sciences that cannot be solved satisfactorily even with the

fastest computers. Clearly, a more ‘intelligent’ approach is required to

solve these increasingly difficult bioinformatics problems, such as gene

expression analysis and protein structure prediction. This book attempts

to address this by looking at the latest advances in artificial intelligence

technology as applied to computational problems in biology. Artificial

intelligence methods are often based on the ways in which humans solve
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search and optimization problems, or how nature has solved its own

problems, for example by using the principles of ‘survival of the fittest’

in evolutionary computation.

This book is divided into three parts, each containing a number of

chapters. These parts are designed to allow readers to access the mate-

rial most relevant to them. The first part, Introduction, introduces the

material necessary to understand the technology and biology included

in the later chapters. We recognize that bioinformatics is highly cross-

disciplinary and therefore some, all or none of these chapters may be

relevant to the reader, depending on their background. The next part,

Current Techniques, describes the established artificial intelligence tech-

niques in bioinformatics including probabilistic, nearest neighbour and

genetic algorithm approaches. The final part, Future Techniques, is in-

tended to give the reader an impression of the latest thinking in the area

of intelligent bioinformatics. Some of these approaches may not have

been widely applied to problems in bioinformatics, but algorithms such

as genetic programming and various hybrid approaches can be expected

to make a big impact in this domain if experience in other areas of science

and technology is anything to go by.

In short, this book has been written to engage and interest readers from

many disciplines. Biologists are provided for in that there is a full intro-

duction to the challenges for computer science, and computer scientists

should also find the chapters on biology and bioinformatics informative.

Practicing bioinformaticians are also likely to find the book enlightening,

as much of the material has previously only been included in specialist

publications and a collection such as this provides a single resource for

many intelligent problem-solving techniques in bioinformatics. However,

as with any book of this type, not every technique can be included due

to space restrictions and apologies are offered to researchers whose own

favourite analytical techniques are not covered in this book.

Edward Keedwell

Ajit Narayanan
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Introduction





1
Introduction to the Basics
of Molecular Biology

1.1 Basic cell architecture

A cell, typically 10–30 millionths of a metre (10–30µm) across for hu-

mans, contains many specialized structures called organelles (Figure 1.1).

The cell membrane controls the passage of substances into and out of the

cell and encloses cell organelles as well as cell substances; the cytoplasm

serves as a fluid container for cell organelles and other cell substances

as well as helping in the transport of substances within the cell; the nu-

cleus directs all cell activity and carries hereditary information; the en-

doplasmic reticulum serves as a transport network and storage area for

substances within the cell; the ribosome manufactures different kinds of

cell protein; the Golgi apparatus packages protein for storage or trans-

port out of the cell; the lysosome digests or breaks down food materials

into simpler parts and removes waste materials from the cell; the mi-

tochondria serve as the power supply of the cell by producing ATP –

adenosine triphosphate – which is the source of energy for all cell

activities; microtubules serve as the support system or skeleton of the

cell; and microfilaments assist in cell motility. Each organelle performs

one or more special task(s) to keep the cell alive.

In addition to this intracellular (within cell) architecture, there is also

an intercellular (between cell) architecture: cells form tissue (aggregations

of similar cells that perform some subfunction), which in turn combines

with other tissues to form organs (aggregation of subfunctions to perform

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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Cell

DNA

Golgi apparatus
Polypeptide chain
(20 amino acids)

Protein

mRNA

(b) Translation

Ribosome

(c) Enzymes, proteins
     (hundreds of amino acids)

Nucleus

(a) Transcription

Figure 1.1 An overview of a typical human cell

an overall function), which in turn together form an organism (aggrega-

tion of all functions to keep the multicellular organism alive). The rest of

this chapter deals with just two of these organelles, the nucleus and the

ribosomes, and the processes within a cell that links them together.

1.2 The structure, content and scale
of deoxyribonucleic acid (DNA)

DNA and chromosomes

All the information directing every cell function is stored in large DNA

molecules found in the nucleus. A cell cannot function without DNA.

The information it contains must somehow be made available to the rest

of the cell as well as being passed on to all new cells. Although each

cell contains the full complement of DNA, through some process which

is not yet clearly understood certain parts of the DNA are switched on
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or off within cells, resulting in different types of cell producing different

proteins for normal growth and functioning of the organism as a whole.

The human body consists of between 30 to 80 trillion cells, where

one trillion = 1012, i.e. one thousand billion, where one billion equals

one thousand million. What is shown in Figure 1.1 is a eukaryote cell,

which has a membrane-bound nucleus. The human body has about

200 different types of eukaryote cell. The process of transcription (Fig-

ure 1.1(a)) starts with the double-stranded DNA opening up to reveal

bases coding for a gene. A copy of the gene is made called messenger RNA

(mRNA) which leaves the nucleus. The double-stranded DNA closes af-

ter transcription. At ribosomes, the process of translation starts (Fig-

ure 1.1(b)) whereby three copied bases at a time (codon) are mapped

onto one amino acid. The mRNA is broken up and may re-enter the nu-

cleus for further mRNA transcription. The growing sequence of amino

acids (polypeptide sequence) may be amended by the Golgi apparatus

before the final production of enzymes, proteins and other translated

products (Figure 1.1 (c)).

The DNA in the nucleus takes the form of large molecules called chro-

mosomes made up of combinations of four types of nucleotides – adenine,

guanine, thymine and cytosine (labelled ‘A’, ‘G’, ‘T’ and ‘C’, respectively).

Chromosomal structure can be described at different levels. At the lowest

level, single strands of DNA are paired with their complementary bases

to form double strands (about two billionths of a metre (2ηm) wide).

These double strands form strings of chromatin about 11ηm wide that

are packed tightly into 30ηm-wide chromatin fibre. Chromatin fibre is

itself densely packed into a section of chromosome about 300ηm wide

which again is packed into condensed sections of chromosome about

700ηm wide. Finally, chromosome sections are joined together at the

centromere to form an entire chromosome about 1400ηm (1.4µm, or

0.0014mm) wide.

The extreme small scale of DNA and its structure means that it can-

not be observed directly. Since the largest magnification that can be seen

through an optical microscope is 400× and the closest that two dis-

tinct spots can be resolved is 0.2 mm, if a chromosome can be seen at all

through an optical microscope using artificial or natural light it will be as

a fuzzy image. Lightwaves with shorter wavelengths (such as blue or ul-

traviolet) can be used to increase resolution (the resolution limit is about

0.45 times the wavelength), but then special techniques are required to

capture the image, since such short wavelengths are beyond visual capa-

bility. Light microscopy can be used to observe a cell but still cannot make

out the organelles with clarity. One of the most popular techniques is
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transmission electron microscopy (TEM), where electrons are beamed

through the sample and an image produced resulting from the interaction

of the electrons with the sample. TEM can resolve organelles and other

subcellular structures but not the content of chromosomes. In other

words, it is likely that chromosome content will not be observed directly

at the level of bases, which means that DNA sequences will never be

observed directly. Instead, indirect methods for observing and measuring

DNA must be used.

It is estimated that the DNA in each human cell contains about six or

seven billion nucleotides, spread across 46 chromosomes (discrete molec-

ular structures of DNA), each one of which takes the shape of a double

helix. If all the DNA in one cell were stretched end to end, the length

is estimated to be about 2 m. That is, each DNA chromosome is about

50 000 times shorter than its extended length.

Nucleotides are conventionally portrayed as shapes that lock onto each

other when paired on the two strands that make up the double-helix

structure of a chromosome. Complementary base pairing is represented

in Figure 1.2(a) and (b), with T on one strand always being paired with

A on the other strand, and C with G. Each strand has directionality (the

direction in which nucleotides code for genes), known as 5′ (5-prime) or

3′. That is, the strands run in the opposite direction to each other and are

‘anti-parallel’. In Figure 1.2(c), the nucleotides making up a gene have

a direction from the 5′ to the 3′ end (left-to-right for the ‘top’ strand,

T A

G C

(a)
(c)

5′

3′

3′

5′

3′

(b)

5′

5′

Double helix

3′

Figure 1.2 The double-helix structure
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right-to-left for the ‘bottom’ strand). Each nucleotide is a molecule con-

sisting of a five-carbon sugar (deoxyribose for DNA), a phosphate group,

and a nitrogenous base (a ring compound containing nitrogen), with each

carbon being given a number 1′ to 5′. Nucleotides form a chain when

phosphodiester linkages are formed between the sugar portions of the

molecules. As a result of the phosphates being linked from the 5′ carbon

on one sugar to the 3′ carbon on the next, the DNA sequence has a free

5′ carbon (no nucleotide attached) at one end and a free 3′ carbon at

the other end. These free carbon numbers are then used to signify the

directionality of the sequence.

Types of cell

Eukaryotic cells mainly appear in multicellular organisms (e.g. plants,

animals) and are distinguished by having a clearly designated nucleus

containing DNA structured into chromosomes, while prokaryotic cells

(single cell organisms) have no such nucleus and their DNA is stored

in one, usually circular, molecule. Prokaryotic cells are usually called

bacteria and represent the simplest life forms. There are three classes of

bacteria. Eubacteria are the most common type and can cause disease

in humans either by directly producing toxins harmful to us or by being

infected by bacterial viruses that then cause the bacteria in us to produce

harmful toxins. In addition to the trillions of eukaryotic cells that make

up a human, human bodies also tolerate a large number of bacteria that

produce useful proteins, e.g. for breaking down some types of food, that

human DNA could not otherwise manufacture. Archaebacteria are typ-

ically found in hostile (usually hot, acidic and oxygenless) environments

and are assumed to be, or descended from, among the oldest living or-

ganisms on this planet, since the early Earth would not have contained

oxygen and would have been a hot place. Cyanobacteria use photosyn-

thesis (the process of converting energy in sunlight into chemicals used

by living systems) and are believed to be the source of chloroplasts in

plants. The remainder of this book will concentrate on eukaryotic cells,

such as those found in multicellular creatures.

The human body is made up of large numbers of about 200 different

types of eukaryotic cell, such as nerve cells (neurons) for communica-

tion and control, muscle cells for producing mechanical force, and sen-

sory cells such as those in the eye and skin. Since all humans (and other

multicellular organisms) start as one fertilized egg cell, it is one of the

mysteries of modern biology as to why, after division like a prokaryotic
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cell, the subsequent cells remain together to cooperate for further division

and specialization into all of the different types of cell, until a full-grown

human develops. Most prokaryotic cells, after division, go their own way

and lead independent lives.

DNA, the genome and genes

For human and other eukaryotic cells, two polynucleotide chains (that

is, two sequences consisting of many different occurrences of the four

neucleotides) form the DNA double helix, with all the bases on the inside

of the helix and the sugar-phosphate backbones on the outside (Fig-

ure 1.2). Under normal cellular conditions, adenine and guanine (purines)

always pair with thymine and cytosine (pyramidines), respectively and

vice versa. The complete set of DNA in an organism’s cell is its genome. A

eukaryotic nucleus contains a number of chromosomes, each of which is

a double-helix containing hundreds of thousands of bases on anti-parallel

strands. In other words, while the strands are parallel in a chromosome,

they run in an opposite direction to each other. One strand is read from

‘left-to-right’, or ‘top-to-bottom’, and its complement is read from ‘right-

to-left’, or ‘bottom-to-top’.

So far, the assumption is that a eukaryotic cell contains the full set of

chromosomes, and this is true for about 99.99 per cent of all cells in the

human body. However, before a normal eukaryotic cell can come into

being it has to be created. A sex cell for humans contains 23 chromo-

somes, consisting of about 3.5 billion bases in total. A sex cell (haploid) is

different from a normal cell in that it contains only half the complement

of chromosomes required to form a normal (diploid cell). Only when two

sex cells merge will a normal cell consisting of 46 chromosomes result.

A sex cell for goldfish contains 47 chromosomes (94 chromosomes for a

normal goldfish cell), for rice 12, for a fruit fly four, for a guinea pig 32.

A gene is defined to be a sequence of DNA or bases that code for a

specific function/protein. However, a gene can have more than one form

or version. So, while there may be a gene for, say, producing hair of a

certain colour (a gross oversimplification), that gene will have different

alleles, such as producing brown hair or blonde hair. A gene is like a

variable that can take different values, to use a computational metaphor.

It is not known for sure how many human genes are capable of having

different allelic values or how many different allelic values exist for those

genes that can vary. Some of these differences in allelic values are strongly

associated with diseases, such as one particular type of diabetes where a
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gene which contributes to the production of insulin for breaking down

glucose in the blood has a different form to the normal form or version

of the gene. Other differences in allelic values provide normal variation

between individuals’ however. It is difficult to identify a genuine allelic

difference when comparing the same gene across two individuals; the

difference can be just one base in a multithousand-base gene sequence.

Since the content of genes cannot be observed directly, only indirect ways

of identifying differences between individuals for the same gene can be

used, which leads to problems of knowing where the differences may be

and finding methods for checking for the existence of these differences.

As stated earlier it is estimated that there are several trillion (between

30 trillion and 80 trillion) cells in the human body (for skin, muscles,

liver, blood, heart, brain, etc.). Each such cell contains the full set of 46

chromosomes inherited from the mother and father (23 in each case, via

sex cells). It is also estimated that one set of 23 chromosomes code for

about 30 000 genes for humans. On average, about 100 000–150 000

bases are required for coding a gene, although this figure varies greatly

from a few hundred to a few hundred thousand. Several thousand genes

will on average reside on each chromosome. A genome is defined to be

the complete set of chromosomes inherited from one parent.

1.3 History of the human genome

The task of sequencing all the bases of the human genome is called the

human genome project, which originated in the early 1980s with Gen-

Bank when US Department of Energy technicians entered sequences of

As, Gs, Cs and Ts from journals into databases using special keyboards.

New protocols subsequently allowed researchers to enter sequences via

telephone, and later GenBank was transferred to the National Institute

for Biotechnology Information (NCBI). In 1990, the Human Genome

Project (HGP) was launched as a publicly-funded consortium consist-

ing of four large sequencing centres in the USA, the Sanger Centre in

Cambridge, UK, and various laboratories in Japan, France, Germany

and China. Before the project was completed, in Spring 2000 Celera Ge-

nomics announced that they had a complete draft of the human genome.

While the HGP adopted a systematic method for ‘sequencing’ (identify-

ing the nucleotides along all the chromosomes of) the human genome

section by section, Celera adopted a ‘shotgun’ approach, whereby they

fragmented the genome into small, easily sequenced stretches and then

reconstructed the genome through proprietary algorithms. Increases in
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computational power through the 1990s made Celera’s approach possi-

ble. Celera used just one anonymous person’s DNA, whereas the HGP

required cross-checking with several people’s DNA. Also, Celera repeated

the sequencing three times, whereas HGP required more repetitions.

Initially and during the early 1990s, it was thought that the HGP would

find 80 000 genes. As the HGP progressed, this figure was revised down

to 20 000 to 30 000 genes. A rough calculation indicates that, if there are

3.5 billion bases on 23 chromosomes and 30 000 genes, then about

120 000 bases are required per gene on average. However, it is now

estimated that 98–99 per cent of DNA in humans is ‘redundant’ (does

not code for any function). Also, it is estimated that up to 99.9 per cent

of one person’s genes match another random person’s perfectly. That is,

any two people taken at random share the very same DNA sequence (al-

lelic values) for nearly every single one of their genes, but the remaining

0.1 per cent vary. If 30 000 genes are assumed, then 0.1 per cent is 30,

that is, there are still over a billion ways (230 = 1 073 741 824) that two

people can differ from each other. This is assuming that each gene has

a binary function (on/off, high/low, dark/fair, etc), whereas genes can be

expected to be multivariate (take many values). For instance, if there are

on average three different forms for each gene, there are still over 205 bil-

lion ways that two people can differ from each other, more than enough

to code for a difference between any two humans currently living (the

world’s population is currently estimated to be about six billion). Also, if

the estimate of how many genes humans share identically with each other

is just a fraction lower, say 99.8 per cent, then there is even more genetic

variability possible. These differences between values for a specific gene

are called polymorphisms and the physical location of a specific gene on

chromosomes is called its locus.

There is also increasing interest in the ‘redundant’ or ‘junk’ DNA,

that is, DNA which is believed not to code for any protein. It is not

clear whether such sections of DNA are the remains of previously useful

DNA that now have no function, or whether non-coding DNA provides

a structural aid to help stabilize chromosomes and the nucleus.

1.4 Genes and proteins

Genes code for various products that are used by the cells making up the

tissue of the organism. These products are called proteins and they have

two primary functions: structural, such as helping to form muscle, hair

and microtubules, and enzymatic, such as the production of enzymes
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for starting various chemical reactions in the cell. Proteins therefore

contribute to biological structure and function. Proteins also have three

other functions: they can carry signals, they can transport molecules such

as oxygen and they can regulate cell processes, such as defence mecha-

nisms. The process by which genes are made into proteins is started by

RNA polymerase coming into contact with a chromosome and identify-

ing the start point of a gene. These molecules open up the double helix

structure to expose the DNA strand making up the gene, and a comple-

mentary copy of the gene is made in the direction in which the gene is

meant to be read. The process of copying genes into mRNA is called tran-

scription, and the process of converting the mRNA into protein is called

translation.

Transcription starts with the double-helix unwinding Figure 1.3(a) and

exposing bases that represent the start of a gene. mRNA is then formed,

whereby a complementary copy of the gene is made. Since transcription

proceeds in the 3′ to 5′ direction (more details follow later), the mRNA

has opposite ‘polarity’, that is, the start of the gene is now at the 5′ end of

the mRNA (Figure 1.3(b)). Introns, or parts of the gene that do not code

for a protein, are removed, typically by the mRNA folding over itself

and forming loops that are cut off, leaving exons in the transcript. These

transcripts containing exons only can be further edited (Figure 1.3(c)) so

that alternative splice pathways for the same gene are formed, i.e. one

gene can give rise to many different transcripts.

Transcription

The transcription process consists of three stages: initiation, elongation

and termination. Regions of DNA which signal initiation are termed

promoters and lie ‘upstream’ of the start of the actual gene (Figure 1.4).

Initiation starts with molecules such as polymerase II enzymes finding

promoter regions upstream (towards the 3′ end of a strand) of a gene.

These regions consists of specific patterns of bases, known as the CAAT

box and TATA box. The start point of a gene is typically 25 bases down-

stream of the TATA box for eukaryotes. It is believed that there are two

regions of promoters. RNA polymerase II enzymes scan the helix looking

for these regions and, when found, bind tightly to the region further away

from the initiation point. The enzyme then binds to the second region

closer to the start point and opens up the helix while at the same time re-

leasing a factor which signals that mRNA should be formed. Elongation

is the process by which an mRNA copy of the genetic information is
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Figure 1.3 The process of transcription

actually made on the unravelled stretch of helix. Certain sequences may

cause a pause during this process. Termination is caused in one of two

ways. The first is a repeated sequence of bases that causes the mRNA to

fold over itself and therefore terminate the transcription process. Typi-

cally, a GC-rich (guanine followed by cytosine) sequence is sufficient to

terminate transcription. The second way is for a terminating factor to be

released.
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The process of transcription therefore results in a complementary

copy of the gene, but there is one complication. C (cytosine) in DNA

is transcribed as G (guanine), and G as C. However, while A (adenine) is

transcribed to T (thymine), T is not transcribed to A. Instead, for tran-

scription, a fifth base called uracil or uradine (U), which is functionally

identical to adenine (A), is used. Faithful complementary base copying is

used instead for another process, replication, whereby the entire genetic

material of a cell is copied for cell division and the production of a new

copy of the cell (cloning), such as when a new skin cell is required from an

existing skin cell. Transcription therefore differs from replication in that

transcription involves the use of a fifth base, uracil, which is the comple-

mentary base to adenine (A). U does not occur in replicated DNA, and

T does not occur in mRNA.

As previously mentioned, at each nucleotide position along the double-

stranded DNA molecule, the nucleotides are complementary. This is be-

cause, chemically, A forms two hydrogen bonds with T and C forms three

hydrogen bonds with G. There is, however, a peculiar relationship bet-

ween the directionality of DNA strands and the type of strand involved.

One of the strands holds the information that represents a gene. This

strand is called the template or antisense strand (containing anti-codons,

to be described below). The other strand is called, confusingly, the cod-

ing or sense strand. The ‘sense’ and ‘anti-sense’ strands represent the

two strands of the double helix (Figure 1.5). Transcription uses the anti-

sense, or template, strand. Note that in replication a faithful copy of the

sense strand produces the anti-sense strand with appropriate direction,

and vice versa. The sense strand can therefore be regarded as containing

‘DNA codons’ (to be described later), and the anti-sense strand ‘DNA

anti-codons’. DNA codons and anti-codons are not to be confused with

mRNA codons, which result from the transcription of the template strand

Copy A A T T G G C C T G C A T C C A A G G

T T A A C C G G A C G T A C G T T C C

3′ 5′

A A T T G G C C T G C A T C C A A G G

Sense
Coding strand/
DNA codons

5′ 3′

U U A A C C G G A C G U A G G U U C C

Anti-sense
Template/DNA 
anti-codons

3′ 5′

mRNA mRNA codons

Replication

Transcription

5′ 3′

Figure 1.5 The difference between replication and transcription
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and use U rather than T. There are therefore three ways that a gene can

be described: through the template or antisense strand, through the cod-

ing or sense strand, and through the mRNA that is transcribed from the

template or antisense strand.

Spliceosome and transcriptome

Just because a gene has been transcribed into mRNA does not mean

that the task of making a copy of a gene has finished. Genes contain

‘coding’ and ‘non-coding’ regions. These regions are different from the

‘junk DNA’ mentioned earlier, which refers to the DNA between genes

rather than within a gene. A coding region in a gene is that sequence

of nucleotides within a gene that is actually used for making a protein.

Even within a gene there are non-coding regions – nucleotide sequences

that are not used for making a protein. These non-coding regions have

to be removed from the mRNA, which is nothing but a faithful copy

of a gene from beginning to end, including non-coding regions. After

the mRNA has been ‘edited’ to remove introns, there is still another

process that is only recently being understood. The remaining exons in

the mRNA can themselves be ‘edited’ so that some exons are removed

(Figure 1.3(b)) or shuffled to form alternative ‘splice pathways’ (that is,

alternative ways that the remaining coding regions make up the final

mRNA, Figure 1.3(c)). The study of how mRNA is formed from genes

is called ‘transcriptomics’ and the total set of mRNA transcripts is called

the ‘transcriptome’. The transcriptome provides information as to which

genes are being transcribed and which are not, depending on the cell type

and various conditions experienced by the cell. The study of how mRNA

is edited after initial transcription is called ‘spliceosomics’ and the total

set of alternative splice pathways for all genes is called the ‘spliceosome’.

Recent advances in microarray technology have made transcriptomics

and spliceosomics possible, as will be seen later.

There is growing interest in those regions of DNA within a gene which

indicate exon/intron boundaries to try to understand the transcriptome in

more detail. Introns, for eukaryotes including humans, average in length

from about 200 to 400 nucleotides, but this figure can vary greatly (from

50 to about 30 000). Some of the longer introns may contain other genes,

each with their own introns. Analysis of exon/intron boundaries reveals,

with very few exceptions, a GT/AG rule, whereby the occurrence of GT

towards the 5′ end of a DNA sequence indicates the start of an intron

and the occurrence of AG towards the 3′ end indicates the end of the
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intron. It appears that internal splicing mechanisms recognize the mRNA

counterparts to these duplets and remove the intervening sequence from

the transcribed mRNA (called ‘pre-mRNA’). Interest is also growing in

alternative splicing models that capture alternative pathways for the re-

moval of introns. Any DNA segment can therefore be an exon or an

intron, depending on whether it is retained or removed during process-

ing of pre-mRNA. Once all editing has taken place, the result is ‘mature

mRNA’ which is ready for translation into a polypeptide chain.

Translation and the proteome

The mature mRNA leaves the nucleus and is transported to ribosomes,

where translation into proteins takes place with the help of transfer RNA

(tRNA). The nucleotides of the mRNA enter the ribosome sequentially

from beginning to end and form groups of three bases, called codons

(Figure 1.6). When a codon enters the ribosome, free-floating tRNA

molecules consisting of a matching element and an amino acid attempt

‘Spent’ tRNA

mRNA grouped
into three bases 
at a time (codon)

Free-floating
tRNA

Codons broken
up for reuse of
mRNA bases

Ribosome

Growing polypeptide
chain (protein)

Protein folds into
complex structure

tRNA

tRNA match
against codons

Amino
acid

Figure 1.6 The process of translation at a ribosome
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to match the codon against their matching element. If a match is made,

the attached amino acid is released from the tRNA and added to the

amino acid sequence (polypeptide chain) that is being formed from earlier

matches against the mRNA that has entered the ribosome. For instance,

the mRNA triplet GCU (guanine–cytosine–uracil), which is an mRNA

transcription of the DNA triplet CGA (cytosine–guanine–adenine), is

mapped by a tRNA molecule onto the amino acid alanine.

The spent mRNA can be reused in the nucleus for the formation of

new mRNA. The spent tRNA can be reused if another amino acid is

attached to the matching element. At initiation the ribosome recognizes

the starting point in a segment of mRNA and binds a molecule of tRNA

bearing a single amino acid. In elongation, a second amino acid is linked

to the first, the ribosome shifts position on the mRNA molecule, and the

elongation cycle is repeated. When a stop codon is reached, the chain of

amino acids folds spontaneously to form a protein.

The start of gene translation is signalled by a specific sequence, AUG

(methionine), and translated proteins will nearly always start with M.

However, if there is a jump in transcription and a base is skipped over,

a shift in the ‘reading frame’ results, leading to different codons and a

different sequence of amino acids for the same sequence of DNA. While

such shifts will mostly result from errors in transcription, it is possible

that such jumps are also part of normal transcription, resulting in a gene

producing up to three different transcripts of a coding region depending

on whether it jumps over no bases, one base or two bases at the start of

the transcription process.

There are 64 different combinations of mRNA nucleotides in codons:

four ways to form the first base times four ways to form the second base

times four ways to form the third base. Although there are 64 different

codons, there are only 20 amino acids used by the human body and

the vast majority of organisms on this planet. The translation of codons

into amino acids by 64 different tRNA molecules, each with their own

matching element, is determined by the ‘genetic code’ (Table 1.1). Many

scientists believe that the best evidence that all life on Earth evolved from

a common ancestor three billion years or so ago comes from the fact that

the genetic code is universal for nearly all life on Earth. The amino acid

names and commonly accepted ways to abbreviate them are given in

Table 1.2. A typical gene sequence and its protein product are given in

Table 1.3.

Once the full protein sequence consisting of amino acids linked to-

gether by tRNA and synthesized by ribosomes is formed, it goes through
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Table 1.1 The mRNA genetic code: 61 mRNA codons stand for one of the 20
amino acids; the remaining three – ATT, ATC and ACT in DNA form, UAA, UAG
and UGA in mRNA form (above) – are used for ‘punctuation’ and tell the tRNA to
stop translation (i.e. the end of the gene has been reached). Only small variations to
this genetic code exist in a few microbes, and the genetic code applies to all nuclear
genes, i.e. genes which are enveloped in a nucleus within a cell, as opposed to DNA
which is free-floating within the cell. The genetic code can also be expressed in DNA
terms (e.g. TTT for Phe, etc.).

Second base

First base U C A G Third base

U UUU Phe UCU Ser UAU Tyr UGU Cys U
UUC Phe UCC Ser UAC Tyr UGC Cys C
UUA Leu UCA Ser UAA Stop UGA Stop A
UUG Leu UCG Ser UAG Stop UGG Trp G

C CUU Leu CCU Pro CAU His CGU Arg U
CUC Leu CCC Pro CAC His CGC Arg C
CUA Leu CCA Pro CAA Gln CGA Arg A
CUG Leu CCG Pro CAG Gln CGG Arg G

A AUU Ile ACU Thr AAU Asn AGU Ser U
AUC Ile ACC Thr AAC Asn AGC Ser C
AUA Ile ACA Thr AAA Lys AGA Arg A
AUG Met ACG Thr AAG Lys AGG Arg G

G GUU Val GCU Ala GAU Asp GGU Gly U
GUC Val GCC Ala GAC Asp GGC Gly C
GUA Val GCA Ala GAA Glu GGA Gly A
GUG Val GCG Ala GAG Glu GGG Gly G

a post-translational process whereby it first folds into a complex three-

dimensional structure in the Endoplasmic Reticulum and then enters the

Golgi apparatus for further modification, such as the addition of sugar

molecules and other markers that help the protein find its localization

(that is, where in the cell or in other cells it should go). Only after these

post-translational modifications is the protein functional. The collection

of all proteins produced in a cell, in tissue, organ or organism is called

the proteome, and the study of proteins is proteomics.

Summary of transcription and translation

To summarize, collisions between RNA polymerase (an enzyme which is

a large protein that helps make and break bonds) and the DNA lead to

the RNA polymerase running into certain initiation and start sequences

of genes and latching onto them.
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Table 1.2 The 20 amino acids and their commonly used abbreviations; each amino
acid has a single letter as well as a three-letter abbreviation (Table 1.1).

Full name Single-letter abbreviation Three-letter abbreviation

Glycine G GLY Gly
Alanine A ALA Ala
Valine V VAL Val
Leucine L LEU Leu
Isoleucine I ILE Ile
Phenylalanine F PHE Phe
Proline P PRO Pro
Serine S SER Ser
Threonine T THR Thr
Cysteine C CYS Cys
Methionine M MET Met
Tryptophan W TRP Trp
Tyrosine T TYR Tyr
Asparagine N ASN Asn
Glutamine Q GLN Gln
Aspartic acid D ASP Asp
Glutamic acid E GLU Glu
Lysine K LYS Lys
Arginine R ARG Arg
Histidine H HIS His

The RNA polymerase then unravels the appropriate part of the DNA

double helix. Free-floating bases in the nucleus attach themselves to the

revealed DNA bases on the template strand, forming a complementary

sequence which becomes the messenger RNA. The double helix is re-

formed as transcription continues along the unravelled DNA molecule.

When a terminating sequence of bases is found in the DNA, the resulting

messenger RNA, after editing to remove introns and to form alternative

spliced forms, is dispatched to the ribosomes, where combinations of

three bases at a time in the messenger RNA are used by tRNA to pro-

duce one of 20 different amino acids. Sequences of these amino acids

(varying in length from a few hundred to a few thousand) are called

polypeptide chains, which are folded in the Endoplasmic Reticulum

and packaged in the Golgi apparatus and then (i) secreted from the cell

as enzymes and proteins for use by other cells in the organism, or (ii)

used by the cell for its own purposes (as, for example, with single cell

organisms). These polypeptide chains are therefore the final represen-

tation, or product, of the sequence of bases unravelled in the DNA

molecule.
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Table 1.3 An example of a gene and its amino acid translation, taken from
http://www.ncbi.nlm.nih.gov/entrez. The mRNA sequence is given in (a) and con-
sists of 729 bases. The name of the gene is given by the ‘Locus’ field in (c), with its
definition below. A unique accession number for the gene is also provided (Z22865).
The source of the gene is provided in terms of discoverers and authors. The ‘CDS’
values indicate that only bases 13 to 618 result in translation after editing. Hence,
translation starts with the ‘aug’ sequence at positions 13, 14 and 15 in (a). This
codon is mapped to methionine (M) in (b) (see Table 1.1). The next codon ‘gac’ is
translated to aspartic acid (D), and so on. The final codon (positions 616, 617 and
618) is ‘uag’, which stands for ‘stop’. Hence the final translated codon is in positions
613, 614 and 615 (guu), which is valine (V)

(a)
1 gaauucggga gcauggaccu cagucuucuc uggguacuua ugccccuagu caccauggcc

61 uggggccagu auggcgauua uggauaccca uaccagcagu aucaugacua cagcgaugau
121 ggguggguga auuugaaucg gcaaggcuuc agcuaccagu guccccaggg gcaggugaua
181 guggccguga ggagcaucuu caguaagaag gaagguucug acagacaaug gaacuacgcc
241 ugcaugccca cgccacagag ccucggggaa cccacggagu gcugguggga ggagaucaac
301 agggcuggca uggaauggua ccagacgugc uccaacaaug ggcugguggc aggauuccag
361 agccgcuacu ucgagucagu gcuggaucgg gaguggcagu uuuacuguug ucgcuacagc
421 aagaggugcc cauauuccug cuggcuaaca acagaauauc caggucacua uggugaggaa
481 auggacauga uuuccuacaa uuaugauuac uauauccgag gagcaacaac cacuuucucu
541 gcaguggaaa gggaucgcca guggaaguuc auaaugugcc ggaugacuga auacgacugu
601 gaauuugcaa auguuuagau uugccacaua ccaaaucugg gugaaaggaa aggggcccuc
661 cagcuuucca cugcagagaa agugguuguu gcuccucggu auauguaauc auaauuguag
721 aucgaauuc

(b)
MDLSLLWVLMPLVTMAWGQYGDYGYPYQQYHDYSDDGWVNLNRQGFSY
QCPQGQVIVAVRSIFSKKEGSDRQWNYACMPTPQSLGEPTECWWEEINRAGM
EWYQTCSNNGLVAGFQSRYFESVLDREWQFYCCRYSKRCPYSCWLTTEYPGH
YGEEMDMISYNYDYYIRGATTTFSAVERDRQWKFIMCRMTEYDCEFANV

(c)
LOCUS HSDERMATA 729 bp
DEFINITION H.sapiens dermatopontin mRNA, complete CDS
ACCESSION Z22865
KEYWORDS dermatopontin; proteoglycan-binding cell-adhesion protein
REFERENCE 1 (bases 1 to 729)
AUTHORS Superti-Furga, A., Rocchi, M., Schafer, B.W. and Gitzelmann, R.
TITLE Complementary DNA sequence and chromosomal mapping of a

human proteoglycan-binding cell-adhesion protein
(dermatopontin)

JOURNAL Genomics 17 (2), 463–467 (1993)
CDS 13....618
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1.5 Current knowledge and the
'central dogma'

What has been described so far is the ‘central dogma’ in biology: that one

gene by and large produces one mRNA that by and large produces one

protein. More specifically, the central dogma consists of six ‘axioms’.

1 DNA replicates its information in a process that involves many repli-

cation enzymes.

2 DNA codes for the production of messenger RNA (mRNA) during

transcription.

3 In eukaryotic cells, the mRNA is processed (essentially by splicing)

and migrates from the nucleus to the cytoplasm.

4 mRNA carries coded information to ribosomes, where protein is syn-

thesized using the mRNA during translation.

5 Proteins do not code for the production of proteins, RNA or DNA.

6 Proteins are involved in almost all biological activities, structural or

enzymatic.

In fact, transcription and translation are even more complicated than

previously described. Some gene products are not translated at all but

function in their RNA form after transcription. For instance, genes that

code for tRNA and ribosomes cannot be translated. If they could, they

would depend on tRNA and ribosomes for the translation! Instead, af-

ter transcription these RNA molecules exit the nucleus and perform their

roles in the translation of normally transcribed and translated genes. This

has led to the identification of several different types of RNA, the most

common of which are messenger RNA (mRNA), transfer RNA (tRNA),

ribosomal RNA (rRNA) for the building of the ribosomes, and small

nuclear RNA (snRNA) that help edit the mRNA. mRNA is the primary

messenger synthesized from a gene segment of DNA and carrying the

code into the cytoplasm where protein synthesis occurs. rRNA (ribo-

somal) in the cytoplasm and protein combine to form a nucleoprotein

(ribosome) that serves as the translation site and carries the enzymes

necessary for protein synthesis. Several ribosomes may be attached to a
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single mRNA at any time. tRNA (transfer) contains about 75 nucleotides,

three of which form a tRNA anticodon, and one amino acid. The tRNA

reads the code and carries the amino acid to be incorporated into the

developing protein.

Also, there is growing evidence that, for many genes, there are many

more ‘splice variants’ than previously believed, where different combi-

nations of introns and exons exist. It is not a simple matter of introns

being removed and the remaining exons being sent sequentially to the

ribosomes. One gene can produce many different types of polypeptide

chain depending on how many introns are removed and how the ex-

ons are shuffled or differently spliced. This means that, while the human

genome may consist of only 30 000 genes, the genes may produce many

more proteins. It is not currently clear what the relationship between

gene and protein is in humans, or how many human genes can be alter-

natively spliced, but estimates vary from between 1:10 to 1:100 for the

gene: protein ratio and from 60 per cent up to 75 per cent of human

genes having alternative splice variants. That is, although humans have

only 30 000 genes, these may well produce anything between 200 000

and two million proteins through alternative splicing. Interest in splice

variants has led to the conjecture that, in addition to the genome (total

set of DNA and genes) and proteome (total set of proteins), it is in the

spliceosome (total set of alternative splice variants for a particular gene)

that the real answers will be found as to how genes are mapped onto

proteins and how many proteins are actually capable of being made.

DNA polymerase which replicates chromosomes is so accurate that

there is only one error in every 107 nucleotide pairs. A DNA mismatch

repair system also operates to correct nearly all of these errors, increas-

ing the overall accuracy to one error in 109 nucleotides copied. While

thousands of random chemical changes are created every day in human

DNA, the vast majority are eliminated by DNA repair. For instance, some

varieties of yeast have about 50 genes devoted to gene repair. It is not

known how many human genes are devoted to gene repair.

The Mendelian concept of dominant and recessive genes can be given

precise biomolecular accounts in terms of genes which express their

effects via proteins even in the presence of a different gene for the same

trait (‘dominant’) and genes which do not produce an observable effect

via proteins when paired with a dominant gene (‘recessive’). When a new

diploid cell is formed, complete copies of all the chromosomes must be

made through DNA replication. The two copies of a chromosome pair

have the same genes but may have different versions (alleles) of these

genes with distinct DNA sequences. So, for instance, if there is a single
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gene for the colour of hair, it will have many forms, each coding for a

certain hair colour. There will be two such genes – one inherited from

the father and the other from the mother. One may be dominant and

the other recessive, in which case hair will be produced of similar colour

to one of the parents, or both could be dominant or recessive, in which

case hair will be produced that is the ‘average’ between the parents’ hair

colour. It is also possible that one allele could be dominant for a certain

period, and then be suppressed by the other allele for other periods.

1.6 Why proteins are important

So, what happens to the enzymes/proteins produced by ribosomes, the

Endoplasmic Reticulum and the Golgi apparatus? As mentioned earlier,

proteins carry out many vital functions in living organisms. As structural

molecules, they provide much of the cytoskeletal framework of cells and

also help cells form tissue. Proteins also carry signals from one part of

the body to another, or from one cell to another. Proteins can also act as

a transport system, carrying molecules such as oxygen in the circulatory

system so that all cells can have access to this important element. The

human immune system is also dependent on proteins for detecting the

arrival of pathogens as they enter the human system and for helping to

mount an effective immune system defence. As enzymes proteins act as

biological catalysts that speed up the rate of cellular reactions. The chem-

ical composition of one cell could be placed in a test tube and observed.

After some time, some chemical reactions naturally occurring in the test

tube might be noted. There will be a long delay because the activation

energy required to start a chemical reaction acts like an energy barrier

over which the molecules must be raised for a reaction to take place. An

enzyme effectively lowers the activation energy required for a reaction to

proceed. An enzyme locks onto a molecule, starts a reaction, and then is

released unchanged. The rate of enzyme combination and release is called

the turnover rate and is about 1000 times a second for most enzymes,

with variation between 100 per s and 10 million per s. The increase in

reaction rate achieved by enzymes ranges from a minimum of about a

million to as much as a trillion times faster than an uncatalysed reaction

at equivalent concentrations and temperatures.

However, enzymes cannot work unless they have folded in the right

way. That is, it is the structure of the enzyme that determines what it does

and whether it does it. If enzymes do not fold in the right way, they cannot

carry out their enzymatic activity, because they will not be able to lock
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on to their target molecules (which also have complex three-dimensional

structures) to start the appropriate reaction. The study of protein folding

and protein structure is a key element in understanding what proteins

do. However, what is actually observed in organisms are already-folded

proteins. Trying to ‘straighten’ a protein so that the sequence of amino

acids is revealed is a major problem in proteomics. The number of well-

understood, sequenced and structured proteins is small compared with

the total number of proteins that exist. Also, as will be seen later, trying

to determine the structure of a protein from its DNA, mRNA or even

amino acid sequence is much more complex than it appears. There is

therefore a growing mismatch between understanding genes and mRNA

(which is growing rapidly) and their resulting proteins (which is growing

much more slowly). However, genes and mRNA do not carry out the

crucial work required in a cell or organism – proteins do. A key question

for bioinformatics is whether this growing gap between knowledge of

genes and knowledge of proteins can somehow be bridged by the use of

computers.

From this it can be seen that the process of enzyme/protein production,

as determined by DNA, is absolutely critical to the continued well-being

of an organism, otherwise organisms as chemical beings would not pro-

duce chemical reactions fast enough to keep then alive (e.g. respiration,

digestion). Enzymes degrade eventually after catalysing many reactions,

and they are broken down into their constituent parts by other enzymes

(the ‘degradome’) for reuse by the organism.

What life now means, according to biomolecular science, is the set

of genes (DNA) which code for the production of appropriate enzymes

which increase the rate of chemical reactions in cells, where the nature

and rate of reactions are determined by the nature of the enzymes. Or-

ganisms of a particular species are all essentially the same chemically;

what differs are the enzymes produced by the DNA inherited by their

parents and other factors (e.g. mutation of individual bases and genes

by random means). These enzymes control cellular processes differently

for different members of the species, thereby leading to different physical

characteristics.

1.7 Gene and cell regulation

It is necessary to assume that there is some ‘control’ mechanism that

regulates gene transcription (into mRNA) and mRNA translation (into

polypeptide chains). If transcription and translation were only dependent
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on random collisions thousands, if not millions, of times per s deep within

the nucleus (transcription) and at ribosomes (translation), there would

be no cell differentiation, since each cell would transcribe and translate

its full complement of DNA. Yet, there are many different types of cell

producing different types of protein from different subsets of their genes.

Cells of the same type form tissue, and tissues form organs, resulting in an

organism where it is the differences in cell type which give the organism

its shape and structure. If all cells transcribed their full complement of

DNA, organisms would be shapeless and lack structure.

Transcriptional regulation helps to determine which parts of a genome

are active in a nucleus (i.e. can be copied into mRNA) and which are de-

activated. Translational regulation determines the rate at which mRNAs

copied from active genes are used by ribosomes in protein synthesis.

Genes coding for mRNA are much longer than their corresponding

mRNA, consisting of a flanking region upstream of the first nucleotide

to be copied. This flanking region consists of a promoter and an en-

hancer. The promoter itself consists of two parts: basal and upstream.

The basal promoter provides recognition and binding sites for the RNA

polymerase II (pol II, or RNAP II) and is located about 40 base pairs (bps)

from the start of the gene. The basal promoter attracts a large number

of other proteins to it called transcription factors, the function of which

is to initiate accurate transcription of the gene. The basal promoter typ-

ically contains a sequence of seven bases (TATAAAA, the ‘TATA box’

see Figure 1.4). Upstream promoters serve to activate or repress tran-

scription, and once the basal promoter is occupied, several other pro-

teins attach themselves to the basal promoter or upstream stretches of

DNA to modulate the rate of transcription, including repressing the gene

altogether.

Although the precise details are not yet fully understood, it appears

that promoters and enhancers form a DNA sequence, called a cis element,

which is recognized by a regulatory protein, called a trans element. Sev-

eral genes may have the same cis element which is recognized by the same

trans element, which can both increase and decrease the rate of initiation,

typically a thousandfold. Many eukaryotic genes are controlled in groups

or networks, whereby a trans element (regulatory protein) increases or

decreases the rate of initiation of a number of genes, one or more of

which in turn code for other trans elements (regulatory proteins) which

control the rate of initiation of still other genes.

Regulatory proteins are themselves the result of prior transcription

and translation of other parts of the DNA. Interestingly, if each gene had

its own unique cis element, then there would be as many trans elements
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as genes. The question of where these trans elements come from would

in turn require still other genes, which require their own trans elements,

ad infinitum. This still leaves the question of where the first trans element

comes from. One approach is to focus on the ability of a gene, because of

its biomolecular structure and content, to self-transcribe without the need

for transcription mechanisms such as polymerase and promoters. An-

other approach is to hypothesize that, at the moment of fertilization, the

cell contains not just genetic information but also some basic transcrip-

tion mechanisms and other elements (perhaps in the nucleolus – a subpart

of the nucleus) to bootstrap the process of transcription and translation.

1.8 When cell regulation goes wrong

In addition to gene regulation, there is also cell regulation. Cells are pro-

grammed to divide and make copies of themselves at certain times, de-

pending on the type of cell. The process of mitotic cell division consists of

several phases, including chromosome replication and the division of the

cell into two daughter cells. For instance, skin cells, white blood cells and

stomach cells have to be replaced frequently (every few days), whereas

nerve cells and muscle cells have much longer lifespans. It is estimated

that normal cells can divide between 40 and 70 times. The limit for cell

division is reached when the chromosomes in a cell, which are ‘short-

ened’ each time they replicate, are too short for further replication. This

shortening occurs because the molecules responsible for chromosome

replication start a little way in from the ends of chromosomes (telomeres)

for each replication. At some stage the telomeres no longer protect the

DNA on chromosomes, and replication is no longer possible without the

formation of incomplete chromosomes. Malformed daughter cells then

result which can no longer function as replacements. Normal cell divi-

sion is also required for growth from child to mature adult, and repair if

tissue is damaged. The human body experiences a constant turnover of

cells as some die and others reproduce and replace them. However, the

process of orderly reproduction of cells can go wrong, and this can lead

to one of over 100 diseases generically called cancer.

The current model of cancer is as follows. DNA in cells can be mutated

as a result of exposure to the environment (e.g. radiation), carcinogens

(biological or chemical substances that are believed to cause cancer) and

some pathogens (Hepatitus B and C viruses cause a significant number of

liver cancers). Mostly such mutations are in non-coding sections of a cell’s

DNA or genes that do not affect cell replication. However, sometimes
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these mutations affect genes that are critical for the timing of cell division

(proto-oncogenes), which then become oncogenes that instruct a cell to

divide repeatedly without control. Usually, the cell has other genes for

countering such mutations, but if these other genes are also affected then

the cell forms a tumour (a mass of cells) that continues to grow. Somehow

cancer cells achieve ‘immortality’ in that telomere reduction with each

replication does not appear to affect the ability of the tumour to grow.

Many tumours are benign or non-malignant in that they do not pose a

danger, as long as there is room for growth of the tumour; but if the

tumour blocks the normal functioning of other cells, or if the tumour

metastatizes (cancerous cells can move from part of the body to another

if they enter the circulatory system) and starts developing in other parts

of the body so that they become life-threatening, the tumour becomes

malignant. For instance, melanoma is a cancer of pigmented skin cells

which is usually benign, but if melanoma cells enter the bloodstream

they can be transported to the liver and brain, where they can present a

real danger by blocking the development of normal cells in surrounding

tissue.

1.9 So, what is bioinformatics?

There are many ways in which computer science can help in molecular

biology research. Here are just a few, to give an idea of how computers

can be useful in biology.

1 The use of computer technology for storing DNA sequence infor-

mation and constructing the correct DNA sequences from fragments

identified by restriction enzymes (enzymes which break up the DNA

at certain points) was one of the first applications, arising from the

Human Genome Project and other projects dealing with sequencing

the DNA of various organisms. While the DNA in a set of 23 chromo-

somes for a human is about 3.5 Gigabytes, the H. influenzae genome

is only 1.9 Mbs, E. coli about 4.6 Mbs, and C.elegans about 97 Mbs.

Various projects are already underway to sequence the genomes of

chicken and buffalo, and these projects, as well as several others, will

lead to huge data storage and access requirements.

2 Once genome sequences are stored and accessed, there is a need for

comparative genome analysis across databases so that the organiza-

tion and evolution of genomes can be studied. Such analyses may
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uncover relationships between model organisms, crops, domestic an-

imals and humans. Visualization tools and techniques are required to

conduct these analyses.

3 Large databases need to be structured and organized using a common

‘ontology’, or set of terms which are related structurally to each other,

so that researchers can access data from different databases using the

same ‘query language’. The Gene Ontology Consortium has produced

controlled vocabularies for describing genes and proteins which, it is

hoped, will be used by all bioinformaticians so that a common way

of referring to genes and their products emerges.

4 Many areas of biology rely on images for communicating their re-

sults. Tools and techniques are required for searching, describing,

manipulating and analysing for features within these images.

5 Once databases of genomes are created, there is a need for maintain-

ing these databases and for checking that their contents are error-free

and valid as researchers add new information. Anomalies must be

identified and actions taken to ensure that the databases are as con-

sistent as possible.

6 Protein sequences are being added to protein databases, and while

these are not growing as quickly as genomic databases, there is

a need to store protein sequences and their structure as well as

their function. Even if a common vocabulary for describing pro-

teins is accepted, there is a major need to link protein sequences

with their DNA source sequences, given the problems of introns

and non-coding DNA. There is also a need for tools that can pre-

dict the structure of a protein from its sequence of amino acids

(Chapter 2).

1.10 Summary of chapter

1 Genes in DNA are made up of sequences of four bases and are tran-

scribed into messenger RNA transcripts. It is currently not known

how many transcripts can be formed from each human gene, and

therefore it is currently not known how many products there are for

any specific human gene.
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2 One gene on one strand of the double-helix (the template) is used to

make the transcript. Genes are transcribed from the 3′ to 5′ end, and

so the mRNA is synthesized from the 5′ to 3′ end.

3 mRNA is complementary to the source or template strand, except

that T in DNA is replaced by U in the mRNA. When DNA replicates

to make a complete copy of itself for cell division, normal comple-

mentary base copying occurs.

4 Genes code not only for structural and enzymatic proteins but also

for products that can affect the rate at which genes are transcribed.

Various transcription factors determine which genes are transcribed

in a particular cell.

5 Various transcription factors bind to upstream promoter regions of

genes and regulate the rate of transcription and whether a gene should

be transcribed.

6 mRNA transcripts are themselves edited to form alternative splice

variants, whereby exons coding for proteins survive and introns that

are not meant for translation to protein are removed.
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2
Introduction to Problems and
Challenges in Bioinformatics

2.1 Introduction

Chapter 1 provided an overview of the basics of molecular biology of

relevance to bioinformaticians and also introduced some of the initial

problems faced by researchers in the area. This chapter examines current

and future challenges in bioinformatics. The problem areas and chal-

lenges are presented according to the field of molecular biology in which

they occur: the genome, the transcriptome and the proteome. Also, the

recently expanding area of gene silencing and interference technology

will be covered.

2.2 Genome

Sequence analysis

Some of the earliest problems in genomics concerned how to measure

similarity of DNA and protein sequences, either within a genome, or

across the genomes of different individuals, or across the genomes of dif-

ferent species. DNA and proteins can be similar in terms of their function,

their structure or their linear sequence of nucleotides or amino acids. The

fundamental assumption for DNA is that two DNA sequences that are

similar probably share the same function, even if they occur in different

parts of the genome or across two or more genomes. The fundamental

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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assumption for proteins is that linear sequence determines shape which,

in turn, determines function. This is because the shape of a protein, and in

particular of enzymes, determines which other molecules these proteins

can lock on to and affect.

Consider the two DNA strings of equal length: ACGTACGT and AC-

CTAGGT. How similar are they? One way to deal with this problem is

to place them one on top of the other:

A C G T A C G T

A C C T A G G T

A count is made column by column to identify the number of mismatches

per position, which in the above case is two. This is the Hamming dis-

tance, which is the simplest measure of similarity available. The two

strings ACGTACGT and CCCTCCCT would have a Hamming distance

of four, and the two strings ACCTAGGT and CCCTCCCT would also

have a Hamming distance of four. The two strings ACGTACGT and AC-

CTAGGT therefore are more similar to each other (Hamming distance

of two) than CCCTCCCT is to either of them (Hamming distance of

four). The problem is, what happens if strings are of unequal length?

Consider ACGTACGT and AGTACGT. If these strands are lined up:

A C G T A C G T

A G T A C G T

the result is a Hamming distance of seven (assuming that the last base of

the first string cannot be matched to a blank). Yet, if a blank is inserted

in the second string:

A C G T A C G T

A - G T A C G T

the Hamming distance is one, i.e. the strings are very similar.

Now imagine that, instead of just eight bases in a DNA sequence there

are hundreds and possibly thousands of bases (for example, if a whole

gene is compared against other genes). Gene sequences are extremely

unlikely to be of equal length, and methods must be found for inserting

blanks at appropriate locations in the shorter string and stretching it

out to optimize the number of matches. Shorter strings may result when

the DNA replication machinery goes wrong and bases are skipped over.
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Equally, some bases may need to be deleted. Consider the following three

strings:

A C G T A C G T

A G T A C G T

A G G A C G T

One possibility is to insert blanks into the second and third strings at po-

sition two (two insertions) to line up the three strings. Another possibility

is to delete the second base of the first string (one deletion):

A G T A C G T

A G T A C G T

A G G A C G T

Since one deletion may be preferable to two insertions this may be the

preferred strategy, but now consider what would happen if the first two

strings were matched without any knowledge of the third string. The

strategy might well have been to insert a blank into position two of the

second string to optimize similarity. However, when the third string is

entered, it is now discovered that it would have been preferable to delete

the second base of the first string rather than insert a blank into the third

string. Backtracking may be required to undo the insertion of the blank

into the second string, but backtracking will only work if there is stored

information as to what was done earlier so that it can be undone. For

long strings and for matching many strings, the memory requirements

can quickly become large.

The above problem is easy with just a handful of strings and small

numbers of bases, but already the problem with long and large numbers

of sequences is apparent. There can be pairwise comparison of strings,

where changes are made to earlier decisions as new strings are entered,

or there can be multiple comparison of all strings at once and matches

can be optimized for specific positions across all sequences. Also, there

can be local alignment (finding alignments between parts of two or more

sequences) and global alignment (finding an alignment for sequences in

their entirety). There are now a number of publicly available tools on the

web for undertaking alignments.1,2

The requirement for a minimal number of changes arises from the prin-

ciple that, when identifying similarity between strings, as few alterations

1 See, for example, http://www.ncbi.nlm.nih.gov/Education/ for a tutorial on Blast.
2 See, for example, http://www.ebi.ac.uk/fasta33 for Fasta.
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as possible should be made to the original strings so that optimal simi-

larity measures are returned. This is the unit cost model, also known as

the Levenshtein Distance, which states that the cost of an alignment of

two sequences s1 and s2 is the sum of the costs of all the ‘edit’ operations

required to match the two sequences, and that an optimal alignment of

s1 and s2 is an alignment that has minimal cost among all the possible

ways that they can be aligned. Extensions to the unit cost model include

substitution matrices that provide variable costs for insertion, deletion

and replacement of bases and amino acids, realistic gap models that pre-

vent deletions and insertions in critical subsequences (such as strongly

conserved subunits in protein sequences involved in protein–protein in-

teraction, where any edit in these subsequences may destroy the desired

biochemical function) and the use of an extended genetic alphabet that

represents possible ambiguities in the data. The most common symbols

used in an extended genetic alphabet are: R for G or A (PuRine), Y for

T or C (PYramidine) and N (ANy).

A related problem here is how to find a common substring for all

strings or sequences. This is known as the ‘superstring’ problem, where

the common substring is the shortest sequence of characters shared by all

sequences. This problem is, in computational terms, intractable, in that

there is no known algorithm that will work in reasonable time to find

such a superstring as the number of sequences and their length increase.

Phylogeny

Many algorithms now exist for sequence alignment, including Dynamic

Programming (for both pairwise and multiple alignment) and the Carillo–

Lipman method for optimal multiple alignment. The purpose of align-

ment is to learn about the phylogenetic and evolutionary relationships

between genes with a similar function. For instance, a large number of

sequences can be retrieved from a number of different genome or protein

databases using a specific subsequence. Each database may store infor-

mation on one or more organisms. The research task is then to discover

the evolutionary relationships between these sequences and therefore the

organisms on the assumption that evolution can be described as ‘descent

with modification’. That is, inherited similarities and differences between

organisms provide the basic information needed to hypothesize evolu-

tionary relationships between these organisms, where these similarities

and differences are expressed in DNA sequences, amino acid sequences

or phenotypic characteristics. The principle of parsimony in phylogeny
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essentially states that derived similarities between sequences can be as-

sumed to be caused by common ancestry and that inferences concerning

these similarities should be kept as simple as possible.

Phylogeny and classification are important areas of biology, since they

deal with the identification, naming and grouping of organisms based

on shared similarities. Linnaeus introduced the ‘binomial’ classification

system in the 18th century consisting of two Latin names, where the

first name (always starting with a capital letter) denotes the genus and

the second (always starting with a lower case) the species (as in Homo

sapiens). While only two layers of taxonomy existed in Linnaeus’ day, it is

currently widely accepted that there are seven layers: Kingdom, Phylum,

Class, Order, Family, Genus, species. The task of current phylogeny is

to locate all organisms in a comprehensive classification scheme that

reflects their evolution from a common ancestor believed to have come

into existence about two and a half to three billion years ago on this

planet.

To give an idea of the computational cost involved in such a com-

prehensive classification, imagine that all organisms have just five genes,

each of which can take any number of alleles. Gene sequences can be

compared base by base, as previously described, to identify similarities

and differences between genes. Imagine also initially that there are just

four organisms, each of which takes 1 s to compare with another organ-

ism across all five genes. To construct a set of similarity scores for these

four organisms takes 6 s (3 s to compare organism 1 with organisms 2,

3 and 4; 2 s to compare organism 2 with 3 and 4; and 1 s to compare

organism 3 with 4). If there are 10 organisms, the time taken is 9 +

8 + . . . 1 = 45 s. That is, to calculate similarity scores for n organisms

takes (n − 1)∗(n/2) s. The cost for 100 organisms is therefore 99*50 s =

4950 s, or 1 h 22.5 min. Note that the time taken for 100 organisms

is not the same as 25 times the cost for four organisms. It is estimated

that there are between 12 and 15 million existing organisms/species on

this planet, with some claims that 99 per cent of species are extinct. To

calculate similarity scores for 10 million existing species, given previous

assumptions, would take 9 999 999∗5 000 000 s, i.e. over one and a half

million years. If this represents just 1 per cent of all species, it will take us

over 150 million years to calculate similarities for all organisms that have

ever existed. If it is argued that 1 s per comparison is far too long, given

just four genes, it can be counter-argued that organisms contain more

than just four genes, so even this figure will need amending upwards.

Even if it is possible to calculate the similarities in a realistic amount of

time, there is another problem which is the construction of the resulting
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Table 2.1 A table of information indicating shared gene ‘val-
ues’ across four organisms. The gene values are assumed to be
binary phenotypic values for the sake of exposition although
in real life gene values can be expected to be much more com-
plex, such as long strings of DNA, amino acids or multivalued
phenotypes. ‘0’ stands for ‘ground state’ and ‘1’ for ‘advanced
state’.

Gene 1 Gene 2 Gene 3 Gene 4

Organism A 0 0 0 0
Organism B 1 0 0 0
Organism C 1 1 0 1
Organism D 1 0 1 1

phylogenetic tree (a tree diagram that displays evolutionary relationships

among a number of organisms or species).

Consider Table 2.1 and the four organisms with the four genes that

they share. For the sake of simplicity, assume that each gene has only two

phenotypic values, 0 and 1. The task here, however, is to demonstrate

the complexity involved in generating phylogenetic trees for even this

simple dataset.

The values for genes differ between different organisms through a

variety of mechanisms. Mutations (that is, value differences) can occur

through substitution (one nucleotide miscopied as another), insertions

(new bases are added) and deletions (some bases are deleted altogether),

resulting in different gene values, as in Table 2.1. The question arises as

to whether, given the information in Table 2.1, any overall conclusions

can be drawn as to how these organisms are related in evolutionary terms

to each other.

There are two general methods for deriving trees from such tables.

The first, called Hennig Argumentation, considers the information pro-

vided by each gene one at a time (i.e. it works column by column). The

information in Gene 1 (advanced state value 1) unites B, C and D (Fig-

ure 2.1(a)), the information in Gene 2 (advanced state value 1) is peculear

to C (Figure 2.1(b)), the information in Gene 3 (advanced state value 1)

is peculear to D (Figure 2.1(c)), and finally the information in Gene 4

(advanced state 1) is shared between C and D (Figure 2.1(d)). A tree is

obtained that evolves as the information is included column by column.

One interpretation of the tree is that all four organisms shared an

ancestor in the past (first split in the tree), but that B, C and D split from

A through the sharing of a specific value for Gene 1 (common ancestor

for B, C and D), that C and D split from B through the sharing of a
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(a)

A B C D

A B C D

1

(b)

A B C D
2

1

(c)

1

3
2

(d)

A B C D

1
4

2 3

Figure 2.1 Hennig Argumentation considers the information provided by each gene
one at a time

specific value for Gene 4 (common ancestor for C and D), and that C

and D split from each other through the acquisition of specific values for

Genes 2 and 3 (common ancestor).

Hennig Argumentation is simple but can lead to complex tree labelling

when information from genes in subsequent columns conflicts with in-

formation already included from earlier columns. This can in turn lead to

complex interpretations of phylogeny. For instance, if Gene 4 had united

B and C rather than C and D, the label for Gene 4 would need to be

moved to the same location as the label for Gene 1, and then explicitly

an exception label must be inserted to signify that D does not share the

value for Gene 4 (Figure 2.2). The interpretation now is that D reverted

back to its original state with regard to Gene 4 after a common ancestor

to B, C and D shared a common state for Gene 4.

Trees derived through Hennig Argumentation are therefore highly de-

pendent on the first columns (genes) encountered and do not take the

information in all columns into account before generating the first can-

didate phylogeny tree. Conflicts in subsequent columns can lead to many

exception labels or even re-formatting the tree to minimize such excep-

tions. While the situation may not be too bad for a ‘binary’ gene value

example, real gene values can be expected to consist of more than just

binary states, and typically many more than four organisms will need to

be related phylogenetically.

To overcome the problems of Hennig Argumentation, Wagner Trees

can be used instead. Consider the information in Table 2.2, but this time

a phylogenetic tree is going to be constructed organism by organism
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(a)

A B C D

A B C D

1

(b)

A B C D
2

1

(c)

1

3
2

(d)

A B C D

1

−4

4

2 3

Figure 2.2 An alternative Hennig Argumentation

(row by row) rather than gene by gene (column by column), with the

purpose of minimizing the number of state changes required. The first

step in Wagner Tree construction is to find the organism that has fewest

‘advanced’ states, where 1 stands for ‘advanced’. A has 0 values across

all genes and therefore no advanced states.

A comparison is made between all the other organisms against A, with

B having one derived or advanced state in comparison to A, while C and

D have two and three derived or advanced states in comparison to A,

respectively. B is linked to A first (Figure 2.3(a)) since it is most similar to

A. The organism with the next lowest number of advanced states is then

identified. Since C has two derived state differences, its name is written

beside B and connected to the line that joins B and A (Figure 2.3(b)).

At the point where the two lines intersect, the most advanced states

present in B and C are listed (the intersection of state values is called an

optimization). Since B and C both have a derived state for Gene 1 but do

not share other derived states, the optimization is 1000, where the first

Table 2.2 A table of gene values for four organisms to demon-
strate the Wagner method of phylogenetic tree construction

Gene 1 Gene 2 Gene 3 Gene 4

Organism A 0 0 0 0
Organism B 1 0 0 0
Organism C 1 1 0 0
Organism D 1 1 1 0
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(a)

B A

1 1

1

(b)

B C A

1000

(c)

B AC CD D

32
3

2

2

1000

(d)

B AC D

1100

1

B AC D
32

2

B A

Figure 2.3 The Wagner method constructs phylogenetic trees by adding organisms
one at a time based on the number of gene value differences between
organisms

bit signifies Gene 1, the second bit Gene 2, and so on. Finally, D has to

be linked into the tree and connected to a point that requires the fewest

number of state changes. There are several possibilities, three of which

are depicted in Figure 2.3 (c). Since the second and third possibilities

imply that Gene 2 evolved twice, whereas the first possibility implies

that Gene 2 evolved only once, the preferred most parsimonious tree

(the first possibility) is adopted. An optimization is calculated and the

analysis is complete (Figure 2.3 (d)).

To aid tree construction, an outgroup organism is usually used that

has no shared characteristics (gene values) with any of the organisms to

be classified but is nevertheless ancestrally related to the ingroup (the

organisms to be classified). This outgroup is located in the tree first and

acts as a basis for comparison as well as providing ‘directionality’ to the

evolutionary sequence depicted by the tree. The length of a tree is the to-

tal number of steps or state changes in the tree, and a tree with a smaller

length is to be preferred to a tree of greater length for the same organ-

isms. Parsimony is essentially an optimality criterion, and several differ-

ent methods now exist for calculating optimal tree structures, including

Wagner optimality, Fitch optimality, Dollo optimality and Camin–Sokal
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optimality. Building phylogenetic trees becomes complicated as datasets

become larger or contain conflicts that have to be resolved, usually by

re-formatting a tree. Optimality procedures usually work in a step-wise

manner such that each organism is added where it optimally fits a tree, as

in the Wagner method above. However, such exhaustive search methods

that check all possible trees quickly become intractable as the number of

organisms and genes grows.

The ultimate aim of phylogenetic analysis is to present a complete evo-

lutionary history of all life on earth that shows how all organisms are

related to each other, either existing or extinct. Advances in molecular

biology have now allowed the use of genetic sequences (DNA or amino

acid sequences) for tree construction, rather than the characteristic traits

that were used in the past, since these sequences provide a more detailed

and lower-level account of differences between organisms and species.

In Figure 2.4, the top table describes the same stretch of DNA for the

four organisms A, B, C and D. B, C and D differ from A in 3, 4 and 5

positions, respectively. B is joined first to A (Figure 2.4(a)) and the opti-

mization is located where their lines join. The three differences between

B and A are also described in the order in which the differences appear,

working away from where the lines join. C is added next (Figure 2.4(b))

and again the three changes from B are described and the optimization

provided. Only two possibilities for joining D are shown here in Figure

2.4(c). Since joining D to C requires fewer changes, this is the chosen tree

(Figure 2.4(d)).

2.3 Transcriptome

As previously described in Chapter 1, the total collection of mRNA and

their alternative splice forms represents the transcriptome of a cell or or-

ganism. The transcriptome can be considered the complete set of instruc-

tions for deriving all the different proteins found in a cell or organism. By

analysing the transcriptome, it may be possible to discover new proteins

that are present in specific tissues or produced only by certain cells under

certain conditions. If the genome provides us with the complete set of

genes of a cell or organism, and the proteome tells us all of the proteins

that can be produced by the genome, the transcriptome is the bridge be-

tween the two. If there are more proteins than genes, something must

be happening between the genome and proteome to make this possible.

By measuring the transcriptome during certain cell development stages,

it is possible to identify which genes are switched on or are switched off
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Figure 2.4 Constructing a phylogenetic tree from example DNA sequences for four
organisms A, B, C and D, using the Wagner method

at various points during the process. Also, if the transcriptome can be

measured during the development of stem cells, it may also be possible to

identify exactly how and when genes are switched on and off so that the

cells specialize to become one of the 200 or so different types of cell found

in the human body. Such measurement will help answer one of the most

profound mysteries in molecular biology, since there is no ‘central con-

trol’ of stem cell division that specializes cells. Specialization of cells must

therefore be through some form of signalling pathway through genes.

Interest in the transcriptome (the total set of transcripts possible from

the genome, including alternative splice variants) has grown significantly

since the arrival of a new technology that allows us to measure both

the amount and nature of these transcripts. DNA arrays are devices that

contain DNA probes that allow complementary mRNA or complemen-

tary DNA (cDNA) samples to be bound to the probes. Assume for the
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moment that the probes are short fragments of each gene that can be

found in the genome of an organism, and that the mRNA or cDNA sam-

ples are taken from cells or tissues of that same organism under some

condition. If the samples are applied to the DNA array and ‘stick’ to

some probes but not others through complementary base pairing, that

tells us which genes are expressed in the sample and which genes are not

expressed in the sample (Figure 2.5).

The total mRNA from an individual (cell or tissue) is extracted and

purified. Since mRNA does not remain stable for long, cDNA versions

of the mRNA are reverse transcribed so that the mRNA and cDNA form

a stable structure. The strands are then further amplified or transcribed

to generate further cDNA or mRNA (called cRNA) strands before being

‘labelled’. Typically, samples from one cell or individual are labelled green

and samples from another cell or individual red to allow for differential

comparison between the samples. The samples are then fragmented into

smaller substrands, and the gene chip/microarray is applied. The gene

chip/microarray will contain probe nucleotide sequences that uniquely
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Figure 2.5 Microarray and gene chip measurement (see http://www.affymetrix.com)
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detect the presence of its cDNA or mRNA counterpart, if it is present in

the sample. The samples are washed over the gene chip/microarray and

allowed to ‘hybridize’ (form short complementary base pairings) with

the probes. The gene chip/microarray is then ‘read’ with a laser that is

tuned to measure probes hybridized with green or red samples. If both

samples contain equal amounts of the same mRNA/cDNA, the probe

will fluoresce an orange/yellow colour. If one of the samples contains

more of one form of mRNA/cDNA than another, it will fluoresce either

green or red, depending on which sample it came from. If there are no

mRNA/cDNA samples for a particular probe, the probe will reflect black

or the background colour of the gene chip/microarray. Because the laser

reads probes at a certain frequency, the intensity of reflected light can

be converted into measures of amount of mRNA/cDNA and stored in a

database for further analysis.

There are two main types of DNA array: microarray and DNA or gene

chip, depending on how probes (nucleotide sequences) are put onto the

chip. Microarrays use presynthesized DNA (about 100 bases) for prob-

ing, whereas DNA chips use in situ synthesized oligonucleotide probes

(25 bases for Affymetrix gene chips). More recently, types of array are

distinguished by the amount of genes that can be measured, since DNA

chips allow for increased numbers of probes due to their shorter length

(between 30 000 and 4 million probes for DNA chips, as opposed to

about 20 000 probes for microarrays). Microarrays generally use spot

technology, whereby a robot places spots (roughly 0.1 µm to 0.5 µm)

of DNA on a glass slide (the microarray) and each spot is a DNA coun-

terpart to one of the mRNAs to be measured. These DNA spots act as

probes and are generally between 100 and 200 bases long. The advantage

of this method is that specialized microarrays can easily be fabricated to

search for specific genes. However, given the size of the spots, there are

limits on the number of probes that can be put onto one spot of the mi-

croarray. For this reason, the use of smaller probes is generally preferred,

and these are put on the chip using photolithographic techniques adapted

from semiconductor technology. The probes are built ‘bottom-up’ and in

parallel in the same way that circuits are, so that nucleotides are added

to multiple growing chains simultaneously. A ‘spot’ (‘well’ or ‘cell’) on a

gene chip can contain a thousand probes for one specific gene.

After the mRNA samples (control and experiment) are reverse tran-

scribed into cDNA, labelled (dyed) and allowed to hybridize with the

probes on the microarray or gene chip in the form of cRNA, lasers are

used to produce an emission signal for each dye. It is not yet possible

for computers to be linked directly to gene chips and microarrays so that
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the amount of mRNA in a sample can be read directly from the probe

cells. DNA probes and mRNA fragments are far too small to be read in

this manner. Instead, the array or gene chip has to be converted into a

fluorescent image which is sufficiently detailed at the pixel level to allow

inferences to be made about the quantity of sample in a cell. Confo-

cal array scanners are currently the most popular method of measuring

the fluorescence. A gene chip probe cell is currently beween 25 µm and

50 µm, and pixel sizes used by confocal lasers are about 5 µm. Confocal

lasers can therefore produce six-by-six or eight-by-eight pixel images of

a gene chip well or spot. Each pixel will have a certain colour attached to

it, and the overall ‘colour’ of the spot or cell is determined by the colour

of the individual pixels making up the spot. For instance, if two colours

are used (say, red for experimental mRNA sample and green for control

mRNA sample), and cRNA of both samples hybridize with the probes

of a cell, all pixels will give off a yellow/orange diffraction pattern. If,

however, mRNA of only one sample is present and hybridizes with the

probes in a cell, a diffraction pattern which represents red or green will

be produced which is broken down by the pixel matrix (Figure 2.6 (1)).

The outermost pixels are removed from analysis and the intensity of pix-

els plotted to arrive at an average intensity value for the cell as a whole

to determine whether enough sample is present in a cell.

Quantitiation (converting fluorescence intensities into amounts of

sample) usually results in large numbers that are conventionally con-

verted into log2 ratios. For instance, if after laser analysis there are 200

transcripts of red cRNA for a gene and 10 000 transcripts of green cRNA,

log2(10 000/200) = 5.64. If the expression values are identical, the result

is 0. Minus log2 values would signify more red cRNA than green. Such

log2 ratios are easier to work with as well as provide absolute values,

even if they have to be subsequently normalized to overcome skewed fre-

quency distributions. Interpreting log2 ratios can, however, be difficult.

Also, determining how reliable both log2 ratios and raw intensity values

are is difficult. Different amounts of the two samples and of labelling

concentrations may have been used, for instance, which will affect the

quantitiation process.

Alternatively, Affymetrix gene chips use a perfect-match/mismatch

strategy to help identify the reliability of the readings as well as produce

an absolute call value for each gene which expresses whether the gene

probed for is ‘present’, ‘absent’ or ‘marginal’ (Figure 2.6 (2)). Affymetrix

use two types of probe in a cell: a 25-nucleotide sequence which is identi-

cal to a fragment of a sample mRNA and a 25-nucleotide sequence which

is identical to the probe except that the middle base is different. If the
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Figure 2.6 Affymetrix gene chip technology

base in the middle of a probe sequence is not complementary to the base

in the middle of the sample sequence, the repulsion forces between just

these two bases should be sufficient to ensure that the sample sequence

does not hybridize with the probe sequence. Mismatch probes therefore
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allow for checks on non-specific cross-hybridization in the sample. That

is, outside of the human body mRNA nucleotides are not always guar-

anteed to bind to their complementary base pairs, due to heat differences

and degradation, for instance. These mismatch probes are also used to

generate absolute call values in that the fewer mismatches there are, the

more confidence one has in the accuracy of the perfect matched figures.

In Figure 2.6 (2) a gene is probed across several ‘probe pairs’ (typically

10–15 on Affymetrix gene chips), where each pair is made up of ‘perfect-

match’ probe sequences and ‘mismatch’ probe sequences. To determine

whether a gene is present in a sample, Wilcoxon’s Signed Rank Test is

used. Imagine there are five probe pairs for a gene (each probe pair con-

sists of a perfect match and a mismatch beneath it) and the values are as

indicated in Figure 2.6 (2), where these values represent the number of

samples hybridized in each of the cells. The first step is to calculate the

difference between each pair (a), followed by a conversion to absolute

values (b), which are then sorted and ranked (c, d). The ranked values

are placed back in their original order (e) and re-allocated their signs (f).

The sum of the positive signed ranks is calculated (g) and a full enumera-

tion of all possible signed outcomes is listed (h), with only positive ranks

summed. All signed ranks above the sum calculated at step (g) are given

the weight 1 and equal to the sum the weight 0.5 (i). The p value is then

calculated as the sum of the weighted values divided by the total number

of enumerated outcomes. If the value is below 0.045 a value of ‘present’

is attached to the gene, if the value is above 0.055 a value of ‘absent’ is

returned, and otherwise ‘marginal’.

Gene chips now exist for measuring the expression levels of all genes in

the human genome. They can also be used to check whether genes are be-

ing expressed in specific tissue and which genes are expressed in response

to drugs. One particular application of gene chips and microarrays is in

the identification of single nucleotide polymorphisms (SNPs) that express

common genetic variances among people, caused by a single nucleotide

change every 300 bases or so in both the coding and non-coding parts

of the human genome. For a nucleotide change to be an SNP, it should

occur in at least 1 per cent of the population, and it is believed that,

while SNPs do not affect the normal function of cells, they do affect the

way that individuals react to drugs or predispose individuals to certain

diseases. Microarrays and gene chips can be purpose-designed to identify

SNPs and detect their presence in individuals.

While DNA arrays and gene chips are among the most exciting ge-

nomic tools to have been developed within the last few years, it has to
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be remembered that mRNA levels do not always correlate with protein

levels. It is not currently known how much mRNA actually makes it to

protein.

Alternative splice variants of genes that are not measured on a DNA

chip mean that a gene may not be accurately measured. Also, DNA chips

cannot identify post-translational modifications of a protein. However,

perhaps the biggest problem with DNA chips concerns current gene ex-

pression analysis techniques. The sheer volume of data (gene expression

datasets can be several megabytes) leads to the need for fast analytical

tools; but more importantly, there are many more attributes (genes) than

records (samples). Typically, 12 000 to 25 000 genes are measured for

each sample (subject or individual), and only 50 to 100 samples are col-

lected. In database terms this leads to a hugely sparse data space. Gene

expression analysis (G) can be defined to be concerned with selecting

a small subset of relevant genes from the original set of genes (the S

problem) as well as combining individual genes in either the original or

smaller subsets of genes to identify important causal and classificatory

relationships (the C problem). That is, G = S + C. In later chapters it

will be shown how artificial intelligence techniques are making promis-

ing progress in analysing gene expression data and mining the data for

useful knowledge.

The analysis problem becomes even more acute when dealing with

temporal gene expression data, i.e. the repeated application of DNA

chips to measure the transcriptomic state of an individual over time. So

far it has been assumed that DNA chips are used to measure an individual

just once and that the database will consist of several samples, measured

once, where each sample falls in a clearly designated and independently

observed class (e.g. a cancerous sample versus a normal one). Imagine

that an individual cancer patient’s mRNA is measured at time 0 and then

a drug added which, it is believed, will ‘cure’ the patient. The individual’s

mRNA is measured after 30 min, then 1 h, then 2 h, then 4 h, etc., to

see how the drug is affecting gene expression of the immune system and

whether cancerous cells are being targeted for attack by the immune

system. What is of interest here is the network of gene activation over

time, as expressed not just for one patient but for several patients. The

task is to ‘reverse engineer’ this gene network from not just one dataset

but several. Reverse engineering means identifying which genes at one

time point affect which other genes at the next time point. Given the large

numbers of genes measured, if each gene is allowed to affect every other

gene, a search space will rapidly be generated that is too complex for



48 INTRODUCTION TO PROBLEMS AND CHALLENGES

computers to analyse. If a gene at one time-step is restricted to affecting

only five other genes at the next time step, or a gene at a subsequent

time-step to be affected by only five other genes at the previous time-

step, the question is how to identify just these small numbers of affected

or affecting genes from the huge number measured. Reverse engineering

gene networks from gene expression data, where there is confidence that

the correct causally influencing and causally influenced genes have been

identified, is one of the biggest unsolved problems in bioinformatics.

Ethical considerations

There is also an ethical dimension to gene expression analysis. First, mea-

suring the gene expression of an individual gives us information on not

just that individual but also that individual’s closest relatives. So while

an individual may well permit their gene expression to be measured and

a genetic profile for that individual to be stored in a database, there are

fundamental questions about the rights of that individual’s relatives to

have information about their genetic profiles not stored in a database.

Identifying through gene expression analysis that an individual has a

predisposition to a particular inheritable disease provides information

about other members of that individual’s family. Secondly, while it may

be acceptable to measure the gene expression of individuals who are suf-

fering from a disease, there are fundamental questions concerning the

scope of gene expression analysis. Should embryonic stem cells be mon-

itored for gene expression, for instance, so that important information

is obtained about how cells are differentiated during the early stages of

fetal development? One of the most puzzling of all mysteries in biol-

ogy is the way in which, from one fertilized cell, a multi-trillion cellular

organism called a human results, where billions of cells have somehow

‘agreed’ to express only certain genes that allow them to form tissue and

cooperate with each other. The fertilized cell and its daughter cells after

initial division within a few hours are totipotent, i.e. they have the abil-

ity to become any cell in the body. After about four days some of these

cells become a blastocyst (hollow sphere) and have lost their totipotency,

whereas the other cells inside the blastocyst form an inner cell mass.

These inner cells are pluripotent in that they have the ability to become

one of several different types of cell. After further division pluripotent

cells become multipotent, whereby a multipotent brain cell, for instance,

has the ability to become any one of the different types of brain cell

(Figure 2.7).
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Figure 2.7 Embryonic stem cells

Currently there are two methods for developing pluripotent cells: from

inner cell mass at the blastocyst stage and from fetal tissue from termi-

nated pregnancies. While DNA chips provide an unprecedented oppor-

tunity to measure early gene expression (within a few hours of concep-

tion), this may mean that embryos are ‘farmed’ for research purposes.

The promise of stem cells lies in their possible ability, when located next

to damaged tissue, to become one of the cells in that tissue by expressing

the same genes as those expressed in the tissue. The mechanisms whereby

this happens are not known, but the potential to repair parts of the body

where cells no longer divide in sufficient numbers to overcome damage

(such as the brain or liver) is huge. However, before stem cells can be

used there needs to be an understanding of their gene expression and dif-

ferentiation mechanisms. Different countries are taking different ethical

and legislative stances on this important ethical topic.
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2.4 Proteome

Secondary and tertiary structure prediction

Proteins are the end result of translation of mRNA by ribosomes. Once

protein sequences of amino acids leave the ribosomes they fold in com-

plex ways to achieve a ‘native’ state or conformation in the cell. The na-

tive state of a protein is a highly stable three-dimensional structure that

helps determine its biological function. In other words, a protein cannot

function unless it folds in the right way. For instance, catalytic proteins

must fold in such a way that they can lock onto another molecule (sub-

strate), thereby lowering the energy threshold required to start a reaction

in the substrate. Once the reaction takes place, the catalytic protein is

released to find other molecules to attach to so that further reactions can

take place. If the catalytic protein misfolds, it will not be able to start the

catalytic reaction. In particular, the active site of the protein which locks

onto the appropriate section of the target molecule (the substrate) to start

a reaction may not be revealed and so the protein cannot function.

Protein misfolding is associated with several diseases, and to under-

stand the nature of the disease at the molecular level involves under-

standing the way that amino acids both locally and distantly affect the

folding. That is, while it may not be possible to predict how a specific

sequence of amino acids folds locally, once it folds it comes into contact

with other regions of amino acids elsewhere in the sequence. Folding is

determined by the chemical and physical properties of the amino acids

making up the protein, but such chemical and physical explanations of

folding have to take into account ‘long distance’ relationships between

different parts of the same sequence. Determining the way that proteins

fold into specific shapes is called the ‘protein folding problem’. Labora-

tory experiments have shown that if a protein is gently denatured (that is,

unfolded by, say, raising the temperature or changing the salt concentra-

tion of the surrounding fluid) and then allowed to refold, it resumes its

original structure, thereby demonstrating that the ability of the protein

to fold into its correct shape is intrinsic (all the information required to

fold a protein is in the protein constituents).

While one obvious use of computers in bioinformatics is the storing of

DNA sequence information and constructing the correct DNA sequences

from fragments identified by restriction enzymes (enzymes which break

up the DNA at certain points), protein sequences and the polypeptide3

3 The term ‘peptide’ is used to refer to short sequences of amino acids, while the term ‘polypep-
tide’ refers to sequences of length 50 or more.
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sequences that make up that protein also need to be stored. New protein

sequences are being added to protein databases as a result of analysing

mRNA sequences, where redundantly transcribed DNA (introns) have

been removed, and by translating codons via the genetic code into letters

of the amino acid alphabet. However, these linear sequences of amino

acids (polypeptide sequence) do not tell us anything about the structure

of the protein or how it folds. The protein folding problem is important

because it takes a lot of effort to determine the structure of an actual pro-

tein. A real protein has to be to denatured (unfolded) so that its amino

acid sequence can be described, but denaturing a protein and sequencing

its amino acid content are much more difficult than simply denaturing a

protein. In the act of denaturing the structure of the protein is affected

so that information is lost about the structure as amino acids making

up the protein are sequenced. Identifying the structure of a protein re-

quires complex measurement, typically through X-ray crystallography or

nuclear magnetic resonance (NMR) spectroscopy techniques, neither of

which may be readily available to biologists. In any case, not all proteins

are susceptible to crystallization, and NMR is constrained to deal with

small proteins because of the computational costs involved in trying to

model complex proteins. Finally, to determine the structure of a protein

means removing it from its natural environment – the cell or organism.

There is no guarantee that a protein being experimentally investigated in

vitro will have the same structure as in vivo. As a consequence, the num-

ber of experimentally determined protein sequences is far fewer than the

number of protein sequences that have been ‘translated’ by a computer

from DNA and mRNA sequences.

The structure of a real protein is conventionally described in four ways

(Figure 2.8). The primary structure of a protein (Figure 2.8(a)) is the se-

quence of amino acids produced at ribosomes. Since there are 20 amino

acids, the primary structure describes the precise order of amino acids

in the protein. The secondary structure of a protein (Figure 2.8(b))

describes those parts of the primary structure (subsequences of amino

acids) that fold into regular and repeated patterns, such as α-helices,

β-sheets, or turns (see Figure 2.9 for conventional computer-generated

graphical ways of describing secondary structure). The tertiary structure

(Figure 2.8(c)) consists of those elements of the secondary structure that

build more complex units, such as an α−β motif, and provide a three-

dimensional shape of the protein. The tertiary structure of enzymes is

typically a compact, globular shape, for instance. Finally, many pro-

teins consist of more than one polypeptide chain. The quaternary struc-

ture of a protein (Figure 2.8(d)) is a description of how several separate

polypeptide sequences have come together to form a complex protein.
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Figure 2.8 Protein structure

For instance, human haemoglobin consists of four separate polypeptides

that come together to form a complex molecule that takes up oxygen

from the lungs and delivers it to the cells of the body. These four pep-

tides result from the translation of four separate genes. For experimental

biologists, identifying all four levels of structure from an actual protein is

very difficult, since not all parts of the protein are available for analysis.

A real protein has to be dissected into smaller parts so that amino acids

hidden by folds are revealed. There is therefore a great need to work

from primary structures of proteins (as revealed by mRNA) to the three-

dimensional and quaternary structure of the protein. Currently, this task

is proving a great challenge to computer scientists because of the com-

plexity of predicting secondary, tertiary and quaternary structures from

primary structures. Folding arises because of basic charges (attraction

and repulsion) of atoms and molecules, and modelling these for long

sequences of amino acids is proving difficult.
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There are currently three approaches to protein folding prediction.

Comparative modelling (also known as modelling by homology or

knowledge-based modelling) uses structural data from experimentally

determined protein sequences. An amino acid alignment is first made be-

tween protein sequences with unknown structure (typically derived from

DNA or mRNA translation by the computer) with protein sequences with

known structure. Then where the alignment agrees, the conformation of

the sequence with known structure is allocated to the sequence with un-

known structure for that part of the alignment. The main problem with

comparative modelling is that there can be significant similarities between

two proteins with known structure where the structures are significantly

different from each other. Similarity of primary sequence is therefore no

guarantee of similarity of structure and therefore of function. Similarly,
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there are also examples of two proteins with known structure with similar

function where the primary sequence information is significantly differ-

ent in each sequence. Typically a threshold value of 30 per cent sequence

identity is required to be exceeded before two sequences are considered

homologous for modelling. While this figure may appear to be low, the

argument is that the three-dimensional structure of proteins is conserved

to a greater extent than the primary sequence. That is, a high degree of

primary sequence similarity between a protein with known structure and

a protein with unknown structure is not needed, since the function of a

protein, as given by its structure, is more likely to be preserved through

its shape than its amino acid sequence. The homologies being searched

for are assumed to reflect structurally conserved regions of the protein.

Fold recognition, or threading, techniques are similar to homology

modelling techniques but use a database of proteins with known structure

and folds (called templates) against which to compare the protein of

unknown structure. A scoring function is used to rank the folds and the

folds with the best scores are then adopted for the protein with unknown

folds and structure.

The final method is ab initio, where a structure is predicted for a pro-

tein with unknown structure by using physical principles of folding. One

of the main assumptions of this method is that the native structure of a

protein reflects its global free energy minimum, and the task of ab initio

methods is to search the space of possible conformations of the amino

acids (residues) making up a sequence to find optimal conformations

that achieve low energy levels. While some ab initio methods work at

the atomic level for residues, in practice residues are modelled using only

a few interaction centres within the residue. Many molecular dynamics

optimization methods now exist, using lattice-based enumerations and

diffusion equation methods. The basic approach is to minimize the en-

ergy of the system, add a structural change, minimize the energy, add

a structural change, and so on. Ab initio methods may have to be used

when suitable template structures are not available.

Problems with ab initio methods include a minor conformational

change at one residue having major implications for the entire sequence,

which may not be captured by the simulation models used. For instance,

a bond between two residues may be rotated for local minimization of

energy, but given that the structure as a whole is three-dimensional there

may be unfavourable effects on the whole structure that cannot be cap-

tured by the simulation. Also, the complexity involved in predicting the

structure of a large protein may be too hard for a computer. Nor has it
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escaped the attention of some researchers that large proteins naturally

fold within seconds of translation, whereas computer models take hours

or even days to predict the structure of less complex proteins.

Protein folding is perhaps the biggest problem in bioinformatics cur-

rently. Even if good techniques and methods for predicting the structure

of proteins from primary sequences are discovered, this may not reveal

anything about how the biological function or activity of that protein is

carried out. There is also increasing interest in the actual stage-by-stage

process by which a protein naturally folds to identify causes of misfold-

ing. Current protein folding methods may not actually reflect this natural

folding process. Yet there is increasing evidence that many diseases, such

as Alzheimer’s, cystic fibrosis, sickle cell anaemia, bovine spongiform en-

cephalopathy (BSE) and its human equivalent Creutzfeldt–Jakob disease

(CJD), are due to misfolding. It is currently estimated that of the several

hundred thousand protein sequences stored in databanks (derived from

DNA and mRNA), only about 1 per cent have an experimentally deter-

mined structure. As genome projects provide increasingly more protein

sequences in their databases, this mismatch between proteins of known

structure and unknown structure is bound to grow. In silico methods of

accurately predicting the structure of proteins are still at an early stage of

development and present one of the most profound challenges in bioin-

formatics.

Protein identification

Another current challenge in bioinformatics is to determine how large

the human proteome (the total collection of all proteins produced by

the genome) actually is. While many prokaryotic cells have small num-

bers of genes in comparison to the human cells (about 5000, typically),

there is little evidence of significant alternative splicing. However, post-

translational modification of proteins as they emerge from the ribosomes

may increase the number of proteins so that anywhere between 10 000

and 20 000 proteins are actually produced by a prokaryotic cell. For

a human (eukaryotic) cell containing 30 000 genes, it is currently es-

timated that each gene can be alternatively spliced anywhere between

three and 100 times. Even assuming the lower figure, that gives about

90 000 different polypeptide sequences. However, several different types

of post-translational modification can be carried out, such as cleavage

of polypeptide sequences at different points to give different proteins,
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including removal of the initial methionine residue. Many proteins are

inactive precursors that are activated under appropriate physiological

conditions. Their task is to be present in the body should a situation

arise when they are suddenly required, for instance, enzymes for forming

clots in the blood in the case of a wound. Such proproteins are typically

activated by the removal of certain amino acids at the ends of a protein,

allowing the protein to function by revealing the active site of the pro-

tein. The task of proteomics is to identify not just all the different proteins

that can be produced by a genome but also to detect those proteins that

are associated with disease because of misfolding of proteins or different

amounts of protein.

The biggest problem for proteomics currently is a suitable technology

for measuring the variety and abundance of protein in a cell or organism.

The most common form of measurement is protein electrophoresis. Pro-

teins have an electrical charge, and the basic method is to place all protein

from a sample on a gel and apply an electrical current to the gel so that

the proteins move to different parts of the gel depending on their elec-

trical charge; they then form bands that indicate the relative proportion

of each protein fraction. Proteins are separated because at some point in

the migration there is no net charge, and the protein is then stationary.

While this form of measurement is appropriate when comparing different

samples, the technology does not allow for the individual identification

of proteins in a sample. Also, small proteins move through the gel more

quickly than large proteins and may end up in regions of the gel that

cannot be measured accurately because of smearing or distortion. Many

proteins also react unpredictably with the gel and may migrate to wrong

parts of the gel matrix. Gel electrophoresis also requires a great deal

of expert human manipulation, leading to increased possibility of error.

However, automated protein identification techniques using gels are in-

creasingly appearing on the market. Nevertheless, gel-based techniques

by themselves may not be sufficiently accurate to identify individual pro-

teins.

New techniques being explored currently for individual protein identi-

fication include peptide-mass fingerprinting and peptide sequencing. The

former uses proteases (special proteins that cut other proteins) to dissect

specific proteins into fragments that have a unique ‘fingerprint’ when

subjected to NMR spectroscopy techniques. The correct identification of

these fingerprints requires access to a database of protein fragments and

their signatures under specific NMR spectroscopy conditions. However,

as more proteins and their fragments are included in such databases, the



INTERFERENCE TECHNOLOGY 57

chances of finding unique fingerprints begin to worsen! Ideally, it would

be helpful if a protein could be sequenced in the same way that a gene can

be sequenced (through complementary base pairing techniques). Amino

acids do not have complements, however. Peptide sequencing attempts to

identify the amino acids of a protein or protein fragment either by work-

ing from one end of the fragment (terminus sequencing), one residue at

a time, by cutting the residue from the sequence and then using complex

methods for identifying the residue that has been cut off, or if the ter-

minus is not visible by cutting the sequence into a number of fragments

and then identifying each residue, as before (internal sequencing). Again,

NMR or other mass spectrometry techniques are used for identifying

residues, and many biologists do not have easy access to such facilities.

Also, fragmentation processes are not sufficiently advanced to ensure

that a protein is cut at the correct locations.

High-throughput peptide sequencing analogous to nucleotide high-

throughput sequencing is a fundamental requirement for identifying

novel proteins and novel ways in which proteins are translated from

their mRNA sequences. The future bioinformatics problem, once high-

throughput protein identification techniques are made available, is to

map the actual proteins and their sequences found in cells with genome

databases. Given the variety of alternate splicing of mRNA and post-

translational modifications, the identification of exactly which gene is

the source for which protein sequences is not likely to be an easy task,

especially given the redundancy in the genetic code (several different ways

of DNA mapping onto amino acid).

2.5 Interference technology, viruses
and the immune system

Interference technology

Proteomics is considered one of the most important ways of understand-

ing gene function. That is, even if a gene is fully sequenced and located

on a chromosome, this does not mean that there is a full understand-

ing of the gene unless it is known what its translated products do. So

even if there is full knowledge of a genome and full knowledge of all the

proteins derivable from that genome, a full understanding of the genome

and proteome will only come with a detailed understanding of how genes
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affect other genes through proteins, of how proteins affect other proteins.

While the genome is static, in that once it is characterized it can be as-

sumed to be constant, the proteome is dynamic and reflects the state of

the cell and the conditions under which it survives. Some proteins are

produced only when the cell’s environment is stressed (e.g. by heating).

It is possible that there is a specific stress gene for that condition that only

comes on when the stress condition is apparent, but it is also possible

that the cell deals with the stress either by producing more quantity of

a protein or by modifying a product of an already expressed gene. One

way to study the effects of proteins is through ‘knock-out’ technology

that effectively silences genes. If genes can be silenced under controlled

conditions, the effects of the absence of the gene on the proteome can

be studied. While one method for silencing genes is to look upstream

of a gene and at its transcription regulatory elements to see if promoter

and enhancer regions can be blocked, not enough is known currently

about these regions to determine effective gene silencing mechanisms at

the transcriptional level. However, interference technology provides a

mechanism for regulating the translation of mRNA even if transcription

takes place.

Antisense technology is an mRNA interference technology that blocks

the translation of ‘sense’ mRNA (see Figure 1.5) and is based on the idea

of introducing an antisense gene or antisense RNA into cells. The effect

of antisense technology has been known for over 20 years but its mecha-

nisms were not understood. Introducing a short piece of antisense RNA,

that is, a sequence that is complementary to part of an mRNA sequence,

produced the obvious result that the gene giving rise to the mRNA was si-

lenced due to its mRNA being partly double-stranded when the antisense

RNA paired with the appropriate sequences of complementary bases in

the transcribed mRNA. Such double-stranding was assumed to prevent

the ribosomes from effectively translating the sequence of amino acids in

the mRNA. In other words, it was assumed that the ribosomes ‘jammed’

when the mRNA transcript was found to contain double-stranded codons

rather than the linear sequence of single-stranded codons expected. How-

ever, it was also found that introducing a sense RNA subsequence (that

is, a subsequence that is identical to part of the mRNA) produced the

same silencing effect. Sense RNA cannot pair with sense mRNA, since

the bases are identical. Finally, it was also discovered that introducing

a small section of double-stranded RNA was more effective at silencing

the target gene than introducing either a sense or antisense RNA strand.

To understand the mechanisms at work, viruses and the immune system

will need to be explored.
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Viruses and the immune system

A virus is not a living entity or cell, since it lacks many of the essential

components of a cell, such as translation machinery and cellular trans-

port systems. It is between 20 and 100 times smaller than a typical single

cell organism and attacks all types of cell or organism. Viruses that attack

bacteria are called bacteriophages. A virus is a piece of genetic sequence

(either DNA or RNA) with some proteins, wrapped up in a protein coat

(capsid) and with the ability to recognize specific prokaryotic and eukary-

otic cells through sites on the capsid that are complementary to receptors

on the target cell. When a virus recognizes the cell it is specifically tuned

for, it attaches itself to the cell and injects its genetic material (DNA

or RNA sequence together with any viral proteins). The cell processes

(transcribes and translates) the viral genetic material which contains the

information on how to make components of the virus (such as the capsid,

recognition sites and the genetic material). As the components are pro-

duced, they assemble into complete copies of the original virus (virions)

and are released from the cell to target other cells. The host cell’s tran-

scription and translation machinery may be so overcome with the task

of reproducing the virus that it stops making the essential components

required to enable it to survive, or the virions are released from the cell

by puncturing a hole in the membrane of the cell, thereby killing the cell

as its contents leak out.

Viruses come in many different forms, and the Baltimore Classifica-

tion identifies viruses according to the nature of the genetic material they

contain. Viruses can contain, for example, (a) double-stranded DNA (typ-

ically 5000 base pairs (bp) to 300 000 bp), (b) single-stranded DNA, (c)

double-stranded RNA, (d) positive sense single-stranded RNA, and (e)

negative sense single-stranded RNA. Of these, the positive sense single-

stranded RNA class is the best known to humans, causing the common

cold (rhinoviruses) and meningitis (enterovirus). A viral infection is dan-

gerous to an organism because, if the infection goes unchecked, a suffi-

ciently large number of cells can be killed which leads to the organism

as a whole dying. An example of HIV (human immunodeficiency virus,

considered to be the main cause of AIDS (Acquired Immunodeficiency

Syndrome)), is provided in Figure 2.10.

The HIV virion consists of two single-stranded negative sense RNA

sequences (about 9000 bases each) containing at least nine genes, plus

three proteins – a reverse transcriptase, an integrase and a protease (Fig-

ure 2.10(a)). The HIV virion attaches itself to lymphocytes (helper and

killer T cells) of the immune system through the CD4 and CCR5 receptors



60 INTRODUCTION TO PROBLEMS AND CHALLENGES

Two copies of single stranded negative RNA

Reverse transcriptase 

Viral
content

Integrase

(c) Reverse
     transcriptase 

Normal DNA

Ribosome

Nucleus

Lymphocyte
membrane

Viral DNA (e) Viral mRNA

(f) Viral polyprotein

(h) New protease,
      integrase, etc.

(i) New virions
    for release
    from cell

Lymphocyte
(T cell)
nucleus

Normal DNA

Chromosome

(d) Integrase

(g) Protease

CD4,CCR5
receptors
on cell Other HIV virions

attached to cell

(b)

(a)

Protease

HIV virion with
recognition sites

Figure 2.10 The life cycle of HIV

on the surface of the cell (Figure 2.10(b)). The viral content (RNA and

proteins) is injected into the cell, and the reverse transcriptase makes a

positive copy of one of the negative strand viral RNA to form a double

strand (Figure 2.10(c)). The viral integrase takes the double strand into

the nucleus and splices it into the cell’s DNA (Figure 2.10(d)). Normal

cellular machinery then transcribes (Figure 2.10(e)) and translates the vi-

ral mRNA to form one long viral polyprotein sequence (Figure 2.10(f)).

The third viral protein, protease (Figure 2.10(g)) has the task of cleaving

the viral polyprotein into constituent parts (new copies of viral protein,

capsid, etc., Figure 2.10(h)) so that new virions can be assembled for

further infection (Figure 2.10(i)).

The human immune system has developed a number of methods

for detecting and eradicating viruses and other pathogens (any disease-

producing agent including bacteria) by activating both an innate and

adaptive response. Innate responses are general responses to a lim-

ited number of pathogens and include phagocytes (scavenger cells) and
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macrophages (either fixed to specific locations in the body or circulat-

ing with the blood) that ‘swallow’ whole pathogens or clear up debris.

Such cells are directed to pathogens through the stimulation of anti-

bodies (immunoglobulins) in response to antigens and other substances

produced by the pathogen. Also part of the innate response are the nat-

ural killer cells that destroy cells in the body that have been infected

to prevent the infection from spreading. If the innate system cannot deal

with the pathogen, the adaptive system takes over. One important part of

the adaptive system consists of lymphocytes (white blood cells) binding

approximately to pathogens. This can result in B-lymphocytes (cells pro-

duced in bone marrow) producing antibodies to bring the pathogen to

the attention of macrophages and phagocytes for destruction, or cloning

themselves in large numbers with even more specialized binding mech-

anisms so that they can inactivate the pathogens directly. Approximate

binding and cloning by B-cells provides us with the ability to identify

and deal with any new pathogen. However, since approximate binding

and cloning can lead to the production of B-lymphocytes that inadver-

tently attach themselves to healthy self-cells (cells that are part of the

body and not foreign to the body), the immune system requires helper

T-cells (cells produced in the thymus) to co-stimulate B-cells only if the

B-cell is not attached to a healthy (non-antigen presenting) self-cell. This

is particularly important in the case of viruses that have infected self-

cells. Such infected cells produce fragments of the virus on their surface

through the use of major histocompatability (MHC) molecules. If helper

T-cells recognize these viral fragments on the surface of self-cells, it pro-

duces a co-stimulus to the B-cell which then destroys the infected cell.

One of the critical properties of HIV is that it attacks these helper T-cells

(Figure 2.10). If these immune system cells become infected, they can

no longer provide the co-stimulation required for B-cells to work. The

immune system then becomes sufficiently weakened (Acquired Immun-

odeficiency Syndrome – AIDS) that any pathogen that would normally

be non-dangerous to us becomes lethal. With this basic understanding of

viral and immune system behaviour, gene silencing can be described in

more detail.

Post-transcriptional gene silencing in multicellular organisms is con-

sidered to be an evolutionary conserved, single cell defence mechanism

for dealing with foreign genes and RNA introduced typically by a virus.

That is, before multicellular organisms – with their complex immune

systems requiring the cooperation of many different types of cell – devel-

oped from single-cell organisms, such single-cell organisms had to fight
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pathogens on their own and without the help of other cells. Both positive-

sense and negative-sense RNA are produced by different types of virus,

and the cell had to find a mechanism to prevent their expression. Also,

double-stranded RNA can be produced by viruses using reverse tran-

scriptase. Since all three types of sequence were found to silence genes

in multicellular organisms, the current hypothesis is that the underly-

ing gene silencing mechanisms reflect the manner in which single cells

prevented infection.

The current model of interference is that an enzyme called Dicer (Fig-

ure 2.11(a)) takes the introduced double-stranded RNA and cuts it into

small (20–25 bp) sequences called small interfering RNA (siRNA) (Fig-

ure 2.11 (b)), which in turn – after separating into single strands – bind

to an RNA-inducing silencing complex (RISC) (Figure 2.11(c)).These

(a)

dsRNA

Dicer

(b)
siRNA

(c) RISC

(d) Activated
RISC

(e) Target mRNA

(f)

Cut RISC prevents
translation
at ribosome

Figure 2.11 Interference technology
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become activated when the siRNA unfolds (Figure 2.11(d)) and the acti-

vated RISCs then target mRNA transcripts through complementary base

pairing (Figure 2.11(e)). If transcripts containing the appropriate com-

plementary sequences are found, they are cut or the RISC binds to the

transcript to prevent translation of the transcript at the ribosome (Figure

2.11(f)). In some organisms a ‘spreading’ effect has been found, whereby

the cut mRNA is copied to form secondary siRNA for use in RISCs. This

copy process is used to explain why introducing a sense RNA strand can

also lead to gene silencing. However, for effective gene silencing, dsRNA

is rarely used, since such strands can trigger an anti-viral response from

the immune system leading to the cell’s death. Instead, siRNA is cur-

rently used to silence genes. Such siRNA can be produced synthetically

and injected into cells, or they can be transported into the cell with the

help of viral ‘vectors’ (safe viruses that have been genetically engineered

to contain a DNA sequence which, when inserted into a cell and tran-

scribed, produce the siRNA). Current research points to whole genome

functional analysis being possible in the near future, where all genes are

individually screened by siRNA and the resulting transcriptomes and

proteomes measured to identify the effects. It is currently unclear as to

exactly what sort of bioinformatics resource will be needed to support

systematic functional analysis of genomes. Also, current research into

RNA interference (RNAi) technology is directed towards fighting viral

diseases (the production of siRNA that prevents viral mRNA from being

translated) and silencing cancer-associated genes (e.g. siRNA to silence

cell division). Many of these problems are so complex that standard

modelling and simulation tools may not be adequate. Novel methods

and techniques may have to be developed to take bioinformatics into the

next generation.

2.6 Summary of chapter

1 The major problems in bioinformatics can be distinguished according

to the areas into which these problems fall: genomics, transcriptomics

and proteomics.

2 Current problems in the post-genomic era deal with sequence analysis

and phylogenetic analysis to make clear the relationships between

organisms as the number of fully sequences genomes grows. However,

there are problems in being able to compare organisms in such a way

that clear and unambiguous phylogenetic relationships emerge.
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3 Transcriptomics is a relatively new problem area arising from recent

technological advances in DNA arrays (microarrays and gene chips).

The major problems here, apart from obtaining the data, is the anal-

ysis of the data given the large number of genes measured for a com-

paratively small number of samples. Novel techniques may need to

be developed to reverse engineer gene networks from temporal data

so that the interrelationships between genes are clearly identified.

4 Protein folding prediction is one of the oldest known problems in

proteomics and hence bioinformatics. Problems exist in sequencing

a protein without affecting its nature, and techniques for predicting

the structure of proteins from their linear sequence need improving.

5 A new problem area concerns interference technology and the way

that genes can be silenced to measure their effect. Of great interest is

the application of interference technology to immune systems, since

it is by observing the effect of switching off genes and interfering

with genes of the immune system that a greater understanding will be

obtained of how the body fights infections, thereby leading to future

drugs that can be more carefully targeted for particular viruses.

6 Finally, embryonic stem cell research provides a novel way to un-

derstand cell differentiation for possible future cures of diseases

currently believed to be untreatable. There are, however, ethical con-

siderations with regard to embryonic stem cell research that will need

discussion before approval can be given to such research.
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3
Introduction to Artificial
Intelligence and Computer
Science

3.1 Introduction to search

One of the most fundamental tasks in computer science is search. Many

problems can be converted into search problems, including the simple

problem of adding two numbers, such as 2 + 2. The search represen-

tation of this problem is whether there exists a number (in this case, 4)

that can be reached from the original statement of the problem. To de-

termine an alignment between two DNA sequences can also be regarded

as a search problem: given the starting point of two sequences, find a

solution that minimizes as much as possible the differences between the

two sequences. The development of search techniques received a major

boost with the formalization of graph theory, with graphs being defined

formally and precisely in terms of nodes and arcs that connect them. A

labelled graph has one or more descriptors called labels on each node

that distinguish that node from all other nodes in the graph. In a state

space search these labels identify states during a problem-solving process.

Also, the arcs (connections between nodes) can be labelled to represent

some relationship between nodes. Usually these labels represent weights,

or costs involved in moving between one state and another. A graph is

directed if the arcs have arrows, signifying directionality.

In a state space representation of a computational problem, the nodes

of the graph represent partial solutions to the problem and the arcs

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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represent steps in the problem-solving process. One of the nodes is

uniquely distinguished as the start or initial state, and there may be one

or more nodes that represent the goal state or states. The task of a search

algorithm is to find a solution path through the problem space, keeping

track of the steps followed and states visited. Representing problems in

computer science and bioinformatics as search problems allows the full

weight of graph-theoretic concepts to be applied to the problem and also

allows comparison between different solutions to the problem as well as

comparisons between solutions to different problems.

3.2 Search algorithms

Consider the graph in Figure 3.1. Formally, a graph is collection of nodes

(vertices) and links (arcs) connecting the nodes. In the example below the

arcs are labelled, meaning that there is some cost to the link between two

nodes. Usually these costs are distances when the graph represents a map,

although such labels can also represent constraints to be satisfied before

the link can be followed. For the moment we shall concentrate on graphs

that represent maps, where if there is a label on an arc then it represents

the distance between the two nodes it connects. If there is no label on an

arc, the link shows that a path exists between the two nodes. The task

in Figure 3.1 is to find the shortest route, in terms of distance and not

cities visited, between S (the start city) and G (the goal city). There are

eight ‘cities’ S, A, B, . . . , G, but note that not all the cities are connected

to each other. The distance between two nodes X and Y is the same as

the distance between Y and X.

One possible solution route is S to A to D to G (SADG), giving a total

distance of 18. Then SCDG may be noticed, with total distance 16, which
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Figure 3.1 A graph representing a map
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is shorter. After trying a number of possibilities, the route SBACEFDG

may be arrived at, which gives a total distance of 12 even though all cities

have been visited. To verify that this is indeed the shortest route, other

routes have to be tried, but now there is a ‘benchmark’ of 12 which can

be used to stop further examination of particular routes if the distance

is 12 or more and G has not been reached.

The solution to this task is reached quickly, but now imagine that there

is a real-life labelled map containing 100 or more cities and distances,

with many different ways of getting from one city to another. A route

may be found that appears the shortest, but how do we know for sure

that it is the shortest? How long will it take to calculate the shortest route

in such large-scale maps?

These may seem like hard questions to answer, so it may be decided

to write programs to solve these problems. The first problem faced is

how to represent the graph in Figure 3.1 to a computer. Fortunately,

there is an easy way to represent graphs to computers which involves

the matrix method (Table 3.1). Since matrices are provided as standard

in most programming languages, there is an easy way to represent the

connectivity of the graph in Figure 3.1. Providing the information to a

computer in a way that the computer understands is to provide a data

structure to the computer. Another advantage to the matrix method is

that, if another node is added to the graph (another city is added to the

map), it will be easy to add an extra row and column to the data structure

and insert the distances between that node and all the nodes it connects

to in the appropriate x,y entries, without needing to enter all the graph

information again. Once such a data structure is developed, an algorithm

is required that will make use of this data structure to calculate shortest

routes.

An algorithm is a sequence of steps that, if systematically and correctly

executed, will produce the desired result. For searching graphs there is a

need to devise an algorithm that will explore paths rigorously, meaning

that the solution is to be found as efficiently as possible as well as guar-

anteeing to return the correct result. To ensure that there is an efficient

algorithm that doesn’t explore a route that has been previously examined

and found not to contain the desired solution, as well as exploring all

possible routes that exist in the graph, a search algorithm is required that

methodically searches routes one step at a time. The conventional way

to do this is to convert the type of search into a tree search.

Look again at S, the start node (Figure 3.1). There are three links from

S to A, B and C. Rather than decide arbitrarily to follow just one, all
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Table 3.1 A matrix representation of the graph in Figure 3.1. Each city is numbered
(S = 1, A = 2, etc). The rows of this distance or cost matrix describe the distance/cost
between a start node and an end node, and the columns the distance/cost between
an end node and a start node. For instance, row 1, column 4, contains the value
6. This entry states that there is distance 6 between S and C. Any distance can be
accessed by giving (x,y) coordinates. For instance, (5,8) returns the value 2, which
gives the distance between D and G. ‘Ø’ indicates that the two specified nodes are not
connected. Note also that a node cannot be connected to itself (hence the Øs along
the leading diagonal (1,1), (2,2) etc. of the matrix). Finally, note that the matrix
is symmetrical. That is, the entries above the leading diagonal are the same as the
entries below the leading diagonal, in mirror form. This reflects the property of the
graph that the cost of getting from x to y is the same as the cost of getting from y to
x. There may be graphs where this symmetry is not preserved (e.g. one-way streets
between nodes which are shorter in one direction than the other)

S A B C D E F G
1 2 3 4 5 6 7 8

S Ø 7 2 6 Ø Ø Ø Ø
1
A 7 Ø 2 1 9 Ø Ø Ø
2
B 2 2 Ø 18 Ø 7 Ø Ø
3
C 6 1 18 Ø 8 1 8 Ø
4
D Ø 9 Ø 8 Ø Ø 2 2
5
E Ø Ø 7 1 Ø Ø 2 Ø
6
F Ø Ø Ø 8 2 2 Ø 8
7
G Ø Ø Ø Ø 2 Ø 8 Ø
8

three are followed. This is represented in Figure 3.2(a). The start node is

called the root of the tree and is at the top level. At the next level below

are all the nodes (A, B, C) that can be reached from the start node. The

tree at this stage is one level deep, and the tree at this point represents the

routes SA, SB and SC. The nodes A, B and C are child nodes of S, and S

is the parent node of A, B and C, which are sibling nodes to each other.

Describing at a level below all the child nodes that can be reached from

a parent node at the level above is called expanding the parent node. At

the next level of the tree all the nodes that can be reached from A, B and

C are then described (Figure 3.2(b)). A and B have three children nodes

each, whereas C has five. The tree is now two levels deep and represents
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Figure 3.2 Ordered expansion of a search into a tree search

all the nodes that can be reached from S in two steps. For instance,

the left-most path in Figure 3.2(b) describes the route SAB, whereas the

right-most path the route SCF. It is ssumed that, when generating child

nodes, there is no need to go back to the node which is its parent. The

distance travelled each time the search is extended by a level can also

be calculated, but another possibility is to generate all possible routes

first without wasting time looking up distances in the matrix and then

calculate the total distances of all paths at the end.

The next step in the expansion is given in Figure 3.2(c). Only a partial

expansion of all nodes at the third level are described, but already it can

be seen how complex the search tree is becoming. The search is continued

until all paths reach G (all routes are complete), or it is not possible to

expand a node without revisiting a node already visited earlier on the

same path from the route node. Once the search stops, the distances for

all paths can be calculated to identify the route with least cost (Figure 3.3).

To determine the number of paths that have been explored, they can

be simply counted, as in the simple examples above. More generally,

however, if a node has b child nodes, it is said to have a branching
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Figure 3.3 A fragment of the full breadth-first search tree is shown here (with dots
in circles indicating that there are more sibling as well as child nodes
that are not represented in the figure)

factor of b. If all paths are complete at the same level d of a tree and

all nodes have b child nodes, then bd will have been explored paths. For

instance, if a tree had a branching factor of four (four child nodes from

each expanded node) and all paths complete at level six, there will be

46 complete paths, i.e. 4096 complete paths. That is, at the first level

there would be four child nodes to explore from the root node, i.e. 41

paths. At the next level, each of these four nodes would have had four

child nodes themselves, giving 42 (i.e. 16) paths, and so on. The number

of paths is pruned by preventing expansion of nodes to child nodes that

had already been visited on the path, and for the example the number of

child nodes for a parent was not fixed. If on average there are three child

nodes from each expanded node, taking the pruning of redundant nodes

into account, and the average depth of a complete path is six, even for the

simple example above there would have been approximately 36 paths, i.e.

729 paths, to explore. However, imagine if there were a graph of 50 cities

(for instance, a map of Great Britain), and each city could be connected to

10 other cities, and the average complete path depth was 25. That would

give approximately 1025 paths, i.e. 10 000 000 000 000 000 000 000 000
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(1 followed by 25 zeros) paths. Even if one billion paths per second

could be processed on a truly fast computer, this would still take over

7.5 billion years to calculate. Generating all possible routes is clearly

not feasible. Something a bit more intelligent is clearly needed, or the

constraint needs to be loosened that the absolutely correct answer to the

problem is required.

Breadth-first search

The technique for generating a search tree from a graph, as given in Fig-

ure 3.2, is breadth-first. Nodes are expanded in the order in which they

are generated. For instance, in Figure 3.2, S is expanded into A, B and C,

which are generated in the order 1, 2 and 3 (Figure 3.2(a)). Since A was

first generated in the expansion of S, it is expanded first to B, C and D,

which has generation order 4, 5 and 6; but before expanding any of these

nodes, breadth-first searching goes back to node 2 (B) and expands that

next to A, C and E (generation order 7, 8 and 9) and then goes back to

node 3 and expands that to A, B, D, E and F (generation order 10, 11, 12,

13, 14). Nodes 1, 2 and 3 have therefore been expanded. Since node 4 (B)

now comes first in terms of unexpanded nodes, it is expanded next, fol-

lowed by node 5, etc.. If the task had been to find the route which visited

fewest cities to get to G irrespective of distance, a breadth-first approach

would have found the routes SADG, SCDG and SCFG at the third level

(Figure 3.2(b)), and the search could have stopped at that point.

Depth-first search

The problem with a breadth-first search is in keeping a large number of

routes in memory so that nodes can be expanded in the order generated,

until all routes reach the destination node. Another technique for search-

ing is depth-first, where the search tree is formed using the most recently

generated node for further expansion (Figure 3.4).

Depth-first searching is advantageous when a solution is needed with-

out caring about the number of nodes visited or the distance travelled.

For instance, if only a route from S to G were required, it would have

been found at node 13 (Figure 3.4) (in comparison with finding the short-

est distance route at level 7 in Figure 3.3). Depth-first searches can also

use less memory for storing paths. Each path can be explored until it

reaches the goal node G, for instance, its distance calculated, and then
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Figure 3.4 Depth-first search and expansion order

the path can be pruned with a record made of the distance for that route.

However, depth-first searches must be supported by other checks that

ensure that loops are not formed. For instance, if a large depth bound is

set for the example graph in Figure 3.1, depth-first searching may loop

around the path SABSABSAB. . .

3.3 Heuristic search methods

Depth-first and breadth-first searches are examples of ‘blind’ search tech-

niques that systematically evaluate every path in the search space. How-

ever, when we humans search for a route from S to G in the map repre-

sented in Figure 3.1, we make choices of which paths to follow from a

particular node depending on how much closer it gets to G. For instance,

if we get to C from A, there does not seem much point in exploring the

path to B because, in some sense, it takes the search backwards and not

forwards in the search. Blind techniques, however, will explore the C to

B path equally with others and may even explore this path ahead of the C

to D or C to F if the algorithm requires nodes to be expanded, depth-first

or breadth-first, in alphabetic order (as in Figures 3.2, 3.3 and 3.4, where

child nodes are in alphabetic order). Once the algorithm is given some

extra domain-specific information to help its search strategy, heuristics

have been introduced.

A heuristic is any way that the algorithm can be directed towards

solving the problem through the use of domain-specific information. That

does not mean that the heuristic will always help solve the problem, but

it may help the algorithm solve the problem more quickly than a blind

approach. The main purpose is to reduce the search space by reducing
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the need to explore irrelevant or unlikely paths. A heuristic is therefore

independent of an algorithm and can be described independently of that

algorithm. For instance, a useful heuristic for the search of the graph in

Figure 3.1 may be: ‘When exploring paths, choose a path which takes

the search closer to the goal.’ The task then is to formalize this heuristic

in a manner that is useful to the algorithm.

One way to formalize this heuristic is to give the algorithm some extra

information in the form of an estimate of the distance remaining from a

particular node to the goal node. This estimate is provided by the user

and can be added to the data structure for the problem. For instance,

as noted before, the matrix in Table 3.1 is semi-redundant in that, given

that each path is bi-directional, the distance between node x and node

y is the same as the distance between y and x. Also, since G is the goal,

the last row of the matrix is redundant, since there is no need to leave G

(generate paths beyond G). This last row can be replaced with a set of

estimates concerning the distance remaining between all the other nodes

and G (Table 3.2).

Table 3.2 The data structure for the graph in Figure 3.1, supplemented with esti-
mates of the distance remaining in the final row. For instance, the second column
value in the final row indicates that the estimated distance remaining between A and
G is 20. These values can be estimated by, for instance, using information about the
scale of the map represented by the graph in Figure 3.1. It is not important that these
estimates are totally accurate

S A B C D E F G
1 2 3 4 5 6 7 8

S Ø 7 2 6 Ø Ø Ø Ø
1
A 7 Ø 2 1 9 Ø Ø Ø
2
B 2 2 Ø 18 Ø 7 Ø Ø
3
C 6 1 18 Ø 8 1 8 Ø
4
D Ø 9 Ø 8 Ø Ø 2 2
5
E Ø Ø 7 1 Ø Ø 2 Ø
6
F Ø Ø Ø 8 2 2 Ø 8
7
G 30 20 25 15 5 18 5 Ø
8
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Hill-climbing

When considering search problems such as this, the total number of

solutions and their cost can be thought of as a landscape, with peaks and

troughs representing collections of good and bad solutions. Most search

problems have graduated peaks, which means that if the algorithm is at

the bottom of a hill, then there is a set of steps to get to the top of that

hill (see Figure 3.12 later in this chapter).

Simple hill-climbing, so called because of its drive towards better per-

forming solutions, is a heuristically-informed search algorithm that ex-

pands a child node only if it is better than its parent node (Figure 3.5).

Imagine the search starts with S and the task is to find a route to G. S is

estimated to be 30 units of distance away from G (Table 3.2). The first

child of S the algorithm explores is A. A is estimated to be 20 units of

distance away from G. Since it is ‘closer’ to G than S, this node is selected.

When A is reached, B (the first child, using alphabetic ordering) is exam-

ined. B is 25 units of distance away from G, which is further away than

the estimated distance for A. So B is ignored for the moment. C, however,

is estimated to be 15 units of distance away from G, which is a closer

estimate than the 20 currently for A, so that path is followed. When C is

reached, the path to B can be ignored since it appears to take the search

further away from G according to the estimated distance remaining, but

D appears to take the search closer (5 units of estimated distance remain-

ing), so that path is taken. When D is reached, since going to A takes the

search to a node already visited on the path, it is ignored. F is the same

S

A

CB25 15

20

30

5 0

5 D

GF

Not explored, since this
node does not take us
closer to G than its parent

Actual cost of reaching G = 18

Figure 3.5 Simple hill-climbing
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Figure 3.6 Steepest-ascent hill-climbing with estimates of distance remaining

estimated distance away from G as D, so that can be ignored also. Then

G is found, which is the goal node, so that path is taken.

However, the search is not over. One route to G with cost 18 has been

found. The task is to find the shortest distance route, and other routes

must be explored, especially those rejected earlier in the search due to

estimated distances remaining that were larger than the parent node.

However, at least there is now one path with an actual cost that can help

guide the remainder of the search.

Steepest-ascent hill-climbing is a variation of hill-climbing that selects

the best possible move at each point and requires all child nodes of a

parent to be generated first before a decision is taken as to which child

node to expand further (Figure 3.6). Again, even after the route SCDG

is found, the search will need to explore the tree further to see if there

are routes of shorter distance than 16.

Both depth-first and breadth-first searches expand only one node at a

time. An extension to this is beam search, where two or more nodes are

expanded in parallel with the other paths being kept in the background

for subsequent checking, if required. The number of nodes explored in

parallel is given by a beam width. An example of a heuristic beam search

is given in Figure 3.7.

The search is started with S and its three child nodes. From the esti-

mated distances remaining, two nodes A and C are chosen for further

expansion at the next level. A has three child nodes and C has five.

Three nodes all have estimated distance five remaining. Since two of

these nodes are the same (D), one is chosen arbitrarily to expand further

with F. At the third level, G is found twice, with different actual dis-

tances for the two different routes. Again, the beam search must return
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Figure 3.7 An example of a beam search with beam width two (that is, two nodes
are expanded at each level)

to nodes not fully expanded to expand these further to see if a shorter

route exists.

3.4 Optimal search strategies

While heuristic search methods using estimates of the distance remaining

guide blind search techniques, it is clear that none of these techniques

will find the route with the actual least distance SBACEFDG very easily,

although such techniques can be useful for finding routes of shorter dis-

tance than previously known. For instance, if SCFG (distance 22) was

previously used as a route, then finding SADG, while not the shortest

route, leads to a better route than previously used. For certain applica-

tions it may be sufficient to find routes that are better than currently

used ones, and heuristic search methods work well in these situations.

However, if it is critically important to find the best or shortest route,

optimal search procedures must be used. Optimal search procedures are

distinguished from heuristic search methods by using the actual cost of

the partial routes so far found in the search tree as a guide to which node

to expand next. For instance, returning to the example in Figure 3.1,

when S is expanded to A, C and B and there are three child nodes to

expand next, an optimal search strategy would choose to expand B next

because the actual cost of S to B, which is 2, is less than the actual cost

of S to A (actual cost 7) and S to C (actual cost 6). After expanding B to

A, C and E, the actual cost of S to B to A is 4, S to B to C is 20, and S to

B to E is 9. Since S to B to A has least actual cost, it is chosen next. At

some point, a route that is continually expanded will exceed the actual
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cost of another route elsewhere in the search tree, at which point a jump

is made to whichever partial route has least actual cost so far.

Branch-and-bound and A*

This process of expanding (branching) nodes and then jumping to which

ever route has least actual cost (binding to that route) is called branch-

and-bound (or best-first) search. An example of branch-and-bound work-

ing on the example graph is given in Figures 3.8 and 3.9.
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Figure 3.8 An example of branch-and-bound on the graph in Figure 3.1
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Figure 3.9 Conclusion of the branch-and-bound search

Actual costs of reaching a particular node on a route are given next to

the node. The numbers in the diagram in square brackets refer to the order

of the branch-and-bound search. In Figure 3.8(a), when S is expanded to

A, B and C, the actual costs are used to determine which node to expand

next, and since SB has lowest actual cost of 2, it is expanded first [1].

Since SBA has the lowest cost of 4 anywhere in the search tree, it is

expanded next [2]. Since SBAC has the lowest cost of 5 anywhere in

the tree, it is expanded further [3]. Since SBACE has joint lowest cost

(with SC) of 6, and assuming it is chosen for expansion [4], the path

SBACEF results (assuming that nodes already visited on the route are

not revisited). At this point, SC has the lowest cost (Figure 3.8(b)), and

the search now binds to SC [5]. After expansion of SC, SCA and SCE

both have joint cost of 7, which is also the lowest anywhere in the search

tree. After SCA [6] and SCE [7] are expanded, (c) SA has the lowest
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actual cost, so the search is now bound to that path (Figure 3.8(c)). SA is

expanded to SAB, SAC and SAD [8], and SAC has the joint lowest cost

with SBACEF. Assuming that SAC is expanded further [9], the lowest

cost path anywhere in the tree is SBACEF (middle of tree).

The conclusion of the search is given in Figure 3.9. After SAC has been

expanded (Figure 3.8(c)), the lowest actual cost partial route is SBACEF

(with cost 8). This is expanded to D and G [1], and although G has

been found with actual cost 15, the search must continue since there are

many ‘open’ nodes that could still reach G with less cost. Since SAB now

has the lowest route cost of 9 [2], this is expanded, as a result of which

SACE [3] is expanded. This results in SBE having the lowest cost with 9,

and so the search is bound there [4]. Assuming that the children nodes

of SBE result in routes with a higher cost than 9, branching continues

with SCAB [5], which has the lowest cost anywhere in the tree. Again

assuming that the child nodes have greater cost, the search is then bound

to SCEF [6], which also has cost 9. Finally, assuming that the child nodes

of SCEF result in costs higher than 10 at some point, the search is bound

back to SBACEFD [7], and the graph’s true lowest cost path of 12 units

of distance is found. However, all open nodes elsewhere in the tree on

paths that have not yet resulted in a distance greater than 12 must be

explored further until they reach G with less actual cost than 12, or their

routes are greater than 12 and G has not been reached, at which point

the search is terminated with SBACEFD returned as the real lowest-cost

route.

While branch-and-bound is guaranteed to find the shortest (lowest-

cost) route once all open nodes are explored to the point where there

can be no more lowest-cost routes, there is still some efficiency to be

gained by not keeping paths that reach a node with greater cost than

another path in the search. For instance, in Figure 3.9 there is a path

down the left side of the search tree that reaches C with cost 27 (SABC).

Yet C is reached with one move from S with cost 6 at the first level

(SC) of the search tree (on the right of the figure). There is no need to

keep the higher cost path SABC since C is already reached with lower

cost. SABC can therefore be pruned in Figure 3.9. Applying a similar

line of reasoning, SAC (cost 8) and SBC (cost 20) should have been

pruned, leaving the search with fewer paths to explore. An efficiency

principle here is that if two or more paths reach a common node then

only the path that reaches the common node with minimum cost should

be kept and the rest deleted. Also, just as hill-climbing benefited from the

inclusion of heuristic information as to whether the search was heading
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in the right direction, some distance-remaining estimates can be used

to guide the search. The result is the A∗ algorithm, which is a branch-

and-bound search supplemented by the deletion of redundant paths and

the use of estimates of distance remaining. Figures 3.10 and 3.11 show

how the graph in Figure 3.1 would be searched by A∗, using the distance

remaining estimates contained in Table 3.2.

After expanding S (Figure 3.10(a)) each node is given an ‘x/y’ pair of

values, where ‘x’ is the estimated distance remaining plus actual cost, and

‘y’ is the actual cost only. The node with the least ‘x’ value is expanded

first [1]. This results in five child nodes [2]. Since there is an alternative

path to A with less or equal cost elsewhere in the search tree (SA has cost

7; SCA also has cost 7), one is pruned (in this case SCA). Similarly, SCB

can also be pruned since there is a path with less cost to B elsewhere in the

search tree (SB). There are two least ‘x’ values of 19 (SCD and SCF), and

imagine that SCD is expanded first (Figure 3.10(b)) through some form

of random tie-break [3]. Two child nodes can be pruned, since there are

less actual cost paths to these nodes elsewhere (SCDA (actual cost 23)

can be pruned because of SA (actual cost 7), and SCDF (16) because of

SCF (14). Also, the first route to G with actual cost 16 is found (SCDG),

which acts as a benchmark or threshold for the subsequent search. The

search must continue (Figure 3.10(c)) since there are several open paths

still left to explore. SCF is expanded because its ‘x’ value is lowest of

anywhere in the search tree. All three child nodes can be pruned [4] since

there are less actual distance paths to these nodes elsewhere. Since all

child nodes of F have been checked, it too can be pruned. Since SCE

has the lowest ‘x’ value, it is expanded (Figure 3.10(d)). The path to B

can be pruned [5], F is expanded (least cost ‘x’ value), the route to G is

pruned since there is an actual less-cost path elsewhere to G [6], and D

is expanded because of its ‘x’ value of 15. The path to A is pruned [7],

and a new, actual lower-cost route to G is found (actual cost 13). The

previous best route to G (SCDG) can now be pruned [8].

The second and final part of the search is provided in Figure 3.11. The

lowest ‘x’ value for an open node is SA (assuming a random tie-break

with SB, Figure 3.11(a)). All three child nodes can be reached with less

actual cost elsewhere in the search tree, and so A and its child nodes can be

pruned [9]. SB is expanded (Figure 3.11(b)) with two child nodes pruned

[10]. SBA is expanded and one of its child nodes is pruned [11]. SBAC

is kept because it reaches C with less actual cost (5) than SC (6) . SBAC

is expanded, and two child nodes are pruned [12]. SBACE is expanded

[13] and F kept since this is the least actual cost way of reaching F. One

of its two child nodes is deleted [14], since there is an actual less-cost
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Figure 3.10 The first half of A∗ searching the example graph
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way of reaching G, and finally G is found [15]. Since SBACEGDG is less

actual cost than the previously found route to G (SCEFDG), the latter

is pruned [16]. Since there are no more open nodes to examine, A* has

found the shortest (least actual cost) route from S to G.

3.5 Problems with search techniques

There are three major problems with any search technique that uses some

distance remaining metric: foothills, plateaux and ridges. Foothills are

local maxima that deflect the search to areas that initially look promis-

ing but on further investigation turn out not to lead to the goal (Fig-

ure 3.12(a)). All moves from the top of the search hill look worse than

an earlier position. Apart from wasting time and resource, there is the

problem of how to redirect the search in the most appropriate direction.

Plateaux occur when the distance remaining values for child nodes are
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Figure 3.12 Problems with search techniques using the distance remaining; S is the
start node and G the goal node
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identical or nearly identical (Figure 3.12(b)). No obvious route can be

found to the goal. Ridges occur when the search appears to be heading

in the right direction, but the further one goes the more distant the goal

actually becomes (Figure 3.12(c)). Some methods for dealing with these

problems are: to backtrack (i.e. systematically work back through the

route to identify the point where the problem started and resume search

by expanding an alternative node), to jump randomly anywhere in the

search tree and to explore an expansion several moves ahead to see if

that route looks promising before committing the search to it.

3.6 Complexity of search

The example graph contained in Figure 3.1 is deliberately designed to

show how complex a search can be without heuristic knowledge. A total

of 34 paths were examined in Figure 3.10 and Figure 3.11 before the

optimal path was found. Given an average branching factor b of three

and an average depth of route d to G of five, the figure of 34 is to be

compared with a figure of bd = 35 = 243 paths that might have had to

be explored exhaustively if A∗ had not been used or information gathered

earlier in the search to guide subsequent search. Nevertheless, the graph

might be such that it is necessary to explore all possible paths before

finding the shortest route. The time complexity of A∗, in the worst case,

is O(bd), where ‘O’ stands for ‘of the order of ’. This notation helps to

identify the amount of time A∗ might actually take to identify the shortest

route in the worst case. If 100 paths can be explored every second, then

O(bd) for the graph in Figure 3.1, given b = 3 and d = 5, is 2.43 s. If the

branching factor had been greater, say, b = 4 or b = 5, then the amount

of time would be 10.24 s (45 = 1024 paths) and 31.25 s (55 = 3125

paths), respectively. If, however, the branching factor remains constant

and the depth of the tree increases to d = 6 or d = 7 (that is, the best

route is on average 6 or 7 levels down the search tree), then A∗ would

take, in the worst case, 7.29 s (36 = 729 paths) and 21.87 s (37 = 2187

paths). The O notation here helps estimate how long a search will take

in the worst possible case.

It may be asked what the ‘worst possible case’ means here. Consider

a depth-first search, with the search tree expanding the most recently

generated nodes first (Figure 3.4), where the desired shortest path is on

the extreme right-hand side of the search tree. A depth-first search would

then need to generate every possible route to find the best route, and this

is the worst possible case. A depth-first search is therefore also O(bd)
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(assuming some form of backtracking so that nodes generated earlier

in the search tree are revisited to be expanded later in the search tree).

Sometimes the shortest route might be on the very left of the tree, and

its structure is such that all remaining routes can be pruned immediately

without any need to expand them further. In this ‘best possible case’

the solution has been found in O(d), that is, within the time it takes to

generate a route of average length. The O notation is not meant to take

into account practical aspects of computation, such as processor speed,

but is meant to give an abstract description in terms of units of time,

however measured, of how long an algorithm will take to complete its

task, in the worst possible case.

The ‘O’ notation is also used to estimate space requirements for a

search. For instance, with A∗, in the worst case, all paths found in the

search tree may need to be stored because the shortest route is not found

until the very end of the search and no pruning of redundant paths is

possible. The space complexity of this worst-case scenario is also O(bd).

For instance, if it takes 1 byte to store a node and its path to a child, then

for A∗, with b = 3 and d = 5, 243 bytes are needed. For a search with

b = 10 and d = 10, 10 billion bytes would be needed.

It is better, from a computational complexity viewpoint, to have algo-

rithms that are of the order O(xk), where x can vary and k is a constant

number, than to have an algorithm of the order O(kx). Consider algo-

rithms of the order O(12), O(22), O(32), O(42), O(52), etc., i.e. O(xk).

The values are O(1), O(4),O(9), O(16), O(15), etc. Compare this to

algorithms of the order O(21), O(22), O(23), O(24), O(25), etc., i.e. O(kx).

The values here are O(2), O(4), O(8), O(16), O(32), etc. In the latter

case, there is an exponential increase in the complexity (the exponent of

kx increases), whereas in the former there is a polynomial increase (the

polynomial of xk increases).

With regard to an O(bd) search, it is better to have the branching factor

b increase than the depth d of the tree increase. For instance, consider an

algorithm of O(702), that is, each node has 70 connections (with 70 or

more nodes) but the best route can be found at level 2 of the search tree.

This results in 4900 paths to explore. On the other hand, if there were

just two connections from each node, the best route will be found at level

70, i.e. O(270). This might happen with a 70 city map where each node

was connected to just two other nodes. The task of finding the shortest

route that visits every city would now mean that the resulting number of

paths is too large for any computer to calculate. In fact, it is estimated that

there are about 270 atoms in the whole universe. Even assuming one atom

per path, all the atoms in the universe would be required just to store
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all the paths if a depth-first search or A∗ is used. Unfortunately, most of

the really interesting problems, including several in bioinformatics, have

search spaces and algorithms which are exponential in nature. Also, no

attempt has been made to assess the cost of actually running the algorithm

in the above cases, and this cost must also be included in the estimates

of how long an algorithm will take to find the right solution.

3.7 Use of graphs in bioinformatics

The graph in Figure 3.1 provided an example of maps that can be

searched for routes. Such graphs can also be used to check whether spe-

cific routes exist between two nodes. For example, if it is asked whether

a route exists that starts from S and visits only cities A and F on the way

to G, no such route exists. After A, another city has to be visited to reach

F. In other words, the sequence SAFG is not a route of the map, whereas

SADFG is. Another sequence SDFG is also not a valid route of the map.

Graphs can therefore be used not just to generate routes but also to check

potential routes or, in this case, the sequence of cities that must be visited

between the start and end nodes. Such a sequence can be regarded as a

string of characters, and the task is to determine whether the string is

a valid string, or sequence of characters, according to the structure and

content of an automaton.

Consider the problem of constructing a graph that accepts the follow-

ing four DNA sequences as valid:

ACAATG

ACAAATC

AGAATC

ACCGATC

Figure 3.13 contains a special sort of graph, called an automaton, that

shows how these four sequences can be ‘accepted’ by the automaton. An

automaton adds direction to the arcs in the graph which specify the way

in which links must be followed. This automaton consists of labelled

states 1 to 8, with directed connections between these states. State 1 is

the start state, and states 7 and 8 the final state. Each directed connection

is labelled with a letter which specifies that the connection can only be

followed if the letter is encountered as the next symbol in the string. For

instance, to accept ACAATG, start in state 1 and follow the link to 2,

since the label A on the arc going out from 1 is encountered as the first

character of the sequence. In the act of following a link, the move is
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A
1 2 3 5 6 7

8
4

C A T G

CG A

AC

ACAATG = 1, 2, 3, 5, 5, 6, 7
ACAAATC = 1, 2, 3, 5, 5, 5, 6, 8,
AGAATC = 1, 2, 4, 5, 5, 6, 8
ACCGATC = 1, 2, 3, 2, 4, 5, 6, 8

Figure 3.13 A graph as automaton

made to the next character of the sequence (C). In state 2, there are two

choices, and the link to state 3 is followed since the current character is

C. The next character is A, and so on. The numbers by the four sequences

at the bottom left of the diagram provide a history (trace) of the states

entered. If a character is encountered that does not permit the exit from

a state that is not a final state, the automaton ‘stops’ and a reject answer

is returned, i.e. the sequence is not accepted by the automaton. Only if

the automaton stops in a final state (there are no more characters to be

processed) is the sequence accepted. Notice that loops back to earlier

states and self-states are allowed.

A matrix representation can still be used to represent the graph as

automaton, as provided in Table 3.3. The entries in the table are not

distances but conditions that must be satisfied if there is to be a transition

from one node (state) to another. Such conditions become the characters

that must exist in specific positions of the sequence if the sequence as a

whole is to be accepted as valid.

Expressions and grammar

An expression can be derived that provides a general description of the

structure of any sequence that will be accepted by this automaton if

some extra notation is added to the sequence. Let ‘*’ mean ‘zero or more

occurrences’, ‘+’ mean ‘one or more occurrences’, and ‘[|]’ mean ‘or’,

with the alternatives provided on either side of the middle stick. Then

the four sequences ACAATG, ACAAATC, AGAATC and ACCGATC can

be expressed as ‘A [G | C+ | C+G] A* T [G | C]’. That is, a sequence is

accepted by this automaton if (i) it starts with an A, followed by (ii) G, or

by one or more occurrences of C (‘C+’), or by one or more Cs followed

by a G (‘C+G’), followed by (iii) zero or more As (‘A*’), followed by
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Table 3.3 Two ways of representing the automaton in Figure 3.13. In the top table,
a blank entry means that no path exists between the node number given in the row and
the node number given in the column. A transition between two nodes is permitted
only if the character given in the appropriate cell is encountered. Otherwise, the
automaton stops and ‘rejects’ the string. If the automaton stops in state 7 or state
8, this means that the string is accepted. In the bottom table, each entry in the table
specifies which state the automaton is to switch to if a character is encountered in
a particular state, as given by the row. For instance, if the automaton is in state 1
(row labelled 1) and an ‘A’ is encountered, then the automaton switches to state 2. A
blank entry means that no transition is possible and the automaton therefore cannot
proceed. The entries in boldface (row 6) specify the terminal (accept) states.

1 2 3 4 5 6 7 8

1 = start A
node
2 C G
3 C A
4 A
5 A T
6 G C
7 = goal node
8 = goal node

A C G T

1 2
2 3 4
3 5 2
4 5
5 5 6
6 8 7

(iv) one T, followed by (v) either a G or a C. The state numbers in the

automaton are useful for converting this complex expression into six

transition rules, as follows:

1 sequence → A S2

2 S2 → C S3 | G S4

3 S3 → C S2 | A S5

4 S4 → A S5

5 S5 → A S5 | T S6

6 S6 → G | C
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That is, a sequence starts with an ‘A’ followed by state 2 (‘S2’), according

to rule (1). State 2 is either a ‘C’ followed by S3 or a ‘G’ followed by

S4, according to rule (2), and so on. Boldface is used to distinguish the

states of the automaton from the characters of the string. The special

start symbol sequence is used to signify that the set of rules (1) to (6)

starts with rule (1). Such a set of rules, together with a specification of

the symbols that are allowed, including notation symbols such as ‘→’

and ‘|’ as well as a special start symbol, is called a grammar. A trace of

how, for instance, the first of the sequences above has been generated

with this grammar, is as follows:

sequence → A S2 → AC S4 → ACA S5 → ACAA S5 → ACAAT S6

→ ACAATG

The grammar (1) – (6) above contains two types of symbols, apart from

the rewrite (‘→’) and alternative (‘|’) symbols. The symbols in boldface

are non-terminals, meaning that they are symbols that appear on the

left-hand side of rules for expansion and also on the right-hand side of

some rules to allow for loops. The symbols not in boldface are terminal

symbols, meaning that such symbols cannot be expanded further and are

actual characters of the sequence.

When a grammar contains rules of the form S → X or S → X Y

only, that is, when the right-hand side of all rules of a grammar contain

either only one terminal symbol X or a terminal symbol X followed at

most by one non-terminal Y, this is a a right-linear regular grammar.

Sequence expressions that attempt to describe strings accepted or gen-

erated by such grammars, such as the expression ‘A [ G | C+ | C+G ]

A∗ T [G | C]’, are called regular expressions. Such grammars are among

the simplest grammars possible, and it is easy to construct finite-state

automata, such as the one provided in Figure 3.13, for the sequences

either generated or accepted by such grammars. For every regular

expression or regular grammar, there is an equivalent finite-state au-

tomaton that represents or describes it, and vice versa. Regular expres-

sions are used widely in bioinformatics to search for sequences match-

ing a particular pattern, as given by the regular expression, in DNA

or protein sequence databases. When a regular expression is input to

the database, a finite state automaton is generated from the regular

expression that efficiently and speedily scans the DNA or protein se-

quences in the database to identify partial and total matches against the

expression.
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3.8 Grammars, languages and automata

Grammars and automata can be used to study the types of problem

that can be solved with a computer. A grammar is formally defined to

consist of an alphabet, combinations of symbols from this alphabet to

form strings, and a language that contains all the permissible strings

according to the rules of the grammar. More precisely, an alphabet for

DNA, for example, consists of the four symbols ‘A’, ‘C’, ‘G’ and ‘T’, and

this is formally specified using ‘
∑

’ (capital sigma):
∑

= {A,C,G,T}.

A string is any random combination of these symbols, such as

‘AAAAA’, ‘ACGTACGTACGT’ and ‘GGGGCCCCTTTTAAAA’. The

task of a grammar is to specify which of these strings is acceptable or

valid according to the rules of the grammar. For instance, in the previ-

ous use of graphs to represent maps, any random combination of city

sequences (e.g. ‘SAASAGSA’) can be generated, but only a small num-

ber of those combinations are valid according to the actual graph (Fig-

ure 3.1). The graph therefore expresses the permitted combinations of

city sequences (‘SADG’ is a valid sequence or route whereas ‘SDAG’ is

not). The task of a grammar, or graph as automaton, is therefore to

identify the subset of random combinations of symbols (strings) that are

actually permitted. For instance, the graph in Figure 3.1 can be repre-

sented as a grammar (without concern about the distances):

(i) S → SA | SB | SC

(ii) A → AS | AB | AC | AD

(iii) B → BS | BA | BC | BE

(iv) C → CS | CA | CB | CD | CE | CF

(v) D → DA | DC | DE | DF | DG

(vi) E → EB | EC | EF

(vii) F → FC | FD | FE | FG

(viii) G → G

Note the difference between boldface symbols and non-boldface symbols.

For instance, rule (i) states that the non-terminal S can be rewritten or

transformed into terminal S followed by non-terminal B or non-terminal

C or non-terminal D. These eight rules of the grammar all have a non-

terminal on the left-hand side of the rule and a terminal followed by a
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non-terminal symbol on the right-hand side of the rule (i.e. the rules are

right linear). Notice also that the only way to ‘exit’ the rules is at some

point to rewrite G as G only (rule (viii)). The alphabet for this grammar

is therefore
∑

= {S,A,B,C,D,E,F,G,S,A,B,C,D,E,F,G} and valid strings

(routes) of the grammar are, for example:

(a) S → SA → SAD → SADF → SADFG → SADFG

(b) S → SC → SCS → SCSC → SCSCF → SCSCFG → SCSCFG

That is, of all the possible random combinations of the letters S to G, only

those combinations starting with S and ending with G where the letters

in-between are sequenced according the rules constitute the language

accepted by the graph as automaton. Some of these combinations will

contain loops, such as in the second derivation (b) above where the route

revisits S from C, which in terms of routes may not be desirable. If that

is the case, directions (arrows) will need to be put on the links between

the cities to prevent such loops and the grammar rewritten accordingly.

Automata theory

In automata theory the task is usually to determine whether strings are

part of the language according to the rules of the grammar and using

the symbols of the alphabet. One of the significant discoveries in com-

puter science was the realization that this formulation of automata theory

was general enough to cover all computational problems. For instance,

even asking for the product of two numbers m and n is equivalent to

asking which one of the strings ‘m × n = 1’, ‘m × n = 2’, ‘m × n = 3’,

‘m × n = 4’, ‘m × n = 5’, ‘m × n = 6’, etc., is valid according to the rules

of grammar called ‘arithmetic’, where m and n are non-terminals that can

be rewritten in a variety of ways (e.g. m → 1|2|3|4|. . . ). For instance,

‘2 × 3 = 6’ is a valid string whereas ‘2 × 3 = 5’ is not.

Finite-state automata are not adequate for coping with certain nested

structures found in biosequences, however. RNA sequences sometimes

contain loops, whereby the RNA folds back on itself to form a double

strand (Figure 3.14). RNA can form a looped structure when there is

complementary base pairing within a sequence. In the left-hand figure,

the mRNA primary sequence ‘NNNNNAAAAAAAAAAUUUUUUUU-

UUNNNNN’, where ‘N’ stands for any nucleotide, forms a secondary

structure loop when the subsequence ‘AAAAAAAAAAUUUUUUUUUU’
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A U

A U
A U
A U
A U
A U
A U
A U
A U
A

N N N N NN

NNNNNAAAAAAAAAAUUUUUUUUUUNNNNN

mRNA

Secondary
structure

N N N N

U

C G

C G
C G
C G
C G
C G
C G
C G
C G
C

N N N N NN

NNNNNCCCCCCCCCCGGGGGGGGGGNNNNN

mRNA

Primary structure

Secondary
structure

N N N N

G

Figure 3.14 Looped RNA structure with equal numbers of complementary base

pairs with its complement bases, and similarly for the right-hand fig-

ure involving Cs and Gs. Such looping can form the basis for remov-

ing introns from mRNA, where the loop is ‘cut’ out and the sequence

‘NNNNNNNNNN’ is left as the exon. Also, non-translated transcripts

for transfer RNA (tRNA) can form such loops, called ‘hairpins’, which

are required for the correct functioning of tRNA.

To cope with arbitrary long expressions where there is a specific rela-

tionship between two or more symbols, a more powerful grammar than

a regular grammar is needed. For instance, here is a way of capturing the

information that only those sequences that contain an equal amount of

two symbols are strings of the language as follows: L = {AnUn |CnGn,

n ≥ 1}. That is, a valid string of the language is some number n of As

followed by the same number of Us, or some number n of Cs followed by

the same number of Gs, where n is greater than or equal to 1. In grammar

terms, the rules for such structures can be:

loop → loop1| loop2

loop1→ AU | A loop1U

loop2→ CG | C loop2 G

The recursion of loop1 and loop2 (that is, the occurrence of loop1 and

loop2 on both the left-hand and right-hand side of their rules) allows

for loop1 or loop2 to be incorporated as many times as one needs. An

example of a trace is: loop → loop2 → C loop2G → CC loop2GG →

CCC loop2GGG → CCCCGGGG, where italics signify the most recently

inserted nucleotides. The recursion terminates when loop1 or loop2 is

expanded without either recurring, as in the final step of the trace above.

The automaton in Figure 3.15(a) is a finite-state automaton that is

not powerful enough, since it accepts strings where there are an unequal

number of complementary characters. Given the grammar for generating
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Count = 0
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C
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U

A

5

4

(a) Finite state automaton

(b) Push-down automaton

Figure 3.15 The difference between a finite-state automaton and a push-down au-
tomaton

loops (Figure 3.13), a finite-state automaton (FSA) will not be powerful

enough to accept only those strings specified by the grammar. That is,

while the FSA will accept strings of the form ‘AAAUUU’ and ‘CCCGGG’

it will also accept, incorrectly, strings of the form ‘AUUU’ and ‘CCCCG’.

In other words, an FSA has no memory of what has occurred earlier in

the string but simply moves from state to state depending on the symbol

encountered in the input string. It is possible (Figure 3.15(a)), however, to

construct a push-down automaton (PDA) by attaching some memory to

the automaton in the form of a count variable which is incremented every

time the symbol ‘A’ or ‘C’ is encountered and decremented every time the

symbol ‘U’ or ‘G’ is encountered. If it is stipulated that that only those

strings that result in the PDA terminating in states 4 and 5 with count

equal to zero are accepted, then only those strings that have an equal

number of As followed by an equal number of Us (and equal number

of Cs followed by an equal number of Gs) will indeed be accepted. The

PDA is ‘more powerful’ than the FSA in that it accepts fewer strings than

the FSA.

A ‘more powerful’ grammar or automaton results in fewer strings

being accepted (or generated) than a finite state automaton. ‘More pow-

erful’, in computational terms, means satisfying more constraints. That
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is, a finite state automaton can accept or generate strings of the form

XnYm (any number of Xs followed by any number of Ys), some of which

will satisfy the constraint that n = m by chance (for instance, three Xs

followed by three Ys). However, once it is decided to accept only a sub-

set of these strings, namely, only those strings where there is a specified

relationship between the number of Xs and the number of Ys, a more

powerful formalism and automaton are required. Also, the type of in-

formation that can appear on a link has been increased to include an

action, whereas a finite-state automaton can only have conditions. In

this case, the action consists of updating a counter which must be stored

in memory. Therefore, a push-down automaton requires a memory, and

that is what makes the automaton able to deal with strings where there

are constraints concerning the number of occurrences of two symbols in

the string.

More powerful automata

Imagine that the task now is to accept or generate strings where there

is a dependency between three symbols in a string, such as an equal

number of Xs, Ys and Zs, in that order. For example, the language may

be: L = {AnCn Un, n ≥ 1}. A push-down automaton will now not be

powerful enough. If only one counter variable is used to check that the

number of Xs is equal to the number of Ys, when the counter returns

to zero after the last Y there will be no information as to how many Xs

and Ys were encountered. What is required is a second counter which is

set to the same value as the number of Xs first encountered, so that it

stores this information even after the first counter is returned to 0 after

the last Y. An automaton with two memory counters is called a linear-

bounded automaton (LBA, Figure 3.16). An LBA is required to accept

strings where there are specified relationships between three symbols.

1 2 3
Count2 = count2 + 1

A C U

Count1 = count1 − 1
Count2 = count2 − 1

Count1 = count1 − 1
Count2 = count2 − 1

Count1 = 0
Count2 = 0

C U

Count2 = count2 + 1Count1 = count1 + 1

Figure 3.16 A linear-bounded automaton (LBA)
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Two counter variables are now required to accept only those strings that

conform to L = {An Cn Un, n ≥ 1}, that is, only strings containing one

or more As followed by the same number of Cs followed by the same

number of Us. The first counter counts the number of As and the second

the number of Cs. Both counters are decremented with every U found.

Any string that does not finish in state 3 with count1 and count2 equal

to zero is rejected by this LBA.

If there is a need to check for relationships between more than three

symbols in a string, a Turing Machine – which essentially has an infinite

number of counters available – is required. Turing Machines are the most

powerful type of computing machine imaginable. That is, while no real

Turing Machines exist (because of the need for an infinite number of

counters or, as is more conventionally stated, an infinite memory) there

is no more powerful machine imaginable, if by ‘machine’ is meant some

mechanism that can follow an algorithm systematically and rigorously to

return a correct result. Bioinformatics has fortunately so far not required

the use of an automaton that is the equivalent of a Turing Machine for

solving problems in biology.

One of the reasons for looking at the relationship between languages,

grammars and automata in some detail is to relate the types of problem

that can be computed with classes of complexity. A finite-state automa-

ton solves problem in linear time. For instance, if it takes the finite-state

automaton in Figure 3.13 five units of time to process the string ACATG

(one unit of time for each symbol), then it will take 10 units of time to

process ACAAAAAATG (one unit of time for each path followed). This

is because the rules of a regular grammar only allow the occurrence of

one terminal symbol or, if a non-terminal symbol appears, only one non-

terminal which in turn can be expanded only as one terminal symbol. A

push-down automaton for accepting strings of a context-free language

will take longer than linear time, since any combination of symbols can

appear on the right-hand side of a rule. This increases the branching

factor of the tree used to generate sequences which, as seen earlier with

regard to search trees, leads to polynomial time increase, where the in-

crease depends on the number of branches possible at each node of the

tree. After push-down automata, complexity becomes at least exponen-

tial (the depth of the tree increases) and, in the case of a Turing Machine,

semi-decidable. That is, if there is a problem that requires the power of

a Turing Machine, it has to be accepted that the automaton may loop

forever for some strings which are not strings of the language. The au-

tomaton will keep trying different ways to identify whether the string

is or is not a string of the language. If the string is indeed a string of
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the language, the Turing Machine will eventually stop in an accept state.

If, however, the string is not a string of the language, it is possible that

the Turing Machine will not stop in a reject state. It may loop for-

ever trying to find a way of accepting the string. It will not be known

when to switch off the automaton, since we it will not be known if the

Turing Machine will loop forever or would have found the answer (which

may be an accept) the moment after the automaton is switched off. For

most strings that are not part of the language the Turing Machine will

eventually halt in a reject state, but one of the most important findings in

computer science is that it is not possible to predict for which non-strings

the Turing Machine will halt in a reject state and for which strings it will

loop forever (the halting problem). That is, it is not possible to find or

run an algorithm that, prior to running the Turing Machine with that

algorithm on some sequence, will decide in all cases whether that Turing

Machine will halt or not for that sequence.

3.9 Classes of problems

This leads to a classification of problems that are P (for polynomial),

NP (for non-deterministic polynomial), and NP-complete. A problem

falls in the class P if it can be solved at worst in polynomial time (such

as with a push-down automaton). A problem falls in the class NP if

it can only be solved by a Turing Machine that allows more than one

branch with the same label. However, since there are a number of possible

exit routes from a node in the automaton for the same character in the

string, all of them will need to be tried. Since a Turing Machine can do

what it likes with the string, including rewriting it, it will not be known

when to stop the machine if it continues to run for a long time. All that

can be said is that, if the string is a valid string of the language, the

Turing Machine will eventually halt. The reason this class of problems

is called non-deterministic polynomial is to express the theoretical view

that, if there is an infinite number of machines each of which could

explore each path of the search tree in parallel, the problem could be

solved in polynomial time. However, some problems are such that the

exponential nature of the problem may soon lead to there being more

paths to explore than computers on the planet, or even the universe.

Finally, the class NP-complete refers to those problems that are NP but

where the solution, if returned, can be verified in linear or polynomial

time at worst. For instance, searching for any route between S and G is
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an exponential problem, but when a route is found it can be verified by

simply following the route and seeing if the route starts at S and finishes

at G (i.e. linear time depending on the number of cities visited). However,

to verify a shortest route returned by the search algorithm can take as

long as searching the tree to start off with. That is, a check needs to

be made that among all the other routes there is no shorter route. One

of the biggest unsolved problems in computer science is to determine

whether, for all the problems that fall in the class NP (but not for the

class NP-complete), there are algorithms that have not yet been found

for solving these problems in polynomial time, i.e. does NP = P? There

are theoretical findings that indicate that, if a polynomial-time solution

can be found for just one of the problems in the NP class, there will be

polynomial-time solutions for all problems in the NP class. However, so

far no one has managed to conclusively prove that a single problem in

NP actually falls in the class P.

These comments on complexity assume that what is required is always

to find the provably best or optimal answer to a problem. For instance,

the problem of finding the provably best alignment in a multiple sequence

alignment problem is an NP problem (there are many different locations

to insert gaps, for instance), but often a good solution is required rather

than the best solution. Also, the complexity of an algorithm for solving

a problem always assumes a worst-case scenario, which will sometimes

but not always occur. Great savings in time can also be obtained if solu-

tions are required that are better than those currently available (heuristic

solutions), or solutions which are as close to optimal as can be determined

within a specified bound (approximated solutions).

This chapter has shown that, while new technology allows researchers

to compute solutions to ever more complex problems, some tasks can

require more computation than is possible with every computer running

for the rest of time. Even some apparently simple tasks such as finding

the shortest path through a graph, or searching for matching strings, can

be NP-complete. Therefore for many problems in science, engineering

and, most importantly, bioinformatics, more intelligent search and op-

timization strategies must be used. The heuristic hill-climbing methods

seen in this chapter are among the simplest of the search methods cov-

ered in this book. These first three chapters have laid the foundations

of biology, bioinformatics and computer science. The remainder of the

book describes the many intelligent methods currently in use in bioinfor-

matics, ranging from the commonly-used standard methods to the more

unusual and yet-to-be applied techniques.
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3.10 Summary of chapter

1 Graphs consist of nodes (vertices) connected by links (arcs). Many

problems in computer science and bioinformatics can be converted

into a graph form for search purposes.

2 Searching graphs can be through exhaustive or heuristic methods.

Exhaustive methods typically use depth-first or breadth-first meth-

ods to search the tree systematically. Heuristic methods require some

domain-specific information, such as distance remaining estimates, to

guide the search.

3 Hill-climbing is a popular heuristic method for a search. Simple hill-

climbing takes the first option that is better than where the search

currently is, whereas steepest-ascent hill-climbing examines all child

nodes first before choosing the best path.

4 Hill-climbing does not guarantee to find the optimal path. Branch-

and-bound methods, supplemented by pruning of redundant nodes

and the distance remaining, do guarantee to find the optimal path.

5 In all search cases, the complexity of the search increases as the num-

ber of nodes and links increases. This can be problematic for a number

of bioinformatics problems requiring a search, such as accepting or

generating strings of characters.

6 Finite-state automata are a method for dealing with regular grammars

and the expressions generated by such grammars. They are efficient

but lack the power to deal with strings where there is some relation-

ship between two or more symbols in strings.

7 Push-down automata can handle strings in which there is some re-

lationship between two symbols but need some memory to work

effectively. Some bioinformatics phenomena, such as looped RNA

structures, require the power of a push-down automaton. Languages

handled by push-down automata require context-free grammars for

their generation.

8 Beyond context-free grammars lies increased complexity (linear-

bounded automata and Turing Machines). Problems can be classified
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as polynomial or non-deterministic polynomial. Polynomial problems

require polynomial algorithms that grow linearly in terms of memory

and time or at worst they grow in polynomial time. Non-deterministic

polynomial (NP) problems are characterized by exponential growth.

Unfortunately, a number of problems in bioinformatics fall in the NP

class.

3.11 Further reading

Hopcroft, J.E., Motwani, R. and Ullman, J.D. (2000) Introduction to Automata

Theory, Languages and Computability, 2nd edn, Addison Wesley.

Luger, G.F. (2002) Artificial Intelligence: Structures and Strategies for Complex Prob-

lem Solving, Addison Wesley.

Winston, P.H. (1992) Artificial Intelligence. Addison Wesley.
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4
Probabilistic Approaches

4.1 Introduction to probability

Probability is the branch of mathematics which is concerned with the

likelihood that events will occur. It is an invaluable tool for scientists

since an event is often not guaranteed to occur, but can only be charac-

terized by the fact that it will occur an average number of times given a

number of trials. This is also of particular importance to bioinformati-

cians as the interactions and reactions that occur in biological processes

can often only be characterized by probability theory. Probability theory

can also be useful in determining the underlying structure of datasets or

sequences. This chapter firstly provides a short background to probability

and then details a number of the probabilistic approaches to bioinfor-

matics problems.

Conditional probability is different from frequentist probability. For

example, if 55 per cent of the students in a department are female and

45 per cent are male, then the event: ‘a randomly selected student is fe-

male’ has a probability, according to the frequentist approach, of 0.55,

where the probability ranges from 0 (impossible) to 1 (necessary). Such

a probability measure reflects data that has already been collected, and

a frequentist approach works provided there is an accurate record of the

gender of all students. However, in some cases this may not be possi-

ble because the data does not exist, or the accuracy of the data cannot

be relied upon. In such cases we have to reason under conditions of

uncertainty, where we may need to allocate provisional measures of be-

lief in certain facts before we can draw conclusions. For instance, if an

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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insurance company has to decide what the insurance premium should be

to cover a pharmaceutical company that is planning to introduce a new

anti-cancer drug, with the possibility of toxic side-effects not yet known

for the population at large, the insurance company will lose business if

it adopts a ‘wait-and-see’ policy before it sets its premium, especially if

national law insists that the pharmaceutical company has to have insur-

ance policies in place before the drug can be released. In such cases the

insurance company must try to work out a competitive premium based

on what is known as well as what it believes it knows, and hope it gets it

right. The insurance company needs a formalism that will allow it to play

around with various hypotheses that will allow it to calculate ‘best-case’

and ‘worst-case’ scenarios, where such scenarios will make assumptions

about mortality rates and toxic side-effects as well as a range of com-

pensation claims that may arise. Conditional probability approaches are

widely used to deal with such uncertain situations.

Similarly, there may be uncertainty as to the cause of a particular event.

Let us say that the insurance company is presented with a claim from an

individual that taking the anti-cancer drug has led to severe side-effects,

including loss of energy and therefore loss of job. The company will need

to work out the probability that the drug is to blame given the loss of

energy and other factors, such as natural ageing or the original cancer

having caused bodily damage before the drug was administered for the

first time. Frequentist data may be missing when various conditions affect

an individual in specific ways.

Related concepts here are those of independent and dependent events.

Two events are independent if the probability of either of them remains

the same if the experiment is repeated many times. For instance, the event

of ‘the coin will land heads’ will remain at 50 per cent, no matter how

often the coin is flipped, assuming the coin is fair. If the first time the coin

is flipped (first event) it lands on heads, there is still a 50–50 chance that

the next time it is flipped (second event) it will land on heads, and the

next time, and the next time, and so on. While the sequence of flipping

the coin 20 times and it landing on heads each time may have very low

probability, each time the coin is flipped there is a 50–50 chance of it

landing on heads. The result of a specific coin flip event is independent of

the result of the previous coin-flip event. Compare this with 20 coins in a

bag, 10 American coins and 10 British coins. The event of taking a coin

out of the bag, with the result being an American coin, is 50–50; but if

the coin is not put back in the bag the chance of the same event (‘the event

of the coin being American’) is reduced the next time the experiment is

repeated, since there are fewer American coins in comparison to British
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coins. The outcome of the second event is dependent on the outcome of

the first.

There is therefore a difference between joint probability and condi-

tional probability when dealing with sequences of events. In the case of a

coin being flipped, the joint probability of a sequence of four consecutive

flips resulting in four heads is the product of each flip independently of the

other flips, i.e. 1/2 ∗ 1/2 ∗ 1/2 ∗ 1/2 = 0.0625. The probability of each event is

multiplied by the probability of the next event in the sequence, and so on,

until the end of the sequence is reached. If the four flips are represented

by A, B, C and D, respectively, the probability of four consecutive heads

is written as P(A, B, C, D) which is calculated as P(A) ∗ P(B) ∗ P(C) ∗

P(D). The events here are all independent of each other. However, the

sequence of four American coins being extracted from the bag one after

another, without replacement of the coins, consists of dependent events

whereby the probability of a later event must take into account the prob-

ability of an earlier event. That is, if there are 10 American and 10 British

coins in a bag, the probability of the first event is 1/2, but the probabil-

ity of the second event has to take into account the probability that an

American coin was removed in the previous event. The probability of the

second coin being American is reduced and is now 9
20 . The probability

sequence therefore is 1/2 ∗ 9
20 ∗ 8

20 ∗ 7
20 , which is 0.0315. If A, B, C and

D represent the four events of taking a coin from the bag, this sequence

can be represented as A ∗ B | A ∗ C | B ∗ D | C, where ‘|’ stands for ‘given’

or ‘depending on’. That is, the probability of A, B, C and D, written as

P(A, B, C, D) is now P(A) ∗ P(B | A) ∗ P(C | AB) ∗ P(D | ABC), where

P(X | YZ. . . ) means that the probability of X depends on the probability

of Y and Z and . . . occurring in sequence or as a chain of events.

4.2 Bayes' Theorem

Examining what P(B | A) is in the above example, while the result is 9
20 ,

another way to express this is as follows:

P(B |A) =
P(AB)

P(A)

where P(AB) is the joint probability of A and B occurring. In other words,

for this example above,

P(B |A) =
P(AB)

P(A)
=

1
2 ∗ 9

20
1
2

=
9

20
.
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Some simple algebraic manipulation then follows:

P(B |A) =
P(AB)

P(A)

⇒ P(AB) = P(A) × P(B |A)

⇒ P(AB) = P(B) × P(A |B)

⇒ P(A |B) =
P(A) × P(B |A)

P(B)

⇒ P(A |B) =
P(B |A) × P(A)

P(B)
.

In other words, the probability of an event B occurring given that A has

occurred has been transformed into a probability of an event A occurring

given B has occurred. This is Bayes’ Theorem. More formally, Bayes’

Theorem states:

P(H |E) =
P(E |H) × P(H)

P(E)

where P(H | E) is the posterior probability of a hypothesis H after con-

sidering the evidence E, P(E |H) is the likelihood and gives the proba-

bility of the evidence E assuming H (the conditional probability), P(H)

is the prior probability of H alone, and P(E) is a normalizing or scaling

constant to ensure that the posterior probability adds up to 1.

Bayes’ Theorem is very useful when reasoning under conditions of

uncertainty, since it allows us to reason about the prior event H if a

subsequent event E has occurred but we do not know whether event

H has in fact occurred. For instance, given a bag with 10 British and 5

American coins, if only the event E is observed of a second coin being

removed from the bag being American, we can still infer the probability

of H being an American coin removed as a first event, as follows (where

FCA is ‘first coin American’ and SCA is ‘second coin American’):

P(H |E) =
P(E | H) × P(H)

P(E)

⇒ P(FCA |SCA) =
P(SCA |FCA) × P(FCA)

P(SCA)
.

To calculate this probability a probability tree is drawn, as in Figure 4.1,

which identifies all possible outcomes. It is assumed that coins are not
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First coin American (FCA)

Second coin American (SCA) Second coin American (SCA)

5/15 = 0.33

Yes

Yes

No

No

4/14 = 0.29 10/14 = 0.71 5/14 = 0.36 9/14 = 0.64

10/15 = 0.66

Yes No

Figure 4.1 A probability tree that describes all possible situations when there are
15 coins in a bag of which five are American and 10 are British

replaced in the bag after being extracted. Hence, at the first level of the

tree there is a 0.33 probability that the first coin is American and 0.66

probability that the first coin is British. Once the first coin is taken from

the bag, the second level of the tree describes the probabilities of the

second coin being American, taking into account the two possibilities at

the level above. For example, if the first coin had been British (10/15),

the chances of the second coin also being British are 9/14. Bayes’

Theorem allows reasoning over what the chances of the first coin being

American were if only an American coin was observed being taken

from the bag at the second stage (as a second event). This is reasoning

under uncertainty. The leaves of the tree (bottom-most layer) can be

referred to as ‘SCA = yes|FCA = yes’, ‘SCA = no|FCA = yes’, ‘SCA =

yes|FCA = no’ and ‘SCA = no|FCA = no’, reading from left-to-right

respectively.

Once this tree is available, the probability of whether the first coin was

American can be calculated as follows (all subsequent calculations are

rounded to two significant places):

P(FCA |SCA) =
P(SCA |FCA) × P(FCA)

P(SCA)

⇒ P(FCA |SCA) =
0.29 × 0.33

P(SCA)
.

That is P(SCA|FCA), which is 0.29 (the bottom left-hand ‘yes’ branch) in

Figure 4.1, is multiplied by P(FCA) alone (the top left-hand ‘yes’ branch).

In other words, ‘P(X | Y)’ means the probability to be found on the branch
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under node X which in turn is under node Y in the probability tree. To

calculate P(SCA) – the denominator – is more complex. There are two

possibilities: the bottom left ‘yes’ branch, and the third from left bottom

‘yes’ branch. That is, the second coin being American has to take into

account both that the first coin was American and that the first coin was

not American. In other words, P(SCA) as denominator has to take into

account P(SCA | FCA = yes) and P(SCA | FCA = no). P(SCA | FCA =

yes) is the joint probability P(SCA | FCA = yes) × P(FCA = yes), while

P(SCA | FCA = no) is the joint probability of P(SCA | FCA = no) ×

P(FCA = no). Putting all this into the formula gives:

P(FCA |SCA) =
0.29 × 0.33

P(SCA)

⇒ P(FCA |SCA) =
0.29 × 0.33

P(SCA |FCA = yes) + P(SCA |FCA = no)

⇒ P(FCA |SCA) =
0.29 × 0.33

(0.29 × 0.33) + (0.36 × 0.66)

⇒ P(FCA |SCA) =
0.1

0.1 + 0.22

⇒ P(FCA |SCA) =
0.1

0.32
= 0.31.

In other words, if the second coin that is taken from the bag is seen to be

American, then there is a 31 per cent chance that the first coin was also

American (hence a 69 per cent chance that the first coin was British).

Another advantage of Bayes’ Theorem is that it can take into ac-

count new evidence. Consider the following example. A drugs manu-

facturer claims that its random roadside drug test will detect the pres-

ence of cannabis, cocaine and other drugs in the blood (i.e. show pos-

itive for a driver who has taken drugs in the last 72 h) 90 per cent

of the time. However, the manufacturer admits that 15 per cent of all

drug-free drivers also test positive. A national survey indicates that

20 per cent of all drivers have taken drugs during the last 72 h. One

of your friends has just told you that she was recently stopped by the

police and the roadside drug test showed positive. She denies having

taken drugs. Bayes’ Theorem can be used to calculate the probabil-

ity that your friend took drugs during the 72 h preceding the drugs

test. First, draw the probability tree (Figure 4.2, non-italic figures).

Then apply Bayes’ Theorem, assuming that H is having taken drugs

(TD) and E is testing positive (TP). That is, the probability of your friend
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Took drugs (TD)

Tests positive (TP)

Yes

0.2

No

Yes No

Tests positive (TP)

0.05

0.99

0.9 0.1

0.01 0.25

0.15 0.85

0.75

0.8
0.95

Yes No

Figure 4.2 Bayes’ Theorem can also take into account new information (new infor-
mation in italics)

having taken drugs given that the random roadside test showed positive

is calculated as follows:

P(H |E) =
P(E |H) × P(H)

P(E)

⇒ P(TD |TP ) =
P(TP |TD) × P(TD)

P(TP )

⇒ P(TD |TP ) =
0.9 × 0.2

P(TP )
.

To calculate TP, take into account the two possibilities of testing positive

having taken drugs and not having taken drugs:

P(TD |TP ) =
0.9 × 0.2

P(TP )

⇒ P(TD |TP ) =
0.9 × 0.2

P(TP |TD = yes) + P(TP |TD = no)

⇒ P(TD |TP ) =
0.9 × 0.2

(0.9 × 0.2) + (0.15 × 0.8)

⇒ P(TD |TP ) =
0.18

0.18 + 0.12
=

0.18

0.3
= 0.6.

In other words, there is a 60 per cent chance that your friend did indeed

take drugs 72 h prior to the roadside test and only a 40 per cent chance

that she is telling the truth. Now imagine that new information arrives

that the roadside drug test will now show positive for drivers who have
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taken drugs 99.9 per cent of the time but that the number of drug-free

drivers showing positive has gone up to 25 per cent (Figure 4.2, new

probabilities in italics under TP at the leaves of the tree). It is a simple

matter to enter the new values into the above equations:

P(TD |TP ) =
0.99 × 0.2

(0.99 × 0.2) + (0.25 × 0.8)

=
0.198

0.198 + 0.2
=

0.198

0.398
= 0.5

That is, the new information increases the chances of your friend telling

the truth to 50–50.

If even more recent information arrives that indicates that the origi-

nal survey of the number of drivers who have taken drugs was wrong

(20 per cent) and that the revised figure should be 5 per cent (Figure 4.2,

italic figures under TD), this can also be incorporated:

P(TD | TP) =
0.99 × 0.05

(0.99 × 0.05) + (0.25 × 0.95)

=
0.05

0.05 + 0.24
=

0.05

0.29
= 0.17

That is, the new information now increases the probability that your

friend is telling the truth to 83 per cent. This dramatic improvement in

the probability that she is telling the truth results from the high false

positive rate as well as reduced chances that she drove after taking drugs.

Finally, Bayes’ Theorem can also be used to calculate what sort of false

positive rate is required to ensure that drivers who test positive after a

random roadside drug test are at least 80 per cent certain to have taken

drugs, taking all the new information into account. Try a false positive

rate of 6 per cent:

P(TD |TP ) =
0.99 × 0.05

(0.99 × 0.05) + (0.06 × 0.95)

=
0.05

0.05 + 0.06
=

0.05

0.11
= 0.45

The false positive rate is not low enough, so try 2 per cent:

P(TD |TP ) =
0.99 × 0.05

(0.99 × 0.05) + (0.02 × 0.95)

=
0.05

0.05 + 0.02
=

0.05

0.07
= 0.71
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In fact, a false positive rate of 1 per cent is required to reach the figure

of being at least 80 per cent certain that drivers who are randomly tested

have indeed taken drugs:

P(TD |TP ) =
0.99 × 0.05

(0.99 × 0.05) + (0.01 × 0.95)

=
0.05

0.05 + 0.01
=

0.05

0.06
= 0.83

The requirement for such a low false positive rate is a consequence of

only 5 per cent of drivers taking drugs, according to the survey.

4.3 Bayesian networks

Bayes’ Theorem can also be generalized to deal with belief networks

(e.g. Delcher et al., 1993). Formally, a Bayesian network is a directed

(each arc is an arrow), acyclic (no loops are possible) graph where nodes

represent features or attributes (called random variables), arcs denote

dependencies as given by some set of rules and the root node is the start

node with no incoming links. Also required is a prior probability table for

each variable and conditional probabilities to link together all attributes.

That is, a node X is linked to another node Y provided there is direct

influence of X on Y (in which case the arrow is from X to Y).

For instance, if an insurance company has to decide how to calculate an

insurance premium to cover a pharmaceutical company that is planning

to introduce a new anti-cancer drug, with the possibility of toxic side-

effects not yet known for the population at large, the insurance company

can provide a basic set of rules, with hypothetical probabilities. So, for

example, the following rules may describe one scenario. ‘If the insurance

company sets the premium at $50 million dollars a year the drug will be

released. If the anti-cancer drug is released, it may cure the cancer. If the

drug is released and given to a patient, the patient may die. If a patient

dies after receiving the drug, there may be a claim made against the drug

company by the patient’s relatives. If a claim is made against the drug

company, the insurance company may have to pay out more than a mil-

lion dollars’. This belief network is represented in Figure 4.3. The nodes

and links represent rule-based relationships between attributes, and

conditional probabilities are assigned to link pairs of nodes together in the

network. Once the network is configured, the probabilities of a hypoth-

esis, such as ‘premium set at $50m’, or whether a patient has died, can



Premium
set at $50

million

P (premium = $50m) = 0.5

Drug
released

Cancer
cured

Patient
dies

Claim
against

company

Million
dollar
payout

P (drug released  premium set) = 0.8

P (cancer cured  drug released) = 0.8
P (cancer cured  drug not released) = 0.2

P (no claim  patient does not die) = 0.95
P (no claim  patient dies) = 0.05
P (claim  patient dies) = 0.95
P (claim  patient does not die) = 0.05

P (drug released  premium not set) = 0.2

P (drug not released  premium not set) = 0.8
P (drug not released  premium set) = 0.2

P (patient dies  drug released) = 0.3
P (patient dies  drug not released) = 0.5

P (patient does not die  drug not released) = 0.5
P (patient does not die  drug released) = 0.7

P (payout  claim) = 0.9
P (payout  no claim) = 0.01

P (no payout  no claim) = 0.99
P (no payout  claim) = 0.1

Figure 4.3 Bayesian belief network
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be calculated from an event such as a million dollar payout having been

made. Probabilities and conditional probabilities can then be attached to

this belief network.

Now imagine the event ‘payout of more than a million dollars made’.

What are the implications for P(premium = $50m)? Now start working

backwards. First examine ‘claim against company’, i.e.

P(payout | claim) = 0.9 and P(payout | no claim) = 0.01.

Continue to work backwards through the network, i.e.

P(claim | patient dies) = 0.95,

P(claim | patient does not die) = 0.05,

P(no claim | patient dies) = 0.05, and

P(no claim | patient does not die) = 0.95.

For patients, continue identifying the conditional probabilities:

P(patient dies | drug released) = 0.3,

P(patient dies | drug not released) = 0.5,

P(patient does not die | drug released) = 0.7, and

P(patient does not die | drug not released) = 0.5.

Similarly, follow the chain backwards through drug released and drug

not released until ‘premium set’ is reached. Combine these probabilities:

P(million dollar payout, claim against company, patient dies, drug

released, premium set at $50m) =

P(million dollar payout) × P(million dollar payout | claim against

company) × P(claim against company | patient dies) × P(patient

dies | drug released) × P(drug released | premium set at $50m).

One particular path through the network is:

‘million dollar payout’ = 0.9,

‘claim against company | patient dies’ = 0.95,
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‘patient dies | drug released’ = 0.3,

‘drug released | premium set’ = 0.8, and

‘premium set at $500m’ = 0.5,

which when multiplied together gives 0.9 × 0.95 × 0.3 × 0.8 × 0.5 =

0.103. This combined probability is added to all other probabilities re-

sulting from all other paths for ‘premium set at $50m’ to give an overall

probability for ‘premium set at $50m’. At that stage the insurance com-

pany can decide whether it has confidence in its original hypothesis that

the premium should be set at $50m, taking into account the probabilities

of all conditional probabilities in the network. That is, if the resulting

probabilities from all paths sum to a probability greater than 0.5 for

‘premium set at $50m’, the insurance company has some assurance that

it has calculated the probabilities appropriately. For instance, assuming

that the interest is only in the implications of a payout having been made

for whether a patient has died, four paths are generated:

(payout | claim = 0.9) × (claim | patient dies = 0.95) = 0.885

(payout | no claim = 0.01) × (no claim | patient dies = 0.05) = 0

(payout | claim = 0.9) × (claim | patient does not die = 0.05)

= 0.045

(payout | no claim = 0.01) × (no claim | patient does not die = 0.95)

= 0.01

To determine the probability of the patient having died, add together

those probabilities that have the same hypothesis, i.e.

‘patient dies’ = 0.885 + 0 = 0.885, and

‘patient does not die’ = 0.045 + 0.01 = 0.055.

That is, if a payout has been made, it is more likely that the patient has

died (0.885) than that the patient has not died (0.055). In this case, the

probabilities do not add to 1, and Bayesian networks usually adopt some

additional normalization procedure to ensure that the different states of a

hypothesis always sum to 1. What has been described here is known as a

‘naı̈ve’ Bayesian approach, since it assumes that all the variables that

appear in the network are totally independent of each other (that there

are no statistical dependencies, apart from the conditional probabilities,
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between any of the variables of features). This is unlikely to be the case

in real-world situations.

The main problem with Bayesian belief networks, as seen in the above

example, is that the number of paths can grow exponentially. There

are 128 paths to be checked (two for ‘payout’, four for ‘claim’ and ‘no

claim’, four for ‘patient dies’ and ‘patient does not die’, and four for

‘drug released’ and ‘drug not released’), assuming that the only interest

is in checking whether the hypothesis ‘premium set at $50m dollars’ is

correct. However, if ‘premium set’ has a number of different values that

need individual checking, the number of paths will grow. Therefore some

heuristic methods for searching graphs must be adopted to ensure that

Bayesian networks remain tractable when networks have a large number

of nodes.

Also, the issue of where the initial assignment of conditional proba-

bilities to the network comes from has not been mentioned. These may

have to be extracted from the insurance company’s archived data of pre-

viously made claims for other products, and therefore there will always

be uncertainty as to whether the probabilities assigned for a new product

are appropriate.

Application of Bayes' Theorem in artificial
intelligence and bioinformatics

As seen from this example, Bayes’ Theorem allows reasoning on possible

causes after receiving the data. Another way to put this is to say that

Bayes’ Theorem, with a slight reinterpretation, allows reasoning of the

form:

P (cause|effect) = [P (effect|cause) × P (cause)]/P (effect).

Some of the earliest applications of Bayes’ Theorem in artificial intel-

ligence were in fact in the medical domain where knowledge of con-

ditional probabilities concerning causal relationships in medicine were

used to derive probabilities of diagnosis (e.g. Pathfinder (Heckerman and

Nathwani, 1992); see http://www-users.cs.york.ac.uk/∼sara/reference/

bayesnets/Software/bnprojects.html for more details of other projects).

Bayes’ Theorem has found several other applications in artificial intelli-

gence and a good source of material on Bayes’ Theorem and such appli-

cations, including in the medical domain, can be found at http://www.

aaai.org/AITopics/html/uncert.html. Applications in bioinformatics are



116 PROBABILISTIC APPROACHES

more scarce, but a good reference source is http://zlab.bu.edu/kasif/

bayes-net.html, where several links to work on Bayesian networks in

computational molecular biology and bioinformatics can be found, in-

cluding references to recent papers on Bayesian approaches to gene ex-

pression analysis and biological data integration. Most of this work has

appeared in the last four or five years, suggesting a reawakening of in-

terest among bioinformaticians in the application of Bayesian reasoning

to a number of problem areas.

4.4 Markov networks

The Bayesian examples introduced in the previous section dealt with

situations where it was important to identify the probability of hypothe-

ses given evidence. While Bayesian networks can be adapted to deal

with probabilistic sequences, another formalism needs to be found if

such sequences are to be modelled with networks that have loops, given

the exponential aspect of calculating Bayesian conditional probabilities.

Markov networks are generally considered more appropriate for deal-

ing with sequences and loops. For example, consider the probabilistic

Markov network in Figure 4.4 and associated probabilistic transition

matrix in Table 4.1.

In addition to the normal probabilistic state transitions probabili-

ties can also be attached to the start state of the network (in square

S1

0.5 0.7

0.8

0.2

S2

S3

0.5

0.3

a = 0.05
b = 0.15
c = 0.8

a = 0.9
b = 0.05
c = 0.05

a = 0.1
b = 0.8
c = 0.1

Figure 4.4 A simple probabilistic network, with the transition probabilities spec-
ified in the probabilistic transition matrix in Table 4.1 (the probabili-
ties within rectangles represent the probabilities of producing symbols
within each state)
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Table 4.1 A probabilistic transition matrix for the Markov
graph in Figure 4.4. The rows specify the probability of mov-
ing from one state to another, including loops (note that the
transition probabilities for each row sum to 1; additionally,
the start probability of each state (given in square parentheses)
can be specified to initialize the Markov process)

S1 S2 S3

S1 [0.9] 0 0.5 0.5
S2 [0.05] 0.3 0.0 0.7
S3 [0.05] 0 0.8 0.2

parentheses in Table 4.1). A sequence of states, such as S1, S2, S1, S3,

S3, S2, S1 can now be given a probability, as follows: P(S1, S2, S1, S3, S3,

S2, S1) = P(S1 × S2 | S1 × S1 | S2 ×S3 | S2 × S3 | S3 × S2 | S3 × S1 | S2) =

0.9 × 0.5 ×0.3 × 0.5 × 0.2 × 0.8 × 0.3 = 0.00324. That is, given that

the start of the sequence has probability 0.9, the probability of this par-

ticular sequence of states is the product of the transition probabilities of

moving from state to state, as given in Table 4.1.

If one symbol is attached to each state (that is, the Markov model

produces one specified symbol every time it enters a state), such as ‘a’

for S1, ‘b’ for S2 and ‘c’ for S3, then the sequence S1, S2, S1, S3, S3, S2,

S1 produces the symbol sequence ‘a b a c c b a’, again with probability

0.00324, using just the transition probabilities in Table 4.1. When only

one symbol is used instead of a state, the probabilities attached to these

symbols, and hence the probabilities attached to the transitions between

states, can reflect previous occurrences of these symbols next to each

other or the desirability of producing symbols probabilistically.

For instance, the transition probability ‘S2 | S1’, when translated into

a symbolic representation such as ‘b|a’, reflects the probability 0.5 of ‘b’

following ‘a’, as observed by examining actual sequences, or as desired

output. In other words, the probabilities attached to moving from S1

to S2 and S1 to S3 (0.5 and 0.5, respectively) reflect the probability of

‘a’ being followed by ‘b’ (probability 0.5) and by ‘c’ (0.5), respectively.

However, this restricts states to produce only one symbol. More flexibility

and power can be added to a Markov model if more than one symbol

is associated with a state. That is, each state may itself have a table of

symbols that are probabilistically produced in that state.

For instance, in Figure 4.4 each state is augmented by a table that

describes the probabilities of producing one of three symbols in that

state. So, the sequence ‘a b a c c b a’ (state sequence S1, S2, S1, S3, S3,
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S2, S1), which has probability of 0.00324 if only one symbol is produced

in each state, has actual probability 0.9 × 0.9 × 0.5 × 0.8 × 0.3 × 0.9 ×

0.5 × 0.8 × 0.2 × 0.8 × 0.8 × 0.8 × 0.3 × 0.9 = 0.00009675, where

figures in bold give the probability of a particular symbol being produced

in a specific state.

In many cases the interest is only in the symbol sequence and the prob-

ability of that symbol sequence being generated, without there being a

need to know the states passed through. When the states are ‘hidden’,

in that the symbol sequence and its probability are all that is required, a

simple form of a ‘hidden Markov model’ (HMM) results. More formally,

an HMM is described as M = (α, β, π ), where α is a table of transition

probabilities between nodes (for example, the entries in Table 4.1), β is

a table of observation or production probabilities concerning the occur-

rence of symbols (as given in the tables next to each node in Figure 4.4),

and π is a set of initial probabilities (as given in square parentheses in

Table 4.1). Just as with automata, an HMM is described as a ‘production

model’ or an ‘acceptance model’. A production model will generate a se-

quence of symbols with a probability as determined by the probability of

producing a symbol in a specific state and the probability of moving from

one state to another. The overall probability of a sequence is the product

of all symbol production/observation probabilities and state transitions.

Such models, in addition to being used for determining the probability

of a sequence being accepted or produced, can also be used for learning.

That is, given a number of sequences for which there is no HMM, the

task is to determine an HMM with an appropriate number of states,

transition probabilities and symbol occurrence probabilities that best fits

all the sequences. A typical problem in bioinformatics may consist of

trying to identify the HMM that best fits the four short DNA sequences:

AGTC, CAGC, TGC and AGC (note that the sequences need not be

the same length). A more powerful Markov model than the simple one

described above is required to handle this problem.

HMMs were originally developed in the speech processing domain but

were adapted for use in sequence analysis by computer scientists and com-

putational biologists (e.g. Karplus et al., 1997; Eddy, 1998). An HMM in

biosequence analysis is trained on a set of sequences so that it identifies

a prototype sequence structure that captures the common elements of

the set of sequences. Because looping is allowed, an HMM can be de-

scribed as a finite model that provides a probability distribution over an

infinite number of possible sequences. In bioinformatics, an HMM con-

sists of three primitives: match states, insert states and delete states. The

match states form the common, prototypical structure, while the insert

and delete states permit variations from the prototypical structure. The
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Table 4.2 An initial alignment of the four sequences AGTC,
CAGC, TGC and AGC, with gaps inserted to form a consensus
consisting of AGC (columns 2, 3 and 5), for the construction
of a simple HMM

- A G T C
C A G - C
T - G - C
- A G - C

three primitives can only be connected to each other in three ways. A

match state Mi is connected to insert state Ii , delete state Di+1 and match

state Mi+1. An insert state Ii is connected to itself, delete state Di+1 and

match state Mi+1. A delete state Di is always connected to insert state Ii ,

delete state Di+1 and match state M i+1.1 A simple HMM for the four

sequences above can now be constructed.

First, assume that the four sequences have been initially aligned

(Table 4.2). The alignment results in a consensus sequence ‘AGC’

(columns 2, 3 and 5). One heuristic in building an HMM from scratch is

to start with as many match states as there are symbols in the consensus

sequence, which in this case is three. Another heuristic is to calculate

the average length of the training sequences and to start with as many

match states. In the example here, the length of the consensus sequence

is used and therefore three match states are chosen. Once the consen-

sus sequence AGC has been found, the empty HMM can be constructed

consisting of three match (M) states (one for each symbol of the con-

sensus), four insert (I) states and three delete (D) states (Figure 4.5(a)),

following the rules for structuring HMMs. The consensus symbols can

then be inserted into each match state. The first sequence AGTC is then

entered (Figure 4.5(b)). The path followed by AGTC is given by thick

arrows, with the symbols inserted into the appropriate states. After ‘be-

gin’, A is matched against M1, G is matched against M2, and T, since it

cannot be matched against M3, requires a transition to I2, followed by

a match of C against M3. The second sequence CAGC is then entered

(Figure 4.5(c)). Since the first symbol C cannot be matched against M1,

a transition to I0 is required, followed by three matches of A, G and C

against M1, M2 and M3, respectively. A note is kept of the transitions

1 This definition of HMMs is taken from the topology used in SAM, the Sequence Alignment
and Modelling program suite for the construction of HMMs developed at UCSC (Hughey and
Krogh, 1995). It differs slightly from the standard HMM definitions found in the literature
by allowing delete, match and insert states to form columns, rather than be staggered, as
required by the standard HMM definitions. SAM’s definitions are used here because of the
intuitive connection of columns in the HMM to columns of a multiple alignment.
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(a)

(b)

(c)

D1

EndBegin

D2 D3

D1

EndBegin

D2 D3

D1

EndBegin

D2 D3

I0 I1 I2 I3

I0 I1 I2 I3

I0 I1 I2 I3

M1
A

M2 M3
G C

M1

A

A
M2 M3

G

TC

T

G

C

C

M1

A

A
M2 M3

G

G

C

C

Figure 4.5 The first part of the construction of an HMM for the four sequences
AGTC, CAGC, TGC and AGC

followed to calculate transition probabilities at the end of the process

(Figure 4.7).

The third sequence TGC is entered (Figure 4.6(a)). Since T does not

match M1, a transition to I0 is required to insert T. T now joins C (from

the second sequence) in I0. Since the next symbol is G and a transition to

I1 from I0 is not permitted, a transition to D1 to signify that the consensus
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D1

M1 M2 M3 EndBegin

D2 D3

I0 I1 I2 I3

(a)

(b)
D1

M1

A

A
M2 M3 EndBegin

D2 D3

G

G

C

C

A

G

G

C

C

I0 I1 I2 I3

T

TTC

TC

Figure 4.6 The final stages of HMM construction

symbol A has been deleted is made and G is then matched to M2. C

is matched to M3. Finally, the fourth sequence AGC matches all three

match states Figure 4.6(b). The HMM construction is now complete,

with all occurrences of symbols observed. The final and full HMM is

given in Figure 4.7. After the final sequence is fed through the HMM,

the construction is complete and all probabilities are output together

with the HMM (Figure 4.7). At the top left of Figure 4.7 are the four

sequences, together with the possible multiple alignment that identifies

the consensus AGC. Below each match state M1, M2 and M3 in the

HMM are the consensus symbols (with high probability), with token

probabilities attached to other symbols not encountered as a consensus.

To the left are the insertion probabilities for each insert state. Since I0

is entered twice (for CAGC and TGC), C and T have probabilities close

to 0.5 (0.45), with token probabilities attached to the other symbols

(X signifies any other symbol). T has a high probability in I2 to signify

it was inserted in at least one sequence. At the bottom of the figure

are the paths traced by each sequence. Links not used for modelling

any sequence are given in dashed lines, while solid lines indicate that a
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D1

M1 M2 M3 EndBegin

Match
profiles:

Insertion profiles:

Note that ‘X’ stands for any of the letters

One possible multiple alignment:

D2 D3

I0 I1 I2 I3

A 0.97
C 0.01
G 0.01
T 0.01

A 0.01
C 0.01
G 0.97
T 0.01

A 0.01
C 0.97
G 0.01
T 0.01

I0   C 0.45   T 0.45   X 0.1
I1   X 0.01
I2   T 0.9     X 0.1
I3   X 0.01

Begin – I0:0.5
Begin – M1:0.5
I0 – D1:0.5
I0 – M1:0.5
D0 – M2:1.0
M1 – M2:1.0
M2 – I2:0.25
M2 – M3:0.75
I2 – M3:1.0
M3 – End:1.0 

Trace:

Sequences:
       AGTC
       CAGC
       TGC
       AGC

Transition probabilities:

AGTC   Begin – M1 – M2 – I2 – M3 – End
CAGC   Begin – I0 – M1 – M2 – M3 – End
TGC      Begin – I0 – D1 – M2 – M3 – End
AGC      Begin – M1 – M2 – M3 – End

–  A  G  T  C
C  A  G  –  C
T  –  G  –  C
–  A  G  –  C

   A  G       C consensus

Figure 4.7 The complete HMM

particular link was used. To the right below the HMM are the transition

probabilities, calculated on the basis of how often that link was followed

for the four sequences. For instance, the link between ‘begin’ and I0 has

a 0.5 transition probability because this link was followed for two of the

four sequences. Also, the links between I0 and D1 and I0 and M1 have

0.5 transition probability each because, of the two sequences that entered

I0, one exited to D1 and the other to M1. Some links have probability 1

to signify that all the sequences that entered that state also exited by that

link. The links between M2 and I2 and M2 and M3 have 0.25 and 0.75
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probability to reflect that three of the strands exited to M3 and only one

to I2. Delete states have 0 probability since they do not emit any symbols.

This HMM is then said to ‘model’ the four sequences, and the proba-

bilities of each sequence can now be determined as the product of all the

probabilities along its path. For instance, for AGTC:

AGTC = 0.5 × 0.97 × 1.0 × 0.97 × 0.25 × 0.9 × 1.0 × 0.97 × 1.0

= 0.102676

That is, from left to right, 0.5 represents the link between ‘begin’ and

M1, 0.97 the probability of matching A in M1, 1.0 the link between M1

and M2, 0.97 the match between G and M2, 0.25 is the link between

M2 and I2, 0.9 the probability of inserting T in I2, 1.0 the link between

I2 and M3, 0.97 the match between C and M3, and finally 1.0 the link

between M3 and ‘end’.

One of the benefits of an HMM is that the model can be used to

generate other sequences not so far explicitly represented. For instance,

following only the links that have been activated when evaluating the

four previous sequences, the ‘new’ sequence CAGTC is also a sequence

of the model if the two insert states are both entered for a sequence:

CAGTC = 0.5 × 0.45 × 0.5 × 0.97 × 1.0 × 0.97 × 0.25 × 0.9

× 1.0 × 0.97 × 1.0 = 0.023103.

One of the problems with HMMs and any probabilistic approach that

uses products of probabilities is that resulting probabilities become in-

creasingly smaller with each link or state probability. For an HMM con-

sisting of 40 or 50 match states and associated insert and delete states

with links (that is, for an HMM that deals with sequences that are on

average 40 or 50 symbols long or whose consensus is between 40 and

50 symbols), the probabilities of sequences may become so small as to

become almost meaningless. Also, some computers may not be able to

calculate extremely small numbers with accuracy. For this reason log-

odds scoring is often used, whereby each sequence is considered as a

random collection of symbols, the null model. The null model can then

be used to assign a DNA sequence of length L a probability of 0.25L,

where each nucleotide has a 0.25 random chance of appearing (or 0.05L

if dealing with amino acid sequences). The log-odds score for a sequence

S can then be calculated as:

log
P(S)

0.25L
= log P(S) − L log 0.25
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For instance, the logs-odd score for CAGTC is:

log
P(CAGTC )

0.25L
= log P(CAGTC ) − L log 0.25

= log 0.023103 – (5 × log 0.25)

= −3.7677928 – (5 × −1.3862944)

= −3.7677928 + 6.93147181

= 3.16367901 (using natural logs)

That is, the HMM probability of CAGTC is 0.023103, and from this is

subtracted (with logs, dividing x by y becomes subtracting y from x) five

(the length of the sequence) times the random chance of the sequence

being random (with logs, raising to the power becomes multiplication).

The final result can be rounded to 3.164. The above calculation was

undertaken after the probability of CAGTC was calculated, but the log-

odds formula can be applied from the beginning of a sequence as it

enters the HMM so that a running natural log score can be maintained

as the symbols are processed one by one and insert, match and transition

probabilities are applied.

Three major advantages with HMMs are that conserved regions of

sequences (subsequences that occur in all strings, such as the same gene

across a number of different organisms, that can therefore be assumed

to be conserved through evolution) are modelled very well, that deletion

and insertion of nucleotides and amino acids are explicitly represented

in the HMM and that the actual states passed through by the HMM are

hidden from the user who may only be interested in the final probabil-

ities. This example assumed that sequences were already aligned before

presentation to the HMM. In fact, HMMs can also be used to construct

alignments, and methods such as the Viterbi algorithm (with variations)

exist for this purpose.

Applications of HMMs in bioinformatics

HMMs can be considered a true bioinformatics technique, with sev-

eral applications in profile family characterization in homology search,

gene finding (see Colin Cherry’s HMMs in Bioinformatics, http://www.

cs.ualberta.ca/∼colinc/cmput606/606FinalPres.ppt). One of the best

sources for further information is the ISMB99 Tutorial on HMMs by

Melissa Kline, Christian Barrett and Kevin Karplus (http://www.
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cse.ucsc.edu/research/compbio/ismb99.tutorial.html). This page also

contains links to other HMM-related pages.

4.5 Summary of chapter

1 Probability is playing an increasingly important role in artificial in-

telligence and the ability of systems to reason under conditions of

uncertainty. Of particular importance and interest are Bayesian and

Hidden Markov Model approaches, which have the ability to calcu-

late the probability of future events and sequences on the basis of past

events and sequences. Both approaches use special types of graph for

representing information about the domain.

2 At the heart of the Bayesian approach is the concept of ‘conditional

probability’, i.e. the probability of a prior event A having occurred

given that a subsequent event B has occurred. If there is a hypothetical

causal relationship between A and B, and B is seen to occur but not A,

Bayes’ Theorem can be used to calculate the probability of A having

occurred.

3 The specific hypothetical relationship between A and B above can

be generalized to any causal sequences A, B, C, etc. In this case we

may have multiple possible causes of particular events and long se-

quences of causal events. Bayesian networks are special types of graph

that allow the calculation of prior events in a multiple causal system,

but problems exist concerning the tractability of such networks if

the graph becomes complex. Nevertheless, Bayesian approaches are

suitable for AI and Bioinformatics applications where it is important

to reason about the probability of events.

4 Hidden Markov Models (HMMs) can be described formally as a

discrete dynamical system governed by a Markov chain that emits

a sequence of observable outputs. They are useful for dealing with

sequences. A typical HMM consists of three ‘layers’ of nodes with

specific interconnectivity. Typically, the first layer consists of ‘match’

states that reflect the frequency of commonly occurring symbols in

a set of observed sequences, another layer reflects the frequency of new

symbols being inserted in specific positions in some of the observed

sequences, and the third layer represents the frequency of symbols

being deleted from some of the observed sequences.
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5 HMMs are particulary useful for dealing with multiple alignments,

profiles and various probabilistic models of biological sequences. A

number of algorithms now exist for constructing HMMs for optimal

multiple alignment. There are typically two phases to constructing

an HMM. In the first phase the task is to find a set of transition

and emission probabilities that reflect the probability of observing

the training sequences. In the second phase the task is to determine

the probability that a new sequence belongs to the domain being

modelled by the HMM.
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Software availability

A good starting point for downloading software for Bayesian reasoning

is http://www.ai.mit.edu/∼murphyk/Bayes/bnsoft.html, where a num-

ber of graphical packages for Bayesian networks are described and

compared. The standard HMM software used by bioinformaticians is

HMMER (pronounced ‘hammer’), from http://hmmer.wustl.edu/. It is

written mainly for Unix and Linux platforms, although a Windows ver-

sion does exist if changes are made to the code.
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Nearest Neighbour and
Clustering Approaches

5.1 Introduction

Consider eight prostate cancer patients who have had biopsies in a clinic,

with measurement of two specific genes through gene expression analy-

sis: hepatoma mRNA for the serine protease hepsin (accession number

X07732) and the c-myc oncogene (V00568). Doctors at the clinic believe

they have a novel way of identifying more accurate therapeutic strategies

for individual patients based on these gene expression measurements.

Each of the patients then undergoes an individualized therapy regime

consisting of varying combinations of androgen suppression and radi-

ation. These therapeutic strategies prove successful, thereby vindicating

therapeutic diagnosis on the basis of the measurement of these two genes.

A new patient enters the clinic and also has a biopsy. The question now

arises as to whether, from previous records of successful therapy, the

doctors can predict the sort of therapy that stands most chance of being

successful for the new patient, given his gene expression measurements

for X07732 and V00568.1

A nearest-neighbour approach to this diagnosis problem would be as

follows. The quantitative measurements for these two genes are con-

verted to log2 ratios, ranging from 0 to 6. Each of the eight previous

patients is plotted on a two-dimensional graph so that their measure-

ments on these two genes act as x and y coordinates to project each

1 This example is an adaptation of an example provided by Winston (1992).

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd



128 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

6

(a)

p5
p7

p6

p8

p4

p2p1

p3

New patient

V
0

0
5

6
8

log ratios

5

4

3

2

1

X07732

654321
0

?

?

6

(b)

p5

p7

p6

p8

p4

p2p1

p3

Mid-point = 3.5

Neutral zone

First
division

V
0

0
5

6
8

5

4

3

2

1

X07732

654321
0

Figure 5.1 The method for constructing a decision tree.

patient’s profile onto a two-dimensional space (Figure 5.1(a)). For in-

stance, patient 1 (p1) has value 6 on V00568 and value 2 on X07732.

The question of how doctors treat the new patient now becomes the

question of locating the new patient as close as possible to his neighbour

in this two-dimensional space, given the new patient’s measurements on

the two genes. In other words, the doctors ask who the nearest neigh-

bour of the new patient is. If the doctors can determine who the nearest

neighbour is, then they can administer the same therapeutic regime to

the new patient as the new patient’s nearest neighbour, with the expecta-

tion that the therapy stands a better chance of being successful according

to previous experience than if they were to come up with a therapeutic

regime from scratch.
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5.2 Nearest neighbour method

The basis for all nearest neighbour methods is the consistency heuristic

(Friedman, Bentley and Raphael, 1977; Dasarathy, 1991): (a) find the

most similar case, as measured by known properties, for the new case

with unknown property (in this case unknown therapeutic regime);

(b) then guess that the unknown property of the new case is the same as

the property of the most similar case. Nearest neighbour calculations can

be performed at run-time, but there are advantages in storing the infor-

mation on how to determine a nearest neighbour ahead of new samples

so that, as new cases enter the system, they can immediately be located

nearest to their most similar neighbour. It may seem trivial to under-

take a nearest neighbour calculation for this simple example. After all, a

simple visual inspection seems to indicate that the new patient’s nearest

neighbour is p3 or possibly p5. However, imagine that not two genes

are measured but 50. There will be a 50-dimensional space that needs

examining and visual inspection will no longer be sufficient. The nearest

neighbour method provides a systematic method for locating new cases

as close as possible to existing cases, irrespective of the number of dimen-

sions, thereby adding some consistency to the decision-making process.

The nearest neighbour method can be described generally as follows.

For the cases with known therapeutic strategies, generate a decision tree

(Figure 5.1) where each node is connected to a set of possible answers

and each non-leaf node is connected to a test which splits its set of pos-

sible answers into subsets corresponding to different test results. Each

branch will then carry a particular test result’s subset to another node.

Informally, the idea is to divide up the cases in advance of nearest neigh-

bour calculation so that each patient falls within their own unique space.

The two attributes X07732 and V00568 (measurements known for all

eight patients plus the new patient) are used repeatedly until only one

patient is in each set. The cases are divided in such a way that an equal

number of cases falls on either side. The eight cases are first projected

onto a two-dimensional space using the attributes (Figure 5.1(a)). The

steps are as follows.

1 Use V00568 first and find a point on that dimension that separates

the eight cases with a known property (therapeutic strategy) into two

equal subsets of four (Figure 5.1(b)). Note that p3 and p4 have value

5 on V00568, whereas p5 and p6 have value 2 on this dimension.

The space between these four patients is the separation between the
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top half of the group and the bottom half of the group (four patients

in each subgroup). If the average between 2 and 5 is taken the result,

3.5, can be used to determine the mid-point that separates the eight

cases into two equal subsets of four. The space between is called the

neutral zone. This is the first division.

2 Next, apply the second dimension, X07732, to each subset (Figure

5.1(c)).

(a) First ask, for the top group of four patients, what the X07732

mid-point value is that separates that group into two equal sub-

sets of two cases each. For the top group, p1, p2, p3 and p4,

the X07732 mid-point value that separates p1 and p3 from p2

and p4 is 3.5, since p1 and p3 have X07732 value two and p2

(the closer case among p2 and p4) has value five. This is the first

division for X07732.

(b) Also, determine the mid-point value for the lower group. The two

cases that are closest to each other are p7 and p6 in this group

of four and constitute the second and third items, in increasing

X07732 value. The mid-point between them is 3. That is where

the second division for X07732 takes place.

3 There are now four groups of two cases each. Go back to V00568 to

identify a final set of divisions that will uniquely locate each sample

into one of eight regions of space (Figure 5.1(d)).

(a) For the top left group of two (p1, p3), the mid-point is 5.5 (av-

erage between 5 and 6). Each case now falls in its own distinct

region and no further division is required.

(b) For the top right group (p2, p4), the mid-point is also 5.5. Each

case now falls in its own distinct region and no further division

is required.

(c) For the bottom left group (p5, p7), the mid-point is 1.5, and no

further division is required.

(d) For the bottom right group (p6, p8), the mid-point is also 1.5,

and no further division is required.

The first phase of the nearest neighbour method is complete. The sec-

ond and final stage is to generate a decision tree that reflects the order

in which the attributes were applied and the mid-points found (Figure

5.1(e)). The first mid-point is used to root the tree. A ‘yes’ branch and ‘no’

branch lead to the second set of tests at the level below. Since there are

two mid-points here, they both form separate tests at that level. Finally,
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place all four mid-point tests at the level below so that, by following the

tree and applying the tests, each of the eight cases uniquely falls in a leaf

node by itself. To determine the nearest neighbour of the new case, simply

apply the root test and follow the appropriate branches to subsequent

tests, and so on, until a leaf node is reached, where the most similar case

will be found. In this example the nearest neighbour method predicts

that the best therapeutic strategy for the new patient is the same as that

followed by p3.

Typically, nearest neighbour methods do not return just one candidate

nearest neighbour but k nearest neighbours, where k is determined by the

user. Each of the k nearest neighbours can vote on their confidence as to

whether it is the nearest neighbour by calculating some distance metric

between itself and the new case. The regions of space around each sample

(the neutral zones) can be used for this purpose, since it is possible that

a new case falls just one side of a mid-point but is closer in distance to

a sample in a bordering region than it is to the sample in the region of

space in which it falls.

In general, a decision tree with branching factor two and depth d

will have 2d leaves, where d will have to be large enough to ensure

2d ≥ n (where n is the number of samples or objects). Nearest neigh-

bour approaches are particularly useful for dealing with attributes that

are known to be ‘noisy’ or which have values that are often missing, since

the decision tree can project a more accurate value for such attributes

on the basis of comparing values on attributes that are known to be se-

cure for all samples. Also, the information as to why a new sample is

categorized with a nearest neighbour is readily available in the form of

a decision tree.

5.3 Nearest neighbour approach
for secondary structure protein
folding prediction

SIMPA (Levin, Robson and Garner, 1986; Levin, 1997) is an extended

nearest neighbour method for predicting the secondary structures of pro-

teins. Consider three short amino acid sequences and their known sec-

ondary structure conformations:

h h s s s s c h s c c c c c h h s s c c c

A T S L V F W S T S G V V W S C N G A F W
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For example, the amino acid sequence ATSLVFW has secondary structure

hhssssc, where ‘h’ stands for ‘helix’, ‘s’ for sheet, and ‘c’ for coil. (SIMPA

uses several other secondary structure conformations.) That is, A and T

partake in a helix, S, L, V and F in a sheet and W in a coil. Now imagine

that a new, homologous amino acid sequence is encountered (homolo-

gous as given by some alignment algorithm) with unknown secondary

structure: STNGIYW. The question arises as to whether the secondary

structure of this new sequence can be predicted based on a knowledge of

the structure of its three homologues.

First, find or construct a similarity matrix, such as that provided in

Table 5.1. This table, which describes the similarity and dissimilarity re-

lationships between pairs of amino acids, is used to generate a conforma-

tion matrix by working through each sequence with known structure and

comparing its amino acid constituents with those of the sequence with un-

known structure. So, for example, the similarity between STNGIYW (the

sequence with unknown secondary structure) and ATSLVFW (the first of

Table 5.1 A hypothetical similarity matrix that identifies the relationships between
individual amino acids based on various properties, such as charge, aromaticity and
hydrophobicity (adapted from Levin et al. (1986)). For example, glycine (G) in the
second column of the table is neutral (0) with respect to proline (P, second row) and
negatively related to valine (V, thirteenth row) with value −1. Phenylalanine (F) in
the third column from the right is positively related to tyrosine (Y, row 19)

G 2
P 0 3
D 0 0 2
E 0 −1 1 2
A 0 −1 0 1 2
N 0 0 1 0 0 3
Q 0 0 0 1 0 1 2
S 0 0 0 0 1 0 0 2
T 0 0 0 0 0 0 0 0 2
K 0 0 0 0 0 1 0 0 0 2
R 0 0 0 0 0 0 0 0 0 1 2
H 0 0 0 0 0 0 0 0 0 0 0 2
V −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 2
I −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 1 2
M −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 0 0 2
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
L −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 1 0 2 0 2
F −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 1 0 −1 0 2
Y −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 −1 0 1 2
W −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 −1 0 0 0 2

G P D E A N Q S T K R H V I M C L F Y W
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Table 5.2 The conformation prediction table for the three homologues in compar-
ison with the sequence with unknown structure

h s c

Residue 1 6 + 9 + 9 = 24
Residue 2 6 + 9 = 15 9
Residue 3 6 + 9 = 15 9
Residue 4 6 + 9 = 15 9
Residue 5 6 9 + 9 = 18
Residue 6 6 9 + 9 = 18
Residue 7 6 + 9 + 9 = 24

the sequences with known secondary structure) is: 1 + 2 + 0 − 1 + 1 +
1 + 2 = 6. That is, the similarity between the first symbols of each strand

‘S’ and ‘A’ is 1, the second symbols ‘T’ and ‘T’ is 2, third symbols ‘N’ and

‘S’ is 0, fourth symbols ‘G’ and ‘L’ is −1, fifth symbols ‘I’ and ‘V’ is 1, sixth

symbols ‘Y’ and ‘F’ is 1, and final symbols ‘W’ and ‘W’ is 2. These pair-

wise similarity scores are added together to result in a score of 6 for these

two sequences. Calculate the scores for STNGIYW and the other two

homologues also, giving 9 for STSGVVW (2 + 2 + 0 + 2 + 1 + 0 + 2)

and 9(2 + 0 + 2 + 2 + 0 + 1 + 2) for SCNGAFW. There are three over-

all scores that measure the similarity between each of the homologues

and the sequence with unknown structure: 6, 9 and 9.

Next, allocate these scores in a conformation prediction table for each

residue (Table 5.2). The rows of this table describe each residue in the

homologue set (residues 1 to 7), and the rows represent the three types

of conformation possible (helix, sheet and coil).

For residue 1, all three homologues have the h conformation for their

first residue, and so each of the overall homologue scores are entered and

summed in this column: 6+9+9. For the second residue, the first and the

third of the homologues have h whereas the second homologue has c. The

scores for the first and third homologues are inserted under the h column

(6 and 9, respectively) and the score for the second homologue is inserted

under the c column (9). For the third residue, the first and third sequences

have conformation s whereas the second has c. The overall scores 6 (for

the first homologue) and 9 (for the third homologue) are added under

the s column whereas the overall score 9 (for the second homologue) is

entered under the c column. This process is continued for all the residues

(Table 5.2). Then, for each residue in the new strand STNGIYW, the

conformation with the maximum score is allocated to that residue. For

instance, the first symbol in the new strand is ‘S’. Looking at the first
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residue row of Table 5.2, the maximum (and only) score falls under the

h column. The first residue of the new strand is therefore predicted to

partake in a helix conformation. For the second residue, there are two

possibilities, with 15 for h and 9 for c. Since the maximum value is 15, the

second residue is predicted to partake in a helix conformation. Applying

this maximum function to all the other residues results in a prediction

that the new strand STNGIYW has conformation hhssccc, i.e. helix,

helix, sheet, sheet, coil, coil coil, for its seven amino acid residues.

SIMPA (Levin, 1997) uses a more complex version of this method,

adopting a threshold value (minimum score ) of 7 before a score can

be inserted into the conformation prediction table, a ‘moving window’

moving one residue along both the new and homologue strands, and

additional weightings on the scores in the secondary structure similarity

matrix. SIMPA is an extended nearest neighbour technique since it es-

sentially attributes a conformation to a residue in the new sample on the

basis of nearest neighbour residues with known conformations in homo-

logues. The conformation here is a class, and SIMPA is a procedure that

predicts a class c (a conformation in this case) on the basis of the nearest

neighbours n (residues in homologues) to a query object q (residues in

the new strand).

5.4 Clustering

Nearest neighbour approaches generally work well when there are a few

attributes and many samples. The small number of attributes can be used

one at a time, in no specific order, to generate a multidimensional space

onto which each sample can be projected as a point. If, after one cy-

cle through the small number of attributes, it is not possible to locate

each sample in its own unique space, the attributes can be reused over

and over until each sample is uniquely located. However, many prob-

lems in bioinformatics are characterized by a few samples having very

many attributes. For instance, a family of proteins may consists of about

20 actual sequences (samples), each of which can contain very many,

possibly hundreds or thousands, of residues (attributes called ‘residue 1’,

‘residue 2’, etc.). If the attributes are binary (e.g. ‘yes/no’, ‘on/off’) and

the number of attributes a is such that 2a < n, where n is the number of

samples, attributes can be reused (as in Figure 5.1) until a unique sample

at each leaf of the decision tree results. However, if there are many more

attributes than samples, the problem arises of deciding which attributes

to use, since not all of them will need to be used to generate the decision
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Table 5.3 A table of four patients with their gene expression mea-
surements across five genes. The gene values are ‘absent’ and ‘present’,
which are coded in the table as ‘0’ for ‘absent’ and ‘1’ for present.
Patients 1 to 4 are referred to as p1–p4 in the text

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Patient 1 1 1 0 0 0
Patient 2 1 0 0 0 0
Patient 3 0 0 1 0 0
Patient 4 0 0 1 1 0

tree. This then means that there will be different decision trees depending

on which attributes are used. Also, there is the possibility that by arbi-

trarily choosing some attributes rather than others certain attributes are

missed that lead to clear and separate regions of space for each sample.

For instance, ‘noisy’ attributes may be used that do not distinguish the

sample well and instead project the samples into a very tight region of

space where clear separation is not maintained. For this reason, meth-

ods which attempt to take into account the information present in all

attributes before projecting each sample into its own region of space are

preferred for many bioinformatics problems.

Consider, for instance, four cancer patients p1 to p4 who are mea-

sured across five genes (Table 5.3) that are measured in binary form (e.g.

‘gene absent’ and ‘gene present’). To project each patient into a separate

region of space would require only two of the five genes/attributes to

be used – but which ones? For instance, if Gene 1 is used, that will separate

the four patients into two subgroups of two each (p1 and p2 on the one

hand, and p3 and p4 on the other), but if Gene 2 is used there will be un-

equal distribution. Clustering removes the need to make such a decision

by using the information present in all five genes in an iterative process.

The first iteration in clustering (Figure 5.2) involves calculating a

matching coefficient for every pair of patients in the table across all

genes/attributes. For instance, the matching coefficient for p1 and p2

is the number of identical gene expression values they share divided by

the total number of genes/attributes. Patient 1 and Patient 2 share iden-

tical gene expression values for Gene 1 (this gene is present (1) for both

patients), Gene 3 (0), Gene 4 (0) and Gene 5 (0). Therefore, out of five

genes, Patient 1 and Patient 2 share four identical values. If score 1 is

used for each perfect match and 0 for each mismatch, this produces:

p1/p2 = 1 + 0 + 1 + 1 + 1 = 4/5 = 0.8.
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Figure 5.2 A cluster diagram that represents the similarities between four patients
p1–p4 as measured on five genes

where ‘p1/p2’ means that p1 is matched with p2. Similarly:

p1/p3 = 0 + 0 + 0 + 1 + 1 = 2/5 = 0.4;

p1/p4 = 0 + 0 + 0 + 0 + 1 = 1/5 = 0.2;

p2/p3 = 0 + 1 + 0 + 1 + 1 = 3/5 = 0.6;

p2/p4 = 0 + 1 + 0 + 0 + 1 = 2/5 = 0.4;

p3/p4 = 1 + 1 + 1 + 0 + 1 = 4/5 = 0.8.

There are six pairwise comparisons to be made for four patients in the

first iteration. In general, if there are n patients or samples, there will be

an initial n − 1 + n − 2 + n − 3 + . . . 2 + 1 comparisons.
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The next stage is to choose the match that has the highest matching co-

efficient. In this example, there are two values of 0.8 (p1/p2 and p3/p4).

Choose one at random, say p1/p2, and form the first cluster. The calcula-

tion of all pairwise matching coefficients is repeated, but this time using

p1/p2 as one ‘patient’ and taking partial matches into account. So, the

average matching coefficient for p1/p2 and p3 = 0 + 0.5 + 0 + 1 + 1 =
2.5/5 = 0.5. That is, there is no match (0 score) for Gene 1, since both

p1 and p2 have value 1 for this gene whereas p3 has 0; there is a par-

tial match between p1/p2 and p3 for Gene 2, since p2 has value 0 and

p3 has value 0, and this partial match is given a score of 0.5 to indi-

cate that one half of p1/p2 shares a value with p3; there is no match

between p1/p2 and p3 for Gene 3 (0 value); there is a total match be-

tween p1/p2 and p3 for Genes 4 and 5 (score 1 each), giving 2.5 shared

values out of five genes, which is 0.5 Similarly, the matching coefficients

for p1/p2 and p4 = 0 + 0.5 + 0 + 0 + 1 = 1.5/5 = 0.3, and for p3 and

p4(p3/p4) = 0.8 (as before). Since p3/p4 has the highest coefficient value

in the second iteration, they form the second cluster.

The third and final iteration for this example consists of matching

the two clusters p1/p2 and p3/p4 together (that is p1/p2 is considered

one ‘patient’, as is p3/p4), with partial matches taken into account.

The matching coefficient for (p1/p2)/(p3/p4) = 0 + 0.5 + 0 + 0.5 + 1 =
2/5 = 0.4. That is, p1/p2 has no match whatsoever with p3/p4 for Gene

1 (therefore 0 score); for Gene 2 half of p1/p2, namely, p2, shares a

feature (0) with p3/p4 (which both share the same feature 0), thereby

resulting in 0.5 score; there is no partial match whatsoever on Gene 3

(score 0); half partial match for Gene 4 (0.5 score), and total match on

Gene 5 (score 1). This results in an overall matching coefficient of 0.4

for (p1/p2)/(p3/p4).

Since all the individual patients have been combined into one super-

cluster, the iterative process is complete. A similarity tree is now generated

that reflects the order in which the patients were clustered (Figure 5.2)

with an indication of the matching coefficient values for each clustering.

This form of hierarchical clustering is known as UPGMA (unweighted

pair group method with arithmetic mean) (Michener and Sokal, 1957;

Sneath and Sokal, 1973).

5.5 Advanced clustering techniques

So far, only samples in Table 5.3 were clustered. However, genes can also

be clustered. Imagine an extended version of the data in Table 5.3, but

with the difference that each gene now has one of four possible values
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Table 5.4 A gene expression sample table, with genes
occupying rows and samples columns

Patient 1 Patient 2 Patient 3 Patient 4

Gene 1 3 2 1 0
Gene 2 2 1 0 1
Gene 3 3 1 0 2
Gene 4 1 0 1 0
Gene 5 0 0 3 3

(0, 1, 2, 3). First, the table is transposed so that genes appear in the rows

and samples in the columns (Table 5.4).

The gene profiles can be plotted on a graph, as given in Figure 5.3.

That is, each line on the graph connects a gene’s values across all patients.

The next stage is to identify how similar each gene is to other genes, given

the profiles across all samples.

A Euclidean distance approach to this calculation is as follows:

d(g, g′) =
√

∑

s
(egs − eg′s)2

That is, the difference between two genes g and g′ is the square root of the

summed squares of the differences between an expression value e of g for

a sample s and the expression value e of g′ for that same sample summed

3

2

1

1 2 3 4

G
en

es

Samples

Gene 5

Gene 1

Gene 3

Gene 2

Gene 4

Figure 5.3 Gene expression profiles plotted on a graph
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across all samples. The difference is squared to prevent negative values.

So, for instance, for the five genes and adopting a pairwise comparison

in the first instance:

d(g1, g2)=
√

∑

(egs − eg′s)2 =
√

(3 − 2)2 + (2 − 1)2 + (1 − 0)2 + (0 − 1)2

=
√

1 + 1 + 1 + 1 = 2

That is, Gene 1 has values 3, 2, 1 and 0 across the four samples (patients)

and Gene 2 has values 2, 1, 0 and 1 for the same four samples. Gene 1

values constitute the first item of each pair of values in the formula,

and gene 2 values constitute the second item of each pair. Adopting the

Euclidean method, the two genes have a similarity measure of 2 (the closer

the similarity measure to 0, the more similar two genes are). The other

pairwise comparisons result in:

d(g1, g2) = 2 d(g1, g3) = 2.45 d(g1, g4) = 2.83 d(g1, g5) = 5.1

d(g2, g3) = 1.414 d(g2, g4) = 2 d(g2, g5) = 4

d(g3, g4) = 3.162 d(g3, g5) = 4.472

d(g4, g5) = 3.742

A second approach to calculating the differences between pairs of genes

is the Manhattan approach, defined as follows:

d(g, g′) =
∑

s

|egs − eg′s |

That is, the difference between a pair of genes is simply the absolute

difference between the expression values across all samples. So, for ex-

ample,

d(g1, g2) = |3 − 2| + |2 − 1| + |1 − 0| + |0 − 1| = 4

d(g1, g3) = |3 − 3| + |2 − 1| + |1 − 0| + |0 − 2| = 4

etc. The Euclidean distance method is adopted here since, as can be

seen by comparing g1, g2 and g3 above, the Euclidean distance method

can make finer distinctions than the Manhattan method. That is, the

Euclidean distance method separates g1 and g2 from g1 and g3 (2 and

2.45, respectively), whereas the Manhattan method gives the same values

for each pair (4).

Once the pairwise distance calculations have been made, start merging

the genes with closest distance to each other. There are a number of
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methods for doing this in the literature, but one of the simplest will be

used here. Looking at the results of the Euclidean distance calculations

for pairs of genes above, there is one pair (g2, g3) that is most similar

(distance 1.4 between the items of the pair). Merge g2 with g3 to form

the first cluster. Combine these two genes into a ‘protogene’ by listing

the pairs of sample points (by, for instance, taking the average of each

pair of sample points), and then recalculate all pairwise comparisons for

the remaining genes, and so on, until all the genes are clustered. So, for

instance, the average for the protogene of g2 and g3 would be (2.5, 1, 0,

1.5), which is the average between the pairs of points ((2,3), (1,1), (0,0),

(1,2)). For the second iteration:

d(g1, g5) = 5.1 d(g4, g5) = 3.742

d(g1, g4) = 2.83

These are the same as before. Comparing g1, g4 and g5 with the new

protogene gives:

d(g1, g2,3) =
√

(3 − 2.5)2 + (2 − 1)2 + (1 − 0)2 + (1 − 1.5)2

=
√

0.25 + 1 + 1 + 0.25

= 1.58

d(g4, g2,3) =
√

(1 − 2.5)2 + (0 − 1)2 + (1 − 0)2 + (0 − 1.5)2

=
√

2.25 + 1 + 1 + 2.25

= 2.55

d(g5, g2,3) =
√

(0 − 2.5)2 + (0 − 1)2 + (3 − 0)2 + (3 − 1.5)2

=
√

6.25 + 1 + 9 + 2.25

= 4.3

The most similar pair at the end of the second iteration is g1 with g2,3

(with value 1.58). This becomes a new protogene, with new averages

calculated for this protogene either by adding the values of all three

genes for each sample together and dividing by three (e.g. for patient

1, g1 value of 3, g2 value of 2, and g3 value of 3, giving average 2.67),

or by treating the g2,3 as one gene and calculating a new average based

on just two sample values (e.g. for patient 1, g2,3 value of 2.5 and g1

value of 3, giving average 2.75). Adopt the latter strategy, giving a new

protogene g1,2,3 with values 2.75, 1.5, 0.5 and 0.75 for the four patients,

respectively.
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The third iteration will consist of pairwise comparisons between gene

4, gene 5 and the new protogene:

d(g4, g5) = 3.742

d(g4, g1,2,3) =
√

(1 − 2.75)2 + (0 − 1.5)2 + (1 − 0.5)2 + (0 − 0.75)2

=
√

3.06 + 2.25 + 0.25 + 0.56 = 2.47

d(g5, g1,2,3) =
√

(0 − 2.75)2 + (0 − 1.5)2 + (3 − 0.5)2 + (3 − 0.75)2

=
√

7.56 + 2.25 + 6.25 + 5.06 = 4.6.

The most similar pair now is g4 with g1,2,3. This gives a new protogene

g1,2,3,4 with values 0.5, 0, 2 and 1.5. The final step is to compare the two

protogenes g1,2,3,4 and g5:

d(g1,2,3,4, g5) =
√

(0.5 − 0)2 + (0 − 0)2 + (2 − 3)2 + (1.5 − 3)2

=
√

0.25 + 0 + 1 + 2.25 = 1.87.

Putting all this together, the gene clustering diagram in Figure 5.4(a) is

obtained, where the patient values are described in the order p1, p2, p3

and p4. But patient samples can also be clustered. Applying the Euclidean

method for clustering patients to a transposed version of Table 5.4 (Table

5.5), the first iteration is:

d(p1, p2) =
√

(3−2)2+(2−1)2+(3−1)2+(1−0)2+(0−0)2 = 2.65

d(p1, p3) = 5.1

d(p1, p4) = 4.58

d(p2, p3) = 3.61

d(p2, p4) = 3.74

d(p3, p4) = 2.65.

Table 5.5 The transposed version of the data in Table 5.4, in prepara-
tion for patient clustering

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Patient 1 3 2 3 1 0
Patient 2 2 1 1 0 0
Patient 3 1 0 0 1 3
Patient 4 0 1 2 0 3
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There are two clusters of p1 with p2, and p3 with p4 with value

2.65. Form ‘superpatients’ from each of these and calculate the new

means: p1,2 = (2.5, 1.5, 2, 0.5, 0) and p3,4 = (0.5, 0.5, 1, 0.5, 0). These

two superpatients have similarity:

d(p1,2, p3,4) =
√

(2.5−0.5)2 + (1.5−0.5)2 + (2−1)2 + (0.5−0.5)2 + (0−0)2 = 2.45

The final clusterings for both genes and patients are provided in Figure

5.4(b).

If p3 and p4 belong to one particular class, such as being prostate can-

cer sufferers, whereas p1 and p2 belong to another class, such as normal,

the clusterings in Figure 5.4(b) would indicate that Gene 5 separates p3

and p4 as a pair from p1 and p2, and that Gene 1 and Gene 4 further

separate p3 from p4 (perhaps severity of the cancer).

Gene 2

Gene 3

Gene 1

Gene 4

Gene 5

2 1 0 1

3 1 0 2

3 2 1 0

1 0 1 0

0 0 3 3

Gene 2

Gene 3

Gene 1

Gene 4

Gene 5

Gene clustering

Gene clustering

Gene expression values

Gene expression
 data-set

Patient values (p1,p2,p3,p4)

Patient/sample clustering

p4 p3 p2 p1

0 1 2 3

(a)

(b)

Figure 5.4 (a) Represents the results of clustering just the genes, whereas (b) rep-
resents the results of clustering the samples as well. Also, each gene
expression value has been given a different shade so that a visual repre-
sentation of gene clustering is obtained



144 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

A number of methods exist for forming clusters in addition to those

described above, which is a form of hierarchical cluster method that

requires each sample or gene to form its own unique point in space, with

successive iterations used to merge two samples into a cluster and then

clusters into ‘superclusters’ depending on their distance from each other.

Other clustering methods first allocate each sample or point uniquely to

a cluster so that several clusters exist after the first round of iterations.

Clusters are then linked together by using a pair of points, one from

each cluster, which is closest to each other (‘single linkage clustering’) or

furthest from each other (‘total linkage clustering’), rather than adopting

a hierarchical approach as in this chapter.

The importance of clustering gene expression data was demonstrated

by Eisen et al. (1998) when they analysed gene expression of the Saccha-

romyces cerevisiae during the diauxic shift, mitotic cell division cycle,

sporulation, and temperature and reducing shocks. The data consisted

of all genes for which functional annotation was available (2467). They

applied hierarchical clustering using the average linkage method, using

averages for the joined elements as they formed the tree. Their analy-

sis clearly demonstrated that genes of similar function cluster together

and that groups of coexpressed genes are involved in common cellular

processes. Genes of unrelated sequence but similar function were also

found to be clustered together. The software used by Eisen et al. is avail-

able publicly as ‘Cluster’ and ‘Treeview’ (for Windows only) and can

be downloaded from http://rana.lbl.gov/EisenSoftware.htm. Images pro-

duced by these two pieces of software are among the most common seen

in gene expression analysis.

5.6 Application guidelines

Nearest neighbour and clustering approaches to data analysis are some

of the oldest described in this book. As such, they have found a huge

number of applications in academia and industry ranging from the

sciences and engineering to more abstract problems. In addition to

their longevity, each of these techniques benefits from simplicity. For

the most basic techniques, a nearest neighbour or clustering approach

can be implemented very easily, as the algorithms themselves are

simple and can be applied directly to the data. There are few complex

transformations to be done. A good reference here is Sami Kaski’s

web page http://www.cis.hut.fi/∼sami/thesis/node2.html. It comes

as no surprise that bioinformatics has also made full use of these
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techniques in the short time that it has existed. Clustering techniques

in particular are probably one of the most well used techniques in

problem areas where the data has high-dimensionality (for instance

in gene expression analysis). They can be used in their own right to

determine useful information from high-dimensional data, but also as

a method for pre-processing data for use by other algorithms which

benefit from the lower number of variables. Essentially, if similarities

between variables of the data are required from an algorithm, clus-

tering techniques provide this with little computational effort. The

Bioinformatics Toolbox from http://www.mathworks.com provides

a useful set of clustering algorithms for Matlab. Yeung, Medvedovic

and Bumgarner (2003) apply clustering to repeated measurement gene

expression data, and the software they used can be downloaded from

http://expression.microslu.washington.edu/expression/kayee/cluster

2003/yeunggb2003.html. More complex relationships and structures

which involve interactions between variables often require the use of

other techniques. Similarly, nearest neighbour techniques can provide

a fast and computationally efficient method for classifying new data,

but are generally not as accurate as some other classification tech-

niques seen here. Both algorithms could provide good solutions where

implementation and computation time are a priority.

Almost all bioinformatics websites and journals have sections regard-

ing clustering as it is probably the most ubiquitous technique in bioin-

formatics applications. Therefore no single resource is recommended

for this: inputting the keywords ‘clustering’ and ‘bioinformatics’ into a

search engine such as Google2 (or more specifically Citeseer3) will yield

a large number of resources.

5.7 Summary of chapter

1 Nearest neighbour and clustering approaches are examples of ‘unsu-

pervised’ techniques in that they attempt to find relationships among

attributes and samples by using only patterns of coexpression and

similarity among attribute values shared by samples.

2 Unsupervised gene expression data analysis consists of expression

profile clustering to find groups of coexpressed genes in static data

2 See http://www.google.com.
3 See http://www.citeseer.com.
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(that is, data that is not measured over time) or, if temporal gene

expression data is available, coregulated genes (that is, genes that are

all expressed or not expressed together at certain time points).

3 Unsupervised approaches do not rely on additional information, such

as the class into which a sample falls, to build their clusterings.

4 Unsupervised approaches are therefore considered ‘natural’ by many

researchers in that they find natural partitions of samples and/or genes

into subsets.

5 However, there are a number of problems with clustering, including

different results being returned depending on the clustering meth-

ods adopted (which means that researchers need to know something

about the techniques used) and interpretation of the final cluster dia-

grams.

6 Nevertheless, clustering is useful for identifying genes that are max-

imally differentiated from each other for further analysis as to their

possible roles in partitioning samples.
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6
Identification (Decision) Trees

6.1 Method

Identification trees are probably the most widely applied intelligent tech-

nique. They have been used for a huge variety of applications in com-

merce and academia ranging from the sciences, through engineering to

financial, commercial and risk-based applications. In fact, identification

trees are most used in everyday life as they are often applied in the retail

sector where they are used to determine and predict our shopping and

spending habits. Practically every store has a loyalty scheme of some de-

scription, and the terabytes of data that are collected about customers

contain salient information about how and why we behave in the way

that we do. To discover this information from the data, it must be mined

to reveal the interesting features and remove those that are irrelevant or

noisy. It is in this process of data mining that identification trees have

become most well known. Their success in these commercial areas can

also benefit the field of bioinformatics as many problems in this field

consist of large amounts of noisy data. As with many techniques, the

success of the identification tree approach is due partly to its simplicity

and efficiency. In terms of its execution, the identification tree is an al-

gorithm that has few complex steps. The following section describes the

notion of classification and the method that the identification tree uses to

classify data taken from many domains, including those with very large

databases such as bioinformatics.

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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Classification

The task of classification is one that is prominent in a large number of ap-

plication areas. It is essentially the task of creating rules or structures that

will group individuals into predetermined classes by identifying common

patterns or traits for those individuals, as given by the data. The identi-

fication tree approach is therefore ‘supervised’ in that the algorithm has

knowledge of the classes into which individuals fall when constructing

rules or structures for classification. This is to be contrasted with the

‘unsupervised’ approaches of Chapter 5, where nearest neighbour and

clustering techniques partition the data into subsets depending on simi-

lar patterns of values across the attributes of the dataset. Classification

can be used to answer a wide variety of questions in many application

areas. For instance, questions that can potentially be answered by em-

ploying classification include the following.

1 What features make an individual prone to sunburn?

2 What features of a Post Office make it more or less prone to robbery

or burglary?

3 What are the genetic differences between diseased individuals and

normal individuals?

In each of these examples, at least two, mutually exclusive classes

are required (e.g. ‘sunburnt’ versus ‘non-sunburnt’; ‘high-risk’ versus

‘medium risk’ versus ‘low risk’; ‘diseased’ versus ‘normal’) into which

all samples fall, where these classes are predetermined and included in

the data. The task for the classification algorithm is to select, across a

dataset of individuals or samples with known class, those features (or

attributes, or variables) which are most strongly associated with a par-

ticular classification for each sample. Normally there is no restriction to

the number of features that are used, but classification algorithms are

compared on their accuracy and the number of features used for classi-

fying all samples. The fewer the number of features used for classifying

all samples therefore, the better the solution. The goal of classification

algorithms is to produce a rule set (called a ‘classification model’) that

uses the fewest number of attributes/features for classifying all the sam-

ples in the database, on the assumption that these attributes/features are

the most important for classification. Compact solutions are important
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because the results of the classification process often have to be scru-

tinized by individuals who are experts in their domain, and complex

solutions involving a large number of features are often very difficult to

interpret.

This ability to interpret and evaluate a classification model is perhaps

even more important in bioinformatics, as often the bioinformatician is

not an expert in the biological or biomedical field in question. Small and

accurate solutions to classification problems are the most desired, and

the identification tree algorithm has built its reputation on discovering

these in other domains.

Identification trees

Identification trees have proved very successful in the classification do-

main for a number of reasons.

1 They are relatively undemanding in computational terms in compar-

ison with other techniques in this book.

2 They provide clear, explicit reasoning of their decision making in the

form of symbolic decision trees which can be converted to sets of

rules.

3 They are accurate and, in more recent guises, increasingly robust in

the face of noise.

Identification trees, as their name suggests, produce a tree of features

that provide tests for classifying each of the samples/records in the data

according to their most salient features. The basic premise is that only

a few features are required to classify all the samples, and the problem

for a classification algorithm is to search for and identify this reduced

feature set given all the features in the dataset. The approach is to test

each feature iteratively to identify its potential for dividing the samples so

that they fall into the given classes. This is best shown with an example.

Table 6.1 shows some example data about the umpires’ decision to

play a cricket match. As cricket is played outside, there are various factors

that determine whether the umpires will allow play to take place. In this

example, data on three factors thought to be influencing the decision,

namely the weather, the light and the condition of the ground, is collected

and stored.
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Table 6.1 Factors influencing the umpires’ decision to play a cricket match

Weather Light Ground condition Umpires’ decision

Sunny Good Dry Play
Overcast Good Dry Play
Raining Good Dry No play
Overcast Poor Dry No play
Overcast Poor Damp No play
Raining Poor Damp No play
Overcast Good Damp Play
Sunny Poor Dry Play

From this data, an identification tree can be constructed that can show

which are the important factors in making the decision. It is obvious

that there is not one feature that can determine whether play will take

place (classify the dataset completely).The task is to determine, from the

data, the rules the umpires are explicitly or implicitly using to determine

whether play should take place. An identification tree can be constructed

which will provide information as to which features are important in

making the decision.

Identification tree algorithm summary

The aim of the identification tree algorithm is to split the data so that

each subset of the data uniquely identifies a class in the data. Some of

the terms in this summary may not be familiar, but are explained in the

detailed algorithm description. The decision tree algorithm can simply

be summarized as follows.

1 For each feature, compute the gain criterion.

2 Select the best feature and split the data according to the values in

that feature.

3 If each of the subsets contains just one class then stop. Otherwise,

reapply points 1–3 on each of the subsets of data.

4 If the data is not completely classified but there are no more splits

available then stop.
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Identification tree algorithm detail

The algorithm needs to divide up the set of training examples into two

smaller sets that completely encapsulate each class ‘Play’ and ‘No play’.

The ‘supervised’ aspects of the algorithm in contrast to the unsupervised

techniques of the previous chapter, consist of the class values being used

to determine the effectiveness of an attribute in being able to partition

the samples consistently into one of these classes. Each division is known

as a test and splits the dataset in subsets according to the value of the

feature. For instance if a test on ‘Light’ is performed this gives:

Light = Good: yields four examples, three of class ‘Play’ and one of ‘No

play’

Sunny Good Dry Play
Overcast Good Dry Play
Overcast Good Damp Play
Raining Good Dry No play

Light = Poor: yields four examples, one of class ‘No play’ and three of

‘Play’

Overcast Poor Dry No play
Overcast Poor Damp No play
Sunny Poor Dry Play
Raining Poor Damp No play

Notice that no attention is paid to the other two attributes ‘Weather’

and ‘Ground condition’ when testing the effectiveness of ‘Light’. The

above test on ‘Light’ separates the samples into two subsets, each with

three examples of one class and one of another. In a different problem,

this might be considered a good result, and it would be true that the light

level would have an impact on whether the umpires allowed play to take

place. In this example, this test has been chosen at random and is not the

best way of splitting the data. Therefore a measurement of the effective-

ness of each attribute/feature is required by the algorithm to determine

which feature is best for classifying the samples. This measure must

reflect the distribution of examples over the classes in the problem. The

best-known currently employed measure is known as the gain criterion.
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6.2 Gain criterion

The gain criterion is based on the amount of information that a test on the

data conveys. This information-theory based approach has been shown

to be more effective than a simple tally of the number of individuals

in each class, and is the primary method used in commercial packages

including See5 and C4.5.1 The information contained within a test is

related to the probability of selecting one training example from that

class. This probability is easily described by noting the frequency with

which a particular class C j appears in the training set T:

freq(C j ,T )

|T |
. (6.1)

The information conveyed by this is then computed as –log2 of the prob-

ability. This gives:

− log2

(

freq(C j ,T )

|T |

)

. (6.2)

This equation therefore computes the information conveyed from each

class of the training set and to get the expected information from the

training set as a whole, this measure is summed over all classes, multi-

plying by their relative frequencies:

in(T ) = −
k

∑

j=1

freq(C j ,T )

|T |
∗ log2

(

freq(C j ,T )

|T |

)

. (6.3)

This gives the information measure for the entire training set. Each test

that is devised by the algorithm must be compared with this to determine

how much of an improvement (if any) is seen in classification. When a

test is performed, the data is split into a number of new subsets (as

seen previously when the data was split using ‘Light’). To measure the

information yielded by a split x the weighted sum over the subsets is used:

inx(T ) = −

n
∑

i=1

|Ti |

|T |
∗ log2

(

freq(C j ,T )

|T |

)

. (6.4)

The gain given by a particular test can be given by subtracting the result

of Equation 6.4 from Equation 6.3:

gain(X ) = in(T ) − inx(T ). (6.5)

1 This software and documentation is available from http://www.rulequest.com.
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The identification tree algorithm proceeds through each feature, com-

puting the gain criterion for each feature, selects the best of these, and

then uses the same method on the remaining subsets.

This can be seen more clearly in the example given above. First, the

decision tree will evaluate all possible features. We start with the hypoth-

esis that no features are important and then check each of the features

in turn:

in(T ) = −4/8 ∗ log2(4/8) – 4/8 ∗ log2(4/8) = 1.0

inweather(T ) = 2/8 ∗ (−2/2 ∗ log2(2/2) − 0/2 ∗ log2(0/2)) (Sunny)

+4/8 ∗ (−2/4 ∗ log2(2/4) − 2/4 ∗ log2(2/4)) (Overcast)

+2/8 ∗ (−0/2 ∗ log2(0/2) − 2/2 ∗ log2(2/2)) (Raining)

= 0.5 bits.

Gain = 1.0 − 0.5 = 0.5.

inlight(T ) = 4/8 ∗ (−3/4 ∗ log2(3/4) − 1/4 ∗ log2(1/4)) (Good)

+4/8 ∗ (−1/4 ∗ log2(1/4) − 3/4 ∗ log2(3/4)) (Poor)

= 0.811 bits.

Gain = 1.0 − 0.811 = 0.189.

inground(T ) = 5/8 ∗ (−3/5 ∗ log2(3/5) − 2/5 ∗ log2(2/5)) (Dry)

+3/8 ∗ (−1/3 ∗ log2(1/3) − 2/3 ∗ log2(2/3)) (Damp)

= 0.951 bits.

Gain = 1.0 − 0.951 = 0.049.

For instance, for ‘weather’, two of the eight samples (2/8) have the at-

tribute value ‘Sunny’, of which two out of two (2/2) fall in the class ‘Play’

(the first and eighth samples in Table 6.1) and none of the two (0/2) fall in

the class ‘No play’, plus (+) four out of eight samples have the attribute

value ‘Overcast’, of which two out of four (2/4) fall in the class ‘Play’

and two out of four (2/4) fall in the class ‘No play’, plus (+) two out

of eight (2/8) samples have the attribute ‘Raining’, of which none of the

two (0/2) fall in the class ‘Play’ and two out of two (2/2) fall in the class

‘No play’. In this example, the feature ‘Weather’ would be selected as the

first attribute on which to split the data as it has a far higher informa-

tion gain (0.5) compared with the other two features (0.189 and 0.049).

This constitutes the first node of the tree and now the training data is

split into three sets, one each for ‘Sunny’ ‘Overcast’ and ‘Raining’. Two

of these three sets (those for ‘Sunny’ and ‘Raining’) have individuals of

only one class (‘Play’ and ‘No play’, respectively), so no further action

is required on them. However the ‘Overcast’ subset has two individu-

als of class ‘Play’ and two of ‘No play’. The algorithm now proceeds to
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investigate whether a further test using one of the remaining two features

can classify this dataset correctly.

Weather Light Ground condition Umpires’ decision

Overcast Good Dry Play
Overcast Poor Dry No play
Overcast Poor Damp No play
Overcast Good Damp Play

By considering the remaining data as a new sample set (S), the same

procedure can be used to determine a new split to improve the current

tree:

in(S) = −2/4 ∗ log2(2/4) − 2/4 ∗ log2(2/4) = 1.0 bits.

inlight(S) = 2/4 ∗ (−2/2 ∗ log2(0/2) − 0/2 ∗ log2(0/2)) (Good)

+2/4 ∗ (−0/2 ∗ log2(0/2) − 2/2 ∗ log2(2/2)) (Poor)

= 0.0 bits.

Gain = 1.0 − 0.0 = 1.0.

inground(S) = 2/4 ∗ (−1/2 ∗ log2(1/2) − 1/2 ∗ log2(1/2)) (Dry)

+2/4 ∗ (−1/2 ∗ log2(1/2) − −1/2 ∗ log2(1/2)) (Damp)

= 1.0 bits.

Gain = 1.0 − 1.0 = 0.0.

In this second iteration the algorithm has found that by splitting this

subset of data on the feature ‘Light’, the data is completely classified.

That is, each subset of the data as determined by the decision tree has

only individuals belonging to one class in the set. The final decision tree

can be seen in Figure 6.1.

The construction of the tree is reasonably simple, as the same compu-

tation can be applied to the increasingly small sets of data as determined

by previous splits. This algorithm therefore represents an elegant solution

to the problem of supervised classification in datasets.

Continuous data

The example above uses only discrete data, where each feature is split

up into a number of categories that are used in the decision tree. Real-

world – and especially biological – data contain a lot of continuous (real
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Sunny Raining

Good Poor

Weather

Play

Play

No play

No play

Light

Overcast

Figure 6.1 The final tree generated by executing the identification tree algorithm on
the cricket example dataset; this tree classifies the training data exactly,
with two examples at each of the four leaves

or floating point) values and the identification tree algorithm has a sys-

tem for dealing with these values. The system relies on the fact that

whilst the range of the data itself might be continuous in nature, the

data presented to the algorithm must, by definition be a set of finite,

discrete observations of that continuous range. The continuous data is

treated in much the same way as the discrete data, but with one im-

portant difference. Whereas the discrete data uses the ‘=’ operator, the

continuous data uses the comparison operators (‘<’, ‘≤’, ‘>’, ‘≥’) to de-

termine the subsets of the data created by a test. There are n − 1 possible

tests given a continuous attribute which has n possible values, but gen-

erally speaking the evaluation of each of these tests can be determined

in short computational time. It is in this fashion that the decision tree

algorithm can be used for classification with continuous and discrete

values.

For instance, if the ‘Light’ attribute had contained values ranging from

‘1’ (very poor light) to 10 (‘excellent light’), one test resulting from the

identification tree algorithm might be ‘If Light ≥ 6 then Play’, which

would return a figure describing how many Play cases with a value of 6 or

more for the ‘Light’ attribute are captured by this test. The identification

tree algorithm can test different continuous values in the range of values

for an attribute for their effect on classification and choose appropriate

thresholds to maximize the correct number of cases falling on either side

of the comparison tests.
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Gain ratio

The gain ratio seen in Quinlan (1993) is a more sophisticated version of

its forerunner, the gain criterion. The difficulty with the gain criterion

is that it is biased towards tests which have many subsets. For instance,

the split on ‘weather’ produced a dataset with three subsets, one each

for overcast, sunny and raining. The remaining two attributes (‘light’

and ‘ground’) yielded two subsets. We will see in the following example,

the gain criterion weighted the split on ‘weather’ more favourably than

it should have because of the larger number of values the attribute has.

This behaviour is to be avoided as tests that result in many subsets are

not necessarily those that will yield the most useful information. The gain

ratio (Quinlan, 1993) is a revised gain measure that takes into account

the size of the subsets created by test. To compute the gain ratio, the gain

(as computed in Equation 6.5) is divided by the information contained

by the number of subsets in the split. This ‘split information’ measure

can be used to normalize the gain criterion seen above, and is computed

as:

splitin(X ) = −
n

∑

i=1

|Ti |
|T |

∗ log2

(

|Ti |

|T |

)

. (6.6)

This gives a final gain ratio equation:

gainratio(X ) =
gain(X )

splitin(X )
. (6.7)

Returning to the example above, if the data is split on the attribute

‘weather’ then three subsets are created, two of which contain two

records, and one which contains four. The split information can therefore

be computed as:

−2/8 ∗ log2(2/8) − 2/8 ∗ log2(2/8) − 4/8 ∗ log2(4/8) = 1.5

Taking the gain criterion score of 0.5 for the attribute ‘weather’ from the

example above, the gain ratio is computed as:

0.5/1.5 = 0.33.

Splits on the other attributes in the data yield two even subsets with

four records apiece in them, which yields a split information of 1.0. In this
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circumstance, the gain criterion values remain unchanged for attributes

‘light’ and ‘ground condition’, and the attribute ‘weather’ is still chosen

as the first split in the tree. However, its influence has been reduced (from

0.5 using gain criterion to 0.33 using gain ratio) so the effect on the gain

criterion exerted by the fact that the attribute splits the data into more

subsets has been reduced somewhat by using the gain ratio.

By using a simple algorithm and an information-theory approach, the

identification tree can discover useful and accurate information from a

set of data which may not be obvious on first observation. The small

example dataset, when combined with the ability to process continu-

ous values and a revised gain ratio, illustrates the principles behind the

execution of the identification tree algorithm. These improvements to

the algorithm become increasingly valuable when there are thousands or

millions of data records in the dataset. With data of this size and type,

which is frequently the norm in commercial and scientific applications, a

robust, efficient and accurate algorithm is necessary to extract meaning

from the collected data. The entire process of data collection, manipu-

lation, knowledge discovery and interpretation is known as data mining

and probably constitutes the single largest application of artificial intelli-

gence techniques outside the academic laboratory. The identification tree

algorithm is certainly not the only data mining algorithm, but it is one of

the most popular. There are, however, some drawbacks to the approach.

6.3 Over fitting and pruning

To a certain extent every algorithm involved with classification runs the

risk of over fitting the data. This is the phenomenon where the algorithm

learns the errors (noise) in the data as well as the underlying structure

of the processes that created the data. This phenomenon occurs because

every algorithm attempts to reduce the error in classifying the data, and

many algorithms including identification trees can reduce this error by

introducing more and more splits in the data. When this happens the

model can become overly complex, which in itself is not desirable due

to the increase in model size, and therefore it cannot be interpreted as

easily. However, a further effect is that the tree becomes so accurate on

the training data samples that a new sample not seen previously by the

identification tree is falsely classified. Essentially, the algorithm has learnt

the training data too well in that it has learnt the erroneous data as well

as the underlying patterns. To identify when this problem occurs, the

data can be divided into two sets: the training set and the test set. The



158 IDENTIFICATION (DECISION) TREES

training set usually comprises about 75 per cent of the total dataset,

with the remaining 25 per cent of samples kept back precisely to check

on overfitting. The identification tree algorithm is then ‘trained’ on the

training set only, and when it has constructed a tree the test set is fed to

the tree to check on the accuracy of the tree. The class into which each of

the samples in the test set falls is of course known, and this knowledge can

be used to check on the accuracy of the identification tree. A variant of

this method is to run this ‘train–test’ regime on several different training

and test sets randomly generated from the original data. Providing that

the test data has been drawn from the same population as the training,

then this deleterious effect can be determined as overfitting and a strategy

should be used to overcome it.

A widely-used strategy for dealing with over fitting is pruning. This

is a process whereby the entire tree is generated as previously described

until no more good splits can be made. Once this has occurred, the tree

is pruned back, according to certain criteria, so that complex branches

of the tree are consolidated into smaller, perhaps less accurate (on the

training data) sub-branches. This is obviously less efficient than simply

generating a smaller tree in the first place, but Quinlan (1993) states

that the method of generating and pruning performs more reliably than

stopping or prepruning. Any subtree (that is not a leaf) can be considered

for reduction to a leaf where the leaf classification is the most frequent

class member of that subtree. However, the pruning method must use

some estimate of the expected error of:

1 the current subtree, and

2 the leaf that is replacing the current subtree.

If restricted to the training data, the current subtree will have the fewest

errors every time, so some measure must be made of the expected error

incurred on other data. This can either be done by using data set aside

for testing (although as this data will be used to tune the model, a further

‘test’ set will be required to truly evaluate performance at a later stage), or

by using some heuristic estimate. Quinlan (1993) uses a heuristic based

on the upper bound of the binomial distribution, due to the fact that

often (and especially in bioinformatics problems) there is not enough

data to generate one or more hold-out sets for testing. The concept of

pruning is included here because the level of pruning is often a parameter

in constructing an identification tree and can influence the accuracy of
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the results that are obtained. In addition to this, it is important to note

that a complete decision tree is seldom kept in its unpruned form and

some level of pruning is required for the tree to generalize beyond its

training set.

Other disadvantages with identification trees

Whilst the simplicity and efficiency of the identification tree algorithm is

central to its popularity, this approach has also been criticized in some

quarters. The majority of the criticism focuses on the deterministic way

the algorithm splits the data. The example seen previously shows the

algorithm selected the first split on the attribute ‘Weather’. However, it

may be that by splitting the data firstly by weather, that other effects in

the data are lost. The fact that the split in the data is selected based on

the fact that it has the best gain criterion at a certain stage is a central

tenet of the approach and is instrumental in its efficiency. However, the

approach would benefit from some element of depth-first search where

the split is evaluated not only on its current ability to classify the data,

but the accuracy of the split later on in the algorithm run. Inevitably, this

would lead to a greatly increased amount of computation, as a partial

or even entire tree would have to be generated for each split and there

may only be a small number of problems which would benefit from its

application. The tree-like nature of the identification trees ensures that

the first split will always be the most important, but it is only evaluated

as to how well it classifies the data at that particular point. It may be that

another tree exists, with a different starting split, which classifies the data

much more accurately. There have been a number of methods suggested

to counteract this effect, including the use of other algorithms to select the

starting split for the decision tree (this approach is seen in one of

the applications later in this chapter). However, these approaches are

liable to require more computation than the original algorithm and there-

fore may not be as amenable to large datasets.

Conclusions

Identification trees have been used extensively in industry and academia

and are perhaps the most widely applied artificial intelligence technique

covered in this book. This success is largely attributable to the efficiency
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of the algorithm which enables it to be applied to huge datasets that

other algorithms could not mine within a reasonable time scale. With

businesses collecting terabytes of data relating to customer transactions

and other business activity, this efficiency is vital and, as is often the

case, is due largely to the simplicity of the approach. This efficiency is

in turn due to the simplicity of the split evaluation function, based on

information-theory approaches; it does not require any complex math-

ematics to develop a highly accurate assessment of the effectiveness of

a split. For bioinformatics, though, it remains to be seen whether iden-

tification tree approaches will become as prevalent as they are in other

domains. Bioinformatics data (such as gene expression data) often has

a vast number of variables (genes), but a small number of records (ex-

periments) in contrast to commercial data which is often the reverse

of this and so algorithms must be efficient given this atypical level of

complexity.

6.4 Application guidelines

Introduction

Identification trees as described previously can be used in a large vari-

ety of situations where information is required from a set of data col-

lected from a variety of sources. They are especially useful when there

are a large number of records in the data. In addition to this, they can

be used when explicit reasons for classification need to be provided,

for instance in applications where safety-critical considerations prevail

or where the results need to be scrutinized by expert users. This is of-

ten the case in bioinformatics problems where the results need to be

tested by biologists to determine whether the results have biological

plausibility.

Therefore, when the results are required to be explicit and when there

is a lot of data, identification trees can discover knowledge in good

time. However, they are essentially restricted to problems of classifica-

tion where the class of the training set individuals is known. As such,

they cannot be considered as flexible as some of the other techniques

in this book such as genetic algorithms, genetic programming or neu-

ral networks, as these techniques can be used for a variety of purposes,

in addition to classification. This supervised approach is in contrast to

the other ‘unsupervised’ techniques seen in this book such as clustering
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(Chapter 5) and kohonen networks (Chapter 7) which do not require

this explicit definition of class within the data.

Cross-validation

An important aspect of applying any machine learning technique to bioin-

formatics problems, but especially identification trees, is the use of test

data. Often in bioinformatics problems the number of data records avail-

able for an experiment (especially in the case of microarray experiments)

can be small relative to the number of attributes. Therefore it may not

be feasible to split the data into separate large training and test sets.

Instead, cross-validation can be used where the algorithm is run repeat-

edly on different training and test sets. Cross-validation splits the entire

dataset into a number of folds, which is determined by the experimenter

and the amount of data available. If the data is split into five folds, then

the machine learning technique is trained on four fifths of the data and

then tested on the remaining one fifth. This is then repeated for all the

other four folds in the dataset, testing on a different fold each time. The

measure of accuracy is determined by the average error of each run on

each fold of the dataset. Figure 6.2 shows this process graphically. In this

example, the training dataset is split into eight sections, seven of which

are combined and used to train the identification tree and the remaining

fold used to test the example. This is repeated for the N (in this case eight)

folds in the dataset and the average accuracy or error reported over the

N runs of the algorithm. One advantage of this approach is that, at the

end of the five-fold process, there will be five possibly different identifi-

cation trees. Future samples with unknown class can then be fed to all

five identification trees and a ‘majority vote’ taken as to which class the

new sample falls into.

As described previously, the number of folds chosen is usually deter-

mined by the computational time available to the experimenter (more

folds take more time to run) and the amount of data in the dataset.

A popular specific cross-validation technique is ‘leave-one-out’ cross-

validation which, as its name suggests, leaves one example out of the

dataset for testing and trains the algorithm on the remaining data. This

is still N-fold cross-validation, but where N is equal to the number of data

records (individuals or samples) in the dataset, and is the most compu-

tationally demanding cross-validation technique as N trials must be run.

The cross-validation process gives a good impression of the accuracy of
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Figure 6.2 An example of N-fold cross-validation

the approach that can be expected on non-training data and is especially

useful where the amount of data is restricted, which is often the case in

problems in biology.

Software

Data mining is big business and identification tree software forms a rea-

sonably large sector of this market, so there are various implementations

to choose from. However, because they are used so frequently by large

corporations, the larger packages can often be costly. These packages

tend to incorporate a large amount of external software which allows

connection to a variety of databases, exporting results in a number of

formats and good visualization of the results. If these extra features are

required, the SPSS Clementine2 package is frequently described as the

industry standard and includes a number of approaches (neural net-

works, nearest neighbour algorithms and, of course, identification trees)

2 More information can be found at http://www.spss.com/clementine.
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described in this book. If a more cut-down identification tree software

package is required, then See5 (Windows) or C5 (UNIX)3, developed by

Ross Quinlan, represents a neat and efficient implementation of the al-

gorithms discussed here. In addition to this, See5 is kept up-to-date with

the latest advances in the field so that it incorporates new features such

as ‘boosting’, ‘cross-validation’ and ‘fuzzy thresholds’. If a simple and

quick algorithm implementation is required with rudimentary visualiza-

tion of results, then See5 is highly recommended. An alternative to this

package is CART4 (Breiman et al., 1984) which should be considered

when choosing a decision tree algorithm.

As might be expected for a technique that was conceived up to 20 years

ago, there are a number of open source sites with code for identification

tree algorithms. An excellent public-domain library of machine learning

code written by Ron Kohavi is available from SGI5. This includes a large

variety of algorithms, including variants of C4.5 (as described above)

and other rule induction approaches such as CN2 and is available for

both Windows and UNIX operating systems. Written in C++, this is

more than a simple implementation of the algorithms since it includes a

variety of utilities and is also well documented.

6.5 Bioinformatics applications

HIV and Hepatitis C (HCV) protease
cleavage prediction

As previously described in Chapter 2, viral protease is one of the enzymes

typically accompanying HIV RNA and HCV into the cell (see Figure 2.10,

Chapter 2). It cleaves the precursor viral polyproteins (the substrate)

at specific cleavage-recognition sites when they emerge from the ribo-

somes of the host cell as one long sequence (Figure 6.3(a)). When certain

substrate configurations occur (a certain sequence of amino acids), the

protease cleaves the viral polyprotein at a specific point in the substrate

(Figure 6.3(b)). Conventionally, the polyprotein substrate is labelled with

unique P identifiers (one for each amino acid) and the protease region

around the active site with unique S identifiers (Figure 6.3(c)).

This cleavage step is essential in the final maturation step of HIV and

HCV. That is, protease is responsible for the post-translation processing

3 Available from http://www.rulequest.com.
4 Available from http://www.salford-systems.com/.
5 Available from http://www.sgi.com/tech/mlc/index.html.
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Figure 6.3 The final maturation phase of HIV

of the viral gag and gag-pol polyproteins to yield the structural proteins

and enzymes of the virus for further infection.

There are two current methods for inhibiting viral proteases. Compet-

itive inhibition consists of identifying an inhibitor that will lock on to

the protease’s active site and thereby prevent that protease from bind-

ing to any further substrate (Figure 6.3(d)). These inhibitors are used

only once (one inhibitor – one protease). Non-competitive inhibition,

on the other hand, works by identifying a regulatory site rather than an

active site of the protease so that the inhibitor, when bound to the regu-

latory site, distorts the structure of the protease and thereby prevents it
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from binding to its substrate. Inhibitors must be carefully and specifically

designed so that they do not affect the naturally occurring proteases in

the human body.

A significant amount of potential cleavage site data for HIV and HCV

has been produced through laboratory in vitro experiments, where the

effect of these proteases on synthetic oligopeptide sequences have been

observed and recorded, constituting data sets for pattern recognition and

machine learning applications. Another way to produce negative cleavage

sites is to assume that regions between known cleavage sites are non-

cleavage. That is, as well as trying to produce cleavage and non-cleavage

oligopeptide sequences in vitro, the full polyprotein sequence of the virus

can be analysed by a computer and fixed length sequences (either eight

or 10 amino acids long for the HIV and HCV polyproteins, respectively)

which are currently not known to be cleavage sites are extracted as

‘negative cleavage’ sequences. For HIV, experimental work suggests that

cleavage takes place in the middle of an octopeptide substrate (i.e. be-

tween the fourth and fifth amino acid), whereas for HCV the situation is

more complicated. In fact HCV has at least three proteases, each of which

works on distinct regions of the long S. polypeptide sequence. We focus

on the region subject to one of these proteases, NS3. For NS3 there is evi-

dence that cleavage takes place between the sixth and seventh amino acid

of a decapeptide substrate. For HIV a 363-substrate dataset was available

(Cai and Chou, 1998) consisting of 114 sequences that were clinically

reported as cleaved and 249 sequences as non-cleaved. For HCV a special

dataset was constructed from the literature consisting of 168 NS3-cleaved

sequences (as reported in the clinical literature) and 147 sequences that

were derived by moving a 10-amino acid substrate window along the

HCV polyprotein sequence so that decapeptide regions not overlapping

with known cleavage regions or each other (as far as possible) were

identified and tagged as non-cleavage. The samples were represented to

See5 (Quinlan, 1993) as an eight-character string of amino acids (using

the amino acid alphabet) for HIV samples and as 10-character strings

for HCV. Each sample was terminated with a ‘1’ to signify cleavage or

‘0’ to signify non-cleavage. The task for See5 was to determine whether

there was a pattern of amino acids in the substrate that could help

determine whether the viral protease did or did not cleave (Narayanan,

Wu and Zhang, 2002), for the design of possible future protease

inhibitors.

So, for instance, one HIV sample for See5 was G,Q,V,N,Y,E,E,F,1,

where G occupied first position of the substrate, Q the second position,
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etc., and the final 1 signified that this sample was cleaved. An example

of a HCV sample is D,L,E,V,V,R,S,T,W,V,0, where the 10 positions in

the substrate are encoded D through to V and 0 signifies non-cleavage.

The datasets were separately analysed by See5, using a 10-fold cross-

validation technique. For HIV the final accuracy figure across all 10 folds

on test data was 86 per cent, with 25 false negatives (25/248 non-cleavage

cases were incorrectly classed as cleavage) and 26 false positives (26/114

cleavage cases were incorrectly classed as non-cleavage). For HCV the

accuracy figures for test data were slightly worse but still respectable

at 82 per cent, with 27 (27/147) false negatives and 32 (32/168) false

positives.

For the total HIV dataset, the following rules were derived by See5

(where ‘(x/y)’ after each rule signifies the number of false classifications).

(a) If position4 is phenylalanine then cleavage (35/5). (b) If position4 is

leucine then cleavage (38/9). (c) If position4 is serine then non-cleavage

(26/1). (d) If position4 is tyrosine and position5 is proline then cleavage

(32/5). Other minor rules covering fewer cases tended to reflect the impor-

tance of positions 4 and 5 (on either side of the cleavage site). However,

none of the rules was successful in capturing the majority of cases (114

positive sequences in total). One interesting piece of new knowledge ex-

tracted by See5 was the relative importance of position 6 (If position6 is

glutamate then cleavage (44/8)). Also, the above rules provide evidence

that hydrophobic residues phenylalanine and tyrosine are involved in

cleavage site prediction (rules (a) and (d)).

For HCV, the following rules were found. (a) If position6 is cysteine

then cleavage (133/27). (b) If position6 is threonine and position4 is

valine then cleavage (28/5). (c) If position6 is cysteine and position7 is

serine then cleavage (100/33). (d) If position1 is aspartate then cleavage

(122/41). (e) If position10 is tyrosine then cleavage (98/22). (f) If posi-

tion10 is leucine then cleavage (70/27). Since this is the first time that

HCV substrates have been analysed in this way, these rules represent po-

tential new knowledge of HCV NS3 substrates. Also, for both HIV and

HCV substrates See5 has for the most part found the positions on either

side of the cleavage site that intuitively are the most important (positions

4 and 5 for HIV, positions 6 and 7 for HCV), although there is nothing

in the representation of the samples to See5 that gave it any indication of

where the actual cleavage sites were. This provides some evidence that

future protease competitive inhibitors for HIV and HCV will have to pay

particular attention to these positions of the substrate if inhibitors are to

work effectively.
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Classification of cancer by using diagnosis data

A good deal of the classification problems in bioinformatics data are re-

lated to the problem of determining the clinical diagnosis of an individual

based on gene expression data or some other measurement of cellular

activity. The application of identification trees to this classification task

provides a good introduction to the application of the technique in bioin-

formatics. However, the work undertaken by Li et al. (2003) takes the

decision tree process a step further, by using a committee of trees to decide

the outcome of the classification task. The reason for this is similar to

the problem described earlier, in that identification trees are deterministic

and use the top ranked feature every time a split is required. This leads to

only one tree being created that may be sub-optimal, whereas a tree with

a different starting point may perform better. Therefore Li et al. used a

committee of trees which are first started on the best performing feature

(the optimal, or C4.5 tree), but a tree is then grown from the second-best

performing feature, and then the third best, up to a stopping point. The

trees can then be converted to rules (for more information on this proce-

dure see Quinlan (1993)) and added together to create a large knowledge

base. This knowledge base can then be used to classify the data, includ-

ing new examples. There are, however, difficulties when using multiple

rules for the same individual; for instance, some of the rules may place

the individual in a certain class, and other rules may disagree. This con-

flicting behaviour is resolved by using the coverage statistic (the number

of individual records covered by the rule) as a measure of the efficacy of

that rule. Therefore the coverage for each rule that fires is summed for

each class (similar to a weighted-voting system) and the class with the

highest weight is predicted.

Li et al. show that they gain excellent results in comparison with See5,

including the latest developments such as boosting, on a variety of clas-

sification problems taken from the bioinformatics literature. The results,

which are based on the cross-validation of datasets, show that, as ex-

pected, the committee approach performs better on these problems than

the single C4.5 results with boosting or bagging. The first experiment

was conducted on ovarian cancer containing 253 mass spectrometry

proteomic samples, 91 of which were controls and 162 of which repre-

sented ovarian cancer. Each of these samples contained 15 154 features

which were the relative amplitudes of the intensities for each molecu-

lar mass/charge identity. A 10-fold cross-validation procedure was used

to ensure consistency of results. The results showed that the committee
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approach classified this dataset with no errors, whereas C4.5 incurred 10

errors. A second experiment was conducted which was designed to dis-

tinguish between six sub-types of acute lymphoblastic leukaemia (ALL)

by using gene expression profiles. The data here consisted of 327 indi-

vidual samples, each of which was comprised of 12 558 gene expression

values. In a 10-fold cross-validation approach the committee approach

incurred errors on seven cases in comparison with 23 for C4.5.

Therefore this study highlights the fact that identification trees by

themselves can be difficult to apply to large-scale data with few records

such as gene expression or proteomic data due to the fact that it will

use only one or two features to classify the set. However, the committee

approach shows that with repeated application of the identification tree,

including the modification of its parameters, a more complete classifier

can be created. Whilst the reported accuracy results are good, the in-

creased accuracy is to be expected to a certain degree, as the committee

approach means that the performance will only be as bad as the worst

tree in the committee. It is also worth noting that the computation re-

quired to generate the committee approach is considerably larger than a

single run of the identification tree algorithm. Although the number of

individuals in gene expression experiments is currently small, in the fu-

ture it is possible that the approach, if used on large datasets, will require

significant extra computation.

Consensus method for secondary protein
structure prediction

The prediction of secondary and tertiary protein structure from the un-

derlying amino acid combinations is one of the most pressing problems in

bioinformatics. The secondary structure determines how groups of amino

acids form sub-structures such as the coil, helix or extended strand. The

correct derivation of the secondary structure provides vital information

as to the tertiary structure and therefore the function of the protein.

There are various methods which can be used to predict secondary struc-

ture, including the DSSP approach which uses hydrogen bond patterns

as predictors, the DEFINE algorithm which uses the distance between

C-alpha atoms, and the P-CURVE method which finds regularities along

a helicoidal axis. As might be expected, these disparate approaches do

not necessarily agree with each other when given the same problem and

this can create problems for researchers. The work by Selbig, Mevissen

and Lengauer (1999) develops the decision tree as a method for achieving
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consensus between these approaches by creating a dataset of predicted

structures from a number of prediction methods for the same dataset.

The correct structures for each of the protein elements in the training set

is known, and this forms the classification for each of the records in the

training set. The identification tree therefore creates rules of the form

IF Method1 = Helix AND Method2

= Helix THEN Consensus = Helix

In this way, the identification tree can choose when it is prudent to

use certain structure prediction methods and when to use others. This

methodology ensures that prediction performance is at worst the same

as the best prediction method, and in the best case should perform better

than that. The results were reported on two datasets, one consisting of

396 proteins (the CB396 dataset, Cuff and Barton (1999)) and the 11

CASP3 proteins6. For each of these datasets, seven prediction methods

are combined in the consensus tree, and an 11-fold cross-validation pro-

cedure is used to determine the accuracy of each of the techniques. The

prediction accuracy of the consensus method is better than any of the

single methods for both datasets, but also achieves improved results in

comparison with another consensus method, JPRED. The decision tree

approach improves on the JPRED method by achieving a marginal ac-

curacy improvement of 72.9 per cent as opposed to 72.6 per cent on the

CB396 dataset. On the CASP3 dataset, however, the approach improves

on JPRED by 1 per cent as it achieves 76.0 per cent accuracy.

This therefore shows a good example of how the intelligent approach

of the decision tree can be used to optimally combine existing standard

methods of secondary structure prediction. It also provides a neat exam-

ple of how modern machine learning algorithms can be combined with

established scientific methods based on chemo-biological principles. The

result of this union is improved accuracy on this difficult problem in

bioinformatics.

6.6 Background

The decision tree methodology described here in the method section is

that of C4.5 (See5) written by Quinlan in 1993. This was predicated,

however, by ID3, again created by Quinlan, in the early 1980s which

6 Dataset available from http://predictioncenter.llnl.gov/casp3/Casp3.html.
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included the basic structure that is employed in C4.5. The original idea

Quinlan credits to Hoveland and Hunt and concept learning systems

which, as many of the notions in this book seem to have been, were

created in the 1950s.

Since Quinlan designed C4.5 and See5, there have not been any sig-

nificant paradigm-shifts in the way that decision tree software works.

There has been an explosion in the number of software packages which

use identification or decision trees, but the theory behind them remains

much the same. Advances have come in the shape of improvements to

the way that splits are evaluated, how the results are visualized and ad-

ditional methods such as bagging and boosting. These areas have now

become an important area for research in data mining with decision trees.

6.7 Summary of chapter

1 Decision trees use information-theory measures to divide a set of

training examples into known classes.

2 They are efficient with respect to the size of the data, and can be run

on most datasets with a modest machine.

3 The information discovered by decision trees is easily interpreted and

can be converted into rules to be digested by non-technical personnel.

4 Their efficiency and transparency aid their application in many com-

mercial domains, but often their inflexible deterministic approach can

prevent them from being used in bioinformatics problems.
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7
Neural Networks

7.1 Method

Neural networks were originally conceived as computational models of

the way in which the human brain works. Like the human brain, they

consist of many units (analogous to neurons and sometimes called by

the same name) connected to each other by variable strength links (anal-

ogous to axons in the brain). These variable strength links are abstract

representations of the way that most neurons actually communicate with

each other in the brain: through changes in the rate or frequency of elec-

trical or chemical messages. As with a number of the techniques described

in this book, this technique has been inspired by the way biological or-

ganisms (in particular humans) solve the problems of computation in

nature. As mathematical models, they have found a large number of ap-

plications in science and commerce, particularly in the area of finance

and market prediction. The attraction of neural networks is that they

can ‘learn’ relationships between sets of variables taken from a system.

Once trained, the network can then be shown new examples and asked

to predict the outcome of the new data based on the previous examples

it has learnt. This quality, known as generalization, is the ability to infer

the underlying relationships in the data and being able to apply them

to new situations and is the staple reason for their use in such a wide

variety of contexts. This may sound similar to the method by which hu-

mans learn and, to a very limited extent, this is true. A further property

which distinguishes this technique from other computational methods is

that of ‘graceful degradation’. The knowledge learnt is encoded in the

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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network as a set of ‘weights’, the individual strength of these weights

determines the behaviour of the network. Should any of these weights or

units be removed, the network can still function but with reduced per-

formance, a little like the human brain. This is in contrast to most other

computational techniques which cannot function at all if one or more

parts of their decision making process is faulty. Neural networks should

not, however, be seen as constituting biologically significant models of

human brain activity, although some studies are conducted into the sim-

ulation of human brain activity (under the umbrella of connectionism)

for the purposes of this book, they are merely useful computational tools.

Therefore, as computational tools, neural networks represent somewhat

of a departure from many of the other techniques in this book which

have a more symbolic flavour. They have a step-by-step algorithm of op-

eration, but the resulting neural structure has a little more in common

with biology than the other methods described in this book.

Architecture

A neural network consists of interconnected units, often arranged in lay-

ers. The configuration of these units is known as the architecture, and

can vary widely depending on the application for which it is used. In the

simplest neural networks there are only two layers – one ‘input’ layer and

one ‘output’ layer – and are known as ‘perceptrons’ (Rosenblatt, 1958).

These networks are only able to discriminate linear relationships be-

tween variables because they possess only one layer of weights. The more

sophisticated ‘multi-layer’ perceptron (as popularised in Rumelhart &

McClelland, 1986) adds a number of ‘hidden’ layers of units and there-

fore the two sets of weights increase the power of the network to infer

non-linear relationships between variables. There is no theoretical limit

to the number of layers a network can possess, although these two are

among the most popular.

Learning

In most applications of this type of neural technique, the task for the

network is to relate the variables it receives in the input layer to some de-

sired behaviour at the output layer by repeatedly presenting the examples

to the network in a process known as training. Somewhat analogous to

learning in human infants, neural network training allows the network

to determine the correct response to the input patterns that are presented
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to it. Once trained, the neural network should be capable of predicting

an output given a previously unseen set of inputs. This training is known

as supervised learning because the output is known for the training data

points and therefore the required response can be given to the network

during training. Supervised neural networks differ from traditional super-

vised learning, such as that used by identification trees, in that traditional

supervised learning deals only or mainly with classification and super-

vised neural networks have a more general capability than this. Neural

networks can also act as transducers (converting one form of input to

another form of output). One of the most important aspects of neural

network output is that it can be ‘real-valued’, whereas traditional classi-

fiers can usually only output one of several discrete values that represent

the class into which a sample falls. However, neural networks can also be

used where the required response is not known, for instance in clustering

tasks, with an unsupervised approach. These networks use training based

solely on the input data, have no input, output and hidden layer distinc-

tions, and are frequently used in domains where the required response is

not known. The following sections describe the component parts of the

neural network in addition to the training regimes employed in their use.

Units and weights

The unit (also known as a neuron or node) is the main processing element

of the neural network. It receives a set of input signals and, combined with

an internal function, converts the input signals to an output signal. The

internal function can be as simple as a step function, or a more complex

transformation such as the commonly used sigmoid function. Based on

these functions, the activation function makes a ‘decision’ whether to fire

and propagate the signal further up the network, based on the weight

of the incoming signals. The step function ensures an ‘all-or-nothing’

response is given, whereas the sigmoid function produces a more grad-

uated response. Figure 7.1 shows these two functions in mathematical

and graphical form.

The task of the sigmoid function in Figure 7.1, for instance, is to take

the incoming weights, check whether an internal threshold is exceeded,

and if it is to calculate the output as the function of 1 divided by 1 plus

the exponent of the value it has calculated. The effect is to produce an

output that varies between 0 and 1, where large numbers of incoming

negative values produce an output that is close to 0 and large numbers

of incoming positive values produce an output that is close to 1. Another

term for a sigmoid function is a ‘logistic’ function. Many other types of
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(a)

(b)

If (activation > threshold)
output = 1 Else output = 0

Output = 1
1 + e−α (activation)

Figure 7.1 Two possible activation functions to determine the output of a node
given the sum of its input: (a) the threshold function gives a simple 1 or
0 response depending on the magnitude of the incoming signal; (b) the
sigmoid function responds in a more graduated manner and the slope
of the curve is dependent on the α value in the equation

function exist within neurons to convert incoming values into an output

value, and such functions are called ‘transfer functions’, or ‘activation

functions’, in the neural network literature.

One of the major characteristics of neural networks is that the links

between nodes are themselves weighted, which is why the input to a neu-

ron is usually called a weight. So even if a ‘1’ is output by a transmitting

neuron, if the weight attached to a link that carries that value to another

neuron is 0.1, then the receiving neuron receives 0.1.

The important principle is that although the functions themselves are

very simple, when a number of them are assembled together and con-

nected with weighted connections, highly complex computation is possi-

ble. The weighted connections propagate signals from unit to unit mod-

ifying the strength of the signal according to their weight. Weights are

modified in the training process and provide much of the learning capa-

bility of the network.
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Architectures revisited

As described previously, the arrangement of units and weights in the neu-

ral network (often referred to as the architecture) has a profound effect

on the performance of the network and even its purpose. There are a

huge number of architectures that have been devised for a variety of pur-

poses, and there are far too many to list in this book, so only the most

useful architectures for bioinformaticians are described. The most com-

monly used of these are the feed-forward backpropagation architectures

where the units are arranged in layers as described previously, and the

learning algorithm is known as supervised learning. The feed-forward

aspect of the name of this network is due to the direction of flow of

the data, whereas backpropagation describes the fact that the errors in-

curred during learning are propagated back through the network. The

directional aspects of these processes are shown in Figure 7.2, and the

learning process is discussed in detail later in this section.

A very different architecture is known as the Kohonen Self Organizing

Map (KSOM) (Kohonen, 1990) and belongs to the group of unsuper-

vised learning algorithms. KSOMs are very different from feed-forward

backpropagation networks in that all the input nodes are connected to

every node in a one- or two-dimensional array of interconnected nodes.

Input data

Expected output
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Figure 7.2 The architecture of a three-layer neural network: the direction of the
data flow is shown along with that of the error which is backpropagated
through the network (note that the centre layer of units have no direct
contact with the input or output and are therefore named ‘hidden’ units)
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Figure 7.3 The architecture of a self-organizing feature map: the map itself forms
the output of the network and every output node is connected to every
other; the input data comes from the input layer, and error correction is
attempted by changing the weights of units in the map (note the differ-
ences between this approach and the one shown in Figure 7.2)

This array of nodes is known as the feature map and constitutes the

output of the KSOM – there is no distinct output layer as with the feed-

forward backpropagation networks. This network architecture is shown

in Figure 7.3.

The variety of architectures possible for neural networks can be seen

in these two examples. The architecture is strongly linked to the purpose

for which it has been built, for instance feed-forward networks are often

used for classification and simulation, whereas KSOM networks are used

for clustering and pattern recognition. Therefore the range of applica-

tions for a neural network is reflected by the range of architectures. The

following section describes how these organized sets of units and weights

that constitute a neural network can learn relationships from the input

(and in the case of supervised learning, output) data that is presented to

them.

Supervised learning

As described previously, supervised learning is the process of learning

relationships between input and output data. In this type of learning,

input data is passed to the input layer, propagated through the units and

weights of the neural network, and the response of the network is com-

pared to the required response, which is dictated by the output data. The

discrepancy between the two is calculated and the network then makes

changes to its internal weights to reduce the error the next time this
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input data is presented. This process is repeated for all the input data

and, once completed, constitutes one ‘epoch’. Most neural networks re-

quire a moderate (100–10 000+) number of epochs to effectively learn

the relationships between input and output data. Supervised learning can

be applied to many different types of architecture, and remains largely

unchanged regardless of the number of hidden layers. However, two dif-

ferent algorithms are used for perceptrons and multi-layer perceptrons.

The algorithm is concerned with computing the error at the output nodes

and propagating this error back down the network from layer to layer.

The computation of this error is different for output layers and hidden

layers. The simplest learning rule is that of Rosenblatt’s perception and

it is this which is described below.

Perceptron learning rule

1 Initialize the network weights and unit thresholds to some small ran-

dom values.

2 Present the input data (i1, i2, i3 . . . in) and the desired output (o) data

to the network

3 Calculate the output from the network using the expression:

f (s)[
n∑

k=1

wk(t)ik(t)].

4 Adapt the weights:

(a) if correct wk(t + 1) = wk(t),

(b) if output is 0 and should be 1 wk(t + 1) = wk(t) + ik(t),

(c) if output is 1 and should be 0 wk(t + 1) = wk(t) − ik(t),

where wk(t) is the weight value at time t, wk(t + 1) is the weight value at

time t + 1 (i.e. after updating) and f (s) is the function used to compute

the output in the network (in this case, the step function). This learning

rule ensures that the weights are changed so that the next time this same

input pattern is shown, the weights alter the network behaviour so that

it is closer to giving the correct response. Figure 7.4 shows the learning

process. This is the simplest learning rule and a variety of modifications

have been subsequently added, including the introduction of a � term to

modify the weights more slowly giving the equation

wk(t + 1) = wk(t) + �ik(t).
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Output (t)

OR

Execute network

i1

w1 w2

i2

Output (t)

If output is 1, required = 0

i1

w1 − i1 w2 − i2

i2

Output (t)

If output is 0, required = 1

i1

w1 + i1 w2 + i2

i2

Figure 7.4 The perceptron learning rule for a single input pattern: once the network
has been executed, the error between the output and the required output
is calculated; depending on the result of this calculation, the weights in
the network are modified to provide a better response the next time the
network is presented with that input

This is sufficient to enable learning in a perceptron but, as discussed in

previous sections, this is the simplest of neural networks and can only

process linear interactions between variables. The following section de-

scribes the rule required for multi-layer perceptions.

Backpropagation

For larger architectures with a ‘hidden layer’ a more complex learning

rule is required. The multi-layer perceptron often uses the sigmoid func-

tion. Therefore when the difference between the actual and desired output

patterns is calculated, the weights must be changed in accordance with the
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derivative of this function, as opposed to the simple increment/decrement

approach when considering the step function. Also, because more than

one layer of weights is considered, the learning rule must take into ac-

count this fact and contain some method of backpropagating the error

through the network. The multi-layer perceptron learning rule therefore

implements the sigmoid derivative and backpropagation to allow it to

learn.

1 Initialize the thresholds and weights.

2 Present the input data (i1, i2, i3 . . . in) and the desired output (o) data

to the network.

3 Calculate the output from the network using the expression

f [
n∑

k=1

wkik] for each layer in the network. The output from the final

layer is the vector of output values.

4 Adapt the weights, starting from the output layer and moving back-

wards using the equation

wi j (t + 1) = wi j (t) + δpjopj

where opj is the output of node j for pattern p and δpj is defined as:

for the output layer: δpj = copj (1 − opj )(dpj − opj )

for hidden layers: δpj = copj (1 − opj )
∑

k

δpk − w jk,

where d is the desired output, o is the actual output and c is a constant

used in the sigmoid function. The sum shown for hidden layers is over

the k nodes in the layer above the current layer for which the δpj will

already have been computed.

The equations above, illustrated in Figure 7.5, increment (or decre-

ment) the weights of the network based on the error at the layer above.

In the case of the output layer, the error is directly computed with the

desired response, whereas the hidden layer computes its error based on

the weighted error propagated back from the output layer. This process

therefore allows the network to adapt its weights to correct the difference

between its current output and the desired output. When applied a num-

ber of times over all the input and output data, the network reconfigures
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Output (t)

Execute network
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Backpropagate

i1

w1 + δj

w1 + δk ... wx + δk

δk δk

δj

w2 + δj

i2 i3

Figure 7.5 The backpropagation learning rule for a single input pattern: the net-
work is again executed, and the error between outputs and desired out-
put calculated

itself to be more accurate and can then be used to predict the outcome

of new examples. This type of learning is only possible when the desired

response is known and therefore supervised learning can take place. The

desired response, however, is not known for some problems and there-

fore unsupervised learning rules exist to find interesting patterns in the

data and to partition it into clusters and it is this which is considered in

the next section.

Unsupervised learning

Kohonen self-organizing maps (KSOMs) operate in the following way.

If all the output nodes (one- or two-dimensional) are interconnected and

all input nodes are connected to all nodes in the output layer with no

hidden layers, the task is to project the structure of the input data onto

some topological structure at the output layer. The location of a neuron

in the output layer should ideally reflect a particular domain or feature

of the input data. Assuming that there are a number of input samples,

we choose one at random and feed it into the input layer. Even if the

weights connecting the input layer to the output layer have been initially

randomized, one output node will have an activation value that is higher

than all other output nodes. This is called the ‘winning’ node and the

weights leading to that output node from all the input nodes are recorded.
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All these weights are then updated in such a way that if the same pattern

is presented again later there is even more chance of the output node

having the highest activation value. To ensure that this happens, the

competitive learning algorithm used by KSOMs increases the weights

of not just the winning node but also, by a lesser amount, the weights

of nodes neighbouring the winning node, with this increase falling away

further away from the winning node. If the next input pattern shares some

features with the previous pattern, there is an increased likelihood that

output nodes near the winning node will be more highly active than other

nodes far away, and over time input samples sharing similar features will

activate neighbouring nodes in the output layer.

For example, imagine that we have two objects, a rectangle and a

triangle (Figure 7.6), on a nine by eight grid. These figures are converted

into a bit vector representation which’s presented to the input nodes of a

KSOM, with a 1 in a training pattern signifying that a particular square

of the grid is occupied by a shape. These 18 eight-bit vectors are fed

into an eight-node input layer which is fully connected to a four by five

output layer. Ideally, after training, the output layer should reflect in its

topology some aspects of the structure of the two shapes.

Unsupervised learning relies on the assumption that the data has an

underlying structure that determines to which classification or pattern

Input layer

Fully connected
output layer

Full connection

18 training
patterns

00000000
00110000
00011111

...1
1 2 3 4 5 6 7 8

9
8
7
6
5
4
3
2

1
1 2 3 4 5 6 7 8

9
8
7
6
5
4
3
2

(00000000)(00000000)(00110000)(00110000)(...)(...)...

Nine eight-bit vectors representing the grid row by row

(00...00)(00...00)...(00000100)(00001110)(00011111)(00000000)

Figure 7.6 An idealized KSOM
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the input data belongs. Unsupervised learning does not require a desired

response (and therefore output data) to train and is concerned with dis-

covering a common set of features across the input data in one class or

pattern. The output of the Kohonen network is seen in the feature map

which is a grid of interconnected units. The feature map organizes itself

so that it effectively clusters the data into groups with similar features.

To accomplish this, the weights from the inputs to the map are randomly

initialized. When the input data closely matches the input weight, the

area around that node is optimized to represent the average of the train-

ing data. By iterating through this process, the Kohonen network is able

to organize itself such that different areas of the map represent differ-

ent classes in the data. The Kohonen algorithm can be more formally

summarized in the following steps.

1 Initialize the network by setting the weights to be small random val-

ues. Also set the initial neighbourhood size N to be large.

2 Present input patterns I1(t), I2(t), I3(t) . . . In(t) where Ix(t) is the input

to node x at time t.

3 Calculated the distances, d j , between the input and each node in the

map j .

d j =
n

∑

x=1

(Ix(t) − wi j (t))
2.

4 Select the node which has the minimum distance d j and mark it m.

5 Update the weights for node j∗ and its neighbours which are defined

by the neighbourhood size. The new weights are defined as

wi j (t + 1) = wi j (t) + η(t)*(Ix(t) − wi j (t)).

6 Repeat 2–5.

The η term is a factor, less than one, which slows learning over time and is

included so that the network makes smaller decisions with each training

epoch. A further factor in these equations is that the neighbourhood size

is made smaller throughout training which leads to more refined moves

in the latter stages of the learning process.
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Unsupervised learning is especially useful where data has been col-

lected from an experiment, but no output classification has been deter-

mined. As such, this is one of the techniques in this book that can discover

patterns and classify data without using some form of explicit notion of

how closely it matches a desired response. This is especially important

in bioinformatics since various problems in the analysis of microarray

data or of protein structure prediction do not have definitive classical

examples on which the network can be trained.

These two learning rules show the wide variety of learning behaviour

that can be performed using neural network methods. They represent

only two of a number of learning methods and functions which can be

employed depending on the type of problem that is being solved. One of

the strengths of the neural approach is the sheer flexibility in the number

of options available for architecture, activation function and training

regime. A drawback of this flexibility is that there is no generally accepted

method for choosing a specific architecture or activation function given a

problem definition. Indeed, selecting the neural network parameters has

often been described as an art rather than a science. To aid this selection,

the following section gives some guidelines as to the application of neural

networks to problems in bioinformatics.

7.2 Application guidelines

Neural networks have been used for a huge variety of applications in

a large number of scientific and engineering domains and they can be

considered one of the standard artificial intelligence (AI) techniques for a

variety of purposes. Whilst there are undoubtedly a number of situations

in which the application of a neural network is the recommended course

of action, there are also some caveats to their usage for particular prob-

lems. Put simply, a neural network that is properly trained on a suitable

problem can provide very good or even genuinely surprising results on

new data. It is the ability of the neural network to generalize beyond the

data that it has been trained on which makes it so powerful. However,

they have some drawbacks.

1 Neural networks can overfit (a term for overtraining). If a neural net-

work is trained for too long, it can begin to fit the weights to the

noise in the training data as well as the underlying structure which is

present. When this happens, the error on the training data will con-

tinue to decrease, but the error on the test data will actually increase.
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Commercial neural network packages now include a cross-validation

facility to combat this effect. This method trains the network for one

epoch, freezes the weights, tests the trained network on a separate

test set and restarts the training. This approach is repeated for each

epoch of training. The error on the cross-validation set can then be

used to stop the training of the neural network when it begins to

increase. This mitigates many of the problems of overtraining, and

gives a good idea of the error that can be expected on test data.

2 The architecture requires some input from the user. Deciding on the

appropriate architecture for a neural network should largely be in-

formed by the type of data and complexity of the problem being

solved. However, there are no hard and fast rules as to the number

of hidden layers, or units in those layers for example that are re-

quired for a particular problem. For prediction accuracy and ease of

result interpretation, a supervised learning algorithm (i.e. multi-layer

perceptron) should be selected if the desired response is known. The

minimum number of hidden layers should be used that can achieve

the required accuracy. For each addition of a hidden layer, the power

of the network is increased, but with an attendant increase in the like-

lihood of overfitting and, of course, computation time. A good rule

of thumb is that any hidden layers used should have fewer units than

the input layer. In fact, many applications use a stepped approach

where the number of units in the hidden layer decreases from input

to output. If, using unsupervised learning, the number of nodes in the

feature map will influence the number of clusters that are discovered

in the data, this parameter should also be selected with care. These

are very general guidelines and a good number of applications will

require deviation from them, but they can be used as initial parameter

settings when a new problem is considered.

3 Finally, it can be difficult to determine the reasoning for the deci-

sion making behaviour of the neural network. A trained neural net-

work contains many weights, biases and thresholds, often in high-

dimensional matrices, and it is a non-trivial process to determine the

exact reasoning behind its behaviour on a certain dataset. Certainly, if

one or more hidden layers is used, determining the combined effect of

each input at each hidden layer and onto the output layer is very diffi-

cult indeed. In this case, sensitivity analysis (manipulating the inputs

in a structured way and observing the output response) can provide

some information that may be very difficult to derive from the weight
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matrices. If neural networks are to be applied to a problem, the prob-

lem should generally not require that the decision making behaviour

of the network can be explained in human-understandable terms.

Implementation

Whilst the above set of problems, architecture choices and mathematical

equations can seem quite daunting, there is a large body of research and

software available to aid the application of neural networks to problems

in bioinformatics. For instance there is a vast array of neural network

software implementations available on the internet. One of the most

famous and respected free implementations is the Stuttgart Neural Net-

work Simulator or SNNS1 which is available from the University of Tub-

ingen, Germany; it has a wealth of architecture options and has versions

for a variety of operating systems. Commercial neural network products

abound, but a useful interactive point-and-click style software package

is Neurosolutions2 from Neurodimension. This package has a large li-

brary of built-in network architectures and the user interface is such that

creating new architectures is simply accomplished by manipulating the

components of the network on screen. It also has a data-driven Neural

Wizard which guides the user through the process of creating a neural

network for a particular problem.

In addition to these there are various neural network implementations

in all programming languages on the internet and a good selection of

information sources to help with neural networks3.

7.3 Bioinformatics applications

Introduction

Neural networks have received a significant amount of attention as an

AI algorithm for bioinformatics. As with many of the algorithms in this

book, each method is chosen for its suitability to a particular problem. It

comes as no surprise then that most bioinformatics applications focus on

the ability of the neural network to cluster and recognize patterns within

1 More information available from http://www-ra.informatik.uni-tuebingen.de/SNNS/.
2 More information available from http://www.nd.com.
3 A search on the web for ‘Neural Network FAQ’ will give a variety of pages pointing to the

valuable neural network reference.
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biological data. The following examples have been selected as they give

an overview of what is possible by using both the above techniques in

bioinformatics problems.

Classification and dimensionality reduction
of gene expression data

Introduction

Gene expression data is currently one of the hottest topics in bioinfor-

matics and it looks set to be one of the most revealing analysis techniques

used in biology. Microarray data is notoriously difficult to process, even

after a successful experiment it is noisy and requires many statistical

transformations to yield correct and normalized gene expression val-

ues. However, even once this is achieved, there are further difficulties in

analysing this type of data, namely that the number of genes is so large

that typical analysis methods can be completely ineffective in the face

of the ‘curse of dimensionality’. Gene expression experiments are often

used to attempt to distinguish between diseased and normal individuals,

or to distinguish between two types of a disease by solely using the ex-

pression values of genes taken from those individuals. This is of primary

importance to medical science as a number of different cancers are very

difficult to diagnose. Narayanan et al. (2004) and earlier, Khan et al.

(2001) have both shown that single layer neural networks (or percep-

trons) can be used as an effective method for reducing the number of

genes to be considered in an analysis.

Method and results

In Narayanan et al. (2004) a standard perceptron was iteratively applied

to a gene expression dataset and genes stripped from the dataset based

on the weight values taken from the neural network. Essentially, the per-

ceptron was used as a method for determining the importance of each

gene to the classes in the dataset. In this paper, a multiple myeloma dataset

was used where the task was to distinguish the 74 multiple myeloma suf-

ferers from the 31 normal individuals, based solely on their gene expres-

sion profiles. The data consisted initially of 7129 genes, had a classifica-

tion of either myelomic or non-myleomic and was separated into three

separate sets, used for training, tuning and testing respectively. These sets

were used in a three-fold cross-validation procedure where each set was
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used in turn to train, tune and test the neural network. This type of test-

ing is common in classification tasks such as this one and ensures that

the results are generalizable.

The method consists of a number of steps.

1 Pre-process the data – gene expression data is often in a format

whereby genes are listed as rows and samples as columns. This facil-

itates the viewing process, but the neural network requires the data

in the transposed format, so a transposition must be carried out. In

addition to this, the data can often have missing values, again the

neural network will require values in each column and row, so these

values are often imputed.

2 Training and testing – this approach uses a three-fold cross-validation

technique where the data is split into three datasets. The neural net-

work is trained, tuned and tested on each of these three datasets in

turn, and the results averaged over the three runs. This ensures that

the accuracy of the approach is robust over a number of different

datasets.

3 Gene pruning – once the perceptron has been trained, the weights of

the network are inspected to determine which genes are most highly

related to the classification. Those genes which do not meet the thresh-

old requirements (usually a number of standard deviations away from

the mean) are pruned and the process is repeated.

For each iteration of training, a perceptron was created with N input

units, where N is the number of genes being trained (therefore, in the first

instance, this is 7129), and one output unit (to give the classification 1 and

0). The network is trained for 10 000 epochs and then the weights anal-

ysed to determine those individual genes which have not contributed to

the 0 and 1 classification. Those genes which are within two standard de-

viations of the mean weight value are considered to be non-contributory

and are removed for the next iteration. Once this had been completed,

481 genes remained and the process was repeated. After one further it-

eration, 39 genes remained and were ranked by weight value. In each of

the iterations of the above process, the perceptron achieved 100 per cent

accuracy on the test set and therefore by progressively selecting smaller

subsets of genes, a good deal of extraneous information in the database

was removed. The final 39 genes were then investigated to determine their

biological significance. This was performed by using the NCBI database
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of gene structure and function4 and some of the genes were found to

have been previously linked with other cancers, or myeloma itself.

Khan et al. (2001) takes a slightly different approach to a similar

problem. The data to which they applied neural networks were gene

expression values of small, round blue cell tumours, so called because

of their appearance in histology. The difficulty was that four separate

diseases, neuroblastoma, rhabdomyosarcoma, non-Hodgkin lymphoma

and the Ewing family of tumours can all give rise to this similar histology.

However, accurate diagnosis is essential as each of the four types responds

differently to treatment. Khan et al. used the gene expression data of 6567

genes from 63 samples, but this was reduced by removing those genes

with a small variation about the mean. It is considered that genes such

as this which do not vary significantly either over time or samples, will

be of little use in classification. In addition to this, principal component

analysis was used to reduce the number of inputs still further. A three-

fold cross-validation process was then conducted which when combined

with 1250 separate runs for each fold yielded a total of 3750 neural

networks. The networks were tested as a committee on classification

and diagnostic problems and found to be highly accurate. In addition to

this, the sensitivity of the neural network to inputs was determined, and

the number of genes further reduced by pruning those that the network

was not using to classify the data. Several experiments showed that the

optimum number of genes was 96 as this was the smallest number of

genes which gave 100 per cent accuracy. After further investigation, it was

found that 61 of these genes (some were eliminated as copies) were related

to the classification, of which 41 had not previously been identified as

related to these diseases.

Conclusion

The above approaches show the value of using simple neural techniques

to discover interactions between variables (in this case gene expression

values) and a classification. The difference between this and other clas-

sification approaches is that the final accuracy of the set of genes is only

one consideration. The neural network approach provides a set of genes

to be investigated as the possible cause for a particular disease. This is

in contrast to the performance on this problem of other techniques such

as decision trees which discover a very small number of genes which are

4 For more information go to: http://www.ncbi.nlm.nih.gov/Database/.
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often accurate on the training data, but have disappointing accuracy on

test data. The notion is that the number of genes is reduced to the point

that it can be fruitfully analysed (in combination with the weights which

help to indicate the importance of a gene in the classification) but not

oversimplified so that something is missed. This application of a percep-

tron in both these studies clearly shows that even the simplest of the

neural network technologies can be used to good effect in bioinformatics

problems.

Identifying protein subcellular location

Introduction

Protein function is often closely related to its location within the cell and

work undertaken by Cai, Liu and Chou (2002) used a Kohonen neural

network (as described above in the Unsupervised Learning section) to

predict where a protein was located, based on its amino acid make-up. As

the number of discovered proteins increases, determining the subcellular

location of such a protein can provide important clues as to its structure

and function in the cell. The study was short, but it neatly showed the

effectiveness of the Kohonen network in tasks such as this.

Method and results

The authors clearly identified a set of data from Chou and Elrod (1999)

where each of the 2139 proteins was assigned an unambiguous class from

this set: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic

reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mito-

chondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12)

vacuole. The proteins themselves were represented by 20 variables which

each represented an amino acid in the makeup of the protein. A Kohonen

network was trained on the dataset and then tested by inputting the test

data and observing which nodes in the feature map was most highly

activated by the test example. Each study was performed with a self-

consistency test (effectively executing the network on the data on which

it was trained), and more significantly, a leave-one-out cross-validation

approach was also used. Using this method the network achieved an

accuracy of almost 80 per cent on the leave-one-out cross-validation

tests. Whilst this is some 2 per cent less than the state-of-the-art (the



192 NEURAL NETWORKS

covariant discriminant algorithm in this case), the authors claimed that

this approach was more accurate than other widely-used systems such as

ProtLock. Encouragingly, the approach also achieved similar accuracy

on three independent test datasets which corroborated the leave-one-out

cross-validation findings.

Conclusion

The above example indicates that given a good problem definition, a

neural network approach can be developed to solve a difficult problem

in bioinformatics. The network clearly grasped the relationship between

the amino acid make-up of the protein and its location in the cell. This is

significant because if location can be determined from amino acid make-

up, then an educated guess at function can then be made. Whilst the

results were not optimal when the current best algorithms are considered,

it must be remembered that the Kohonen approach is unsupervised and

therefore must make the class decisions itself rather than being taught

them explicitly. Finally, this research illustrates good use of the cross-

validation procedure (which in this case is of the leave-one-out variety),

as the results on independent test sets were very close to those predicted

in cross-validation.

7.4 Background

Perceptrons, the simplest neural networks, were pioneered by Frank

Rosenblatt (1958) in the late fifties but Minsky and Papert (1969) pub-

lished Perceptrons a book which highlighted the shortcomings of the

perceptron and, crucially, the fact that it could not recreate the XOR

function with just two layers. This deficiency led neural networks to be

practically discarded in favour of symbolic computation techniques for

over 20 years before the seminal publication of Parallel Distributed Pro-

cessing (Rumelhart and McClelland) in 1986 which built on the concept

that a multi-layer perceptron could learn the XOR and a massive vari-

ety of other functions. This discovery revitalized the field and, combined

with a general sense of disappointment in the achievements of symbolic

computation, led to a large number of researchers entering the field of

neural computation. Since then, neural networks have been applied to

countless problems and are especially successful in the areas of financial

forecasting and computer vision to name just two.
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7.5 Summary of chapter

1 Neural networks are a mathematical technique, broadly based on the

functioning of the brain, which can be trained by two methods –

supervised and unsupervised learning.

2 Supervised learning is often used in instances where the required out-

put is known, unsupervised learning is used when this is not possible

or desirable.

3 Once trained, a neural network can be shown new examples of data

and can make predictions based on what it has learnt from the training

data.

4 Neural networks have found application in bioinformatics problems,

from gene expression analysis through to protein location prediction.
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8
Genetic Algorithms

8.1 Single-objective genetic
algorithms -- method

‘Genetic algorithms’, ‘evolutionary computation’ and many of the terms

described in this chapter have distinct biological overtones. It is worth

stating at the outset that the genetic algorithm (GA) is a search and op-

timization tool which can be used to solve bioinformatics problems, not

a metaphor for how genetic operations are carried out in the real world.

The GA is in fact inspired by the mechanisms of evolution and these

have proved useful in a variety of search and optimization domains.

Genetic algorithms use principles of evolution such as reproduction,

selection, crossover and mutation (collectively known as genetic oper-

ators) to discover better solutions to a problem given a random starting

set of solutions. Each of these operators acts on one or more chromo-

somes (solutions) in the population (a set of solutions) to yield a set of

new solutions which is known as the next generation. The algorithm is

iterative, and therefore these operators act upon the population many

times, moving the algorithm from one generation to the next.

Genetic algorithms are now widely applied in engineering and scien-

tific disciplines. Generally, this is due to the fact that they can be readily

adapted to new problems, they are efficient with respect to other search

algorithms, and also they are less prone to descending into local min-

ima/maxima. A problem with many standard search algorithms, such as

hill-climbing (Chapter 3), is that they often find solutions in the search

space which are locally – but not globally – optimum when the space is

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd



196 GENETIC ALGORITHMS

not smooth (i.e. in most real-world problems). Genetic algorithms, due

to their stochastic and population-based nature, are able to avoid this

behaviour for the most part. They have therefore found favour in a large

number of domains where traditional techniques would require too much

computation to produce an optimal solution and where a near-optimal

one will suffice.

Chromosome

A good deal of the success of the GA is based on its flexibility. The

problem- independent nature of the GA is the reason it can be applied to

so many domains without alteration of the algorithm itself. This prob-

lem independence is established through the use of a chromosome and

objective function. The chromosome is a genetic representation of a sin-

gle solution to the problem and its performance at solving that problem

is evaluated by a function which relates the chromosome variables to the

problem at hand. Figure 8.1 shows a chromosome representation of a

problem.

To evaluate the chromosome, the objective function takes the chromo-

some (which is usually represented in some numerical or binary format),

decodes it according to a problem specific decoding scheme and then

computes the fitness of the solution which is then passed back to the

algorithm. The most important skill in applying a GA to a problem is

to be able to correctly map the problem to a set of integers or binary

variables and accurately compute a fitness so that it reflects the problem

at hand. Later in this chapter various methods for accomplishing this for

bioinformatics problems will be discussed.

Operators

Once a random population of solutions has been created, the genetic op-

erators that act on the population of solutions must drive the population

Chromosome

FitnessAllele

1 3 5 2 Objective function

Figure 8.1 Relationship between the chromosome, objective function and fitness
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to find new, more optimal solutions. The most important of these are the

selection, mutation and crossover procedures that determine which indi-

viduals survive to the next generation. In the GA, a number of individuals

(normally two at a time) are selected from the current population, their

genetic material is then combined together to form a number (again,

normally two) of new individuals in a process known as crossover. A

random mutation can also take place to alter the genetic make-up of

these individuals. This process is repeated until the next generation is

full, whereupon each individual is evaluated by the objective function

and the process is repeated. The following sections describe some of the

most popular operators used in GA applications.

Selection

As with other search algorithms, the GA needs to remember good solu-

tions and discard bad ones if it is to make progress towards the optimum.

A very simple selector would be to select the top N chromosomes from

each population for progression to the next population. This would work

up to a point, but any solutions which have very high fitness will always

make it through to the next population. This concept is known as elitism

and will be covered later in this chapter. However, to make sure that the

GA doesn’t converge on a set of solutions too quickly, a random element

is usually introduced into the selection procedure. The following section

describes the roulette wheel selector, which is one of the most popular

procedures along with the tournament selector.

Roulette wheel selector

This selector works by adding all the fitness values of chromosomes in the

population together to create a ‘virtual roulette wheel’. This wheel is then

spun to see which of the individuals is chosen for selection into the next

generation. As can be seen by Figure 8.2, if the wheel is ‘spun’ there is a

much greater chance of solution with higher fitness being selected over

the other solutions in the ‘roulette wheel’. This affords filter solutions

a better chance of being kept in the next generation than the others.

However, an important point is that there is still a chance that any of

the solutions can be selected, as the selection procedure depends on a

random number. This method allows the selection to be biased towards
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Solution 1
Fitness � 0.25

Solution 4
Fitness � 0.5

Solution 2
Fitness 
� 0.125

Solution 3
Fitness
� 0.125

Figure 8.2 Roulette wheel selection: the total fitness of a population of chromo-
somes can be represented as a wheel, where the fitness of an individual
chromosome is represented an appropriate ‘slice’ of the wheel; the higher
the fitness value, the larger the portion of wheel occupied by that chro-
mosome

those solutions that solve the problem well, but the stochastic element of

selection ensures that diversity in the population is maintained.

Tournament selection

Tournament selection has a similar mix of randomness but contains a

bias towards fitter individuals. In tournament selection, a number of

chromosomes (normally 2) are selected from the population and their

fitness compared. Quite simply, the chromosome with greatest fitness is

selected for entry to the next generation. The random selection of individ-

uals to participate in the tournament means that two poorly performing

solutions could be selected at once. In this situation, even though the

solutions are poor with respect to the rest of the population, the best

individual of the two will be selected. It is in this way that solutions with

low fitness can still be selected by the tournament selector. This selection

process ensures that, over the course of a number of generations, fit in-

dividuals are more likely to be selected for entry to the next generation

and this therefore preserves information discovered in previous genera-

tions. Once selected, solutions undergo crossover and mutation, which

are described in the next section.
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Cross over

The cross over operator is designed so that two ‘parent’ solutions can

combine information to produce two new ‘offspring’ solutions that are

different, but related to the original solutions. Again, there are a number

of methods of achieving this and two of the most common are described

here, single point and uniform crossover.

Single point crossover

Single point crossover is the simplest crossover and takes two chromo-

somes, chooses a single random point on each chromosome and cuts the

two chromosomes at this point. The two parts of the chromosome are

then recombined to form two new individuals which share some of the

information of the parents, but are separate solutions in their own right.

Figure 8.3 illustrates this process.

Uniform crossover

Difficulties can arise when using single point crossover, since genes to-

wards the centre of the chromosome are perturbed more often than those

at the edges of the chromosome. To overcome this, uniform crossover

takes multiple random points on each chromosome and creates a ‘mask’

through which the chromosomes pass. Figure 8.4 shows the execution of

1 1 1 1 1 1

2

Cross-over point

Parent 1

Parent 2 2 2 2 2 2

2 2 1 1 1 1

1

Offspring 1

Offspring 2 1 2 2 2 2

1 1 1 1 1 1

2

Cross-over
operation

2 2 2 2 2

Figure 8.3 Single point cross-over
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1 1 1 1 1 1

2 2 2 2 2 2

1 2 1 2 1 2

2 1 2 1 2 1

Figure 8.4 Uniform cross-over

uniform crossover where two chromosomes pass through a filter, where

the grey squares indicate that a ‘swap’ of alleles takes place and the

white squares indicate that the values pass through untouched. Uniform

crossover ensures that each gene on the chromosome has an equal chance

of being crossed over and represents a crossover without positional bias.

Crossover operators therefore ensure that material taken from two

selected parents is merged in such a way that the information that con-

tributed to the parents fitness will be kept in the offspring. The crossover

operator is stochastic as the crossover point is selected at random. One

possible difficulty is that, for certain types of problem, crossover may

result in a chromosome that is not permitted for the task at hand. For

instance, if some allelic values towards the end of a chromosome depend

on allelic values earlier in the chromosome (such as, for instance, a route

finding problem where only one occurrence of a city or node in a map

can occur in a chromosome), crossover will need to be supplemented

by some check procedure that ensures that the results of crossover still

make sense. Some post crossover procedure may be required to mend the

results of crossover so that solutions still fall in the space of acceptable

solutions. Once selection and crossover have taken place, the solutions

are mutated.

Mutation

Selection and crossover ensure that the best individuals have the greatest

chance of progressing into the next population and can share their in-

formation to give the best possible solutions. Both processes include an

element of random behaviour but a further random element is required to

complete the GA, known as mutation. Without the mutation operator,
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the GA is only capable of manipulating the genetic material that was

present in the initial population. Mutators generally are not as compli-

cated as crossover and mutation; they tend to just choose a random point

on the chromosome and perturb this allele either completely randomly

or by some given amount. For instance, one possible mutation operation

is to take a chromosome, such as the second offspring in Figure 8.3, and

randomly ‘mutate’ one allele by adding a value in the range 1 to 3. If the

second allele of Offspring 2 is chosen at random for mutation, it may

change from 1 to 4, resulting in a chromosome consisting of allele values

‘1 4 2 2 2 2’. Mutation needs to be coupled with some check that the final

mutated value is not out of bounds for a particular allele. For instance,

if the possible range of values for allele 2 is only 1 to 3, the value 4 for

this allele cannot be allowed.

Generational vs. steady state

The final element of the GA is how the algorithm progresses from one

generation to the next. There are two ways of achieving this: a genera-

tional method, where a new population is generated at every iteration,

and a steady-state method where the population stays largely the same

but new solutions are added to it. Figure 8.5 shows a generational genetic

algorithm, where a new population is created every generation.

The steady-state genetic algorithm shown in Figure 8.6 selects a num-

ber of individuals from the population, applies the reproduction, cross-

over and mutation operators to them and then reinserts them into the

population using a variety of criteria. These replacement criteria usu-

ally take the form of replacing the weaker (or weakest) solutions in the

population and therefore increasing the fitness of the population in this

way.

Chromosome 1

Generation 1

Chromosome 2

.

.

.

.

Chromosome N

Chromosome 1

Generation 2

Chromosome 2

.

.

.

.

Chromosome N

Reproduction,
cross-over and
mutation

Figure 8.5 Generational genetic algorithm
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Chromosome 1

Chromosome 2

Chromosome N

Cross-over and
mutation

.

.

.

.
Replacement

Selection

Figure 8.6 Steady-state genetic algorithm

By using these simple biologically inspired operators, a well-conceived

representation of the problem and an accurate objective function, the GA

can solve a vast array of search and optimization problems, quickly and

efficiently.

8.2 Single-objective genetic
algorithms -- example

Introduction

The best way to understand the GA is to begin with a simple example

of its execution. The following section describes a very simple example

of a GA problem. Given the function, f (x) = x2, we want to get the GA

to maximize the function where x will be the sum of four decision vari-

ables which will range from −10 to +10. That is, the task is to discover

what the four values making up x must be for the function to return its

maximum positive value, given that x is squared. This problem has two

global optima (one where each decision variable is −10 and one where

each is +10). This simple problem is representative of many search and

optimization problems where there exists more than one answer to the

problem and demonstrates the capability of the algorithm to discover

global optima. A non-genetic algorithm approach to this problem could

consist of enumerating all possible values for the four decision variables,

summing them and squaring the answer in turn, and storing the result.

At the end of this enumeration (or during the enumeration for added effi-

ciency), that combination of four values that allows the function to return

the maximum value is discovered. Since there are 20 possible values for

each variable (ranging from −10 to +10), the full enumeration will need
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to examine 204 different combinations of values. A GA may be able to

identify the solution more efficiently than this, even for this simple task.

Execution

Using a random number generator, a set of 10 individuals (chromosomes)

is created, each with four decision variables (DVs) ranging from −10 to

+10. These decision variables are summed and then squared (as specified

by the function) to give a fitness value as follows.

DV1 DV2 DV3 DV4 Sum Fitness

Chrom 1 −6 −6 −8 −1 −21 441
Chrom 2 −4 1 6 −10 −7 49
Chrom 3 2 −10 1 2 −5 25
Chrom 4 −10 −4 −3 −7 −24 576
Chrom 5 0 −7 5 8 6 36
Chrom 6 −2 3 8 −9 0 0
Chrom 7 6 2 4 3 15 225
Chrom 8 −2 −1 −9 5 −7 49
Chrom 9 4 −7 7 −5 −1 1
Chrom 10 1 −4 −7 −9 −19 361

Average 176.3

If by chance chromosomes 4 and 10 were selected and crossed over at

point 2, the resulting children would be created

Child 1 −10 −4 −7 −9 −30 900

and

Child 2 1 −4 −3 −7 −13 169

A mutation can then occur changing the variable 1 in child 2 to a 3 which

gives:

Child 2 3 −4 −3 −7 −11 121
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By using a ‘weakest’ replacement strategy, Chromosome 6 is replaced by

Child 1 and Chromosome 9 replaced by Child 2. The population now

looks like this.

Allele1 Allele2 Allele3 Allele4 Sum Fitness

Chrom 1 −6 −6 −8 −1 −21 441
Chrom 2 −4 1 6 −10 −7 49
Chrom 3 2 −10 1 2 −5 25
Chrom 4 −10 −4 −3 −7 −24 576
Chrom 5 0 −7 5 8 6 36
Child 1 −10 −4 −7 −9 −30 900
Chrom 7 6 2 4 3 15 225
Chrom 8 −2 −1 −9 5 −7 49
Child 2 3 −4 −3 −7 −11 121
Chrom 10 1 −4 −7 −9 −19 361

Average 278.3

By using just one generation of the GA, the average fitness of the popu-

lation has risen from 176 to 278. In addition to this, an individual with

a fitness of 900 has been created, by far the highest from the two pop-

ulations and also much higher than that of its parents. This example

illustrates two key concepts of the GA.

1 By using just the genetic operators we have discovered a new best

solution (of fitness 900) and improved the overall fitness of the pop-

ulation by replacing poorly performing solutions.

2 Not every move is good. By mutating Child 2’s first allele from 1 to

3, we have actually decreased the fitness of that chromosome. This

happens frequently in genetic algorithms and appears to be counter-

intuitive, but the increased value of 3 might be of benefit if that chro-

mosome is crossed-over in a later generation. The mutation is only

counter-productive because of the make-up of the remainder of the

chromosome. In itself the move from 1 to 3 for a single gene represents

an improvement as it is closer to the +10 extremity. The operators

are designed to increase the likelihood of fit individuals going into the

next generation, not guarantee it.

After several further generations, the GA will be able to converge on a

set of very good solutions to this task. While this task may appear trivial,

that is because the function is simple. If the function being maximized
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consisted of several dozen variables ranging from −1000 to +1000, and

if more than a simple summing and squaring of the variable values is

required, a full enumeration will not be possible and the GA approach

will be more attractive.

8.3 Multi-objective genetic
algorithms -- method

Introduction

The single-objective GA is immensely useful when a single, near-optimal

solution to a problem is needed. However, many science and engineering

applications consist of objectives where there are conflicts. For instance,

when designing a structure such as an aircraft, there are the conflicting

objectives of strength and weight, where extra bracing in the structure

allows it to be stronger but heavier and therefore less efficient. Genetic

algorithms, with some modifications, can be used to optimize problems

with more than one objective, creating a multi-objective GA. Whilst such

applications in bioinformatics are currently limited, multi-objective al-

gorithms are likely to become widely used in the discipline in the near

future due to the need to balance conflicting requirements, such as protein

function with protein folding.

The main similarities between single and multi-objective GAs are that

they still use a population of individuals and crossover, mutation and se-

lection operators, although some of these can be a little different in multi-

objective algorithms. The main difference is the way that the performance

of each individual is determined. In the single objective case, fitness is the

only criterion by which solutions are compared. In multi-objective algo-

rithms, this is replaced by the notion of dominance. Since each individual

solution is evaluated on a number of objectives (for instance, weight and

strength for a particular aircraft design), there is no theoretical limit to

the number of objectives used. To compare individual solutions, a new

measure known as dominance is used to rate each solution.

Dominance

One solution is said to dominate another if it is as good or better than

that solution in all objectives (this concept is known as strong dominance

in the literature). The following example shows how dominance works.
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If three designs exist for an aircraft, we want to discover the design

with maximum strength and minimum weight. Given the following three

solutions, the choice is difficult to make.

Solution Weight Strength

1 45 2.2
2 30 1.5
3 25 1.0

A decrease in weight is accompanied by a decrease in strength and

therefore each of these solutions does not dominate any other. However,

if a fourth solution is included which has a weight of 22 and a strength of

2.5, this solution dominates each of the first three solutions. This fourth

solution dominates the other three because it is at least as good in every

dimension as the other solutions and better in at least one this is shown in

Figure 8.7. A solution is said to be non-dominated when no other so-

lution in the current set dominates it. This principle of dominance of

solutions distinguishes multi-objective algorithms from single-objective

algorithms.

The principle of dominance can be extended to any number of objec-

tives and gives a clear indication as to which solutions are better in the

search space. The principle is then used to rank the set of solutions ac-

cording to the number of times they are dominated by other solutions in

the population. This ranking differentiates between the solutions in the

population and allows modified selection operators to work. Figure 8.8

shows an extended example of the aircraft design problem where the

ranking procedure can be seen more easily. The rank of a solution is

computed as the number of solutions in the population which dominate

that solution. The best solution in the example has a rank of zero, which
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Figure 8.7 Aircraft design example
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Figure 8.8 Extended aircraft design example

means that in the current population, it is the best (least-dominated)

solution. There is often more than one solution with rank zero and this

is known as the Pareto-front or Pareto-surface which represents the best

solutions from an optimization run.

Multi-objective GAs perform operations on the population by using

the rank of the individuals rather than the fitness. This approach means

that, as the optimization progresses, the Pareto-front moves towards the

optimum trade-off between the variables. This is seen in Figure 8.8 –

the algorithm will attempt to move the points towards the top-left hand

corner where maximum strength and minimum weight lie. Aside from

optimality, the multi-objective algorithm tries to find a number of evenly-

spaced solutions on the pareto-front. This is to provide the maximum

amount of choice in the selection of a solution for its final purpose.

Solutions that are tightly clustered together, and differ only marginally in

their objective values, do not represent a good basis for solution selection.

To summarize, the multi-objective GA, by means of simulated evolution,

aims to find a pareto-set of well-spaced solutions that offer the optimal

trade-off between two or more variables. This approach has been found

to be very successful in many scientific, engineering and financial circles

where the decision-making process has more than one consequence for

a given set of actions.

8.4 Application guidelines

Introduction

Genetic algorithms have much to offer bioinformatics as they are cur-

rently one of the most efficient ways to search large problem spaces.

They are regularly applied to problems which have thousands of decision
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variables and huge combinatorial search spaces in science and engineer-

ing. However, the most important attribute of the GA is its flexibility.

By encoding the variables of the problem as bit strings or integers and

using only an objective function, the GA can be applied to a number

of problems in bioinformatics. Whilst they are immensely flexible, there

are a number of conditions which should be met before applying the

algorithm to a problem.

1 The problem should be large. If the problem can be solved with a

traditional hill-climbing or local search algorithm or even a full enu-

meration in realistic time, then a GA may not be the most efficient

method due to its stochastic nature.

2 An objective function should be constructed which relates the deci-

sion variables of the problem and assigns a ‘fitness’ to the solution

that determines how good that solution is. Ideally this function will

be as monotonic as possible (i.e. it will vary consistently with deci-

sion variable values), functions which vary wildly with respect to the

decision variables are very difficult to optimize by using a GA.

3 The number and severity of constraints on the solutions should be

small. A number of problems require that only a small number of the

possible solutions can be considered as feasible. When this occurs,

there are methods to implement constraints in genetic algorithms,

but on the whole, soft constraints which penalize the fitness of solu-

tions if they are outside the required bounds are generally preferable.

If there are soft constraints on a number of variables in the fitness

function, then a multi-objective approach should be considered as an

alternative.

Representation

The problem being solved must be converted to a format that can be

optimized with the GA. The ‘representation’ to the GA is very important

as can determine how well the algorithm performs on the problem. Ge-

netic algorithms can use a variety of gene types (integers, real values and

bit strings) that represent variables in the problem. The most traditional

approach is to use a set of bit strings to represent decision variables in the

problem, since they are known to perform well with standard crossover

and mutation operators. Other gene types require special crossover

and mutation operators, but they can be used as effective easier-to-use
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representations. The issue here is between ‘genotype’ and ‘phenotype’ of

chromosomes. The closer the representation of a chromosome is to the

problem, the easier the chromosome is to interpret. That is, the geno-

type is the phenotype in the case of the simple single-objective function

described earlier, where the alleles contained the actual integer values

between −10 and +10. However, if these values were represented as bits

(so, for example, seven is represented in a 10-bit allele as ‘0000000111’,

some mapping must be made between the chromosomes genotype (bit

representations in the chromosome) and gene phenotype (its actual in-

terpretation). Bit representation allows for more flexible mutation and

crossover. A chromosome containing four alleles of 10 bits each has 40

mutation and 39 crossover positions as opposed to only four mutation

and three crossover positions if integer representation is used. In other

words, complex genotype representations will require more interpreta-

tion with regard to what they actually mean (their phenotype) in the do-

main, but crossover will be more effective on representations of this type.

Algorithm selection

Choices to be made with regard to genetic algorithms are largely down

to the parameter settings and selection of operators, as described in pre-

vious sections. The user also needs to determine whether a steady-state

or generational approach is taken. The steady-state approach is faster, as

fewer objective function evaluations have to be completed per iteration,

but the results may not be as good as a generational run.

Multi-objective genetic algorithms can be separated into two distinct

types, the elitist and non-elitist algorithms. Elitism ensures that the very

best solutions in one generation progress to the next, a concept which

does not normally occur as the selection procedure can choose to select

any solution from the population. Elitism is useful for multi-objective

problems as it helps to preserve the Pareto-front during the optimization.

Elitist genetic algorithms such as the Nondominated Sorting Genetic Al-

gorithm 2 (NSGA-II) (Deb et al., 2000) are currently the state-of-the-art

and to a certain extent has superseded the original Multi-objective Ge-

netic Algorithm (MOGA) developed by Fonseca and Fleming (1995).

Implementation

While implementing a GA in a programming language is a good way to

learn the intricacies of the algorithm, there are a number of sources for



210 GENETIC ALGORITHMS

libraries and applications that allow easy access to GA technology. Ge-

netic algorithms are increasing in popularity and there are a vast number

of implementations of GA software on the Internet in almost every mod-

ern programming language. The variety, quality and number of features

vary greatly, so selecting the correct one for the needs of the problem can

be crucial. Often, a good free or shareware implementation can be as

effective as an expensive commercial product. GALib1 from MIT in the

USA is a particularly good example of a C++ version of a freeware GA

library. Off-the-shelf products such as ‘Evolver’ from Palisade2 also allow

GA techniques to be used in the user-friendly environment of Microsoft

Excel. Therefore there are a number of software options for individuals

wishing to apply GAs to bioinformatics problems.

8.5 Genetic algorithms -- bioinformatics
applications

Introduction

With bioinformatics being a relatively new science and genetic algorithms

only finding popularity relatively recently, the number of applications of

GAs to bioinformatics currently remains relatively small. A large por-

tion of the work has concentrated on using GAs to process microarray

data. Specifically, they have been used to ‘reverse engineer’ regulatory

networks and also, in conjunction with neural networks, as a method of

data mining gene expression data. The following sections describe the

most current research into these topics.

Reverse engineering of regulatory networks

Introduction

Gene regulatory networks are described in detail in Chapter 2, but the

following sections show why GAs may be required for this particular

problem. Gene expression or microarray data allows biologists unprece-

dented access to the workings of genes within a cell, and the expression

values of many thousands of genes can be recorded simultaneously for

1 More information can be found at http://lancet.mit.edu/ga/.
2 More information can be found at http://www.palisade.com.
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a particular sample. This process can be applied repeatedly for a sam-

ple placed under stimuli, which then yields a trace of genetic activity

for a number of genes over time. It is this trace and the interactions

between genes over time which is of interest for a number of reasons.

First, genes involved with cellular processes and disease are not being

expressed in a vacuum; they are constantly interacting with each other

in the cell and the answers to many of the biological questions posed by

microarrays will undoubtedly lie in these interactions. Second, because

of these interactions, taking a single expression measurement at a partic-

ular moment in time as the basis for a study will not necessarily yield the

required results, since the gene expression of individuals is a dynamic,

not static phenomenon. The measurement of an individual sample over

time provides us with the raw information required to decipher which

genes are subsequently affecting the expression levels of other genes or

even themselves. This process is not an exact science; genes expressed at

one timestep have an indirect affect on others through protein produc-

tion and therefore it is difficult to determine the way in which these genes

interact. Add to this the fact that there could be anywhere from 100 to

30 000 genes measured over time, each with the potential to interact,

and the problem becomes very difficult indeed. Essentially the desired

outcome is for the GA to arrive at a network of genetic interactions be-

tween genes in adjacent timesteps. This can be best visualized by a set of

rules, for instance:

If gene X at Time0 is ON THEN gene Y at Time1 is OFF

This represents one connection of a very simple network where the gene

expression values are represented as ‘absent’ and ‘present’, to use the

Affymetrix3 nomenclature, and only one gene affects one other. What

is important is that the rule has an element (the antecedent) which re-

lates a time in the past to a subsequent timestep (the consequent). This

rule structure must be used if a causal model is to be discovered through

temporal regulation. When rules have been discovered for every gene in

a particular experiment, a network can be created to link genes in one

timestep to the next. This network can be said to have been ‘reverse engi-

neered’ from the data. That is, the actual processes of genetic interaction

have been extracted from biological observation and data in the form

of a network. Once a network has been extracted, this constitutes a hy-

pothesis concerning the routes that can be taken through the network

3 For more information see http://www.affymetrix.com.
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so that the activity of genes in a subsequent timestep can be said to be

explained by the activity of genes in a previous timestep.

Computational Complexity

This problem, however, becomes more complicated when considering

true genetic interactivity as a number of genes can affect any number

of genes in the next timestep, i.e. not all interactions are one-to-one.

This is where GA approaches can be applied, as the number of possible

networks is huge with respect to the number of genes. The fact that

genes can act in combination to affect combinations of genes at the next

timestep means that the problem requires the algorithm to determine a

combination of N genes from the total number for each influenced gene.

The following expression determines the number of combinations when

choosing k individuals from a total number N

N!

k!(N − k)!
(8.1)

So all the combinations of selecting five (k) elements from a total of 10 (N)

is 252. That is, if the data consists of measurements of 10 genes and we as-

sume that only five genes at one timestep affect a gene at the next timestep,

there are 252 possible combinations. Select five from 100, though, and

the number of possible combinations rises to 75 287 520; select five from

10 000 (a typical gene expression experiment) and the numbers become

unmanageable. The total number of solutions cannot be searched exhaus-

tively to guarantee optimality. This problem is therefore very difficult to

solve with traditional methods and this is where GAs can be used.

Graph and matrix representations

The gene regulatory network can be represented as a set of weights

connecting genes in one timestep with genes in another. This matrix of

weighted connections determines the effect that each gene in one timestep

has on another gene in the next timestep. Figure 8.9 shows a typical ge-

netic network and its weight matrix representation (see also Table 3.1).

It is in this way that a matrix can represent a gene regulatory network.

However, Figure 8.9 shows two connections into G4, from G2 and G3.
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Figure 8.9 Graph and matrix representation of a gene regulatory network, where
columns specify the start point and rows the end point; so, for instance,
G4 influences G1 with value –1.10 (a negative gene effect)

The question of how these values can be combined to give the correct

expression value of G4 remains. One approach is due to Weaver et al.

(1999), who combined the values together and passed them through the

sigmoid function (see the Chapter 7 for more on this function) to give

the output for G4. Therefore, any algorithm wishing to discover a gene

regulatory network must discover the set of weights that connect genes

in one timestep to those in the next. These weights, combined with the

expression values of the incoming genes and passed through the sigmoid

function, give the required expression levels for the output gene.

Evolutionary approaches to the reverse engineering problem

A succession of papers (Ando and Iba, 2001a, 2001b) have described

methods of using GAs to extract the gene regulatory networks from

gene expression data. Mostly, they used the approach detailed above by

Weaver, et al. (1999) as the model for forward activation and reverse

engineering their gene regulatory networks. The GA is applied to the

problem in a number of ways, in adding noise to the reverse engineering

process for example, but the results most often reported refer to the

following representation of the network to the GA. The chromosome of

the GA is encoded as a matrix of floating point values which correspond

to the weight matrix between gene timesteps (as in Figure 8.9). The fitness

function for the GA is calculated as the sum, over all timesteps, of the

difference between the predicted and actual level of activation for the gene

expression. The GA is then allowed to optimize this matrix of weights

for these criteria.

Another objective which is factored into the fitness function is that

sparse matrices are required in this problem to remove the possibility of
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all genes having an effect on all other genes. A measure of the number

of zero weights present in the chromosome is added so an individual

solution fitness is based both on its solution and number of zeroes in the

solution. The advantages of this process are that the GA uses Weaver

et al.’s established method of gene regulatory network modelling and

also makes use of the reverse engineering process to a certain extent. The

results on artificial data are encouraging and suggest that the GA should

be able to extract matrix-type gene regulatory networks from this type

of data.

There are, however, some difficulties with this approach. For instance,

the chromosome has to evolve the entire weight matrix for a set of genes

and so the chromosome will consist of a large number of floating point

values. Although this GA approach is good for modest numbers of genes,

the number of interactions required in the matrix quickly become unman-

ageable. A network of 1000 genes possesses 10002 possible connections

and therefore the complexity of generating networks of this size for each

individual in the population is too great. The GA has no theoretical lim-

its on the size of the chromosome that can be optimized, but there are

often practical limits concerning the memory of the computer and the

time taken to evaluate each chromosome on the data. Also, whilst any

gene in the network can effect any other, the vast majority do not. Bio-

logical experimentation (Thieffry et al., 1998) and chaos theory (Kauff-

man, 1996) suggest that the number of genes which can act together to

alter the expression values of another gene (the K-value) is small (less

than six). Therefore the problem size for 1000 genes is closer to 6∗1000

than 1000∗1000. To take advantage of this fact, a modified GA exam-

ple (Keedwell and Narayanan, 2003) uses the GA to discover one single

column of the matrix at a time. The genes affecting a gene in the next

timestep are limited by the K-value, so only a handful of genes must

be discovered for each optimization. The chromosome therefore has to

change from a matrix representation to one which specifies the incoming

gene and its weight, as shown in Figure 8.10. The GA is then run for each

output gene, building up the network step by step. This representation

1

Position Weight

0.24 23 1.35 101 0.01

Figure 8.10 Gene and weight pairs chromosome representation of a gene regulatory
network
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reduces the computational complexity of the problem and also breaks the

problem into smaller pieces, thereby allowing each element to be solved

more quickly.

This is a good illustration of the importance of a good representation

for solving a task with a GA. By using the known biological constraints of

the problem, and by making the problem to be solved by the GA simpler,

the GA can be applied to real-world gene expression data in addition to

artificial problems.

Multiple sequence alignment

The task of comparing sequences is at the heart of bioinformatics. By

comparing sequences of nucleic or amino acids, the similarity in structure

between genes and proteins can be discovered. The ability to match two

or more sequences according to the elements within those sequences is

an extremely important one in bioinformatics as it allows new genes

and proteins to be accurately compared with existing ones for which the

structure and function are known. The comparison of these sequences

can help in the discovery of similar genes across species and also help

determine the phylogeny of those species. As pointed out in Chapter 2, the

comparison of even two sequences is not simple. A very simple method

would be to write down both sequences and compare those elements

which are similar and those which are not. For instance:

A C G C
A T G C
∗ ∗ ∗

The ∗ character indicates a matched column between the two sequences.

However, if one character is inserted or deleted, the sequence alignment

no longer exists and two highly similar sequences have no matches.

A C G C −

− A T G C

The task is to determine the optimal alignment of these sequences by cor-

rectly inserting gaps to realign the sequences. Whilst the problem seems

relatively trivial when only four bases and one gap is considered, the

task becomes very difficult when the number of bases in a typical gene

is taken into account. There are a number of algorithms which perform

very well on a problem such as this with just two sequences, but multiple
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sequence alignment requires this process to occur for a large number of

sequences. It is for this problem that researchers have turned to intelli-

gent methods to perform this sequence alignment. Genetic algorithms in

particular have been successful in this domain, pioneered by the Sequence

Alignment Genetic Algorithm (SAGA) (Notredame and Higgins, 1996).

The GA approach makes use of a population of alignments where each

alignment is assessed as to its performance in terms of the number of

columns which match and the number of gaps which are introduced into

the sequences. The genetic algorithm itself is modified from a standard

algorithm in that it uses an elitist approach where 50 per cent of the best

performing alignments are copied to the next generation. 22 problem-

specific operators are also used. The 22 include 19 mutation operators

and three cross-over operators which have to be specifically designed to

modify the alignment of sequences in a meaningful way. The one-point

cross-over operator, for instance, takes two separate alignments, makes a

cut at a random point in the first alignment sequence and cuts the second

alignment at such a point that every sequence is cut adjacent to the same

symbol as in the first alignment. The left side of one parent is then spliced

to the right side of the other and vice versa, and then gaps are added to

ensure alignment consistency. The results taken from Notredame and

Higgins (1996) show that the genetic algorithm discovered alignments

that performed as well as or better than two established methods, MSA

and Clustal.

The GA approach broadly described here provides a good example of

the modifications that can be made to an algorithm to make use of an

evolutionary approach. The representation of the problem is reasonably

fixed, alignments can only be made by inserting gaps in a sequence, and

the cross-over and mutation operators had to be modified accordingly.

It also shows a good application of GAs to a fundamental problem in

bioinformatics.

Conclusion

This section has shown a GA applied to two problems taken from bioin-

formatics. Each example highlights an important aspect of applying GAs

to bioinformatics, namely that the correct representation and objective

function can yield a very successful application. These examples also il-

lustrate the diversity of applications of GAs, and they remain one of the

best performing as well as the most flexible of the AI algorithms used for

bioinformatics.
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8.6 Summary of chapter

1 Genetic algorithms (GAs) make use of biologically inspired operators

of selection, cross-over and mutation to move from one solution to

the next, and are an efficient method of searching large spaces that

are not amenable to traditional algorithms.

2 Multi-objective GAs have yet to be widely exploited in bioinformatics,

but offer the researcher a set of possible solutions rather than just one

and are based on the principle of dominance.

3 Genetic algorithms have been used for a number of problems in bioin-

formatics including the reverse engineering problem and sequence

alignment.

4 The single most important element of applying a GA to a problem, re-

gardless of domain, is to ensure that the representation of the problem

to the algorithm is as close to the real problem as possible.
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9
Genetic Programming

9.1 Method

Genetic programming (GP) is one of the most recent techniques in ar-

tificial intelligence and is closely related to the GA (described in Chap-

ter 8). It makes use of some properties of GAs in that it is a stochastic,

population-based, evolutionary approach to search and optimization.

However, it differs significantly from the GA in some of the operators

that are used and, most crucially, in the representation of a solution to

the algorithm. Traditional GAs derive a solution to a problem where the

solution is represented by a string of variables (chromosome, see Chap-

ter 8) related to the problem at hand. Genetic programming, however,

uses a tree (often known as a parse tree) to represent a solution to the

problem, and it is this which constitutes the main difference between GAs

and GP. Genetic programming was originally conceived as a method for

computers to program themselves (‘automatic programming’) by using

these trees and it has been shown that the programs it derives can be

used to represent a range of equations and functions which are based

on the tree representation. Genetic programming has found a range of

applications in science and engineering disciplines, most successfully in

electronic circuit board design and automated programming tasks. In

recent times, the founder of GP, John Koza, has been advocating the

fact that GP techniques can create human-competitive designs for these

and other problems. The algorithm has been able to recreate a large

number of designs which were previously granted patents and some new

designs that are expected to be of patentable quality. This shows the

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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ability of the technique to develop new solutions to problems. In addi-

tion to this, it also shows that the inventions it arrives at are very similar

to those developed by humans, and lays a good claim to the name of

artificial intelligence. As an extremely powerful technique, GP could eas-

ily be one of the most used techniques in bioinformatics in the coming

years.

The algorithm

Genetic programming uses the same principles as other evolutionary tech-

niques, in that it makes use of a population of solutions to the problem

which are then manipulated by operators such as selection, mutation and

crossover. These operators are executed on the population repeatedly to

achieve better solutions over time. It differs, however, in the type of oper-

ators used and, as previously discussed, the representation. The following

sections describe the tree representation and the operators used to create

new trees during the algorithm run.

Tree representation

A tree consists of two types of elements, operators (which are distinct

from the genetic operators we have seen previously) and terminals. As

their name suggests operators perform operations on the terminals and

terminals are essentially variables in a computer program. Common

operators include the mathematical operators such as plus, minus and

multiply which have arity 2 (they require two terminals to operate on)

and log10, exp and square root those which have arity 1 (they require

only one terminal). The terminal set consists of variables relating to the

problem and also constants such as integers and real values (perhaps

PI or e). The selection of operators and terminals depends very much

on the problem at hand, in much the same way that the choice of deci-

sion variables is very important for the operation of GAs. A tree can be

created from the operator and terminal set according to a set of simple

rules.

1 The first node must be an operator.

2 An operator must have exactly the number of arguments as deter-

mined by its arity.

3 An operator can take any operator (including itself) or any terminal

as an argument.
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5 3 4 1

−+

∗

Figure 9.1 A small parse tree using the integers one to two and the standard
mathematical operators; the result of this tree can be computed as
24 ((5 + 3)∗(4− 1))

Figure 9.1 shows an example tree which could be created from simple

mathematical operators and the integers one to five. The initialization

process of each solution must be completed in such a way that completely

new, random trees are created for each individual in the population.

The way in which the tree is created can be completed in a number

of ways, although the most commonly used methods are ‘grow’ and

‘full’.

1 Grow – In this mode, the first node is an operator, and then elements

randomly taken from the complete set (terminals and operators) are

added to the tree. Once the tree has reached the maximum depth

(specified as a parameter), or if all operators have terminals, then the

function is stopped. This process can be seen in Figure 9.2.

3 2

3 +

∗

3 +

∗

3

∗∗

Figure 9.2 The ‘grow’ initialization operator – note that at each iteration any oper-
ator or terminal can be added to the tree and that the resulting tree does
not necessarily have an even number of leaves; the result of this tree can
be computed as 15 (3∗(3 + 2)
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Figure 9.3 The ‘full’ initialization operator with maximum depth 2 – at each itera-
tion, the operator checks to see whether it has met the maximum depth,
if so, then terminals are added, if not, then operators are added; this
tree therefore is symmetrical and its result can be computed as 3.5 ((2 +
5)∗(2/4))

2 Full – In full mode, the first node is again an operator, but only

operators are randomly added until the maximum depth is reached.

Once this has been completed, terminals are added to the final level

of operators until they all have the required number of arguments.

This process can be seen in Figure 9.3.

The advantage of the ‘grow’ method is that it tends to be quicker

than the ‘full’ method, but the trees are usually not symmetrical and,

despite the maximum depth setting, in the worst case it is possible for

a tree which is grown to have only one operator (the initial operator).

The ‘full’ method takes longer to initialize than the ‘grow’ method but

trees of a guaranteed size (determined by the maximum depth) can be

created.

Fitness evaluation

Once a population of trees has been created, they can be evaluated for fit-

ness in a similar way to a GA. There is a significant difference, however, in

that whereas a GA chromosome is evaluated simply by viewing the gene

values, a tree must be executed to give a result. This result can be a single

value, or it can consist of a set of values created by executing the tree

on a variety of different variable (terminal) settings. The result or results

from the tree are compared with the required result by the user-defined

objective function. The objective function therefore uses this compari-

son function and returns a fitness for the solution. Once the evaluation

process has been completed, the genetic operators are used to create new
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solutions for the algorithm to progress to the next generation. In other

words, if the user can specify what is required of a program and specify

this requirement in the objective function, GP can be used to generate a

tree (program) that describes how to produce what is required. So while

both GAs and GP deal with solutions to problems, they differ in what

they produce. Genetic algorithms produce solutions that contain com-

binations of parameter values (possibly weighted) to satisfy a function,

whereas GP produces solutions that contain a series of instructions for

producing desired and specified program behaviour.

Selection

The selection processes for GP are essentially the same as those used

for GAs. The selector is only concerned with the fitness of the solution

in comparison with others in the population and therefore many of the

same techniques can be taken from GAs. The GA selection techniques

can be seen in Chapter 8.

Crossover

Whilst GA selectors can be used for GP, the crossover operator must

take into account the tree structure of the chromosome. The actual oper-

ation of the crossover remains similar in that it aims to share the genetic

information of two individuals, by cutting two individuals at a certain

point and exchanging genetic information at those points. However, the

GP crossover must take into account the fact that operators must have

the required number of terminals to operate correctly. This is achieved

by guaranteeing that the crossover location in both chromosomes corre-

sponds to a sub-tree in each individual. A sub-tree is defined as a portion

of one of the main trees which could be correctly executed on its own,

i.e. that all the operators have the correct number of terminals. The steps

in this crossover are:

1 choose a random point on the chromosome;

2 evaluate whether this point is the start of a sub-tree – if not,

return to 1;

3 execute 1–2 on the second chromosome;

4 swap the subtrees.
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Polish notation∗

Arity
∗

*The process of converting a tree to polish notation can be seen in figure 9.5.
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Figure 9.4 Detecting sub-trees for crossover

The vital point here is step 2, determining whether the random point

is the start of a sub-tree. To discover this, once the random point is

determined, the algorithm moves along the tree, maintaining a sum Z.

As the algorithm moves along the tree, if an operator is encountered,

its arity minus one is added to Z. Terminals cannot take arguments and

have an arity of zero, therefore if a terminal is encountered, 1 is removed

from the total Z. If Z reaches the value of −1, a sub-tree has been located

and the start and end points of the sub-tree can be recorded. This process

is shown in Figure 9.4 and locates potential sub-trees from any point on

the chromosome. The calculations in Figure 9.4 show that the sub-tree

is identified by a −1 result by progressing through the tree maintaining

a sum (−1) of the arity of any operators. Terminals cannot take any

arguments (they have zero arity), and therefore they are represented as

0 in the calculation. If the result is not −1 then the resulting tree is not

a sub-tree and cannot be used for crossover. Other methods exist to

discover crossover points, but this is one of the most intuitive. A further

example is to start at the plus operator, so 2 = 1, then add terminal 5

(2 = 0) and terminal 3 (2 = −1). This also constitutes a valid subtree.

Mutation

Mutation in GP is also different from that in GAs, again due to the

maintenance of tree structure. In GAs, mutation can occur by simply
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changing one bit in the chromosome. In GP this can also be accomplished

by changing one bit, but operators must be mutated to other operators

and likewise with terminals. If this principle is violated, the structure of

the tree breaks down and a syntactically invalid tree can be created.

Another method is to use the technique developed in the initialization

to create new sub-trees in the tree. The process for this is shown:

1 select a random point X on the tree;

2 if X is an operator, go to 3 otherwise repeat 1;

3 delete the sub-tree leading from X, and add a new sub-tree us-

ing either the ‘grow’ or ‘full’ method of initialization described

earlier.

This process leads to substantially new material being added to the tree

and therefore constitutes an effective mutation technique.

With the application of standard selection, and specific mutation and

crossover (of which only a few examples are seen here) operators, new,

better-performing trees can be created to solve a large variety of problems.

Tree interpretation

Whilst the above algorithm is well formulated in terms of the manipu-

lation of trees, the question remains as to why trees should be created

at all. A tree differs from a traditional GA approach in that the actual

variables of the problem only form a subset of the total structure used

by the algorithm. The tree notion is usually used to represent an equa-

tion or function, where problem variables are combined with a variety

of operators to arrive at a single representation that solves the problem.

For example, if we wanted an equation to result in the number 43 us-

ing only the integers 1 to 5 and the common mathematical operators,

GP could find the combination of operators to accomplish this. Once a

tree has been created, it can be converted into a normal mathematical

or programming language format so that it can be read and verified in-

tuitively. Also there are some programming languages, such as Lisp and

other functional and logic programming languages, that use tree struc-

tures for representing both data and function. If GP is implemented in

these languages, there is a natural way of executing the tree structures

within these languages through the use of an ‘evaluation’ command on

a tree. Figures 9.1, 9.2 and 9.3 illustrate this process.
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Polish notation

In many GP applications, trees are expressed in Polish notation or reverse

Polish notation. Polish notation was devised by the Polish philosopher

and mathematician Jan Lucasiewicz (1878–1956). This notation allows

a two-dimensional tree to be represented as a string of characters and

converted easily back to the tree format. The recursive nature of con-

verting trees can appear complex at first, but a number of steps executed

repeatedly allows this conversion to take place. Figure 9.5 shows the

process of converting a tree into Polish notation and back again. The

order in which elements of the tree are added to the string are shown

next to each element of the tree. Each element is added depth first, until

a terminal is encountered. Once an operator has all its arguments, the

process moves back up the tree and fills those operators that still have

unfilled arguments.

The rule is that the elements are added depth first, so an operator of

arity 2 followed by two further operators leaves each of the operators

unsatisfied. Operator 2 occupies one argument of operator 1 and

operator 3 occupies only one argument of operator 2. Operator 3 has

no arguments filled until further operators or terminals are added. With

each successive addition of an operator or terminal, if there are no more

free arguments then move back up the tree and fill operators further

up. It is this recursive nature of both the creation and execution of
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Figure 9.5 Converting parse trees to Polish notation
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these trees which can be one of the more difficult concepts to grasp. By

creating some simple expressions in Polish notation and writing them

as trees, the method can be learnt quickly.

Bloat

Genetic programming trees are often subject to a phenomenon known as

‘bloat’. By necessity, GP uses variable length chromosomes to represent

trees and, theoretically at least, these trees can have infinite depth. How-

ever, in most applications a tree beyond a certain size is costly to process,

unwieldy to interpret and often fails to generalize beyond the training set

that it has been given. The increase of a tree size beyond a required limit

(known as ‘bloat’) is a significant problem with GP, since the execution

time for trees can increase very rapidly as they grow in depth.

There exist a number of strategies to mitigate this effect, including:

1 introduction of a fitness penalty based on the depth of the tree,

2 introduction of a hard threshold so that trees cannot exceed a

certain depth,

3 multiple-objective approaches, using tree depth as a second

objective (Bleuler et al., 2001).

The first strategy ensures that very large trees are unlikely to be created

since the fitness will be reduced if the tree becomes large. On the other

hand, a satisfactory solution (tree) may be inadvertently deleted by this

strategy. The second strategy is a little more difficult to implement and

ensures that computation time is strictly limited. This strategy, however,

can also be problematic (like the first strategy) if very good trees for the

problem tend to be large.

The final strategy does not guarantee that processing times will be

small, but rather gives a set of trees which are evaluated both for their size

and accuracy. Whilst limits can be placed on multi-objective approaches

(by using methods such as constrained-dominance (Deb et al., 2000)),

an unconstrained multi-objective approach would not remove bloat from

the algorithm. The processing time would be similar to a standard GP run

as solutions with higher depth would be accepted alongside smaller so-

lutions. However, it would highlight the relationship between tree depth

and accuracy and could therefore prove to be useful in determining what

amount of bloat is necessary to deliver the required result accuracy. The
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problem of bloat is therefore significant, but a number of strategies exist

in the literature to mitigate its effect.

Conclusion

Genetic programming represents one of the most powerful and flexible

techniques for deriving the equations and functions about unknown sys-

tems. The properties of the GP algorithm are quite different from those

of the GA and consequently less well-understood and used. The fun-

damental evolutionary processes that underpin the GA are maintained

in GP, but the trees that are derived require special manipulation and

interpretation.

The following sections describe how to implement GP for bioinformat-

ics problems and also some existing applications of them in this field.

9.2 Application guidelines

Introduction

Genetic programming can be applied to a large number of problems and

has been successfully applied in a number of areas. To a certain extent,

the same application requirements for GAs apply to GP, i.e. the problem

should possess an objective function that responds relatively smoothly to

changes in the chromosome. The issue of problem representation is less

pronounced for GP, since trees are the default representation. However,

a number of parameters must be selected with care when using GP. These

issues are discussed below.

Terminal selection

Genetic programming is sensitive to the type and range of variables it

is given, and much thought must be given to the terminals and opera-

tors supplied to the algorithm to enable it to perform well in its task.

Genetic programming can combine and recombine its problem variables

in a way that GAs cannot. For instance, if GP requires the variable 0.6

in an equation, it can create this by combining the terminals 6 and 10,

and the divide operator. The algorithm can overcome some shortcom-

ings in the representation of the problem, but it will still require as many
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variables (terminals) relating to the problem as possible. Generally speak-

ing, random constants are also added as terminals to allow GP a greater

freedom in deriving equations. The number and range of these constants

will depend on the problem itself.

Operator selection

Operator selection can be a tricky business as the more powerful opera-

tors such as power, exp, factorial, etc. can easily create numbers which

are beyond the range of most personal computers. The problem is that,

due to the random nature of GP, any of these operators can be applied to

any other, and the same operator can even be ‘nested’ and applied to itself

repeatedly. The following example shows two nested power operators:

POW(50, POW(10,2)) = POW(50, 100) = 50100.

As can be seen, this result would be a huge number even though only

the power operator and some reasonably small integers were used. Such

operators must be carefully restricted or, in some cases, eliminated from

GP altogether.

Aside from these unrestricted operators, there are a large number of

standard mathematical functions that can be used, such as plus, minus,

multiply, etc., but care must be taken with the divide function as it must

be restricted so that a divide by zero error cannot occur. If either of the

arguments is zero, then a zero is returned as opposed to performing the

divide function. This is not a difficult fix, but does illustrate that care

must be taken when devising operators for use with GP.

General applications

As with GAs, the applicability of GP to a problem will depend on whether

a well-formed objective function can be created and whether the re-

quired solution can be represented as a program or function. A variety

of applications and a wealth of other information can be found at John

Koza’s website1. Koza is often described as the ‘father’ of GP and this

site describes in detail some of the more impressive feats of GP. These in-

clude ‘human-competitive’ applications where GP has created previously

patented inventions, or new inventions which are determined to be of

1 More information can be found at http://www.genetic-programming.org.
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patentable quality. Through this website the power of GP, and in partic-

ular its ability to display ‘human-competitive’ intelligent behaviour, are

illustrated.

Software

A smaller subject field than GAs, GP has fewer implementations for po-

tential users. Generally speaking, GA software can be converted to per-

form GP as long as it can form variable length chromosomes. However,

a large list of free and commercial be spoke GP implementations can

be found at The Genetic Programming Notebook2, the most notable of

which is Discipulus3, a commercial WindowsTM package.

9.3 Bioinformatics applications

Introduction

Genetic programming has only been in existence since the early 1990s and

therefore is one of the newest techniques contained in this book. Whilst

this pre-dates much of the modern bioinformatics research, a number

of more established techniques are often used before GP is considered.

Therefore the number of GP applications to bioinformatics problems

is currently small. As with other areas of science and engineering, GP is

starting to make more of an impact and the work undertaken here shows

the diversity of existing applications of GP to bioinformatics problems.

Genetic programming in data mining
for drug discovery

This work conducted by Langdon and Barrett (2004) is a neat example

of how GP can be applied to the problem of drug discovery for human

medicinal purposes. Drug discovery as a whole field is a ‘hot topic’ in

bioinformatics as currently it takes a new drug compound between 10

and 12 years to get into mainstream usage. Much of this time is often

spent testing the drug firstly in the laboratory and then later in organisms

2 More information can be found at http://www.geneticprogramming.com.
3 More information can be found at http://www.aimlearning.com.
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and animals. Whilst the laboratory testing stage of a drug is relatively

cheap, it can also be frustrating as there will exist many compounds with

similar properties that have to be tested. Pharmaceutical companies are

constantly searching for automated methods to help them target their

search in these initial stages. Langdon and Barrett showed that GP can

be successfully used for determining the bioavailability of a set of com-

pounds based on their structure. The bioavailability of a compound is

one of a set of metrics and is designed to determine how well a drug will

pass through the various bodily systems and, on reaching the active site,

how much effect the drug will have. If taken orally, a drug is subject to

many bodily mechanisms such as digestion, metabolism and excretion.

Some compounds will be relatively unaffected by these processes whereas

others will have practically no effect on their target because they have

been broken down by these bodily functions before they can reach the

target site.

Method

The task for GP is to determine which of a set of compounds will satisfy

the requirements for drug bioavailability. The notion of ‘acceptable’ is de-

termined by a threshold value of 33 for bioavailability with those falling

below this level deemed ‘poor’ and those above ‘acceptable’. By applying

this threshold, a classification problem is created to distinguish between

the poor and acceptable compounds. The classification accuracy of the

system is computed as the ‘ROC convex hull’ approach (ROC stands for

receiver operating characteristics), which is an ingenious method of giv-

ing false positives and false negatives the same importance in the fitness

function. Readers are directed to Langdon and Barrett (2004) for more

detail on how this works, as they demonstrate an excellent way of trans-

forming a classification problem into a smooth objective function for use

with genetic techniques. The method was trained and tested on a variety

of data, taken from drug trials on both humans and rats. As would be

expected, the data on rat bioavailability was more abundant and better

distributed, since the human data consisted only of those drugs which

made it through initial screening. Each drug compound was represented

by 83 variables that were used to identify functional groups within each

drug. These functional groups have been identified and developed over

a long period of time by the pharmaceutical companies and included

electrical, structural, topological and physico-chemical features of the

compound.
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In addition to the chemical variables, a variety of constants (some

of which were random) were added to the terminal set. The operator

set consisted of the standard mathematical operators (with a protected

divide operator as discussed earlier) and a four-level ‘if’ conditional op-

erator. This set of constants, operators and variables perfectly illustrates

an application of GP to a bioinformatics problem. The constants and op-

erators give the GP the flexibility to provide combinations of the feature

variables, and the ‘if’ statement allows the algorithm additional scope to

develop logical rules as well as standard equations.

Genetic programming was run on each of the datasets and tested on a

hold-out dataset (to determine how well the created trees generalize be-

yond the training set). The performance on the human dataset was better

than the performance on the rat dataset, but it was discovered that the

trees discovered for the human data did not generalize to (i.e. perform

well on) the rat data. However, the reverse was true: the trees gener-

ated on the admittedly larger rat dataset were successful in predicting

bioavailability in the human dataset.

This finding suggests that human and rat bioavailability are closely

related and, perhaps more significantly, GP discovered a set of features

which was applicable to both species. The tree which correctly classified

both sets of data was able to be significantly simplified with only a small

loss in performance and was subsequently much simpler than expected.

This not only highlighted the possibility that bioavailability was more

simple than previously thought, but also shows the power of the GP

approach. Whilst the constituent elements of a tree are simple operators

and terminals, they can be combined together with great effect and the

final trees can be easily interpreted and simplified by end-users.

Genetic programming for functional genomics
in yeast data

This work, undertaken in 2000 by Gilbert, Rowland and Kell represents

one of the first applications of GP to a bioinformatics topic. This research

used some of the first reliable gene expression data taken from a set of

experiments with a species of yeast, Saccharomyces cerevisiae. The data

itself was collected in a time-course experiment where the yeast was ex-

posed to a set of 79 different experimental conditions, including heat

shock, reducing shock and sporulation (for more on this see Eisen et al.,

1998). Each of the genes had been assigned one of six classes – ‘Histone’,

‘Proteasome’, ‘TCA Pathway’, ‘Respiratory Complex’, ‘Ribosome’ and
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‘HTH-containing’ – which were learnt from existing functional knowl-

edge. The task for GP was to assign genes to the correct classes using

their gene expression profiles over the 79 experiments.

Method

Each gene was represented by a set of expression values over time and was

added to the dataset of some 304 training genes and 152 testing genes.

The objective function was to minimize the number of classification er-

rors determined by the rules where each individual in the population

comprised six rules (one for each class). Therefore a single individual in

the population could classify the entire training set of genes, by utiliz-

ing its six rules to determine to which class the gene belongs. If a gene

was found which did not trigger the execution of any of the rules, it

was assumed that that gene had an unknown function. To accomplish

this task, the GP implementation used the standard set of mathematical

operators, and an ‘if greater than or equal to operator’ which compared

two variables and returned a one for true, or zero for false.

This GP implementation was run five times on this problem (with dif-

ferent random seeds) and the results were very encouraging. The method

correctly classified the vast majority of the training and test data, return-

ing 100 per cent test accuracy on the classes Histone, TCA Pathway and

Respiratory Complex. The three remaining classes were classified with

a maximum of two misclassifications on the test data. In 80% of runs

the GP discovered the rule if alpha [35] ≥ alpha [49] then “TCA Path-

way” else “Unknown”, suggesting that all the TCA pathway genes can

be identified using just the 35 minute and 49 minute timepoints from

the α-factor cell division cycle experiment. This shows that the GP ap-

proach can be used to classify genes successfully by functionality based

on their expression levels across experiments. In addition to this, the au-

thors applied the classifier to the entire dataset and found that some 291

genes were predicted to be of class ribosome (characterised by the rule

if (elution [30] − leaf [20] − diauxic [b]) ≥ (alpha [119] + 1.15335)

then “Ribosome” else “Unknown”)). Of these 291, 121 had previously

been identified as ribosomal genes, and the remaining 170 had known

or suspected function. Of these 170, 102 of the genes appeared to have

functionally-similar properties to ribosomal genes. The authors therefore

surmised that the current classification schema for these genes was too

strict, and that the GP approach had found a more inclusive system for

classifying these genes. A further important attribute of this approach
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was that the GP trees, once converted into rules, could then easily be

interpreted by biologists and assessed for their biological feasibility. This

transparency was often not present in other classification methods, such

as neural networks and other clustering techniques. The application of

GP here was therefore vital in the further understanding of the yeast gene

expression data due to its ability to extract meaningful and accurate in-

formation from the data.

Therefore this approach shows all the desirable features of the GP

algorithm. The approach was firstly able to classify correctly the set of

genes on which it was trained, and also test data that was not part of the

training process. In addition to this, the classifier was used on the entire

dataset to predict a certain classification for a number of genes, a number

of which agreed with a current functional genomic database, and a num-

ber of which appeared to have similar function. Finally, the approach

was able to identify the genes used in the classifier in an easily-digestible

manner and this led to the proposed classification of a number of pre-

viously functionally-unknown genes. This work therefore demonstrates

the power, flexibility and accuracy of the GP approach.

9.4 Background

The basis of GP was formed with the discovery of GAs by John Holland

(see Chapter 8 for more on this), as this laid the foundations for evolved

population search. The subsequent discovery of GP is often attributed

to John Koza (1992) who first arrived at the idea of evolving programs

rather than strings of bits and other more static representations. Since

this time, there has been a steady increase in the number of researchers

working with GP, but the field is still much smaller than that of the GA.

9.5 Summary of chapter

1 Genetic programming is one of the family of evolutionary techniques

that include GAs. They operate broadly in the same fashion in that

they use a population of solutions, stochastic operators and an ob-

jective function.

2 They differ from GAs in that they evolve parse trees from operators

and terminals rather than a static set of variables. To accomplish this,

the chromosome needs to be of variable length.
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3 Genetic programming trees can suffer from bloat, be expressed in

Polish notation and can often be extensively simplified from their

evolved state.

4 Genetic programming has discovered human-competitive patentable

inventions and has also found applications in many areas of science

and engineering, including bioinformatics
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10
Cellular Automata

10.1 Method

Cellular automata (CA) are unlike many of the other techniques pre-

sented in this book in that they are more often used for the simulation

and modelling of systems rather than for optimization or classification.

This is largely due to the fact that they were originally conceived to sim-

ulate complex systems arising in nature such as those seen in physics,

chemistry or biology. In all these examples, the systems are complex be-

cause of the interactions of a number of elements contained within a

fixed environment. In chemistry and physics, molecules and atoms col-

lide and react with each other countless times a second, and in biology

small organisms such as bacteria compete with each other for resources.

The common thread to all these systems is that individual elements, be

they molecules, atoms or organisms, interact with each other in parallel.

Traditional serial models of computation can make these interactions

difficult to calculate, but CA represent an alternative to this because they

can model these large-scale interactions between elements in a parallel

fashion. This is possible because CA consist of a uniform grid of cells,

each of which can be thought of as a point of space. Each of the cells

contains a small number of bits of information which represent the state

of that cell. The state of each cell is updated by using rules (known as

state transition rules) which, based on the states of other neighbouring

cells, change the state of the current cell accordingly. The state transition

rules themselves must be uniformly applied across the whole grid of cells.

This approach enables a rudimentary simulation of systems with multiple

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
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elements, since each cell can be occupied by one of the elements by a mod-

ification of its state (at its most simple, occupied or not-occupied). In this

fashion two adjacent occupied elements can be thought of as ‘reacting’ or

‘colliding’. The state transition rules then determine what occurs when

two adjacent cells are occupied and what occurs to the elements once they

have reacted. It is in this way that a contained ‘universe’ can be simulated

by using CA and in the past, parallels have been drawn between CA and

a stylized universe operating under a set of uniform laws. Cellular au-

tomata can therefore be useful in modelling physical systems including

diffusion, fluid dynamics, ballistic computation, chemical reactions and

biological phenomena.

They are often difficult techniques to apply in many areas, including

bioinformatics, as special attention must be paid towards the system for-

mulation. The system must be separable into the discrete elements seen

in a CA, or of course represented in such a way that this level of gran-

ularity is acceptable. Once this has been accomplished, CA offer a type

of computation to different from any of the other techniques described

in this book, with the opportunity of simulating complex systems in an

efficient fashion. The following sections describe the basic operation of

a CA and some potential applications of the technique.

The grid of cells

As described previously, a CA consists of a grid of cells which can adopt a

number of states. In the most simple example, each cell can adopt one of

two states (on or off, 1 or 0), but some applications as will be seen later

require a significantly greater number than this. Each cell has a neigh-

bourhood of additional cells which surround it in the grid the definition

of which is important in the execution of the state transition rules. Fig-

ure 10.1 gives an example of some different neighbourhoods. The black

von Neumann
neighbourhood

Moore
neighbourhood

Figure 10.1 Two possible neighbourhoods for use in a CA
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square represents the cell under consideration and the shaded squares

correspond to the neighbours of that cell. A von Neumann neighbour-

hood allows cells to communicate with up, down, left and right cells. A

Moore neighbourhood, on the other hand, contains the von Neumann

neighbourhood plus the diagonally contiguous cells. These are just two

examples, there are many other neighbourhoods, especially when three-

and higher-dimensional CA are considered.

The state of each cell is influenced by the states of cells within the spec-

ified neighbourhood. It is in this way that the selection of the neighbour-

hood influences the path that the cellular automaton will take. Neigh-

bourhood selection is highly dependent on the problem domain that the

automaton is intending to simulate. In some applications, reactions can

take place over some distance, whereas in others the elements must be

adjacent to be able to react. The state transition rules take into account

the number and type of elements in the neighbourhood of the current

cell and so are often designed with the neighbourhood in mind.

State transition rules

Cellular automata are executed in discrete timesteps. The grid is ‘frozen’

at each timestep and the state transition rules applied to every cell in the

grid before the states are updated and the rules are applied again. This

discrete time behaviour is important for the control of the CA. To proceed

from one step to the next, a rule or set of rules is executed to determine

how the state of the current cell changes with respect to its current state

and of those in its neighbourhood. These rules are uniformly applied

to all cells in the grid and therefore direct the computation of the CA.

However, no update of cells is allowed in most CA until and unless all

cells have applied their transition rules. When they have, all the updates

will be flushed through the CA to result in a new configuration. The

process is iterative and is applied for as long as the CA is allowed to run.

Conway’s life

One of the most elegant and simple examples of a CA is ‘life’ designed by

John Conway. The state transition rule-set is simple, but shows a ‘glider’

phenomenon which represents an emergent property. These emergent

properties are high-level concepts that are the result of applying rules at

a local level. In ‘life’ a single object is seen to move or ‘glide’ across the

screen, but this is actually only the result of applying simplistic rules to
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each of the cells which make up the grid in which the glider is seen. The

rule-set for ‘life’ and an illustration of the glider phenomenon are shown

below.

1 If a cell is off (state 0) and exactly three of its neighbours are on (state

1) then that cell becomes on (state 1) in the next timestep, otherwise

it remains off.

2 If a cell is on and either two or three of its neighbours are on, then in

the next timestep, that cell remains on, otherwise it is turned off.

Figure 10.2 shows how a simple set of rules, when applied repeat-

edly, can achieve an emergent phenomenon. In this case the object in the

top-left corner appears to glide down and to the right with every four

timesteps of the CA execution. The rules themselves are designed to rep-

resent (very loosely) life and death in a set of organisms and work thus. A

Time T

Time T + 4

Time T + 3

Time T + 2

Time T + 1

Figure 10.2 A graphical depiction of Conway’s ‘life’ application of CA
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cell which is on is occupied by an organism, and when three individuals

surround it, a new organism is born. To survive, an organism needs a cer-

tain number of other organisms surrounding it (in this case two or three),

otherwise it dies from exposure or overcrowding. This example provides

a rudimentary example of how principles can be taken from biology and

loosely applied to the CA approach. These rules represent only one form

of ‘life’, a huge number of others can be seen on the internet1. What is

interesting is that the behaviour observed – that of a five-cell organism

gliding one-step south-east – is an emergent property that could not have

been predicted from a knowledge of the transition rules alone. That is,

the property emerges only for certain initial configurations, and there is

nothing in the rules that tells us which configurations will display a gliding

move and which other configurations will not. The only way to find out

is to run the CA for different initial configurations and see what happens.

There are numerous rule-sets that can be created simply with a two-

dimensional automaton and neighbourhood pairing. This, when com-

bined with more complex states, can yield a wide variety of behaviours

and application possibilities. However, it is the richness of state transi-

tion rules which give CA their flexibility and power. Toffoli and Margolus

(1987) describe a set of principles which can be used to extend the capa-

bility of state transition rules.

1 Second-order rules – These rules use the historic state behaviour of

cells (both the current cell and neighbourhood cells) to compute a

new state for the current cell. This allows the automaton to use some

short-term memory in its decision making.

2 Probabilistic rules – With these rules, state changes are executed ac-

cording to a probability. In contrast to the rules described thus far,

a probabilistic rule could, given the same state, choose from a num-

ber of state changes based on their probability. The advantages of

this type of rule would be that the CA behaves in a more stochastic,

rather than deterministic, manner.

By increasing the complexity and variety of the state transition rules,

a large number of applications of CA are possible. The types of rules

suggested above add depth to the approach by incorporating time as a

third dimension. This can yield more complex and realistic simulations

1 For some excellent illustrations of other types of ‘life’ see http://www.math.com/students/
wonders/life/life.html.
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of systems that depend not only on the current state of the system, but

the state of the system in some previous generation. It is also possible

to increase the dimensions of the grid itself, yielding three-dimensional

systems or even four-dimensional when time is considered.

Given a CA, a set of rules and a neighbourhood, the algorithm or sim-

ulation can be run for a predetermined number of iterations. However,

the behaviour of the CA, given this information, cannot be predicted

in advance. The algorithm must be run to determine its behaviour and

therefore its classification. Wolfram (1984) identified four classes of CA

depending on their behaviour.

Class 1. After a finite number of timesteps, the CA tends to achieve a

unique state (limit point) from nearly all possible starting conditions.

Class 2. The CA creates patterns that repeat periodically or are stable

(limit cycles).

Class 3. From nearly all starting conditions, the CA leads to aperiodic-

chaotic patterns (that is patterns that repeat without any specific pe-

riod), where the statistical properties of these patterns are almost iden-

tical after a sufficient period of time to the starting patterns, thereby

producing self-similar fractal curves.

Class 4. After a finite number of steps, the CA usually dies, but there are

a few stable (periodic) patterns possible.

The ‘life’ game described earlier certainly falls into Class 2 and pos-

sibly into Class 4, since the initial configuration leads to periodically

repeating patterns that have moved across the grid.

Conclusions

The theory of CA of discrete cells and universally applied rules remains

the same for each application, but the actual execution of the algorithm

differs considerably depending on the type of problem. Until recently

CA were considered interesting from a purely theoretical point of view,

although they are starting to find more practical applications, including in

bioinformatics. The only restrictions on the technique are that to qualify

as a CA the following elements must be satisfied.

1 The rules must be locally orientated and must be applied uniformly

across the automaton.
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2 Each cell must contain only a few bits of data and consist of a finite

number of states.

3 Time must advance in discrete steps.

Often the problem definition determines the number of states, the transi-

tion rules and any emergent phenomena which arise from executing the

automaton. The CA approach can be useful in a number of applications,

as will be shown later, and can reward the extra effort required to code

the problem in this format.

10.2 Application guidelines

Introduction

As described previously, the number of CA applications to real-world sci-

ence and engineering problems is relatively few. Instead of solving prob-

lems or optimizing biological systems that are the focus of many of the

other intelligent techniques in this book, CA have largely been involved in

the simulation of physical systems. They have also been studied for their

emergent and chaotic properties and, while interesting from a theoretical

viewpoint, these studies can be difficult to apply to the real world. How-

ever, optimization and simulation can be accomplished with CA given the

correct problem formulation due to the inherent flexibility in the creation

of rule-sets. Therefore the majority of time should be spent converting

the problem into a rule-set that will give the required optimization or

simulation results. The following section describes a CA approach to an

engineering optimization problem as the majority of the bioinformatics

applications in the subsequent section are simulative in nature.

Example optimization problem

An example of a non-bioinformatics application is that of optimizing

water distribution networks by using CA (Keedwell and Khu, 2004).

A water distribution network contains many elements, but the simplest

networks have demand nodes (vertices) and pipes connecting these nodes

(edges). The aim of the optimization is to change the size of the pipes

so that the demand for water at each of the nodes is met. The sizes of

pipes are taken from a discrete table and have a cost associated with

them. Larger pipe sizes incur increased cost, but allow more water to
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be delivered, whereas the reverse is true for smaller diameter pipes. To

solve this problem, nodes in the network are represented by cells in the

cellular automaton and can be in a deficit (not enough water) or surplus

(too much water) state. There are then various rules executed which size

the pipes so that the deficits and surpluses are minimized. These rules

increment a pipe size if there is a deficit at the node to which it is delivering

water and decrement it otherwise. This approach therefore attempts to

implicitly minimize cost but maximize the delivered water. The CA starts

in a random state but the rules drive it to a state of equilibrium. The early

indications are that this technique can provide reasonable quality results

whilst requiring only a handful of network simulations in comparison

with standard GA (see Chapter 8) approaches.

This application, whilst not related to biology gives an example of

how network problems can be solved by using a cellular approach. The

nodes themselves do not make up a grid in a physical sense, but are all

separated by at least one pipe and therefore can be seen to make up a

regular grid. The node states are discrete and few, another requirement

for a CA, and the fact that the optimization proceeds in discrete steps

completes the set of requirements for the problem to be solved using

a CA technique. Therefore even if the problem does not appear to be

immediately applicable to cellular automaton optimization, it is possible

that a formulation can be created if the above criteria are satisfied.

Software

Cellular automata are unlike many of the other techniques that are de-

scribed elsewhere in this book because they are not generic algorithms

in the same way as GAs or neural networks. Both of these techniques

are reasonably generic, in that they can be applied to different prob-

lems with relatively small alterations or the tuning of some parameters.

However, this is generally not the case with CA, because they rely on a

set of rules which have to be problem-specific to operate. A number of

software packages exist (most of them share or freeware) that offer good

visualization facilities to monitor the cellular automaton as it evolves and

also a framework to write rules for specific problems. Even with good

software, a large amount of problem-specific coding will have to be com-

pleted within the software itself. Despite this, a good resource exists at

the CelLab2 where an online tutorial gives a good account of further the-

ory and applications of CA and also an extensive CA framework with

2 For more information go to http://www.fourmilab.ch/cellab/.
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example rules and the ability to write your own rule-sets in a variety of

languages. Perhaps due to this inherent problem specificity, commercial

packages exploiting CA techniques are very sparse.

10.3 Bioinformatics applications

As mentioned previously, CA have found application in a number of

science and engineering areas since their inception in the late 1940s.

In recent times, though, they have been used in a variety of biological

simulation applications where the notion is that the complex dynamical

systems present in much of biology can be simplified and understood by

applying discrete systems such as CA. What follows is a description of

some of the most interesting work in this area using CA.

Cellular automata model for enzyme kinetics

The work undertaken by Kier et al. (1996) pre-dates many of the modern

technological advances in bioinformatics, but it provides a simple exam-

ple of how CA could be used to model a system that could be difficult

to compute using standard methods. The authors use a CA approach to

model the reaction between an enzyme and substrate in water. The CA

consists of a 110∗110 grid of cells (12 100 cells), each of which can take

the values of one molecule of E (enzyme), S (substrate), P (product) and W

(water); 69 per cent of the automaton was covered with water and 31 per

cent was deemed to be space. When any ingredients are added, they are

assumed to replace the water part of the automaton and therefore this

cavity ratio was maintained. Each cell has a probability associated with

its movement and its interaction with other molecules in the automaton.

An enzyme molecule could react with the substrate, product and wa-

ter molecules, but not with another enzyme. Molecules were determined

to be adjacent according to a von Neumann neighbourhood, where the

four adjoining cells (up, down, left and right) were determined to be

interacting. The extended von Neumann neighbourhood increased this

to two adjoining cells. The general approach to this CA can be seen in

Figure 10.3. This is an extended version of the von Neumann neighbour-

hood shown in Figure 10.1. Note that an extra set of cells are considered

with each iteration of the CA.

The affinities of certain molecules to other molecules were determined

by a probability of joining, breaking and movement. An indication of

the effect of the breaking parameter was exemplified in the breaking
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Figure 10.3 The extended von Neumann neighbourhood

probability of water molecules. The manipulation of this parameter was

equivalent to manipulating the temperature of the water in which the re-

actions were taking place. For the following experiments, this parameter

was set to replicate the temperature of the human body. Along with a pa-

rameter to determine the extent to which enzymes reacted with substrate,

this completed the set of parameters required to run the CA.

Results

The CA was run with 50 enzyme cells and a variable amount of substrate

for 100 iterations for each run, and was run 100 times to obtain average

values for results of the runs. Initial velocities were found to vary with

respect to the substrate concentration in accordance with Michaelis–

Menten kinetics and generated good Lineweaver–Burke plots. In addition

to this the water-like (polar) or lipophilic (non-polar) characteristics of

each of the molecules varied as expected biologically by changing the

pertinent parameters of the CA.

Conclusion

This work represented a significant application of CA in a biologi-

cal problem environment. The automaton agreed with well-established

equations for computing the reaction rates of enzymes and substrate re-

actions and therefore was validated as a method for simulating these

reactions. However, as the authors pointed out, the replication of known

variables did not advance the area of research significantly and new infor-

mation must be obtained from a model for it to be successful. By varying

parameters in the model, the authors were able to determine that a lower

affinity between the substrate and water led to increased conversion of

substrate to product. This indicated that the affinity of the substrate to
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water was more important than the modelled affinity between the enzyme

itself and the substrate. This was a significant finding and was corrob-

orated by further experimental results. Therefore this showed the value

of an accurate CA model, in that small changes in the state transition

rule parameters could manifest differences in global behaviour which

were significant in the understanding of the biological system. In fact,

this application showed a significant application of AI technology to a

biological problem because it was found to accurately simulate the sys-

tem, which could then be perturbed in silico. This process then led to

a hypothesis which was confirmed by biological experimentation and

yielded new knowledge about the process of enzyme–substrate reaction

in a human-like environment.

Simulation of an apoptosis reaction network
using cellular automata

To a certain extent based on the above approach, the work undertaken by

Siehs et al. (2002) used a CA to simulate the molecular reaction pathways

of apoptosis (cell death). Apoptosis is an important process in multi-

cellular organisms since it allows cellular regeneration to take place. In

addition to this, the modelling of the apoptosis process could potentially

permit a greater understanding of the mechanisms of cancerous cells,

since these cells are often characterized by the inhibition of the apoptosis

process.

The CA itself was more complex than that seen in the previous exper-

iment. The grid of cells was two-dimensional in nature and contained

a reasonably complex data structure at each cell point. Each of these

data structures consisted of a number of ‘registers’ which stored vari-

ables relating the current state of the molecules within the cell and its

surrounds.

Register 1. The type of molecular object occupying the site. More than

one object could occupy a site at a particular time.

Register 2. Reaction rate constants of each of the molecules occupying

the site.

Register 3. Molecular neighbourhood (Moore neighbourhood). This

stored the molecule type of each of its neighbours (up, down, left

and right).
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Register 4. Distribution of local momentum, based on the hard sphere

collision model.

Register 5. Potential energy status of the molecules on the current

site. This was computed as a function of the attraction/repulsion of

molecules both on the current site and those in the neighbourhood.

Register 6. Molecular reaction lists. Determined what, if any, reaction

occurred when two molecules occupied the same site.

Register 7. Reaction product lists. Determined what products occurred

as a result of the reactions occurring in register 6.

Register 8. Moved direction. This register computed the location of each

of the molecules at time t + 1 given the information in registers 4 and 5.

This CA was unusual in that each of the cells could be in a large number

of states due to the combination of parameters in each of the registers.

However, they were updated in discrete timesteps and based only on

local information, so this implementation was still a CA. Each time the

automaton was updated (the state transition rules were applied), six steps

were performed as follows.

Step 1. Evaluation of molecular collisions and redistribution of kinetic

energies.

Step 2. Propagation of type information from cells into register 3.

Step 3. Computation of the local potential energy situation.

Step 4. Evaluation of chemical reactions.

Step 5. Computation of the grid positions of the molecules in the next

timestep.

Step 6. Full update of the grid based on computational steps 1–5.

These steps, combined with the data structure previously seen, pro-

vided a realistic model of the reaction pathways that could occur in

the cell in apoptosis. This represents a complex set of states and state
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transition rules but crucially, due to their limited local influence and dis-

crete timestep, they remain easy to compute as dynamical systems.

Results and conclusion

The authors describe a set of experiments where changes in concentra-

tions of certain proteins involved in the reactions, in addition to external

stimuli, could affect the onset of apoptosis. The CA simulated the com-

plex reaction pathways that could determine the fate of the cell. It was

found that a delicate equilibrium existed between several proteins which

could be perturbed by external factors which in turn determined whether

apoptosis took place. Readers are directed to Siehs et al. (2002) for more

information on the results obtained from these experiments.

In summary, these experiments confirmed what was known experi-

mentally and replicated expected results for different sets of stimuli and

protein concentrations. Again, this work could be used to simulate the

process of apoptosis under a number of different, artificial conditions,

with a small computational requirement. The authors set up the registers

and steps in such a way that this approach could be used to model any

number of molecular reactions and therefore could be used to simulate

a large number of intracellular processes.

Conclusions

The above work showed the simulations of systems that are possible with

CA. The main aim of this research was to investigate the behaviour of

molecules in highly complex environments where there might be many

hundreds or thousands of molecules interacting at once. It is in this ap-

plication area where CA can excel and is mainly due to their parallel

nature, in that all the parameters are updated in one discrete timestep

for every element of the grid. This not only allows the processes to be

observed at specified time intervals, but also provides the opportunity to

simulate systems on parallel hardware and thereby increase performance

in comparison to similar sequential techniques.

10.4 Background

Cellular automata were conceived in the late 1940s, making them one

of the oldest techniques in this book. They were introduced by John von
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Neumann on the suggestion of Stan Ulam to provide a more realistic

model for complex systems. In fact von Neumann, in addition to being

a physicist and mathematician, was actually more interested in the re-

ductionist biological applications seen in this book. Since their inception,

CA have been used in many of the ‘hard science’ fields such as physics

and fluid dynamics, as well as fascinating mathematicians. So while they

maintain a pedigree of being highly intertwined with biology from the

very beginning, they have perhaps not been used as much as would have

been expected in the recent explosion in bioinformatics applications.

10.5 Summary of chapter

1 Cellular automata consist of a grid of cells which can adopt a number

of states.

2 Cells change states by virtue of a set of state transition rules which

are applied in discrete time.

3 Cellular automata can be thought of as stylized universes, repeatedly

applying the laws of the universe to the elements within it.

4 The behaviour of a CA is deterministic, but the outcome of applying

a set of rules to an initial random starting point can be difficult to

predict.

5 Applications in bioinformatics are relatively few and tend to be re-

stricted to the simulation of phenomena rather than the optimization

of systems in biology. Nevertheless they have found a number of ap-

plications in bioinformatics.
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11
Hybrid Methods

11.1 Method

The intelligent methods shown throughout this book have demonstrated

that they can each individually be used to find interesting solutions to

bioinformatics problems. However, occasionally one technique will not

be sufficient to solve a problem, often due to the nature of the problem or

because no one algorithm fits the problem requirements. In this instance

two or more machine learning techniques can be combined together to

create hybrids which can make use of the attributes of each algorithm in

such a way that they are more successful at solving the problem. These

hybrid algorithms are often experimental in nature because they are cre-

ated to solve a specific need in the field of biology. This also means that

they are often created for a specific purpose, and this approach differs

from the more generic methods in this book as hybrids tend to be highly

tuned to the problem they were designed to solve and means that they

can often outperform the single algorithms from which they are derived.

Hybrid algorithms are known under a variety of names: memetic algo-

rithms, for instance, relate to evolutionary-based hybrid algorithms in

combination with local search techniques such as hill-climbing.

There are no hard and fast rules dictating which algorithms can be

combined to give a hybrid, but as will be seen later, evolutionary methods

are often favoured because they can be hybridized in a number of ways.

1 The mutation or crossover operations can be implemented differently

with other algorithms. For instance the mutation operator can be

replaced with a local search algorithm.

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd
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2 The objective function can be used to compute the result of other

algorithms. For instance, the GA can create a structure which is then

used to set the parameters for a neural network, from which the fitness

is returned.

3 The genetic search can be interleaved with other algorithms. For in-

stance, the GA can be run for a number of generations and then

stopped to allow a local search to take place. These solutions can

then be used by the GA in the subsequent optimization.

These three methods are good examples of how hybrids are con-

structed where evolutionary methods are concerned. It should be noted

that they differ in interaction in that the first method above can be thought

of as tightly coupled: both algorithms’ execution is intertwined. The sec-

ond method is less tightly coupled: only the objective function links the

two. Nevertheless, the secondary algorithm is called for every solution

evaluation. The final method is loosely coupled, since the algorithms do

not have any direct interaction with each other; rather, they are executed

in relative isolation. Evolutionary hybrids can make use of a variety of

schemes for hybridization and this explains their popularity in this do-

main. These examples give an idea of the hybrids that can be created

between different algorithms and approaches, and essentially there is no

limit to the types and methods of creating a combination of two or more

artificial intelligence algorithms.

The next few sections describe hybrid approaches and the problems

they are designed to solve. This is in contrast to the other technique

chapters in this book which maintain a distinction between technique

and application and is necessary because hybrids and the problems they

solve are often closely linked.

11.2 Neural-genetic algorithm for
analysing gene expression data

The problems of gene expression analysis have been described in some

detail previously in this book, so a short explanation will suffice here.

Currently there are two types of microarray experimentation that are

attracting interest in the literature: temporal analysis involves exploring

the interactions of genes over time, and classification analysis attempts

to discover those genes or groups of genes that are associated with a

class value. The two analyses are driven by the goals of the experiment
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and the type of microarray experiments that have been performed by the

biologist. This, in turn, dictates the type and scale of microarray data

which is available for bioinformaticians to use.

Temporal analysis

Temporal analysis consists of a number of microarray samples over time,

normally taken from a single organism exposed to a variety of conditions

to assess the genetic response to those conditions. The task in such ex-

periments is to determine the interactions between genes or clusters of

genes over time. It is widely acknowledged that a large portion of genetic

activity is self-regulated, in that the proteins created by the expression of

certain genes themselves cause other genes to be expressed in this cell. The

goal of the analysis is to determine these complex regulatory connections

from small-scale and large-scale expression data.

Classification analysis

The classification analysis consists of a number of microarray samples

taken from a number of individual organisms (often patients diagnosed

with a disease). Each of the samples has a class associated with it which

is independently assigned. The majority of classification studies are per-

formed on human subjects in an attempt to discover the genetic differ-

ences between, say, patients with cancer and those without. Classifica-

tions can either be determined by a medical diagnosis, or in cases where

the diagnosis is very difficult, the pathology of the disease. There are

some difficulties with this approach, namely, that the classification by

humans in some cases is not guaranteed to be correct, and also that sig-

nificant genetic patterns are not guaranteed to cause the cancer – they

could be symptoms. Despite this, analysis of classificatory microarray

data is one of the most popular activities in bioinformatics as the num-

ber of gene expression databases, taken from microarray experiments,

which are available on the web increases.1

Neural-genetic approach

Chapter 8 describes a standard GA approach to the problem of extracting

regulatory networks from microarray data, but there are some difficulties

1 See http://www.broad.mit.edu/cancer/ for some example data-sets.
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with the approach. Experiments conducted in Keedwell (2003) showed

that the approach of generating an entire regulatory network by GA was

not feasible for the size of real-world networks. This was because in a

matrix representation any gene could potentially regulate any other and

so the size of the network was the square of the number of genes. For

a network matrix of even 1000 genes, this led to a chromosome size of

1 000 000 integers, which was too large for most GA software, and would

require excessive computation to evaluate. Although the premise that any

gene can affect any other in the network must be maintained, biology

and complexity analysis tell us that the actual number of genes which

can regulate another is likely to be smaller than six (details can be seen in

Keedwell, 2003). Therefore this restriction can reduce the complexity of

the genetic approach by maintaining a distinction between the regulating

and regulated genes in the data-set. Each regulated gene value at time

t = 1 must be considered as some combination of, at most, six regulating

genes at time t = 0. By using the GA to evaluate each regulated gene

in turn rather than the entire set, the chromosome size is reduced to

a maximum of six integers for each regulated gene. The optimization

for a regulated gene takes place until such time as a satisfactorily low

error is achieved or a limit on the number of iterations is reached. The

algorithm then moves to the next regulated gene in the network, and

the process is repeated. This occurs, in turn for all genes in the network,

which therefore allows running times to increase linearly with respect to

the number of genes considered.

So far, the approach uses only the GA, but there is a difficulty with

using solely GAs in this approach. Experiments were conducted on the

rat spinal cord dataset (Spellman et al., 1998) where the output of the

generated network was compared with the actual gene expression data.

It was shown that, while the GA performed well initially with a good de-

crease in error, as the optimization progressed and the genetic algorithm

began to converge, the error would stop at levels as high as 16 per cent. It

was considered at this point that the combination and generation of new

weights in the network was the problem. The GA was quickly finding a

set of genes, but the floating point weights that were generated were being

optimized very slowly. Therefore another method was considered to gen-

erate the weights for the network, namely, the gradient descent method

employed in neural networks. The gradient descent algorithm was well-

suited to minimizing the difference between two sets of floating-point

variables, and the weights could be added to the network structure. This

‘neural-genetic’ approach made use of the attributes of both algorithms.

The GA was used to discover those genes that were important in the
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Figure 11.1 The execution of the neural-genetic approach (RMSE = root mean
squared error)

regulation of the gene in question in an efficient manner, whereas the

neural network was used to minimize the difference between the input of

the genes selected and the expression levels of the regulated gene quickly.

Figure 11.1 shows the architecture of the hybrid neural-genetic approach.

The GA chromosome finds a set of candidate genes for regulation of the

current regulated gene. This data is then selected from the data base and

the neural network is used to minimize the difference between the reg-

ulating genes and the regulated gene output. The error from the neural

network is then returned to the GA as the fitness of the chromosome. The

GA can then use the genetic operators to discover more optimal sets of

genes. In this way, both those important genes and the weights for those

genes for entry into the regulatory network can be determined.

The technique used the sigmoid function backpropagation equations

as described in Chapter 7 and was trained on the rat spinal cord dataset
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which consists of 112 genes over eight timesteps taken from the spinal

cord during the development of the rat. Using a k-value of four (restricting

the genetic algorithm to a maximum of four genes to regulate any other

gene), the resulting network was able to reproduce the training data to

some 97.6 per cent accuracy. This experiment suggested that the neural-

genetic approach was capable of extracting regulatory interactions from

microarray time series data with efficiency and that it could discover

networks from gene expression data consisting of thousands of genes

within a few hours. Additional experiments on artificial time series data

showed that it could discover gene interactions that were embedded in

Boolean data.

The approach can also be used for classification analysis with only

some minor modifications. In some ways, a classification problem can be

seen as a similar problem to that of regulation in that a set of genes must

be discovered which account for the variation in classification, much the

same way as they must be discovered to determine the variation in a

gene value. Therefore a ‘network’ can be created which links a set of

genes with the classification (i.e. ‘diseased’ or ‘not diseased’). However,

the classification normally consists of a small set of possible values, and

these can be decomposed into a set of binary attributes.

Table 11.1 shows the conversion process from three discrete classes

to the field representation. Each potential class has a space in the field

which takes the value 1 if the class is selected and 0 otherwise. When

combined with the absence–presence model given as an option in most

gene expression datasets, the algorithm can be used to find those genes

which are ‘regulating’ the classification shown in the training data. In

addition to this, some minor changes are required to the backpropagation

component to reduce the granularity of the weights that are discovered

in comparison with the approach used for regulatory networks. This

is due to the fact that floating-point weightings for attributes do not

make sense for classification in the same way as they do for regulatory

Table 11.1 Conversion of classes into enumerations and then a
field representation

Classification Enumeration Conversio

Acute lymphoblastic leukaemia 1 1,0,0
Acute myeloid leukaemia 2 0,1,0
Unknown 3 0,0,1
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networks. To achieve this increased granularity, the neural network uses

the step function rather than the sigmoid function used in the regulatory

networks. The result is a rule which classifies a single class by naming

a number of attributes and associated weights for each attribute. This

allows a number of attributes (genes) to be involved in the classification,

but weighted according to their influence. A large number of candidate

rules are generated during the optimization process, so the final rule is

selected firstly according to accuracy, then by parsimony and finally by

test accuracy.

An example of the rules generated by this approach on the multiple

myeloma dataset can be seen here.

Rule: 537

L18972 at AC = P -2

X16416 at AC = P -3

X16832 at AC = P 2

X57129 at AC = A 3

L36033 at AC = A -3

-> normal

0/22

TestError: 1:9

Rule: 2796

M63928 at AC = P -2

X16416 at AC = P 3

U40490 at AC = A 1

M33195 at AC = P -1

L36033 at AC = A 2

-> myeloma

0/42

TestError: 1:31

where A = absent and P = present. Therefore a positive weight indicates

that this attribute in its indicated state (present or absent) is required

to classify the data. Larger weights indicate more influence on the clas-

sification of the dataset. The figures after each rule indicate that they

classify the training data with no misclassifications, but that one case

in each of the test sets is misclassified. This result was considerably bet-

ter than that discovered by See5 on the same dataset, although only the

standard options were used. More results on a variety of datasets can be

found in Keedwell (2003), including an investigation into the biological

plausibility of a variety of the discovered genes.
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Conclusions

The advantages of combining the GA and the neural network in this

manner are the speed of execution and the flexibility of the final solu-

tions generated by the algorithm. By generating a segment of the regula-

tory network for each regulated gene in turn, the GA can concentrate on

discovering the correct combination of genes and the neural element ef-

fectively minimizes the difference between the expression values of each

of the genes. An additional feature of this approach is that the regula-

tion of single genes can be determined in isolation, if required, yielding

the possibility of just-in-time regulation discovery. A biologist may be

interested in the regulatory interactions of a handful of genes, and this

technique would allow the biologist to select those genes of interest as

well as execute the algorithm on just those of concern. The approach uses

the current biological constraints, namely, the necessary sparsity of gene

regulator networks, to its advantage. Both elements of the technique are

limited: the GA by the k-value and the neural network by a maximum

weight value. This goes some way towards ensuring that a sub-optimal

selection of genes cannot be compensated for by the selection of weights.

The flexibility of this approach is shown in that, by making these small

adjustments, the neural-genetic model can be converted to operate either

on temporal or classificatory data. The resulting weighted classification

models are unusual in their make-up but provide the biologist with some

notion of the importance of each of the genes in classification. This is not

normally the case with decision tree or other classification algorithms.

The neural-genetic approach shows the advantage of combining two al-

gorithms that have contrasting properties for the study of microarray

data.

11.3 Genetic algorithm and knearest
neighbour hybrid for biochemistry
solvation

A further GA-based technique, the work of Peterson, Doom and Raymer

(2004), considered the use of a hybrid of a standard GA (discussed in

Chapter 8 of this book) and a k nearest neighbour technique (discussed

in Chapter 5). This approach was applied to the problem of classify-

ing water molecules according to whether they were displaced when a
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ligand (such as a drug or other molecule) attached itself to the surface of

the protein. Therefore extracting meaningful, accurate knowledge about

this problem could provide an insight into the behaviour of drugs when

binding to the protein surface that could assist drug designers.

GA-Knn method

The genetic algorithm k nearest neighbour (GA-Knn) method makes use

of a cosine-based Knn classification. This is slightly different from normal

Knn classification in that each of the features in the data-set is weighted

and the final classification predicted by the system for a new example

is the sum of those weights. In this two-class example, a positive sum

indicates one class and a negative sum, another. These weights are opti-

mized by the GA by using the first N (where N is the number of features)

elements of the chromosome to evolve the weights for classification. This

constitutes the first section of optimization for the technique. The second

N points of the chromosome are involved with changing the point of ori-

gin for the Knn classifier. When predicting the class of a new solution, the

Knn classifier compute the ‘nearest neighbour’ based on the angle created

when plotting a solution in two feature dimensions, between the origin

and the test point. The similarity between the angle of the test point and

points in the training set determines the nearest neighbour classification.

However, if the origin is changed in one or both axes, a more optimal

set of neighbours could be found. This constitutes the second part of the

chromosome, where N points determine the offset of the origin for each

feature. Finally, the k value for the Knn classifier is determined as a sin-

gle integer at the end of the chromosome. Therefore the GA is involved

with optimizing the weight, offset and k values for the cosine-based Knn

classifier.

Classification results

The authors compared their technique against a suite of other techniques

known as WEKA (including decision tree, neural network and rule in-

duction algorithms) on the problem of ligand-binding water conserva-

tion. The GA-Knn hybrid method was compared with the WEKA meth-

ods by determining the accuracy of the top three runs of the method

in comparison with the top three techniques taken from the WEKA
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suite on the water conservation dataset. The dataset itself contained

5542 water molecules of which 3405 were conserved when the ligand

docked and 2137 were displaced, taken from measurements of 30 sep-

arate proteins. Each water molecule was represented by eight measured

features:

1 the number of protein atoms which surrounded the water molecule,

2 the frequency with which the atoms surrounding the water molecule

were found to bind to water molecules in another database of pro-

teins,

3 thermal mobility,

4 the number of hydrogen bonds between the water molecule and the

protein,

5 the number of hydrogen bonds to other water molecules, and

6,7 and 8 three additional temperature factors of either the molecule

itself or the neighbouring atoms.

The task for the algorithm was to distinguish between those molecules

that would be displaced or conserved when a ligand binds, based on these

eight measurements of the water molecule itself.

In addition to the accuracy percentage from the experiment, the au-

thors also recorded the balance of the classification. Many techniques

classify one class with greater accuracy than the others by concentrat-

ing on the most frequent class. This approach often yields information

of limited use, since the more frequent class was also often the least

interesting. (This had been noted especially in areas such as credit-risk

analysis where the vast majority of credit card holders were trustworthy

and constituted the larger class, whereas the company wished to identify

the credit-risks.) The balance measure was designed to rate the classifi-

cation according to how well balanced the classification was over all the

classes. The top three GA-Knn runs achieved accuracy similar to those

from the WEKA model (between 64 and 66 per cent), but with much

better balance, indicating that the interactions discovered by GA-Knn

were more interesting. These results showed that the important features

that were weighted most strongly by the GA-Knn classifier were those

which related to the thermal mobility of the molecules.
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Conclusion

This study provided a good example of how GAs could be combined

with another technique to produce good classification results both in

the accuracy and transparency of the obtained results. This application

differed from the neural-genetic approach described above in that the

GA was used to modify the parameters of a standard classification tech-

nique. The hybridization of the two algorithms aims for the GA to pick

good weight and offset sets for the Knn to use and classify the exam-

ples. The GA could be viewed as ‘tuning’ the parameters of the classifier

whereas in the neural-genetic approach it was directly involved in the

knowledge discovery process. The results shown by Peterson, Doom and

Raymer (2004) were encouraging, especially in that the classification was

well balanced. The balance of the final classification was all-important

in datasets where the two classes were not equally represented –

quite often the case in real-world problems including those in bioin-

formatics. Finally, while the accuracy was similar between this and the

established techniques, the WEKA system used a cross-validation tech-

nique (see Chapter 5 for more on this), whereas the GA-Knn approach

was evaluated using bootstrapped data. The accuracy of bootstrapped

data can be different from that where a test-set is used (either in cross-

validation or standard testing), as the same example can appear numer-

ous times in each dataset. Still, this example neatly showed the advan-

tages of using a hybrid system for a specific and pressing problem in

bioinformatics.

11.4 Genetic programming neural networks
for determining gene -- gene
interactions in epidemiology

This approach by Ritchie et al. (2003, 2004) combines two techniques

seen separately in other chapters of this book. Genetic programming (de-

scribed in Chapter 9) is combined with neural network theory (Chapter

7) to predict the probability of disease based on the observed genetics

of individuals with and without the disease. This study is different from

those described above in that the data is entirely artificial. No real bi-

ological data is used to validate the model, but the principles used in

generating the data do have biological plausible roots. The approach

highlights yet another useful combination of techniques.
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Genetic programming neural networks (GPNN)

Originally suggested by Koza and Rice (1991), GP neural networks com-

bine the functional optimization methodology of GP but within stricter

bounds than normal. Standard GP, without restriction, can evolve any

set of operators and terminals that satisfy the problem, although often

restrictions are placed on the total size of the tree that can be created (to

restrict bloat). However, GPNN restricts the type of structure which can

be evolved, rather than the size, so that the final tree resembles a standard

neural network. The operators are determined as a weighting function

and an activation function. In addition to this, the terminal set is defined

as a set of floating-point values (for use in the operator functions) and the

input variables gained from the database. The restrictions placed on the

GP ensure that the root node always represents the output of the neural

network, and that an activation function and weighting functions must

directly descend from the root node. Beyond this, however, the algorithm

is free to select from the operator and terminal set. This allows the GP

element to optimize a neural network structure that minimizes the dif-

ference between output and desired response. There is no requirement

for the network to use backpropagation or any other gradient descent

learning method to determine the weights in the network, as these are

determined during the optimization process.

Discovering gene-gene interactions
in simulated data

The authors used their approach to determine, from a set of single-

nucleotide-polymorphisms (SNPs), those functional polymorphisms

which are implicated in a particular disease. The data is simulated so

that each of the 400 data records (constituting 200 cases of the ‘disease’

and 200 controls) contains two or three functional polymorphisms and

a further eight or nine polymorphisms to make 10 for each record. The

probability of developing the disease is reflected by using a table of pen-

etrance function values. All of the data in the experiment requires that

at least two of the polymorphisms interacted with each other to create

increased susceptibility to disease. None of the effects seen in the data

could be determined solely by a main effect of one of the genes. The au-

thors state that this was particularly important for epistasis studies where

genes had little or no effect by themselves, but individuals who possessed
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a certain pairing, or combination, of genes drastically increased their

chance of developing the disease.

A 10-fold cross-validation approach was used to determine the per-

formance of GPNN on the data. This involved generating 10 datasets,

training the approach on nine of them and then testing on the remain-

ing one. This was repeated for the 10 possible combinations of training

and test sets. The task for the GPNN model is to determine the inter-

action of the genes that have a combined effect and yield a diseased

or non-diseased individual to a greater or lesser degree depending on the

heritability of the genes. The authors computed ‘power’ to be the number

of times the correct SNPs were discovered with greater cross-validation

consistency than the other SNPs in the dataset. The GPNN approach was

applied to a number of datasets, with a varying number of genes, allele

frequencies and heritability scores. These 20 datasets give a good cross

section of the possible datasets as each of the significant parameters is

modified systematically. As would be expected, the performance of the

GPNN is dependent on the type of model used to generate the data. The

GPNN solutions varied from 100 per cent to 1 per cent over 20 datasets,

whereas the performance for the comparison technique, stepwise logistic

regression was 0 per cent in all cases. The GPNN approach appears to be

significantly more capable in determining which SNPs were responsible

for the disease under a number of conditions.

The GPNN approach was able to extract the functional polymor-

phisms from the data, dependent on the level of effect seen in the phe-

notype (this was denoted as heritability). The comparison technique,

stepwise linear regression, was unable to determine any of the functional

groups over the dataset.

Conclusions

The GPNN technique had been shown to accurately extract, for a certain

dataset, the functionally active SNPs from artificial data which had been

created to closely resemble biological data. The approach made use of the

ability of GP to discover good near-optimal solutions for this problem.

However, the reasons behind the use of GP neural networks is never de-

scribed beyond the fact that other researchers had used neural networks

for this task. There appeared to be no problem-specific reason for the GP

method to be restricted to a neural network style representation, as the

neural network approach could prove to be more restrictive than simply

using genetic programming. Also, the choice of comparison technique,
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in stepwise logistic regression (which failed to determine any of the func-

tional polymorphisms) did not appear to validate the GPNN approach

greatly, although the authors stated that it was frequently applied in the

field of human genetics. A favourable comparison of the hybrid technique

with either of the established single techniques could perhaps enhance

this application and the idea of GPNN. However, this application did

show a further successful hybrid technique which delivered improved

results over the currently used method.

11.5 Application guidelines

Hybrid techniques are not necessary, or even desirable, for all bioinfor-

matics applications. As described previously, the loss of generality when

considering a hybrid means that any advances gained in the application

may not be applicable to other problem domains. Typically, hybrids are

constructed where one algorithm is lacking in some respect and another

can be used to compensate for this shortfall. For instance, the compu-

tational requirement for genetic algorithms to find an optimal set of

floating-point values is often far greater than that required by a neu-

ral network so a hybrid may be beneficial. Similarly, a neural network

structure is difficult to interpret whereas a GA chromosome, generally

speaking, is not and therefore this property may be an advantage. In

general then, the application itself must drive the use of a hybrid algo-

rithm, in that the computational capability or need for transparency of

the problem exerts demands that one single algorithm cannot meet.

11.6 Conclusions

The hybrids shown in this chapter all include some element of evolution-

ary computation and this is because they naturally lend themselves to

being part of a hybrid. As described earlier, the flexibility of evolutionary

computing makes these algorithms favourable to hybridization. In addi-

tion to this, they make use of a symbolic representation, and efficiently

utilize the computing resources available.

The above approaches have shown that there are a practically lim-

itless number of ways in which the intelligent approaches described in

this book can be combined. The hybrids shown here often outperform

their single-algorithm counterparts, or are more applicable to the bioin-

formatics problem being solved. This increase in performance though
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is often tempered by the fact that the nature of hybrid algorithms, and

particularly their high degree of specialization, mean that the problem-

independence which the single techniques possess does not transfer to

the hybrid technology. Nevertheless, hybrid approaches are becoming

more and more popular as the number of researchers using the standard

techniques increases.

11.7 Summary of chapter

1 Hybrid algorithms can be used to solve a variety of problems in bioin-

formatics.

2 The hybrid algorithm often improves on either a single algorithm, in

terms of performance, or in the transparency of its results.

3 There are numerous ways in which algorithms can be combined, but

the method selected is often determined by the problem formulation.

4 Evolutionary algorithms are popular for constructing hybrid models

due to the ease with which they can be combined with other methods.
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124–5
benefits 123
construction of 119–23
definition 119n[1]
delete states 119
insert states 119
match states 118, 119

hierarchical clustering 138, 144
high-throughput peptide sequencing

57
hill-climbing 74–6

simple 74–5
steepest-ascent 75

HIV protease cleavage prediction,
identification trees used
163–6

HIV virion 59–60
Holland, John 236
Human Genome Project (HGP)

9–10
hybrid methods 255–70

application guidelines 268
genetic algorithm with k nearest

neighbour technique 262–5
genetic programming with neural

networks 265–8
methodology 255–6
neural-genetic algorithm 256–62
ways of hybridization 255–6
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identification tree algorithm 150–1
example of use 153–4, 155

identification trees 147–71
advantages 159–60
application guidelines 160–3
background 169–70
bioinformatics applications

163–9
classification of cancer 167–8
HIV and HCV protease cleavage

prediction 163–6
secondary protein structure

prediction 168–9
cross-validation of data 161–2
disadvantages 157–9
method 147–51
pruning of 158–9
software 162–3, 169–70
use in classification 149–50

immune system 60–2
in silico methods of protein structure

prediction 55
independent events 104
innate response 60–1
intercellular architecture 3–4
interference technology 57–8,63
intracellular architecture 3
introns 15, 16

joint probability, compared with
conditional probability 105

JPRED (consensus) method 169

k nearest neighbour (Knn) method
132

hybrid method, with genetic
algorithms 262–5

‘knock-out’ technology 58
Kohonen self-organizing maps

(KSOMs) 177–8, 182–5
algorithm 184
example of use 191–2
feature map 178, 184

Koza, John 221, 231, 236

labelled arcs 66
labelled nodes 65

languages, meaning of term 90, 91
learning, by neural networks 174–5
‘leave-one-out’ cross-validation

technique 161–2
example of use 191–2

Levenshtein Distance 34
‘life’, as example of cellular automata

approach 241–3
linear-bounded automaton (LBA)

95
Linnaean binomial classification

system 35
local alignment 33
log-odds scoring 123–4
log2 ratios 44
looped structures in RNA 91–2
lymphocytes 61

machine learning
cross-validation of data required

161
see also identification trees

macrophages 61
major histocompatability (MHC)

molecules 61
Manhattan method, in cluster

analysis 140
maps, representation as graphs

66–99
Markov networks 116–25

see also hidden Markov models
matching coefficients, in clustering

136
Matlab, clustering algorithms 145
matrix representation, graphs 67,

68, 73, 88

melanoma 27
memetic algorithms 255

see also hybrid methods
microarrays 43

classification analysis of 257
temporal analysis using 257

mitotic cell division 26
molecular biology, basis 3–29
Moore neighbourhood (in cellular

automata) 240, 241
example of use 249



INDEX 277

mRNA (messenger RNA) 11, 21–2
multi-layer perceptrons 174

first discussed 192
learning rule 180–1

Multi-Objective Genetic Algorithm
(MOGA) 209

multi-objective genetic algorithms
205–7

elitist 209
multiple myeloma data, classification

analysis of 188–90, 261
multiple sequence alignment, genetic

algorithms used 215–16
multiply comparison of strings 33
multipotent cells 48, 49

mutation operator
in genetic algorithms 200–1
in genetic programming 226–7

‘naı̈ve’ Bayesian approach 114
nearest neighbour method 130–2

application guidelines 144, 145
example of clinical application

127–9
for protein folding prediction

132–5
neural networks 173–93

application guidelines 185–7
architecture 174, 177–8
background 192–3
backpropagation learning rule

180–2, 259–60
bioinformatics applications

187–92
gene expression analysis

187–91
protein subcellular location

191–2
drawbacks 185–7
‘epochs’ 179
hybrid methods

with genetic algorithms 257–62
with genetic programming

265–8
implementation 187
learning by 174–5
method 173–85

multi-layer perceptron learning rule
180–2

overtraining by 185–6
perceptron learning rule 179–80
units and weights in 175–6

Neural Wizard software 187
neural-genetic algorithm 256–62
neuron, in neural network 175
Neurosolutions software 187
new evidence/information, and Bayes’

Theorem 108–10
Non-dominated Sorting Genetic

Algorithm 2 (NSGA-II) 209
NP (non-deterministic polynomial)

class of problems 96
NP-complete class of problems 96–7
nucleotides 6

O notation 85
objective function (in genetic

algorithms) 196
ontology 28
optimal alignment 34
optimal search procedures 76–83

branch-and-bound search 77–80
compared with heuristic search

methods 76
optimality procedures, in

phylogenetic analysis 39–40
organelles 3, 4

overfitting of data
by identification trees 157–8
by neural networks 185–6

P (polynomial) class of problems 96
P-CURVE method 168
pairwise comparison of strings 33
Pareto-front (in multi-objective

genetic algorithms) 207
parse trees, in genetic programming

221, 223, 224

conversion to Polish notation
228–9

‘full’ initialization operator 224
‘grow’ initialization operator 223
interpretation 227–8
representation 222–4
sub-trees 225, 226
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parsimony principle (in phylogeny)
34–5, 39–40

pathogens 60
cancer-causing 27

peptide sequencing 57
peptide-mass fingerprinting 56–7
perceptrons 174

first discussed 192
learning rule 179–80

perfect-match/mismatch strategy 44
phagocytes (scavenger cells) 60
phylogenetic trees 36–40

Hennig Argumentation method
36–7

Wagner method 37–9, 40, 41

phylogeny 34–40
outgroup organisms 39

plateaux (in searches) 83–4
pluripotent cells 48, 49

methods for developing 49–50
Polish notation 228–9
polymorphisms 10
polypeptide chains 19–21
polypeptide sequences 51
posterior probability 106
probabilistic approaches 103–26
probabilistic networks 116
probabilistic transition matrix 116,

117

probability theory 103–5
probability trees 106–8, 107,109

prokaryotic cells 7
promoters 25
proproteins 56
proteases 56, 60
protein electrophoresis 56
protein folding 50–5

prediction methods
ab initio methods 54–5
comparative modelling approach

53–4
fold recognition (or threading)

techniques 54
nearest neighbour method

132–5
protein identification 55–7

protein misfolding 50
diseases caused by 55

protein sequences 51
protein structure

methods of determining 51
primary structure 51, 52

quaternary structure 52, 52
secondary structure 51–2, 52, 53,

168
prediction of 132–5, 168–9

tertiary structure 52, 52
protein subcellular location, neural

networks used 191–2
proteins 23–4, 50

and genes 10–21
unfolding/denaturation of 50, 51

proteome 18, 50–7
proteomics 18, 57
proto-oncogenes 27
protogene, in gene clustering 141
pruning of trees

identification/decision trees
158–9

search trees 80–2
push-down automaton (PDA),

compared with finite-state
automatan 93

Quinlan, Ross 156, 158, 163,
169–70

realistic gap models 34
recessive genes 22–3
recursion of looped structures 92
regular expressions 89
regulatory networks see gene

regulatory networks
replication 14

contrasted to transcription 14

reverse engineering 47–8
genetic algorithms used 210–15

ribosomes 16
ridges (in searches) 83, 84
RNA-inducing silencing complex

(RISC) 62–3
RNA polymerase 11, 19
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ROC (receiver operating
characteristics) convex hull
approach 233

roulette wheel selector (genetic
algorithms) 197–8

rRNA (ribosomal RNA) 22

Saccharomyces cerevisiae, gene
expression data, genetic
programming used 234–6

search, meaning of term 65
search algorithms 66–72

drawbacks 83–4, 195–6
heuristically informed 74–6

search complexity 84–6
search techniques, with distance

remaining metric 73, 74,
80

problems encountered 83–4
search trees

branching factor 69–70
breadth-first approach 71
child nodes 68
depth-first approach 71–2
parent nodes 68
root of tree 68
sibling nodes 68

secondary protein structure prediction
consensus method used 168–9
nearest neighbour method used

132–5
See5(identification tree) software

152, 163, 169
compared with neural-genetic

algorithm (hybrid method)
261

example of use 165–6
selection operators (in genetic

algorithms/programming)
197–8, 225

roulette wheel selector 197–8
tournament selector 198

self-cells 61
self-organizing maps 177–8, 182–5

see also Kohonen self-organizing
maps

semi-decidable problems 95
sense (coding) strand 14
sensitivity analysis, in neural

networks 186–7, 190
Sequence Alignment Genetic

Algorithm (SAGA) 216
Sequence Alignment and Modelling

(SAM) program suite 119n[1]
sequence analysis 31–4

genetic algorithms used 215–16
hidden Markov models for 118

sequence expressions 87–9
sigmoid function 175–6, 179, 180,

213, 259
similarity matrix 133
similarity tree 137, 138
SIMPA (nearest neighbour) method

132–5
simple hill-climbing 74–5
single linkage clustering 144
single nucleotide polymorphisms

(SNPs), genetic variances
implicated by 46, 266

single-objective genetic algorithms
example of execution 202–5
method 195–202

siRNA (small interfering RNA) 62,
63

software
cellular automata 246
cluster analysis 144
genetic algorithms 210
genetic programming 232
identification/decision trees

162–3, 169–70
neural networks 187

solvation studies, GA-Knn hybrid
method used 262–5

splice variants 15
spliceosome 15
‘split information’ measure 156
spot technology (for microarrays) 43
SPSS Clementine software 162
state space search 65
state transition rules (in cellular

automata) 239–40
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steady-state genetic algorithm 201,
202

steepest-ascent hill-climbing 75
stem cells 48–50
strings 32, 90
strong dominance (genetic

algorithms) 205–7
Stuttgart Neural Network Simulator

(SNNS) 187
substitution matrices 34
‘superstring’ problem 34
supervised data analysis

compared with unsupervised data
analysis 148

see also identification trees
supervised learning 175, 177

epochs in 179
perceptron learning rule 179–80
see also neural networks

TATA box 11, 13, 25
taxonomy 35
telomeres 26
temporal analysis 257
time complexity 84, 95
total linkage clustering 144
totipotent cells 48
tournament selector (genetic

algorithms) 198
trans elements (regulatory proteins)

25–6
transcription 4, 5, 11–15, 25

contrasted to replication 14

transcription factors 25
transcriptional regulation 25
transcriptome 15, 40–50
transcriptomics 15
transfer functions, in neural networks

176
translation 4, 5, 11, 16–19, 25
transmission electron microscopy

(TEM) 6
tree searches 67–72

breadth-first search 69, 70, 71
depth-first search 71–2

Treeview software 144

tRNA (transfer RNA) 16, 22
tumours 27
Turing Machine 95–6

Ulam, Stan 252
unit cost model 34
unsupervised data analysis

compared with supervised data
analysis 148

see also clustering; nearest
neighbour method

unsupervised learning 177, 182–5
see also Kohonen self-organizing

maps
unweighted pair group method with

arithmetic mean (UPGMA)
138

upstream promoters 25

viral integrase 60
viral protease 60, 163
viral reverse transcriptase 60
virions 59
viruses 59–60
visualization of protein secondary

structure 51–2, 53

visualization tools and techniques
28

von Neumann, John 251–2
von Neumann neighbourhood (in

cellular automata) 240, 241
extended version 247–8

Wagner Trees 37–9
water distribution networks,

optimization using cellular
automata technique 245–6

weighting of links, in neural networks
176

WEKA techniques, solvation
classification results compared
with GA-Knn method 263–4

Wilcoxon’s Signed Rank Test 46

yeast gene expression data, genetic
programming used 234–6
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