








Computational systems biology, a term coined by Kitano in 2002, is a field that aims
at a system-level understanding by analyzing biological data using computational
techniques. The explosive progress of genome sequencing projects and the
massive amounts of data generated by high-throughput experiments in DNA
microarrays, proteomics, and metabolomics advances this field in a bidirectional
but dependent fashion. As the need for a complete quantitative part list in biology
is recognized, the understanding develops that living systems cannot be under-
stood by studying just individual parts. Under the guiding vision of systems biology,
sophisticated computational methods are currently being developed to analyze the
data generated by this new technology in a systematic fashion, unraveling complex
and networked biological phenomena, and modeling processes that take place in
cells, tissues, and organisms. With recent advances in information technology, fast
and inexpensive computer power, global networking infrastructure, and compre-
hensive databases, mathematical modeling and simulation of complex biological
processes have become increasingly important and feasible. Modeling and simu-
lation methods involve the use of different system analysis tools such as discrete
mathematics and stochastics, differential equations, complex system simulation, as
well as model-database integration architectures. The construction and testing of
quantitative representations and models will be possible through the collaborative
input of experimental and theoretical biologists working together with system ana-
lysts, computer scientists, mathematicians, engineers, physicists, and physicians to
contend creatively with the hierarchical and nonlinear nature of cellular systems,
while bioengineers will maintain a focus on directing the research results toward
developing and improving cell-based, biotechnological processes.

This book has a distinct focus on computational issues related to systems biology.
As such, it presents a timely, multi-authored compendium representing state-of-
the-art computational technologies and methods developed in this area. This
includes a review of enabling information and data integration technologies that
have not been covered elsewhere in this depth. Modeling of gene, signaling and
metabolic networks, being the main thrust in current computational efforts, is com-
prehensively covered. Contributions have been selected and compiled to introduce
the different methods, including methods of abstraction, modeling of dynamical
properties, and biological perspectives. A comprehensive coverage of computer
representations of the multiple scales within a cell in relation to emergent proper-
ties in biological systems is also provided.

Beside the 17 primary authors and their respective teams who have dedicated
their time to contribute to this book, there are many other individuals whose
support was instrumental in making book a reality. We would like to in particular
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thank Chip Coward, for editing, and reviewing and for making many useful sug-
gestions, as well as Joel Beaudouin, Hauke Busch, Donald Coppeck, Rainer König,
Sven Mesecke, Leo Neumann, Avijit Ghosh, Hannah Schmidt-Glenewinkel, Bahrad
Sokhansanj, Markus Ulrich, Jörg Weimar and Ivayla Vacheva.

Both editors thank the team at Elsevier, in particular Luna Han, who supported
this project from on the beginning. Without her generous support this book would-
n’t have come into existence. We also thank Pat Gonzalez for an excellent techni-
cal supervision of the production.

It is often mentioned that biological systems in its entirety present more than a
sum of its parts. To this extent, we hope that the chapters in this book, not only
give a contemporary and comprehensive overview about recent developments, but
that this volume advances the field and encourages new strategies, interdiscipli-
nary cooperation, and research activities.

Andres Kriete and Roland Eils
Philadelphia and Heidelberg, May 2005



Science is built up with facts, as a house is with stones. But a collection of facts is no more
science than a heap of stones is a house.

–Jules Henri Poincarè (1854–1912)

I. INTRODUCTION

Contemporary biological information resides in some thousand public databases
providing descriptive genomics, proteomics and enzyme information, gene expres-
sion, gene variants, and ontologies, supplemented by millions of scientific 
publications. Refined explorative tools, new genotyping techniques, and genome
consortia efforts such as the ongoing international Haplotype Mapping project—
along with the emergence of new profiling tools such as protein and cell arrays—
constantly feed into this data pool and accelerate its growth (see Figure 1.1). Given
the enormous and heterogeneous amount of data, computational tools have
become indispensable in mining, analyzing, and connecting such information,
which is often only interpretable under stringent consideration of how experiments
were conducted. The aggregate of statistical bioinformatics tools for collecting,
storing, retrieving, and analyzing complex biological data has repeatedly proven
useful in biological decision support and discovery, a notable hallmark being the
deciphering of the human genome as led by the Genome International Sequenc-
ing Consortium. Cataloging the basic building blocks of life is a necessary step in
biological research, but this provides only limited knowledge in terms of under-
standing and predictability. In particular, the human genome project stirred the
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public expectation for a rapid increase in the identification of disease genes and
development of more effective drugs and cures. However, these days it is well reco-
gnized that the many mechanisms involved in the proliferation of complex diseases
such as cancer cannot be understood solely on the basis of knowing all of their
molecular components.

As a consequence, a lack of system-level understanding of cellular dynamics has
prevented any substantial increase in the number of new drugs available to the
public and any increase in drug efficacy or eradication of any specific diseases. In
contrast, pharmaceutical companies are currently lacking criteria for selecting the
most valuable targets, research-and-development (R&D) expenses skyrocket, and
new drugs rarely hit the market and often fail in clinical trials, while physicians face
an increasing wealth of information that needs to be interpreted intelligently and
holistically (Hood 2004).

Analysis of this dilemma reveals primary difficulties due to the enormous bio-
molecular complexity, structural and functional unknowns in a large portion of gene
products, and a lack of understanding of how the concert of molecular activities
transfers into physiological alterations and disease. Exploring how cells interact with
the environment, perform their tasks, and sustain homeostasis—or homeodynam-
ics (Yates 1992)—as well as the role of inherited and epigenetic factors and evolu-

Figure 1.1. By the evolution of sub-disciplines in biology over time, ever-smaller structures have come
into focus and more detailed questions have been asked. With the availability of high-throughput
sequencing techniques in genetics, a turning point was reached regarding research on the molecular
basis of life. The investigations extended to hypothesis-free data acquisition of biological entities, with
genomics becoming the first in a growing series of “-omics” disciplines. Although functional genomics
and proteomics are far from being completed, new type of approaches addressing the phenotypical
cellular, tissue, and physiological levels constitute new specialized disciplines, filling up an otherwise
sparse data space. Computational systems biology provides methodologies for combining, modeling,
and simulating entities on diverse (horizontal) levels of biological organization, such as gene regulatory
and protein networks, and between these levels by using multiscale (vertical) approaches. (After R.
Eckner, Vienna.)
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tionary constraints are at the forefront of urgent questions and at the heart of com-
putational systems biology. We are at a very important turning point in biology, in
that the ever-increasing quality and quantity of molecular data now provides the 
basis for building mathematical models of biological processes with increasing
complexity.

An envisioned digital blueprint of complex diseases but also of biological devel-
opment, aging, and immunity should not solely consist of descriptive charts as
widely found in scientific literature or in genomic databases. They should instead
be based on rigorously quantitative data-based mathematical models of metabolic
pathways, signal transduction cascades, cell-to-cell communication, and so on. The
general focus of biomedical research needs to change from a primarily steady-state
analysis at the molecular level to a systems biology level capturing the character-
istic dynamic behavior. Such concepts will likely transform current diagnostic and
therapeutic approaches to medicine (Hood et al. 2004). How soon we will be able
to predict physiology from the molecular capacity of cells remains an unknown, but
it will be an important cornerstone in this grand scientific challenge.

For this ambitious program to succeed, computational systems biology is a 
key, providing data integration, network analysis and multiscale modeling (Kitano
2002). Additional components will require special attention, as pointed out by Bad
Mishra in his contribution (Chapter 5). These include computational environments,
research and pedagogic modeling tools that can be used by a novice user, rapid
development of new biotechnological approaches, and creation of a catalog of
illustrating examples by which these methodologies prove their power unambigu-
ously. This book documents diverse ongoing attempts in these areas. In the fol-
lowing, we will broadly review the content of the chapters as they appear in this
book, along with specific introductions and outlooks.

II. AREAS OF COMPUTATIONAL SYSTEMS BIOLOGY

A. Enabling technologies

Chapter 2—by J. Eils, C. Lawerenz, K. Astrahantseff, M. Ginkel, and R. Eils—
discusses databases for systems biology to aggregate information about the
responses of biological systems to genetic or environmental perturbations. As
researchers try to solve biological problems at the level of entire systems, the very
nature of this approach requires the integration of highly divergent data types.
Moreover, computational systems biology also deals with models, simulations, and
predictions. The concept of an integrative database as presented is therefore
uniquely designed to tightly couple the three general areas of data generated in
systems biology: experimental data, elements of biological systems, and mathe-
matical models and their derived simulations.

In addition to some 800 public bioinformatics databases, information also resides
in over 12 million abstracts accessible in PubMed, supplemented by an increasing
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number of freely available full texts. These constitute an underutilized information
resource. In Chapter 3, T. Hu describes the possibilities of natural language pro-
cessing and ontology-enhanced biomedical literature mining for systems biology.
It is important to develop efficient and effective technologies that automatically
search large collections of biomedical literature and that extract and mine the
important biological relationships (such as protein-to-protein interaction and func-
tion) so that domain experts can analyze this information to form new hypotheses,
conduct new experiments, and facilitate new discoveries in systems biology
research.

Data is not only generated by genomics sequencing and structural proteomics
but increasingly by image-based spatial and time-lapse microscopic observations.
B. Parvin’s Chapter 4, on integrated image informatics, describes an imaging bio-
informatics framework for cataloging protein localization and subcellular responses
as a function of experimental factors. The underlying data model leverages new
standards, assay development, and experimental designs. The presentation layer
is web-based and utilizes a graphical interface to navigate through the annotation,
data, and quantitative representations, whereas novel computational components
enable multiscale representation of images.

In Chapter 5, B. Mishra, M. Antoniotti, S. Paxia, and N. Ugel explain a computa-
tional systems biology tool within a bioinformatics environment. The group intro-
duces Simpathica, used for modular and hierarchical modeling, simulation, and
reasoning. The chapter discusses the construction of Simpathica in the rapid pro-
totyping environment Valis, and its use in understanding signaling pathways.

Standards, platforms, and applications as presented by H. Sauro in Chapter 6
conclude this first part of this book. One of the trends indicative of cooperation
within the systems biology community to emerge in recent years is the develop-
ment of model interchange standards that permit biologists to exchange models
between different software tools. Two exchange standards, SBML and CellML, are
described by Sauro. Also discussed is the development of extensible software
frameworks, including SBW, BioSPICE, and BioUML. Finally, the rich set of compu-
tational tools is introduced that is emerging as systems biology becomes a main-
stream science.

B. Biological discovery by analysis and modeling of biochemical networks

The multitude of computational tools needed for systems biology research can
roughly be classified into two categories (Kitano 2001): system identification and
behavior analysis. Once the system has been identified and a model constructed,
the system behavior can be studied, for instance, by numerical integration or 
sensitivity analysis against external perturbations. In molecular biology, system
identification amounts to identifying the regulatory relationships between genes,
proteins, and small molecules, as well as their inherent dynamics hidden in the 
specific kinetic and binding parameters.
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System identification is arguably one of the most complicated problems in
science. Whereas behavior analysis is solely performed on a model, model con-
struction is a process tightly connected to reality. In many disciplines, model con-
struction is interpreted as an iterative process. The modeling cycle begins with a
reductionist approach, creating the simplest possible model. The modeling process
generates an understanding of the underlying structures, as components are 
represented with mathematical and statistical concepts. The minimal model then
grows in complexity, driven by new hypotheses that may not have been apparent
from the phenomenological descriptions. Then, an experiment is designed using
the biological system to test whether the model predictions agree with the exper-
imental observations of the system behavior. The constitutive model parameters
may be measured directly or may be inferred during this validation process.
However, the propagation of error through these parameters presents significant
challenges for the modeler. If data and predictions agree, a new experiment is
designed and performed. This process continues until sufficient experimental evi-
dence in favor of the model is collected.

Modeling approaches can be divided into bottom-up and top-down. In the
bottom-up approach, we use a reductionist approach and study basic components
and integrate these to find relevant patterns and functions, such as pathways.
However, a bottom-up data-driven strategy as currently performed is limited in its
capacity to translate the effect of perturbations in these pathways onto the cell as
a whole. This approach is not effective in modeling multicellular entities (e.g.,
tissues) or organisms. In top-down mode, we start with the intact system 
and decompose it into its parts and interactions. Hereby, we establish our knowl-
edge of the system, and attempt to disassemble it into functional modules. 
Breakdown of cellular function into computable entities uses the principle of 
modularity (Hartwell et al. 1999). A decomposition of the many cellular components 
into groups allows for modeling and simulations within reasonable time frames and
may mimic an evolved biological property (Kitano 2004). The critical difference
between these approaches occurs when components and interactions are not all
known.

The section in this book dedicated to biochemical network analysis and model-
ing introduces this field with a contribution by F. J. Bruggemann, J. J. Hornberg, 
B. M. Bakker, and H. V. Westerhoff on the basics of computational models of 
biochemical reaction networks (Chapter 7). With the notion that cells are highly 
organized biochemical reaction networks consisting of interacting gene, metabolic,
and signaling networks, systems biology focusses understanding on the function-
ing of cells in terms of the properties of and interactions between their constituent
macromolecules. This chapter provides an overview of the methods available for
analyzing structural, regulatory, and kinetic models of biochemical reaction net-
works composed of gene, metabolic, and signaling networks, as well as simulations
of biochemical reaction networks and metabolic control analysis. Examples are
included to illustrate the reviewed types of models and analyses.
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In Chapter 8, U. Klingmüller reviews the biological foundations of signal trans-
duction and the systems biology perspective. It is revealed that a deeper under-
standing of complex biological responses cannot be achieved by traditional
approaches but requires a tight combination of experimental data and mathemat-
ical modeling. By combining computer simulations with experimental verification
systems, the properties of signaling pathways such as cycling behavior or thresh-
old response can be successfully identified. However, to analyze complex growth
and maturation processes at a systems level, and to quantitatively predict the
outcome of perturbations, further advances in both experimental and theoretical
methodologies are demanded.

Chapter 9, by H.-W. Ma and A.-P. Zeng, provides an overview of the reconstruc-
tion of metabolic networks from the structural and functional analysis of genome
information. Existing databases for gene-enzyme and enzyme-reaction relation-
ships needed for the reconstruction of metabolic networks are introduced. Distinct
mathematical representation of metabolic networks is explained, and results of
structural analysis of large-scale metabolic networks are summarized. The compar-
ative metabolic network analysis of a large number of fully sequenced organisms
has revealed several fundamental organizational principles, such as the power law
connection degree distribution and the “bow-tie” global connectivity structure.
The authors present an example of how structural analysis can be used for func-
tional modular analysis of metabolic networks.

M. Covert’s Chapter 10, on integrated regulatory and metabolic models,
describes the reconstruction of functional metabolic and transcriptional regulatory
networks and a modeling approach that allows simulation of network behavior for
each network separately, as well as for the two networks combined. This process is
placed in the context of model-driven biological discovery, and is illustrated with a
case study of a genome-scale model, which was reconstructed and used in con-
junction with experimental data to elucidate the regulatory and metabolic networks
in Escherichia coli.

C. Model selection and simulation of dynamic cellular processes

Time-discrete dynamic systems models have long been used in biology. Biologic
computer simulations require careful consideration as to the level of detail neces-
sary for a representative model, because unnecessary detail will lead to models 
so complex that detailed numerical study would become highly cumbersome or
impossible. Circadian rhythms provide a particularly interesting case study for
showing how computational models can be used to address a wide range of issues
extending from molecular mechanisms to physiological disorders.

Chapter 11 by S. Imoto, H. Matsuno, and S. Miyano explores the estimation, mod-
eling, and simulation of gene networks. Important computational topics related to
gene networks are outlined, including computational methods for estimating gene
networks from microarray gene expression data—a contemporary problem. Sub-
sequently, a software tool for modeling and simulating gene networks (based on
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the concept of Petri nets) is introduced. The authors demonstrate the utility of this
software for the modeling and simulation of a gene network for controlling circa-
dian rhythms.

A discrete approach to top-down modeling of dynamic biochemical networks is
reviewed by R. Laubenbacher and P. Mendes in Chapter 12. This chapter focuses
on methods of constructing discrete dynamic models of biochemical networks 
from high-throughput experimental data sets, in terms of a reverse-engineering
approach to accommodate the accelerating flux of new experimental observations.
A time-discrete dynamic system description over a finite-state set serves as a
framework. Modeling methods having their origin in computer algebra and the
theory of Groebner bases provide a compact description of the entire space of pos-
sible models. The approach determines from that space a model that is minimal in
the sense that it contains no components that vanish on the data set used to con-
struct the model.

Deterministic versus stochastic approaches to computational models for circa-
dian rhythms are explored by J.-C. Leloup, D. Gonze, and A. Goldbeter in Chapter
13. This chapter demonstrates requirements for models that possess a minimum
degree of complexity. Autonomous chaos was obtained in a 10-variable model for
circadian rhythms in Drosophila incorporating the formation of a PER-TIM complex,
but not in the five-variable model based on PER alone. In this mammalian clock
model, the addition of feedback loops demonstrates multiple sources of oscilla-
tory behavior.

D. Multiscale representations of cells and emerging phenotypes

The term complexity is often associated with “unpredictability.” However, biologi-
cal systems such as cells are quite robust and functionally stable (Buchanan 2002).
As such, complexity in biology is on one hand related to the large diversity in ele-
ments (e.g., genes, proteins, and cells). Characterizing these elements can reveal
variety in state space, as does protein activation or cell cycle. Furthermore, a mul-
titude of interactions, nonlinearities, and feedback loops over levels of biological
hierarchy contribute to an intricate network that appears to be a complex in terms
of being not just complicated but emergent. Emergent behavior in complex
systems arises if all constituents of the system observed on one level cannot explain
the system properties on a coarser or higher level (Walleczek 2000). Proteins provide
an illustrative and intuitive example in that they obtain function not only by their
sequence of amino acids but through a process of folding that gives rise to par-
ticular 3D structures responsible for their functional capabilities.

It is commonly recognized that biological complexity is due to progressive 
evolution that brought along an increasing complexity of cells and organisms over
time (Adami et al. 2000). This judgment coincides with the notion that greater com-
plexity is “better” in terms of complex adaptive systems and the capacity for self-
organization. Computer-based analysis and representation of emergent properties
are new but essential fields in systems biology. The goal is to conceptualize and
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abstract basic principles and to model biological structures, including higher levels
of organization such as cells, tissues, and organs.

Modeling efforts have largely focused at a single level or scale, such as genomic
or proteomic, cellular, tissue, organ, organ system, whole body, behavior, and pop-
ulation. Little current research is devoted to the development of tools, techniques,
algorithms, and mathematical theory needed to integrate the continuum from the
micro- to the macroscale in a seamless fashion. Multiscale modeling encompasses
concepts in state space and across time scales. Different organizational levels—
such as gene regulatory networks, modules, and pathways—may be nested 
in a hierarchical fashion (Oltvai and Barabasi 2002). Computer models representing
spatiotemporal relationships are not limited to a specific resolution but can 
integrate multiscales, including abstractions suitable to functional physiological
simulations (Kriete 1999; Bassingthwaighte 2000; Noble 2002; Hunter 2003). Differ-
ent scales may also be connected through parameters or coupling coefficients,
novel numerical methods such as implicit solvers, and model coupling. The fol-
lowing chapters illustrate the necessity for embracing pathway details and spa-
tiotemporal observations, and for simplifying abstractions in computational systems
biology.

S. Huang’s Chapter 14, on multistability and multicellularity cell fates as high-
dimensional attractors of gene regulatory networks, explains how the high number
of combinatorially possible expression configurations collapse into a few configu-
rations characteristic of observable cell fates. The latter have been proposed to be
high-dimensional attractors in gene activity state space. The biology of cell fate
regulation from a systems perspective is reviewed. Two gene network models (small
systems of differential equations and high-dimensional Boolean networks) are 
discussed to illustrate how molecular interactions produce multistability and 
attractors.

A. Ghosh, D. Miller, R. Zuo, B. Sokhansanj, and A. Kriete examine in Chapter 15
the extension of systems biology into the spatiotemporal realm. This contribution
rests on the notion that models of the intricate networks in cells, so far described
in a dynamic but otherwise dimensionless and “well-stirred” biochemical approxi-
mation, are limited. Yet, spatial and temporal heterogeneity of the cell, and
processes such as diffusion, have to be considered in model construction. Both lim-
itations and extensions of current modeling and computational approaches are
investigated, and implemented in a newly developed software package.

Chapter 16, on cytomics from cellular states to predictive medicine, is a contri-
bution by G. Valet, A. Tarnok, B. Murphy, P. Robinson, and A. Kriete. Cytomics is
the systematic study of biological organization and behavior at the cellular level. It
has developed out of computational imaging and flow cytometry. This approach is
suited to the population of the data space at the cellular level, which appears to
be rather sparse compared to genomics and proteomics information. The ability to
perform high-content and high-throughput imaging and analysis to reveal complex
cellular phenotypes will not only further our understanding of how cells and tissues
carry out their functions but will provide insight into the mechanisms by which those
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functions are disrupted. Cytomics not only provides a new framework for a spa-
tiotemporal systems biology but may enrich personalized medicine.

The IUPS Physiome project—as described by P. Hunter, K. Burrowes, J. Fernan-
dez, P. Nielsen, N. Smith, and M. Tawhai in Chapter 17—aims to facilitate the under-
standing of physiological function in healthy and diseased mammalian tissues by
developing a multiscale modeling framework that can link biological structure and
function across spatial scales. This requires an open-source internationally collab-
orative effort, including XML standards for encapsulating models, web-accessible
model databases, and computational tools for authoring and visualizing models
and running model simulations. Current progress and future plans for several target
organs are discussed.

III. CHALLENGES IN COMPUTATIONAL SYSTEMS BIOLOGY

A. Advanced topics in computing and biological computing

Progress in computational systems biology is bound to our ability to develop
advanced computing environments and methodologies that solve problems 
efficiently. Computational biology offers the most difficult algorithmic challenges
and optimization problem in science today, involving large solution spaces and 
multiple goals (Karp 2002). Because many real-world problems are Non-
deterministic Polynomial-time (NP) hard or even difficult to approximate, there are
several important classes of “softer” meta-algorithms that although they offer no
mathematical guarantee of performance apply well to practical problem instances.
Applications include meta-heuristics to study gene expression data sets from DNA
chips. Because the problem of estimating gene networks is NP-hard and exhibits
a search space of super-exponential size, researchers are increasingly using heuris-
tic algorithms for this task to reduce the search space to a biologically meaningful
subspace to find optimal solutions in linear time. Related algorithmic problems are
represented in this volume in the chapters by Imoto, Laubenbacher, Goldbeter, and
Ghosh.

It appears that distinct computational disciplines—including a joint application
of statistical bioinformatics, methods in computational neuroscience, and medical
informatics (Wiemer et al. 2003)—will contribute to the progress in systems biology,
as they help to more easily select crucial components on any level or between levels
of biological organization as they change by disease or treatment. This is particu-
larly true for high-throughput experimentation. Eventually the field will move to
more automated learning and discovery strategies known in artificial intelligence
(Weber et al. 2005), as models are defined more automatically and decisions and
refinements of the best match and/or best prediction have to be made.

There is a great deal of science to be done in elucidating the mechanisms by
which living cells store and process information. New biochemical tools and tech-
niques based on these mechanisms are therefore also gaining attention. In partic-
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ular, these findings will inevitably suggest new modes of biomolecular computing.
Work is ongoing, both in assessing the theoretical and computational issues of
molecular computing and in studying and improving the practical aspects of the
biomolecular systems themselves. Although efforts can be traced back to early con-
cepts in Turing machines (Turing 1952), this field has been motivated by a paper by
Adleman (Adleman 1994), in which he showed how to use DNA to encode and
solve a seven-city traveling salesman problem. The traveling salesman problem is
a member of problems known as “NP-complete,” for which there are no known
efficient algorithms on conventional computers. From the result, molecules that
represented solutions to the problem could be isolated. The small volume of 
DNA used (100 microliters), the speed of computation (approximately 1014 opera-
tions/second), and the extremely small energy used (2 x 1019 operations/joule) were
promising. Work is progressing in characterizing and improving the biochemical
operations that can be performed, and in designing new architectures for biomol-
ecular computers.

The ever-increasing mass of data being generated with heterogeneous tech-
nologies at different sites over the world requires entirely new strategies in com-
putation on this data. As an example, genome-wide cell-based screens as RNAi
knockdowns or overexpression of proteins in combination with cell arrays (Conrad
et al. 2004; Erfle et al. 2004) typically produce several terabytes of data. Thus, it is
no longer feasible to transfer this data over the Web for local computing. In many
cases, it might be more useful to bring the computational process to the data. This,
however, will impose enormous problems in terms of computational resources at
the site of data. A solution to this problem is offered by the data grid. The data
grid is the next generation of computing infrastructure providing intensive com-
putation and analysis of shared large-scale databases, from hundreds of terabytes
to petabytes, across widely distributed scientific communities. For such large data
volumes, traditional infrastructure components for data management can no longer
be applied. Presently, new concepts for large-scale data input/output and data
management are being developed in various international efforts, such as the EU-
funded EGEE project (Enabling Grid for E-science; www.eu-egee.org), the German
D-grid consortium (www.d-grid.de), the U.S. DOE science grid (www.science.org),
and the NSF-funded BIRN project (www.birn.net). These efforts facilitate collabo-
rative scientific workloads, grid computing pipelines, and distributed file sharing.

B. De novo experimental designs for systems biology

Defined biological systems can provide the basis for developing quantitative frame-
works in systems biology. Unicellular or engineered unicellular organisms are
perhaps the most desirable subjects for developing models, as more rapid progress
can be obtained when substantial genomic data are combined with the ability to
carry out assays to completely define phenotypes with controlled environmental
conditions under which proliferation and gene expression occur. Recently,
“minimal” cells were obtained by either reducing the genome and silencing parts
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of the functional machinery, as demonstrated in bacteria (Luisi 2002) or by taking a
bottom-up bioengineering approach starting with cell-free extracts encapsulated
in vesicles (Noireaux and Libchaber 2004). It has been recognized from these exper-
iments that a higher number of active genes for the fine-tuning of essential func-
tional processes leads to more efficient and stable cells, but that the regulation of
gene activities is an increasingly important requirement for stability. The notion of
regulation coincides with previous considerations of stability theories in physiology
(Yates 1994). These minimal cells and bioreactors are ideal test cases for computa-
tional systems approaches. From this point of view, computational systems biology
can greatly contribute to the newly emerging field of synthetic biology, in particu-
lar by a partnership between biology and engineering (Brent 2004).

C. Computational systems biology and the scientific community

Systems biology is in need of an ambitious interdisciplinary effort. This paradigm
shift in biomedical research cannot be achieved by a few isolated research teams
but requires a concerted action of many experts and departments at the local,
national, and international levels—in such diverse areas as bioinformatics, molecu-
lar biology, cell biology, biochemistry, applied mathematics, theoretical physics,
engineering, and biomedical research (Kitano 2005). Specifically, systems biology
as a “synthetic science” fosters new collaborations between computational and/or
modeling experts who have traditionally focused their models on the same system
but at different scales, or collaborations between computational and/or modeling
experts and experimentalists currently working on a single experimental scale.
Major biology-oriented modeling activities are now supported at most 
federal agencies under titles such as Computational Biology, Bioinformatics, Quan-
titative Systems Biology, Biocomplexity, Modeling at the Nanoscale, and Multiscale
Modeling.

The necessity for cooperation is evidenced in the formation of entire institutions
devoted to systems biology (e.g., the independent Institute of Systems Biology in
Seattle) and in the reorientation of research departments toward systems biology
as recently put into practice at Harvard Medical School and MIT along with several
other research institutions in the United States and worldwide (such as BioX in
Zurich, Switzerland; Bioquant in Heidelberg, Germany; and the Systems Biology
Institute of Tokyo, Japan). The need for cooperation within the systems biology field
is even more greatly reflected in the creation of buildings and workplaces designed
to encourage collaboration. Increasing interest in communication has also been
demonstrated by the multitude of recently established conferences, workshops,
and new Journals. Current conferences include ICSB 2005, RECOMB 2005, ISMB
2005, SysbioECAL 2005, IBSB 2005, and FOSBE 2005. Special journal issues include
Science (March 2002), NatureBiotech (February 2004), ChemBioChem (October
2004), and FEBS Letters (April 2005). New journals include IEESysBio, Nature Mol-
ecular Systems Biology, and the IEEE Journal of Systems Biology.
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IV. OUTLOOK

Many of the current efforts in systems biology look to integrate the results of today’s
scientific technologies responsible for the ubiquitous “data overload.” The diffi-
culty resides in converting data into information that provides insight and repre-
sents knowledge, as addressed by S. Brenner in his Nobel lecture (Brenner, 2003).
The initial transition requires data cleansing and data coherency, but turning infor-
mation into knowledge requires interpreting what the data actually means.

The ultimate goal of systems biology is the development and analysis of high-
resolution quantitative models that recapitulate cellular behavior in time and space.
Such models are the key to detailed understanding of biological functions, the
diagnosis of diseases, the identification and validation of therapeutic targets, and
the design of drugs and drug therapies (Lappe and Holm 2004). Experimental tech-
niques yielding quantitative genomic, proteomic, and metabolomic data needed
for the development of such models are now evolving. To meet the complexity of
the accumulating data, to extract knowledge on the underlying cellular behavior,
and eventually to construct predictive models, a broad spectrum of computer tools
is required. Computer representations describing the underlying mechanisms may
not always be able to provide complete accuracy due to limited computational,
experimental, and methodological resources. Increases in data quality and coher-
ence, availability within integrated databases, and approaches (such as fuzzy logic)
that can manage experimental variability are less frequently considered but may 
be essential to the robust growth of in-silico representations (Mendes et al. 2004;
Sokhansanj et al. 2005).

The enormous complexity of biological systems has given rise to additional 
cautionary remarks. First, it may well be that our models and future supermodels
correctly predict experimental observations, but may still prevent a deeper under-
standing due to complexities, nonlinearities, or stochastic phenomena. This notion
may initially sound quite disappointing, but is the daily experience of all those who
employ modeling and simulations of large-scale phenomena, predominantly in
physics. However, it shows the relevance of computational approaches in this area.
In addition, recent progress in systems biology enables the discovery of common
motifs—such as in regulatory gene networks and fundamental building blocks (Milo
et al. 2002, 2004; Csete and Doyle 2004) of networks that have evolved over eons—
and the discovery of principles of robustness and tolerance (Albert et al. 2000;
Stelling et al. 2004). These findings also underpin the strength of computational
models.

Secondly, systems biology should follow strict standards and conventions, but
progress in theory and computational approaches will always demand new models
that can elicit new insights if applied to an existing body of information. Once
established, new models can be reimplemented in existing platforms to be more
broadly available. In the long run, the aim is to develop user-friendly, scalable,
open-ended platforms that also handle methods for behavior analysis and model-
based disease diagnosis, that support scientists in their everyday practice of deci-
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sion making and biological inquiry, and that support physicians in clinical decision
making.

Systems biology has risen out of consensus in the scientific community, initially
driven by visionary scientific entrepreneurs. Now, as its strength becomes obvious,
it is recognized as a rapidly evolving mainstream endeavor that ties together various
disciplines in a way that will move toward a formal, quantitative, and predictive
framework of biology.
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ABSTRACT

The ultimate goal of researchers in the interdisciplinary field of systems biology is to solve
biological problems at the level of an entire system. Achieving this goal requires supporting
the efforts of experimental biologists and computational modelers. Optimally, the phases of
planning, actual experimentation, and data analysis (as well as model development, testing,
and validation) would all be supported by one database solution. There is currently no inte-
grative source for all information required in a computer-generated model of a biological
system, and no system capable of providing support for all three phases of a systems biology
endeavor. We present the concept of an integrative database for systems biology that 
functions as a data warehouse system and supports all three phases of a systems biology
project.

This database system consists of three modules with different data models supporting the
particular requirements of utilizing the three general types of data required: experimental
data, components, and reactions of biological systems and mathematical models. The model
and experiment modules are linked through the component/reaction module, eliminating
the need to store complete information about any one entity more than once in the data-
base. Complete functional models and simulations of particular interest are stored as SBML
(Systems Biology Markup Language) files and linked to all necessary information within the
database. This combination of modules tailored for dealing with the different data types and
the interaction of these modules via links will meet the needs of researchers in the area of
systems biology.
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I. INTRODUCTION

A. Supporting systems biology

Systems biology attempts to integrate information about the responses of all ele-
ments in a biological system to genetic or environmental perturbations. The ulti-
mate goal of researchers in this interdisciplinary field is to solve biological problems
at the level of an entire system. To achieve this goal, computational models of the
biological system are created that allow in silico simulation, and the application 
of mathematical methods from systems theory. The very nature of this systems
approach requires the integration of highly divergent types of data and the efforts
of experts in the areas of experimental biology, systems sciences, and applied com-
puter science.

Wet-lab technologies are abundant and require expert knowledge to conduct
the experiments, and in some cases to understand and interpret the results. The-
oretical research on the development of mathematical models of a biological
system also requires expert knowledge (as well as an entirely different vocabulary)
to be able to uniquely explain the elements of a system. The experts from both of
these areas, however, require information that is stored in a multitude of reposito-
ries all geared toward serving a specific clientele. As illustrated in Figure 2.1,
although these areas overlap and synergize at several levels they are not well sup-
ported in an integrative manner.

Figure 2.1. Current systems biology research workflow. Interactions among information sources, the
experimental biologist, and the mathematical modeler.
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B. Databases for biological data

1. Databases for elements

Currently, each of multitudes of databases covers a specific area of expertise. The
majority of these are databases containing well-annotated descriptions of a class
of biologically important elements, such as genes, proteins, classes, or active sites
in proteins or entire genomes. An annotated collection of all publicly available gene
sequences is maintained in GenBank at the National Center for Biotechnology
Information (NCBI, most recently described in Benson et al. 2004). Ensembl was
developed as a cooperative project by the Sanger Institute and European Bio-
informatics Institute (EBI), and is a database that produces and maintains automatic
annotation of metazoan genomes (Hubbard et al. 2002; Birney et al. 2004).

The most complete repository for protein information (including structure, func-
tion, classification, and experimental history) is the Universal Protein Resource
known as UniProt (Apweiler et al. 2004). The Braunschweig Enzyme Database
(BRENDA) is being developed into a metabolic network information system link-
ing the enzyme description to information about expression and regulation
(Schomburg et al. 2004). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a suite of databases and associated software attempting to integrate knowledge
about molecular interaction networks with information describing genes, proteins,
chemical compounds, and reactions (Kanehisa 1997).

Several databases exist that contain information pertaining to transcriptional 
regulation. These include MAPPER for putative transcription factor binding sites;
TRANSFAC for transcription factors, their genomic binding sites, and DNA-binding
profiles; Cytomer for gene expression sources; S/MARt (Scaffold/Matrix Attached
Regions database) for chromatin organizing regions; PathoDB for pathogenic forms
of transcription factors; TRANSCompel for composite regulatory elements that are
synergistically regulated by two factors binding to two closely positioned sites; and
TRANSPATH for signal transduction pathways leading to transcriptional changes
(Wingender et al. 2001; Marinescu et al. 2005).

A collaborative effort among the Cold Spring Harbor Laboratory, EBI, and the
Gene Ontology Consortium has produced Reactome, a curated resource of core
pathways and reactions in human biology (Joshi-Tope et al. 2005). Their data model
allows the presentation of many diverse processes in the human system, as well as
support for custom data entry, annotation, visualization, and exploration of the final
data set.

2. Information resources databases

NCBI (National Center for Biotechnology Information) revolutionized searching and
availability of information published in technical and scientific literature with the
development of the PubMed and OMIM (Online Mendelian Inheritance in Man)
databases (a current review of their resources is found in Wheeler et al. 2003).
However, it remains a difficult problem to extract information from the published
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sources, and usually requires reading and summarizing of the data by an expert. In
addition to the databases with an emphasis on particular biochemical elements are
databases that gather several types of information all pertaining to a particular
organism, such as FlyBase for Drosophila melanogaster, WormBase for Caenorhab-
ditis elegans, Xenbase for Xenopus laevis and tropicalis, Mouse Genome Infor-
matics (MGI), and the TIGR (The Institute for Genomic Research) Arabidopsis
thaliana database and the yeast virtual library for Saccaromyces cerevisiae,
Schizosaccaromyces pombe, and Candida albicans.

Efforts to completely sequence the genomes of many organisms also provide
sources for genomic information, although few of these are complete to date. The
Gene Ontology Consortium has made great efforts to provide a gene ontology that
can be applied to all organisms even as knowledge of the roles of genes and pro-
teins in cells accumulates and changes (reviewed in Lewis [2005]).

3. Databases for experimental data

Some databases store annotated experimental data from a particular commonly
used technical method. One method for examining gene expression at the level 
of an entire system is analysis using oligonucleotide or cDNA microarrays. The 
Stanford Microarray Database (SMD) assists in the storage and analysis of two-
color microarray data, and has been amended to be able to store, retrieve, display,
and analyze various proprietary raw data formats as well as being compliant with
accepted standards including recommendations of the Microarray Gene Expres-
sion Data group (MGED) (Ball et al. 2002, 2005; Gollub et al. 2003). A fully 
open-source version of SMD is also available as the Longhorn Array Database
(Killion et al. 2003). Both the Gene Expression Omnibus (GEO) and ArrayExpress
are public repositories for annotated microarray data that comply with MGED 
recommendations.

GEO has been expanded to include not only microarray-based experiments but
Serial Analysis of Gene Expression (SAGE) and mass spectrometry proteomic tech-
nology (Barrett et al. 2005). ArrayExpress can accept data in MAGE-ML (Micro
Array Gene Expression Markup Language) format or via the MIAME (Minimum
Information About a Microarray Experiment) online submission tool (Brazma et al.
2003). Several web-based solutions—for example, the BioArray Software Environ-
ment (BASE) (Saal et al. 2002) and the flexible iCHIP solution (www.dkfz.de/tbi/
projects/dataManagement)—exist for the management and analysis of microarray
experimental data, which can also be customized. SOURCE is a resource that inte-
grates microarray data with complete gene reports describing alternative names,
chromosomal location, functional descriptions, gene ontology annotations, expres-
sion data, and links to external databases (Diehn et al. 2003).

To support the area of proteomics research, a Proteomics Experimental Data
Repository (PEDRo) makes comprehensive proteomics data sets available for
browsing, searching, and downloading (Garwood et al. 2004). The UAB (the 
University of Alabama at Birmingham) Proteomics Database and SWISS-2DPAGE
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provide links between protein spots identified on 2D gels and associated informa-
tion obtained from mass spectrometric analysis (Hill and Kim 2003; Hoogland et al.
2004). The Expert Protein Analysis System (ExPASy) provides access to a variety 
of databases and tools useful for research on proteins and proteomics (Gasteiger
et al. 2003). Many wet-lab techniques require microscopic images. The Open
Microscopy Environment (OME) aims at providing a solution to the storage, analy-
sis, and modeling of optical microscopic image data (Swedlow et al. 2003). In that
the number and variety of databases is still expanding rapidly, the Public Catalog
of Databases (DBcat) maintained by Infobiogen is a useful source of information
(Discala et al. 1999).

4. Databases supporting modeling

Early efforts to integrate data necessary for modeling into a common database
include Algorithms and Methods for the Development of Biochemical Ontology-
based Database Systems (Ambos) (Rojas et al. 2002) and aMAZE (van Helden et al.
2000), both of which support the modeling process. They are based on a data
model that allows storage of various types of biological components and their inter-
actions. This information is in part imported from other specialized public data-
bases and from scientific literature. The basic information about the players and
interactions in the biochemical network is complemented with quantitative infor-
mation about kinetics and some types of experimental results. Both systems contain
tools for complex queries and visualization of biochemical networks, and Ambos
can generate SBML (Systems Biology Markup Language) from the content of the
database. However, a major common database solution for several data types does
not exist in functional form.

Although these databases are good sources for specialized information about a
particular topic, there is no integrative source for all of the information required in
a computer-generated model of a biological system. To support research in the
area of systems biology, a solution to this problem needs to be developed.

II. A DATABASE SOLUTION FOR SYSTEMS BIOLOGY

Computer-assisted modeling and analysis of biological systems requires many
types of information. A database supporting research in systems biology must store
and integrate complete models in a usable form, detailed descriptions of elements
in the system, and experimental data and simulations. The data must be in a format
that can be used in modeling and simulation, and needs to be preprocessed so
that it is free of ambiguities. Details relating experimental context need to be stored
with, or linked to, experiments. Finally, it must be possible to access all information
required to reconstruct in silico experiments and models or to design wet-lab
experiments to validate models. The sheer amount and variety of data requires
special database solutions to support research in systems biology.
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The concept of a database constructed of three modules is presented here as a
solution to better integrate the three general areas of data: experimental data,
components and reactions of biological systems, and mathematical models. Anno-
tation of biomaterials, results from wet-lab experiments, and computer-based sim-
ulations of biological systems using existing models are stored in the experiment
module. The model module contains functional models in a standardized format
using SBML and the model annotation.

The third module, component/reaction, links the experiment and model modules
to provide the complete descriptions of elements required by both modules. Infor-
mation describing biochemical reactions (as well as events such as complex for-
mation and the location of these activities) is critical for model development, and
is also stored within this module. Figure 2.2 illustrates the areas that must be inte-
grated to provide support for research in systems biology. Combining expertise in
the areas of biology and mathematics/computer science makes the development
of an integrative approach to the understanding of complex biological systems 
possible.

Figure 2.2. Interactive database architecture. Components within the component module are linked to
the experiment block and model repository. Experiments are associated with the models based on them.
Models are linked to the experiment results. The central services provide support for user management
and features for project management.
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A. The component/reaction module

1. The players

First, it is necessary to describe the types or categories of information used to
analyze a biological topic using computer-assisted modeling and simulation.
Common terminology used in the areas of biological and chemical research is often
ambiguous, and quite often many terms exist for the same item. For instance, the
same names can be used for genes, the enzymes they encode, and the reactions
these enzymes catalyze. Biologists derive the correct information from the context,
but this is not possible for the computer. Creation of a storage database that
uniquely classifies and describes all potential players in models can help to better
structure the addition of biological background information into the database, and
to make data existing in databases freely exchangeable with other external mod-
eling or simulation tools.

Some databases provide this curation of elements, including Ambos (curation of
KEGG) and the TRANSFAC and TRANSPATH databases. The application of auto-
mated tools to extract data from existing databases and to integrate this data into
a common database resource to be used as a supply for modeling and simulation
tools would ease this enormous effort. Commercially available tools exist for the
automatic extraction and integration of data from public sources, and include BioRS
from Biomax, SRS from LION Bioscience, and DiscoveryLink from IBM. The players
in a model are grouped according to what roles they play, and these categories are
described in the following sections.

Components are the simplest and most central players in models. An experiment
deals with components, and components take part in a reaction or pathway within
a specific localization. Components are chemical entities, and can be macromole-
cules such as genes, proteins, or protein complexes—as well as small molecules such
as metabolites or ions. A species describes a pool of one component with contex-
tual information about the localization (to a compartment). Reactions describe the
interactions between species, and can be influenced through other species (the
modifiers), which include elements such as enzymes, activators, and inhibitors.

The term reaction describes, as in SBML terminology, real chemical reactions that
transform components, as well as the formation of a macromolecular complex from
its individual components or physical transport of components (such as the translo-
cation of a protein through a membrane into another subcellular compartment).
Reactions contain a description of their stoichiometry, describing the quantitative
relationship of the species that take part in the reaction. Kinetics is described by
the rate of the reaction, typically using a mathematical formula. There are a number
of well-known kinetic laws (such as the Michaelis–Menten equation) that can be
held as prototypes in the database, but modelers also combine these kinetic laws
or define specially tailored ones to completely describe the biological situation.
Finally, reactions can be combined to describe pathways. By combining these types
of information, various cellular processes (such as metabolic networks, cell signal-
ing, and gene regulation) can be modeled and simulations performed.
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2. Integrating components and reactions

Most modeling systems to date manually curate only the data required to run in
silico experiments, making this process time consuming. To reduce the effort put
into creating support systems for computer-assisted modeling and simulation, the
integrative database stores information describing components and reactions in
one module. The component/reaction module contains all unique information
about the players in a biological system to be modeled. This module is an integral
part of the database, and effectively links the model and experiment modules. In
this way, the complete description of each component is stored only once in the
database. Other modules reference a component by forming a link to the required
information. Properties of each reaction—including stoichiometry, kinetics, and
whether a reaction is reversible—can also be stored in the component/reaction
module and referenced by models.

Using references and by building synonym lists, commercially available tools for
the automatic extraction and integration of data from public sources are capable
of preprocessing data to avoid the ambiguous description of database entities. 
In addition, these tools are capable of performing periodic updates from public
domain databases to ensure incorporation of newly discovered components and
confirmation of references that ensure data quality. However, the data available in
these public sources concerning a particular biological question may not be com-
plete. In these cases, manual curation of the data to include the additional knowl-
edge must also be possible without loss of the reference to the original public
source of automatically imported elements.

B. The experiment module

1. Experimental data and biological materials

Currently, modelers do not typically utilize all information from an experiment, but
collect only those pieces of information or values that seem relevant as input for
the model. For example, they use measurements of protein concentrations or gene
expression over time to reveal the dynamic behavior of their process of interest,
and to unveil its basic structure. They may also use these measurements to fit quan-
titative model parameters so that their model can reproduce observed behavior of
the biological system. The ultimate power of a model lies in its capacity for pre-
diction. New perturbations of a biological system can be tested using in silico
experiments on the model, and these results are compared with wet-lab experi-
mental results for the same perturbation. In this way, a model can be validated in
its ability to reproduce the behavior of the system correctly. This nevertheless
requires that the information about the experimental procedures be exhaustive
enough so that data from different biological systems and different labs can be
integrated to build or to test the models.

To handle experimental data in a structured manner, we suggest a concept for
the experimental annotation spanning the most important aspects of the experi-
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ment, from the underlying goal through the biological samples, methods, and
experimental results (Figure 2.3). The formal description of the experiment enables
the experiment to be repeated by another laboratory under similar conditions, and
provides more information to be used for modeling or simulation.

Experiments are conducted on various biological materials. These biomaterials
are extremely diverse in their nature and description, making the task of obtaining
all relevant information for each biomaterial complex. In addition, because the types
of experiments conducted are also very different from one another the resulting data
must be stored with specialized information to completely describe the experiment.
The annotation stored about each type of biomaterial varies. For instance, to provide
a clear picture of the experimental context and interpretation experiments con-
ducted on resected tumor tissue require not only information about the preparation
of DNA, RNA, or protein from this tissue for use in the experiment but histological
classification of the tumor type and patient information. Whereas experiments 
conducted on cell lines require information describing culture conditions, passage
numbers, cell line derivations and condition of the cells prior to the experiment
(including culture confluency at treatment or harvesting, drug treatment time span,
time in serum-free medium and so on) to be able to fully interpret the experiment.

The annotation of primary cell lines may also require clinical information about
the patient from whom they come. Furthermore, what clinical factors are of impor-
tance depends on which disease is being described. Finally, the description of gene
knock-down experiments using interfering RNA (RNAi), expression studies using
oligonucleotide chip arrays or profiling of proteins in biological fluids using MALDI-
MS (Matrix-Assisted Laser Desorption/Ionization Mass Spectroscopy or SELDI-MS
(Surface-Enhanced Laser Desorption/Ionization Mass Spectroscopy each require
very specific information in order to be comparable to experiments conducted in
other laboratories. Storage of an exhaustive description of each biomaterial or
method in the database is, at least, time intensive and probably utopian. A more
realistic approach is the combination of expert-developed SOPs for the usage of
classes of biomaterials and protocols for commonly used methods, with the storage
of some specific and necessary information about the biomaterials and methods
within the database.

The SOP used could then be referenced in the experiment, and all SOPs stored
within the experiment module. Some form of version control is also required for
SOPs, so that old versions remain available for analysis of older experiments (Figure
2.3). A flexible architecture is required for storing the necessary annotation for bio-
logical materials. The incorporation of an entity attribute model (EAV) is one way
of handling the variety of attributes (Nadkarni and Brandt 1998). This data model
utilizes an extensible table architecture that stores each attribute as a value (each
as a single row) within a table. Attribute access is organized using meta-tables. In
this way, all information is accessible, and new attributes can easily be added
without changing the database structure.

Experimental data describing complex processes in systems biology stems from
varied experimental methods (i.e., expression microarrays, mass spectrometic
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analysis, 2D protein gels, RT-PCR (polymerase chain reaction), western blots, elec-
trophoretic mobility shift assays, enzyme activity assays, and microscopic pictures).
The raw data are often analyzed by commercially available software packages
designed specifically for a certain system (e.g., Affymetrix chip image analysis).
Many of these use a proprietary storage format, but most of them can export parts
of the data also as Excel tables or as comma-separated values (CSVs). To support
model development, it is first necessary to bring these primary data into a format
that can be generally used by modeling and simulation systems.

Data required by the model is often stored in databases in the public domain
and in local-experiment databases. These databases can be considered reposito-
ries of primary data, each containing only one type of data or data concerning one
method or biological system. It would be difficult to integrate the wide range of
heterogeneous primary data into one source. However, model development and
simulation requires access to many types of data. Our goal is not to define the struc-
ture for all heterogeneous data types but to suggest a repository as a central plat-
form for relevant experimental data required by the models. To include derived
data in a general format in the repository, primary data must be preprocessed with
specific software used for the special technology. In this way, these data are directly
available to the model without the requirement of further preprocessing or special
external software.

Figure 2.3. Universal modeling language (UML) diagram of the object model for the experiment
module. Classes representing specific aspects of the experiment have different colors. The class Contact
is associated to its subclasses, Person and Organization, and is derived from the AuditAndSecurity
package of MAGE-OM. Attributes of these classes contain the contact information for the scientist
providing biomaterials or conducting the experiment. An experiment utilizing biological material is
represented in the classes, Annotation (experimental goal) and CellCulture (cell type and culture
conditions). Its Phase subclass (ordered steps generating a series of measurements) consists of Action
(information about experimental steps in a phase). CellCulture is linked to BioMaterial (description of
biological material), whose specifications are dependent on the biomaterial (i.e. type, origin, gender,
history, cell type, quality, physiological status, bioreactor type or biohazard status). Experimental values
are represented by numCols of the Table class. Standard operating procedures (SOP) are separated into
ActionSOPs (experimental method protocols) and ProcessingSOPs (data preprocessing). ActionSOPs
describe, for example, the methods used to generate new biological materials from existing materials.
ProcessingSOPs describe the strategy for deriving data based on primary data with the respective
calculation method. Measurement values can be divided into nominal or ordinal discrete values,
continual (real) values, stationary values, time-courses or relative values. The values attribute of the Table
class includes a series of columns, each column of which describes one measurement (i.e., protein
concentration or gene expression relative to the control). The valueSemantics attribute in Column
describes the type of measurement (i.e., time, concentration, rate, activity, ratio, and so on) and the
transformations of the values (i.e., logarithmic). The Time-column subclass describes the measuring time
points in a time-course experiment. NominalColumn consists of nominal values (i.e., disease, gender,
and so on), and nominalSet defines the set of applicable terms for the nominal value. NumericColumn
contains all numeric measurements including statistical error estimations. If an entry in an object
(represented by Column) contains a value of a component, the species must be referenced. The
Component subclass of Species describes the compartment (i.e., cytoplasm, nucleus, and so on) where
the component (in Component) is localized.

�
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2. Standards

There are ongoing efforts to develop standards for reporting and storing experi-
mental data from particular types of methods. The Minimum Information About a
Microarray Experiment (MIAME) standard has been developed to support data
export and description of microarray experiments with the goal of unambiguous
experiment interpretation by the entire research community (Brazma et al. 2001).
The MicroArray Gene Expression Markup Language (MAGE-ML) is based on the
MAGE object model (MAGE-OM), and can be used for microarray data exchange
(Spellman et al. 2002). The HUPO (Human Proteome Organization) nomenclature
to facilitate data comparison, exchange, and verification in the area of proteomics
has been developed by the Proteomics Standards Initiative (Orchard et al. 2003;
Orchard et al. 2005). Recently, a commission was formed with the aim of setting
standards for functional enzyme characterization, called Standards for Reporting
Enzymology Data (STRENDA). The standards described in OME for dealing with
microscopic data support projects using, for instance, RNAi screening and appli-
cations requiring multidimensional image storage and analysis. The XML (Extensi-
ble Markup Language) schema, OME XML, has been established to standardize
data transfer (Swedlow et al. 2003). Microarray and proteomics standards have been
incorporated into the Systems Biology Object Model (SysBio-OM), which supports
the representation of microarray and protein expression data as well as data
describing protein-to-protein interactions and metabolics (Xirasagar et al. 2004).

C. The model module

1. Models and standards

Models in this contribution are considered formal descriptions of intracellular net-
works and their environment for use in mathematical analysis. Models utilize infor-
mation from scientific literature, experimental data, and existing models. In many
cases, model descriptions are tailored specifically for a class of mathematical analy-
sis methods. It is necessary to use well-defined terminology that abstracts the 
biological concepts in the model. However, purely mathematical descriptions con-
taining equations and variables are not adequate because they have no 
direct connection to biological semantics and the information stored in biological
databases.

In the integrative database solution described here, the model module acts as a
repository of complete and functional models, including the metadata and docu-
mentation describing them. A model is typically not developed from scratch each
time, but newly generated data or information is integrated into an existing model.
Thus, modeling is an iterative process in which parts of existing models are often
reused. A model can be extended for application to a new biological question by
incorporating information related to the biological problem. This evolution of
model development in particular requires a system that supports model version
control.
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Several tools exist that support the creation and analysis of mathematical models
(Mendes 1997; Sauro 2000; Ginkel et al. 2003; Slepchenko et al. 2003; Takahashi 
et al. 2003). Application of a multitude of tools to one biological problem can be
helpful, in that different tools apply different mathematical methods, which have
inherent strengths and weaknesses based on the biological question being
addressed. Thus, no one tool is capable of solving all problems of modeling and
simulation in systems biology. This has been a motivator in the creation of tool-
independent model exchange formats, most notably CellML (Cell Markup Lan-
guage) and SBML (Hucka et al. 2003; Lloyd et al. 2004). Both formats are based on
XML notation (Bosak and Bray 1999) and focus on the mathematical description of
largely intracellular biochemical processes.

Whereas CellML considers a rather abstract approach of very general and exten-
sible modular mathematical descriptions integrated into a larger family of XML-
languages (Anatomical Markup Language (AnatML) and the Field Markup Lan-
guage (FieldML)), SBML concentrates on the more practical task of developing a
common exchange format for models based on descriptions found in various mod-
eling and simulation tools. Tool developers can easily adopt SBML because the
descriptive elements and attributes used are derived from existing modeling tools.
Currently, SBML is supported by approximately 75 software tools, and may be con-
sidered the leading standard for model exchange in systems biology. Model
descriptions in SBML provide the mathematical information necessary to run sim-
ulations or to perform mathematical analyses on the model. To utilize existing
models, the SBML file for the model should be linked to background knowledge
about the biological system. The integrative database described here stores
models as SBML files in the model module, and links the model to relevant infor-
mation stored in the component/reaction and experiment modules.

2. Model storage in the database

The approaches to storing mathematical model data can be categorized into model
repositories and network model databases. Model repositories such as JWS (Java
Web Simulation) or the SBML model repository (Schilstra 2002; Olivier and Snoep
2004) store complete and functional models with documentation. The biological
context of the model is explained in HTML (HyperText Markup Language) docu-
mentation or some RDF (resource description framework) information provided with
the model. The JWS approach is more focused on facilities for online simulation
and visualization, which is well suited even to occasional and inexperienced users
in that it requires no background knowledge or installation of special software. The
user of the model repository can directly simulate the fully functional models or
download them as a basis for modeling activities. However, these model reposito-
ries do not provide up-to-date biological background information for the model
elements.

Network model databases, such as Ambos or aMAZE, attach the mathematical
model information directly to the entities of a network database of components
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and reactions, which is similar to the component/reaction module in this contribu-
tion. Therefore, the mathematical information becomes an integral part of a bio-
logical information system, and can be presented with up-to-date biological
background information and links to data from experiments and the literature.
These databases are able to ultimately generate an SBML model for an arbitrary
part of the biochemical network, selected from the entities in the database. The
SBML models generated are well suited to the subsequent generation of new
models.

The system presented here combines the advantages of the two approaches and
eludes some of their disadvantages. One important requirement for the presented
solution is uploading models as SBML files, prepared by external modeling tools.
These functional models are made in a specific context with specific assumptions
that have an influence on the chosen mathematical description. These models very
often contain artificial mathematical elements. For instance, one species is created
in the model that describes all elements that can be defined as biomass. Such math-
ematical elements have no direct biological semantics and are completely mean-
ingless outside the specific context of the original model. For this reason, it is
difficult to attach mathematical descriptions of the artificial elements to entities of
a network database.

Other examples of purely mathematical descriptions are equations (rules in SBML
terminology) and events, which have no counterpart in the network database.
Therefore, it does not make sense to extract this biologically irrelevant information
from the SBML file. Moreover, different models can describe the same biological
entity with different mathematical expressions or parameter values. For instance, a
reaction is described with different kinetic laws in different models. Unlike network
model databases, the presented approach avoids inconsistency within the data-
base by leaving such contradictory information in the SBML file.

Long-term storage solutions, such as a database, need to reflect the most recent
SBML standard (in addition to older versions) in its internal data structure. To store
complete models as SBML files and evade extraction of all utilized elements avoids
dealing with the rapid evolution of SBML itself. Because no effort must be made
to keep the database up to date with current SBML standards, it becomes unnec-
essary to provide safe transitions for old data into the updated database structures.
Uploading and downloading facilities can be easily implemented because the
models are available as SBML files and many tools are compliant with the SBML
standard.

One highlight of the strategy of including information describing the context of
a model is the partial parsing of the SBML file to provide links to further descrip-
tions of its biologically meaningful elements, such as species, reactions, and com-
partments. These elements are mapped to entities within the component/reaction
module of the database, thus assigning globally unique identifiers to all entities. In
addition, reaction parameters and start/global values can be parsed from the SBML
file and stored within the database. Biologically relevant kinetics included in the
SBML file may already exist in the component/reaction module (Figure 2.4).
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Figure 2.4. UML schema for integration of objects in the experiment, component/reaction and model
modules. BioMaterial represents the type of biological material (i.e., cell lines, primary cells, cryo-
preserved tissue, and so on). WetLabExperiment, based on objects of Biomaterial, and InSilicoExperiment
are subclasses of Experiment. InSilicoExperiment represents simulations done using a model.
Experimental results and the global parameter are grouped in one parameter set. The respective
parameter set is assigned to the model based on the attributes of the classes, StartValue,
ReactionParameter and GlobalParameter. Model consists of the SBML file of the model and model
annotation, including meta-information about, for example, purpose, author, software used and
applicable simulation methods. An image generated by external model software can be associated with
the respective model. The Name attribute of the Species Mapping class represents the species identifier
of the model which is linked to the species description in the component database. Red component
classes represent species localized to the specific compartment. Species is also assigned to a single 
cell type within a specific organism. Reactions are linked to the StoichiometricDataset class. The
StoichiometricData class linked to a StoichiometricDataset is described by the attributes for
stoichiometric values and the species type, reactant or product. Reactions are described by one or
multiple kinetics, each containing multiple species and reaction parameters. The Function class
represents attributes, which provide functions that include formulas and arguments. Reactions, species
and models can be associated into a pathway.
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In the case that biologically relevant kinetics included in the SBML file already
exist in the component/reaction module, reaction parameters can be linked to
these kinetics. All other elements in the SBML file for the model are left opaque,
reducing the effort to implement data structure as well as changes required for new
SBML versions. However, even the artificial and purely mathematical elements
remain stored in the SBML file, allowing the user to export fully functional models.
The species, reactions, and compartments of a model are linked to their full descrip-
tions in the component/reaction module via their locally unique identifiers in the
model file. This mapping can be constructed semiautomatically as follows. After
parsing the model, the database is searched for names of species, reactions, and
compartments used within the SBML model, and the user is asked to choose the
final mapping for the elements. Because some elements may be new, and may not
have descriptions stored within the database, the user can choose to create new
entities in the database.

Some elements that are only meaningful in the context of one model can remain
unmapped by classifying them as artificial entities. When an updated model is
uploaded, the original model becomes an old version in the model history, but
remains in the database to allow for consistent referencing. For a database to be
useful on a long-term basis, complete metadata and documentation for each
model must be included. Examples of the metadata required to make a model
comprehensible include information describing the aim or hypothesis of the model
as well as biological information such as cell type and organism. Reference to
sources of scientific information used in the model (e.g., initial models, scientific lit-
erature used for choosing parameter values, and so on) is also important for model
documentation. Finally, a graphical representation of the network described by a
model can be stored as an image to allow a quick overview (Figure 2.5).

3. Simulation

Models are used to perform in silico experiments on a system using external sim-
ulation software. One could argue that with the stored models in the database every
user can simply repeat all simulations, rendering it unnecessary to store the simu-
lation results. However, this approach would require that special simulation soft-
ware be installed on the local computer. In addition, operation of these software
tools is often not trivial, requiring some experience with choosing the correct
parameters for the model situation being simulated. It is preferable to store simu-
lation results as simulation experiments in the database, especially when they show
interesting or unexpected behavior. Reference must be made to the model and
version used to create each simulation in order to allow repetition of the in silico
experiments.

The importance of providing version control for the models becomes apparent
because simulations created by different versions of the same model will differ,
leading to simulations of a system that may be out of date because not all avail-
able information about the system was taken into account. Input values for each
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simulation also need to be stored, including reaction parameters, different values
describing the initial situation, and global parameters for the model. These values
are considered changes to the default values for the original SBML model. The
description of in silico simulation experiments mirrors the description of wet-lab
experiments in which the initial situation of the biomaterial is described as well as
instructions for performing phases of the experiment (simulation runs for the in
silico experiment). The majority of stored simulation results describe values
selected for the simulation that can be stored in a tool-independent ASCII format.
These can then be imported into the database together with a description of the
purpose of the experiment and model parameters.

III. PROSPECTIVE APPLICATIONS: USAGE AND WORKFLOW

The interactive database solution presented here provides an infrastructure to
better support the workflow of interdisciplinary teams working in the area of
systems biology. This interactive database platform is currently being developed
for application in the Systems of Life-Systems Biology joint research project 

Figure 2.5. UML diagram for project management. The project groups all models and wet-lab and in
silico experiments pertaining to the same biological question. By initiation of a project, the goal must be
defined. Every experiment and model must be assigned to at least one project in the database.
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(supported by the German Ministry for Research and Education). We present a gen-
eral workflow for a generic systems biology project using the described interactive
database, and include diagrams to better convey the steps and interactions in 
the following section (Figure 2.6).

Unanswered biological questions form the basis for a project. Models, experi-
mental data, and simulations concerning one particular biological topic are con-
nected as projects. The available data and references to scientific literature stored
in the component/reaction module support the wet-lab scientist in investigating
which players may be involved and what interactions may occur between or among
them, in order to propose hypotheses that further direct the research. The data-
base provides the known players and their interactions directly in a unified and
structured manner. It contains directly browsable references to external information
sources for scientific literature and online databases. This initial step in the project
forms the basis for the following activities in the theoretical and experimental fields
(Figure 2.5).

The experimental biologist designs wet-lab experiments to test defined ques-
tions based on the hypothesis. To properly design experiments it is necessary to
assess the availability of biomaterials and their respective characteristics. This infor-
mation is stored in the experiment module, making it directly accessible to the
experimental biologist. To ensure that the experimental results are comparable with
existing data and that experiments are repeatable by independent laboratories, the
treatment and processing methods used must be available in SOPs stored in the
database. Full-text searching and retrieval of SOPs enables the experimental sci-
entist to locate an SOP for use in the planned experiment.

The primary data generated by the wet-lab experiment must first be pre-
processed in accordance with accepted standards. These are available as process-
ing SOPs in the experiment module. The resulting secondary data are stored in the
experiment module with links to documentation for the methods and standards
used. If the measurements refer to specific entities in the cell, the necessary
mapping to the component/reaction module must be constructed to link the con-
textual information. Time courses from the wet-lab and in silico experiments con-
ducted on the same system can be graphically overlaid for easy comparison of the
results.

On the theoretical side, the modeler uses the existing information and newly gen-
erated results from the wet-lab experiments to design and implement a hypothe-
sis to answer the central question as a model. This requires an overview of the
network in question. This overview guides the decision of which analysis method
can best be applied given the available measurements. The iterative modeling
process starts after the analysis method has been chosen. Ideally, models already
exist in the database that are in part applicable for reuse in the generation of 
the new model. Experimental results are required to determine the initial and
parameter values. The resulting and executable model can be made public in the
database.



Figure 2.6. Overview of project workflow utilizing the integrative database solution for systems biology.
The objects of external sources, such as biological databases and literature databases are shown in red.
The objects of processes, whose results are stored in the integrative platform as well as the results, are
indicated in blue. The integration tool extracts the species and reaction information from the external
databases, and stores it in the systems biology database. Reactions, species, pathways and networks are
linked to the respective model. Simulations for the project are carried out using a model, which is
stored as an SBML file. Simulation results are used to design new wet-lab experiments, that either
validate or disprove parts of the model. Models apply reaction parameters and start values based on
wet-lab experiments. Biomaterial provided for the experiments is annotated, and the specific handling
and treatment is described by SOPs.
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The model is then used to conduct in silico experiments for various physiologi-
cal or experimental situations. Start values can be extracted from experiments
stored in the experiment module. The simulation results either comply with the
experimental results (supporting the hypothesis of the model) or are in conflict with
the experimental results (rejecting the hypothesis and leading to redesign or
improvement of the model). The model may generate predictions for start values
and parameters that have not been used for the model, or proposals for new
designs for both wet-lab and in silico experiments. If this is the case, the simula-
tion results may be of interest to the experimental biologists as well, and it is ben-
eficial to store the simulation in the model module. Because the species in the
model are mapped to the component/reaction module, it is possible to query the
database for newly acquired models and experimental results that may be relevant
for the model. The model may confirm the estimated start values and parameters
initiating the model as well as lead to proposals for new designs of both wet-lab
and in silico experiments.

If different experiments must be performed or different models developed to
answer the biological question, a new project can be created in the database to
group the results of these activities. The description of the biological question and
the central goal is the primary documentation for a project. Existing models and in
silico and wet-lab experiments can be assigned to the project.

The concept for an integrative database presented here is designed to better
integrate the three general areas of data generated in systems biology (experi-
mental data, elements of biological systems, and mathematical models) with
derived simulations. Division of the storage of data from each of these areas into
separate modules designed to handle their specific needs is a primary advantage
of this system. In addition, each module has its own advantages that contribute to
the system. The experiment module stores only preprocessed secondary data. This
saves the space and effort of including primary data and all tools necessary to work
with these primary data. The component/reaction module utilizes automated inte-
gration tools to incorporate information from publicly available databases, reduc-
ing the time and effort required for annotation and data input.

The model module stores complete working versions of models and important
in silico experiments linked to the appropriate experimental data, elements, SOPs,
and full documentation. The combination of grouping certain types of information
into individual modules with the reintegration of only the relevant entities within
these modules via mapping and linking will provide an excellent database solution
for systems biology that supports both experimental biologists and mathematical
modelers.
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ABSTRACT

Despite the rapid electronic dissemination of research results and experimental data in bioin-
formatics research, most biological knowledge and experimental results still exist only in text
formats. Retrieving and processing this information is made difficult due to the large volumes
and the lack of formal structure in the natural language narrative in those documents. It is
very important to develop efficient and effective technologies that automatically search large
collections of biomedical literature, extract and mine the important biological relationships
such as protein-protein interaction, functionalities of the genes, etc, so that domain experts
can analyze this information to form new hypotheses, conduct new experiments and enable
new discoveries in systems biology research. In this chapter, we discuss some of the latest
natural language processing and data mining techniques in this area and demonstrate their
usefulness in chromatin protein interaction study and microarray data analysis.

I. INTRODUCTION

Most bioinformatics knowledge and experimental results are published only in
plain-text documents. These documents, or their abstracts, are collected in bio-
medical literature databases such as MedLine (www.ncbi.nlm.nih.gov/entrez/
query.fcgi), BioMedCentral (www.biomedcentral.com/), and so on. The large
number of documents in such databases and the lack of formal structure in the
natural language narrative in those documents make the search and processing
very difficult to many scientists involved in bioinformatics research. To expedite the
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progress of bioinformatics, it is essential to develop efficient and effective natural-
language processing and text data mining techniques from this ever-expanding col-
lection of biomedical literature so that genomic and medical experts can analyze
this information to form new hypotheses, conduct new experiments, and enable
new discoveries.

Natural-language processing and biomedical literature data mining have been
applied to a wide range of bioinformatics problems such as extraction of protein
interaction (Ono et al. 2001), microarray data interpretation (Kankar et al. 2002), and
so on. Biomedical literature databases tend to have large collections of text files,
cover a wide range of topics, and grow very fast. In this chapter, we discuss some
of the latest natural language processing and data mining techniques in this area
and demonstrate their usefulness through application in chromatin protein inter-
action and microarray data analysis.

A. Text clustering and summarization in biomedical literature

Many data mining methods and algorithms have been adapted to mine biomed-
ical literature (Hirschman et al. 2002; Rzhesky et al. 2004). We review some relevant
existing methods and algorithms in the following.

A significant limitation of the current clustering approach in microarray data
analysis is that most of these algorithms provide no biological interpreation of the
cluster results. Users need to discover and interpret the biological similarities that
may underlie the expression pattern by cross-referencing the experimental results
in related literature or functional annotations in various genomic databases.
Because a gene cluster may include dozens or even hundreds of different genes,
it is beyond the limits of biological researchers to detect and organize these data
along multiple lines of conceptual similarity by inspecting them manually. Thus, it
is essential to develop a system capable of gathering biological information and
extracting and summarizing relevant information in a well-organized and coherent
manner for the gene cluster. A variety of approaches to provide a biological expla-
nation of gene clusters have been developed. TextQuest (Iliopoulos et al. 2001) is
geared toward summarizing documents retrieved in response to keywords-based
search on PubMed. It does not retain the association between the genes (keywords)
and the retrieved documents.

MedMiner (Tanabe et al. 1999) can provide summarized literature information on
genes but is limited to finding relations between two genes only. It also returns a
few hundred sentences. Shatkay et al. (2000) suggested a system that attempts to
find functional relations among genes on a genome-wide scale, but this requires
users to specify a representative document for each gene, which describes the gene
very well. Looking for the representative document may require a lot of time, effort,
and knowledge on the part of the user. In addition, as genes have multiple bio-
logical functions it is very rare to find a document that covers all aspects of genes
across various biological domains. GEISHA (Blaschke et al. 2001) is based on a com-
parison of the frequency of abstracts linked to different gene clusters and contain-
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ing a given term. Interpretation by the end user of the biological meaning of 
the terms is facilitated by embedding them in the corresponding significant sen-
tences and abstracts and by establishing relations with other equally significant
terms.

Automatic text summarization has recently become an active research field
related to many other research areas, such as IR (information retrieval), IE (infor-
mation extraction), natural language processing, and machine learning (Goldstein
et al. 2000; Hahn and Mani 2000). A variety of approaches exist for determining the
salient sentences in the text and then synthesizing them to form a summary report:
statistical techniques based on word distribution (Salton et al. 1994), symbolic tech-
niques based on discourse structure (Marcu 1997), and semantic relations between
words (Barzilay et al. 2001). Other recently addressed text summarization research
topics have been multi-document summarization, multilingual summarization, and
hybrid multisource summarization. A knowledge-based text summarization has 
also been addressed by Hahn and Reimer (1999), emphasizing the potential of 
the concepts and conceptual relations as a vehicle for terminological knowledge 
representation.

B. Biomedical ontologies

Biomedical ontologies are critical to the understanding and processing of bio-
medical literature (Sarkar et al. 2003; Bard and Rhee 2004). In general, bioinfor-
matics has a so-called “communication problem” (Schulze-Kremer 1997). Even the
meanings of high-level fundamental concepts are often ambiguous. For example,
biology researchers have been suffering from inconsistent descriptions of gene
products and ambiguous term definitions from disparate biology databases, which
also hamper the semantic computational processing of biomedical literature such
as text summarization or document clustering. The use of ontology would be a very
promising solution. Currently, there is no ontology that captures the entire range
of concepts in the biomedical domain. However, there are several well-designed
biomedical ontologies, such as the UMLS (Unified Medical Language System) (www.
nlm.nih.gov/research/umls/), the Gene Ontology (GO) (www.geneontology.org/),
and the EcoCyc Ontology (Karp 2000).

In our current research, we focus on UMLS and GO because UMLS and GO are
very well supported, extensively used, and freely available in (respectively) the
medical and bioinformatics fields. UMLS consists of three knowledge sources:
Metathesaurus, Semantic Network, and SPECIALIST. SPECIALIST is a lexicon that
provides a mechanism for integrating all major biomedical vocabularies, including
MeSH. GO describes gene products in terms of molecular functions, biological
processes, and cellular components, and provides controlled vocabularies for the
description of three independent ontologies (molecular function, biological
process, and cellular component of gene product). Their combined use covers a
wide range of topics in the biomedical domain.
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II. ONTOLOGY-ENHANCED BIOMEDICAL LITERATURE MINING

A. NLP for automatic pattern generation and evaluation based on mutual
bootstrapping for robust and portable IE

This section examines an NLP-based prototype system named SPIE (Scalable and
Portable Information Extraction), shown in Figure 3.1. This system addresses effi-
cient and effective information retrieval and extraction from large biomedical liter-
ature databases (Hu et al. 2004b). Our preliminary study on protein-to-protein
interaction indicates that SPIE has significant advantages over traditional keyword-
based search and IE methods. SPIE retrieved 0.5 million abstracts to obtain 9,000
unique protein-to-protein interactions, while traditional keyword based search
methods retrieved about 1.5 million abstracts from MedLine to obtain the same
number of unique protein-to-protein interactions (Hu et al. 2004b).

A crucial step in the extraction process is the generation of new patterns, which
is accomplished by grouping the occurrences of known patterns in documents that
occur in similar contexts. A good pattern should be selective but have high cover-
age so that it does not generate many false-positive relationships and can identify
many new relationships. Another issue is that individual relationships of interest may
be found in multiple contexts within collections. In deciding which putative rela-
tionships should be extracted, a key problem is how to combine evidence across
the multiple occurrences of these relationships. The heart of our approach is a
mutual bootstrapping approach that learns extraction patterns from the relation-
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ships and then exploits the learned extraction patterns to identify more relation-
ships that belong to the relation. Our goal was to automate the construction of
both the relationships and extraction patterns using bootstrapping.

As input, our technique requires only unlabeled texts and a handful of seed rela-
tionships of the relation. We use mutual bootstrapping techniques to alternatively
select the best extraction patterns and bootstrap its extractions into the relation,
which is the basis for selecting the next extraction. The mutual bootstrapping algo-
rithms work well, but the performance can rapidly deteriorate when low-quality or
spurious relationships enter the relation. To make this approach more robust, we
add a second level of bootstrapping (meta-bootstrapping), which combines the
multiple evidences of each relationship generated from the multiple matched 
patterns in the relationship ranking procedure. It will retain only the most reliable
ones produced by mutual bootstrapping, and then restart the process with the
enhanced patterns. This two-tiered bootstrapping process is less sensitive to noise
than a single level of bootstrapping and produces high-quality relations and 
patterns.

Pattern generation: IE systems are commonly based on pattern matching. Each
pattern is applied to each text segment, instantiating appropriate slots in the
pattern with entities from the document. For example, a protein-to-protein inter-
action pattern in our approach is a tuple (or expression) consisting of two protein
names that correspond to some conventional way of describing interaction. We can
use these patterns to characterize those sentences that capture this knowledge.
For every such protein pair p1, p2 it finds segments of text in the sentences where
p1 and p2 occur close to each other and analyze the text that connects p1 and p2

to generate patterns.
For example, our approach inspects the context surrounding chromatin protein

HP1 and HDAC4 in the sentence “HP1 interacts with HDAC4 in the two-hybrid
system . . .” to construct a pattern {“ ”, Protein, “interacts with”, <Protein>, “ ”}.
After generating a number of patterns from the initial seed examples, it scans the
available sentences in search of segments of text that match the patterns. As a
result of this process, it generates new relationships and evaluates them and uses
the most reliable ones as the new “seed.” It then starts the process again by search-
ing for these new relationships in the documents to identify new promising 
patterns.

SPIE pattern representation uses Eliza-like patterns (Weizenbaum 1966) that can
make use of limited syntactic and semantic information. It represents the context
around the related entities in the patterns in a flexible way that produces patterns
that are selective and yet have high coverage. As a result, minor syntactic variations
(such as an extra comma or a determiner) will not stop us from matching contexts
that are otherwise close to our pattern. More specifically, SPIE represents the left,
middle, and right “context” associated with a pattern, just like the vector-space
model of information retrieval represents documents and queries. A pattern is a 5-
tuple (left, tag1, middle, tag2, right), where tag1 and tag2 are named-entity tags, left
are arbitrary strings of nonspace characters before tag1, middle are those nonspace
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characters between tag1 and tag2, and right are those nonspace characters after
tag2 in the text segment. Left, middle, or right may be empty in the pattern.

To match text portions with the 5-tuple representation of patterns, SPIE also asso-
ciates an equivalent 5-tuple with each document portion that contains two named
entities with the correct tag. After extracting the 5-tuple representation of string S,
SPIE matches it against the 5-tuple patterns by taking the inner product of the 
corresponding left, middle, and right segments. Our approach is based on an
extended version of Harris’s distributional hypothesis (Harris 1985), which states that
words that occur in the same contexts tend to be similar. Instead of using this
hypothesis on words, we apply it to sentences in the document. To learn patterns
from these sentences, we use a sentence alignment method to group similar pat-
terns and then learn each group separately for the generalized patterns. In our
method, by aligning sentences similar parts in sentences could be extracted as 
patterns.

The similarity score Match(Ti, Tj) between two 5-tuples Ti = <li, tagi1, mi, tagi2, ri>
and Tj = <lj, tagj1, mj, tagj2, rj> is defined as Match(Ti, Tj) = Wleft * S(li, lj) + Wmiddle *
S(mi, mj) + Wright * S(ri, rj), where Wleft, Wmiddle, and Wright are the weight for (respec-
tively) the left, middle, and right segments. We develop a new sentence alignment
function to evaluate the similarity of two sentence segments such as li and lj, which
are ordered lists of words, numbers, punctuation marks, and so on. The advantage
of using sentence alignment for similarity measurement is that it is flexible and can
be implemented efficiently based on dynamic programming. The same idea is also
used in comparing the similarity between protein or DNA sequences (Gusfield
1997). Given two sentence segments X = (x1, x2, . . . , xm) and Y = (y1, y2 . . . , yn), the
similarity score S(i, j) is defined as the score of the optimal alignment between the
initial segment from x1 to xi of X and the initial segment from y1 to yj of Y [‘_’ denotes
a white space, S(I, 0) = 0, S(0, j) = 0 ].

(3.1)

(3.2)

Here, p(xi) denotes the appearance probability of word xi and p(xi, yj) denotes the
probability that xi and yj appear at the same position in two text segments. Fol-
lowing the same method proposed in Li et al. (2004), probabilities p(xi), p(xi, yj) can
be estimated by Equations 3.3a and 3.3b with prealigned training data.
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(3.3b)

Here, C(xi) denotes the count of word xi appearing in the training corpus, and
C(xi, yj ) denotes the number of aligned pairs (xi, yj) being observed in the training
set. For sentence segments X with a length of m and Y with a length of n, totally 
(m + 1) * (n + 1) scores will be calculated by applying Equation 3.1 recursively. The
scores are stored in a matrix as M = M(xi, yj). Through back-tracing in M, the optimal
local alignment can be searched.

Evaluation of patterns and relationships: Estimating the reliability of the pattern
to ignore patterns that tend to generate bogus relationships is one of the prob-
lems we need to address. We can weigh the patterns based on their selectivity, and
trust the relationships they generate accordingly. Thus, a pattern that is not selec-
tive will have a low weight. The relationships generated by such a pattern will 
be discarded, unless they are supported by other selective patterns. The case for
relationships is analogous. The reliability of the relationships is a function of the
selectivity and the number of patterns that generate it. At each iteration, the 
relationships in the relation are constantly growing and the extraction patterns need
to be rescored. SPIE evaluates the quality of these patterns and relationships, and
retains only the most reliable ones for the next iteration. A relationship may be pro-
duced by multiple patterns simultaneously. The scoring heuristic is based on how
many different relationships a pattern extracts and how many relationships are
extracted by this pattern only. We adapt a metric originally proposed by Riloff (1996)
to evaluate extraction patterns generated by the IE system, and define the confi-
dence of pattern Pi as

Conf (Pi) = (Fi/Ni) * log(Fi) (3.4)

where Fi is the number of unique relationships among the extractions produced by
Pi and Ni is the total number of unique relationships that Pi extracted. One inter-
esting, yet largely unexplored, aspect of IE is that potential relationships usually
occur redundantly in text files. In deciding which putative relationships should be
extracted, a key problem is how to combine evidences across the multiple occur-
rences of these relationships. We present a statistical method for addressing it. For
each relationship Tj, we store the set of patterns P = {Pi} (i = 1, . . . , m) that produce
it, together with the measure of similarity match Match(Tj, Pi) between the context
in which the relationship occurred and the matching pattern Pi. The confidence of
a candidate relationship Tj is defined as

(3.5)

Thus, in the previous formulas Conf(Tj) is not simply the count of the relevant rela-
tionships but their cumulative relevance. Formulas 4 and 5 capture the mutual
dependency of patterns and relationships. After determining the confidence of the
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candidate relationships using the previous definition, our method discards all rela-
tionships with low confidence because these low-quality relationships could add
noise to the pattern generation process, which would in turn introduce more invalid
relationships, degrading the performance of the system.

B. Ontology-enhanced text clustering and summarization for microarray 
data interpretation

A big limitation of the current clustering approach in microarray analysis is that most
of these algorithms provide no biological interpretation of the cluster results. We
developed (Hu et al. 2004) a robust system, GE-Miner (Gene Expression Miner), to
integrate cluster ensemble and text mining to overcome this limitation. Here we
further enhance GE-Miner by integrating biomedical ontology. Our objective is not
to address all research issues raised in biomedical text clustering and summariza-
tion. As a complement to a number of relevant techniques—such as text mining,
automatic text classification and others—we focus on exploiting our capability to
automatically extract and analyze knowledge from text documents through text
clustering and summarization. We develop a hybrid approach for integrating ontol-
ogy-based text clustering and summarization, as shown in Figure 3.2.

First, we preprocess the texts, enriching their representations by background
knowledge provided by the biomedical ontology. Then, we cluster the documents
by a frequent term set-based partitioning clustering method, which partitions the
large number of documents into a relatively small number of clusters. The docu-
ment clusters are then analyzed by a multi-document summarization method.
Within each cluster, saliency scores for key terms and sentences are generated
based on the mutual reinforcement principle. Then, the key terms and sentences
are ranked according to their saliency scores and selected for inclusion in the top
key terms list and summaries of the documents.

In our method, enriching the term vectors with concepts from ontology has three
benefits. First, it resolves synonyms; second, it introduces more general concepts,
which help identify related topics; and third, the higher-level concepts from ontol-
ogy subsume the lower-level concepts/primitive words in the term vector (thus
reducing the dimensions and in turn improving the clustering accuracy and effi-
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ciency). Ontology-based summaries can actually capture the essential information
of textual documents at different levels of granularity. This issue is closely related
to the compression rate and coverage/diversity of summaries (Hahn and Mani
2000).

1. Frequent term set-based concept clustering

The standard clustering algorithms can be categorized into partitioning algorithms
such as k-means or k-medoid and hierarchical algorithms such as single-link or
average-link (Han and Kamber 2001). A recent study (Steinbach et al. 2000) has
clearly indicated that k-means methods have outperformed hierarchical clustering
algorithms on a broad variety of text databases. These methods of text clustering,
however, do not really address the special problems of text clustering: very high
dimensionality of the data, very large size of the databases, and understandability
of the cluster description (Beil et al. 2002).

Existing text clustering solutions use all words except the Stop words from the
documents in their term vectors, thus generating a very high dimensional vector.
They also only relate documents that use identical terminology, whereas they ignore
conceptual similarity of terms and relationships between words such as synonyms,
hyponyms, and hypernyms defined in terminological resources in ontology. Thus,
semantically identical but differently spelled terms (e.g., cancer, malignant tumor)
are treated as completely different words in traditional document clustering
approaches. Such words hamper document similarity measurement (Hotho et al.
2003).

It is possible to reduce the dimensionality by selecting only frequent words from
each document, or to use some other method to extract the salient features of each
document. However, the number of features collected using these methods still
tends to be very large, and due to the loss of some of the relevant features the
quality of clusters tends not to be good. Other, more general, methods—such as
principal component analysis (PCA) and latent semantic indexing (LSI)—have also
been proposed for dimensionality reduction, which attempt to transform the data
space into a smaller space in which relationships among data items is preserved.
An inherent problem with dimensionality reduction is that in the presence of noise
in the data it may result in the degradation of the clustering results (Steinbach 
et al. 2000).

This has motivated the development of new special text clustering methods that
are not based on the vector space model. Suffix-tree clustering (Zamir and Etzioni
1998) is the first method following this approach. The drawback of suffix-tree clus-
tering is that although two directly neighboring basic clusters in the graph must be
similar two distance nodes (basic clusters) within a connected component do 
not have to be similar at all. In our system, we use frequent terms (items) for text
clustering.

A frequent-term-based concept clustering is promising because it provides a
natural way of reducing the large dimensionality of the document vector space. A
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well-selected subset of the set of all frequent term sets can be considered a clus-
tering. Strictly speaking, a frequent term set is not a cluster (candidate) but only
the description of a cluster. The corresponding cluster itself consists of the set of
documents containing all terms of the frequent terms. Unlike the case of classifi-
cation, there are no class labels to guide the selection of such a subset from the
set of all frequent term sets. Instead, we propose to use the mutual overlap of the
frequent term sets with respect to their sets of supporting documents (the clusters)
to determine a clustering.

The rationale behind this approach is that a small overlap of the clusters will result
in a small classification error when the clustering is later used for classifying new
documents. Our clustering algorithms are designed to efficiently handle very high
dimensional spaces, without the need for dimensionality reduction. In contrast to
traditional clustering methods, our proposed methods are linearly scalable, an
advantage that makes them particularly suitable for use in regard to large collec-
tions of biomedical literature.

A frequent-term-based approach of clustering method first finds sets of terms
that occur frequently together in documents using association rule discovery
methods. These frequent term sets correspond to a set of documents that have a
sufficiently large number of features (words or terms) in common, and are mapped
into hyperedges in a hypergraph (Han et al. 1998; Beil et al. 2002). The similarity
among documents is captured implicitly by the frequent term sets. The hypergraph
representation can then be used to cluster relatively large groups of related terms
by partitioning them into highly connected partitions.

One way of achieving this is to use a hypergraph partitioning algorithm that par-
titions the hypergraph into two parts recursively such that the weight of the hyper-
graphs that are cut by the partitioning is minimized (Han et al. 1998). Depending
on the support threshold, documents that do not meet support (i.e., documents
that do not share large enough subsets of terms with other documents) will be
pruned. This feature is particularly useful for clustering large biomedical doc-
ument sets.

2. Text summarization

Our algorithm is designed to produce summaries that emphasize “relevant
novelty.” Relevant novelty is a metric for minimizing redundancy and maximizing
both relevance and diversity. Complementary to work by Jing and McKeown (1999),
whose emphasis is on summary fluency, our approach focuses on ensuring summary
informativeness. Our system dynamically determines the foci of the documents
through textual clustering, which in turn determines the specific information that
will be extracted. The summary is formed by first extracting sentences from the
clusters that contain the desired information, and later synthesizing them.

Our method extracts key phrases and sentences from the documents based on
the mutual reinforcement principle. Similar ideas have been used to find the hub
and authority web pages in link graphs in search engines (Kleinberg 1999). The heart
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of our mutual reinforcement principle is that a key phrase should have a high
saliency score if it appears in many sentences with high saliency scores, whereas a
sentence should have a high saliency score if it contains many key phrases with a
high saliency score. We explicitly model key phrases and sentences that contain
them using undirected and weighted bipartite graphs and generate sentence
extraction from textual documents on the fly without extensive training.

Bipartite graph of key phrases and sentences: For all documents in the same
cluster, we generate two sets of objects: one is the set of key phrases K = {k1, . . . ,
km} from the cluster, and the other is the set of sentences S = {S1, . . . , Sn}. We build
a weighted bipartite graph from K to S in the following way: if the phrase ki appears
in sentence Sj, we then create an edge between ki and Sj. We can also specify non-
negative weights on the weighted bipartite graph with wij, indicating the weight on
the edge (ki, Sj). For example, we can choose wij to be the number of times ki

appears in Sj. More sophisticated weighting schemes such as normalized frequency
value for comparison study will be investigated in our experiments. We denote the
weighted bipartite graph by G(K, S, W), where W = |wij| is the m-by-n weight matrix
containing all pairwise edge weights.

Mutual reinforcement principle to calculate the salient scores of key phrases and
sentences: In essence, the principle dictates that the saliency score of a phrase is
determined by the saliency score of sentences it appears in, and the saliency score
of a sentence is determined by the saliency scores of the phrases it contains. Math-
ematically, this statement is rendered as

(3.6)

Ss(Sj) = Ss¢(Sj)/ ||Ss¢||, Sk(ki) = Sk¢(ki)/ ||Sk¢|| (3.7)

Final scores of the key phrases and sentences are obtained by iteratively solving
the previous equations, where N(ki) is the neighbor of term ki and N(Sj) is the neigh-
bor of Sj. The summations are over the neighbors of the vertices in question (i.e.,
when computing a term score), the summarization is over all sentences that contain
the phrase and when computing a sentence score, the summation is over all
phrases in the sentence. The corresponding component values of Sk and Ss give
key phrases and sentence saliency scores, respectively. There are many numerical
computation methods developed to calculate the scores of terms and sentences
efficiently. See Hu (2004) for detailed discussions.

Sentence selection and synthesis: The sentence extraction part of our system is
similar to the domain-independent multi-document summarization of Carbonell
and Goldstein (1998) and Goldstein et al. (2000) in the way it clusters sentences
across documents to help determine which sentences are central to the collection,
as well as to reduce redundancy among sentences (as it does not make use of com-
parisons to the centroids of the multi-document set). We integrate the ideas from
maximum marginal relevance (MMR) measure and cross-sentence information sub-
sumption (CSIS) (Radev et al. 2000) to minimize redundancy and maximize both 

Ss S w Sk k Sk k w Ss Sj ij i i ij j

s N kk N S j ii j

¢( ) = ( ) ¢( ) = ( )
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relevance and diversity for extracted sentences. To achieve this goal, an important
component is a good measure to evaluate the similarity of two sentences.

For two sentence Si = {ki1, ki2, . . . , kip} and Sj = {kj1, kj2, . . . , kjq} to measure the
similarities between two sentences, every pair of terms in Si and Sj are compared.
If they are exactly the same, the similarity score is 1. If two terms are different but
are related in the ontology, the similarity score is the semantic similarity in the ontol-
ogy. There are many proposals to use the distance between two concepts in an
ontology as the basis for their similarity (Resnik 1995). For example, assuming the
commonality between terms kiu and kjv in the ontology is Kp, where Kp is the most
specific class that subsumes both kiu and kjv, we define the semantic similarity d(kiu,
kjv) = 2 * log P(Kp)/(log P(kiu) + log P(kjv)), where P(Kx) represents the probability that
a randomly selected concept belongs to the Kx in the ontology. The similarity
measure of Si and Sj is defined as

III. EXPERIMENT RESULTS

Biomedical literature data mining is essential for many bioinformatics problems and
will ultimately enhance many related biomedical projects. Our experiments in bio-
medical literature data mining focus on, in particular, those that use large-scale
genome-wide gene expression analysis as well as chromatin protein-to-protein
interaction networks.

A. Extracting and mining the chromatin protein-to-protein interaction network

To test the scalability of SPIE, we conducted two experiments, as outlined in Tables
3.1 and 3.2. Table 3.1 is to stimulate the biologist to manually create a set of
keyword filters to select the documents relevant to protein interactions, and then
run the IE procedure on these documents. This manual approach is used by most
users of MedLine. However, information retrieval in such databases becomes very
time consuming because searchers who are likely to identify much relevant infor-
mation also find many irrelevant documents at the same time. For example, a text
query for “protein interaction” of the MedLine database retrieves 176,559 docu-
ments (as of December of 2004). In this study, we use 1,600 human chromatin
protein names. When we used synonyms derived from LocusLink and nucleotide
databases maintained by NCBI, the total number of protein names was about 7,000.
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Table 3.1. Number of MedLine abstracts used in keyword-based searching.

Keywords No. of Abstracts No. of PPI No. of Distinct PPI

Protein associate 8,025 2,526 760
Protein interact 33,835 8,457 2,158
Protein bind 69,981 12,034 2,664
Protein association 82,767 9,440 2,093
Protein binding 83,397 13,854 3,184
Protein interaction 145,857 19,344 3,795
Protein complex 185,157 24,938 4,300
Protein acetylate 172 434 116
Protein acetylation 5,027 5,622 827
Protein conjugate 18,770 225 92
Protein destabilize 879 100 31
Protein destabilization 2,233 231 62
Protein inhibit 124,178 7,690 1,602
Protein modulate 41,727 2,984 945
Protein modulation 71,159 2,843 913
Protein phosphorylate 3,991 1,186 315
Protein phosphorylation 90,475 15,106 2,249
Protein regulate 58,586 7,991 2,121
Protein regulation 289,940 32,669 5,915
Protein stabilization 27,349 1,630 340
Protein stabilize 5,714 775 221
Protein suppress 20,069 2,005 633
Protein target 74,714 10,735 2,433

Total 1,444,002 183,119 37,769
Total (elimination of redundant) 1,006,699 37,769 9,980

Table 3.2. Experimental results (SPIE).

No. of Abstracts No. of PPI No. of Distinct PPI

50 k 2,224 1,749
100 k 4,412 3,100
150 k 8,348 4,400
200 k 10,527 5,300
250 k 12,461 6,040
300 k 15,152 6,500
350 k 16,612 7,200
400 k 18,202 8,420
450 k 19,070 8,900

All 19,461 9,483
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The result is shown in Table 3.2. In our second experiment, we started with 10
pairs of protein-to-protein interaction (PPI) pairs as seed instances. We then used
SPIE to automatically construct queries and used the learned queries to retrieve
documents from MedLine. We set the maximum document size to 10 k for each
iteration, starting with 50,000 documents, and stopped at 500,000 documents when
the new tuples added were very few. We repeated the experiments five times with
different seed pairs and took the average number of documents. The results are
summarized in Table 3.2.

Whereas a keyword-based approach examined 1.4 million abstracts from
MedLine to extract 9,980 distinct chromatin protein-to-protein interactions, SPIE
examined only 500,000 abstracts from MedLine to extract 9,483 distinct chromatin
protein-to-protein interactions. It is very obvious that SPIE has a significant per-
formance advantage over the keyword-based approach.

B. Text mining for enrichment of microarray data analysis

To explain the underlying biological mechanisms and to assign “biological
meaning” to clusters of genes obtained by analytical methods, it is necessary to
cross-reference genes with external information sources. Our method provides a
much-needed framework domain experts can use to take full advantage of exist-
ing knowledge about transcription factors, regulatory elements, sequences, struc-
tural information, and assigned gene functions. It provides the ability to obtain an
overview of the entire landscape of thousands of genes and their related literature.
This is useful in the analysis of microarray data at the genomic scale, producing very
insightful information such as which genes are functionally related to each other,
what their shared functionality is, and which documents discuss this functionality.

We conduct some experimental study on yeast gene data sets (http://
rana.lbl.gov/EisenData.htm), as outlined in Table 3.3. The reason we use the yeast
DNA microarray is because the validity of our methods is best assessed by com-
parison of the results with existing summaries of biological information. The Sac-
charomyces Genome Databases (Cherry et al. 1998) and the Yeast Proteome
Database (Costanzo et al. 2000), as well as the functional analysis given by 
Spellman et al. (1998), are critical for objective evaluation of our results. There are
6,221 genes in the data sets, but not every gene is associated with a particular func-
tional family. The yeast gene has a lot of functional families. In our experiment, we
considered the genes in one functional family as one cluster. The top-rated signif-
icant terms and best sentences from the articles related to each cluster are out-
lined in Table 3.4. 

IV. CONCLUSIONS

In this chapter, we presented some NLP and text data mining techniques for
extracting important biological relationships from huge amounts of clustering and
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summarization biomedical literature for gene cluster functional interpretation from
microarray data analysis. There are many other useful applications of NLP and text
data mining for systems biology. These include recognition of biomedical terms
(Fukuda 1998), improving homology search (Chang et al. 2001), discovering protein
functional regions (Eskin and Agichtein 2004), identifying cellular locations

Table 3.3. Yeast gene functional families.

Gene No. of Document
Cluster No.of No. of Clusters for Each
ID Functional Family Genes Documents Gene Cluster

1 ATP synthesis 19 94 2
2 Mitosis 19 468 6
3 Vacuolar protein targeting 19 227 3

4 Silencing 20 425 5
5 Fatty acid metabolism 20 151 2
6 Meiosis 21 319 6
7 Phospholipid metabolism 21 209 3
8 TCA cycle 22 168 3

9 Chromatin structure 42 533 6
10 DNA replication 42 1,473 15

Table 3.4. Top-rated significant terms and the best sentence for each cluster.

1 Acid, alpha, atp synthase, beta subunit, mutant, mitochondriaorf, oscp.
A fusion between the N-terminal 15 amino acid residues of beta-subunit and the mouse cytosolic
protein dihydrofolate reductase (DHFR) was transcribed and translated in vitro and found to be
transported into isolated yeast mitochondria.

2 Anaphase, apc, centromere, chromosome, kinetochore, mitotic, spindle, ubiquitin.
Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the
microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant
spindles, arrested development immediately before anaphase spindle elongation, and then
frequently broke apart into two disconnected short half spindles with misoriented spindle pole
bodies.

3 Clas, endosome, golgi, ptdin, syntax, transport, vacuolar, vacuole, vesicle.
Protein transport in eukaryotic cells requires the selective docking and fusion of transport
intermediates with the appropriate target membrane. t-SNARE molecules that are associated with
distinct intracellular compartments may serve as receptors for transport vesicle docking and
membrane fusion through interactions with specific v-SNARE molecules on vesicle membranes,
providing the inherent specificity of these reactions.

. . . . . . . . .

10 Cell cycle, DNA replication, kinase, mitosi, mutant, phosphorylation, replication, topoisomerase.
Our data link a potent inhibitor of Cdc2 kinase to a key protein required for the initiation of DNA
replication and strongly suggest that inhibition of Cdc18 by cyclin-dependent kinases has an
important role in ensuring that the genome is duplicated precisely once each cell cycle.
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(Skounakis et al. 2003), and hypothesis generation (Swanson 1986; Hu 2005). The
promise of NLP and biomedical literature data mining goes well beyond the dis-
covery of biological relationships. When coupled with experimental validation, data
mining of the literature provides a promising direction in assisting the system biol-
ogist in conducting original researches and in designing novel experiments and
new treatments.
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ABSTRACT

Organisms express their genomes in a cell-specific manner, resulting in a variety of cellular
phenotypes or phenomes. Mapping cell phenomes under various experimental factors is
necessary in order to understand the responses of organisms to stimuli or environmental
conditions. Biological heterogeneity requires collection of large sets of data. These data sets
require an integrated view of experimental and computational components, which is facili-
tated through the BioSig Imaging Bioinformatics framework. BioSig enables cataloging of
protein localization and subcellular responses as a function of experimental factors (e.g.,
antigen, molecular inhibitor) for cell culture assays as well as for fixed tissue samples.

The underlying data model leverages emerging new standards in microscopy, assay devel-
opment, and experimental design process. The presentation layer is web-based and utilizes
a graphical interface to navigate through the annotation, data, and quantitative representa-
tion of data. Quantitative representations are derived through novel computational compo-
nents that enable multiscale representation of images in terms of average behavior (per
image) and subcellular responses (for each object in the image). These computational com-
ponents are model based, leveraging geometric properties of the objects of interest as a
means of delineating them from the background.

I. INTRODUCTION

Systems biology may be viewed either as a purely informatics-driven or database-
driven mathematical modeling problem. In either case, the intent is to bring
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together a computed representation of each facet of cell and molecular biology so
as to gain new insights into the dynamics of cell and protein signaling. These facets
vary in scale, experimental and computation perspective, and potential medical
applications, as shown in Figure 4.1. For example, if the level of study is the
phenome, the experimental perspective is multicellular systems, the computational
perspective is image analysis and the corresponding informatics systems, and the
potential medical application is cancer progression. Whether the end point of
systems biology is informatics or multiscale mathematical modeling, quantitative
representation of the experimental data facilitates correlation of molecular signa-
tures and serves as input for estimating parameters of models.

Within this framework, imaging is an integral component of systems biology,
revealing protein localization, tissue architecture, and cellular morphology under a
variety of experimental factors and for different biological materials. Imaging
enables insights into the dynamics of phenotype generation and maintenance,
where a phenotype is the result of selective expression of the genome. It is an
expression of the history of the cell and its response to the extracellular environ-
ment. To define cell phenomes, one would track the kinetics and quantities of 
multiple constituent proteins, cellular context, and morphological features in large
populations. Such studies should also include responses to stimuli so that func-
tional models can be generated and tested. Furthermore, signaling between cells
and their extracellular microenvironment has a profound impact on cell phenotype
(Roskelley et al. 1995).

These interactions are the fundamental prerequisites for control of cell cycle,
DNA replication, transcription, metabolism, and signal transduction. The ultimate
decision of a cell to proliferate, differentiate, or die is the response to integrated
signals from the extracellular matrix, cell membrane, growth factors, and hormones.

Figure 4.1. Levels of facets of systems biology in context.
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From a systems perspective, each study endpoint can be addressed with a differ-
ent model system. For example, an endpoint can first be tested on a monolayer
cell culture system (ideal for high-throughput screening) and then on 3D cell culture
assays (Schmeichel and Bissell 2003) that are closer to in vivo models, and finally
on in vivo models. At present, the system is used to examine the impact of ioniz-
ing radiation on DNA damage and repair for 2D and 3D cell culture models and in
vivo mouse models.

Whereas the 2D cell culture model reveals issues such as the intracellular 
kinetics of the repair mechanism, the 3D model enables studies of intercell com-
munication and cell-ECM interactions that lead to better understanding of tissue
architecture. For example, recent studies have shown that certain intracellular sig-
naling pathways are linked via the cell adhesion system (Wang et al. 1998). Cell adhe-
sion is how a cell attaches itself via integral membrane receptors to the extracellular
matrix. Experimentally manipulating extracellular matrix receptors affects cell shape,
alters the response of cells to new stimuli, and modifies multicellular organization
as a function of time (Maniotis et al. 1997; Giancotti and Ruoslahti 1999).

A significant aspect of a phenotypic study is that changes in shape, response,
and organization are heterogeneous and cell specific in tissue sections. Given the
need for a large sample size (number of images) and complex hierarchical repre-
sentation, it is necessary to maintain a detailed data model for managing data and
information. The data model can then be used as a guided workflow for user-based
annotation and browsing of the database. It can also be used to construct a visual
interface for querying multiple targets, including positional references and mor-
phological features.

The end results can then be visualized in terms of plots and a collage of images
with sensitivity measures. Our research has three novel components: (1) develop-
ment of a novel set of algorithms for capturing cellular morphology, protein expres-
sion, and cellular organization in tissue, (2) development of a data model that
couples immunofluorescence with images, instrument configuration, and multilay-
ered quantitative representation, and (3) development of a distributed imaging
bioinformatics system that couples the data model with a web-based visual 
interface.

The organization of this chapter is as follows. Section II provides a brief overview
of the system architecture and database interaction. Section III outlines various
components of the informatics system. Section IV provides several classes of image
analysis techniques used in understanding biological images. Section V outlines the
details of specific phenotypic studies. Section VI concludes the chapter.

II. ARCHITECTURE

The architecture, shown in Figure 4.2, is a standard enterprise multilayer system
consisting of a data layer, an object layer, a web service layer, and a presentation
layer. The data layer is a PostgreSQL relational database, and the object layer 
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provides conceptual mapping to this relational database. BioSig contains a flat-file
mechanism for storing raw image data. However, compressed thumbnail repre-
sentations of these data are maintained in the database itself. Retrieving a view of
the database object requires sending the unique identifier of the database object
via a URL request. This request is directed to a Java servlet that uses an object
manager to retrieve a handle to the target object. Once this handle is retrieved,
the servlet can interact with the database objects directly through JDBC.

The system supports five classes of operations in order to construct the object
hierarchies and provide access to the database. These include creation and vali-
dation of content, transformation, communication, security, and storage. These
operational classes, with the partial exceptions of security and storage, are imple-
mented through a component-based architecture in which processing and com-
munication tasks are generally divided into the smallest partitions of server
resources, e.g., servlets. Servlets can coexist on a single computing platform or on
disparate ones. The servlet platforms maintain computing resources such that they
allow scaling for an increased load when communicating with distant web browsers
for interoperable networked applications. The servlets are intentionally small to
allow for extensibility. Several servlets allow for creation of database hierarchies
through the Web. These servlets leverage modern markup techniques and provide
validation against the schema that constrains both the structure of the data hier-
archy and the content of each element.

III. INFORMATICS

To understand complexities associated with the informatics system, consider the
following. A typical in vivo study includes a number of genetically similar mice at

Figure 4.2. Imaging bioinformatics architecture is layered, and it uses a graphical interface for improved
functionality.
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different stages of their development: virgin, pregnant, lactate, and involution. In
each category, mice are partitioned for treatment types (e.g., radiation and dosage)
they will receive. Within each treatment population, mice are sacrificed at different
time points. Tissues are then collected and sectioned, and coverslips are prepared
for antibody treatment and subsequent imaging. The same experiment is then
repeated using genetically altered mice for comparative analysis. It is clear that
even such a simple study can generate a large quantity of annotated data that
requires an underlying data model for subsequent query and analysis.

The data model has evolved from its previous version (Parvin et al. 2003) to a new
design that leverages emerging standards in microscopy and experimental design.
In this context, the data model is influenced by the Open Microscopy Environment
(OME) and the MAGE model for managing microarray data. OME provides syntax
for instrument configuration (complete description of the optical light path) and the
type of analysis that has been performed on data. OME is an extensible data model
providing a “semantic data type” structure with four levels of granularity: Global,
Dataset, Image, and Features.

Within this framework, a subset of MAGE (experimental designs and specifics of
the assay development) is embedded into the Global semantic type. The MAGE
model provides a concise definition of the experimental factors (e.g., cell line, radi-
ation, dosage, and other treatments) and protocol associated with assay develop-
ment (e.g., plating, incubation time with a reagent at a specific concentration,
number of washout, and fixation). The coarse representation of coupling between
different entities is shown in Figure 4.3.

In this model, a “physical bioassay” has an “imageable target” (e.g., protein,
mRNA, DNA), an “imageable probe” (e.g., labeled antibody, labeled synthetic
oligonucleotide) and a set of “experimental factors” (e.g., radiation type and
dosage), which corresponds to a collection of images. These are the high-level
views of the data model. Specifics corresponding to the assay development are
captured in the “treatment” and steps associated with it. Furthermore, the use of
controlled vocabularies from the NCICB database, the MAGE model, and in-house-
specific terminologies facilitates uniform annotation of database content.

Whereas modeling and structure of the database server side may evolve 
and become increasingly sophisticated, extension and maintenance of effective
user interfaces remains difficult to manage. Functionality of these interfaces is 
especially important with regard to biological data entry, which is often time con-
suming, error prone, and repetitive. Toward improving interface functionality 
and usability, we have developed a framework, which facilitates the development
of customized semantic views. From a functional perspective, one is not interested
in the complete data model on the server side but in browsing a series of easily
sortable high-level views, efficient data entry, and query-by-example for represent-
ing common types of queries.

Implementing these functions with the typical web browser scripting code is dif-
ficult and becomes especially error prone because of differences in browser imple-
mentation. To faciliate this functionality, the design incorporates Java applets from
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Protege. Protege has emerged as a popular Java-based software framework for
ontology development, knowledge representation, and data population. The
frame-based programming model of Protege has been leveraged to construct
client-side interfaces and to create customizable forms for the semantic views.
Protege allows for the development of plug-ins and modular pieces of code that
can work both within a web browser as applets and as standalone applications.

Protege plug-ins have been developed to interact with the back-end databases
and allow for on-demand browsing and population of the forms. Interaction with a
specific database is provided through a customized Java library that defines the
semantic views and required database server statements. Subsequent data valida-
tion is provided within the Java-based framework. In addition, Protege facilitates
incorporation of controlled vocabularies and ontologies. For example, the MAGE
object model is available as an ontology that is programmatically accessible
through Protege tools. A subset of the MAGE ontology terms has been captured
in our system.

Figure 4.3. Coarse representation of the BioSig data model shows coupling-dependent variables,
images, and assay development. The model does not show inheritance and association among classes.
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Browsing of the database is enhanced through use of the Web and scalable
vector graphics (SVG), which is a W3C standard for describing 2D graphics. The
browser view of the data is represented as a directed graph, and its layout is
enhanced through GraphViz, which is an open-source ATT software project. SVG is
an extensible XML-based format for interactive presentation that incorporates
images, text, shapes, and video and that allows for their precise layout and ani-
mation through declarative methods. SVG greatly facilitates rich presentation of
data-driven graphics, and its rendering is accomplished through viewers that work
as web browser plug-ins or as standalone applications. In addition, the presenta-
tion manager enables visualization of a query function as plots or as a collage of
images. For example, the plot may be a dose-response or scatter diagram for com-
puted features as a function of dependent variables. Examples of the use of pres-
entation manager are shown in Figures 4.4 and 4.5.

IV. QUANTITATIVE ANALYSIS

Microscopy is often multichannel (multispectral), with one channel providing the
required context for subsequent measurements. Segmentation of this context
enables quantitative representation of protein localization as a function of micro-
environment or genetic alterations. For example, if the level of study is the intra-

Figure 4.4. Guided workflow annotation and exploration of the database content.
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nuclear localization pattern, nuclear segmentation provides the context for subse-
quent analysis. Segmentation of the nuclear region is often hampered by the fact
that staining may not be uniform, many substructures may be present, and nuclear
regions often overlap to form perceptual boundaries. The latter problem is more
severe in tissue sections than in cell culture assays.

Delineation of regions of interest is often model based, wherein the model can
be either geometrical or statistical. Within the geometric framework, we offer two
approaches based on variational and voting technique (Parvin et al. 2003, 2004;
Yang and Parvin 2004). In each case, geometric constraints are specified through a
Hamiltonian or a discrete model, and the solution is evolved into a fixed point.
Within the statistical framework, a training set corresponding to features of inter-
est is constructed to provide a probabilistic representation. The training set may
be subsequently expressed with either declarative or generative basis functions
that project the feature set into a higher dimensional space to improve the per-
formance and robustness of the classifier. Present computational components,
within the BioSig framework, are based on geometric principles.

One rationale for this design principle is that nuclei and cells of interest (epithe-
lial cells) are radially symmetric or locally quadratic. This is a typical high-level con-
straint, sometimes based on human vision perception, imposed to derive the
solution into a fixed point. Two examples of segmentation through geometric mod-
eling follow. One is based on a variational technique, wherein each type of anomaly
is modeled and ambiguities are resolved through constrained regularization. The
second method is based on voting.

Figure 4.5. Query results for a collage of images and their annotations for protein co-localization
studies. Composite images are automatically generated and scaled.
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A. Variational approach to segmentation

In this approach, four computational steps are defined for removing a specific type
of artifact (noise, touching nuclei) (Yang and Parvin 2003). The model assumes that
a 3D nucleus imaged at a given focal depth is locally quadratic. Structures within
the image are initially removed, and the image is interpolated to reveal a smooth
surface. Each component of this binarized surface is then partitioned into several
nuclei through a process called regularized centroid transform (RCT). These com-
putational steps are shown in Figure 4.6a. The centroid transform essentially proj-
ects each point along the contour into a localized center of mass, as shown in Figure
4.6b. The solution is regularized to eliminate noise and other artifacts along the
contour. This is shown in Figure 4.7. In the remainder of this section, each step of
the process is described in detail.

Step 1. Elliptic regions: Let I0(x,y) be the original image. In the linear (Gaussian)
scale space, its representation at scale s is given by I(x,y;s) = G * I, where G is a 2D
Gaussian. The vector field of gradient —I = (Ix,Iy)

T can be classified by its Jacobian
or by the Hessian matrix:

(a) (b)

Figure 4.6. Segmentation process: (a) protocol for extracting delineating touching nuclei and 
(b) evolution of centroid transform between two adjacent nuclei.

(a) (b)

Figure 4.7. Segmentation of two touching nuclei.
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Bright elliptic regions can then be defined as the set of points satisfying the fol-
lowing conditions:

(4.1)

This means that both eigenvalues of the Hessian matrix are negative; that is, 
H(x, y) is negative definite. Similarly, a dark elliptic region can be identified by the
following conditions:

(4.2)

This classification is deduced directly from the classic method for flow pattern clas-
sification (Rao and Jain 1992). In scale-space theory (Lindeberg 1994), IxxIyy - I2xy is
referred to as the elliptic feature. Other properties of this feature are discussed in
Section IV.A.3.

Step 2. Harmonic cuts: The next step of the computational process is to remove
small elliptical regions from the cell and interpolate their region. This is essentially
a noise removal step. However, our data set has both random noise (CCD noise)
and speckle noise (internal structures within the cell). Previous efforts in noise
removal have been limited to filtering random noise (Perona and Malik 1990).
However, structural details behave much like speckle noise and more advanced
techniques need to be developed.

To motivate our solution, let’s first consider the 1D interpolation problem. A 1D
function I(x) with the region in the interval (a, b) can be interpolated with the average 

of the two endpoints, . However, this approach breaks continuity of 

interpolation. A better approach is to weight the interpolation, at each point x, as
a function of its distance to the boundary condition. That is, let Inew(x) = (b - x)I(a)/
(b - a) + (x - a)I(b)/(b - a). It can be shown that this representation is equivalent 
to minimizing

(4.3)

subject to the boundary conditions
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The 2D case is more complex because the boundary is often noisy and irregular,
and it is not clear whether propagating intensity based on the distance transform
will have desirable properties. We suggest that one way to ensure continuity is to
regularize the solution by extending the 1D solution to 2D. That is, this is achieved
by minimizing the following functional.

(4.5)

The Euler solution to this functional is the Laplace equation:

—2I = Ixx + Iyy = 0 (4.6)

Equation 4.6 is a 2D harmonic function defined on D, and thus we call this method
a “harmonic cut.” Harmonic functionals satisfy the Laplace equation and have many
important properties (Alfors 1966). The Laplace equation is a special case of the
Poisson equation, which has been studied extensively.

Step 3. Regularized centroid transform: At this stage of the computational
process, each cell is represented with a smooth surface corresponding to each of
its subcompartments. The next step of the process is to separate nuclei that are
grouped together into a clump (i.e., touching one another). This is achieved using
the RCT.

Figure 4.6b shows the basic idea for the RCT technique. The intent is to 
map vectors originating from the boundary of an ellipse to its centroid. If 
these vectors can be computed, the entire boundary can be grouped. This is true
for both boundaries and their interior points (i.e., grouping utilizes not only 
the edges but the regional information). The main issue is that centroids are
unknown and there are many centroids in the image. This is resolved by first com-
puting a vector field that can then be used to partition touching objects. Let I(x, y)
be the original intensity image. At each point (x0,y0), its equal-height contour is
defined by

I(x, y) = I(x0, y0) (4.7)

Expanding and truncating Equation 4.7 using Taylor’s series, we have the 
estimation

(4.8)

where u = x - x0 and v = y - y0, or, in the standard form,

(4.9)

where is the Hessian matrix, is the gradient 

of intensity, and w = (u,v)T is the centroid in the local coordinate system. Recall that
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the centroid of the quadratic curve defined by Equation 4.9 satisfies the following
linear constraint.

Hw + b = 0 (4.10)

If H is non-singular, the centroid can be determined directly, as follows.

w = -H-1b (4.11)

However, this is not always true, and in general the zero set defined by

(4.12)

is nontrivial and can be further classified into the following two categories.

• Uniform regions that correspond to a zero-intensity gradient of the image, with
the result that there is no information to estimate the centroid

• Elliptic features that occur in nonuniform regions

The major limitation is that the centroids at singular points of the Hessian are 
not well defined. Because the basic formulation of centroid transform is ill posed
(Tikhonov 1963), a regularized formulation is implemented. Let the centroid at 
(x, y) be denoted by (u(x,y),v(x,y))T. The regularized model can then be expressed
as

(4.13)

or

(4.14)

where the first and second terms are the error of estimation, the third term is the
smoothness constraint, and a(>0) is the weight factor. The discrete Euler–Lagrange
equations of the variational problem of Equation 4.14 can then be expressed as

(4.15)

Step 4. Partitioning vector field: The final step of segmentation is to compute the
partition of a vector field corresponding to the RCT. Consider an autonomous
system of differential equations:

(4.16)

The computed vector field can be partitioned simply by migrating each point to
its local centroid, as shown in Figure 4.6b. There is a strong similarity between RCT
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and watershed methods. However, because RCT is regularized and model based,
it does not lead to excessive fragmentation and has a far better delineation profile.
An example of segmentation results for two overlapping nuclei is shown in Figure
4.7.

Step 5. Representation and classification: Following segmentation, nuclear struc-
ture is represented with either an ellipse or hyperquadrics. The corresponding
protein localization is then represented with a feature vector at each spectral
channel. The ellipse fit is based on estimating the parameters of polynomial 
F(a,x) = ax2 + bxy + cy2 + dx + ey + f subject to the constraint that 4ac - b2 = 1
(Fitzgibbon et al. 1996). A 2D hyperquadric (Hanson 1988; Kumar et al. 1995) 
is a closed curve defined by

(4.17)

Because gi > 0, Equation 4.17 implies that

|Aix + Biy + Ci| £ 1 "i = 1,2, . . . ,N (4.18)

which corresponds to a pair of parallel line segments for each i. These line seg-
ments define a convex polytope (for large g) within which the hyperquadric is con-
strained to lie. This representation is valid across a broad range of shapes that need
not be symmetrical. The parameters Ai and Bi determine the slopes of the bound-
ing lines and, along with Ci, the distance between them. gi determines the “square-
ness” of the shape.

The fitting problem is as follows. Assume that m data points pj = (xj,yj), j = 1,2,
. . . , m from n segments are given. The cost function is defined as

(4.19)

where is the gradient operator, l is the regulariza-
tion parameter, and Qi is the constraint term (Kumar et al. 1995). The parameters
Ai, Bi, Ci, and gi are calculated by minimizing using the Levenberg–Marquart non-
linear optimization method (Press et al. 1992) from a suitable initial guess (Kumar
et al. 1995). Classification of each cell in tissue is performed by representing cellu-
lar organization with an attributed graph, as shown in Figure 4.8. The nodes and
edges in this graph correspond to cells and their relationships, respectively. The
attributed graph provides the macro information about the micro anatomy where
lumen can be localized and cell lines can be labeled with respect to their positions
relative to lumen.

B. Voting-based techniques

Nuclear regions and certain classes of cell lines demonstrate radial symmetry. It is
well known that radial symmetry—and in general, symmetry—is a pre-attentive
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human vision process (Attneave 1955) that improves recognition. Radial symmetry
persists in biological images at multiple scales. At the lowest level, radial symme-
try can be used to localize punctate protein expression. At a higher level, radial
symmetry can detect and localize nuclear regions and assist in the quantitative
analysis of proliferation assays. The critical features for detection of radial symme-
tries are noise immunity, invariance to deviation in shape and scale, and delineation
of adjacent symmetries. However, the notion of radial symmetry is used in a weak
sense, in that the basic geometry can deviate from convexity and strict symmetry
for the purpose of approximating the center of mass.

Similarly, continuity and closure from incomplete boundaries and subjective sur-
faces are another form of saliency. The method introduced here allows inference
of saliency through voting and perceptual grouping, and is implemented through
the refinement of specifically tuned voting kernels (Yang and Parvin 2004). 
Spatial voting has been studied for at least four decades. Hough introduced the
notion of parametric clustering in terms of well-defined geometry, which was later
extended to the generalized Hough transform. In general, voting operates on the
notion of continuity and proximity, which can occur at multiple scales (e.g., points,
lines, lines of symmetry, or generalized cylinders). The novelty of our approach is
in defining a series of kernels that vote iteratively along the radial or tangential
directions.

Figure 4.8. Segmentation is followed by the graph representation of the tissue where protein co-
localization in specific cell lines can be registered in the spectral stack (see color plate 1).
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Voting along the radial direction leads to localization of the center of mass,
whereas voting along the tangential direction enforces continuity. At each iteration,
the kernel orientation is refined until it converges to a single focal response. Several
different variations of these kernels have been designed and tested. They are cone
shaped, have a specific but variable scale and spread, and target geometric fea-
tures of approximately known dimensions. In the case of radial symmetry, the voting
kernels are initially applied along the gradient direction, then at each consecutive
iteration and at each grid location voting orientation is aligned along the maximum
spatial response. In the case of continuous boundary inference, the voting kernels
are initially applied along the normal to the gradient. The shape of the kernel is
also refined and focused as the iterative process continues. The method is appli-
cable to perceptual shape features, has excellent noise immunity, is tolerant to vari-
ations in target shape scale, and is applicable to a large class of application
domains.

Voting algorithm: Let I(x, y) be the original image, where the domain points 
(x, y) are 2D image coordinates. Let a(x, y) be the voting direction at each image
point, where a(x,y) := (cos(q(x,y)), sin(q(x,y))) for some angle q(x, y) that varies with
the image location. Let {rmin, rmax} be the radial range and D be the angular range.
Let V(x,y;rmin,rmax,D) be the vote image, dependent on the radial and angular ranges
and having the same dimensions as the original image. Let A(x,y;rmin,rmax,D) be the
local voting area, defined at each image point (x, y) and dependent on the radial
and angular ranges, defined by

(4.20)

Finally, let K(x,y;s,a,A) be a 2D Gaussian kernel with variance, masked by the local
voting area A(x,y;rmin,rmax,D) and oriented in the voting direction a(x, y). Figure 4.9
shows a subset of voting kernels that vary in topography, scale, and orientation.
The iterative voting algorithm for detection of radial symmetry is outlined in the
following.
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Figure 4.9. Kernel topography: (a–e) Evolving kernel for the detection of radial symmetries (shown at a
fixed orientation) has a trapezoidal active area with Gaussian distribution along both axes.
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Iterative Voting

Step 1. Initialize the parameters: Initialize rmin, rmax, Dmax, and a sequence Dmax =
DN < DN-1 < . . . < D0 = 0. Set n := N, where N is the number of iterations, and let
DN = Dmax. Also fix a low gradient threshold, Gg and a kernel variance, depend-
ing on the expected scale of salient features.

Step 2. Initialize the saliency feature image: Define the feature image 
F(x, y) to be the local external force at each pixel of the original image. The exter-
nal force is often set to the gradient magnitude or maximum curvature, depend-
ing on the type of saliency grouping and the presence of local feature
boundaries.

Step 3. Initialize the voting direction and magnitude: Compute the image 
gradient, —I(x, y), and its magnitude, ||—I(x, y)||. Define a pixel subset 
S := {(x,y) | ||—I(x,y)|| > Gg}. For each grid point (x, y) * S, define the voting direc-
tion to be

Step 4. Compute the votes: Reset the vote image V(x,y;rmin,rmax,DN) = 0 for all
points (x, y). For each pixel (x, y) * S, update the vote image as follows.

Here, w = max(u) and h = max(v) are the maximum dimensions of the voting area.
Step 5. Update the voting direction: For each grid point (x, y) * S, revise the

voting direction. Let

Let dx = u* - x, dy = v* - y, and

Step 6. Refine the angular range: Let n := n - 1, and repeat steps 4 through 6
until n = 0.

Step 7. Determine the points of saliency: Define the centers of mass or com-
pleted boundaries by thresholding the vote image as follows.

C = {(x,y) | V(x,y;rmin,rmax,D0) > Gv}
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Experimental results: Two examples demonstrating the utility of radial voting for
detection and localization studies are shown in Figures 4.10 and 4.11. The tech-
nique is tolerant to variations in scale, has excellent noise immunity, and can detect
overlapping objects with incomplete boundaries.

V. APPLICATIONS

Two applications demonstrate the use cases of BioSig. The first corresponds to foci
formation; that is, a potential representation of a DNA double-strand break (DSB)
as a function of ionizing radiation. The second corresponds to cell culture studies
involving cell-to-cell communication and adhesion within a 3D cell culture model.

A. 2D cell culture models

It is well known that ionizing radiation (IR) is a carcinogen in both humans and
animals (Upton 1986). Using the standard monolayer cell culture provides a basic

(a) (b) (c)

(d) (e) (f)

Figure 4.10. Evolution of the voting landscape for localization of nuclei in a mouse mammary tissue
section indicate separation of touching nuclei: (a) original image, (b–e) refinement of the voting map,
and (f) final localization of radial symmetries.
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understanding of how cells respond to a variety of factors that influence the degree,
response type, and its kinetics. IR has the potential to induce DNA damage result-
ing in punctate protein co-localization (foci) within nuclei after induction of DSB.
An example is shown in Figure 4.12, where a single cell has been extracted from
the image for ease of demonstration. Punctate events corresponding to protein
localization are extracted using the radial voting algorithm. Quantitative data are
then imported into the database for subsequent analysis and visualization.

B. 3D cell culture models

To determine whether low-dose radiation promotes aberrant extracellular matrix
(ECM) interactions, we have utilized BioSig to examine integrin and E-cadherin
localization in preneoplastic human cells surviving radiation. Integrins are a family
of epithelial receptors for the ECM, whereas E-cadherin maintains normal cell-to-
cell interactions and architecture. We used the HMT-3522 (S1) human breast cell
line cultured within a reconstituted ECM (Briand et al. 1987). These cells are genom-
ically unstable but phenotypically normal in that they recapitulate normal mammary
architecture in the form of a multicellular 3D acinus (Weaver et al. 1996). These clus-
ters express integrins in a polarized fashion and develop an organized ECM over
the course of 7 to 10 days in culture. The intent is to examine the consequences of
exposing these cells to ionizing radiation and a protein modifier known as EGF, as
shown in Figure 4.13.

Antibodies to E-cadherin, beta 1 integrin, or alpha 6 integrin were detected using
a green fluorescent label, and nuclei were counterstained with a red fluorescent

(a) (b)

Figure 4.11. Proliferation assay: (a) original image corresponding to a sample of C. elegans observed
through fluorescence microscopy and (b) detected nuclei.
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DNA dye. These were imaged using confocal fiuorescence microscopy and were
recorded using a 12-bit CCD camera. Cells that survived either 2 Gy or EGF-(400
pg/ml) showed decreased beta 1 or alpha 6 integrin localization, respectively.
However, when cells were exposed to both radiation and EGF additional pertur-
bations were noted. The clusters were disorganized, did not polarize the integrins
at the cell surface, and failed to express E-cadherin, indicative of a lack of struc-
tural organization. An example of the untreated cells is shown in Figure 4.14a, which
is stained for beta 1 integrin (green) with red nuclei.

Comparing this sample to Figure 4.14b, which is a colony of cells that were irra-
diated and treated with EGF-, shows that the localization of beta 1 integrin is per-
turbed, as is the organization of the colony. The previously cited characteristics,
along with the organization of each colony, were computed and stored in the 

(a) (b) (c)

(d)

Figure 4.12. Detection and representation of punctate events: (a) original, (b) detection of foci, 
(c) graph-based representation of detected foci, and (d) informatics interface to the resulting population
studies.
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database using the techniques described in Section IV. A pair of segmented images
from untreated and treated samples, their segmentation, and organization are
shown in Figure 4.15. These images correspond to a feature-based representation
of the “organized” and “disorganized” state of the colony in the database.

VI. CONCLUSIONS

Imaging assays are only one endpoint of the computational and experimental per-
spective in systems biology. In this context, cellular responses and patterns of
protein localizations are quantified as a function of stress, environmental conditions,
therapeutic agents, or molecular inhibitors. The nature of data and its annota-
tions has grown in complexity. This fact is coupled with the need to exchange 
information about protocol and experimental factors in a uniform way. From an
informatics perspective, these needs are addressed through leveraging emerging
standards in ontologies and controlled vocabulary.

Figure 4.13. Experimental protocol for in vitro treatment of a colony.

(a) (b)

Figure 4.14. Organization of a colony as a result of radiation and EGF treatment: (a) an untreated
sample maintained its symmetry along the lumen and (b) a treated sample lost its symmetric
organization (see color plate 2).
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From the computational perspective, novel techniques have been developed to
characterize cellular morphology and patterns of protein localization. This class of
quantitative data needs to be coupled with other data types, such as expression
profile, to reveal patterns of protein expression as a function of genetic signature.
Such an ensemble of data will eventually contribute to a more precise representa-
tion of genetic pathways within each compartment of molecular machinery.
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ABSTRACT

Biology thrives on complexity, and yet our approaches to deciphering complex biological
systems have been simple, observational, reductionist, and qualitative. The observational
nature of biology may even seem self-evident, as expressed more than three centuries ago
by Robert Hooke, whose work Micrographia of 1665 contained his microscopical investiga-
tions that included the first identification of biological cells: “The truth is, the science of
Nature has already been too long made only a work of the brain and the fancy. It is now
high time that it should return to the plainness and soundness of observations on material
and obvious things.”

As we begin to observe, infer, and list the fundamental “parts” out of which biology is
created, we cannot stop marveling at how these same components and their variants and
homologues interconnect, intertwine, and interact via universal principles that still remain to
be fully deciphered. To unravel this biological complexity, of which we only have a hint so
far, it has become necessary to develop novel tools and approaches that augment and 
rigorously formalize those human reasoning processes—tools that until now could be used
for only tiny toy-like subsystems in biology.

To this end, the anticipated computational systems biology tools aim to draw upon con-
structive mathematical approaches developed in the context of dynamical systems, kinetic
analysis, computational theory, and logic. The resulting toolkit aspires to build powerful sim-
ulation, analysis, and reasoning facilities that can be used by working biologists for multiple
purposes: in making sense of existing data, in devising new experiments, and ultimately in
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understanding functional properties of genomes, proteomes, cells, organs, and organisms.
If this ambitious program is to ultimately succeed, there are certain critical components that
require special attention of computer scientists and applied mathematicians. This chapter
studies the nature of these components, software architecture for integrating them, and illus-
trative examples of how such an integrated system may function in practice.

I. INTRODUCTION

Computational systems biology faces many opportunities, obstacles, and 
challenges:

• There is a critical need for powerful computational environments, where novice
users can build prototyping tools quickly. An example of such a tool is the 
multiscripting Valis environment, which provides rapid prototyping facilities in the
same way Matlab and Mathematica do for other disciplines (Paxia et al. 2002).

• There is a critical need for research and pedagogic modeling tools that allow a
novice user to understand—and reason and ponder about—large, complex, and
detailed biochemical systems effectively, efficiently, and still effortlessly. Our
effort in this direction is exemplified by the modular and hierarchical modeling,
simulation, and reasoning tool called Simpathica, which can extract nontrivial
temporal properties of diverse classes of biochemical networks, be they regula-
tory, metabolic, or signaling. Simpathica is constructed using the Valis environ-
ment (Mishra 2002b; Antoniotti et al. 2003a, 2003c; Mishra et al. 2003).

• There is a critical need for further and rapid development of new biotechnolog-
ical approaches to provide measurements at single-molecule scales with high
throughput and enhanced accuracy. We believe that significant improve-
ments will emerge from the confluence of ideas from nanomechanical sensing
devices, single-molecule biochemistries, better photochemistry, photonics and
microscopy, and clever experiment and algorithmic designs, integrating these
complex multicomponent devices (Anantharaman et al. 1997, 2005; Aston et al.
1999; Mishra 2002a, 2003).

• Finally, there is a critical need for a catalog of illustrating examples, where the
aforementioned methodologies prove their power unambiguously. Given the
infancy of this emerging field, these pioneering experiments will face many
unpredictable hurdles, but the experience gained will most likely revolutionize
our collective scientific viewpoint. Primary among these grand challenges could
be the one related to various processes involved in cancer: cell cycle regulation,
angiogenesis, DNA repair, apoptosis, cellular senescence, tissue space model-
ing enzymes, and so on. We note that presently there is no clear way to deter-
mine if the current body of biological facts—in this instance, those related to
cancer—is sufficient to explain phenomenology. In these particular cases, rigor-
ous mathematical models with automated tools for reasoning, simulation, and
computation can be of enormous help to uncover cognitive flaws, qualitative 
simplification, or overly generalized assumptions.
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This chapter is organized as follows. We first describe the structure of the com-
putational systems biology toolkit (the Valis environment with related software and
database system), in which Simpathica is embedded (Section II). This discussion is
followed by a description of Simpathica software architecture and implementation
within Valis (Section III) and an illustrative example (Wnt signaling in Section IV). We
conclude (in Section V) with a list of grand challenges. Sections II and IV should 
be of interest to systems biologists interested in applying these tools to other
examples. Section III should interest bioinformaticists engaged in building 
ever-more powerful computational tools for new rapidly arriving biological prob-
lems, protocols, and technologies. Section V should interest systems engineers,
mathematicians, and computer scientists excited by the new challenges biology
has created for many of our classical fields.

II. VALIS AND SIMPATHICA SYSTEMS

The toolkit combining the Valis software environment and the Simpathica systems
biology reasoning tool is the product of over three years of research and develop-
ment. Although these systems were designed for researchers in the life science
community, the basic elements of their design are rather flexible and the tools can
be adapted easily for other areas (e.g., medical informatics or computational
finance). Currently, the NYU computational systems biology toolkit consists of the
following three core components.
• Valis: An environment for rapidly integrating bioinformatics research performed

by many different groups
• NYU Microarray Database: A database for collecting, sharing, distributing, and

analyzing microarray abundance data
• Simpathica: An advanced systems biology reasoning tool for simulating and rea-

soning about biological processes

All of the tools are built with an open architecture, allowing modular enhance-
ments to be developed easily and integrated rapidly. Because Valis allows rapid
prototyping, and Simpathica can model biological domain knowledge, these tools
allow scientists to quickly develop new hypotheses based on earlier experiments
and available literature, and a platform to explore the steps needed to deepen their
understanding.

A. Valis

The bioinformatics environment, Valis, includes tools for visualization of biological
information, design, and simulation of in silico experiments and storage and com-
munication of biological information. Valis sets itself apart from other environments
through two key features.

• Language-independent architecture: The Valis advanced scripting engine can
integrate research from multiple groups into a single environment. Researchers
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using the Valis framework can share both the data and the algorithms for the analy-
sis of that data. Valis’s language-independent architecture allows research groups
to leverage programs written in different languages. Valis currently supports script-
ing in R, Perl, Python, JavaScript, SETL, and Common Lisp, among others. This
effectively allows Valis users to seamlessly integrate the major open-source com-
putational biology platforms Bioconductor, BioPerl, and BioPython. Native
libraries can be integrated in the system and used by all supported languages.

• Whole genome analysis and systems biology analysis libraries: Valis is versatile.
Custom-built data structures and algorithms make it possible to perform whole
genome analysis as well as simulation and reasoning of large biochemical 
networks on commodity hardware. As the throughput of sequencing efforts
increases, Valis opens up new avenues for comparative genomics studies through
computationally efficient large-scale whole genome analysis tools.

For instance, Valis has been used in conjunction with single-molecule physical
mapping technology and microarray CGH technology to develop a set of com-
parative and functional genomic methods that can validate and find errors in
genome sequence data, search for copy number variations in cancer cell lines, and
create models of genome evolution to understand large segmental duplication and
functional evolution of genes through duplication or splicing variants. The ability
to create new algorithmic approaches rapidly within Valis is hoped to have an
immediate and direct impact on the biological community: creating algorithms for
understanding and extracting information from genomic and transcriptomic data
in a coordinated manner; building, modifying, and correcting existing models to
understand biological processes; and creating a common and unified language for
biologists to communicate, exchange data, design, and disseminate experimental
protocols.

B. NYUMAD

Currently, a significant portion of experimental biological measurement is focused
on gene expression or genomic polymorphisms, and is obtained with microarrays.
The wealth of microarray data being generated by biological researchers necessi-
tates a system that can manage, analyze, persist, and distribute this information
efficiently to other researchers. Such a system faces numerous challenges, includ-
ing the sheer quantity and complexity of such data, lack of interoperability among
systems, and the often proprietary methodologies used by the research laborato-
ries generating the data.

Significant improvement has been accomplished through standardization. For
instance, over the last couple of years MAGE-ML (MicroArray Gene Expression
Markup Language) has emerged as the accepted standard for microarray data
(www.mged.org), allowing for the transmission of XML documents describing this
data. A Java object model (known as the MAGE-OM) derived directly from this
specification also exists, thereby allowing MAGE-ML documents to be converted
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into their corresponding runtime Java objects, and vice versa. This standard has
grown widely in its adoption, and has made specification in one of its subsets
(MIAME) required for most publication in archived journals. As the only current stan-
dard for microarray data, MAGE-ML continues to grow in popularity.

We have developed in our toolkit a system to maintain and analyze biological
abundance data (for example, microarray expression levels or proteomic data),
along with associated experimental conditions and protocols. The prototypic
system is called the NYU Microarray Database (NYUMAD), which has been
expanded to deal with many other related experiments. It uses a relational data-
base management system for the storage of data and has a flexible database
schema designed to store any type of abundance data along with general research
data such as experimental conditions and protocols.

NYUMAD is a secure repository for both public and private data. Users can
control the visibility of their data. Initially, the data might be private, but after the
publication of the results the data can be made visible to the larger research com-
munity. Data analysis tools are supplemented with visualization tools. The goal is
to not only provide a set of existing techniques but to incorporate ever more
sophisticated and mathematically robust methods in the data analysis and to
provide links and integration with other NYU tools such as the Valis system. 

• Strict adherence to the MAGE-ML standard for microarray data to provide a foun-
dation for interoperability with other data systems

• Modularization of software services to allow easy reuse and deployment of
system subcomponents based on a specific laboratory’s research needs

• Extensibility to allow developers to quickly create powerful data-editing GUI
clients specific to their laboratory needs

The software system (under development) is a three-tier system whereby client
applications used to edit/manipulate microarray data (GUI applications, analysis
tools) exchange data with Java servlets via XML documents. 

A different but related database, NYUSIM, is used to store in silico time-course
data obtained through various methods of simulation. NYUSIM and NYUMAD share
many features in common, and NYUSIM can be used interchangeably when the
microarray data is obtained in vivo or in vitro by a series of experiments or sam-
pling over time. The traces obtained from this database can be analyzed in many
different ways, such as by time-frequency analysis with NYU BioWave or temporal
logic analysis with Simpathica, and GOALIE (Go Algorithmic Logic for Information
Extraction).

C. Simpathica

The Simpathica system occupies a central role in our systems biology toolkit. It
allows biologists to construct and simulate models of metabolic, regulatory, and
signaling networks and then to analyze their behavior. Biochemical pathways 
can be drawn on the screen through a visual programming environment or in a 
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specialized XML format (SBML format, see [SBML 2002]), a language originally
designed to promote information exchange between multiple systems and pro-
grams. The system allows a biologist to combine simple building blocks repre-
senting well-known objects: biochemical reactions and modulations of their effects.

The system then simulates the pathways thus entered. Coupled with a natural
language system, the Simpathica tool allows a user to ask questions, in plain
English, about the temporal evolution of the pathways previously entered. In
general, using modeling tools such as Simpathica to simulate biological processes
in silico a biologist can model and study the behavior of complex systems—explor-
ing many different scenarios rapidly without relying solely on experimentation.

D. Theoretical basis for Simpathica

As noted previously, Simpathica has a modular and hierarchical design that allows
a user to effortlessly construct and rigorously analyze models of biochemical path-
ways composed of a set of basic reactions. Each reaction is thought of as a module
and belongs to one of many types: reversible and irreversible reactions, synthesis,
degradation, and reactions modulated by enzymes and co-enzymes or other reac-
tions satisfying certain stoichiometric constraints. If the stochastic nature of these
reactions is ignored (i.e., mass-action models), each of them can be described by
a first-order algebraic differential equation whose coefficients and degrees are
determined by a set of thermodynamic parameters.

As an example, a reaction modulated by an enzyme leads to the classical
Michaelis–Menten’s formulation of reaction speed as essentially differential equa-
tions for the rate of change of the product of an enzymatic reaction. The parame-
ters of such an equation are the constants Km (Michaelis–Menten constant) and Vmax

(maximum velocity of a reaction). In a simple formulation, such as in S-system (Voit
1991, 2000), this approach provides a convenient way of describing a biochemical
pathway as a composition of several primitive reaction modules (which can be
automatically translated into a set of ODEs with additional algebraic constraints).
Simpathica and XS-system (an extension of the basic S-System) (Mishra 2002b;
Antoniotti et al. 2003a, 2003c; Mishra et al. 2003) retain this modular structure while
allowing for a far richer set of modules and constraints.

The Simpathica architecture consists of two main modules and several ancillary
modules. The main module is a graphical front end used to construct and simulate
the networks of ODEs (ordinary differential equations) that are part of the model
being analyzed. Simpathica uses, among others, the SBML format (SBML 2002) for
exchange. The second module, XSSYS, is an analysis module based on a branch-
ing-time temporal logic that can be used to formulate questions about the behav-
ior of a system, represented as a set of traces (time-course data) obtained from
wet-lab experiments or computer simulations. The simplest forms of such queries
are about the system steady-states, as there is very little interesting temporal struc-
ture to such queries.
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These queries are of the form “Is it true that starting at a particular initial state
the system can eventually get to a state and remain there without any variation in
the states?” Other queries can be about the system robustness (system eventually
returns to a state retaining certain properties under various forms of perturbation),
reachability analysis (all states the system can eventually get to or all states from
which the system can enter a state with some desirable or undesirable property),
frequently visited states, and so on. The class of queries in such a branching-time
temporal logic is rather rich, but yet amenable to efficient computational manipu-
lation. Thus, starting with a state-trace of a biochemical pathway (i.e., a time-
indexed sequence of state vectors representing a numerical simulation of the
pathway) as input, Simpathica performs the following operations.

• Simpathica answers complex questions involving several variables about the
behavior of the system. This is rather different from visually examining intertwined
sets of simulation traces of a large complex system.

• Simpathica stores traces in an ancillary database module, NYUSIM, and allows
easy search and manipulation of traces in this format. The analysis tools allow
these traces to be further examined to extract interesting properties of the bio-
chemical pathway.

• Simpathica classifies several traces (either from a single experiment or from 
different ones) according to features discernible in their time and frequency
domains. Multiresolution time-frequency techniques can be used to group
several traces according to their features: steps, decreases, increases, and even
more complex features such as memory.

• Simpathica can automatically generate interesting properties that distinguish one
model from a variant in the same family. For instance, by examining cell-cycle
models of wild types, mutants, and double-mutants Simpathica can generate a
story about how they subtly differ in their temporal behaviors.

With these tools, Simpathica provides an environment to suggest plausible
hypotheses and then refute or validate these hypotheses with experimental analy-
sis of time-course evolution. It also allows investigating conditions or perturbations
under which a biochemical pathway may modify its behavior to produce a desired
effect (an instance of a control engineering problem).

The XSSYS, a Simpathica back end, implements a specialized model checking
(Browne et al. 1986; Clarke et al. 1999) algorithm that given a “model trace” and a
temporal logic formula expressed in an extended CTL form can state whether the
formula is true or false, while providing a counterexample in the latter case (i.e.,
the system gives an indication at which point in time the formula becomes false).

A full description of the syntax and semantics of the temporal logic language
manipulated by Simpathica/XSSYS is beyond the scope of this chapter and is hence
omitted. For the purpose of the present discussion, it suffices to assume that all
standard CTL operators are available (e.g., modal operators such as always, even-
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tually, globally, in future, until and the standard Boolean operations such as and,
or, implies, and not). For instance, robustness of a “purine metabolism pathway
model” is succinctly expressed by a statement such as “Always (PRPP > 50 * PRPP1
implies (steady_state() and Eventually (IMP > IMP1) and Eventually (HX < HX1) and
Eventually(Always(IMP = IMP1)) and Eventually(Always(HX = HX1))”. This statement
captures a very complex notion of biological robustness: An (instantaneous)
increase in the level of PRPP will not make the system stray from the predicted
steady state, even if temporary variations of IMP and HX are allowed.

Thus, the main operators in XSSYS (and CTL) are used to denote possibility 
and necessity of propositions over time. In our case, such propositions involve 
statements about the value of the variables representing concentrations of molec-
ular species. For instance, to express the query asking whether a certain protein
level (p) will eventually grow above a certain threshold value (K), we write “eventu-
ally (p > K).” We also augment the standard CTL language with a set of domain-
dependent queries. Such queries may be implemented in a more efficient way 
and express typical questions asked by biologists in their daily data analysis tasks.

As an example, we can formulate complex queries such as “Always (Globally 
(X in [L, H]) and eventually (X = L) and eventually (X = H) and globally (X = L implies
next (X in [L, H] until X = H)) and globally (X = H implies next (X in [L, H] until X =
L)))”. The query expresses the fact that the value of the X variable “oscillates”
between the two values of L and H. Note that our temporal logic deals with time
in a topological sense and hence lacks the expressive power to assert that the time
period between L and H is constant.

On the other hand, this same topological nature of time helps us express 
natural ordering among important biological events, independent of whether the 
events are controlled by processes operating in fast or slow time scales. Thus, in
spite of few obvious shortcomings CTL is still powerful enough to describe 
many properties of the system, such as liveness and safety. Furthermore, for those
temporal properties expressible in the logic the analysis tool efficiently constructs
counterexamples when input query fails to hold true or restricts the conditions
under which the query can be satisfied. A more thorough introduction to XSSYS
and its capabilities can be found in Antoniotti et al. (2002, 2003c) and Mishra
(2002b).

III. SIMPATHICA WITHIN VALIS

In this section we examine how the possibility of using multiple scripting languages
within Valis has proven very useful in rapid construction of tools for bioinformatics
and computational biology. To this end, we consider here the Simpathica system
described earlier and developed as part of the DARPA BioCOMP project.

The Simpathica/XSSYS system is logically divided into a front end and a simula-
tion system (i.e., Simpathica proper and its analysis back end XSSYS). The two 
components work together to construct, simulate, and analyze the behavior of
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metabolic and regulatory networks. The biochemical pathways are entered into 
the system either via the main Simpathica user interface or in an XML format. The
system then simulates the pathways entered and produces trace objects. The
XSSYS back end, written in Common Lisp, manipulates these traces (or traces pro-
duced by other simulation software or experiments) and evaluates queries about
the temporal evolution of the pathways in an appropriate temporal logic language.
In summary, the following are the key steps.

1. The Simpathica front end takes as input descriptions of metabolic and regula-
tory pathways constructed from a set of standard building blocks, which describe
a repertoire of biochemical reactions, and can display these pathways in a graph-
ical representation.

2. Simpathica then transforms this graph into an internal XML representation that
can also be used for data exchange purposes. This internal representation con-
sists of a set of ODEs along with initial conditions. These ODEs are then trans-
lated into Python code, which performs the actual simulation by integrating the
set of equations. The result of such a simulation is the trace object to be input
into the XSSYS trace analysis system.

3. The output of the Simpathica front end consists of an XML model and a trace
object produced indirectly by the chosen ODE integrator (Python in this specific
case).

4. Once these are available, the XSSYS system takes the trace object and a 
temporal logic query and evaluates the truth value of the query using a model-
checking algorithm. If the query turns out to be false over the trace, XSSYS will
also return a counterexample (in the form of a time index indicating a point
where the trace falsifies the query).

The modules produced for the BIOCOMP project initially used the OAA Object
Agent Architecture to facilitate integration between modules written in different
languages and produced by different groups. However, we found that the OAA
architecture initially selected to speed up prototyping of the BioCOMP system—
Bio-SPICE—has a few shortcomings which we wanted to circumvent.

• In this architecture, each agent must register with a “facilitator” (written in
Prolog), which centralizes most exchanges.

• The facilitator serves to solve queries written in an interagent communication lan-
guage (ICL) that must be built by the clients. The ICL uses most of the power of
the unification-based semantics of Prolog. However, this approach requires agent
writers to actually know and write in Prolog, which is further compounded by the
problem that requests in ICL must be laboriously constructed using an abstract
syntax tree library in Java and/or C.

• Performance issues arise for in-process calls. Limits may be imposed on message
sizes.

Valis sidesteps these problems by integrating several subsystems in a much tighter
way. Once having assembled all of the underlying building blocks needed (e.g., the
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XML parsers, graph viewers, ODE integrators, and XSSYS subsystem), it is possible
to prototype in Valis a system such as Simpathica/XSSYS in a matter of a couple of
weeks.

A basic graphical user interface can be put together in a Valis form in a few hours,
in that most of the widgets needed are standard controls of the form manager. The
interface can be organized using multiple “Tab” container widgets and using dif-
ferent tabs for I/O, the model editing widgets, the simulation pane, the graphical
results of the simulation, and the interface with the XSSYS subsystem. Figure 5.1
shows the tabs and the “model editing” pane. The code that handles events from
the forms and customizes the interface can readily be written in JavaScript.

The only graphical element needed that is a bit unusual is a viewer for showing
a graphical representation of the pathways. For this widget, we use the Adobe SVG
viewer. This is a freely available control that can render models written in the SVG
language with zooming capabilities. Because most of the internal data structures
with which Simpathica/XSSYS works are based on XML, it is appropriate to use the
versatile XML parser from Microsoft to handle them. In Valis this can be made avail-
able using just one code line:

xmlparser=CreateObject(“Msxml2.DOMDocument.4.0”);

A model of a pathway can be easily stored into XML files and retrieved using
functionalities provided by the XML parser object. Once loaded and parsed, this
model is used to update the internal data structures (namely, the “compounds”
and “reactions” lists) and the corresponding graphical widgets.

We construct a graphical representation of the model from the internal XML rep-
resentation and feed it to the SVG widget. We use the DOT language (a general
graph description language) as an intermediate language for this graphical repre-
sentation. The DOT code is produced by applying a style sheet to the XML model.
For example, a subset of the Wnt Signaling Model (discussed in detail later in the
chapter) will yield the following DOT code.

digraph G {
X0 (label=”W”, style=filled);
X1 (label=”Dshi”);
X2 (label=”Dsha”);
X1 ->”Yv1” (label=”v1”, arrowhead=none);
X0 ->”Yv1” (style=dotted);
“Yv1” ->X2;
“Yv1” (shape=point);
X2 ->X1 (label=”v2”);

}

In this representation, X0 through X2 and Yv1 are nodes (each with certain prop-
erties, such as label, style, and so on). The DOT code shows a reversible reaction
between Dshi and Dsha modulated by Wnt.

The Graphviz system can produce a variety of other graphical representations
(among them SVG) once provided with models described in the DOT language.
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We reworked this system into a standalone control, which is then made available
to Valis.

// this function reloads the SVG from the dot string
// dotStr is the DOT description of the model
function updateSVG(dotStr) {

var f, svgStr;
// use the graphviz control to obtain SVG code
svgStr=graphviz.DotToSvg(dotStr);
// save the svg string to file for efficiency purposes
f=fso.CreateTextFile(pathname+”\\diagram.svg”,true,

false);
f.write(svgStr);
f.close();
// visualize the svg diagram
activeSvgCtl.SRC=pathname + “\\diagram.svg”;

}

This program fragment yields a graph that summarizes the reaction pictorially, as
shown in Figure 5.2. Furthermore, the system allows the user to navigate through

Figure 5.1. Simpathica GUI design.
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this graph using the SVG viewer. Note that the internal model used to produce the
graph representation can be transformed into an intermediate representation 
suitable for the generation of a set of ODEs. This intermediate representation is
obtained with the application of another XML style sheet, as follows.

function generateScript4Map() {
var xmlmap=null;
//generate the xml map from the gui
xmlmap=downloadMap();
//transform the map (xmlmap) to the graph internal //rep

resentation (xmlgraph) using the style sheet 
(xslmap2graph)

xmlmap.transformNodeToObject(xslmap2graph, xmlgraph);
writeDebugInfo(“Graph”, xmlgraph.xml);
//generate the python script for the ODE
return xml2py(xmlgraph);

}

Figure 5.2. The SVG viewer embedded in a Valis form.
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Without much difficulty, we can then dynamically produce some Python code 
(in the xml2py function shown previously) with the step function for the integrator.

class __simpathica:
def WntPathway_subset(self, X, t):

xdot=()
xdot.append(0)
xdot.append(+1*(+0.182*pow(X(1),1)*pow(X(0),1))

++1*(+1.82e-2*pow(X(2),1)))
xdot.append(++1*(+0.182*pow(X(1),1)*pow(X(0),1))

+- 1*(+1.82e-2*pow(X(2),1)))
return xdot

initial = (1,100,0)
compoundsNames = (“W”, “Dshi”, “Dsha”)
functionName=”__simpathica().WntPathway_subset”

A Python ODE integrator (based on Numeric Python) will integrate the ODEs
generated.

from Numeric import *
from scipy import *
from scipy.integrate import *
from scipy import gplt
def executeSimulation(script, fT, tT, st):

exec script
global fromTime, toTime, steps, precision, time, Y
fromTime = fT
toTime = tT
steps = st
precision = (toTime - fromTime) / float(steps)
time = arange (fromTime, toTime, precision)
Y = odeint(eval(functionName), initial, time)
gplt.plot(time, Y)

This Python function is called directly from the Simpathica event handlers (written
in JavaScript) once the simulation is started.

// Call the Python integrator. Pass the equations and the 
// simulation parameters
executeSimulation(generateScript4Map(), from, to, steps); 

The executeSimulation Python function provides also for a default visualization
of the traces of the simulation. It is very easy to customize the current plotting
program used by the visualizer, or even to choose another plotting control (e.g.,
Microsoft’s Chart control). (See Figure 5.3.)

The XSSYS query event (generated by the Run XSSys button in the XSSys Query
pane, shown in Figure 5.4) can be handled by some JavaScript.
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function Form1_LoadTraceCommandButton::Click() {
i = Load_Trace(filename);
Select_Trace(filename);
Form1_LoadedTracesListBox.AddItem(filename, i);

}
function Form1_RunXSSysButton::Click() {

Form1_TLResultTextArea.text = “”;
Form1_TLResultTextArea.text=

Analyze_This(Form1_TLQueryTextArea.text);
}

The JavaScript Query-Handler, in turn, calls (the front end to) the XSSYS system
in Common Lisp. The XSSys query pane is shown in Figure 5.4. This pane indicates
how the user may enter the queries and get a response. All of this is integrated in
the code in Common Lisp as follows. The Common Lisp code is a simple wrapper
around the XSSYS package. This wrapper implements the core of the Temporal
Logic analysis facility (with the identifiers prefixed by xssys:). The Common Lisp 
integration within Valis and the ActiveX Scripting Engine is as tightly coupled as
VisualBasic, and much more so than that in Perl or Python.

A function defined within Common Lisp appears directly within the ActiveX
Scripting Engine name spaces, and any function or procedure defined (for example)

Figure 5.3. Simulation of the Wnt subset.
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in Perl or JavaScript appears as a regular function in a Common Lisp “script.” Of
course, Common Lisp is compiled natively, thus enhancing the performance over
other “scripting languages.” The functions |Load_Trace| and |Analyze_ This| in the
code following thus become visible in the ActiveX Scripting Engine name spaces
and can be referenced by (for example) a VisualBasic user interface. No special reg-
istration code is necessary.

(defun |Load_Trace| (filename)
(unless (probe-file filename)

(return-from |Load_Trace| -1))
(setf xssys:*the-current-trace*

(xssys:load-trace (pathname filename) :btd))
(or (position (xssys:trace-system-name xssys:*the-current-

trace*)
( xssys:list-all-traces)
:test `string=
:key `xssys:trace-system-name)

-1))

Figure 5.4. The XSSys query pane.
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(defun |Analyze_This| (query)
(multiple-value-bind (result

satisfying-state-groups
counter-example)

(xssys:analyze-this trace-data form)
(when counter-example

(setf counter-example-index (second counter-example)))
...

several variables in this example are introduced
;; elsewhere.

(format *standard-output*
“~&;;; Query ~S prop ~S prop-ag ~S result ~S counter 
~S~2%”

query
propositionalp
propositional-always-p
result
counter-example-index)

...
)

IV. Wnt SIGNALING EXAMPLE

There has been considerable interest in signaling pathways involving Wnt proteins,
which form a family of highly conserved secreted signaling molecules. These pro-
teins regulate cell-to-cell interactions during embryogenesis. Furthermore, Wnt
genes and Wnt signaling are also implicated in cancer. (See Figure 5.5.)

While at a qualitative level, scientists now have significant insights into the mech-
anisms of Wnt action, and data from better experiments through genetics in
Drosophila and Caenorhabditis elegans (and gene expression in Xenopus embryos)
we still only have a rudimentary understanding of how the complete pathway oper-
ates under various situations.

In a widely accepted model of the Wnt pathway, Wnt proteins bind to their recep-
tors on the cell surface and transduce the signal (through several cytoplasmic relay
components) to beta-catenin, which then enters the nucleus and forms a complex
with TCF to activate transcription of Wnt target genes. A clear description of this
model and an earlier numerical analysis can be found in the paper by Lee et al.
(2003). The same analysis could be repeated in Simpathica within about a week (as
described in the following), involving few steps.

Step 1: First, we took each reactant and each reaction and entered them into Sim-
pathica. All we needed to do was to input the reactants’ names and concentrations,
and for each reaction list the reactants, products, and rate constants. We obtained
almost all of the data from the article by Lee et al. (2003) with one exception. Instead
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Figure 5.5. Wnt signaling pathway rendered by Simpathica.
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Figure 5.6. List of reactants in Wnt pathway entered in Simpathica.

of using a rapid equilibrium approximation as in Lee et al. (2003), we made educated
guesses for the forward and backward rate constants that would be consistent with
fast enzymatic reactions reaching equilibrium quickly. These differences may explain
some discrepancies in the scale of the results. Simpathica automatically generates
the entire pathway graphically and computes a system of differential equations to
simulate the system evolution over time. (See Figures 5.6 and 5.7.)

Step 2: Next we checked that the system had different steady states under 
the two different conditions corresponding to the presence or absence of 
Wnt. These can be tested by queries: W = 0 implies eventually steady_state() 
and W = 1 implies eventually steady_state(). We can now compare the steady-state
concentrations generated by our simulation to the experimental data. (See Figure
5.8.)

Step 3: Further validation of the model is obtained studying the degradation rate
of beta-catenin under different conditions. We can reproduce different experi-
mental settings simply by parameterizing initial concentrations or rate constants
through Python scripts. (See Figure 5.9.)
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Step 4: Finally, we can model the transient Wnt stimulation, where Wnt is present
at the beginning of the simulation but then decays exponentially. (See Figures 5.10
and 5.11.) 

Following the analysis (presented in the Lee et al. (2003) paper), we also noticed
that beta-catenin’s increase is only temporary, whereas axin remains down-
regulated. Moreover, the response by axin precedes that of beta-catenin.

V. CONCLUSIONS

Many scientists and engineers have articulated that the biology of the new millen-
nium needs a “regime change” and that the formal tools from systems sciences,
with their rigor and depth, are desperately needed. And yet in spite of such noble
goals systems biologists still wait patiently to be greeted as liberators by the vast
majority of biologists. Perhaps in this lies the grandest of all challenges for systems
biologists.

The most important grand challenge concerns better measurements and exper-
iment design, as well as making data available in an electronic public forum. The

Figure 5.7. List of reactions in Wnt pathway entered in Simpathica.
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solution should comprise steps to intervene and measure at the single-molecule
and single-cell levels, publication of the experimental data using a clear and unam-
biguous lexicon, and the ability to conduct experiments inexpensively with facili-
ties that can be shared by the entire community. A community of biologists working
within a social framework, where each scientist contributes from his or her own accu-
mulated knowledge and experience, can create the needed lexicon and ontology.
Software to ease the communication among scientists is not difficult, but does not
exist at this point.

There should be a public database of biological models at various spatio-
temporal resolutions and with as much of the in vitro and in vivo kinetic parame-
ters as is possible to compile. Experiments at single-cell and population levels using
wild-type cells, mutants, cells perturbed by different conditions, or RNA interfer-
ence should be cataloged with precise time-course measurements. Along these
directions, it will be worthwhile to focus on a complete map of pathways for one
organism, say C. elegans. This digital worm, which can be dubbed C++elegans,
could provide an enhanced environment for in silico experiments. Other pathways
of interest might be cell cycles, proliferation, degradation, and apoptosis. Ulti-
mately, a focus on models of aging and diseases will be of considerable human
interest.

Figure 5.8. Steady-state analysis for Wnt pathway for different values of Wnt.
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Figure 5.9. Kinetics of beta-catenin degradation.

Figure 5.10. Beta-catenin response.
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Figure 5.11. Axin response.

Thus, the purely technical grand challenges for this field will be experimental and
computational, and will stay with us for a considerably long time. Most of these
computational problems deal with accuracy and uncertainty in the model, model
complexity, and computational complexity.

• Reactions models: Instead of just ODE models using DAEs, one must generalize
our tools to PDEs (incorporating spatial properties), SDEs (small population size
for interacting molecules), and hybrid models (part continuous, part discrete, but
also spatial and probabilistic) in one general framework.

• State space (product space): A number of interacting cells can be modeled by
product automata. In addition to the classical “state-explosion problem,” we
need to pay attention to the variable structure due to (a) cell division, (b) apop-
tosis, and (c) differentiation.

• Communication: We need to model communication among cells mediated by
interactions between extracellular factors and external receptors, efficiently and
accurately.

We believe that the solution to such computational grand challenges is in reduc-
tion of complexity by hierarchical modeling and symbolic modeling. As we go to
more and more complex cellular processes, a clear understanding can be obtained
only through modularized hierarchical models. For this process to succeed, we 
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will need to derive simple I/O models of low-level modules by projection (elimina-
tion of state variables) or by reduction (state collapsing), while retaining bisimula-
tion properties. The system dynamics should have a succinct symbolic
representation that can be manipulated algebraically (without explicit and exhaust-
ing simulation).

For instance, in the case of a hybrid automaton model one may be able to rep-
resent flow, invariant, jump, and reset conditions, with a subset of the kinetic param-
eters left as unknown variables (e.g., k1, k2, . . . kn). By algebraically manipulating the
equations (and inequations and inequalities), one can elicit many biological prop-
erties of the system in terms of constraints on the unknown and unmeasured vari-
ables and parameters. Interestingly enough, because of a similar development of
symbolic (and to a less significant degree, hierarchical) model checking procedures
in the discrete asynchronous setting we have been able to tame the computational
complexity of computer-aided verification of complex and large engineered
systems such as VLSI circuits (Browne et al. 1986; Clarke et al. 1999).
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ABSTRACT

With the sequencing of the human genome, it has become apparent that systems biology
(the understanding of cellular networks through dynamical analysis) is becoming an impor-
tant part of research for mainstream biologists. One of the indicative trends to emerge in
recent years is the development of model interchange standards that permit biologists to
easily exchange dynamical models between different software tools. In this chapter, two chief
model exchange standards (SBML and CellML) are described. In addition, the development
of extensible software frameworks (including SBW, BioSPICE, and BioUML) and the role they
might play in stimulating the development of new tools and approaches are examined.
Finally, the range of possible computational applications is described, highlighting the rich
set of tools emerging as systems biology becomes a mainstream science.

I. INTRODUCTION

Although computational systems biology may seem to be a recent field of
endeavor, its origins can be traced as far back as the 1920s and 1930s (Wright 1929).
During this period, it was already believed by some that genes were responsible in
some way for specifying enzymes. It was also about this time that glycolysis, the
first metabolic pathway, was being elucidated. This period also saw the beginnings
of the idea that enzymes formed linked sequences called pathways. It is therefore
even more remarkable that given the infancy of these concepts Sewell Wright
attempted at the time to give a physiological explanation for the occurrence of
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genetic dominance and recessivity (Wright 1934). Wright argued that the explana-
tion for the origin of dominance lay with the properties of catalytic networks, and
laid out an initial mathematical theory that described the properties of enzyme 
networks (this early work later became significant during the development of 
metabolic control analysis [Kacser and Burns 1981]).

In the 1940s, as the first digital computers were being built, pioneering individ-
uals such as Garfinkel, Higgins, and Chance began investigating the possibility of
modeling the subtle behavior of biochemical pathways. Even before the advent of
the digital computer, the same group had been using analog computers to model
simple biochemical pathways for almost 15 years (Chance 1943; Higgins 1959;
Garfinkel et al. 1961).

Since the work of further pioneers in the 1950s, there have been many small
groups that have continued this line of inquiry and that together laid the founda-
tion for many of the techniques and theory we use today and take for granted in
contemporary systems biology. It should be noted that there is a large body of lit-
erature, particularly in the Journal of Theoretical Biology, dating back 50 years that
many newcomers to the field will find useful to consider.

A. What is systems biology?

There are many conflicting opinions today on what exactly systems biology is. His-
torically, the answer seems clear. The chief aim of systems biology is to understand
how individual proteins, metabolites, and genes contribute quantitatively to the
phenotypic response. Lee Hood (president of the Institute of Systems Biology in
Seattle, Washington) defines it similarly as “the identification of the elements in a
system and the analysis of their interrelationships so as to explain the emergent
properties of the system.” Even so, some believe systems biology to be concerned
with the collection of high-throughput data, whereas others consider the elucida-
tion of protein-to-protein networks and gene networks to be its hallmark. Certainly
both are vital prerequisites for understanding systems, but neither alone can offer
great insight into how networks operate dynamically. Systems biology is the natural
progression of classical molecular biology from a descriptive to a quantitative
science and is concerned with the dynamic response of biological networks.

B. Statement of the problem

Building models is not an entirely new approach to biology. If one examines any
textbook on molecular biology or biochemistry, virtually every page has a diagram
of a model. These models, which are often termed cartoon-based models, repre-
sent the culmination of years of painstaking research. They serve as repositories of
accepted doctrine and the starting point for the generation of new hypotheses.
There are, however, limits to what can be done with these models, their predictive
value tends to be poor, and the ability to reason using qualitative models is 
limited. In other sciences, these limitations are avoided through the use of 
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quantitative models, which are described not just pictorially but mathematically.
Quantitative models by their nature have much better predictive value compared
to qualitative models, but their real usefulness stems from the capacity to carry out
precise reasoning with them.

II. QUANTITATIVE APPROACHES

There is a wide range of mathematical representations that one can use to build
quantitative models, the choice of approach depending on the type of biological
question, the accessibility of experimental data, and the tractability of the mathe-
matics. Modeling representations are depicted in Figure 6.1. Probably the most
successful and widely used models are those based on differential equations (both
ordinary and partial). These models assume a continuum of concentrations and
rates. In reality, of course, cellular systems are discrete at the molecular level.
However, because the number of molecules is very large the continuum approxi-
mation turns out to be very good. When the number of molecules drops to below
a certain threshold, the continuum model can break down and in these cases one
must revert to stochastic simulation.

The disadvantage of a stochastic simulation is that all analytical methods avail-
able for continuous models no longer apply. One should therefore use stochastic
simulation only if it is absolutely necessary, and never in cases for which an ODE-
based model adequately describes the data. This problem highlights the need to
develop a new set of mathematical approaches in order to understand the dynam-
ics of stochastic systems. There are other approaches (including Boolean, Bayesian,
formal logic, and connectivity studies), but these have yet to show any over-
whelming advantage over continuum-based models. In this chapter we are largely
concerned with models based on differential equations, and to a lesser extent with
those based on stochastic equations.

A. Quantitative models based on differential equations

It is probably fair to say that most of the successful models to be found in the lit-
erature are based on ordinary differential equations. Many researchers will express
these models using Equation 6.1.

(6.1)

Here, S is the vector of molecular species concentration, N is the stoichiometry
matrix, v is the rate vector, and p is a vector of parameters that can influence the
evolution of the system. Real cellular networks have an additional property that is
particularly characteristic of biological networks. This is the presence of so-called
moiety-conserved cycles. Depending on the time scale of a study, there will be

d

dt

S
Nv S p , p= ( )( )
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Figure 6.1. A nonexhaustive selection of mathematical techniques for modeling biological systems.

molecular subgroups conserved during the evolution of a network. These are
termed conserved moieties (Reich and Selkov 1981).

The total amount of a particular moiety in a network is time invariant and is
determined solely by the initial conditions imposed on the system.1

1 There are rare cases when a “conservation” relationship arises out of a non-moiety cycle. This does
not affect the mathematics but only the physical interpretation of the relationship. For example, A Æ B
+ C; B + C Æ D has the conservation B - C = constant.
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In metabolism, conserved cycles act as common conveyers of energy (ATP) or
reducing power (NAD). In signaling pathways they occur as protein phosphoryla-
tion states, whereas in genetic networks they occur as bound and unbound protein
states to DNA. These conserved cycles will often have a profound effect on the
network behavior, and it is important that they be properly considered in compu-
tational models.

From the full set of molecular species in a model, it is customary to divide the
set into two groups: the dependent (Sd) and independent set (Si). This division is
dependent entirely on the number and type of conserved cycles in the network. If
there are no conserved cycles in a model, then the dependent set is empty and
the size of the independent set equals the number of molecular species in the
model. For details on how to compute Sd and Si, the reader should consult Sauro
and Ingalls (2004).

In many cases it is vital that the separation into dependent and independent
species be made. For simple time-course simulations, the separation is not as
important, but for most other analyses it is critical and for stiff integration methods
highly desirable. The reason is that many numerical methods, including the stiff
integrators, employ a measure called the Jacobian matrix as part of the numerical
calculation. If the separation is not carried out, the Jacobian becomes singular and
renders most analyses (e.g., steady-state location, bifurcation analysis, certain
optimization methods, sensitivity methods, and so on) numerically unstable (if not
impossible). Even when carrying out simple time-course simulations, the separation
is also useful because it enables the number of differential equations to be reduced
in number and thereby improves computational efficiency. Equation 6.1 is therefore
better expressed as

(6.2)

In these equations, Si is the vector of independent species, Sd is the vector of
dependent species, L0 is the link matrix, T is the total mass vector, NR is the reduced
stoichiometry matrix, v is the rate vector, and p is the vector of parameters. 
Equation 6.2 constitutes the most general expression of an ODE-based temporal
model (Heinrich and Schuster 1996; Hofmeyr 2001). The symbolism used in Equa-
tion 6.2 is the standard notation used by many in the systems biology community. 

Although mathematically reaction-based models are given by Equations 6.1 and
6.2, many researchers are more familiar with expressing models in the form 
of a reaction scheme. For example, the following describes part of glycolysis (see
Figure 6.2).

For brevity, the rate laws that accompany each reaction have been left out. Such
notation is well understood by biologists. It is not straightforward, however, to
convert this representation to the representation given by Equation 6.2. However,
many software tools will permit users to enter models as a list of reactions and then
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automatically generate the mathematical model (Sauro and Fell 1991; Sauro 2000;
Sauro et al. 2003).

B. Standards

In recent years, particularly since the sequencing of the human genome, there has
been an ever-increasing list of wide-ranging cellular models published in the liter-
ature. Each author has a particular notation they use to publish the model. Some
authors will publish the model as a reaction scheme, much like the notation given
in Figure 6.2. Others will itemize the actual mathematical representation in the form
of a list of differential equations. Some authors do not publish the model at all but
provide the model as supplementary information. Until recently, there has been no
way to publish models in a standard format. Without a standard format it has proved
very difficult, if not impossible, in many cases to use published models without con-
siderable effort.

As a result of this obvious shortcoming, a number of groups set out to gather
community support to develop a standard that model developers would be happy
to use. There was an early effort in 1998 by the BTK (BioThermoKinetics) group to
standardize on a practical format for exchanging models between Gepasi (Mendes
1993) and SCAMP (Sauro and Fell 1991)—tools widely used at the time. About the
same time, bioengineers at the University of Auckland began investigating the role
XML (Harold and Means 2001) could play in defining a standard for exchanging
computational models in order to reduce errors that appeared frequently in pub-
lished models.

From the Auckland team emerged CellML (Lloyd et al. 2004). Members from the
BTK group subsequently took their experience and contributed significantly to the
other major model exchange standard, called SBML (Hucka et al. 2003). SBML was
developed in 2000 at Caltech, Pasadena, as a result of funding received from the
Japanese ERATO program. Both CellML and SBML are today viewed as the main
standards for exchanging cellular network models. There are, however, fundamen-
tal differences between the approaches CellML and SBML take in the way models
are represented.

1. CellML

CellML (Lloyd et al. 2004) represents cellular models using a mathematical descrip-
tion similar to Equation 6.1. In addition, CellML represents entities using a 

Glucose-6-P -> Fructose-6-Phosphate 
Fructose-6-Phosphate + ATP -> Fructose-1-6-Bisphosphate + ADP 
Fructose-1-6-Bisphosphate -> DHAP + GAP 

Figure 6.2. Part of glycolysis described using a reaction scheme notation.
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component-based approach in which relationships between components are rep-
resented by connections. In many ways, CellML represents a literal translation of
the mathematical equations, except that the relationship between dependent and
independent species is implied rather then explicit. The literal translation of the
mathematics, however, goes much further. In fact, the representation CellML uses
is very reminiscent of the way an engineer might wire an analog computer to solve
the equations (though without specifying the integrators).

As a result, CellML is very general and in principal could probably represent 
any system that has a mathematical description (not just the type indicated by 
Equation 6.1). CellML is also very precise in that every item in a model is defined
explicitly. However, the generality and explicit nature of CellML also results in
increased complexity, especially for software developers. Another side effect of the
increased complexity is that models that are represented using CellML tend to be
quite large. On average, my own analysis of a sample from the CellML repository
www.cellml.org/examples/repository/ indicates that each reaction in a model
requires about 5 Kbytes of storage.

Another key aspect of CellML is its provision for metadata support. The meta-
data can be used to provide a context for a model, such as the author name, when
it was created, and what additional documents are available for its description.
CellML uses standard XML-based metadata containers such as RDF (and within RDF
the Dublin Core). The CellML team has amassed a very large suite (hundreds) of
models, which provides many real examples of CellML syntax. This is an extremely
useful resource for the community.

Owing to the complexity of CellML, one unfortunate side effect is that there are
very few tools that can read and write CellML. As far as the author is aware, there
are only two third-party tools that can read and write CellML. These are VCell (Loew
and Schaff 2001) and COR (Garny et al. 2003). The CellML team has recently (2004,
http://cellml.sourceforge.net/) begun to provide their own software tools to third-
party developers. The delay in providing such tools to the community is probably
one reason CellML (given its complexity) has not proved as popular relative to
SBML.

2. SBML

Whereas CellML attempts to be highly comprehensive, SBML was designed to
meet the immediate needs of the modeling community and is therefore more
focused on a particular problem set. One result of this is that the standard is much
simpler and much less verbose. Like CellML, SBML is based on XML. However,
unlike CellML it takes a different approach to representing cellular models. The way
SBML represents models closely maps the way existing modeling packages repre-
sent models. Whereas CellML represents models as a mathematical wiring diagram,
SBML represents models as a list of chemical transformations (Figure 6.2).

Because every process in a biological cell can ultimately be broken down into
one or more chemical transformations, this was the natural representation to use.
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However, SBML does not have generalized elements such as components and con-
nections. SBML employs specific elements to represent spatial compartments,
molecular species, and chemical transformations. In addition to these, SBML has
provision for rules that can be used to represent constraints, derived values, and
general math that for one reason or another cannot be transformed into a chemi-
cal scheme. Like CellML, the dependent and independent species are implied.

3. SBML development tools

Early on in the development of SBML, the original authors decided to provide soft-
ware tools almost immediately for the community. Because XML at the time was
not well understood by many software developers, the provision of such assistance
was crucial. In hindsight, this is probably one reason SBML has become a popular
standard. Initially, the original authors provided a simple library for the Windows
platform because the bulk of biology-based users tend to be Windows users. Today,
this library is still used by a number of tools, including Gepasi, Jarnac, and JDe-
signer. With the growing popularity of SBML, the community has since developed
a comprehensive cross-platform tool (http://sbml.sourceforge.org) that is now the
recommended SBML toolkit to use (libSBML). libSBML was developed in C/C++ for
maximum portability.

4. Extensibility

It was realized early on by the authors of SBML that as systems biology developed
there would be pressure from the community to make additional functionality 
available in SBML. To address this issue, SBML has a formal means for adding 
extensions in the form of so-called annotations. There now exists a number of 
annotations used by software developers. Some of these address issues such 
as providing visualization information to allow software tools to render the 
model in some meaningful way (two examples of these are given in a later 
section).

Other extensions provide a means of storing information necessary for flux
balance analysis or for stochastic simulations. Ultimately, some of the extensions
will most likely be folded into the official SBML standard. This mechanism, a sort
of Darwinian evolution, permits the most important and popular requests to be
made part of SBML. It makes the process of SBML evolution more transparent and
permits users to be more involved in the development of SBML.

5. Practical considerations

Whereas CellML is very general, SBML is more specific. As a result, the storage
requirement for SBML is much less. It takes on average roughly 1.5 Kbytes to store
a single chemical transformation in SBML Level 2 (compared to 5 K for CellML).
Interestingly, it only takes roughly 50 to 100 bytes to store single transformations in
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raw binary format where there is minimal extraneous syntax. Some readers may feel
that with today’s cheap storage technologies discussion of storage requirements is
unnecessary.

Indeed, for small models storage is not an issue. However, in the future very large
models are likely to be developed. There is, for example, a serious attempt
(www.physiome.org) now underway to model in the long term entire organs and
even entire organisms. The amount of information in these cases is huge, and the
question of efficient storage is not trivial. Obviously, XML is highly compressible,
and large models can be stored in this way. However, inefficient storage also
increases the time taken to manipulate the models. Furthermore, in a modeling
environment model authors tend to generate hundreds of variants while develop-
ing the model. For a large model, this clearly would generate huge amounts of
XML-based data. One of the things yet to be addressed by either standard is how
model variants can be efficiently stored.

6. Usage

Both SBML and CellML have been taken up by many software developers and
implemented in their software. SBML is being used in more than 75 software proj-
ects. In addition, SBML is the official model interchange format for the BioSPICE
project (www.biospice.org), the SBW project (www.sysbio.org), the international E.
coli alliance, and the receptor tyrosine kinase consortium. Much of the SBML
support is in standalone applications. However, a number of database vendors have
also decided to provide export of SBML as an option. Examples include reactome,
stke, sigpath, and biomodels.net.

A related standard that has been proposed by Yun et al. (2004) is for the storage
of flux balance models. The proposed format is very similar to SBML but has the
additional feature of storing the flux balance objective function.

C. Future considerations

The development of standards for systems biology is still at a very early stage. I
have not, for example, considered the problem of standardizing the formats for the
experimental data that will be required for modeling. For example, there are 
no current standards for representing quantitative proteomic or metabolomic data,
though efforts for defining a quantitative microarray format are maturing
(www.mged.org).

More pressing from a modeling perspective is that there is currently no agreed
way to merge smaller submodels into larger models (composition). One of the few
groups to have considered composition is Ginkel and Kremling (Ginkel et al. 2000).
They have examined possible extensions to SBML to allow SBML to represent sub-
models and models composed of submodels. Additional issues include distin-
guishing different types of models, particularly ODE and stochastic models.
Currently there is no means of identifying the type of model an SBML file repre-
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sents other than to use specific annotations. One unfortunate side effect of using
XML is the temptation to omit a detailed semantic specification. XML is often
vaunted as a desirable technology because it is easily parsed. However, parsing
and syntax checking are tasks easily implemented. The real difficulty comes when
semantic checks are required, and current XML technology offers no assistance in
this task.

D. Other standards

Apart from using XML to define an interchange format, there are two other
mediums for representing models: human-readable text-based formats and visual
formats.

1. Visualization of models

For many users, the ability to visualize models and to build models using visual
tools is an important feature. There are currently a number of visualization formats
in common use. One of the most comprehensive and freely available formats is the
molecular interaction maps developed by Kohn (1999), and more recently by Mirit
Aladjem (Kohn et al. 2004). The Kohn format emerged from the need to represent
complex signaling networks in a compact way. Unlike metabolic networks, signal-
ing networks can be extremely complex with multiple protein states and interac-
tions. Therefore, an alternative and more concise approach is desirable. At the time
of writing, there is no software for manipulating Kohn maps and no means of con-
verting Kohn maps to SBML or any other standard. Hopefully, this will change in
the future.

An early computer-based visual notation was proposed by Cook et al. (2001), who
developed a notation called BioD. This notation has been implemented in a com-
mercial software package called KineCyte (www.rainbio.com/Software.html).

Another proposal has been put forward by Kitano (2003). This is a more 
traditional approach in which various molecular entities (such as proteins, 
ions, transporters, and so on) have particular pictorial representations. The 
software tool called cellDesigner (Funahashi et al. 2003) implements this proposed
format.

One of the first visualization tools, JDesigner (Sauro et al. 2003), also implements
a traditional means of depicting networks (see Figure 6.3) using a pictorial repre-
sentation to indicate substances and reactions. JDesigner also employs Bezier
curves to represent arcs in an attempt to make the diagrams similar to the nota-
tion found in many molecular biology textbooks. CellDesigner and JDesigner
connect to the Systems Biology Workbench (SBW) for simulation support.

Finally, there is a proposal from a commercial company called Gene Network Sci-
ences, which has devised a derivative of the Kohn notation called DCL. However,
this notation is proprietary and its utility to the general scientific community is not
certain at this time.
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2. Human-readable formats

In addition to visualization approaches and the use of XML to represent models,
there has been a long tradition in the field to describe models using human-
readable text-based formats. Indeed, the very first simulator—BIOSSIM (Garfinkel
1968)–allowed a user to describe a model using a list of reaction schemes. Variants
of this have been employed by a number of simulators since, including SCAMP
(Sauro and Fell 1991), Jarnac (Sauro 2000), ECell (Tomita et al. 1999), and more
recently PySCeS (Olivier et al. 2005). Being able to represent models in a human-
readable format offers many advantages, including conciseness, easily understood
and manipulated using a simple editor, flexible, portable, and above all extremely
easy to annotate.

E. Model databases

At the time of writing, there are very few model databases, exceptions include
sigpath and biomodels.net.

Although model databases would be of great advantage to the community, the
funding agencies have so far been reluctant to provide support. Instead, a number

Figure 6.3. Example of JDesigner’s visual format.
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of groups (including the original SBML group and the SBW group) are developing
model databases as part of other projects. In particular, the Department of Energy
is, through its GTL program, funding a small project to develop a database for
microbial models. In addition the BioSPICE project funded by DARPA is support-
ing model curation for the biomodels.net project. What features of a database
might be useful? Probably one of the most useful features for such a database (apart
from the obvious ability to query the database for particular models, organisms,
and so on) would be the ability to deliver models in different computationally ready
formats.

F. Related standards

CellML and SBML are the primary formats used to store interchangeable dynamic
models. Apart from the particular details on the model itself, there is also the need
to consider data used to build the models. Most models are built by laboriously
searching the literature and carrying out additional experiments as necessary to fill
in gaps in the data. This has proved to be an extremely effective method of build-
ing reliable models (Tyson et al. 2001, 2002). However, many inexperienced
researchers in systems biology feel that high-throughput data is the answer to the
needs of the modeling community.

Unfortunately, much of the high-throughput data currently available is not appro-
priate. Much of the high-throughput data is very noisy and is probably more suit-
able for building qualitative models. More importantly, the bulk of high-throughput
data is not generated with dynamic model building in mind and is therefore often
not appropriate for this purpose. To date there has not been a single dynamic
model that has been constructed as a result of high-throughput data. As systems
biology and the construction of dynamic models become more important, it is very
likely that the utility of high-throughput data will become much more significant.
When this happens, a proposed standard called BioPAX (www.biopax.org) will most
likely contribute.

BioPAX (Biological Pathway Exchange) is another proposed standard based on
XML. BioPAX aims to integrate many of the incompatible pathway-related data-
bases (such as BioCYC, BIND, WIT, aMAZE, KEGG, and others) so that data from
any one of these databases can be easily interchanged. In the future it should be
possible to extract data from many of the pathway databases and integrate the
data directly into SBML (or CellML) via BioPAX. The BioPAX group proposes to
embed BioPAX elements in SBML or CellML for unambiguous identification of sub-
stances (metabolites, enzymes) and reactions.

III. PLATFORMS

Much of the current software development in the systems biology community con-
centrates on the development of standalone applications. Most of these tools are
not easily extensible and many of them offer nearly identical functionality. One of
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the problems that currently plagues systems biology is the continual reinvention of
the same type of tool (called YADS, for “yet another differential equation solver”).
I believe it is not too unfair to suggest that in many cases our software capability
today in systems biology is only marginally better than the first systems biology
simulation package ever written (BIOSSIM) by David Garfinkel about 1960 (Garfinkel
1968).

In many cases, even the user interfaces are only marginally better. There are of
course exceptions to this. VCell (Loew and Schaff 2001) in particular comes to mind,
as well as tools such as Gepasi (Mendes 1993) and Jarnac/JDesigner (Sauro et al.
2003). VCell is particularly suited to spatial modeling. Gepasi is well known for its
GUI user interface, the selection of optimization methods, and its ability to fit data
to models. Jarnac was until very recently (e.g., Pysces (Olivier et al. 2005)) the only
script-based programmable modeling tool with a fairly complete set of tools for
the analysis of time-dependent ODEs and stochastic systems. JDesigner was the
first visual design model tool.

The reason for the repetitive nature of software in systems biology is that almost
every group engaged in computational systems biology writes its own simulation
package. Given the time constraints on the project, the software will only reach a
level of maturity that is often equivalent to BIOSSIM. As a result, the provision of
software does not appear to advance.

A number of groups have recognized this problem and instead of developing
single isolated applications they have chosen to develop a software infrastructure
that permits and encourages extensibility and code reuse. Code reuse is extremely
important because it allows developers to build on existing code, which in turn
leads to new and interesting software tools. The following examines three such
environments: SBW, BioSPICE, and BioUML. All three environments are open
source.

A. SBW systems biology workbench

The SBW (Sauro et al. 2004) is an extensible software framework that is both plat-
form and language independent. Its primary purpose is to encourage code reuse
among members of the systems biology community. Developers can run SBW on
Linux, Windows, or Mac OS and can develop software in a variety of different lan-
guages, including C/C++, Java, Delphi, FORTRAN, Matlab, Perl, Python, and any
.NET language (e.g., Visual Basic or C#). The SBW was originally developed in par-
allel with SBML (Systems Biology Markup Language) as part of the Symbiotic
Systems Project ERATO project at Caltech, Pasadena. (Subsequent development
was supported by DARPA through the BioSPICE program, and development is now
focused at the Keck Graduate Institute, with support from the Department of
Energy.)

The central component of SBW is the broker, which is responsible for coordinat-
ing interactions among the various resources connected to it. These resources
include simulation engines, model editors, SBML translators, databases, visualiza-
tion tools, and a variety of analysis packages. All modules in SBW connect via
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defined interfaces. This allows any one of the modules to be easily replaced if 
necessary. The key concept in SBW is that any new module may exploit resources
provided by other modules. This dramatically improves productivity by allowing
developers to build on existing tools rather than continuously reinvent.

Similar architectures have been developed, most notably CORBA. When SBW
was being developed, CORBA was seriously considered but a number of problems
arose. First, the learning curve for CORBA is very steep, which means that it is out
of reach for most developers except highly skilled individuals. The aim of SBW was
to allow the average computational biologist to develop new SBW modules, and
hence the programming model had to be simple. In addition, there were very few
open-source equivalents to the SBW broker and many of them were incompatible
with each other.

An SBW module (the client) provides one or more interfaces or services. Each
service provides one or more methods. Modules register the services they provide
with the SBW broker. The module optionally places each service it provides into a
category. By convention, a category is a group of services from one or more
modules that have a common set of methods.

One of the key advantages of SBW is its language and OS neutrality. At a stroke,
this eliminates the irrational language and operating systems “wars” that often
plague software development. In addition to providing support for multiple lan-
guages there is the facility to automatically generate web services from any SBW
module (Frank Bergmann, personal communication).

Messaging protocols

At the heart of SBW is the messaging protocol used to exchange information
between the different modules. For efficiency reasons, messages that are
exchanged between modules are simple sequences of binary data. For each pro-
gramming language there is a language-binding library that takes care of much, if
not all, of the housekeeping necessary to operate through SBW (Figure 6.4), includ-
ing connection and transmission of data. In addition, issues such as little-endian
and big-endian byte ordering need not concern the developer as this is taken care
of automatically by the binding libraries. Each binding also provides the necessary
message packing and unpacking logic and exposes functionality in the form of an
easy-to-use API. Because SBW message passing is based on TCP/IP sockets, it is
straightforward to run SBW across the Internet or more significantly across com-
putational nodes on a supercomputer cluster.

B. BioSPICE

BioSPICE (www.biospice.org) is a DARPA-funded effort to develop an open-source
framework and tool set for modeling dynamic cellular network functions. The
central component of BioSPICE is the dashboard, which is used to construct work-
flows between BioSPICE-enabled applications. Both SBW and the dashboard
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encourage code reuse, although in different ways. In the dashboard, code reuse is
through the construction of workflows. In SBW, code reuse is via programmatic
interfaces and a pluggable runtime architecture. The unit components in SBW tend
to be more fine-grained compared to BioSPICE modules.

For example, SBW provides modules such as SBML support, frequency analysis,
simulation methods, and bifurcation analysis, which can be tied together at runtime
to give the impression of a single application. The BioSPICE dashboard, on the
other hand, allows the user to construct fixed workflows prior to a run. The work-
flow configurations cannot be changed during runtime. In addition, whereas SBW
connects modules via interface specifications the dashboard connects modules via
data types. The BioSPICE dashboard is based on the Java “net beans” application,
which makes it highly Java centric. Interaction with applications written in other lan-
guages, though not impossible, are difficult. It is possible to easily connect SBW
modules to the dashboard (via the SBW Java interface), which greatly increases the
flexibility of the dashboard combining the advantages of a workflow approach to
the free-flow approach of SBW.

Figure 6.4. The Systems Biology Workbench (SBW) is a dynamic open-source distributed system. Client
modules can attach and detach at runtime. Client modules can be written in a variety of languages,
including C/C++, Java, Delphi, FORTRAN, Python, Perl, Matlab, and any .NET language. Data is
exchanged between modules via binary messages that can include any combination of bytes, integers,
floating points, complex numbers, strings, arrays, and lists. Currently, the available modules include
simulators, model editors, SBML manipulation, math library, frequency analyzer, bifurcation discover
and analysis modules, structural analysis modules, and others. Further details are found at
www.sysbio.org.
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C. BioUML

BioUML (www.biouml.org), developed by Fedor Kolpakov and his team, is a Java
framework based around eclipse and targeted at the systems biology community.
The authors state that the utility of BioUML covers access to databases with exper-
imental data, tools for formalized description of biological systems structure and
functioning, and tools for their visualization and simulation. BioUML is at an early
stage of development, but the central idea is of a pluggable environment in which
plug-ins written in Java are used to extend the functionality of the framework. Much
work remains to make the BioUML usable for the average biologist, but the idea is
interesting (although the requirement to write all code in Java is limiting and some
means to permit alternative language bindings would be useful). Recently, the
BioUML team developed an SBW interface that permits access to plug-ins written
in many different languages.

IV. APPLICATIONS

In recent years there has been a proliferation of software applications for the
systems biology community (See Figure 6.5). On the whole, many of these appli-
cations provide very similar functionality. The distinguishing feature among them is
how easy they are to install and use. The more mature applications tend to be easier
to install and have a much richer repertoire of functionality. Many of the applica-
tions are simple wrappers around standard ODE or Gillespie solvers and provide a
simple means of loading models and runtime courses. Some of the applications
fall by the wayside because the author has lost interest or funding has stopped. It
is important therefore that whatever tool one uses the ability to export and import
a recognized standard (or at least a documented format) such as SBML and/or
CellML be available.

The original intention in this section was to list as many of the applications as
possible, together with their capabilities, but given the large number now available

Figure 6.5. The release of software tools for computational systems biology over time. Note the spike in
the last five years.
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it soon became clear that this task would be too great. Instead, I refer the reader
to the recent paper by Hucka et al. (2004), in which the authors describe almost 40
applications. An even larger list can be found at the sbml.org web site.

There are some applications, however, that are worth mentioning specifically
because they have some special characteristic. Table 6.1 lists a number of applica-
tions being actively maintained, have a reasonably large user base, and offer 
facilities that are either unique or well done. I have not mentioned any stochastic
simulators in Table 6.1 because many of these are still immature.

There are also more general-purpose tools available, both commercial and open-
source, which are worth considering. Probably the most well known commercial tool
is Matlab (www.mathworks.com). Although Matlab is an excellent prototyping tool,
it suffers from poor performance when simulating systems larger than about 30
species if the model is not specified in the correct way. In fact, a number of the
open-source tools are orders of magnitude faster than Matlab. This stems from the
fact that Matlab is a general-purpose tool, whereas the open-source tools are spe-
cialists and are therefore more heavily optimized for their specific application. The
commercial tools require a high degree of programming skill because they do not
have facilities for representing models in a way familiar to most biologists, instead
users are required to derive the differential equations explicitly. Platforms such as
SBW make available translators from SBML to a variety of formats including Matlab,

Table 6.1. Mature and easily accessible tools for modeling cellular networks.

Application Description

VCell A very mature server-based application specialized to build and simulate large-scale 
spatial (PDE) models. Open-source, multiplatform (Loew and Schaff 2001).

Gepasi This is a form-based application that has been maintained for many years by a 
dedicated author. The tool is particularly adept at carrying out optimizations of 
ODE-based models to data. Closed-source, Windows, Linux (Mendes 1993).

WinSCAMP A script-based GUI application that like Gepasi has a long tradition. Specialized for
time-course, steady-state, and metabolic control analysis of ODE-based models.
Source available upon request, multiplatform (Sauro and Fell 1991; Sauro 1993).

Pysces A very complete ODE-based simulation environment built around the scripting
language Python. Open-source, multiplatform (Olivier et al. 2005).

Jarnac/JDesigner Jarnac is a script-based application. JDesigner (see Figure 6.3) is a visual design tool
that can use Jarnac via SBW to carry out simulations. The simulation capabilities of
Jarnac are quite extensive, offering both ODE and stochastic Simulation. Open-
source, Windows, Linux (Sauro 2000; Sauro et al. 2003).

We do not have facilities for representing models in a way familiar to most biologists. Instead, users are
required to derive the differential equations explicitly. Platforms such as SBW make available translators
from SBML to a variety of formats, including Matlab, and in a number of cases users employ tools such
as JDesigner to maintain the model, but use a translator to generate Matlab (or any other supported
format such as C or Java).
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and in a number of cases, users employ tools such as JDesigner to maintain the
model, but use a translator to generate Matlab (or any other supported format such
as C or Java). In addition to generic commercial modelling tools there are also now
available a number of commercial tools specifically geared for modelling cellular
networks. The most well known include Gene Networks Sciences, Berkeley
Madonna and Teranode (these can easily be located on the web by using a reli-
able search engine).

A. Model analysis

As a user, one of the most important aspects I consider is the range of techniques
available for analyzing the model. The purpose of building a model is not simply
to generate a predictive tool. If it were, we could probably get away with using
empirical statistical techniques or machine learning approaches such as neural nets.
An additional important role of model building is to gain a deeper understanding
into the properties of the model and to understand how the structure of the model
leads it to behave the way it does. To answer these types of questions, one needs
techniques that can interrogate the model in a variety of ways. Table 6.2 lists some
of the most important techniques available for analyzing models. Without these
techniques, a model will often be as difficult to understand as the real system it
attempts to model. The application of these techniques is therefore important.

All of these techniques are extremely useful in gaining insight into how a model
operates. The connectionist and structural analyses focus on the network proper-

Table 6.2. Model analysis methods.

Approach Description

Connectionist theory Connectivity studies are centered around the search for patterns in the way
cellular networks are physically connected (Barabasi and Oltvai 2004).

Structural analysis There is a wide range of useful techniques that focus on the properties of the
networks that depend on the mass conservation properties of networks.
These include conservation analysis, flux balance, and elementary mode
analysis (Heinrich and Schuster 1996).

Cellular control analysis CCA (also known as metabolic control analysis) is a powerful technique for
analyzing the propagation of perturbations through a network. There exists a
very large literature describing applications and theory (Fell 1997).

Frequency analysis Closely related to CCA is the analysis of how signals propagate through a
network (Ingalls 2004; Rao et al. 2004).

Bifurcation analysis Bifurcation analysis is concerned with the study of how the qualitative
behavior of steady-state solutions change with changes in model parameters
(Tyson et al. 2001).
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ties of the model. That is, they do not explicitly consider the dynamics of the model
but how the network connectivity sets the stage for generating the dynamics of the
model. The last three techniques (CCA, frequency analysis, and bifurcation analy-
sis) focus on the dynamical aspects of a model and are crucial to gaining a deep
insight into the model (Bakker et al. 1997; Tyson et al. 2001).

B. Model fitting and validation

An important activity in systems biology modeling is the need to fit experimental
data to models. There is not sufficient space to cover in any great detail this topic,
but as time series data from microarray, proteomic, and metabolomic data becomes
more readily available the need to fit models to experimental data will become
more acute. There are a number of issues related to this topic, one of which 
concerns the nature of the data generated by most of the current experimental
techniques.

In particular, most current techniques generate normalized data (i.e., absolute
values are not given). This poses a number of problems for a fitting algorithm, in
that the underlying model is established in terms of absolute quantities. A number
of solutions are potentially available. However, none is entirely satisfactory and ulti-
mately the models generated by normalized data will most likely be only capable
of reproducing trends in the data. Whether such models will have great predictive
value is open to question, and much research remains to be done in this area.

Another issue is the intensive nature of computations required to fit even a mod-
erately sized model. One of the necessary requirements for fitting a model is esti-
mating the confidence limits on the fitted parameters and the range of parameter
space that describes the experimental data. This information is crucial to determine
the validity of the model, and can be used to design additional experiments to
either refute the model or increase the precision of the model parameters. As a
result of these requirements, computing a global optimization can take consider-
able time.

For example, in a recent study Vijay Chickarmane (unpublished) estimated that
the time required to fit a model of approximately 300 parameters would be on the
order of seven years on a normal desktop computer. Luckily, global optimization
can be easily parallelized given a suitable optimizer (for example, a genetic-algo-
rithm-based optimizer) and the computation time can be reduced by hosting the
problem on a cluster machine. Chickarmane estimates that using a thousand-node
cluster the optimization of a 300-parameter model can be reduced to approxi-
mately two days of computation time. Such a computation can be easily set up
using SBW. A single node on the cluster would act as the primary optimizer. In turn,
this node would farm out the time-consuming simulation computations to the
remaining nodes on the computer. For very large models, grid computing (Abbas
2004) may be very appropriate for solving this type of problem.
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V. CONCLUSIONS

The systems biology field has been developing rapidly in recent years, but much
remains to be done. One of the most useful developments must undoubtedly go
to the development of standards such as SBML and CellML. Indeed, the most
recent of a long list of new systems biology journals (Molecular Systems Biology)
has stipulated that SBML is the preferred format for contributing models. It is hoped
that other journals will follow. However, one aspect that still remains to be dealt
with is to formalize the semantic rules for SBML. At the moment, there is no guar-
antee that models written by different tools can be interchanged. If one focuses on
the core specification in SBML, this is generally not an issue. However, it is vital that
semantic validators be developed for SBML.

The other area that has received a lot of attention in recent years is the devel-
opment of tools for systems biology. However, much of what is being developed
is repetitious and little true advancement is being made. This is probably due to
the large number of newcomers to the field who are inexperienced and inevitably
repeat what has gone before. A number of solutions exist to solve this problem.
One is to develop extensible frameworks such as SBW, BioSPICE, or BioUML. The
other is to develop a suite of open-source libraries that can carry out specific func-
tionality. An example of this is libSBML, being developed by the SBML team. This
library, written in C/C++ for maximum portability, enables other developers to con-
centrate on simulation capability rather than waste unnecessary effort developing
their own SBML parser.

In terms of other possible libraries, examples include open-source Gillespie-
based stochastic solvers and ODE solvers. In both cases, there is also the need to
develop scalable and robust methods for computing the dependent and inde-
pendent species. Furthermore, hybrid methods combining continuous and sto-
chastic methods are a pressing need at the current time. Many biological systems
interface noisy sensory apparatus (e.g., ligand binding to the surface of a cell mem-
brane) to internal continuous analog networks (Sauro and Kholodenko 2004). In
addition to the core solvers, we also need scalable analysis tools, particularly bifur-
cation analysis tools and sensitivity analysis tools.

On the model validation front, much remains to be done, particularly the rela-
tionship between model validation and how this can direct future experimentation.
This leads to the need for development of new methods and algorithms for ana-
lyzing complex networks. In particular, methods should be developed to modular-
ize large networks (in that understanding an entire network is virtually impossible
without some recourse to a hierarchical modularization).

Finally, the role of high-performance computing in systems biology is still very
novel. In fact, there appear to be very few applications to date of high-performance
computing to systems biology. One of the few useful applications is model fitting to
data. When done correctly, this is an extremely computationally intensive calculation
and is an ideal candidate for large cluster machines. In fact, one wonders whether
this is the application for systems biology that could benefit from grid computing.
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RESOURCES

The following are four web sources of interest to readers of this chapter.

www.cellml.org This is the main CellML site. It has a very rich set of models
expressed in CellML, including specifications for the standard and pointers to
software toolkits.

www.sbml.org This is the main SBML site. The site has ample documentation, and
examples illustrating how SBML is used and should be used. In addition, it has
a rich set of software tools—in particular, libSBML, which allows developers to
easily add SBML support to their tools.

www.sysbio.org This is the main SBW (Systems Biology Workbench) site. The latest
versions for SBW, developer documentation, example models, screen shots, and
user guides can be obtained from this site. A link to the main source-forge site
is given, where all source code for SBW is made available.

www.biospice.org This is the main BioSPICE site. This site includes a description
of BioSPICE and the large number of tools now available for the BioSPICE dash-
board (including SBW itself).
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ABSTRACT

Cellular and molecular biology have led to the understanding that cells resemble highly-
organized spatiotemporal biochemical reaction networks composed of interacting gene
networks, metabolic networks, and signaling networks. Within such networks many types 
of molecular processes take place on a wide range of time scales. These include diffusive
and mediated (active and passive) transport, complex formation/dissociation, and chemical
conversions. Systems biology aims at understanding the functioning of cells that stems from
the interactions between their constituent (macro) molecules. Its research typically combines
experiment, theory, and computation to analyze cellular behavior. This chapter deals with
the computational and theoretical components of systems biology research. It gives an
overview of the methods available to (1) analyze structural, regulatory, and kinetic models of
the networks, (2) simulate the behavior of the networks in kinetic models, and (3) perform
metabolic control analysis of these kinetic models.
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I. INTRODUCTION

In the last few decades molecular biology has been especially successful in eluci-
dating the basic molecular-network nature of all life. Organisms have proven to be
sophisticated molecular systems composed of large numbers of molecules that
interact with a high level of specificity, forming a huge biochemical reaction network
organized in space and time. Nearly all cellular reactions are catalyzed by dedi-
cated enzymes and the amino acid sequences of those proteins are all encoded by
the cell’s genome. The puzzle that remains to be solved by the biosciences is the
elucidation of how molecules jointly bring about cellular behavior.

Molecular biology and genetics have led to the identification of the proteins and
control mechanisms that make up living cells (e.g. Watson and Crick 1953; Pardee
and Yates 1956; Umbarger 1956; Monod 1966). Developments in nonequilibrium
thermodynamics (Glansdorff 1971; Westerhoff, 1987) and dynamical systems theory
(Nicolis, 1977; Guckenheimer 1983) led to the consideration that the nonlinear
dependency of biochemical rates on the concentrations of substrates, products,
and effectors (which becomes evident for systems displaced from thermodynamic
equilibrium) complicates reductive research aiming to unravel causes in compli-
cated networks (Westerhoff and Palsson 2004).

An example of such a nonlinear relationship is the Michaelis—Menten rate equa-
tion that relates the rate of an enzyme v to the concentration of its substrate S and
product P (i.e., as v = VMAX * (S/Ks)/(1 + S/Ks + P/KP), with Vmax the maximal rate of
the enzyme and KS and KP the affinity of the enzyme for its substrate and product,
respectively. One of the corollaries of this nonlinearity for the functioning of bio-
chemical reaction networks is that there need not be a single enzyme (the rate-
limiting step) solely in control of some flux (or other systemic property) in a 
biochemical network (Kacser and Burns 1973; Heinrich and Rapoport, 1974; Groen
et al. 1982). In contrast, many processes may contribute in varying degrees to cel-
lular phenomena such as fluxes, and certainly to the magnitudes of concentrations.

In addition, as a result of nonlinearity even small networks can display compli-
cated behavior (such as oscillations and multiple steady states) that cannot be
understood without the aid of sophisticated mathematical models and tools for
their analysis. Moreover, qualitative changes in behavior can take place upon
changes in parameters that characterize properties of constituents and the envi-
ronment of cells (Hess 1973; Teusink et al. 1996; Goldbeter 1997; Tyson et al. 2003;
Boogerd et al. 2005). The main problem nonlinearity poses for reductionistic
research is that systemic properties of cells (such as growth rate or a nutrient uptake
flux) are not readily understandable in terms of the properties of isolated cellular
components (e.g. a KM or a Vmax of an enzyme). In other words, the emphasis should
neither lie on the system as a whole nor on its components in isolation when aiming
to intervene in and explain systemic behavior. It is the (what used to be) “no-man’s-
land” between that matters.

The lack of emphasis on how the system as a whole emerges from its compo-
nents has slowed down the molecular understanding of cells and hampered our
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ability to specifically change cellular behavior. To overcome this problem, quanti-
tative molecular measurements in the systems at work and mathematical models
that explain how cellular constituents jointly bring about system behavior have
become increasingly important.

The promise of systems biology is that a molecular understanding of cellular
behavior can be achieved by combined computational and experimental studies
on cellular networks. Computational systems biology forms an important segment
of systems biology because it supports experimental studies by offering hypothe-
sis testing capabilities, theoretical tools, and quantitative concepts (Kitano 2002;
Westerhoff and Palsson 2004). Whereas mathematical and theoretical biology have
largely evolved outside experimental biology, computational systems biology
should aim at becoming an integral component of experimental research.

In this chapter, we will give a broad overview of the tools available for perform-
ing computational systems biology of cellular networks. We discuss (1) methods of
modeling cellular behavior in terms of signaling, metabolism, and gene expression,
(2) models incorporating experimentally determined physicochemical and kinetic
properties (silicon cells), and (3) metabolic control analysis as a tool to analyze
control and regulation of cellular systems. We give illustrative examples of the
model descriptions and analysis methods wherever possible.

II. ANALYSIS OF STRUCTURAL, REGULATORY, AND KINETIC MODELS

Many aspects of the structure and dynamics of biochemical reaction networks have
been analyzed in the last decades with methods that can now be considered part
of computational systems biology. Here we shall briefly give an overview of model
descriptions and some of the methods for model analysis (Figure 7.1).

A. Structural models

At the lowest level of detail, we distinguish the stoichiometric structure of a bio-
chemical reaction network. It is a description of all biochemical conversions that
take place in the network (e.g., of catalysis, transport, and binding). It represents
the topology of mass flow through the network. It identifies all substrates and prod-
ucts for all processes in the network; it does not incorporate inhibitory or activa-
tory effects of allosteric effectors. Frequently, the end result is represented in terms
of a stoichiometry matrix N—the stoichiometric model (Figure 7.1). For a network
with m intermediates and r reactions, the i,j-th entry of N (nij) gives the number 
of moles of the i-th intermediate si of the network produced (nij > 0) or consumed
(nij < 0) in the j-th reaction vj of the network. Figure 7.2a shows an example of a bio-
chemical reaction network, and Figure 7.2b displays its corresponding stoichio-
metric matrix.

In a biochemical reaction network, the rate of change of the concentration of the
i-th intermediate si is given by the sum of the production and consumption rates
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of that intermediate; that is, . In a steady state, the rates of change 

of all intermediates are defined as zero (i.e., Nj = 0, with the fluxes j as the rates v
at steady state). In flux mode analysis, the fluxes j are related to a particular prop-
erty of the stoichiometric matrix (i.e., to its null space or kernel). Our interest is to
obtain nontrivial solutions (i.e., j π 0) for the fluxes from Nj = 0. For this to be pos-
sible, the stoichiometric matrix N should be singular, which is expressed by NK =
0, with K as the kernel or null space of N. Each column of K represents a relative
flux distribution, a so-called flux mode that satisfies the steady-state condition
(Schuster et al. 1999).

To each such flux mode one independent flux can be assigned. Its value is suffi-
cient to recover all other flux values that occur in the same flux mode. Any steady-
state flux distribution can be written as a linear combination of the flux modes in
the system (Reder 1988; Schuster et al. 1999). For the example network displayed
in Figure 7.2a, the K matrix is displayed in Figure 7.2c. It identifies two independ-

ds dt n vi ij j

j

r

/ =
=
Â

1

Figure 7.1. Biochemical reaction networks can be modeled with structural, regulatory, and kinetic
models (shown in bold). These models can be analyzed with different methods (shown in normal font).
Instances of the addition of new information are given in italic font.
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ent fluxes in the network. The values of these two fluxes suffice to describe all fluxes
in the network. In this case, reactions 2 and 3 have been chosen as independent
fluxes. Alternatively, reactions 4 and 5 could have been chosen. This analysis does
not describe the actual magnitudes of the fluxes. The magnitudes of j2 and j3 still
depend on the kinetics of all system components and the values for the boundary
metabolites, but this is not considered in flux analysis. Analysis of steady-state fluxes
in metabolic networks can also be used to determine unknown intracellular fluxes
from experimentally measured import and export fluxes (Stephanopoulos 1998).

The drawback of the use of the kernel matrix is that it is not a unique descrip-
tion of the flux modes in the system. This is solved both by elementary flux mode
analysis (EFMA) and by extreme pathway analysis (EPA) (Schuster et al. 2000;
Schilling et al. 2000b), but in different ways. For a comparison of both methods and
a historical overview, we refer the reader to Papin et al. (2004). Elementary flux
modes are minimal sets of enzyme rates that can each generate valid steady states
with all irreversible reactions proceeding in the direction suggested thermody-
namically. In addition to the N matrix, the preferred directions of the reaction (on

Figure 7.2. (a) Structural model of the network considered with five reactions (only reaction 5 is
irreversible) and five metabolites: (b) stoichiometric matrix, (c) kernel matrix, (e) extreme pathway matrix
(identical to K), (d) elementary mode matrix (different from K and extreme pathway matrix), (f) link
matrix, (g) regulatory model, and (h) elasticity matrix. Metatool (Pfeiffer et al. 1999) was used to perform
the structural analysis. Note that reaction 5 was chosen irreversible.
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the basis of its equilibrium constant) are considered (Figure 7.1). An elementary flux
mode is elementary if it is non-decomposable (Schuster et al. 1999).

Any steady-state flux pattern can be expressed as a non-negative linear combi-
nation of the elementary flux modes (Schuster et al. 2000). To find the smallest
number of flux modes that are unique, EPA can be used (Papin et al. 2004). It differs
from EFMA in that it decomposes each import (and each net export) reaction into
a forward and backward reaction and treats those as separate reactions. The ele-
mentary modes and the extreme pathways of the example network are shown in
Figures 7.2d and 7.2e, respectively. Note that the kernel matrix and the elementary
mode matrix are both a linear combination of the columns of the extreme pathway
matrix. Neither EPA nor EFMA leads to the actual magnitudes of the fluxes. They
merely show which flux distributions through all the steps in the network should be
consistent with steady state.

For the simplest example of a linear pathway, the two methods only state that at
steady states all enzyme rates should be equal, and that irreversible reactions should
operate in their thermodynamically preferred direction. This is trivial for very simple
networks, but for the complex and extensive networks encoded by entire genomes
it is difficult to guess these steady-state solutions by simple inspection, and this is
where the two systematic methods come in. They are useful when it turns out that
with the available genomic information there is no elementary flux mode that leads
to the production of an important compound, or indeed to biomass (growth).

The analyses also enable one to calculate yields of production of certain sub-
stances through elementary modes, and show that different such modes have dif-
ferent such yields (e.g., amount of ATP needed to produce a mole of product, often
erroneously presented as “efficiencies”). In biotechnology, this can suggest genetic
or other manipulation of the organism such that the modes with the higher yields
prevail. To understand actual flux patterns in mechanistic terms, additional infor-
mation on the regulation of gene expression and the regulation of enzyme rates in
situ is required.

A combination of flux mode analysis and experimental determination of input
and output fluxes to the systems (such as measured rates of nutrient consumption
and biomass production) can lead to knowledge concerning magnitudes of network
fluxes at steady state (Stephanopoulos 1998). Degeneracy of this problem due to
the existence of a great many flux patterns that lead to the same input and output
fluxes can be resolved by advanced isotope experiments, provided metabolic chan-
neling is absent (Wiechert and Wurzel 2001; Isermann and Wiechert 2003).

And then there is the teleologic meaning of the “understanding” of flux patterns.
This analyzes what flux patterns would correspond to certain “purposes,” or to
certain optimalities. Flux balance analysis (FBA), largely used with EPA, determines
flux distributions that are optimal relative to some criterion (Schilling et al. 2000a)
(e.g., maximal growth rate). In addition to the N matrix and the thermodynamic pre-
ferred direction of the reaction, an optimality criterion should be supplied to FBA
(Figure 7.1). Because of the linear structure of the description, linear optimality 
criteria are met by extreme flux distributions. FBA makes use of linear program-
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ming to determine the linear combination of extreme pathways that achieve 
some optimal network function.

Because FBA must assume the network to be optimal with respect to some func-
tions, the method is speculative from the “mechanistic-explanation” point of view.
This is because it is not at all understood whether biochemical reaction networks
are indeed optimal for some readily understandable functionality, such as growth
rate or efficiency. Indeed, neither efficiency nor growth rate seem to be functions
that micro-organisms have been optimized for as a sole objective (Westerhoff 1987).
Thus, results of FBA should always be presented as “this flux pattern should be
expected if the network were optimal for the function . . .” FBA models of E. coli
(Edwards and Palsson 2000) and S. cerevisiae (Forster et al. 2003) exist, and it is
occasionally suggested that these two organisms are thereby understood. From the
point of view of mechanistic understanding, which has been the most powerful
force behind modern science, these suggestions are far from the truth.

We do not know how the organism achieves those flux patterns upon changes
in nutrient levels. The organism should up- or down-regulate the activity of enzymes
by metabolic, signaling, and genetic regulation, and the manner in which it does
this is not given by FBA but would need other sophisticated analysis. Such type of
analysis—for instance, with kinetic models (see material following)—would amount
to an understanding of the mechanisms at work in the cell. From the teleological
point of view, these suggestions may prove incorrect. The FBA models have so far
merely calculated what should be optimal flux patterns, but there is no (complete)
experimental validation that these flux actually occur in these organisms. On the
contrary, the long-standing observation of quite significant growth-rate-dependent
and growth-rate-independent maintenance metabolism in both organisms would
by themselves invalidate these suggestions.

This is not to say that the FBA models are irrelevant or wrong. Quite on the con-
trary: (1) they open up an avenue toward a much more profound analysis of a long-
standing issue (i.e., why microorganisms are not optimally efficient in energetic
terms), (2) they allow for the prediction of intracellular flux patterns from a struc-
tural model alone, and (3) they are among the first tools that can analyze system-
wide structural information of biochemical reaction networks.

Flux analyses show that not all flux patterns can be obtained at steady state. Sim-
ilarly, the stoichiometric structure of the network limits the magnitudes of the con-
centrations many intracellular metabolites can obtain through metabolic regulation
only. The concentration of NADH, for instance, cannot exceed the total concentra-
tion of NADH plus NAD at zero time, when only reactions interconverting the two
exist in the network. Only one of the two is therefore dynamically independent, the
other being dependent. Such dependencies between concentrations of molecular
intermediates can be identified in the network by moiety conservation analysis.

What the kernel K achieves for fluxes the link matrix L achieves for metabolites.
The latter relates the rates of change of metabolite concentrations one might 
wish to consider as independent dynamic variables (their concentration we will
confine to the vector xi) to the rates of change of the dependent intermediates
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(confined to xd); thus, ds/dt ∫ (dxi/dt, dxd/dt)T= Ldxi/dt (Reder 1988; Heinrich 1996;
Cornish-Bowden and Hofmeyr 2002). The identification of the conservation of 
moieties and their totals (confined to vector t) can be identified from the relation-
ship [-L0, I][x

i, xd] = t.
The link matrix of the example biochemical network is displayed in Figure 7.2f.

It shows that there exist three independent intermediates in the network and there-
fore two moiety conservation relationships (a + x1 + x2 + x3 = constant; a + b = con-
stant). Alternative methods exist that analyze systems in terms of more relevant
independently variable properties (such as ratios of concentrations), which then
map onto redox potentials and free energy differences, especially when coenzymes
such as NAD and ADP are involved (Westerhoff and Van Dam 1987). For Figure 7.2,
this could mean that a/b is chosen as one of independent dynamic variables.

So far, the methods all dealt exclusively with the mass-flow structure, and in case
of EFMA and EPA with the thermodynamically preferred direction of the reactions.
Actual fluxes could not be calculated (predicted) by EFMA or by EPA, only possi-
ble relative steady-state flux patterns. (Only if input and output values of fluxes and
an optimality criterion were supplied could the magnitudes of fluxes be predicted
with FBA.) This is understandable, as information about expression levels and
kinetic properties of the system’s catalysts was not used in these methods.

Indeed, this is sometimes proclaimed to be an advantage of the flux mode
methods. That is, the information most difficult to obtain is not necessary for those
methods. Of course, the other side of the coin is that if (according to the leitmotif
of systems biology) functional properties arise in the dynamic interactions of the
molecules, how much of the essence of systems biology could one expect to dis-
cover if one refrains from using the information about the dynamic nonlinear inter-
actions between the molecules? If systems biology is about obtaining an
understanding of how molecules jointly bring about cellular behavior, flux analysis
does not by itself suffice to obtain an understanding of the molecular mechanisms
at work in the cell.

The analysis of the type of organization of stoichiometric models of biochemical
networks (small-world analysis) has focused on how the distance between two inter-
mediates (nodes) in a biochemical reaction network chosen at random—measured
as the number of reactions that need to be traversed in order to go from one node
to the other—are scaled with the size of the network (Jeong et al. 2000; Wagner
and Fell 2001; Barabasi and Oltvai 2004). It turned out that the intracellular bio-
chemical networks have few nodes with a very high number of edges, where each
reaction is considered an edge. In addition, they have short average path lengths
between nodes (just like many random graphs have), and in some cases they display
a high level of clustering (which is not found in random graphs) (Newman 2003).
This is the basis for structural models to be termed small-world networks.

B. Regulatory models

Additional consideration of the dynamic interactions of substrates and products
with their enzymes, of allosteric effectors with those enzymes, of transcription
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factors with the DNA, of kinases with signal transduction proteins, and of feed-
forward and feedback loops that convey regulatory influences rather than mass flow
without forfeiting the stoichiometric structure leads to a description of all interac-
tions in the biochemical reaction network (the regulatory model). This type of reg-
ulatory model leads to particularly strong results, and is one of the main objects of
study in metabolic control analysis. This structure can be described in terms of the
r ¥ m elasticity matrix e (defined as ∂ ln v/∂ ln s) (Kacser and Burns 1973; Reder 1988).
An i,j-th entry of this matrix gives the fractional sensitivity of the i-th rate vi to the
j-th intermediate sj of the network achieved by substrate, product, or effector
effects. The regulatory model of the example network and its description in terms
of the elasticity matrix is shown in Figures 7.2g and 7.2h, respectively. Analysis of
this matrix in a qualitative manner, by only considering the locations and the signs
of the entries, allows qualitative analysis of the control distribution within the
network (Hofmeyr 1989; Schuster and Schuster 1992; Teusink and Westerhoff 2000).
In addition, it allows for the search for network motifs with network motif analysis
(Milo et al. 2002; Shen-Orr et al. 2002). The rationale behind such a search is that
biochemical reaction networks may contain network structures that appear more
frequently than anticipated at random, and may therefore reflect a recurrent func-
tional topology.

Most of these structural and regulatory analyses considered the intracellular bio-
chemical networks as unweighted (directed or undirected) graphs, with the molec-
ular species as nodes and the chemical conversions as the only edges. The
limitation of these methods is that the strengths of the interactions, the actual mag-
nitude of the flux through individual reactions, the concentrations of intermediates,
and (perhaps worst of all) the allosteric interactions known to be crucial to the reg-
ulation of intracellular biochemistry are not considered. The essence of biochemi-
cal reaction networks (i.e., the nonlinear dynamic interactions) have not been taken
into account in these network analyses, even though those should perhaps be the
focus of systems biology.

An exception is the analysis of gene regulatory networks by Shen-Orr et al. (2002),
which was largely based on a map of allosteric interactions. This led to an inter-
esting set of regulatory motifs that were more dominant than others. Here, the
analysis is still incomplete, precisely because the majority of regulatory interactions
(i.e., those running through metabolism and signal transduction) were missing from
the analysis. This should not be the case for complete kinetic models of biochem-
ical reaction networks, but this type of model description (although much more
definitive) is far more demanding in terms of experimental information.

C. Kinetic models

Incorporation of the kinetic properties of the processes and the total concentra-
tions of moieties present in the network gives a kinetic model description of the
network. This amounts to the characterization (parameterization) of all rate equa-
tions of all processes in the network, which then amounts to the determination of
the type of function and the parameters of the rates vi = vi(s, p) for i = 1 . . . r for all
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reactions of the network as functions of all intermediate concentrations—not only
those that are stoichiometrically adjacent. Such rate equations can be (ir-) reversible
Michaelis–Menten; of more complicated type, such as ordered, sequential, or
random mechanisms (Segel 1993); or for multi-subunit enzymes of cooperative
mechanisms (Monod et al. 1965; Koshland et al. 1966).

Integrating with the stoichiometric models, the kinetic models ultimately have
the description ds/dt = Nv(xi(t,p),xd(xi),p), where all parameters (kinetic properties,
moiety-conserved totals, and boundary conditions) have been given an (experi-
mentally) determined value (Chance et al. 1960; Bakker et al. 1997; Teusink et al.
2000). An example kinetic model (i.e., the kinetic model description of the network
of Figure 7.2) can be downloaded from www.systemsbiology.net/compsysbiolbook/
in Jdesigner, Gepasi, or SBML format. Alternatively, it can be simulated online using
the JWS online server of Stellenbosch University (where the model is available in
the demo model section).

With these kinetic models, temporal profiles of the concentrations of intermedi-
ates and rates in the network can be calculated and compared to experimental flux
analysis or X-omics data. In a promising approach to systems biology called the
“silicon cell,” these kinetic models are solely based on experimentally determined
kinetic properties, mechanisms, and interactions of the molecular components of
the system. This makes them computer “replicas” of the real system, with the
important tenet that any system property emanating from the nonlinear dynamic
interaction of the components of the system should be calculable in such a com-
puter replica (Bakker et al. 1997; Rohwer et al. 2000; Teusink et al. 2000; Hoefnagel
et al. 2002; Bruggeman et al. 2005).

Models that incorporate phenomenological descriptions of processes and inter-
actions, fitted to system rather than to component behavior, are referred to as core
models. They can only function to illustrate the possible behavior of simplified net-
works (e,g. Selkov 1981; Teusink et al. 1998; Tyson et al. 2003). They cannot be sub-
jected to validation in contrast to silicon cell models; compare the core models of
glycolysis Goldbeter and Lefever (1972) and Selkov (1975) to the silicon cell models
of glycolysis (Teusink et al. 2000; Hynne et al. 2001). Silicon cells (but not core
models) can be used for purposes such as prediction of improved product forma-
tion (Hoefnagel et al. 2002), drug design (Bakker et al. 2000; Boros et al. 2002), and
rigorous testing of proposed biochemical mechanisms (see the testing of oscil-
lophoretic mechanisms in glycolysis by Reijenga et al. (2005b); the analysis of
ammonium assimilation in Escherichia coli (Bruggemen et al. 2005)).

Kinetic models can be analyzed in many ways. Bifurcation analysis allows for the
evaluation of changes in qualitative dynamics of systems as a function of one or
more parameters; for example, changes from stable steady state (fixed points) 
to instable steady state showing oscillations (emergence of a limit cycle; Hopf 
bifurcation), to bistability (saddle node bifurcation), or to chaos (Goldbeter 1997;
Heinrich 1996). Bifurcation analysis has been combined with quantitative experi-
mentation (Hynne et al. 2001; Reijenga et al. 2002; Reijenga et al. 2005a). Sensitiv-
ity analysis (or parameter sensitivity analysis) can be used to determine the identity
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of parameters to which a particular cellular phenomenon of interest is most sensi-
tive, but only sensibly so in silicon-cell-type models (Saltelli et al. 2000). Such 
sensitivity analysis is an important tool in the analysis of kinetic models. When com-
bined with an assessment of experimental error, it can be used to decide to what
extent model predictions can be trusted.

III. SIMULATION METHODS FOR KINETIC MODELS

We will now overview the simulation methods most frequently used to perform cal-
culations with kinetic models. Kinetic models can be evaluated with different
description methods, as shown in Figure 7.3. The choice of the theoretical descrip-
tion depends on the nature of the experimental data available (spatiotemporal
versus temporal, single-cell versus population resolution), the physicochemical
characteristics of the process (reactions between macromolecules or small mole-
cules; the copy numbers of the (macro) molecules; diffusive properties of mole-
cules), and the type of question (quantitative or qualitative) of interest.

The complexity of the cell’s interior (Goodsell 1991) illustrates that in principle
many different simulation methods may apply, depending on the cellular phenom-
enon of interest. The high concentrations of the many different macromolecules
present may give rise to macromolecular crowding, which can potentially introduce
diffusion gradients (lead to channeling) and alter kinetic and physicochemical prop-
erties (Zimmerman and Minton 1993; Ovadi 1995; Brown and Kholodenko 1999;
Elowitz et al. 1999; Ellis 2001). Some concentrations of (macro) molecules are so low
within cells that stochastic fluctuations may affect systemic behavior (Arkin et al.
1998; Isaacs et al. 2003). Even at high copy numbers stochastic phenomena may
become important when elasticities are small (Elf et al. 2003).

At the highest level of detail, such as single-molecule (or single-atom) resolution,
microscopic modeling procedures can in principle be applied to study dynamic
phenomena of biochemical reaction networks (Baras and Mansour 1996; Gorecki
1999). However, such methods are computationally too intensive at present to give
results that apply at the level of a biochemical reaction network (for an application
to membranes, see Mouritsen and Jorgensen (1997)). At present, systems up to 
105 atoms/molecules on time scales up to nanoseconds can be simulated (Kaan-
dorp; personal communication), and it will never be possible to simulate a com-
plete living cell in complete single-molecule detail, just like it will never become
possible to calculate the dynamic structure of a large protein in complete atomic
detail without mesoscopic simplifications.

Even if it were feasible, such simulation in complete molecular detail foregoes
many of the spectacular advances in statistical mechanics, leading to the realiza-
tion of importances of ensemble averages and to higher-order concepts such as
irreversibility and the second law of thermodynamics. These higher-order concepts
and principles are in fact examples of systems theory principles, and many of the
essential issues posed to biology (including “order out of chaos,” symmetry break-
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ing, hysteresis, evolutionary optimization, and key-lock fitting of substrates into
enzymes) depend on such averaging and transition to higher-order concepts.

Indeed, we consider full-blown microscopic simulation of systems without first
demonstrating the need for such detailed modeling, a detraction form scientific
progress. Needless to say, we do advocate microscopic modeling for those cases
where relevant molecule numbers are so small, interactions so nonlinear, and the
issues so important that it really matters. Microscopic simulation is shown in gray
in Figure 7.3 to indicate that these methods are not yet widely used in computa-
tional systems biology.

One method that is more feasible at present (and which has received a lot of
attention) is a mesoscopic level of description, which originates from statistical
physics (Keizer 1987; Van Kampen 1993). (Alternative methods deal with particle-
based modeling or cellular automata, which will not be discussed here further
(Weimar 1997)). This method uses the master equation description of the kinetic
model, which describes the evolution of the probability density function of the state
of the network (i.e., the rate of change of the probability that a biochemical network
has a particular spatiotemporal state at a particular time). This amounts to a sto-
chastic description for the reaction-diffusion processes that take place in the
system. This description explicitly considers the effects of local (thermal) fluctua-

Figure 7.3. Overview of simulation methods for kinetic models of biochemical reactions networks.
Three levels of simulation are depicted. We focus on mesoscopic and macroscopic simulation methods,
which is why microscopic is shown in gray font. ME refers to “master equation,” PDE to “partial
differential equation,” and ODE to “ordinary differential equation.”
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tions on the reaction and diffusion rates that take place in the system. It is frequently
assumed, however, that diffusion gradients are dissipated (equilibrated) before
changes in concentrations can arise due to reactions (for an exception, see Baras
and Mansour (1996) and Elf (2005)). If this does hold true, the stochastic descrip-
tion resembles a master equation that only refers to reaction processes and not to
diffusion processes (Van Kampen 1993).

The pure-reaction description neglecting spatial heterogeneities has received
much attention (Gillespie 1976; Arkin et al. 1998; Elowitz and Leibler 2000; Turner
et al. 2004). In the so-called small-noise or linear-noise approximation (LNA), the
evolution of the average of the probability distribution as described by the master
equation for reaction-diffusion and pure reactive systems becomes (respectively)
equal to a description in terms of partial differential equations (PDEs, reaction and
diffusion processes) and ordinary differential equations (ODEs, only reaction
processes), which are far more amenable to theoretical and numerical analysis
(Keizer 1987; Van Kampen 1993; Elf and Ehrenberg 2003).

The importance of the LNA theory is that with the results obtained with PDE and
ODE simulations the size of stochastic fluctuations can be approximated up to first
order (Keizer 1987; Van Kampen 1993; Elf and Ehrenberg 2003). In other words,
information on the mesoscopic stochastic behavior of the network can be obtained
with LNA from the macroscopic behavior of the network alone. This makes LNA a
potentially useful tool in the analysis of the dynamics of signaling and genetic net-
works in cases where differential equations are used, as has been done so fre-
quently in the past, and a first-order guess of the stochastic behavior of the systems
is needed.

When the kinetic parameters of processes within the biochemical reaction
network have not been determined experimentally, they have to be estimated or
fitted, or the kinetic model description has to be simplified. For systems without
diffusion limitation, a reasonable number of approximate methods have been
developed to deal with the simplification of the kinetic model to cope with the
problem of parameter uncertainty. Biochemical systems theory (BST), S-systems,
and power-law approximations have been specifically designed to deal with a sim-
plified description of biochemical reaction networks that should overcome the ana-
lytical problems introduced by the nonlinearity of rate equations and deal with the
problem of unknown kinetic parameters (Savageau 1976; Voit 2000).

The linlog approximation (Visser and Heijnen 2002) champions the flow-force
relationships derived by mosaic non-equilibrium thermodynamics (flow-force rela-
tionships (Westerhoff 1987)) and offers, as does BST, many analytical possibilities
(Visser and Heijnen 2002). Mosaic non-equilibrium thermodynamics (MNET) intro-
duced mechanistic information into flow-force relationships of irreversible thermo-
dynamics, and has been successfully applied to the analysis of mitochondrial
oxidative phosphorylation, bacterial growth, and ion transport in bacteriorhodopsin
liposomes (Westerhoff 1987). All of these approximate methods suffer from their
qualitative nature, but this depends to a large extent on the question one wants to
answer. For example, BST has proven very powerful in the analysis of different 
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biochemical reaction network topologies regarding their functional properties 
(Savageau 1991, 2001; Alves and Savageau 2003).

IV. ANALYSIS OF REGULATION AND CONTROL OF SYSTEMIC PROPERTIES
OF BIOCHEMICAL REACTION NETWORKS

A theoretical framework frequently used in experimental and theoretical studies on
control and regulation of biochemical reaction networks is metabolic control analy-
sis (MCA). MCA provides a tool to calculate to what extent any systemic property
of those biochemical reaction networks (e.g., a flux, a concentration, or any func-
tion thereof) is controlled by the activities of the processes (e.g., by the activity of
an enzyme). It was pioneered in the 1970s by Kacser and Burns (1973) and Rapoport
and Heinrich (1974). Later it was generalized by Kell (1986) and Reder (1988).

The theory continues to be extended to deal with different aspects of biochem-
ical reaction networks. Whereas initially MCA dealt solely with control of steady-
state fluxes and concentrations of metabolic networks, it has since been extended
to encompass control of other variables such as Gibbs free energies, efficiencies,
flux ratios (Westerhoff and Van Dam 1987), generalized variables (Schuster 1996),
and transition times (Melendezhevia et al. 1990).

It has been developed also for systems involving quasi-equilibrium reactions and
time-scale separation (Delgado and Liao 1995; Kholodenko et al. 1998); to address
the control of frequencies and amplitudes of oscillatory systems (Kholodenko et al.
1996, 1997a; Ingalls 2004a, 2004b); the statics of signaling networks (Kahn and 
Westerhoff 1991; Bruggeman et al. 2002); the dynamics of signaling networks
(Kholodenko et al. 1997b; Hornberg et al. 2005); channeling (Kholodenko et al.
1994); intra-enzymatic processes (Kholodenko and Westerhoff 1994); hierarchical
networks with gene expression, signal transduction, and metabolism (Kahn and
Westerhoff 1991; Hofmeyr and Westerhoff 2001; Bruggeman et al. 2002; Hornberg
et al. 2005); modular networks (Schuster et al. 1993); reaction-diffusion networks
(Peletier et al. 2003); and transient trajectories (Acerenza et al. 1989; Heinrich 1991;
Ingalls and Sauro 2003). It has been applied frequently to the experimental analy-
sis of cellular networks (Groen et al. 1982; Westerhoff 1987; Fell 1997; Ainscow and
Brand 1999a, 1999b).

Control analysis focuses on the extent of control exerted by a process with the
biochemical reaction network on a particular systemic property. This is quantified
by a control coefficient of the activity ai of a reaction i on the systemic property f
as Cf

vi
= d ln f/d ln ai. A control coefficient is a special case of the more generally

applicable response coefficient (used in sensitivity analysis), which considers any
parameter Rf

pi
= d ln f/d ln pj. This special case is important as it comprises the

control by all catalytic process in the cell.
Response coefficients are identical to control coefficients; that is, Rf

pj
= Cf

vi
if the

parameter pj only affects one process i in the network and if the rate of this process
depends linearly on pj (i.e., if ∂ ln vi/∂ ln pj = 1). Examples of such parameters are
enzyme concentrations in metabolic networks considered without gene expression.
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In proper descriptions, the rate equations of the individual enzymes are parame-
terized for their activity by introducing a parameter ai or li as a multiplier that equals
1 at the physiological state but can be modulated independently. The modulation
corresponds to a simultaneous modulation of the forward and reverse Vmax of the
enzyme by the same factor.

Classical control analysis focuses on the control of all processes in the network
on steady-state fluxes and concentrations in a biochemical reaction network. The
control coefficients can be concisely written in matrix format, using the matrices
introduced previously (Westerhoff et al. 1994; Kholodenko et al. 1995; Heinrich
1996).

The matrices K̄ and L̄ are the scaled kernel and link matrix, respectively. These
are K̄ = Dg(j)-1 · K · Dg(ji) and L̄ = Dg(s)-1 · L · Dg(xi) (with Dg(a) as a diagonal matrix
with the entries of vector a as its diagonal elements). For a good introduction to
the matrix formulation of metabolic control analysis, the reader is referred to
Hofmeyr (2001).

What makes metabolic control analysis so attractive, and where it differs from
sensitivity analysis, is the existence of summation laws and (for some types of
control coefficients) the existence of connectivity laws. Summation laws hold that
the sum of all control coefficients on a given property of the system is an integer
(1 for flux, 0 for concentration, and -1 for frequency). Indeed, the laws reflect the
behavior of a systemic property of the network if all activities in the network are
increased simultaneously by the same factor. They derive from a rescaling of the
time dimension of the kinetic model description of the biochemical reaction
network and can be understood in terms of Euler’s theorem of homogeneous func-
tions (Westerhoff 1987; Giersch 1988; Peletier et al. 2003).

For instance, the summation theorem for the concentration control coefficients
of a particular intermediate xj at a particular time t gives the scaled rate of change 

of that intermediate; that is, (which yields the more familiar 

summation theorem in steady state, but is then also valid for the maximum attained
in a transient response such as in signal transduction) (Acerenza et al. 1989; 
Kholodenko et al. 1997a; Hornberg 2004). Many such summation laws have 
been derived and can be found in many of the references to MCA literature in 
this section. Connectivity theorems are related in an interesting way to the 
stability properties of biochemical reaction networks and express the tendency 
of networks prevailing in an asymptotically stable steady state to dissipate any
change in concentrations of independent intermediates (Westerhoff and Van Dam
1987).
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V. CONCLUSIONS

In this chapter we could only give the reader a limited overview of methods and
modeling descriptions available in computational systems biology. Many topics we
did not cover, such as the existing field of the elucidation of the network structure
from experimental data (de la Fuente et al. 2002; Kholodenko et al. 2002; Vlad et
al. 2004; Crampin et al. 2004) or of robustness of biochemical reaction networks
(Kitano 2004; Stelling et al. 2004). However, this is inevitable considering the present
turbulent state of (computational) systems biology.

With the growing availability of sequenced genomes, quantitative spatiotempo-
ral data sets on the cellular state, kinetic data on cellular processes, and precise
determination of network topology, we anticipate that the need for sophisticated
computational systems biology will become increasingly urgent in the future. Analy-
sis methods such as the aforementioned structural analysis methods are anticipated
to have some impact on the organization of cellular networks. The kinetic methods,
however, should truly deliver the systems biology, as they do incorporate the
dynamic nonlinear interactions between molecules.

These methods are, however, inherently much more difficult because they require
more difficult nonlinear mathematics (but above all accurate experimental kinetic
information). The development of modeling descriptions and analysis tools based
on modularity may continue to alleviate this otherwise Herculean task. They remain
promising and exciting for the understanding of the functional organization of cel-
lular networks. At the same time, more quantitative and standardized experimen-
tal results are needed to build detailed quantitative models of biochemical network
functioning. Only in this way, it seems to us, can one test whether our knowledge
is accurate and whether it is complete by using detailed models.

Such detailed models can then be analyzed to understand basic principles of cell
functioning and used as predictive tools to further guide experimental research.
Only in this way can we come to understand the structure and (dynamic) function-
ing of cells in terms of their constituent macromolecules, which is the ultimate aim
of (systems) biology. Only in this way will biology become a verifiable and falsifi-
able science without giving up its exciting territory: life.
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ABSTRACT

Cellular communication is mediated by extracellular stimuli that bind cellular receptors and
activate intracellular signaling pathways. Principal biochemical reactions used for signal
transduction are transient phosphorylation of proteins or lipids, proteolytic cleavage, and
degradation and formation of complexes (mediated by specific protein-to-protein interac-
tions). Within the nucleus, signaling pathways orchestrate the activity of transcription factors
and regulate gene expression. Cells differ in their competence to respond to extracellular
stimuli. For example, different intracellular signaling pathways are activated in hepatocytes
during the priming, proliferation, and termination stages of regeneration.

A deeper understanding of complex biological responses cannot be achieved by tradi-
tional approaches but requires the combination of experimental data with mathematical
modeling. Following a systems biology approach, data-based mathematical models describ-
ing sub-modules of signaling pathways have been established. By combining computer 
simulations with experimental verification systems, properties of signaling pathway such as
cycling behavior or threshold response could be successfully identified. However, to analyze
complex growth and maturation processes at a systems level and to quantitatively predict
the outcome of perturbations will require further advances in both experimental and theo-
retical methodologies.

I. INTRODUCTION

Cells do not live in isolation, but have evolved mechanisms to communicate. Prin-
cipal signals used are direct cell-to-cell contact and secreted molecules that bind
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to cell surface receptors. Arrays of intracellular proteins form signal transduction
pathways and connect to receptors, facilitating signal transmission from the extra-
cellular compartment to the nucleus and thereby triggering various biological
responses. A key mechanism used for signal transduction is phosphorylation 
due to its simplicity, flexibility, and reversibility. In the late 1970s, it was discovered
that the oncogene v-Src can transform cells, possesses protein kinase activity, 
and causes an increase in tyrosine phosphorylation (Hunter 1980). This led to an
intense hunt for the underlying mechanisms facilitating signal transduction. As a 
consequence, many components of signaling pathways were discovered but it
remained unknown how information is processed and how cellular responses are
regulated.

Signaling pathways do not operate in isolation but form complex cellular net-
works that regulate biological functions in a context-dependent manner. It became
evident that to identify regulatory mechanisms and to predict the behavior of these
networks mathematical models could be very helpful. The initial attempts to model
signaling were primarily based on qualitative data, reflecting the possible interac-
tions between the components, and on computer simulations with ad hoc fixed
parameters or parameters extracted from the literature (Bhalla and Iyengar 1999;
Fussenegger et al. 2000). However, these parameters frequently rely on experi-
ments performed in different cellular settings or on in vitro studies. From these
studies it could not be decided whether the model structure was incorrect or
whether the parameters were ill chosen if the computational simulations did not fit
experimental observations. Thus, to understand the dynamic behavior of signaling
pathways at a systems level it is essential to combine mathematical model build-
ing with experiments (Kitano 2002; Eungdamrong and Iyengar 2004) and establish
data-based models.

II. CONCEPTS AND PRINCIPLES OF SIGNAL TRANSDUCTION

A. The cell: structural organization

Complex organisms are highly organized assemblies of specialized cells. Despite
these differences, all cells share common fundamental properties and represent a
“unit” in living organisms. They are surrounded by a plasma membrane, use DNA
as their genetic material, and employ the same basic mechanisms for energy
metabolism. There are two types of cells: the eukaryotic cell (which participates 
in the formation of complex organisms and contains a nucleus, cytoplasmic
organelles, and a cytoskeleton) and the anuclear prokaryotic cell (bacteria), which
lacks these components.

To maintain integrity, cells are surrounded by lipid membranes that form a shell
and separate the cell interior from the environment (Figure 8.1). The principal build-
ing blocks of membranes are phospholipids, which are amphipathic molecules con-
sisting of two hydrophobic long fatty acid chains linked to a phosphate-containing
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hydrophilic head group. These molecules spontaneously form a bi-layer by orient-
ing the charged head groups to interact with the surrounding water, and fatty acid
tails to form a hydrophobic interior. In addition, the membrane of mammalian cells
contains glycolipids and cholesterol, which increase the rigidity. An important prop-
erty of membranes is that they behave as 2D fluids and their fluidity is influenced
by temperature and lipid composition.

In mammalian cells, membranes not only segregate the cell interior from the 
environment but surround intracellular organelles. This facilitates extensive sub-
cellular compartmentalization and enables mammalian cells to function efficiently.
The largest organelle is the nucleus, which harbors the cell’s genome (DNA) and is
the site of transcription (RNA synthesis). Only the final stages of gene expression,
the synthesis of proteins (translation), take place in the cytoplasm. Hence, the

Figure 8.1. Structural organization of the mammalian cell. The major elements are schematically
indicated.
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nucleus not only serves to store genetic information but controls cellular responses.
By separating the genome from the cytoplasm, post-transcriptional modifications
such as RNA splicing can take place before the messenger (m)RNA is transported
to the cytoplasm, where protein synthesis occurs and the access of proteins to the
genetic material is limited.

In contrast to bacteria, which lack a nucleus, this opens novel opportunities 
for the regulation of gene expression in mammalian cells, including the selected
transport of transcription factors from the cytoplasm to the nucleus. Another large
organelle present in multiple copies in the cytosol of mammalian cells are mito-
chondria, in which most of the cellular ATP is generated by oxidation of small mol-
ecules. Therefore, mitochondria are regarded as the “power plant” of the cell. A
large network of interconnected membrane enclosed tubules forms the endoplas-
mic reticulum (ER), which extends from the nuclear membrane throughout the
cytosol. The major task of the ER is sorting of proteins destined for secretion from
the plasma membrane. Polypeptide chains are translocated into the ER, where
protein folding and processing takes place. From the ER, proteins are transported
within membranous vesicles to the Golgi apparatus and further delivered to the
cell surface membrane or are secreted.

In addition to the membrane-enclosed organelles, a network of protein filaments
extends through the cytoplasm, forming the cytoskeleton and providing another
level of organization. The cytoskeleton provides a structural framework determin-
ing the cell shape and cellular movements, including transport of organelles. In con-
trast to the rigid implications, the cytosekeleton undergoes constant remodeling
and thus reflects a highly dynamic entity. There are three principal types of protein
filaments: actin filaments, intermediate filaments, and microtubules. Actin filaments
are generated by head-to-tail polymerization of actin monomers forming a helical
structure. Assembly and disassembly of these filaments is tightly regulated by actin
binding proteins.

Upon interaction with the motor protein myosin, actin filaments support a variety
of movements of cells. Intermediate filaments are polymers of different proteins
expressed in various cell types and possess a rope-like structure. They are not
involved in cellular movement, but provide mechanical support. Microtubules are
formed by reversible polymerization of tubulin in dependence of GTP hydrolysis.
They are extended outward from a centrosome and the mitotic spindle forms
during mitosis that is responsible for chromosomal separation. Two families of
motor proteins, kinesins and dyneins, associate with microtubules and promote
movement as well as positioning of organelles in the cytoplasm.

B. Signal transmission from the cell surface to the nucleus

In multicellular organisms, cells do not live in isolation but rely on specific mecha-
nisms to communicate (Figure 8.2). In close proximity, direct cell-to-cell contact is
used, whereas soluble ligands also permit communication over distances. However,
integral membrane proteins (receptors) in the cell membrane are essential because



153Ursula Klingmüller

cells are surrounded by a lipid membrane that cannot be penetrated by hydrophilic
ligands such as hormones and growth factors. They bind the ligand in the extra-
cellular space and mediate signal transmission into the cell interior by activating
specific signaling cascades.

Finally, the signal is transported across the nuclear membrane and gene expres-
sion is modulated. Alternatively, hydrophobic ligands such as steroid hormones or
thyroxine are transported by carrier proteins and diffuse after dissociation from the
carrier into the cytosol or nucleus, where they bind to specific receptors that reg-
ulate transcription of target genes. The principal modes used for intracellular com-
munication are phosphorylation, second messengers, degradation, and complex
formation.

Phosphorylation: To convey an intracellular signal, modifications introduced have
to be transient. The most general regulatory device adopted by eukaryotic cells is

Figure 8.2. Signals used for communication of cells. Secreted soluble ligands (light blue) bind to cell
surface receptors (blue). In the extracellular space, hydrophobic ligands (purple) are bound to carrier
proteins (rose). In proximity to cells, they dissociate from the carrier, migrate through the cell surface
membrane, and bind to receptors (light purple) present in the cytoplasm or nucleus. Alternatively, signals
are transmitted by direct cell-to-cell contact mediated by cell surface proteins (green).
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protein phosphorylation because it is simple and reversible, and because ATP is
readily available as a phosphoryl donor. The key enzymes for protein phosphoryla-
tion in target proteins are protein kinases (which transfer a phosphoryl group from
ATP to the hydroxyl group of tyrosine), serine, or threonine residues, whereas
protein phosphatases counter-balance the reaction by removing phosphate groups
from proteins. Reversible phosphorylation of proteins regulates nearly every aspect
of cell life by increasing or decreasing the biological activity of enzymes, stabiliz-
ing or marking proteins for destruction, facilitating or inhibiting movements
between subcellular compartments, and initiating or disrupting protein-to-protein
interaction. Abnormal phosphorylation is the cause or the consequence of many
human diseases.

Protein kinases possess a highly conserved overall structure (Huse 2002) and
operate as molecular switches. The “on” state (which represents maximal activity)
is highly similar in different protein kinases, whereas in the “off” state kinases have
minimal activity and adopt a conformation that is distinct for different protein kinase
classes. The transition between the two states is highly regulated by phosphoryla-
tion, interaction with additional domains, and/or binding of regulatory proteins.

This tight regulatory mechanism was first identified in cytoplasmic tyrosine
protein kinases of the src-family (Harrison 2003), which in addition to the protein
kinase domain possess an src-homology (SH)2 domain facilitating binding to spe-
cific phosphotyrosine residues localized within certain binding motifs and an SH3
domain mediating binding to proline-rich motifs. In addition to cytoplasmic tyro-
sine kinases, several cell surface receptors possess a tyrosine kinase domain in their
cytoplasmic part. Receptor tyrosine kinases—such as the epidermal growth factor
receptor (EGF-R) (Schlessinger 2002) and the platelet-derived growth factor recep-
tor (PDGF-R) (Heldin 1992)—are characterized by specific domains within the extra-
cellular portion that interacts with the ligand, by a single transmembrane domain,
and by a tyrosine kinase domain in part exposed to the cell interior.

The tyrosine kinase activity is tightly regulated by multiple autoinhibitory mech-
anisms, including an inhibitory conformation of the extracellular domain, the trans-
membrane domain, the juxtamembrane domain, and the activation loop. Ligand
binding to the extracellular domain causes a conformational switch that leads to
the activation of the tyrosine kinase domain. Other cell surface receptors (such as
the hematopoietic cytokine receptors, including the interleukin receptors) lack
enzymatic activity (D’Andrea 1989) but couple with cytoplasmic tyrosine kinases of
the Janus kinase family. Ligand binding to the cytokine receptors causes activation
of the receptor-associated Janus kinase and results in tyrosine phosphorylation of
the receptor on multiple tyrosine residues.

Phosphorylation on serine or threonine residues occurs much more frequently
than tyrosine phosphorylation but is less inducible. The overall structure of
serine/threonine protein kinases is very similar to tyrosine protein kinases but the
regulation is mediated by additional subunits that bind second messengers or vary
in their expression level (Johnson 1996). Another mode of regulation is achieved by
phosphorylation or dephosphorylation on multiple residues. For example, cell cycle
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control is performed by protein serine/threonine kinases of the cyclin-dependent
kinase family that are inactive as monomers but activated by cyclin binding.

Regulation of the cell cycle is achieved by synthesis and destruction of cyclines,
phosphorylation of the activation loop and the ATP binding loop in the cyclin-
dependent kinases, and binding of an inhibitor. Counterintuitive is the regulation
of the protein serine/threonine kinase glycogen synthase kinase 3 (GSK-3), which
lies at the crossroads of metabolism and signal transduction (Dajani 2001). GSK-3
is active as kinase in the absence of signal and processively phosphorylates sub-
strates at multiple residues that are already prephosphorylated at a C-terminal
residue. Upon growth factor binding to cell surface receptors, GSK-3 is phospho-
rylated at the N-terminus, which turns the N-terminus into a pseudosubstrate and
thereby blocks the catalytic cleft of the kinase.

The mitogen-activated protein (MAP) kinases form a signaling cascade consist-
ing of an array of protein serine/threonine kinases (Raman 2003). These protein
kinases are characterized by their ability to use protein kinases as substrate and
phosphorylate them at two residues, which is required for full activation. Contrary
to receptor tyrosine kinases, only one receptor serine/threonine kinase family is
known (Shi 2003). The transforming growth factor (TGFb) beta receptors type I and
II possess serine/threonine kinase activity in their cytoplasmic domain, which is 
regulated by autophosphorylation and inhibitor binding.

The activation of signal transduction is counter-balanced by the activation of
protein phosphatases (Tonks 1996), which remove the phosphoryl group from tyro-
sine, serine, or threonine residues by a cystein-catalyzed mechanism. Characteris-
tic of protein tyrosine phosphatases is the multidomain substructure. Protein
tyrosine phosphatases that are located at the cell membrane contain tandem
protein phosphatase domains autoregulated by wedge-like structures. The cyto-
plasmic protein tyrosine phosphatases of the SHP1/SHP2 family harbor two N-
terminal SH2 domains that block the protein tyrosine phosphatase domain in the
inactive state.

Upon activation of signal transduction, the SH2 domains mediate recruitment to
tyrosine-phosphorylated receptors and thereby open the phosphatase domain.
Tyrosine phosphorylation within cells is rapidly induced by stimulation of cells, but
declines soon after. Serine/threonine protein phophatases share a homologous
catalytic domain and are regulated by multiple regulatory subunits controlling
phosphatase activity and selection of substrate (Janssens 2001). The most promi-
nent examples are protein phosphatase PPI and PPIIa.

In addition to phosphorylation on proteins, phosphorylation of phospholipids (in
particular, phosphoinositides) is used for signal transduction. Phosphoinositides are
characterized by an inositol head group that can be phosphorylated by phospho-
inositide kinases on multiple hydroxyl groups and that serves as a lipid-derived
second messenger (playing a role in vesicle trafficking and signal transduction). The
central enzyme for signal transduction is the phosphoinositide 3 (PI3) kinase, which
phosphorylates phosphoinositides at the D-3 position of the inositol ring structure
(Cantley 2002).
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Best studied is the class IA PI3 kinase, which is composed of a regulatory subunit
(p85) and a catalytic subunit (p110). Growth factor stimulation results in a transient
increase in phosphoinositide-3,4-bisphosphate (PtdIns-3,4-P2) or phosphoinositide-
3,4,5-trisphosphate (PtdIns-3,4,5-P3), which is rapidly counteracted by phospho-
inositde phosphatases—such as the SH2-domain, containing inositol
5-phosphatase SHIP, and the phosphatase and tensin homolog deleted on 
chromosom 10 (PTEN)—which removes specific phosphate groups of 
phosphoinositides.

Another mode used for intracellular communication is protein-bound guanosine
triphosphate (GTP). GTP-binding proteins such as Ras belong to the GTPase super-
family and are molecular switches that alternate between the GTP-bound activated
state and a GDP-bound off state (Downward 1997). The activation is accelerated by
a guanine nucleotide-exchange factor (GEF) that promotes dissociation of GDP
from Ras and thus the formation of a Ras-GTP complex. Binding of a GTPase-
activating protein (GAP) to the Ras-GTP complex results in GTP hydrolysis and GAP
dissociation and thus the formation of the inactive Ras-GDP complex.

C. Complex formation

To ensure intracellular communication, modular interaction domains have evolved
that recognize transient modifications (Pawson et al. 2004). These domains fold
independently, are incorporated in larger polypeptides, and recognize exposed
sites on their protein or lipid partners. The first modular interaction domain dis-
covered was the src-homology (SH)2 domain in the N-terminus of the cytoplasmic
tyrosine kinase Src. This domain comprises a block of 100 amino acids and recog-
nizes phosphotyrosine residues in conjunction with a C-terminally localized short
recognition motif. Closely related is the phosphotyrosine-binding (PTB) domain
that recognizes phosphotyrosine residues localized with an N-terminal NPXY motif.

Less frequent are domains that specifically recognize phosphoserine/threonine
residues. Best characterized are the 14.3.3 proteins, which are highly abundant
dimeric proteins binding phosphoserine within RXXpSXP motifs. The phosphoryla-
tion of phosphoinositides in the cellular membrane at the D-3 position is recog-
nized by pleckstrine homology domains and thereby mediates translocation of
signaling proteins to the cellular membrane. Direct protein-to-protein interaction
is mediated by several modular interaction domains, such as the src-homology
(SH)3 domain that recognizes PXXP motifs. Other examples are the WW-domain
(which interacts with PPXY motifs) and the PDZ domain, which binds to ES/TDV
motifs. A class of signaling molecules entirely composed of modular interaction
domains and lacking enzymatic activity are adapter proteins or scaffolds.

D. Proteolytic cleavage and degradation

A common mechanism for regulating the activity of enzymes is mediation by pro-
teolytic cleavage, which ensures processing of hormones from larger precursor pro-
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teins and mediates activation of enzymes involved in blood coagulation, digestion,
or programmed cell death. The ultimate effectors and executors of programmed
cell death are caspases, a family of proteases (characterized by a cysteine in the
active site) that cleave after an aspartic acid residue in their substrate. A large
transmembrane protein that controls cell fate during development is notch. Ligand-
binding is mediated by cell-to-cell contact and results in proteolytic cleavage of
notch and translocation of the cytoplasmic domain into the nucleus.

The activity of proteins is not only controlled by synthesis and processing but by
the rate of degradation, which determines the life span of intracellular proteins.
Whereas membrane proteins or aged organelles are primarily degraded within lyso-
somes, the degradation of cytosolic proteins is mediated by chemical modification
of lysine residues by the addition of ubiquitin, a 76-residue polypeptide (Bonifa-
cino 1989). The process involves three consecutive steps. A ubiquitin-activating
enzyme (E1) is activated by the addition of ubiquitin. Ubiquitin is transferred to a
cysteine residue in the ubiquitin-conjugating enzyme (E2). Finally, the peptide bond
formation between ubiquitin and lysine in the target protein is catalyzed by a ubiq-
uitin ligase (E3). These steps are repeated multiple times, resulting in the forma-
tion of polyubiquitinated proteins that are recognized by the proteasom machinery
and cleaved into short peptides.

E. Second messenger

Binding of ligands (first messengers) results frequently in the production of short-
lived small molecules (second messengers). The first identified second messenger
was cyclic AMP (cAMP), which regulates the activity of protein kinase A. The binding
of cAMP to the regulatory subunit results in the dissociation of the inactive tetramer
and activation of the catalytic subunit. Because the binding is positively coopera-
tive, small changes in cAMP concentration are translated into large changes of
protein kinase A activity. Similarly, cyclic GMP (cGMP) regulates the activity of
protein kinase G and the opening of rod channels.

Lipid-derived second messengers are diacylglycerol (DAG)—which contributes
to the activation of protein kinase C—and inositol-1,4,5-trisphosphate (IP3), which
triggers the opening of Ca2+ channels in the endoplasmic reticulum. The release of
Ca2+, another second messenger, into the cytosol facilitates binding of protein
kinase C to the cell membrane and activation by DAG. Phosphoinositides phos-
phorylated at the D-3 position of the inositol ring structure are not cleaved but
remain imbedded in the cell membrane and act as second messengers.

F. MicroRNA

Most recently identified as a modulator of signal transduction are microRNAs
(Ambros 2004). They are a family of 21–25-nucleotide small non-coding RNAs 
that regulate gene expression in a sequence-specific manner. In mammalian cells,
microRNAs are expressed in a developmentally regulated or tissue-specific manner
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and affect protein synthesis from their complementary target RNA. Bioinformatic
prediction of microRNA targets has been used to examine the function of 
microRNAs (Lewis et al. 2003; Rajewsky and Socci 2004), but these predictions
remain to be experimentally validated.

III. SIGNALING PATHWAYS: FORMATION OF NETWORKS

Intracellular proteins form signaling cascades that use the described modes of
communication to transmit signals from the cell surface to the nucleus. A rather
simple and fast signaling cascade is the JAK-STAT pathway (Figure 8.3, left-hand
panel), which mediates signal transduction primarily through hematopoietic
cytokine receptors, but also hepta-helix receptors and receptor tyrosine kinases
(Rawlings 2004). The key enzyme of this cascade is a member of the cytoplasmic
protein tyrosine kinase family of the Janus type, which harbors two protein kinase
domains (one catalytically active and the other with regulatory functions).

Upon activation, the receptor-associated Janus kinase (JAK) is activated—leading
to tyrosine phosphorylation of the receptor cytoplasmic domain. This mediates
recruitment of signal transducer and activator of transcription (STAT) proteins to
specific phosphotyrosine residues in the receptor via their SH2 domain. Then tyro-
sine phosphorylation of STATs occurs, facilitating STAT dimerization. STAT dimers
depart from the receptor and migrate to the nucleus, where target gene expres-
sion is activated.

Upon dephosphorylation, STATs recycle to the cytoplasm and engage in further
activation cycles. Thus, by multiple consecutive activation cycles the phosphoryla-
tion level of the receptor is constantly monitored and translated into appropriate
levels of target gene expression. Among the induced genes are genes encoding
suppressor of cytokine signaling (SOCS) proteins, which inhibit signaling through
hematopoietic cytokine receptors and thereby constitute a negative feedback loop
that ensures tight regulation of the JAK-STAT pathway.

Another signaling cascade that operates very similarly is the SMAD signaling
pathway (Figure 8.3, right-hand panel), which is activated by TGFb receptors type
II and type I possessing protein serine/threonine kinase activity (Shi 2003). Ligand
binding is facilitated by the type III TGFb receptor, a proteoglycane lacking enzy-
matic activity that delivers the ligand to the type II and type I receptors. Upon
oligomerization, the type II receptor phosphorylates the type I receptor at the
glycine/serine (GS) motif located in the juxtamembrane domain. This leads to the
activation of the serine/threonine kinase activity of the type I receptor and conse-
quently to receptor recruitment of the receptor (R) SMAD-3 and -2.

The R-SMADs are serine-phosphorylated, depart from the receptor, form a
trimeric complex with the common SMAD-4, translocate to the nucleus—where
they bind to nuclear transcription factors and activate target gene transcription,
including the negative regulatory SMAD7. SMAD7 has a higher affinity to the acti-
vated type I receptor and thereby displaces the R-SMADs, resulting in down-
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Figure 8.3. Signaling pathways involved in hepatocyte regeneration. During the priming stage
interleukine (IL)6 binds to its receptor. The receptor-associated tyrosine kinase JAK1 is activated by
phosphorylation (P), and the cytoplasmic domain of the IL6 receptor (blue) is phosphorylated at multiple
tyrosine residues. The signal transducer and activator of transcription is (STAT)3. STAT3 is tyrosine
phosphorylated, dimerizes, migrates to the nucleus, and binds to the promoter of target genes.

Upon dephosphorylation, STAT3 leaves the nucleus and re-enters the cytoplasm. One of the target
genes is the gene encoding the suppressor of cytokine signaling (SOCS)3, which inhibits JAK1. The
tumor necrosis factor (TNF) alpha binds as trimer to the trimeric TNF receptor, resulting in the activation
of the nuclear factor NFkB signaling cascade. NFkB consisting of p65 and p50 binds to the inhibitor IB
and is sequestered as inactive complex in the cytoplasm. Upon activation of the inhibitor kinase (IKK)—
composed of an a, b and g subunit—IkB is serine phosphorylated (P), dissociates from the complex, is
ubiquitinated (Ub), and degraded by the proteasom (scissor).

During the proliferation stage, the receptor tyrosine kinases, met (receptor for the hepatocyte growth
factor), and epidermal growth factor receptor EGF-R (receptor for transforming growth factor TGF alpha)
activate the phosphoinositide (PI)3 kinase cascade and the mitogen-activated (MAP) kinase pathway. The
regulatory subunit of PI3 kinase p85 is recruited to the tyrosine phosphorylated receptor. The catalytic
subunit of PI3 kinase p110 phosphorylates phosphoinositeds at the D-3 position. The product is
recognized by the pleckstrin homology domain of the protein serine/threonine kinases Akt/protein kinase
B and phosphoinositide-dependent kinase (PDK1)—and PDK1 phosphorylates Akt, resulting in full
activation of Akt.

Akt phosphorylates the apoptosis-promoting protein BAD and the fork-head-related transcription factor
1 (FKHR1), and inhibits the activity of the proteins. Activation of the MAP kinase cascade is initiated by
recruitment of the growth factor receptor (Grb)2, associated protein to the tyrosine phosphorylated
receptor. This promotes cell membrane recruitment of son-of-sevenless (SOS) guanine exchange factor,
activation of Ras in the GTP bound form, and membrane translocation as well as activation of the
serine/threonine kinase Raf. Raf triggers phopshorylation of MEK on two serine residues, and activated
MEK phosphorylates the extracellular signal regulated kinase (ERK) on a tyrosine and a threonine
residue.

The phosphorylated ERK dimerizes, translocates to the nucleus, and phosphorylates (for example) the
transcription factor ELK, which modifies the DNA-binding activity of ELK. The transforming growth factor
(TGF) b participates in termination of hepatocyte regeneration. TGF binds to the type II and type I
receptor, which possesses serine/threonine kinase activity. The phosphorylated type I receptor mediates
recruitment of the receptor SMAD proteins 2 and 3. SMAD2/3 is serine phosphorylated, dissociates from
the receptor, and forms a complex with the common SMAD4. The complex migrates to the nucleus,
activates target genes, is dephosphorylated, and relocates to the cytoplasm. Among the target genes is
the inhibitory SMAD7, which competes with SMAD2/3 for receptor binding and inhibits the pathway
(see color plate 4).
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modulation of the pathway. Additional regulation is ensured by the transcriptional
repressors SNON and SKI, which bind to SMADs in the nucleus and form an
inhibitory complex. Like the JAK-STAT signaling cascade, the SMAD pathway shows
cycling behavior.

The MAP kinase cascade (Figure 8.3, middle panel) is formed by the consecutive
activation of three serine/threonine protein kinases (Raman 2003). The MAP kinase
Raf is represented by three isoforms (Raf-1, B-Raf, and A-Raf), which are regulated
by various inhibitory and activating phosphorylation events and phosphorylate MAP
kinase (MEK) at two serine residues. MEK is a dual-specificity protein kinase and
phosphorylates MAP kinase (ERK1 and ERK2) at a tyrosine and a threonine residue
within the YPT motif, which in turn activates the MAP kinases ERK1 and ERK2. The
activated MAP kinases dimerize and translocate to the nucleus, where they phos-
phorylate transcription factors such as ELK-1. The kinase cascade is organized by
scaffold proteins, and at multiple levels negative feed-back loops ensure regulated
activation.

The NFkB signaling pathway (Figure 8.3, right-hand panel) combines signal trans-
duction through phosphorylation with complex formation and selective degrada-
tion. In the absence of signaling, NFkB is sequestered by the inhibitory subunit IkB
in the cytoplasm (Chung 2002). Upon the activation of signal transduction through
the TNF receptor 2/interleukin-1 receptor family (trimeric receptors lacking endoge-
nous enzymatic activity connecting to trimeric TNF receptor-associated factor
(TRAF)), the IkB kinase is activated and phosphorylates IkB on serine residues—
thereby marking the inhibitory subunit for destruction through proteasomal 
degradation.

NFkB is released, which migrates to the nucleus and activates target gene tran-
scription. On the contrary, receptors of the TNF receptor 1 type harbor death
domains in their cytoplasmic part and can promote programmed cell death (apop-
tosis). Ligand-induced receptor trimerization facilitates the assembly of a death-
inducing signaling complex (DISC), leading to caspase 8 recruitment and activation.
Caspase 8 is an initiator caspase that activates other caspases and thereby pro-
motes signal amplification through the cascade.

Another signaling cascade that operates by selective complex formation and
phosphorylation is the Wnt/b-catenin signaling cascade (Dajani 2001). In the
absence of a Wnt, signaling of the scaffold protein axin forms a complex with APC,
b-catenin, and the protein serine/threonine kinase GSK3, resulting in constitutive
phosphorylation of b-catenin. Phosphorylated b-catenin is marked for proteasomal
degradation and therefore does not accumulate in cells. Upon Wnt binding to its
receptor Frizzled, Disheveled is recruited and inhibits GSK3. Unphosphorylated b-
catenin accumulates in the cytosol, subsequently migrates to the nucleus, and
mediates target gene activation in conjunction with transcription factor TCF.

Several signaling pathways use phosphoinositides as mediators, and 
phosphoinositide-4,5-bisphosphate is the common precursor used. As part of the
canonical inositol triphosphate (IP3) signaling cascade, the activation of several
receptors leads to phospholipase C activation—resulting in cleavage of phospho-
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inositide-4,5-bisphosphate to DAG and IP3. IP3 diffuses through the cytoplasm and
triggers opening of Ca2+ channels in the endoplasmic reticulum. The rise in cytoso-
lic Ca2+ facilitates binding of protein kinase C to the membrane and activation of
the protein kinase activity by DAG. In contrast, the phosphoinositides modified by
the lipid kinase PI3 kinase (Figure 8.3, middle panel) are not cleaved and function
as membrane-embedded second messengers (Cantley 2002).

Ligand-induced receptor tyrosine phosphorylation mediates recruitment of PI3
kinase via the SH2 domains of the regulatory subunit p85. This places the catalytic
subunit p110 in proximity to substrates and results in the phosphorylation 
of phosphoinositide 4 phosphate and phosphoinositide-4,5-bisphosphate at 
the D-3 position of the inositol ring. Phosphoinositide-3,4,-bisphosphate and 
phosphoinositide-3,4,5,-triphosphate is recognized by the pleckstrin homology
domain of two cytosolic serine/threonine kinases, the phosphoinositide-
dependent kinase (PDK)1, and Akt/protein kinase B. PDK1 has a low basal activity
and is fully activated by engagement of the PH domain, at the cell membrane.
Mediated by the PH domain, Akt is translocated to the cell membrane and requires
phosphorylation by PDK for full activation. Multiple downstream targets have been
identified for both kinases, including factors involved in protein synthesis, cell sur-
vival, and metabolism.

The described signaling pathways do not operate in isolation but form complex
signaling networks that regulate biological functions in a context-specific manner,
as shown for hepatocyte regeneration in Figure 8.3. Different intracellular signaling
pathways are activated in hepatocytes during the priming, proliferation, and 
termination stages of regeneration—regulating cell cycle re-entry, proliferation, and
re-differentiation. Due to the complexity of biological responses, a deeper under-
standing cannot be achieved by traditional approaches but requires the combina-
tion of experimental data with mathematical modeling.

A. Mathematical modeling of signaling pathways

1. Modeling approaches

Dynamic growth and differentiation processes, such as hepatocyte regeneration,
are regulated by the coordinated activation of multiple signaling pathways that
form complex signaling networks. In addition to a particular pathway being trig-
gered, critical are timing, amplitude, and duration of activation. However, insight
into the characteristic dynamic behavior and design principles of signaling path-
ways cannot be achieved by intuitive approaches alone but requires the combina-
tion of experimental and theoretical approaches, including model building
(Eungdamrong and Iyengar 2004). Typically, signaling pathways are represented by
simple cartoons that qualitatively indicate the connection between the individual
components but lack information about the dynamic behavior.

To translate these graphical representations into mathematical descriptions, first
the involved biochemical reactions have to be specified. Non-covalent interactions
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such as complex formation mediated by protein-to-protein interaction show a linear
response relationship and can be described using the laws of mass action. The for-
mation of dimers or oligomers is frequently used by signaling pathways to gener-
ate signaling complexes with changed biological activity, such as the STAT dimers
that acquire high-affinity DNA-binding capacity or the assembly of the death-
inducing signaling complex (DISC) at the cytoplasmic domain of the TNF- 
receptors. Enzyme-mediated reactions such as phosphorylation/dephosphorylation
or protein synthesis/degradation show in the simplest case a hyperbolic response
and are governed by Michaelis—Menten kinetics.

Sigmoidal response curves result from allosteric regulation of enzymatic activity;
for example, due to increased activity of enzymes in response to binding of multi-
ple ligands. This permits graded responses and enables the enzyme to react to
small changes in ligand concentration, resulting in a switch-like behavior. A well-
studied example for allosteric regulation and positive cooperativity is the binding
of the second messenger cAMP to the inhibitory subunit of the serine/threonine
protein kinase A, permitting the activation of the protein kinase in response to small
local changes in cAMP.

Alternatively, the existence of positive feedback loops in which a down-stream
component of a signaling pathway accelerates the activity of an upstream compo-
nent can lead to sigmoidal response curves. Furthermore, negative feedback loops
or a certain combination of negative and positive feedback loops within signaling
pathways can result in oscillatory responses. For the NFkB signaling cascade, oscil-
lation of the nuclear localization of NFkB in dependence of the expression of the
inhibitory signaling component IkB has been observed.

For the mathematical representation of signaling pathways, currently two major
approaches are being applied. The most frequently used is a deterministic repre-
sentation that considers bulk concentrations of pathway components (not individ-
ual molecules) and that assumes the cell is a well-stirred reactor. If the molecules
are present in sufficient concentrations, the reactions can be described by chemi-
cal kinetic models based on ordinary differential equations (ODEs) representing the
concentration as a function of time.

Critical for this type of modeling approach are the starting concentrations of all
reactants and the rate constants of the reactions. If these are specified, the changes
in concentration of reactants over time can be quantitatively predicted. The other
approach is to apply stochastic models for reactants that exist in small concentra-
tions. In this case, a reaction might or might not occur during a given time period.
The fluctuations (or “noise”) inherent in such stochastic systems are exploited for
cellular functions, resulting in switch-like behavior.

The majority of mathematical models so far established for signaling pathways
disregard as a first approximation the spatial organization of cells. To capture this
additional level of complexity, compartmental models can be established that also
use ODEs but treat the same molecule in different compartments as distinct species
and model the flux of the molecules between the compartments. In models con-
sidering the concentration as a function of time and space, variables require the
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use of partial differential equations (PDEs). Finally, delay differential equations
(DDEs) model delayed reactions (e.g., during which one reactant rests in a differ-
ent compartment, such as the nucleus), and differential algebraic equations (DAEs)
also comprise algebraic side conditions (such as the total concentration of protein
A summed over all reactions equals a positive constant).

2. Parameter estimation and data-based mathematical models of signaling pathways

Parameter estimation and sensitivity analysis have been identified as key compo-
nents for model identification. Parameter estimation refers to the determination of
values of unknown model parameters to provide an optimal fit between the simu-
lation and experimental data (Deuflhard 1983). The identification of critical system
parameters can be achieved by sensitivity analysis. Sensitivities describe the rela-
tive changes of molecule concentrations (and therefore of the system behavior) as
a result of changes of the parameters.

Notably, sensitivities can be determined for specific sets of parameters only (local
sensitivity analysis). Thus, sensitivity analysis can usually only be applied if most
parameters are known or can be estimated. The number of assessable parameters,
and therefore the maximum size of the model, has been very limited due to the
large amount of experimental data required for high-dimensional parameter esti-
mation problems and the curse of dimensionality. Curse of dimensionality refers to
the problem that the space of possible sets of parameter values grows exponen-
tially with the number of unknown parameters, severely impairing the search for the
globally optimal parameter values.

Whereas parameter estimation of ODE systems has been greatly advanced, the
necessary procedures for PDEs are much more complex and require further devel-
opment. Critical for the estimation of meaningful parameters is on the one hand
the existence of high-quality quantitative highly sampled experimental data, which
currently represents one of the major bottle-necks in systems biology approaches.

Recent examples show that new biological knowledge regarding general design
principles of signaling pathways operating in mammalian cells can be generated
by combining quantitative experimental data with mathematical modeling of sub-
modules of signaling networks. For the core module of the JAK-STAT signaling
cascade, a deterministic mathematical model consisting of coupled ODEs has 
been established (Swameye et al. 2003; Nicolas et al. 2004). The dynamical param-
eters of the model were estimated from time-course experiments measuring recep-
tor and STAT5 activation using Bock’s multiple shooting technique (Bock 1981,
1983).

During parameter estimation, time-series values given by a parameterized model
are compared to measured data (e.g., via the mean square distance). By changing
the parameter values, this distance increases or decreases. The parameter set
leading to the global minimum of the mean square distance is the least square esti-
mate of the model parameters. Unfortunately, many estimation algorithms finish
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the estimation procedure in local minima rather than in the global minimum. This
occurs especially in ODE parameter estimation, wherein after each parameter
change the model has to be integrated to obtain model time series. The integra-
tion needs initial values, which are usually the measured data points at the first time
point. Hence, the integration step uses only a small fraction of the given informa-
tion, often leading to a local minimum for the mean square estimate.

The multiple-shooting approach divides the measured time series into several
parts and integrates the ODE model on the subsections based on the first data
point of the corresponding measurements. The resulting model time series is by
construction in every part at least for one time point close to the measured data
set, but possesses discontinuities between the subsection. Removing the disconti-
nuities and decreasing at the same time the mean square distance requires sophis-
ticated numerical algorithms. It has been shown in many applications that the
multiple-shooting algorithm is well suited to finding global optimal parameters
(Timmer 1998). For initial hypothesis testing, a model based on the traditional
assumption of signaling pathways as linear feed-forward cascade was compared to
a model capturing a cycling behavior of STAT5.

Independent of the parameter values, it was not possible to fit the experimental
data with the linear feed-forward cascade model, but only with the model includ-
ing the cycling behavior of STAT5, which was modeled using a delay term reflect-
ing the sojourn time of STAT5 in the nucleus. By applying the fitted model, the
parameters of nuclear export and import were identified as most sensitive to per-
turbation, a prediction that was experimentally verified. In silico investigations
revealed that STAT5 undergoes rapid nucleocytoplasmic cycling, continuously cou-
pling receptor activation and target gene transcription. The identification of rapid
nucleocytoplasmic cycling as a general design principle of signaling pathways 
was confirmed by studies on the SMAD signaling pathway using fluorescence
microscopy (Nicolas et al. 2004).

Other examples are mathematical models based on experimental data describ-
ing the temporal control of NFkB activation by the coordinated degradation and
synthesis of IkB proteins. Hoffmann et al. (2002) reported a computational model
of the NFkB–IkB module consisting of ODE that involved two compartment kinet-
ics of NFkB and IkB activation. The model was based on the analysis of genetically
reduced systems. Some of the parameters were taken from the literature, but
several were determined by model fitting to quantitative time-course data deter-
mining the DNA-binding activity of NFkB in embryonic fibroblast harboring a single
IkB isoform.

The modeling approach revealed that IkBa ensures rapid turn-off of NFkB
responses, thereby representing a negative feedback loop—whereas IkBb and e
stabilize nuclear NFkB localization during longer responses and dampen the 
oscillation of NFkB. Furthermore, a bimodal signal-processing characteristic with
respect to stimulus duration was revealed regulating selective target gene expres-
sion. To explore modeling of the NFkB signaling pathway at the single-cell level,
Nelson et al. (2004) combined time-lapse imaging of fluorescent-labeled NFkB and
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IkB in the cytosol and nucleus with use of the computational model established by
Hoffmann et al.

This analysis revealed that just two variables, the concentration of free IKK and
IkBa, were intimately coupled to the oscillatory dynamics of nuclear NFkB. Com-
putational simulation and experimental variation of the IkB expression rate gave
comparable results, demonstrating that increased IkB expression damped the
oscillation in NFkB localization. The expression of target genes was dependent on
the oscillation persistence, amplitude, and period of NFkB nuclear localization.

An even more complex task was the mathematical modeling of the CD95-
induced apoptosis pathway (Bentele et al. 2004). The previously mentioned
attempts to model signal transduction pathways were limited to small systems. The
signaling cascade of CD95-induced apoptosis consists of more than one hundred
reactions involving molecule species and reaction parameters in the same order of
magnitude. To address the complexity of apoptotic signaling, we subdivided the
entire system into subsystems of different information qualities. A new approach
for sensitivity analysis within the mathematical model was key for the identification
of critical system parameters and two essential system properties (modularity and
robustness). The model well described the regulation of apoptosis on a systems
level, and revealed a threshold mechanism for the regulation of apoptosis. The
model predictions were verified experimentally.

B. Challenges for performing kinetic measurements on a large scale

These examples demonstrate that important biological knowledge can be gener-
ated by data-based mathematical models. However, the establishment of models
critically depends on the generation of high-quality quantitative data. The major-
ity of techniques currently used aim at the generation of qualitative data. However,
to reproducibly generate quantitative temporal and possibly spatially resolved data
several adjustments have to be considered.

The techniques that have been successfully used for data-based mathematical
modeling include (1) quantitative immunoblotting that combines separation of pro-
teins according to their molecular weight, with detection by specific antibodies fol-
lowed by chemiluminescence-detection (Swameye et al. 2003; Bentele et al. 2004),
(2) electrophoretic mobility shift assay (EMSA), which enables one to measure the
DNA-binding capacity of proteins by mixing protein extracts with radioactive-
labeled DNA probes (Hoffmann et al. 2002), and (3) imaging of green fluorescent
protein (GFP)-tagged proteins in live cells by fluorescence microscopy (Nelson et
al. 2004).

The currently applied techniques can be further advanced by establishing pro-
cedures to convert the obtained relative values into absolute numbers (such as 
molecules per cell) and to remove systematical errors. However, the limitations of
quantitative immunoblotting are that only a limited number of samples can be
processed at the same time and live-cell imaging is restricted by the availability of



166 Biological Foundations of Signal Transduction and the Systems
Biology Perspective

only a limited number of spectral variants of GFP. Cell-based microarrays are being
developed to study the perturbation of the function of genes in a systematic high-
throughput fashion (Wu et al. 2002). However, to generate quantitative data mere
overexpression or disruption of function is not sufficient, but precisely identifiable
expression levels must be achieved. Thus, new techniques (for example, protein
arrays with high specificity and sensitivity or advanced fluorescence microscopy
techniques) have to be developed to facilitate large-scale systems biology
approaches.

IV. CONCLUSIONS

To generate informative mathematical models of signaling pathways, knowledge
of the involved biochemical reactions, the concentration of the components, and
possibly their subcellular organization is critical. Computer simulations can be used
to rapidly test different hypotheses (for example, regarding system behavior), but
experimental validation is required before conclusions can be drawn. The majority
of present high-throughput data results in qualitative information that is not quan-
titative and therefore not suited for quantitative mathematical modeling.

In general, it will be important to establish quality standards for the experimen-
tal data used for parameter estimation. This will be facilitated by the development
of standard operating procedures for the techniques used for data acquisition and
the data-processing procedure, and an agreement on a limited number of cellular
systems that are initially analyzed by systems biology approaches.

Mathematical models of signaling pathways are initially based on hypothesis and
are further refined by iterative cycles of model adjustments and experimental vali-
dation. Thus, essential for the success of systems biology is a close cooperation of
model builders and experimentalists. The advancement in theoretical tools and
quantitative techniques will determine whether systems biology will be able to fulfill
the promise to decipher mechanisms leading to diseases and to enhance the iden-
tification of efficient therapeutic targets.
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ABSTRACT

Understanding the complex interactions among cellular components (genes, proteins and
metabolites) at a network level is a key issue in systems biology. In this chapter, we give an
overview of metabolic network reconstruction from genome information and its structural
analysis. First, existing databases for gene-enzyme and enzyme-reaction relationships
needed for or applicable to the reconstruction of metabolic networks are discussed. Various
approaches to reconstructing organism-specific metabolic networks are then briefly illus-
trated. The various means of mathematical representation of metabolic networks are
explained, with particular emphasis on the problem arising from currency metabolites.

In the second part of the chapter, we summarize and discuss some major results of struc-
tural analysis of large-scale metabolic networks. Comparative analysis of a large number of
fully sequenced organisms has revealed several intriguing topological properties, such as
the power law connection degree distribution and the “bow-tie” global connectivity struc-
ture, which are explained as fundamental organizational principles of both biological and
physical networks. Finally, we show an example of how structural analysis can be used for
functional analysis of metabolic networks, especially for a modular network analysis, along
with the challenges that face us for a more integrated and functional analysis of metabolic
networks at a genome level.

I. INTRODUCTION

One of the key issues in systems biology is to decipher the metabolic and regula-
tory networks involved in cellular processes. The rapid development in genome
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sequencing and functional genomic studies provides a large amount of informa-
tion on the constituents (genes, mRNA, proteins/enzymes, and metabolites) of
these biological networks and their activities in different organisms and under 
different environmental conditions. This makes it feasible to understand cell phys-
iology and to compare different organisms at a system level. To this end, the recon-
struction and analysis of genome-wide metabolic networks is of particular
importance because it ultimately determines the metabolic activities and thus the
physiology of cells. In fact, the study of genome-scale metabolic networks has
gained much attention in recent years (Jeong et al. 2000; Wagner and Fell 2001;
Ravasz et al. 2002; Stelling et al. 2002; Palsson et al. 2003; Forster et al. 2003; Ma
and Zeng 2003a; Covert et al. 2004; Hatzimanikatis et al. 2004).

In this chapter, we first illustrate the major approaches and available databases
for the reconstruction of genome-scale metabolic networks. We then introduce
various means of mathematical representation of metabolic networks. Subse-
quently, methods for the structural and functional analysis of metabolic networks
are explained and discussed. Emphasis is placed on methods based on graph
theory and found useful in deciphering the global organization principle and the
local modular hierarchical structure of metabolic networks. For a more pathway-
orientated and stoichiometric analysis of metabolic networks, readers are referred
to several recent excellent reviews on this aspect (Klamt and Stelling 2003; Palsson
et al. 2003; Hatzimanikatis et al. 2004; Papin et al. 2004).

II. RECONSTRUCTION AND REPRESENTATION OF METABOLIC NETWORKS

A. Genome-scale metabolic network reconstruction: from parts to the whole

An important step in the reconstruction of organism-specific metabolic networks
from genome information is to obtain the gene-enzyme and enzyme-reaction rela-
tionships. Enzymes are the key players that link a gene with a specific metabolic
reaction. The IUBMB (International Union of Biochemistry and Molecular Biology)
assigns an Enzyme Commission classification number (EC number, such as 1.1.1.1)
to each enzyme. The EC number provides a unique and consistent representation
of an enzyme and thus is widely used in genome annotation and metabolic network
reconstruction.

There are several publicly available enzyme databases, such as BRENDA (Schom-
burg et al. 2004), KEGG (Kanehisa et al. 2004), and Expasy enzyme nomenclature
database (Gasteiger et al. 2003), which describe not only the basic information of
an enzyme but the genes found to code for that enzyme. These databases can be
used to obtain the gene-enzyme relationships. For example, part of the informa-
tion for the enzyme 1.1.1.81 in the KEGG enzyme database follows.

ENTRY EC 1.1.1.81
NAME hydroxypyruvate reductase
beta-hydroxypyruvate reductase
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NADH:hydroxypyruvate reductase
D-glycerate dehydrogenase
REACTION D-glycerate + NAD(P) = hydroxypyruvate + NAD(P)H
GENES YPE: YPO2536
PAE: PA1499
PPU: PP4300
RSO: RS03094(ttuD1) RS05749(ttuD2)
NEU: NE2456(ttuD2)
MLO: mlr5146

The corresponding genes in different organisms for the enzyme are listed in the
section “GENES.” From this information, one can know if an enzyme is coded in a
specific organism. Therefore, one can obtain the lists of enzymes for all organisms
in the database at one time.

For information on a newly sequenced organism that has not yet been included
in the enzyme databases one can obtain an enzyme list for it directly from its
genome annotation information. Based on sequence similarity or protein domain
(motif) analysis, many genes (ORFs) in the genome are annotated as enzymes and
assigned EC numbers. Then, from the annotation information one can know which
enzymes are in the metabolic network of the organism.

It is often not straightforward to reconstruct the metabolic network from the
obtained enzyme list for a specific organism because there are often no simple one-
to-one enzyme-reaction relationships. One enzyme may catalyze several different
reactions, and the same reaction may be catalyzed by different enzymes. For
example, the enzyme fatty-acid synthase (2.3.1.85) catalyzes about 30 reactions in
the fatty acid synthesis pathway, whereas the reaction

3-Hydroxydecanoyl-(acyl-carrier protein) = trans-Dec-2-enoyl-(acp) + H2O

can be catalyzed by five different enzymes (2.3.1.85, 2.3.1.86, 4.2.1.58, 4.2.1.60, and
4.2.1.61). The various enzymes may exist in different organisms or be active under
different environmental conditions. Unfortunately, in most enzyme databases only
the main reaction catalyzed is listed for each enzyme. Therefore, some reactions
that happen in reality may not be included in the reconstructed metabolic network.
As far as we are aware, the KEGG LIGAND database is the most complete meta-
bolic reaction database (Goto et al. 2002). It includes more than 6,000 enzyme-
catalyzed or nonenzyme-catalyzed biochemical reactions. Most of the known reac-
tions catalyzed by a specific enzyme are listed, allowing for reconstruction of more
complete metabolic networks. However, an important source of information
missing in the LIGAND database (and most other reaction databases) is the 
reaction reversibility.

It is generally recognized that many important metabolic reactions only occur in
one direction under real physiological conditions. Therefore, information on reac-
tion reversibility is important in network analysis. However, there is no metabolic
reaction database available that gives clear and sufficient information about it. The
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reaction direction is shown in the KEGG metabolic maps (direction inconsistencies
in different maps exist). However, this information is not included in the reaction
database file. Ma and Zeng (2003a) manually checked the reactions in the KEGG
LIGAND database and added the reversibility information according to certain
physiological rules. For example, one rule is that all oxygen-consuming reactions
in organisms are irreversible.

Based on these rules, about 2,000 reactions are identified as irreversible. It is
found that some irreversible reactions have a wrong reaction direction in the KEGG
LIGAND reaction database. We corrected the wrong direction for these reactions.
In addition, we also corrected some mistakes in the original reaction database, 
such as inconsistencies in compound names and mistakes in the reaction equa-
tions. The complemented and corrected metabolic reaction database is freely
available from our web site (genome.gbf.de/bioinformatics/). The enzyme-gene
and reaction-enzyme relations in the database are continually updated by incor-
porating the most up-to-date gene annotation information from the newest KEGG
database files.

The conventional method for reconstructing metabolic networks is based on
annotated genome sequencing (e.g., via ORFs). Because annotation of genomes
is time consuming and often only 50 to 60% of the sequences can be accurately
annotated with the present techniques, the necessity of using annotated sequences
means a time delay and incompleteness. To solve this problem, and to explore data
from a large number of on-going sequencing projects, Sun and Zeng (2004) recently
developed an algorithm called IdentiCS to identify protein-coding sequences and
thus to reconstruct strain–specific metabolic networks directly from unfinished raw
genomic data. Compared with the conventional method (which needs more than
an 8x coverage of the genome sequences), our method needs only a 3 to 4x 
coverage for bacteria. The method is being extended to eucaryotes.

The metabolic network reconstruction methods described previously are based
on enzyme and reaction databases and can be called high-throughput reconstruc-
tion because they only make use of information available from databases. This
allows an automatic approach in reconstructing networks for several organisms at
the same time. The general workflow of this reconstruction method is summarized
in Figure 9.1 (the solid arrows). This high-throughput method is necessary for com-
parative analysis of large-scale metabolic networks. However, there is a trade-off
between the high productivity and the high quality. For example, the networks
reconstructed in such a high-throughput way may be not complete due to the 
following.

• There are some nonenzyme-catalyzed reactions occurring spontaneously in
metabolic networks. For example, the reaction

L-Glutamate 5-semialdehyde = 1-Pyrroline-5-carboxylate + H2O 

is an important nonenzyme-catalyzed reaction in proline synthesis pathways.
These reactions should be added to the reactions lists obtained from genome
information to avoid artificial missing links in the reconstructed metabolic network.
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• EC numbers are often used in linking an annotated gene with one or more meta-
bolic reactions. However, only chemically well-characterized enzymes are given
an EC number by IUBMB (International Union of Biochemistry and Molecular
Biology). For this reason, many enzymes are often found to have an incomplete
EC number (such as 1.2.-.-) in the genome annotation database. Such incomplete
EC numbers appear in almost all metabolic maps in KEGG (including the well-
studied glycolysis pathway). It is necessary to develop a set of new IDs for these
unclear enzymes to correctly map a reaction to a gene.

• Many enzymes for which the reactions catalyzed have been experimentally deter-
mined are not found in any fully sequenced genomes. Among the 4,223 enzymes
in KEGG database, 2,572 are not found to be coded by any gene in any fully
sequenced organism. The reason for this may be that the functions of a large
part of the genes in a genome are unknown. For this reason, Karp (2004) recently
called for an Enzyme Genomics Initiative to find coding sequences for these
enzymes.

To address the problems mentioned previously for the high-throughput network
reconstruction, one needs to extend the network with reactions from biochemistry
and physiological studies and inferred from the literature (as illustrated in Figure
9.1). This is typically desired for an in-depth functional analysis of the metabolic
network of a specific organism. However, this reconstruction process is relatively
time consuming. EcoCyc is a well-known metabolic database that provides a high-

Figure 9.1. The reconstruction of metabolic networks from genome information. The high throughput
reconstruction method (shown by the solid arrows) directly extracts information from enzyme or genome
databases to obtain a list of reactions included in the metabolic network of one organism. The high-
quality metabolic network reconstruction also adds new enzymes or reactions from biological
experiments or literature (shown by the dashed arrows) in addition to those from databases.



174 Reconstruction of Metabolic Networks from Genome
Information and Its Structural and Functional Analysis

quality metabolic network for Escherichia coli based on firsthand literature (Karp et
al. 2000). High-quality metabolic networks for a small number of organisms (such
as Helicobacter pylori and Saccharomyces cerevisiae) have been reconstructed by
several groups (Schilling et al. 2002; Forster et al. 2003).

These well-defined metabolic models have been used to quantitatively analyze
possible metabolic phenotypes of the organisms and/or to predict metabolic flux
distributions under specific environmental conditions (Famili et al. 2003; Almaas et
al. 2004). By integrating heterogeneous experimental data (such as those from
microarray, proteomic, and metabolomic measurements), these models can be con-
solidated or improved by including newly discovered interactions (missing links in
metabolic networks), which in turn can guide strain improvement process to reach
a desired metabolic phenotype (Edwards et al. 2001; Ibarra et al. 2002; Covert 
et al. 2004).

B. Mathematical representation of metabolic networks

A proper mathematical representation of the large number of reactions obtained
for a specific organism is necessary for any structural analysis of metabolic networks.
Two approaches are generally used: the stoichiometric matrix and the connectivity
graph (Figure 9.2). In the stoichiometric representation, the rows and columns of
the so-called stoichiometry matrix represent reactions and metabolites, respec-
tively. A cell with a nonzero value in the matrix represents the stoichiometric co-
efficient of the corresponding metabolite in the corresponding reaction. A positive
value means that it is a product, whereas a negative value indicates a substrate.
The stoichiometric representation is a full representation of the network structure.
Several quantitative analysis methods have been developed based on the stoi-
chiometric matrix of metabolic networks, such as flux balance analysis, elementary
flux mode analysis, and extreme pathway analysis (Schuster et al. 1999; Edwards et
al. 2002; Price et al. 2002; Klamt et al. 2003; Papin et al. 2004).

However, when dealing with large-scale genome-based metabolic networks
these methods often face serious computational problems. For example, the com-
binatorial explosion problem resulting from huge numbers of pathways often
makes it difficult or even impossible to calculate all elementary modes or extreme
pathways in genome-scale metabolic networks (Klamt and Stelling 2002; Schuster
et al. 2002). For a detailed description of these stoichiometric-matrix-based
methods, one can refer to the chapter by Bruggemann et al. in this book.

In contrast to the stoichiometric representation, graph representation is a sim-
plified way of representing the metabolic network. As shown in Figure 9.2, two types
of graphs can be generated from a metabolic network: the metabolite graph (in
which the nodes are metabolites and the links are reactions) and the reaction graph
(in which the nodes are reactions and two reactions are linked if a metabolite is the
substrate of one reaction and the product of another reaction). The metabolite
graph is similar to the classical way of metabolic pathway illustration in biochem-
istry textbooks, and is thus often used in structural analysis of metabolic networks.
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Considering that many reactions are irreversible, many links in the graph are
directed (called arcs in graph theory, and correspondingly the undirected links are
called edges), resulting in a directed graph.

Compared with the stoichiometric representation, the graph representation 
is more suitable for visualization and structural analysis of large-scale metabolic 
networks. However, we should keep in mind that the graph representation is a 
simplified way of network representation that loses some information, such as sto-
ichiometric coefficients of reactions. A reaction often has several links in the graph
(sometimes in very different parts) because most reactions have multiple substrates
and products. On the other hand, one link in the graph may represent several dif-
ferent reactions. Therefore, a reverse step to map a link to its corresponding reac-
tion(s) is required when providing biological interpretation for the results from
graph analysis of metabolic networks.

C. Currency metabolites in graph representation of metabolic networks

An important issue in graph representation of metabolic networks is how to deal
with the currency metabolites such as H2O, CO2, ATP, and so on (Ma and Zeng

Figure 9.2. Mathematical representation of metabolic networks. (a) The upper part of the glycolysis
pathway, (b) the stoichiometric matrix of the pathway, (c) the metabolite graph representation of the
pathway, and (d) the reaction graph representation of the pathway. Metabolite abbreviations: F6P (D-
Fructose 6-phosphate); FDP (D-Fructose 1,6-bisphosphate); T3P1 (D-Glyceraldehyde-3-phosphate); T3P2
(Glycerone phosphate); and 13PG (1,3-Bisphospho-D-glycerate).
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2003a). Currency metabolites are normally used as carriers for transferring electrons
and certain functional groups (phosphate group, amino group, one carbon unit,
methyl group, and so on). In a relatively early and most-often cited study on the
structure of genome-scale metabolic networks based on graph theory, Jeong et al.
(2000) regarded all metabolites (including currency metabolites) as nodes. In this
way, they calculated one of the network topology parameters, average path length
(APL), which is defined as the shortest path length averaged for every connected
pair of metabolites in the entire network. They found that APL is almost the same
(about 3.2) for all 43 organisms studied. This means that most of the metabolites
can be converted to each other in about three steps. These results are surprising,
and in fact unexpected, in view of the often long pathways for the synthesis of many
metabolites. The reason for this unrealistic short path length is that most of the
apparent shortest paths are actually linked through currency metabolites. For
example, in the glycolysis pathway the path length (number of reaction steps in the
pathway) from glucose to pyruvate should be nine in terms of biochemistry.
However, if ATP and ADP are considered as nodes in the network, the path length
between glucose and pyruvate becomes only two (the first reaction uses glucose
and produces ADP, whereas the last reaction consumes ADP and produces 
pyruvate).

This calculation of path length is obviously biologically not meaningful. There-
fore, the connections through currency metabolites should be avoided in finding
the shortest path from one metabolite to another. It should be mentioned that cur-
rency metabolites cannot be defined per se by compounds but should be defined
according to the reaction. For example, glutamate (GLU) and 2-oxoglutarate (AKG)
are currency metabolites for transferring amino groups in many reactions, but they
are primary metabolites in the following reaction.

AKG + NH3 + NADPH = GLU + NADP+ + H2O

The connections through them should be considered. The same situation holds
for NADH, NAD+, ATP, and so on. Another problem involves reactions such as the
following.

AcORN (Acetyl-ornithine) + GLU = ORN (Ornithine) + AcGLU (Acetyl-glutamate).

Here, the acetyl group is transferred between GLU and ORN. Only the connec-
tions AcORN-ORN and GLU-AcGLU are included, but AcORN-AcGLU and GLU-
ORN are excluded. If the latter two connections are considered, the path length
from GLU to ORN will be one, and this is not in accordance with the pathway in
real biochemistry.

From this discussion we can see that it is difficult to remove the connections
through currency metabolites automatically by a program. Therefore, in a recent
study (Ma and Zeng 2003a) we manually checked the reactions that appear in the
KEGG metabolic maps and added corresponding connections one by one. In this
way, the reaction-connection relationships can be more accurately obtained and
used to generate metabolite graphs from the lists of reactions of different organ-



177Hong-Wu Ma and An-Ping Zeng

isms. As an example, Figure 9.3 depicts the two graphs (with and without connec-
tions through currency metabolites) for the reconstructed metabolic network of
Streptococcus pneumoniae. It can be seen that the one without currency metabo-
lites is more realistic and more amenable to analysis. In contrast, the true network
structure in the graph with currency metabolites is masked by the large number of
links through currency metabolites. Therefore, the removal of connections through
currency metabolites is an essential step in drawing biologically meaningful con-
clusions from graph analysis of metabolic networks.

Arita (2003) proposed a different approach, called atomic reconstruction of
metabolism for graph representation of metabolic networks. In this approach, the
atomic flow in a metabolic reaction is traced and a substrate is only connected to
the product(s) that contains at least one atom from it. An example is shown here
for the following reaction.

ATP + D-Glucose = ADP + D-Glucose 6-phosphate

In this reaction, the link from D-glucose to ADP is not included in the graph
because there is no atomic flow between these two metabolites. However, the other
three links (ATP to ADP, ATP to D-glucose 6-phosphate, and D-glucose to D-
glucose 6-phosphate) are included in the resulting graph. Therefore, although this
approach can avoid certain connections through currency metabolites there are still
biologically not meaningful connections in the graph.

III. STRUCTURAL ANALYSIS OF METABOLIC NETWORKS

A. Degree distribution and average path length

An important structure characteristic of metabolic networks and many other
complex networks is the power law degree distribution: most of the nodes in the
network have a low connection degree, whereas few nodes have a very high 

Figure 9.3. The metabolite graph representation of metabolic networks of Streptococcus pneumoniae.
The left-hand network includes the connections through currency metabolites, and the right-hand
network does not. Links with arrows represent irreversible reactions, and those without arrows represent
reversible reactions (see color plate 5).
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connection degree (Albert et al., 2000; Jeong et al. 2000, 2001; Strogatz 2001; Wolf
et al. 2002; Bray 2003). The high-degree nodes dominate the network structure and
are called hubs of the network. Most of the nodes are connected through the hubs
by a relatively short path, and the average path length is insensitive to the network
scale. Therefore, this type of network is called a scale-free network in several studies
(Strogatz 2001). The scale-free property makes the network robust against random
errors because most errors on the less connected nodes do not affect the network
connectivity very much. Therefore, such a robust structure may be the result of a
long evolutionary selection process.

The metabolite graphs (with or without connections through currency metabo-
lites) were found to follow the power law degree distribution, implying that both are
scale-free networks (Jeong et al. 2000; Ma and Zeng 2003a). However, the hubs iden-
tified for the graphs with or without currency metabolites are very different. Most of
the hub metabolites in the metabolite graph with currency metabolites are currency
metabolites such as H2O, ATP, ADP, and so on due to their frequent appearance in
many reactions. Excluding these currency metabolites, one normally finds several
major primary metabolites as hubs. These include glycerate-3-phosphate, pyruvate,
and D-fructose-6-phosphate and D-glyceraldehyde-3-phosphate (which are inter-
mediates in the glycolysis pathway); D-ribose-5-phosphate and D-xylulose-5-
phosphate (which are intermediates in the pentose phosphate pathway); acetyl-CoA
(which is the metabolite linking the glycolysis pathway, the citric acid cycle, and the
fatty acid synthesis pathway); 5-phospho-D-ribose 1-diphosphate (which is the pre-
cursor for purine and histidine synthesis); and L-glutamate and L-aspartate (two
important amino acids directly produced from precursors in the citrate acid cycle
and convertible to many other amino acids). These metabolites are in the central
metabolic network across organisms (Schilling et al. 2002; Stelling et al. 2002) and
thus are the true hubs in the organization of metabolic networks.

One feature of the scale-free network is the somehow invariable average path
length with increasing network size. This phenomenon has been found by Jeong
et al. (2000) in the metabolite graphs with currency metabolites (about 3.2 for all 43
studied organisms). However, for metabolite graphs without currency metabolites
much longer and variable path lengths are obtained (as shown in Figure 9.4).

Generally, APL tends to increase with network scale. Furthermore, quantitative
differences exist among the three domains of organisms; namely, the metabolic
networks of eukaryotes and archaea generally have a longer APL than those of bac-
teria. The average APL values for networks of these three domains of organisms
are 9.57, 8.50, and 7.22, respectively. This result indicates that there are true struc-
ture differences between the metabolic networks of different organisms, which can
only be revealed by removing the connection through currency metabolites. The
network structural differences are the result of a long evolutionary process.

To explore this, we constructed evolutionary trees based on the reaction content
of metabolic networks for 82 fully sequenced organisms (Ma and Zeng 2004). We
found that the major results from phylogenetic trees based on metabolic networks
are surprisingly in good agreement with the tree based on 16S rRNA, despite the
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prevalence of horizontal transfer of metabolic genes among organisms—confirm-
ing the three-domain classification and the close relationship between eukaryotes
and archaea at the level of metabolic networks. This indicates that the gene trans-
fer events are constrained by some system-level organizational principle(s).

B. Network global connectivity: the “bow-tie” structure

The scale-free property revealed by the power law connection degree distribution
is regarded as an important finding in the study of complex networks, and has been
found in many different types of networks (Albert et al. 2000; Jeong et al. 2000;
Jeong et al. 2001; Strogatz 2001). However, this property only reflects one aspect
of the network structure. Actually, it only shows the local connectivity of a network
but does not tell us anything about the global network structure. For example, both
networks shown in Figure 9.5 indicate a power law degree distribution. However,
the left-hand network is a fully connected one, whereas the right-hand network con-
sists of several disconnected subgraphs. The same problem exists for the parame-
ter average path length.

Normally, a short APL means that the network is more efficiently connected.
However, the right-hand network shown in Figure 9.5 has a shorter APL than the
left-hand network, though most of the nodes in the right-hand network are not 
connected with each other at all. Therefore, new method(s) and parameter(s) are
needed to investigate the global network connectivity, which cannot be described
by the parameters degree distribution and APL. To this end, we used the breadth-
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Figure 9.4. Calculated average path lengths for metabolic networks of fully sequenced organisms.
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first searching method to find all connected pairs of metabolites (Broder et al. 2000).
We found that in most of the metabolic networks about half the metabolites can
be converted to only a very limited number (usually less than 10) of metabolites.
Although the number of metabolites reachable by the other metabolites is much
higher, it is still not more than half the metabolites. For a randomly chosen pair of
substrate and product, the probability that a path exists between them is less than
20% (10% for metabolic networks of certain organisms).

This indicates that metabolic networks are far from fully connected networks. At
the same time, we found that there exist several fully connected sub-networks in
which all metabolites can be converted to each other. These fully connected sub-
networks are called strong components of the metabolic network (Ma and Zeng
2003b). In graph theory, a strong component of a network is defined as a subset of
nodes such that for any pair of nodes u and v in the subset there is a path from u
to v (Batagelj and Mrvar 1998). The size distribution of the strong components in
the metabolic network of E. coli is shown in Figure 9.6. It can be seen that the
largest component is much larger than other components and thus is called the
“giant strong component (GSC).” Then we found that there are an IN subset in
which all metabolites can be converted to metabolites in the GSC, and an OUT
subset in which all metabolites can be produced from metabolites in the GSC. All
other metabolites not connected with metabolites in the GSC form an isolated
subset (IS).

In this way, we obtained a “bow-tie” connectivity structure of metabolic networks,
as shown in Figure 9.7. This bow-tie connectivity structure was found in the meta-
bolic networks of all other organisms studied. The bow-tie structure has also been
found in the web page graph in which web pages represent nodes and hyperlinks

Figure 9.5. Two simple network examples showing the limitation of connection degree distribution.
Both networks show power law degree distributions, but apparently have different network connectivity.
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represent links (Broder et al. 2000). The discovery of the bow-tie structure in dif-
ferent types of networks implies that it is a common structure in large-scale net-
works. Organization as a bow-tie may be important for the complex system to be
robust and evolvable under variable and undetermined environmental conditions
(Csete and Doyle 2004; Kitano 2004). The core part of the network (the GSC), which
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Figure 9.6. The distribution of the size of the strongly connected components in the metabolic network
of E. coli.

Figure 9.7. The bow-tie connectivity structure of metabolic networks (see color plate 6).
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represents the universal mechanism across organisms, may be highly conserved in
the evolutionary process. On the other hand, new biological functions such as uti-
lizing a new substrate or producing a new product can be evolved by innovation
in the IN and OUT subsets.

C. GSC in the bow-tie structure

The giant strong component is the most complex and core part of a metabolic
network. We found that the GSC follows a power law connection degree distribu-
tion similar to that of the entire network. Furthermore, the average path length of
the entire network (ALW) was found to be determined by that of the GSC (ALG),
as depicted in Figure 9.8. Because of the large scale, it is often difficult to achieve
a comprehensive understanding of biological features of genome-based metabolic
networks. A certain form of reduction or classification of the entire network is
desired to make the network more amenable to functional analysis. The connec-
tivity structure of metabolic networks as revealed in Figure 9.7 represents a step
forward in this direction.

The most important part of the network, the GSC, normally contains less than
one-third of the nodes of the entire network but conserves the main features of 
the entire network. Here, we use S. pneumoniae (an important Gram-positive
pathogen) as an example to analyze the functional feature of its network structure.
The entire network of S. pneumoniae consists of 486 metabolites, whereas its GSC
contains only 87 metabolites. To further reduce the complexity of the GSC, we
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removed the linear branches (the endpoint of which has only one connection and
no branch point in the path) in the GSC. The resulting network is shown in Figure
9.9. Five major metabolic pathways (not necessarily complete due to omission of
linear branches) can be identified in the core network of S. pneumoniae.

These include the glycolysis pathway, the pentosephosphate pathway, the aro-
matic amino acid synthesis pathway, the glycerol metabolism, and the pyrimidine
synthesis pathway. There are also parts of lysine synthesis, valine synthesis, oxaloac-
etate anapleurotic, and Entner-Doudoroff (ED) pathways in the core network. These
pathways are integrated into a network through certain metabolites such as pyru-
vate (PYR), 5-Phosphoribosyl diphosphate (PRPP), and D-glyceraldehyde phosphate
(G3P). All of these metabolites belong to the hub metabolites in the metabolite
graph without connections through currency metabolites (Ma and Zeng 2003a). As
links between the different functional systems, these metabolites play a key role in
metabolic regulation.

IV. FROM NETWORK TO MODULES AND FUNCTIONAL ANALYSIS

The uncovering of the bow-tie structure of metabolic networks has important impli-
cations for biotechnology and biomedicine. For example, understanding and
manipulating the distribution and control of metabolic fluxes over the metabolic
network are key steps in metabolic engineering of organisms and therapy of certain
metabolic diseases. However, for large-scale metabolic networks the estimation of
metabolic flux and control can be very difficult or even impossible. A reduction of
the metabolic network is almost always necessary.

The GSCs of organisms contain a much smaller number of (albeit key) metabo-
lites. GSCs are more feasible for analysis of flux distribution and identification of all
possible elementary flux modes or extreme pathways. The distribution of metabolic
fluxes is mainly controlled by regulating the flux ratio at branch-points. Most of the
branch-points are in the GSC. Therefore, one may focus on the GSC when study-
ing the flux distribution and its regulation in metabolic networks. This can largely
simplify the analysis process.

For large-scale metabolic networks such as that of E. coli, even the GSC is still
quite complex for obtaining a functional overview from the structure (as is that 
for S. pneumoniae). In this case, a top-down approach to decompose it into rela-
tively independent functional subsets or modules is often necessary for further 
biological functional analysis (Bray 2003). In biochemistry, it is generally accepted
that metabolic networks consist of many functionally independent metabolic path-
ways that are further nested to form a complex metabolic network (Hartwell et al.
1999).

Organizing the reactions into different metabolic pathways is widely used in many
metabolic databases, such as KEGG and Metacyc (Karp et al. 2000; Kanehisa et al.
2004). These classically defined metabolic pathways can be regarded to a certain
extent as functional modules in metabolic networks. However, it is difficult to see
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Figure 9.9. The giant strong component in the metabolic network of Streptococcus pneumoniae.
Metabolite abbreviations: 2KD6PG (2-Dehydro-3-deoxy-6-phospho-D-gluconate); 2PG (Glycerate 
2-phosphate); 3PG (Glycerate 3-phosphate); AcCoA (Acetyl-CoA); ACD (Acetaldehyde); ACLAC 
(2-Acetolactate); ACP (Acetyl phosphate); AN (Anthranilate); ASP (L-Aspartate); ASPSA (Aspartate
semialdehyde); bF6P (beta-D-Fructose 6-phosphate); bFDP (beta-D-Fructose 1,6-bisphosphate); bG6P
(beta-D-Glucose 6-phosphate); CAASP (N-Carbamoyl-ASP); CHOR (Chorismate); CPHEdORL5P 
(1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate); CVPSHK (5-O-(1-Carboxyvinyl)-3-
phosphoshikimate); DAHP (2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate); DHOMB ((R)-2,3-
Dihydroxy-3-methylbutanoate); DHORO ((S)-Dihydroorotate); dHSHK (3-Dehydroshikimate); E4P
(D-Erythrose 4-phosphate); F1P (Fructose 1-phosphate); G3P (D-Glyceraldehyde 3-phosphate); G3PP (1,3-
Bisphospho-D-glycerate); G6P (D-Glucose 6-phosphate); GL (Glycerol); GL3P (Glycerol 3-phosphate);
GLAL (D-Glyceraldehyde); HOMOB ((R)-3-Hydroxy-3-methyl-2-oxobutanoate); IGP (Indoleglycerol
phosphate); NPRAN (N-(5-Phospho-D-ribosyl)anthranilate); OAA (Oxaloacetate); OMP (Orotidine 5¢-
phosphate); OROA (Orotate); PASP (Aspartate phosphate); PEP (Phosphoenolpyruvate); PRPP (5-phospho-
D-ribose 1-diphosphate); PYR (Pyruvate); R5P (Ribose 5-phosphate); RL5P (Riblose 5-phosphate); S7P
(D-Sedoheptulose 7-phosphate); SHK (Shikimate); SHK5P (Shikimate 5-phosphate); T3P2 (Glycerone
phosphate); TBP (D-Tagatose 1,6-bisphosphate); and X5P (D-Xylulose 5-phosphate) (see color plate 7).
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any modular organization from the previously described structural analysis. In con-
trast, the scale-free structure and the short path length seem to suggest that the
metabolites in the network are highly interactive, making it difficult to identify any
structurally independent modules. To resolve the contradiction between the scale-
free structure and the modular organization of pathways, we proposed a method
based on the global connectivity structure of metabolic networks to decompose
the entire network into several subgraphs to check if these subgraphs are func-
tionally independent modules. For network decomposition, we used reaction graph
rather than metabolite graph. This allowed us to classify reactions (but not metabo-
lites) into different modules as being in agreement with the traditional defined
metabolic pathways as subsets of reactions. In a similar way, as in the analysis of
metabolite graphs, the connections through currency metabolites were removed.
The reaction graphs also show the power law degree distribution and the bow-tie
connectivity structure. The decomposition method is based on the bow-tie struc-
ture and includes the following steps (see Ma et al. (2004b) for a detailed descrip-
tion): (1) calculating the path length between two reactions in GSC and using it as
the distance between the two reactions, thus obtaining a distance matrix for all
reaction in GSC, (2) a hierarchical classification tree is constructed from the distance
matrix by using neighbor-joining or other algorithms, (3) cutting the tree at differ-
ent levels to obtain modules in proper size (about 20 reactions), and (4) assign the
reactions in the IN and OUT subsets of the bow-tie structure to different modules,
depending on which modules they are highly connected with.

The method is applied to the decomposition of the metabolic network of E. coli.
The decomposition result is shown in Figure 9.10. We checked the reactions in the
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KEGG pathway map and found that most of the reactions in a classical pathway are
also in the same module. The major biological functions of the reactions in these
modules are listed in Table 9.1. The results showed that the subgraphs identified
from the network structure are really functional modules, indicating that the
modular organization is also an inherent feature of the metabolic network.
However, we also surprisingly found that three classical pathways in the central
metabolism (the glycolysis pathway, pentose phosphate pathway, and citrate acid
cycle) are split into parts in different modules. However, this is consistent with the
organization synopsis of the E. coli metabolic network proposed by Gagneur et al.
(2003).

One possible explanation is that the metabolites in these central pathways are
used as precursors for the synthesis of different products and are thus placed in
different subsets. For example, for the reactions in the TCA cycle the reaction from
isocitrate to oxoglutarate is in module 2 because oxoglutarate is the precursor of
the glutamate family amino acid. The reactions from malate to isocitrate are in
module 4 because oxaloacetate is the precursor for aspartate family amino acids
and aspartate is then used for pyrimidine synthesis. For the reactions in the pentose
phosphate pathway, all erythrose 4-phosphate related reactions are in module 8
because it is one of the precursors for aromatic amino acid synthesis. All ribose 5-

Table 9.1. Modules obtained by network decomposition in the genome-based metabolic network of 
E. coli.

Number of Number of
Subset Function reactions metabolites

1 Acetyl-CoA, Succinyl-CoA metabolism 22 53

2 Glutamate and glutamine metabolism, urea cycle, 38 61
arginine, proline synthesis

3 Oxaloacetate metabolism, pyrimidine synthesis 47 61

4 Propanoyl-CoA metabolism, threonine, methionine and 43 79
lysine synthesis

5 Glutathione metabolism 19 42

6 Glycerate and galactarate metabolism 10 19

7 Glucose, galactose and nucleotide sugar metabolism 37 55

8 Fructose and mannose metabolism, aromatic amino 44 65
acid synthesis

9 Glycerone phosphate and glycerolipid metabolism 33 50

10 Pentose phosphate pathway, purine, folate and riboflavin 114 123
synthesis

11 Pyruvate metabolism, glyoxylate metabolism, valine, 89 134
leucine, isoleucine synthesis
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phosphate related reactions are in module 10 because it is the precursor for purine
synthesis.

V. CONCLUSIONS

One of the goals of systems biology is to develop theoretical models to describe
and predict cellular behavior at the whole-system level. The structural and func-
tional analysis of genome-based metabolic networks described in this chapter rep-
resents one step toward this goal. The macroscopic structure of the metabolic
network (scale-free, bow-tie, modular organization), which can only be uncovered
by analysis of the network as a whole, indicates certain system-level principles 
governing the organization of interacting cellular components (enzymes and
metabolites). Although these structure properties still merely give a static picture
of the metabolic network, they can serve as a basis or blueprint for analyzing the
dynamic behavior of the network (e.g., information and material flows)—the next
necessary and more demanding step in network analysis.

To this end, the metabolic network model needs to be further extended. In 
particular, transcriptional regulatory interactions should be integrated into the
metabolic network. Most of the metabolic genes are regulated by one or more tran-
scriptional factors and are activated/repressed under different environmental con-
ditions. Therefore, by integrating the regulatory relationships one may predict
which reactions (pathways) are activated or repressed under given environmental
conditions. One of the challenges in this endeavor is to establish genome-scale
regulatory networks. So far, our knowledge on regulatory interactions at the
genome level is still limited to a few model organisms, such as E. coli (Ma et al.
2004a; Salgado et al. 2004) and S. cerevisiae (Luscombe et al. 2004).

The integration of functional genomic data (such as those from transcriptomic,
proteomic, and metabolomic analyses) is also essential for functional and dynamic
analysis of metabolic networks. These high-throughput technologies provide a
means of measuring the expression or concentration levels of genes, proteins, and
metabolites for the entire system. Combined with bioinformatics and systems
biology tools, this wealth of data may allow us in the near future to reconstruct inte-
grated metabolic and regulatory networks at different molecular levels and to
understand their system-level interactions.
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ABSTRACT

This chapter describes how to reconstruct functional metabolic and transcriptional regula-
tory networks, as well as the modeling approaches that allow for simulation of network
behavior for networks separately and for networks combined. This process is placed in the
context of model-driven biological discovery, and is illustrated with a detailed case study. In
this study, a genome-scale model was reconstructed and used in conjunction with experi-
mental data to elucidate the regulatory and metabolic networks in Escherichia coli.

I. INTRODUCTION

A major goal of systems biology is to further our understanding of complex bio-
logical systems. Using systems biology to facilitate biological discovery may be
thought of as a simple expansion of traditional biology, as shown in Figure 10.1.
Traditional biology (shaded box) begins with an experimental system of interest.
The “inputs” to the system are simply aspects of the system that can be controlled.
Thus, the inputs may be external (such as environmental conditions) or internal,
such as perturbations to the genetic makeup of the organism (gene knock-outs or
knock-ins). The “outputs” to the system are aspects that are changed by the system
itself and that are measurable. Outputs can also be external (such as the concen-
tration over time of secreted by-products or biomass) or internal, such as the dif-
ferential expression of genes or activity of regulatory proteins. If the experiment is
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Figure 10.1. The traditional and systems biology approaches to discovery. The systems approach can
greatly expedite the discovery process by incorporating the testable predictions of a mathematical
model.

well-designed, the investigator can make an interpretation of the measured outputs
that (1) gives new insight into the system and (2) suggests new perturbations to the
inputs for a subsequent experiment.

This process has had great success over the last several decades and is the foun-
dation for all of the biological knowledge we have. However, it now has the poten-
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tial to be greatly enhanced by two major factors. First, the development of high-
throughput technologies means that we are now able to vary the inputs and
measure outputs many thousandfold faster than before (although arguably with 
different accuracy). The result is a combinatorial explosion of data that would be
impossible to interpret without the aid of a computer. The development of math-
ematical modeling tools is the second factor, enabling a much more rapid charac-
terization of biological systems.

How do these two factors influence traditional biology? First, experimental
systems can be studied more broadly, with much the same detail. Instead of looking
at one small part of the organism, we can consider an entire network. Metabolism
and transcriptional regulation are currently the networks most feasible, but there is
every reason to believe that others (signal transduction networks, for example) will
follow. The annotated genome sequence enables us to obtain most of the com-
ponents of the network, although a substantial minority of components must still
be obtained from the traditional biology literature. The type of measured output
should drive the choice of mathematical analysis tools, as the predictions made by
a mathematical model are of much greater use if they can be directly compared to
experimental data. By analyzing the network with the appropriate mathematical
tools, it is possible to run simulations that predict outputs given a set of inputs.

In sum, once the inputs have been determined they are applied to the experi-
mental system as well as to the mathematical representation. The predicted and
measured outputs are obtained and compared. The reconciliation of experimental
and computational results, which may also be automated, is in actuality interpre-
tation of the experimental data on a grand scale. It can lead to the identification
of many new components and interactions in the system at once.

The incorporation of these elements (high-throughput technology and mathe-
matical modeling) with the traditional biology process is one definition of systems
biology (Cowley 2004). The purpose of this chapter is to show how this integrative
approach can be applied to metabolic and transcriptional regulatory networks.

II. METABOLIC NETWORKS

For several reasons, the state of metabolic network reconstruction and modeling
is the more advanced. Much of the required information for network reconstruction
can be obtained from the annotated genome sequence and enzyme-to-reaction
databases, and several organisms are quite well characterized biochemically.
Because there is a wealth of literature on this topic, we describe it fairly generally
and refer to the reviews for more detail (Covert et al. 2001; Price et al. 2004; Gagneur
and Casari G 2005; Patil et al. 2004).

A. Network reconstruction

Metabolic network reconstruction begins by compiling a list of all enzymes and
transport proteins identified in the annotated genome sequence of an organism,
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as found in a database such as the Comprehensive Microbial Resource (Peterson
et al. 2001) or MetaCyc (Krieger et al. 2004). Each protein or protein complex is
associated with one or more metabolic reactions or transport processes, using a
database such as the ENZYME databank (Bairoch 1994). Missing pieces of the
network may also be found in the biochemical literature or identified by compari-
son with known pathways in other organisms (Overbeek et al. 2000) to obtain a 
relatively complete reconstruction.

Although such reconstructions can be very useful for some types of network
analysis (Jeong et al. 2000; Ma et al. 2004), for applications such as phenotype 
simulation a more complete network is required. Put simply, the metabolic network
must be “functional”; that is, given a set of known and well-characterized behav-
iors of the organism the reconstruction must contain all proteins necessary to 
simulate these behaviors (Figure 10.2). For a vegetative cell, the network must allow
production or transport of biomass components (e.g., all essential amino acids,
nucleotides) given a defined medium, and must be able to take up known sub-
strates and produce known secreted metabolites. The initial reconstruction of a
functional metabolic network therefore requires a thorough integration of genomic,
biochemical, and phenotypic data.

What is in a reconstruction? This depends on several factors, most importantly
the type of analysis to be performed on the network. For a simple graph network
analysis, all that is required is a set of nodes (e.g., metabolites) and the interactions
between the nodes (e.g., reactions). To enable a metabolic flux analysis, it is also
necessary to include the stoichiometry of the reactions as well as some flux infor-
mation, such as a maximum oxygen or substrate uptake rate. Flux balance analy-
sis, described in more detail later in the chapter, also requires definition of the
organism’s biomass composition, in terms of how many moles of all amino acids,
nucleotides, and so on are contained in one gram dry weight of the organism. For
a complete kinetic description, all of the kinetic parameters would need to be

stnenopmoc ledom krowten

sulumits epytonehp

ledom krowten lanoitcnuf

Figure 10.2. Functional network reconstructions. Metabolic and regulatory networks may be
reconstructed in terms of component lists or graphs indicating some interactions, but are most useful
when integrated in such a way that they actually predict behaviors that can be compared with
experimental observations.
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included. However, the parameters would be extremely difficult to obtain (Bailey
2001). Recently, some of the most detailed metabolic network reconstructions have
been updated to include complete charge and elemental balancing, in addition to
stoichiometry, biomass composition, and some maximum uptake and secretion flux
rates (Reed et al. 2003; Duarte et al. 2004).

B. Analysis and simulation

Once the network is reconstructed it may be analyzed, depending on the detail of
the reconstruction (as described previously). Because other chapters will discuss
graph-based and detailed kinetic modeling approaches, I will focus on the 
analysis methods currently applicable to large-scale functional networks, under the
umbrella term constraint-based modeling.

Constraint-based modeling itself has been reviewed thoroughly and frequently
over the past several years (Covert et al. 2003; Price et al. 2004). In brief, because
of the difficulty of obtaining a complete detailed description of all reaction fluxes
in the metabolic networkconstraint-based analysis instead focuses on limiting the
ranges these flux values can have, given a set of constraints. These constraints gen-
erally include those associated with mass balance and the stoichiometry of bio-
chemical reactions, as well as reaction reversibility and certain maximum flux rates.
More recently, the constraints of energy balance have also been added (Beard 
et al. 2002).

In practical terms, constraint-based analysis begins with mass-balance equations
for each metabolite, as shown in Equation 10.1.

(10.1)

Here, X is the metabolite concentration, and v represents reaction fluxes that 
synthesize (syn), degrade (deg), or transport (trans) metabolites into and out of the
system. It is often assumed that the system is at a quasi-steady state with respect
to metabolism (i.e., dX/dt = 0, described in more detail in material following). Incor-
porating this assumption and combining all of the mass balance equations yields
Equation 10.2.

Sv = 0 (10.2)

Here, S is the stoichiometric matrix for the system and v is a vector of all fluxes
in the system. Other constraints—such as the reversibility of metabolic reactions
(e.g., vi ≥ 0), as well as maximum enzyme/transport capacity of proteins (e.g., 
vi £ vmax)—are incorporated when known.

Once these constraints have been defined, the overall capabilities of the meta-
bolic network may be determined using extreme pathway analysis or elementary
mode analysis (Papin et al. 2004), and flux distributions that optimize network 
production of cellular biomass components may be determined using flux-balance
analysis (Price et al. 2004). Recent years have been extremely fruitful in terms of

dX

dt
= - +ÂÂÂn n nsyn transdeg
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developing creative and insightful analysis techniques for studying metabolic net-
works (Price et al. 2004).

It is often assumed that such analyses are limited because one assumption crucial
to all of the approaches discussed here is that the metabolic network is at a steady-
state. However, as the time constants relevant to metabolic reactions are on the
order of milliseconds (McAdams et al. 1998), behavior of the network may be sim-
ulated dynamically. The simulation is simply broken into several time steps just large
enough that the metabolic network may be assumed to be at a quasi-steady state,
and differential equations are solved to calculate the growth, uptake, and secretion
of various metabolites over time (Varma et al. 1994). Such an approach is important
when incorporating the highly dynamic behavior of the transcriptional regulatory
network.

C. Predicted and measured outputs

Because the utility of a mathematical model depends on how directly model pre-
dictions may be compared to experimental data, it is useful to describe the exper-
imental techniques used to study metabolism. Of particular importance are the
measured outputs from such techniques, and whether they can be compared to
predicted outputs. The measurable outputs for metabolic networks are growth rate,
concentrations of external compounds over time, and internal metabolic fluxes. For
metabolic networks, we can now assess growth rate under various environmental
conditions on 96-well plates using phenotype microarrays (Bochner et al. 2001).
Substrate uptake and product secretion rates can be measured using standard
chromatography techniques, and high-throughput metabolomic technologies are
being developed (Kell 2004). The uptake and metabolism of radiolabeled sub-
strates may also be used to calculate internal metabolic fluxes indirectly (Sauer
2004). Current metabolic network reconstructions allow for direct comparison with
all of these data using flux-balance analysis (as described previously).

III. REGULATORY NETWORKS

A. Network reconstruction

Regulatory networks differ from metabolic networks in ways that impact the network
reconstruction as well as modeling approaches (Herrgard et al. 2004). First, the com-
ponents are different. Whereas metabolic networks involve metabolites, enzymes,
and transport proteins, regulatory networks involve regulatory proteins and the pro-
moter regions of target genes. Second, most of the metabolic proteins are well
conserved across species. Regulatory proteins may also be conserved. However,
the cis regulatory regions are generally not conserved across species, and tran-
scription factor binding sites are extremely difficult to find in promoter regions due
to their short length, although progress is being made (Beer et al. 2004). In addi-
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tion, the interactions of transcription factors at one promoter region can be
extremely complex (Davidson et al. 2002), and even a single nucleotide difference
in a transcription factor binding site can change the specificity of cofactor binding
(Leung et al. 2004).

Accordingly, the level of characterization of regulatory networks does not
approach that found in metabolic networks. Currently, detailed genome-scale reg-
ulatory networks have been reconstructed only for Saccharomyces cerevisiae (Lee
et al. 2002; Harbison et al. 2004) and E. coli (Shen-Orr et al. 2002; Salgado et al.
2004). These reconstructions are qualitative, including the effect of active tran-
scription factors on target genes (whether the factor acts as an inducer, repressor,
or both). More detailed reconstructions, which would include some of the dynam-
ics of gene expression, are extremely useful but also far more difficult to obtain
(Kalir et al. 2004).

Notwithstanding these challenges to those wishing to study regulation, two high-
throughput technologies have made it possible to reconstruct regulatory networks
at the large scale. First, microarray analysis enables the determination of the expres-
sion profile of an entire genome in one experiment (Gardner et al. 2003). Second,
it is now possible to determine with some accuracy where all of the transcription
factors are binding in the genome under a given set of experimental conditions
(Lee et al. 2002). These two approaches, especially when used in combination with
each other or with the existing literature, are a powerful way of characterizing a 
regulatory network (Hartemink et al. 2002; Herrgard et al. 2003).

B. Analysis and simulation

Regulatory network modeling approaches are significantly different from metabolic
network modeling approaches (McAdams et al. 1998; de Jong 2002; Tyson et al.
2003; Herrgard et al. 2004). They include Boolean logic (Thomas 1973), fuzzy logic
(Lee et al. 1999), Bayesian models (Hartemink et al. 2002), kinetic models (Kremling
et al. 2001; Kalir et al. 2004), and stochastic models (McAdams et al. 1998). In
general, the greater the level of detail required by the modeling approach (in terms
of the number of parameters) the less complex the network studied, down to the
extreme simplicity of engineered regulatory networks (Hasty et al. 2002). On the
other hand, the detailed models of small engineered systems have been instru-
mental in developing our understanding of the effect of noise on network dynam-
ics (Elowitz et al. 2000).

For large-scale modeling, an approach that is qualitative is most advantageous,
because of the qualitative nature of the existing literature (Bolouri et al. 2002). The
presence of relevant stimuli, activity of regulatory proteins, and expression of target
genes can all be described in terms of Boolean logic. This framework was demon-
strated to be particularly useful for integrating regulatory and metabolic models,
wherein the effects of regulatory events are represented as time-dependent con-
straints on the metabolic network (Covert et al. 2001).
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C. Measured and predicted outputs

The typical outputs of comparing expression of a gene under two conditions using
microarrays or quantitative real-time RT-PCR are a p-value (derived from appropri-
ate statistical analysis of repeated expression measurements) indicating the 
probability that a change in expression occurred, and a ratio of expression levels
or signal intensities, which assigns a quantitative magnitude of the expression shift.
For comparison with genome-wide qualitative gene expression changes, a regula-
tory network need therefore only be expressed in terms of logical rules. More
detailed models also allow comparison with the ratio data for a limited number of
genes (Kremling et al. 2001; Kalir et al. 2004).

IV. EXPERIMENTAL AND COMPUTATIONAL DATA INTERPRETATION

Although there are many reasons to build models (Bailey 1998), one of current
importance is to elucidate the biology of the modeled network. Specifically, models
can be used to identify or indicate the presence of previously unknown compo-
nents or interactions in the network. This occurs through integration and reconcil-
iation of measured and computationally predicted experimental outcomes. The
remainder of this chapter focuses in depth on the use of a combined regulatory-
metabolic model in E. coli, which was used in coordination with high-throughput
experimental studies to facilitate elucidation of the metabolic and regulatory net-
works (Covert et al. 2004) (Figure 10.3).
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Figure 10.3. Model-driven discovery as applied to E. coli. High-throughput experiments and a
mathematical model were integrated using the approaches described in this chapter to determine many
previously unknown interactions in the transcriptional regulatory network.
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The E. coli model accounts for the products of 1,010 genes, or roughly one-third
of the annotated genes in this organism. It contains 104 regulatory proteins, which
regulate the transcription of 479 metabolic genes. There are 906 genes that con-
stitute the metabolic component of the model. The metabolic network is described
and simulated using flux-balance analysis, and the regulatory model uses logic
statements to describe regulatory events. The two networks interface via the con-
straint-based framework: regulatory events are interpreted simply by imposing
time-dependent constraints on the metabolic network. Such an approach had 
previously been shown to result in more accurate predictive capability as well as
broader scope of prediction (Covert et al. 2002).

The model is able to generate predictions of the following outputs: growth rate,
substrate uptake rates, by-product secretion rates, medium concentrations of
biomass and metabolites over time, internal flux rates, and shifts in gene expres-
sion. In addition, it can predict the effects of internal (i.e., deletion of one or more
metabolic or regulatory genes) and external (i.e., change in medium composition,
availability of oxygen, and so on) perturbations on the behavior of the system.
Experimental data corresponding to all of the predictions listed here can also be
obtained with relative ease using standard methods in microbial physiology and
gene expression profiling.

Model predictions were compared to two large data sets for the purpose of
network elucidation. The first was a large set of phenotype data available from the
ASAP database (Glasner et al. 2003). Cells were seeded onto 96-well plates, with
each well containing a medium designed to test one feature of microbial metabolic
capability (e.g., the ability to utilize glucose as a sole carbon source) and allowed
to grow overnight, upon which respiration of the cells was compared to a negative
control as an indicator of growth (Bochner et al. 2001). The data that could be com-
pared to model predictions included 110 different growth environments and 125
knockout strains of E. coli for a total of 13,750 outcomes.

The predicted and measured outcomes agreed in most (approximately 80%) of
the cases. More interestingly, the model failures corresponded to particular envi-
ronments or strains. Closer examination of the failures led to new hypotheses 
about E. coli metabolism and regulation. In all, comparison of prediction and exper-
iment for 10 environmental conditions and eight knockout strains led to new
hypotheses about regulatory interactions or uncharacterized enzymes and meta-
bolic pathways.

As an example, one of the environmental tests was the ability of the cells to grow
using thymidine as a sole carbon source. The model predicted that such growth
was impossible. However, the measured data showed that each of the knockout
strains was able to grow. One possible reason for the model failure is that the recon-
structed metabolic network lacks a thymine-reductive pathway (including enzymes
with the following E.C. numbers: 1.3.1.2 or 1.3.1.1, 3.5.2.2, and 3.5.1.6). As includ-
ing this pathway would reconcile the model predictions and measured observa-
tions, one can find the most likely open reading frames to encode the pathway
using sequence and phylogeny comparison tools such as MAST and MEME (Reed
et al. 2003; Covert et al. 2004). In this case, the most likely open reading frames
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(ORFs) for the thymine-reductive pathway enzymes are b2106 for 1.3.1.2 and b2873
or b0512 for 3.5.2.2. Such hypotheses have been verified in past metabolic network
studies (Covert et al. 2001).

The second set of data was a collection of gene expression profiles generated as
part of the study. Based on an earlier study (Herrgard 2003) the aerobic-anaerobic
shift was targeted as a portion of the network with an intermediate level of charac-
terization. The gene expression profile was obtained for E. coli during exponential
growth on M9 glucose minimal medium under aerobic and anaerobic conditions.
The model was used to predict the differential gene expression between the pro-
files, as well as growth rates and the like. In this case, the comparison between model
predictions and experimental outcomes involves two measures: the accuracy (where
a shift was predicted, it was also observed) and coverage (where a shift was
observed, it was also predicted) of model predictions. For the first version of the
model, the accuracy was about 49% and the coverage was only about 15%. These
measurements indicate first that the regulatory network is much less characterized
than the metabolic network, and second that the aerobic-anaerobic part of the
network in particular requires more scrutiny to be fully understood.

The discrepancies between experiment and model were examined in more detail
by determining the transcription factor dependencies of the differential expression
observed in the wild type. This was accomplished via a perturbation analysis (Ideker
et al. 2001) (Figure 10.4). Strains in regulatory proteins involved in the molecular
response to oxygen were constructed, and their gene expression profiles under
conditions identical to the wild type were determined. Using analysis of variance
enabled determination of whether a shift in expression observed in the wild type
was abolished in the knockout strain. This led directly to description of a logical
rule.

For example, the kgtP gene (b2587) was listed without a regulatory rule in the
original model. However, the microarray data indicated a significant shift with a log2
ratio of 2.05 between the aerobic and anaerobic conditions. The perturbation
studies indicated that the differential expression observed in the wild type was abol-
ished in the �arcA and the �arcA �fnr knockout strains. As a result, the rule was
rewritten as kgtP = IF NOT (ArcA) (ArcA, Fnr, and NarL are regulatory proteins that
also have rules that dictate their activity). For the fdnI gene (b1476), a rule already
existed: fdnI = Fnr OR NarL. However, no differential expression was observed. The
rule became fdnI = NarL. In several cases, the only change made to resolve the
model predictions and observations were in the interactions between regulatory
proteins (e.g., changing an AND to an OR, and vice versa). This is an important
observation, as the regulatory effects of most regulatory proteins to date have been
tested singly and not in combination.

This analysis led to a greatly improved network model. The second-version E. coli
model predicted 67% of the 151 observed expression shifts (coverage), with a pre-
dictive accuracy of 98%. More importantly, reconciliation of the model and the data
led to many new hypotheses about the regulatory network in E. coli that are readily
testable. Finally, the new model was compared to the phenotype microarray study
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described previously, with slight improvement to the predictive capabilities there,
and is therefore completely consistent with regard to all of the other available data.

V. CONCLUSIONS

This chapter shows how model-building fits in the context of experimental discov-
ery in terms of metabolism and transcriptional regulation, using a model of E. coli
as an example. How well this approach can be more broadly applied to organisms
and processes more complex and much less understood remains to be seen.

Bnum Gene L2R Ar Ap F O S A/F Rule Addition

b0033 carB 0.62 X OxyR

b0034 caiF -1.37 X ArcA and Fnr

b0068 sfuA 0.33 Oxygen

b0113 pdhR 0.35 X X X Not (ArcA and Fnr)

b0114 aceE 0.48 X X X Not (ArcA and Fnr)

b0115 aceF 0.48 X X X Not (ArcA and Fnr)

b0116 lpdA 1.32 X X X Not (ArcA and Fnr)

b0118 acnB 2.63 X X Not (ArcA)

b0313 betI 1.98 X X Not (ArcA)

b0336 codB 0.43 X OxyR

b0401 brnQ )negyxO( toN56.0-

b0564 appY -1.87 X Not (ArcA) and Fnr

b0653 gltK 0.73 X X X Not (ArcA and Fnr)

b0683 fur 0.26 X Not (ArcA or Fnr)

b0721 sdhC 4.70 X X X Not (ArcA and Fnr)

b0722 sdhD 4.63 X X X Not (ArcA and Fnr)

b0723 sdhA 3.01 X X X Not (ArcA and Fnr)

b0726 sucA 2.17 X X Not (ArcA)

b0727 sucB 2.07 X X Not (ArcA)

b0733 cydA )negyxO( toN97.0-

b0734 cydB )negyxO( toN66.0-

b0755 gpmA 0.84 X X X Not (ArcA and Fnr)

b0776 bioF 0.48 Oxygen

b0778 bioD 0.43 Oxygen

b0854 potF 0.83 X X X Not (ArcA and Fnr)

b0864 artP )negyxO( toN75.0-

b0993 torS )negyxO( toN79.0-

b1033 ycdW 0.42 X Not (ArcA or Fnr)

b1221 narL 0.56 X Not (ArcA or Fnr)

b1241 adhE )negyxO( toN44.1-

b1323 tyrR )negyxO( toN26.0-

b1531 marA 0.90 X X X X Not (ArcA and Fnr) or OxyR

b1656 sodB -0.20 Not (Oxygen)

b1676 pykF -0.47 Not (Oxygen)

b1702 pps 0.68 Oxygen

b1779 gapA -0.18 Not (Oxygen)

b1827 kdgR -0.47 X ArcA and Fnr

b1991 cobT -0.27 X X Fnr

b1993 cobU -0.17 X X Fnr

b2040 rfbD 0.16 Oxygen

b2129 yehX 0.35 X X X Not (ArcA and Fnr)

b2296 ackA -1.49 X ArcA and Fnr

b2308 hisQ 0.26 X X X Not (ArcA and Fnr)

b2309 hisJ 0.44 X X X X Not (ArcA and Fnr) or OxyR

b2344 fadL 0.98 X X Not (ArcA)

Bnum Gene L2R Ar Ap F O S A/F Rule Addition

b2463 maeB 0.92 Oxygen

b2530 iscS 0.80 Oxygen

b2573 rpoE -0.62 X Not (OxyR)

b2587 kgtP 2.05 X X Not (ArcA)

b2676 nrdF 0.80 Oxygen

b2677 proV 1.72 X Not (ArcA or Fnr)

b2707 srlR -0.36 X X Fnr

b2747 ispD 0.28 Oxygen

b2904 gcvH 0.77 X Not (ArcA or Fnr)

b2905 gcvT 1.38 Oxygen

b2925 fbaA -0.45 Not (Oxygen)

b3089 sstT )negyxO( toN68.1-

b3423 glpR 0.13 Oxygen

b3453 ugpB 0.74 X Not (ArcA or Fnr)

b3612 yibO )negyxO( toN09.0-

b3767 ilvG_1 -0.36 X Not (OxyR)

b3769 ilvM -0.53 X X Fnr

b3805 hemC -0.19 Not (Oxygen)

b3806 cyaA -0.54 X X Fnr

b3916 pfkA )negyxO( toN60.1-

b3917 sbp 0.35 Oxygen

b3962 sthA 1.74 X X Not (ArcA)

b3990 thiH 0.69 Oxygen

b3993 thiE 0.51 X Not (ArcA or Fnr)

b3994 thiC 0.69 X Not (ArcA or Fnr)

b4014 aceB 0.77 X X Not (ArcA)

b4015 aceA 1.33 X X Not (ArcA)

b4151 frdD )negyxO( toN32.2-

b4152 frdC )negyxO( toN89.0-

b4153 frdB )negyxO( toN13.2-

b4154 frdA )negyxO( toN08.0-

b4232 fbp 0.46 Oxygen

b4322 uxuA 0.40 Oxygen

Legend

L2R > +1.0

1 > L2R > 0.5

+0.5 > L2R > -0.5

-0.5 > L2R > -1.0

-1 > L2R

Figure 10.4. Determining new regulatory rules using the perturbation approach. A list of genes for
which the computational model failed to predict observed differential expression (false negatives). The
observed aerobic-anaerobic log2 ratio for the wild-type cells (L2R) is shown numerically and color
coded, as explained in the legend. The observed wild-type differential expression was abolished in
certain transcription factor knockout strains (Ar = �arcA, Ap = �appY, F = �fnr, O = �oxyR, S =
�soxS, A/F = �arcA �fnr), as indicated by an X. These transcription factor dependencies were used to
determine new regulatory rules, as shown. Note that certain transcription factors, such as OxyR, are
generally active in the presence of oxygen, whereas others (such as ArcA and Fnr) are active in the
absence of oxygen.
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Protein chips to measure outputs of cell signaling processes (Hall et al. 2004) and
methods for simulating signaling networks at the large scale (Papin et al. 2005) are
also being developed. It can be expected, however, that the success of such efforts
will depend on the ability of models to generate predictions that can be directly
compared to experimental measurements at a large scale. As can be seen from this
case study, such models will have the potential to greatly facilitate biological 
discovery.
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I. INTRODUCTION

Advances in measurement technology have enabled us to obtain genome-wide
biological data production ranging from DNA sequences to data from develop-
mental biology. The computational developmental stages to bridge this infra-data
and the understanding of life from a systems perspective are represented in Figure
11.1, together with the requisite milestones. In this post-genomic research direc-
tion, gene networks will play a central role in the first stage of development. In par-
ticular, computational methods for estimating, modeling, and simulating biological
systems are becoming more important. Here we present our computational strat-
egy by giving an overview of our recent contributions in computational systems
biology.

The first step is “how to create gene network information” from data. For this
direction, we have developed computational methods for estimating gene net-
works from microarray gene expression data obtained from various perturbations
such as gene disruptions, shocks, and so on. One of the most promising methods
is the Bayesian network model, in which genes are regarded as random variables.
The discrete Bayesian network model was first applied to gene network modeling
by Friedman et al. (2000), wherein gene expression levels are categorized into +1,
0, and -1.

Inspired by this strategy, we developed methods that can process continuous
numerical data and automatically detect linear and even nonlinear relationships
between genes (Imoto et al. 2002, 2003). We employ a nonparametric regression
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for capturing nonlinear relationships between genes and derive a new criterion
called BNRC (Bayesian network and Nonparametric Regression Criterion) for choos-
ing the best networks in general situations. To resolve the acyclicity restriction of
the Bayesian network model, a dynamic Bayesian network with nonparametric
regression for time series gene expression data has also been devised (Kim et al.
2003, 2004).

Naturally, the sole use of microarray data has limitations for gene network esti-
mation. For improving the biological accuracy of estimated gene networks, we have
created a general framework by extending this method so that it can employ other
genome-wide biological information such as sequence information on promoter
regions, protein-protein interactions, protein-DNA interactions, localization infor-
mation, subcellular localization, and literature. Computational experiments were
conducted with yeast data. These show that cascades of gene regulations were
effectively extracted from the data (Tamada et al. 2003; Imoto et al. 2004; Nariai et
al. 2004).

The problem of finding an optimal Bayesian network is known to be NP-hard.
The brute force method employing all computing resources in the world would
even require time exceeding the lifetime of the solar system for finding an optimal
Bayesian network of 30 genes from 100 microarray data sets. Our approach has

Figure 11.1. Genome-wide data and computational issues toward the understanding of life.
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made it possible to find optimal and near-optimal Bayesian networks with respect
to the BNRC score in a reasonable time, and has provided evidence of the bio-
logical rationality in this computational approach (Ott and Miyano 2003; Ott et al.
2004, 2005).

The second step is “how to model and simulate gene networks” with data and
biological knowledge. An important challenge is creation of a software platform
with which scientists in systems biology can model and simulate dynamic causal
interactions and processes in the cell, such as gene regulation, metabolic pathways,
and signal transduction cascades. There have been pioneering attempts and an
accumulation of knowledge in this area; for example, simulation tools (Gepasi, 
E-Cell, BioSPICE) and pathway databases (KEGG, BioCyc).

We have also developed a software tool (the Genomic Object Net) for pathway
modeling and simulation (Matsuno et al. 2001, 2003; Doi et al. 2003; Nagasaki et
al. 2003). As its architecture, we defined a notion called the Hybrid Functional Petri
Net—with an extension (HFPNe)—which is a graphical programming language for
describing concurrent processes. We show how computational systems biology can
be explored with computational modeling and simulation through an example of
a gene network for mammalian circadian rhythms (Matsuno et al. 2005).

II. GENE NETWORK ESTIMATION FROM MICROARRAY GENE 
EXPRESSION DATA

A. Bayesian networks and nonparametric regression

In this section, we introduce Bayesian network and nonparametric regression for
estimating gene networks from microarray gene expression data.

1. Bayesian networks

A Bayesian network is a mathematical model for representing causal relationships
among random variables by using conditional probabilities. In the context of a
Bayesian network, we assume that there is a directed acyclic graph (DAG), denoted
by G, as a relationship among random variables. In the gene network estimation
based on Bayesian networks, a gene is regarded as a random variable and 
shown as a node. Let Xi (i = 1, . . . , p) be a discrete random variable that takes a
value from {u1, . . . , um}. If there is a directed edge eij from Xi to Xj, we call Xi a parent
of Xj.

Further, we define Pa(Xi) Ã {X1, . . . , Xp} as the set of parents of Xi in G. In the DAG
G, the random variable Xi only depends on its direct parents Pa(Xi) and is inde-
pendent of other variables (i.e., this offers the first-order Markov property to the
relationship among variables described by G). Using the DAG G and its Markov
property, the joint probability of all random variables can be decomposed as the
product of conditional probabilities:
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(11.1)

Because Xj is a discrete variable, the probabilities qjkl = P(Xj = uk|Pa(Xj) = ujl) 
(j = 1, . . . , p; k = 1, . . . , m; l = 1, . . . , m|Pa(Xi)|) are parameters, where ujl is the l-th
entry of the state table of parents of Xj and |Pa(Xj)| is the number of parents of Xj.
For example, for |Pa(Xj)| = 2 we have uj1 = (u1, u1), uj2 = (u1, u2), and so on. In this
case, we can assume that Xj |Pa(Xj) = ujl follows the multinomial distribution with
probabilities qj1l, . . . , qjml (Friedman and Goldszmidt 1998).

The conditional probabilities P(Xj |Pa(Xj)) describe the parent-child relationships
and can be viewed as an extension of the deterministic models, such as Boolean
networks (Somogyi and Sniegoski 1996). If we know the true structure of G a priori,
from Equation 11.1 we can construct the joint probability function by estimating
each conditional probability. However, in the gene network estimation the true G
is not known and we have to estimate based on the observed data. This problem
can be considered a statistical model selection problem. We describe a graph
selection criterion in Section II.A.3.

Because gene expression data take continuous variables, some discretization
methods are required for using the Bayesian networks based on the discrete
random variables described previously. However, the discretization leads to infor-
mation loss, and the number of categories and the threshold values are parame-
ters to be optimized. Hence, a modification of Bayesian networks in order to handle
continuous variables is an important problem in the gene network estimation
problem. A possible solution of this problem is given by using the nonparametric
regression introduced in the next section.

2. Introduction of nonparametric regression

Suppose we have n sets of data Xn = {x1, . . . , xn} of p-dimensional random variable
vector X = (X1, . . . , Xp)t, where xi = (xi1, . . . , xip)t corresponds to the vector of p gene
expression values measured by the i-th microarray. Here, at represents the trans-
pose of a. Using the data Xn and densities instead of the probabilistic measure, we
can rewrite Equation 11.1 as

(11.2)

where q = (q t
1, . . . , q t

p)t is the parameter vector and pij is the expression value vector
of parents of Xj measured by i-th microarray. The construction of the conditional
probability fj(xij|pij, qj) is equivalent to the problem of fitting the regression model
to the data {(xij, pij); i = 1, . . . , n} by xij = mj(pij) + eij, where mj(·) is a smooth function
from R|Pa(Xj)| to R and eij (i = 1, . . . , n) are independently and normally distributed with
mean 0 and variance s 2

j.
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If we set the function mj(·) by mj(pij) = bo + btpij, where bo and b = (b1, . . . , b|Pa(Xj)|)
t

are parameters, we have a linear regression model to capture the relationship
between xij and pij (Friedman et al. 2000). However, this model assumes that the
relationships between variables are linear, and it is unsuitable for extracting effec-
tive information from complex phenomena. To capture even nonlinear dependen-
cies, Imoto et al. (2003) proposed the use of the nonparametric additive regression
model (Hastie and Tibshirani 1990) of the form

xij = mj,1(pi,1
( j )) + . . . + mj,|Pa(Xj)|(p

( j)
i,|Pa(Xj)|) + eij, (11.3)

where mj,k(·) (k = 1, . . . , |Pa(Xj)|) are smooth functions from R to R and pij = (pi,1
( j), . . . ,

p( j )
i,|Pa(Xj)|)

t. We construct mj,k(·) by the basis function expansion method with B-splines 

(de Boor 1978; Imoto and Konishi 2003): where gsk
( j )(s = 1,

. . . , Mjk) are parameters, {b1k
( j )(·), . . . , b( j )

Mjk
k(·)} is the prescribed set of B-splines, and

Mjk is the number of B-splines. Figure 11.2 shows an example of B-splines (Mjk = 6)
of degree 3. td(d = 1, . . . , 10) are called knots. By using nonparametric regression
with B-splines, we can capture even nonlinear dependencies.
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Figure 11.2. Example of B-splines. (A) Example of 6 B-splines of degree 3. The knots are equally spaced.
(B) The fitted curve to simulated data: The thin curves are B-splines that are weighted by coefficients,
and the thick curve is the smoothed estimate obtained by the linear combination of the weighted 
B-splines.
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3. Bayesian networks for modeling gene networks

In this section, we describe a method for estimating gene networks from gene
expression data using Bayesian networks and nonparametric regression. By com-
bining Equations 11.2 and 11.3, we have a Bayesian network model with B-spline
nonparametric regression of the form

(11.4)

Once we set a graph, the statistical model based on Equation 11.4 can be esti-
mated by a suitable procedure. However, the problem that still remains to be solved
is how we can choose the optimal graph, which gives the best approximation of
the system underlying the data. We construct a criterion for evaluating a graph
based on our model from Bayes’ approach that is the maximization of the poste-
rior probability of the graph.

The posterior probability of the graph P(G|Xn) is written as P(G|Xn) = p(Xn|G)
P(G) /p(Xn) µ p(Xn|G)P(G), where P(G) is the prior probability of the graph and p(Xn)
is the normalizing constant and not related to the graph selection. The likelihood 
p(Xn|G) is obtained by marginalizing the joint density p(Xn,q |G) against q and given
by

(11.5)

where p(q | l, G) is the prior distribution on the parameter q and l is the hyper-
parameter vector. Under the Bayesian approach, we can choose the optimal graph
such that P(G|Xn) is the maximum. A crucial problem for constructing a criterion
based on the posterior probability of the graph is the computation of the high-
dimensional integration in Equation 11.5. For log p(q |l, G) = O(n), the Laplace
approximation for integrals (Davison 1986; Tinerey and Kadane 1986; Konishi et al.
2004) gives the analytical solution

(11.6)

where ll(q | Xn) = {log f(Xn|q, G) + log p(q |l, G)}/n, Jl(q |Xn) = -∂2ll(q |Xn)/∂q∂q t, r is the
dimension of q, and q̂ is the mode of ll(q |Xn). Hence, by taking minus twice loga-
rithm of P(G|Xn) and substituting Equations 11.5 and 11.6 into P(G |Xn), Imoto et al.
(2002) derived a criterion named BNRC (Bayesian network and nonparametric
regression criterion) for choosing the optimal graph, represented as

BNRC(G) = -2 log P(G) - r log(2p/n) + log|Jl(q̂ |Xn)|-2nll(q̂ |Xn). (11.7)

The optimal graph Ĝ is chosen such that the criterion of Equation 11.7 is minimal.
Imoto et al. (2003) also extended to results of their 2002 work to handle the non-
parametric heteroscedastic regression. In practice, the value of BNRC(G) defined
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in Equation 11.7 can be computed by the sum of the local scores, BNRC(G) =
Sp

j=lBNRCj, where BNRCj is defined by the approximation of

obtained by the Laplace approximation. Here, we assume p(q |l, G) = P
P
j=1pj(qj |lj),

and Pj(G) is called the prior probability for the j-th local structure defined by the 
j-th variable and its direct parents. Note that P(G) = P

p
j=1Pj(G) holds.

In the Bayesian network literature (Chickering 1996; Ott 2004), it is shown that
determining the optimal network is an NP-hard problem. When we focus on gene
networks with a small number of genes such as 30 or 40, we can find the optimal
graph structure by using a suitable algorithm (Ott et al. 2004). However, for larger
numbers of genes we employ a heuristic strategy such as a greedy hill-climbing
algorithm to learn graph structure. The details of model learning are described in
Section III.C.

III. ADVANCED METHODS FOR GENE NETWORK ESTIMATION

A. Multi-source biological information for estimating gene networks

In addition to microarray data, there are several types of information useful for esti-
mating gene networks. In this section, we describe methods of combining gene
expression data and other biological information (such as binding site information
and protein-protein interaction data) to estimate gene networks.

1. General framework

The main drawback for the gene network construction from microarray data is that
whereas the gene network contains a large number of genes the information con-
tained in gene expression data is limited by the number of microarrays, their quality,
the experimental design, noise, and measurement errors. Therefore, estimated
gene networks contain some incorrect gene regulations, which cannot be evalu-
ated from a biological viewpoint. In particular, it is difficult to determine the 
direction of gene regulation using gene expression data only. Hence, the use of
biological knowledge—including protein-protein and protein-DNA interactions,
sequences of the binding site of the genes controlled by transcription regulators,
literature and so on—is considered a key component of microarray data analysis
(Hartemink et al. 2002; Imoto et al. 2004).

Imoto et al. (2004) provided a general framework for combining microarray data
and biological knowledge aimed at estimating a gene network by using a Bayesian
network model. The criterion BNRC(G) of Equation 11.7 contains two quantities:
the prior probability P(G) of the graph and the marginal likelihood of the data 
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p(Xn|G). The marginal likelihood shows the fitness of the model to the gene expres-
sion data.

The biological knowledge can then be used as the prior probability of the graph.
Suppose that the biological knowledge is represented as the matrix A = (aij), where
if we know genei regulates genej we set aij = 1, and otherwise aij = 2. Using the infor-
mation of A, we put a value zaij

on the edge eij. Note that z1 < z2 holds. The prior
probability of the graph G can be expressed as

(11.8)

where Z is the normalizing constant. In Imoto et al. (2004), z1 and z2 are optimized
by the proposed criterion. This prior probability puts a higher probability to a graph
that is consistent with the information in A.

2. Promoter regions

The regulation of genes is known to be realized by transcription factors (TFs), which
are important subsets of proteins that transcribe mRNAs from DNAs. Genes a spe-
cific TF regulates contain a binding consensus motif called the transcription factor
binding site, located in the upstream regions of the genes. Tamada et al. (2003) pro-
vided a statistical method for estimating gene networks and detecting promoter ele-
ments simultaneously. Suppose that a gene g in the network is a transcription factor.

If the children of g are directly regulated by g, they may share a consensus motif
in their upstream DNA sequences. By detecting a consensus motif from a set of
genes selected based on the structure of the network, we can correct the network
by repairing misdirected edges and/or adding direct edges from g, based on the
existence of the motif. The algorithm for simultaneous estimation of a gene network
and detection of binding site is as follows.
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Algorithm for Simultaneous Estimation of a Gene Network and Detection of
Binding Site

Step 1: Estimate a gene network from microarray data alone using a Bayesian
network model.

Step 2: For each gene g, let Dg be the set of child and grandchild genes of g.
Consider genes with |Dg| ≥ 4 TFs, and search for motifs in Dg.

Step 3: For each TF, based on the result of the motif detection:
A: If a parent of the TF contains the motif, we reverse the edge and

make it a direct child.
B: If a grandchild of the TF contains the motif, we add an edge and

make it a direct child.
We also embed this information into Equation 11.8.

Step 4: Estimate a gene network again, along with the motif information.
Step 5: Repeat steps 2 through 4 until the network does not change.
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For the motif detection method used in step 2, Tamada et al. (2003) used a
method called string pattern regression (Bannai et al. 2002), which employs the sub-
string pattern class as the motif model.

3. Protein-protein interactions

Nariai et al. (2004) proposed the use of protein-protein interaction data for refining
gene networks estimated by microarray gene expression data. When a gene is reg-
ulated by a protein complex, it is natural that a protein complex is considered a
direct parent. Therefore, Nariai et al. (2004) proposed the use of virtual nodes cor-
responding to protein complexes in the Bayesian networks. The virtual nodes cor-
responding to protein complexes are created by principal component analysis, and
the proposed criterion can be used to decide whether we make a protein complex.

The information of the protein-protein interaction data can be converted into the
prior probability of the graph. If genei and genej show the protein-protein interac-
tion, we set aij = aji = 1 in A. Figure 11.3 shows part of the results of Nariai et al.
(2004). This method enables us not only to refine gene networks but to find
unknown protein complexes.

B. Dynamic Bayesian networks

A shortcoming of the Bayesian network is that this model cannot construct cyclic
networks, whereas a real gene regulation mechanism has cyclic regulations. The

Figure 11.3. Cell cycle gene network estimated by using “phase” information together with microarray
data and protein-protein interactions. The ellipses that have more than two genes are estimated protein
complexes.
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use of dynamic Bayesian networks has been proposed for constructing a gene
network with cyclic regulations. In the context of the dynamic Bayesian network, we
consider time series data; that is, the t-th microarray data xt corresponds to the
states of p genes at time t (t = 1, . . . , T). Note that xt is considered an observation
of the p-dimensional random vector Xt. As for the time dependency, we consider
the first-order Markov relation represented in Figure 11.4.

Under this condition, the joint probability can be decomposed as

P(X1, . . . , XT) = P(X1)P(X2 | X1) . . . P(XT|XT-1). (11.9)

The gene regulations can be modeled through the construction of P(Xt|Xt-1) for t
= 2, . . . , T. The network structure is assumed to be stable through all time points.
The conditional probability P(Xt|Xt-1) can also be decomposed into the product of
conditional probabilities of each gene (given its parents) as

(11.10)

where Pa(Xj)t-1 is the set of random variables corresponding to the parent genes 
of the j-th gene at time t - 1. By combining Equations 11.9 and 11.10, we have the
decomposition

(11.11)

From Equation 11.11, the extension of the dynamic Bayesian networks to handle
continuous variables, the detection of nonlinear relationships by using nonpara-
metric regression, and the construction of a graph selection criterion based on 
the Bayesian approach can be done in the same way as the Bayesian networks
described in Section II.A. The details of the combination of the dynamic Bayesian
networks with the nonparametric regression are described by Kim et al. (2003, 2004).

C. Searching optimal Bayesian networks

Finding optimal Bayesian networks is computationally difficult. Potentially, we need
to search the space of directed acyclic graphs of n vertices whose size cn is approx-
imately (Robinson 1973)
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Figure 11.4. Time dynamics in the dynamic Bayesian networks.
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From this formula we can see that there are roughly 2.34 · 1072 networks with 20
vertices and 2.71 · 10158 for 30 vertices. This complexity does not allow us any brute-
force approach, even with a supercomputer system. Furthermore, without obtain-
ing the optimal Bayesian networks we cannot conclusively determine that the
Bayesian network model can really extract biologically meaningful regulatory infor-
mation from microarray gene expression data. Thus, we face two issues. The first
issue is how to cope with this complexity, and the second is the search for optimal
Bayesian networks and their biological evaluation.

1. Greedy heuristics for searching Bayesian networks

Heuristic approaches have been applied to this search problem such as greedy
algorithms (Heckerman et al. 1995; Friedman et al. 2000; Imoto et al. 2002), simu-
lated annealing (Hartemink et al. 2002), and genetic algorithms (van Somereren 
et al. 2002). The greedy hill-climbing algorithm due to Heckerman et al. (1995) is
presented in the following as a typical example, where n is the number of repeats.

The greedy algorithm assumes a score function for solutions. It starts from some
initial solution and successively improves the solution by selecting the modification
from the space of possible modifications that yields the best score. When no
improvement is found, the algorithm terminates with the current best solution.
Some ideas should be employed for the choice of the initial solution and for the
choice of the space of possible modifications. Biologically reasonable locally
optimal Bayesian networks of several hundred genes have been reported (Imoto
et al. 2002, 2003; Tamada et al. 2003; Nariai et al. 2004).

Greedy Hill Climbing (Heckerman et al. 1995)

Step 1: Initialize the network as the empty network.
Step 2: Randomly select a permutation p: {1, . . . , |X|} Æ X.
Step 3: For all i = l, . . . , |X|, do the following two steps:

A: Compute the changes of the score when adding a new parent for
p(i ) or removing or reversing the edge of a parent gene of p(i ).

B: Select the modification among the modifications that improve the
score most without violating the acyclicity condition.

Step 4: Repeat step 3 until the score does not improve.
Step 5: Repeat steps 1 through 4 for n times and return the best solution found

in these iterations.

2. Search algorithm for optimal Bayesian networks

A BNRC score can be decomposed to the additive form BNRC(G) = BNRCj, as

discussed in Section II.A.2. We will formulate this optimization problem in 
an abstract way: For a finite set X (of genes), we call a function s: X ¥ 2x Æ R a 
score function for X. Then, for a DAG G = (X, E) we define the score of X by 

. This corresponds to Equation 11.7 and its decomposition score G s g Pa g
g X

( ) = ( )( )
Œ
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as previously. The problem is to find the best network G = (X, E) that attains the
optimal score.

In the case of the BNRC score, the problem is defined as a minimization problem.
Furthermore, it is noted by Ott (2004) that the case for the MDL score (Friedman
and Goldszmidt 1998) is also formulated as a minimization problem, whereas the
case for the BDE score (Cooper and Herskovits 1992; Heckerman et al. 1995; Fried-
man and Goldszmidt 1998) is defined as a maximization problem.

Ott et al. (2004) have devised an algorithm that can find optimal Bayesian net-
works of size up to 35 if a supercomputer such as the SUN FIRE 15-K (with 96 CPUs
of 900 MHz each) is used. The algorithm decomposes the search space into sub-
spaces and employs the dynamic programming technique for finding the right sub-
space as well as for determining the optimal solution in the subspace.

To describe the algorithm, several notations require introduction. For a gene g
in X and a subset A Õ X, gives the optimal choice of parents 

for g if the parents are selected from A. An order on a subset A Õ X is given as a
permutation p: {l, . . . , |A|} Æ A. We denote by PA the set of all permutations on 
A. We denote the subnetwork of G = (X, E) restricted to A by G(A) = (A, E(A)). 
For a permutation p Œ PA, we say that G(A) is p-linear if p-1(g) < p-1(h) holds for all
(g, h) Œ E(A). The idea of the algorithm is to decompose the set of all DAGs on 
A into subsets of p-linear DAGs for all p Œ PA.

Then we divide the problem into (1) finding the subspace of the search space
that contains the optimal network and (2) finding the optimal network within the 

selected subspace. We denote . Then we 

find the best p-linear network for any given permutation by F and Q. The optimal
network can be found by finding the optimal permutation that yields the global
minimum, which is given by Then the entire algorithm is 

described as follows.
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Algorithm for Finding Optimal Bayesian Network (Ott et al. 2004)

Step 1: Compute F(g, ø) = s(g, ø) for all g Œ X.
Step 2: For all g Œ X and all A Õ X - {g} with A π ø compute F(g, A) as 

.

Step 3: Set M(ø) = ø.
Step 4: For all A Õ X with A π ø execute the following steps.

A: Compute .

B: For all 1 £ i < |A|, set M(A)(i): = M(A - {g*})(i) and M(A)(|A|): = g*.
Step 5: Return Qx(M(X)).
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Theorem (Ott et al. 2004): Optimal Bayesian networks can be found using 

dynamic programming steps, where X is a set of genes.
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A rigorous proof is required to show the correctness of this algorithm (Ott et al.
2004). Furthermore, with some biologically reasonable constraints on the networks
we can obtain a much faster algorithm (Ott and Miyano 2003). By computing
optimal Bayesian networks of small size and evaluating them, it is reported that
optimal Bayesian networks are not necessarily biologically optimal. However, by
combining optimal to near-optimal Bayesian networks thoroughly we can extract
biologically more accurate information from microarray gene expression data (Ott
and Miyano 2003; Ott et al. 2004, 2005).

IV. PETRI-NET-BASED MODELING OF GENE NETWORKS

A. Hybrid functional Petri nets for modeling gene networks

1. Hybrid functional Petri net

Petri net is a graphical programming language for modeling concurrent systems. It
has been mainly used to model artificial systems such as manufacturing systems
and communication protocols. From the first attempt by Reddy et al. (1993), several
types of Petri nets—including the stochastic Petri net (Goss et al. 1998) and the
colored Petri net (Genrich et al. 2001)—have been employed to model biological
pathways. On the other hand, biological pathways can be observed as hybrid
systems. For example, protein concentration dynamics behave continuously when
coupled with discrete switches. Protein production is switched on or off, depend-
ing on the expression levels of other genes (i.e., the presence or absence of other
proteins in sufficient concentration).

Based on this observation, we proposed the hybrid functional Petri net (HFPN)
(Matsuno et al. 2003) and its extension, called the hybrid functional Petri net with
extension (HFPNe) (Nagasaki et al. 2003, 2004, 2005) for modeling biological path-
ways. We also developed the HFPNe-based simulation software called the
Genomic Object Net (GON).

With GON, we have modeled and simulated many biological pathways, includ-
ing the gene switch mechanism of lambda phage (Matsuno et al. 2000), the signal
transduction pathway for apoptosis induced by the protein Fas (Matsuno et al.
2003), the glycolytic pathway in E. coli with the lac operon gene regulatory mech-
anism (Doi et al. 2004), alternative splicing, frame shifting, and Huntington’s disease
model (Nagasaki et al. 2004).

Because the GON incorporates a biology-oriented GUI, modeling of very
complex biological processes with HFPNe can be performed in a simply way. In
that the purpose of this chapter is to show that the notion of the Peri net has a high
affinity to biological process modeling, we deal only with HFPN and will not expand
on HFPNe. For further details, see Nagasaki et al. (2005).

Generally, biological molecular interactions are explained with pictures repre-
senting molecules (e.g., genes, mRNAs, proteins, and protein complexes), and with
arrows representing interactions of these molecules such as activation and repres-
sion. To model these interactions mathematically, differential equations have been
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commonly used. However, in this modeling process we have to make redundant
efforts to reconstruct a system of differential equations from the biological inter-
action map.

Modeling with HFPN allows us to construct a computational model for simula-
tion without making such a redundant effort. That is, an HFPN model is directly
constructed from the map of a biological pathway. Thereafter, parameters of reac-
tions such as the transcription speeds of genes and degradation rates of proteins
are tuned so that input/output concentration behaviors of substances such as
mRNAs and proteins are matched to biological facts obtained from experiments
or found in the literature. Because the HFPN-based modeling method follows the
graphical pictures of biological pathways, the constructed HFPN model can be
readily understood without getting into mathematical consideration.

The Petri net (Reisig 1985) is a network consisting of place, transition, arc, and
token. A place can hold tokens as its content. A transition has arcs coming from
places and arcs going out from the transition to some places. A transition with these
arcs defines a firing rule in terms of the content of the places where the arcs are
attached. Hybrid Petri net (HPN) (Alla and David 1998) has two types of places (dis-
crete place and continuous place) and two types of transitions (discrete transition
and continuous transition). A discrete place and a discrete transition are the same
concepts as used in the traditional discrete Petri net.

A continuous place can hold a nonnegative real number as its content. A con-
tinuous transition fires continuously at the speed of a parameter assigned at the
continuous transition. The graphical notations of a discrete transition, a discrete
place, a continuous transition, and a continuous place are shown in Figure 11.5,
together with three types of arcs. A specific value w is assigned to each arc as a
weight. When a normal arc is attached to a discrete/continuous transition, w tokens
are transferred through the normal arc, as normal arcs coming from places or going
out to places.

discrete
transition

normal arc inhibitory arc test arc

discrete
transition

continuous
place place

continuous

Figure 11.5. Elements of hybrid (functional) Petri net.



219Seiya Imoto, Hiroshi Matsuno, and Satoru Miyano

An inhibitory arc with weight w enables the transition to fire only if the content
of the place at the source of the arc is less than or equal to w. For example, an
inhibitory arc can be used to represent repressive activity in gene regulation. A test
arc does not consume any content of the place at the source of the arc by firing.
For example, a test arc can be used to represent enzyme activity, in that the enzyme
itself is not consumed.

The hybrid dynamic net (HDN) (Drath 1998) has a structure similar to that of the
HPN, using the same types of places and transitions as the HPN. The main differ-
ence between HPN and HDN is the firing rule of continuous transition. As we can
see from the previous explanation of HPN, for a continuous transition of HPN the
different amounts of tokens can be flowed through the two types of arcs (i.e.,
coming from/going out the continuous transition). In contrast, the definition of HDN
does not allow transferring different amounts through these two types of arcs.
However, HDN has the following firing feature of continuous transition (which HPN
does not have): The speed of continuous transition of HDN can be given as a func-
tion of values in the places.

From the previous discussion, we can see that HPN and HDN have their own
feature for the firing mechanism of continuous transition. As a matter of fact, both
of these features are essentially required for modeling common biological reac-
tions. This motivated us to define the notion of the hybrid functional Petri net
(HFPN) (Matsuno et al. 2003), which includes HPN and HDN. Moreover, HFPN has
the third feature for arcs; that is, a function of values of the places can be assigned
to any arc. This feature was originated from the functional Petri net (Hofestädt and
Thelen 1998), which was introduced in order to realize the calculation of dynamic
biological catalytic process on Petri-net-based biological pathway modeling. The
formal definition of the HFPN is given by Nagasaki et al. (2004, 2005).

2. A model of operon with HFPN

Figure 11.6 shows a hybrid Petri net model of an operon with two genes. Discrete
place S1 (S2), discrete transition TR1 (TR2), continuous places R1 (R2) and P1 (P2), and
continuous transitions TP1 (TP2), DR1 (DR2), and DP1 (DP2) constitute the first gene
(the second gene) in the operon. Discrete place F1 is used to represent transaction
of transcription from the first gene to the second gene. At discrete transition 
TR1 (TR2), the parameter that reflects time for transcription of the first gene (the
second gene) is assigned, and at discrete transition T12 time for RNA polymerase
to traverse the gap between the first and the second genes is assigned. For con-
tinuous transitions, parameters at TP1 (TP2) represent translation rate of the first gene
(the second gene) and parameters at DR1 and DP1 (DR2 and DP2) represent degra-
dation rates of mRNA and protein of the first (the second) gene, respectively.

Initially, only discrete place S1 has one token. This reflects the situation in which
RNA polymerase binds at the promoter of the operon. Just after the transcription
of the first gene (the second gene) is finished, the amount of continuous place 
R1 (R2) increases by the weight assigned at the arc from the transition TR1 (TR2) to 
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the place R1 (R2). In the speed of parameters at continuous transition TP1 (TP2), the
amount of continuous place P1 (P2) is increased by the weight at the arc from the
transition TP1 (TP2), which reflects the translation rate of the first gene (the second
gene).

Note that in order to represent the fact that mRNA is not consumed by transla-
tion two arcs are described in both directions between the place R1 (R2) and the
transition TP1 (TP2). This can also be represented by one test arc from R1 (R2) to 
TP1 (TP2). Continuous transitions DR1 and DP1 (DR2 and DP2) without outgoing arcs 
are used to represent degradation of mRNA and proteins of the first gene (the
second gene).

B. Modeling a gene network for circadian rhythms

This section presents an example of modeling and simulation analysis by following
Matsuno et al. (2005) and shows a computational strategy with a simulation tool for
systems biology.

12T

F1

S1 TR1 R1 TP1 P1

R2 TP2 2PTR2S 2

D P2DR2

DR1 D P1

Figure 11.6. HFPN model of operon constituted by two genes.
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1. Mammalian circadian genetic control mechanism

Molecular clocks reside within suprachiasmatic nucleus cells. Each molecular circa-
dian clock is a negative feedback loop of the gene transcription and its translation
into protein. The loop includes several genes and their protein products. In the
case of mammals, three period genes (Per1, Per2, and Per3) and two Cryptochrome
genes (Cry1 and Cry2) constitute the negative limb, whereas Clock and Bmal1
(Bmal) genes constitute the positive limb of the feedback loop in the molecular cir-
cadian clock. To simplify the model and gain the insight of each interaction path,
we deal with two groups of genes—Per1, Per2, and Per3 genes and Cry1 and Cry2
genes—as Per and Cry, respectively.

The mammalian circadian genetic control mechanism consists of two interlocked
negative feedback loops. PER and CRY proteins collaborate in the regulation of
their own expression, assembling in PER/CRY complexes that permit nuclear
translocation and inactivation of Per and Cry transcription in a cycling negative
feedback loop. At the same time, the PER/CRY complex inactivates the expression
of the Rev-Erb gene. Proteins of Bmal and Clock form heterodimers that activate
Per, Cry, and Rev-Erb transcriptions. The Bmal gene is inactivated by the REV-ERB
protein in the nucleus. Except for the gene Clock, the genes are rhythmically
expressed in about 24 hours according to these molecular interactions of genes
and their products.

2. HFPN model

In the present model, Per and Cry genes and their protein products constitute the
first major circadian feedback loop. The second loop consists of the Clock and Bmal
genes and their protein products. These two pathways are connected by the inter-
action, including Rev-Erb and its product. Expression of Rev-Erb was accerelated
by the PER/CRY dimmers, and the REV-ERB protein suppresses transcription of 
the Bmal gene. Figure 11.7 is an HFPN model of the mammalian circadian gene
mechanism.

In the HFPN, symbols of places and transitions were changed to pictures
depicted according to the corresponding biological reactions. These changes are
meaningless in a mathematical sense, but meaningful in a biological sense. With
only these changes of Petri net symbols to biological pictures, we can make the
entire biological pathway described in the Petri net more biologically intuitive.

This HFPN model was described according to the following simple rules. To each
substance such as mRNA and protein, a continuous place is assigned. To each tran-
sition, a function of the style mX/10 is assigned, which defines the speed of the cor-
responding reaction. For example, the translation speed of the PER protein is
controlled by the formula m1/5, where m1 is the concentration of Per mRNA. This
reflects the biological observation that the reaction speed of transcription is
changed depending on the concentration of Per mRNA.

Complex forming rate is given as a formula of the style mX*mY/10. For example,
the formula m2*m4/10 is assigned to the continuous transition as the complex
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Figure 11.7. HFPN model of circadian gene regulatory mechanism in mammals. Places and transitions
of HFPN have been changed to pictures depicted according to biological reactions.
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forming rate of the proteins PER (m2) and CRY (m4). Continuous transitions without
outgoing arcs are used for representing natural degradation rates of mRNAs, pro-
teins, and protein complexes.

After constructing an HFPN of the biological mechanism to be modeled, param-
eters of transition speed and initial values of places have to be tuned based on the
biological knowledge and/or the facts described in biological literature. In general,
many trial-and-error processes are required until appropriate parameters for simu-
lation are determined. Because GON provides the GUI specially designed for bio-
logical modeling, we can perform these processes very easily and smoothly.

3. Inconsistency discovered by simulation

We carried out simulations of the HFPN model shown in Figure 11.7 with GON.
This model produces periodic oscillations of mRNA and protein concentrations, as
shown in Figure 11.8. We made some modifications on this HFPN model for check-
ing mutant behaviors, including Per gene disruption (by removing the normal arc
going into the place PER) and preventing the Cry gene from transcription (by
removing the test arc going into the transition attached to the place mCry). The
resulting behavior of these modifications corresponded well to the facts in the bio-
logical literature (Reppert et al. 2001; Sehgal 2004). However, at the same time we
found the following inconsistency with the biological observation of Figure 11.8.

• In Figure 11.8, the Bmal mRNA peaks at almost the same time as the peaks of
Cry and Per mRNAs. However, it is biologically known that the peak of Bmal
mRNA is located at almost the mid point of two successive peaks of Cry or Per
mRNA.

4. A new interaction resolves the inconsistency

Circadian clock mechanisms have been examined in many living organisms, such
as cyanobacteria, the fruit fly, and the mouse (Sassone 2003; Sehgal 2004). Many

Figure 11.8. Simulation result of the HFPN model of Figure 11.7, where the dark solid line is Bmal
mRNA, the dark dotted line is Cry and Per mRNAs, the pale dot-dash line is Rev-Erb mRNA, the pale
solid line is Clock mRNA, the pale dotted line is PER/CRY complex, and the dark dot-dash line is the
REV-ERB protein.
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investigations have been made of the fruit fly (Drosophila melanogaster), and it is
known that it has a similar circadian gene regulatory mechanism to that of the
mouse. Then, in order to fix the inconsistency pointed out in the previous section
we compared these two circadian mechanisms. Consequently, we noticed that a
path in the Drosophila circadian mechanism has not been identified in that of the
mouse.

• PER/TIM complex activates the gene dClock, where TIM (timeless) is a protein
of Drosophila that works in place of CRY, and dClock is a gene of Drosophila that
corresponds to Bmal.

We conducted simulation again on the modified HFPN model in which the pre-
viously cited hypothetical path was incorporated by adding the test arc from the
place PER/CRY to the transition p3 from which the normal arc connects to the place
mBmal. Figure 11.9 shows the result of simulation. This figure shows that the incon-
sistency is resolved by introducing this hypothetical path. Recall that in the origi-
nal model the transcription switch of gene Bmal was controlled only by inhibition
from the REV-ERB protein.

In contrast, in the new model this transcription is controlled not only by inhibi-
tion from the REV-ERB but also by the activation from the PER/CRY protein
complex. This activation from the PER/CRY complex allows the Bmal transcription
to be off at some point during the decrease in the PER/CRY complex concentra-
tion. In summary, the simultaneous operation of two reactions “inhibition from 
REV-ERB” and “activation from PER/CRY” on the gene Bmal enables the Bmal
mRNA peak to locate at the mid point of two successive Cry (Per) mRNA peaks.

C. Remarks

GON is a biosimulation tool developed by inheriting the tradition of research on
Petri nets. Many Petri net tools have been developed by researchers in concurrent
technology (Petri net tools). These Petri net tools so far developed generally have
user-friendly GUIs that allow us to describe complex concurrent systems very easily

Figure 11.9. Simulation results of the modified HFPN in which the new hypothetical interaction is
added. Lines have the same meanings as the lines in Figure 11.8.
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and smoothly. GON inherits this feature of the Petri net, enabling us to describe
and manipulate biological pathways naturally (even for biologists who are not famil-
iar with mathematical description and programming language). GON has been
commercialized as Cell Illustrator from Gene Networks International (GNI).

In this section, we explained how gene networks can be described by HFPN (with
the example of the circadian genetic control mechanism in mammals) and demon-
strated that computer simulations make it possible to observe behaviors of gene
networks more systematically, being able to suggest new regulatory interactions
that have not been found with only viewing the gene network as a map.

V. CONCLUSIONS

In the understanding of complex biological systems, computational methods, soft-
ware tools, and biological databases should be extensively developed and
employed. This chapter presented two approaches to understanding biological
systems and described a method and a software tool developed by our research
group.

We devised a Bayesian network model with nonparametric regression to extract
gene network information from microarray data, and developed a series of com-
putational methods based on this approach. It should be briefly mentioned that
there are other gene network models and analysis methods. The simplest model
is the Boolean network model (Somogyi and Sniegoski 1996; Liang et al. 1998;
Akutsu et al. 1999, 2003). This model is suited for modeling qualitative relations
between genes, and it allows mathematical and algorithmic analyses.

Another important mathematical model is based on ordinary differential equa-
tions. For example, Chen et al. (1999) considered modeling of both mRNA and
protein concentrations by using a system of linear differential equations. We also
devised a method to infer a gene network in terms of a linear system of differen-
tial equations from time series gene expression data (de Hoon et al. 2003).

We developed a software tool, based on the Petri net, for modeling and simu-
lating gene networks. With this software tool, various models have been con-
structed. The model’s utility has been demonstrated in practice. The strategy
presented in Section IV will be an important key to systems biology. Furthermore,
with this software tool it is possible to develop various databases of dynamic
pathway models. These dynamic pathway models can then be simulated on 
computers.

Systems biology is anticipated to produce practical benefits such as biomedical
applications, solutions for environmental problems, and so on. As an example of
this, we have succeeded in discovering a drug target gene by analyzing gene net-
works constructed from gene expression profile data. This gene expression profile
data was based on gene disruptions and drug doses (Imoto et al. 2003; Savoie 
et al. 2003). This example suggests that systems biology will lead to a new para-
digm for target selection by employing computational modeling of gene networks.
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ABSTRACT

Mathematical and statistical network modeling is an important step toward uncovering the
organizational principles and dynamic behavior of biological networks. This chapter focuses
on methods of constructing discrete dynamic models of biochemical networks from high-
throughput experimental data sets, also sometimes referred to as top-down modeling or
reverse-engineering. Time-discrete dynamical systems models have long been used in
biology, particularly in population dynamics. The models we mainly focus on here are also
assumed to have a finite set of possible states for each variable. That is, the modeling frame-
work discussed in this chapter is that of time-discrete dynamical systems over a finite 
state set.

After a brief survey of Boolean network and multi-state models, we discuss a modeling
method using tools from computer algebra and the theory of Groebner bases. The method
provides a compact description of the entire space of possible models and chooses from
that space a model that is minimal in the sense that it contains no components that vanish
on the data set used to construct the model. We also discuss the requirements of a mathe-
matical program for the identification of biological systems.

I. INTRODUCTION

“All processes in organisms, from the interaction of molecules to the complex func-
tions of the brain and other whole organs, strictly obey these physical laws. Where
organisms differ from inanimate matter is in the organization of their systems and
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especially in the possession of coded information (Mayr 1988, p. 2).” It is the task
of systems biology to elucidate those differences. This process has barely begun
and many researchers are testing computational tools that have been used suc-
cessfully in other fields for their efficacy in helping to understand many biological
systems. Here we are concerned with cellular biochemical networks. Mathematical
and statistical network modeling is an important step toward uncovering the orga-
nizational principles and dynamic behavior of such networks.

This chapter focuses on methods of constructing discrete dynamic models of
biochemical networks from high-throughput experimental data sets, also some-
times referred to as top-down modeling or reverse-engineering. The models dis-
cussed here are deterministic, and we will not discuss stochastic methods such as
Markov chains and other graphical model approaches. Time-discrete dynamical
systems models have long been used in biology, particularly in population dynam-
ics. The models we mainly focus on here are also assumed to have a finite set of
possible states for each variable. Boolean networks are an example, using only two
possible states for each variable, but one strength of our method is its use of much
larger possible state sets that capture more variation in the data. This assumption
requires that all experimental measurements, which are real-valued, be first dis-
cretized into a finite number of classes.

Because we need to use time series of measurements to make dynamic models
and might want to use heterogeneous data sets, great care must be taken during
this step so as not to lose too much information. The resulting models will have a
lower resolution than, say, ODE models. However, in exchange they are sometimes
easier to analyze. We see an important role for discrete models to provide con-
straints on the structure and dynamics of higher-resolution continuous models. In
the language of Ideker and Lauffenburger (2003), discrete models are more high-
level than ODE and PDE models.

After a short survey of discrete finite-state modeling frameworks and methods,
we present a detailed description of a multi-state modeling technology that has a
strong mathematical underpinning, providing mathematical and computational
tools for model selection and analysis. We then discuss the issue of linking discrete
high-level models with continuous low-level ones. Finally, we exploit the analogy
of top-down modeling to the process of system identification in engineering and
applied mathematics to outline some steps in a modeling program for cellular 
pathways.

II. TOP-DOWN MODELING

Traditionally, models of molecular regulatory systems in cells have been created
bottom-up, where the model is constructed piece-by-piece by adding new com-
ponents and characterizing their interactions with other molecules in the model.
This process requires that the molecular interactions have been well characterized,
usually through quantitative numerical values for kinetic parameters. Note that the
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construction of such models is biased toward molecular components that have
already been associated with the phenomenon. Still, modeling can be of great help
in this bottom-up process, by revealing whether the current knowledge about the
system is able to replicate its in vivo behavior.

There are many good examples of this process. Teusink et al. (2000) have built a
comprehensive model of yeast glycolysis based on detailed kinetics of 15 enzymes
of carbohydrate catabolism. Arkin et al. (1998) studied stochastic switching between
lysis and lysogeny in a model of lambda phage infection. In a landmark paper, Bray
et al. (1993) studied the regulation of chemotactic swimming of E. coli cells, corre-
lating the model to the phenotypes of dozens of mutants. For an example of
bottom-up modeling of a problem involving spatial distributions of signaling 
molecules, we refer to a study of calcium waves in neuroblastoma cells by Fink et
al. (2000).

Bottom-up modeling is essentially a process of synthesis by which models of 
isolated cellular components (enzymes, and so on) are merged to become part of
a larger model. Note that without applying other steps models built bottom-up are
mechanistic (i.e., represent one level of organization with all of the details of the
level below). For example, the model of ethanol catabolism mentioned previously
contains details of enzyme action of each of its 15 component enzymes.

This modeling approach is well suited to complement experimental approaches
in biochemistry and molecular biology, in that models thus created can serve to val-
idate the mechanisms determined in vitro by attempting to simulate the behaviors
of intact cells. Although this approach has been dominant in cellular modeling, it
does not scale very well to genome-wide studies because it requires that proteins
be purified and studied in isolation. This is not a practical endeavor due to its large
scale, but especially because a large number of proteins act on small molecules
that are not available in purified form, as would be required for in vitro studies.

With the completion of the human genome sequence and the accumulation of
other fully sequenced genomes, research is moving away from the molecular
biology paradigm to an approach characterized by large-scale molecular profiling
and in vivo experiments (or if not truly in vivo at least carried out with intact cells).
Technologies such as transcript profiling with microarrays, protein profiling with 
2-D gels and mass spectrometry, and metabolite profiling with chromatography and
mass spectrometry produce measurements that are large-scale characterizations of
the state of the biological material probed.

Other new large-scale technologies are also able to uncover groups of molecules
that interact (bind), allowing inference of interaction networks. All of these experi-
mental methods are data rich, and some people have recognized (e.g. Loomis and
Sternberg 1995; Brenner 1997; Kell 2004) that modeling is necessary to transform
these data into knowledge. A new modeling approach is needed to best suit large-
scale profiling experiments. Such a top-down approach will start with little knowl-
edge about the system, capturing at first only a coarse-grained image of the system
with only a few variables. Then, through iterations of simulation and experiment,
the number of variables in the model is increased. At each iteration, novel experi-
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ments will be suggested by simulations of the model, which when carried out will
provide data to improve the model further, leading to a higher resolution in terms
of mechanisms.

Although the processes of bottom-up and top-down modeling are distinct, both
have as an objective the identification of molecular mechanisms responsible for cell
behavior. The main difference between the two is that the construction of top-down
models is biased by the data of the large-scale profiles, whereas bottom-up models
are biased by the pre-existing knowledge of particular molecules and mechanisms.

Note that although top-down modeling makes use of genome-wide profiling
data it is conceptually very different from other genome-wide data analysis
approaches. Top-down modeling needs data produced in experiments that 
lend themselves to the approach—most likely those designed with that purpose in
mind. One should not expect that a random combination of arbitrary molecular
snapshots would be of much use for the top-down modeling process. Sometimes
they may serve some purpose (e.g., variable selection), but overall, top-down mod-
eling requires perturbation experiments that are carried out with appropriate con-
trols. In the face of modern experimental research methods, the development of
an effective top-down modeling strategy is crucial. In addition, we believe that 
a combination of top-down and bottom-up approaches will eventually have to 
be used. An example of a first step in this direction is the apoptosis model in
Bentele et al. (2004).

III. DISCRETE MODELING METHODS

A. Boolean networks

All top-down discrete modeling methods explored so far have some similarities.
They all essentially take the view of a biochemical network as an information-
processing system. Each method settles on a particular modeling framework, such
as graphical models, Boolean networks, multistate models of a certain type. The
resulting model space is then searched to find a model that best fits the given
experimental data. Typically, the model space is quite large and different methods
employ different “coping strategies” for model selection, such as imposing addi-
tional constraints on the models (e.g. sparseness) or random search strategies. As
mentioned in the introduction, our focus here is on deterministic dynamical systems
models. We survey some of the discrete modeling methods proposed to date, and
describe in detail a method whose characteristic is a rigorous mathematical descrip-
tion of the entire model space, together with a mathematical model selection
method that takes into account the entire model space. The goal of this section is
not to be comprehensive, but to provide a context for the problems that all of these
methods face, which are discussed in later sections of this chapter.

The most common approach to the modeling of biochemical regulatory networks
is through systems of ordinary differential equations; that is, time-continuous
dynamical systems. In 1969, S. Kauffman proposed to model regulatory networks
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as logical switching networks, described as Boolean networks (Kauffman 1969).
Boolean network models have the advantage of being more intuitive than ODE
models, and might be considered as a coarse-grained approximation of the “real”
network. They differ from ODE models in that molecules are considered present or
absent, rather than ranging over a continuum of values. There is increasing evi-
dence that certain types of regulatory networks have key features that can indeed
be represented well through Boolean models (Davidson 2002; Wang et al. 2002;
Fischle et al. 2003). Kauffman’s early work has generated a substantial literature 
on the subject (e.g. Raeymaekers 2002; Sabatti et al. 2002; Albert and Othmer 2003;
Kauffman et al. 2004).

Top-down modeling methods using the Boolean framework have been proposed
by Liang et al. (1998), Akutsu et al. (1999), and Akutsu et al. (2000). To include sto-
chastic features of gene regulation, probabilistic Boolean networks have been intro-
duced by Shmulevich et al. (2002b). The issue of how the Boolean framework can
deal with experimental and biological noise was also addressed by Akutsu et al.
(2000).

B. Multi-state discrete models

One of the disadvantages of the Boolean modeling framework is the need to dis-
cretize real-valued expression data into an ON/OFF scheme, which loses a large
amount of information. Figure 12.1 shows mRNA concentrations of a gene regula-
tory network simulated with the biochemical network simulator Gepasi (Mendes
1997) on the left. The right side of Figure 12.1 shows two different discretizations:
one Boolean and the other allowing 11 possible states.

This example makes it clear that in many cases a finer data discretization is
needed in order for a model to capture the essential dynamic features contained
in a multivariate data set. Partly in response to this deficiency, multi-state discrete
modeling frameworks and hybrid models have been developed. One of the most
complex ones (Thomas 1991; Thieffry and Thomas 1998) uses multiple states for
the genes in the network corresponding to certain thresholds of gene expression
that make possible multiple gene actions. The model includes a mixture of multi-
valued logical and real-valued variables, as well as the possibility of asynchronous
updating of the variables. A top-down modeling method for this type of model was
proposed by Thomas et al. (2004). A software package for analyzing this type of
multi-state model is also available (de Jong et al. 2003).

Multiple discrete expression levels were also used in the reverse-engineering
method of Repsilber et al. (2002), which uses a genetic algorithm to explore the
parameter space of multistage discrete genetic network models. Although this
modeling framework is more effective than Boolean networks in capturing the many
characteristics of gene regulatory networks, it also introduces substantially more
computational complications from a top-down modeling point of view. A hybrid
modeling framework was introduced by Brazma and Schlitt (2003) that tries to
capture discrete as well as continuous aspects of gene regulation. The authors’
finite-state linear model has a Boolean-network-type of control component, as well
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as linear functions that represent substances that change their concentrations con-
tinuously. For a more comprehensive review of modeling methods, see de Jong
(2002).

C. Finite-state polynomial models

We now describe a multi-state discrete model approach that leverages existing
algorithmic methods from symbolic computation and computational algebraic
geometry (Laubenbacher and Stigler 2004). It models a regulatory network as a
time-discrete multi-state dynamical system, synchronously updated. The method
shares many features with a recently developed continuous top-down method
(Yeung et al. 2002), which we first describe in some detail. According to the authors,
the method is intended to generate a “first draft of the topology of the entire
network, on which further, more local, analysis can be based.” The authors make
two assumptions. First, the system is assumed to be operating near a steady state,
so that the dynamics can be approximated by a linear system of ordinary differen-
tial equations:
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for i = 1, . . . , N. Here, x1, . . . , xN are mRNA concentrations, the li are the self-
degradation rates, the bi are the external stimuli, and the xi represent noise. The
(unknown) wij, which are assumed to be constant over time, describe the type and
strength of the influence of the jth gene on the ith gene. They assemble to a square
matrix W of real numbers. The output of the reverse-engineering algorithm is this
matrix W. The input is a series of data points obtained by applying the stimulus 
(b1, . . . , bN)T and measuring the concentrations x1, . . . , xNM times. Assembling 
these measurements into a matrix X = X(t), neglecting noise, and absorbing self-
degradation into the coupling constants wij, we obtain a matrix equation

Here, X is an (N ¥ M)-matrix, W an (N ¥ N)-matrix, and B an (N ¥ M)-matrix. Using
singular value decomposition (SVD), one obtains

XT = UWVT,

where U and V are orthogonal to each other. The first step is to obtain a particular
solution W0 to the reverse-engineering problem. One then obtains all possible solu-
tions to the problem as

W = W0 + CVT,

where C ranges over the space of all square (N ¥ N)-matrices whose entries are
equal to 0 for a certain range of j and arbitrary otherwise. Equivalently, CVT ranges
over all matrices that vanish on the given time points. The second assumption made
in the paper is that gene regulatory networks are sparse. This provides a selection
criterion on which to base a particular choice for C, and hence for W. The method
selects the sparsest connection matrix W. This is accomplished through a particu-
lar choice of norm and robust regression. The algorithm was validated by way of
data from three simulated networks.

The modeling framework for the discrete analog of this method is that of time-
discrete dynamical systems over a finite state set X. Here, X is to be thought of as
the set of discretized experimental values. For instance, in the Boolean case we
have X = {0, 1}. To be precise, a dynamical system of dimension n over X is a 
function

f : Xn Æ Xn

with dynamics generated by iteration of f. We will call f a finite dynamical system.
Here, Xn denotes the set of all n-tuples with entries in X. Abbreviate an n-tuple 
(x1, . . . , xn) by x. The function f is determined by its coordinate functions fi : Xn Æ
X; that is,

f(x) = (f1(x), . . . , fn(x)).

Suppose that we are given one or more time series of state transitions, measur-
ing concentrations of mRNA, proteins, or metabolites. Our goal is to choose a finite

d

dt
X WX B( ) = + .
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dynamical system f : Xn Æ Xn, which fits the data and “best describes” the network
that generated the data. To be precise, we assume that we are given sequences of
states

s1 = (s11, s21, . . . , sn1), . . . , sm = (s1m, . . . , snm)

t1 = (t11, t21, . . . , tn1), . . . , tr = (t1r, . . . , tnr)

. . .

These satisfy the property that if the unknown transition function of the network
is f then

f(si) = si+1, for i = 1, . . . , m - 1

f(tj) = tj+1, for j = 1, . . . , r - 1

. . .

Typically, there will be more than one possible choice. In fact, unless all state tran-
sitions of the system are specified there will always be more than one model that
fits the given data set. Because this much information is hardly ever available in
practice, any top-down modeling method has to choose from a large set of possi-
ble models. As with most methods, ours will also choose the simplest model, in a
certain sense. Before describing the selection principle used, we first need to
describe the computational framework.

If we do not impose any further mathematical structure, we are left with a problem
about set functions. No systematic computational tools for finding dynamical
systems that fit the data (and for choosing a particular one) are available in this
general setting. The standard mathematical solution is to endow the model space
with a suitable additional mathematical structure. One way to do this is by a process
analogous to the imposition of a coordinate system onto an affine space, resulting
in an algebraic structure on the set of points in the space. Precisely, we assume that
our set X is equipped with the structure of a finite number system; that is, a finite
field.

It is well-known that this can be done whenever the number of elements in X is
a power of a prime number p. This assumption is a straight-forward generalization
of the Boolean case, where we can take advantage of Boolean arithmetic (e.g., 1 +
1 = 0). Because the cardinality of X depends on the resolution of the discretization
we choose, this is an easy assumption to satisfy in practice by refining the resolu-
tion, if needed. One possible approach is to choose a prime number p of possible
variable states, in which case the number system can be taken to be Z/p, the inte-
gers modulo p.

An important consequence of this assumption is the well-known fact (Lidl and
Niederreiter 1997, p. 369) that each of the coordinate functions of f can be
expressed as a polynomial function in n variables, with coefficients in X, and so that
the degree of each variable is less than the number of elements in X. For instance,
each Boolean function can be expressed as a polynomial, via the correspondence
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x Ÿ y = xy, x ⁄ y = x + y + xy, and ÿx = x + 1. In other words, polynomial dynamical
systems can serve as a computational model for all finite dynamical systems over
a finite field. We are now in a position to use the rich algorithmic theory of poly-
nomial algebra that has been developed over the last 20 years (Cox et al. 1997),
including sophisticated symbolic computation software. Thus, we can overcome
one disadvantage that discrete models have compared to ODE models, for which
there is a mature mathematical theory available.

Thus, assume now that our state set X is a finite field. The model f : Xn Æ Xn we
are searching for is determined by its coordinate functions fi : Xn Æ X. We can
reverse engineer each coordinate function independently and thus reconstruct the
system one variable at a time. The strategy of the method is to first compute the
space of all systems that are consistent with the given time series data. The core
of this computation is an interpolation algorithm. The method then chooses a par-
ticular system f = (f1, . . . , fn) that satisfies the following property.

Minimality: For each i, fi is minimal in the sense that there is no non-zero poly-
nomial g such that f = h + g and g is identically equal to zero on the given time
points. That is, we exclude terms in the polynomials fi that vanish identically on the
data. In other words, we do not include interactions in the model that are not 
manifest in the given data set.

Suppose that fi and fi’ are two models that fit the given data set. Then, fi(x) = fi’(x)
for all data points x. That is, (fi - fi’)(x) = 0 for all x. Therefore, the set of all such
models can be described as fi + I, where fi is a particular model and I is the set of
all models that vanish identically on the given data set. In other words, the situa-
tion is very similar to the case of solving a nonhomogeneous system of linear equa-
tions, where fi represents a particular solution to the system and I represents the
solution space of the corresponding homogeneous system. The correspondence
with the ODE modeling method described by Yeung et al. (2002) is that fi corre-
sponds to W0 and I corresponds to the space C. Thus, we need to compute fi

and I.
The particular solution fi can be computed using a standard formula for Lagrange

interpolation (see Laubenbacher and Stigler (2004) for details). To compute I we use
mathematical algorithms from computer algebra based on the theory of Groebner
bases (Cox et al. 1997). What allows us to do this is the fact that the set of poly-
nomials that vanish on a given data set has the algebraic structure of an ideal in
the algebraic system X[x1, . . . , xn] of all polynomials in n variables with coefficients
in X. These algorithms are implemented using the computer algebra system
Macaulay2 (Grayson and Stillman, 2003). An important aspect of this computation
is that the set of all possible models is described not by enumeration but in terms
of a small set of generators, similar to describing a vector space by giving a basis
for it. The algorithm to select the simplest model from the set fi + I uses another
fundamental procedure in computer algebra: dividing a polynomial by all polyno-
mials in the ideal I.

One can prove that there is in fact a unique simplest model to choose. However,
the algorithm of Laubenbacher and Stigler (2004) depends on an up-front choice
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of a total ordering of the variables x1, . . . , xn. This choice has the effect that the
algorithm uses the “cheapest” (smallest, in this ordering) variables preferentially.
On the one hand, this feature allows the incorporation of biological knowledge in
the case where certain interactions are already known. On the other hand, it arbi-
trarily biases the model output in the case where such information is absent.

In Laubenbacher and Stigler (2004), several variable orders were used and
common terms in the polynomial models for each order were extracted to circum-
vent this problem. We briefly describe the validation of this approach. In the
absence of a published large multi-state discrete model we used a Boolean model
instead. The goal of this validation is not to make statements about the Boolean
model and its validity, but rather to test how well the polynomial method is able to
recover the Boolean model. Albert and Othmer (2003) presented a Boolean model
for a well-characterized network of segment polarity genes in Drosophila
melanogaster. The network, consisting of five genes and their products, is respon-
sible for pattern formation in the Drosophila embryo. The network is a ring of 12
interconnected cells, in which the genes are expressed in patterns resembling
stripes. The genes represented in the Albert-Othmer model are wingless,
engrailed, hedgehog, patched, and cubitus interruptus.

The proposed model is a collection of 21 Boolean functions, representing the
genes and proteins in the network. Each function governs the state transitions of
a single compound. The following are four of the functions defined in the model.

f6 = hhi
t+1 = ENt

i Ÿ ÿCIRt
i

f7 = HHi
t+1 = hhi

t

f8 = ptci
t+1 = CIAi

t+1 Ÿ ÿENi
t+1 Ÿ ÿCIRi

t+1

f9 = PTCi
t+1 = ptct

i ⁄ (PTCt
i Ÿ ÿHHt

i-1 Ÿ ÿHHt
i+1)

Representing each biochemical with a variable, the Boolean functions may be
translated into polynomial functions, shown below.

f6 = x5(x15 + 1)

f7 = x6

f8 = x13((x11 + x20 + x11x20) + x21 + (x11 + x20 + x11x20)x21)
(x4 + 1)(x13(x11 + 1)(x20 + 1)(x21 + 1) + 1)

f9 = x8 + x9(x18 + 1)(x19 + 1) + x8x9(x18 + 1)(x19 + 1)

Treating this Boolean model as “reality,” wild-type and simulated knock-out
experiments were generated, creating knock-outs by setting a function represent-
ing a gene equal to 0. As the algorithm relies on the choice of an ordering of the
variables, causing some variables to have greater weight than the rest, four vari-
able orders were used to counteract this preferential ranking.

Not surprisingly, algorithm performance improved greatly with knock-out data
rather than just wild-type data. The algorithm is able to reconstruct approximately
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84% of the interactions in the Boolean model, versus only 32% when only wild-type
data were used. Furthermore, it correctly identified 92% of the additive interactions
and 10% of the nonadditive interactions, whereas none of the nonadditive interac-
tions were identified in the model constructed with only wild-type data.

A more elegant solution was proposed by Allen et al. (2005). Using a large
number of randomly generated variable orders to generate models, the authors
then rank the variables according to their frequency of appearance in the models
for each of these variable orders. This ranking then determines a variable ordering
to be used for the final model construction.

Another shortcoming of the algorithm of Laubenbacher and Stigler (2004) is that
it relies on exact fitting of data. This makes the method very sensitive to noise that
is known to be present in DNA microarray and other “-omics” data. To avoid
models that are overly complex due to fitting of noise, the Laubenbacher group is
presently developing a genetic algorithm that optimizes between data fit and
model complexity. An important feature of the algorithm is that its performance is
substantially improved by supplying as initialization the output of the exact data-
fitting algorithm described previously versus a random initialization. The key theo-
retical ingredient in the algorithm is a mathematical characterization of the
evolution rules to guarantee that each mutation still satisfies the minimality crite-
rion imposed.

An important tool for working with polynomial models over finite fields is the
software package DVD (available at http://dvd.vbi.vt.edu as a web interface or for
download). The program takes a polynomial system as input. For binary systems,
one can also input Boolean functions, which are then translated into polynomial
functions. DVD then computes the phase space of the system and outputs statis-
tics such as the number of components, length of limit cycles, and so on. It also
outputs the wiring diagram of the system. For small systems, it visualizes the phase
space. Figure 12.2 shows the DVD interface.

IV. DATA DISCRETIZATION

The very important issue of data discretization has been studied from the points of
view of Bayesian network applications and machine learning (Dougherty et al. 1995;
Friedman and Goldszmidt 1996). The first important choice to make is the number
of discrete states to use. The second choice is the method by which to map 
real-valued data to discrete states. There are various ways of labeling real-valued
data using finite-state sets. Thresholds with biological relevance are one type 
of labeling that can be used. This is typically referred to as binning. For example,
up-regulation, no regulation, and down-regulation of a gene may be used as thresh-
olds for partitioning the raw data into three groups, labeled 1, 0, and -1, 
respectively. For binary states, the choice of threshold is particularly crucial, in that
even a relatively small change can result in very different discrete time series pro-
files (Sabatti et al. 2002). Another method of discretization is to normalize the expres-
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sion of each gene or protein and use the deviation from the mean to discretize the
data.

Any discretization method suitable for our purposes must preserve information
about the dynamic relationship between the different variables, and must accom-
modate several heterogeneous time series simultaneously (e.g., transcription data
as well as protein and metabolite concentrations). We have developed a method
based on a graph theoretic approach that has the important advantage that the
algorithm chooses an optimal number of states, based on the given data (Dimitrova
et al. 2005). Most discretization methods require such a choice as part of the input.
The algorithm has been implemented in C++ and is freely available. We illustrate
it with an example.

Consider the simulated gene regulatory network shown in Figure 12.3 (five genes,
whose wiring diagram is given in Figure 3a). The network was generated with the
artificial gene network system AGN (Mendes et al. 2003). After simulating the
network with the biochemical network simulator Gepasi (Mendes 1997), one finds
that it has the positive stable steady state (1.99006, 1.99006, 0.000024814, 0.997525,
1.99994). From the model, we generate six time series, each of length 20, includ-
ing one wild-type time series and five deletion mutant time series. The discretiza-
tion algorithm chooses the number system X = {0, 1, 2, 3, 4}, consisting of five
different states for the combined data set.

Figure 12.2. Snapshot of DVD interface.
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After using the multivariate interpolation algorithm, we obtain a “best” polyno-
mial model f : X5 Æ X5 in five variables. Its phase space consists of a directed graph
whose nodes are the 55 possible states for the five variables, and there is a directed
edge from state a to state b if f(a) = b. The model also has a fixed point, like the
continuous “real-world” system. Figure 3c shows a particular initialization of the
network, simulated in Gepasi, reaching the previously cited steady state. Figure 3d
shows a sample of the time series obtained by initializing the discrete model f with
the discretization of this initialization. It converges to the discretization (4, 4, 0, 4,
2) of the steady state cited previously.

c. Plot of time series of network. d. State space of model.

a. Wiring diagram of network. b. Wiring diagram of model.

Gene expressions

Figure 12.3. Graphs of a network and its associated models. (a) Wiring diagram of network, (b) wiring
diagram of model, (c) plot of time series of network, and (d) state space of model (see color plate 8).
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This example illustrates the fact that the discrete model f exhibits the same qual-
itative dynamics as the continuous model we started with. Figure 12.3b shows the
wiring diagram of the discrete model obtained with our algorithm. The main point
of this example is to demonstrate that our discretization method preserves the
essential dynamic features of the continuous system representing “reality” in this
case, and our interpolation algorithm chooses a model that reflects these dynamic
features as well as most of the causal dependencies among the variables.

V. RELATIONSHIP BETWEEN DISCRETE AND CONTINUOUS MODELS

The relationship between discrete and continuous models has been studied exten-
sively in population dynamics (Durrett and Levin 1994; Henson et al. 2001; Domokos
and Scheuring 2004; Geritz and Kisdi 2004). For models of biochemical and other
biological networks, this relationship was first explored by Glass and Kauffman
(1973), with subsequent work by Edwards (2000), Edwards et al. (2001), and Glass
et al. (2003). Within the modeling frameworks explored there, (bottom-up) discrete
models can be a helpful tool to provide constraints and information about (bottom-
up) continuous models of the same network. A good example of how a continu-
ous and a discrete model of the same system can be used together is given by
Muraille et al. (1996), where an ODE model of immune response to a replicating
pathogen is studied via a discrete logical model using the technique of Thomas
(1991). The dynamics of the discrete model, which are easy to analyze, are used to
obtain a qualitative picture of the dynamics of the ODE model.

A corresponding mathematical theory for top-down modeling has yet to be
developed. How can high-level information from discrete multi-state dynamic
models of a network be incorporated into the model selection process for low-level
ODE models? For the polynomial system framework described here, we are devel-
oping such a theory in parallel with an ODE framework based on a linearization of
the dynamics (i.e., the Jacobian, a first-order truncation of the Taylor approxima-
tion to the dynamics).

Estimates of the elements of the Jacobian matrix are currently pursued through
non-linear least squares. Our aim is to develop ways in which these top-down
approaches become synergistic. In particular, we expect the results of the discrete
model to be used as initial states for the parameter estimation needed to define a
continuous model. We are currently carrying out experiments that will be used to
validate both methods, using integrated transcriptomics, proteomics, and
metabolomics time courses measuring oxidative stress response in Saccharomyces
cerevisiae.

VI. A MATHEMATICAL THEORY FOR DISCRETE MODELS

Discrete models are not well understood at a theoretical level. In particular, the rela-
tionship between the structure of a model and its dynamics has remained elusive.
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There are no general results about the number of components of the state space
of Boolean or multi-state discrete models or about the existence of steady states.
Especially the question of steady states is an important one for biological models.
Having fairly general results about the relationship between structure and dynam-
ics for sufficiently large classes of models is an important problem.

Not surprisingly, these questions can be answered algorithmically for linear
systems. Let X be a finite field and f : Xn Æ Xn a linear system. That is, the coordi-
nate functions of f are linear polynomials without constant term. Then f can be rep-
resented by a matrix after making a choice of basis. It turns out that the structure
of the phase space of f can be completely determined from the factorization of the
characteristic polynomial of f, in particular the number of components and the
length of all limit cycles (Hernandez Toledo 2003).

Very few results are available for nonlinear systems. A modest first step toward
general results for sufficiently large classes of polynomial systems has been made
by Colon-Reyes et al. (2004). Suppose that f is a Boolean polynomial system all of
whose coordinate functions consist of monomials; that is, f is constructed using the
AND operator. Let G be the directed graph whose vertices are the variables of f.
There is a directed edge from xi to xj if xj appears in fi. Reversing the arrows of G,
one obtains the wiring diagram of the network. One can define a positive integer,
the loop number of G, which can be computed in polynomial time (relative to the
number of vertices in G). The main result of Colon-Reyes et al. (2004) is that f has
only steady states if and only if the loop number of all strongly connected compo-
nents of G is equal to 1.

VII. TOWARD A MATHEMATICAL THEORY OF BIOLOGICAL SYSTEM
IDENTIFICATION

The basic inverse problem we face in modeling biochemical networks is common
in engineering and applied mathematics, known as system identification. Our goal
is to make a phenomenological (and, ultimately, mechanistic) mathematical model
of a multivariate system we can observe as well as perturb, and about which we
may have partial knowledge. The major challenges, compared to typical engi-
neered systems, are that the system is very often high-dimensional, the number of
observations is small in comparison, and the information we have about the systems
is very limited.

The basic procedure is to choose an appropriate modeling framework, use one
or more time series of observations to identify some or all possible models within
this framework, and choose the “best” one from the possible model space. For
engineered systems there is a well-developed mathematical theory that helps in
this process. (An important application is the development of controllers for
systems.) In particular, there is a theory of system identifiability, which provides cri-
teria for how good a given data set is for the system identification process (Ljung
1999) for a comprehensive treatment of system identification.
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No corresponding mathematical theory exists yet for the identification of bio-
logical systems. In particular, there is no good understanding about the appropri-
ate experimental design for a particular modeling framework that provides good
data sets for top-down modeling. The most commonly studied type of systematic
perturbation focuses on single genes in regulatory networks (Karp et al. 1999; Ideker
et al. 2000; Rung et al. 2002; Shmulevich et al. 2002a; Tegner et al. 2003). Geneti-
cal genomics provides another possible approach (Jansen 2003). Studies of the
quantity of data needed have been done by Krupa (2002) and Selinger et al. (2003).
The study of appropriate experimental designs for various modeling methods must
be part of a long-term systems biology modeling program.

VIII. CONCLUSIONS

We have discussed some top-down modeling methods resulting in time-discrete
dynamical system models over finite-state sets. They serve to provide high-level
information about systems that can be used as constraints for the construction of
low-level models, either top-down or bottom-up. Our method using polynomial
dynamical systems over finite fields has the advantageous feature that its mathe-
matical underpinning provides access to a variety of mathematical algorithms and
symbolic computation software. Other modeling approaches discussed here have
other advantages, such as the capability of asynchronous update or the incorpo-
ration of discrete as well as continuous variables. The choice of what method to
use in a particular case will depend on the type of data and information available.
For instance, the incorporation of asynchronous update is only feasible computa-
tionally with prior biological information on the pathways to be modeled. In par-
ticular, it provides a mathematical basis for the investigation of questions such as
“goodness” measures on data sets. Ultimately, the performance of top-down mod-
eling methods cannot be properly evaluated unless we understand what types of
input data are required for optimal performance. That is, the “data must fit the
models”.

Experimental data sets suitable for the various modeling methods are still diffi-
cult to obtain, and the biochemical networks producing the data are typically too
poorly understood to truly test modeling performance. An important resource in
the field would be a collection of benchmark synthetic biochemical networks and
the ability to generate from them data sets covering various types of networks, pro-
viding wild-type and perturbation time series. One possible tool for generating
such networks and data is described by Mendes et al. (2003).

We believe that the field of system identification can serve as a blueprint for a
mathematical top-down modeling program in systems biology. Based on a well-
defined collection of model classes, from high-level statistical models down to ODE
and PDE models, such a program must include the development of appropriate
system identification methods for each model class and quality measures on data
sets that can be used to develop confidence measures for the resulting models.
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ABSTRACT

Circadian rhythms originate from intertwined feedback processes in genetic regulatory net-
works. Computational models of increasing complexity have been proposed for the molec-
ular mechanism of these rhythms, which occur spontaneously with a period on the order of
24 h. We show that deterministic models for circadian rhythms in Drosophila account for a
variety of dynamical properties, such as phase shifting or long-term suppression by light
pulses and entrainment by light/dark cycles. Stochastic versions of these models allow us to
examine how molecular noise affects the emergence and robustness of circadian oscillations.
Finally, we present a deterministic model for the mammalian circadian clock and use it to
address the dynamical bases of physiological disorders of the sleep/wake cycle in humans.

I. INTRODUCTION: THE COMPUTATIONAL BIOLOGY 
OF CIRCADIAN RHYTHMS

Most living organisms have developed the capability of generating autonomously
sustained oscillations with a period close to 24 h. The function of these so-called
circadian rhythms is to allow the organisms to adapt their physiology to the natural
alternation of day and night. Circadian rhythms are endogenous because they can
occur in constant environmental conditions (e.g., constant darkness). During the
last two decades, experimental studies have shed much light on the molecular
mechanism of circadian rhythms, which represents a long-standing problem in
biology. In all eukaryotic organisms investigated so far, the molecular mechanism
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of circadian oscillations relies on the negative feedback exerted by a clock protein
on the expression of its gene (Hardin et al. 1990; Glossop et al. 1999; Lee et al.
2000; Alabadi et al. 2001; Reppert and Weaver 2002).

Even before details were known about their molecular origin, abstract mathe-
matical models were used to probe the dynamic properties of circadian rhythms.
A popular model of this type was provided by the van der Pol equations, which
were originally proposed for sustained oscillations in electrical circuits. Thus, the
van der Pol oscillator has been used for more than three decades for modeling cir-
cadian rhythms (e.g., to account for phase shifts of these rhythms by light pulses
(Jewett and Kronauer 1998)). Another application involving this model pertains to
modeling the enhanced fitness due to the resonance of circadian rhythms with the
external light/dark cycle in cyanobacteria (Gonze et al. 2002c).

However, now that the molecular mechanism of circadian rhythms has largely
been uncovered, mathematical models based on experimental observations have
been proposed. Taking the form of a system of coupled ordinary differential equa-
tions, these deterministic models predict that in a certain range of parameter values
the genetic regulatory network at the core of the clock mechanism can produce
sustained oscillations of the limit cycle type. Deterministic models for circadian
rhythms were first proposed for Drosophila and Neurospora (Goldbeter 1995, 1996;
Leloup and Goldbeter 1998; Leloup et al. 1999; Smolen et al. 2001; Ueda et al.
2001), and later for mammals (Forger and Peskin 2003; Leloup and Goldbeter 2003,
2004; Becker-Weimann et al. 2004). The first model showing that oscillations can
originate from negative feedback on gene expression was due to Goodwin (1965),
who showed (already four decades ago) that periodic behavior may originate from
such mode of genetic regulation. Modified versions of the Goodwin model are still
being used to probe properties of circadian rhythms in organisms such as Neu-
rospora (Ruoff et al. 2001). In this chapter we will focus on more recent models,
which rely on more detailed molecular mechanisms.

One limitation of deterministic models is that they do not take into considera-
tion the fact that the number of molecules involved in the regulatory mechanism
within the rhythm-producing cells may be small as observed, for example, in Neu-
rospora (Merrow et al. 1997). At low concentrations of protein or messenger RNA
molecules, molecular fluctuations are likely to have a marked impact on circadian
oscillations (Barkai and Leibler 2000). To assess the effect of molecular noise, it is
necessary to resort to a stochastic approach. Comparing the predictions of deter-
ministic and stochastic models for circadian rhythms shows that robust circadian
oscillations can be observed even when the maximum number of mRNA and
protein molecules is of the order of some tens and hundreds, respectively (Gonze
et al. 2002a, 2002b, 2004a).

The goal of this chapter is to present an overview of deterministic and stochas-
tic models for circadian rhythms. We will begin by presenting (in Section II) deter-
ministic models for circadian oscillations of the PER protein and its mRNA in
Drosophila. A core model will be presented, which also provides a useful model for
circadian rhythms in Neurospora. This model for Drosophila circadian rhythms will
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be extended to take into account the role of the TIM protein and the control of cir-
cadian behavior by light.

In Section III, we consider stochastic versions of these models. We examine how
molecular noise affects the emergence of circadian oscillations and determine the
influence of a variety of factors, such as number of protein and mRNA molecules,
degree of cooperativity of repression, distance from bifurcation point, and rate con-
stants characterizing the binding of the repressor protein to the gene. Two types
of stochastic models are presented: one involves a fully detailed description of indi-
vidual reaction steps, whereas a second relies on a non-developed description of
nonlinear kinetic steps. Both types of models yield largely similar results. The study
of stochastic models for circadian oscillations will allow us to characterize the
domain of validity of deterministic models for circadian rhythms.

In Section IV we return to deterministic approaches and present a model for the
mammalian circadian clock. We use this model to address the molecular bases of
disorders of the sleep/wake cycle in humans, which are associated with dysfunc-
tions of the clock. Computational models can thus be applied to investigating not
only the molecular mechanism of circadian rhythms but the origin of associated
physiological disorders. As discussed in Section V, the example of circadian rhythms
illustrates how more and more complex models have been presented over the years
to account for new experimental observations. We consider the need for such an
increase in complexity of computational models for circadian rhythms, and the
added insights these complex models provide for a better understanding of circa-
dian behavior.

II. MODELING THE DROSOPHILA CIRCADIAN CLOCK

A. Overview of experimental observations

Some of the most remarkable advances in elucidating the molecular basis of cir-
cadian rhythms have been made in mutants of the fly Drosophila (Konopka 1979;
Hall and Rosbash 1988; Baylies et al. 1993; Dunlap 1993), in which circadian rhythms
affect the rest/activity cycle and the daily eclosion peaks of pupae. Both rhythms
persist in constant darkness or temperature (Pittendrigh 1960). The classic work of
Konopka and Benzer (1971) yielded Drosophila flies altered in their circadian
system, owing to mutations in a single gene called per (for “period”). Four phe-
notypes were characterized: the wild type (per+) has a free-running period of activ-
ity and eclosion close to 24 h; short-period mutants (pers) have a period close to
19 h; in long-period mutants (perl ), the periodicity increases up to 29 h; and arrhyth-
mic mutants (per0) have lost the circadian pattern of eclosion or activity (Konopka
and Benzer 1971; Konopka 1979). Interestingly, whereas in the wild type the period
remains independent of temperature—a property known as temperature compen-
sation, which is common to all circadian rhythms (Pittendrigh 1960)—the mutants
perl and pers have lost this property (Konopka et al. 1989). In contrast to the wild
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type, the period of their activity rhythm respectively increases and decreases with
temperature. Accounting for temperature compensation of circadian rhythms
remains an important challenge for computational biology.

A breakthrough for the mechanism of circadian rhythms in Drosophila was the
finding (Hardin et al. 1990, 1992) that per mRNA is produced in a circadian manner.
This periodic variation is accompanied by a circadian rhythm in the degree of abun-
dance of PER. The peak in per mRNA precedes the peak in PER by 4 to 8 h (Zerr
et al. 1990; Zeng et al. 1994). On the basis of this observation, Hardin et al. (1990,
1992) suggested that the Drosophila circadian rhythm results from a negative 
feedback exerted by the PER protein on the synthesis of the per mRNA. Post-
translational modification of PER is also involved in the mechanism of circadian
oscillations. Experimental evidence indeed indicates that PER is multiply phos-
phorylated (Edery et al. 1994). It appears that PER phosphorylation plays a role in
the circadian oscillatory mechanism, by controlling the nuclear localization of PER
and/or its degradation (Grima et al. 2002; Ko et al. 2002).

Overexpression of PER in Drosophila eyes represses per transcription and sup-
presses circadian rhythmicity in these cells, without affecting circadian oscillations
in other per-expressing cells in the brain or the circadian rhythm in locomotor activ-
ity. This work shows that the action of PER on transcription is intracellular, and sug-
gests that “each per-expressing cell contains an autonomous oscillator of which
the per feedback loop is a component” (Zeng et al. 1994). Such a mechanism,
based on negative autoregulation of transcription, has also been found in Neu-
rospora (Aronson et al. 1994). The current view is that negative autoregulation of
gene expression by a clock protein represents a unified mechanism for the gener-
ation of circadian rhythmicity in a wide variety of experimental systems (Dunlap
1999; Young and Kay 2001).

B. A core deterministic model for circadian oscillations of 
the PER protein and its mRNA

A first model for circadian oscillations in the Drosophila PER protein and its mRNA
is based on multiple phosphorylation of PER and on the inhibition of per tran-
scription by a phosphorylated form of the protein (Goldbeter 1995). This model,
schematized in Figure 13.1a, can be viewed as a minimal core model because it
takes into account a limited number of phosphorylated residues of PER. The model
also applies to oscillations of FRQ and frq mRNA in Neurospora.

In the model, the per gene is first expressed in the nucleus and transcribed into
per messenger RNA (mRNA). The latter is transported into the cytosol, where it is
translated into the PER protein, P0, and degraded. The PER protein undergoes mul-
tiple phosphorylation, from P0 into P1 and from P1 into P2. These modifications, cat-
alyzed by a protein kinase, are reverted by a phosphatase. The fully phosphorylated
form of the protein is marked up for degradation and transported into the nucleus
in a reversible manner. The nuclear form of the protein (PN) represses the tran-
scription of the gene.
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In the model, we consider two successive phosphorylations of PER, which is the
minimal implementation of multiple phosphorylation. A single phosphorylation
step would yield similar results. In fact, sustained oscillations can occur in the
absence of phosphorylation, as shown by the study of a three-variable model rep-
resenting an even simpler model for circadian oscillations (Leloup et al. 1999; Gonze
and Goldbeter 2000; Gonze et al. 2000). We nevertheless focus on a model that
includes multiple phosphorylation, because this process contributes to the mech-
anism of circadian oscillations by introducing a delay in the negative feedback loop.

In the model, the temporal variation of the concentrations of mRNA (M) and of
the various forms of the regulatory protein—cytosolic (P0, P1, P2) or nuclear (PN)—is
governed by the following system of kinetic equations (see Goldbeter (1995, 1996)
for further details):

In these equations, the phosphorylation and dephosphorylation terms (with
maximum rates v1, v3, and v2, v4, respectively)—as well as the degradation terms for
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Figure 13.1. Schemes of the models for circadian oscillations in Drosophila. (a) The PER model is based
on the sole negative regulation exerted by the PER protein on the expression of its gene (Goldbeter
1995). (b) The PER-TIM model incorporates the tim gene and its product, which forms a complex with
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expression of the per and tim genes. The effect of light is to increase the rate of TIM degradation (Leloup
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mRNA and fully phosphorylated PER protein (with maximum rates vm and vd, respec-
tively)—are all of Michaelian form corresponding to non-cooperative enzyme 
kinetics. The repression term takes the form of a Hill equation characterized by the
Hill coefficient n. Repression by PN becomes steeper and steeper as the degree of
cooperativity n increases above unity. Although higher cooperativity favors the
occurrence of sustained oscillations, periodic behavior can also be obtained for n
= 1 (i.e., in the absence of cooperativity in repression).

For an appropriate set of parameter values, the model accounts for the occur-
rence of sustained oscillations in continuous darkness (Figure 13.2a). When plotting
the time evolution of one variable (e.g., per mRNA (M)) as a function of another
variable (e.g., the total amount of PER protein (Ptot)), these oscillations correspond
in such a phase plane to the evolution toward a closed curve, known as a limit cycle
(Figure 13.2b). This name stems from the fact that the same closed trajectory is
reached regardless of initial conditions, as illustrated in Figure 13.2b. In addition to
accounting for the circadian rhythms in mRNA and for protein level, the model
shows how variations in parameters such as the rate of degradation of PER or the
rate of its translocation into the nucleus may change the period of the oscillations,
or even suppress rhythmic behavior (Goldbeter 1995, 1996).

When the model based on PER alone was proposed, the way light affects circa-
dian rhythms in Drosophila was still unknown. In 1996, a series of papers showed,
concomitantly, that a second protein—TIM (for TIMELESS)—forms a complex with
PER, and that light acts by inducing degradation of TIM (Hunter-Ensor et al. 1996;
Lee et al. 1996; Myers et al. 1996; Zeng et al. 1996). These observations paved the

Figure 13.2. Sustained oscillations and limit cycle generated by the PER model. (a) Temporal variation in
per mRNA (M) and in the total amount of PER protein (Ptot). (b) Sustained oscillations in total PER
protein and per mRNA (expressed in nM) correspond to the evolution toward a limit cycle when the
system’s trajectory is projected onto the (M, Ptot) plane. Starting from two different initial conditions, the
system reaches a unique closed curve characterized by a period and amplitude that are fixed for the
given set of parameter values. The curves have been obtained by numerical integration of Equations
13.1. Parameter values are vs = 0.76 nM/h, vm = 0.65 nM/h, ks = 0.38 h-1, vd = 0.95 nM/h, k1 = 1.9 h-1, k2

= 1.3 h-1, KI = 1 nM, Kd = 0.2 nM, K1 = K2 = K3 = K4 = 2 nM, n = 4, V1 = 3.2 nM/h, V2 = 1.58 nM/h, V3 =
5 nM/h, and V4 = 2.5 nM/h. Initial conditions are M = 0.1, P0 = P1 = P2 = PN = 0.25 (Ptot = 1), M = 1.9,
and P0 = P1 = P2 = PN = 0.8 (Ptot = 3.2) (see Goldbeter (1995, 1996)).
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way for the construction of a more detailed computational model incorporating the
formation of a PER-TIM complex as well as the enhancement of TIM degradation
during the light phase.

C. A ten-variable deterministic model for circadian oscillations in Drosophila

The ten-variable model for circadian oscillations of the PER and TIM proteins and
of per and tim mRNAs in Drosophila (Leloup and Goldbeter 1998; Leloup et al.
1999) is schematized in Figure 13.1b. The mechanism is based on the negative feed-
back exerted by the complex between the nuclear PER and TIM proteins on the
expression of their genes. For each of these proteins, transcription, translation, and
multiple phosphorylation are treated as in the PER model of Figure 13.1a. The fully
phosphorylated proteins PER and TIM are marked up for degradation, and form a
complex that is transported into the nucleus in a reversible manner. The nuclear
form of the PER-TIM complex represses the transcription of the per and tim genes.

Recent experiments indicate that repression is in fact of indirect nature: a
complex between two activators, the CLOCK and CYC proteins, promotes the
expression of the per and tim genes. The PER-TIM complex prevents this activa-
tion by forming a complex with CLOCK and CYC (Darlington et al. 1998; Rutila et
al. 1998; Lee et al. 1999). We return to the effect of such an indirect negative feed-
back in Section IV, restricting the present discussion to the PER-TIM model. In this
model, the variables are the concentrations of the mRNAs (MP and MT), the various
forms of the PER and TIM proteins (P0, P1, P2, T0, T1, T2), and the cytosolic (C) and
nuclear (CN) forms of the PER-TIM complex. The temporal evolution of the con-
centration variables is governed by the following system of 10 kinetic equations
(see Leloup and Goldbeter (1998) and Leloup et al. (1999) for further details):
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These equations correspond to one particular version in a family of possible
models, which differ by details of the molecular implementation of the feedback
mechanism. Thus, rather than considering the formation of a complex between the
fully phosphorylated forms of PER and TIM the complex could be made also (or
instead) between the non-phosphorylated or mono-phosphorylated forms of the
proteins. These other versions of the basal model yield largely similar results.

The various terms appearing in Equations 13.2 are similar to those of Equations
13.1. We have added nonspecific degradation terms, characterized by the rate con-
stants kd, kdC, and kdN. These linear terms are generally of negligible magnitude,
and are not essential for oscillations. Their inclusion ensures the existence of a
steady state when the specific protein degradation processes are inhibited. In
Equations 13.2, parameter vdT represents the maximum value of the TIM degrada-
tion rate. This is the light-sensitive parameter, which will be set to a constant low
value during continuous darkness, and to a constant high value during continuous
light. In a light/dark cycle, vdT will vary in a square-wave manner between these two
extreme values. The square-wave corresponds well to laboratory conditions under
which light varies in an all-or-none manner. The natural variation of light is of course
smoother, and other waveforms should be considered to address the effect of vari-
ations of luminosity under natural light/dark cycles.

Much as the PER model, the model based on the formation of the PER-TIM
complex can account for sustained autonomous oscillations originating from neg-
ative auto-regulatory feedback. Now, however, we may address the dynamic behav-
ior of the model in various lighting conditions, by incorporating suitable changes
in parameter vdT. Thus, as illustrated in Figure 13.3, sustained oscillations can occur
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in continuous darkness (DD), but damped oscillations occur in conditions corre-
sponding to continuous light (LL), as observed in Drosophila (Qiu and Hardin 1996).
In LL, the light-sensitive parameter was chosen so that it takes a high value corre-
sponding to a stable steady state. The disappearance of oscillations can be
explained intuitively: because of enhanced degradation, the TIM protein cannot
reach a level allowing effective repression by the PER-TIM complex. Oscillations
observed in DD with a period close to 24 h can be entrained by a 12 : 12 LD cycle
(12 h of light followed by 12 h of darkness). Experimentally, there exists a window
of entrainment, ranging typically from 21 to 28 h (Moore-Ede et al. 1982).

The PER-TIM model allows us to compare theoretical predictions with experi-
mental observations in a variety of cases. A first comparison pertains to entrain-
ment by LD cycles of varying photoperiod. As shown by the experiments of Qiu
and Hardin (1996), the peak in per mRNA always follows the transition from the L
to the D phase by about 4 h. A similar result is obtained in the PER-TIM model
(Figure 13.4). The lag after the L to D transition appears to be the same regardless
of the duration of the light phase, because the level of TIM has decreased to a
minimum value at the end of the L phase, and the time required for the PER-TIM
complex to accumulate during the dark phase above the threshold for repression
remains unchanged.

Another key comparison pertains to the phase shifts induced by light pulses in
continuous darkness. Depending on the phase at which these perturbations are
made, circadian oscillations can be either advanced or delayed. Alternatively, no
phase shift may occur. These data yield a phase response curve (PRC) when the
phase shift is plotted as a function of the phase of perturbation. The PRC is an

Figure 13.4. Phase locking of the per mRNA oscillations in the PER-TIM model. The three curves
correspond to entrainment by a light/dark cycle of 24 h period but with different photoperiod: 
(a) 8 : 16 LD cycle, (b) 12 : 12 LD cycle, and (c) 16 : 8 LD cycle. The LD cycles are symbolized by the
alternation of white and black bars. The curves have been obtained by numerical integration of
Equations 13.2. Parameter values are as in Figure 13.3.
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important tool in the study of circadian rhythms. We may simulate the effect of light
pulses in the PER-TIM model by transiently increasing the maximum rate of TIM
degradation, vdT. Unperturbed oscillations of fully phosphorylated TIM (T2) are
shown in Figure 13.5a, where the vertical line through the fourth peak will serve as
reference for determining phase shifts triggered by transient perturbations.

Figure 13.5. Phase shifting by a light pulse: comparison with experiments. (a) Unperturbed oscillations
of phosphorylated TIM (T2). The vertical line through the fourth peak serves as reference for determining
phases shifts. (b–d) Transient perturbations at three different phases of the oscillations, producing,
respectively, a phase delay, a phase advance, or an absence of phase shift. The arrows mark the
beginning of the light pulse and the thick lines indicate both the duration and the effect of this
perturbation (see following). (e) Phase response curve (PRC) obtained by plotting the phase shift as a
function of the phase at which the perturbation is applied. The perturbation takes the form of a 3-h
twofold increase in TIM maximum degradation rate (vdT), triggered by the light pulse. (f and g) PRCs
obtained theoretically (solid lines) for the wild type (panel F) and for the pers mutant (panel G) in
Drosophila. The theoretical predictions compare well with the experimental observations (dots) based 
on data obtained by Konopka and Orr using a 1-min light pulse (redrawn from Figure 2 of Hall and
Rosbash (1987)). The oscillations of the TIM protein (panels A through D) and the PRCs (panels E
through G) have been obtained by numerical integration of Equations 13.2 (Leloup and Goldbeter
1998). Parameter values are listed in Figure 2 of Leloup and Goldbeter (1998). For the PRCs, the zero
phase is chosen, as in the experiments (Hall and Rosbash 1987), so that the minimum in per mRNA
occurs after 12 h.
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As shown in Figure 13.5b, when the perturbation is applied during the rising
phase of TIM a phase delay is observed. In contrast, a phase advance occurs when
the perturbation is made at the maximum of TIM (Figure 13.5c), whereas no phase
shift is observed when the pulse is given at the minimum of TIM (Figure 13.5d). The
latter result stems from the fact that when TIM is already at its minimum a transient
increase in TIM degradation remains without effect. Plotting the phase shifts as a
function of the phase of perturbation yields the PRC shown in Figure 13.5e, where
the arrows 1 through 3 refer to the situations depicted in panels B through D,
respectively. The predictions of the model compare well with the experimental PRC
both for wild-type flies (Figure 13.5f, where the solid curve is the same PRC as in
panel E) and for the pers mutant (Figure 13.5g). The model indicates that the dead
zone in which no phase shift occurs is nearly absent in the pers mutant because TIM
remains near its minimum for a relatively much shorter time, as a result of the faster
degradation of PER in this mutant (see Figure 6 in Leloup and Goldbeter (1998)).

Obtaining good agreement with experimental observations is not straightfor-
ward, as this requires an appropriate characterization of the biochemical effects of
a light pulse on the circadian clock. In constructing the theoretical PRC of Figure
13.5, we assumed that the effect of the light pulse is to double during 3 h the
maximum rate of TIM degradation. Other combinations of multiplication factor and
duration of increase may also yield satisfactory agreement. The interest of this result
is to predict that the light pulse should have long-lasting biochemical conse-
quences that may outlast the light pulse itself. This prediction is in fact corrobo-
rated by recent experimental observations (Busza et al. 2004).

Other results obtained with the PER-TIM model are of a more counter-intuitive
nature. First, the model shows that in a certain range of parameter values sustained
oscillations of the limit cycle type may coexist with a stable steady state. Such a sit-
uation, known as hard excitation, provides a possible explanation for the suppres-
sion of circadian rhythms by a single light pulse and for the subsequent restoration
of periodic behavior by a second such pulse. This puzzling phenomenon, which has
been observed in a variety of organisms, remains largely unexplained. The model
indicates that over a range of phases corresponding to TIM increase in Drosophila
transient increases in parameter vdT may bring the system from the limit cycle into
the basin of attraction of the stable steady state. A second pulse in vdT may then
bring back the oscillations (Figure 13.6a). Suppression is only possible over a finite
portion of the limit cycle, as shown in Figure 13.6b. The characteristics (duration
and amplitude) of the suppressing pulse change with the phase of perturbation in
this domain (Leloup and Goldbeter 2001). In contrast, a single critical perturbation
suppressing the rhythm exists in the situation described by Winfree (1980), wherein
the stable limit cycle surrounds an unstable steady state. However, suppression is
only transient in that case. The coexistence between a stable steady state and a
stable limit cycle (illustrated in Figure 13.6a) is by no means uncommon, but 
a computational model is clearly needed to predict the occurrence of such a 
phenomenon.

We were at first surprised to observe that the deterministic PER-TIM model was
also capable of producing chaotic behavior in constant environmental conditions
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(e.g., continuous darkness (Leloup and Goldbeter 1999)). Such autonomous chaos
has previously been shown to originate from the interplay between two instability-
generating mechanisms (e.g., two feedback loops, each of which may produce 
sustained oscillations (Goldbeter 1996)). Here, the model contains but a single neg-
ative feedback loop, exerted by the PER-TIM complex. However, the formation of
this complex involves two branches leading to the synthesis of PER and TIM. Chaos
occurs in a relatively small parameter domain when a dynamical imbalance arises
between the synthesis and degradation of the PER and TIM proteins or their
mRNAs. Nonautonomous chaos can also be found in models for circadian rhythms,
as a result of the periodic forcing of the circadian clock by light/dark cycles. The
theoretical study indicates (Gonze and Goldbeter 2000) that the occurrence of such
nonautonomous chaos is favored by the square wave nature of LD cycles: the
domain of entrainment indeed enlarges at the expense of the domain of chaos
when the waveform of the LD cycle progressively changes from square wave to 
sinusoidal.

Another use of the PER and PER-TIM models for circadian oscillations in
Drosophila is to address the dynamical bases of temperature compensation (i.e.,
the relative independence of the period of circadian oscillations with respect to
temperature (see Section II.A)). The analysis of the models supports the view (Ruoff
and Rensing 1996) that temperature compensation originates from a balance
between two opposing tendencies: the acceleration of some reactions with 
temperature tends to increase the period, whereas the acceleration of other reac-
tions tends to lower it (Leloup and Goldbeter 1997). When the balance is lost (as a

Figure 13.6. Long-term suppression of circadian rhythms by a single pulse of light. (a) Permanent
rhythm suppression by a single pulse of light in the PER-TIM model, and restoration of the rhythm by a
similar pulse. At the time indicated by the first arrow, to mimic the effect of a light pulse parameter vdT,
which measures the maximum rate of TIM degradation, is increased during 2 h from the basal value of
1.3 nM h-1 up to 4.0 nM h-1. Initial conditions correspond to point 3 in panel B. At the time indicated by
a second arrow, a similar change in vdT, mimicking a second light pulse, is initiated, and the system
returns to the oscillatory regime. The curve is obtained by numerical integration of Equations 13.2 for
the parameter values of Figure 4 in Leloup and Goldbeter (2001). (b) Light pulses, translated into
transient increases in vdT, can permanently suppress the rhythm when applied over a portion of the limit
cycle bounded by the two black bars marked 1 and 2. The trajectory starting from point 3 on the limit
cycle corresponds to the rhythm suppression by the first pulse in a.
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result of a mutation), temperature compensation fails to occur, as observed in long-
and short-period Drosophila mutants.

This discussion shows how useful deterministic models of moderate complexity
may prove for the study of circadian rhythms. However, the question arises as to
the validity of these computational models when the numbers of molecules
involved in the oscillatory mechanism are small, as may occur for proteins and
mRNAs in cellular conditions. Then, deterministic models may reach their limits,
and it becomes necessary to resort to stochastic approaches. We shall now examine
how stochastic models may account for the emergence of circadian rhythms, and
will turn thereafter to more complex deterministic models proposed for the mam-
malian circadian clock.

III. STOCHASTIC MODELS FOR CIRCADIAN RHYTHMS

A. Core molecular model for circadian oscillations

To illustrate the stochastic approach to modeling circadian rhythms, it will be useful
to resort to a relatively simple model for circadian oscillations. The model exam-
ined in Section II.A and schematized in Figure 13.1a provides a core model for cir-
cadian rhythms based on the negative feedback exerted by a protein (which is
referred to in the following as clock protein) on the expression of its gene. As pre-
viously indicated, this model applies to circadian oscillations of the PER protein and
per mRNA in Drosophila, and to the case of Neurospora (Leloup et al. 1999, Gonze
et al. 2000) for which circadian rhythms originate from the negative feedback
exerted by the FRQ protein on the expression of its gene (Aronson et al. 1994; Lee
et al. 2000). The core model contains five variables and is described by Equations
13.1. When the effect of light is incorporated—as was done for the PER-TIM model
discussed in Section II.B—this model accounts for the occurrence of sustained oscil-
lations in continuous darkness, phase-shifting by light pulses, and entrainment by
light/dark cycles. The model shown in Figure 13.1a will thus serve as a convenient
core model for testing the effect of molecular noise on circadian oscillations. An
even simpler model (governed by a set of three kinetic equations) is obtained when
disregarding multiple phosphorylation of the clock protein (Leloup et al. 1999;
Gonze et al. 2000). The following discussion pertains to the five-variable model,
which includes PER reversible phosphorylation.

B. Molecular noise in the fully developed stochastic version of the core model

The decrease in the total number (N) of molecules in a system of chemical reac-
tions is accompanied by a rise in the amplitude of fluctuations around the state
predicted by the deterministic evolution of this chemical system. These fluctuations,
which reflect intrinsic molecular noise, can be taken into account by describing the
chemical reaction system as a birth-and-death stochastic process governed by a
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master equation (Nicolis and Prigogine 1977). In a given reaction step, molecules
of participating species are either produced (birth) or consumed (death). At each
step is associated a transition probability proportional to the numbers of molecules
of involved chemical species and to the chemical rate constant of the correspon-
ding deterministic model.

To implement such a master equation approach to stochastic chemical dynam-
ics, Gillespie (1976, 1977) introduced a rigorous numerical algorithm. In addition to
other approaches (Morton-Firth and Bray 1998), this method of the Monte Carlo
type is widely used to determine the effect of molecular noise on the dynamics of
chemical (Baras et al. 1990; Baras 1997), biochemical (McAdams and Arkin 1997),
or genetic (Arkin et al. 1998) systems. The Gillespie method associates a probabil-
ity with each reaction. At each time step the algorithm stochastically determines
the reaction that takes place according to its probability, as well as the time inter-
val to the next reaction. The numbers of molecules of the different reacting species
as well as the probabilities are updated at each time step. In this approach (Gille-
spie 1976, 1977), a parameter denoted W permits the modulation of the number of
molecules present in the system.

To assess the effect of molecular noise on circadian oscillations, we have used
the Gillespie method to perform stochastic simulations of the core deterministic
model governed by Equations 13.1. When the degree of cooperativity of repres-
sion—given by the Hill coefficient n in Equations 13.1–is equal to 4, the core mech-
anism can be decomposed in 30 elementary steps, as indicated in Table 13.1. A
probability of occurrence, proportional to the deterministic rate constant, is asso-
ciated with each of these individual steps. This approach rests on the analysis of a
fully developed stochastic version of the core model for circadian oscillations. In
the following we will show that an alternative (more compact) approach—in which
the nonlinear functions in Equations 13.1 are not decomposed into elementary
steps—yields largely similar results.

C. Robustness of circadian oscillations with respect to molecular noise

The first result obtained with the fully developed stochastic version of the core
model for circadian rhythms is that it is also capable of producing sustained oscil-
lations in conditions of continuous darkness. These oscillations correspond to the
evolution toward a limit cycle, which is shown in the right-hand panels of Figure
13.7b as a projection onto the (M, PN) plane. For comparison, the deterministic oscil-
lations and the corresponding limit cycle are shown in Figure 13.7a. The effect of
molecular noise is merely to induce variability in the maxima of the oscillations. This
is reflected by the noisy appearance of the limit cycle and a thickening of its upper
portion linking the maximum in mRNA with the maximum in nuclear (or total) clock
protein. The noisy stochastic limit cycle surrounds the deterministic limit cycle
(shown as the closed white curve in the lower right-hand panel in Figure 13.7b)
obtained by numerical integration of Equations 13.1 in corresponding conditions
(Gonze et al. 2002a, 2002b).
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Table 13.1. Decomposition of the deterministic model into elementary reaction steps.

Reaction Number Reaction Step Probability of Reaction

1 w1 = a1 ¥ G ¥ PN/W

2 w2 = d1 ¥ GPN

3 w3 = a2 ¥ GPN ¥ PN/W

4 w4 = d2 ¥ GPN2

5 w5 = a3 ¥ GPN2 ¥ PN/W

6 w6 = d3 ¥ GPN3

7 w7 = a4 ¥ GPN3 ¥ PN/W

8 w8 = d4 ¥ GPN4

9 w9 = vs ¥ (G + GPN + GPN2 + GPN3)

10 w10 = km1 ¥ M ¥ Em/W

11 w11 = km2 ¥ Cm

12 w12 = km3 ¥ Cm

13 w13 = ks ¥ M

14 w14 = k11 ¥ P0 ¥ E1/W

15 w15 = k12 ¥ C1

16 w16 = k13 ¥ C1

17 w17 = k21 ¥ P1 ¥ E2/W

18 w18 = k22 ¥ C2

19 w19 = k23 ¥ C2

20 w20 = k31 ¥ P1 ¥ E3/W

21 w21 = k32 ¥ C3

22 w22 = k33 ¥ C3

23 w23 = k41 ¥ P2 ¥ E4/W

24 w24 = k42 ¥ C4

25 w25 = k43 ¥ C4

26 w26 = kd1 ¥ P2 ¥ Ed/W

27 w27 = kd2 ¥ Cd

28 w28 = kd3 ¥ Cd

29 w29 = k1 ¥ P2

30 w30 = k2 ¥ PNP PN 2
k2æ Ææ

P PN2
1kæ Ææ

C Ed d
kd 3æ Æææ

C P Ed 2 d
kd 2æ Æææ +

P E Cd d2
1+ æ Ææækd

C P E4 1 4
43kæ Æææ +

C P E4 2 4
42kæ Æææ +

P E C2 4 4
41+ æ Æææk

C P E3 2 3
33kæ Æææ +

C P E3 1 3
32kæ Æææ +

P E C1 3 3
31+ æ Æææk

C P E2 0 2
23kæ Æææ +

C P E2 1 2
22kæ Æææ +

P E C1 2 2
21+ æ Æææk

C P E1 1 1
13kæ Æææ +

C P E1 0 1
12kæ Æææ +

P E C0 1 1
11+ æ Æææk

M M P0
ksæ Ææ +

C Em m
km3æ Æææ

C M Em m
km2æ Æææ +

M E Cm m+ æ Ææækm1

G, GP , GP , GP MN N2 N3[ ]æ Æævs

GP GP PN4 N3 N
d4æ Æææ +

GP P GPN3 N N4+ æ Ææa4

GP GP PN3 N2 N
d3æ Ææ +

GP P GPN2 N N3+ æ Ææa3

GP GP PN2 N N
d2æ Ææ +

GP P GPN N N2
2+ æ Ææa

GP G+PN N
1dæ Ææ

G P GPN N+ æ Ææa1
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To assess the robustness of circadian oscillations at low numbers of molecules,
we performed stochastic simulations for decreasing values of W. For W = 500, the
number of mRNA molecules varies in the range 0 to 1,000, whereas the numbers
of nuclear and total clock protein molecules oscillate in the ranges 200 to 4,000 and
800 to 8,000, respectively (see left-hand panel in Figure 13.8a). The results in Figure
13.8 show that as W decreases progressively from the value of 500 down to a value
of 100 or 50 robust circadian oscillations continue to occur in continuous darkness.
The number of mRNA molecules oscillates from 0 to 200 or 0 to 120, whereas the
number of nuclear clock protein molecules oscillates in the range 20 to 800 or 10
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Figure 13.7. Deterministic versus stochastic simulations of the core model for circadian oscillations
(schematized in Figure 13.1a). (a) Oscillations obtained in the absence of noise for the deterministic
model governed by Equations 13.1. Sustained oscillations of mRNA (M) and nuclear clock protein (PN)
in the left-hand panel correspond to the evolution toward a limit cycle shown as a projection onto the
(M, PN) plane in the right-hand panel. (b) Oscillations generated by the stochastic version of the core
model in the presence of noise, for W = 100 and n = 4. The data, expressed in numbers of molecules of
mRNA and of nuclear clock protein, are obtained by stochastic simulations of the detailed reaction
system (Table 13.1) corresponding to the deterministic version of the core model. In the lower right-
hand panel, the white curve corresponds to the deterministic limit cycle. The latter is surrounded by the
stochastic trajectory which takes the form of a noisy limit cycle.
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Figure 13.8. Effect of number of molecules on the robustness of circadian oscillations. Shown in rows 
A through D are the oscillations in the numbers of molecules of mRNA and nuclear clock protein, the
projection of the corresponding limit cycle, and the histogram of periods of 1,200 successive cycles, for
W varying from 500 (A), to 100 (B), 50 (C), and 10 (D). The curves are obtained by stochastic
simulations of the core model (Table 13.1), for n = 4 (other parameters are listed in Table 13.2 where
“mol” stands for “molecule”). For period histograms, the period was determined as the time interval
separating two successive upward crossings of the mean level of mRNA or clock protein. In B and C,
the decrease in the numbers of mRNA and protein molecules still permits robust circadian oscillations
(see histograms where the mean value (m) and standard deviation (s) of the period are indicated in h),
whereas at still lower numbers of molecules (D) noise begins to obliterate rhythmic behavior (Gonze 
et al. 2002b).
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to 600. For these smaller values of W, the limit cycles are more noisy but the period
histograms calculated for some 1,200 successive cycles indicate that the distribu-
tion remains narrow with a mean free running period m close to a circadian value.
The standard deviation s remains small with respect to the mean period but slightly
increases as the number of molecules diminishes.

A further decrease in the number of molecules (e.g., down to W = 10) will even-
tually obliterate circadian rhythmicity, and the latter is overcome by noise (Figure
13.8d). At such a low value of W, highly irregular oscillations occur, during which the
number of mRNA molecules varies from 0 to 30 and the number of nuclear protein

Table 13.2. Parameter values for stochastic simulations.

Reaction Steps Parameter Values

Steps 1–8 For n = 4:
a1 = W mol-1 h-1, d1 = (160 ¥ W) h-1,
a2 = (10 ¥ W) mol-1 h-1, d2 = (100 ¥ W) h-1,
a3 = (100 ¥ W) mol-1 h-1, d3 = (10 ¥ W) h-1,
a4 = (100 ¥ W) mol-1 h-1, d4 = (10 ¥ W) h-1

For n = 3:
a1 = W mol-1 h-1, d1 = (80 ¥ W) h-1,
a2 = (100 ¥ W) mol-1 h-1, d2 = (100 ¥ W) h-1,
a3 = (100 ¥ W) mol-1 h-1, d3 = W h-1

For n = 2:
a1 = W mol-1 h-1, d1 = (40 ¥ W) h-1,
a2 = (100 ¥ W) mol-1 h-1, d2 = (10 ¥ W) h-1

For n = 1:
a1 = (10 ¥ W) mol-1 h-1, d1 = (20 ¥ W) h-1

Step 9 vs = (0.5 ¥ W) mol h-1

Steps 10–12 km1 = 165 mol-1 h-1, km2 = 30 h-1, km3 = 3 h-1,
Em tot = Em + Cm = (0.1 ¥ W) mol

Steps 13 ks = 2.0 h-1

Steps 14–16 k11 = 146.6 mol-1 h-1, k12 = 200 h-1, k13 = 20 h-1

E1 tot = E1 + C1 = (0.3 ¥ W) mol

Steps 17–19 k21 = 82.5 mol-1 h-1, k22 = 150 h-1, k23 = 15 h-1,
E2 tot = E2 + C2 = (0.2 ¥ W) mol

Steps 20–22 k31 = 146.6 mol-1 h-1, k32 = 200 h-1, k33 = 20 h-1,
E3 tot = E3 + C3 = (0.3 ¥ W) mol

Steps 23–25 k41 = 82.5 mol-1 h-1, k42 = 150 h-1, k43 = 15 h-1,
E4 tot = E4 + C4 = (0.2 ¥ W) mol

Steps 26–28 kd1 = 1650 mol-1 h-1, kd2 = 150 h-1, kd3 = 15 h-1,
Ed tot = Ed + Cd = (0.1 ¥ W) mol

Steps 29–30 k1 = 2.0 h-1, k2 = 1.0 h-1
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molecules oscillates in the range 5 to 160. Even for such reduced numbers of mRNA
and protein molecules, however, oscillations are not fully destroyed by noise. The
histogram of periods indicates that the mean is still close to a circadian value, but
the standard deviation is greatly increased. The stochastic approach illustrated in
Figures 13.7 and 13.8 provides us with the unique opportunity of witnessing the
emergence of a biological rhythm out of molecular noise (Gonze et al. 2004a,
2004b).

The results in Figure 13.8 were obtained in conditions in which the mean levels
of mRNA and of clock protein differ by one to two orders of magnitude. Similar
results are obtained by means of stochastic simulations when the level of mRNA is
considerably lower than that of the clock protein, as long as the former remains
above a few tens of molecules.

The degree of cooperativity is another parameter that affects the robustness of
circadian oscillations in the presence of molecular noise. Stochastic simulations
were performed with W = 100 for values of n ranging from 1 to 4, where n denotes
the total number of protein molecules that bind to the promoter to repress tran-
scription. The results indicate that robustness significantly increases when n passes
from 1 (absence of cooperativity) to values of 2 and above. Changes in standard
deviation of the period show that cooperative repression enhances the robustness
of circadian oscillations with respect to molecular noise (Gonze et al. 2002b).

Stochastic simulations further indicate that circadian oscillations can be entrained
by LD cycles. The effect of light is incorporated into the model by assuming that
the probability of occurrence of the reaction step corresponding to degradation of
phosphorylated clock protein increases during the light phase, as observed in
Drosophila. Of particular interest is that the phase of the entrained rhythm is then
stabilized through periodic forcing by the LD cycle (Figure 13.9). The phase of the
maximum in mRNA of clock protein is of course not constant in these conditions,
because of fluctuations, but its mean value occurs a few hours after the L-to-D tran-
sition, as observed in the case of Drosophila (see also Figure 13.4 for the results
obtained in the corresponding deterministic case).

Additional factors influence the robustness of circadian oscillations with respect
to molecular noise. Among these are the distance from a bifurcation point, and the
magnitude of the rate constants characterizing binding of the repressor to the
gene. To illustrate the first aspect, it is useful to consider the bifurcation diagram
showing the onset of sustained oscillations as a function of a control parameter
such as the maximum rate of clock protein degradation, vd (Figure 13.10). This
diagram, obtained for the core deterministic model of Figure 13.1a governed by
Equations 13.1, shows that as vd is progressively increased from a low initial value
the system at first settles in a stable non-oscillatory state before sustained oscilla-
tions of the limit cycle type arise when vd exceeds a critical value. The amplitude
of the oscillations progressively increases as the value of vd moves away from this
bifurcation point. We now select four increasing values of vd located well below (a)
or just below (b) the bifurcation value, and just above (c) or well beyond (d) it. Sto-
chastic simulations performed for a given value of W with the fully developed
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Figure 13.9. Effect of molecular noise on circadian oscillations under conditions of periodic forcing by
a light/dark cycle. The data are obtained for W = 100 and n = 4. (a) Circadian oscillations in the
numbers of mRNA and nuclear clock protein molecules. (b) Histogram of periods with mean value (m)
and standard deviation (s) indicated in h. (c) Histogram of the time corresponding to the maximum
number of mRNA molecules over a period. Periodic forcing is achieved by doubling during each light
phase the value ascribed during the dark phase to the parameter (kd3) measuring the probability of the
protein degradation step (Table 13.1). Histograms are determined for some 1,200 successive cycles
(Gonze et al. 2002b).

Figure 13.10. Bifurcation diagram showing the onset of sustained oscillations in the deterministic core
model for circadian rhythms, as a function of parameter vd (which measures the maximum rate of
protein degradation). The curve shows the steady-state level of per mRNA, stable (solid line), or unstable
(dashed line), as well as the maximum and minimum concentration of per mRNA in the course of
sustained circadian oscillations. The diagram is established by means of the program AUTO (Doedel
1981) applied to Equations 13.1. Parameter values are given in Table 13.2 (Gonze et al. 2002a).



270 Computational Models for Circadian Rhythms: Deterministic
Versus Stochastic Approaches

version of the core model indicate (Figure 13.11) that circadian oscillations become
less sensitive to molecular noise as the system moves away from the bifurcation
point, well into the domain of periodic behavior.

Finally, among the kinetic parameters that govern the probability of occurrence
of the various individual steps listed in Table 13.1 few have as much influence on
the robustness of circadian oscillations as the rate constants characterizing the suc-
cessive binding of repressor molecules to the gene promoter of the clock protein.
In the case of cooperative binding of four repressor molecules, we have to con-
sider four successive steps of association and dissociation characterized by the rate
constants ai and di (i = 1, . . . 4) (see steps 1 through 8 in Table 13.1). It will be useful
to divide these rate constants by a scaling parameter g to assess their influence on
the robustness of circadian rhythms with respect to molecular noise. An increase in
g will thus correspond to a decrease in the rate constants ai and di.

In Figure 13.12 are shown the results of stochastic simulations of the core model
for g = 1 (a), g = 100 (b), and g = 1000 (c). As g increases up to 100 and 1,000, oscil-
lations with larger and larger amplitude and increasing variability of the period are
observed. The oscillations obtained for g = 1 are much more regular. To clarify the
nature of this phenomenon, we examined the deterministic version of the detailed
stochastic model considered in Table 13.1. To the 30 reaction steps listed in Table
13.1 corresponds a deterministic system of 22 ordinary differential equations
(Gonze et al. 2004a). In this fully developed version of the deterministic model,
parameters ai and di appear explicitly, whereas they only appear in the form of a
single equilibrium inhibition constant (KI) in the reduced five-variable deterministic
model governed by Equations 13.1.

The results obtained with the fully developed deterministic model demonstrate
the existence of a bifurcation as a function of the scaling parameter g, as shown by
the bifurcation diagram in Figure 13.13. When g increases above a critical value
close to 100, the system ceases to oscillate and evolves toward a stable steady

Figure 13.11. Effect of the proximity from a bifurcation point on the effect of molecular noise in the
stochastic model for circadian rhythms. The different panels are established for the four increasing values
of parameter kd3 corresponding to the vd values shown in Figure 13.10: 0.1 (A), 0.5 (B), 0.7 (C) and 1.5
(d). The values of kd3 listed in the left panels, are expressed here in molecules per h. The right-hand
panels show the evolution in the phase plane, whereas the left-hand panels represent the corresponding
temporal evolution of the number of per mRNA and nuclear PER molecules. (A) Fluctuations around a
stable steady state. (B) Fluctuations around a stable steady state close to the bifurcation point. Damped
oscillations occur in these conditions when the system is displaced from the stable steady state. In A
and B, the white dot in the right-hand panel represents the stable steady state predicted by the
deterministic version of the model in corresponding conditions. (C) Oscillations observed close to the
bifurcation point. (D) Oscillations observed further from the bifurcation point, well into the domain of
sustained oscillations. In C and D, the thick white curve in the right-hand panel represents the limit
cycle predicted by the deterministic version of the model governed by Equations 13.1, in corresponding
conditions. The smaller amplitude of the limit cycle in C as compared to the limit cycle in D is
associated with an increased influence of molecular noise. The curves are obtained by means of the
Gillespie algorithm applied to the model of Table 13.1 (Gonze et al. 2002a).

�



271Jean-Christophe Leloup, Didier Gonze, and Albert Goldbeter

250

300

350

400

450

500

0 10 20 30

P ,
s

el
u

c
el

o
m  

ni
et

or
p  r

a
el

c
u

N
N

mRNA molecules, M

0

200

400

0 48 96 144 192

P
N

M

k
d3

=1

Time (h)

 r
a

el
c

u
n r

o ,
M ,

A
N

R
m

P  ,
ni

et
or

p
N

s
el

u
c

el
o

m ,

100

200

300

400

500

0 40 80

P ,
s

el
u

c
el

o
m 

ni
et

or
p  r

a
el

c
u

N
N

mRNA molecules, M

0

200

400

0 48 96 144 192

P
N

M

k
d3

=5

Time (h)

 r
a

el
c

u
n r

o ,
M ,

A
N

R
m

P ,
ni

et
o r

p
N

s
el

u
c

el
o

m ,

200

400

600

0 50 100 150

P ,
s

el
u

c
el

o
m 

ni
et

or
p r

a
e l

c
u

N
N

mRNA molecules, M

0

200

400

600

0 48 96 144 192

P
N

M

k
d3

=7 r
a

el
c

u
n r

o 
M ,

A
N

R
m

P ,
ni

et
o r

p
N

s
el

u
c

el
o

m ,

Time (h)

0

400

800

0 100 200

P ,
s

el
u

c
el

o
m 

ni
et

o r
p r

a
el

c
u

N
N

mRNA molecules, M

0

400

800

0 48 96 144 192

Time (h)

M

P
N

k
d3

=15 r
a

el
c

u
n r

o ,
M ,

A
N

R
m

P ,
ni

et
or

p
N

s
el

u
c

el
o

m ,

B

A

C

D



272 Computational Models for Circadian Rhythms: Deterministic
Versus Stochastic Approaches

0

400

800

0 48 96 144 192 240 288

P
N

M

Time (h)

r
a

el
c

u
n r

o ,
M ,

A
N

R
m

P ,
ni

et
or

p
N

s
el

u
c

el
o

m ,

0

300

600

900

1200

1500

0 100 200

P ,
s

el
u

c
e l

o
m  

ni
et

or
p r

a
e

m
c

u
n

N

mRNA molecules, M

0

1000

2000

0 100 200 300

P
N

M

Time (h)

r
a

el
c

u
n r

o ,
M ,

A
N

R
m

P ,
ni

et
or

p
N

s
el

u
c

el
o

m ,

0

500

1000

1500

2000

2500

3000

0 100 200 300 400

P ,
s

el
u

c
e l

o
m 

n i
e t

o r
p r

a
e

m
c

u
n

N

mRNA molecules, M

0

1600

3200

4800

0 200 400 600

P
N

M

r
a

el
c

u
n r

o ,
M ,

A
N

R
m

P ,
ni

et
or

p
N

s
el

u
c

el
o

m ,

Time (h)

0

800

1600

2400

3200

4000

0 160 320 480 640

P  ,
s

el
u

c
el

o
m 

ni
et

or
p r

a
e

m
c

u
n

N

mRNA molecules, M

A

B

C

g=1000

g=100

g=1

Figure 13.12. Irregular time series and trajectory in the phase space obtained by stochastic simulations
of the core model for circadian rhythms for g = 1 (a), g = 100 (b), and g = 1,000 (c). The curves were
obtained for the model of Table 13.1, with W = 100. Other parameter values are given in Table 13.2. The
results should be compared with the bifurcation diagram established in Figure 13.13 as a function of g
for the corresponding fully developed version of the deterministic model. This diagram predicts that the
steady state is stable and excitable for g = 100 and 1,000, whereas sustained oscillations occur for g = 1
when the steady state is unstable (Gonze et al. 2004a).



273Jean-Christophe Leloup, Didier Gonze, and Albert Goldbeter

state. Numerical simulations performed with the 22-variable deterministic model
for g = 1,000, g = 100, and g = 1 show (Gonze et al. 2004a) that for g = 100 the system
still undergoes sustained low-amplitude oscillations. For g = 1,000, the system
evolves toward a stable steady state, as predicted by the bifurcation diagram of
Figure 13.13, but this steady state is excitable: a small perturbation bringing the
system slightly away from the steady state triggers a large excursion in the phase
space, which corresponds to a burst of transcriptional activity, before the system
returns to the stable steady state. This property of excitability also holds for the
limit cycle observed for g = 100. Thus, it is also possible to trigger large-amplitude
peaks in gene transcription starting from such small-amplitude oscillations.

These results explain why oscillations predicted by stochastic simulations
become highly irregular when the rate constants ai and di decrease below a criti-
cal value. As shown by the study of the corresponding detailed deterministic model,
such irregular oscillations reflect repetitive noise-induced large excursions away
from a stable excitable steady state or from a small-amplitude limit cycle close to

Figure 13.13. Bifurcation diagram showing the onset of circadian oscillations in the fully developed
version of the deterministic core model, as a function of the scaling parameter g. The latter parameter
divides the association and dissociation rate constants ai and di characterizing the binding of the
repressor protein to the gene. The curve shows the steady-state level of mRNA, stable (solid line, MSSS) 
or unstable (dashed line, MUSS), as well as the maximum (Mmax) and minimum (Mmin) mRNA
concentration in the course of sustained oscillations. The diagram was determined by numerical
integration of the 22 kinetic equations governing the dynamics of the fully developed deterministic
model (Gonze et al. 2004a).
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the bifurcation point. The values of the bimolecular rate constants ai used by Barkai
and Leibler (2000) for simulating the circadian models of Figures 13.1a and 13.1b
were probably below the critical value corresponding to sustained oscillations,
which may explain their failure to obtain robust circadian oscillations in these
models. When g decreases (i.e., when the values of parameters ai and di increase)—
as in the case considered in Figure 13.8, which corresponds to g = 1—the oscilla-
tions become more regular and more robust, because the system operates well
into the domain of sustained large-amplitude oscillations. The high values of
parameters ai and di corresponding to g = 1 are of the order of those determined
experimentally (Gonze et al. 2002b).

D. Non-developed stochastic models for circadian rhythms

The nonlinear terms appearing in the kinetic Equations 13.1 of the deterministic
core model do not correspond to single reaction steps. These terms rather repre-
sent compact kinetic expressions obtained after application of quasi-steady-state
hypotheses on enzyme-substrate or gene-repressor complexes. The resulting
expressions are of the Michaelis—Menten type for enzyme reaction rates, or of the
Hill type for cooperative binding of the repressor to the gene promoter. In the fully
developed stochastic version of the core model, all reactions were decomposed
into elementary steps (see Table 13.1).

Alternatively, we may resort to a simpler approach in which we attribute to each
linear or nonlinear term of the kinetic equations a probability of occurrence of the
corresponding reaction step (Gonze et al. 2002a). Then, in contrast to the treatment
presented previously for the fully developed stochastic version we do not decom-
pose the binding of the repressor PN to the gene promoter into successive ele-
mentary steps, and rather retain the Hill function description for cooperative
repression. A similar approach is taken for describing degradation of mRNA; trans-
lation of mRNA into protein, phosphorylation, or dephosphorylation reactions; and
enzymatic degradation of fully phosphorylated clock protein and its reversible
transport into and out of the nucleus. Some of these steps are of the Michaelian
type, whereas others correspond to linear kinetics.

The comparison of stochastic simulations performed with the fully developed and
non-developed versions of the core model showed that the two versions yield
largely similar results (Gonze et al. 2002a). On the basis of these findings, a non-
developed stochastic version of the 10-variable deterministic model governed by
Equations 13.2, incorporating the formation of the PER-TIM complex, was consid-
ered. This version corresponds to a set of 30 reaction steps (listed in Table 13.3).
Stochastic simulations show how sustained oscillations occur in this model under
conditions corresponding to continuous darkness. As for the core model consid-
ered previously, the robustness of the oscillations is enhanced when the number of
protein and mRNA molecules increases.

A conspicuous property of the 10-variable deterministic PER-TIM model for cir-
cadian rhythms in Drosophila is that it can produce autonomous chaotic behavior
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Table 13.3. Nondeveloped stochastic version of the PER-TIM model for circadian rhythms 
[Gonze et al. 2003].

Reaction Number Reaction Step Probability of Reaction
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in a restricted domain in parameter space (see Section II.C). It was therefore inter-
esting to check whether stochastic simulations were capable of reproducing this
mode of dynamic behavior, which corresponds to the evolution to a strange attrac-
tor in the phase space. As shown in Figure 13.14, the strange attractor obtained by
numerical integration of the deterministic Equations 13.2 can be recovered in cor-
responding conditions by simulations of the non-developed version of the 
stochastic model of Table 13.3. Here again, as illustrated in Figure 13.14, the 
larger the number of molecules of mRNAs and proteins involved in the oscillatory
mechanism the closer the noisy stochastic trajectory is from the deterministic
chaotic attractor.

The results obtained with stochastic models help to clarify the limits of validity
of deterministic models for circadian oscillations. It appears that the deterministic
approach provides a faithful picture as long as the number of molecules involved
in the oscillatory mechanism exceeds a few tens or hundreds of molecules. Above
this range, the larger the number of molecules the closer the stochastic trajectory
from that predicted by the deterministic model.

Table 13.3. Nondeveloped stochastic version of the PER-TIM model for circadian rhythms [Gonze et al.
2003].—cont’d

Reaction Number Reaction Step Probability of Reaction

19 w19 = k1 ¥ C

20 w20 = k2 ¥ CN

21 w21 = kd ¥ MP

22 w22 = kd ¥ P0

23 w23 = kd ¥ P1

24 w24 = kd ¥ P2

25 w25 = kd ¥ MT

26 w26 = kd ¥ T0

27 w27 = kd ¥ T1

28 w28 = kd ¥ T2

29 w29 = kdC ¥ C

30 w30 = kdN ¥ CNCN
kdNæ Æææ

C kdCæ Æææ

T2
kdæ Æææ

T1
kdæ Æææ

T0
kdæ Æææ

MT
kdæ Æææ

P2
kdæ Æææ

P1
kdæ Æææ

P0
kdæ Æææ

MP
kdæ Æææ

C CN
k2æ Ææ

C CN
k1æ Ææ
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IV. MODELING THE MAMMALIAN CIRCADIAN CLOCK

The molecular mechanism of circadian rhythms in mammals resembles that brought
to light for Drosophila. In this organism, the negative feedback exerted by the PER-
TIM complex is of an indirect rather than direct nature (Glossop et al. 1999). Thus,
the transcription of the per and tim genes is triggered by a complex formed by the
activators CYC and CLOCK. Binding of the PER-TIM complex to CYC and CLOCK
prevents the activation of per and tim expression (Lee et al. 1999). In mammals the
situation resembles that observed in Drosophila, but it is the CRY protein that forms
a regulatory complex with a PER protein (Shearman et al. 2000; Reppert and Weaver
2002). Several forms of these proteins exist (PER1, PER2, PER3, CRY1, and CRY2).
The complex CLOCK—BMAL1, formed by the products of the Clock and Bmal1
genes, activates Per and Cry transcription. As in Drosophila, the PER-CRY complex
inhibits the expression of the Per and Cry genes in an indirect manner, by binding
to the complex CLOCK—BMAL1 (Lee et al. 2001; Reppert and Weaver 2002).

The mechanism of circadian rhythms in Drosophila and mammals thus relies on
interlocked negative and positive feedback loops. In addition to the negative reg-
ulation of gene expression described previously, indirect positive regulation is
involved. In Drosophila, the PER-TIM complex de-represses the transcription of
Clock by binding to CLOCK, which exerts a negative autoregulation on the expres-
sion of its gene (Bae et al. 1998) via the product of the vri gene (Blau and Young
1999). In mammals, likewise, Bmal1 expression is subjected to negative autoregu-
lation by BMAL1, via the product of the Rev-Erba gene (Preitner et al. 2002). The
PER-CRY complex enhances Bmal1 expression in an indirect manner (Reppert 
and Weaver 2002) by binding to CLOCK—BMAL1 and thereby decreasing the 
transcription of the Rev-Erba gene (Preitner et al. 2002).
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Figure 13.14. Effect of molecular noise on autonomous chaos. (a) Strange attractor corresponding to
chaotic oscillations in the deterministic PER-TIM model for circadian rhythms. (b and c) Progressive
dissolution of the strange attractor in the presence of molecular noise, for W = 1,000 and 100,
respectively. The curve in a is obtained by numerical integration of Equations 13.2. In b and c, the
curves are obtained by means of the Gillespie algorithm applied to the non-developed stochastic version
of the PER-TIM model listed in Table 13.3 (Gonze et al. 2003).
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Models based on intertwined positive and negative regulatory loops have been
proposed for Drosophila (Smolen et al. 2001; Ueda et al. 2001) and mammals
(Forger and Peskin 2003, 2005; Leloup and Goldbeter 2003, 2004; Becker-Weimann
et al. 2004). We shall focus here on the model proposed for the mammalian circa-
dian clock, as it allows us to address the molecular dynamical bases of disorders of
the human sleep/wake cycle associated with dysfunctions of the circadian clock.

A. Toward a detailed computational model for the mammalian circadian clock

The model for the mammalian circadian clock is schematized in Figure 13.15, both
in a compact (a) and in a detailed manner (b). It describes the regulatory interac-
tions between the products of the Per, Cry, Bmal1, and Clock genes. For simplic-
ity, we do not distinguish between the Per1, Per2, and Per3 genes and represent
them in the model by a single Per gene. Similarly, Cry1 and Cry2 are represented
by a single Cry gene. Moreover, as the Clock mRNA and its product (the CLOCK
protein) are constitutively high in comparison to Bmal1 mRNA and BMAL1 protein,
they are considered in the model as parameters rather than variables.

We shall treat the regulatory effect of BMAL1 on Bmal1 expression as a direct
negative autoregulation. We have shown (Leloup and Goldbeter 2003) that similar
conclusions are reached in an extended model in which the action of the REV-ERBa
protein in the indirect negative feedback exerted by BMAL1 on the expression of
its gene is considered explicitly. The version of the model without REV-ERBa is gov-
erned by a set of 16 kinetic equations (Leloup and Goldbeter 2003, 2004), whereas
three more equations are needed in the extended model that incorporates the 
Rev-Erba mRNA and the Rev-Erba protein (Leloup and Goldbeter 2003).

In a certain range of parameter values, the 16- or 19-variable model for the mam-
malian clock produces sustained oscillations with a circadian period. These oscilla-
tions are endogenous, in that they occur for parameter values that remain constant
in time, in agreement with the observation that circadian rhythms persist in con-
tinuous darkness or light. As observed experimentally (Lee et al. 2001; Reppert and
Weaver 2002), Bmal1 mRNA oscillates in antiphase with Per and Cry mRNAs (Figure
13.16a). The proteins also undergo antiphase oscillations and follow their mRNAs
by a few hours (Figure 13.16b). Because most parameter values remain to be deter-
mined experimentally—as for the case of Drosophila (see Figures 13.2 and 13.3)—
these oscillations were obtained for a semi-arbitrary choice of parameter values in
a physiological range so as to yield a period of oscillations in continuous darkness
(DD) close to 24 h.

To probe for entrainment of the circadian clock by LD cycles, we must incorpo-
rate the effect of light on Per expression. In continuous darkness, the maximum
rate of Per expression, vsP, remains at a low constant value. In LD, this rate varies
periodically (e.g., as a square wave, going from a constant low value during the
dark phase up to a higher constant value vsPmax during the light phase). In such 
conditions, entrainment by a 12 : 12 LD cycle (12 h of light followed by 12 h of 
darkness) can be obtained over an appropriate range of vsPmax values (Leloup and
Goldbeter 2003).
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Interestingly, the phase of oscillations entrained in LD is particularly sensitive to
changes in parameters that control the level of CRY protein and Cry mRNA. This
was shown for parameter KAC (the equilibrium constant describing the activating
effect of CLOCK—BMAL1 on Cry expression) and for parameter vmC, which meas-
ures the maximum rate of degradation of Cry mRNA. An example of the latter 
situation is illustrated in Figure 13.16d, where the only difference with respect to
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Figure 13.15. Model for the mammalian circadian clock involving interlocked negative and positive
regulations of the Per, Cry, and Bmal1 genes by their protein products. (a) Synthetic scheme of the
model with the positive limb involving BMAL1-CLOCK and the negative limb involving PER-CRY. (b)
Developed model for the mammalian clock (Leloup and Goldbeter 2003). The effect of light is to
increase the rate of expression of the Per gene.
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Figure 13.16c is a 10% change in parameter vmC. The autonomous period in DD is
23.85 h and 23.70 h in Figures 13.16c and 13.16d, respectively, whereas the phase
of Per mRNA is delayed by about 9 h in the latter case—so that Per mRNA reaches
its maximum during the D phase instead of peaking in the L phase. This result is
counterintuitive, in that we expect the maximum in Per mRNA to occur in phase L,
because Per expression is enhanced by light. The virtue of the computational
model is to alert us to the possibility that the phase of oscillations in LD may be
highly labile, with the peak in Per mRNA shifting well into the D phase as a result
of a small change in a light-insensitive parameter.

B. Multiple sources for oscillations in the circadian regulatory network

The genetic regulatory network underlying circadian rhythms contains intertwined
positive and negative feedback loops. In view of the complexity of these regula-

Figure 13.16. Circadian oscillations predicted by the mammalian clock model. (a) In constant darkness,
the mRNA of Bmal1 oscillates in antiphase with respect to the mRNAs of Per and Cry. (b)
Corresponding protein oscillations in constant darkness. (c) Oscillations of the mRNAs after entrainment
by 24-h light/dark (LD) cycles. The peak in Per mRNA occurs in the middle of the light phase. (d)
Oscillations are delayed by 9 h and the peak in Per mRNA occurs in the dark phase when the value of
parameter KAC is decreased from 0.6 to 0.4 nM. Other parameter values correspond to the basal set of
values listed in Table 1 in Leloup and Goldbeter (2003). In c and d, the maximum value of the rate 
of Per expression, vsP, varies in a square-wave manner so that it remains at a constant low value of 1.5
nM/h during the 12-h-dark phase (black rectangle), and is raised up to the high value of 1.8 nM/h during
the 12-h-light phase (white rectangle). The curves have been obtained by numerical integration of
Equations 1 through 16 of the model without REV-ERBa (listed, together with parameter values, by
Leloup and Goldbeter (2003)).



281Jean-Christophe Leloup, Didier Gonze, and Albert Goldbeter

tory interactions, it should not be a surprise that more than one mechanism in the
network may give rise to sustained oscillations. Evidence pointing to the existence
of a second oscillatory mechanism (Leloup and Goldbeter 2003, 2004) stems from
the fact that sustained oscillations generally disappear in the absence of PER
protein (Figure 13.17a). However, even in such conditions sustained oscillations may
occur with a period that is not necessarily circadian (Figure 13.17b). This second
oscillator is based on the negative autoregulation exerted by BMAL1 on the expres-
sion of its gene, via the Rev-Erba gene (see Figure 13.15).

Experimental observations so far suggest that if a second oscillator exists in the
circadian regulatory network it does not manifest itself in producing rhythmic
behavior. Thus, mPer1/mPer2 (Zheng et al. 2001) or mCry1/mCry2 (Van der Horst
et al. 1999) double-knockout mice are arrhythmic. In some conditions, however, an
extended light pulse can restore rhythmic behavior in a low proportion of
mPer1/mPer2 double-knockout mice (K. Bae and D. Weaver, personal 
communication).

In the absence of the negative feedback exerted by BMAL1 on the expression
of its gene, oscillations can still originate from the PER—CRY negative feedback
loop involving BMAL1. This result holds with the observation that circadian oscilla-
tions occur in the absence of REV-ERBa in mice (Preitner et al. 2002). Preventing
altogether the synthesis of BMAL1 suppresses oscillations, because BMAL1 is
involved in the mechanism of the two oscillators described previously.

C. Sensitivity analysis of the computational model for circadian rhythms

To assess the sensitivity of circadian oscillatory behavior to changes in parameter
values, we determined for each parameter (one at a time) the range of values pro-
ducing sustained oscillations (as well as the variation of the period over this range)

Figure 13.17. Multiple sources of oscillatory behavior in the genetic regulatory network controlling
circadian rhythms. (a) Oscillations shown in Figures 13.16a and 13.16b disappear in the absence of PER
protein synthesis (ksP = 0). The curves show the asymptotic stable steady state reached after transients
have subsided. (b) Sustained oscillations can nevertheless be restored when choosing a slightly different
set of parameter values, even though ksP = 0 (Leloup and Goldbeter 2003). The fact that oscillations can
occur in the absence of PER protein indicates the existence of another oscillatory mechanism, which
relies only on CLOCK-BMAL1 negative auto-regulation (see scheme in Figure 13.15a).
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while keeping the other parameters set to their basal values (Leloup and Goldbeter,
2004; for an alternative sensitivity analysis, see Stelling et al. 2004). Such a sensitiv-
ity analysis was performed by constructing a series of bifurcation diagrams for four
different sets of basal parameter values, each yielding circadian oscillations. Para-
meter set 1 was chosen so that oscillations disappear in the absence of PER protein
or in the absence of negative autoregulation by BMAL1. Parameter set 2 corre-
sponds to a situation in which oscillations can occur in the absence of PER, as a
result of the negative autoregulation of BMAL1. Parameter set 3 corresponds to a
situation in which circadian oscillations can occur in the absence of negative
autoregulation by BMAL1. Finally, parameter set 4 was selected because oscilla-
tions can occur in the absence of PER or in the absence of negative autoregulation
of BMAL1. On the basis of this analysis we may distinguish between two types of
sensitivity: the first relates to the size of the oscillatory domain and the other to the
influence on the period.

For some parameters the range of values producing sustained oscillations is quite
narrow, less than one order of magnitude, whereas for other parameters it is much
larger and extends over several orders of magnitude. The largest variation in
period, by a factor close to 3, is observed for parameters that measure, respec-
tively, the entry of the PER-CRY complex into the nucleus, and the formation of the
inactive complex between PER-CRY and CLOCK-BMAL1 in the nucleus. For some
sets of parameter values, the period may vary significantly (by a factor close to 2)
over the oscillatory domain, whereas for other sets of parameter values the change
in period as a function of this parameter may be reduced. Parameters for which the
range of values yielding oscillations is narrowest are mainly those linked to BMAL1
and its mRNA. On the basis of these results, we may conclude that parameters
affecting the level of BMAL1 possess the narrowest range of values producing sus-
tained oscillations, whereas the period is most affected by the parameters meas-
uring the entry of the PER-CRY complex into the nucleus and the formation of the
inactive complex between PER-CRY and CLOCK-BMAL1.

D. From molecular mechanism to physiological disorders

The computational model for circadian oscillations in mammals provides us with
the unique opportunity to address not only the molecular mechanism of a key bio-
logical rhythm but the dynamical bases of physiological disorders resulting from
perturbations of the human circadian clock. Several disorders of the sleep/wake
cycle are indeed associated with dysfunctions of the circadian clock in humans. In
the familial advanced sleep/phase syndrome (FASPS), the phase of the sleep/wake
cycle in LD is advanced by several hours, as a result of a decreased rate of PER
phosphorylation (Toh et al. 2001). In a family in which FASPS is present over five
generations, those affected by the syndrome tend to go to sleep around 7:30 p.m.
and awake around 4:30 a.m. Moreover, in a patient affected by FASPS the period
of the circadian clock in DD was reduced down to 23.5 h from a normal mean value
of 24.4 h (Jones et al. 1999).
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The phase advance characteristic of FASPS can be accounted for by the model
as a result of a decrease in parameter Vphos, which measures the maximum rate of
PER phosphorylation by the protein kinase CK1e. As in clinical observations (Jones
et al. 1999), the advance of the phase in LD then accompanies a decrease in
autonomous period as the phosphorylation rate decreases (Leloup and Goldbeter
2003). Such a decrease in period in DD can be observed over parts of the bifurca-
tion diagram established as a function of Vphos (see Figure 13.18a). The model could
be used similarly to address the delayed sleep phase syndrome, which is the mirror
physiological disorder of the sleep/wake cycle and appears to be associated with
increased rate of PER phosphorylation (Ebisawa et al. 2001; Archer et al. 2003). The
bifurcation diagram of Figure 13.18a indicates that an increase in Vphos may corre-
spond to a delayed phase of the sleep/wake cycle in LD, and to an increase in the
autonomous period of circadian oscillations in DD. An interesting prediction arising
from Figure 13.18b is that two distinct values of Vphos may yield the same period in
DD and different phases upon entrainment in LD.

For a long time the model for the mammalian circadian clock placed us in a
quandary, as the model failed to account for the most conspicuous property of cir-
cadian rhythms; namely, their entrainment by LD cycles. There is generally a range
of parameter values in which entrainment occurs, but we failed to find any such
range when the light-sensitive parameter (the maximum rate of Per expression) was
made to vary in a square wave manner. Regardless of the magnitude of the peri-
odic variation, entrainment did not occur. We then realized that the level of CRY

Figure 13.18. Relating the mammalian clock model to syndromes associated with disorders of the
sleep/wake cycle in humans (Leloup and Goldbeter 2003). (a) Effect of the maximum rate of PER
phosphorylation on the free running period in DD and on the phase of the oscillations in LD. The phase
corresponds to the time (in h) at which the maximum in Per mRNA occurs after the onset of the L
phase. Decreasing (increasing) the rate of phosphorylation of the PER protein, Vphos, with respect to the
“normal” situation can produce a phase advance (delay) as well as a decrease (increase) in free running
period that accounts for the phase shift observed in the familial advanced sleep phase syndrome (FASPS)
or the delayed sleep phase syndrome (DSPS). (b) Situations 1 and 2 show that different values of the
control parameter can produce different phases after entrainment, even though they correspond to the
same free running period in DD. The gray areas on the left and right in the two panels refer to absence
of entrainment (see Figure 13.19).
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protein was critical for entrainment by LD cycles. When the level of CRY remains
too low, free PER builds up during successive light phases, as there is not enough
CRY with which to form a complex. Consequently, entrainment fails to occur (Leloup
and Goldbeter 2003). It was sufficient to raise the level of CRY—by increasing the
rate of PER synthesis or the rate of Per expression, or by decreasing the rate of
degradation of either PER or Per mRNA—for entrainment to occur.

If entrainment failure is so easy to obtain in the model, could it be that a corre-
sponding syndrome exists in human physiology? The answer is yes: there is a con-
dition known as non-24-h sleep/wake syndrome (Richardson and Malin 1996), in
which the time at which the subject goes to sleep is drifting every day. This slow
drift is sometimes accompanied by “jumps” in the phase f of the sleep/wake cycle
in LD conditions. During such jumps, f rapidly traverses one phase of the LD cycle
in a few days, and slowly drifts across the other phase of the LD cycle during a much
longer time (on the order of several weeks). The absence of entrainment in the
model corresponds to quasi-periodic oscillations in LD. These oscillations can be
associated or not with phase jumps, as shown in Figure 13.19 in panels A and B,
respectively. Chaotic oscillations may also result from the periodic forcing by LD
cycles (Figure 13.19c).

We are currently using the model to search for conditions other than decreased
levels of CRY, which might also lead to the failure of entrainment in LD. If the non-
24-h sleep/wake cycle syndrome is indeed due to altered levels of CRY, the results
suggest that restoring adequate levels of the protein might allow entrainment to
occur.

V. CONCLUSIONS

Remarkable advances have been made during the last two decades in unraveling
the molecular bases of circadian rhythms—first in Drosophila and Neurospora, and
more recently in cyanobacteria, plants, and mammals. Based on experimentally
determined mechanisms, computational models of increasing complexity have
been proposed for these rhythms. As reviewed in this chapter, computational
approaches throw light on the precise conditions in which circadian oscillations
occur as a result of genetic regulation. The models also account for a variety of

Figure 13.19. Absence of entrainment and the non-24-h sleep/wake cycle syndrome. The phase of the
circadian oscillations does not always lock to a constant value with respect to the 24-h LD cycle, in
contrast to what occurs in the case of entrainment. Lack of entrainment can lead to quasi-periodic
behavior (a), which is sometimes accompanied by phase jumps (b) corresponding to slow drifts of the
phase followed by rapid progression through the L or D phase (horizontal arrows). Chaotic behavior (c)
can also be observed as a result of forcing by the LD cycle. Gray and white columns represent the D
and L phases of the LD cycles, respectively. Parameter values are as in Table 1 of Leloup and Goldbeter
(2003), with vmP = 0.95 nMh-1 (a), 1.45 nMh-1 (b), or 0.70 nMh-1 (c).
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properties of circadian rhythms, such as phase shifting or long-term suppression by
light pulses, entrainment by light/dark cycles, and temperature compensation.

When the numbers of molecules of protein or mRNA involved in the oscillatory
mechanism are very low, it becomes necessary to resort to stochastic approaches.
We have shown by means of stochastic simulations that coherent sustained oscil-
lations emerge from molecular noise in the genetic regulatory network as soon as
the maximum numbers of mRNA and clock protein molecules are in the tens and
hundreds, respectively. At higher numbers of molecules, the stochastic models yield
results that are largely similar to the predictions of the corresponding determinis-
tic models. The latter therefore provide a useful representation of circadian oscil-
latory behavior over a wide range of conditions.

Among the factors that contribute to the robustness of circadian rhythms with
respect to molecular noise are the degree of cooperativity of repression, the dis-
tance from a bifurcation point, and the rate constants measuring the binding of the
repressor to the gene. All models considered here pertain to the onset of circadian
rhythms at the cellular level. The intercellular coupling of oscillatory cells—for
example, in the suprachiasmatic nuclei (SCN), which represent the central circadian
pacemaker in mammals (Kunz and Achermann 2003; Gonze et al. 2005)—may
further contribute to the robustness of circadian rhythms.

The computational approach supports the view (Reppert and Weaver 2002) that
the genetic regulatory mechanism of sustained circadian oscillations is similar in
both the central and peripheral (Schibler et al. 2003; Yoo et al. 2004) oscillators, and
that the observed differences in phase are of a quantitative rather than qualitative
nature.

We have used the case of circadian rhythms to show how more and more
complex computational models must be considered to accommodate the acceler-
ating flux of new experimental observations. A question that arises naturally is
whether such an ever-increasing complexity of the models is really needed. It
appears that as with geographical maps a balance must be made between the
necessity of including the most relevant details and the desire to not become lost
in a too meticulous description, because the model might quickly become so
complex that its detailed numerical study would become highly cumbersome.

An example of molecular detail that has to be incorporated is the phosphoryla-
tion of the PER protein: even if sustained oscillations are possible, in principle, in
the absence of PER covalent modification the phosphorylation step is needed not
only to account for the effect of mutations in the protein kinase that phosphory-
lates PER but also to account for some disorders of the sleep/wake cycle in humans
related to altered PER phosphorylation. Moreover, as described in this chapter,
several results can only be obtained in models that possess a minimum degree of
complexity. Thus, autonomous chaos was obtained in the 10-variable model for cir-
cadian rhythms in Drosophila incorporating the formation of a PER-TIM complex,
but not in the five-variable model based on PER alone. In the mammalian clock
model, incorporation of additional feedback loops brought to light the possibility
of multiple sources of oscillatory behavior.
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Finally, circadian rhythms provide a case in point for showing how computational
models can be used to address a wide range of issues, extending from molecular
mechanism to physiological disorders. Identifying the origin of dysfunctions and
predicting ways of obviating them in metabolic or genetic regulatory networks on
the basis of numerical simulations presents a key challenge for computational
biology.
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ABSTRACT

Cells in multicellular organisms exhibit discrete mutually exclusive phenotypic states, such
as proliferation, apoptosis, or differentiation into various cell types. Each of these “cell fates”
is associated with a particular stable genome-wide gene expression profile defined by 25,000
genes. To explain the collapse of the hyperastronomical number of combinatorially possible
expression configurations into those characteristic of observable cell fates, the latter have
been proposed to be high-dimensional attractors in gene activity state space.

Here we review the biology of cell fate regulation from a “systems” perspective and
discuss two gene network models (small systems of differential equations and high-
dimensional Boolean networks) to illustrate how molecular interactions produce multistabil-
ity and attractors. Implications for cell fate regulation, stem cell multipotency, stochastic fate
decisions, and cancer are discussed. This chapter also illustrates the necessity for embrac-
ing both pathway details as well as simplifying abstraction in computational systems biology.

I. INTRODUCTION

A hallmark of multicellular organisms is the differentiation of cells into functionally
distinct cell types, such as a resting nerve cell or a proliferating skin cell. A cell type
represents a special case of a cell fate—the more general and abstract term that
encompasses any distinct functional phenotypic state a cell can occupy—such as
proliferation (the state in which the cell undergoes the cell division cycle), quies-
cence (the state in which the cell is not dividing, but viable), apoptosis (state of

Chapter

14
Multistability and Multicellularity:
Cell Fates as High-Dimensional
Attractors of Gene 
Regulatory Networks

Sui Huang
Vascular Biology Program, Children’s Hospital,
Harvard Medical School, Boston, Massachusetts, USA



294 Multistability and Multicellularity: Cell Fates as High-
Dimensional Attractors of Gene Regulatory Networks

commitment to programmed cell death), or differentiation into a mature cell type
(the typically nonproliferative state in which the cell exerts tissue-specific functions),
and the various activation states of the differentiated cell (Figure 14.1a).

Development and tissue homeostasis require that cells undergo transitions
between these cell fates in a tightly controlled manner. Cell fates appear as dis-
crete, stable, and mutually exclusive states or processes, and hence represent
behavioral entities (or “programs”) identifiable as such. Consequently, cells
“switch” in an almost discontinuous manner between cell fates. Depending on the
particular tissue, the terminology can overlap; that is, the mutual exclusiveness is
relative. For instance, in the adult a liver cell can switch between a differentiated
state and a proliferative state. In the latter, many liver-specific genes are shut down
and the cell undergoes repeated cell divisions. However, this cell is still a liver cell.
In contrast, a nerve cell (like many mature cells) usually cannot access the prolifer-
ative state anymore. Such cell fates are often referred to as post-mitotic or termi-
nally differentiated.

The past decades of molecular biology have focused on the biochemical path-
ways that control the switch between cell fates. One general paradigm that has
emerged from the gene-centered view of this period is that of signal transduction
pathways: a cascade of biochemical reactions, typically protein-to-protein interac-
tions, connects the extracellular input signal, carried by a soluble growth factor, to
the effector genes that in turn control gene regulatory pathways to produce pro-
teins necessary for the new cell fate. For instance, a nerve cell differentiation factor
would induce the expression of neuronal genes and repress genes specific to other
tissues.

Figure 14.1. (a) Schematic representation of cell fates and cell fate transitions. Note that for every tissue
the “fate transition map” is different in that not all fates are equally accessible in all tissues. In this
example, cell C may be regarded as a multipotent progenitor cell capable of differentiating in the two
mature cells A and B, which themselves can undergo various fate transitions. (b) Waddington’s
“epigenetic landscape” captures the discrete nature of cell fate decisions. (Reprinted from C. F.
Waddington, The Strategy of the Gene, 1957, Allen and Unwin.)



295Sui Huang

This molecular analysis has brought great insight into the very material basis of
how a biological signal is propagated along a pathway in a cell. However, in this
pathway-focused view of biology we sometimes miss the larger picture. First, genes
and proteins do not form independent pathway modules to which a distinct “bio-
logical function” can be assigned. Instead, they collectively establish an almost
genome-wide network of regulatory interactions. This has been heralded since the
early days of signal transduction research by the ever-increasing discovery of “cross
talks” between historically defined molecular pathways (Bouvier 1990). The post-
genomic systematic characterization of interaction between genes and proteins has
led to the picture of a genome-scale network rather than the collection of parallel
pathways devoted to individual biological functions (Huang 2004; Marcotte 2001).
In fact, many molecular biologists now even equate systems biology with “network
biology.”

Second, the broader picture is important because cells exhibit a distinct behav-
ior in the tissue context with respect to the dynamics of their phenotypic states.
The actual macroscopic dynamics of cell fate regulation itself must also be consid-
ered when studying the details of regulatory pathways because we cannot under-
stand the regulating mechanisms without knowing the regulated behavior. The
fundamental feature of discreteness of cell fates, which current biologists interested
in molecular processes within the cell need not give heed to, has most elegantly
been articulated by the great embryologist of the last century, C. F. Waddington.
He noted “well-recognizable types” and that “intermediates” are rare and unsta-
ble (Waddington 1956), and proposed in the 1940s the “epigenetic landscape”
(shown in Figure 14.1b) as an intuitive metaphor to explain the fact that cells are
forced to take all-or-none decisions between distinct cell fates. Because each 
cell fate is associated with a distinct gene expression profile, the latter must also
exhibit discrete states that change into one another through quasi-discontinuous
transitions.

In this chapter, we will emphasize the biology of cell fate regulation by focusing
on the picture of discrete cell fates and their transitions and develop the concepts
that may explain how the natural dynamics of large (genome-scale) gene regula-
tory networks produce the characteristic cell fate behavior. A major aim of this
chapter is to review the ideas of Boolean gene networks as an abstract model able
to capture generic cell fate behavior in the light of systems biology. We will also
discuss specific implications for understanding properties of whole-cell behavior
that remain difficult to explain in the signaling pathway paradigm.

II. GENE EXPRESSION PROFILES IN GENE EXPRESSION STATE SPACE

Traditionally, an individual protein that is expressed only in a certain cell type is
referred to as a cell-type specific marker. For instance, the protein albumin is
expressed “specifically” in liver cells, and its promoter element can be used to
direct liver-specific expression of transgenes. With the advent of massively parallel
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measurement of gene expression by DNA microarrays, it has become natural to
think of each macroscopically discernible cell fate as uniquely associated with a 
distinct gene expression profile; that is, a characteristic transcriptome (or proteome)
(Hsiao et al. 2001; Perou et al. 2000). The transcriptomes, although distinct as a
whole, of course overlap with respect to individual genes. Those constitutively
expressed in all cell states are called housekeeping genes, and estimates are that
about 10% of the genes in the human genome are housekeeping genes (Eisenberg
and Levanon 2003).

How does a genome produce the distinct stable gene expression profiles that
define a given cell fate, such as a cell type? The most primitive form of differenti-
ation into various cell types encountered in evolution is the differentiation into
somatic cells and germ line cells in simple metazoa. Using the roundworm ascaris
as a model for differentiation, T. Boveri found in 1910 that the somatic cells lose a
portion of their genome, as evidenced by what he called “chromatin diminution”
(Muller et al. 1996). Of course, this is not the case for the germ-line cells, which have
to maintain the entire genomic information and pass it on to the next generation.
Thus, one could envision a mechanism of cell differentiation in which specialized
somatic cells keep only the genes needed to exert their function, and lose DNA
containing the genes not needed (e.g., hemoglobin genes in nerve cells), whereas
the germ-line cells would contain the entire genome. It turned out that the ascaris
mechanism represents rather an exception and is not seen in most organisms, not
even in many other worms, such as the model animal C. elegans.

We have taken for granted that (at least in mammals) all healthy somatic cells in
the body contain the same entire genomic information (with notable exceptions in
the immune system). All genes are present, so to speak, as dormant instructions 
in all cells. Thus, the cell-fate-specific transcriptomes are established and stabilized
purely epigenetically (i.e., by the regulation of expression of genes from the intact
genomic DNA). Sometimes, this is referred to loosely as a “genetic program.”

The human genome contains roughly N = 25,000 genes (according to the latest
estimate). For the sake of simplicity, assume that each gene can be either expressed
(i.e., the protein it encodes is present and active in the cell) or not expressed
(repressed). Thus, let’s symbolize each gene as a bit, gi, where i = 1, 2, . . . , N. The
variable gi can take the values gi = 1 (gene i is turned ON = expressed) and gi = 0
(gene i is OFF = repressed). Each state S(t) = (g1(t), g2(t) . . . gN(t)) at time t, which
can be written as a string of length N—for example, {1010110 . . .}—would then rep-
resent a genome-wide gene expression profile. With N = 25,000 binary genes we
would have 225000 ª 107526 possible configurations of strings, or genome-wide 
profiles.

The entirety of these possible combinatorial gene activation configurations
across N genes constitutes the N-dimensional gene expression state space—each
gene spanning one dimension. Remember that we have made a simplifying
assumption of ON/OFF genes and are thus on the conservative side. Each one of
these gene expression profiles S is a unique configuration, one point in the N-
dimensional state space, and could theoretically represent a phenotypic cell state.
Despite our simplification—which omits multilevel activation, splicing, post-
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transcriptional and post-translational modifications, metabolites, and so on—the
number of 107526 possible gene expression profiles is hyperastronomic. (Compare:
there are approximately 1080 protons in the universe, and there are approximately
1017 cells in our body).

In other words, we would have almost an endless quasi-continuum of cell phe-
notypes if all of these gene activation configurations would be realizable. Many cell
types would be very similar to each other. For instance, the one specified by the
string {00000. . . . 001} would be almost undistinguishable from the one specified
by {00000 . . . 011}. In addition, the activation of a gene (including transcription,
translation, and protein activation) is subjected to molecular noise that is manifest
as random fluctuations in its activity, hence further contributing to “smearing out”
the genetic programs to an unfathomable continuum.

III. CELL FATES AND CELL TYPES AS DYNAMIC ENTITIES 
IN MULTICELLULAR ORGANISMS

The reality is that we do not observe a quasi-continuum of cell phenotypes but dis-
tinct and almost discrete cell fates that are in general mutually exclusive to each
other. Hence, there also cannot be a continuum of gene expression profiles in the
huge gene expression state space. In other words, despite sharing the identical
genome cell types have their own type identities, which are separated by some sort
of barrier. The gene expression profiles characteristic of the various cell fates do
not easily morph between each other, much as cell types do not ad libitum or ran-
domly differentiate into each other. In textbooks, the number of cell types in the
human body that are “plainly distinguishable” and identified under one single
name is given as “more than 200” (Alberts et al. 2004).

More detailed analysis based on gene expression profiles using DNA microarray
technology now reveals that this is an underestimate. If a cell type is characterized
by its distinct gene expression profile (including post-translational modifications),
many nominal cell types, as defined by traditional histology, actually encompass a
set of multiple molecularly distinguishable subtypes. This is well documented for
cell types that appear in different regions of the body, such as fibroblasts and
endothelial cells (Chang et al. 2002; Chi et al. 2003). For instance, lung endothelial
cells have a gene expression profile that is different from that of endothelial cells
in the brain or the intestine. Moreover, each individual cell can occupy distinct func-
tional states; for example, inflammatory (activated states) versus quiescent states.
Thus, as long as the ontogenetic hierarchy and the similarity relationships between
these functionally distinct cellular states are not fully clarified and there is no formal
definition of “cell type,” the term cell fate is preferred for general purposes, des-
ignating a dynamic entity that can be defined molecularly based on the unique
gene activity profile.

The characteristic dynamics of cell fate regulation and the lack of continuous 
morphing between gene expression profiles leads to the restricted rule-governed
behavior consisting of conditional cell fate switching. In other words, from this
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higher-level perspective development and homeostasis occur according to a
defined cell fate transition map. Each cell fate can only switch to a defined, rela-
tively small, set of other accessible fates, and some fate transitions are reversible
whereas others are irreversible. Branching and sequential cell fate map patterns
can be observed. For instance, a multipotent stem cell or progenitor cell in the
adult tissue makes an all-or-none decision as to whether to enter the cell division
cycle (self-renewal) or to commit to one of a few accessible cell lineages leading
to a particular differentiated cell type via discrete stages.

IV. LIMITATIONS OF MOLECULAR PATHWAYS AS EXPLANATION OF 
CELL FATE BEHAVIOR

With the previously presented picture of the actual dynamics of cell fate behavior
in mind, we can now formulate our question in more concrete ways. Where does
the discreteness of cell fates, their mutual exclusivity, the discontinuity of fate tran-
sitions, and the restricted choice of alternative fates come from? And why do cell
types, despite sharing the same genome, in general represent stable entities 
and do not gradually “drift away” and “morph” into one another but instead get
“stuck” in precisely those expression profiles that represent the observable 
cell fates? What is the molecular basis of the rules that govern such cell fate 
dynamics?

These “emergent” or “system” properties cannot be easily explained by indi-
vidual signaling pathways. Attempts to explain cell fates and cell-fate-specific gene
expression in the framework of traditional gene-centered regulation rest largely on
ad hoc chains of causation that are embodied by molecular pathways. Because of
the lack of appreciation of the distinct dynamics of cell fates discussed above, there
was no need for an encompassing self-consistent formal explanation. Instead, the
molecular biology explanation for why a cell expresses liver-specific genes is that
there must be liver-specific transcription factors that activate the transcription of
those genes that are only expressed in liver, and that hence contribute to the estab-
lishment of the liver-specific expression “program” (Odom et al. 2004). Although
“master genes” (such as MyoD, PPAR, PU.1, GATA, and so on) have been found
that when ectopically expressed can induce an entire or partial cell type program,
this of course only shifts the explanation one step further up the chain of causation
and is not a “closed” explanation in a strict sense. What regulates the (tissue-
specific) regulators? Moreover, the often-used metaphor “gene expression
program” lacks a formal definition.

Similarly, the stability of gene expression associated with an enduring cell fate
(i.e., the “memory” of differentiated cells of their lineage identity) is typically
explained by the regulation at the level of chromatin modification, which is medi-
ated by covalent changes of histones (the protein component of chromatin)—
including methylation and acetylation—and by direct methylation of DNA
(Georgopoulos 2002; Khorasanizadeh 2004; Arney and Fisher 2004). These changes
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affect accessibility of DNA for the transcriptional machinery. These processes are
commonly referred to by molecular biologists as epigenetic mechanism sensu stric-
tiore. However, it is important to note here that epigenetics is a much broader
concept, within which the covalent histone and DNA modifications only constitute
a subset (Jablonka and Lamb 2002). All regulation of stable gene expression pro-
grams that do not involve changes in the DNA sequence, as discussed earlier in
the case of ascaris, can be referred to as epigenetic.

Importantly, maintenance of stable cell state and associated gene expression
need not and cannot solely depend on the covalent changes that enjoy the intu-
itive attribute of stability. First, if a gene is sustainably turned ON or OFF by methy-
lation and/or acetylation, again the question is simply shifted; namely, to the one
about what controls the activity of the responsible enzymes (acetylases and methy-
lases) and directs them to the appropriate gene loci. Second, the picture is emerg-
ing that histone modification is a dynamic process. In fact, it has long been known
that histone acetyltransferases enzymes are counterbalanced by histone deacety-
lases, and there is increasing evidence that this is also the case for histone methy-
lation (Kubicek and Jenuwein 2004). Moreover, gene expression dynamics appears
now to be less dependent on large-scale chromatin packaging than previously
thought (Gilbert et al. 2004). Thus, epigenetic chromatin modification only superfi-
cially, but not in principle, explains the persistence of stable gene expression pro-
files. What is needed is a self-consistent comprehensive “closed-loop” explanation
for the existence of stable and discrete expression profiles in a dynamic system.

V. CELL FATE DYNAMICS: CONSTRAINED BY 
THE GENE REGULATORY NETWORK

An obvious reason for the lack of consistent “intermediate types,” as Waddington
called them, that would correspond to intermediate gene expression profiles in a
continuous expression state space is that the expression of individual genes is not
independent of each other. Therefore, not all of the 107526 gene expression config-
urations in our binary gene model are realizable, but only a tiny subset of it. For
instance, if Gene 1 unconditionally inhibits Gene 2 then all the gene activation con-
figurations S in which both Gene 1 and Gene 2 are active—that is, S = (1, 1, . . . ,
gN)—would be logically unstable, and would (driven by the regulatory interactions)
be forced to move into a “neighboring state” that complies with this regulatory
constraint (e.g., S = (1, 0, . . . , gN)). In other words, not all gene expression profiles
S are equally stable, because the network of mutual influences of gene expression
imposes constraints on the collective dynamics of gene expression.

The question now is how the particular architecture of the regulatory network of
a large number N of genes can give rise to precisely the type of constraints of the
dynamics of the gene expression profile so that the architecture governs cell fate
dynamics and produces the macroscopic system behavior of cells that we observe.
More generally, whether a large system of interacting elements can exhibit coher-
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ent globally ordered (stable) behavior or becomes disordered and chaotic is an old
question in the physics of dynamic systems. From the study of relatively small net-
works as systems of differential equations, it has been shown that in general
sparsely connected networks (below a certain connectivity) are stable, but at higher
connectivity they are dynamically not stable (i.e., they do not produce globally
ordered dynamics) (Gardner and Ashby 1970; May 1972; Meyer and Brown 1998).

If the architecture of the interaction network meets some specific criteria, as dis-
cussed further in Section XI, ordered behavior with globally stable patterns of gene
expression will arise. To better understand this, we will review the model class of
Boolean networks (Section VII), which was introduced by Kauffman precisely to
study whether a complex network can give rise to ordered behavior. “Complex”
denotes here that the network is large (N in the thousands) and that gene-gene
interactions are apparently irregularly wired (i.e., do not form a regular lattice) 
(Strogatz 2001).

Before discussing complex networks using the model of Boolean networks we
will, honoring examine both history and didactical principles, begin with a 2-gene
toy system. We will first discuss “traditional” continuous-variable modeling using
differential equations based on the formalism of chemical kinetics and show how
discrete system states, corresponding to cell fates, can arise in the two-gene circuit
given appropriate system structure. We will then move on to illustrate the Boolean
idealization using this very same two-gene example before discussing complex 
networks.

VI. MULTISTABILITY IN A SMALL GENE CIRCUIT

If a discrete cell fate is defined by the activation configuration of a set of genes,
and all cells harbor the same set of genes, realization of a cell fate will require the
general ability of a system of interacting elements (the gene regulatory network) to
display multiple alternative, discrete stable states (defined by a gene activation con-
figuration). The existence of two or more steady states within one system is called
bi-stability or multistability, respectively. Delbrück proposed in 1948 bi-stability as
a general principle to explain how discontinuous transitions between two stable
states arise in biochemical reaction systems (Delbrück 1949) and could explain 
differentiation—at about the same time Waddington promoted the picture of the
epigenetic landscape in development.

Novick and Weiner first showed in E. coli the existence of all-or-none transitions
between cell states with respect to lactose metabolism, and that such states can
be maintained across generations in the absence of the chemical inducer and
genomic mutation (Novick and Weiner 1957). Such endurance of a non-genetical
trait (i.e., in the absence of mutation) is at the very core of differentiation into mul-
tiple cell types in multicellular organisms (Rubin 1990). Monod and Jacob proposed
a gene regulation circuit exhibiting bi-stability to explain differentiation (Monod
and Jacob 1961). Thomas showed that the minimal element in a system required
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for multistability and switch-like behavior is a positive feedback loop (Cinquin and
Demongeot 2002; Thomas 1978), as epitomized by the classical widely studied one-
gene system that exerts positive autoregulation (autocatalytic activation of gene
expression) and is inactivated with first-order kinetics (Laurent and Kellershohn
1999). The very notion of multistability has been sidelined in mainstream molecu-
lar biology until recently.

Here we present a slightly extended system as a pedagogical tool to illustrate
the basic principle, motivated by recent findings from the study of genes that
govern cell fate decisions with respect to lineage commitment in mammalian
hematopoietic progenitor cells. We discuss how a simple continuous value model
based on nonlinear differential equations can capture the essential macroscopic
dynamics of cell fate transitions of a progenitor cell C that can differentiate into the
two cell types A and B.

Figure 14.2 shows the circuitry consisting of two genes, X and Y, which exhibit a
basal activity but inhibit each other. They also activate their own transcription. Each
gene (more precisely, their encoded protein) is also subjected to a first-order kinetic
inactivation (degradation). Their activation state (e.g., expression level of the active
protein) can change continuously over time.

An essential point in treating such gene regulatory systems as depicted in Figure
14.2 is to model a regulatory influence on the change of activity (dX/dt or dY/dt,
by X or Y, respectively) as a sigmoidal input/output (stimulus/response) relation-
ship. Such sigmoidal “transfer functions” reflect sensitivity amplification leading to
ultrasensitivity (Koshland et al. 1982). It is justified, even in the absence of cooper-
ativity (the best known cause of such sigmoidality), on grounds of the particular
physicochemical conditions of the intracellular milieu, which departs from that of
ideal well-stirred macroscopic solutions. These conditions include the presence of
molecular noise (stochastic focusing), crowded environment, and reaction on sur-
faces (Paulsson et al. 2000; Savageau 1995; reviewed in Huang 2001).

In fact, experimental measurements of many biochemical signaling events
suggest that steep sigmoidal transfer functions with a threshold, resulting in an
approximately all-or-none response, are ubiquitous. The apparently smooth behav-
ior of variables, evident from the biochemical analysis of bulk cell cultures and 
the primary motivation for using continuous models, is in great part due to the 
averaging over asynchronous and noisy cell populations in which gene activity in
individual cells behaves in a discontinuous manner (Figure 14.3). Nevertheless, low-
dimensional 1- or 2-gene systems exhibiting multistability described by a set of dif-
ferential equations that assume sigmoidal regulation characteristics have recently
gained much interest, both at the theoretical and experimental level (Cherry and
Adler 2000; Gardner et al. 2000; Becskei et al. 2001; Bhalla et al. 2002; Sha et al.
2003; Tyson et al. 2003; Xiong and Ferrell 2003; Angeli et al. 2004; Ozbudak et al.
2004).

Here we discuss the particular system with the two genes, X and Y (as shown in
Figure 14.2, left-hand column). Such or similar circuitry constellations are widely
seen in the genetic pathways underlying control of cell differentiation (Zingg et al.
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1994; Chen et al. 1995; Nerlov et al. 2000; Zhang et al. 2000; Ohneda and Yamamoto
2002; Grass et al. 2003). The system equations of our circuit are as shown in Figure
14.2.

Note that using the Hill function (= sigmoidal function as used in the equations
in Figure 14.2) to capture negative regulation (suppression) assumes a baseline
activity of the target gene in the absence of the repressor. The numerical solution
of this system of nonlinear differential equations shows that for a wide range of
parameter values the system will exhibit three stable fixed points, or attractor states.
This is illustrated in the X-Y phase plane, the 2D state space that represents the
possible states S(X, Y) of the system (Figure 14.2). The two attractor states A = (XA,
YA) (with high X and low Y values) and B = (XB, YB) (low X and high Y) correspond to
stable states of the system where the activity of either one gene, X or Y, dominates
and suppresses the other. Given the mutual repression, this is intuitively plausible.

The states A and B are “attracting” because they are stable. Neighboring states
(e.g., with X’and Y’values close to XA and YA) are “attracted” back to state A. A third
attractor state C with XC ~ YC represents the configuration in which X and Y are
equally active. C is located between A and B in the state space and its basin of
attraction (the regions in the phase plane in which all system states will end up in
the respective attractor state) is bordered by those of the attractors A and B. In

Figure 14.2. Pedagogical example of a simple gene regulatory circuit consisting of two genes/proteins.
The genes X and Y inhibit each other and activate themselves (box). The cell fate behavior regulated by
this circuit is shown on the right: commitment of a multipotent precursor cell C into two differentiated
cells, A and B. Two models of the underlying gene regulatory network are shown.

LEFT COLUMN. Continuous variable model, described by a system of differential equations for the
variables X(t) and Y(t) representing the activity of the two genes/proteins. The first and second terms
describe mutual inhibition and autoactivation, respectively, which follow a sigmoidal regulatory
characteristic captured by a Hill function. The constants S (for simplicity assumed to be identical for all
four terms) represent the threshold of the sigmoidal curve, n is the Hill coefficient (n > 2), and ki are rate
constants. The last term represents first-order decay. Below, the XY phase plane. Arrows in the vector
field indicate movements of states S(X, Y) along their trajectories (enforced by the network interactions)
at the given points (X, Y) during a time interval Dt. At the bottom of the figure is shown a hypothetical
“potential landscape” along the diagonal (- - -) through the stable fixed points A, B, and C.

RIGHT COLUMN. Discrete variable (Boolean network) model. This model is quite artificial and only
presented to illustrate some limited equivalency to the continuous model on the left. The values of the
variables X and Y at discrete time t + 1 are Boolean functions, BX and BY, respectively, of the
corresponding set of input genes at time t, which in this example of an N = 2 “network” is equivalent to
the entire state of the network, S(t). Below, the two truth tables for the Boolean functions, BX and BY,
which represent two examples of the function IMPLICATION. The entire dynamics can be represented in
the state transition table, which can be depicted as a state transition map (bottom). In this particular
case, the basins of attraction consist of only the attractor state itself. Arrows represent the “trajectories”
indicating which transition a given state (rectangular box) undergoes when updating the network by
executing the Boolean functions. In this example, the Boolean network produces the same set of stable
states as the continuous model, which is by far not a general property. Stable states (fixed-point
attractors) update into themselves. The state {00} is unstable, as in the continuous model. Note that the
transition {00} to {11} (dashed arrow), despite compliance with the Boolean functions, is an artifact of
the synchronized updating and goes through unstable regions in the continuous model.

�
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contrast to these attractors, the existence of attractor C depends on the presence
of the auto-regulatory loops. What is interesting is the macroscopic dynamics of
the system with three attractors. With the central tenet being that each attractor
state corresponds to a stable phenotypic state or a cell fate, it is evident from the
state space structure in Figure 14.2 (bottom) that the cell can easily be “kicked out”
of state C by a perturbation (i.e., a transient change in the value of X, Y, or both to
assume either one of the other attractor states). Thus, C represents the precursor
cell that can decide to commit to either the A or B cell fate.

VII. CELL FATES AS ATTRACTORS

At this point we can summarize the dynamic feature of a “network” and its relation
to the macroscopic cell fate dynamics. The central idea is that a cell fate is an attrac-
tor state of the dynamic system established by the underlying gene regulatory
network. Attractors are discrete stable states. Intermediary configurations between
the attractor states are not stable. Which state a given cell (the network) occupies

Figure 14.3. Discrete behavior of individual expression of a gene X at the single-cell level. The
measurement of protein level (e.g., by immunoblot analysis, top left) for increasing expression (band
intensity) in five samples is a population average of millions of cells. Such an increase can arise in
principle in two different ways when expression in individual cells is considered. This is schematically
illustrated in the gray boxes 1 and 2, where each dot represents one cell and the color intensity the
level of X. On the right-hand side, simulated flow cytometry histograms for 10,000 cells are shown,
corresponding to the two scenarios 1 and 2. Note the bimodality in the case of 2, and the effect of
“noise” that leads to dispersion of expression levels around a mean value.
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depends on the initial condition (position in state space, relative to the basins of
attraction). Thus, the state space has a characteristic substructure that imposes
dynamic constraints onto the global dynamics of the network. It is compartmen-
talized by the separatrices (basin boundaries) into basins of attraction and drives
the dynamics of the network from unstable toward stable states. In other words,
the biological features of cell fate dynamics presented earlier and captured in
Waddington’s epigenetic landscape (Figure 14.1b) are quite remarkably reflected
in the dynamics of the network.

Attractors of course need not be fixed points. They can be periodic (limit cycles)
or even chaotic oscillators. However, in the following we will discuss gene regula-
tory networks that are high-dimensional systems of N = thousands of variables in
which chaos in the classical sense (positive Lyapunov exponents, as typically
described for low-dimensional systems) is not as well studied, and the relevance of
which for cells is not well known (Bagley and Glass 1996). In contrast, a limit-cycle
attractor has been interpreted as the cell division cycle, representing the fate of
cell proliferation, a state in which the cell undergoes repeated rounds of cell divi-
sion by passing through a recurring sequence of biochemical states (Huang 1999;
Huang and Ingber 2000; Kauffman 1993)—although many genes are expected to
oscillate independently of the cell cycle (see Section X). The chapter by Goldbeter
discusses in more detail oscillatory behavior in cell biology.

If cell fates are attractors, a cell fate switch (for example, in response to a
hormone) that triggers the commitment of a proliferative progenitor cell to differ-
entiate into a particular lineage is a perturbation of the gene regulatory network
that causes the system (network) to “jump” to another attractor state. A perturba-
tion is formally a transient externally imposed change of the activity values of one
or a set of genes so that the state S(t) of the cell is placed somewhere else in the
state space, such as into the basin of attraction of another attractor.

The previously discussed two-gene network reproduces even a more specific
behavior of a multipotent progenitor cell that would be represented by cell fate C
in Figure 14.2. This cell undergoes a cell fate decision to commit to either one of
two cell fates, A or B. In the model, the gene X would be a differentiation marker
for the state A, and Y the differentiation marker for B. In fact, hematopoietic cell
differentiation—which generates the various blood cells, starting from one multi-
potent stem cell, the so-called hematopoietic stem cell (HSC) in the bone marrow—
occurs in a sequence of multiple “bifurcations” of the differentiation path into two
alternative lineages characterized by reciprocal (mutually exclusive) transcription
factor activities.

The relative levels of these two factors translate into the all-or-none fate deci-
sion. For instance, in the common multipotent precursor cell (CMP) experimental
overexpression of transcription factor PU.1 leads to suppression of the transcrip-
tion factor GATA-1 and to the differentiation of the macrophage/monocyte lineage,
whereas overexpression of GATA-1 causes suppression of PU.1 and promotes dif-
ferentiation into megakaryocyte/erythrocyte precursor cells (Graf 2002). Newer
studies that employ the suppression of GATA-1 confirm this integrated dynamic
behavior, in that loss of GATA-1 in zebra fish itself was sufficient to push the fate
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decision toward the macrophage/monocyte lineage (Galloway et al. 2005). In fact,
at the molecular level GATA-1 and PU.1 inhibit each other in a circuitry that corre-
sponds to that between X and Y in Figure 14.2 (Chen et al. 1995; Nerlov et al. 2000;
Zhang et al. 2000; Graf 2002).

Interestingly, progenitor cells have been shown to exhibit a promiscuous expres-
sion pattern that contains “a bit of everything”; that is, express at low level but
simultaneously the genes that define the alternative cell fates and are mutually
exclusive in the mature cells (Akashi et al. 2003; Bruno et al. 2004; Enver and Greaves
1998; Hu et al. 1997). This promiscuous “sneak-preview” gene behavior (Graf 2002)
is also predicted by the model: the reciprocally behaving “fate-specific marker”
genes X and Y are both present in the progenitor C at lower level. Thus, multipo-
tency itself is an attractor state, an entity that arises primarily from the nonlinear
dynamics of a network. There is in principle no epistemological need to invoke a
“stemness gene” to explain multipotency.

VIII. THE BOOLEAN NETWORK FORMALISM

The small-circuit model is an arbitrarily cut-out fragment of the genome-wide reg-
ulatory network, and there is no formal justification yet to treat it as an isolated
module. How can we deal with the entire network of 25,000 genes and many more
proteins? The lack of detailed knowledge about most interaction modalities, includ-
ing the parameter values, as well as the rising computational cost when modeling
large genome-wide networks has motivated a coarse-graining of the model using
discrete-valued networks.

Such discretization is justified because (1) the previously discussed sigmoidal
shape of transfer functions in the gene influences can be approximated by a step
function (Section VI) and/or (2) the local dynamics produced by such small gene
circuit modules is characterized by discontinuous transitions between discrete
states (Figure 14.3). An important aspect is that because of computational efficiency
discrete networks offer the possibility of studying statistical ensembles of networks
(i.e., entire classes of network architectures) and of addressing the question of how
a particular architecture maps into particular types of dynamic behavior. Stuart
Kauffman championed this network ensemble approach in the 1960s using random
Boolean networks, in which gene activity values are binary (1 = ON, and 0 = OFF).
(Kauffman 1969). Time is also discretized. Thus, a Boolean network is a generalized
form of cellular automata but without the aspect of physical space and the partic-
ular neighborhood relations.

Then, as encountered earlier, a network of N elements gi (i = 1, 2, . . . , N), where
gi is the activity state (1 or 0) of gene i, defines a network state S at any given dis-
crete time step t: S(t) = (g1(t), g2(t), . . . , gN(t)) (Figure 14.2, right-hand column). Gene
regulation is modeled by the Boolean functions Bi associated with each gene i and
map the configuration of the activity states (1 or 0) of its input genes (upstream reg-
ulators of gene i) into the new value of gi for the next time point. Thus, the argu-
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ment of the Boolean function Bi is the input vector Ri(t) = (g1(t), g2(t), . . . , gki(t)),
where ki is the number of inputs the gene i receives. At each time step, the value
of each gene is updated: gi(t + 1) = Bi(Ri(t)). The logical functions Bi can be depicted
as a “truth table” convenient for large ks (Figure 14.2, right).

Figure 14.4 shows the example of the well-studied lac operon and how its regu-
latory characteristics can be captured as an AND Boolean function for the two
inputs. One advantage of using Boolean functions is that they capture the qualita-
tive regulatory rules obtained from biological experiments (such as AND and OR
functions in “promoter logics”) much more efficiently than a set of chemical reac-
tions. To illustrate the basic elements of a Boolean network, we now translate the

Figure 14.4. Using a Boolean function (AND) for capturing a gene regulatory mechanism. This example
uses a simplified version of the bacterial lac operon controlling the expression of b-galactosidase gene
(b-Gal). The gene is turned ON if and only if cAMP (which accumulates when cellular glucose is low
and activates the transcription factor CAP) and lactose (which is the alternative nutrient and deactivates
the repressor) are both present. Note that in more complex promoters the temporal order of arrival of
the input molecules may play a role. This aspect is ignored in Boolean functions.
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two-gene example used previously into a Boolean network formalism (Figure 14.2,
left versus right). In the small network of N = 2, each gene has k = 2 inputs. (The
result may appear a bit caricatural, in that the strength of the discrete network
model is the study of large networks, but this example shall serve as an illustration
of the principles.)

Most investigators have studied the simple case of synchronous homogenous
networks, where all the N genes have a fixed number of k inputs and are updated
in every time step. The synchrony of updating in particular is artificial. However, it
appears that essential features of the global dynamics that are relevant for cell
biology are preserved in such synchronously updating networks. In the widely
studied case in which each gene has k = 2 inputs the Boolean function can be one
of the set of 2(2Ÿk) = 16 classical Boolean operators, such as AND, OR, NOT, IF, and
so on.

Alternatively, for synchronous networks the entire network state S can be viewed
as being updated by the updating function U: S(t + 1) = U(S(t)), where U summa-
rizes all the N Boolean functions Bi and is represented in the state transition table.
(In the example of Figure 14.2, because N = k, U follows directly from the set of
Boolean functions Bi.) The state transition table can be depicted as a state transi-
tion map, where each state is represented as a box (showing the gene expression
profile). Such diagrams were proposed by Wuensche and are particularly illustra-
tive for N up to 10, in that they display all states of the state space (Wuensche 1998).
The states are connected by the arrows, which represent individual state transitions
and collectively depict the trajectories in the state space (Figure 14.2, bottom right).

Because the Boolean functions are deterministic, a state S(t) unambiguously tran-
sitions into its successor state S(t + 1). In contrast, a state can have multiple pred-
ecessors, in that two or more different states can converge into the same state.
Hence, the movement of the state vector in the N dimensional state space defines
trajectories that can converge but not diverge. This property of “losing information
about the ancestry” is essential to the robustness of the dynamics of networks.

In the example of Figure 14.2, the Boolean functions used to capture the quali-
tative descriptions of the interactions in this case represent the function IMPLICA-
TION for both genes. The resulting dynamics is equivalent to that explained for the
continuous model. There are three stable states (attractors): A = {10}, B = {01}, and
C = {11}. The state {00} flows into the attractor state {11}, whereas the other two
states—{10} and {01}—update onto themselves.

This example is somewhat artificial because N is small and N = k. Glass and col-
leagues have compared a continuous variable model of networks with the Boolean
formalism of discrete networks and investigated the equivalency between these
two models (Bagley and Glass 1996; Glass and Kauffman 1973). Overall, the global
qualitative dynamics of continuous variable networks and discrete variable networks
are in principle similar. However, there are specific differences. Notably due to the
synchronized updating scheme in classical Boolean networks, for instance, not all
cycling attractors found in the discrete networks have their equivalent in the con-
tinuous model. Specifically, to suppress artifacts stemming from synchrony one
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would allow only for state transitions in the state transition map in which at every
step only one gene changes its value (see legend of Figure 14.2 for details). The
general idea that emerges from both of the previously cited models, however, is
that the interactions between the network elements introduce constraints to the
global dynamics and given a certain class of network architecture can produce
ordered system behavior.

IX. SMALL CIRCUITS VERSUS GENOME-WIDE NETWORKS: 
DIFFERENT PHILOSOPHIES

The philosophy behind modeling entire networks using a simple model is funda-
mentally different from most current attempts to model a local circuit (pathway) in
accurate detail. Such circuits are implicitly assumed to represent a functional
“module” cut out from the genome-wide network. Hence, such circuits ignore many
inputs. One focus then is on the detailed kinetics of the molecular interactions, typ-
ically formalized on the basis of mass action kinetics, or using even finer-grained
models that capture stochastic behavior of individual models. One goal is the 
simulation of reality as faithfully as possible.

In contrast, the simplification achieved by using the model class of discrete net-
works, such as Boolean networks, accepts the trade-off of abstracting away local
biochemical details for embracing an entire closed system. The ambition of whole-
network models is to “see the forest, not just the trees” and to study some funda-
mental aspects of inherent entireness of a network, in the true spirit of systems
biology. This coarse-graining is sometimes necessary because as many scientists
and philosophers have articulated in diverse ways there is no understanding without
simplification (Picht 1969). The challenge is to choose the appropriate simplifica-
tion and abstraction and to not forget them when interpreting the results.

The comprehensive set of variables gi also implies that in the idealized case all
influences are covered by the N variables of the system such that physiological per-
turbations (i.e., externally imposed changes onto the system) are embodied by the
change in the values of one or a set of the variables and hence reset the initial state
S to another initial state in state space. This is different from the low-dimensional
models describing local pathway modules. There, one often tends to view real-time
external influences as a tuning of control parameters that would change some
properties of the low-dimensional state space (e.g., shift of attractor boundaries or
sudden disappearance of attractors).

For the Boolean network ensemble approach, such variation of control parame-
ters (such as reaction rate constants) can be thought of as a response to other com-
ponents of the system or to external perturbations and hence are captured by the
changes in the value of the variables. In other words, in this comprehensive view a
particular genomic network architecture maps onto a fixed state space “land-
scape.” Thus, the substructure of the state space is hard-wired in the genome and
provides a stage on which developmental and homeostatic processes of the cell
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and organism take place. Changes in conditions affect the initial states (i.e., dis-
place the state S(t) within the state space) but do not affect the structure of the
landscape shape. Conversely, the tunable control parameters in the study of large
networks affect the selection of the subclass of architectures in the space of all pos-
sible network architectures (see Section XI).

The actual strength of the Boolean network formalism is the study of the generic
qualitative dynamics of classes of network architectures using statistical ensembles
of randomly generated networks, whose architecture can be constrained in a con-
trollable way. This approach underlies a philosophy that is diametrically different
from that embraced by most current biologists. Thus, it shall be in order to briefly
discuss it at this point so that readers of this book who may come from a variety of
backgrounds see these two approaches from a broader perspective. We distinguish
here between two opposite mind-sets in systems biology (Huang 2004).

(A) Particularists: Most of post-genomics and now systems biology is essentially
an extension of the old modus operandi of classical biology, often ridiculed as
“stamp collecting”: the description of a system by enumerating its parts and
describing their properties and relationships in accurate detail, be it in a qualita-
tive or quantitative manner. Such a descriptive collecting approach, rooted in the
tradition of zoology and botany, has found its counterpart in molecular biology and
is most prosaically epitomized in the cloning, characterization, categorizing, and
classifying of individual proteins.

High-throughput discovery and mathematical modeling of molecular pathways
in current systems biology represent a quantitative extension of this approach but
not a qualitative departure (Bray 2003; Endy and Brent 2001). The common goal of
these approaches has been to understand a particular (idiosyncratic) instance of a
system in as precise terms as possible, using both qualitative description and quan-
titative “predictive” models. Often, existing principles from the field of engineer-
ing are applied to solve problems. The question of generalizability is typically not
explicitly asked, taken for granted, or postponed to a later time point.

(B) Universalists: An entirely different mind-set of investigation, perhaps more
prevalent among theoretical physicists, has as its primary aim (if not raison d’être)
the discovery of universal properties, and ideally of new universality classes 
(Bar-Yam 2000). Here, the description of the particulars, which may obscure general
principles, gives way to the search for the universal rule. Thus, abstraction and sim-
plification are common methods. Universalists typically do not bother about results
that represent new instances but not new principles.

Because of the intrinsic heterogeneity of biological systems and the nature of
biology as a historical science, the two approaches—the analysis of specific
instances (A) and the quest for general principles (B)—complement each other and
are equally necessary. The study of molecular networks in biology must be seen in
the light of this dualism of approaches (Huang 2004). Hence, for the particularists
(currently the vast majority of systems biologists), when it comes to characterizing
gene regulatory networks the most natural ultimate goal is to reverse engineer the
network architecture for a particular case; that is, to solve the inverse problem
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based on experimental observations of the gene expression dynamics using a
variety of algorithms (Liang et al. 1998; Akutsu et al. 1999; D’Haeseleer et al. 2000;
Friedman et al. 2000; Yeung et al. 2002; Ehrenberg et al. 2003; Gardner et al. 2003).

In performing this task, the choice of the model class (e.g., linear versus nonlin-
ear, continuous versus discrete, deterministic versus probabilistic, and so on) will
affect the formidability of the inverse problem. In contrast, for the universalist
approach the choice of the model will affect simulation costs and ideally must not
affect the conclusions for biology.

X. DYNAMICS OF LARGE NETWORKS AND THE ENSEMBLE APPROACH

The simplicity and tractability of the Boolean network formalism has triggered wide
investigations among statistical physicists and theoretical biologists who have
studied the dynamics of large generic networks with the mind-set of universalists—
independent of the progress in genomics. These efforts have produced interesting
results—even before the explicit incipience of “systems biology” (Kauffman 2004).
If the particular details of the instance of real networks can be abstracted away
appropriately (so goes the idea), one can study the generic dynamics by analyzing
representative samples from the ensemble of “all possible” network architectures
defined, for instance, by the previously cited formalism of Boolean networks.

In the case of Boolean networks, a given instance of a network architecture A
consists of the topology of the wiring diagram (the structure of the network dis-
played as a directed graph of N nodes) and the set of N Boolean functions Bi

assigned to each node i = 1, . . . , N of the graph. An often-studied set of architec-
tures comprises all networks in which all nodes have a fixed number kiof inputs and
one of the 2(2Ÿk) Boolean functions. The number G of such networks is large:

When studying the fundamental question of how an architecture maps into a
dynamic behavior (structure of the state space) by randomly sampling in a given
architecture space, it is important to note that multiple different architectures A can
map into the one same dynamic behavior; that is, have the same state space struc-
ture (but not vice versa) if all possible Boolean functions (truth tables) are allowed.
This redundancy of architectures stems from the fact that in a subset of Boolean
functions some regulatory inputs have no influence on the output, so that the
number of effective inputs ki,eff of a node i is not always equal to the “nominal”
input ki,nom defined by the network topology: ki,eff £ ki,nom. The number of effective
dynamic structures H for the class of fixed-k input networks is given by (Myers 2001)
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The ratio M = G/H > 1 is called multiplicity and is a function of N and k. M can
become quite large. It is important for ensemble studies, notably of network robust-
ness to rewiring, that one operate in (N, k) regimes with M ~ 1.

Using Boolean networks and the ensemble approach, Kauffman determined the
architectural parameters that influence the global long-term behavior of complex
networks with N up to 100,000 (Kauffman 1993). The most striking result from the
ensemble studies is that for a reasonably broad class of architectures even a
complex irregular (randomly wired) network can produce ordered dynamics with
globally “coherent” patterns, such as convergence to stable states, as discussed in
material following.

The global behavior of Boolean networks can be divided into three broad
regimes: ordered, chaotic, and critical (Kauffman 1993). Networks in the ordered
regime, when placed into any random initial state in the state space, will quickly
settle down in one of the fixed-point attractors or limit cycle attractors that have a
small period T compared to N and thus produce macroscopically stable behaviors.
They also have a small number of attractors (with large basins). In contrast, net-
works in the chaotic regime will apparently “wander” aimlessly in state space.
Because the latter is discrete and finite, the network will eventually encounter a pre-
viously occupied state and repeat its trajectory. However, the period T of this limit
cycle is very long, and can be in the order of 2N.

Given the astronomic size of this number, this “limit cycle” will appear as an ape-
riodic and endless trajectory (permanent transient). Thus, networks in the chaotic
regime are not stable, and their behavior is sensitive to the initial state. This defi-
nition of chaos is distinct from that of (deterministic) chaos in continuous systems,
where the time evolution of infinitesimally closed initial states can be monitored.
Nevertheless, the degree of chaos in discrete networks is well defined and can be
quantified based on the slope of the curve in the so-called Derrida plot, which
assesses how a large number of pairs of initial states evolves in one time step
(Derrida and Pomeau 1986). A network in the critical regime is at the edge between
order and chaos. More recently, it was shown that it is possible to determine the
behavior class from the architecture, without simulation and determining the
Derrida plot, by calculating the expected average sensitivity of all Boolean func-
tions (Shmulevich and Kauffman 2004).

One remarkable result of Kauffman’s early studies is that for a large class of archi-
tectures (specified following) ordered behavior (i.e., higher-order pattern at the
scale of the entire network dynamics) emerges, such as compact attractor states
with large basins of attraction. If cell fates correspond to robust attractors, genomic
networks of real cells are expected to be in the ordered regime that would contain
such attractor states. Thus, we require that the large N = 25,000 gene network
exhibits relatively few (<N) attractors that are either limit cycles with small period
or fixed-point attractors, and that they have large basins. Such attractors would be
high-dimensional attractors (i.e., cell fate would be robust with respect to a large
number of state space dimensions). As discussed in Section XII, this appears to be
the case in real mammalian cells.
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XI. ARCHITECTURAL FEATURES OF LARGE NETWORKS AND 
THEIR DYNAMICS

The architecture of the Kauffman Boolean networks appears as a caricature of real
networks, but they can teach us a great deal about the generic dynamics of the
class of systems comprised of a complex network of interacting elements such as
the gene regulatory network. In an independent development, the recent avail-
ability of data of real networks in biology and technology has triggered the study
of complex irregular network topologies as static graphs, stimulated in part by
earlier studies of social networks (Amaral et al. 2000; Barabasi and Albert 1999;
Watts and Strogatz 1998). These fields of study are now beginning to merge. In the
following we summarize some of the interesting architecture features and their 
significance for ordered global dynamics.

(1) The average connectivity per node k: Initial studies on Boolean networks by
Kauffman assumed a homogenous distribution of k. It was found that k = 2 net-
works are in the ordered/critical regime (Kauffman 1993). Above a critical kc value
(which depends on other parameters, as described following) networks behave
chaotically. Analysis of continuous linearized models also suggests that in general
sparsity of connections is more likely to promote ordered dynamics, or stability (May
1972).

(2) The distribution of ki over the individual network genes, i: Recent work on the
topology of complex networks in general and of molecular networks in particular
has revealed that many “evolved” networks (i.e., where N grew over time by addi-
tion of new elements and connections, such as the protein-to-protein interaction
networks) appear to have a connectivity distribution that approximates a power law
(Barabasi and Albert 1999). Such networks have no characteristic average value of
k (sampling of larger number of nodes N will lead to larger “average” k values) and
are hence said to be “scale-free” (see following). Analysis of scale-free Boolean net-
works suggests that this property favors a behavior in the ordered regime for a
given value of the parameters k and p (see Section XIII) (Aldana and Cluzel 2003;
Fox and Hill 2001).

(3) The nature of Boolean functions is also an important aspect of the network
architecture that can influence global dynamics. In his early works, Kauffman char-
acterized Boolean functions with respect to the following two important features.

(a) Internal homogeneity p: The parameter p (0.5 £ p £ 1) is the proportion of
either 1s or 0s in the output column of the Boolean function. Thus, a function with
p = 0.5 has equal numbers of 1s and 0s. Boolean functions with p-values close to
1 or 0 are said to exhibit high internal homogeneity.

(b) Canalizing function: A Boolean function Bi of gene i is said to be canalizing
if at least one of its inputs has one value (1 or 0) that imposes one value onto the
output of gene i, independently of the values of the other components of the input
vector. If an input determines both output values (a “fully canalizing” function), the
other inputs have no influence on the output at all, and ki,eff is reduced. For instance,
for Boolean functions with k = 2 only two of the 16 possible functions, XOR and
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XNOR, are not-canalizing. Four functions are fully canalizing (i.e., are effectively k
= 1 functions). Both a high internal homogeneity p and a high proportion of canal-
izing functions contribute to ordered behavior (Kauffman 1993).

(4) There are many global and local topological features of complex networks
defined in graph theory terms that appear to be interesting with regard to the
behavioral regime of the network dynamics because they were found to be
enriched in genome-wide molecular networks when compared to a set of randomly
generated null-hypothesis networks that were constrained to exhibit more ele-
mentary topological features. These features include the following.

• Proportion of genes with high “betweenness” value
• Small-worldness, cliquishness, modularity, and hierarchy of network (Amaral et al.

2000; Ravasz et al. 2002; Watts and Strogatz 1998)
• Frequency and distribution of local network motives that are enriched in real net-

works, such as feed-forward loops in bacteria (Milo et al. 2004; Shen-Orr et al.
2002)

The influence of these topology features on the global dynamic behavior remains
to be studied.

XII. REALITY CHECK: GENOME-SCALE NETWORK TOPOLOGY

The most salient question to be clarified before studying complex networks and
their global dynamics that has been taken for granted is whether the 25,000 genes
of the human genome indeed form one connected network of regulatory influences
at all or whether it is broken down into f independent network fractions of size Qi.
This question cannot be answered until the architecture of the gene regulatory
network for mammals is available. However, incomplete data from the gene regu-
latory network in E. coli, and partial data from yeast, suggest the existence of a
giant connected component (i.e., a largest connected set of genes that covers 
substantial portions of the genome) (Lee et al. 2002; Salgado et al. 2001).

Moreover, coarse but genome-wide network topologies based on information
from undirected pair-wise protein-to-protein interactions have recently been avail-
able for baker’s yeast (S. cerevisiae), the roundworm (C. elegans), and the fruit fly
(D. melanogaster) at the resolution of a nondirected graph, with some error rate
(notably false positive interactions). Because gene regulation is mediated by pro-
teins, and a protein-to-protein interaction will also indirectly connect two genes,
such protein interaction data can be used to obtain a lower bound approximation
for functional connectivity between genes across the genome. These network
topologies suggest that for yeast, worm, and fly a giant component that covers
approximately 90% of the proteome does exist, thus justifying the previously dis-
cussed studies of the dynamics of complex networks (Giot et al. 2003; Li et al. 2004;
Mewes et al. 2002).
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This is in agreement with theoretical studies of “phase transitions” of the size of
the giant component in evolving networks that suggest that if the probability of a
newly added gene to be connected to the network is higher than the critical value
c = 1/8—which is lower than the average connectivity k ~ 2–4 (from the previously
cited protein interaction network data)—a phase transition occurs with respect to
the formation of a giant component (Callaway et al. 2001). Given this result, if the
genome in fact consisted of multiple independent modules there would have to
have been a strong evolutionary pressure to maintain these independent modules.
Then one could imagine a definition of global cell phenotype by a combinatorial
code of the set of attractor states in each of the network fragments that will have
independent dynamics.

Nevertheless, despite the large size of the giant component the effective regu-
latory network whose dynamics arises from the mutual regulation of genes may still
be smaller than the genome-scale network, in that many genes have only inputs
but no outputs. Such peripheral “effector” genes do not drive the dynamics but
may be markers of cell fates that exert particular nonregulatory tissue-specific func-
tions. Taking such genes into account, the genome-wide network would have a
“medusa” architecture (Kauffman 2004; Lee et al. 2002) with a small core of bidi-
rectionally interconnected genes and a number of “downstream” tentacles that
have no influence on the dynamics. Future analysis of gene network architectures
will reveal the proportion of the core regulatory genes.

The topology data—at least for protein interaction networks, but perhaps also
for gene regulatory networks—suggest that biomolecular networks approximate a
scale-free network architecture, or at least have a broad scale with an overrepre-
sentation of extremely highly connected genes (Amaral et al. 2000). However, the
relevance of scale-freeness per se is not at all clear. It may be a trivial manifesta-
tion of fundamental statistics. Nevertheless, any natural property (evolved or sta-
tistically unavoidable) has dynamic consequences, and as mentioned previously the
effect on the dynamics of scale-freeness as opposed to purely randomly wired net-
works has been studied and found to increase the parameter regime for ordered
behavior (Aldana and Cluzel 2003).

As for the use of Boolean functions, Harris et al. (2002) have found an enrichment
for canalizing functions in a set of 150 experimentally verified regulatory mecha-
nisms of well-studied gene promoters—again, in accordance with the architecture
criteria associated with ordered global dynamics (Harris et al. 2002). Similarly, when
canalizing functions were randomly imposed onto the published yeast protein-to-
protein interaction network topology (to create an architecture whose dynamics was
then simulated), ordered behavior was observed (Kauffman et al. 2003). These
studies of global network dynamics are incomplete and at best sketchy due to the
poverty of the data of gene network architectures and the simplicity of Boolean
network models. However, they represent a first step in a new direction of research
(given the now recognized necessity for “integration”) and support the idea that
genome-wide gene regulatory networks act as entities with ordered global dynam-
ics with high-dimensional attractors that mirror cell fate behavior.
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An interesting question is how the network architecture has evolved so as to
produce a well-behaved global dynamics. Is natural selection for ordered behavior
strong enough to explain the architecture of genomic networks? Some topologi-
cal features that favor ordered behavior may be so fundamental that they are inher-
ently unavoidable, such as the apparent scale-freeness. Beyond that, it is important
to note that the physical process of network evolution puts intrinsic constraints onto
its architecture, in that the increase in genome size by addition of new genes is
ontologically associated with and hence constrained by the physicochemical events
of DNA rearrangement (Huang 2004; Taylor and Raes 2004).

For instance, it has been suggested that gene duplication and rewiring of regu-
latory connectivity (the most likely mechanisms by which the genome increases its
gene number) will produce the scale-free architecture (Berg et al. 2004). Other topo-
logical features, such as local feed-forward loops (Milo et al. 2002), may also be an
inevitable by-product of the historical and constructive constraints of network evo-
lution that happen to have a functional advantage instead of being the result of
sculpturing “from scratch” by natural selection for optimal dynamic functionality
(Huang 2004). Most likely, both mechanisms (intrinsic constraints of network archi-
tecture evolution and natural selection for optimal functionality) may have acted
synergistically.

XIII. EXPERIMENTAL EVIDENCE FOR HIGH-DIMENSIONAL ATTRACTORS

Many observations of “macroscopic” cell behavior, some made before the notion
of gene regulatory networks, suggest eis ipsis that cell fates correspond to robust
high-dimensional attractors. However, these observations did not fit in the 
paradigm of molecular “pathways” dedicated to induce a particular cell fate and
hence were not pursued. A long-held view is that differentiation is caused by a “dif-
ferentiation factor” acting on a cell, proliferation induced by a “growth factor,” and
so on. In other words, specific messenger molecules that carry an instructive infor-
mation trigger a cytoplasmic signal transduction pathway that leads to the activa-
tion or suppression of the appropriate genes.

Such a system would not be robust to perturbations, versatile, or evolvable, and
could not explain the mutual exclusivity of cell fates (Goss 1967; Waddington 1956).
This latter property itself suggests that the action of individual regulatory pathways
and local modules must somehow be globally coordinated throughout the cell,
lending further support to the notion that gene regulation is coordinated across
virtually the entire genome via a genome-wide regulatory network. In fact, the
genome-wide pattern of gene activation characteristic for each particular cell phe-
notype appears to be quite stable, in agreement with the idea that cell types are
high-dimensional attractor states (Hsiao et al. 2001; Perou et al. 2000). The high-
dimensional robustness is best reflected in the observation that despite the astro-
nomical number of theoretically possible gene activation configurations cells
reliably integrate multiple simultaneous and often conflicting signals that affect
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genes across the genome (such as cytokines, extracellular matrix, cell-cell contact,
and so on) and respond by selecting one of just a few possible cell fates (Evan et
al. 1995; Huang and Ingber 2000; Raff 1992).

Often, the very same fate can be triggered by an amazingly broad variety of unre-
lated signals, including those that lack molecular specificity, such as mechanical
forces, cell shape, or non-biological chemicals (Huang and Ingber 2000). Specifi-
cally, as elaborate a cellular “program” as differentiation can be induced in many
cell lines by nonphysiological chemicals, such as solvents or alcohols, in agreement
with the idea that the differentiated state is a stable attractor state (Huang 2002).
Similarly, induction of neural tissue in the gastrula stage in early development of
vertebrates can experimentally be triggered by many physicochemical perturba-
tions (pH, temperature, dyes), as well as by specific mRNA encoding a broad variety
of proteins (De Robertis et al. 2000). Hence, neural differentiation has been dubbed
the “default cell fate.”

Even if the ability of diverse and apparently “nonspecific” stimuli to trigger a spe-
cific cell fate could be explained by them sharing one common molecular target
(e.g., release of a particular cytokine that would be responsible for triggering the
cell fate switch), still the other disparate “nonspecific effects” on other target genes
would have to be “buffered” away. This response behavior is most simply and 
naturally explained by a high-dimensional attractor state with a broad basin of
attraction.

The advent of massively parallel technologies has now opened the door for actu-
ally monitoring the genome-scale dynamics of the intracellular regulatory network.
Recent experimental work from our laboratory used DNA microarrays to monitor
the dynamics of gene expression profiles (as a surrogate measure of the state vector
S(t)) in human promyelocytic HL60 cell differentiation (Huang et al. 2005). These
cells can undergo neutrophil differentiation in response to a wide array of chemi-
cals, some of them not physiologic and lacking molecular specificity (Collins 1987).
We exploited this finding to obtain evidence for a high-dimensional attractor at the
level of individual genes by monitoring the actual trajectories in gene expression
state space.

By using two biochemically unrelated stimuli, all-trans-retinoic acid and the non-
specific solvent dimethylsulfoxide (which both trigger differentiation of HL60 pre-
cursor cells into mature neutrophils), the cells could be brought to entirely different
states in gene expression state space. However, as the cells differentiate the two
high-dimensional state space trajectories converged. This convergence of trajec-
tories is a necessary defining feature of a high-dimensional attractor state. Indeed,
we were able to show that the mature differentiated state in HL60 cells was
approached from two different directions of the state space with respect to at least
2,000 gene dimensions (Huang et al. 2005). Thus, the neutrophil state appears to
be a stable state with respect to 2,000 state space dimensions.

In regard to individual genes, this means that during differentiation the expres-
sion levels of a large number of genes are not required to change in a unique
manner, but that they have some degree of freedom in their temporal response to
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the differentiating stimulus. A gene may be up- or down-regulated initially, but will
be attracted to the final expression level characteristic of the differentiated state as
the cell reaches the new stable cell fate. This observation defies the traditional
notion of unique, specific and dedicated “differentiation pathways.”

XIV. BROADER BIOLOGICAL IMPLICATIONS

The biological ramifications of the presence of a gene expression state space sub-
structured into attractors that collectively form a sort of “epigenetic landscape”
(much as in Waddington’s visionary metaphor) are far reaching and may give the
conventional paradigm of “signal transduction pathway” new meaning. Some of
the implications are quite obvious, which the disciplined biologist with a long
history of observing tissue homeostasis and development may immediately appre-
ciate. We can only superficially touch on some points here. In a general sense, the
compartmentalization of the gene expression state space into attractors allows the
cell to categorize its repertoire of response to external perturbations.

On the basis of this property, cells are like programmable agents that serve as
units for a rule-based behavior for the self-assembly of larger multicellular entities:
tissues, organs, and organisms. In fact, a portion of the genes expressed in the
context of a stable state S are cell-cell communication proteins, such as cytokines
and extracellular matrix components, which mediate the interaction between cells
to form a higher-level cell-cell interaction network. This cellular network in turn has
a state space in which attractor states would represent tissue states, such as inflam-
matory states, regenerative states, and “tumor states.”

This is significant because in cancer biology research evidence is accumulating
that confirms the old picture that cancer is not simply a cell-autonomous disease
in which a cell clone proliferates in an uncontrolled manner but a tissue disease in
which multiple cell types (stroma, epithelial, endothelial and inflammatory cells, 
and so on) jointly establish a form of unfortunately very stable pathological tissue
state.

At the level of an individual cancer cell, the compartmentalization of a (finite)
state space into attractor basins also permits a more global view of the effect of
mutations in tumorigenesis—beyond the current focus on its effect on a pathway.
A mutation then may increase the basin of an attractor at the cost of a neighbor-
ing attractor because of the finiteness of the state space. In fact, it appears that
tumor cells have an enlarged basin of attraction for the proliferative fate, at the cost
of that of the apoptosis of differentiation state. This may explain the puzzling
finding that some cytokines, such as TGF-b and GM-CSF which normally cause cell
cycle arrest or stimulate differentiation, can turn into a promoter of proliferation in
tumors cells (Schmetzer et al. 1999; Tang et al. 2003). In other words, tumor cells
may not intrinsically proliferate more rapidly (shorter cell cycle) but rather appear
to have a more robust proliferative state (in agreement with an enlarged basin for
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the proliferative state attractor) and hence interpret more environmental stimuli as
mitogenic.

The stability with respect to multiple state space dimensions displayed by a high-
dimensional attractor does not mean that cell states are absolutely robust. Life is
the interplay between stability and flexibility. Indeed, the attractors in real cells must
be such that despite being inherently stable to many perturbations they allow
certain influences to cause a defined transition between attractor states. An impor-
tant corollary of the high-dimensionality of stability of attractor states is that a
change in a large set of genes will be necessary for a transition from one attractor
to another (e.g., the switch from proliferative stem cell to the terminally differenti-
ated state during development, or from a quiescent to the proliferative state in
tissue regeneration (Huang 2002)).

In contrast, random fluctuations in individual genes or sets of genes would
perturb an attractor state to a state within its own basin of attraction, from which
the cell can relax back to the original attractor state. This safeguard against
unwanted transitions between attractors could explain the pleiotropy and promis-
cuity in signal transduction pathways, in that signaling proteins affect hundreds to
thousands of downstream targets (Fambrough et al. 1999; Menssen and Hermek-
ing 2002). Such fanning-out molecular regulation schemes may have been wired by
evolution precisely to produce orchestrated changes in a large but highly distinct
set of genes that could both “encode” the conditions for a fate transition and
induce a specific transition between different attractor states.

A related fundamental aspect of the concept of an attractor landscape that is
hard-wired in the genome is that it provides a deterministic guiding structure, so
to speak—a stage on which the inherently noisy molecular processes of regulated
gene expression takes place (Paulsson 2004). The stability of high-dimensional
attractors ensures that the stochastic fluctuations in the levels of expression and
activation of multiple interacting proteins will in general not affect the global cell
phenotype but will be limited to a small volume in state space, around the attrac-
tor. Thus, a stable phenotype of an apparently homogeneous cell population may
actually represent a “swarm” of points in the gene expression state space rather
than a single point at the bottom of an attractor.

Accordingly, signal transduction may be viewed as a process that orchestrates
these random fluctuations in the expression of thousands of individual genes so
that they (metaphorically speaking) “add up their perturbing energy” to increase
the probability that an “outlier” cell in the swarm would jump over a crest and enter
the basin of attraction of a neighboring state. Because the high dimensionality
requires that multiple genes change their expression to produce an attractor switch,
a combinatorial scheme in which the fluctuations in the individual genes are biased
by the external signal would allow fine-tuning of the cell fate transition probability.
Such (epigenetic) cell population heterogeneity and probabilistic response in fact
is readily observed. For instance, it has long been known that an increase in 
cell growth rate reflects an increase in the likelihood that individual cells will enter
the cell cycle and progress through the late G1 checkpoint (as measured by an
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increase in percentage of cells that enter the DNA synthesis phase of the cell divi-
sion cycle).

Similarly, the decision of a multipotent progenitor cell to commit to one differ-
entiated cell lineage (Figure 14.1) often appears to be stochastic (Enver et al. 1998;
Mayani et al. 1993). There is accumulating evidence from processes monitored at
the single-cell level that many other forms of cell regulation are based on proba-
bilistic digital events (Hume 2000; Lahav et al. 2004; Levsky and Singer 2003). In
summary, the deterministic structure of the state space allows for molecular noise
to be translated into a macroscopically observable stochasticity, such as in the
apparently random choice of cell fates in multipotent stem cells. The advantage of
stochasticity and heterogeneity of cell phenotypes at the level of cell populations
(perhaps robustness in tissue homeostasis) is easily envisioned but remains to be
studied more systematically.

XV. CONCLUSIONS

In this chapter, we have discussed the importance of taking a coarser look at the
gene regulatory network in order to capture the macroscopic dynamics of cell fate
regulation. We have reviewed Boolean networks as a model class suited for 
such a perspective on gene networks. The trade-off of abstracting away biochem-
ical details is offset by the insight gained into “system-level” qualities of the 
dynamics of the genome-wide network. The global dynamics of the network
exhibits higher-order patterns that map into the observable whole-cell behavior of
cell fate regulation. Its characteristic system-level features may be overlooked when
solely focusing on characterizing molecular details of individual pathway modules.

Because of the heterogeneity at multiple size scales and the unique blend of uni-
versality and idiosyncracy in living systems, in addition to new technology mental
flexibility will also be paramount for the future systems biologist. Thus, the chal-
lenge will not only be the development of desirable technologies such as more
accurate multiplexed real-time measurement methods for determining gene activ-
ity in context (resolved to the single cell level) but a new intellectual structure
among computational biologists that embraces both careful quantitative modeling
as well as abstraction and simplification.
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ABSTRACT

Computational and theoretical considerations for the extension of systems biology into the
spatiotemporal realm will be discussed. Both limitations and extensions of current
approaches within the research community will be investigated, along with the approach
taken by our group in a newly developed software package, CellSim. Application of all com-
putational aspects described rely on cellular assays imaged by fluorescence confocal
microscopy. Taken together, this extension to systems biology may answer questions about
complex protein networks and the role spatial heterogeneity may play in such processes.

I. INTRODUCTION

This chapter provides an introduction into spatiotemporal (ST) systems biology. The
chapter is organized as follows. First, the theoretical foundations (Section II), con-
sisting of both biophysical and related numerical aspects, are introduced. Based
on these fundamentals, the cellular simulator CellSim and examples of simulations
are given (Section III). Data that feeds this simulator may be based on kinetic
imaging, described in Section IV. The chapter concludes with a listing of recom-
mended resources.

A. Cell compartmentalization and heterogeneity

Systems biology has, until recently, considered the cellular activity to be fully
described as simply a set of complex coupled chemical reactions that occur 
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concurrently to bring about the disparate and multifaceted behavior exhibited by
cells. In this sense, perhaps one of the most important aspects of systems biology
is the very real emphasis on describing the cell (and its chief component, protein)
as being intimately part of this complexity, manifested in networks of protein and
messenger molecule cascades described in detail in previous sections of this
volume. In this view, the complexity of cellular function is manifest through these
cascades, which may exhibit—through feedback, feed-forward, amplification, and
other signaling processes—important biological regulatory and functional mecha-
nisms controlling all aspects of cellular function, from metabolism to cellular growth.

It is a testament to systems biology’s recent coming of age that even this immense
complexity belies the true nature of cells. A cursory glimpse into real living cells gives
rise to the notion that cells are immense, heterogeneous, complex machines with a
hierarchy of macroscopic (approximately 10-6 m) to microscopic (approximately 
10-9 m) features acting in unison. Furthermore, cells are organized in multi-cellular
systems on a much larger scale into an array of specialized and differentiated groups
forming organs and other structures that encompass a viable living creature.

A host of compartments—such as the mitochondria, endoplasmic reticulum (ER),
nucleus, Golgi apparatus, lysosomes, and peroxisomes—play important and local-
ized roles in cellular function. The nucleus serves as a repository for the genome and
is the chief location of regulatory processes controlling gene expression as well as
DNA and RNA synthesis. Synthesis of the integral membrane and secretory proteins
occur within the ER and are later trafficked to their appropriate locations. The Golgi
apparatus is not only a major site of carbohydrate synthesis but a provider of the
conduit for trafficked proteins exported from the ER. Mitochondria, which represent
the energy factories of the cellular machinery, are the sources for ATP synthesis.

Defunct macromolecules are degraded in lysosomes. Specific oxidative reactions
that would be harmful if occurring in the cytosol are confined within peroxisomes.
Although the complexity of cells is inherently inscribed by the wide array of inter-
acting protein and molecular networks and systems, the heterogeneous nature of
these compartments and their interactions play a large role in regulating the protein
networks thus far described. Thus, cellular complexity is inherently spatiotem-
poral—described more fully as not only sets of complex protein networks within
organelles and the cytosol, but as a set of interactions between compartments and
the cytosol.

Protein motility within cells is guided by both passive and active transport, with
protein localization controlled by specialized sorting signals (either peptides or
patches). Gated transport regulates trafficking between the nucleus and the cytosol,
whereas transmembrane protein complexes can directly transport proteins through
the complex into a neighboring compartment. In addition, a large amount of soluble
protein is also transported by vesicular transport. In this mechanism, a vesicle is
formed in a source compartment containing the proteins to be transported and is
subsequently ejected and then localized to the destination compartment.

In all three cases protein transport may be described as a combination of random
motion and localized recognition via binding events. The recognition occurs
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through specific signal peptides or patches that may bind to a complementary
recognition complex. In gated transport and transmembrane protein complexes,
the complementary recognition complex is itself directly part of the transmembrane
protein or the nuclear pore complex. On the other hand, vesicular transport is con-
trolled specifically by SNAREs and targeting GTPases, which serve a similar func-
tion but will localize the entire vesicle rather than a single complex. Transport of a
protein to a nuclear pore complex or to a transmembrane complex is chiefly gov-
erned by random thermal motions within the organelle itself. Similarly, localization
of a vesicle to a target organelle may be considered random diffusion of the 
vesicle coupled to SNAREs or GTPases (which provide localization to the targeted
organelle).

B. Diffusion

Diffusion, the natural random motion of objects through a medium, plays a vital
role in cell functioning in many processes such as calcium transport, transcription,
and non-equilibrium dynamics (Brown and Kholodenko 1999; Kholodenko et al.
2000; Kholodenko 2003; Peletier et al. 2003). As described previously, nature has
given cells numerous mechanisms for transporting materials into and out of the
cell, as well as moving materials to different locations within the cell itself—notably,
transporter proteins, motor proteins, and transport via potential differences and ion
gradients.

Typically, diffusion is neglected in most systems biology models. The model cell
is instead treated as a single point in space possessing instant dilution, often called
the “well-stirred” approximation. This is due to the added complexity of modeling
diffusion and lack of straightforward experimental techniques to provide the nec-
essary measurements needed to fully describe a spatiotemporal model. If the time
resolution of the system is large enough, this approximation is valid for many mate-
rials with fast diffusion rates and/or small volumes. Furthermore, in many cases the
diffusion constant may be folded into the effective association or disassociation
rate constants in Michaelis-Menten reactions. In this approximation, diffusion acts
simply as a mechanism to slow down the apparent associative or disassociative rate
constant, and transport between compartments may be effectively treated as 
gradients between spatially averaged concentrations of the transported species.

Concentration gradients of enzymes within cells that modulate signal transduc-
tion belie this simplicity (Khurana et al. 1996; Holdaway-Clarke et al. 1997; Lam 
et al. 2003; Belenkaya et al. 2004). With experimental and computational techno-
logical advancements allowing finer temporal and spatial resolution, the develop-
ment of spatiotemporal extensions to traditional systems biology has become
much more tractable. Unless the timescale of interest is fast enough to neglect
intra-compartmental concentration gradients or the concentration gradient is
essentially flat, diffusion is likely to play a critical role in governing the time evolu-
tion of the system and should not be ignored.
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II. SPATIOTEMPORAL SYSTEMS BIOLOGY: THEORY

A. The mathematics of the diffusion equation

Diffusion is based on the fact that random Brownian movement (Brown 1827) is sta-
tistically likely to cause particles in areas of higher concentration to move to areas
of lower concentration. One may view this phenomenon as a mathematical conse-
quence of the fact that particles are more likely to move to a lower concentrated
area simply because there are more particles in the high-concentration area that
can randomly move to the low-concentration area than particles in the low-
concentration area that can do the reverse. The mathematical equation describing
diffusion is, aptly, the diffusion equation

(15.1)

This describes how the time rate of change of the amount of a substance C at a
location is proportional to the second spatial derivative at the same location. The
expression can be derived for the case of one spatial dimension simply using ele-
mentary arguments on a Cartesian grid, and can easily be expanded to higher
dimensions by superposition. We shall do this here for illustrative purposes.

Assume that on a 1D grid a single particle takes a random right or left step of
length dx in each time span of dt. Each step is taken to be independent of all pre-
vious steps, and the total number of particles involved is high enough to validate
our probability assumptions. On average, the change in number of particles Dn at
a position x in a time step dt is given by

Dn = nx
t+1 - nt

x (15.2)

with the subscript x representing position and the superscript t representing time.
For readability, nt+1

x-1 should be interpreted as the number of particles at position 
x - dx at time t + dt. (that is, ±1 represents plus or minus one infinitesimal in the
appropriate units). Consider the following discretization: If the particles make steps
of dx each and every time step dt and the particles have a probability pl of moving
to the left and probability pr of moving to the right, Dn is

Dn = prn
t
x-1 - (pl + pr)n

t
x + pln

t
x+1 (15.3)

which simplifies to

(15.4)
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(15.5)
dn

dt
D

n n n

dx
x
t

x
t

x
t

x
t

=
- +- +1 1

2

2

dx

dt

dt

dx

2

2

Dn n n n

n n

x
t

x
t

x
t

x
t

n x
t

= - +

= - +( )

- +

- +

1

2

1

2
1

2
2

1 1

1 1

∂

∂

C

t
D C= —2



331Avijit Ghosh, David Miller, Rui Zou, Bahrad Sokhansanj, 
and Andres Kriete

where equals the diffusion constant. Letting the infinitesimals go to zero

while keeping D constant results in the original diffusion equation (Borman et al.
2004).

It is worth noting that the diffusion constant itself is dependent on a variety of
factors, such as the size/shape of the diffusing particles and the viscosity/density
of the diffusive medium, and thus must be derived experimentally (Arrio-Dupont
et al. 2000). For certain simple cases, the diffusion equation may be analytically 
integrated. However, in general such analytic solutions do not exist for diffusion
problems, and certainly not for problems pertaining to cells, where cell geometry,
kinetics, and non-trivial initial conditions complicate the problem. Before embark-
ing on this more complicated problem, we will first provide a cursory review of the
coupled problem in the reaction-diffusion equation: namely, the reaction portion.

1. The mathematics of chemical kinetics

The framework of the reaction part of the reaction-diffusion equation is grounded
in kinetic rate theory (Purich 2004). Every interaction between members of the 
signal cascade is expressed as a set of basic chemical reactions between species,
such as:

(15.6)

(15.7)

where (6) represents an aggregation event between species A and B, and (7) rep-
resents a chemical reaction between A and B forming products C and D. kf and kb

are the forward and backward rate constants to be determined from an analysis of
the response of mammalian cell assays to various perturbations. Enzymatic reac-
tions such as phosphorylation or acetylation are represented using the Michaelis-
Menten formulation:

(15.8)

Such an enzymatic process is the product of two sequential processes. The cat-
alytic step is irreversible with a rate constant of k3, and the association is reversible
with forward and backward rate constants of k1 and k2, respectively. The system of
kinetic reactions represented by (6) and (7) can be rewritten as a series of ordinary
differential equations (ODEs). These equations describe a contribution to the rate
of change in concentration of a particular species as a function of time:

(15.9)
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with corresponding ODEs for each of the other species expressed in (6) and (7).
The entire pathway is represented as a system of differential equations that
describes the change in concentration of any particular species as a function of rate
constants. Modeling protein interactions using only equations of type (9) and (10)
is referred to as the well-stirred approximation. The cell is assumed to be “infinitely
mixed” or homogenous.

2. Stochastic models

Simulating differential equations to model reaction-diffusion processes will accu-
rately predict the average behavior of (1) large numbers of molecules within cells
and (2) the average outcome of a cell process over a large number of cells. However,
in many cases deterministic and continuous approaches cannot accurately simulate
biological phenomena that arise from stochastic effects. For example, in the case
of cancer random molecular and cellular effects with low individual probability accu-
mulate, eventually causing dramatic physiological effects.

Biological systems, particularly those involved with genetic regulation, are very
noisy—and distinct phenotypic outcomes directly result from that noise (McAdams
and Arkin 1997, 1999; Elowitz and Leibler 2000). The problem of noise is exacer-
bated by the low cellular concentrations typical of many key regulatory proteins. If
one speaks of nanomolar concentrations of a protein, that corresponds to just a
few to tens of individual protein molecules. For example, in gene regulation there
are only a few sites on DNA (which can be thought of as individual “molecules” or
reaction sites) where transcription factors can bind and mRNA be produced. There-
fore, stochastic and discrete simulations may be necessary to develop accurate
reaction-diffusion models for such processes. Recently, an extensive review focus-
ing on simulation in bacterial cells was conducted by McAdams and Arkin (1998).

Because biological processes involve a large number of molecules and protein
species, the state space is too large for an exact solution of stochastic differential
equations describing a reaction. Gillespie (1976, 1977) proposed a Monte Carlo
method to exactly simulate the stochastic time evolution of a reaction system. The
probability of each reaction occurring is a function of its rate constant (measured
experimentally) and the number of available reactants in the simulation. At each
point in time, there exists a joint probability distribution function for both the reac-
tion and the time at which it can occur.

This generates a random trajectory through the state space that converges in the
mean to the solution of the continuum model. Similarly, an average over an appro-
priate set of repeated experiments is expected to lead to the solution from a con-
tinuum model, and in this context one may view deterministic spatiotemporal
models as the expected solutions from an appropriate ensemble average of 
experiments. This is convenient in that these ensemble averages are the simplest
experimentally reproducible observables.

Arkin et al. (1998) applied the Gillespie method to a fully stochastic model of E.
coli infected by the l phage virus, with two outcomes: lysogeny (integration of the
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phage into the bacterial DNA and “quiet” replication) and lysis (explosion of the
cell and virus release). The simulation incorporated transcription and translation of
genes, protein-protein and DNA-protein reactions responsible for replication, and
proteases, for a total of 32 chemical reactions (including transcription and transla-
tion, which were modeled as hundreds of individual reaction events for each base).
The simulation was implemented using parallel supercomputers. However, subse-
quent algorithmic improvements (Gibson and Bruck 2000) have made it much faster
without changing any physical assumptions.

Whereas most applications of the Gillespie approach to stochastic reaction sim-
ulation have been only for a homogenous volume (i.e., “1D”—reaction systems), it
has recently been applied to non-biological surface chemistry (Lukkien et al. 1998).
A significant drawback is scalability, in that the number of time steps that must be
computed increases with the total number of protein molecules to an intractable
point for eukaryotic cells. Thus, much recent work has been devoted to develop-
ing accelerated and adaptive methods that integrate stochastic-discrete and 
deterministic-continuum methods at appropriate time scales.

Stochastically-induced spatiotemporal patterns of Jung and Mayer-Kress have bio-
logical applications (Jung and Mayer-Kress 1995a, 1995b) to evolution (Dunkel et al.
2004), electrochemical oscillators (Kiss et al. 2004), neuronal models (Doiron et al.
2004), and calcium signaling (Coombes et al. 2004). Turner et al. provide an excellent
review of the state-of-the-art in stochastic biochemical simulation (Turner et al. 2004).

B. The mathematics and numerical analysis of the reaction-diffusion equation

In the spatiotemporal extension of this classical model, transport is treated explic-
itly. Active transport is modeled using elementary reactions that couple to trans-
porter proteins and may be represented by differential equations of the type 
AND. Passive transport can be represented with the diffusion equation for each
species, as

(15.11)

where D is the diffusion constant for that particular species. Active transport along
actin filaments, for instance, may be modeled directly as part of a system of ATP-
driven chemical reactions.

As rate parameters need to be derived by the appropriate experimental
approaches, diffusion constants may be estimated by experimental techniques such
as using modulated fringe pattern photo-bleaching (Arrio-Dupont et al. 2000). The
key to building a quantitative model of the dynamical behavior of the chromatin
network of the spatio-temporal system is coupling the system of ODEs represent-
ing the enzymatic kinetics (equations 15.9 and 15.10) with a system of partial dif-
ferential equations (equation 15.11) representing the diffusive behavior of each
species within the nucleus or on the membrane. The total contribution to the rate
of change in concentration of any species at position is the sum total of the con-
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tributions to the rate of change from all relevant reactions and transport equations.
The coupling between transport and molecular kinetics may then be rewritten in a
mixed finite-difference format as follows:

(15.12)

The term (C i
r) represents the concentration of species i at point in the nuclear

matrix. Di is the diffusion constant for species i. The first sum tallies all unimolecu-
lar reactions involving species i, the second sum tallies bimolecular reactions, and
the final sum represents passive diffusive transport of species i between compart-
ments. The parameter Pij is the permitivity of channel ij and Vi is the volume of the
destination compartment. Higher-order reactions may be included in the obvious
generalized fashion. In the previous equation, Dx is the spatial separation between
two consecutive points, and Dt represents the temporal resolution of the numeri-
cal analysis. Using this formulation, the time evolution of each species in the protein
network may be followed both spatially and temporally.

1. Operator splitting

For the combined reaction-diffusion system, one may use operator splitting to
propagate the total operator. Given

(15.13)

where LRD is a reaction diffusion operator, LR and LD are the individual reaction and
diffusion operators with corresponding propagators Ur(t) and Ud(t):

(15.14)

The second-order Strang splitting method (Strang 1968) may be written as

(15.15)

In a software package CellSim, described in more detail later in this document,
we have implemented the reaction-diffusion-reaction ordering for the splitting as
recommended by Sportisse (2000) and implemented by others (Singer and Pope
2004). For reaction-limited models, CellSim implements an adaptive time step 
algorithm that uses the second-order Rosenbrock method to propagate the first
operator a half step.

The time step determined by the reaction operator is then used to propagate
the diffusion operator and then the second half of the reaction operator. It must
be emphasized that this adaptive scheme is only valid for stiff reaction-limited 
reaction-diffusion models. A more general approach, currently being implemented,
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uses both the error of each operator as well as the splitting error to estimate the
time step (Miller and Ghosh, in prep.).

2. The diffusion operator

Many schemes exist for integration of diffusion. The most straightforward imple-
mentation of the diffusion operator is the forward time-centered space algorithm 

(FTCS). Using reduced units by setting the constant , the FTCS method 

calculates the concentration n at the next time step as follows:

nx
t+1 = (1 - 2a)nt

x + a(nt
x-1 + nt

x+1) (15.16)

Stability analysis of this algorithm reveals a stability condition of 2a < 1 for the
method to be stable. Although this method is simple and stable for small time
steps, it is generally inefficient and undesirable. To remove the stability condition,
one could use a first-order implicit scheme in which we apply the Laplacian a step
dt ahead of the current time,

(15.17)

If spatial boundary conditions (Dirichlet or von Neumann) are known, the set of
equations produced by the previous equation can be solved iteratively. Such solu-
tion by recursion is typical of implicit methods wherein concentrations at a forward
time step appear on the right-hand side of the equation. Related to this approach
are second-order schemes such as Crank-Nicolson (1947), which has a simple
description as the average of the previous two methods:

(15.18)

Crank-Nicolson is unconditionally stable for dt and dx, and yields second-order
accuracy in time and space. Implicit methods have the main advantage of being
unconditionally stable, but they also require a matrix inversion. For 1D problems,
this method requires the diagonalization of a tridiagonal matrix at each time step.
Whereas the 1D case is relatively inexpensive, 2D and especially 3D problems
require solutions of considerably more complex (although still sparse) matrices. To
alleviate this unwieldy structure, further operator splitting of the diffusion operator
into three 1D operators may be used.

This involves splitting the multi-dimensional diffusion into appropriate time inter-
vals and applying a 1D step for each direction. In two dimensions, using two steps 

of the scheme’s stability properties are maintained, but this is lost in three dimen-

sions and the scheme becomes only conditionally stable 

(Press 1992). For problems in higher dimensions, an Alternating Direction Implicit
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(ADI) introduced by Douglas (Douglas 1962), maintains unconditional stability, is
second order accurate in both space and time, and is generalizable for solving dif-
fusion problems of arbitrary dimensionality. In 3D, it may be schematically written
out as:

where and D2
dir is a simple second order finite difference along a strip of  

space in the direction of the subscript:

(15.20)

Subtracting (19a) from (19b) and (19b) from (19c), reduces the scheme to three tridi-
agonal systems of equations, each of which can be solved efficiently using ele-
mentary linear algebra. The method. In 1D, the scheme reduces to the standard
Crank-Nicolson diffusion scheme (Crank-Nicolson 1947).

3. The reaction operator

The reaction operator may be integrated using a host of standard methods. 
Currently, CellSim has the following integrators.

• Euler
• Exponential Euler
• Second- and fourth-order Runga-Kutta
• Adaptive fourth-order Runga-Kutta
• Second- and fourth-order adaptive Rosenbrock

Although Euler ((y(t + dt) = y
.
(t, y(t))dt)) is perhaps the simplest of numerical 

integrators, it is neither particularly stable nor accurate. For problems in chemistry
and biology, exponential Euler takes advantage of the fact that simple kinetic 
interactions often give rise to exponential decay functions. That is, for kinetics one
frequently encounters equations of the form

(15.21)

Schematically, the exponential Euler method may be written as
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Although this scheme allows for the use of larger time steps, at low concentra-
tions this scheme suffers from some inaccuracy that will propagate through the
system. Therefore, although popular this method should be used with some
caution. The workhorses of ODE solvers, Runga-Kutta methods have been imple-
mented within CellSim to address this problem. The commonly used fourth-order
formulation uses four strategically placed evaluations of the function’s derivative
within a given time step dt, and a weighted average of these derivatives is used to
propagate the system a full time step:

For highly coupled stiff systems of nonlinear ODEs, explicit Runga-Kutta methods
become less desirable. For these systems, implicit generalizations of Runga-Kutta
methods such as Rosenbrock methods are recommended. The Rosenbrock scheme
uses the Jacobian matrix of the equations to propagate the system forward in 
time. In other words, the sensitivity of the solution’s slope to changes in other
species is considered rather than just the slope of the solution itself. One such
second-order Rosenbrock method has been implemented in CellSim (Dekker and
Verwer 2003):

with constant l, identity matrix I, and Jacobian J.

4. Adaptive algorithms and error analysis

As many chemical systems exist as transients that rapidly equilibrate to steady state,
it is natural to seek adaptive time-step algorithms. Stiff integrators such as fourth-
order Rosenbrock methods have been highly successful in integrating purely kinetic
systems. Inherent in such schemes is the need to calculate the Jacobian at each
time step. For a single grid point with no diffusion, the Jacobian is a N ¥ N square
matrix, where N is the number of reactants in the simulation. Expanding this to an
extended grid of multiple points (say, n grid points in any arrangement) and includ-
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ing diffusion will generate a Jacobian consisting largely in the form of a n ¥ n block
matrix, each block itself an N ¥ N matrix.

This matrix is highly sparse. The second-order diffusion operator would only
involve nearest-neighbor grid points, leaving most matrix elements empty (as non-
adjacent grid points are uncorrelated). Unfortunately, the size of the matrix is still
cost prohibitive for performing the necessary LU decomposition required by adap-
tive Rosenbrock methods. 

5. Spatiotemporal sensitivity analysis

Consider the following spatiotemporal biochemical system:

(15.25)

where C denotes N time dependent species concentrations, the kinetics compo-
nent of the system is f(C,k,t) with parameters k, and the corresponding diffusion
component is DV2C. The generalized sensitivity parameter

(15.26)

is then

(15.27)

Applying operator splitting, it is clear from this equation that applying the diffu-
sion propagator to the sensitivity parameters is sufficient to account for diffusion.
The final term in equation 15.27 can be determined through simple finite 
differencing of the sensitivity parameters. However, the first two terms are more
complicated. Our implementation is a Rosenbrock-based method that allows adap-
tive time steps to be incorporated into sensitivity calculations. In practice, two types
of sensitivity parameters may be calculated within CellSim: sensitivity parameters
with respect to k and parameters with respect to certain initial concentrations. As
the latter is simpler to evaluate, we shall focus this discussion on fast evaluations
of parameter-based sensitivities.

The reaction part of the previous equation may be rewritten as

(15.28)

where J is the N ¥ N Jacobian matrix. To propagate both the sensitivity parame-
ters Si,j and the original set of species Ci, consider an extended biochemical system
of (M + 1)N equations:
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CellSim will integrate the coupled system using both standard integrators as well
as Rosenbrock methods. For standard integrators, the propagator is reasonably
simple to define. One needs only to generate the appropriate equations and 
consider the extended system. The Rosenbrock method requires the generation 
of an extended Jacobian of the new model system. This requires the automatic
generation of the Hessian (second-order concentration derivatives) along with
several other terms in the original system.

CellSim automatically generates these higher-order terms, and the computa-
tional expense of evaluating the extended Jacobian is mitigated by its sparsity and
the ability to use large adaptive time steps, which reduce the number of required
steps. To both illustrate this procedure and describe its implementation within
CellSim, a small sample system is introduced. Consider a simple system with five
species C1..C5:

(15.30)

CellSim will first automatically generate the following differential equations:
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Because of the degeneracy of terms appearing in the differential equations, only
four unique terms are generated and will be used during each elementary step of
the reaction propagator. In this example, the terms are as follows:

Hence, a system of differential equations may be considered simply a summa-
tion over precalculated terms. Two types of terms currently exist: one for passive
transport channels (described in a later section) and one for mass action kinetics
(termed a kineticTerm). A species is indexed by two integers: one for the com-
partment number r (row) and one for the species c (column) in that compartment.
Internally, kinetic species are stored simply as:

class kineticSpeciesClass {
Public:
Int r,c;
. . .
}

The indexing of this term (r,c) is used to evaluate data structures to get informa-
tion about the species—perhaps most importantly the current value (concentration)
of that species. The actual concentrations are packed into a large contiguous
memory array to minimize cache misses. Within CellSim, a kinetic term class has
the following structure:

Class kineticTermClass: public genericTermClass {
Public:
svector <kineticTermClass> species;
svector <firstderivativeClass> firstderivativesforC;
svector <secondderivativeClass> secondderivativesforC;
firstderivativeforKClass firstderivativeforK
svector <secondderivativeforKClass>
secondderivativeforK;
double k;
svector <double> jacobianMultiplier;
}

A svector may be considered simply a standard STL vector that has been opti-
mized for the purposes of CellSim. When using methods that require the Jacobian,
the partials are all pre-generated and calculated once, minimizing the number of
evaluations as well as taking advantage of the sparsity of the extended Jacobian
(and other objects) that need to be built. The definitions for each term in the class
are as follows.
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• species: The species in a particular term. For instance, for the term t1 the species
list contains C1, C1, C2. C1 is stored twice in the structure because C1 exists as C2

1.
• firstderivativesforC: Stores the partial of this term with respect to all species within 

this term. For the term t1, this vector stores and .

• secondderivativesforC: Contains all Hessian terms that are non-zero for this term. 

For the term t1, three terms are stored: .

• firstderivativeforK: This partial stores the partial derivative of this term with
respect to its own parameter. For the term t1, the only evaluated derivative is 

.

• secondderivativeforK: This final partial derivative stores a vector of all mixed 

terms of the form . For t1, the following two terms are stored: and 

• k-rate constant of the kinetic term: For the term t1, the kinetic constant is k1.
• jacobianMultiplier: A precalculated coefficient for partial derivatives with respect

to Ci. Two values are stored for the term t1.

6. Evaluating the original jacobian

Before extending the system to the sensitivity parameters, we perform fast evalu-
ation of the extended Jacobian of the fully coupled system. In our example, the
original Jacobian is

By pre-generating the appropriate terms by first evaluating firstDerivativesForC
at a given time step, the Jacobian may be evaluated directly by taking the 
appropriate summation of the derivatives

(15.34)

where L is the number of terms for that equation i. The Jacobian itself is stored in
a special sparse matrix class that only stores the non-zero elements for the calcula-
tion. For non-Rosenbrock integrators, the sparse matrix class allows CellSim to use
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fast sparse matrix multiplies to evaluate the first term in the equation. The second
part of the equation is precalculated in firstderivativeforK. By precalculating these
terms, only derivatives requested by the user script are actually calculated. Once
these terms have been evaluated, the right-hand side of the equation may be eval-
uated to propagate fully the reaction portion of the sensitivity parameters.

The propagation of sensitivity parameters using the method thus described
works for classes of integrators such as Euler and Runga-Kutta but is not particu-
larly suitable for stiff systems. For this reason, considerable time has been spent in
implementing stiff integrators such as Rosenbrock for sensitivity parameters within
CellSim.

7. Calculation of the extended Jacobian

From a computational standpoint, one may consider the propagation of the
extended system as simply a new system with its own corresponding Jacobian, Jc.
The structure of this Jacobian has a relatively simple block matrix form:

(15.35)

S(i,j)q is defined as . S(i,j)1...N is defined as {S(i,j)1, S(i,j)2,...., S(i,j)N} and 

S(i,1... M)1...N is defined {S(i,1)1...N, S(i,2)1...N, . . .,S(i,M)1...N}T. As J is already calculated, 
the only new terms that need to be calculated are the bottom-left-hand portion of
JC.

8. Numerical evaluation of JC

An individual term in this portion of the block matrix may be written out in the 
following form:

(15.36)

The form of this equation is exactly like Equation 15.28 except that has been 

changed to and there now exists a second term . Hence, the 

procedure is exactly the same as was used in calculating the original Jacobian J,
except that now the previously defined secondderivativeClass is also precalculated
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before each time-step. As this second class is also internal to the term, only non-

zero terms are precalculated and used to fill in JC. The term is also precal-

culated in the same manner as before. In this case, only non-zero terms and
requested terms by the user script are precalculated and used to fill in the final
matrix. Throughout the calculation, sparse matrix classes are used to remove unnec-
essary matrix multiplies throughout the calculation.

III. CELLSIM: A CELLULAR SIMULATOR

The mathematics described has recently been implemented in the freely available
software package CellSim, developed by our group under the Gnu Public License
(GPL). This package is highly optimized for high-performance distributed comput-
ing platforms that use the message-passing interface (MPI) parallel-programming
library (Pacheco 1996).

The distributed computing platform is particularly efficient for transport-coupled
kinetics. The kinetic terms are essentially communication independent, as they
depend only on the local concentrations of each species. Furthermore, as the com-
putational cost of transport is much lower than the kinetic components, the system
is essentially immune to communication overhead and may therefore be paral-
lelized with near linear efficiency.

A. Compartmentalization

Currently, a finite difference scheme is used to determine cell geometry. The 
geometry is explicitly defined by the Cartesian grid. The set of compartments
defined at a grid site determines which species may exist (or overlap) in a certain
region of 3D space. The set of appropriate chemical reactions that may be defined
at a grid point is automatically generated from the set of all possible chemical 
reactions and which species exist in which compartments.

From this information, the complete set of appropriate differential equations is
automatically generated over the entire grid, which is optimized for each localized
grid point in terms of storage and calculation. The natural boundary conditions for
the system are periodic, but both Dirichlet and von Neumann boundary conditions
(as well as more complicated boundary conditions) may be implemented through
the appropriate use of localized chemical reactions.

B. Mpi parallelization

The explicit schemes described in the previous section allow CellSim to be paral-
lelized with linear efficiency. A large simulation may be split into evenly sized blocks.
As the reaction operator is communication independent, the only communication
cost is on the surface of the blocks. As the computational cost of a block will scale
as the number of grid points within the block (proportional to the volume of the
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block) and the communication cost will go as the surface area of the block, a regime
may always be found in which the communication cost of the system is negligible
in comparison to the computational cost. Within this regime, one may naturally
move to larger systems with near linear computational cost.

C. Downloading and compiling

A current version of the software may be downloaded via anonymous cvs from
sodium.physics.drexel.edu. In a UNIX environment, first set the CVSROOT envi-
ronmental variable as follows:

export CVSROOT = :pserver:anonymous@bio.physics.drexel.edu: \
/usr/local/cvs-repository
cvs login

Then execute the following command to retrieve the source code.

cvs co cellsim-src

The code may be compiled using standard make. We have developed a script
titled setup.sh, which sets up standard compilers and optimization options in the
source directory. Alternatively, one may further customize a build by predefining
the following environmental variables in setup.sh. The machine-dependent com-
piler flags are all grouped under the optimization section for the compiler in
setup.sh and clearly marked.

• OPT: Sets any optimization flags
• CXX: C++ compiler
• CFLAGS: Any compiler flags
• LFLAGS: Link flags
• LD: Linker
• INCDIR: Include directory

The CellSim code base is platform independent and has been compiled on 
Mac OS, Linux, and SunOS under a variety of different compilers, including both
the Gnu compilers and the Intel high-performance compilers. It is necessary to 
have the freely available Gnu Scientific Library (GSL) installed on your system. If a
parallel-enabled version of CellSim is desired, MPI must also be installed. The
default environmental variables are set by running:

source setup.sh

An MPI-enabled version may be compiled by using:

source setup.sh 1

After the environmental variables have been set, the code may be compiled
using the following commands:
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make depend
make

To illustrate the use of CellSim, several canonical examples have been included
that illustrate some of the features in the current version as well their use in 
spatiotemporal modeling.

D. Examples

The use of CellSim can be best described through the use of several biologically
relevant examples that highlight some of the more salient features of the software
suite. CellSim uses a command-line-based scripting interface that is executed as
cellsim file.input, where file.input is the input script.

1. 2D Gray-Scott model of glycolysis

The first biological example is the celebrated Gray-Scott autocatalytic model of 
glycolysis, originally developed by Selkov (1968). All input file contents (including
file names) are set to be case insensitive within CellSim. Comments may be incor-
porated into any input file using C, C++, or Perl comment styles. A typical input
script looks as follows.

useReactions reactions.input;
useGrid grid.input;
useInitConcentrations initconc.input;
printOutput output1 {
printinfo 1;
printgrid 10 plot/U.10.plot U;
printgrid 10 plot/V.10.plot V;
}
diffusionConstant all 1e-4;
diffusionConstant species U 2E-5;
diffusionConstant species V 1E-5;
printSysTime;
integrate Euler {
dt = 1;
dx = 0.009765625;
runtime = 2000;
runDiffusion;
use output1;
}
printSysTime;
exit;

The main input file provides the names of all other necessary initialization files
needed for a CellSim run. These files are required for the initialization of the 3D
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spatial geometry of the simulation, initialization of species concentrations, and
description of all appropriate chemical reactions possible among the species. The
main input file (in this example, file.input) defines the simulation itself, providing
definitions and instructions for printing and for integration.

The first three lines of file.input direct CellSim as to where to find definitions of
the simulation reactions (useReactions), grid geometry (useGrid), and initial con-
centrations (useInitConcentration) of the reactants. These accessory files are
described in more detail in the next section. Following the definition of the acces-
sory files is a bracketed printOutput block that defines a print object named
output1, which may be used for printing during any integration run. Multiple print
objects may be defined and will only be executed with a corresponding use
command within the integrator.

The print object command defined previously instructs CellSim to print a time
stamp to the screen at each step via the printinfo command, and to print the entire
grid content of species U and V to files every 10 steps via the printgrid command.
After the print output command, the diffusion constants are defined for the reac-
tants of interest via the diffusionConstant command. The first command uses the
keyword all to set the default diffusion constant for all species, and the second and
third commands set the diffusion constant individually for species U and V.

Following the definition of the diffusion constants, CellSim is instructed to inte-
grate using the integrate command. In this particular case, CellSim is using the
Euler method with a fixed time step dt = 1, a spatial resolution of dx = 0.009765625,
and a runtime of 2000. Within the integrate command, runDiffusion ensures that
diffusion is enabled. In addition, use output1 instructs CellSim to use the print com-
mands defined previously in the printOutput command. The runtime command sets
the simulation time, which for this example is 2000 seconds.

The final instructions to CellSim are to again print out the actual system time
(printSysTime) used for the simulation and then exit (exit). The user should make
sure the units are all self-consistent. The chemical reactions defined within the
model are located in the file reactions.input defined by the useReactions command. 

In this simulation, the reactions are the Gray–Scott reactions (Gray and Scott 1983)
(see Figure 15.1). A variant of the autocatalytic Selkov model of glycolysis, the
Gray–Scott reactions are

(15.37)

This simple system produces a wide variety of spatiotemporal patterns sensitive
to the reaction rates and diffusion constants. The reactions file for this simulation
reads as follows.

locationlist {
location cytosol 1;
default cytosol;
}

U V V

V P

+ Æ
Æ

2 3
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reactionlist {
U + V + V -> V + V + V :: 1;
V -> P :: 0.06;
U -> bath :: 0.05;
bath -> U :: 0.05;
V -> bath :: 0.05;
P -> bath :: 0.05;
}

The locationlist block defines a single compartment cytosol and defines that
compartment to have a total volume per unit grid of 1 liter. For spatiotemporal
models, leave the volume unit as 1. The actual volume is then defined by the spatial
geometry. The volume definition for a compartment may be used in mixed volume
kinetic models in which the volume is not inherently defined by the spatial arrange-
ment of the grid. The final command, locationlist, defines the default compartment
as cytosol for reactants via the default command. In this model, all species exist in

Figure 15.1. Gray–Scott model.
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the default compartment and thus do not needed to be explicitly listed within the
locationlist command.

The next block, reactionlist, defines the reactions in the Gray–Scott model. All
reactions are nonreversible, with rate constants following double colons. For this
simulation, the grid is simply a square plane of a single compartment. The grid file
defined by the useGrid command takes the following form.

grid 48 48 1 ;
0 0 0 cytosol;
0 1 0 cytosol;
0 2 0 cytosol;
.
.
.
0 47 0 cytosol;
.
.
.
47 0 0 cytosol;
.
.
47 47 0 cytosol;

Here, the grid has dimensions of 48 ¥ 48 ¥ 1 and all species are defined to exist
in the compartment cytosol. A grid point may be defined to have any number 
of compartments. Grid points with multiple compartments may be considered
interface regions, and reactions involving species of different compartments may
additionally react within this interface region.

The initial conditions in this example consist of a grid containing two areas: a
central square and the area surrounding it. The two species U and V initially exist
in both areas at different concentrations. Their initial concentrations are perturbed
randomly about some value. For CellSim, the initial concentrations can be speci-
fied for a species throughout all of its compartments or individually specified at
each grid point. Using perturbed concentrations, the initconc.input file contains the
following commands.

P = 0.0;
fixed bath = 1.0;
point 0 0 0 U = 1.00312899386658;
point 0 0 0 V = 0;
point 0 1 0 U = 1.00259570383182;
point 0 1 0 V = 0;
point 0 2 0 U = 0.996343013072222;
point 0 2 0 V = 0;
point 0 3 0 U = 0.990340706493643;
. . .
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The first command defines the concentration of P to be 0 everywhere. The next
command sets the bath to a concentration of 1.0 unit and fixes it so as not to change.
Species U and V are perturbed at about 1.0 and 0.0, respectively, in the outer region
(and 0.5 and 0.25, respectively, in the inner). All are listed individually at individual
grid points. As with all CellSim files, the scripting language will override previous
commands with any subsequent commands, and thus a default concentration may
be set and then altered at specific grid points with the point command.

2. 3D Kinase phosphatase model

As an example of a fully 3D multi-compartment model, the next simulation models
a simple signal transduction model of a plasma-membrane-bound receptor, cytoso-
lic phosphatase, and a cytosolic kinase, which is activated at the cell surface in a
spherical cell. This model was originally developed by Brown and co-workers
(Brown and Kholodenko 1999). Extracellular stimulant S reacts with membrane-
bound receptor R to produce S.R, which in turn phosphorolates kinase K to K* at
the membrane. The species K* then diffuses inward to react with P inside the cell.
After an initial transient stage, K* reaches a steady state of exponentially decreas-
ing radial concentration (see Figure 15.2). The reactions.input script for this simu-
lation is as follows.

locationList {
location extracellular 1 S;
location imembrane 1 R S.R S.R.K;
location cytosol 1;
default cytosol;
}

numberReactionList {
S + R <> S.R :: 4.2 0.25;
S.R + K <> S.R.K :: 1.2 0.8;
S.R.K -> K* + S.R :: 0.2;
K* + P <> K* .P :: 1.98 25 ;
K* .P -> K + P :: 6;
}

The locationlist command defines the compartment of each species. The stimu-
lus S exists only in the extracellular region. The receptor and its intermediates are
all on the intracellular membrane, and all other species are within the cytosol.

The numberReactionList block tells CellSim to read the contained equations in
terms of quantity (in our case, micromoles) instead of quantity/volume (micromo-
lar) concentration (used in reactionList). This option is useful when the rate con-
stants are in terms of quantity and not concentration. The compartments for this
simulation consist of a sphere of cytosol, with membrane overlapping the outer-
most edge of the cytosol region. At an edge of the cytosolic region, the grid input
file for this simulation reads as follows.
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grid 81 81 81;
.
.
.
40 40 2 extracellular;
40 40 3 imembrane cytosol extracellular;
40 40 4 cytosol;
.
.
.
80 80 80 extracellular;

Figure 15.2. Application of CellSim, showing a 2D slice through center of 3D simple signal
transduction cell model. The Z axis represents predicted concentration of a single cytosolic kinase 
(see color plate 9).
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In the overlapping region, the cytosol, intracellular membrane, and extracellular
area coexist. In this region, reactions involving the stimuli S and the receptor will
occur, as well as reactions involving the stimulated receptor and the cytosolic kinase
K. As an example of the adaptive integrators in CellSim, this simulation uses a
second-order Strang split reaction-diffusion integration scheme, as follows.

useReactions reactions.input;
useGrid grid.input;
useInitConcentrations initialconc.input;
printOutput output1 {
printinfo 10;
printplane 10 plot/K.plane.plot K 40 * *;
printplane 10 plot/K* .plane.plot K* 40 * *;
printgrid 10 plot/K* .grid.plot K*;
printgrid 10 plot/K.grid.plot K;
}

integrate arb2 {
dtguess = 1e-2;
dt = 1.0;
dx = 0.009765625;
runtime = 100;
useStrang;
runDiffusion;
diffusionTolerance 1e-2;
safety = 0.9;
tolerance = 1e-2;
dtmin = 1E-10;
use output1;
}

The new print command printplane prints the plane specified by the x-y-z coor-
dinates following the file name, where the integer coordinate specifies the constant
plane through the grid and the asterisks define the direction of the plane. In this
example, the simulation prints out the 81 ¥ 81 plane of grid points defined by the
equation x = 40. The integrate command integrate arb2 instructs CellSim to 
integrate using a second-order adaptive Rosenbrock method. The previously
unseen commands within the integrate block are specific to the adaptive integra-
tor as follows.

• dtguess: The initial time step for the adaptive integrator.
• dtmin: The minimum time step allowed.
• safety: The maximum increase of a time step is internally set to 50%. This value

sets the fraction (0–1) of the maximum increase that should be used.
• tolerance: Directs the adaptive method to choose the maximum time step that

still achieves a given relative accuracy for the kinetics calculation. In our example,
a relative accuracy of 0.01 is required.
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• diffusionTolerance: Similar to the tolerance command, this command directs 
the adaptive step-doubling diffusion calculation to achieve the given relative
accuracy.

3. Sensitivity analysis

Consider the system defined previously (equation 15.30). Suppose one would like to

calculate . The reaction file for this system is defined in the same 

format as before, as follows.

locationList {
location cytosol 1;
default cytosol;
}

volumeToLiters = 1.0;
reactionList {
C1 + C1 + C2 <> C3 :: 1e-5 2e-5 k1 k2;
C4 <> C5 :: 1E-2 1E-3 k3 k4;
}

This definition has the optional labels k1, k2, k3, and k4 appended to each reac-
tion. In addition, CellSim has the ability to take the same label as part of multiple
reactions. This is sometimes useful for parameter optimization in which several
parameters are tied together and optimized as a single identity. Similarly, the initial
concentration file has the same format as before, as follows.

C1 = 100;
C2 = 10;
C3 = 5;
C4 = 1;
C5 = 5;

In this example, a purely kinetic model is being used, and thus our grid file 
consists only of the following.

Grid 1 1 1;
0 0 0 cytosol;

Finally, the main scripting file must carry new instructions to define, calculate, and
print the sensitivity parameters.

Use Reactions reactions.input;
useGrid grid.input;
useInitConcentrations initconc.input;
defineAnalyticalDerivative {

∂

∂

∂C

k

C

dk
1

1

4

5

and
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numerator = C1 C5;
denominator = k1 k4;
}
printOutput output1 {
printkinetics 10 screen C1;
printsensitivity 1 screen C1 k1;
printsensitivity 1 screen C5 k4;
printsensitivity 1 dc1dk1 C1 k1;
outputappendstring = analyticalDerivative;
outputprependstirng = plot/;
}
integrate arb4_sa {
use output1;
dt = 1E-5;
safety = 0.9;
dtmin = 1E-10;
dtguess = 1E-5;
tolerance = 1E-4;
}
runAnalyticalDerivative 100;

The new commands not previously seen begin with the defineAnalyticalDeriva-
tive command. Two required subcommands are numerator and denominator. The
numerator must be followed by a list of defined species, whereas the denomina-
tor may be species or labeled rate constants. If species are used, sensitivity analy-
sis with regard to the initial concentration of that species is carried out. All
combinations of derivatives of the numerator and denominator are analytically 
evaluated throughout the sensitivity run.

The outputappendstring command optionally appends any printed files of 
derivatives by the argument string. Similarly, outputprependstring prepends the 
file name. In the example file, only a single derivative is being printed to a file 
whose name will be plot/dC1dk1.analyticalderivative. The printOutput command
has a single new command named printsensitivity. Its format is similar to that of
printgrid except that two parameters (numerator, denominator) are used to define
the derivative to be printed.

In this case, two derivatives are printed to the screen every step, and 

simultaneously is being printed to a file named plot/dC1dk1.analyticalderiva-

tive. The next step defines a Rosenbrock integrator designed especially for sensi-
tivity analysis. This new definition makes sure that enough memory is allocated for
the extended Jacobian JC. Finally, the runAnalyticalDerivative command tells
CellSim to perform the calculation for 500 units of time. A full list of commands
available in CellSim follows.

∂

∂

C

k
1

1

∂

∂

∂C

k

C

dk
1

1

5

4

,
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4. Parameter optimization

Experiments described in detail in the next section may be used to develop 
parameter sets for the chemical reactions, as well as diffusion constants within
CellSim. These parameters are estimated by fitting the developed model to the
available experimental data using a cost function, which represents the deviation
of the model to data:

(15.38)

with adjustable parameters . Spatially resolved experiments Cexp( ,t) are taken at
time shots t. One may choose to optimize the initial concentrations, rate constants,
or any other free parameter in the model during the optimization process. A com-
bined simulation–optimization approach has been implemented using fast Rosen-
brock integrators. To illustrate this method, a simple example of a purely kinetic
system will be given. As with all CellSim simulations, a standard command script
file is needed, as follows.

useGrid grid.input;
useInitConcentrations initconc.all;
printOutput output1 {
. . .
}
integrate arb4 {
. . .
}
runOptimizer {
readData “1.1um.C1”;
readData “2.1um.C1”;
readData “3.1um.C1”;
readData “4.10um.C1”;
readData “5.10um.C1”;
readData “6.10um.C1”;
addParameterGlobal k1 1E-8 1E-3;
addParameterSingle C2 0.8 1.2 1 3;
addParameterSingle C2 0.8 1.2 4 6;
costType = sumsquare;
statisticsfile = mystats;
weighting 0.9 0.1;
anneal 10000 100 0.1 1.0 1E-3 1.1 0.0;
saveparameters = parameters.final;
bestfitsfile = bestfits.file;
}

We have skipped all standard sections and included only the new parts of the
input file not previously seen. The new command runOptimizer tells CellSim to
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perform the optimization procedure. First, each experiment is read in using the
readData command. Each experiment has the same input format as initial concen-
tration files, each prefaced with a t = ·numberÒ put together sequentially in a single
file. Each experiment is internally read in and numbered (1 . . . Maximum Experi-
ments). The new command t = ·numberÒ sets the time for the experimental data
that follows that command. The addParameterGlobal ·kÒ ·minÒ ·maxÒ command
tells the global optimization procedure to use all experiments to fit k between min
and max, where k may be either a species or a labeled rate constant.

Similarly, the addParameterSingle ·kÒ ·minÒ ·maxÒ ·minexpÒ ·maxexpÒ command
also fits k between min and max but will only use a subset of the experiments
defined as those numbered between minexp and maxexp. Several cost functions
are available. In this case, sum of squares is set with the costType command. The
weighting command gives the weighting of random trial moves. The first number
dictates the fraction of times a random move involves initial concentrations,
whereas the second number dictates the fraction of times a random number
involves rate constants.

Statistics during the run are stored in the file defined by the statisticsfile
command, and the best-fit parameters are saved in the file defined by the 
bestfitsfile command. The simulated annealing parameters are set through 
the anneal command. The parameters set the total number of moves, number of
moves at each temperature, step size of random move, Boltzmann constant, 
initial temperature, factor by which the temperature decreases, and minimum 
temperature.

E. CellSim visualization: cellSimvis

The visualization component of CellSim is a separate program developed as a
client/server package. This module should be considered beta at this time but is
currently functional as a monitoring tool for large jobs as well as for visualization of
generated data. CellSimVis is based on the freely available GPL licensed QT widget
set from Trolltech (used to develop the popular UNIX environment KDE on the
GNU/Linux platform). To compile the GUI, OpenGL and the QT development
libraries must be installed. CellSimVis (see Figure 15.3) may be downloaded and
compiled as follows.

Step 1: Log in to the anonymous cvs server as before, using:

export CVSROOT = :pserver:anonymous@bio.physics.drexel.
edu:/usr/local/cvs-repository

cvs login

Step 2: Check out the source code for the GUI with the command:

cvs co cellsim-gui

Step 3: Run the following commands.

qmake
Make
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The current version of CellSimVis has the following features.

• Export of rendered images for publication (PNG format)
• Export of MPG-based movie files
• Import of CellSim Plot files
• Socket-based monitoring of CellSim.Interactive switching of exported species

from CellSim
• OpenGL-based 3D contour plots rendered as 2D grid (solid surface, line mesh,

or point based).
• Rendered visualization of surface normals
• Automatic scaling of model

Imaging of data in one, two, and three dimensions is available within CellSimVis.
Simple plotting (concentration versus time) is hardware rendered using OpenGL
primitives. For 2D data (versus time), visualization is implemented both as a simple
2D color contour plot and as a rendered 3D plot of the data with the height rep-
resenting the concentration on the plane (rendered in real time as a movie). 
For reading from saved data files, a slider is available for data examination that

Figure 15.3. CellSimVis visualization engine (see color plate 10).
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enables the user to track the changes in concentration with time. An additional 
3D-rendering procedure based on isocontours using marching cubes will be
included in a future version of CellSimVis.

Plot files generated by CellSim may easily be imported from the menu (File >
Open). For socket-based communication, File > Sockets should be used. Specify
the host name and socket for the machine running CellSim. In this mode, CellSimVis
will automatically import all available species in the simulation and make them avail-
able for rendering. Snapshots of the visualization can be saved as PNG files.

IV. SPATIOTEMPORAL IMAGING

In recent years, high-resolution single-cell imaging has been recognized as a most
favorable way of looking at biology (Cole et al. 2003). Cytomics, as described by
Valet et al. in this edition, aims to provide cellular information by executing imaging
in a high-throughput high-content fashion. This information can be used to classify
cells, identify molecular hotspots, and carry out statistical correlation across levels
of biological hierarchy. Cytomics approaches can also be applied in functional
genomics research to characterize the location of proteins (Murphy 2004) and sub-
cellular phenotypes specific to RNAi knockouts in high-throughput assays (Conrad
et al. 2004).

These screening technologies provide end-points for a precise description and
classification of cells and subcellular phenotypes, and a framework for ST systems
biology. As an example, basic morphological properties of cells have been used to
increase the realism of computational models (Schoeberl et al. 2002). However, in
view of the complex cellular machineries being investigated the goal would be to
perform both a time-resolved and multiplexed analysis at high 3D resolution, within
spatially distinguishable compartments in single cells. Fluorescence confocal
microscopy is ideal for performing these tasks.

Confocal microscopes come in different flavors, but they all have in common the
application of non-invasive optical sectioning at low radiation damage, which is ideal
for studying structural and functional properties of living cells at full 3D microscopic
resolution. Specific experimental perturbations can be introduced and subsequently
monitored, and the quantified cellular behavior can be used to classify distinct cel-
lular phenotypes or phenomes (see the chapter by Parvin et al.). However, tagging
cellular structures and species with multiple fluorescent dyes are limiting factors,
although a wealth of non-invasive fluorescent probes has been developed and is
now available for monitoring membranes and cell compartments, as well as specific
protein targets in living specimen (DeBernadi et al. 2005).

As a specific example, for the study of signaling pathways one would require
quantification of the localization, concentration, dynamics, interaction, and activa-
tion (phosphorylation) status of many components involved in the cascade. Newly
developed fluorescent technologies move this field forward, such as quantum 
(Q-dot) dot nanoparticles that are ideal for imaging both localization and concen-
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tration of target proteins (Smith and Nie 2004). In a study of EGFr internalization,
an average of 30,000 internalized receptors could be monitored at the single-cell
level, and subsequent image analysis provided regional average information about
concentration and active endosomatic transport (see Figure 15.4).

A distinct advantage of Q-dot assays is in their capability to be multiplexed, but
they are currently limited in their ability to provide protein interactions and status
of protein activation. Diffusion processes can be measured by fluorescence recov-
ery after photo-bleaching (FRAP) and fluorescence correlation spectroscopy (FCS)
(Lippincott-Schwartz et al. 2001). GFP fusion proteins are ideal for FRAP, in that they
can be bleached without detectable damage of cells. With these tools, differences
in the diffusion constant D due to membrane association, scaffolding, and com-
partmentalization can be measured.

To detect protein associations in the 1- to 10-nm range, fluorescence resonance
energy transfer (FRET) is the preferred imaging technique (Jares-Erijman and Jovin
2003). In conjunction with radiometric sensors such as EGFR-ECFP and PTB-EYFP
in one molecule, FRET can be used to monitor phosphorylation dynamics 
(Offterdinger et al. 2004). Both FRAP- and FRET-related technologies are currently
limited in monitoring multiple species simultaneously. As these fields progress, 
they will determine the realism of comprehensive spatiotemporal models of 
regulation in signaling networks, nuclear processes, and morphogenesis.

Figure 15.4. Computational imaging delivers quantitative description of the internalization of EGFr,
activated by a biotinylated EGF/streptavidin quantum dot complex (green) with A431 cells. Transport
routes of internalized can be monitored by in vivo imaging, as well as concentration increase over the
time of the experiment (left to right). Concentrations of q-dots within equidistant zones of the cytosol
(right) of many cells deliver information on averages related to dynamical processes that feed ST-
systems biology (see color plate 11).
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V. CONCLUSIONS

A biological cell is a complex environment for chemical reactions, with a vast and
diverse collection of active and passive transport mechanisms, membrane surfaces,
and compartments. A new generation of microscopic-imaging techniques capable
of the real-time tracking of single molecules in living cells provides visible evidence
of the biological significance of process dynamically evolving in both space and
time. Computer simulation of physics-based models, coupled with quantitative spa-
tiotemporal data, will allow cell biologists to rigorously develop and test complex
hypotheses. Although methods of simulating reaction-diffusion systems have been
successfully applied to complex physical systems such as the atmosphere, oceans,
and engine combustion, cells present an unprecedented complexity of significant
molecular species and transport mechanisms, and a continuing challenge for 
experimental measurement.

The relatively small size of the cell also presents a challenge, as many relevant
processes occur on atomistic scales that are unsuitable for the continuous deter-
ministic approach described in this chapter. However, remarkably, cell-imaging data
suggest that a variety of cell processes are amenable to a reaction-transport model,
and the number of proteins per cell generally range from several hundred to 
hundreds of thousands of each species, supporting the use of molecular con-
centrations. To address biological problems for which discrete stochastic
approaches are more suitable, several stochastic simulation methods have been
proposed (reviewed in Turner et al. (2004)). Regardless of the algorithm used, it is
necessary to develop tools to interpret simulation results, including efficient sensi-
tivity analysis and interactive simple interfaces. The emergence of quantitative tech-
niques in cell biology is ushering in an era of “predictive” biology and medicine,
when experiments and computer simulation will be blended to help study disease
mechanisms and identify therapeutic targets.
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RECOMMENDED RESOURCES

We highly recommend the review article by Slepchenko et al. (2002), which offers
an extensive review of spatiotemporal systems with an emphasis on Virtual Cell. 
We also highly recommend Dekker and Verwer’s recently published book on 
numerical methods for advection-reaction-diffusion equations, which has been
tremendously useful in developing the theory and computational aspects behind
CellSim (Dekker and Verwer 2003). Stochastic approaches for cell simulation are
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comprehensively reviewed by Turner et al. (2004). The following are selected web
resources for cell simulation.

http://systemsbiology.physics.drexel.edu CellSim is currently hosted at this
address. A full set of resources (including help files, source code, updates and other
utilities) will be made available as the tools are developed.

www.vcell.org The Virtual Cell site is a freely usable tool for spatiotemporal 
modeling. This framework for reaction-diffusion modeling has been developed 
as a national resource. Computational facilities are available directly through 
the National Resource for Cell Analysis and Modeling (NRCAM) to allow remote
simulation through Virtual Cell to academic groups.

http://biodynamics.indiana.edu/CellModeling/AboutCellX.html CellX is a cell
dynamics simulator based on 2D and 3D reaction transport simulation currently
under development.

www.sbml.org There are efforts underway to provide unified computational
coding platforms, including the Systems Biology Markup Language at this address.
This standard specification has a freely available Lesser Gnu Public License (LGPL)
library available for systems biology software projects. SBML specifications levels 
1 and 2 currently treat compartments kinetically and thus cannot be used for explicit
spatiotemporal modeling discussed in this chapter. However, explicit spatial 
geometry and diffusive properties are currently under consideration for the forth-
coming SBML level 3 specification. Standardization of a unified markup language
for spatiotemporal models through efforts such as SBML is needed to further
develop this field.

http://icb.med.cornell.edu/crt/SigPath/index.xml SigPath is an XML-based
information system designed for signaling pathways and networks within cells.

www.mcell.psc.edu/ MCell is a Monte Carlo spatiotemporal simulation on the
cellular scale. SmartCell is a general framework for the modeling and simulation of
diffusion-reaction networks on a mesoscopic scale using stochastic reaction models
(Coombes et al. 2004). Similar models include Stochsim and MesoRD.
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ABSTRACT

Cytomics, the systematic study of biological organization and behavior at the cellular level,
has developed out of computational imaging and flow cytometry and promises to provide
essential data for systems biology. The ability to perform high-content and high-throughput
imaging and analysis to reveal complex cellular phenotypes will not only further our under-
standing of how cells and tissues carry out their functions but also provide insight into the
mechanisms by which these functions are disrupted.

Advances in flow, chemical, and tissue cytometry extend the applicability of cytomics to
tissues, cytological smears, and blood and other body fluids. As such, cytomics not only 
provides a new framework for spatiotemporal systems biology but enriches personalized or
individualized medicine. This can take the form of individual disease course predictions for
therapy selection purposes as well as identification of discriminatory bio-parameter patterns.

I. INTRODUCTION

Systems biology aims at the understanding of the integral functionality of single
cells, organs, or organisms by molecular analysis and mathematical modeling
(Ideker et al. 2001; Kitano et al. 2002; Hood et al. 2003, 2004). This task is signifi-
cantly more complex for organisms than for single-cell systems such as bacteria or
yeast. Organismic complexity derives from the diversity of genotypes among indi-
viduals, via variable exposure histories to environmental influences in numerous
specialized organs. Cell states are characterized by significant internal hetero-
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geneity according to cell cycle, functional status, size, and molecule content—with
a heritable variation in the baseline gene expression (Morley et al. 2004). This inher-
ent variability may be constrained by a limited number of cell states or fates, as
described in the contribution of Huang.

Cytomics, the multimolecular quantitative analysis of the heterogeneity of cells
and cell systems (cytomes), in combination with exhaustive bioinformatics knowl-
edge extraction from analysis results (Valet 2002; Chitty 2005), aims to provide com-
prehensive, accurate, and systematic data. These qualities have been defined as
the cornerstones for measurement technologies in systems biology (Kitano 2001).
High-content and high-throughput methodologies are essential characteristics of
cytomics for both single cells and tissues (Ecker et al. 2005, Boyce et al. 2005).

Currently, the concept of cytomics profits from advances in areas such as loca-
tion proteomics, flow and tissue cytometry, screening assays, and cell and tissue
arrays. Such advances move us toward a broad, systematic collection of informa-
tion for clustering and cataloging cells according to their molecular, organelle, and
morphometric phenotypes. Cataloging cell states by assessing a wide spectrum of
quantities, which may be seen as state variables, is not necessarily driven by par-
ticular hypotheses—a property cytomics shares with other “-omics” methodolo-
gies. Realization of this concept have been successfully applied to the generation
of profiles of drug activity, using a hypothesis-free molecular cytology (Perlman et
al. 2004) and signaling network analysis (Sachs et al. 2005).

This chapter reviews various approaches in basic biological research and medi-
cine for generating quantitative, flow, and image-based data for a comprehensive
profiling and structural state space analysis. Analysis of changes of the cellular phe-
notype due to specific experimental perturbations are reviewed elsewhere in this
book. Cytomics-related image analysis of subcellular protein distributions, com-
partments, cells, and tissues is in many areas specific to the imaging technology
employed. However, for data mining statistical tools well known in bioinformatics
are employed to classify and subsequently catalog cell states, whereas statistical
correlations can span across levels of biological organizations.

As an example, cytomics data may be correlated with gene expression data to
identify significant molecular markers, but may also enable creation of a bridge
between cellular phenotypes and emerging physiological processes in the sense
of an integrated physiology approach. Furthermore, cytomics provides a framework
for the development of computational models of cells in support of a spatio-
temporal systems biology.

II. COMPUTATIONAL IMAGING IN CYTOMICS

A. Single-cell image analysis

One of the most important outcomes of the Human Genome Project is the real-
ization that there is considerably more biocomplexity in the genome and the pro-
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teome than previously appreciated (Herbert 2004). Not only are there many splice
variants of each gene system, but some proteins can function in entirely different
ways (in different cells and in different locations of the same cell), lending addi-
tional importance to the single-cell analysis of laser scanning cytometry and con-
focal microscopy. These differences would be lost in the mass spectroscopy of
heterogeneous cell populations. Hence, cytomics approaches may be critical to the
understanding of cellular and tissue functions.

Fluorescence microscopy represents a powerful technology for stoichiometric
single-cell-based analysis in smears or tissue sections. Whereas in the past the
major goal of microscopy and imaging was to produce high-quality images of cells,
in recent years an increasing demand for quantitative and reproducible microscopic
analysis has arisen. This demand came largely from the drug discovery companies,
but also from clinical laboratories. Slide-based cytometry is an appropriate
approach for fulfilling this demand (Tarnok and Gerstner 2002). Laser scanning
cytometry (Gerstner et al. 2002; Tarnok and Gerstner 2002; Megason et al. 2003)
was the first of this type of instrument to become commercially available, but today
several different instruments are on the market (Jager et al. 2003; Molnar et al. 2003;
Schilb et al. 2004).

These types of instruments are built around scanning fluorescence microscopes
that are equipped with either a laser (Tarnok and Gerstner 2002; Schilb et al. 2004)
or a mercury arc lamp as the light source (Bajaj et al. 2000; Molnar et al. 2003). The
generated images are processed by appropriate software algorithms to produce
data similar to flow cytometry. Slide-based cytometry systems are intended to be
high-throughput instruments, although at present they have a lower throughput
than flow cytometers. These instruments allow multicolor measurements of high
complexity (Gerstner et al. 2002; Ecker and Steiner 2004) comparable to or exceed-
ing that of flow cytometers.

A substantial advantage over flow cytometry is that cells in adherent cell cultures
and tissues can be analyzed without prior disintegration (Smolle et al. 2002; Kriete
et al. 2003; Ecker et al. 2004; Gerstner et al. 2004). In addition, due to the fixed posi-
tion of the cells on the slide or in the culture chamber cells can be relocated several
times and reanalyzed. Even restaining and subsequent reanalysis of each individ-
ual cell is feasible. Because a high information density on the morphological and
molecular pattern of single cells can be acquired by slide-based cytometry, it is an
ideal technology for cytomics.

Although at present not realized, the information density per cell can be
increased further by implementing technologies such as spectral imaging (Ecker et
al. 2004), confocal cytometry (Pawley 1995), fluorescence resonance energy trans-
fer (FRET) (Jares-Erijman and Jovin 2003; Ecker et al. 2004; Peter and Ameer-Beg
2004), near-infrared Raman spectroscopy (Crow et al. 2004), fluorescence lifetime
imaging (FLIM) (Murata et al. 2000; Peter and Ameer-Beg 2004), optical coherence
tomography (Boppart et al. 1998), spectroscopic optical coherence tomography (Xu
et al. 2004), and second harmonic imaging (Campagnola et al. 2003). All of these
technologies mark the progress in optical bio-imaging.
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In the future, developments in imaging resulting from a family of concepts that
allows image acquisition far beyond the resolution limit (down to the nm range) are
expected. These include multiphoton excitation (Manconi et al. 2003), ultrasensi-
tive fluorescence microscopes (Hesse et al. 2004), stimulated emission depletion
(STED) microscopy (Hell 2003), spectral distance microscopy (Esa et al. 2000), atomic
force microscopy (AFM) and scanning near-field optical microscopy (SNOM) (Rieti
et al. 2004), and image restoration techniques (Holmes and Liu 1992). Using laser
ablation in combination with imaging, even thick tissue specimens can be analyzed
on a cell-by-cell basis (Tsai et al. 2003).

B. Innovative preparation and labeling techniques

Biomolecular analysis techniques such as bead arrays (Lund-Johansen et al. 2000;
Tarnok et al. 2003), layered expression imaging (Englert et al. 2000), single-cell poly-
merase chain reaction (PCR) (Taylor et al. 2004), tyramide signal amplification
(Freedman and Maddox 2001), biomolecule labeling by quantum dots (Parak et al.
2003), magnetic nanobeads (McCloskey et al. 2003), and aptamers (Ulrich 2004)
open new horizons of sensitivity, molecular specificity, and multiplexed analysis.
With additional tools—such as laser microdissection (Taylor et al. 2004), laser cata-
pulting (Burgemeister et al. 2003), and fast electric single cell lysis (Han et al. 2003)—
single cells can be rapidly isolated and further subjected to genomic or proteomic
analysis (Burgemeister et al. 2003; McClain et al. 2003; Taylor et al. 2004) or single-
cell capillary electrophoresis (Han et al. 2003).

The dimensionality of measured molecular cell data can be substantial, especially
when repeated six- or eight-color staining protocols are performed on many 
different cell populations (Lenz et al. 2003; Ecker et al. 2004; Mittag et al. 2005) 
and their spatial interrelationships within a tissue are taken into account (Smolle 
et al. 2002; Ecker and Steiner 2004; Gerstner et al. 2004). The data density is 
multiplied if high-density single-cell analysis such as SNOM, AFM (Rieti et al. 2004),
and STED (Hell 2003)—combined with single-cell genomics (Burgemeister et al.
2003; Taylor et al. 2004) or proteomics—(Han et al. 2003; McClain et al. 2003) is
added.

A highly multiplexed yet hypothetic model for cytomic analysis of biological spec-
imens could work as follows. Viable cells may be initially stained for cell functions
(e.g., intracellular pH, transmembrane potential, intracellular Ca2+), followed by fix-
ation to remove the functional stains and restaining for specific extra- or intracel-
lular constituents such as antigens, lipids, or carbohydrates, including, specific
nucleic acids. Serial optical analysis will permit for every individual cell the 3D-
reconstruction of its exact localization within the network of other cells in a tissue,
together with the molecular morphology of its cell membrane, nucleus, organelles,
and cytoplasm (including the parameterization of 3D shapes).

Serial histological sections taking stereological aspects of tissue architecture into
account (Mandarim-de-Lacerda 2003) could serve as a basis for the standardized
analysis of proximity and interaction patterns for intracellular structures such as
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nucleus and organelles, as well as for different cell types within the tissue architec-
ture (which can even include time as a parameter for 4D intravital microscopy
[Mempel et al. 2004]). Microscopic image capture and analysis systems using their
spatial relocation capacities will increasingly permit such staining sequences.
Further genomic and proteomic characterization of single cells will yield substan-
tial input into our understanding of cell development and function in the histolog-
ical context, as further outlined in the section following.

C. Location proteomics

Systems biology researchers seek to build accurate predictive models of complex
biological systems, typically incorporating information about events involving dif-
ferent types of biological macromolecules and occurring on different length and
time scales. This requires the creation of systematic frameworks for representing
this information and large-scale projects to acquire it (creating the “parts lists” for
building models). A critical requirement for the success of such large-scale projects
is being able to automate not only sampling, specimen preparation, and data col-
lection but also data analysis.

1. Automated classification of subcellular location patterns

A particularly important category of information for building systems models is the
location of proteins and other biological molecules within cells. Because fluores-
cence microscopy is the most commonly used method for determining the sub-
cellular location of proteins, an important initial question was whether automated
analysis of subcellular patterns in fluorescence microscope images was feasible.
This question was answered by the demonstration that five subcellular patterns
could be distinguished in 2D images of Chinese hamster ovary cells (Boland et al.
1998) and that 10 subcellular patterns could be distinguished in HeLa cells (Murphy
et al. 2000; Boland and Murphy 2001).

The dramatic variation in cell size, shape, and orientation exhibited by cultured
cells combined with the extensive variation in position of organelles within cells
suggested that approaches involving direct (pixel-by-pixel) comparisons with a
library of cell images of known patterns would not provide accurate assignment of
new images to one of those patterns. Instead, a feature-based approach was used
in which each image is represented by a set of numerical features that capture
various aspects of the pattern without being overly sensitive to rotation or transla-
tion within the sample plane.

These features have been systematically described and combined into sets of
subcellular location features (SLFs). Initial work on distinguishing 10 patterns in
HeLa cells achieved an average accuracy of 83% on individual cells using feature
set SLF5 and a neural network classifier (Boland and Murphy 2001). Subsequent
work has improved this accuracy to 92% using feature set SLF16 and a majority-
voting ensemble classifier (Huang and Murphy 2004).
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An important conclusion from this work was that patterns that cannot be distin-
guished by visual examination could be discriminated by the automated systems
(Murphy et al. 2003). In particular, two Golgi proteins that cannot be distinguished
better than random guessing by visual examination can be recognized with accu-
racies of 82 to 90% using SLF16 (Huang and Murphy 2004). Discrimination of the
similar lysosomal and endosomal patterns by the automated system is also 5 to 6%
better than that achieved by visual examination.

Because macromolecules are distributed in three dimensions within cells, not just
two, the accuracy of classification of 3D images obtained by confocal microscopy
was also investigated. An initial accuracy of 91% using feature set SLF9 and a neural
network classifier was obtained for the same 10 patterns previously studied in HeLa
cells (Velliste and Murphy 2002), and this accuracy was subsequently improved to
98% using feature set SLF17 (Chen and Murphy 2004). Example images of the 10
patterns are shown in Figure 16.1.

2. Automated microscopy and pattern classification

These results demonstrate that the fundamental problem of recognizing the major
subcellular patterns in 2D and 3D images has been solved. However, practical expe-
rience shows that the automation of the data acquisition process (including auto-
focusing and detection of structurally consistent and homogenously stained cells)
still imposes limitations to achieve highest classification accuracy. As the technol-

Figure 16.1. Representative 3D images of 10 subcellular patterns that can be distinguished with high
accuracy by automated classifiers. The distribution of a DNA probe is shown in red, that of total cell
protein in blue, and that of specific organelle markers in green. The paired images are maximum value
projections along the z or x axis. (Picture copyright Carnegie Mellon University.) (see color plate 12).
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ogy evolves, the next step can be taken in applying these methods to characterize
entire proteomes, and we have coined the term location proteomics to describe
this approach (Chen et al. 2003).

One way in which this can be done is to collect images of many different pro-
teins and assign each protein to one of the major classes. An important recent test
of an automated approach has been performed using expression in MCF7 cells of
11 GFP-tagged proteins via transfection (Conrad et al. 2004). The average accuracy
reported was 82%, but this average included recognition of a separate “artifact”
class (created by visual inspection of the training images). The accuracy obtained
for assignments to the 11 protein patterns was 73%.

The corresponding higher error rate if compared for similar analysis in HeLa cells
could be due to any of a number of differences between the studies, including cell
type, the use of overexpressed fusion proteins versus endogenous proteins, the
magnification, and the use of different feature sets. But most importantly, the addi-
tional challenges of accurate automated autofocusing and cell segmentation must
be considered as well. Nonetheless, current results are encouraging for the use of
automated microscopy, especially in that the accuracy of classification of a partic-
ular protein can be improved by combining results from more than one cell (Boland
and Murphy 2001).

3. Clustering of proteins by location pattern

An alternative to assigning proteins to “known” subcellular location patterns is to
use unsupervised learning methods to identify the statistically significant patterns
observed and group proteins by them. The principle is to represent each protein
pattern using the SLFs but to use cluster analysis to group them rather than to clas-
sify them. This approach was demonstrated using 3D images of a number of pro-
teins in 3T3 cells (Chen et al. 2003). This study used cloned cell lines expressing
randomly-chosen proteins fused internally with GFP using CD-tagging (Jarvik et al.
2002).

A recent study of 90 of these clones tested different ways of measuring distance
between proteins in the feature space, as well as different clustering approaches
(Chen and Murphy 2005). The results indicated that the clones formed 17 distin-
guishable clusters that provide greater refinement than visual description of the
patterns using standard terms. The consensus tree obtained, along with example
images from various clusters, is shown in Figure 16.2.

4. Imaging protein kinetics

The results summarized previously were all obtained using static images that rep-
resent the steady-state distribution of proteins. A major upcoming challenge will
be the acquisition and incorporation into location proteomics of information on the
kinetics with which proteins move in these steady states, as well as the kinetics with
which those states change due to the cell cycle, environmental changes, onset of
disease, or addition of drugs. Time-lapse imaging techniques allow consistent pro-
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filing of changes in the cell state. FRAP and FRET (and the tracking protein com-
plexes with q-dots) are powerful methods for studying dynamics. Relocation of
protein species reveals important functional activities on state-space transients. An
example is the release of cytochrome c from the mitochondria into the cytosol that
mediates apoptosis (Goldstein et al. 2000), or the dynamics of histone binding to
chromatin in living cells (Mistell et al. 2000).

5. Location proteomics and generative models

It is anticipated that the methods described previously will be used for large-scale
studies to characterize the subcellular distribution of proteins in a number of cell

Figure 16.2. Consensus subcellular location tree for 3T3 cell lines obtained by CD-tagging. 3T3 cells
were infected with a retroviral construct carrying a GFP coding sequence surrounded by splicing donor
and acceptors sites (CD-tagging). Clones expressing randomly-tagged proteins were isolated and the
tagged gene identified by RT-PCR (Jarvik et al. 2002). At least 10 3D images of live cells were obtained
for each clone using spinning disk microscopy (Chen and Murphy 2003), and the clones were grouped
as described in the text and as by Chen and Murphy (2005). The degree of dissimilarity between any
pair of clones can be found by measuring the vertical distance from one of them to the highest node
along the minimal path to the other clone, plus the vertical distance from that node to the other clone
(as discussed in the text, this distance reflects the separation between the two clones in the SLF feature
space). The names of the proteins are not shown due to space limitations. Examples of images from
various branches of the tree are shown. The full tree with names and images of all clones is available at
http://murphylab.web.cmu.edu/services/PSLID/tree.html (see color plate 13).
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types. Important areas of additional research involve enabling patterns that are a
mixture of other patterns to be “unmixed” and making it possible to describe the
distribution of any protein using generative models that can be incorporated into
simulations to create distributions of many proteins within cells in silico.

D. Cytomics analysis in tissues

The introduction of robotic microscopy in concert with robust machine vision soft-
ware that can discern the histomorphology of multicellular arrangements in tissues
in a comprehensive fashion has extended cytomics into the tissue domain. A mul-
ticellular high-throughput, high-content analysis of tissues (sometimes termed tis-
somics [Ecker and Tarnok 2005; Kriete and Boyce 2005]) can be used to support
and confirm histopathological assessment of tissues, allowing a more complete
quantitative evaluation of phenotypical cellular responses and the identification of
structural markers of tissue normality, injury, and disease. Specific applications
include basic biomedical research, pathobioinformatics, investigative toxicology,
drug target development, and tissue engineering.

1. High-throughput imaging

Complete imaging of a histological glass slide (20 ¥ 50 mm) at 20¥ microscopic
magnification can generate up to 3,000 individual digital color images, which new
types of ultrafast scanners can image within minutes (Weinstein et al. 2001). The
resulting image montages of several GB in size represent entire histological slides
or tissue arrays. The enormous amount of data generated by this new class of micro-
scopic scanners is stored in databases. Secondary representations, by subsampling
or data compression, mainly serve viewing or control purposes and have been
developed as part of adequate solutions for the handling and mining of such large
data sets.

2. High-content image analysis

The analytical task of cytomics in tissues is a fully automated analysis of tissue pro-
files without user intervention, which can be challenging given variations caused by
the prevailing methods of tissue preparation and staining. Robust analysis proce-
dures that rely on the topology of cells and tissue structures, and new object-
oriented approaches, are preferred solutions that have distinct advantage over the
prevailing pixel-oriented methods (Price et al. 2002; Kriete et al. 2003). Under-
standing tissues as a hierarchy of larger anatomical constructs, consisting of 
different cell types in different phases of development, that further contain cell
organelles and cell nuclei is key for object segmentation (Kriete and Boyce 2005).

These entities, once identified, provide a rich source for a hypothesis-free geo-
metric intensity and field-specific characterization. The identification of significant
components that change with disease state or treatment may be found by multi-
variate statistics in the course of further data analysis. The method is extendable
to include specific stains and biomarkers, as well as tissue microarrays or tissue 
cultures.
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III. DATA ANALYSIS

A. Data mining, differential analysis, and discrimination

Because cytomics investigates individual cells, it is possible to separate (or gate)
cells into different state or response categories (Boolean classification). Cells are
grouped and catalog based on a number of cellular features from one or multiple
probes, typically originating from one level of observed granularity or resolution
(horizontal analysis according to biological hierarchy). This includes overall fluores-
cence intensity, rate of rise/fall (for kinetics), area, object pixel statistics (average
intensity, min and max), and variation of pixel intensity within ROIs (granulation
algorithm).

Classes of cells can be color-coded for easy visualization, and average measure-
ments over a subset of cells can be taken. A “well” classification is then applied
based on the number of cells in each well that meet a user-defined threshold. In
turn, a response “heat” plate-map that readily highlights cellular trends or com-
pound hits can be generated. This process enables us to identify features that best
reflect specific biological responses and that are therefore good screenable 
parameters.

Multiparametric single-cell analysis by flow or image cytometry can provide sig-
nificant amounts of data that may seem difficult to distribute and analyze (Hood et
al. 2004). Solutions to handle biological image data over the Web have been sug-
gested but have had limited application (Lindek et al. 1999), whereas analytical pro-
cedures may relate cytomics data with biomedical literature and bioinformatics
databases (Abraham et al. 2004).

Differential data pattern analysis (Valet and Hoeffkes 2004) provides a means of
analyzing multiparametric data of various types in parallel in a nonhierarchical way.
such data from flow and image analysis, chip arrays, clinical chemistry, and clinical
data can be simultaneously processed in a manner similar to that of predictive med-
icine by cytomics (Valet 2002). Disease-induced differentials in patients versus
normal individuals, stationary disease patients, or survivors are analyzed in this
approach instead of differentials from perturbed model systems that may not
exactly reflect the human situation (Horrobin 2003).

The algorithmic procedure is summarized as follows. Numeric data columns are
transformed into triple matrix characters (-) = decreased for values below a lower
percentile threshold, into (0) = unchanged when between lower and upper thresh-
old, and into (+) = above an upper percentile threshold. The resulting triple matrix
database is classified in a learning situation for samples of patients from different
classification categories (such as healthy versus diseased, progressive versus sta-
tionary disease, and survivor versus non-survivor patients). Individual triple matrix
columns are temporarily removed from the learning process in a sequential way to
assess their individual contribution to the classification result.

At the end of the learning process only data columns having improved the initial
classification remain in the discriminatory bio-parameter patterns comprising typi-
cally between 10 and 30 parameters. The bio-parameter patterns can be further
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used for the exploration of molecular disease pathways and in the search for new
drug targets. In this way, single-cell- and single-individuum-oriented analyses
provide a maximum of discrimination because no averaging over heterogeneous
entities occurs during data acquisition and bioinformatic evaluation (Szaniszlo et al.
2004).

Principal component analysis is another way of reducing the complexity of the
data, in particular if cytomics data are merged with other bioinformatic data sets
from the same cells and tissues, such as gene expression profiles (Kriete et al. 2003). 
An alternative is Fisher discriminant analysis (FDA), which was used previously 
to demonstrate improved differentiation of treatment groups if chemical data are
combined with multicellular phenotypical data (Kriete et al. 2005).

Nature-induced bio-parameter perturbations or differentials (such as between
diseased versus healthy, progressive versus stationary disease, or survivor versus
non-survivor patients) can be directly analyzed instead of generating hypothesis-
driven systematic perturbations in model systems. Individualized disease course
prediction for patients is possible in this way (Valet 2002), without the prerequisite
of fully understanding the entire molecular network of disease-associated cell
system changes. Discriminatory data patterns are obtained by multiparameter data
analysis.

These data patterns can be further investigated by a molecular reverse-engi-
neering strategy (Valet 2005) to understand disease-inducing molecular pathways
or to find new drug targets. It is advantageous for this concept that many data sets
are already available as starting material from current or past clinical studies in
which patients are routinely followed for diagnostic or therapeutic purposes.

B. System-wide data correlations

Multicellular profiles can be correlated statistically with gene expression profiles.
Foundations for this (vertical) analysis crossing different levels of biological hierar-
chy are multi-sample comparisons, assuming that changes on one level of biolog-
ical organization consistently alter the phenotype and function on a higher
physiological level.

As an example, Spearman’s rank order correlations have revealed significant
monotonic relationships that illuminate important connections between structural
features in tissue composition and gene expression levels (Kriete et al. 2003). 
Similarly, a hierarchical clustering analysis based on a jackknife correlation demon-
strated correlations between groups of genes with tissue cytometric markers (Kriete
and Boyce 2005). As such, cytomics-related techniques provide covariants that can
be used to enrich gene expression analysis (Boyce et al. 2005).

IV. DISCUSSION

Cells represent elementary building units of cell systems, organs, and organisms,
and diseases are caused by molecular changes in cells and cell systems. Consid-
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ering the heterogeneity of human cell systems, single-cell analysis (Szaniszlo et al.
2004) is important in resolving a maximum of compartmentalized molecular het-
erogeneity; for example, to discriminate changes in diseased or disease-associated
cells from nonaffected bystander cells. Technical progress broadens the number
and quality of available cell state variables, such as cytometry using microfluidic
chips (Palkova et al. 2004; Wu et al. 2004) and capillary electrophoresis (Dovichi 
and Hu 2003; Arkhipov et al. 2005). Cell microgenomics expression profiles (Taylor
et al. 2004)—as well as single-cell proteomics (Dovichi and Hu 2003) and
metabolomics (Palkova et al. 2004; Wu et al. 2004; Arkhipov et al. 2005)—also
become accessible.

An important concept of systems biology subsists in the application of multiple
differential perturbations on biological cell systems to observe their molecular reac-
tivity with the aim of mathematical modeling to understand the mechanisms of the
observed alterations. The prediction of the reactivity for biological systems under
predefined conditions represents a further goal. Cell arrays and microwell infection
assays on cultured cells in conjunction with RNAi allows screening of the morpho-
logical phenotypical states in a high-throughput fashion. At present, a suggested
comprehensive mapping of all proteins in the cell or in cell compartments by 
using high-resolution electron tomography (Baumeister 2004) is still limited, 
and the required resolution has to be improved. Light microscopic imaging 
techniques in conjunction with fluorescence markers, as described here, are 
therefore the preferred technique and can be more easily applied in a medical 
environment.

Single-cell techniques overcome the problem of averaged cellular information in
cell homogenates or extracts where it cannot be decided whether observed
changes derive from all cells or only from a particular cell subpopulation. The analy-
sis of humoral body compartments such as blood plasma or serum, urine, or cere-
brospinal fluid as a further alternative provides only secondary information by
cell-derived molecules. Metabolites from cellular disease processes may have been
altered in the meantime, or they may not become apparent in humoral compart-
ments for lack of secretion or owing to fast renal or biliary excretion.

It may be contended that the single-cell approach will frequently not be feasible
because not all cells of a given sample can be analyzed (as, for example, in smears,
biopsies, or histological sections). Experience shows that it is not obligatory to
analyze all cells of a given sample before one can derive relevant conclusions. It is
frequently sufficient to analyze a representative fraction of diseased cells as well as
reference cells. This will be shown by the subsequent examples. Mechanical dis-
aggregation of tissues at 0 to 4°C for cell function analysis by flow cytometry
destroys between 90 and 95% or more of all cells.

Furthermore, a relative enrichment of epithelial and inflammatory cells occurs
because fibroblasts or smooth muscle cells have been largely destroyed. More than
90% of cancer patients are correctly identified from flow-cytometrically identified
molecular cell properties (Valet et al. 1984; Liewald et al. 1990). This indicates that
a representative fraction of cancer cells and normal epithelial reference cells has
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survived despite the fact that the cellular composition of the samples has changed
and that the tissue architecture was lost during cell preparation.

The result is not surprising because diseases represent molecular changes in cells
and cell systems. The analysis of diseased cells or disease-associated inflammatory
and immune cells should therefore by itself contain the relevant molecular infor-
mation about the actual state (diagnosis) and the future development (prediction)
of a disease, irrespective of the original position of the analyzed cells in an organ.
A further reservation concerning single-cell analysis is that cell properties may be
altered during preparation for analysis (Hood et al. 2004). Deep-freezing of tissues,
immediate cell fixation, or cell preparation between 0 and 4°C for functional
studies, however, minimizes such risks.

Valuable information is obtained, for example, from the functional analysis of
oxidative status or oxidative burst in inflammatory immune cells such as lympho-,
mono-, and granulocytes. Such disease-associated cells can be measured in tissues
but advantageously also in the peripheral blood, where high-speed multiparame-
ter flow-cytometric single-cell analysis is possible and provides individualized pre-
dictions or risk assessments for intensive-care patients (Valet et al. 1998, 2001). We
can conclude that molecular alterations by cell preparation or staining steps cannot
be generally excluded. They do, however, definitely not impair the determination
of clinically relevant molecular cell parameters.

V. CONCLUSIONS

The value of the single-cell/single-individual analysis concept resides in its clinical
value for the individual patient as well as in the bio-parameter patterns being of
interest for molecular reverse engineering by systems biology. The backward
molecular analysis may provide information on specific molecular pathways respon-
sible for disease formation and reveal new drug targets. A specific focus of cytomics
is in location proteomics, which uses quantitative readouts for functional genomics.

Detailed knowledge of the location, concentration, and activation of proteins and
other biological molecules and valuable information can be obtained by studying
cell behaviors in a systematic fashion in parallel with ongoing proteomics projects.
Information on specific biomarkers and proteome changes associated with func-
tion, disease, and age can be valuable for diagnostics or therapeutics before a com-
plete mapping of the proteome is available.

Diseases are typically diagnosed by clinicians from clinical symptoms or clinical
chemistry parameters, or by pathologists from the evaluation of the altered micro-
scopic morphology in tissue sections or in cytological samples. Single-cell image
or flow-cytometric analysis extends the diagnostic knowledge level by the descrip-
tion of molecular cell phenotypes and may detect alterations at a stage where no
morphological correlate is yet detectable.

Such measurement may also address therapy-related future disease courses of
individual patients as a clinically promising new feature (predictive medicine by
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cytomics) (Valet et al. 2001; Valet 2002; Valet and Tarnok 2003). A human cytome
project has recently been proposed (Valet and Tarnok 2004; Valet et al. 2004) to par-
ticularly focus on the development and management of clinically complex diseases
such as malignancies, infections, diabetes, allergies, rheumatoid diseases, asthma,
myocardial infarction, stroke, and others.

The translational research concept laid out is deductive for the selected analyti-
cal parameters, but inductive during the data evaluation phase because the infor-
mation of all quantifiable variables and cells is investigated for its discriminatory
potential. In this step, most of the non-differential information in state space is 
typically eliminated as irrelevant during the algorithmic data-sieving phase.

The remaining discriminatory information may uncover new molecular knowl-
edge otherwise unreachable by traditional hypothesis formulation. It also provides
initial focus points for modeling efforts. It is unknown how much molecular knowl-
edge is required to model, for example, disease susceptibility or future disease
courses in individual patients. However, cytomics now opens the possibility of con-
straining bottom-up forward engineering (Collins et al. 2003)—as in network or 
spatiotemporal modeling—with precise data from a cellular level of biological
organization.
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ABSTRACT

The IUPS Physiome Project aims to facilitate the understanding of physiological function in
healthy and diseased mammalian tissues by developing a multi-scale modeling framework
that can link biological structure and function across all spatial scales. To achieve this requires
an open-source internationally collaborative effort to design XML standards for encapsulat-
ing models, web-accessible model databases, and computational tools for authoring and
visualizing models and running model simulations. A brief overview of the project is given
in this chapter, with a discussion of the current progress and future plans for three particu-
lar organ systems: the heart, lungs, and musculo-skeletal system.

I. INTRODUCTION

The focus of biomedical science over the past few decades has, for good reason,
been on molecular biology and the revolution associated with sequencing the
human genome, understanding gene transcription and translation, determining the
3D structure of proteins, and using a range of remarkable imaging technologies to
investigate cellular processes. With the vast amount of experimental data now avail-
able, it is hardly surprising that a “systems biology” (quantitative, model-based
framework) has emerged to deal with the overwhelming complexity of molecular
and cellular biology. A number of chapters in this book describe many aspects of
this systems biology framework.
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Another revolution, equally important, has occurred over the same period. This
is the development of imaging technologies such as tagged MRI, helical scan CT,
high-resolution electrical mapping, and so on, which now allow the larger-scale
physiological processes in the body to be measured and probed with considerable
precision in a whole-body clinical setting. For example, it is now possible to 
routinely obtain detailed measurements of mechanical deformation in the heart
throughout the cardiac cycle, to measure gas movement in the airways of the
breathing lung, and to obtain high-resolution digital images of the structure of
many internal organs (Hunter et al. 2002).

The mathematical framework for interpreting and modeling the function of
organs and organ systems is, moreover, well developed because it has been able
to build on 150 years of developments in the physical and engineering sciences.
Most of the manufactured devices we rely on in the modern world (cars, airplanes,
cell phones, and so on) are based on a thorough understanding of the underlying
physical laws of nature, such as conservation of mass, momentum, energy, and the
corresponding equations of electromagnetism, mechanics, and so on. Sophisti-
cated software tools, based on these physical principles, are available for engineers
and physicists for designing new products and analyzing their behavior.

Applying these tools to biological organ systems is fairly straightforward,
although it does pose some particular challenges. Nature almost never exploits
geometric symmetry in the way engineers do, and thus the full 3D shape and struc-
ture of organs has to be modeled. Nature also uses anisotropic and inhomogenous
materials and seldom limits herself to a linear range of behavior, whereas engi-
neering structures typically employ homogenous isotropic components with linear
material properties (Hunter and Borg 2003; Crampin et al. 2004).

If we are to link these two ends of the biological spectrum—from genes and pro-
teins to whole-organ physiology via protein pathways to cell and tissue structure
and function—we need to address the challenge of multi-scale modeling across
spatial scales from nanometers to meters and temporal scales of microseconds to
a human lifetime (see Figure 17.1). The benefits of achieving such a synthesis, espe-
cially one that incorporates patient-specific data, would be considerable (Noble
2002).

In this chapter we give a brief overview of a project attempting to achieve this
synthesis, called the IUPS Physiome Project. The concept of a “Physiome Project”
was presented in a report from the Commission on Bioengineering in Physiology
to the International Union of Physiological Sciences (IUPS) Council at the 32nd
World Congress in Glasgow in 1993. The term physiome comes from physio (life)
+ ome (as a whole), and is intended to provide a “quantitative description 
of physiological dynamics and functional behavior of the intact organism” 
(Bassingthwaighte 1995, 2000).

We begin by illustrating some of the organ models that have been developed
and the progress likely in the next few years. We then discuss the open-source 
software tools being developed to facilitate international collaboration on the
project.
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Figure 17.1. The multi-scale modeling hierarchy.
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II. ORGAN SYSTEMS: CURRENT PROGRESS AND FUTURE PLANS

The most highly developed “physiome” model of an organ is probably the heart
model (Kohl et al. 2001), developed as a collaboration among research groups at
the Universities of Auckland, Oxford, and California (San Diego). The geometry and
fibrous-sheet structure of the heart has been measured and modeled with finite-
element techniques (see Figures 17-2a- through c), which allow the equations of
large deformation elasticity theory to be solved during the cardiac cycle under
appropriate ventricular boundary conditions (Nash and Hunter 2000).

The coronary vessel tree (arteries and veins) is also modeled, and the Navier-
Stokes equations governing blood flow are solved with coupling between the soft
tissue mechanics of the ventricular wall and the deformable blood vessel wall (see
Figure 17.1d) (Smith et al. 2000, 2002). The reaction-diffusion equations governing
propagation of the wave of electrical excitation are also solved on this finite-
element geometry and coupled to the mechanics through calcium release from RyR
channels in the sarcoplasmic reticulum (stimulated by L-type calcium channels in
the T-tubules) and through calcium binding to troponin-C proteins on the myofila-
ments (Hunter et al. 2003).

Currently, the heart model incorporates myofilament mechanics (Hunter et al.
1998; Stevens et al. 2003), the electrophysiology of ion channels (Noble and Rudy
2001; Smith and Crampin 2004), and the coupling between these (Nickerson et al.
2001), but does not yet include the regulation of the myofilament proteins and ion
channels by signal transduction pathways—the next immediate target (Saucerman
et al. 2004). Other developments currently underway include models of the heart
valves and fluid mechanics of the ventricular cavities (coupled to wall mechanics),
a structurally detailed model of the atria, and a model of the heart’s intrinsic nervous

a b c d 

Figure 17.2. The geometry and microstructure of ventricular myocardium. (a) Finite-element surfaces
fitted to measurements from the left and right ventricles of the pig heart. (b) 3D finite-element model of
the heart. The elements use high-order basis functions (cubic Hermite) and therefore relatively few are
required to provide an accurate description of ventricular anatomy. (c) Two layers of streamlines (one on
the epicardial surface and one midway through the wall) are used to visualize the epicardial and
midwall fiber directions. (d) The coronary arteries modeled from pig heart data. (Images a and b from
Stevens & Hunter, copyright 2003, used by permission. Images c and d from Hunter et al., copyright
2005, used by permission.) (see color plate 14).
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system. The spatial distribution of ion channels in the heart is also being incorpo-
rated, as this is known to be important in the mechanisms of reentrant arrhythmia.
An important application of the model is the ability to follow the consequences of
an ion channel mutation, or drug-binding modification of a channel, on the pattern
of activation in the intact heart (Noble 2002; Smith et al. 2004).

Another example of organ-scale modeling is shown in Figure 17.3. Here, the pul-
monary circulation is modeled from the level of the whole organ (Figure 17.3a) down
to the blood cells transiting through the capillary bed (Figure 17.3c). Fernandez et
al. (2004) and Tawhai et al. (2004) show how subject-specific models of human (or
animal) lobes can be routinely derived from high-resolution CT imaging of an indi-
vidual subject, or for subjects imaged as part of the digital Lung Atlas (Li et al. 2003;
Hoffman et al. 2004). These models are finite-element meshes in which equations
for (for example) the large nonlinear deformation of the lung tissue are solved
(Tawhai et al. 2005).

The geometry of the largest pulmonary arterial and venous blood vessels can
also be defined from the same CT imaging (Burrowes et al. 2005a, 2005b), but for
the modeling approach described here—(in which in vivo geometric data is used
in preference to more extensive postmortem data)—an additional technique must
be employed to model the non-imaged vessels such that the resulting trees are
anatomically consistent. One approach is to use the maximum extent of the imaged
blood vessels in combination with a volume-filling branching algorithm, such as has
been used by Tawhai et al. (2004) to model both the human and ovine bronchial
airway trees (Figure 17.3b).

This technique generates “accompanying” blood vessels within the geometry of
the lobes, and additional steps can be included to model the extensive system of
supernumerary vessels (Burrowes et al. 2005a, 2005b). At the microcirculatory level,
the pulmonary capillary bed forms a dense mesh of short capillary segments,

 

a b c 

Figure 17.3. (a) Finite-element model of the five human lobes, derived by geometry fitting to high-
resolution CT imaging of a normal human lung. (b) Airway model derived by geometry fitting the
uppermost airways (down to generation 6–9) to CT imaging and “filling” the volumes in a using a
branching algorithm. (c) Pressures predicted by solution of Navier–Stokes equations in the elastic
pulmonary arterial tree, in an upright lung under normal gravity. The figures to the right show
microcirculatory cell transit simulated in the apical and basal lung regions (see color plate 15).
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wrapped over the alveoli in a continuous “sheet.” Burrowes et al. (2004) have
modeled this physical relationship, representing the pulmonary capillary bed as a
multi-segmented finite-element mesh generated over a 3D anatomically-consistent
alveolar sac such that adjacent alveoli in the model share a single sheet of capil-
laries. The alveolar sac model used in the study was generated as a volume-filling
structure. However, the method developed by Burrowes et al. would work equally
well over an alveolar model derived directly from microstructural measurements.

The advantage of this approach is that it exploits the imaged geometry of the
lobes and of the vascular or bronchial tree, producing models with realistic spatial
relationships among airways, veins, arteries, and lung tissue. The models can there-
fore be readily exploited to couple multiple processes at the same physical scale
(e.g., tissue mechanics and blood flow) or to couple over multiple scales (e.g., New-
tonian flow in the large elastic blood vessels, and two-phase fluid transit in the
microcirculation). For example, Burrowes et al. (2005b) solved the Navier-Stokes
equations in elastic venous and arterial trees, subject to boundary conditions for
pressures at the heart, pressures at the capillary bed, a gravitational acceleration
vector, and transpulmonary pressure (Figure 17.3c).

Because the vascular models are “embedded” within the mesh of the lobes, sim-
ulation of soft tissue deformation of the lung provides (1) a change in geometry of
the vascular models and (2) pressures acting on the vessels that result from expan-
sion or recoil of the parenchymal tissue. The tissue pressures derived from the lung
deformation and peripheral vessel flow calculations of the Navier-Stokes solution
provide boundary conditions for simulation of red blood cell and neutrophil transit
through the alveolo-capillary bed (Burrowes et al. 2004). Two capillary solutions are
shown in Figure 17.3 for different tissue pressures. Conversely, the pressure drop
predicted by the microcirculatory model provides updated pressure boundary con-
ditions for re-solution of flow in the arteries and veins.

Because the multi-scale models are separable, they can be coupled to different
geometric or functional models than those that have been described here. For
example, models that represent the average branching structure (Weibel 1963) and
the average branching asymmetry (Horsfield et al. 1971)—or that have been meas-
ured directly from casts (Phalen et al. 1978; Schmidt et al. 2004)—can be used in
place of the anatomically-based bronchial, venous, or arterial trees. The next stages
of development will focus on interactions with other organs or muscle groups (the
heart, diaphragm, and other respiratory muscles), and on incorporating the spatial
distribution of airway and blood vessel smooth muscle.

A third example of organ-level modeling is shown in Figure 17.4 for the musculo-
skeletal system. All bones and muscles of the human musculo-skeletal system have
now been modeled, although not all yet have the detailed structure incorporated
(muscle fiber directions and trabecular bone density). These models are being used
for studying normal and abnormal gait, and for applications in surgical planning
and virtual surgery training (Fernandez et al. 2001).

Now that all of the muscles and bones of the human body have been modeled,
a database is being established to allow open Internet access to the models. 
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The anatomies of the blood circulation and nerve pathways are also being 
incorporated.

III. OPEN STANDARDS AND OPEN-SOURCE TOOLS FOR 
THE PHYSIOME PROJECT

In this section we discuss the XML-based modeling standards and associated soft-
ware tools currently being developed for the Physiome Project (see note in
Acknowledgments). Much of the effort over the last five years has been in devel-
oping the CellML cell modeling standard and associated ontologies for describing
biological systems (Cuellar et al. 2003; Lloyd et al. 2004) (see also www.cellml.org).

The web-accessible database of CellML models based on peer-reviewed journal
publications currently contains about 300 models in the following categories: signal
transduction pathway models, metabolic pathway models, cardiac electrophysio-
logical models, calcium dynamics models, immunology models, cell cycle models,
other cell-type electrophysiological models, smooth and skeletal muscle models,
mechanical models, and constitutive law models. This database is now widely used
by the biological modeling community, and is also being translated into SBML 
(Systems Biology Markup Language for biochemical reaction networks; see
www.sbml.org) for use by the systems biology community.

Figure 17.4. (a) A model of the human skeleton and (b) lower limb subset. (c) The fiber orientation in
the rectus femoris muscle and (d) spatially varying material properties in the patella (red, cortical bone;
blue, cancellous bone). (e) The muscle surface potential arising from a single nerve activation. (f)
Investigation of loads on the patella cartilage during flexion and (g) model used to study the gait of a
cerebral palsy subject. (From Hunter, Smith, Fernandez, and Tawhai, copyright 2005, by permission.)
(see color plate 16).
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An application programming interface (API) has been created for reading and
writing the CellML files (see cellml.sourceforge.net). Open-source software tools are
being developed for authoring CellML models, for rendering the models 
graphically, and for running model simulations (see www.bioeng.auckland.ac.nz/
physiome/physiome_project.php). CellML uses Content MathML to represent the
underlying mathematical relationships between/among model variables. A web-
accessible ontology for accessing anatomical information and models is being set
up using Terminologia Anatomica identifiers.

The graphical user interface (based on Mozilla/XUL), shown in Figure 17.5, is
being developed for interacting with multi-scale Physiome models across all organ
systems via the ontology database. It is intended both as a means of navigating
the model databases and as a means of running model simulations and viewing
simulation results.

IV. DISCUSSION

In this chapter we have illustrated anatomically and biophysically based models of
three organ systems (heart and circulation, lungs, musculo-skeletal) of the twelve
organ systems. Other organ systems either currently well developed or well under-
way are the digestive system, the skin (integument), the kidney and urinary system,
and the lymphatic (immune) system. Others just starting are the endocrine system,
the nervous system, the special-sense organs, and the male and female reproduc-
tive systems.

As these organ systems are modeled at the tissue/organ level and coupled to
models at the cellular level (such as the cardiac ion channels in the heart model),
it is becoming feasible to consider mapping these cell-, tissue-, and organ-level
physiological processes into the proteome—the entire set of proteins. There are
only about 200 cell types, each distinguished by the relative expression levels of
various proteins that make up the cellular processes of metabolism, signal trans-
duction, transport, motility, organization of the cytoskeletal structure, and opera-
tion of the cell cycle.

V. CONCLUSIONS

The greatest challenge of all will be modeling gene expression and how the 19,000
genes of the human genome are transcribed and, via splice variants, translated (and
subsequently modified by the addition of carbohydrates and so on) into the 100,000
or so proteins that define biological function at a molecular scale. To achieve this
goal requires a high degree of international collaboration based on open-source
software and freely available user-friendly web-browser interfaces such as those 
we have described. The bioinformatics community has shown how this can be 
done for genomic and proteomic databases. It needs now to be done by the 
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community of computational physiologists to extend these databases up to the
level of physiological models that can be applied in a clinical setting.
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research workflow, 16, 16f
supports of, 16, 16f
v. traditional biology, 191–193, 192f

Systems Biology Markup Language (SBML),
4, 15, 19, 20, 27, 28, 30, 84, 103, 109,
110, 115, 122, 123

development tools of, 110–111
extensibility of, 111
practical considerations for, 111–112
usage of, 112

Systems Biology Object Model (SysBio-
OM), 26

Systems biology standards
alternative, 112–113
future considerations for, 112

Systems Biology Workbench (SBW), 4, 113,
116–117, 118f, 123

messaging protocols, 116, 117–118
Systems of Life-Systems Biology, 30–31

T
Ten-variable deterministic model, for

circadian oscillations, 255–262, 257f,
258f, 259f

Teranode, 120
Termination stage, of signaling pathways,

159f
Text clustering data flow, text

summarization and, 46f
Text clustering/summarization, in

biomedical literature, 40–41
Text mining enrichment, for microarray data

analysis, 52



409Subject Index

Text summarization, 48–49
text clustering data flow and, 46f

TextQuest, 40
TFs. See Transcription factors
TGF receptors. See Transforming growth

factor beta receptors
3D cell culture models, 74–76, 76f, 77f
3D kinase phosphatase model, 349–352,

350f
Threshold response, 6
TIM degradation, 260
TIM phase delay, 260
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