

Building
Bioinformatics Solutions

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

Building
Bioinformatics
Solutions
with Perl, R, and SQL

Conrad Bessant
Darren Oakley
Ian Shadforth

Second Edition

1

 3
Great Clarendon Street, Oxford OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014

The moral rights of the authors have been asserted

First Edition published in 2009
Second Edition published in 2014
Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2013943290

ISBN 978–0–19–965855–8 (hbk.)
ISBN 978–0–19–965856–5 (pbk.)

Printed in Great Britain by
Clays Ltd, St Ives plc

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

Acknowledgements

We would like to take this opportunity to acknowledge the army of very smart
people who have contributed to the open source software and publicly available
databases used herein. Without these tools, bioinformatics would never have
advanced to the state it is in today and this book would probably not exist.

We would also like to acknowledge our colleagues who have contributed to
this book by providing advice, ideas, and material. Particular thanks are due
to Michael Cauchi, Jenny Cham, Elena Chatzimichali, Jun Fan, Dan Klose, Fady
Mohareb, and Will Stott. Thanks also to the team at Oxford University Press
who have supported Building Bioinformatics Solutions since the beginning and have
brought this second edition to the shelves.

Finally, we are indebted to our friends and family who once again provided
their invaluable support as we inevitably spent longer than we should have done
locked away in our offices.

Preface to the Second
Edition

Bioinformatics is a fast moving subject, so while updating this book for the
second edition it has been interesting to consider which aspects of the field have
changed and which have remained the same. As the commissioning of a second
edition indicates, bioinformatics skills continue to be in high demand, as the ac-
quisition of complex multivariate data sets becomes the norm across many areas
of biology. Although many new tools have emerged since the first edition of this
book was published, and many existing tools have been further developed, there
is still a need for the development of new tools, and the creation of bespoke soft-
ware that brings existing tools together, increasingly across the different ‘omics’
disciplines.

So the need to build bioinformatics solutions remains. The general approach
to building these solutions also remains the same, typically involving a database
element, programming, some quantitative analysis, and possibly the creation
of a web front end. We have therefore kept this structure within the book. The
core tools around which we wrote the first edition—MySQL, Perl, and R—are
all still popular within the bioinformatics community. The choice of program-
ming language was a tough one, with Python and Ruby both gaining ground in
the bioinformatics community. Ultimately, however, we decided that Perl was
still the right choice for this book as it remains the single most widely used lan-
guage in bioinformatics, and has the benefit of a thriving ecosystem that gives a
head start when developing most types of bioinformatics applications. However,
in recognition of the increased diversity of programming languages used in
the community, we have added new material explaining how to get started in
Python, Ruby, and Java to help you experiment with these languages so you
can make up your own mind which best suits your needs. Having said that, we
should note that all these languages are underpinned by the same fundamental
programming concepts, so time spent learning Perl will give you a head start in
any of the other languages.

Something else we have witnessed over recent years is a gradual increase in the
size and complexity of bioinformatics projects. More complex projects call for
more systematic coding practices, such as those proposed by the discipline of soft-
ware engineering. We have added a new chapter dedicated to this subject, cover-
ing version control, documentation, user-centred design, and unit testing. These
techniques can help streamline the development of your software—especially

viii    preface to the second edition

when working as part of a team—and make it more reliable, easier to use, and
easier to maintain and extend.

The technical area that has changed the most since the first edition is web de-
velopment. Perl CGI's dominant position in bioinformatics web development has
been usurped by web frameworks that are far more powerful while, at the same,
make the development and debugging of web applications much easier. At the
same time, the arrival of HTML5—the most significant update to the core web
standard for over a decade—together with increasingly sophisticated JavaScript
libraries such as jQuery, has ushered in a new era of more engaging web appli-
cations. Chapter 5 has been substantially revised to take account of these latest
developments.

We sincerely hope that this book provides the overview of bioinformatics soft-
ware development that you are looking for, and that it gives you the knowledge
and confidence to go ahead and build your own bioinformatics solutions. We
very much welcome your comments and questions—the best way to find us is via
www.bixsolutions.net.

Conrad, Darren, and Ian
November 2013

Contents

1	 Introduction  1

1.1	 From data to knowledge: the aim of bioinformatics  1

1.2	 Using this book  2
1.2.1	 About the coverage of this book  2
1.2.2	 Choice of tools  3
1.2.3	 Choice of operating system  3
1.2.4	 www.bixsolutions.net  4

1.3	 Principal applications of bioinformatics  4
1.3.1	 Sequence analysis  5
1.3.2	 Transcriptomics  5
1.3.3	 Proteomics  6

1.3.4	 Metabolomics  7
1.3.5	 Systems biology  7
1.3.6	 Literature mining  8
1.3.7	 Structural biology  8

1.4	 Building bioinformatics solutions  8

1.5	 Publicly available bioinformatics resources  10
1.5.1	 Publicly available data  10
1.5.2	 Publicly available analysis tools  14
1.5.3	 Publicly available workflow solutions  15

1.6	 Some computing practicalities  16
1.6.1	 Hardware requirements  16
1.6.2	 The command line  17
1.6.3	 Case sensitivity  18
1.6.4	 Security, firewalls, and administration rights  18

References  19

2	 Building biological databases with SQL  21

2.1	 Common database types  22
2.1.1	 Flat text files  22
2.1.2	 XML  23
2.1.3	 Relational databases  26

2.2	 Relational database design—the ‘natural’ approach  29

2.2.1	 Steps 1–3: gather, group, and name the data  30

2.2.2	 Step 4: data types  35

2.2.3	 Step 5: atomicity of data  39

x   contents

2.2.4	 Steps 6 and 7: indexing and linking tables  39
2.2.5	 Departure from design  45

2.3	 Installing and configuring a MySQL server  45
2.3.1	 Download and installation  45
2.3.2	 Creating a database and a user account  48

2.4	 Alternatives to MySQL  49

2.4.1	 PostgreSQL  49
2.4.2	 Oracle  50
2.4.3	 MariaDB  50
2.4.4	 Microsoft Access  50
2.4.5	 Big Data and NoSQL databases  51

2.5	 Database access using SQL  52
2.5.1	 Compatibility between RDBMSs  53
2.5.2	 Error messages  53
2.5.3	 Creating a database  53
2.5.4	 Creating tables and enforcing referential integrity  54
2.5.5	 Populating the database  57

2.5.6	 Removing data and tables from the database  59
2.5.7	 Creating and using source files  60
2.5.8	 Querying the database  61
2.5.9	 Transaction handling  68
2.5.10	 Copying, moving, and backing up a database  69

2.6	 MySQL Workbench: an alternative to the command line  70

2.7	 Summary  72

References  72

3	 Beginning programming in Perl  73

3.1	 Downloading and installing Perl  74
3.1.1	 Older versions of Perl on Mac OS  74

3.1.2	 Older versions of Perl on Linux  75
3.1.3	 Installing Perl on Windows  75
3.1.4	 Compilers and other developer tools  75
3.1.5	 Before getting started  76

3.2	 Basic Perl syntax and logic  77

3.2.1	 Scalar variables  79
3.2.2	 Arrays  85
3.2.3	 Hashes  89
3.2.4	 Control structures and logic operators  91
3.2.5	 Writing interactive programs—I/O basics  97

3.2.6	 Some good coding practice  101
3.2.7	 Summary  103

3.3	 References  103

3.3.1	 Multidimensional arrays  104

3.3.2	 Multidimensional hashes  107

3.3.3	 Viewing data structures with Data::Dumper  110

contents   xi

3.4	 Subroutines and modules  112
3.4.1	 Making a Perl module  115

3.5	 Regular expressions  117

3.5.1	 Defining regular expressions  117
3.5.2	 More advanced regular expressions  119
3.5.3	 Regular expressions in practice  121

3.6	 File handling and directory operations  123

3.6.1	 Reading text files  124
3.6.2	 Writing text files  125
3.6.3	 Directory operations  126

3.7	 Error handling  127

3.8	 Retrieving files from the Internet  129
3.8.1	 Utilizing NCBI’s eUtilities  131

3.9	 Accessing relational databases using Perl DBI  133
3.9.1	 Installing DBD::MySQL  134
3.9.2	 Connecting to a database  135

3.9.3	 Querying the database  136
3.9.4	 Populating the database  138
3.9.5	 Database transactions and error handling  139

3.10	 Harnessing existing tools  140
3.10.1	 CPAN  141

3.10.2	 BioPerl  142
3.10.3	 System commands  143

3.11	 Object-oriented programming  143
3.11.1	 Object-oriented programming in Perl using Moose  145

3.12	 Summary  155

References  156

4	 Analysis and visualisation of data using R  157

4.1	 Introduction to R  158
4.1.1	 Downloading and installing R  159
4.1.2	 Basic R concepts and syntax  160
4.1.3	 Vectors and data frames  162
4.1.4	 The nature of experimental data  165
4.1.5	 R modes, objects, lists, classes, and methods  169

4.1.6	 Importing data into R  173
4.1.7	 Data visualization in R  174
4.1.8	 Writing programs in R  180
4.1.9	 Some essential R functions  185
4.1.10	 The RStudio integrated development environment  189

4.2	 Multivariate data analysis  191
4.2.1	 Exploratory data analysis  191

4.2.2	 Scatter plots  191
4.2.3	 Principal components analysis  192

xii   contents

4.2.4	 Hierarchical cluster analysis  194
4.2.5	 Pattern recognition  198

4.3	 R packages  198
4.3.1	 Installing and using Bioconductor packages  200
4.3.2	 The RMySQL package for database connectivity  205
4.3.3	 Packages for multivariate classification  207
4.3.4	 Writing your own R packages  207

4.4	 Integrating Perl and R  208

4.5	 Alternatives to R  208
4.5.1	 S+  208
4.5.2	 Matlab  209

4.5.3	 Octave  210

4.6	 Summary  211

References  211

5	 Developing web resources  213

5.1	 Web servers  213

5.2	 Introduction to HTML  213
5.2.1	 Creating and editing HTML documents  214
5.2.2	 The structure of a web page  214
5.2.3	 HTML tags and general formatting  215
5.2.4	 An example web page  218
5.2.5	 Web standards and browser compatibility  220

5.3	 Programming for the web using Perl  220
5.3.1	 Mojolicious::Lite  221
5.3.2	 Debugging Mojolicious applications  224
5.3.3	 Routes  225
5.3.4	 Interfacing with databases within a web application  227

5.3.5	 Getting user input via forms  231
5.3.6	 Deploying a Mojolicious application  238
5.3.7	 Going further with Mojolicious  239

5.4	 Advanced web techniques and languages  239
5.4.1	 Cascading stylesheets  239

5.4.2	 JavaScript, JavaScript libraries, and Ajax  242

5.5	 Data Visualization on the web  244
5.5.1	 Using R graphics in Perl  244
5.5.2	 Plotting graphs with Chart::Clicker  250

5.5.3	 Plotting graphs with SVG::TT::Graph  256
5.5.4	 Primitive graphics with Perl  263
5.5.5	 Drawing graphs and graphics using JavaScript  263

5.6	 Summary  264

References  264

contents   xiii

6	 Software engineering for bioinformatics  265

6.1	 Unit testing  266
6.1.1	 Unit testing in practice  267

6.2	 Version control  272
6.2.1	 The basics of version control  272
6.2.2	 Centralized versus distributed version control  275

6.2.3	 Git  276
6.2.4	 Alternatives to Git  286
6.2.5	 Hosting and sharing your code on the Internet  287
6.2.6	 Running your own code repository  288

6.3	 Creating useful documentation  288
6.3.1	 Documenting command-line applications  289
6.3.2	 Documenting Perl code  290

6.4	 User-centred software design  293

6.5	 Alternatives to Perl  294
6.5.1	 Python  294
6.5.2	 Ruby  305
6.5.3	 Java  318
6.5.4	 Using Galaxy  326

6.6	 Summary  327

References  327

Appendix A:  Using command-line interfaces  329

A.1	 Getting to the operating system command line  329

A.2	 General command-line concepts  331

A.3	 Command-line tips  333

Appendix B:  Getting started with Apache HTTP Server  335

B.1	 Installing Apache  336

B.2	 Apache fundamentals  337

Appendix C:  Setting up a Linux virtual machine in
Windows  341

C.1	 Installing VirtualBox and configuring a virtual machine  341

C.2	 Using the VM  344

C.3	 Other uses of virtual machines  345

Index  347

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

CHAPTER 1

Introduction

1.1  From data to knowledge: the aim of bioinformatics

The term 'bioinformatics' can mean different things to different people. For the
purpose of this book, we adopt the broad definition that bioinformatics is the
process of extracting novel biological knowledge from bioanalytical data. Such
knowledge has immense value because it may be used to better understand
biology, to combat disease, and to mitigate environmental catastrophes, but what
we actually have is lots of data—genome sequences, protein structures, metabo-
lomic profiles, and more.

Bioinformatics bridges this gap between data and knowledge. It is neither tied
to a particular type of experimental data nor to a particular biological applica-
tion. Indeed, the data may come from any of today’s plethora of bioanalytical
methods, such as high throughput sequencing, nuclear magnetic resonance, or
mass spectrometry, and the knowledge sought can be as varied as the identity of
a new disease biomarker, a phylogenetic tree, or a system-wide understanding
of a particular biological process. Similarly, the tasks involved in bioinformatics
range from simply organizing data for future use, through to sophisticated ana-
lysis, visualization, and sharing of that data and the results derived from it.
Bioinformatics is therefore a truly interdisciplinary subject, requiring an under-
standing of at least some biology, analytical science, mathematics, statistics, and
information technology.

There are, of course, many generally available bioinformatics tools that can be
used to analyse data with a view to extracting new knowledge, and many of these
tools are free of charge. However, due to the high complexity and bespoke nature
of biological data sets, it is often necessary to produce in-house software to or-
ganize, analyse, and visualize data. In this book, we introduce some of the main
tools and general approaches employed to produce such software.

The book is primarily aimed at readers with a background in the life sciences
who have some bioinformatics knowledge, but little or no experience in the de-
velopment of software and databases. A typical reader will most likely have used
online databases such as GenBank or Ensembl (if not, these are introduced briefly
later in this chapter), and experienced the power of tools such as BLAST (Basic
Local Alignment Search Tool) or analysis platforms such as Galaxy, and now want
to take the next step and develop their own bioinformatics tools, either for their

2   1 introduction

own use or for sharing with their collaborators or with the life science commu-
nity at large. Our aim in writing this book was to fill the gap between texts that
introduce the field of bioinformatics, such as Introduction to Bioinformatics (Lesk,
2008), and software development books, such as those published by O’Reilly
(e.g. Laurie & Laurie, 2013; Christiansen et al., 2012; Tahaghoghi & Williams,
2009). We therefore cover computing material from a fairly elementary level (for
example, Appendix A explains how to use a command-line interface), while the
biological background necessary to understand the applications is assumed.

1.2  Using this book

The book has been written with the intention of being read linearly from be-
ginning to end, with a structure that generally mirrors a typical bioinformatics
project. First, it is necessary to assemble the data, be it from a laboratory or from
online resources, typically into a structured database using a relational database
management system (RDBMS) such as MySQL (Chapter 2). Then, due to the nature
of bioinformatics data sets, some programming is usually required to automate
various data manipulation tasks—Perl (covered in Chapter 3) is the tool of choice
for this among bioinformaticians. Often, advanced numerical data analysis is then
required to extract useful information from the data gathered, which is where
R comes in (Chapter 4). In Chapter 5, we bring everything together and the real
power of integrating Perl, R, and MySQL becomes apparent as we show how to
combine these ingredients with HTML5 and web frameworks to make complex
bioinformatics tools available via the web. Finally, Chapter 6 introduces some good
software engineering practice—essential when working on larger multi-developer
projects—and introduces alternative programming languages that are purported
to have some technical advantages over Perl. Having said all that, Chapters 2, 3,
and 4 have been written to be reasonably standalone, so if you have an urgent
need to go straight to a particular chapter, that is possible. Where necessary, cross-
references are provided to help locate explanations of concepts that appeared
earlier in the book. Similarly, if you are already experienced in one of the three
main tools covered, you should be able to skip that chapter without any problems.

One thing that this book is definitely not is a reference manual. The index
should help you find a relevant passage in the book when you need it, but don’t
expect to see every single Perl function, R package, or Apache configuration
option listed there. A simple reason for this is that there just is not enough space,
but more importantly these tools have excellent online documentation and we
find such documentation to be a much more convenient format for reference
materials because it is easy to search and frequently updated. This book is a com-
panion to those reference materials, and a starting point in terms of knowing
where the reference materials are and how to use them efficiently.

1.2.1  About the coverage of this book

Deciding what to include and what not to include in this book was not easy.
Whole books have been written about MySQL, Perl, and R, not to mention all

1.2 using this book   3

the various types of bioinformatics applications to which they can be applied. It
is, therefore, impossible to claim that this book provides exhaustive coverage of
all the subjects covered. Selecting the topics to cover was very much like writing
a tourist guide to a particular country—it is not feasible to cover everything of
interest, so information needs to be carefully selected so that it helps newcomers
orientate themselves, outlines the practicalities of survival, covers a few high-
lights that give a flavour of what is possible, and tells you where you can go to
find out more. This is the approach we have taken in this book.

1.2.2  Choice of tools

The toolkit for building bioinformatics solutions that we put forward in this book
is loosely based on the so-called LAMP toolkit, which has been widely used by
developers in all sorts of domains, not just bioinformatics, for many years. LAMP
is an acronym for four popular open source software packages: Linux (the oper-
ating system), Apache (web server), MySQL (database), and Perl1 (for program-
ming). Together, these packages make a powerful combination for gathering,
storing, and serving up data over the Internet. To this mix we add R, which brings
with it the sophisticated data analysis and visualization capabilities frequently
needed in bioinformatics applications. A key factor in the appeal of this suite
of tools is that they are open source and freely available. To be frank, the tech-
nical benefit of these tools being open source is minimal for the typical user.
Although one is able to view and edit the source code of the tools one is using,
the chances are that one will never need to do so and, if one did, the complexity
of these packages is such that making worthwhile modifications would be very
time consuming. Even the fact that the packages can be obtained free of charge is
of little direct relevance if one has a software budget. What really makes the use
of open source tools appealing is that they are ubiquitous and this widespread up-
take has two very important consequences. First, there are a lot of people around
who know how to use them, so getting help should not be a problem. Second, if
someone wants to produce a piece of software or an add-on, they are most likely
to do it with these tools to allow maximum exposure. This latter benefit is really
the most important, as it means that there is, for example, a constant stream of
add-on modules for Perl and packages for R that perform common bioinformatics
tasks. We refer to the collection of community activities and third-party add-ons
for a particular tool as the tool’s ecosystem. Choosing to use a development tool
that has a well-established and dynamic ecosystem saves a huge amount of devel-
opment effort and allows one to concentrate on the science, which is, after all,
the main priority in bioinformatics.

1.2.3  Choice of operating system

Throughout this book we have worked to ensure that everything is operating
system independent as far as possible. All examples have been tested on Windows

1	 Depending on who you ask, the P might actually stand for a similar language called PHP, or even just
programming in general. It doesn’t really matter.

4   1 introduction

8, Mac OS 10.8.3, and Ubuntu Linux 12.04. This is not just a ploy to maximize
sales of the book, but a reflection of the fact that, in real-world bioinformatics, all
three operating systems are commonly used. In general, Linux is the operating
system of choice in bioinformatics, because it is well suited to running servers
and is very scalable, allowing solutions to be developed for anything from in-
dividual desktop PCs through to multi-processor supercomputers. However, the
familiarity, usability, and availability of Windows and Mac OS ensure they are
also widely used, particularly by those starting out in bioinformatics, and among
the biologists using the software that we produce. Indeed at the time of writing,
some of the most popular freely available software tools for proteomics run ex-
clusively on Windows.

Where there are differences between operating systems, typically when in-
stalling software, we have provided instructions for all three. Clearly, we have not
been able to test the material in this book on every available Linux distribution,
or on versions of Windows or Mac OS that were released after the book went to
press. If you have any problems getting the examples in the book to work, we
recommend that you head over to the book’s website (www.bixsolutions.net)
in search of a solution.

1.2.4  www.bixsolutions.net

To help you as you work through this book, we maintain a companion website,
www.bixsolutions.net, where you can find the main example programs and
data from the book, as well as up-to-date lists of recommended reading. The
site also has a discussion forum, which is monitored by the authors, who are
happy to help if you have any difficulties while working through the examples.
Obviously, we have checked the examples very carefully and believed them to
work correctly when the book went to press, but they may not work forever. This
is because the tools and, indeed, the operating systems, used in this book are
constantly evolving—new versions are released frequently, so functions may be
deprecated, database schemas may change, and new features may become avail-
able. As we become aware of any changes that affect material in the book we will
post updates or workarounds on the website.

For readers familiar with code repositories, we also maintain a GitHub reposi-
tory (github.com/dazoakley/bbs-v2) containing the main example pro-
grams from the book. For those new to code repositories, this topic is covered in
Chapter 6.

1.3  Principal applications of bioinformatics

Since its origins in genomic sequence analysis, bioinformatics has spread across
the whole of molecular biology, in its broadest sense. There are already many fine
texts explaining the various applications of bioinformatics (e.g. Lesk, 2008), so we
don’t replicate such material here. However, we include below a brief outline of
the main areas of contemporary bioinformatics with particular emphasis on the
application to those areas of the tools introduced in this book.

1.3 principal applications of bioinformatics   5

1.3.1  Sequence analysis

Sequence analysis is a massive field, covering all manner of analysis of textual
sequences representing genomes (DNA) and proteins (sequences of amino acids).
Applications within genomics are wide ranging and include sequence assembly,
prediction of coding regions (i.e. genes), determination of genomic structure,
research into the purpose of non-coding DNA, translation of DNA into protein
sequences, comparison of sequences to infer evolutionary relationships, rates
of evolution, the study of variation between individuals, and prediction of gene
function and regulation. DNA sequence analysis is also used in the design of
experiments that employ techniques such as PCR and microarray technology.

Protein sequence analysis has a similarly wide range of applications, including
protein structure prediction, inference of protein function based on sequence
similarity, determination of protein similarity for building protein families and
understanding protein evolution, and identification of structural or functional
subsequences (motifs). Protein sequences are also used when designing and inter-
preting the results from proteomic (protein expression) experiments.

From a technical point of view, a distinguishing feature of sequence analysis
applications is the frequent use of relatively large data sets such as whole genome
sequences (for example, the human genome, which consists of about 3,000,000,000
bp), or multiple genomes when studying variation or metagenomics. As well as
having to deal with the sequences themselves, it is also necessary to handle annota-
tions, without which the sequence data is meaningless. Such annotations include
things like the species from which a selected sequence originated, its location in
the genome, and any functions or gene products that have been associated with it.
A RDBMS, such as MySQL, is essential to store such data in a useable way. Another
distinguishing feature of sequence analysis is the need to efficiently process textual
data, essentially long strings of As, Cs, Gs, and Ts, or the 20-letter alphabet used to
represent amino acids. Typical tasks include looking for motifs within much larger
sequences and looking for similarities between sequences. Handling large amounts
of textual data is something at which Perl excels, as we will see in Chapter 3.

1.3.2  Transcriptomics

With the invention of DNA microarrays it became possible, for the first time, to
monitor the expression level of all known genes in an organism (e.g. approxi-
mately 22,000 genes for humans) in a single analysis. Such genome-wide expres-
sion analysis has become known as transcriptomics. This yields large sets of highly
multivariate quantitative data, as studies tend to involve multiple samples so that
differential expression or behaviour over time can be observed.

More recently, the high throughput sequencing-based RNA-seq method has be-
come a popular alternative for transcriptomic studies. A key advantage of RNA-seq
is that it sequences cDNA generated from the transcribed mRNA, whereas the
fundamental principle of microarray analysis is the hybridization of cDNA to
pre-fabricated DNA probes. RNA-seq is therefore a more open technique, particu-
larly useful for non-model organisms or studies where multiple species or se-
quence variation are of particular interest.

6   1 introduction

Just storing expression data and associated information about that data (the
so-called metadata, which describes the sample and experimental conditions) can
be an issue, but the major challenge lies in the processing and statistical analysis
of gene expression data. In microarray experiments, the raw data is in the form
of an image that needs to be processed and cross-referenced with metadata de-
scribing the array design (i.e. which spot relates to which gene) to yield numerical
expression values. The raw data in RNA-seq studies consists of millions of short
sequence reads, which are typically mapped to a reference genome for identifi-
cation purposes, and the abundance of which are used to achieve quantitation.

Once the expression values have been extracted, assigned to genes, and tabu-
lated, we can begin statistical analysis to identify biologically important features,
such as differentially expressed genes in a comparative study or co-regulated
genes in a temporal study. Due to the large data sets and sometimes sub-optimal
experimental designs (the number of genes monitored usually exceeds the
number of samples analysed) the statistical methods required can be complex.
This is where R is extremely valuable, as the common processing algorithms and
even some of the more exotic methods have already been implemented for us
in R packages, such as Bioconductor. Chapter 4 will get you started with R and,
having worked through it, you should be in a position to start working with pack-
ages like Bioconductor.

1.3.3  Proteomics

Gene expression studies are essential in understanding gene regulation and
related phenomena, but to gain a deeper insight into how a biological system
functions it is arguably more useful to look at the expression of the functional
molecules themselves: the proteins. Proteomics is the science of identifying and,
where possible, quantifying proteins in a sample. At the time of writing, the
majority of proteomics methods are based on mass spectrometry (MS), coupled
with prior protein digestion and separation steps to help ensure that peptides are
delivered to the mass spectrometer individually. Due to the complexity and var-
iety of proteomic protocols, handling the data from these experiments can be a
major challenge. Some laboratories separate proteins using two-dimensional gel
electrophoresis, after which image analysis is employed to identify and define gel
spots, prior to excision and MS analysis. Today it is more common to use liquid
chromatography (LC) instead of gels as this supports a much higher throughput,
resulting in large data sets comprising several thousand spectra per sample.

Whichever separation technique is used, data analysis is required to identify
the peptide represented by each mass spectrum. The most common techniques
are peptide mass fingerprinting (PMF) or, if peptides have been subjected to
secondary fragmentation in a subsequent MS stage, a search against simulated
spectra derived from a database of known protein sequences for the species
being studied. Identified peptides then need to be assigned to proteins, which is
not easy due to the relatively short length of each peptide and the many proteins
that could potentially be present in a sample—in human tissue this could be sev-
eral hundred thousand if splice variants and post-translational modifications are

1.3 principal applications of bioinformatics   7

taken into account. Due to the large data sets and the experimental metadata
needed to make use of this, a well-designed relational database (perhaps imple-
mented in MySQL) is essential to organize the information, and the increasingly
high throughput nature of proteomics necessitates analysis pipelines to be built
(often in Perl) if data analysis is to keep pace with data acquisition. Having said
that, certain steps of the processing have been shown to be amenable to large-
scale, non-RDBMS (NoSQL) methods, which we touch on briefly in Chapter 2.

Having identified proteins from all the samples in a given study, statistical
analysis then needs to be performed across samples to extract the biologically
significant information from the acquired experimental data. Some proteomics
protocols are only qualitative—they aim to determine which proteins are pre-
sent in a sample, but not how much of each protein is present. However, a raft
of quantitative protocols is now in use, which can reveal not just the identities of
proteins, but also their abundance. Statistical techniques similar to those used for
gene expression analysis are clearly applicable to this data and, as these protocols
are adopted more widely, relevant R packages are emerging.

1.3.4  Metabolomics

Metabolomics deals with the identification and quantification of small molecules
in biological samples. Analysis of metabolites is one of the most well-established
bioanalytical techniques that we come across in bioinformatics. The primary
technologies used—nuclear magnetic resonance (NMR) and mass spectrometry
following gas chromatography (GC) or liquid chromatography (LC)—have been
around considerably longer than high throughput sequencing, microarrays, or
proteomic MS. Indeed, it is even possible to buy pocket-sized devices for personal
monitoring of medically important metabolites, such as glucose and cholesterol.
However, metabolomics brings a new emphasis to high throughput analysis and
the desire to quantify as many analytes as possible in each sample. The desire
for such a global view of the metabolome is being driven mainly by the search
for diagnostic biomarkers and the growth of systems biology. As in proteomics,
increasing data volumes are encouraging people to put together relational data-
bases and software pipelines for metabolomic data analysis. As metabolite ana-
lysis is well established, so are the core algorithms for dealing with the data from
such analysis—such methods often come under the banner of chemometrics, about
which some very good introductory texts have been written (e.g. Brereton, 2007;
Otto, 2007). R is a perfect environment for such analysis, as demonstrated by
some of the examples in Chapter 4.

1.3.5  Systems biology

Traditionally, bioanalytical science, and even the bioinformatics that supports
it, is broken down into the areas outlined previously—genomics, transcriptom-
ics, proteomics, and metabolomics. In terms of how organisms function, these
delineations are artificial because in reality the genes, proteins, and metabolites
are free to interact. Systems biology recognizes this and, in bioinformatics terms,
comprises integration of both data storage and analysis to permit system-wide

8   1 introduction

analysis and modelling of living organisms without being constrained to a par-
ticular class of molecule. This is likely to be a theme of bioinformatics for some
time to come, because the potential outcome of such work—cell and tissue mod-
els with application in areas such as toxicology—is so valuable, but the challenge
of achieving this is immense. The core elements of database design, program-
ming, and numerical data analysis covered in this book are all important in sys-
tems biology, and much of the effort in systems biology is focused on the design
of databases for meaningful storage of heterogeneous data and novel methods for
data analysis and visualization.

1.3.6  Literature mining

PubMed, which contains bibliographic information on journals primarily associ-
ated with biomedicine (see Section 1.5.1), is growing by around 3,000 citations
every day. Keeping up with the work described in all these papers by reading
them is clearly impossible, and that is before we consider the backlog of at least
20 million papers already out there. There is, therefore, a lot of interest in litera-
ture mining methods that help to facilitate the high throughput machine reading
of papers to extract salient information, and advanced ways of searching through
and annotating papers to assist human reading. Perl’s text handling capabilities
make it ideal for this type of work, as does its ability to automate querying of
bibliographic databases and retrieval of papers from websites. There can also be
a need to visualize the results of literature mining, which can be handled by Perl
or R. For example, if we wrote a Perl program to extract protein–protein interac-
tions from text, it would be convenient to display the resulting network of inter-
actions graphically, as this is a representation with which biologists are familiar.

1.3.7  Structural biology

Structural biology is the study of the physical architecture of biological mole-
cules—particularly proteins. Research typically focuses on topics such as the rela-
tionship between structure and function, structural similarity between proteins,
simulation of interaction between proteins and other molecules, and the rela-
tionship between protein sequences and their structure (particularly the process
of protein folding). Some of these topics can be tackled using the tools introduced
in this book, but due to the mathematical complexity of molecular simulations,
it is common for researchers to use existing modelling tools (some of them com-
mercial products) or to produce bespoke software in lower level languages, such
as C. Such tools are sometimes pipelined using Perl, with a program being writ-
ten to retrieve a structure from a repository of protein structures, such as PDB
(see Section 1.5.1), pass it to a modelling program, and deposit the final result of
the modelled experiment into a local database.

1.4  Building bioinformatics solutions

The premise of this book is that, regardless of the particular type of data being
analysed, or the scientific purpose behind the analysis, the tools and general

1.4 building bioinformatics solutions   9

approaches used to solve a bioinformatics problem are often the same. This is
because most bioinformatics projects share a similar aim—to bring together data
(be it public or proprietary) with analysis tools (be they existing or novel) to gen-
erate new biological knowledge. We refer to this as building a bioinformatics
solution because it best describes what we are doing—putting things together to
solve a problem.

A schematic representation of this concept is shown in Fig. 1.1. Regardless of
the particular type of data being analysed or the scientific aim behind the ana-
lysis, the general structure of a bioinformatics solution tends to follow this pat-
tern, although not all components are required in all applications. For example,
it may be possible to analyse novel data collected locally without recourse to any
public databases. Similarly, we might be able to rely entirely on our own in-house
analysis software, instead of sourcing tools from the public domain. Conversely,
we may not have access to any novel data or novel analysis routines, and instead
focus entirely on the analysis of public data using publicly available tools. The
way in which results are output from our system may also vary. The figure shows
two potential routes, which may be used together. These are deposition of the
results in a local database, and presentation of the results to one or more users
via a web browser. Unless the software is truly single user—intended only for use
by the developer—some kind of user interface is required, and a web-based inter-
face is convenient because web interfaces are familiar to users, are relatively easy
to implement, and should be platform independent. The web obviously allows
you to make your software available to remote users around the world, but even
if you are developing a solution for local use in a single group or organization, a
web interface is often the best way to go.

Analysis pipeline

Public
databases

Local
database

Public tools
Novel data

Web server

Users

Fig. 1.1  A generic bioinformatics solution showing typical components that may be used.

10   1 introduction

So, the key components of a system like the one shown in the figure are the ana-
lysis pipeline, the local database, and the web interface. The process of building a
bioinformatics solution starts with capturing the project requirements, typically
by manually carrying out analysis on a small subset of the data being collected
and, if appropriate, talking to users about what they want from the software.
This should reveal which components are needed and what functionality they
should have. These components can then be produced using the tools described
in the following chapters, specifically the pipeline (with Perl and R), the local
database (with MySQL), and the interface (with HTML5, a web framework and
Apache). For completeness, a brief overview of other potential components—the
public tools and databases—is provided in the next section.

1.5  Publicly available bioinformatics resources

We are very fortunate to have a substantial body of high quality, freely avail-
able bioinformatics resources accessible via the Internet. Most of the core
resources, or services as they are sometimes called, are hosted by two major
organizations—the American National Centre for Biotechnology Information
(NCBI) and the European Bioinformatics Institute (EBI), which is based in the UK.
Resources provided by these organizations are easily accessed via their websites
(www.ncbi.nlm.nih.gov and www.ebi.ac.uk, respectively). These resources
can roughly be broken down into databases and analysis tools, although the dis-
tinction is becoming ever more blurred as the websites through which databases
are accessed begin to include more sophisticated integrated analysis tools. What
follows is a brief overview of the key resources at these sites and on the wider
Internet.

1.5.1  Publicly available data

There exists a substantial global collection of data covering a wide range of bio-
logical areas, from gene sequences to protein structures and medical informa-
tion. Furthermore, this collection is growing all the time, both in terms of the
number of databases and the amount of data in each database. Indeed, many of
the databases are growing exponentially.

This impressive collection of data forms the basis for much bioinformatics
work, especially among the many researchers who do not have laboratories or
laboratory-based collaborators. Even when we are working with novel propri-
etary data, we often need to analyse this in the context of publicly available data.
For example, if we are looking at SNP data, we may want to map this to existing
genomic annotations to identify potential consequences of that SNP. In gene ex-
pression studies, it is common to use publicly available information about gene
function to provide context for the analysis. In proteomics, it is common practice
to identify peptides by searching acquired mass spectra against protein sequence
databases.

Due to the extent and rapidly changing nature of the database landscape, we
are unable to provide a thorough review of all available resources here. Instead,

1.5 publicly available bioinformatics resources   11

we would refer you to the annual Database Collection published in the journal
Nucleic Acids Research (www.oxfordjournals.org/nar/database/c), which
has summaries of many hundreds of databases. However, it is worth taking
a little space here to introduce what we consider to be the key core data-
bases at the current time, particularly as some of these are referred to in later
chapters.

Genome sequences
The core repositories for nucleotide sequence data are Genbank (at NCBI), ENA (at
EBI), and DDBJ (at the Japanese National Institute of Genetics). These three data-
bases comprise the International Nucleotide Sequence Database Collaboration
(INSDC), which collectively capture all the public genome sequence data ever col-
lected. There is even some putative—though seemingly dubious—dinosaur DNA
in there if you look hard enough (accession number2 U41319). As part of the col-
laboration, the contents of these three databases are automatically synchronized
daily, so a sequence submitted to one will appear in the other two. All three data-
bases therefore contain the same data. This may seem wasteful, but having the
databases in different geographical locations increases data security and ensures
that most researchers have the data reasonably close to them, which improves
efficiency of access. Also, the three databases are distinct in that they have differ-
ent user interfaces.

Although the three INSDC databases are exhaustive in terms of cataloguing all
available nucleotide data, the organization of the data is fairly rudimentary and,
as a result, they are not the easiest databases to browse. Consequently, many
secondary databases have appeared, in which the primary data from repositories
such as those in the INSDC has been compiled and indexed into a form that is
highly structured, easy to browse, and well integrated with other resources. An
excellent example of this is Ensembl (www.ensembl.org), which provides infor-
mation about a number of completed eukaryotic genomes. As well as the original
sequence data, assembled into whole chromosomes, Ensembl also provides anno-
tations for this data, such as known genes, gene predictions, gene structure, gene
products, orthologues, and SNPs. As well as being accessed via the web interface,
Ensembl can also be accessed by programs directly via an application program-
ming interface (API), or can even be downloaded in its entirety for working with
locally, which can be faster and arguably offer more privacy than connecting to
the database via the Internet.

Protein sequences
The most comprehensive central resource for protein sequences and functional
annotation is UniProt (www.uniprot.org). The UniProt knowledgebase com-
prises two main sections: a large database called TrEMBL, which contains protein
sequences produced by automatic translation of ENA nucleotide sequences, and a

2	 An accession number is a unique identifier for a particular record in a database. The record can be
found simply by searching for this number.

12   1 introduction

much smaller database of manually curated protein sequences called Swiss-Prot.
Thanks to the extensive manual curation, which includes the addition of cross-
references to many other databases, the data in Swiss-Prot is recognized as being
of very high quality and it is considered to be the gold standard protein sequence
database. As well as individual protein records, the UniProt knowledgebase also
contains complete proteomes for an increasing number of organisms. Many other
protein databases exist, providing information related to or derived from UniProt
sequences. A notable example is InterPro (www.ebi.ac.uk/interpro), which
provides information about protein families, domains, and functional sites.

Transcriptomic data
There are two main databases of gene expression data: Array Express (www.ebi.
ac.uk/arrayexpress) and the Gene Expression Omnibus—GEO (www.ncbi.
nlm.nih.gov/geo). These databases support data from both microarrays and
RNA-seq. A key element in establishing these databases was finding agreement
within the community for a common way in which to report all the relevant
details of a microarray experiment. This was finally achieved by the definition
of the MIAME (Minimum Information from A Microarray Experiment) reporting
standard, and databases such as GEO and ArrayExpress are fully MIAME com-
pliant. Having this consistent method of representing data is important because
it means that we can automatically download expression data complete with all
the metadata necessary to interpret it, regardless of its origin. Also, having a com-
mon data standard means that people are willing to spend time developing soft-
ware that supports it. Indeed, we will see in Chapter 4 that there are R packages
to deal directly with this type of data.

Protein expression data
Proteomics is following transcriptomics both in terms of uptake in the labora-
tory and in terms of data repositories. Like transcriptomic data, proteomic data is
only useful if metadata is available to provide context to that data, and this issue
has largely been addressed through the development of reporting guidelines
and data formats by the Proteomics Standards Initiative (PSI). Substantial data-
bases of protein identifications and associated mass spectrometry data have al-
ready emerged, most notably PRIDE (www.ebi.ac.uk/pride) and PeptideAtlas
(www.peptideatlas.org).

Metabolomic data
Repositories of metabolomics data sets have taken some time to appear due
to the difficulty in coherently capturing data from the many diverse protocols
employed. In contrast to proteomics and transcriptomics, many metabolomics
studies employ profiling methods where phenotypic differences are inferred dir-
ectly from analytical data without first identifying all (or sometimes any) of the
molecular entities represented by that data. This is, in part, because the analytical
signatures of many metabolites are not known so they simply cannot be identi-
fied. However, the situation is improving thanks to the development of databases
that catalogue small molecules and their analytical signatures. These include the

1.5 publicly available bioinformatics resources   13

Human Metabolome Database (www.hmdb.ca), Metlin (metlin.scripps.edu),
PubChem (pubchem.ncbi.nlm.nih.gov), and ChemSpider (www.chemspider.
com). These databases are often used as libraries to identify compounds from
mass spectra acquired during metabolomics experiments. In terms of the data
and findings resulting from such experiments, MetaboLights (www.ebi.ac.uk/
metabolights) leads the way at the time of writing.

Molecular structures
The pre-eminent protein structure database is the Protein Data Bank—PDB
(www.pdb.org). This contains protein structures determined primarily using
X-ray diffraction or NMR. The information about each structure is quite ex-
haustive, including information about who determined the structure and how
they did it, biochemical information about the protein and, of course, the struc-
ture itself, in formats that can be viewed within PDB’s web interface, and that
allow the structure to be downloaded and analysed locally. Other protein struc-
ture databases, many derived from PDB, are available, as well as databases of
smaller molecules.

Interactions and pathways
The databases mentioned thus far are primarily collections of experimental data
from laboratory instruments, albeit augmented with manually generated annota-
tions. Pathway databases are different in that they contain interaction data derived
from experiments, rather than the experimental data itself. Such databases are
becoming increasingly important as systems biology studies become more com-
mon. One of the most well-established pathway databases is KEGG (the Kyoto
Encyclopedia of Genes and Genomes) Pathway (www.genome.ad.jp/kegg/
pathway.html). KEGG comprises several databases, with the Pathway database
dedicated to data pertaining to molecular interaction networks. Much of this in-
formation has been available for some time in books and papers, but having it
online in electronic form facilitates easier access, new applications, and better
integration with other resources.

Other useful databases in this general field include the Reactome pathway data-
base (www.reactome.org), the IntAct database of molecular interactions (www.
ebi.ac.uk/intact), and BioModels (www.ebi.ac.uk/biomodels-main),
which is a collection of mathematical models of biological systems.

Literature
When we think of scientific literature, journals come to mind and, indeed, it is
here that most scientific literature can be found. Despite the existence of the
repositories of experimental data described above, journal articles still play an
essential role, acting as the glue that links a lot of this data together and gives it
context. It is also where the biological knowledge extracted from experimental
data is reported. Today, the vast majority of journal articles are available online,
although not all are available free of charge (open access). A large body of biblio-
graphic information about papers, including abstracts, is available in the PubMed
database (www.pubmed.gov).

14   1 introduction

Journal articles are not the only source of textual information. One notable
repository is OMIM (www.ncbi.nlm.nih.gov/omim), which contains textual
descriptions of all known human genetic disorders. These descriptions include
links to supporting data in many of the repositories described above. Similarly,
there are links to OMIM from many of these repositories.

Ontologies
In bioinformatics terms, ontologies are essentially lists of terms with strictly
defined meanings that have been agreed upon by the scientific community.
Where more than one word can be used to describe the same thing, synonyms
are listed along with the definition. To avoid any confusion or duplication, each
term has a specific accession number associated with it. The most commonly used
ontology in bioinformatics is the Gene Ontology—GO (www.geneontology.
org). It may sound like an ontology is little more than a dictionary, but an im-
portant additional feature is that relationships between terms are also captured.
For example, in GO the term ‘carbohydrate binding’ is defined as a subset of the
molecular function ‘binding’, and many specific types of binding, such as ‘glu-
cose binding’, are linked to that more general ‘carbohydrate binding’ term.

Ontologies have many uses in bioinformatics. At their simplest, they can be
used as controlled vocabularies—lists of terms that users are restricted to select-
ing when entering data. A typical way of enforcing a controlled vocabulary on
users is to only allow input via a drop-down box, which contains only the per-
mitted terms. Retrieving and analysing data using automated systems is a lot
easier if it is annotated in this way, rather than with free text descriptions. For
this reason, many of the standard data formats, such as the MIAME microarray
standard, make use of ontologies for their metadata. Ontologies can also be used
to facilitate advanced querying of data. For example, searching for documents
using a normal keyword search for ‘carbohydrate binding’ would simply return
documents containing that term, whereas a search augmented by GO could add-
itionally return documents that do not contain the term ‘carbohydrate binding’,
but do contain terms that GO defines as being related to this, such as ‘glucose
binding’. Thanks to such utility, ontologies appear in almost every area of bio-
informatics.

GO is currently the most ubiquitous of biological ontologies, as it covers three
key areas of interest: biological process, cellular component, and molecular func-
tion. However, there are many complementary ontologies, most of which can
be found at the Open Biomedical Ontologies Foundry (www.obofoundry.org).
Although there are various ontology formats, the important thing is that these
ontologies are freely available, easily machine readable, and can therefore be
incorporated into our own programs with relative ease.

1.5.2  Publicly available analysis tools

As well as data, there is also a wealth of data analysis tools freely available via the
web. Some of these are add-ons for specific software such as Perl (Perl modules)
and R (R packages), which we will deal with in the later chapters. Many other tools

1.5 publicly available bioinformatics resources   15

are available in standalone form, either accessible via web front ends, or as pro-
grams that you can download and run locally. The most frequently used tools can
be found among the services listed at the EBI (www.ebi.ac.uk/services) and
via the Tools tab on the NCBI resources page (www.ncbi.nlm.nih.gov/guide/
all). Due to the fundamental importance of sequence analysis, these toolboxes
tend to be biased towards sequence analysis, with BLAST and the ClustalW mul-
tiple sequence analysis tool arguably being the most well known. However, other
tools, such as OMSSA (at NCBI) for proteomic mass spectrometry and DaliLite (at
EBI) for pairwise structure comparison, clearly cover other data types.

For occasional analyses, as done by the typical laboratory-based biologist, the
web-based interfaces to these tools are very convenient. The good news for those
of us seeking to build bioinformatics solutions with higher throughput is that
most of these tools can also be accessed programmatically, allowing us to in-
corporate them into our own software and automate analysis. This can be done
either by downloading versions of the tools that can be run locally and incorpo-
rated into your programs, or by connecting to a server at the EBI or NCBI, pass-
ing across the data of interest and running the tool there. The latter is achieved
using an API that allows data and commands to be sent directly to the tool on the
server, and results returned. The details of how to do this vary from tool to tool,
but comprehensive instructions and examples are available at both the NCBI and
EBI toolbox websites, and an example is given in Chapter 3.

Another suite of tools worth knowing about, especially if you are working with
sequence data, is the European Molecular Biology Open Software Suite—EMBOSS
(emboss.sourceforge.net). This open source suite mainly comprises tools for
sequence analysis, such as sequence alignment, picking primers, and looking for
sequence motifs. The programs that make up EMBOSS are well respected and
easy to incorporate into your own software, making them a popular choice for
bioinformatics developers.

There are many other freely available tools out there, but because these tools
tend to be developed by different academic groups, they can be hard to find. In
our experience, the best way to discover new tools is by monitoring relevant jour-
nals, although even that is a challenge, as tools might be announced in bioinfor-
matics or domain-specific journals, such as those covering genomics, proteomics,
or metabolomics.

1.5.3  Publicly available workflow solutions

As already mentioned, many bioinformatics applications require the connec-
tion or integration of various individual tools. Writing Perl programs is arguably
the most flexible way to do this, but not everyone has the skills necessary to do
that. In response to this need, a number of software platforms have emerged
that allow integration of different bioinformatics tools and resources without any
need for programming. These platforms act as a host environment for other tools,
enabling them to be joined together into complex pipelines that can be saved
for future use and shared among the scientific community. Most of these have
graphical interfaces that allow workflows to be created by dragging graphical

16   1 introduction

representations of tools into position and connecting them together, and the best
of them take care of optimizing the execution of the workflow on whatever com-
puter hardware you have to hand.

Bioinformatics workflow platforms include Taverna (www.taverna.org.uk),
Knime (www.knime.org), and Galaxy (usegalaxy.org). At the time of writing,
Galaxy is most popular of the three. Indeed if you ask biologists which bioinfor-
matics tools they use, many will say Galaxy ahead of—or even instead of—the
tools within Galaxy that actually do the work. The vast majority of tools sup-
ported by Galaxy are for analysis of sequence data, but efforts are underway to
add support for other data, such as mass spectra, to serve the proteomics and
metabolomics communities.

Do workflow platforms such as Galaxy spell the end for programming in bio-
informatics? Not at all. These platforms can do a lot of the tedious work of con-
necting tools and distributing compute jobs, but the development of new tools
for data storage, analysis, and visualization is needed as much as ever. Indeed,
environments like Galaxy provide an excellent route to generating demand and
maximizing uptake of new tools that we produce. Furthermore, whenever it
becomes necessary to add a newly created tool or data format to a workflow plat-
form, there is invariably some programming to do.

1.6  Some computing practicalities

Finally, before we get into the substance of this book, we need to mention a few
practical issues that apply to all of the following chapters.

1.6.1  Hardware requirements

A question we are often asked by people looking to develop their bioinformatics
skills is: ‘what kind of computer do I need?’ For some people, the expectation is
that, with all the talk about large data sets, whole genome analysis, and complex
visualizations, high-end computing resources must be required. In practice, how-
ever, most bioinformaticians are able to do what they need on a standard desktop
computer, and that is definitely the case for this book. Any recently produced PC
or Apple Mac, in either desktop or high performance laptop format, connected to
the internet, should be fine for running the examples in this book. For the avoid-
ance of doubt, tablets, chromebooks, and similar lightweight devices are not a
sensible choice for this type of work.

The alternative to using your own computer is to adopt a client–server
approach, as practised in many organizations. In this scenario, a powerful com-
puter is set up as a server and core software is installed on it. In bioinformatics,
the server would typically be running a Linux operating system, with MySQL
(or an equivalent such as Oracle), Perl, R, and Apache web server installed. You
would connect to the server from a separate (client) computer to query databases,
execute commands, and run software that you have created. This may sound
like a lot of unnecessary hassle, but it has several benefits if multiple users or
software developers are involved. First, because it is not necessary to physically

1.6 some computing practicalities   17

sit at the server to use it, it can be used simultaneously by a number of people.
This makes it possible to share, for example, a single installation of MySQL or
even a specific database. This considerably reduces administrative duties, because
the software only needs to be installed and configured once, regardless of the
number of users. This approach is therefore very popular in larger organizations,
such as universities and companies that are big enough to have dedicated system
administrators. The client–server approach also provides separation between the
server and the personal computer on which you write program code, check your
email, browse the web, and so on. This has several advantages:

◆	 The server can be in a remote location, such as a data centre with better security
and an uninterruptible power supply.

◆	 You can run a different operating system on your personal computer to the
operating system that is installed on the server.

◆	 You can switch off, reboot, or otherwise abuse your computer without affecting
the server.

All this is particularly useful if you are developing bioinformatics tools that
need to be accessible to other people and therefore need a high level of reliability.

Cloud computing is a modern manifestation of the client–server approach. The
main difference compared to client–server is the fact that in a cloud environment
the remote computing resource may be geographically distributed across mul-
tiple servers and it may be supplied as a product, paid for according to the amount
of storage and processor time that your software uses. This has the attraction that
you are not burdened with the upfront costs of purchasing and commissioning
large pieces of computer hardware, and brings the benefits of economy of scale
through sharing running costs among many other users.

Despite the advantages of working in a server or cloud-based environment,
when starting out we recommend you use a single computer for which you have
administrator rights. This is what we assume throughout the book. However, if
you are in an organization where you wish to, or are forced to, use a server you
shouldn’t have any major problems with the examples. You will just need to li-
aise with the server administrator to find out what software is available on your
particular server and how to access it.

1.6.2  The command line

In most of the examples throughout this book we interact with the computer
via command-line interfaces. In a command-line interface, instructions are
issued to the computer simply by typing commands. Any feedback is returned
to the screen. This may seem like a step backwards in a world of mice, touch
screens, and graphical user interfaces (GUIs), but for some tasks commonly car-
ried out in bioinformatics, such as querying databases or manipulating large data
sets, command-line interfaces can actually be much more efficient than GUIs.
Furthermore, if we can get the computer to do something by typing in a com-
mand, we can incorporate that command into a program as part of an automated
process.

18   1 introduction

For those readers unfamiliar with command-line interfaces, we provide a basic
primer in Appendix A. If you are not confident with working at the command
line, you should take a look at that before moving on to the following chapters.

1.6.3  Case sensitivity

When using command-line tools or writing software, it is essential to be aware
of whether the tool or language you are using distinguishes between capital and
lower case letters. For example, would it consider something called ‘bioinfor-
matics’ to be distinct from ‘BIOINFORMATICS’ or, more subtly, ‘Bioinformatics’?
This can lead to all sorts of problems, especially for beginners, because com-
mands that superficially look correct may not work. To make things even more
confusing it is not just the tools that differ in their case sensitivity—the behav-
iour of operating systems differs too. Specifically, Windows ignores case, so a file
called ‘DNA.TXT’ could be referred to on the command line as ‘dna.txt’. If you
tried to do this on Linux or Mac OS you would receive an error saying that the file
could not be found. Indeed, in such case-sensitive operating systems two distinct
files ‘dna.txt’ and ‘DNA.TXT’ could co-exist in the same directory, although this is
hardly a desirable situation.

Our recommendation throughout this book is to assume case sensitivity, re-
gardless of the tool, language, or operating system you are using, but make sure
that you avoid using names that would be identical if the case was ignored. This
is the approach we have followed in the examples in the chapters that follow.
Not only does this avoid confusion, it also helps ensure that any programs you
write are portable between operating systems.

1.6.4  Security, firewalls, and administration rights

Ever since computers started being connecting to networks, there have been con-
cerns about unauthorized people connecting to computers and accessing data
or installing malicious software. This is clearly a particular concern for those in
bioinformatics working with sensitive data, such as novel compounds, or clinical
data that needs to be guarded for ethical reasons. There is also the danger of crim-
inals taking over networked computers and using them to send out spam email,
which can have serious consequences for organizations as they can end up being
blacklisted—having all their outgoing mail flagged as spam. For these reasons,
organizations have become increasingly strict in limiting what users can do with
their computers, and operating systems and server software has become loaded
with more security features. Basic security features include the use of password
protected user accounts to access a computer or particular data, and a firewall to
filter network traffic to and from the computer.

We mention this here because the material in this book goes beyond what
many organizations expect you to be doing with your computer. In particular,
you will need to install software on your computer if you don’t already have it,
and in Chapter 5 your will be using your computer as a web server. Installing
software requires you to have administrator rights on the computer and run-
ning server software may require you to modify firewall settings if you want to

references   19

access the server from another computer. Neither of these things are inherently
dangerous, but getting such access can be tough if your computer belongs to
your organization, and is set up and administered by them. If you are working or
studying in an organization, our advice is to talk to your IT support people and
explain what you want to do. Depending on the organization, it is possible that
the software you need may already be installed, either locally or on a server.

Even if you are using your own computer, you may need to spend a little time
ensuring you have administrator rights and tweaking firewall settings. The good
news is that security issues are only likely to be a problem when installing and
setting up the tools used in this book, typically at the start of the chapter. Once
you have successfully got MySQL, Perl, R, and so on up and running, you should
be able to proceed through the chapter without further hindrance. Also, software
installation and configuration is a generic issue, not specific to people using this
book or even to people working in bioinformatics, so there is likely be help avail-
able on the web for almost every eventuality. Indeed, you can always head over to
www.bixsolutions.net to report the issue and seek a solution.

References
Brereton, R. G. (2007). Applied Chemometrics for Scientists. Wiley: Chichester, UK.
Christiansen, T., Foy, B., Wall, L., & Orwant, J. (2012). Programming Perl. O’Reilly: Sebastopol, California,

USA.
Laurie, B. & Laurie, P. (2013). Apache: The Definitive Guide. O’Reilly: Sebastopol, California, USA.
Lesk, A. M. (2008). Introduction to Bioinformatics. Oxford University Press: Oxford, UK.
Otto, M. (2007). Chemometrics: Statistics and Computer Application in Analytical Chemistry. Wiley: Chichester, UK.
Tahaghoghi, S. M. M. & Williams, H. E. (2009). Learning MySQL. O’Reilly: Sebastopol, California, USA.

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

CHAPTER 2

Building biological databases
with SQL

A database is at its simplest a set of stored information, such as a filing cabinet
or a computer’s hard disk. Generally pieces of similar or related information are
gathered together in the same place, as common sense would dictate and as you
probably already do when you create folders and subfolders for information held
on your computer. Database concepts provide a way of formalizing the gathering
together of this data such that the relationships between pieces of information
are consistent. They can therefore be more efficiently used, whether through
manual or automated processes, and the structure provides a means by which
data consistency may be maintained.

This chapter focuses primarily on a type of database called a relational database.
Relational databases are powerful because they enforce a great deal of security
and consistency on the data within them. The software tools that are used to cre-
ate and manage relational databases are called relational database management sys-
tems or RDBMSs. These allow the data contained within a database to be queried
in immensely powerful ways, often using very simple commands created using a
special programming language called the Structured Query Language (SQL).

Also briefly introduced in this chapter are two other types of database com-
monly encountered in bioinformatics: flat text files, such as FASTA files, contain-
ing sequence information, and Extensible Markup Language (XML) files, which
are a key component of most modern data standards, such as the HUPO-PSI stand-
ards for proteomic data. Understanding these types of database is easier than for
relational databases, so they do not form the bulk of this chapter.

Finally we will also introduce the concept of NoSQL databases, a class of diverse
solutions to data storage and access that have arisen in response to the increasing
need to access records across very large data sets in very short time frames. There
are some instances where the use of such a technology in bioinformatics applica-
tions is more appropriate than using an RDBMS.

At first glance the ordering of this chapter may seem strange—the installation
of a relational database system follows extensive sections on databases and data-
base design, and database access through SQL is covered last. This is deliberate.
The hardest aspects of understanding and dealing with databases occur at the

22   2 building biological databases with sql

design stage, which is also the most important. Installing a RDBMS is straightfor-
ward and also unnecessary for good database design. However, a working system
is needed to experiment with accessing databases, and hence installation and
connection issues are discussed after database design but before database inter-
action.

2.1  Common database types

2.1.1  Flat text files

As stated above, a database is merely a store of data, one of the simplest forms
of which would be to write the data as a set of text files, often termed flat files.
These flat files could be any text file created in a commonly readable format,
such as the .txt files created in text editors like Windows Notepad. A collec-
tion of text documents on a hard disk is one example of a database of flat files.
In order to assist automated access and, indirectly, readability, it helps if some
sort of structure is imposed upon the data within a text file. In terms of scientific
papers, this order is often along the lines of Introduction, Materials and Methods,
Results, Discussion and References, or variants of this type. The structure helps
the reader to quickly locate information of interest by navigating first to the
relevant section. Subheadings further help this cause. For automated reading,
or parsing, of data within a file, it helps if the structure is highly consistent. The
headings within scientific papers may differ due to a number of factors, such as
different journal formats. On the other hand, if we consider a basic implemen-
tation of the FASTA flat file format for storing sequence files, presented below,
the structure is much simpler but allows for both intuitive human and machine
reading.

A simple example of a FASTA format file would be:

>ENSP00000630516 | a protein description
SEQUENCEAPPEARSHERE
>ENSP00000295897 | another protein description
THESEQUENCEOFTHISPROTEIN

The FASTA file features four structural elements:

1	 Information about each protein is introduced by a greater than (>) character

2	 The first piece of data to follow the > character is the protein accession
number, in this case the Ensembl accession number. This is followed by a bar
(|) character.

3	 Following the bar, we have the protein description. There is then a newline
character that is not directly visible, but results in a new line being started.
This is the indication that the protein sequence follows. In terms of human
readability, this is clearly indicated by the start of a new line on which text
that looks like a sequence is presented, but in machine readability terms, it’s
the invisible newline character that is used to differentiate between protein
description and protein sequence.

2.1 common database types   23

4	 Another newline character is used to terminate the sequence, followed imme-
diately by one more newline character. Visually this results in a blank line
separating successive proteins.

The pattern of these structural elements may be repeated until the end of the
file, which may contain any number of proteins.

The important point to note about the above description is that it separates
the data contained in the file from the structure of that data. No information
about what a protein naming convention, description, or sequence actually is,
or what this data looks like, is required to correctly assign data elements into
one of three groups: protein accession numbers, protein descriptions, and pro-
tein sequences. Furthermore each piece of data is explicitly related, by its lo-
cation in the file, to the other two belonging to the same protein. The data
structure is therefore valuable in itself, regardless of any data contained within
the file.

Far more complicated forms of structured flat file exist and are used in everyday
bioinformatics applications. A good example is the Genbank format used to store
sequence data—each individual sequence record contains not just the sequence but
many additional fields of metadata such as the species name and genomic location
(see www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html). Regardless of
the specific format, the principle of flat files remain the same: there is a set of
consistently used structural elements that allows data to be sorted into like types
and also grouped as appropriate, for example by protein, as in the preceding
example.

2.1.2  XML

Extensible Markup Language (XML) is a commonly used file format in bioinfor-
matics applications. It adds a syntax to the concept of a structured text file. A
syntax defines the order of language elements such that what is written is gen-
erally comprehensible. In the case of the English language, sentences are most
readily understood if the correct grammar and punctuation are used. These ele-
ments therefore form the syntax for English. In other languages, such as Perl, or
in this case XML, a strict syntax helps both humans and computers to understand
exactly what is meant.

As with FASTA files, XML files may be written in, and viewed in, a simple text
editor. However, the structures have been designed to be primarily machine read-
able, not necessarily human readable, and therefore can appear a lot harder to
understand. Having said this, the basic XML syntax is made up of a small number
of structural elements that are easily understood.

XML structure
Each XML file can begin with a declaration of certain information, such as the
type of XML being used, the way characters in the file are encoded, and other in-
formation, for example:

<?xml version="1.0" encoding="UTF-8"?>

24   2 building biological databases with sql

You will find this at the top of the XML file before the information-containing
body of the file starts.

The generic structural elements in XML are called names, attributes, and values.
This structure is used for the declaration too, but note the use of the question
marks, indicating that this information is part of the declaration, not the body
information. Textual content may also be entered into each element. Generically,
these are written in the following way:

<name attribute_1="value_1" attribute_2="value_2"… attribute_
n="value_n">Some text about this named element</name>

A named set of information is thus introduced using the syntax <name; the
attributes and values belonging to this follow until the closing > symbol. To close
a named group, the syntax </name> is used. For example, if we were representing
the proteins identified in a proteomics experiment, the following could be used:

<protein_identified id_number="1" probability="1.00">Protein
identified using mass spectrometry</protein_identified>

Named elements may be nested below one another, such that a subset of
information belongs to the named element that surrounds it. So, the various
names by which an identified protein may be known follow the opening of the
protein_identified, but precede its closing statement, as in:

<protein_identified id_number="1" probability="1.00">
...
<annotation protein_description="Cerulaplasmin precursor"
ipi_name="IPI00017601" refseq_name="NP_000087"
swissprot_name="P00450" ensembl_name="ENSP00000264613"
trembl_name="Q9UKS4" locus_link_name="1356">
...
</protein_identified>

A great innovation of XML, and the reason it has ‘extensible’ in its name, is that
the names of elements and how they can be used in a particular application can be
decided by anyone. The only requirement is that this specification is encoded in an
XML schema definition (XSD) file and made available somewhere on the Internet.
The URL of the XSD to which a particular XML file should conform must be ref-
erenced in a special section at the top of that file. Software can therefore validate
a given XML file against the XSD to check that elements are being used correctly.

A real-world example
The above examples have been formatted with some bold text such that they are
clearer for us to read. However, this formatting is not part of the XML format and
the convention may not be used in all situations. For instance, Fig. 2.1 provides a
sample of an XML file that was generated by ProteinProphet, a system for identi-
fying proteins from mass spectrometry data. In this file there is little formatting,
initially rendering it very difficult to read.

Fig. 2.1  A sample of an XML file generated by a protein identification system, ProteinProphet.

<?xml version="1.0 encoding="UTF -8"?><xml-stylesheet type="text/xsl" href="regis/sbeams/
archive/edeutsch/HUPOPPP12/HUPO12_run31/HsIPI_v2.21/interact-prot.xsl"?>
<protein_summary xmlns=http://regis-web.systemsbiology.net/protXML xmlns:xsi=http://
www.w3.org/2001/XMLSchema –instance" xsi:chemaLocation=http://regis-web.systemsbiology.net/
protXML/tools/bin/TPP/tpp/schema/protXML_v3.xsd
summary_xml="regis/sbeams/archive/edeutsch/HUPOPPP12/HUPO12_run31/HxIPI_v2.21/interact-prot.
xml">...

...<protein_group group_number="1" probability="1.00"><protein protein_name="IPI00017601"
n_indistinguishable_proteins="1" probability="1.00" percent_coverage="9.0"
unique_stripped_peptides="KLVYREYTDASFTNRK+IYHSHIDAPKDIASGLIGPLIICKK+LVYREYTDASFTNR+YKK
VVYR+LVYREYTDASFTNRK+KLISVDTEHSNIYLQNGPDR+HYYIGIIETTWDYASDHGEKK+IGGSYKKLVYREYT DASFTNRKER+IYH
SHIDAPK+IGGSYKKLVYREYTDASFTNRK" group_sibling_id="a" total_number_peptides="15" pct_spectrum_
ids="1.18"><annotation protein_description="ceruloplasmin precursor" ipi_name="IPI00017601"
refseq_name="NP_000087" swissprot_name="P00450" ensembl_name="ENSP00000264613"
tremble_name="Q9UKS4" locus_link_name="1356"/><peptide peptide_sequence="KLISVDTEHSNIYLQNGPDR"
charge="2" initial_probability="1.00" nsp_adjusted_probability="1.00" weight="1.00"
is_nondegenerate_evidence"Y" n_enzymatic_termini="2" n_sibling_peptides="8.00"
n_sibling_peptides_bin="6" n_instance="1" is_contributing_evidence="Y"
calc_neutral_pep_mass="2299.4919"></peptide><peptide peptide_sequence="IYHSHIDAPKDIASGLIGPLIIC
KK" charge="2" initial_probability="1.00" nsp_adjusted_probability="1.00" weight="1.00"
is_nondegenerate_evidence="Y" n_enzymatic_termini="2" n_sibling_peptides="8.00"
n_sibling_peptides_bin="6" n_instances="1" is_contributing_evidence="Y" calc_neutral_pep_
mass="2761.1919"><modification_info modified_peptide="IYHSHIDAPKDIASGLIGPLIICKK"
<mod_aminoacid_mass position="23" mass="161.138794"/></modification_info></peptide>

26   2 building biological databases with sql

This is pretty much incomprehensible to the untrained eye, and even if the
reader understood the XML structure, as we do now, this would not be a preferred
manner in which to view it. Rather XML files are often viewed through an inter-
face, such as a web browser, which itself refers to a second document, a stylesheet
(XSL document), for instructions as to how to display data contained within the
XML structure. This XML file, when viewed with its stylesheet, is shown in Fig. 2.2.

To highlight each element as it appears in the body of the example, this is
reproduced as Fig. 2.3 with names appearing in bold, attributes in grey, and val-
ues in normal text.

All of the information presented in Fig. 2.3 relates to the protein_group with a
group_number of 1, because it falls in between the opening of this group (<pro-
tein_group…n…>) and the closing tag (</protein_group>). Later in the file,
another protein_group may be started with a group_number of 2. This would
be a different protein and hence have a different set of alternative protein names
nested within it as annotations. In this way, information that is naturally related
is linked together within the XML structure, very much as information is linked
within the tables of a relational database, as we shall see in the next section.

2.1.3  Relational databases

Relational databases take the concepts of order and structure of data one step
further. This is achieved through compartmentalizing data into boxes of related
elements and then linking these boxes such that pieces of data in one box may be
accessed alongside related information in another box. The essence of a relational

Fig. 2.2  The ProteinProphet XML file, shown in Figure 2.1, viewed in Internet Explorer with
the help of a stylesheet.

...<protein_group group_number="1" probability="1.00"><protein protein_name="IPI00017601"
n_indistinguishable_proteins="1" probability="1.00" percent_coverage="9.0"
unique_stripped_peptides="KLVYREYTDASFTNRK+IYHSHIDAPKDIASGLIGPLIICKK+LVYREYTDASFTNR+YKK
VVYR+LVYREYTDASFTNRK+KLISVDTEHSNIYLQNGPDR+HYYIGIIETTWDYASDHGEKK+IGGSYKKLVYREYT
DASFTNRKER+IYHSHIDAPK+IGGSYKKLVYREYTDASFTNRK"group_sibling_id="a" total_number_peptides="15"
pct_spectrum_ids="1.18"><annotationprotein_description="ceruloplasmin precursor"
ipi_name="IPI00017601" refseq_name="NP_000087" swissprot_name="P00450"
ensembl_name="ENSP00000264613" tremble_name="Q9UKS4" locus_link_name="1356"/><peptide
peptide_sequence="KLISVDTEHSNIYLQNGPDR" charge="2" initial_probability="1.00"
nsp_adjusted_probability="1.00" weight="1.00" is_nondegenerate_evidence"Y"
n_enzymatic_termini="2" n_sibling_peptides="8.00" n_sibling_peptides_bin="6" n_instance="1"
is_contributing_evidence="Y" calc_neutral_pep_mass="2299.4919"></peptide><peptide
peptide_sequence="IYHSHIDAPKDIASGLIGPLIICKK" charge="2" initial_probability="1.00"
nsp_adjusted_probability="1.00" weight="1.00" is_nondegenerate_evidence="Y"
n_enzymatic_termini="2" n_sibling_peptides="8.00" n_sibling_peptides_bin="6" n_instances="1"
is_contributing_evidence="Y" calc_neutral_pep_mass="2761.1919"><modification_info
modified_peptide="IYHSHIDAPKDIASGLIGPLIICKK"<mod_aminoacid_massposition="23" mass="161.138794"/>
</modification_info></peptide></annotation></protein></protein_group>

Fig. 2.3  The same sample of XML as provided in Figure 2.1 featuring, in the lower portion, highlighted structural elements. Here name elements
appear in bold and attributes appear in grey, with their values remaining in the normal font. For completeness name group terminators have
been added at the bottom of this section.

28   2 building biological databases with sql

database, and much of their power, comes from the design of these boxes and
their relationships to one another.

As a physical example of a relational database, we might consider a library
indexing system. We can think of a library as a store of information with all
of the books in one, very big, box. The books are often stored in a number of
smaller, subject-specific boxes and then indexed alphabetically by author name.
To find any book in the library for which you know the author and subject area,
you can look in the correct subject area and work your way through the books
until you hit the correct author and then work through all of their works until
you find the one you want. However, if what you want is to find all of the books
in the library written by a specific author, regardless of subject, you may be in
for a long search using this method—you would have to search through all the
subject areas in the library to be sure of finding all those written by the author of
interest. To help in this case, we may create another box, such as a filing cabinet,
in which to store the author, book title, and key subject information in another
way, as a series of cards linking each author to all the books they have written.
Now, if you know the name of an author, you can look in this box, work through
the list until you find the one of interest, and written next to the name should be
the list of books, each one assigned the correct subject area. It would then be pos-
sible to fairly quickly locate all the books in the library that had the same author.

To recap, the above example features two boxes of naturally related data items.
The first of these, the library, contains sets of books grouped by subject and then
by lead author, and the second contains key cards listing below every author’s
name their complete set of published works and the subject areas in which they
could be found. In database terms, these boxes are called tables. Each table has a
number of pieces of information stored within it; subject, author name, title, and
book contents in the case of the library, and author name, book title, and subject
in the case of the filing cabinet. Most importantly, each box is also linked to the
other by three pieces of information: author, title, and subject area.

In these ways the two boxes of information are related. In database terms, the
tables are now related by three of their fields. This situation can be rendered pic-
torially, as shown in Fig. 2.4.

One further important concept highlighted by the above example is that to
describe the process of accessing data and to represent the information that is
stored, we have not had to refer at all to a specific author, title, or publisher.
Compare this to the examples of flat text files and XML formats presented above.
In each of these the example contains the stored data. In the case of Fig. 2.4 we

Library Filing_cabinet
Subject Author
Author Titles
Title Subjects
Book_content

Fig. 2.4  Schematic representation of the contents of a library linked to author information
stored in a filing cabinet. The library and filing cabinet are represented as two distinct tables.

2.2 relational database design—the ‘natural’ approach   29

have a representation of the data, but no data is shown. The representation of the
database forms an abstract layer describing the underlying data, and therefore we
can discuss each item of data generically without referring to a specific example.

When dealing with database design and access we are therefore able to talk
about access and manipulation generically, a very powerful concept. Why? To go
back to the library example, the books in each section are assumed to be ordered
alphabetically by author name. This makes a lot of sense, but what if we want
to locate a book by title? If we don’t know the author then a rather long search
may be required. We can get around this by having a set of index cards that link
titles to authors, but this duplicates data which leaves us prone to errors caused
by mismatches between the titles and authors printed on the covers of the books
themselves and those on the index cards. In this case, because the data and the
representation of the data are inextricably linked, we have to choose one order-
ing mechanism and use additional means if we wish to use an alternative order.
With a relational database, however, we can order the information contained
in a table by any attribute we wish. It’s like having a library that will automatic-
ally move all the books around to suit the type of search we are doing, whether
searching by subject area, by author, or by title.

As we have seen, the fundamentals of a relational database are not compli-
cated. However, there is a lot of complicated jargon and even mathematics asso-
ciated with formal database design that can be very off-putting for beginners.
In the next section we present a natural approach to database design that, for
most applications, allows new databases to be created without the need to wade
through this complexity.

2.2  Relational database design—the ‘natural’ approach

The aim of designing a database is to produce a functional map of the database
structure, which we call the database schema. The steps to producing a fairly
robust, useable database schema without worrying about the complexities of
formal database design are as follows:

1	 Gather together a list of pieces of data to be contained within the database.

2	 Group these so that they fit naturally together.

3	 Assign consistent and descriptive short names to each piece of data.

4	 Define the type of each piece of data: number, text, binary, etc.

5	 Check for atomicity—can any data item be broken down further?

6	 Index your database.

7	 Link the tables of your database through relationships.

Each of these steps is described in detail through a worked example in the follow-
ing sections. As will be seen, the above steps are ordered, but it may be necessary to
repeat certain of them as part of an iterative design process. It may be useful for you
to attempt to design a database of your own whilst working through the examples

30   2 building biological databases with sql

given here, or you might prefer to work through the examples and then re-read the
section with your own database design in mind. Either way, to get the most out of
this chapter you should carefully consider each step as it happens: why are you doing
it and what has it achieved? In this way your appreciation of the operations will be
enhanced and the easier you will find it to apply these concepts in any situation.

2.2.1  Steps 1–3: gather, group, and name the data

The first important point to keep in mind when designing a database is to think
about what you want to get out of the database, not what you want to put into it.
There are a number of reasons for this, the most compelling of which is that you
are designing a database for a purpose and it is that purpose that should define
its form and content. It’s unlikely that you are designing a database only to store
your data—you, and perhaps other people, will want to access it too.

Having said that, we have to start from somewhere and often the easiest point
to start from is indeed to consider just what is available. For the rest of this
chapter we will concentrate on a specific example to illustrate database design
and implementation. In this example, we are interested in building a repository
of information about PCR experiments that have been carried out in a particular
organization. The benefits of such a repository to the organization are to make
the results of the PCR more readily available, to avoid duplication of effort, and
to facilitate sharing of best practice between experimentalists. The example was
inspired by an MSc student project—if you want to find out more we refer you to
the relevant thesis (Simecek, 2007) which is available via the web (dspace.lib.
cranfield.ac.uk/handle/1826/1773).

Data to be captured from a PCR experiment
Rather than considering the experimental process as a whole, we first break the
process down into potential sources of information for the database. Here we
may have five sources of information from an experiment:

1	 The PCR kit used.

2	 Experimental parameters (annealing temperature, cycle times, etc.).

3	 Primers used.

4	 The scientist performing the experiment.

5	 Results of the experiment.

You may disagree with the above, wish to combine or regroup the sources, or
split them down further, but in essence you will achieve the same result—a set
of headings under which it is simpler to list the individual pieces of information
that are to be stored than would be the case if you were to consider the whole
experiment in one go. The result of assigning information under these five head-
ings is shown in Table 2.1.

It is at this point in the design process that you can start asking yourself ques-
tions. The first might be ‘Is this complete?’ This would be a fair question, but

2.2 relational database design—the ‘natural’ approach   31

Table 2.1  Example items of information from a PCR experiment grouped under source headings

PCR Kit Experimental
parameters

Primers used Scientist Results

Manufacturer Denature
temperature

Primer 1 sequence Name Gel image

Kit name Denature time Primer 2 sequence Title

Order number Annealing
temperature

Primer
concentration

Department

Supplier plus their address Annealing time Primer design
software used

Telephone number

Cost Elongate
temperature

Email

Buffer Elongate time

Buffer concentration Number of cycles

Enzyme Completion
temperature

Enzyme concentration Completion time

Nucleotide mix

Nucleotide concentration

tends to lure the unwary database designer down a never-ending quest for com-
pleteness that is not necessary to meet the application for which the database is
intended.

There are some items that are undoubtedly missing from Table 2.1 that you
may wish to include. One might be the purpose of the experiment. There may be
other experimental parameters that you wish to capture, or variations in protocol
that could be used. The results column is currently very sparse—would readings
summarizing the information content of the gel resulting from the PCR be use-
ful? You might also think that some of the pieces of information are not particu-
larly useful and we might even be misguided to put them in. For instance, if the
laboratory follows a set protocol for the majority of PCR experiments—might it
not be safer (and more efficient) to point the user to the standard protocol sheet
and hence eliminate the need to store, and potentially enter incorrectly, most of
the pieces of information in the first two columns?

So, to get a better feel for what the database should be able to store, we need
to consider how we intend to use the database. For the purposes of this example,
it is to provide a record of protocols and kits that have been used in an attempt
to amplify sequences that have proven tricky to analyse using standard methods.
The benefit of storing the results from these experiments is that the database will
provide a reference point across the laboratory for scientists to quickly determine
if the sequence they are working with has been considered before and, if so, what
the best protocol to use is.

32   2 building biological databases with sql

With this in mind, it can be seen that perhaps the only extra pieces of informa-
tion required would be the sequences that are to be amplified and some sort of
judgement as to how successful each protocol was in amplifying each sequence.
Perhaps we may also wish to add in some more data such as the time and date of
the experiment and also an experiment identification number so that we can use
this as a quick way of referring to the protocol and its outcome.

Refining Table 2.1 to include these additional pieces of information results in
Table 2.2. At this stage there don’t appear to be any pieces of information that
should be removed from these lists.

A secondary use of the database might be to research whether there are cer-
tain trends in the data that might indicate suitable starting points for ampli-
fying novel sequences. Are there any further pieces of information that would be
needed for this?

Once you are satisfied that the pieces of information you have collected are
sufficient to fulfil the purpose of the database, the next stage is to turn these lists
into a database design.

Schema design and normalization
Database design can be broadly approached in two ways. The officially ‘correct’
way to design a database is to start with a single database table containing all of

Table 2.2  A refinement of the items of information to be stored from a PCR experiment, once again
grouped under source headings. Additional fields are highlighted in italics

PCR Kit Experimental
parameters

Sequence and
primer information

Scientist Results

Manufacturer Experiment
identifier

Sequence to be
amplified

Name Gel image

Kit name Date Purpose of
experiment

Title Assessment
of method

Order number Time Primer 1 sequence Department

Supplier plus their
address

Denature
temperature

Primer 2 sequence Telephone number

Cost Denature time Primer concentration Email

Buffer Annealing
temperature

Primer design
software used

Buffer concentration Annealing time Primer supplier

Enzyme Elongate
temperature

Cost

Enzyme concentration Elongate time

Nucleotide mix Number of cycles

Nucleotide
concentration

Completion
temperature

Completion time

2.2 relational database design—the ‘natural’ approach   33

the pieces of information that you are seeking to store in the database and then
use a process called normalization to break this table into a set of tables linked by
common pieces of information.

A more natural approach to database design can be followed that takes advan-
tage of a lot of the thought that we put into collecting the information above.
This is a method that we have evolved and tested many times with feedback indi-
cating that it is more intuitive than the formal method, and also allows a quicker
understanding of the steps involved in the normalization process. For these rea-
sons this ‘natural design’ approach is presented in this chapter. However, if you
are going to be doing database work regularly, then you should definitely inves-
tigate other design approaches as each has its own strengths and weaknesses
and, therefore, suitability to different tasks. There are many papers and books
dedicated to the subject: Codd first introduced the concept of normalization in
1970 (Codd, 1970), followed by numerous other papers. For complete guides to
database design you may like to consider the popular Database Design for Mere
Mortals (Hernandez, 2003), or, by the same publisher, Database Solutions: A Step-by-
Step Approach to Building Databases (Connolly & Begg, 2003). If you would prefer a
MySQL specific guide to both design and the fundamentals of the MySQL system,
try Beginning MySQL Database Design and Optimization (Stephens & Russell, 2004).

If you talk with database administrators in your organization, they may wish to
ascertain the level of normalization of your proposed schema. For most purposes
a schema designed to the ‘3rd Normal’ specification will provide a good balance
of functionality and robustness. The approach outlined in this chapter tends to
result in a schema that is 3rd Normal and, therefore, should suit your needs.

Here we will cover how to present a schema and some of the more standard
terminology used in database design.

Presenting the schema
The information in Table 2.2 is fairly clear for this small example, containing
names for tables and the types of information within each table. It does not,
however, look very much like a database schema. Before continuing to develop
the database it is useful to draw it in a slightly different fashion. Specifically,
each table should be presented in its own box with the table name above the
box and the types of information contained within each appearing within the
box, as shown in Fig. 2.5. At this point it is useful to choose simple, but descrip-
tive, names for each of the tables and for each type of information. Such names
should be consistent with one another. For instance, in Table 2.2 there is cur-
rently one table named Scientist and another named Results. The first of these is
singular and the second plural. Although this seems to be intuitive, it can make
using the database harder in the future as not only does one have to remember
the name of the table, but also if it is plural or singular. A standard convention is
to name all tables in the singular, so Results becomes Result.

The types of data contained in each database are referred to as fields. Each field
should also be named descriptively and consistently. Field names should gener-
ally not be long as they may need to be typed often, and so prove frustrating, but

34   2 building biological databases with sql

they should convey the sort of information contained in the table. For example,
naming each field ‘a’, ‘b’, ‘c’, and so on may be consistent and certainly speeds
up typing the names, but it will be impossible for anyone, including the database
designer, to remember what is actually contained in the database.

It was with these guidelines in mind that the schema shown as Fig. 2.5 was cre-
ated. The immediate improvement in the clarity of presentation of each table is
clear when comparing Fig. 2.5 to Table 2.2. This now looks much closer in form
to the simple library schema given in Section 2.1.3.

During the process of providing tables and fields with short, but descriptive,
names, a number of interesting issues have come to light. For instance, does the
information now contained in Sequence look right? There are eight fields in this
table; six of them are related to primers and primer design and the other two
are related to the experiment. In this case, the renaming operation has helped
to guide the formation of the database—we can now see that the fields se-
quence and purpose in the table Sequence may be better placed in the table
Experiment as they represent the sequence that is to be amplified in this experi-
ment and the reason why we are doing the experiment. Once they are removed,
all other information in the table relates to primers and so the table might be
better named Primer. These changes are shown in a revised schema later in the
chapter (Fig. 2.6).

Kit Sequence
manufacturer sequence
name purpose
order_number primer_1
supplier primer_2
supplier_address primer_conc
cost design_software
buffer primer_supplier
buffer_conc primer_cost
enzyme
enzyme_conc
nucl_mix
nucl_conc Scientist

name
Experiment title
ID department
date tel_number
time email
denature_temp
denature_time
anneal_temp
anneal_time Result
elongate_temp gel_image
elongate_time assessment
cycles
completion_temp
completion_time

Fig. 2.5  Schema representation of Table 2.2.

2.2 relational database design—the ‘natural’ approach   35

We now have the outline of a schema. It’s not yet complete, there are a number
of further operations to perform before it is, but much of the conceptual hard
work has been done. The following sections describe the processes by which this
loose set of disconnected tables may be made more robust, to help ensure data
integrity, and also linked together into a truly relational database.

2.2.2  Step 4: data types

The above processes have been fairly intuitive—gathering information, grouping
it, and naming each piece. We now need to assign a specific data type to each
piece of data. Specifying data types is important because it helps to maintain the
integrity of the database, as well as helping to minimize its size and maximize
the speed with which we can get data in and out.

There is a set of standard data types defined within the ANSI (American
National Standards Institute) standards for SQL. Most or all of these are used
within RDBMSs such as MySQL, Oracle, and Access, but are often given differ-
ent names in each RDBMS. For this reason, there may be some problems when
designing a database schema for one particular RDBMS and implementing it on
another. It is, therefore, always worth checking that the data types you have used
are compatible between the two and, if not, how they should be modified.

As this book assumes that you will be working with open source software,
the data types discussed in this section are for MySQL. Most of these will be the
same, or there will be equivalents, in other systems, but the online help for each
RDBMS will identify any differences.

Numeric data types
A number of the most commonly used numeric data types are given in Table 2.3.
These can be split into two types: integer (whole number) types and floating point
types (which can include numbers with fractional parts after a decimal point).
Once you have decided whether your data requires a decimal point or not, the
choice of the exact type will depend on how large you expect your stored num-
bers to be and to what level of precision you require the number to be stored. For
instance, if you are only storing integers between 1 and 10 in a field, then the
MySQL data type TINYINT would be adequate.

To store currency data, two decimal places may always be required and there-
fore the data type could be set to DECIMAL(n,d) where n specifies the total pre-
cision and d the number of digits that follow the decimal point, in this case d=2
and n defines the maximum amount that can be stored in the column. (It is worth
noting here that MySQL versions since 4.1 store DECIMAL fields as a text string,
not as a numeric type, which can have implications when programming.)

Finally, to store the results of calculations that may result in real numbers, FLOAT
may be used. In general it is not necessary to define a precision for FLOAT, and indeed
your schema will be more transferable if you don’t, but the option is there in MySQL.

Text data types
Once again, there are a number of choices when deciding how to store textual
information. The most commonly used of these are shown in Table 2.4. If the text

36   2 building biological databases with sql

Table 2.4  Standard SQL and MySQL-specific text data types. Adapted from the MySQL Reference
Manual

SQL Type MySQL Type Capacity Notes

CHAR (n) CHAR n = 0 to 255 n sets the stored size of the string

VARCHAR (n) VARCHAR n = 0 to 255 n sets the maximum length of the
string

TINYTEXT 28 bytes Up to 255 characters

TEXT TEXT 216 bytes Up to 65,535 characters

MEDIUMTEXT or
LONG or
LONG VARCHAR

224 bytes Up to 16,777,215 characters

LONGTEXT 232 bytes Up to 4,294,967,295 characters

TINYBLOB 28 bytes 256 bytes

BLOB BLOB 216 bytes ~65 KB

MEDIUMBLOB 224 bytes ~16.7 MB

LONGBLOB 232 bytes ~4.3 GB

Table 2.3  Standard SQL and MySQL-specific numeric data types. Adapted from the MySQL
Reference Manual

SQL Type MySQL Type Minimum
Value (Signed)

Maximum
Value (Signed)

Notes

SMALLINT
INTEGER

TINYINT
SMALLINT
MEDIUMINT
INT
BIGINT

–128
–32768
–8388608
–2147483648
–9.22337E + 18

127
32767
8388607
2147483647
9.22337E + 18

An unsigned attribute is also
available in MySQL. The range
of this may be calculated by
adding the numeric parts of
the signed range (e.g. 0 to 255
(=128 + 127) for TINYINT)

DECIMAL DEC
or DECIMAL
or DECIMAL
(n, d)?

–1E + 38 1E + 38 – 1 Fixed precision: Decimal
numbers are expected to
match the precision defined
(e.g. currency data)

FLOAT FLOAT or
FLOAT (M, D)

–1.79E + 38 1.79E + 38 Floating point number with
optional (non-standard) user
definable precision

DOUBLE
PRECISION

DOUBLE or
REAL

–3.4E + 38 3.4E + 38 15 digits of floating precision

itself is to be stored in the database in a readable form, then a text type is used.
CHAR(n) sets aside storage space for a character string of length n, no more and
no less. VARCHAR(n) defines a more flexible data type that allows any length of
string to be entered to a maximum length of n, with storage only being used for
approximately the length of string entered. Always using a VARCHAR(255) may

2.2 relational database design—the ‘natural’ approach   37

seem like an attractive option for storing any text information (as long as it is
shorter than 256 characters). However, if the data entered is likely to be of uni-
form length, such as serial numbers or certain accession numbers, then a CHAR of
suitable length will generally be more efficient in terms of storage space.

For longer text strings, the variants on the TEXT type may be used. These may
seem just like longer VARCHAR strings and do behave rather like them, but care
should be taken when grouping and sorting using TEXT values as MySQL defaults
to using only the first 1024 characters1 for such operations. So, if two TEXT
strings start the same, but diverge after 1024 characters, they will be treated as
being equal for sorting and grouping, which may not yield the desired result.

Binary Large OBjects (BLOBs) are treated as binary strings (as opposed to char-
acter strings). Files such as PDFs, Microsoft Word documents, image data, and
so on could be stored within the database as BLOBs, ordered, and searched by
comparing their binary strings. As with TEXT, such comparisons are limited by
default to the first 1024 bytes of the string.

Choosing and representing the data types for our example
Back in Fig. 2.5 we captured all the fields in our database—each of which needs
to be assigned a data type. Fig. 2.6 presents the data types assigned to each
field in a tabular format. Consider the field types that have been suggested. Do
they make sense? Can you see any problems with any of them or restrictions
that they may impose? Some of these will be discussed below. Importantly, it is
fine if you disagree with a number of these assignations. They are not perfect
for all eventualities, but when you design your own database you will need to
carefully consider the application for which it is to be used and pick data types
accordingly.

As mentioned above, VARCHAR(255) has been suggested for most of the text
fields in this example. An exception to this is the order_number field in Kit
which assumes that the order numbers assigned by the department are of length
16 and hence there is no need to use a variable string length.

All temperatures and times have been assumed to be integer based, with time
in minutes. This assumption may be correct or a finer scale of temperature or
time could be required. A FLOAT data type would be considered under these cir-
cumstances.
DATE and TIME are special data types that have not been discussed up to

now. MySQL has a number of ways of representing these, which can be found
in the MySQL Reference Manual (dev.mysql.com/doc/#manual), however
these are the most common, with DATE representing yyyy-mm-dd and TIME
hours:mins:secs.
Kit cost and Primer primer_cost are both represented as decimals with

two decimal places and a maximum number of six figures, allowing a maximum
cost of 9999.99 to be represented in each of these fields. The unit of currency is
not specified or stored in these fields.

1	 The comparison is actually restricted to the first 1024 bytes, so it will compare fewer than 1024
characters if you are using a character set that requires more than one byte to encode each character.

38   2 building biological databases with sql

As gel images can be large, these have been assigned a MEDIUMBLOB type that
will allow storage of files just over 16 MB. Alternatively, a link to the location of
the image on a hard drive or server could have been placed here (in the form of
a text string) to save space within the database whilst still providing easy access
to the image. This may often be a better solution than storing the image itself, as
few database operations will be usefully employed on an image.

Finally the assessment of the experimental result has been assigned a TEXT type
allowing a longer description, of up to around 65,500 characters, to be stored here.
This might be excessive and perhaps a TINYTEXT type would be more appropriate.

One point of note where the use of VARCHAR(255) might seem a little odd is
the tel_number field in Scientist, which intuitively might have been an INT.
However, often telephone numbers contain other characters, such as +, spaces,
and brackets which would not be compatible with a numeric type. This problem
arises mainly because the telephone number is not atomic, which brings us
neatly on to the next topic.

Kit Primer
Field Type Field Type
manufacturer VARCHAR(255) primer_1 VARCHAR(255)

name VARCHAR(255) primer_2 VARCHAR(255)

order_number CHAR(16) primer_conc FLOAT

supplier VARCHAR(255) design_software VARCHAR(255)

supplier_address TEXT primer_supplier VARCHAR(255)

cost DECIMAL(6,2) primer_cost DECIMAL(6,2)

buffer VARCHAR(255)

buffer_conc FLOAT

enzyme VARCHAR(255)

enzyme_conc FLOAT

nucl_mix VARCHAR(255)

nucl_conc FLOAT Scientist
Field Type

name VARCHAR(255)

Experiment title VARCHAR(255)

Field Type department VARCHAR(255)

ID INT tel_number VARCHAR(255)

sequence VARCHAR(255) email VARCHAR(255)

purpose TEXT

date DATE

time TIME

denature_temp INT Result
denature_time INT

anneal_temp INT gel_image MEDIUMBLOB

anneal_time INT assessment TEXT

elongate_temp INT

elongate_time INT

cycles INT

completion_temp INT

completion_time INT

Fig. 2.6  Fields and suggested data types by table, for PCR database example.

2.2 relational database design—the ‘natural’ approach   39

2.2.3  Step 5: atomicity of data

The term atomicity may at first appear overly abstract, but all it means is that each
piece of information in a field should be as small as it can be—that is it should
only contain data about one item. If we consider the example of the phone
number above, this seems to be just one data item, a phone number. However, it
may contain three, or more, distinct pieces of information, such as country code,
area code, and the number itself. As discussed above, the ways of representing
such pieces of information generally require that characters other than numbers
be entered. This in itself can introduce inconsistency and error into the database,
and therefore any way of avoiding this will be desirable.

One way of doing this is to split the data up into its smaller parts and thereby
create a field for country code, one for area code, and one for the number. All
of these will contain only integer values and so the type INT can be used. This
may appear to make the database more complicated—we have just replaced one
field by three—but these steps serve in the longer term to make the database
more robust and in many cases more useful. For instance, it is now possible to
search within the database for scientists with offices in specific countries using
the country code.

Another example of this is in the supplier_address field in Kit. An address
generally consists of a number of parts, including: number/name of building,
street name, town/city, county/state, post code/zip, and country. supplier_
address is therefore not atomic. To correct this, six other fields need to be cre-
ated and the supplier_address field removed.

The field name in Scientist should be treated similarly. The revised schema
is presented as Fig. 2.7.

For each field in your proposed database, ensure that it cannot be split into
smaller parts and you will have achieved atomicity. The full advantages of this
will be seen in the next section, but for the time being it is worth thinking of
this as a useful way of making each piece of data in the system as simple as it can
be—simple things are always easier to deal with.

2.2.4  Steps 6 and 7: indexing and linking tables

We now have an atomic database containing all of the information that we think
we need to know about the PCR experiments being performed. However, this
database is not yet relational—there are no links between tables and therefore
the information contained within them is not linked. This format works for a
paper example as we think intuitively that if we talked about two different exper-
iments then we could imagine two separate pages containing the data, one for
each experiment. This is very much a spreadsheet view of the data. Much of
the power of a relational database comes from being able to search through the
data contained to spot trends, order by different variables—such as scientist or
manufacturer to identify systematic errors—and generally to search the data as
an interlinked whole, not as a series of discrete items. For this reason we will
need to add some fields into the database that allow the tables to be linked to one
another.

40   2 building biological databases with sql

Before we attempt this, we need to first ensure that our tables can be efficiently
searched individually. For this they should be indexed. As in a printed dictionary,
what indexing does is provide a structure (and order) to the data such that it can
be searched and the correct information retrieved. In a dictionary the sorting
is by alphabetical ordering of the first few letters in each word and the correct
information for each word is retrieved because each word is generally unique.
This is sometimes not true, and it is good to think about the difficulties that can
be caused when two words are spelt the same but have different meanings—it
would be more convenient if the datum, or meaning of the word, could be unam-
biguously accessed by a truly unique key, or word. This is what we are attempting
to do by indexing our database.

An index therefore allows us to unambiguously select any row of data from any
of our tables, with each table having its own index key. Such a key can consist of
one or more of the pieces of data within the table. A simple example of this is in

Kit Primer
manufacturer primer_1
name primer_2
order_number primer_conc
supplier design_software
supp_building primer_supplier
supp_street primer_cost
supp_town
supp_city
supp_postcode
supp_country
cost
buffer Scientist
buffer_conc given_name
enzyme family_name
enzyme_conc title
nucl_mix department
nucl_conc tel_country

tel_area
Experiment tel_number
ID email
date
time
sequence
purpose Result
denature_temp gel_image
denature_time assessment
anneal_temp
anneal_time
elongate_temp
elongate_time
cycles
completion_temp
completion_time

Fig. 2.7  Atomic schema for the PCR database example.

2.2 relational database design—the ‘natural’ approach   41

the table Experiment. In this table, each experiment has been given an identi-
fication number (ID). If this identification number were simply an integer, each
one greater than the last identification number, it would be sufficient on its own
to uniquely identify any experiment in the table.

A number of database designers will recommend that each table within the
database has a unique identifier based on an incremental number. This may re-
sult in certain performance increases under some circumstances, but we disagree
with this approach on two fronts. The most important of these is that it compli-
cates the database by introducing unnatural fields, with nothing to do with the
data, into each table. This makes the database harder to think about, design, and
query. The second is that it breaks one of the formal rules when designing data-
bases, which is that all information in a table should be directly related to the
key of that table—if we introduce an arbitrary running number into the key, we
break this relationship.

So, how can keys be created other than by using numeric identifiers? In just the
same way as any object is identified everyday, through distinct characteristics.
As an example of this, let’s consider the table Scientist. Here a candidate for
a primary key immediately presents itself: the scientist’s name. In this table an
index key could be created on just the family_name. But many family names are
common and hence we might add in the given name of the scientist. In this way
we could build a compound key to the table consisting of both the given name and
the surname. If we could guarantee that no two scientists were going to have the
same combination of given name and family name, then this would be fine, but
it is not true—lots of people share the same name. At this point someone might
suggest adding in an employee number and referring to the scientists using this.
Doing so has some uses, especially if this database were to be connected to their
organization’s human resources database. However, this is unlikely, and most
people don’t know their employee number so getting these might be difficult. It
is also just as unintuitive as using the incremental number method. There is also
a better option already in this table—the e-mail address. By definition, this will
be unique to each scientist, provided, of course that they have an e-mail account.
Most scientists now do have these and, if not, they are easily obtained, even if
they never use it!

The Primer table does not seem to have any natural key in its present form.
Eventually this table will also need to be linked to the table Experiment. Linking
two tables is achieved when two tables share at least one field. In this case nei-
ther contains a field present in the other and we therefore need to choose at
least one field from one table to place in the other. Here the ID seems like a good
choice as the primer sequences will be related to the experimental sequence we
are seeking to amplify. This would also allow ID to be used as the primary key
for the Primer table. Once this is done, it can be seen that the two tables now
both have ID as their key. As all the information in both tables is uniquely iden-
tified by the same key, logically all of this information should appear in the same
table, although we thought earlier that they should be separate. (There is an ar-
gument that the information in Primer should in fact remain separate because
the same primer combination could be used for more than one experiment and

42   2 building biological databases with sql

hence the same information could be repeated many times in the Experiment
table, which would be undesirable. The final choice would be determined by end
use—does each experiment run in this laboratory generally use different primers
or not?)

Similarly, no key within Result naturally suggests itself, and these data are
also directly related to the experiment. These fields should therefore also be
placed within the Experiment table. Experiment is now a much larger table,
as shown in Fig. 2.8.

Conversely, when considering the Kit table, an eligible key for the table might
be a combination of manufacturer and the kit name (manufacturer,name).
This works for most of the fields in this table except for those that are related to
the supplier—a supplier may provide many makes and versions of kit and hence
their details are not uniquely identified by a single kit manufacturer and name.
This suggests that the supplier details should be brought out of Kit and placed
in their own table, Supplier. As suppliers of similar products should have differ-
ent names, we will assume that supplier will form an adequate key to this new
table, as shown in Fig. 2.9.

However, further consideration of the Kit table shows that this primary key
is also incorrect. If the same kit is ordered twice, then much of the informa-
tion within the table will have to be repeated, as this will have a different order
number. This demonstrates either that (manufacturer, name) is an incor-
rect primary key, or that this table is still not yet properly designed. The answer
is the latter: order_number should not be in this table as most of the other

Experiment
ID
date
time
sequence
purpose
denature_temp
denature_time
anneal_temp
anneal_time
elongate_temp
elongate_time
cycles
completion_temp
completion_time
primer_1
primer_2
primer_conc
design_software
primer_supplier
primer_cost
gel_image
assessment

Fig. 2.8  The new Experiment table including fields originally within Primer and
Result. The primary key is shaded in light grey.

2.2 relational database design—the ‘natural’ approach   43

information in the table does not depend on the order number. This should
therefore be brought out into another table.

The order number does uniquely link to the manufacturer and kit name and
therefore these fields may also feature in the new table and thus serve to link the
two tables. Furthermore, the order number is naturally assigned to a supplier and
this field can therefore appear in the Supplier table. The resultant tables and
links are shown in Fig. 2.10.

To link Experiment to Kit, it may be tempting to put the ID field into the Kit
table, but this would break the constraint that all the information in Kit should
be uniquely identified by (manufacturer, name)—the experiment identifica-
tion number has nothing to do with this. A better choice of fields by which to
link the two tables is to do this indirectly through the Kit_order table by pla-
cing order_number in Experiment. This will therefore serve to uniquely iden-
tify any kit that is used in an experiment. It’s no coincidence that the key to one
table forms a good link to another table in this way—they are routes to identify
any unique row in their own table and hence can be used for a similar purpose
in related tables.

Similarly, Experiment may be linked to Scientist by putting the key of
Scientist, email, into Experiment as well.

Kit_order
Kit order_number
manufacturer manufacturer
name kit_name Supplier
cost supplier supplier
buffer supp_building
buffer_conc supp_street
enzyme supp_town
enzyme_conc supp_city
nucl_mix supp_postcode
nucl_conc supp_country

Fig. 2.10  Reconfigured Kit table linked through Kit_order by order_number to
Supplier. Note that linked fields do not need to have identical names in each table.

Kit Supplier
manufacturer supplier
name supp_building
order_number supp_street
cost supp_town
buffer supp_city
buffer_conc supp_postcode
enzyme supp_country
enzyme_conc
nucl_mix
nucl_conc

Fig. 2.9  The reduced table Kit and the new table Supplier. Primary keys are shaded in
light grey.

44   2 building biological databases with sql

Defining relationships between tables
All of the tables in the schema now have keys that may be used to uniquely iden-
tify their every row. Each table is also linked to at least one other table. This is
the basis of our relational database. This section now looks a little more closely
at how the relationships between the tables are formed and at the terminology
used to refer to them.

The keys that have been defined above are known as the primary key of their re-
spective tables (e.g. the primary key of the Scientist table is email). A field in a
table that links to another table such that any specific value may not be entered
unless the same value already exists in the other table is called a foreign key. This
helps maintain data integrity, and also implies an order for entering data into the
tables. Figure 2.11 shows the complete schema with the primary and foreign keys
linked.

Observant readers will notice that subtle changes have been made to two
of the field names in this figure. Specifically, the order number added to the
Experiment table has been called kit_order_number, and the supplier
field in the Supplier table has been renamed supplier_name. This is be-
cause it is not considered good practice to use identical names for linked
fields.

Experiment Kit_order
ID order_number Kit
date manufacturer manufacturer
time kit_name name
sequence supplier kit_cost
purpose buffer
kit_order_number buffer_conc
denature_temp Supplier enzyme
denature_time supplier_name enzyme_conc
anneal_temp supp_building nucl_mix
anneal_time supp_street nucl_conc
elongate_temp supp_town
elongate_time supp_city
cycles supp_postcode
completion_temp supp_country
completion_time
primer_1
primer_2 Scientist
primer_conc email
design_software given_name
primer_supplier family_name
primer_cost title
gel_image department
assessment tel_country
scientist_email tel_area

tel_number

Fig. 2.11  Final schema for the PCR example. Primary keys are shaded in light grey. Links (via
shared fields) between tables are also shown. Foreign keys are the fields to which the
primary keys are linked.

2.3 installing and configuring a mysql server   45

A note on many-to-many relationships
When creating your database design using the above method, you should end up
with a schema that links a field such that for any one instance of a field in one
table, there will be zero, one, or many occurrences of that instance in another
table. For example, in Scientist a scientist’s e-mail address will appear once,
whereas it may appear zero, one or many times in Experiment. In the latter
case, this type of relationship may be described as one-to-many. If, however, your
database design is not yet fully complete, you may find that you have a situ-
ation in which many instances of a field in one table might be linked to many
instances of that field in another table.

Imagine that we had linked Scientist to Experiment using the first name
of the scientists rather than their unique e-mail addresses. If ‘Bob Andrews’ had
performed six experiments, his contact details would appear once in Scientist
and ‘Bob’ would appear six times in Experiment. If ‘Bob Barrows’ was also in the
lab group and had performed four experiments, then his contact details would
appear once in Scientist and ‘Bob’ would feature an additional four times in
Experiment. Now, if we had linked the two tables on the first name field, then
both instances of ‘Bob’ in Scientist will be linked to all ten instances of ‘Bob’
in Experiment. When performing queries against these tables, this would likely
result in incorrect information being returned and also queries taking much
longer to return than they would have done otherwise.

As indicated above, this should not happen in a well-designed schema, and it
is hard to see why we would have done anything like this contrived example. It
can happen though, especially in more complex databases, so it is always worth
checking for any relationships that do not feature a primary key on one side to
see whether they may cause a similar problem.

2.2.5  Departure from design

Once you have designed your database, you are ready to start implementing it
in your preferred RDBMS. As discussed in the introduction to this chapter, it is
tempting to dive straight in to typing away at your computer without giving suffi-
cient thought to what it is that you wish to achieve. If you approach all new data-
base design on paper and spend the time and effort to design your database well
before reaching for the keyboard, implementing and using your database will be
much quicker and a lot simpler.

The next section covers installing a MySQL database server onto your computer
and how to use this to first implement your database, then populate it with data,
and finally to search through the information stored within.

2.3  Installing and configuring a MySQL server

2.3.1  Download and installation

Getting hold of a copy of MySQL to install on your machine is a simple process,
but can vary depending on the operating system that you are using. The spe-
cific product you are looking for—at least as a beginner—is the free ‘MySQL

46   2 building biological databases with sql

Community Edition’, as opposed to the paid for alternatives such as ‘MySQL
Enterprise Edition’.

If you are using Microsoft Windows, simply visit the MySQL website’s Developer
Zone (dev.mysql.com/downloads/mysql) to download and run the MySQL
installer, which will guide you through the familiar Windows installer process.
During this process, you will be prompted to choose a setup type. For the bulk
of the material in this chapter, only the MySQL Server is required, so you could
opt for the ‘Server only’ installation option. However, unless you are particu-
larly tight for storage space, we recommend you choose ‘Developer Default’ as
this includes other things that you will find useful as you get more deeply into
MySQL. To make MySQL and associated tools directly accessible via the Windows
command line,2 we need to open a command-line window (see Appendix A) and
add the directory in which MySQL is installed to the path using a command like
this:

set PATH=%PATH%;C:\Program Files\MySQL\MySQL Server 5.6\bin

For Mac OS users, we would recommend installing MySQL via a command-
line package manager called homebrew (mxcl.github.io/homebrew/), but in
order to do this you will need to setup and install homebrew:

◆	 First you will need to install Apple’s developer tools, known as XCode. If you
are on OS Lion or above, you will find this in the App Store as a free download.
For older editions of OS, visit developer.apple.com/downloads and find
the most recent version available to you.

◆	 OS X Lion (or above) users will also need to install the XCode command-line
tools. You will find the option to install this within the Preferences pane of the
app, under ‘Downloads’.

◆	 Next we can install homebrew via the following command in your terminal:

	 ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

	 Follow the instructions given to you, if there are any problems please consult
the homebrew website, otherwise ask a question on the www.bixsolutions.
net forum and we will do our best to help you out.

◆	 Finally, now you have homebrew installed, you can install MySQL with the fol-
lowing simple command:

	 brew install mysql

	 This will take a short while to download and install the MySQL software for
you, and it will then give you one or two more lines of instructions to follow in
order to prepare and start your server.

The reason we recommend this slightly more complicated installation process
on OS is threefold; it first enables easy updates of MySQL in the future—with

2	 In Windows, MySQL installs its own MySQL command-line client, which is perfectly functional; but
if you want to follow the examples in this chapter verbatim then you will need to access MySQL
from the standard Windows command line.

2.3 installing and configuring a mysql server   47

the simple command: brew upgrade mysql; second, it sets up your envir-
onment correctly for installing programming libraries that talk to MySQL (in
languages such as Perl, Python, and Ruby that we cover later in the book); and
finally, now that you have homebrew setup, a wide variety of Unix tools and li-
braries are at your disposal and easily installed—we shall be taking advantage of
this in later chapters.

If you are using Linux, before going to the MySQL website it is best to look
into your distribution’s package management system as MySQL is nearly always
available for easy installation from there (often this can even be only a couple of
mouse clicks for a complete install). In addition to the MySQL-server packages you
will also want to install the MySQL-devel packages as these will be needed later
on for building/installing third-party code libraries when working with Perl and
other programming languages. In the unlikely event that you cannot find MySQL
within your package manager, head over to the MySQL Develop Zone instead.

During configuration of the MySQL server you will be given the opportunity to
set up a password for the root user. The root user is effectively the administrator
of the database server, with a lot more power than regular users. It is good prac-
tice to set a strong root password, as long as it is something you can remember
of course! You can also set up accounts for other users at this point. It is also good
practice to set up an account for yourself separately from the root account, but
we will deal with this later so no action is needed for the moment. For all other
configuration options, the default or recommended options should be fine. If you
chose one of the fuller installation options, the installer may invite you to open
MySQL Workbench once installation is complete. We don’t need the Workbench
at the moment, as for the time being we will be interacting with MySQL through
the command line, but we will come back to it later.

Once MySQL has been installed, you need to start it from your operating sys-
tem’s command-line (see Appendix A if this is unfamiliar). You can start MySQL
by typing mysql at the command line and hitting the Enter key. However, if you
chose to set up a root user and password during the installation of MySQL, you
will instead need to specify these when starting MySQL, by typing the command
below and entering the password when prompted.

mysql –u root –p

Once MySQL has started you will see some version information appear followed
by the MySQL user prompt:

mysql>

You have now moved from the operating system command line to the MySQL
command line. Almost all of the commands that you enter into MySQL will be
entered at this prompt, so assume that you need to have got to this point before
attempting any action described below, unless otherwise stated. Once you’ve had
enough of MySQL, you can close it by typing quit (or exit) and hitting Enter. If
you get totally stuck installing MySQL, head over to www.bixsolutions.net to
seek professional help.

48   2 building biological databases with sql

2.3.2  Creating a database and a user account

At this point, you will be logged into the MySQL server as the root user. This is a
very powerful position to be in and, although it is unlikely that you will do any-
thing to damage anything on your own system, if you were to log into a shared
database server within your organization, then this may be a more important
issue. In either case, you should create a different user account by which to access
your database.

First, you will need a database on which to work. This may be created using the
following command:

CREATE DATABASE dbname;

Here dbname is any suitable name for your database that you would like to
use. (Throughout this book we use italics in generic command examples to iden-
tify placeholders for parameters than can be passed to the command.) Just as
with table names, as discussed above, database names should be descriptive and
simple.

Note also the semi-colon (;) that follows the command—this is necessary to
tell MySQL that you have finished writing the command. If it is missing you will
simply pass on to another line when you hit Enter (the command prompt will
change to ->). You can then type in the semi-colon and the command will com-
plete as if it had been written on the one line. This is a useful, although some-
times confusing or annoying, feature as it allows you to split long commands
over a number of lines and therefore read them back more clearly. SQL conven-
tions are discussed further in Section 2.5.

You can now create a user account through which to access your database in
preference to the root account. This is done by issuing the following command:

GRANT ALL ON dbname.* TO 'username'@'localhost' IDENTIFIED BY
'password';

For instance, if you had created a database called sandpit (a name often given
to systems intended for playing around in while learning) and wanted to create
an account with a user name of ‘Ian’ and a password of ‘BBSbook’ you would do
this by typing:

GRANT ALL ON sandpit.* TO 'Ian'@'localhost' IDENTIFIED BY
'BBSbook';

Be careful to get the quotation marks in the right place—note in particular
that 'Ian' and 'localhost' are separate entities. The * means that all tables
within the database will be covered by the GRANT statement. The term local-
host refers to the machine from which you will be accessing the account. If you
are working on your own machine and have installed your own MySQL server,
this will be fine. However, if you are connecting to a different server from your
machine, you will need to put either the full DNS name of your machine here, or
its IP address (or if you would like your new user to be able to access the database

2.4 alternatives to mysql   49

from any other computer—we’ll leave you to ponder the security implications
of this—you can just replace 'localhost' with '%'). See your database admin-
istrator for more information if this is the case for you, as in this instance it is
likely they will have to create a user account for you and should then be able to
tell you exactly how to access the database server.

Once you hit Enter, MySQL should give a message stating that this operation
has completed successfully. It also tells you how long the command took to exe-
cute—not very significant for this command, but an indication of how critical
performance can become when databases get large. Following this you should
exit MySQL and then reconnect using your new account.

QUIT;

To reconnect using this new account, you would now type:

mysql –u Ian –p

and then enter the password (BBSbook in this case) when prompted to do so.
Note that passwords are case sensitive, even when using MySQL in Windows.

You now have access to your relational database management system (RDBMS),
in this case MySQL. There are others available, which we shall discuss briefly in
the next section.

2.4  Alternatives to MySQL

MySQL is only one of many RDBMSs available. There are a number of reasons
why we have chosen to use it for this book: it is free, widely available, and has
very large community usage, which means that should you have a question about
how to achieve a specific function, or need help solving a problem, almost un-
doubtedly there will be someone on the Internet who has had a similar issue and
solved it and posted the solution.

However, you may well want to consider, or at least feel that we have not
just ignored, other available systems. Some of these are discussed very briefly
below, but we encourage you to do your own research in this area with one
caveat—comparisons between systems are rife on the Internet, and many are
out of date, so it is probably best to take all you read with a judicious pinch of
salt.

2.4.1  PostgreSQL

PostgreSQL is another fully featured open source RDBMS. It is freely available
from www.postgresql.org in versions for Windows, Linux, and Mac OS.
Historically, PostgreSQL has been more feature rich than MySQL. However, there
comes a point where the feature set is likely to be more than you really need.
There are enterprise installations of both of these open source systems that work
extremely well under very high volumes of data and large numbers of concur-
rent users.

50   2 building biological databases with sql

2.4.2  Oracle

Oracle is regarded as the industry standard for database management and has
the richest feature set of any current database management system. It is avail-
able for many operating systems, including Windows, Linux, and Mac OS. Oracle
is often used by the biggest companies as, despite the positive experiences with
MySQL and PostgreSQL, it has a reputation as the only choice for supplying the
stability, performance, and administrative (recovery) capabilities necessary for a
large organization. As an enterprise solution, it is also one of the more expen-
sive options. Versions of Oracle are available for free from www.oracle.com for
you to develop and distribute your own databases, although not for all operating
systems. If you know that you are going to need to interface with a company in-
stance of Oracle, a good point to start would be to download the most up to date
free version you can, and work with this locally until you are ready to hand your
database and any associated tools to your database administrator. MySQL was
acquired by Oracle in 2010, but at the time of writing remains a separate product.

2.4.3  MariaDB

Prompted by concerns about Oracle’s commitment to MySQL following its ac-
quisition, one of MySQL’s founders established a separate fork of MySQL, named
MariaDB, which is developed and maintained by the community. MariaDB (avail-
able from mariadb.org) is intended as a drop-in replacement for MySQL, such
that MySQL users are not adversely affected if Oracle chooses to withdraw MySQL
in the future. All of the concepts and command line examples in this chapter
should therefore be fully compatible with MariaDB.

2.4.4  Microsoft Access

Microsoft’s Access program is present on many computers, but sadly under-uti-
lized in favour of the more approachable Excel spreadsheet package. As a store of
data, Excel is extremely limited and encourages a variety of complex worksheets
and formulae to be created to achieve what would be very simple tasks within a
database framework.

If you have Access installed on your computer, you may prefer to use this ra-
ther than install one of the other packages suggested here. Furthermore, if you
work for a company, MySQL and PostgreSQL may not be on the list of approved
software for your work machine. In such cases, Access may be your only choice
for a locally installed database server with which to experiment.

Access is a fully featured RDBMS and has the advantage of looking and feeling
similar to all other MS Office packages. It also has some advantages over a basic
install of MySQL in that it natively features a graphical representation of tables,
and hence implementing database schemas is straightforward as they may lit-
erally be ‘drawn’ into existence (although the MySQL Workbench software pro-
vides this functionality for MySQL, as we will see later). Using Excel to access data
stored in the database in order to take advantage of the spreadsheet package’s
features is also very easy. This can also be achieved without too much difficulty

2.4 alternatives to mysql   51

using other RDBMSs through a system called ODBC—consult your RDBMS user
guide for more information on this topic.

On the negative side, Access is a fairly slow system when compared to standard
installations of MySQL, and there are likely to be unacceptable delays when
running queries on moderate to large databases or when querying data from a
number of linked tables. Furthermore, as a commercial piece of software, Access
goes against the open source ethos of the bioinformatics community and ubiqui-
tous availability cannot be assumed because it costs money, plus it is only avail-
able for Windows.

2.4.5  Big Data and NoSQL databases

You will no doubt already have seen the phrase Big Data used in the popular press,
or heard it uttered by a technically minded friend or colleague. Slightly less used,
but with as much hype in certain circles, is the term NoSQL. Bioinformaticians
have, of course, been working with large data sets for some time, but Big Data
has become a synonym for analytics performed on data sets so large that it is gen-
erally unfeasible to tackle them using the traditional methods that are covered in
this book. There is no prerequisite for NoSQL databases to be a part of a Big Data
solution, however they are often used for storage of data in this context.

Although the definition of Big Data above is rather self-fulfilling, it is worth
covering a little about the concept here, to allow you to at least consider if the
problem you would like to solve could be better addressed through a Big Data
and/or NoSQL type approach than using a traditional RDBMS and scripting
method. The most commonly used Big Data system is Hadoop, an Apache open-
source project originally funded by Yahoo!. Hadoop is itself an implementation of
the MapReduce framework developed by Google to allow them to perform faster
searches against their indexes of the web. Although the names of the systems do
not matter too much, the concepts they embody are fairly fundamental. At their
core they allow large data sets to be split up into chunks that can comfortably fit
onto commodity, that is cheap, servers with their own local storage. Data analysis
is performed by each server on the data it holds—this part of the processing is
the Map stage in MapReduce. The results are then gathered together and Reduced
to a single result set. For analysis of large data sets, this type of distributed, par-
allel processing can be far quicker than trying to process a similar total volume of
data through a single processing pipeline.

Although many RDBMSs can manage large volumes of data over multiple serv-
ers, through a functionality known as clustering, data access tends to slow down
with increased volume due to the overhead of managing the data and the rela-
tionships between tables across these servers. By removing the need to manage
relationships between individual pieces of data, MapReduce solves this issue as
the data can effectively sit anywhere with relatively little oversight or manage-
ment overhead, but it does shift the problem of ensuring that the results set is
representative of the complete data set onto the Reduce phase of the approach.
Since the data itself is now inherently non-relational, as there is no system
to manage these relationships, there is little to be gained by imposing a rigid

52   2 building biological databases with sql

structure on it beyond some logical key-value pairing that allows the MapReduce
type program to pick up and analyse the variables we are interested in. The use of
SQL therefore becomes fairly redundant, and unstructured ‘NoSQL’ data storage
methods are generally used in this context instead.

This very loose, unstructured approach may appear messy and difficult to
understand, but many systems have been developed to make both handling
the data and programmatic access to the data easier. Some even go so far as
to add SQL-like querying back onto the data sets (though at a significant per-
formance cost) and others provide APIs that make it easier for general pro-
grammers to access, manipulate, and perform operations on the data. Often,
however, the Big Data approach requires a different way of thinking about the
problem at hand, such that it is more amenable to this style of processing. As
a practical example of this type of thinking in the bioinformatics space, Lewis
et al. have used Hadoop to identify proteins from peptide keys (Lewis et al.,
2012).

We expect Big Data and NoSQL to become increasingly important as biological
data sets continue to grow. If you are interested in finding out more, we recom-
mend the books Big Data Now (O’Reilly, 2012), Big Data (Marz, 2013) and NoSQL
Databases (Strauch, 2011). However, for the foreseeable future, most bioinfor-
matics data management problems should be well suited to the more traditional
SQL RDBMS solutions that form the remainder of this chapter.

2.5  Database access using SQL

Structured Query Language (SQL) is, as the name suggests, the language used
primarily for querying your database. As this section will show, for almost
everything you could want to do with your database the command should
be straightforward to generate using just a few simple keywords. As with
the structure of the database itself, it is not the implementation that’s im-
portant, it is the design of your queries that matters. It is also at this stage
that the quality of thought behind the design of your database is revealed. A
poorly designed creation will result in poor performance when queried, or
worse, incomplete or incorrect data being returned by functionally correct SQL
commands.

By convention, all SQL commands are written in capital letters. This helps to
distinguish them from non-SQL words, such as your table and field names, and
as such the convention has been used in this book. However, there is no need to
type them in capitals when querying your database if you don’t want to—the end
results will be just the same.

One common error to watch out for is the use of SQL reserved words (any word
in the SQL vocabulary, such as TABLE or VALUES) as the names of your objects,
such as databases, tables, and fields. Such usage will confuse the RDBMS and
most likely result in it reporting a syntax error that may be hard to find as the
query will not look obviously wrong. In such cases look carefully for conflicts be-
tween your naming and SQL words.

2.5 database access using sql   53

2.5.1  Compatibility between RDBMSs

In principle, it should be quite easy to move between RDBMSs that support SQL,
as the database commands and syntax will be the same. So, examples provided in
this chapter for MySQL should also work in, for example, Oracle. However, as we
have already mentioned, names of data types can differ between RDBMSs. Also,
each RDBMS can have additional commands that go beyond standard SQL, so care
needs to be taken. In particular, we should warn you that the MySQL commands
SHOW, DESCRIBE, and LIMIT introduced later in this section are not standard
SQL commands so may not work in another RDBMS.

2.5.2  Error messages

It is very likely that you will make numerous typing errors when entering com-
mands to the RDBMS. Often the error message that is returned can appear excep-
tionally unhelpful, but there are guiding clues that can help you identify where
things went wrong. A very common error message is something like:

mysql> SELECT * FROM Supplier WHRE supplier_name LIKE 'Eps%';

ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'supplier_name like
'Eps%' at line 1

Here we are informed that there is an error in the SQL syntax. This means
that MySQL cannot interpret something that we have typed. The problem
might be that we have entered some keywords in an incorrect order, or that
we have typed something incorrectly. The error message offers some guidance
as to where the problem might lie, in this case just before where we wrote
supplier_name. If we look in this region, we can quickly spot the typo in the
SQL keyword, WHERE, here typed WHRE. If there is a keyword miss-entry, the lo-
cation may be harder to spot as the error may well be earlier in the query than
indicated.

Every RDBMS has a complete listing of error codes and help in interpreting
them as part of their documentation. For MySQL, these are in the appendices to
the reference manual (dev.mysql.com/doc/#manual).

2.5.3  Creating a database

In Section 2.3.2 we covered the command used to create an empty database with
no tables from which to start. Let’s create a database called PCR_experiment,
in preparation for building a database with the design described in our earlier
example. To do this it is necessary to log on to MySQL as root and issue the com-
mand below. You can then either continue to work in MySQL as root (not recom-
mended) or grant another user access to the database as described above, then
quit MySQL and log back in using that username.

CREATE DATABASE PCR_experiment;

54   2 building biological databases with sql

Within the RDBMS you may have a number of databases. The first action to
perform when preparing to interact with one of these is to tell the RDBMS which
one you want. This is accomplished by the USE command:

USE PCR_experiment;

This will change the focus of your commands from the database currently
being accessed, if any, to one called PCR_experiment.

A newly created database will be empty, with no tables defined and no data
present. Before getting data into the database, it is necessary to define tables, for
which the simplest, generic, command is:

CREATE TABLE tablename (
 field_1 type_1,
 field_2 type_2,
 …
 field_n type_n
);

Returning to our example database schema, shown in Fig. 2.11, we have five
tables to create. We could do this now for each of the tables, but we will also
want to enforce the relationships between the tables at this point, for which a
little more explanation is required.

2.5.4  Creating tables and enforcing referential integrity

The term referential integrity refers to the ability of the database to maintain relation-
ships between the data held in different tables. This is primarily achieved at a de-
sign level through the use of the foreign keys discussed previously. Therefore, the
responsibility for much of this area rests in your hands, as the database designer.

MySQL supports a number of different table types, of which MyISAM and
InnoDB are the most often used, with MyISAM being its default. Different table
types impact the way in which a RDBMS handles and stores data within a given
database table and can have effects on performance and functions. We don’t need
to go into details about this here, suffice to say that newer versions of MySQL
fully support referential integrity when the default MyISAM type is used, so it
should not be necessary to specify the table type when defining tables.

There are a number of options that we can include within a CREATE TABLE
statement. These include the table type, whether a field can hold a NULL value
(whether it can be left empty), and also whether a field is part of a primary key or
a foreign key to another table. Bearing in mind that foreign keys to other tables
should logically be created after the table to which they refer, the first tables
to be created should be those with no foreign keys. In our example, these are
Scientist, Kit, and Supplier, created using:

CREATE TABLE Scientist (
 email VARCHAR(255) NOT NULL,
 given_name VARCHAR(255),

2.5 database access using sql   55

 family_name VARCHAR(255),
 title VARCHAR(255),
 department VARCHAR(255),
 tel_country INT,
 tel_area INT,
 tel_number INT,
 PRIMARY KEY (email)
);

CREATE TABLE Kit (
 manufacturer VARCHAR(255) NOT NULL,
 name VARCHAR(255) NOT NULL,
 kit_cost DECIMAL(6,2),
 buffer VARCHAR(255),
 buffer_conc FLOAT,
 enzyme VARCHAR(255),
 enzyme_conc FLOAT,
 nucl_mix VARCHAR(255),
 nucl_conc FLOAT,
 PRIMARY KEY (manufacturer, name)
);

CREATE TABLE Supplier (
 supplier_name VARCHAR(255) NOT NULL,
 supp_building VARCHAR(255),
 supp_street VARCHAR(255),
 supp_town VARCHAR(255),
 supp_city VARCHAR(255),
 supp_postcode VARCHAR(255),
 supp_country VARCHAR(255),
 PRIMARY KEY (supplier_name)
);

Note the simplicity of the method by which to create the compound primary
key when creating Kit. There are other ways to signify which elements of a table
are to be included in the primary key, but this method is consistent and clear.

If you wish to check that the tables have been created, you can issue the follow-
ing MySQL command:

SHOW tables;

If you would like to see more detail about any of the tables, just enter the fol-
lowing command with the appropriate table name:

DESCRIBE tablename;

These two commands are further described in Section 2.5.8.

56   2 building biological databases with sql

Now the remaining two tables may be created. There is an order that needs
to be followed here too. Consider the relationship between Experiment and
Kit_order. Because kit_order_number in Experiment is a foreign key on
order_number in Kit_order, it follows that the table Kit_order must exist
before Experiment can be created.

CREATE TABLE Kit_order (
 order_number CHAR(16) NOT NULL,
 manufacturer VARCHAR(255),
 kit_name VARCHAR(255),
 supplier VARCHAR(255),
 PRIMARY KEY (order_number),
 FOREIGN KEY (manufacturer, kit_name)
 REFERENCES Kit(manufacturer, name),
 FOREIGN KEY (supplier)
 REFERENCES Supplier(supplier_name)
);

CREATE TABLE Experiment (
 ID INT NOT NULL AUTO_INCREMENT,
 date DATE,
 time TIME,
 sequence VARCHAR(255),
 purpose TEXT,
 kit_order_number CHAR(16),
 denature_temp INT,
 denature_time INT,
 anneal_temp INT,
 anneal_time INT,
 elongate_temp INT,
 elongate_time INT,
 cycles INT,
 completion_temp INT,
 completion_time INT,
 primer_1 VARCHAR(255),
 primer_2 VARCHAR(255),
 primer_conc FLOAT,
 design_software VARCHAR(255),
 primer_supplier VARCHAR(255),
 primer_cost DECIMAL(6,2),
 gel_image BLOB,
 assessment TEXT,
 scientist_email VARCHAR(255),
 PRIMARY KEY (ID),
 FOREIGN KEY (kit_order_number)

2.5 database access using sql   57

 REFERENCES Kit_order(order_number),
 FOREIGN KEY (scientist_email)
 REFERENCES Scientist(email)
);

Once again, note the simplicity of creating the foreign keys whereby the field in
the table being created is linked, referenced, to a field in a previously created table.
It is just as simple to link multiple fields, where a compound key is required, as
in the creation of Kit_order.

AUTO_INCREMENT
You will have no doubt noticed the new command AUTO_INCREMENT in the text
used to create the Experiment table. Whenever new data is entered into the
table, this command will populate the field ID with a value that is one greater
than the previous highest ID in that field. In this way, the ID field, which is the
primary key of this table, is created automatically, without you needing to know
how many entries have been placed in the table before the current one.

2.5.5  Populating the database

All of the tables for this example have now been created and their primary and
foreign keys have been defined. The tables are therefore now ready to take in
data. This can be done in a number of ways. The simplest, but most cumbersome,
is for us to enter the data using SQL from the command line, in a similar man-
ner to creating the tables. This is done using the INSERT INTO command—once
again bearing in mind that the order in which the tables can be populated is de-
pendent on the structure of the foreign keying. To reiterate, Experiment cannot
be populated with results from a newly ordered kit (i.e. a kit that is not already
in the database), or performed by a new scientist unless their details have already
been entered into the relevant tables (Kit and Scientist respectively). If, how-
ever, this information is already in the database, because the scientist has done
other experiments and the same kit from a previous order is being used, then
data can be entered into Experiment as its foreign key conditions will be met.

The generic form of the INSERT INTO statement is:

INSERT INTO tablename (field_1, field_2,…)
VALUES(value_1, value_2,…);

So, to enter a new scientist’s details, the following statement could be used:

INSERT INTO Scientist (email, given_name, family_name, title,
department, tel_country, tel_area, tel_number)
VALUES('a.scientist@example.com', 'Andrew', 'Scientist', 'Dr.',
'Toxicology', 44, 0117, 4960808);

Note the single quotation marks surrounding all text entries, but not the nu-
meric entries—this is an SQL convention that should be followed. If you forget,
an error will be shown and the command will not complete.

58   2 building biological databases with sql

It may seem ridiculous to have to enter all the fields of a table into a command
when surely the database system knows that these fields are there. In this case
you would be correct to think this, as we have entered values for all fields in
the order in which they appear in the table. Because this is the case, we could
shorten the above command to:

INSERT INTO Scientist
VALUES('a.scientist@example.com', 'Andrew', 'Scientist',
'Dr.', 'Toxicology', 44, 0117, 4960808);

This would achieve identical results to the above command, although, if you
just tried it, you would notice that your database complained. This was because
you already had a scientist in the table with an email address of a.scientist@
example.com. This is the primary key for the table and therefore all val-
ues in this column must be unique—remember the definition introduced in
Section 2.2.4.

You could try the command using a different e-mail address. Please note though
that if you are not the only administrator/designer of this database, and you plan
to use this shortened form of insert, you will need to check that the fields in your
database have not changed prior to running your inserts this way, as extra or
removed fields would cause your inserts to fail (as indeed would reordered data-
base fields if someone had rebuilt your table in a different order).

If we wanted to only enter data into some fields of a table, or to enter data in
an order that is not identical to that of the table, the field name specification
in the INSERT INTO command may be used to guide the database—showing it
where we want the data entered. For example, if we were to only want to enter a
new scientist’s e-mail address (required in all circumstances as this is the primary
key) and their department, perhaps because they did not yet have a telephone
number, we could use the following command:

INSERT INTO Scientist (department, email)
VALUES('Systems Lab','a.techie@example.org');

In this statement, we have only populated two fields and did this in a different
order to that in which they appear in the table definition. However, because we
explicitly told the database system what we wanted, it will have entered these
values into the correct fields. If we wanted to make sure this was so, we would
use the DESCRIBE command, explained later in Section 2.5.8.

Although we can considerably shorten the INSERT INTO command by omit-
ting the field names, there will necessarily be a lot of typing to enter the details
of just one experiment into the database. In reality this burden is likely to fall
to the people using the system day to day and so will be split. Furthermore, the
use of forms or well-presented programs used to provide access to the database
will eliminate the need for the user to know any of the syntax needed to enter
data into the database from the command line. The following chapter on pro-
gramming in Perl and Chapter 5, on integrating these concepts with web-based
systems, will allow you to create your own routes by which you and your users

2.5 database access using sql   59

can enter data to the database without repeated and excessive typing. Having said
that, in many bioinformatics applications, databases are not populated (filled) by
people at all, but by programs (often written in Perl or other scripting languages).
A typical example of this is where a database is used to store the results from an
automated data analysis pipeline.

For test purposes, it is often convenient to use a source file to rapidly populate a
database with reasonable quantities of representative data—this is discussed in
Section 2.5.7.

2.5.6  Removing data and tables from the database

As well as adding data to a database, we might wish to remove data from the
database. This might be because there was a user error when populating the
system, or, quite likely when designing and testing a system, you wish to reset
the database to a blank state. We may wish to remove an entire table from
the system, or only parts of it. At the most extreme we may want to delete
the entire database and start again. Each of these is possible and remarkably
simple to achieve; and therein lies the rub—once you have done this, there
is no going back3 and the system will not ask if you are sure that you want to
do this.

Deleting data from a table
The command below will delete everything from the table tablename. The struc-
ture of the table will remain intact so that we can enter new data there immedi-
ately, but all of the old data will have been removed.

DELETE FROM tablename;

More selectively, we can use:

DELETE FROM tablename WHERE field LIKE 'xyz';

This command will delete only those rows of the table for which the condition
following the WHERE statement is met. For more discussion of the types of condi-
tion that can follow WHERE, see Section 2.5.8.

When deleting rows from tables, it should be remembered that there may be
foreign keys to those rows from other tables. In these cases, multiple delete state-
ments may be required in order to maintain the referential integrity of the data-
base. If one or a number of rows in one table are foreign keyed to another table,
for example all of one scientist’s Experiment data will be linked to their entry
in the Scientist table, then before deleting the parent row, all records in the
child table(s) that refer to this key must also be deleted. For example, first delete
from Experiment all entries attributed to that scientist before removing the
scientist’s information from Scientist.

3	 This is generally the case, although if you use transaction handling (see Section 2.5.9) you would be
able to recover to the last point at which you confirmed all database changes.

60   2 building biological databases with sql

Deleting complete tables
If we want to remove an entire table, that is all of its data and its structure and
name, from the database, this may be done using the DROP TABLE command:

DROP TABLE tablename;

Deleting a database
Similarly, an entire database may be removed from the RDBMS using the DROP
DATABASE command:

DROP DATABASE databasename;

2.5.7  Creating and using source files

As we have seen, creating a database can involve a lot of typing at the command
prompt. For this reason, it would be useful if, when we do need to replace a
database entirely, or we want to easily reset all the tables to empty, there were a
quick way of doing this that meant we only had to do the majority of typing once.
Fortunately there is, through the use of a source file.

Source files are text files that contain SQL commands and/or data that we can
call upon from within the database system. The text files should be plain text,
which means that to create them we need to use a very basic text editor, such as
Windows Notepad, to avoid storing all of the extra formatting information that
word processors would place in the document. Section 3.1.5 in the next chapter
briefly reviews text editors, should you want to find an alternative to the one that
came with your operating system.

To create a simple source file that would create the example database discussed
in this chapter, we could just copy the five SQL statements appearing in Section
2.5.4 and put them into a .txt file. This file, which we call PCR_database_
create.txt, can be downloaded from this book’s companion website, www.
bixsolutions.net.

We can use the SQL contained in the source file by using the SOURCE
command:

SOURCE filename;

For example, if we had downloaded the file PCR_database_create.txt into
the directory BBSfiles on our E: drive, the following commands would create
all the tables for our PCR database example within the, previously created, data-
base PCR_experiment:

USE PCR_experiment;
SOURCE e:/BBSfiles/PCR_database_create.txt;

A useful file to have handy when building a database, which is going to act
as the data store for a program that you are designing, is a source file to delete
all the data from all tables while keeping the database structure intact. Once

2.5 database access using sql   61

again this is a simple file to create. For this example it would look like the
following:

DELETE FROM Experiment;
DELETE FROM Kit_order;
DELETE FROM Supplier;
DELETE FROM Kit;
DELETE FROM Scientist;

This file may be found at www.bixsolutions.net, entitled PCR_database_
clean.txt.

If we wish to enter a set of data into the database using a large number of
INSERT statements, we can do this with a source file too. As the source file just
consists of SQL statements, these can be written in exactly the same way as if
we were typing them, but with the added advantage that if a mistake is made
part way through, the whole series of commands may be run again with lit-
tle extra effort. A source file to populate the PCR database is provided at www.
bixsolutions.net, under the name PCR_database_populate.txt. The file
populates the database with three entries for scientist, three for supplier, three
for kits, four for kit orders, and five for experiments. We recommend you popu-
late the database using this script before proceeding to the examples of querying
the database in the next section.

2.5.8  Querying the database

Finally we come on to accessing the data that is in a database. There are many ways
in which to do this and the complexity of the queries may seem daunting at first.
However, they are all built up from a few very simple concepts, explained below.
The most important thing to keep in mind is to first think carefully about exactly
what it is that you want to achieve and only then to try and write the query for this.
As with the design of the database itself, it is the preparation that is the key to get-
ting this right—with solid thinking, the implementation is often straightforward.

SHOW
Once you have focused on the database of your choice (USE databasename), you
may well want to list the tables present. Here you can use the SHOW command:

SHOW tables;

This will produce a list of all the tables present in the database. SHOW may also
be used to show all the databases to which you have access in your installation of
MySQL, as in:

SHOW databases;

DESCRIBE
For any table within a database, you may want to see the field names and their
associated data types. The DESCRIBE command will return this information.

62   2 building biological databases with sql

DESCRIBE Scientist;

will therefore produce a table of results similar to the following:

mysql> DESCRIBE Scientist;
+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
email	varchar(255)	NO	PRI		
given_name	varchar(255)	YES		NULL	
family_name	varchar(255)	YES		NULL	
title	varchar(255)	YES		NULL	
department	varchar(255)	YES		NULL	
tel_country	int(11)	YES		NULL	
tel_area	int(11)	YES		NULL	
tel_number	int(11)	YES		NULL	
+-------------+--------------+------+-----+---------+-------+
8 rows in set (0.00 sec)

SELECT
The SELECT command is arguably the most useful, as it allows us to access the
data held within the database. Used in conjunction with the other commands
described below, it should allow you to access any set of information you require
in any order, grouped in any way from any table or combination of tables.

The format of any SELECT query follows this basic convention:

SELECT field FROM Table;

So, if we wanted to extract a list of all the scientists’ surnames that have per-
formed PCR experiments in the laboratory, we could use the following command:

SELECT family_name FROM Scientist;

We may select multiple fields in an order that we specify using a similarly
structured command, for example:

SELECT family_name, given_name FROM Scientist;

This returns a table of results that has all the surnames in the first column and
all the first names in the second.

Sometimes we may want to return the entire contents of a table, in which case
an asterisk may be placed in the field position, as in:

SELECT * from Scientist;

COUNT
Often we will want to know just how many records are going to be returned by
a query. To do this we will use the COUNT command. For example, the command

2.5 database access using sql   63

below would return the number of scientists that are present in the Scientist
table.

SELECT COUNT(*) FROM Scientist;

DISTINCT
DISTINCT allows us to specify that we do not want repeated pieces of informa-
tion to be returned by our queries. This command is often used along with COUNT
to give the number of different elements within a table.

SELECT COUNT(DISTINCT field) FROM Table;

It may also be used to return a list without duplicate entries within fields, such
as:

SELECT DISTINCT sequence FROM Experiment;

This query would return a list of sequences that had been investigated, but
each sequence would appear only once, even though it may have been processed
under many different conditions or using different PCR kits. The command below
would therefore return the number of unique sequences that had been investi-
gated.

SELECT COUNT(DISTINCT sequence) FROM Experiment;

ORDER BY . . . ASC / DESC
We cannot assume that results will be returned from a query in the order in
which they were placed into the database, or in an order defined by an index.
The ORDER BY command may be used to specify the order in which results are
presented to suit the application. For example:

SELECT family_name FROM Scientist ORDER BY family_name ASC;

This command returns the list of family names of scientists alphabetically
ordered, as this is a character-based field. The use of ASC ensures that they are
returned in ascending order, that is from A to Z. To return them in the reverse
order (Z to A), we would use DESC. The same syntax applies when sorting results
from numeric fields.

LIMIT n
When creating queries, sometimes we may just want to see a sample of the
results that would be produced. This can be quite useful when checking to make
sure that the results are of the form that we think they should be. This is espe-
cially useful when creating complex queries that we are not quite sure are cor-
rect! In such cases, the LIMIT command may be used to return only the number
of results that are required. For example, the command below will return the
first three results retrieved from the table Experiment.

64   2 building biological databases with sql

SELECT * FROM Experiment LIMIT 3;

Remember that these may not be the experiments numbered 1 to 3. If we
wanted these fields in particular, an ORDER BY modifier would be required, as in:

SELECT * FROM Experiment ORDER BY ID ASC LIMIT 3;

WHERE
WHERE is an extremely useful command modifier as it allows for highly specific
queries to be written, often just the sort of queries that the database was created
to allow us to answer in the first place. It is often used to return a set of results
for which a certain condition is achieved. For instance, to return from the table
Experiment only those results that were generated after a certain date, the fol-
lowing statement could be used:

SELECT * FROM Experiment WHERE date > '2008-01-01';

This returns all the information about experiments that took place after 1
January 2008—note the use of quotation marks around the date, as the date (and
time) types are not truly numeric. Numeric comparison symbols other than >
may be used. The full list is given in Table 2.5. In the example below, all the ex-
periment information for experiments performed with an annealing tempera-
ture set to equal or below 70 degrees would be displayed.

SELECT * FROM Experiment WHERE anneal_temp <= 70;

For textual and character comparison, we have the LIKE command, an ex-
ample of which is:

SELECT tel_country, tel_area
FROM Scientist
WHERE department LIKE 'Toxicology';

This would return the telephone country and area codes for the toxicology
department(s). If unsure of the exact string that we are looking for in a textual
comparison, a wildcard character, %, can be used. For example:

Table 2.5  Numeric comparison operators in SQL

Symbol Description

= equal to

<> not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

2.5 database access using sql   65

SELECT department, tel_country, tel_area
FROM Scientist
WHERE department LIKE '%tox%';

This returns the full name, country and area codes for all departments that con-
tain the string ‘tox’ somewhere in their name. Note that these comparisons are
not case sensitive.

AND and OR
Multiple constraints using the WHERE function may be considered together with
Boolean logic statements, such as AND and OR.

For instance, to return all the experimental results performed by a certain sci-
entist (the ubiquitous Darren Oakley) during January 2008, the following state-
ment may be used:

SELECT *FROM Experiment
WHERE scientist_email LIKE 'd.oakley%'
AND date <= '2008-01-31'
AND date >= '2008-01-01';

To select all experiments using one of two specific order numbers, we could
use:

SELECT *
FROM Experiment
WHERE kit_order_number = 115
OR kit_order_number = 121;

GROUP BY
Often we may want to view the results grouped by one particular feature of the
data. The most common of these are for statistical measures, such as finding the
average number of amino acids in all human proteins. This could be done manu-
ally by retrieving the sequences of all proteins, summing their lengths, and then
dividing by the total number of proteins. Usefully, there are a number of GROUP
BY functions that allow us to access this sort of information automatically. These
include COUNT, MAX, MIN, AVG, and SUM.

To count the number of experiments that a scientist has performed, we can
use:

SELECT scientist_email, COUNT(scientist_email)
FROM Experiment
GROUP BY scientist_email;

This will return a two-column table containing both the scientists’ e-mail
addresses and the number of times that each of these has appeared in the
Experiment table.

66   2 building biological databases with sql

If we wanted to know the maximum kit cost from each manufacturer, this
method could require a lot of manual inspection of the table. Instead, we would use:

SELECT manufacturer, MAX(kit_cost)
FROM Kit
GROUP BY manufacturer;

This will return a two-column table; the first column containing the name of
each manufacturer and the second the cost of their most expensive kit.

JOIN
Up to this point we have been considering queries against single tables only.
However, as has been mentioned previously, one of the most powerful features
of a relational database is that all tables are related to one another. If we are to
only query single tables, why are these relationships useful? With experience it
becomes apparent that the most useful queries involve more than one table, and
therefore the queries that are used to access their data need some way to recog-
nize this. The method by which this is done is called a join.

Often a join may be implicit in a SELECT query. Consider the following query.

SELECT manufacturer, Kit_order.supplier
FROM Kit_order, Supplier
WHERE Kit_order.supplier = Supplier.supplier_name
AND supp_city like 'Oxford';

This would return all the kit manufacturers that suppliers in the city of Oxford
could supply. To break the query down, we have asked for two pieces of infor-
mation, manufacturer and supplier, to be returned. Up until now, we have
only been querying one table and so only that table has featured after the FROM
keyword. In this case, we are looking to link this to information from another
table, from Supplier. Therefore, Supplier now features after Kit_order in a
comma-separated list. We should also be explicit in stating where each field we
would like returned is coming from. In the above example, it is obvious that the
field manufacturer comes from the table Kit_order because manufacturer
does not feature in Supplier. However, very similarly named fields (supplier_
name and supplier) appear in both tables, so it is good practice to dictate which
table we expect to retrieve this field from. This is done using the dot (.) con-
vention, whereby the format tablename.field uniquely determines the field we are
interested in. Indeed, if we had chosen to give the two supplier fields the same
name in both tables, the command simply would not work without specifying
both the table and field names in this way.

The WHERE statement allows us to join these two tables using their shared field,
in this case the field supplier in Kit_order which is equivalent to supplier_
name in Supplier. This tells the system that every time these two fields are
equal, those are the data we are interested in. It is sometimes easy to forget this
WHERE statement as it seems obvious to us which two fields in two tables are the
same. If you do forget to define this, then every row (n) in the first table will be

2.5 database access using sql   67

joined with every row (m) in the second table. This results in a set of information
that if displayed would have n times m rows. This can be a very large number and
is likely to take a long time to run, only to get results that are unlikely to be what
you were looking for. We then constrain the query results further to only those
suppliers that are based in the city of Oxford.

This type of query features an implicit JOIN statement—we have joined the
two tables together using their shared field and are expecting only results for
which the condition is met. This statement may have been written with an ex-
plicit JOIN statement as:

SELECT manufacturer, Kit_order.supplier
FROM Kit_order JOIN Supplier
ON Kit_order.supplier = Supplier.supplier_name
WHERE supp_city like 'Oxford';

This form of JOIN is known as an INNER JOIN. In set theory terms, it will
select the intersection (overlap) of the two tables, with any further constraints
applied. Therefore, if there are manufacturers with no suppliers in Oxford, these
will not appear. Similarly, if there are suppliers in Oxford who have not sold any
PCR kits to this lab (say if the Supplier table contained all suppliers for all lab
equipment), they will not appear.

We might, however, want some of this information. For instance we might
want to know details for all of the suppliers of PCR kits in Oxford that we have
used plus any other suppliers based in Oxford. For this query we would use a
RIGHT JOIN.

SELECT *
FROM Kit_order RIGHT JOIN Supplier
ON Kit_order.supplier = Supplier.supplier_name
WHERE supp_city like 'Oxford';

In this case, whenever there is a supplier in Oxford that has not yet supplied a
kit to the lab, columns from Kit_order will return NULL, otherwise all details
will be returned.

It is also possible to use a LEFT JOIN, which in this case will give the same
results as a JOIN as there are no kit orders that don’t have a supplier. If, how-
ever, we swapped the order of each table name in the query, as shown below, we
would get identical results to the previous RIGHT JOIN example.

SELECT *
FROM Supplier LEFT JOIN Kit_order
ON Supplier.supplier_name = Kit_order.supplier
WHERE supp_city like 'Oxford';

Additionally, it is also possible in some RDBMSs to combine the two, forming a
full OUTER JOIN, but not (simply, at any rate) in MySQL. It is sometimes easier to
picture these operations graphically, as in Fig. 2.12.

68   2 building biological databases with sql

2.5.9  Transaction handling

As mentioned above, you have complete control over your database when inter-
acting with it either via the command line, or through the use of a computer
program, as shall be described later. This can often place you within a few mis-
placed keystrokes, or bad lines of code, of disaster. You may mitigate this through
a comprehensive backup program, but this would always run the risk of losing
the results of valid activity that has occurred between backups.

Fortunately, the designers of database management systems also recognize
this danger, and so have introduced the concept of transaction handling. Simply
put, a transaction is any block of database activity, including INSERT, DELETE,
SELECT, and any other SQL, or other, actions. The start of the block is defined
using a specific command. At this point, all database activity resulting from the
commands following the transaction start is not permanently written to the data-
base. Upon reaching the end of the block, a test may be performed, in which a
person, or an automated program, checks for errors. If this test is successful then
the results from the block are written permanently to the database. If, however,
the test reveals some unintended behaviour, the actions of the block are ignored
and the database is rolled back to the point at which the transaction block began.
In MySQL, this sequence of events is controlled using the commands described
below.

AUTOCOMMIT, COMMIT, ROLLBACK
By default, MySQL runs with the AUTOCOMMIT mode turned on. This means that
whenever you type, or otherwise run, a command, the results of this are immedi-
ately written to the database. This can be turned off using:

SET AUTOCOMMIT=0;

Once AUTOCOMMIT has been turned off, each command needs to be followed
by a COMMIT statement in order for its effect to be written to the database. For

Table A Table B INNER LEFT RIGHT OUTER

Fig. 2.12  Graphical depiction of the actions of JOIN statements. Table A and Table B are
joined using the different types of join. The results of these combinations are shown. The
INNER join results in the union of the two tables where there are equivalent fields in each.
The LEFT join returns the INNER product and the remaining fields from Table A. The RIGHT
join returns the INNER product and the remaining fields from Table B. Finally, the full
OUTER join returns the contents of both tables, linked where appropriate.

2.5 database access using sql   69

instance, if you wanted to remove some of the rows from a table, you may have
entered the following command:

DELETE FROM Experiment;

You then realize that what you really meant to do was only delete certain rows
from the table that were entered by one particular scientist. If AUTOCOMMIT was
on, as it would be as standard, then it is now too late; all the rows are gone.
However, if you had turned AUTOCOMMIT off and had not issued a COMMIT state-
ment, the choice is yours. In this case, you could ROLLBACK the statement:

ROLLBACK;

The database is now exactly as it was before you issued the DELETE statement.
You may now enter the correct statement:

DELETE FROM Experiment
WHERE scientist_email LIKE 'i.shadforth@bixsolutions.net';

COMMIT;

The first statement is executed and then written to the database. You may enter
any number of commands before issuing a COMMIT statement. All will then be
permanently written to the database, or rolled back if you choose.
AUTOCOMMIT may be turned back on again using the command:

SET AUTOCOMMIT=1;

START TRANSACTION . . . COMMIT
You may wish to enter a block of commands that you wish to try out without set-
ting AUTOCOMMIT to off. To do this, start the block with START TRANSACTION.
This will temporarily suspend AUTOCOMMIT, which will be reinstated at the end
of the block, as indicated by your use of either a COMMIT or a ROLLBACK.

START TRANSACTION;
DELETE FROM Experiment;
DELETE FROM Scientist;
COMMIT;

Note that when a START TRANSACTION command is issued, this implicitly
issues a COMMIT command finishing any previous transaction that had not been
committed, or rolled back.

2.5.10  Copying, moving, and backing up a database

We will often want to backup or move a database from one machine or location
to another. To achieve this, MySQL has a simple set of commands.

The first of these, to backup your database, should be invoked from outside
the MySQL environment, so type exit to leave MySQL and return to the normal

70   2 building biological databases with sql

terminal prompt. In Windows, to backup your database to a text file, which will
contain all the information needed to recreate the database including table struc-
tures and data, type the following and enter the password when prompted.

mysqldump –u username –p databasename > c:\directory\backup.txt

If you have opted not to use a password for your chosen user account, then
don’t type the –p switch.

You will find your output file in the specified directory. If you are using Linux
or Mac OS, the format of this command is similar, but navigating from a suitable
point, for example:

mysqldump –u username –p databasename > /usr/mydirectory/
backup.txt

If you use a text editor to look at the file produced by mysqldump you will
see that it is essentially a series of MySQL statements that define the database
and, if it contained data, populate it. The database can therefore be reinstated on
any MySQL server by using this file with the SOURCE command. To do this, you
would need to start MySQL then first CREATE (or DROP and then CREATE) your
blank database, change focus to that database with USE, and then use SOURCE to
execute the SQL commands in the backup file:

SOURCE c:\directory\backup.txt;

This will drop all existing tables in your database, recreate them, and then
populate them with any stored data.

2.6  MySQL Workbench: an alternative to the command line

We have focused in this chapter on creating and manipulating MySQL databases
by typing SQL commands. This is because, as explained in Chapter 1, anything
that can be typed at the command line can be automated by writing software —
essential for bioinformatics applications where databases are large. However,
while tasks like adding and retrieving data from a database need to be done
frequently and are therefore routinely automated, some of the other tasks are
less common. In particular, we will typically only design each database once,
and we may only occasionally want to add users or perform other maintenance
tasks. MySQL Workbench provides a convenient graphical interface to accom-
plish these tasks.

MySQL workbench is a free tool available from the MySQL website (www.mysql.
com). If you selected one of the more complete packages when installing MySQL,
such as ‘Developer Default’, then you will already have MySQL Workbench in-
stalled on your computer. It is not our intention to provide usage instructions for
MySQL Workbench here, partly because its MySQL-specific nature clashes with
our aim of making this part of the book about SQL in general, but more import-
antly because it should be mostly self-explanatory now that we have covered the

2.6 mysql workbench: an alternative to the command line   71

basic RDBMS principles. However, it is worth briefly mentioning some of MySQL
Workbench’s capabilities because it is a great companion to MySQL, and its func-
tionality is representative of that provided by similar tools for other RDBMSs.

MySQL Workbench is organized around three main themes: SQL development,
data modelling, and server administration. Data modelling is arguably the most
impressive and useful. This allows a database schema to be created graphically in
the form of an enhanced entity-relationship (EER) diagram, by drawing tables and
connecting them together. Within this graphical interface, fields can be added
to tables, their datatypes can be defined, and other properties such as AUTO_
INCREMENT and primary key are set simply by ticking boxes. It is even possible
to create an editable EER diagram from an existing database (so-called reverse
engineering). As an example, Fig. 2.13 shows an EER created from the PCR_ex-
periment database in just a couple of mouse clicks.

MySQL Workbench’s server administration functionality covers things like
user account management and backing up and restoring of databases. MySQL

Fig. 2.13  An enhanced entity relationship (EER) diagram created from the PCR_
experiment database using MySQL Workbench. Within MySQL Workbench, the database is
fully editable via this diagram - tables and fields can be added, removed and their properties
modified. Note that the links between tables do not line up with shared fields as they did in
our manually created diagrams (e.g. Figure 2.11) but the relevant fields are highlighted as the
mouse cursor is moved over links in MySQL Workbench.

72   2 building biological databases with sql

Workbench also allows editing of data within a database, but it is unlikely that
you will make extensive use of this because databases are typically populated and
queried through automated software or bespoke front ends.

2.7  Summary

This chapter has dealt with the basics of building databases, starting with
design—which is the most important factor—through to getting your hands on
a suitable system, creating, populating, and finally querying your data. This is a
large topic and there is only space in this book to cover the basics of database de-
sign, creation, and use. There are many excellent books available that will guide
you through more advanced topics, as referenced through the chapter. However,
one that we would like to recommend in particular at this stage, for those using
MySQL, is the MySQL Cookbook (DuBois, 2006). Having used this chapter to grasp
the basics of MySQL and database design, you will find MySQL Cookbook is an ex-
cellent reference for ways in which to perform almost anything you might want
to do with MySQL. There are similar works available for other RDBMSs and also
for SQL in general, all of which should be accessible after working through this
chapter.

It is likely that you will not want to interact with your database system directly
once you have designed and built it, and you will almost certainly not want other
users of your database to have to log in to the command line directly. There are
also lots of tasks for which manual entry of data at the command line would be
a bore. This is why all the popular bioinformatics databases mentioned in the
previous chapter are accessed via a more intuitive web-based interface—with no
knowledge of SQL required. This ease of use is achieved by producing a database
front end, essentially a program that sits between the database server and the
user. In bioinformatics, such interfaces are often written using Perl, which is the
subject of the next chapter.

References
Codd, E. (1970). A relational model of data for large shared data banks. Communications of the ACM,

13 (6): 377–87.
Connolly, T. & Begg, C. (2003) Database Solutions: A Step-by-Step Approach to Building Databases. Addison-

Wesley: Boston, USA.
DuBois, P. (2006). MySQL Cookbook. O’Reilly: Sebastapol, California, USA.
Hernandez, M. (2003) Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design.

Addison Wesley: Boston, USA.
Lewis, S., Csordas, A., Killcoyne, S., Hermjakob, H., Hoopmann, M.R., Moritz, R.L., Deutsch, E.W. &

Boyle, J. (2012). Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed
computing framework. BMC Bioinformatics, 13: 324.

Marz, N. (2013). Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning
Publications: Shelter Island, New York, USA.

O’Reilly Media Team (2012) Big Data Now: 2012 Edition. O’Reilly: Sebastapol, California, USA.
Simecek, N. (2007). Development of a database with web-based user interface for taqman assay design. MSc

Thesis. Cranfield University.
Stephens, J. & Russell, C. (2004) Beginning MySQL Database Design and Optimization: From Novice to

Professional. Apress: Berkeley, California, USA.
Strauch, C. (2011) NoSQL Databases. Review Paper. Stuttgart Media University.

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

CHAPTER 3

Beginning programming
in Perl

Being able to program was once a prerequisite for doing bioinformatics, simply
because there was very little bioinformatics software available. Although the situ-
ation is now different, with freely available bioinformatics tools released all the
time, being able to write your own software is still invaluable for all but the
simplest bioinformatics tasks. Not only does programming give you the flexi-
bility to produce novel tools, it crucially allows you to automate processes, which
overcomes the bottleneck of manual analysis that typically occurs when data
throughput increases. Programming can also be used to link existing tools to-
gether to create powerful data analysis pipelines.

There is an array of programming languages available which can fulfil the
requirements above, but the programming language of choice when it comes to
bioinformatics tasks is often Perl (Practical Extraction and Retrieval Language).
This is due to Perl’s specific strengths—a very quick learning curve, relatively
easy-to-read syntax, ability to add extra functionality by installing third-party
modules, and very accomplished text manipulation abilities. Perl is now en-
grained in the bioinformatics community, with some major organizations using
it as their standard development tool and vast amounts of Perl code out there for
you to incorporate into your own programs. If you have any doubts as to Perl’s
importance, we recommend the paper How Perl Saved the Human Genome Project by
Lincoln Stein, (an archived copy can be found via goo.gl/qErlr).

In this chapter we cover the basics of Perl programming, particularly those
of specific relevance to bioinformatics. The level of detail in each section is
limited to allow the maximum number of individual bioinformatics-related
topics to be covered. If we were to cover everything in depth, we would need a
separate book for Perl, and there are already plenty of good Perl programming
books out there (Wall et al., 2000; Tisdall, 2001; Tisdall, 2003). There are also
many excellent Perl resources on the web. As such, we cover the basics and
give you enough information to enable you to get on with the technologies
that we cover.

74   3 beginning programming in perl

3.1  Downloading and installing Perl

Before getting started programming in Perl, you will need to have a Perl inter-
preter installed on your computer. The interpreter is what actually runs Perl pro-
grams, so although you could technically write a Perl program without it, you
wouldn’t be able to see what that program does. If you’re using Linux or Mac OS,
you already have it installed as it comes as part of the operating system. In order
to confirm this, and to find out which version of Perl you have, go to your oper-
ating system’s command line (see Appendix A) and type the following (followed
by the Enter key):

perl -v

You should then be greeted with output similar to the following:

This is perl 5, version 12, subversion 3 (v5.12.3) built for
darwin-thread-multi-2level (with 2 registered patches, see
perl -V for more detail)

Copyright 1987-2010, Larry Wall

Perl may be copied only under the terms of either the
Artistic License or the GNU General Public License, which may
be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should
be found on this system using "man perl" or "perldoc perl".
If you have access to the Internet, point your browser at
http://www.perl.org/, the Perl Home Page.

This indicates that you have Perl version 5.12.3 installed on your system.

3.1.1  Older versions of Perl on Mac OS

For Mac OS users, if you do not have at least version 5.10.1 of Perl installed on your
system, you will need to update your distribution of Perl otherwise you will not be
able to run all of the examples in this book. The easiest way to achieve this is using
a tool called Perlbrew which you can setup easily in a small number of steps:

1	 Install Xcode and its 'Command Line Tools'—if you installed MySQL in Chapter
2 as instructed via homebrew you will already have this setup.

2	 Visit the Perlbrew homepage (perlbrew.pl) and follow the installation
instructions that use the command-line tool curl. Once the install is com-
pleted you will be told to add some commands into your ~/.bashrc file—do
this as instructed. Now close and re-open your terminal. You should now be
able to type perlbrew, hit return and get some usage instructions.

3	 View a list of available Perl versions with the command perlbrew avail-
able.

3.1 downloading and installing perl   75

4	 Install the latest stable release of Perl (denoted by an even second number), this
was 5.16.3 at the time of writing—that is: perlbrew install perl-5.16.3.

5	 Install cpanm (a utility for installing third-party libraries) via perlbrew
install-cpanm.

6	 Learn how to use Perlbrew by reading the documentation on the Perlbrew
webpage (perlbrew.pl)—it is short and very concise.

We have also written up a slightly more detailed set of instructions on the www.
bixsolutions.net forum (www.bixsolutions.net/forum/thread-100.
html) please head over there if you need a touch more guidance or help.

3.1.2  Older versions of Perl on Linux

Linux users, if you do not have at least version 5.10.1 of Perl installed on your
system, you should really upgrade to the latest release of whichever distribution
you are running. This version of Perl is really quite old, and any recent Linux
build will have a newer release of Perl.

If you really cannot update your Linux distribution, but do have an older build
of Perl, you could try installing a more recent build of Perl via Perlbrew as directed
for Mac users above, but note that supplied Perl module installation instructions
later on in the book may not work for you should you go down this route; you
will need to use a combination of your package manager to install any non-Perl
dependencies, and cpanm to install Perl modules—instructions for this approach
will not be documented through the rest of the book.

3.1.3  Installing Perl on Windows

The above commands (Section 3.1) will also work on a Windows based computer,
but only if you have a Perl interpreter installed. Perl is not automatically installed
as part of the operating system, so unless somebody has already done it for you, you
will need to download and install it. The easiest way to do this is to use ActivePerl.

Head to www.activestate.com/activeperl and follow the very obvious
download links to get the free 'Community Edition' of ActivePerl for your version
of Windows (32-bit or 64-bit).1 This edition of ActivePerl is free to download and
use. You may be given the opportunity to enter your contact details while down-
loading, but this is optional. As long as you have administrator permissions on
your system, all you have to do is open the downloaded package and go through
the usual Windows install procedure. We recommend accepting the default in-
stallation options unless you have a very good reason not to.

3.1.4  Compilers and other developer tools

Later on in the chapter, we explain how you can use third-party code and libraries
within your own programs (Section 3.10 Harnessing Existing Tools). Some of these

1	 We recommend Perl 5.14, as some of the Perl modules/packages we use later on in the book have not
been made ready for ActivePerl 5.16 at the time of writing.

76   3 beginning programming in perl

tools need compilers and certain C libraries in order to install correctly, so it is
best to get them installed now before we get started.

Windows users can breathe easy here—you have nothing to do. ActivePerl
comes with everything you need already.

Mac users, if you chose not to use Perlbrew to install/manage your versions of
Perl (Section 3.1.1), we have another small set of instructions on the www.bixso-
lutions.net forum for you—head over to www.bixsolutions.net/forum/
thread-68.html and follow the instructions there. This will set up a tool called
cpanm (for installing Perl modules) and your environment, so all third-party Perl
code is installed in your home directory and does not impact the base operating
system.

Linux users, the vast majority of third-party Perl modules you are likely to want
to try will already be available via your distribution’s package manager, but just
in case we ever do need to build/compile some modules ourselves, look for a
package called 'build-essential' or something similar in your package manager
and ensure that you have that installed.

3.1.5  Before getting started

Finally, before embarking on understanding and programming in Perl, there are
a couple more things to get ready beforehand.

Picking a text editor
A Perl program is just a list of commands in a plain text file, so the first thing we
need is a text editor in which to write programs. There are many different text
editors available for the various operating systems. There is no 'best' editor and in
the end it comes down to what you feel comfortable working with. Below is a list
of some of the text editors that we recommend for Perl programming, organized
by the operating system(s) they support:

Multi-platform

◆	 Sublime Text (www.sublimetext.com). A very customisable and expandable
(via plug-ins) programming editor useful for most programming languages and
compatible with most operating systems (including Windows, Mac OS, and
Linux). Sublime Text is free to evaluate, but a licence must be purchased for
continued use.

◆	 Komodo (www.activestate.com/komodo-edit). A programming editor
developed specifically for dynamic languages such as Perl. A slimmed down,
but still very good, edition of this editor (Komodo Edit) is available for free. The
full Komodo IDE with a built-in debugger and other useful tools is a commer-
cial package, for which payment is required.

◆	 Vim and Emacs. As classic Unix/Linux tools, these editors (and variants such as
gVim and XEmacs) can be installed from the Linux package manager. Ports of
these editors are also available for Windows (via www.vim.org, www.gnu.
org/software/emacs, or www.xemacs.org) and Mac (code.google.
com/p/macvim or aquamacs.org).

3.2 basic perl syntax and logic   77

Windows only

◆	 Programmer’s Notepad (www.pnotepad.org). A free, open-source, text ed-
itor. Suited to Perl and many other programming languages.

Mac OS only

◆	 TextMate (macromates.com). A programming editor useful for most program-
ming languages. This editor is also highly expandable and customisable through
the use of plug-ins. Like Sublime Text, TextMate it is commercial product so a
license should be purchased.

◆	 TextWrangler (www.barebones.com). A free text editor suited for program-
ming in many different languages. If you grow to like this editor, there is also a
commercial product available with extra features called BBEdit.

Linux only

◆	 gedit (www.gnome.org/projects/gedit). The default text editor for the
Gnome desktop environment. This is a basic, general-purpose, and easy-to-use
text editor.

◆	 Kate (kate-editor.org). The default text editor in the K desktop environ-
ment (KDE). Like gedit, this is also a basic, general-purpose, and easy-to-use text
editor.

If forced to recommend just one of the above editors for this book, we would
opt for Komodo Edit, as it is free, available for all the major operating systems
and, as well as being suitable for Perl, it can also be used with R and HTML which
we cover in later chapters.

The command line
Although we will be writing our programs in a text editor, we will be executing
these programs and interacting with Perl via the command line. If you’re not fa-
miliar with the command line, we would refer you to Appendix A. Particularly
important is which directory (or folder) you’re positioned in (i.e. in a Windows 8
command line you will automatically be positioned somewhere like C:\Users\
Conrad; on a Mac /Users/UserName/; on Linux /home/UserName). If you
save your Perl programs anywhere other than your home directory, you must
change your directory in the command line (using the cd command) to wherever
you have saved your programs in order to run and use them.

3.2  Basic Perl syntax and logic

To get started, let’s write a simple Perl program and see what happens. Open up
your selected text editor and type the following code and save it as a file called
hello_world.pl:

#! /usr/bin/env perl
A Perl 'Hello, world!' program
print "Hello, world!\n";
print "=============\n";

78   3 beginning programming in perl

Now, open up your command line terminal (ensuring that you have moved
into the directory where you are saving your Perl scripts) and type the
following:

perl hello_world.pl

If all went well, you should now have the famous words 'Hello, world!' (minus
the quotes) printed to the screen in your terminal window. If not, and you get an
error message instead, check the code above to see if you have mistyped some-
thing. In particular, make sure that you are using the right types of quotes in the
print statement, and note that Perl is case sensitive, so print is not the same as
PRINT, or even Print.

So, what went into that first program?
The first line in the program is known as the shebang2—this is a special com-

mand required to tell the operating system what is going to run the script (in
this case, Perl) and it always starts with #!. The shebang also tells the operating
system where to find the Perl interpreter—in this example we actually run a
system command called env within the shebang, asking it to find the perl exe-
cutable for us. In Windows, env is not available, so the shebang line should be
set to point directly to your Perl interpreter, which is likely to be somewhere
like C:\Perl64\bin\perl. You will notice that the program runs in Windows
regardless of what the shebang says. This is because the shebang is not required
in Windows, at least not when we are executing the program using the perl
command itself. However, the shebang line is essential when we run scripts as
generic executable programs, for example within a web server process, so it is
good practice to include it regardless.

The second line of the program is a comment. Comments are lines or state-
ments in programming code that are not read by the computer, they are just
there to help you, the programmer, or any programmer who carries on your
work, to annotate and make notes within the program code. In Perl, comments
are defined with the use of a # symbol, and all text to the right of the # symbol
until the end of the line is ignored by the Perl interpreter. (NB: This should not be
confused with the shebang—#!—they are different beasts.)

The third line of the program is a print statement—this is the first part of
the program that actually does something. Print statements are a way in which
a program can let its user know what is happening. It is also a handy way of giv-
ing output from your script, including diagnostic information during program
development and debugging. In the most basic form that we have used here,
anything contained within the quotes is printed to the command line. Well, not
quite everything is printed—for example the \n construct is a special code telling
Perl to start a new line of text. Many such codes are available, and we shall cover
more of these and their uses later.

2	 The term shebang derives from the names of the characters # (hash) and ! (sometimes called bang).

3.2 basic perl syntax and logic   79

The last line of the program is just another print statement, included to add
some rudimentary underlining to our message. The reason we included this
was to demonstrate a very basic principle common to most programming lan-
guages—programs generally run from the top of the code to the bottom. Indeed,
simple programs like this one are sometimes referred to as scripts, as they are
little more than lists of actions to be performed one after the other. We will see
later in the chapter that Perl supports control structures that facilitate a much
more complex program flow.

Note that the end of each line of Perl must be denoted by a semi-colon (;) char-
acter. Failure to do this will result in errors when you try to run the program,
which often catches out beginners (and even some more experienced coders
when they are up against a deadline!). The semi-colon is needed because, in more
complex programs, commands may be split over several lines of text, so we need
a way of telling the Perl interpreter where the command really ends rather than
assuming that the start of a new line of text is the start of a new command.
Because comment lines beginning with # are ignored by Perl, they do not require
a semi-colon.

To avoid repetition, from here on we shall not mention or print the shebang,
or other starting code, for our smaller examples. So, if you create new files to test
the many snippets of code presented throughout this chapter, don’t forget to add
in the shebang, a quick comment to say what the program does, and to save the
code with an appropriate name ending in .pl so that it is recognized as a Perl
program. In longer examples, where we provide full programs, we have included
the standard Linux shebang. If you’re using Windows, you should change it to
point to wherever you installed Perl.

3.2.1  Scalar variables

Bioinformatics is all about data, so being able to manipulate data within our pro-
grams is essential. As we have seen in previous chapters, databases and files are
used for long-term data storage. In programming, we have the additional concept
of variables, which are objects within a program within which data can be stored
and manipulated whilst the program runs.

A scalar variable is the simplest type of data that Perl handles. This is typically
a single number (e.g. 465 or 1.25) or strings of characters (e.g. 'carbon dioxide' or
'ATGGGCCGAT'). In most other programming languages, numbers and strings are
handled separately (even different types of numbers are handled differently), in
Perl, however, they are all treated nearly identically. Scalar data in Perl is indi-
cated through the use of the dollar symbol in front of the variable name—for
example $sequence is a scalar variable called 'sequence'.

Assigning values to scalar variables
One of the most basic operations for scalar variables is assignment—giving the
variable a value. To do this we use the equals sign (=).

80   3 beginning programming in perl

$num = 24; # give variable $num, the number value 24

$dna = 'ACTG'; # �give $dna the string value ACTG i.e. the
 # string between the inverted commas

$bar = $num * 2; # makes $bar equal to the value of $num (24)
 # multiplied by 2 (48)

$bar = $bar + 12;# make $bar equal to $bar (48) plus 12 (60)

From the examples above, you can see that we assign the variable named on
the left, with the value defined on the right. Also, the last two statements show
that it is possible to overwrite variables with new values, even using the same
variable that we are about to replace (as in the last line where we use $bar twice).
Operations like this are quite common, so common in fact that there are useful
shortcut operators that help us do this. A few examples of these are shown below.

$foo = 5; # make $foo equal to 5
$foo = $foo + 5; # this is one way of increasing $foo by 5
$foo += 5; # this is another way of doing it!
$bar = 5; # make $bar equal to 5
$bar = $bar * 2; # this multiplies $bar by 2
$bar *= 2; # so does this!

This is not just applicable to numbers; similar operations can be carried out
on strings. One such operation is using the concatenate operator, a dot symbol
(.)—this gives us the ability to append one string onto the end of another string.

$dna = 'ACTGATCG'; # define a DNA sequence
$dna = $dna . 'AAAA'; # add a poly-A tail to our sequence
$dna .= 'AAAA'; # �another way of adding the poly-A tail –
 # the string is now ACTGATCGAAAAAAAA

Special attention for strings
Assigning numbers to scalars is quite straightforward—you just use an equals
sign, followed by the number. Strings, on the other hand, need a little extra care,
in that they need to be surrounded by quotes to let Perl know the start and the
end of the string. Furthermore, different types of quotes are used depending on
how you want Perl to treat the string.

Single-quoted text is the simplest way of defining a string in Perl—the string
is generally read exactly as typed into the variable. However, we need to make
special consideration for the quote (') and backslash (\) characters. The backslash
character is used to cancel out special characters in strings, for example to get a
quote character (') in a string we would have to use \' within the string assign-
ment, otherwise the string assignment will simply stop at the quote. Similarly,
to get a backslash character at the end of a string, this must also be preceded by
another backslash (otherwise it would cancel out the closing quote). Examples
of single quoted string variables, and how they appear when printed, are shown
Table 3.1.

3.2 basic perl syntax and logic   81

Double-quoted text is another method for assigning text to variables in Perl.
This is slightly more advanced than the single-quote method in that we can utilize
special text characters and even other variables within our strings. Examples of
this can be found in Table 3.2. As you can see, the backslash character has more
power within double-quoted strings. There are many of these special characters
that are quite useful—some of the more relevant are listed in Table 3.3.

Multiline strings
It is quite common to need to have strings that are made up of large blocks of
text within your programs. There are a number of ways you can do this with Perl,
using standard quotes (and double-quotes) as above and with structures known as
'here documents'. These are demonstrated and explained in the following code:

my $big_string = 'This

is a

perfectly

valid string';

my $big_string2 = "As

is

this";

my $big_string3 = <<'TXT';

This is a 'here document' - another way of creating strings in Perl.

This is equivalent to the single quoted method of string creation

(i.e. no variable interpolation). The TXT marker above can be any

uppercase string - the important thing is to match it to the one

below as this denotes the end of the string.

TXT

my $big_string4 = <<"FOO";

This is another 'here document', but this is equivalent to double

quoting your string as variable interpolation is possible. e.g.

here's \$big_string: $big_string

FOO

Table 3.1  Perl strings and their appearance when printed with single quotes

Code Output

'ACTG' ACTG

'Homo Sapiens' Homo Sapiens

'The Human\nGenome Project' The Human\nGenome Project

'The Human Genome Project\'s Website' The Human Genome Project’s Website

'\\\\servername\\path' \\servername\path

'Human\tand\tMouse' Human \tand\tMouse

82   3 beginning programming in perl

We encourage you to take a moment to work out in your head what each of
these assignments is doing, and then test your understanding by printing each
variable to the screen.

Some useful scalar operations
As with other programming languages, Perl has many built-in functions and
operators for manipulating variables of different types. Before we move on to
explaining some of these, let’s pause for a moment to explain what functions
and operators are and how they relate to each other. Functions (often also known
as subroutines, methods, procedures, or subprograms) are small portions of code
that you can call upon for performing a specific task. An example of a function
that you have used already would be print—this is a function that is used for gen-
erating output from a program. Operators, on the other hand, are a specific subset
of functions that are typically used in direct manipulation of variables—examples
of which would be arithmetic operators (+, -, etc.) and string operators such as the
assignment operator (=) and substitution operator (s) which we will come to later.

Two useful functions that are worth committing to memory are chomp() and
chop(). These two functions perform similar operations, namely removing char-
acters from the end of strings. However, there is one very important difference:

Table 3.3  Some of the most important special characters in Perl

Character Meaning

\n Newline

\r Return

\t Tab

\\ Backslash

\' Single quote

\" Double quote

\l Lowercase next letter

\L Lowercase all following letters until \E

\u Uppercase next letter

\U Uppercase all following letters until \E

Table 3.2  Perl strings and their appearance when printed with
double quotes

Code Output

"ACTG" ACTG

"ACTG\nACTG" ACTG

ACTG

"Human\tand\tMouse" Human and Mouse

3.2 basic perl syntax and logic   83

chomp() will remove the end character from a string if it is—and only if it is—a
newline (\n) character; chop(), on the other hand, will remove the end character
from a string no matter what it is. Although these might not seem immediately use-
ful, you will find chomp() invaluable later when we start receiving input from the
command line and reading in files, as these always have newline characters at the
end of them. Unhandled, these could cause unexpected results from your programs.

More information about chop(), chomp(), and indeed any other aspect of Perl
can be found by searching the official Perl documentation (perldoc.perl.org).
This excellent resource details every standard Perl function and operator, com-
plete with example code.

String substitution
Another essential string operator is the substitution operator, s. This can be used
to swap a specific segment (that you define) of your string to something else. A
simple example is given below.

$string = 'I like Perl'; # create a new string
$string =~ s/like/love/; # �substitute the word 'like' for
 # 'love'
print $string; # would give: I love Perl

In the above snippet of code, we created a new string and then substituted one
of the words in the string. The generic syntax for using the substitute operator is
shown below—as in the previous chapter, italics are used to indicate placehold-
ers for parameters that you need to specify:

$string =~ s/string_to_replace/replacement_string/modifiers;

Simply, we have our string variable, followed by =~ (this indicates that we
are doing a pattern match operation), then the substitution operator that con-
tains the part of our string that we are trying to match, followed by what we are
going to replace it with (surrounded and separated by forward-slashes). At the
end of this we also have a position for optional modifiers to affect our substitu-
tion. Examples of two such modifiers are the letters i and g, which, respectively,
imply that our match is to be case insensitive and global. A global substitution
means that the substitution would happen on every occurrence of the match—
not just the first match that is found.

Here is another example of the substitution operator in action. In the following
example we try to determine the reverse complement of a DNA sequence:

$dna = 'ACTGACC'; # assign DNA sequence to a string
$dna =~ s/A/T/ig; # swap all the As for Ts
$dna =~ s/T/A/ig; # swap all the Ts for As
$dna =~ s/C/G/ig; # swap all the Cs for Gs
$dna =~ s/G/C/ig; # swap all the Gs for Cs
$dna = reverse($dna); # reverse the sequence
print $dna; # output result

84   3 beginning programming in perl

If you run this code, you will get the result CCACACA, which is not actually the
reverse complement of the sequence we started with. This demonstrates an im-
portant limitation with the substitution operator—if you want to perform more
than one substitution at a time (in this example we want to do four), it might not
work in the way you expect as the substitutions happen in the sequence they are
written, resulting in a chain where each substitution operates on the result of the
previous one, giving an undesired result.

The good news is that this type of operation is possible in Perl, we just have to
use another operator. This is known as the transliteration operator, or tr for short.
The tr operator has a syntax structure almost identical to s:

$string =~ tr/string_to_replace/replacement_string/;

The main difference between transliteration and substitution is that the trans-
literation operator acts on individual characters at the same time—whereas the
substitution operator acts on the contents of the first set of slashes as a whole.

Therefore, in the case of our reverse complement problem, our code would
look like this:

$dna = 'ACTGACC'; # create our DNA string again
$dna =~ tr/ACTGactg/TGACtgac/; # �change all the bases at
 # once
$dna = reverse($dna); # reverse the sequence
print $dna; # output result

This time we get the intended result: GGTCAGT. There are many more string
manipulation operations in Perl, which we shall come back to later in the chapter.

Printing strings
One other common activity that we often want to perform with string-based vari-
ables (or indeed any of the variable types that we cover in this chapter) is that of
printing them out to the screen for users to see. This is achieved with the print
function that we met in the first example. Examples of this are shown below.

$dna = 'ACTGACC';

print "$dna \n"; # �This prints ACTGACC followed by a new-
 # line
print $dna . "\n"; # This prints the same as above
print '$dna \n'; # This prints $dna \n

This shows once more that the choice of quotes used to surround a string can
have an impact on the resulting output. If we use double quotes in our print state-
ments, variables can be used intermixed with other text and special (e.g. newline)
characters and, upon printing, the value of the string variable will be printed, not
the name of the string. If, however, we were to use single quotes, the text inside
the quotes will be printed—no variables or special characters will be interpreted.
The last thing that we would like to note here is the use of the concatenation

3.2 basic perl syntax and logic   85

operator (.) in the second print statement. If you prefer to clearly detach your
variables from text in your code (this can aid in the readability and in cleanliness
of your code), you can use the concatenation operator to join variables with text
strings in a single print statement. Here is a typical example of this in use:

Demonstrates concatenation operator in print statements
print "This is our DNA string: " . $dna . "\n";

This would then print the text 'This is our DNA string: ACTGACC' followed by a
newline character to the console.

3.2.2  Arrays

An array may simply be considered as a collection of scalars—we can loosely
think of them as a list of scalar variables that can contain any type of scalar
variable described previously. An important difference between Perl and other
languages is that different data types (e.g. string and numbers) can be mixed
together in a single array. Figure 3.1 shows a pictorial representation of a Perl
array.

Creating and assigning values to arrays
As with many things in Perl, there are several ways to create and populate arrays.
Here are some examples:

@dna_seqs = ("ACTG", "CCGGC", "CGCGC"); # �a 3-element array

@more_dna = qw(ACTG CCGGC CGCGC ATGAAA); # �a 4-element array

@other_array = (); # create an empty array

$other_array[0] = 'ACTG'; # �add 'ACTG' as the 1st element in

 # array

$other_array[2] = 'ENSMUSG01465'; # �'ENSMUSG01465' comes next

$other_array[3] = '56.7'; # then '56.7'

As you can see from the above examples, assigning values to arrays uses the
same assignment operator (the equals sign) as used with scalar data. The most
obvious difference is the use of the @ symbol to represent an array instead of the
$ scalar indicator.

“ACTG”

1245

E
le

m
en

t
n

u
m

b
er

s

Values

“ENSMUSG01465”

56.7

“Homo Sapiens\n”

0

1

2

3

4

Fig. 3.1  A Perl array containing five elements.

86   3 beginning programming in perl

Let’s look at these examples more closely, step by step:

@dna_seqs = ("ACTG", "CCGGC", "CGCGC");

This line of code creates a three-element array called @dna_seqs. The assign-
ment of values to the array is done with the use of the brackets surrounding the
new contents of the array, and each individual element is surrounded by quotes
and separated by a comma. The next example uses a different approach to popu-
late another array, @more_dna.

@more_dna = qw(ACTG CCGGC CGCGC ATGAAA);

The assignment for this is slightly different as there are no commas or quotes
used within the braces—the elements are separated by white space—this is the
syntax defined by the qw() function preceding the braces; specifically, the qw()
function takes a list of space-separated values and returns the same list, comma
separated, with each element surrounded in quotes.

@other_array = (); # create an empty array
$other_array[0] = 'ACTG'; # �add 'ACTG' as the 1st
 # element in array
$other_array[2] = 'ENSMUSG01465'; # 'ENSMUSG01465' comes next
$other_array[3] = '56.7'; # then '56.7'

The above code demonstrates yet another way to create and populate an array.
It seems long-winded, but introduces several concepts that are useful when writ-
ing programs that use arrays. In the first line we name and create an empty
array, then on the following lines we add scalars to individual elements of the
array using list interpolation—using the element numbers to enter scalars into
specific elements of our array one element at a time. Note one of the important
character changes in the above lines—the $ sign is used instead of the @ sign as
we are accessing individual elements of the array. The individual elements are
scalars—hence the use of the $ prefix. You will also notice that we neglected to
put anything in the second position of the array, element number 1. This is not a
problem because arrays can have empty elements. Accessing this array element
will return a null value, which will behave differently depending on context.
Finally, note that the numbering of elements in an array starts at zero.

Printing and retrieving data from arrays
Having created and populated an array, it’s quite natural that we will want to
get some information back out of it. If you wish to copy a specific element of an
array and put it into its own scalar variable, this is as simple as the following line
of code:

@dna = ("ACTG", "CCGGC", "CGCGC");
$sequence = $dna[2];

This assigns the contents of the third element of the array to the scalar variable
called $sequence. However, we need to note here that we have not done anything

3.2 basic perl syntax and logic   87

to change the third element of the array—it’s still there, we have merely copied
it. We shall discuss removing elements from arrays shortly.

As well as getting data out of arrays and into scalar variables, you might just
wish to print either an element of an array or the array as a whole. This is really
quite simple, but there is one small warning that needs to be given. Consider the
snippet of code below.

@dna = qw(ACTG GGCG AAAA TTTG);
print "Here's a single element:\n";
print $dna[2] . "\n\n";
print "Here's the whole array:\n";
print "@dna\n";

This will give the following output:

Here's a single element:
AAAA

Here's the whole array:
ACTG GGCG AAAA TTTG

The above code demonstrates two different ways in which we can print out
data from within arrays. The first section prints a single element on its own,
concatenated with two line breaks—you will also notice that we left the array
element to print outside the quotation marks, as mentioned when we covered
printing string variables earlier; this is not entirely necessary and we could have
used the following to get the same effect:

print "$dna[2]\n\n";

The second print statement in the example shows how to print out a whole
array. As you can see, each element of the array is separated by a space, which
makes the output very readable.

Special array operators
Arrays are slightly more advanced data types than scalars and there are a number
of special operations that can be performed on them. Functions to perform these
operations include pop(), push(), shift(), and unshift(). These allow us
to add and remove data from the beginning and end of an array.

@array = qw(0 1 2 3 4 5 6 7 8 9 10);

$scalar = pop(@array); # �remove the last element from @array (10),

 # and put it in $scalar

$scalar = shift(@array); # �remove the first element from @array (0),

 # and put it in $scalar

push(@array,'ACG'); # �'ACG' is added to the end of @array

unshift(@array,'CGC'); # �'CGC' is inserted at the beginning of @array

@array now contains ('CGC' 1 2 3 4 5 6 7 8 9 'ACG')

88   3 beginning programming in perl

Using combinations of pop(), push(), shift(), and unshift() it is pos-
sible to quickly and easily add or remove data from either end of arrays.

There are two more array functions that are especially useful for the conver-
sion of data: split() and join(). The first of these, split(), allows us to
create an array from delimited data. Common examples of delimited data are
comma-separated (known as.csv files) and tab-separated data.

An example of using the split() function follows:

$genestring = "ENSG00000058668,ENSG00000047457,
 ENSG00000067715";
@array = split(",",$genestring);

Although this is not something you would ever want to do in practice (why
would we create a string on one line, only to split it on the next?), it does show
how it works. The @array variable returned by this code contains three elements
taken from the above string. A more common use of this would be to read data
from a file. Getting data in and out of files is covered later in the chapter.

The generic syntax for the split() function is:

array_variable = split(delimiter,scalar_variable_to_split)

What if we have an array that we wish to print out to the screen, or a file as
comma-separated or tab/space-separated data? This is essentially the opposite of
the split() function—implemented in Perl as the join() function. Here is the
syntax for the join() function followed by a quick example:

scalar_variable = join("delimiter",array_to_convert)

@genearray = qw(ENSG00000058668 ENSG00000047457
                     ENSG0000006771);
my $output = join(",",@genearray);
print $output . "\n";

As you can see from the above code, the syntax for join() is essentially the
same as split().

One final useful array operator we would like to cover is scalar(), which is
used to find out the size of an array, and can be used as follows:

@codon = qw(ACT CCG GGC AAA);
print "Our codon array has " . scalar(@dna) . " elements\n";

If you put this code into a file and run it, you will get the output 'Our codon
array has 4 elements' which is correct and as we expected. It’s worth noting that
the function scalar() counts the elements of our array starting from 1, which
is different from the actual number assignment of the elements (array number-
ing starts at zero, remember). This is important as we often use the number of
elements in an array to control loops and other control structures, as discussed
later in the chapter.

3.2 basic perl syntax and logic   89

3.2.3  Hashes

The final Perl data structure that we want to highlight is the hash. A Perl hash
is similar to an array in that it is a list of scalar variables, the difference is that a
hash is not a number indexed list—the values within a hash are indexed using
names. These names are more correctly referred to as keys. They are unique string
variables that are completely arbitrary in form, that is they can be anything you
like.

Figure 3.2 shows a hash containing five scalar variables that can be accessed
using the given example keys. To create this hash in Perl:

Please note – the extra spacing is optional...

%genbank_record = (

 'Official Symbol' => 'BRCA1',

 'Official Full Name' => 'breast cancer 1, early onset',

 'Primary Source' => 'HGNC:1100',

 'Gene Type' => 'protein coding'

 'Organism' => 'Homo sapiens'

);

The declaration of a hash and its structure is clearly different to those of
scalar or array variables. The first, and possibly most important, difference is
the change in symbol to represent this type of variable; a percentage sign (%)
is used to represent hashes. The other main difference is the way in which we
put data into our hash. As we are no longer dealing with a single scalar, or an
ordered list of scalars, we need a more structured approach: assigning the key/
value pairs is done using the => construct, with the key on the left and the
value on the right.

“BRCA1”“Offical Symbol”

“Offical Full Name”

“Primary Source”

“Gene Type”

“Organism”

“breast cancer1,
early onset”

“HGNC:1100”

“protein coding”

Homo sapiens”

Values

K
ey

s

Fig. 3.2  A Perl hash containing five key/value pairs.

The above example is not the only way to create a hash, (as with most things in
Perl—there is more than one way to do it) but it is the simplest to understand. We
could have done the following:

90   3 beginning programming in perl

%genbank_record = ('Official Symbol', 'BRCA1', 'Official
Full Name', 'breast cancer 1, early onset', 'Primary Source',
'HGNC:1100', 'Gene Type', 'protein coding', 'Organism', 'Homo
sapiens');

In the above we have the key, followed by the value on the same line, then fol-
lowed by the next key/value pair. The above code will give you exactly the same
hash in the end—but it’s by no means as easy to read, especially for larger hashes.

Like arrays, hashes do not need to be completely filled from the beginning—we
can declare an empty hash, and then add/remove values as and when we wish.
An example of this is shown below.

%rna_triplets; # declare empty hash

$rna_triplets{'UAG'} = 'stop'; # �This adds the key/value of
 # UAG/stop
$rna_triplets{'GCC'} = 'Ala';

delete $rna_triplets{'UAG'}; # deletes the UAG/stop entry

As you can see, adding and removing elements to and from a hash is quite
similar to an array, we just use the scalar key to assign the value instead of
the number index used in arrays, and curly braces ({}) are used instead of
square brackets. Also like arrays, the individual elements of the hash are scalars
(denoted by the $ symbol). This highlights an important consideration—hashes
are unordered lists. The elements of an array have an order to them ranking
each element from zero to the size of the array. In hashes there is no order to the
keys as they are completely arbitrary scalar values. This will be important later
when we cover looping through the values in data structures. In arrays we may
loop through the array in a set order to access each element, whereas to achieve
a similar result with a hash we might loop through an array of hash keys.

One last thing to be aware of when considering the similarities between hashes
and arrays, is that arrays can only have one value for each element within them.
So, if you declare a value for position [2] of an array, then re-declare that again
later as something different, the first value will be overwritten. Hashes are
exactly the same—your keys must be unique within the hash (as the numbers
within the array are unique). If we re-declare a value within a hash, we overwrite
the original value. An example of this is:

@ala_triplets = qw(GCU GCC GCA);
$ala_triplets[1] = 'GCG'; # This replaces 'GCC' with 'GCG'

%genetic_code = (
 'GCU' => 'Ala',
 'AAA' => 'Ala',
 'GCA' => 'Ala'
);

3.2 basic perl syntax and logic   91

$genetic_code{'AAA'} = 'Lys'; # �We replace 'Ala' with 'Lys'
 # as this is the
 # correct translation.

As you can see, replacing elements of a hash or array is easily accomplished,
but this can also lead to accidental replacements that can be hard to spot.

Getting data out of hashes
As we have shown, getting data into a hash is analogous to getting data into an
array. Getting data back out of a hash is equally straightforward.

%genetic_code = (
 'GCU' => 'Ala',
 'AAA' => 'Lys',
 'GCA' => 'Ala'
);
print $genetic_code{'AAA'}; # This prints the value 'Lys'
$alanine = $genetic_code{'GCU'}; # Makes $alanine equal 'Ala'

The above code shows just how easy it is to get data out of a hash if you know
what the keys are. However, what happens if you do not know what the keys
for your hash are? This can happen when you load data into a hash dynamically
within your program. Thankfully, Perl’s keys function is there to get this infor-
mation for you.

@keys_from_my_hash = (keys %genetic_code);

The keys function takes all of the keys from the specified hash, and returns an
array of the values that it has found. This then allows you to gain access to all ele-
ments of a hash in an ordered manner.

Finally, keys also has a complementary function, values, which returns all of
the values in a hash. This may be useful in certain circumstances, such as when
you would just like to know the values stored within a hash and are not particu-
larly worried about the keys associated with them.

@values_from_my_hash = (values %genetic_code);

The scalar, array, and hash are all you will ever be likely to need in a Perl
program to store and handle data. We will come back to data structures later in
the chapter when we discuss the use of references, but for now we will move on
to controlling the flow of our programs.

3.2.4  Control structures and logic operators

So far our Perl programs have been limited to simple scripts—lists of commands
that execute in the sequence that they appear in the file. Scripts like this are
good for automating otherwise tedious sequences of command-line input, but to
produce real programs with more complex behaviour and the ability to respond

92   3 beginning programming in perl

to user interaction, we need to be able to implement loops and conditional state-
ments to control the flow of our programs.

IF, ELSIF, and ELSE conditionals
The first control structures that we are going to consider are the if, elsif,
and else control structures. These are used where you want a program to do
something specific based on a test; if that test is not met, you might want the
program to do something different. This is why we refer to them as condition-
als; they allow your program to do different things based on a set of conditions
that you define. That may sound complicated if you haven’t done program-
ming before, but be assured that they are not complicated and will become
second nature to you after your first couple of programs as they will most
likely be in all of your Perl programs. The reason for this is that conditionals
allow our programs to respond differently according to the data they receive,
or interactions with the user. Here is an example of how we might use an if
conditional:

$species = 'Human';

if ($species eq 'Human') {
 print "Your species is Human";
}

As you will see in the first line of the above code, we create a new string vari-
able that has the value ‘Human’. The next line begins with the function if fol-
lowed by a test—in this case $species eq 'Human'—this is a string comparison
testing whether our variable is the same as ‘Human’, this is then followed by
an opening brace. If the condition is met (i.e. if $species is exactly the same
as ‘Human’), the code in between the braces following if will be executed. If,
however, the test does not return true (i.e. if $species is not equal to ‘Human’),
nothing will happen, the block of code defined by the braces (controlled by the
if) will be ignored. Let’s expand on this example:

$species = 'Mouse';

if ($species eq 'Human') {
 print "Your species is Human";
} elsif ($species eq 'Mouse') {
 print "Your species is Mouse";
}

In this example we introduce an extension to the if conditional—an elsif
conditional. This is used in combination with if conditionals to give you more
options within your programs. The conditionals are evaluated sequentially as we
move down the program (as with everything else in Perl), therefore the if condi-
tional is evaluated first. If this condition is met, the code block associated with it

3.2 basic perl syntax and logic   93

will be executed. However, if it is not met, the conditional will continue onto the
elsif block and this will be evaluated as if it was another if conditional. What
about when none of our conditionals are evaluated as true? In the above example,
if $species was neither ‘Human’ or ‘Mouse’, the program would simply skip
over the conditional blocks and move on; sometimes we need a backup plan.
Let’s expand on this idea once again:

$species = 'Zebrafish';
if ($species eq 'Human') {
 print "Your species is Human";
} elsif ($species eq 'Mouse') {
 print "Your species is Mouse";
} else {
 print "Your species is not Human or Mouse!";
}

In the above code we introduced the else conditional. This conditional is used
with other conditionals to offer alternatives for execution should the previous
conditionals fail (the if and elsif). In the above section of code, we once again
create our variable $species and have the same if and elsif conditionals and
braced code blocks. However, this time the value of $species is not equal to
‘Human’ or ‘Mouse’, (it’s set as ‘Zebrafish’), therefore the tests following the if
and elsif statements will not return true, and the code blocks within the braces
will not be executed. As the if and elsif statements are followed by an else
conditional it’s this code block that is executed in this case, so the output of this
piece of code would be the line 'Your variable is not Human or Mouse!' printed to
the command line. Table 3.4 shows other comparison operators that can be used
in conditional tests.

Table 3.4  Common comparison operators for numbers and strings.
When using comparison operators with strings the terms “less than” and
“greater than” to refer to alphabetical order in the sense that ‘a’ is less than
‘b’ in value as it comes earlier in the alphabet. Note that upper case letters
are considered to be ‘less than’ their lower-case counterparts, i.e. ‘A’ is
considered less in value than ‘a’

Test Operator Description

Numbers Strings

== eq Equal

!= ne NOT equal

< lt Less than

> gt Greater than

<= le Less than or equal

>= ge Greater than or equal

94   3 beginning programming in perl

More advanced conditionals
The if, elsif, and else conditionals are fairly simple, but very useful. However,
what if we want to test for more than one condition simultaneously? You could simply
string together lots of if and elsif conditionals, but sometimes this can seem like
a lot of work for simply testing a few variables, and the code can become difficult to
read. On occasions such as this there is a potentially more efficient option, which is to
combine a series of tests using logical operators such as and (which can also be shown
as &&) or or (which can also be shown as ||). Here is an example of such use:

my $test_var = 18;

if (($test_var > 12) && ($test_var < 24)) {
 print "Your variable is between 12 and 24!";
}

The above test would look to see if our variable ($test_var) had a value be-
tween 12 and 24, as we test that the variable is above 12, and below 24. The basic
rule of thumb when stringing together multiple tests is that all of the tests must
be surrounded by a pair of brackets, and each individual test must be surrounded
by their own set of brackets. There is no limit on the number of tests that you can
string together, you can use as many as you need.

Creating loops with FOR, FOREACH, and WHILE
The next set of control structures that we are going to look at is loops. These are
used in programs when you want to repeat an action multiple times, and are fea-
tures of most programming languages. There are two different flavours of loop that
can be used for different tasks; these are loops that are carried out for a defined
number of iterations, and loops that repeat until a certain condition is met.

The first class of loops (those that repeat for a defined number of iterations)
includes for and foreach loops, which are particularly useful if you have a list of
variables, (either in an array or hash) and you would like to perform an operation
on each element of the list. Let’s start by looking at an example using a for loop:

@array = qw(one two three four five); # �create a five element
 # array

for ($i=0; $i<scalar(@array); $i++) {
 print "We are looking at: $array[$i] \n";
}

In the above snippet of code we establish our for loop with the for statement,
and iterate through each element of our array and print the contents of each
element of the array. To explain this more clearly, consider the generic syntax of
a for loop in slightly more detail:

for (iterator_variable; final_test; change_to_iterator) {
 operations_to_perform_upon_each_iteration;
}

3.2 basic perl syntax and logic   95

So, the definition of a for loop is split into three parts. We first define an itera-
tor variable (in the example above this was $i), in this case this variable contains
a count of how many times we have been through the loop. The second param-
eter is the test to determine when we stop going through the loop. In the above
example we first calculate the size of our array (using the scalar function), and
state that we should keep going through the loop while $i is less than the size of
the array. When $i is equal to the size of the array, or greater, the for loop will
no longer be run and the program will continue onto the next section of code. It
might seem more logical to use <= instead of < in our example to be sure not to
miss the final array element, but the scalar() function gives the length of an
array as if we had started counting from one, while we know arrays begin from
zero (as does our iterator). So the use of < in the example stops us trying to use a
non-existent array element.

The final parameter that we set in the for loop is the increment for our itera-
tor variable with each iteration of the loop. In this example we increment our
variable by one as the command $i++ is equivalent to $i = $i + 1, and we
want to access each element of our array. However, we are not restricted to incre-
menting iterators by one—sometimes it might be desirable to only look at every
other element of the array, so you could simply put $i + 2 at the end of the for
loop definition.

The next type of loop that we are going to look at is the foreach loop. This
is a more specialized version of the for loop, designed specifically for the com-
mon task of working with arrays. Bascially, the foreach loop is used to iterate
over each element of an array—hence the name foreach—you can think of it
as meaning: 'for each element of this array, do this'. Here is an example of how we
could use a foreach loop to do the same as the previous example:

@array = qw(one two three four five);

foreach $element (@array) {
 print "We are looking at: $element \n";
}

The above does exactly the same as our previous for loop, but the code is more
concise and easier to read. Let’s just look at the syntax of the foreach loop and
explain exactly what is going on:

foreach element (array) {
 operations_to_perform_upon_each_iteration;
}

The major difference here between for and foreach loops is that
foreach loops do not have an iterator variable, instead they have a vari-
able that gets assigned the element value of the array that the loop is cur-
rently working on. In the above example, we call this variable $element
and treat it as a normal scalar variable (as that it exactly what it is). Using
the foreach loop makes moving through each element of any given array a
very simple process.

96   3 beginning programming in perl

However, there is one last thing to note about foreach loops—the element
variable that we defined before as $element is an entirely optional argument in
foreach loops. If you choose not to set a name for the element variable, Perl will
use its default variable: $_. Here is an example of the use of $_:

@array = qw(one two three four five);

foreach (@array) {
 print "We are looking at: $_ \n";
}

As you can see, this example is identical to the previous one, we just use $_
to access the element of the array that we are looking at instead of declaring an-
other variable.

You may now be wondering why you would declare a named variable when you
don’t have to? There are instances when it is of benefit to name our variables,
such as nested loops (one loop within another), as it makes it clear to us which
array element we are looking at. Here is an example of how we would use nested
loops (loops within loops) to print out a list of letter/number coordinates (possibly
useful for indexing items in a grid):

@columns = qw(A B C D E F G);
@rows = qw(1 2 3 4 5);

foreach $row (@rows) {
 foreach $column (@columns) {
 print $column . $row . ' ';
 }
 print "\n";
}

This produces the following output:
#
A1 B1 C1 D1 E1 F1 G1
A2 B2 C2 D2 E2 F2 G2
A3 B3 C3 D3 E3 F3 G3 etc...

As you can see above, if we are using more than one loop structure, it is bene-
ficial to name the variables for each loop as it makes it clear which variable is
which. In fact, the arrangement we have demonstrated here is impossible to do
without naming the loop variables, as the $_ from the outer loop is not accessible
using that name within the inner loop.

The next type of loop that we’ll consider is the while loop. The main differ-
ence between this type of loop and the previous kind is that the previous loops
(for and foreach) iterate a given number of times—defined either by your con-
straints in a for loop, or the size of your array in a foreach loop—whereas
while loops do not have a set number of iterations. They are based on a logic

3.2 basic perl syntax and logic   97

test that you define (using the same syntax as the if/else conditionals earlier),
and they keep going until the condition that we have defined is met. The generic
syntax of a while loop is:

while (test_case) {
 operations_to_perform_upon_each_iteration;
}

Let’s now look at a simple example of a while loop in use:

$test_var = 12;

while ($test_var < 45) {
 print "Variable is $test_var \n";
 $test_var = $test_var + 10;
}

This will produce the following output:
#
Variable is 12
Variable is 22
Variable is 32
Variable is 42

As you can see from the example above, the while loop will keep repeating
until the condition that we define at the beginning of it is met—this can be use-
ful if you have no way of knowing how many times you need a loop to repeat, but
you can set a goal, or condition, that you need to meet. The only thing that you
need to watch out for is initiating an infinite loop. This occurs when your loop
conditional is never met (i.e. if $test_var in the example above never becomes
greater than 45), the loop will never exit and your program will never complete.
This is why programs sometimes appear to ‘hang’ or ‘freeze’—they are trapped in
an infinite loop. Provided you look out for instances such as this when you use a
while loop, they can be an indispensable tool.

3.2.5  Writing interactive programs—I/O basics

In this section, we introduce ways in which you can make your Perl programs
interact with users—this is a particular subset of I/O (input/output) functionality.
I/O also includes dealing with files, which is covered later in Section 3.6.

So, say you have created a program to reverse complement a DNA string, as we
did earlier in the chapter. Here is a program to do this:

#! /usr/bin/env perl
Program to convert a DNA string to its reverse complement

Our DNA string
my $dna = 'ACTTTTGGGGCCCCAATGCATTTTAAAAA';

98   3 beginning programming in perl

First we reverse the DNA
my $revcom = reverse $dna;

Now translate the DNA bases
$revcom =~ tr/ACGTacgt/TGCAtgca/;

Then print out the results
print "Original DNA string: " . $dna . "\n";
print "Reverse complement: " . $revcom . "\n";

In this example, the DNA string to reverse complement is defined at the top
of the program. However, what if we want to work out the reverse complement
of another DNA sequence? Simple, we just change the DNA sequence within the
program. What happens, though, if we would like to do this quite a number of
times, or even as part of another program and call this program automatically
from the command line? Having to go into the program and edit the sequence is
fiddly, and we run the risk of accidentally modifying another part of the program
in the process and introducing an error. This is where we can increase the func-
tionality of our program by taking input from the command line.

There are two ways in which we can take command line input from users;
real-time interaction and at run-time. By real-time interaction we mean that
our program will ask the user for input as it runs, so when we need to get our
DNA string, we get our program to pause and ask the user for a DNA string. This
approach is useful for scripts that you would like other people to use, as you can
prompt for input as it is needed. When we say run-time input, we mean that we
declare all of our input for the program up front, as we run the program. This
can be useful for users of your scripts as it means that they no longer have to
edit program code to change variables, but the real benefit of run-time input
is that no interaction from the user is needed from there—so if the program
takes a long time to run, the user can just start the program off and walk away.
If the input method is interactive, the user will need to sit there and watch the
program run as they wait for the next input stage. Here is how we would use the
interactive input method:

#! /usr/bin/env perl

print "What is your name?\n"; # Ask the user their name

$name = <>; # Get the user to type an answer

chomp($name); # Remove the newline

print "Hello $name!\n"; # Say hello

In the above example we show you how easy it is to ask the user for input—you
simply declare a new scalar variable and mark the contents as <>, this makes
Perl wait for the user input. You can do this for as many variables as you like in a
given program—there are no limits to its use. You will also notice the use of the
chomp() function that was discussed earlier in the chapter—chomp() is used

3.2 basic perl syntax and logic   99

to remove a newline character from the end of a string. The reason for this is
that the user must hit the Enter key to signify that they have finished typing, a
side effect of this is that a newline character is appended to the end of the input.
Because this could potentially cause problems later on, if we were using the input
for something more significant than printing back to screen, we use chomp() as
a matter of course.

Accepting command-line parameters
Now let’s have a look at using run-time inputs that are passed to Perl as com-
mand-line parameters. Command-line parameters are pieces of data that you type
as part of the Perl command to run your program. Consider the program below.

#! /usr/bin/env perl

Make sure that we have some command-line arguments
unless (@ARGV) {
 die "No input given!";
}

Do something with our input...
print "Your first input was $ARGV[0]\n";
print "Your second input was $ARGV[1]\n";

If you save this program as input_example2.pl and run it with the following
command:

perl input_example2.pl ACTGGG DNA

You will then get the following output to your screen:

Your first input was ACTGGG
Your second input was DNA

This shows how you can accept command-line parameters in your Perl scripts.
The first thing that we must understand is the way in which Perl handles
command-line input. Simply, your scripts can accept parameters separated by
spaces, which are then passed into your Perl program as elements of the special
array @ARGV. In the first section, we use an unless conditional to determine
if we have any command-line parameters being passed to the program—if no
parameters have been passed, then @ARGV would not exist and our program
would then exit. This premature exiting of the program is achieved using the
die function, which is a handy way of making the program stop wherever it is,
write the specified message to the screen, and return control to the command
line. If one or more parameters have been passed, we then simply print out the
first two elements of @ARGV to screen.

This is a very basic example of what we can do with command-line input, serv-
ing only to demonstrate the concept and syntax. In reality there would be little

100   3 beginning programming in perl

point in writing the parameters back to the screen—more typically the input
would be tested in a conditional statement to determine the behaviour of the
program, or used to pass a file name or analysis parameter to the program.

As an example, let’s return to the reverse complement program shown at the
start of this section. We said that it would be beneficial for our users to not have to
edit the Perl program each time they wish to run another DNA sequence through
it. Well, now that we know how to get Perl to accept input from the command
line (i.e. the DNA sequence to process), we can modify the program accordingly:

#! /usr/bin/env perl
Program to convert a DNA string to its reverse complement

Get the input string
unless (@ARGV) {
 die "You need to pass me a DNA sequence!";
}

Our DNA string
my $dna = $ARGV[0];

First we reverse the DNA
my $revcom = reverse $dna;

Now translate the DNA bases
$revcom =~ tr/ACGTacgt/TGCAtgca/;

�Then print out the results
print "Original DNA string: " . $dna . "\n";
print "Reverse complement: " . $revcom . "\n";

Basically, the only difference is that we first make sure that there are com-
mand-line arguments being passed to the program, then we make whatever the
first variable the user gives us into our variable $dna, therefore completing our
program. If you want to try this program out without typing it in, you can down-
load it from www.bixsolutions.net (it’s called revcomp.pl).

This is all we want to cover about getting information from your users for now,
but later (in Chapter 6) we will detail how you can go about improving the pro-
cess of getting command line input from your users and also displaying instruc-
tions of how your program works.

If a program needs large amounts of input, such as whole protein sequences, or
a long list of gene IDs, expecting the user to enter the data by hand is not really
feasible, and we would look to load the data from a file or database instead. This
is discussed later (in Sections 3.6 and 3.9 respectively). Where user input remains
essential, we may spare our users the discomfort of the command line by building
a web-based front end through which users can interact with our programs—this
is explained in some detail in Chapter 5. First, we shall look at some good bits of
advice to consider as our programs begin to get slightly bigger and more complex.

3.2 basic perl syntax and logic   101

3.2.6  Some good coding practice

We have shown thus far the basics of Perl programming, and we hope you will
agree that it is really not too difficult to get along with. However, as Perl is a
straightforward language that allows you many different ways to do things, mis-
takes can easily be made. We would therefore like to take a little time to intro-
duce a few recommendations, based on our experience, which will help you
avoid common pitfalls as you develop increasingly complex programs.

Use strict
There are several built-in modes (more correctly called pragmas) within Perl that
assist you in making sure that your code is as clean as it can be. By clean, we mean
that it is likely to be free of simple errors. Switching on these pragmas can result
in Perl throwing up more error messages which, although somewhat off-putting,
are of great value as they alert you to potential problems with your code. The first
pragma we recommend is called strict. In order to use strict, we have to add
the following to the top of our Perl programs (just under the shebang line):

use strict;

So what does strict do? Basically, strict forces you to code your Perl pro-
grams better as it checks for unsafe constructs and enforces variable names-
pacing (also known as the scope of a variable). So what is unsafe construct and
namespacing?

Up until now, whenever we declared a variable we have been declaring global
variables. This means that when we have subroutines (reusable pieces of code,
sometimes called functions—we cover these in Section 3.4) in our scripts; if they
contain a string, array, or hash that matches the name of one of your variables,
they will overwrite your original variables without warning. This is why we use
strict; with the strict pragma in use in our program the global variable
would not be replaced by another variable of the same name, instead it would
be temporarily put to one side whilst a private variable would be used within
the function. Once the function has completed, your global variable would once
again be available, unchanged from its previous state. We shall go into more de-
tail about this when we look at subroutines later.

In order to be able to get away from using global variables (and for our pro-
grams to work whilst the strict pragma is in use), we need to use the my op-
erator when we define our variables. The use of my declares a variable as a local
variable (private) and is enough to satisfy the needs of the strict pragma. Some
examples of this are shown below.

my $dna_string = 'ACTG';
my @asn_codons = qw(AAU AAC);
my %genetic_code = (
 'AAU' => 'Asn',
 'GCU' => 'Ala',
 'GAU' => 'Asp'
);

102   3 beginning programming in perl

We shall be using this form of variable declaration as well as the strict
pragma throughout the rest of this chapter. We would recommend that you
never write another Perl program without using strict.

Warnings and diagnostics
Two other pragmas that are commonly used to assist you in writing your code are
warnings and diagnostics. They can be included in your program in the same
way as strict, by adding the following lines to the top of your code:

use warnings;
use diagnostics;

These two pragmas aid in the writing of problem free code and debugging
code that is not behaving as you intended. The warnings pragma specifically
gives you a text warning while your code is running at the command line when-
ever it finds something that is potentially wrong with your code. On the other
hand, diagnostics only does something when your program goes wrong—it
adds additional explanation to Perl’s standard error messages and even suggests
possible fixes to your code when an error occurs. Most of the time, people only
tend to use the strict and warnings pragmas, but if you are having problems
debugging a particularly difficult bit of code, diagnostics can be invaluable in
pointing you in the right direction.

Variable naming and commenting
Our last tip is really just a piece of advice for the way in which to program.
Basically, as with naming elements of a database, when naming your variables
and programs, use common sense and give them names that relate to their func-
tion. This will aid you in the long run by allowing you to walk away from a
program for quite some time, and the next time you come to it you will not have
to figure out what test_script1.pl does or what information is contained in
$string1. Here is a quick list of recommendations.

◆	 When you name your program, name it according to its function. For example,
if it’s a program for parsing BLAST results, call it parse_blast_results.pl
or something similar.

◆	 When you name variables, name them sensibly—$a or $string1 means noth-
ing when you have forgotten exactly how your program worked. For example,
if you have a string that is to contain a DNA sequence, call it $dna, or some-
thing more specific if possible.

◆	 This will make more sense after reading the next section, but is more appropri-
ately mentioned here. When naming and using references, the following tips
can make your code a lot more readable.

■	 Always name your reference $something_ref—the important part here is
the _ref at the end, this immediately lets you know that this is a referenced
variable and not just another scalar.

■	 If you have a reference to an array or hash, precede the variable name with
either an a_ for an array reference or a h_ for a hash. If you have more

3.3 references   103

complex data structures, such as a reference to an array of hashes, use a com-
bination of the two— ah_ would indicate an array of hashes, whereas hh_
would indicate a hash of hashes. Using this naming scheme can help you
keep track of what is going on in the complicated soup of variables that you
may find in a large and complex Perl program.

Following these guidelines—using the strict, warnings, and diagnostics
pragmas and applying some common sense when it comes to naming things—
can greatly help you in writing your code, and make it understandable to other
people, or even yourself when you have been away from your program for a
while. Finally, it is always good practice to insert copious comments in your pro-
grams as you write them—it may slow you down slightly but could save hours
later when you need to return to the code to unravel how it works.

3.2.7  Summary

That brings us to the end of our coverage of the basics of syntax and logic for Perl.
Since this has been a pretty big section, let’s quickly recap the main points:

◆	 The basics of putting together a Perl program. Remember to use the appro-
priate shebang so the operating system can find the Perl interpreter, and save
your scripts with a .pl file extension.

◆	 There are three different types of data structures/variables available in Perl:

■	 The scalar (a number or string).

■	 The array (a number indexed list of scalars).

■	 The hash (an unordered list of scalars arranged in key/value pairs).

◆	 Control structures, like loops including for, foreach, and while, and condi-
tional tests using if, elsif, and else, combined with logic operators are the
building blocks for programs that can automate tasks, respond to user input,
and perform many other useful functions.

◆	 The user can provide input to Perl programs interactively, or via command-line
parameters.

◆	 Finally we provided some basic advice to keep in mind when writing your Perl
programs to try and keep things as understandable as possible.

If you understand these concepts, you can start writing original programs in
Perl right away. Indeed, most of these concepts are common across all major pro-
gramming languages, so if you decide to move on to another scripting language,
like Ruby, Python, or even Java or C++, you will find you have a head start. In
the remainder of this chapter, we focus on some more advanced topics, most of
which are specific to Perl, and all of which are useful in bioinformatics.

3.3  References

A reference is a pointer to a variable, it is not actually a variable itself— it just
points to a variable that already exists. If you’re from a Linux background, think
of references as Perl’s equivalent of symbolic links. If you’re from the Windows
world, think of them as a shortcut—both of these appear to the file system as a

104   3 beginning programming in perl

normal file, but instead they just point to another file—Perl references act in the
same way. They therefore appear to your code as scalar variables, although they
are merely pointing to another variable.

As we have seen, scalars, arrays, and hashes are great for storing the data
within simple Perl programs, so why do we need references? Essentially, refer-
ences are used to extend the existing data structures—to make more complex
arrangements possible that are not permitted with the standard variables. Such
situations occur frequently in bioinformatics, hence the importance of learning
this skill. The best way to understand this is with a few good examples.

3.3.1  Multidimensional arrays

For our first example, what if we wanted to store information that would be best
arranged in a two-dimensional array (e.g. a set of experimental results, like you
would normally record in a tabular form)? Maybe we could try this:

my @array1 = qw(24 48 56 12);
my @array2 = qw(25 48 55 12);
my @array3 = qw(23 49 54 11);
my @array4 = qw(24 48 55 12);

my @twodarray = (@array1, @array2, @array3, @array4);

If you put the above code into a program and try running it, it appears to
work; no errors are given and our array is populated. However, all is not quite
as well as it seems. If you check this array using the debugging technique in
Section 3.3.3 (Data::Dumper), you would find that we have not actually pro-
duced a two-dimensional array, just one long list (single-dimension) array made
up of the elements of each of the arrays we placed into it. This is not what we
intended and will not be useful to us. To get round this problem we need to use
references:

my @array1 = qw(24 48 56 12);
my @array2 = qw(25 48 55 12);
my @array3 = qw(23 49 54 11);
my @array4 = qw(24 48 55 12);

This is how we create a reference to a variable – by using
the '\' character. You must remember that
references appear as scalar variables though.
my $a_array1_ref = \@array1;
my $a_array2_ref = \@array2;
my $a_array3_ref = \@array3;
my $a_array4_ref = \@array4;

my @twodarray = �($a_array1_ref,$a_array2_ref,$a_array3_
ref,$a_array4_ref);

3.3 references   105

The above code gives the desired result, thanks to the use of references to the
arrays that contain our data. To the @twodarray variable these appear as scalars
and are therefore permitted to create the array. This is quite a bit of extra code to
write at the moment (as we have to first declare our array, then our reference),
and might put some of the more lazy programmers off the idea of references.
Thankfully, as with all things in Perl, there is more than one way to do it, so
below are a couple of other ways we could have done the same. The way in which
you use references is up to you—basically choose the method that makes the
most sense to you.

my @array1 = qw(24 48 56 12);
my @array2 = qw(25 48 55 12);
my @array3 = qw(23 49 54 11);
my @array4 = qw(24 48 55 12);

my @twodarray = (\@array1, \@array2, \@array3, \@array4);

In the above example, we reference the arrays containing our data within the
declaration of the @twodarray, this removes the extra effort of declaring our
references explicitly and should make the code slightly easier to read. You can,
however, take this even further.

my @twodarray = (
 ["24", "48", "56", "12"],
 ["25", "48", "55", "12"],
 ["23", "49", "54", "11"],
 ["24", "48", "55", "12"]
);

In the above we have taken our example to the most extreme and compact
form possible, (without making the @twodarray a reference itself). In this in-
stance we do not even create our arrays beforehand and reference them—they
are created in situ as anonymous arrays. Because these arrays don’t have names,
it is impossible to access them elsewhere in the program, but this is fine if we
have no intention of accessing them individually. The square brackets surround-
ing the values tell Perl that we are creating a reference to an array.

Once we have a two-dimensional array like this, we need to access the data
contained within the structure. To do this we must remember that we are using
referenced data (it’s not the actual variable, but just a pointer to it), so to gain
access to the data that we have referenced, we must first de-reference it. This can
be achieved as follows:

�We have already created our @twodarray (using one of the
methods above), so no need to show this again...

Here we extract some single values

106   3 beginning programming in perl

print "Patient1, var2: " . $twodarray [0]->[1]; # �This will
 # print '48'
print "\n";
print "Patient4, var3: " . $twodarray [3]->[2]; # �This will
 # print '55'
print "\n";

Or we could just extract and dereference a whole array...

foreach (@twodarray) {
 # This is how we de-reference a whole array
 my @patient_data = @{$_};
 foreach my $var (@patient_data) {
 print $var . ' ';
 }
 print "\n";
}

In the above code we show how we can access the data within the multidi-
mensional array that we created before (in any of the three examples—they
all create the same final data structure), this is done by the process of de-
referencing our data structure. The easiest way of explaining how this works
is this:

◆	 In a normal array, we access each (scalar) element of the array by using the
index value of the element we want to retrieve—for example $array[1] gives
us the second element in an array.

◆	 In a referenced array we access data in the same way (using the index value),
and then de-reference the scalar value by either using arrow symbols (->), or by
using a double dollar symbol ($$). For example:

$array_ref->[1] returns the second element from an array reference.
$$array_ref[1] does the same.

The other method of de-referencing that we show above is where we de-
reference a whole array at once, this is achieved by surrounding the array refer-
ence with @{ }. Finally, here is a brief example of how we would go about creating
and accessing our data if we wanted to store all of the data within a reference (a
reference to an array of arrays).

Create our initial data structure as a reference...

my $aa_2d_array_ref = [

 ["24", "48", "56", "12"],

 ["25", "48", "55", "12"],

 ["23", "49", "54", "11"],

 ["24", "48", "55", "12"]

];

And to access the data within...

3.3 references   107

print "Patient1, var2: " . $aa_2d_array_ref->[0]->[1] . "\n"; # '48'

print "Patient4, var3: " . $aa_2d_array_ref->[3]->[2] . "\n"; # '55'

Or... (note the double '$$' to de-reference our data)

print "Patient1, var2: " . $$aa_2d_array_ref[0][1] . "\n"; # '48'

print "Patient4, var3: " . $$aa_2d_array_ref[3][2] . "\n"; # '55'

Or access the whole structure...

foreach my $a_patient_ref (@{$aa_2d_array_ref}) {

 foreach my $measurement (@{$a_patient_ref}) {
 print $measurement . ' ';
 }
 print "\n";
}

3.3.2  Multidimensional hashes

We have looked at multidimensional arrays in our previous example, now, what
if the data that you want to handle is slightly more complicated, such that it
would be more ideally handled within a hash or even tree-type structure?

First, let’s have a look at how you could create a hash containing arrays (as ref-
erences) for the value part of each key/value pair. This uses the same techniques
as in our previous example.

my %exp_results = (

 'patient1' => ["24", "48", "56", "12"],

 'patient2' => ["25", "48", "55", "12"],

 'patient3' => ["23", "49", "54", "11"],

 'patient4' => ["24", "48", "55", "12"]

);

Now to retrieve some data...

print "Patient1, var1: " . $exp_results{patient1}->[0] . "\n";

print "Patient4, var3: " . $exp_results{patient4}->[2] . "\n";

The following code shows how to create the initial hash as a reference too:

my $ha_exp_results_ref = {

 'patient1' => ["24", "48", "56", "12"],

 'patient2' => ["25", "48", "55", "12"],

 'patient3' => ["23", "49", "54", "11"],

 'patient4' => ["24", "48", "55", "12"]

};

Now to retrieve some data... (using '->' to de-reference)

print "Patient1, var1: " . $ha_exp_results_ref->{patient1}->[0] . "\n";

print "Patient4, var3: " . $ha_exp_results_ref->{patient4}->[2] . "\n";

Or... (note the use of the '$$' again)

108   3 beginning programming in perl

print "Patient1, var1: " . $$ha_exp_results_ref{patient1}[0] . "\n";

print "Patient4, var3: " . $$ha_exp_results_ref{patient4}[2] . "\n";

Or access the whole hash...

Just like 'normal' hashes, the keys function gives us the

keys for a referenced hash – we just need to de-reference it first

foreach my $patient (keys %{$ha_exp_results_ref}) {

 print $patient . "\n" . "\t";

 # Now we can access all of the measurements in the inner array

 # reference by de-referencing it...

 foreach my $measurement (@{$ha_exp_results_ref->{$patient}}) {

 print $measurement . ' ';

 }

 print "\n";

}

As before, we created a reference to an anonymous array by creating our
initial array reference using square brackets, and we have also shown above
that it’s possible to directly create a reference to an anonymous hash by
simply using curly braces. So, the rule for creating references to anonymous
data structures is: square braces for an array reference; curly braces for a hash
reference.

Having seen that we can put arrays within hashes through the use of refer-
ences, let’s have a quick look at an example of how we would embed numerous
hashes inside another hash (again using references). This is one of the most com-
plicated examples in this chapter, so it’s worth taking time to understand it.

my $hh_exp_results_ref = {

 'patient1' => {

 'var1' => 24,

 'var2' => 48,

 'var3' => 56,

 'var4' => 12

 },

 'patient2' => {

 'var1' => 25,

 'var2' => 48,

 'var3' => 55,

 'var4' => 12

 },

 'patient3' => {

 'var1' => 23,

3.3 references   109

 'var2' => 49,

 'var3' => 54,

 'var4' => 11

 },

 'patient4' => {

 'var1' => 24,

 'var2' => 48,

 'var3' => 55,

 'var4' => 12

 }

};

Now to retrieve some data...

print "Patient1, var1: " . $hh_exp_results_ref->{patient1}->{var1} . "\n";

print "Patient4, var3: " . $hh_exp_results_ref->{patient4}->{var3} . "\n";

Or access the whole hash...

Just like 'normal' hashes, the keys function gives us the

keys for a referenced hash – we just need to de-reference it first

foreach my $patient (keys %{$hh_exp_results_ref}) {

 print $patient . ":\n";

 # Now we can access all of the keys to the measurements in

 # the inner hash reference by de-referencing it...

 foreach my $measurement (keys %{$hh_exp_results_ref->{$patient}}) {

 print "\t" . $measurement . ": ";

 print $hh_exp_results_ref->{$patient}->{$measurement} . "\n";

 }

 print "\n";

}

The above code looks pretty scary at first, but all we have done is to put to-
gether each of the things that we have done previously. We first create a hash
reference (using curly braces), and then the values in the key/value pairs for this
reference are more hash references—this gives us a tree-like data structure that
could be quite useful when building real bioinformatics solutions. Below this, we
just de-reference the outer hash so that we can access the keys of the hash, and
then do the same for each of the inner hash references.

The only data structure we have not shown an example of within this section
is referenced hashes embedded within an array. Here is a quick example that
should not really need any explanation, but shows a way we could handle related
data from multiple experiments.

110   3 beginning programming in perl

my $ah_exp_results_ref = [
 {
 'patient1' => ["24", "48", "56", "12"],
 'patient2' => ["25", "48", "55", "12"],
 'patient3' => ["23", "49", "54", "11"],
 'patient4' => ["24", "48", "55", "12"]
 },
 {
 'patient1' => ["22", "46", "54", "10"],
 'patient2' => ["24", "47", "54", "11"],
 'patient3' => ["25", "51", "56", "13"],
 'patient4' => ["24", "48", "55", "12"]
 }
];

This covers all of the data structures possible with Perl—obviously you are not lim-
ited to only one level of nesting within hashes and arrays, we just chose not to show
more complex examples here. However, the syntax is exactly the same—you just have
to remember that you have more than two levels when it comes to de-referencing.

3.3.3  Viewing data structures with Data::Dumper

One of the final things that we would like to touch on, with respect to references
and complex data structures in Perl, is how to figure out what is in the data
structures without going through complex de-referencing and lots of code. This
can be a common task if you inherit poorly documented code from other people,
or if you are just not sure how things are working. Thankfully Perl has a built-in
module that can greatly aid in this event: Data::Dumper.
Data::Dumper, in its most straightforward use, simply allows you to print an

entire data structure to the console including its structure and contents, thereby
giving you vital clues as to how you can go about manipulating and using your
data structure. Here is an example of Data::Dumper in use:

First we create a data structure...
my $hh_exp_results_ref = {
 'patient1' => {
 'var1' => 24,
 'var2' => 48,
 'var3' => 56,
 'var4' => 12
 },
 'patient2' => {
 'var1' => 25,
 'var2' => 48,
 'var3' => 55,
 'var4' => 12
 },

3.3 references   111

 'patient3' => {
 'var1' => 23,
 'var2' => 49,
 'var3' => 54,
 'var4' => 11
 },
 'patient4' => {
 'var1' => 24,
 'var2' => 48,
 'var3' => 55,
 'var4' => 12
 }
};
Now have a look at it...

use Data::Dumper; # Load the module
print Dumper($hh_exp_results_ref);# �Print the structure using

Dumper()

This will produce the following output:

$VAR1 = {
 'patient1' => {
 'var3' => 56,
 'var1' => 24,
 'var4' => 12,
 'var2' => 48
 },
 'patient4' => {
 'var3' => 55,
 'var1' => 24,
 'var4' => 12,
 'var2' => 48
 },
 'patient3' => {
 'var3' => 54,
 'var1' => 23,
 'var4' => 11,
 'var2' => 49
 },
 'patient2' => {
 'var3' => 55,
 'var1' => 25,
 'var4' => 12,
 'var2' => 48
 }
 };

112   3 beginning programming in perl

The above output clearly shows the structure of our data—we can see that it
is a hash reference containing other hash references, as denoted by the curly
braces. This technique can be applied to any data structure in Perl and is a very
useful debugging tool to have around.

3.4  Subroutines and modules

Subroutines are pieces of re-usable code that are often called things like meth-
ods or functions in other programming languages. The typical use for a sub-
routine is when you have to repeat an operation several times in a program
(e.g. to perform the same operation on a series of arrays or hashes). On such
occasions you could copy and paste the same section of code several times,
with the only difference being the variable names. However, not only does
this lead to long programs, it also means that if you want to expand or modify
the code you have to edit all of the copied sections. A much better solution is
to write just one block of code—a subroutine—and call it each time you need
to perform that operation. Let’s consider the most basic syntax for defining a
subroutine:

The line below indicates the start of a subroutine...
sub subroutine_name {
 (input_variables) = @_; # Optional

 content_of_the_subroutine

 return subroutine_output # Optional
}

Basically, there are four parts that make up a subroutine:

◆	 First is the name of the subroutine—this is the name you are going to use in the
body of your program to call your subroutine.

◆	 Second is the list of input variables that you have passed into your subroutine—
this can be any Perl variable or data structure, and there may be any number of
them. In fact, some subroutines do not need input variables at all—you could
just write a subroutine to return a defined output (e.g. displaying instructions
on how to use a program is a common application of this feature).

◆	 Third is the content of the subroutine—this is the main body of code that per-
forms the function of the subroutine.

◆	 Finally we have the subroutine output—this is what gets passed back to the
main body of your program on completion of the subroutine. Like the input
variables, this part of a subroutine is optional, for example, the output from a
subroutine could be information printed to the console, and therefore the
returning of variables is not required.

As ever, we can better understand subroutines by studying an example:

3.4 subroutines and modules   113

#! /usr/bin/env perl

use strict;
use warnings;

my $dna = 'ACTGAAA';
print "My DNA string is " . $dna . "\n";

Call on our subroutine...
print "The reverse complement is " . revcom($dna) . "\n";

A subroutine to reverse complement DNA
sub revcom {
 # Get the DNA to be worked on...
 my ($dna) = @_;

 # First we reverse the DNA
 $dna = reverse $dna;

 # Now translate the DNA bases
 $dna =~ tr/ACGTacgt/TGCAtgca/;

 # Return the output
 return $dna;
}

The above code forms a complete program that will give us the reverse com-
plement of a DNA string—something that we have done earlier (a couple of
times now)! The main difference in this instance is that producing the reverse
complement is done entirely within a subroutine, and all you need to do to use
it in your Perl program is to call it. This makes our code very portable—not only
can it be called multiple times from within our program but, if we ever need
the ability to calculate the reverse complement DNA of a sequence in another
program, we can simply copy the subroutine into the new program and use it
with no additional work. Better still, if it is something we do really regularly, we
could save it in a Perl module containing some of our most used subroutines so
that we can call them as they are needed without physically pasting them into
our programs. We will explain how to produce such modules shortly, but first
let’s look in more detail at the above code as there are some things that need
explaining.

First, note the position of the subroutine within the program—we have placed
it at the very bottom of the code. This is the normal position for subroutines and
is where we would suggest that you place your subroutines. Although the subrou-
tines are at the bottom of your code, they will not be executed at the end of your
program as the interpreter works its way through the lines of code—they are
separate ‘subprograms’ that are not run unless they are called within the body of

114   3 beginning programming in perl

the main program, so it is safe to place them at the bottom of your code and call
them as and when they are needed.

Second, note the variable declaration within the subroutine. Because we can
send more than one input variable to a subroutine, the variables are passed in
the form of an array (denoted by the @_symbol). This is why the $dna variable is
surrounded by round brackets, to acknowledge that it is an element of the array.
If we had more than one input variable, we would simply have more than one
variable declared within the brackets.

Third, as we are using the strict pragma, we are able to have two variables
called $dna (we declare one in the main body of the program and the other
within the subroutine). These two variables are completely separate entities as
they were declared within different namespaces, as described when we first
introduced strict—the first $dna variable is only usable within the main body
of the program, and the second $dna variable is only available and usable within
the body of the subroutine in which it was declared. If we were not using the
strict pragma (and using my to declare our variables) we would now be getting
into problems as our two separate variables would not be separate, they would
be the same variable and would be overwriting each other without any warning.
This concept is further explained in Fig. 3.3.

Before we move on to looking at Perl modules, let’s consider another example
of the use of a subroutine.

#! /usr/bin/env perl

use strict;
use warnings;

Declare some variables
my @array1 = qw(AA BB CC DD EE);
my @array2 = qw(11 22 33 44 55);

Now print the contents of the arrays
print_array(\@array1);
print_array(\@array2);

The subroutine we use to print the arrays
sub print_array {
 my ($array_ref) = @_;

 foreach (@{$array_ref}) {
 print $_ . "\n";
 }
}

The above demonstrates a short example of the use of a simple subroutine to
make the boring task of looping through and printing an array a simple call to

3.4 subroutines and modules   115

the subroutine. We also show the use of references in this example. We could
have passed the entire array(s) to the subroutine and this would work, however,
as we stated before (when first looking at references), if our arrays are very large,
this method will perform much faster and use less memory on your computer
as it does not have to copy a large array into the subroutine because it utilizes
a reference to the original array. Such subtleties of coding may seem trivial, but
ultimately these efficiencies can make the difference between a problem being
solved or being totally intractable, particularly in bioinformatics where data sets
can be massive.

3.4.1  Making a Perl module

Finally, we shall look at putting the above subroutines together into a Perl
module. To put it simply, a Perl module is a text file that contains a collection of
subroutines and has the file extension '.pm'—this can then be called from an-
other Perl program allowing use of the contained subroutines as if they were in
that program. Here is an example of the code for a Perl module that contains the
two subroutines that we have just looked at.

This file will be called 'MySubs.pm' and is
saved in the same directory as our other Perl programs.

sub revcom {
 # Get the DNA to be worked on...
 my ($dna) = @_;

#! /usr/bin/perl

use strict;
use warnings;

my $dna = ‘ACTGAAA’;

sub revcom {
Get the DNA to be worked on...
my ($dna) = @_;

...

return $dna;

$dna
(main script)

$dna
(subroutine)

...

Fig. 3.3  A visual representation of a subroutine, and the concept of namespaces. When
Perl’s strict pragma is in use, any variable defined within a code block such as a
subroutine will be a private variable – only available within that code block. Conversely,
variables declared outside of any code block/subroutine will be available throughout the
whole program, and indeed the subroutines if they are not overridden by private variables.

116   3 beginning programming in perl

 # First we reverse the DNA
 my $revcom = reverse $dna;

 # Now translate the DNA bases
 $revcom =~ tr/ACGTacgt/TGCAtgca/;

 # Return the output
 return $revcom;
}

sub print_array {
 my ($array_ref) = @_;

 foreach (@{$array_ref}) {
 print $_ . "\n";
 }
}

Note: this line below is needed for the
Perl module to work, and you MUST ALWAYS end
your Perl modules this way.

1;

That is our Perl module written, now here is an example of how we can use
these subroutines in another Perl program (note, for simplicity, in this example
the Perl program must be in the same directory as our Perl module for this to
work).

#! /usr/bin/env perl

use strict;
use warnings;

This is how we call our Perl module
use MySubs;

my $dna = 'ACTGAAA';
print "My DNA string is " . $dna . "\n";

Call on our subroutine...
my $revcom_dna = revcom($dna);
print "The reverse complement is " . $revcom_dna . "\n";

All you have to add to your program is the line use name_of_module and Perl
takes care of making the subroutines in that module available to your program.

3.5 regular expressions   117

From then on you just have to call your methods as if they were at the bottom
of your program. This is a great way of re-using code for repetitive and common
tasks. Best of all, there are thousands of Perl modules freely available via the web,
many of which contain functions relevant to bioinformatics. Provided you can find
a module that does what you want (we give you some pointers in Section 3.10),
you can just call subroutines from it as if they were part of your own program.

This is all there is to cover about subroutines and Perl modules, the only other
piece of advice that we can offer is that if you have to type the same piece of code
more than once within the same program, you really should consider moving
that bit of code into a subroutine. Like a lot of programming practice, it may take
longer in the short term but could pay dividends later on.

3.5  Regular expressions

We are now going to look at one of the biggest selling points of Perl—the ease
with which we can use regular expressions. A regular expression can be defined
as a string that is used to describe or match a set of strings—it is a tool that can
be used to look for specific pieces of text or patterns in strings. The use of regular
expressions in Perl is very straightforward, and is one of the reasons that Perl has
become the default language for bioinformaticians—as the majority of bioinfor-
matics tasks involve some form of text manipulation.

So, how do we get started with regular expressions? Well, we already started
back in Section 3.2.1 of this chapter, when creating the reverse complement of
a DNA string using the substitution and transliteration operators. The examples
so far have been very simple, just looking for and replacing single characters,
but regular expressions can be far more powerful than this. Covering everything
there is to know about regular expressions is just not possible here, the topic is
almost like a programming language of its own and there are whole books dedi-
cated to this subject (e.g. Stubblebine, 2007). What we aim to provide here is an
introduction to the concepts of regular expressions and some of their more com-
mon uses in bioinformatics.

3.5.1  Defining regular expressions

The best way to get started with regular expressions is to use them in conditional
statements—to be more precise, an if statement. This allows us to easily tell
whether our regular expressions work or not, as when a regular expression gets
a match, it returns true, if it does not get a match, it returns false—there is no
middle ground here. Consider the example below.

#! /usr/bin/env perl

use strict;
use warnings;

my $dna = 'ACTGCCGTAAACCCTG';

118   3 beginning programming in perl

if ($dna =~ /CCG/) {
 print "CCG present in sequence.\n";
} else {
 print "No match found.\n";
}

The above example uses a regular expression to test for a pattern of three let-
ters within a string. First we declared our string $dna, from here we set up our
conditional with the test case $dna =~ /CCG/—a basic use of a regular expression
that needs a little more explanation:

◆	 The first thing to note is the use of the binding operator =~ that makes our
regular expression act on (bind to) whatever variable is to the left of it—in our
case $dna. It is important to remember this binding operator, as without it the
regular expressions will not work as intended.

◆	 The second part is the test for the regular expression itself—this is the string
housed between two forward-slash characters (/)—in our example we are look-
ing for the three base sequence ‘CCG’ within our DNA string.

Metacharacters
In Section 3.2.1 we listed special codes for use within double-quoted strings, such
as \n for newline characters and \t for tab characters. These can be used in exactly
the same way within regular expressions so that we can look for these special
characters if we need to. Indeed, there are further special codes, listed in Table 3.5,
that can be included in regular expressions to match certain types of character.

Another character that is of use within regular expressions is the dot (.) char-
acter. This acts as a wildcard character within Perl’s regular expressions, match-
ing any single character except the newline character (\n). Therefore the pat-
tern match /CC./ would return a positive match for CCG, CCA, CCT, CCC when
used on a DNA string.

However, what if we would like to search for the dot character? How can we
achieve this without it becoming a wildcard character? This is done by escaping
the wildcard action by preceding the dot character with a backslash (i.e. \.), our
regular expression will then look for the dot character. The same is true of the

Table 3.5  Codes for use in regular expressions

Character Meaning

\w Word characters. Matches any alphanumeric character
and the underscore (_) character.

\W Matches any non-word characters.

\s Matches a whitespace character, i.e. space or tab.

\S Matches a non-whitespace character.

\d Matches a digit character.

\D Matches a non-digit character.

3.5 regular expressions   119

forward-slash character—if we want to match on this we need to escape it with
a backslash character first (\/), otherwise we’ll end our regular expression early.

Repeating values
What happens if we want to match more than one wildcard character or any
other character or letter for that matter? We could just repeat the given char-
acter (or wildcard) the required number of times, but that is not very flexible as
it requires us to know the exact number of times we would expect our character
to appear. In this instance, we should use yet another special operator, the as-
terisk (*). This is a quantifier that tells the regular expression to match a character
zero or more times, and it is placed after the character upon which you wish it to
act. For example, the regular expression /CCGA*/ will match CCG, CCGA, CCGAA,
CCGAAA, and so on. You can also use the asterisk symbol in conjunction with the
wildcard operator or any other special character, so.* is often used to ignore un-
interesting pieces of string before or after the patterns that you are looking for.

A related quantifier is the plus symbol (+)—this tells the regular expression
that you would like to match a given character one or more times and is used in
exactly the same way as the asterisk character.

Grouping patterns
It is possible to group patterns together within Perl’s regular expressions by en-
closing them in brackets. This allows us to look for more intricate patterns, for
example, /CCG+/ would look for CCGGGGG or any other number of trailing Gs,
however this might not be the most useful pattern for us. On the other hand,
/(CCG)+/ would look for CCGCCGCCG or any number of repetitions of the CCG
triplet—most useful if our aim is to seek out CCG repeats.

What happens if we use the asterisk instead? This is something to watch out for,
as it is a common mistake. The problem is that an expression such as /(CCG)*/
would match anything, not just repetitions of CCG, due to the use of the ‘zero or
more’ asterisk character.

Using OR in regular expressions
The logical operator or in the form of the vertical bar (|) character can also be used
within regular expressions when you want to look for alternatives within your
pattern matching. Here are some examples of its use:

◆	 /CCG|GGC/ would match either CCG or GGC.

◆	 /CC(G|C)/ would match CCG or CCC.

◆	 /CC(G+|C+)/ would match CCGGGGGG or CCCCCCCCCC or any variation on the
number of repeated Gs or Cs following the initial CC.

3.5.2  More advanced regular expressions

Using the concepts and characters introduced in the previous section, it is easy to
produce a mind-bogglingly large number of fairly complex regular expressions,
but Perl allows us to go further still.

120   3 beginning programming in perl

Character classes
Character classes are a list of possible characters for use in our pattern match sur-
rounded with square brackets ([ ]) that would return true if any character within
the brackets was found.

For example, a character class [ACTG] would match any of the four nucleic
acids. You can also specify ranges within character classes, so [0-9] would match
the digits zero to nine, [A-Z] would match any upper case letter of the alphabet.
You could use [a-zA-Z] to match both upper and lower case.

Character classes would not typically be used as a regular expression on their
own, but would be used as part of a larger regular expression. For example, the
program below checks a string to see if it looks like an Ensembl gene ID (i.e. is it
a number preceded by the letters ENSG?).

#! /usr/bin/env perl

use strict;
use warnings;

my $gene_id = 'ENSG000041';

if ($gene_id =~ /ENSG[0-9]+/) {
 print "Our string is an Ensembl Gene ID.\n";
}

More quantifiers
We have already seen that the quantifiers * and + match ‘zero or more’, or ‘one
or more’ times respectively. It’s possible to be more specific with the number of
repeated characters, or sequences of characters if you are using grouping. This is
achieved through the use of curly braces ({}) and a pair of numbers within these
braces defining how many repetitions we will accept. Here are a few examples:

◆	 / \w{1,}/ would match one or more ‘word’ characters.

◆	 / \w{1,10}/ would match anything between one or ten ‘word’ characters.

◆	 /(CCG){3,}/ would match three or more repetitions of the triplet CCG—for
example CCGCCGCCG, CCGCCGCCGCCG, etc.

Anchors
Anchors are special characters that allow us to tie our pattern match to certain
sections of the test string. The two anchors that we shall discuss here are ^ and
$—when used in regular expressions these tie a pattern match to either the start
(^) or the end ($) of the test string. For example:

#! /usr/bin/env perl

use strict;
use warnings;

3.5 regular expressions   121

my $id = ' ENSG000041';
if ($id =~ /^ENSG[0-9]+/) {
 print "Our string is an Ensembl Gene ID.\n";
}

The above test would return false as there is a whitespace character in the first
position of our test string. Here is another example:

#! /usr/bin/env perl

use strict;
use warnings;

my $id = 'ENSG000041_A';

if ($id =~ /^ENSG[0-9]+$/) {
 print "Our string is an Ensembl Gene ID.\n";
}

This test would also return false as we have now tied the numbers at the end
of our pattern match to the end of the string—at the end of our string we have a
letter (A).

Although both of these examples result in a failure of our regular expression
tests, they do show how the two anchors can increase the specificity of regular
expressions.

3.5.3  Regular expressions in practice

Now that we have covered the basic syntax of regular expressions, in this final
section we can cover some extra pieces of information that are useful in their
practical use.

The pattern-match operator
So far we have been placing our regular expressions inside two forward-slash
characters—this is actually a built-in shortcut for the m// pattern-match oper-
ator. The reason we mention this is not just for completeness, it is useful for
cleaning up your regular expressions. Take, for example, a regular expression
that tries to identify a URL:

/http:\/\/www.*/

This is a pretty straightforward example, but demonstrates how messy some-
thing like this can become when you need lots of backslash characters to stop
the regular expression ending prematurely. One of the benefits of using the m
operator is that you do not necessarily have to use the forward-slash characters to
delimit your regular expressions—in fact, you can use any set of delimiters. For

122   3 beginning programming in perl

example, you could use m( ), m{ }, m[ ], m< >, m! !, m% %, and so on—thus making
your original regular expression much easier to read:

m(http://www.*)

The basic rule is to choose a set of delimiters that make your regular expression
as easy to understand as possible.

Modifiers
As described in Section 3.2.1 when looking at string substitution, regular
expressions allow the use of various modifiers to change the way in which they
operate (the substitution operator is one form of regular expression). These
come after the closing / character (or whatever character you may be using to
delimit your expression), and are single lower case letters. Two important modi-
fiers are i and s.

◆	 i, as described earlier with the substitution operator, makes the pattern-match
case insensitive.

◆	 s modifies the action of the wildcard dot (.) character. Normally the wildcard
character matches anything but the newline ( \n) character. With the s modi-
fier, the dot character will also match the newline character.

As in the substitution example, all you need to do is place the modifier(s)
required after the closing forward-slash of the regular expression and they will
modify the regular expression accordingly.

Match variables
Quite often when using regular expressions, it is useful to find out the exact snip-
pet of string that is causing the match to occur; this is useful if you are trying to
retrieve something from a string—it can also aid in debugging a rather compli-
cated regular expression.

By default there are three automatic match variables with Perl’s regular expres-
sions. When used these return the section of string before the match, the match
itself, and then the section of string after the match—these can be accessed using
the following special variables: $`, $&, and $' (before, match, and after, respect-
ively). Here is an example of their use:

#! /usr/bin/env perl

use strict;
use warnings;

my $string = 'The Human Gene ID is ENSG000041 revision 1';

if ($string =~ /ENSG[0-9]+/) {
 print "The gene ID is: '" . $& . "'\n";
 print "The text found before was: '" . $` . "'\n";
 print "The text found after was: '" . $' . "'\n";
}

3.6 file handling and directory operations   123

In addition to these automatic match variables, it is also possible to define your
own match variables to return specific portions of your pattern matches. To do
this we make use of pattern grouping, using brackets, as described earlier, to en-
case the section of the regular expression that you would like to access. To access
these values after the regular expression has been matched, we use the special Perl
variables $1, $2, $3, and so on, where the number refers to the bracket grouping
when counting from the left. The best way to understand this is by example:

#! /usr/bin/env perl

use strict;
use warnings;

my $string = 'The Human Gene ID is ENSG000041 revision 1';

if ($string =~ /^The (.*) Gene.*(ENSG[0-9]+).*$/) {
 print "Our gene ID is: " . $2 . "\n";
 print "Our species is: " . $1 . "\n";
}

It is also worth noting here that, even when you are using self-defined match
variables (using $1 etc.), Perl’s default match variables are still available to you.

Substitutions with s///
We used the substitution operator back in Section 3.2.1 to substitute individual
characters, but we can also use this operator on more than one character at a
time. In fact, it is possible to replace large chunks of text and use any of the
regular expression syntax described above. For example:

#! /usr/bin/env perl

use strict;
use warnings;

my $string = 'ACTGCCGTGCCGCCGCCGTTGAC';

$string =~ s/CCG/---/g;

print $string . "\n";

This would return...
'ACTG---TG---------TTGAC'

3.6  File handling and directory operations

As we have just discussed, one of the most common tasks performed with Perl
is some form of text manipulation using regular expressions. However, what we

124   3 beginning programming in perl

have not discussed is where this text (e.g. DNA or protein sequence) has come
from. So far we have been typing our text strings directly into our programs,
often termed hard-coding data into programs. If we want to apply our program to
other data, we would have to alter the Perl code itself. In real applications this is
not normal practice as it is not practical to type, or cut and paste, large chunks
of DNA sequence (or whatever data you are working with) into your programs or
onto the command line. An alternative is reading in data from a local text file,
while other options would be reading in files from the Internet, or taking data
directly from a relational database. We shall look at interacting with databases
later in the chapter—for now we shall consider using text files with Perl.

3.6.1  Reading text files

First, we will consider opening and reading local files that already exist. Here is
the basic syntax for opening a file:

open(FILEHANDLE,filename);

The basic function we call for interacting with files is open, to which we pass
two arguments; the file handle and the file name. The file name is simply the name
of the file with which you wish to interact. The file handle is the name used to
interact with the file in the rest of our program. Here is a snippet of code to read
in a FASTA file containing the genomic sequence for the gene BRCA1 BRCA1.
fasta—this can be downloaded from our companion website (www.bixsolu-
tions.net/BRCA1.fasta) or you can use a FASTA file of your own if you have
one to hand. Copy the file into your current working directory and try this snip-
pet of code in a new program.

open(FILE,"BRCA1.fasta"); # Open the fasta file

my @file_text = <FILE>; # Read the entire file into an array

close FILE; # Close the file

print "@file_text \n"; # Print the contents of the file

On the first line we open the file—giving it the file handle FILE. We then read
the entire contents of the file into an array by referring to this file handle. Note
the use of an array here—if we had used a scalar variable we would only get the
first line of the file. On the next line of the code we close the file, again using
the file handle to specify the file to close. On the final line, we print the contents
of the array to the console. It is important to always use the close function as
soon as you have finished with a file, as leaving it open longer than necessary
can leave the file open to potential damage. In this example, the file handle may
seem somewhat unnecessary, but these become very important in more complex
programs where we have multiple files open simultaneously, as is the case when
we are comparing files or moving data from one file to another.

This approach is all you need to read the entire contents of a file entirely into
the computer’s memory, ready for Perl to manipulate. If you are using small files,
this works fine but with larger files, like those often found in bioinformatics,

3.6 file handling and directory operations   125

it may be impractical to load the whole file in memory at once (as some files
can be larger than the memory capacity (RAM) of your computer). Instead, you
would read them in one line at a time, as opposed to all at once, thus keeping the
memory of your computer relatively empty. Consider the following:

open(FILE, "whole_human_genome.fasta");
while (<FILE>) {
 print $_;
}
close FILE;

In the above code, the opening and closing of the file are the same as shown
previously, as is the end result of the program—it prints the contents of the file
to the console. The difference here is that instead of reading the file completely
into an array (and therefore into the computer’s memory), we keep the file open
and read it in one line at a time through the use of a while loop. The advantage
of this approach is that it allows you to extract data from files of any size without
ever exceeding the memory capacity of your computer. As we only read one line
of the file into memory at a time, perform whatever operations we would like
to perform, and then move onto the next line of the file, this method is suitable
no matter what the file size is. The most important thing to consider when using
this second approach, is that all operations that you would like to carry out on
your file must be carried out within the while loop as this is the only section
of your code where each line of your file will be available within your program
(unless you save the whole file or portions of it into a variable).

3.6.2  Writing text files

Just as Perl can read from text files, so we can create and write to text files. This is
invaluable for permanently recording the output of our Perl programs. The good
news is that there is no need to learn a new function to do this; we can write files
using the open() function that we used previously to read files. The following
code shows us how to do just that:

open(FILE,">output.txt"); # Open the file for writing

print FILE "Some example text \n"; # Put something in the file

close FILE; # Close the file

The above code will create a text file in your current directory called output.
txt, containing the text 'Some example text'. The differences in this snippet of
code that allow us to write, rather than read, a file are found within the first two
lines: the first change is that we added the > symbol in front of the file name
when opening the file. The second difference is the use of the file handle—in-
stead of using it to insert the contents of the file into an array, we use the file
handle along with the now familiar print command to print data into the file,
just as if we were printing to the command line. A word of warning when cre-
ating and writing to files in this manner: if there is already a file in your working

126   3 beginning programming in perl

directory with the same name as the file you wish to write to, Perl will overwrite
it and you will lose the contents of the original file. There are no warnings or 'are
you sure?' questions to make sure you want to overwrite a file, Perl will just go
ahead and delete the file before creating its own.

This is not the only way to write to files in Perl. There is a slightly less destruc-
tive approach known as appending data to a file. This allows you to add text
to the end of a pre-existing file. An example of the code used to achieve this is
shown below.

open(FILE,">>output.txt"); # �Open the file for
 # APPENDING text
print FILE "Yet more example text \n"; # Add something
close FILE; # Close the file again

If you create and run the above program, then look in the file output.txt,
you will find the line from the previous program as well as the new line of text:
'Yet more example text'. This was achieved by using two > symbols in front of
the file name—this instructs Perl to add the given text onto the end of an already
existing file (although, if no file exists with the specified name, Perl will create a
new one). Sometimes you might want to overwrite an existing file, if that is the
case use the first approach we showed for writing files (using a single >), other-
wise it might be good practice to use the append approach by default as you can
always delete text from a file, but you cannot retrieve a file that you have inad-
vertently overwritten.

3.6.3  Directory operations

Reading and writing files in the current directory is a great way to learn how to
handle files in our programs; however, this soon becomes limiting when we start
tackling real bioinformatics problems. Thankfully, Perl has many built-in func-
tions for navigating your computer’s directory structure.

Creating directories
A typical scenario might be that you are performing operations on a large number
of files and the end result of your program is even more files. Doing all this in one
directory is feasible, but it could make your life difficult, as you have to manually
sort out the files afterwards. Another option would be to have your Perl program
create a directory in which to store its new results. This can be achieved using the
mkdir() function:

mkdir('MyResults') # Creates a new directory called MyResults

The code above will create a new directory with the name MyResults.

Changing directories
Let’s say that we want to interact with some files, but they are not in our cur-
rent directory. You could move them into your current directory, or even move

3.7 error handling   127

the Perl program into the same directory as your files and run it from there.
Obviously this is a hassle to do manually, so instead we would use Perl’s chdir()
function to change the directory:

chdir('/home/user') # Moves us to /home/user

chdir('..') # Moves up one directory

chdir($ENV{HOME}) # �Moves into our 'home' directory (unix only)

As you can see from the code above, chdir() is quite simple to use, you just
put the name of the directory that you want to change to (either the full path
or a path relative to your current directory) in the brackets after the command.
On Linux systems you can even use the built-in environment variables (such as
$HOME) that would immediately get you the full directory path for your home
directory.

Getting the contents of a directory (globbing)
Another common task is to retrieve a list of all of the files in a given directory.
This can be achieved by using the glob function:

my @files = glob "*" # �Gets the entire contents of our
 # current
 # directory (directories included)
my @html = glob "*.html" # Only gets the HTML files
my @root = glob "/*" # �Gets the contents of the root
 # directory
my @html2 = <*.html> # Another way of using glob!

The above code shows us the basic syntax for using glob, and the two ways
we can go about using it to retrieve a list of files in a given directory. The one
thing that you must remember when using glob is that it does not differentiate
between directories and files, so you must be careful with what you try to do
with the resulting list. For example, if you tried to open a directory for editing as
if it were a text file, this would throw an error. When such errors occur, we can
handle these as explained in the next section.

3.7  Error handling

If you are new to programming, you might think that a well-written program
should never throw an error while it is running. Surely if the program code has
been carefully written, tested, and debugged then nothing untoward should ever
occur? However, most programs rely on interactions with external resources,
such as user input, data files, computer hardware, and network resources.
Because these outside factors are beyond the programmer’s control, things can
sometimes go wrong and Perl will throw an error. In this section we outline a
couple of steps you can take within your programs to watch for, catch and deal
with errors.

128   3 beginning programming in perl

The 'or die' approach
One of the simplest ways of dealing with errors in your Perl scripts is to terminate
your program in the event of an error—this is done by using the die command
that we met earlier. Here are two examples of using this approach:

chdir('/home/public') || die "Can't move to /home/public: $! \n";

open(FILE, ">newfile.txt") || die "Can't create file: $! \n";

In the above two lines of code, we use the ‘or die’ approach to error handling
twice.3 In the first line, we try to change our current directory to /home/public.
If the move to the directory works, the Perl program continues as normal; if,
however, something goes wrong (e.g. the directory does not exist or we do not
have the correct permissions to view the directory), the chdir() function will
return false because as it didn’t work and the program will exit via the die com-
mand. To make it apparent where and why the program died, it will also print
out the message specified after the die statement—the message also includes
a message from the Perl interpreter telling us why the error occurred, this is
printed using the $! shortcut variable. In the second line of code, we try to open
or create a file for writing. In the event of something going wrong (e.g. we do not
have write permissions for the file or the directory), the program exits and tells
us where it all went wrong and the specific Perl error message again.

The ‘or die’ approach to error handling is not just used in file operations; you
can use it anywhere in your program when you use a function call. This approach
to catching errors, whilst useful, is very basic, and crucially doesn’t allow your
program to keep on running. There are, however, more versatile ways of catch-
ing an error and letting your program continue to run—we shall look at these
next, but if the sole purpose of your program is to create and write files to a cer-
tain directory on your system, and if your program cannot access the directory
in the first place, the best thing it could do is exit very quickly and tell you why.

Catch and deal with errors using 'eval'
If we want our program to do more than just stop when an error occurs, we use
eval (short for evaluate). Consider the example below.

evaluate this section of code...

eval {

 open (FILE, ">myoutput.txt") || die;
 print FILE "Our output.";
}; # note the ; at the end of the eval block – this is required!

if an error occurs, do the following...

if ($@) {

 print "Ooops, an error occurred: " . $! . "\n";
}

the program carries on running from here

3	 We use the syntax || for consistency with previous examples, but the word or can be used instead.

3.8 retrieving files from the internet   129

In the above example we call the function eval on a code block that has the
potential to throw up errors (in this example, opening/creating and printing to
a file). This section of code is run, but if an error occurs, the program does not
exit as with die on its own, instead it just exits the eval block and carries on,
but it then sets the value of a special variable $@ to true to indicate that an error
occurred. We then put some fallback code after the eval block to test if an error
occurred (using $@), so if an error did occur we could do something about it—if
not we ignore the fallback code.

Notice in the above code the combination of both eval and die. This is the
most common approach to error trapping and handling in Perl. We still try to
catch all of our errors on every line possible via the use of die, but we surround
blocks of code that we would like to handle more gracefully with eval, so in the
event of an error the program does not exit, it carries on using a pre-determined
back-up plan.

We shall be using error catching for the rest of the chapter in our examples as
appropriate, and we will touch more on the uses of eval shortly whilst talking
about transaction handling with databases. We just have one final warning about
using eval. Although it allows a program to continue running, the state of vari-
ables, file handles, and so on can be unpredictable after an error has been caught
if you are not sure exactly where in the eval code block the error occurred. So,
the program should continue with caution.

3.8  Retrieving files from the Internet

So, we can read data from local files and handle any errors that may occur. In
bioinformatics the files we need are often stored remotely, somewhere on the
Internet, and we need to write programs to go off and retrieve them. One way to
do this is through the use of the built-in Perl module LWP::Simple and its func-
tion get(). This function performs a HTTP GET request (as a web browser would
do) to a given URL and returns the contents of the file that it finds at the given
URL as a string.

Before we can use LWP::Simple however, we must install it as it is not part of
the standard Perl distribution—it is part of a package called libwww-perl.

Windows users
The Windows distribution of Perl (ActiveState Perl) comes with a package
manager called the Perl Package Manager, or PPM for short. We shall discuss
this in more detail later in this chapter, but for now we just need to use
PPM to install LWP::Simple. PPM is called and used from the Windows com-
mand line. To launch the PPM interface, simply type ppm and press Enter—the
PPM graphical user interface will then appear and you can search for and in-
stall libwww-perl (the interface is simple enough to need no explanation).
Alternatively, you can use PPM entirely from the command line by issuing this
command:

ppm install libwww-perl

130   3 beginning programming in perl

Linux
libwww-perl will be found for installation in your distributions package man-
ager. Simply search for ‘libwww-perl’ and install the relevant packages and their
dependencies.

Mac OS
Mac OS users can use the cpanm tool from the command line: cpanm
LWP::Simple. This shall be described in more detail later on in Section 3.10 (as
well as some useful setup instructions), we would recommend quickly skipping
forward in the chapter before installing this, and then come back.

Now that we are setup with LWP::Simple, below is an example program
using it to copy a CSV file from www.bixsolutions.net. The file contains
a table of data, which is described in more detail in the next chapter. After
acquiring the file, the program performs various manipulations on the data,
and prints the resulting data object to the screen. Much of this should be
familiar—the only new technology is the use of LWP::Simple and get().
You can find the program itself at www.bixsolutions.net—it’s called
get_example.pl.

#! /usr/bin/env perl

use strict;
use warnings;
use LWP::Simple;
use Data::Dumper;

This is the URL of the file we wish to fetch, this could
even just be a webpage - we would then fetch the HTML code.
(for more information on HTML, see Chapter 5)

my $file_data = get('http://bixsolutions.net/profiles.csv')
 or die "Unable to fetch file! \n";

�Now to play with the data, first let's split lines up...
�NOTE: we use \r\n here to split the file line by line as
�this is a file generated on a Windows machine. If it
�was a file generated on a Linux / Unix / Mac OS
machine we would simply use \n

my @data = split("\r\n", $file_data);

Now remove and process the header line
my $header_line = shift(@data);
my @headings = split(",", $header_line);

3.8 retrieving files from the internet   131

Create an empty array to hold our sample information
my @sample_data;

Then process the samples
foreach (@data) {
 my @sample = split(",", $_);

 # Now we convert this to a hash using the
 # column headings as the keys and put it into the
 # @sample_data array as a refernce...

 my %sample_hash;

 for (my $i=0; $i<scalar(@sample); $i++) {
 $sample_hash{$headings[$i]} = $sample[$i];
 }
 push(@sample_data, \%sample_hash);
}

Now look at the resulting data structure...

print "Here is our data: \n";
print Dumper(@sample_data);

exit;

This demonstrates how easy it is to pull data off of the Internet. As stated in
some of the comments in the program, this can be used for any textual file type,
or even a web page itself. Other common uses for this technique are retrieving
things such as GenBank files or FASTA files containing sequence data needed for
analysis. The get() function can also be used for a technique called screen scrap-
ing, where a program is used to extract information directly from web pages by
downloading the HTML code that makes up the pages (see Chapter 5) and search-
ing through the code for the information of interest using regular expressions.

3.8.1 Utilizing NCBI’s eUtilities

As another example of Perl’s ability to retrieve and interpret files from the
Internet, we would like to give you a brief introduction to automated querying of
the databases available at the NCBI—this is achieved through the use of NCBI’s
Entrez Programming Utilities (also known as eUtils).

The eUtils are a web-based service that allows efficient searching of the data-
bases through programmatic means, instead of via a web browser. You commu-
nicate with eUtils by making a HTTP connection (via LWP::Simple) to a given
URL that defines our search. The information that is returned is in XML, and
is therefore easily readable by machines. There is comprehensive information

132   3 beginning programming in perl

about eUtils at NCBI (www.ncbi.nlm.nih.gov/books/NBK25500/), so in this
chapter we restrict ourselves to demonstrating the capability of eUtils by consid-
ering a single case study—retrieving bibliographic information from PubMed. A
program to do this is shown below (it’s also available on our website as eutils_
example.pl).

#! /usr/bin/env perl

use strict;
use warnings;
use LWP::Simple;

Set up the query URL
my $utils = 'http://www.ncbi.nlm.nih.gov/entrez/eutils';
my $db = 'Pubmed';
my $query = 'BRCA1';

Set up a search out to the eSearch program:
- we set the 'db' param to our database (pubmed)
- and set the number of results we want as 1 (retmax)
- leave the search term blank for now (term)
my $esearch = �$utils . '/esearch.fcgi?db=' . $db .

'&retmax=1&term=';

Now submit the search and retrieve the XML based results
my $esearch_result = get($esearch . $query);

print "-----------------------\n";
print "--- eSearch Results ---\n";
print "-----------------------\n\n";
print $esearch_result . "\n";

Get the ID for the paper that we have found
$esearch_result =~ m|.*<Id>(.*)</Id>.*|s;
my $id = $1;

Now set up a request to the eFetch program to retrieve our
paper

my $report = 'abstract'; # we only want to fetch the abstract
my $mode = 'text'; # we want a text output, not XML

my $efetch =
 $utils . '/efetch.fcgi?db=' . $db.
 '&rettype=' . $report . '&retmode=' . $mode.
 '&id=' . $id;

3.9 accessing relational databases using perl dbi   133

Get our paper
my $efetch_result = get($efetch);

print "-----------------------\n";
print "--- eFetch Results ---\n";
print "-----------------------\n\n";
print $efetch_result . "\n";

This program connects directly to NCBI to search PubMed for a paper about the
breast cancer gene BRCA1. This is done using two of the NCBI eUtils programs:
eSearch and eFetch.

◆	 We first build up the URL for an eSearch query. This is basically how you use
the NCBI’s eUtils—you define the program that you wish to use and the
parameters that you wish to send in a URL.

◆	 Once we have built up our eSearch query URL, we send a HTTP request (using
the get() method), which returns an XML response.

◆	 We then use a regular expression to extract the returned id from eSearch,
this is the PubMed ID of the paper that was returned from our search. This
takes advantage of the fact that the ID is known to be contained between the
<Id> and </Id> XML tags.

◆	 Next we prepare our URL for eFetch—this is used to retrieve more informa-
tion about the paper of interest. In this URL, we define the information that we
want to retrieve (the paper’s abstract in this case), and how we would like to get
it—options are HTML (the default), XML, and plain text (in the example, we se-
lect the latter). We also add the id from the eSearch query to denote the
paper that we would like to get.

◆	 Finally, we send our HTTP request to the eFetch URL. This returns the paper’s
abstract to us, in plain text, as requested.

This is the generic approach that you can use to query the NCBI’s databases
via eUtils. In addition to eSearch and eFetch, there are several other programs
available for tasks such as inter-database links. If you are ever likely to need to
automatically interrogate the databases at the NCBI, we would most definitely
recommend considering the use of the NCBI eUtils. For other database interac-
tions, we often connect to the database directly using DBI, which is introduced
below.

3.9  Accessing relational databases using Perl DBI

As discussed in the previous chapter, relational databases are the storage method
of choice when you have large quantities of data that you need to arrange and
query, as is often the case in bioinformatics. So, it is essential that Perl allow us to
easily interact with such databases. This provides a platform for automated data-
base manipulation, which forms the basis of many bioinformatics applications,
from high throughput data analysis to web-based tools.

134   3 beginning programming in perl

The easiest way of dealing with databases in Perl is with the DBI (database inter-
face) module, which comes as standard with Perl installations. Perl DBI works by
adding a database interaction layer to Perl. This means that your Perl program
interacts with the DBI layer and from there, the DBI layer talks to your database
by using an appropriate database driver. A graphical overview of how Perl DBI
works can be seen in Fig. 3.4. The benefit of this approach is that your Perl code
is pretty much database independent and should work no matter what the data-
base server is (MySQL, Oracle, PostgreSQL, etc.), the only thing that you would
have to change would be the drivers that you use—these are known as DBD driv-
ers (database dependant drivers).

3.9.1  Installing DBD::MySQL

Before we move on to look at an example of connecting Perl to a MySQL data-
base, we must first install the DBD driver (DBD::MySQL) on our computer so we
can use it to connect to our MySQL server.

Windows users
Like LWP::Simple, you will need to use PPM to install DBD::MySQL, either use
the GUI supplied or install it from the command line by issuing this command:

ppm install DBD::MySQL

Linux
DBD::MySQL will be found in your distributions package manager. Simply search
for ‘dbd-mysql’ or ‘DBD::MySQL’ and install the relevant packages and their de-
pendencies.

Perl script

DBI layer

DBDDBD

Database Database Database

DBD

Fig. 3.4  An overview of how Perl DBI works. The DBI layer sits between your Perl code and
the database, using a database-specific driver to talk to the database server.

3.9 accessing relational databases using perl dbi   135

Mac OS
Unfortunately the install of DBD::MySQL is not quite as straightforward in Mac
OS—it’s still quite simple, but takes a little more time to explain. Rather than
wasting precious space here explaining how to install it we will direct you to www.
bixsolutions.net where you can find a short guide to getting DBD::MySQL in-
stalled in the forums— www.bixsolutions.net/forum/forum-10.html.

3.9.2  Connecting to a database

The first thing that we need to do when working with a database in Perl is to set
up the connection details and establish a connection to our database so that the
rest of our program knows where to send database requests. The program below
uses Perl DBI to connect to the MySQL database created in the previous chapter.

#! /usr/bin/env perl

use strict;

use warnings;

use DBI; # Load in the DBI module

use DBD::MySQL; # Load the MySQL driver

First, the connection details of the MySQL server

my $ds = "DBI:mysql:PCR_experiment:localhost";

my $user = "user_name"; # Our MySQL username

my $passwd = "pass"; # Our MySQL password

Now to connect to the database...

my $dbh = DBI->connect($ds,$user,$passwd) || die "Can't Connect!";

So, when using DBI in your Perl scripts, you need to use two specific modules.
The first is DBI itself (the database independent layer that you and your program
interact with) and a DBD driver (which is the database specific part that actually
talks to our database server). In the example code above, we have loaded in DBI
and the DBD::MySQL driver as we are using MySQL databases.

The next section of the above code lays out the connection details for the
database that we are using. The first variable that we establish, $ds (short for
datasource) is the most detailed, and therefore requires some explanation. The
datasource is made up of four colon-separated arguments: the first argument is
simple—we are stating that we are using DBI; the second argument is the DBD
driver that we wish to use (in our case—MySQL); the third argument is the data-
base name; and the final argument is the database server’s host name. So the
general syntax of the datasource is as follows:

DBI:DBD Driver:Database Name:Database Host

136   3 beginning programming in perl

Following this, we then specified our username and password to be passed onto
the database server. The final line of code actually connects to the database:

my $dbh = DBI->connect($ds,$user,$passwd) || die "Can't Connect!";

This tells DBI to create a connection to the specified datasource, and store this
connection in the variable that we have called $dbh (dbh is short for database
handle, and is analogous to the file handles introduced earlier). If there is any sort
of error on connection to the server, we catch this using a die statement—there
is little point in the program continuing if it cannot access the database. If the
connection is successful, all subsequent interaction with the database is done
through the database handle variable ($dbh).

3.9.3  Querying the database

Now that we have connected to our database, the next thing we might want to
do is get some data out of it. We have seen how to do this with SQL queries in the
last chapter. Similar functionality is available in Perl. Querying a database using
DBI is a three-step process:

◆	 Prepare an SQL statement.

◆	 Execute the SQL statement.

◆	 Retrieve the results.

The following code snippets demonstrate these three steps. Here is the prepar-
ation of the SQL:

my $sth = $dbh->prepare("SELECT id, sequence
 FROM Experiment
 WHERE design_software LIKE ?");

There are three things to note from the above code. First is that we are creating
a new variable ($sth)—known as the statement handle, creating this variable
enables us to refer to this specific statement when we run queries against the
database. The second thing to observe is that we are using our database handle
($dbh) to prepare our SQL statement—this ties the SQL statement to our data-
base handle (this is important to note in case you ever have more than one data-
base connection open at once—you need to specify the database connection that
your SQL statement is for). The final thing to note is the SQL statement itself—
this is a standard SQL SELECT statement, with the addition of a question mark (?)
at the end of the statement. This question mark is essentially a placeholder that
allows us to use different arguments as part of our database query when we run
the statement against the database, as we will now:

my $query_variable = 'Primer3';
$sth->execute($query_variable);

The above line of code runs the SQL query against the database. We use the
$sth variable to specify the statement, which is run by the execute function.

3.9 accessing relational databases using perl dbi   137

We also pass on an argument to the execute method—a variable called $query_
variable—this string variable replaces the ? in the SQL statement. (Alternatively,
we could pass a hard-coded string constant to execute.) Using this approach
allows us to re-use our prepared SQL statements with different query variables.
If we wish to use more than one query variable, we simply put more question
marks within our SQL statements and then pass the corresponding number of
arguments to the execute method, in the right order, separated by commas.

The third and final step in querying a database with DBI is retrieving the results
of our database query. An example of this is shown below.

while (my @val = $sth->fetchrow_array()) {
  print "id: $val[0], sequence: $val[1]\n";
}

The above section of code uses the method fetchrow_array() to get results
from the database. This returns us results from the database one row at a time, in
this case with each field of the database table that we have selected as an element
of an array. So, in the case of our SELECT query, we asked to get the id and se-
quence fields, so these are returned as the first and second element of the array.

At this point we should issue a warning about the use of SELECT * FROM when
accessing a database via Perl—this is a very bad idea. When you use * you have no
idea how many fields are going to be returned, and in what order, which makes
programming for it impossible, so the advice here is to select each field that you
want returned from your table explicitly—never use SELECT *.

There are several other methods to retrieve data returned from the database, as
alternatives to fetchrow_array(). We will not be going through all of them as
this is far beyond the scope of this introduction, but it is worth touching on two
other popular methods: fetchrow_arrayref() and fetchrow_hashref().
Here is an example of how we would retrieve our statement using fetchrow_
arrayref():

while (my $ref = $sth->fetchrow_arrayref()) {
   print "id: $ref->[0], sequence: $ref->[1]\n";
}

The difference between fetchrow_array and fetchrow_arrayref is that
fetchrow_arrayref returns each result from your query as a reference to
an array, instead of a normal array. This method has the benefit of some small
improvements in execution speed and memory use on larger queries due to the
use of referenced arrays.

The next example uses fetchrow_hashref to retrieve the query results:

while (my $ref = $sth->fetchrow_hashref()) {
   print "id: $ref->{id}, sequence: $ref->{sequence}\n";
}

This returns each row of results as a referenced hash variable. The benefit of
this approach is that you can now call each returned field by their actual field

138   3 beginning programming in perl

names (in this case id and sequence) instead of using the numbers that you
have been using with arrays—thus making your code a little easier to under-
stand. The unfortunate downside of this method is that it is both slower and uses
more memory when compared to the previous two methods.

One thing to note if you plan on using either of these other two methods for
returning your data, is that they return referenced variables; therefore, in order
to get at the actual data, we must de-reference the variables. In the above example
code this is done using the -> operator, which was introduced back in Section 3.3.

Now that we have the results of our database query, and have looked at several
ways to get this result set, we no longer need our connection to the database, so
must finish our SQL session and disconnect cleanly from the database. This is
done with the following two lines of code:

$sth->finish;
$dbh->disconnect;

Please note that you must never forget these lines when working with data-
bases in Perl, as failure to cleanly disconnect and close your session with the data-
base could cause problems with the database and possibly even lead to data loss.

3.9.4  Populating the database

We have looked at getting information out of a database, now let’s look at the
opposite action—inserting data into and updating a database. This procedure is
much the same as selecting data from a database. An example program is shown
below.

#! /usr/bin/env perl

use strict;
use warnings;

use DBI;
use DBD::MySQL;

my $ds = "DBI:mysql:PCR_experiment:localhost";
my $user = "user_name";
my $passwd = "pass";

my $dbh = DBI->connect($ds,$user,$passwd) || die "Can't
       Connect!";

Prepare our insert statement...
my $sth = $dbh->prepare(
 "INSERT INTO Scientist (email, given_name, family_name)
VALUES (?,?,?)"
);

3.9 accessing relational databases using perl dbi   139

Perform a couple of inserts...
$sth->execute('b.flemming@bixsolutions.net','Bob','Flemming');
$sth->execute('e.hunt@bixsolutions.net','Ethan','Hunt');

Finish up
$sth->finish;
$dbh->disconnect;

The top portion of the program follows the same pattern as the previous examples
in which we selected data. Even the preparation of the SQL is the same, albeit that
we use an INSERT SQL statement here because we are inserting data rather than
extracting it. As before, the ? characters get replaced by the specified parameters
when we execute the SQL command. The main difference is that we are not re-
trieving data from the database, so the third step where we get results out is not ne-
cessary. To do an UPDATE action on a database table, the process and code is the same,
except that we would use an UPDATE SQL statement in the prepare() function.

So that is how you interact with your databases using Perl and DBI. Basically,
if you can interact with a database using SQL, you can interact with a database
using Perl and DBI. However, now that we are looking at both putting data in
as well as getting it out of our databases, we need to consider the inevitable—
something going wrong! We therefore need to prepare for and cope with errors
whilst carrying out operations on a database.

3.9.5  Database transactions and error handling

The normal way of handling errors that occur when working with databases is by
using the concept of transactions, as discussed in the previous chapter. The same
approaches can be used in Perl. However, by default, Perl DBI makes permanent
changes to the database on the completion of each line of code, so we have to add
a small bit of extra code and error handling to ensure that the intended database
transactions are carried out correctly and safely. Below is a sample program that
shows how to deal with correct transaction handling.

#! /usr/bin/env perl

use strict;

use warnings;

use DBI;

use DBD::MySQL;

my $ds = "DBI:mysql:PCR_experiment:localhost";

my $user = "user_name";

my $passwd = "pass";

my $dbh = DBI->connect($ds,$user,$passwd) || die "Can't Connect!";

$dbh->{'AutoCommit'} = 0; # Turn off AutoCommit

140   3 beginning programming in perl

my $sth = $dbh->prepare(

 "�INSERT INTO Scientist (email, given_name, family_name)

VALUES (?,?,?)"

);

Now let us check for errors as we insert data

eval {

 $sth->execute('b.flemming@bixsolutions.net','Bob','Flemming');

 $sth->execute('e.hunt@bixsolutions.net','Ethan','Hunt');

};

Check for any errors in the above

if ($@) {

 $dbh->rollback;

} else {

 $dbh->commit;

}

Finish up

$sth->finish;

$dbh->disconnect;

This performs the same actions as the previous INSERT example, but now has
error and transaction handling added in to ensure that our database activities are
carried out cleanly. There are three extra additions to the code, the first is the set-
ting of the AutoCommit option for DBI—basically we are turning it off so that we
explicitly have to tell the database server to commit our changes to the database
(by default DBI would commit immediately). The second and third changes are
where we use the eval method of error trapping to run our INSERT statements.
If the statements are executed without any problems, we then tell the database
to commit the changes to storage, but if there are errors we rollback the current
session so that everything we have just tried to do does not impact the database,
therefore keeping in line with standard transaction handling in databases.

That concludes the basics of using Perl DBI, but there is much more to learn.
For more details we would recommend the DBI website (dbi.perl.org) and the
Perl DBI CPAN page (search.cpan.org/~timb/DBI/DBI.pm).

3.10  Harnessing existing tools

When creating programs in Perl—or any other language for that matter—there
will always be tasks that are common between your scripts. If these are things
that are bespoke and only done within your group then you have got some sub-
routine programming to do. But often, if the activity is quite common to pro-
gramming, or even common in a specific field like bioinformatics, there is a
chance that someone will have done this already and possibly released some code
on the Internet.

3.10 harnessing existing tools   141

This is the great thing about programming within the bioinformatics commu-
nity—many people like to share their ideas and techniques with each other when
they can. If you ever need to do something, but are not quite sure how to get
started, the answers are probably only a quick search away. There are many pro-
gramming blogs and forums on the Internet where people dispense advice and
give help, tips, and tricks to aid less experienced programmers. In addition to
the blogs and forums, there are also code repositories and toolkits that can po-
tentially supply you with ready-made tools to perform your task. In particular,
we would draw your attention to two projects that will most definitely help you
along your way: CPAN and BioPerl.

3.10.1  CPAN

The Comprehensive Perl Archive Network (CPAN) is a central worldwide reposi-
tory for Perl code. Within CPAN you will find thousands of Perl modules that
you can download and install on your system—it is possibly the richest library
of extensions to a programming language available today. CPAN is one of the
reasons that Perl is so popular—it can make developing software with Perl much
more efficient.

The basic premise of CPAN is that people supply open source Perl modules to
CPAN for anyone to use within their projects. You can simply download and in-
stall these on your system, and all of the functionality of the modules you have
downloaded will be available to your install of Perl on your system, as discussed
back in Section 3.4.1. The variety of modules available is far too large to even try
to list here, so the best advice we can give is to head over to the CPAN website
(www.cpan.org) and read the CPAN FAQ to try get yourself comfortable with
how CPAN works and what is available.

When you come to install your first CPAN Perl modules, we first recommend
reading the 'How to install CPAN modules' guide (www.cpan.org/modules/
INSTALL.html), then, once you have understood that, follow these small bits of
advice:

◆	 If you are Windows user, your distribution of Perl (ActiveState Perl) comes with
PPM (Perl Package Manager) as used previously in this chapter. To use this
program, simply type ppm at the Windows command line and hit Enter—this
will launch an easy to use graphical application via which you can install Perl
modules on your system. If you cannot find the particular module you are look-
ing for within the lists, look at the install documents for the module on CPAN—
there might be a special repository that you need to point PPM to. If this is not
the case (there are no special instructions for Windows), then use the cpanm
command-line tool described in the 'Quick Start' section of the 'How to install
CPAN modules' guide.

◆	 If you are a Linux user, first look through the package management system
that came with your distribution—you will more than likely find the vast
majority of CPAN modules available and only a click or two away. If the
module you are looking for cannot be found there, use the cpanm command-

142   3 beginning programming in perl

line tool described in the 'Quick Start' section of the 'How to install CPAN
modules' guide.

◆	 If you are a Mac user your best (and only, really) choice it to use the cpanm
command-line tool described in the 'Quick Start' section of the 'How to install
CPAN modules' guide. We have supplied a write up of how to get cpanm in-
stalled, and a well-configured environment for Perl on the bixsolutions.
net forums— www.bixsolutions.net/forum/thread-68.html. However,
if you are using Perlbrew, you do not need to do this as Perlbrew does this for
you automatically.

3.10.2  BioPerl

BioPerl is a set of Perl libraries and subroutines similar to the ones that you would
find in CPAN as described above. However, as the ‘Bio’ in BioPerl might suggest,
these libraries are designed specifically for use in bioinformatics tasks. Learning
about the functionality of BioPerl and understanding how to harness it will save
you massive amounts of work over time. Just take a look at the example code
below (adapted from the BioPerl wiki) where we create a DNA sequence object,
print some details about it, and then save the DNA sequence in a FASTA for-
matted text file:

#! /usr/bin/env perl

use strict;

use warnings;

use Bio::Seq;

use Bio::SeqIO;

create a sequence object of some DNA

my $seq = Bio::Seq->new(-id => 'testseq', -seq => 'CATGTAGATAG');

print out some details about it

print "seq is ", $seq->length, " bases long\n";

print "revcom seq is ", $seq->revcom->seq, "\n";

write it to a file in Fasta format

my $out = �Bio::SeqIO->new(-file => '>testseq.fasta', -format =>

'Fasta');

$out->write_seq($seq);

As you can see, the BioPerl functions Seq and SeqIO do a lot of the tedious
work for you, making your programs easier to read and—most importantly—
faster to write. With the basic understanding of Perl provided in this chapter, you
should be ready to start exploiting BioPerl in your projects. To get started, visit
the website (www.bioperl.org).

3.11 object-oriented programming   143

3.10.3  System commands

As well as using Perl programming libraries in your programs, it is also possible
to integrate entire other command-line driven programs into your Perl programs.
This is done through the use of the system() function. With this function we
can call any other program or command that it’s possible to call from the oper-
ating system command line. This function is of great use for pipelining several
other programs together—a very common activity in bioinformatics—or for in-
corporating algorithms that have been tried, tested, and optimized for speed (e.g.
BLAST).

3.11  Object-oriented programming

Object-oriented programming (OOP) is a design philosophy used in many pro-
gramming languages. The examples of code and techniques we have shown you
thus far are what you would call procedural programming—in that your program
pretty much runs a list of tasks from the top to the bottom of the code. An object-
oriented program can be viewed as a collection of interacting objects, where each
object is capable of receiving messages, processing data, and sending messages to
other objects. In many ways, OOP is much closer to the way we deal with the real
world. It is particularly convenient when dealing with things that we know are
objects in the real world, like proteins or patients, or where we have graphical
objects such as windows, buttons, and scroll bars. However, in some applications
it can be tricky to understand how to benefit from OOP, especially if you already
have a lot of experience in procedural programming.

Classes
The first thing we need to understand when looking at OOP is classes; a class is
a way of modelling some data and functions that can be applied to that data. At
its simplest, a class can be thought of as a user defined data type, a bit like a Perl
array, that can hold various pieces of data together in a single easily referenced
entity. However, unlike an array, a class can also contain units of program code,
called methods, that operate on the data inside.

One such example for a simple class that we could start with is that of a dog. A
very basic dog class could have a name (a string variable), a breed (another string),
and an age (an integer)—these would be the variables that make up the data
within the class. The class could also have a number of methods, such as one to
print out a description of the dog, and another to calculate the dog’s equivalent
age in human years.

The diagram in Fig. 3.5 could represent the design for our dog class. The style
of this diagram will be familiar from Chapter 2, as it uses the same UML (Unified
Modelling Language) approach.

Inheritance
Now, what if we wanted to make an object that represents a cat? We could model
this in exactly the same way as we did the dog—create a cat object that has a

144   3 beginning programming in perl

name, breed, and age, plus the same few methods, but then what happens when
we need to model yet another animal—there is a lot of potential for repetition
here. This is where another core concept of OOP comes in: inheritance.

Inheritance is used when you have several classes that have many (but not all)
things in common, as it allows you to create a super-class that represents the com-
mon features that you are trying to model. Our other classes then inherit this
behaviour from the super-class, meaning that you don’t need to repeat yourself
when it comes to describing the other objects. In our example, an appropriate
super-class would be an Animal class that both the Dog and Cat class can inherit
characteristics from (depicted in Fig. 3.6). Then, at any point the specifics of a par-
ticular animal differ from the base class (Animal), we simply override the given
method or attribute in the child object.

Animal

name: String
breed: String
age: Integer
human_age_multiplier: Integer

info()
human_age()

Dog

human_age_multiplier: Integer

Cat

human_age_multiplier: Integer

Fig. 3.6  A UML representation of how we can model our Dog and Cat classes by using a
single Animal "super class" that both the Dog and Cat inherit their attributes and methods
from. Note however that human_age_multiplier attributes are also found on both
the Dog and Cat models as this is different for each type of animal, so these override the
value found on the generic Animal object.

Dog

name: String

breed: String

age: Integer

info()

human_age()

Fig. 3.5  A UML representation of our Dog class. The top box contains the name of the
object, the second box contains the variables that are repeated within the class, and the final
box lists the methods (functions) that can be called on the object.

3.11 object-oriented programming   145

From classes to objects
So far we have only mentioned classes—what about the objects that give OOP its
name? The term object is used to describe an instantiation or instance of a class.
Consider our example. The Dog class can be considered as a blueprint for objects
of a particular type—dogs. We can use this class to create any number of dog
objects, each of which will have all the key characteristics of a dog, but also has
its own individual properties (e.g. name and breed). To put it another way, a class
could be considered as some kind of Perl type (just like a string). There is only
one string type in Perl, but a single program can contain a great many strings.
Similarly, we need only define one dog class to generate any number of different
dog objects within a program.

Traits and shared behaviour
The final OOP concept we are going to introduce in this section is that of traits.
These can also be known as roles, and sometimes people can refer to them as mix-
ins, but they are something slightly different (we introduce and describe mixins
later, in Section 6.5.2, when we introduce the Ruby programming language).

Traits are in fact a collection of methods that are consumed by a class to describe
an interface or ability that the class will exhibit—a couple of examples of this
type of behaviour would be:

◆	 A ‘Printable’ trait on a class could enforce that the class must declare a method
called print or to_string, so its content can be viewed at the command line.

◆	 An ‘Equal’ or ‘Eq’ trait on a class could enforce that the class must create an
equal method to compare itself to another instance of a class and return true/
false depending on the outcome.

This is a fairly simple concept, but used properly it enables code- re-use
throughout your applications as many different, completely un-related classes
can share functionality and code through common traits.

3.11.1  Object-oriented programming in Perl using Moose

To see OOP in practice, we are going to look at some simple example programs
in Perl. Perl is not an inherently object-oriented language, but OOP is possible in
Perl (especially if we install a package for this) and it makes sense to stick with
Perl for the moment so that the differences between OO and procedural pro-
grams are clear. We introduce some truly object-oriented languages in Chapter 6.

Although OOP is possible with Perl without the use of any external modules,
it is not friendly or straightforward, so instead we will be using Moose (moose.
perl.org), a popular module that makes Perl OOP much easier and cleaner.

Before getting started, you will need to install Moose. It can be installed through
PPM (if you are on Windows), your distribution’s package manager (on Linux), or
via cpanm (on OS X). The package to look for is simply called Moose.

Creating our first objects
We are now going to use Moose to turn our dog and cat example into reality
within Perl. So, our first class was the Dog. Here is a complete (and heavily

146   3 beginning programming in perl

commented) example program that defines the Dog class and shows how you
would interact with it for both running methods and setting variables.

#! /usr/bin/env perl

BEGIN: Dog object.

package Dog; # this says we are working in the namespace 'Dog'

 # (i.e. declaring a class called Dog)

use Moose; # �tell Perl to use Moose

 # - this also switches on 'strict' and 'warnings'

declare variables

has 'name' => (

 is => 'rw', # is readable/writable

 isa => 'Str', # is a string variable

 required => 1 # �is required when we create an instance of

 # a dog

);

more variables (optional as we haven't said they're required)

has 'breed' => (is => 'rw', isa => 'Str');

has 'age' => (is => 'rw', isa => 'Int');

declare methods

sub info {

 my $self = shift;

 return

 $self->name." �is a ".$self->breed." and is ".$self->age."

years old.";

}

sub human_age {

 my $self = shift;

 return $self->age * 7;

}

no Moose;

END: Dog object

The following is only needed if we're declaring a class

in the same file as our 'regular' code.

package main;

now, create an instance of the class Dog...

my $sam = Dog->new(

 name => 'Sam',

 breed => 'Yorkshire Terrier',

3.11 object-oriented programming   147

 age => 5

);

create another instance of Dog, note that you don't have to

populate all

the variables when you call new() - only the required ones

my $charlie = Dog->new(name => 'Charlie');

$charlie->breed('Cocker Spaniel');

$charlie->age(3);

now call one of the methods on both instances

print $sam->info . " \n";

print $charlie->info . " \n";

This is a complete standalone program, in which there is quite a lot going on.
Let’s take a look at the first section of code (note, we’ve removed the comments/
annotations to make the code slightly more clear and readable):

package Dog;
use Moose;

has 'name' => (is => 'rw', isa => 'Str', required => 1);
has 'breed' => (is => 'rw', isa => 'Str');
has 'age' => (is => 'rw', isa => 'Int');

sub info {
 my $self = shift;
 return
 $self->name." �is a ".$self->breed." and is ".$self->age."

years old.";
}

sub human_age {
 my $self = shift;
 return $self->age * 7;
}

no Moose;

In this first section of code, we describe the Dog class. The beginning line uses
the package declaration—this is a namespace command and means that all vari-
ables and methods declared after it will be tied to that namespace (and thus not
clash with other variables or functions in Perl itself, or your code if used as part of
a larger codebase). The second line says that we’re using Moose in this namespace.

Following the opening two lines we then have the variable declarations, that is:

has 'name' => (is => 'rw', isa => 'Str', required => 1);

148   3 beginning programming in perl

These lines use some Moose magic to save us a lot of boilerplate code for set-
ting and getting (and checking) variable/attribute contents. The keyword in use
on these lines is has—this Moose helper states that our class has an attribute (or
property) called whatever is passed to it. The rest of the line is the options hash
that is passed into the has declaration, these options are described in detail in
Table 3.6.

Following the attribute declarations, we have the method declarations for our
object. These should be familiar as they are standard Perl subroutines; the only
slight difference you may notice is they all start with the following line:

my $self = shift;

This is standard practice when doing OOP in Perl, what this does is sets the cur-
rent instance of the object to the variable $self—so that it can be used within
the subroutine.

The final line of the code (no Moose) says that we’re finished using Moose in
this namespace and tells Perl to remove the Moose helpers from its memory. This
is the final line in the declaration of our Dog class.

The next section of code is where we create actual instances (objects) of our
Dog class. Here is that code again, with comments removed:

package main;

my $sam = Dog->new(
 name => 'Sam',
 breed => 'Yorkshire Terrier',
 age => 5
);

my $charlie = Dog->new(name => 'Charlie');
$charlie->breed('Cocker Spaniel');
$charlie->age(3);

print $sam->info . " \n";
print $charlie->info . " \n";

The first line of code is another package (namespace) declaration. As we cre-
ated our Dog class in the same file we moved the namespace earlier in the code
(to Dog), so we are simply moving us back to the default Perl namespace, main.
This is really just a technicality that we shouldn’t get distracted by too much—
just know that it is good practice to do this if you declare classes in the same file
as your procedural code (the code that makes use of your classes).

The following line creates the first instance of our Dog class—a virtual 5-year-old
Yorkshire Terrier called Sam. This is done by calling the special method new on
the Dog class—this is a standard Perl function (also used in other OO languages)
for creating a new instance of a class, and you simply pass it the required (and op-
tional) arguments it needs to create a new instance of the class in question. The

3.11 object-oriented programming   149

next line creates another instance of our Dog class, but with only the minimum
amount of data needed to create a new Dog. We then pass in the rest of the values
in the following two lines. These two examples show you the different ways you
can create instances of classes and set their attributes (either all in the new dec-
laration, or later).

The final two lines simply call the info method on both of the dog objects that
we have created. This method (declared as part of the class) prints a string of in-
formation about the specified object to the terminal.

In summary, we have produced two objects, each of which is a particular in-
stance of Dog, and we are able to manipulate these objects. However, this demon-
strates only a small portion of the OOP concepts that we considered earlier.

Inheritance
Next up we are going to look at how to implement inheritance with Moose. The
code below follows our example, creating a generic Animal class and then mak-
ing Cat and Dog classes that inherit shared behaviour from it.

#! /usr/bin/env perl

Animal class
package Animal;
use Moose;

has 'name' => (is => 'rw', isa => 'Str', required => 1);
has 'breed' => (is => 'rw', isa => 'Str');
has 'age' => (is => 'rw', isa => 'Int');

Table 3.6  Basic options for the Moose has command

Option Description Accepted Values

is Specifies how the attributed can be
accessed, i.e. is it a value that can be set
or read by external calls?

'rw' – read/write
'ro' – read only
'wo' – write only

isa Specifies what type of value to expect
when setting the attribute. This type is
also checked (by Moose), so if an
attribute is supposed to be an integer,
and it gets passed a hash, an error will be
raised.

'Int' (integer)
'Num' (floating-point number)
'Hash', 'HashRef', 'Array',
'ArrayRef', 'Bool' (boolean)
and many more...

required Is this attribute required when the new
method is called to create an instance of
the class?

1 – yes
0 – no

default This is not shown in the code example,
but if you want to specify a default value
for the attribute, you can do it with this
argument.

Any value that satisfies the isa
declaration.

150   3 beginning programming in perl

has '�human_years_multiplier' => (is => 'ro', isa => 'Int',
default => 1);

sub info {
 my $self = shift;
 $self->name." �is a ".$self->breed." and is ".$self->age."

years old.";
}

sub human_age {
 my $self = shift;
 $self->age * $self->human_years_multiplier;
}

Dog class
package Dog;
use Moose;
extends 'Animal';

has '�human_years_multiplier' => (is => 'ro', isa => 'Int',
default => 7);

Cat class
package Cat;
use Moose;
extends 'Animal';

has '�human_years_multiplier' => (is => 'ro', isa => 'Int',
default => 5);

End of class declarations

no Moose;
package main;

my $sam = Dog->new(
 name => 'Sam',
 breed => 'Yorkshire Terrier',
 age => 5
);

my $tom = Cat->new(
 name => 'Gorbypuff',
 breed => 'Persian',
 age => 5
);

3.11 object-oriented programming   151

print $sam->info . " �(Which is " . $sam->human_age . " in
human years).\n";

print $tom->info . " �(Which is " . $tom->human_age . " in
human years).\n";

As you can see, this code example is not much longer than the previous one
where we only described a single class, whereas in this example we declare the
generic Animal class, and then two child classes (Cat and Dog) that inherit their
behaviour from Animal. This is an obvious example of the efficiencies made pos-
sible by inheritance.

The actual syntax and program code in use here is very similar to before but
with two subtle additions (one syntactic and on conceptual); the first (syntactic)
addition is the use of the Moose keyword extends (used in both the Cat and Dog
classes). The extends function in Moose is used for inheritance; it takes a class
name as an argument, and uses that class as a base for constructing the new class
that your code is currently building. The other (conceptual) addition we show is
the overriding of methods and attributes in child classes—in this example the
human_years_multiplier attribute is overridden in both child classes as they
have different values4 in the different animals (from the parent class). It is also
possible to add completely new methods to the child classes that are specific to
them (and only them, so they do not belong in the super-class).

Using Moose roles (traits)
In order to show you the usefulness of roles in Moose, we are going to step away
from our pet examples and show you an example of the utility of Moose roles
using a class to represent a DNA sequence. This example builds two roles: Eq and
Printable, and applies them to a DNA class.

#! /usr/bin/env perl

Define an 'Eq' role.
package Eq;
use Moose::Role;
requires 'equal_to';

sub not_equal_to {
 my ($self, $other) = @_;
 not $self->equal_to($other);
}

Define a 'Printable' role.
package Printable;
use Moose::Role;

4	 We are aware that the relationship between an animal’s age and the human equivalent is not really
linear, but it serves our purpose for this simple example.

152   3 beginning programming in perl

requires 'to_string';

Define a DNA class that consumes these roles
package DNA;
use Moose;
with 'Eq','Printable';

has 'sequence' => (is => 'rw', 'isa' => 'Str');

sub equal_to {
 my ($self, $other) = @_;
 $self->sequence eq $other->sequence;
}

sub to_string {
 my $self = shift;
 $self->sequence;
}

no Moose;
package main;

my $a = DNA->new(sequence => 'ACTG');
my $b = DNA->new(sequence => 'AAAA');

if ($a->equal_to($b)) {
 print "They are equal!\n";
} else {
 print "They are NOT equal!\n";
}

As we said, this code declares two roles and a class. Let’s take a look at the first
role declaration in more detail.

package Eq;
use Moose::Role;
requires 'equal_to';

sub not_equal_to {
 my ($self, $other) = @_;
 not $self->equal_to($other);
}

This first section of code declares the role called Eq. We know it is a role as it
uses Moose::Role, rather than just plain Moose, we also have a new Moose key-
word requires. This says that any class that consumes this role must provide a

3.11 object-oriented programming   153

method called equal_to. The Eq role also defines a not_equal_to method that
uses the required equal_to method—meaning that the consuming code only
has to implement the one method.

The final role declared in the example is the Printable role. This role is what
is known as an interface role, in that it does not provide a consuming class with
any additional functionality, it just enforces a specific set of methods or inter-
faces. This programming pattern is quite useful in larger codebases as it can en-
force method naming/construction consistency between classes.

In the final section of the program, we declare a class called DNA, which
consumes both the Eq and Printable roles (via the with keyword), and pro-
vides the necessary equal_to and to_string functions (as defined by the
 roles).

As you can see, there is a lot of re-usable code in this example. Many other
classes over a large codebase could easily make use of these generic roles to de-
fine interfaces and enhance abilities. This is the power of roles (or traits).

Tidying up code with MooseX::Declare
Although powerful, Moose can be quite verbose when there is a lot going on in
one program, and this can affect readability. To mitigate this there is a Moose
extension called MooseX::Declare (available on CPAN, alongside many other
Moose extensions—look for MooseX in the name) that gives Moose a much more
direct, compact, and declarative syntax.

Let us re-visit some of our earlier code (the pet example, but with the additional
use of a role) but use the MooseX::Declare style of syntax.

#! /usr/bin/env perl

use MooseX::Declare;

role Printable {

 requires 'to_string';

}

class Animal with Printable {

 has 'name' => (is => 'rw', isa => 'Str', required => 1);

 has �'breed' => (is => 'rw', isa => 'Str');

 has 'age' => (is => 'rw', isa => 'Int');

 has 'human_years_multiplier' => (is => 'ro', default => 1);

 method human_age {

 $self->age * $self->human_years_multiplier;

 }

 method to_string {

 $self->name." �is a ".$self->breed." and is ".$self->age." years

old.";

 }

}

154   3 beginning programming in perl

class Dog extends Animal {

 has 'human_years_multiplier' => (is => 'ro', default => 7);

}

class Cat extends Animal {

 has 'human_years_multiplier' => (is => 'ro', default => 5);

}

my $sam = Dog->new(name => 'Sam', breed => 'Terrier', age => 5);

my $tom = Cat->new(name => 'Gorbypuff', breed => 'Persian', age => 5);

print $sam->to_string . "\n";

print $tom->to_string . "\n";

And now let’s revisit the DNA example used to demonstrate roles.

#! /usr/bin/env perl

use MooseX::Declare;

role Eq {
 requires 'equal_to';

 method not_equal_to($other) {
 not $self->equal_to($other);
 }
}

role Printable {
 requires 'to_string';
}

class DNA with (Eq, Printable) {
 has 'sequence' => (is => 'rw', isa => 'Str');
 method equal_to($other) {
 $self->sequence eq $other->sequence;
 }

 method to_string {
 $self->sequence;}
}

my $a = DNA->new(sequence => 'ACTG');
my $b = DNA->new(sequence => 'AAAA');

3.12 summary   155

if ($a->equal_to($b)) {
 print "They are equal!\n";
} else {
 print "They are NOT equal!\n";
}

These code examples need little explanation—all of the concepts and logic are
the same as in the previous example code, but the syntax is clearer and easier
to follow. We would just like to note a few key things that MooseX::Declare
provides:

◆	 class and role keywords, with automatic namespacing (no need for the
package command anymore).

◆	 Inheritance (extends) and role consumption (with) declarations are given on
the same line as the class/role declaration.

◆	 The method keyword is used for method/function declaration inside classes/
roles. This also automatically assigns the current class instance to $self in
these methods.

This style of code is not to everyone’s liking. Some people have complained
that it is not very 'Perl-like' as it makes OOP in Perl look more like other program-
ming languages (you can judge for yourself in Chapter 6). On the other hand,
some people like this style of syntax exactly for those reasons. Ultimately it is
your choice, but we like it and will be using MooseX::Declare in some code
examples later on in the book.

Going further with Moose and OOP
The simple examples above have demonstrated how object-oriented program-
ming can be done in Perl, and hopefully helped you see why such an approach
to programming is useful in terms of code re-use and supporting good pro-
gramming practice. Although the concepts of OOP are simple, beginners often
struggle to understand how they might take advantage of it in a particular ap-
plication. The best way to learn is by experimenting and studying examples.
For further reading, we would recommend the Moose manual (search.cpan.
org/~doy/Moose/lib/Moose/Manual.pod), Moose Cookbook (search.
cpan.org/~doy/Moose/lib/Moose/Cookbook.pod), and Modern Perl (mod-
ernperlbooks.com/books/modern_perl), which includes a chapter about
object-oriented programming using Moose.

3.12  Summary

That concludes our introduction to programming in Perl. Clearly, we have not
been able to cover every facet of the language, but we have covered the fun-
damentals and highlighted those features of Perl that make it such a popular
choice for writing bioinformatics software. Perl is not the only language used

156   3 beginning programming in perl

in bioinformatics—R, Python, Ruby, and Java are also very popular. We will take
a look at these languages in subsequent chapters, where you will realize that,
despite differences in emphasis and syntax, the fundamental programming prin-
ciples are common among all these languages. If you master these principles in
Perl you will be well placed to begin programming in most other languages. We
shall return to Perl in Chapter 5 where we use it as a tool for programming for
the web, and in Chapter 6 where it is used to demonstrate key software engin-
eering principles.

References
Stubblebine, T. (2007). Regular Expression Pocket Reference: Regular Expressions for Perl, Ruby, PHP, Python, C,

Java and .NET. O'Reilly: Sebastapol, California, USA.
Tisdall, J. (2001). Beginning Perl for Bioinformatics. O’Reilly: Sebastapol, California, USA.
Tisdall, J. (2003). Mastering Perl for Bioinformatics. O’Reilly: Sebastapol, California, USA.
Wall, L., Christiansen, T., & Orwant, J. (2000). Programming Perl. O’Reilly: Sebastapol, California, USA.

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

CHAPTER 4

Analysis and visualisation
of data using R

Mathematics and statistical processing of data, and the visualization of the results
of such processing, are a key part of many bioinformatics applications. The most
obvious applications are in domains such as transcriptomics and metabolomics,
where there is a wealth of quantitative data, but even when the acquired data is
non-numeric, as in sequence analysis, there is a necessity to perform statistical
analysis to determine, for example, the significance of the results acquired.

In recent years the statistical programming language, R, has become the tool
of choice for such analysis. The aim of this chapter is to introduce R, to explain
how it can be used to analyse and visualize biological data, and to begin to explain
how R functionality can be integrated into bioinformatics solutions. Naturally, in
a chapter of this length it is not possible to cover every facet of R. To get some
idea of what that might involve, the PDF reference manual provided with R runs
to more than 3,000 pages, and that doesn’t even cover the many third-party add-
on packages available. The intention of this chapter is therefore to introduce the
key concepts of R, to provide a starting point, and to illustrate functionality that
is most applicable to bioinformatics. We particularly emphasize the use of R as
a software development tool as it can be integrated with Perl and MySQL, facili-
tating the creation of very sophisticated bioinformatics software. Directions to fur-
ther information, such as R’s useful help system, are provided to allow you to then
develop your understanding in whatever way your particular applications require.

In terms of the data analysis techniques covered here, this also cannot be ex-
haustive because the bioinformatics community has spawned hundreds of algo-
rithms for data analysis, and more are being published every month. For this
chapter, we have chosen examples of analyses that can be applied to a wide range
of data sets, and to which R is particularly well suited. We also emphasize the com-
monalities between different types of data set; although bioinformaticians often
classify themselves according to the type of data they work with, experience shows
that many analysis methods can each be applied to data from a range of different
analytical platforms. If you do want to find out about a specific algorithm, it should
be apparent where to find information about it once you’ve read this chapter, and
quite possibly there is an R package out there to do exactly what you want.

158   4 analysis and visualisation of data using r

One area we have purposefully avoided including in this chapter is univariate
statistical methods, such as significance tests and ANOVA. The main reason for
this is that such techniques are dealt with at length in most other introductions
to R, so we would refer you to those. Furthermore, if you only wanted to do this
type of analysis you might choose a less flexible but more user-friendly software
package, such as Microsoft Excel, GenStat, or Statistica. Such packages are very
capable tools for numerical data analysis and visualization, but they suffer from
three key limitations. First, they are not particularly flexible—adapting or add-
ing a new algorithm or graph type may be possible, but it is not always easy.
Second, integration with other tools is not straightforward—if we want to in-
corporate some data analysis functionality into a web-based analysis tool, this
is not the way to go. Finally, these packages are designed around the concept of
a user sitting down and performing the analysis via a graphical user interface.
This is fine for small analyses, but in bioinformatics, where data sets can be large
and analysis repetitive, there is often a need for automation. Some packages,
such as Microsoft Excel, have built-in programming languages for automation,
and as we saw in Chapter 3, programming languages such as Perl are ideal for
automating repetitive procedures on large amounts of data. Such programming
languages are, however, designed to be general purpose, and lack the native data
structures, built-in functions, and often the performance to tackle mathemat-
ical problems efficiently. In a general-purpose language like Perl, all but the sim-
plest mathematical procedures have to be implemented from a fairly low level,
which can lead to long development times and concerns over the veracity of the
implementation, and ultimately programs that are painfully slow when applied
to large data sets.

4.1  Introduction to R

Several software packages have been developed to fill the gap between program-
ming languages and point-and-click analysis packages, and R is foremost among
these in the bioinformatics community. R is an entirely free, open source pack-
age, which has at its core an implementation of the statistical programming
language S, which is also the basis for the commercial S-Plus software package.
R supports the installation of add-ons, called packages, to extend its basic func-
tionality into specialist areas, and is available for a range of operating systems,
including Windows, Linux, and Mac OS. R has become the data analysis tool of
choice in bioinformatics partly due to the open-source and platform-independent
ethos of bioinformatics, but also because many high quality add-on packages have
been produced by the bioinformatics community (for example, the BioConductor
packages described in Section 4.3.1). The popularity of R in the bioinformatics
community is therefore perpetuated, as anyone planning to release data analysis
tools to the community will generally want to do this as an R package because
there is a large potential audience with R installed, so curious users will not be
put off by having to change operating system or buy commercial software in
order to try it out.

4.1 introduction to r   159

It is for these reasons that we have chosen R as the platform for the numerical
data analysis part of this book.

4.1.1  Downloading and installing R

The process of getting hold of R may seem a little less slick than you might
be used to for other software, but it is nevertheless a fairly painless process.
R's home on the web is www.r-project.org. Here you can find some back-
ground information about R, links to manuals, and other documentation. The
software itself is hosted on the Comprehensive R Archive Network (CRAN)—a
worldwide network of servers from which R, R packages, and other related
files can be downloaded. Clicking on the CRAN link on the R homepage brings
up a list of CRAN servers, from which it makes sense to select the one closest
to you. There is a range of different forms in which to download R, but for
beginners the pre-compiled binary setup program for the base R system is the
file to go for. This is available via the front page of any of the CRAN mirrors
simply by clicking on your operating system in the ‘Download and Install R’
pane.

◆	 For Windows, this file will be called something like R-3.0.1-win.exe, de-
pending on the version number (in this case version 3.0.1). Executing this file
launches a familiar Windows Setup Wizard that will install R on your com-
puter. The default installation options should be fine for most people. Once in-
stalled, you can start R by clicking on the icon on the desktop, or in the Start
menu or Start screen, just like any other Windows application.

◆	 If you are running Mac OS, the file you need will be called something like
R-3.0.1.pkg (again this depends on the current R version number). Download
and run this installation package—just accept the default options and you will
be ready to go. Note that the interface through which you can interact with R
will be installed into your Applications folder.

◆	 Installing R on Linux is ideally done using the package manager that came
with your Linux distribution (look for the r-base package). Package manag-
ers are quite different between the various flavours of Linux, so we don’t
have the space here to go into how you would install R on each type of Linux.
If you have problems using your package manager, or R is not available
there, pre-built installation files can be downloaded from the R website for
some of the more common Linux distributions. These can be found in the
same section as the pre-built Windows and Mac OS files. You will also find
some basic install instructions with the files to help you. Once installed, R
can be started simply by typing R at the Linux command prompt. All subse-
quent commands entered will then be processed by R, until you execute the
quit() function.

In use, R is very similar across all three platforms, so we won’t hear much more
about specific operating systems in this chapter. However, add-on packages that
have been written using features specific to a particular operating system may
not work properly on other systems.

160   4 analysis and visualisation of data using r

4.1.2  Basic R concepts and syntax

The first thing people notice after installing and firing up R is the rather ar-
chaic looking user interface, the R Console. It is through this console that most
interactions with R take place and, as we will see, while it may not look as
inviting as commercial software, it is actually the lack of a graphical user
interface that gives R a lot of its power. R’s user interface is another example
of a command-line interface—commands are entered into the console at
the prompt (in this case a > symbol), and results are returned in the console
window, or in a separate window in the case of graphical output. Depending
on your operating system and particular installation of R, the console may
exist within something called the RGui. The Gui part of the name stands for
graphical user interface, which infers some level of sophistication, but at the
time of writing RGui only provides very basic features, most of which have
command line equivalents.

Because R is essentially a programming language, many of the concepts are
the same as in other programming languages such as Perl. So, for example, there
are variables and there are functions. One difference with R is that, as well as
writing programs, we can work with these variables and execute these functions
interactively in real time, right there in the console. This is useful for prototyping
or doing a one-off analysis. As an example, let’s consider a right-angled triangle,
with sides of length x and y, and hypotenuse of length z. We can assign specific
values to the variables of x and y by typing the following two commands at the R
command line (hit Enter after each command):

x <- 3
y <- 4

The backwards arrow formed from the less than character (<) and the minus
character (-) indicates the flow of data, that is values on the right are being
assigned to variables on the left. (Values can also be assigned to variables using
the = character, as in Perl, but <- is more commonly seen in R.) We can check
the values assigned to these variables simply by typing the variable name at
the command line and then pressing Enter. An example of this action is shown
below.

> x
[1] 3

As expected, the variable x contains the value 3. The [1] part of R’s output
indicates that 3 is the first element in x. This is not very important in this case as
x only has one element, but if the output was a list of values spanning more than
one line then a number would appear in square brackets at the start of each line
to indicate the element number of the first value on that line.

Having assigned values to the x and y variables we can manipulate them using
operators and functions, just like in any other programming language. Also like
other languages, we can append comments to our commands to make them

4.1 introduction to r   161

more easily understandable. In R (like Perl) such comments must be preceded by
the # character, which causes R to ignore everything that follows on that line.
An example session with R, using the x and y variables defined above, is shown
below.

> x+y # add the two variables together
[1] 7
> x^2 # �the ^ operator raises a number to a

power (in
 # this case the power of two)
[1] 9
> sqrt(y) # �the built-in sqrt function returns

the square
 # root of the number passed to it
[1] 2
> z <- sqrt(x^2+y^2) # �calculate the length, z, of the

hypotenuse of a
 # �right angle triangle using

Pythagoras' theorm
> z # see what value z has been set to
[1] 5

An important point to make at this stage is that R, like Perl and other program-
ming languages, is case sensitive so a variable Y would be distinct from the vari-
able y—each could have a different value. Similarly, typing SQRT instead of sqrt
would cause R to reply with Error: could not find function "SQRT". To
avoid this kind of confusion, function names are generally all lower case, as are
most variable names, but this custom is not enforced and sometimes there are
legitimate reasons for using upper case. To avoid confusion, refer to our general
advice in Chapter 1 (Section 1.6.3).

All the variables (and other objects that we will learn about later) that you de-
fine are stored by R in its workspace. The content of this workspace can be seen
using the objects command:

> objects()
[1] "x" "y" "z"

If you try to quit R (by typing quit() in the console, or closing the R window),
you may (depending on your particular installation of R) be asked if you would
like to save the workspace image. If you do, you will be able to continue where
you left off with these variables next time you start R. Conversely, objects can be
removed from the workspace using the remove() function:

remove(x) # �remove variable x from the
workspace

remove(list = objects()) # �remove all objects from the
workspace

162   4 analysis and visualisation of data using r

Note that many R functions can be abbreviated, for example rm can be used in
place of remove, or q in place of quit. A useful tool for finding out the abbrevi-
ated form of a particular function, or indeed for finding out what a function does,
is the built in help() function. This is invoked simply by passing help the name
of the function in question, for example help(remove). This help system is an
invaluable aid for learning and using the many functions available in R, and it is
recommended that you consult the help system on all the functions and operators
introduced in this chapter, as space does not permit us to explore each function
in detail. Note that if you enter a function name at the command line without
the brackets that should follow it, R will not execute the function but will instead
show you the R source code for the function. This is pretty scary for beginners but
can be useful in some circumstances, once you get more familiar with R.

4.1.3  Vectors and data frames

Of course, a major motivation for using R in bioinformatics is that we want to
deal with large biological data sets, not simple variables like those in the ex-
ample above. To get an idea of how R handles larger data sets, let’s consider the
data shown in Table 4.1. This data is typical of the type of results that would
be acquired from measuring the concentration of various compounds in whole
blood samples from a number of patients during a clinical study. In reality, we
would doubtless have been monitoring more patients, and maybe more com-
pounds, but for the purpose of illustrating concepts a small data set is more con-
venient. Real data sets are introduced later in the chapter.

In R, we can generate a variable for each patient, in which we can store the
biochemical profile for that patient in terms of the concentrations of the com-
pounds from Table 4.1. We do this using the <- assignment operator as before,
except that this time we combine, or concatenate, a series of numbers into a list
using the c() function before the assignment takes place.

profile <- c(3, 1150,750,310)

In mathematical parlance, a list of numbers like this is referred to as a vector. In
this particular case, and indeed in many of the applications that we come across

Table 4.1  Concentration of key metabolites in five patients. The urea concentration has not been
recorded for patient 3

Patient Number Concentration of compound in whole blood (g/m3)

Bilirubin Cholesterol Glucose Urea

1 3.0 1150 750 310

2 4.5 1650 2200 200

3 5.0 2150 260 –

4 14.0 1200 650 270

5 3.5 2000 700 320

4.1 introduction to r   163

in bioinformatics, this is referred to as a measurement vector or sample vector as it
captures the list of measurements acquired from a sample. We can check that
this new vector contains the correct information by typing its name.

> profile
[1] 3 1150 750 310

This is a bit like a Perl array, but storing data in this way in R is particularly
convenient, as we can perform operations on the whole vector in a single com-
mand. For example, we can convert this data from the units of g/m3 to the more
commonly used g/cm3 by multiplying by a scaling factor of 10-6.

> profile * 1e-6
[1] 0.000003 0.001150 0.000750 0.000310

Essentially, you should be able to use any relevant R function or operator on a
multi-element variable of this type. This is not typically the case in general pur-
pose programming languages, such as Perl, and is one of the features that make
R so well suited to numerical analysis.

What about getting the whole table of results into R? Well, R has a special type
of object for representing tabular data, called a data frame. The example below
shows one way of generating a data frame that captures the first two columns of
Table 4.1.

> bilirubin <- c(3, 4.5, 5, 14, 3.5) # �bilirubin column
values

> �cholesterol <- c(1150,1650,2150,
1200,2000) # �cholesterol column

values
> �results <- data.frame(bilirubin,
cholesterol) # �combine in data

frame
> results # �check data frame

content
 bilirubin cholesterol
1 3.0 1150
2 4.5 1650
3 5.0 2150
4 14.0 1200
5 3.5 2000

So now we have half of our table stored in the R workspace, easily accessible
under the name results. Essentially, a data frame is like a spreadsheet, and in-
deed we can view, edit, and add to the contents of this data frame in a familiar
spreadsheet-like view using R’s built-in edit() function. Figure 4.1 shows the
data editor, launched by the command below, after the glucose and urea columns
have been added.

164   4 analysis and visualisation of data using r

results <- edit(results) # �allow editing values in results
data frame

The edit() function does not change the original data frame, but returns
a copy of the frame, including any changes made, when the editor window is
closed. To update the data frame with the new edits, the output of the edit()
function must be assigned back to the data frame. No urea value was entered for
patient 3, and the editor has placed NA in the empty cell—this is the code that R
uses to indicate missing values. Missing values are common in bioinformatics, and
various methods for dealing with them are described in the literature. Typically,
these methods rely on substituting missing values with statistically expected val-
ues. For now, it is just good to know that we can flag up such values instead of
having to make up a placeholder value such as 0 or -999, which could easily be
overlooked and accidentally treated like real data. Before moving on, fill out your
results data frame with the remaining values.

Just as in the earlier vector example, we can apply most R operators and func-
tions directly to a data frame so, for example, we could multiply the whole
frame by a scale factor, just as we did in the previous section. One particularly
convenient function is summary(), which provides a basic statistical overview
of the data contained in a frame. In this case we can see the range of concentra-
tions of each metabolite across the five patients, as well as mean and median
averages.

> summary(results)
 bilirubin cholesterol glucose urea
Min. : 3.0 Min. :1150 Min. :260 Min. :200.0
1st Qu.: 3.5 1st Qu.:1200 1st Qu.:650 1st Qu.:252.5
Median : 4.5 Median :1650 Median :700 Median :290.0
Mean : 6.0 Mean :1630 Mean :632 Mean :275.0
3rd Qu.: 5.0 3rd Qu.:2000 3rd Qu.:750 3rd Qu.:312.5
Max. :14.0 Max. :2150 Max. :800 Max. :320.0
 NA's : 1.0

Fig. 4.1  Editing the content of a data frame in Windows.

4.1 introduction to r   165

As well as operating on the whole table, it is possible to extract rows, columns,
or individual elements by specifying specific parts of the table in square brackets
([]) immediately after the name of the data frame. Some examples are shown
below. There are a couple of counterintuitive things to note in these examples.
First, when a single column is extracted the result looks like a row. Second, when
specifying both a row and column, the row is specified first, which seems odd if
you are used to working with x, y coordinates, where x is the horizontal position
and y the vertical.

> results[4,] # �return just the values in row 4
 bilirubin cholesterol glucose urea
4 14 1200 650 270
> results[4,1] # �return the value at row 4, column 1
[1] 14
> results[,2] # �return all values from column 2

(cholesterol)
[1] 1150 1650 2150 1200 2000
> results[1:3,] # �return rows 1 to 3
 bilirubin cholesterol glucose urea
1 3.0 1150 750 310
2 4.5 1650 800 200
3 5.0 2150 260 NA
> results[c(2,4),] # �return rows 2 and 4
 bilirubin cholesterol glucose urea
2 4.5 1650 800 200
4 14.0 1200 650 270

Of course, entering data manually as we have done so far is tedious, time
consuming, and prone to error. In most real applications data is imported dir-
ectly from a file or database. This is described later in this chapter. However,
the example that we have just worked through gives an indication of how we
interact with the R command line. We only used a tiny fraction of R’s function-
ality, but the principle of issuing commands using functions, operators, and
multi-element variables is really what R is all about, it is just that the functions
get more powerful and the variables get larger as you get deeper into R. In the
remainder of the chapter, we will look at the general methodology used in
biological data analysis, how R can assist us with this, and how we can build
programs in R.

4.1.4  The nature of experimental data

A table of numerical data like the results data frame used in the previous ex-
ample is referred to in mathematics as a matrix, and one of the big breakthroughs
in becoming competent in data analysis is realizing that almost all experimental
data can be considered in the form of a data matrix. This is because experiments
typically entail analysis of more than one sample, and involve the determination
of more than one parameter for each sample. We have already seen how a matrix

166   4 analysis and visualisation of data using r

can be used to store metabolic data in the blood analysis example in the previous
section. Although that data set was small in terms of the number of metabolites
and samples, it would clearly be trivial to extend the number of rows and col-
umns to accommodate the larger data sets that typify metabolomics studies. The
general approach is equally applicable to other areas of post genomics, such as
transcriptomics and proteomics.

A matrix is a good way of representing experimental data regardless of the
type of analytical platform, the number of samples, or the number of measured
variables. This general way of representing data is shown in Fig. 4.2. Considering
the case of a microarray experiment, each variable is a particular gene, and the
gene expression levels for each sample can be represented by a vector of expres-
sion measurements, denoted mathematically as xi, where i is the sample number.
Within this vector, each element xij represents the expression level of gene j on
the microarray. The expression level of each gene can be considered to be a vari-
able, of which there are many, hence microarray data is referred to as being multi-
variate. Multivariate data analysis techniques, introduced later in Section 4.2, are
therefore required to interpret such data.

The vectors representing the gene expression levels from individual samples
can be amalgamated into an I × J data matrix, X, where I is the total number of
samples considered and J is the number of genes per microarray. Each row of
the X matrix therefore represents an individual microarray, while each column
indicates the expression level of each specific gene over all samples. A single data
matrix is therefore sufficient to describe all the samples analysed in a given ex-
periment comprising any number of individual arrays.

In transcriptomics more generally, the variables would be the expression level of
individual genes, regardless of the analytical platform used. The number of variables
considered would be dependent on the platform, ranging from a handful if the data
was from traditional PCR, through to many thousands from a microarray experi-
ment. The number of samples would obviously depend on the size of the study being
carried out, so may range from a handful through to many hundreds or thousands.

X xi

xij

Gene ID

Sample
number

Single measured
value

Measurement vector

Fig. 4.2  Organisation of gene experimental data into a data matrix. For data from a gene
expression microarray, the row vector xi would be the gene expression profile over all genes
for a specific sample. Each column of the matrix captures the variation of an individual gene
over all samples.

4.1 introduction to r   167

Proteomics data sets can also be considered as a matrix, although exactly what
form the data takes depends on the particular proteomics protocol used. If quanti-
tative proteomics has been carried out, then the data will be superficially similar
to that seen in transcriptomics, except that the value in each element of the
matrix will indicate the level of protein expression (either relative or absolute,
depending on the protocol) rather than gene expression. However, at the time
of writing, many proteomics protocols are only capable of indicating whether
proteins are present or absent from a sample. For this type of data, we could use
some kind of coding scheme, such as 1 for protein present, 0 for protein absent,
or R’s factor data type, which is described later.

There are a lot of different names that can be given to data which is in this
form, such as matrix, array, table, or even spreadsheet. As we have seen, R even
has its own way of capturing such data—the data frame. Exactly which of these
classes a data set belongs to can be technically very important, especially in R as
we will see later, but conceptually they are all the same—they are all matrices.
The great benefit of this is that mathematicians have spent many years work-
ing with matrices and developing algorithms for manipulating, analysing, and
extracting information from them. The algorithms are there for us to apply to
our bioinformatics problems.

To see some matrix mathematics in operation, consider Table 4.2, which sum-
marizes the number of times various files were downloaded from a web server.
Each of the files is of a specific size: the front page index.html is just text, tak-
ing up 1624 bytes, welcome.png is a 23,172 byte image on that front page, and
paper.pdf is a fairly substantial research paper taking up 1,234,065 bytes that
can be downloaded via a link in index.html. We can input all this data into R
using the commands below. Note that this time, the matrix() function is used
to generate a matrix, instead of the data frame used in the previous example (the
subtle differences between a matrix and a data frame will be explained in the
next section).

> index = c(15, 27, 34, 10, 9)
> welcome = c(13, 26, 30, 10, 7)
> paper = c(2, 1, 3, 0, 1)
> days = c("mon", "tues", "wed", "thurs", "fri")

Table 4.2  Web server statistics for a very basic web site

Number of downloads

index.html welcome.png paper.pdf

Monday 15 13 2

Tuesday 27 26 1

Wednesday 34 30 3

Thursday 10 10 0

Friday 9 7 1

168   4 analysis and visualisation of data using r

> filenames = c("index.html", "welcome.png", "paper.pdf")
> downloads = matrix(c(index, welcome, paper), nrow=5,
dimnames=list(days,filenames))
> downloads # check what’s in the data frame
 index.html welcome.png paper.pdf
mon 15 13 2
tues 27 26 1
wed 34 30 3
thurs 10 10 0
fri 9 7 1
> filesizes = c(1624, 23172, 1234065)

The useful part of this is that R has a built in operator, %*% for multiplying ma-
trices. So, to get the total number of bytes downloaded per day, we can simply
multiply the downloads matrix by the filesizes vector.

> downloads %*% filesizes
 [,1]
mon 2793726
tues 1880385
wed 4452571
thurs 247960
fri 1410885

This is exactly the type of calculation that we do frequently in bioinformatics.
For example, we might want to multiply measured values in a matrix by a weight-
ing vector in order to come up with some overall score for each sample. R allows
us to do this calculation in just one line of code. This is just one example of the
matrix functionality built into R—functionality that has great utility in bioinfor-
matics.

Matrices as images—and vice versa
Bitmapped images, such as those coming from microscopes or from scanners
of gels or microarrays, are essentially data matrices, in which the value of each
element in the matrix represents the colour of the point at that position. Image
analysis can therefore be carried out in R by loading images into a data matrix
and working with that matrix. This is not as straightforward as it should be,
because bitmapped images are not normally stored in a native R format, but in
various dedicated image formats (TIF, JPG, PNG etc.). An appropriate R package,
or some serious programming, is therefore required to convert these files into
something that R can handle.

Conversely, experimental matrices can be displayed as images, and this is
sometimes a useful way of getting a quick overview of a given data set. Such
images are generically referred to as heatmaps (although in R a heatmap tends to
have additional features). For example, we can generate an image representing
the blood analysis results from Section 4.1.3 using the image() command below.

4.1 introduction to r   169

image(as.matrix(results)) # �plot results matrix as bitmapped
image

There is more about heat maps later in this chapter (Section 4.3.1).

4.1.5  R modes, objects, lists, classes, and methods

Before going much further, it is worth taking time to find out more about how
data is stored in the R workspace, and how the various data objects (e.g. vectors,
matrices, and data frames) are related.

As we saw in Chapter 2, it is common to consider a particular piece of data as
one of several fundamental data types, typically numeric (of which there may
be subtypes, such as integer and floating point), logical (of which the two-state
Boolean type is most common), and character string. R is no exception, and every
piece of data has to be of one particular basic type: numeric, complex, logical, char-
acter, or raw. In R parlance, these types are sometimes called modes. Because some
functions can only work with certain data types, R allows conversion from one
type to another if necessary. This is done using functions of the form as .type(),
of which an example is shown below.

> x <- 2.17 # assign numeric value 2.17 to x
> y <- as.character(x) # �convert number in x to character

string in y
> z <- as.numeric(y) # �convert text in y to number and

assign to z
> y # show content of y
[1] "2.17"
> z # show content of z
[1] 2.17

Being limited to these basic data types would be a little restrictive in data ana-
lysis applications so R has objects; much more complex structures built from these
basic data types. Objects are a crucial part of R, and it is impossible to feel com-
fortable in R without a reasonable understanding of the various classes of object,
how to use them, and how they are related. To start with, let’s consider the key
built-in classes of object in R.

Vectors
We have already come across these, as well as single values (scalars) which are
just a special single element type of vector. A key feature of a vector is that every
element must be of the same type, for example all numbers or all text.

Matrices
Matrices are the next step up from vectors, the only difference being that they
can have more than one dimension. As we have seen, two-dimensional matrices
are common in bioinformatics, and can be considered to be a table of numbers,
but a matrix can in fact have a third dimension, which transforms it into a cube

170   4 analysis and visualisation of data using r

of numbers. Such a matrix might be used to handle GC-MS data, with the three
dimensions of the matrix being sample number, elution time, and m/z ratio.
Indeed, a matrix may have any number of dimensions if an application requires
it, although in most bioinformatics applications two dimensions is enough. As
with vectors, it is not possible to mix data of different types (e.g. numbers and
text) within a single matrix.

Factors
Factors are R’s solution to handling categorical data. A good example of this is
capturing qualitative proteomic data where, instead of having a value recorded
for each protein in each sample, there is simply an indication of whether the
protein is present or not. One solution is to use the Boolean type, with TRUE rep-
resenting protein presence and FALSE indicating absence of a protein.

> proteinpresent <- c(TRUE, TRUE, FALSE, TRUE, FALSE)
> proteinpresent
[1] TRUE TRUE FALSE TRUE FALSE

If TRUE and FALSE are not enough we can create our own user-defined discrete
states in R by using the factor() function. This can be used to simply represent
the data in a more descriptive way, such as PRESENT/ABSENT instead of TRUE/
FALSE. However, it is most useful when we have more than two states, for ex-
ample when we want to flag the level of expression of a protein or gene as one
of three states: over-expressed, unchanged, or under-expressed. In the example
below an expression vector is created that captures the state of six genes.

expression <- factor(c("over","under","over","unchanged",
"under","under"))

R functions can be used to manipulate or derive information from such vec-
tors. For example, levels()lists the discrete states present in the data, and the
behaviour of the summary() function changes to show the occurrence of each
level instead of the statistical metrics that would be returned if expression
contained quantitative data.

> levels(expression)
[1] "over" "unchanged" "under"
> summary(expression)
 over unchanged under
 2 1 3

Lists
Lists are an extension of the vector concept in which the elements need not be
of the same type, and may in fact be of sophisticated types, such as vectors, ma-
trices, or lists. For example, a list could be used to store information about a pro-
tein, specifically the protein name, the PDB accession number, and the formula
weight of the protein:

4.1 introduction to r   171

protein <- list("glucose oxidase", "1CF3", 63355)

This is a bit like a Perl array. Individual elements can be extracted from this
list by specifying the number of the element, very much as would be done with
a vector, so protein[2] would return the accession number 1CF3. Better still,
the elements in a list can be named for easy reference, and accessed using the $
symbol. This is similar to a Perl hash.

> protein <- list(name="glucose oxidase", accession="1CF3",
weight=63355)
> protein$accession # �extract the accession number by

name
[1] "1CF3"

It is also possible to add elements to a list using the $ symbol. In the example
below, a vector of Gene Ontology (GO) IDs related to glucose oxidase is created
and stored in x. This is added to the protein list defined above, and the contents
of the list displayed.

> x <- c(16614, 50660, 6066, 6118) # �assign list of GO IDs
to x

> protein$GOIDs <- x # �add x to list as new
GOIDs field

> protein # �display content of
protein object

$name
[1] "glucose oxidase"
$accession
[1] "1CF3"
$weight
[1] 63355
$GOIDs
[1] 16614 50660 6066 6118

Lists are often used in R to pass parameters to a function, such as the param-
eters required when plotting a graph. Graphing options are necessarily of het-
erogeneous type, as they need to include the matrix of data to be plotted,
textual labels, and logical settings that specify the plotting style. Similarly,
lists are often used to return heterogeneous results from a function in a single
object.

Data frames
Technically, a data frame is a specific type of list, but it is more convenient to
think of data frames as an extension of the matrix concept. The main benefit
over a matrix is that a single data frame can contain columns with different data
types. A data frame object is therefore very similar to the spreadsheet object that
is common in packages such as Microsoft Excel.

172   4 analysis and visualisation of data using r

Mixing different data types in a single data frame is particularly useful when
dealing with data sets that include DNA or protein sequences, accession num-
bers, and annotations. Consider the BLAST search results reproduced below.

Accession Score E

Number Description (bits) Value

CAA76841.1 albumin [Canis familiaris] 43.1 0.002

P02770 �ALBU_RAT Serum albumin precursor 37.1 0.11

AAH85359.1 Albumin [Rattus norvegicus] 37.1 0.11

BAC34360.1 �unnamed protein product [Mus musculus] 36.3 0.20

AAA37190.1 alpha-fetoprotein 36.3 0.20

The numerical data can be entered as vectors as in the earlier blood compo-
nents example. The accession numbers are entered in exactly the same way,
we just need to remember to enclose them in quotation marks (") as is com-
mon in other programming languages. An example of this in action is shown
below.

> # concatenate numeric values into vectors as before
> score <- c(43.1,37.1,37.1,36.3,36.3)
> E <- c(0.002, 0.11, 0.11, 0.2, 0.2)

> # list of strings are brought together in the same way
> �accn <- c("CAA76841.1","P02770","AAH85359.1","BAC34360.1","
AAA37190.1")

> �# now bring the vectors together to create data
> �results <- data.frame(accession=accn, score=score,
EValue=E)

> # check contents of the data frame
> results
 accession score EValue
1 CAA76841.1 43.1 0.002
2 P02770 37.1 0.110
3 AAH85359.1 37.1 0.110
4 BAC34360.1 36.3 0.200
5 AAA37190.1 36.3 0.200

Functions
The objects listed thus far are all designed for holding data. In R, functions are
also defined as objects. User-defined functions are therefore stored in the work-
space, and will be included in the list returned by objects(). Creating functions
is explained in Section 4.1.8.

4.1 introduction to r   173

Other objects
So, most objects in R fall into one of the above classes. The class of a particular ob-
ject can be determined using the class() function, so typing class(protein)
after the example earlier would reveal that the protein object is a list. In most
cases, R functions are written such that they adapt their behaviour to the class
of object passed to them—they determine the class of the object before deciding
exactly what to do. Other useful functions for finding out about objects are
length() and attributes(), the behaviours of which are demonstrated below.

> class(protein) # get the class of object
[1] "list"
> length(protein) # �get number of elements in object
[1] 4
> attributes(protein) # �get other attributes (element names

in this case)
$names
[1] " name" "accession" "weight" "GOIDs"

It is also possible to define new classes of object, with their own structures.
These are sometimes referred to as S3 objects or S4 objects, reflecting which
particular version (3 or 4) of the S language definition they relate to, as R sup-
ports both versions. This is where R can start to get confusing but, as we will
see later, this is a very valuable feature as classes can be created to capture data
from complex biological applications. Objects contain individual components
called slots, which can contain named elements. These slots and elements can
then be accessed using the @ and $ operators respectively, but because the in-
ternal structure of objects can be complex, and may be subject to change as
software develops, the author of a particular class of object will usually produce
a series of functions (often called methods) that extract data from within the
depths of an object. Examples of working with complex objects can be found in
Section 4.3.1.

4.1.6  Importing data into R

Bioinformatics is characterized by data sets that are usually large and often het-
erogeneous. Standard formats to capture much of this data are emerging, but
even so a lot of time is spent converting between file formats and getting data in
and out of different software packages. R offers a great deal of functionality for
importing data from a range of sources.

The built-in R function read.table() makes importing tabular data very
simple, provided the data is available as a delimited text file (i.e. a text file con-
taining one or more rows of data, each of which contains values separated by
a specific character such as a comma). The example below loads data from the
file “blood.csv” into the data frame loadedresults. The sep parameter is
set to indicate the character used to separate columns—in this case a comma (,)
and the header=TRUE option tells the function the first row of the file contains
column headings.

174   4 analysis and visualisation of data using r

loadedresults <- read.table("blood.csv", sep=",", header=TRUE)

For this to work, the file “blood.csv” will need to be in R’s current working
directory, because this is where R looks for files if a full path is not specified
with the file name. Some people create a directory called work within the R
program directory—a more resilient approach would be to work from a directory
in your particular user area on a networked drive that is regularly backed up.
You can find out the current working directory by using the getwd() function,
set it using setwd(), and see which files are in that directory using the dir()
function.

> getwd() # �get working
directory

[1] "C:/Program Files/R/R-2.5.1"

> setwd("C:/Program Files/R/R-2.5.1/work") # �set working
directory

> dir() # �list files in
directory

[1] "blood.csv"

There is a range of optional arguments that can be used with read.table(),
to cope with the many different ways in which tabular data can be represented
in text files. These are thoroughly documented in the R help system (type
help(read.table)). It is also possible to import data that has been stored in
binary format, although this is never easy due to the many different ways in
which binary files can be constructed. It is even possible to load files directly
from remote servers on a network, or on the Internet, simply by specifying a full
URL instead of just a file name, as in the example below which loads a file from
our website.

filename <- "http://www.bixsolutions.net/blood.csv"
loadedresults <- read.table(filename, sep=",", header=TRUE)

It is also possible to import data directly from a relational database by issuing
queries to a database server such as MySQL, which is clearly of great value in
bioinformatics applications. This functionality is covered later in this chapter, in
Section 4.3.2.

4.1.7  Data visualization in R

Visualizing data is useful in many bioinformatics applications, and R provides a
number of built-in functions for graphing data, with many more elaborate graph-
ing functions available in add-on packages (e.g. scatterplot3d and ggplot2).
This is a distinct advantage of R over general purpose programming languages,
as they do not have such native functionality. To illustrate R’s visualization cap-
abilities, we will use as an example a collection of protein fractionation profiles.

4.1 introduction to r   175

These were constructed by determining the abundance of several individual pro-
teins in different fractions taken from a sample. The aim of the experiment was
to determine which of the 12 proteins studied has the most similar properties
to a particular protein of interest by comparing the fractionation profiles. Such
studies are often carried out to determine previously unknown characteristics
of proteins, for example to infer their subcellular location by association with
proteins of known subcellular location (as in Sadowski, 2006). The data in our
example comprises protein abundance data from six fractions for each of the
proteins, and our basic aim is to find which protein has the most similar fraction-
ation profile to the protein of interest over these six fractions. The data can be
loaded in directly from a CSV file at www.bixsolutions.net:

X <- read.table("http://www.bixsolutions.net/profiles.csv",
sep=",", header=TRUE)

Looking at the data, we see that each column represents a protein (labelled p1
to p12), or the protein of interest (labelled x), and reading down a column gives
us the abundance profile with respect to the six fractions. The magnitudes of the
values are clearly different for the different proteins, but this is of little import-
ance as we are only interested in identifying profiles of similar shape.

> X
 x p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
1 0 148 6 5 197 1 12 9 0 4 0 11 0
2 4 185 5 9 180 73 6 5 1 5 12 15 3
3 11 149 177 282 446 400 7 7 3 0 8 223 2
4 29 103 210 299 1264 912 3 599 2 2 6 865 387
5 7 72 131 197 520 171 181 301 411 864 561 266 763
6 1 75 7 11 125 34 241 1222 611 1175 216 133 511

The matplot() function is a powerful R function for plotting data contained
in matrices and data frames. Using this, we can very quickly produce a graph of
all the profiles together.

matplot(X,type="l") # the letter "l" specifies a line plot

This will produce a basic plot, but to create a more professional and use-
ful graph, it is necessary to utilize more of matplot’s many arguments—use
help(matplot) to find out more about these. The example below uses the col
argument to specify that R should cycle through six colours while plotting the
lines, the lty argument to cycle through five different line types (solid, dotted,
dashed, etc.), the lwd argument is used to boost the line width to 2, and axis
labels are added to the plot using xlab and ylab. This results in the graph shown
in Fig. 4.3.

matplot(X,type="l",xlab="fraction",ylab="quantity",col=1:6,lt
y=1:5,lwd=2)

176   4 analysis and visualisation of data using r

It is not really possible to see what we are looking for here, because the profile
of interest is too low. One way to resolve this is to scale each profile so that it has
a maximum value of 1. We can do this by dividing each column of the matrix by
the maximum value in that column. To calculate the vector of these maximum
values, we use the apply() function. Normally, functions such as max return a
single value, but by using apply() we can apply such functions in a column-wise
or row-wise manner. In this case, we apply the max() function to the columns of
the X matrix. Setting the second argument to 2 indicates that we want to work on
columns—if we wanted to work on rows this would be set to 1.

Xmax <- apply(X, 2, max) # returns a vector containing the
 # maximum value of each column

Another built-in function, scale(), can then be invoked in such a way that it
divides each column by the maximum value of that column. By default, scale()
also adds an offset to each column to centre the data, but in this case zero values
have an important significance as these are the baselines of the profiles, so we
switch centring off using center=FALSE.

Xscaled <- scale(X, scale=Xmax, center=FALSE)

The scaled version can be plotted using the matplot() function exactly as
before—just replace X with Xscaled. However, the similarity between protein
x and the rest of the proteins is still impossible to see because there is no in-
dication of which line relates to which column. We can solve this problem by
adding a legend using the legend() function. The key arguments here are x,
which sets the horizontal position of the legend box in the graph’s axes, and

1 2 3 4 5 6

0
20

0
40

0
60

0
80

0
10

00
12

00

Fraction

Q
ua

nt
ity

Fig. 4.3  The 13 individual protein profiles plotted together using the matplot function.

4.1 introduction to r   177

legend, which specifies the labels to apply to each line. In this case, we just take
the names direct from the data frame by using names(X) as the legend text.
The plotting agruments col, lty, lwd must be set to match the arguments
passed to matplot() if the legend and plot are to match up. Note that a back-
ground colour has been specified for the legend box by setting the bg argument
to "snow"—this is the name of one of many pre-defined colours in R, for a full
list type colours() at the R prompt. So the legend command is:

legend(x=1,legend=names(X),col=1:6,lty=1:5,lwd=2,bg="snow")

We can now see from the resulting plot (Fig. 4.4) that the protein with the most
similar profile to the protein of interest (labelled x) is p5. Reading off a graph like
this is always going to be somewhat subjective, so we will look at more rigorous
ways of quantifying these similarities later in the chapter, but for the moment
this is a promising result, and a good indication of how graphs can be generated
with just a few lines of R code.

The graphing capabilities we have seen so far are provided by R’s built-in graph-
ics package, which contains a range of other high level graphics functions for
visualizing data. These include barplot() for plotting bar charts, boxplot() for
producing box and whisker plots, contour() for contour plots, and pie() for pie
charts. Each of these functions can be called using basic syntax, as in the exam-
ples below, which generate graphs from the protein profile data. Alternatively,
these functions can be embellished by passing various other parameters, which
you can learn about using the help() function.

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction

Q
ua

nt
ity

x
p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

Fig. 4.4  The same data as in Figure 4.3, after range scaling and addition of a legend. Looking
at the legend box, we can see the effect of the col=1:6 and lty=1:5 plotting
arguments. As we look down the box on screen, we can see six colours (black, red, green,
blue, cyan and magenta) repeating every six lines, and different line styles repeating every
five lines, ultimately combining to produce a set of uniquely identifiable lines.

178   4 analysis and visualisation of data using r

barplot(Xmax) # �bar chart showing max quantity of each
protein

boxplot(X) # �distribution of quantities for each
protein

pie(apply(X,2,sum)) # comparison of total quantity of each
 # protein across all fractions

Primitive graphics functions
The above example shows how easy it is to generate graphs in R compared to
using other programming languages such as Perl. The legend function is the
epitome of this simplicity, in that it creates a complete legend box in a single line
of code. Of course, other software can produce similar graphs, via a much more in-
tuitive point-and-click interface, but what sets R apart is the ease with which these
powerful commands can be combined with lower level primitive graphics func-
tions to produce complex bespoke visualizations. This is crucial in bioinformatics,
because we often need to generate complicated visualizations such as linkage
maps, or unusual combinations of different graph types. R’s graphics package
facilitates such visualizations by supplementing its many high level graphic func-
tions by a suite of more primitive functions for plotting basic shapes. For example,
we can add a rectangle around the central part of the plot in Fig. 4.4 using the fol-
lowing call to R’s rect() function. The minimum set of values passed to the func-
tion specifies respectively the left, bottom, right, and top bounds of the rectangle.

rect(3,-0.01,5,1.01)

Other parameters can be passed to specify other features of the rectangle, such
as the fill colour and outline style. Similar functions include arrows(), lines(),
polygon(), points(), segments(), and symbols(), all of which are reasonably
self-explanatory. Information about these functions and all the parameters that can
be passed to them can be found using the help() function. Textual annotations
can be added at a specified point in a plot by using the text function, for example:

text(3.0,0.6,"similar \nprofiles")

These primitive graphics commands can be typed at the command line, but
are more normally combined together in R programs to automatically generate
bespoke plots (there is an example of this later, in Section 4.1.8). This function-
ality can be used directly within R, or can be used to generate graphical output
as part of another tool, such as a web-based application (see Chapter 5). R uses
vector graphics rather than the bitmapped graphics, so plots generated by R can
be easily scaled up without loss of quality, which is ideal in situations where you
might want to zoom in to a complex plot, or prepare figures for publication.

Creating interactive graphics
In some applications, it can be useful to interact with visualizations, to enable
zooming in to regions or retrieval of annotations or data from another dimension.

4.1 introduction to r   179

R has built-in functions that make this possible. For example, the locator()
function allows the user to select a specific position within a graph by clicking on
it with the mouse. To see this in action, type locator(n=1) at the R command
line while the graph in Fig. 4.4 is open. Then click somewhere in the graph. You
may hear a sound (depending on how your computer is configured) and the x and
y coordinates of the position you clicked will be returned in the R console. In an
R program, this information could be used as the starting point for adding anno-
tations to the plot or to retrieve some additional information about whatever is
displayed at that point.

Devices
In the examples so far, we have issued plotting commands and graphs have
appeared in a window. Working like this means that each new graph causes the
old one to be lost, which is not helpful if we want to see multiple graphs simul-
taneously, to compare results for example. To accommodate this, R allows mul-
tiple windows to be open simultaneously. There are different functions for open-
ing a new window, depending on which operating system you are using. These
commands are shown below, but in practice we have found that x11() works in
all three operating systems, so would recommend using that in your R programs
to ensure that they are cross-platform.

x11() # open a new window for plotting (in Linux)
windows() # open a new window for plotting (in Windows)
quartz() # open a new window for plotting (in Mac OS)

In R, a window is one particular instance of a device on which graphics can
be displayed. Windows are therefore manipulated using a suite of device
handling functions, whose names begin with dev.. Some examples are shown
below.

> dev.list() # list open devices
windows windows windows windows
 2 3 4 5
> dev.set (3) # make window 3 the active device

The active device is where any graphics commands will be sent. If a window
is currently the active device, the word ACTIVE will be shown in brackets in the
title bar of that window. Windows are not the only type of R device. Another use-
ful device is PDF, which can be created using the pdf() function. This creates
a PDF (portable document format) file with the specified name, in the current
working directory. For example:

pdf("figure1.pdf") # create a PDF device called figure1.pdf

All graphical output will now be sent to that file, as long as it is the active de-
vice. This is very useful for capturing the output of an automated data analysis
program, or for printing figures or sharing them with colleagues. A PDF reader

180   4 analysis and visualisation of data using r

such as Adobe Acrobat Reader is required to view the PDF, and you will prob-
ably need to close the device by issuing the command dev.off(which = dev.
cur()) before being able to access the file without throwing a sharing violation
error. The functions bmp(), jpeg(), and png() are similar to pdf(),except that
they create bitmapped image files (in BMP, JPEG, and PNG formats respectively)
instead of PDFs. Again, these devices need to be closed before the file can be
viewed.

Summary
This section has given an indication as to how R’s built-in data visualization cap-
abilities are used and, although this is just the tip of the iceberg in terms of
what is possible, the general approaches hold regardless of the type of graph
being drawn. There are more examples later in this chapter, but to see the full
extent of the graphics functionality available in R’s base graphics package, type
help(graphics) at the R prompt.

4.1.8  Writing programs in R

At this point, you have probably realized that everything covered so far could
have been done just as effectively, and probably much more quickly, in a spread-
sheet application such as Microsoft Excel. You would be right of course, and there
is no doubt that Excel is a fine tool for simple one-off manipulation of small
data sets. However, bioinformatics is typified by large data sets, complex analysis
algorithms, and the need for repetitive analysis. This is where R really comes into
its own, as its command-line ethos is ideal for writing programs that automate
data processing workflows. For example, producing an R program to automate
the generation of the fractionation profile plots in the previous example is as
easy as pasting all the relevant commands together in the correct order in a text
file—the result of this is shown below. Any text editor can be used to do this,
and the choice of editor to use with R is really down to personal preference. We
would refer you to the survey of editors provided at the beginning of the previous
chapter (Section 3.1.5), as the basic process of writing an R program is similar to
writing Perl code. If you find a particular editor convenient for programming in
Perl, then you may as well use the same editor with R.

Depending on your operating system, R may have some kind of internal text
editor for writing programs, or will know about an editor installed on your com-
puter. If so, you can initiate editing of a file either by opening a file using RGui’s
File menu, or by using the edit() function in the R Console.

edit(file="profiles.r")

If you feel uncomfortable with whatever editor R is presenting you with, you
can tell it to use any other editor installed on your system by using the options()
function. In the example below (for Windows), R is told to fire up Komodo Edit
whenever we call the edit() function to edit a program.

options(editor = "komodo.exe")

4.1 introduction to r   181

Note that it is customary, but not compulsory, to give R programs file names
with the extension .r. Hence the example below, which captures the sequence
of commands issued in the graphing example from the previous section, should
be saved in the working directory as profiles.r.

PROFILES.R
#
Simple R program to load a data matrix, scale it and plot
the result.

clear out the workspace first
rm(list = ls())

load data frame from web site
X <- read.table("http://www.bixsolutions.net/profiles.csv",
sep=",", header=TRUE)

rangescale data by dividing by the maximum value in each
column
Xmax <- apply(X, 2, max)
Xscaled <- scale(X, scale=Xmax, center=FALSE)

plot columns in matrix as lines on a single graph
matplot(Xscaled,type="l",xlab="fraction",ylab="quantity",col=
1:6,lty=1:5,lwd=2)

add legend to graph
legend(x=1,legend=names(X),col=1:6,lty=1:5,lwd=2,bg="snow")

To execute a program we use the source() function. For this to work, the
program file must be in the current working directory. We can then issue the
command below.

source("profiles.r")

Alternatively, it is possible to run this program directly from www.bixsolu-
tions.net by specifying the full URL. The command is:

source("http://www.bixsolutions.net/profiles.r")

So, now we have our program and we know how to execute it. If a labora-
tory colleague sends us a new data set, we can just change the filename in the
read.table line and run the program on that new data, automatically gener-
ating the required graph in a matter of seconds. (Thanks to the use of matrices
we do not even need to specify the number of proteins or fractions in the data
set.) This type of scripting is a great time saver, and clearly very useful in its own
right. However, R goes beyond simple scripting by allowing the creation of new

182   4 analysis and visualisation of data using r

functions, and fully fledged programs with structures similar to those covered in
the Perl chapter.

Beyond scripting: loops and conditionals
To avoid repetition, we refer you to Chapter 3 for more detailed descriptions of
control structures and their uses. In this section we just cover the basic syntax
needed to define these structures in R. The syntax is in fact very similar to Perl.

Conditional statements are constructed using the if statement, a simple ex-
ample of which is shown below:

> value <- -1
> if (value < 0) print("value is negative")
[1] "value is negative"

In this example, the less than (<) operator is used to check whether the number
stored in value is less than zero (i.e. is it negative). Other comparison operators in-
clude greater than (>), equal to (==), combinations of these (<= and >=), and not
equal to (!=). Multiple conditions can be combined using the and (&&) and or (||)
operators, just like in Perl. If multiple commands need to be executed when the con-
dition is met, it is necessary to group the commands into a code block defined by en-
closing the commands between curly braces ({}). Again, this is just like Perl, and an
example is given below. It makes little sense to enter such complicated constructs at
the command line, so such things are usually only used as part of programs.

if ((residue == "D") || (residue == "E")) {
 print("negatively charged amino acid")
 negativeresiduecount = negativeresiduecount + 1
}

R provides three statements for creating different types of loop: for, re-
peat, and while. A loop can be constructed using the for statement, in very
much the same way as it would be in Perl. The generic format of the for state-
ment is for (i in range), where i is the loop variable, and range is the list
of values that will be attributed to it on each pass through the loop. Typically,
range is a series of integers, which in R is defined using the colon operator, for
example 1:10 returns the integers from one to ten. However, range can in fact
be any numerical R vector. As with if statements, multiple commands may be
grouped together using curly braces such that they all execute on each cycle of
the loop. The statements next and break may be used to exit the current cycle,
or the whole loop, respectively.

The program below shows an example of a typical program combining a for
loop and conditional statements with some of the primitive graphics functions
introduced earlier, to produce a view of a protein sequence annotated with its
secondary structure. A vector called struct is used to define the structure at
each amino acid position, with 1 indicating that a residue is part of an alpha
helix, 2 denoting a beta sheet, and 0 for other features such as turns and loops.
The output of this program is shown in Fig. 4.5.

4.1 introduction to r   183

SSSEQ.R
#
Simple R program to display a sequence with structural
annotation

define sequence and secondary structure
seq <- "GARVHMDGARLMNAAVALRIPPARLVEHCDSVSFCFSKG"
struct <- c(0,0,2,2,2,2,2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,
			 1,1,1,1,0,0,0,0,0,2,2,2,2,2,0,0,0,0)
residuecount <- 39;

set up the window for plotting
x11() # may need quartz() for Mac or windows() for PC
plot.new()
plot.window(c(0,40),c(-20,20))

plot a line representing the length of the sequence
segments(0.5,0,39.5,0)

plot the sequence and features
for (i in 1:residuecount) {
 text(i,-2,substr(seq,i,i)) # write residue letter
 if (struct[i] != 0) {
 �if (struct[i] == 1) boxcolour <- "firebrick"

alpha helix
 �if (struct[i] == 2) boxcolour <- "yellow3"

beta sheet
 �rect(i-0.5,-1,i+0.5,1,col = boxcolour,

border = NA)
 }
}

plot a legend
legend(x=0,y=8,legend=(c("alpha helix","beta sheet")),
 pch=15,col=c("firebrick","yellow3"),bg="snow")

G A R V H MD G A R L M N A A V A L R I P P A R L V E H C D S V S F C F S K G

Alpha helix
Beta sheet

Fig. 4.5  Annotated protein sequence produced using low level R graphics functions.

184   4 analysis and visualisation of data using r

Writing functions
Functions are essentially R programs that can be called just like the built-in func-
tions we have been using so far in this chapter. They are analogous to functions/
subroutines in Perl, and as in Perl the benefit of an R function is that if we need
to perform something often, we can wrap the relevant code up into a function
that can then be called with just one line of code, either in a program or (in the
case of R) from the command line. This type of program code re-use increases ef-
ficiency of program development, not just by reducing the need to re-type things,
but also by reducing debugging time.

R functions are defined using function(). Consider the example program
below, which defines a function called rangescale. This function scales all
columns in a matrix such that their maximum value is 1 by dividing by the
maximum value of each column, just as we did in Section 4.1.7. The R com-
mands that make up the function are grouped together in the curly braces ({}).
This group of commands is assigned to a function called rangescale with the
first line statement rangescale <- function(X). Variables named between
the function brackets indicate that objects must be passed into the function,
and the variables listed in the brackets following the return command indi-
cate variables that are passed out of the function on completion. In this case,
the function expects to see an object coming in, which is assigned to X, and
returns the range-scaled matrix, Xscaled. Note that any other variables used in
the function, (in this case just Xmax), are internal to the function and therefore
do not appear in the R workspace after the function is called. This concept of
the scope of variables is exactly the same as when the strict pragma is used
in Perl.

RANGESCALE.R
#
R program to define a function to rangescale columns of a
matrix
rangescale <- function(X) {
 Xmax <- apply(X, 2, max)
 Xscaled <- scale(X, scale=Xmax, center=FALSE)
 return(Xscaled)
}

Before we can use a function, we first have to save the program that defines
it (let’s save the above program as rangescale.r), and then run that program
using source(). The newly defined function is treated by R just like any other
object, so once defined it is visible in the workspace. It can then be called just like
any built-in function.

source("rangescale.r") # �run the program to define the
function

N <- rangescale(M) # call the function to rangescale
 # matrix M and place the result in N

4.1 introduction to r   185

4.1.9  Some essential R functions

We have already seen some of the most useful built-in R functions in action but,
as mentioned at the start of the chapter, it is not possible for us to cover them all.
However, there are a few generally useful functions that we wish we had known
about when starting out in R, so we have gathered together brief introductions
to those functions in this section. A common feature linking many of these func-
tions is that they remove the need to use loops when dealing with data matrices.
Avoiding loops makes R programs cleaner and faster, especially when dealing
with large data sets.

apply(X, margin, fun, …) and related functions
As we have already seen in Section 4.1.7, the benefit of the apply() function is
that it can apply a function (specified in fun) to multiple values held in a matrix
or list. The function can be applied to rows, columns, or both according to the
value passed in margin. It can take a while to get in the habit of using apply()
optimally, especially if you are used to programming in another language. To
demonstrate apply() in use, let us again read in the protein profile data matrix
from Section 4.1.7 and take a look at it:

X <- read.table("http://www.bixsolutions.net/profiles.csv",
sep=",", header=TRUE)
> X
 x p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
1 0 148 6 5 197 1 12 9 0 4 0 11 0
2 4 185 5 9 180 73 6 5 1 5 12 15 3
3 11 149 177 282 446 400 7 7 3 0 8 223 2
4 29 103 210 299 1264 912 3 599 2 2 6 865 387
5 7 72 131 197 520 171 181 301 411 864 561 266 763
6 1 75 7 11 125 34 241 1222 611 1175 216 133 511

If we perform the sum() function on this, we get a simple sum of all values in
the matrix. By using apply(), we can sum over each individual column or row,
as shown in the examples below.

> sum(X)
[1] 16099

> apply(X,1,sum) # calculate sum for each row (margin=1)
[1] 393 503 1715 4681 4445 4362

> apply(X,2,sum) # calculate sum for each column (margin=2)
 x p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
 52 732 536 803 2732 1591 450 2143 1028 2050 803 1513 1666

Because apply()can be used with any function, including user-defined func-
tions, very complex processing can be carried out in this way. Even multi-argument

186   4 analysis and visualisation of data using r

functions may be applied—it is simply necessary to set all but one of the argu-
ments to fixed values in the optional apply() arguments.

There are other functions such as lapply(), sapply(), vapply(), and
replicate() that provide the same general functionality as apply(), but are
optimized for slightly different use cases. The R help system provides the details
of each variant.

sample(x, size, replace=FALSE, prob=NULL)
In statistical analyses, it is often necessary to randomly select a subset of items
from a list, for example selecting a group of samples to use as a test set when
doing pattern recognition. The sample() function fulfils this requirement by
randomly selecting the specified number of items from a vector. This selection
can be made according to a particular probability distribution (set using the prob
argument) and can be made to pick items with (replace=TRUE) or without
(replace=FALSE) the possibility of each sample being chosen more than once.
In the following example, the names of three unique samples are randomly
selected from a list of five.

> X <- c("GSM455115","GSM455121","GSM455118","GSM455120",
"GSM455125")
> sample(X,3)
[1] "GSM455125" "GSM455121" "GSM455120"

sort(x, decreasing = FALSE, …)
The sort() function re-arranges values of a given vector or factor into numerical
order (or alphanumerical order if the vector contains strings). The decreasing
argument is used to specify whether the order should be ascending or descending.

> z <- c(0, 4, 11, 29, 7, 1)
> z
[1] 0 4 11 29 7 1
> sort(z)
[1] 0 1 4 7 11 29
> sort(z,decreasing = TRUE)
[1] 29 11 7 4 1 0

order(…, na.last = TRUE, decreasing = FALSE)
The order() function is used in similar situations to sort(), but works in a
slightly different way. When passed a vector, instead of returning that vector
with re-ordered elements, order() returns a new vector indicating the order of
the elements. To demonstrate this, we can again use the protein profiles data set.
Let's load it into R and remind ourselves what it looks like:

> X <- read.table("http://www.bixsolutions.net/profiles.csv",
sep=",", header=TRUE)

4.1 introduction to r   187

> X
 x p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
1 0 148 6 5 197 1 12 9 0 4 0 11 0
2 4 185 5 9 180 73 6 5 1 5 12 15 3
3 11 149 177 282 446 400 7 7 3 0 8 223 2
4 29 103 210 299 1264 912 3 599 2 2 6 865 387
5 7 72 131 197 520 171 181 301 411 864 561 266 763
6 1 75 7 11 125 34 241 1222 611 1175 216 133 511

Applying order() to the column for protein p1 returns a vector indicating the
order of the values in that column:

> order(X$p1)
[1] 5 6 4 1 3 2

This tells us that the fifth item in the column has the lowest value (it is 72), the
sixth item has the second lowest (75), then the fourth (103), and so on. This vec-
tor has many uses—one obvious example is to re-order the rows in the data table
according to the values in the p1 column, like this:

> X[order(X$p1),]
 x p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
5 7 72 131 197 520 171 181 301 411 864 561 266 763
6 1 75 7 11 125 34 241 1222 611 1175 216 133 511
4 29 103 210 299 1264 912 3 599 2 2 6 865 387
1 0 148 6 5 197 1 12 9 0 4 0 11 0
3 11 149 177 282 446 400 7 7 3 0 8 223 2
2 4 185 5 9 180 73 6 5 1 5 12 15 3

rev(x)
Sticking with the theme of re-ordering, the rev() function reverses the order
of the elements in the vector (or any other object for which reversal is defined)
passed to it.

system.time(expr, gcFirst = TRUE)
Finding out how long R takes to carry out a given task is essential when opti-
mizing program code, and can also be used to benchmark installations of R. The
system.time() function provides a built-in method for timing the execution
of any R activity. The command or function that you want to time is passed to
system.time() in the expr argument. It is then executed and the elapsed time,
in seconds, taken to execute that function will be returned. The example below
demonstrates timing how long it takes R to produce a 10,000 by 10,000 matrix of
normally distributed random numbers.

> system.time(replicate(1e4,x<-rnorm(1e4)))
 user system elapsed
 8.64 0.22 8.86

188   4 analysis and visualisation of data using r

t(x)
The t() function transposes the matrix or data frame passed to it, such that rows
become columns and columns become rows. This is a very common operation in
matrix maths and is often used when we need to present a data matrix to a func-
tion with a particular orientation. A trivial example of this in use is shown below.
Examples of it being used in anger can be found later, in Sections 4.2.3 and 4.2.4.

> X <- matrix(1:9,3,3)
> X
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> t(X)
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

table(…)
There are many situations in bioinformatics when we want to extract the fre-
quency distribution for a given factor from a large data set. The table()function
is a powerful tool for doing exactly that in a single line of code. To demonstrate
this, we need some data with a reasonably large number of observations, so let's
pull a built-in example R data set into the workspace and take a look at it:

> data(iris)

> View(iris)

This data set consists of 150 sets of morphological measurements from three
species of iris flower. We can generate a table showing the frequency of occur-
rence of each petal width per species with the command below. This reveals a
clear relationship between species and petal width that would have been very
difficult to spot simply by looking at the original data.

> table(iris$Petal.Width, iris$Species)

 setosa versicolor virginica
0.1 5 0 0
0.2 29 0 0
0.3 7 0 0
0.4 7 0 0
0.5 1 0 0
0.6 1 0 0
1 0 7 0

4.1 introduction to r   189

1.1 0 3 0
1.2 0 5 0
1.3 0 13 0
1.4 0 7 1
1.5 0 10 2
1.6 0 3 1
1.7 0 1 1
1.8 0 1 11
1.9 0 0 5
2 0 0 6
2.1 0 0 6
2.2 0 0 3
2.3 0 0 8
2.4 0 0 3
2.5 0 0 3

The table() function provides a lot of additional functionality, so it is worth
studying the documentation for it, and for the related ftable()function that
generates multidimensional frequency tables in the case where three or more
variables are investigated simultaneously.

which(x, arr.ind = FALSE, useNames = TRUE)
This is a useful function for returning the elements in an object that fulfil a par-
ticular criterion. Like apply(), it simplifies program code and speeds things up
because we can avoid stepping though an object checking elements one by one.
In the example below, a five element numeric array is created. When which() is
called with the condition seqlength>20 it returns the indices of the elements
that meet that condition.

> seqlength <- c(16,47,35,12,45)
> which(seqlength>20)
[1] 2 3 5

This is a quick and easy way to filter items out of large data structures accord-
ing to a particular quantitative characteristic, for example pulling out genes that
have a fold change over a particular threshold in a transcriptomics experiment.

4.1.10  The RStudio integrated development environment

Thus far, we have been interacting with R directly, using the very basic inter-
face that it provides. This is fine for grasping the concepts underpinning R using
simple examples, but if you are planning more substantial interactions with R
we strongly recommend RStudio, an open source integrated development envir-
onment (IDE) designed specifically for R. RStudio provides an advanced R console
augmented with useful features, including a view of the workspace, a command
history, file editor, file browser, package manager, plotting tools, and integrated
documentation. This IDE makes the process of working in R much more comfort-
able, and particularly helps when developing and debugging R programs.

190   4 analysis and visualisation of data using r

An example of RStudio in action is shown in Fig. 4.6. The program window is
split into four panes, the lower left of which is the familiar R console into which
commands can be entered and results returned. The pane in the top right sum-
marizes the content of the current workspace, providing a more convenient al-
ternative to the objects() function. As well as showing the current workspace
objects, it also allows you to view the content of these objects simply by clicking
on them. Tools at the top of this pane provide the ability to load and save the
workspace, and load text-based data sets (e.g. CSV) into R as a data frame. The top
left pane contains a text editor for developing R programs. This editor provides a
number of useful R-specific features, including automatically coloured text and
auto-completion (activated using the Tab key). Finally, at the bottom right is a
multi-function pane that provides a file browser, package manager, online help,
and plotting window. The plotting window has an Export button that makes it
easy to export plots to files in a user-specified format and resolution.

The beauty of RStudio’s IDE is approach is that all these panels work together.
So, for example, when a program is loaded it appears in the file editor pane. This
program can then be run simply by clicking the Source button at the top of the
pane. This sends a source command to the R console to execute the program.

Fig. 4.6  The RStudio IDE running under Windows. The four panes provide (clockwise from
top left) a text editor for writing R programs, a list of objects in the current workspace,
plotting output, and finally the R console. Most of the panes have multiple functionality,
accessed via tabs at the top – for example the workspace pane doubles as a command line
history viewer.

4.2 multivariate data analysis   191

Any plots produced by the program automatically appear in the plots pane, and
the workspace pane is updated to show objects created by the program. RStudio
also has integrated version control, a topic which we cover in more detail in
Chapter 6.

RStudio can be downloaded from www.rstudio.org, where there are desktop
versions for Windows, Mac OS, and Linux. There is also a server version for Linux-
based servers, which makes RStudio functionality available remotely via a web
browser. This latter option is useful if you set up a dedicated server for compu-
tationally intensive R jobs and want to log in from time to time to start analyses
and check results.

4.2  Multivariate data analysis

Much has been made of the relatively large size of data sets emanating from
modern bioanalytical techniques, such as high-throughput sequencing and gene
expression analysis. As mentioned previously, another key characteristic of
such data is that it is multivariate, by which we mean that multiple values are
acquired from each sample or time point we analyse. These values might be gene
expression ratios, protein quantities, or metabolite concentrations. Multivariate
analysis techniques have been developed specifically for the investigation of this
type of data. Typical tasks include exploratory analysis, where we simply want to
visualize a data set in some meaningful way, through to classification, where we
seek to assign each sample to a defined class according to the characteristic pat-
tern of the measured variables. In rare cases we may seek to perform multivariate
calibration, where multiple measured variables are reduced to a continuous value
relating to something of interest. The built-in support for matrix mathematics
makes R an ideal platform for multivariate data analysis.

4.2.1  Exploratory data analysis

The aim of data exploration techniques is to provide a way of visualizing vari-
ation within large multivariate data sets. This is sometimes an end in itself, but it
is also a useful way of evaluating whether the data is of sufficient quality or suffi-
cient information content to warrant further study. For example, there is clearly
no point in expending effort attempting to classify samples into different groups
according their gene expression profiles if initial exploration of the data shows
that there is no sign of correlation between the data acquired and the sample
types analysed.

4.2.2  Scatter plots

One of the simplest, yet most effective, forms of exploratory analysis is the construc-
tion of scatter plots. A typical application of this in bioinformatics is the identification
of differentially expressed genes from microarray data. By plotting, for each gene, a
point on a graph at coordinates (aj,bj), where aj is the expression level of gene j in
sample A and bj is the expression level in sample B, genes which show substantially
different expression levels between the two samples can be clearly seen. Typically,

192   4 analysis and visualisation of data using r

the expression values are plotted on log scales to provide more clarity to the figure.
Genes with similar expression levels fall along a diagonal line across the plot. Genes
that fall more than a specified distance from this line can be considered to exhibit a
significant difference in expression between the two samples. The definition of a sig-
nificant difference varies depending on the application, and according to the general
level of noise in the data, but typically a two-fold change in expression would be con-
sidered significant. Lines marked on the scatter plot representing a two-fold change
can be superimposed so that the genes of interest can be clearly seen.

4.2.3  Principal components analysis

A significant limitation of the scatter plot approach is that it is limited to pair-
wise comparisons, with just two samples in any one plot. If we want to compare
the data from more than two samples, or compare the actual expression profiles
of multiple genes, then more advanced techniques are required. One such tech-
nique is principal components analysis (PCA).

PCA is a way of reducing a large multivariate data matrix into a matrix with a
much smaller number of variables (called principal components, or PCs), without
losing important information within the data. In mathematical terms, PCA is the
reduction of the original data matrix, X, into two smaller matrices, the scores, T,
and loadings, P. The product of the scores and the transposed loadings, P’, plus a
residual matrix, E, gives the original data matrix (Equation 4.1).

	 	 (4.1)

There are a number of algorithms for calculating T and P, the most common
being singular value decomposition (SVD)—one of the standard matrix manipula-
tions alluded to in Section 4.1.4. We will not delve further into the maths here, suf-
fice to say that the way that the PCs are calculated means that they are delivered
in the order of largest variance first, hence the first PC (PC1) captures the most
information in the data, PC2 the second most information, and so on. The scores

Sample
number

=

T P

.

n × d m × d

X

Gene ID

n × m

PCs

PCs

Fig. 4.7  Relationship between the data matrix (X), scores matrix (T) and loadings matrix
(P) in principal components analysis. In this simple example, the number of samples, n, is 10,
the number of measured variables (e.g. genes), m, is 7, and the number, d, of PCs considered
is 3. The highlighted row in X and column in P show what is required to generate the first PC
score for sample 3.

4.2 multivariate data analysis   193

matrix T is determined by multiplying X by the matrix of loadings, P, as shown
in Fig. 4.7. In simple terms, this means that the scores for a particular sample are
weighted sums of the original variables. For example, the first PC score for the
third sample in the data matrix shown in Fig. 4.7 would be calculated as:

	 	 (4.2)

In many cases just the first two or three components are sufficient to capture
the bulk of the variance (hence the bulk of the information) in a given data set.
Each sample can then be plotted on a simple two- or three-dimensional graph at
the position dictated by its first two or three PCA scores. The relative positions of
the samples in this plot indicate the relative similarities between samples, with
similar samples appearing at similar positions within the graph. Variance in the
higher PCs is often due to experimental noise, so plotting only the first two or
three PCs not only simplifies interpretation of the data, it also reduces the noise.

To do PCA in R, we can use the prcomp() function, which is part of the stats
package included in the basic installation of R. A program to perform PCA on the
protein profiles data from Section 4.1.7 is shown below. Much of this program will
be familiar from the previous examples, indeed it makes use of the rangescale()
function defined previously. (So, for the program to work, rangescale.r should
be available in the working directory.) The new material is in the latter part of the
program, which performs PCA and then generates a labelled scatter plot in which
the position of the point representing each profile is defined by its PCA scores.

PCA_EXAMPLE.R
#
Program to load in data matrix, calculate principal
components and plot resulting scores.

rm(list=ls()) # clear workspace

source("rangescale.r") # define our rangescale function

load data matrix from file
X <- read.table("http://www.bixsolutions.net/profiles.csv",
sep=",", header=TRUE)

Xscaled = rangescale(X) # scale the profiles

result = prcomp(t(Xscaled), center=FALSE) # �perform PCA on
transpose

extract the scores matrix from the result
scores=result$x

plot PC1 against PC2
plot(scores[,1], scores[,2], xlab="PC1",ylab="PC2")

194   4 analysis and visualisation of data using r

add labels to points (note 0.005,0.003 offset to avoid
obscuring points)
text(scores[,1]+0.005, scores[,2]+0.003, names(X))

Note that prcomp() returns the results in an object of the specially defined
class prcomp. The PCA scores are contained in the x component of this object,
and are extracted using the $ operator. Note also that we had to transpose the
data matrix using t() to get it into the correct orientation for prcomp(). The
result of running this program is shown in Fig. 4.8.

4.2.4  Hierarchical cluster analysis

Hierarchical cluster analysis (HCA) is another exploratory data analysis technique
which, like PCA, is designed to reveal relationships between samples, or between
the molecular entities (e.g. genes) being studied. The result of HCA is a tree dia-
gram, or dendrogram, in which each sample is represented by a branch, and the
distance between branch tips indicates the level of similarity between samples.
Such diagrams are used in many areas of bioinformatics, due to their ability to
represent large multivariate data sets in a reasonably intuitive way.

The dendrograms are created by a recursive process in which the pairwise simi-
larity between every sample and every other sample is calculated. The samples
representing the two most similar samples are then joined using branches whose

–1.3 –1.2 –1.1 –1.0 –0.9 –0.8 –0.7

–1
.0

–0
.5

0.
0

0.
5

PC1

P
C

2

x

p1

p2p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

Fig. 4.8  PCA scores plot generated from the profiles data set. The protein of interest (x)
and protein p5 appear very close in the plot, indicating that their profiles are similar,
suggesting that the two have similar properties. Other groupings, such as p6, p8 and p9 are
also eminently sensible if we refer back to the profiles in Figure 4.4.

4.2 multivariate data analysis   195

length is related to the level of similarity between the samples. The process is
then repeated, with the two samples already accounted for being agglomerated in
such a way that they can be considered as a single sample. This process is repeated
until all samples have been joined together. This method is capable of display-
ing the relationship between entities in a data set, and unlike PCA it is easily
extended to very large data sets without cluttering the plot or losing information.

All hierarchical clustering follows the general approach set out above, but there
are a lot of variations in how the similarity between samples is calculated, and
how samples are joined together. The primary method of determining the level
of similarity between two samples is by calculating the distance between them in
the multidimensional space of the measured variables (e.g. the quantity of protein
measured in the fractionation example). The process is easy to understand for two
measured variables, as shown in Fig. 4.9, but is equally applicable to any number of
variables. Taking the two-dimensional case in the figure as an example, the most in-
tuitive distance measure is the Euclidean distance—the shortest distance between
the two points. This distance, d, is trivially calculated using Pythagoras’ theorem:

	 	 (4.3)

Extending this to further variables simply involves adding the squared differ-
ences for the other variables within the square root. For the case of N variables,
the calculation for each sample would be:

	 	
(4.4)

However, the Euclidean distance is not the only measure. If we want to particu-
larly emphasize samples which are markedly different from others, we can amp-
lify the distance by squaring it. For the two-dimensional example, the squared
Euclidean distance is simply Equation 4.3 with the square root removed.

If we want to emphasize the difference between samples according to the
value of the largest difference between values of a single variable, regardless of

Variable 2

A1 B1

A2

B2

A

B

C

Variable 1

Fig. 4.9  Illustration of distance between samples in variable space. In this case, we consider
two samples, A and B, with two measured variables. There are many ways in which the
distance between the samples can be calculated.

196   4 analysis and visualisation of data using r

what that variable is, we can use the maximum distance (sometimes called the
Chebychev distance):

	 	 (4.5)

R has a built-in function, dist(), for calculating the distance between objects
described in a multivariate data matrix. The distance measure used is selected by
setting the method parameter to one of the following methods: "euclidean",
"maximum", "manhattan", "canberra", "binary", or "minkowski". The
command for calculating the Euclidean distance matrix is shown below. Note
that the data frame, Xscaled, is transposed, using the t() function, because the
distance function expects each row of data to represent an object.

d <- dist(t(Xscaled), method = "euclidean")

A dendrogram object can then be created from this distance matrix using R’s
hclust() function. This object can then be plotted using the plot() function,
resulting in the dendrogram shown in Fig. 4.10. The commands to do this are
shown below. Note that the plot() function detects that an hclust() dendro-
gram object has been set to it, and deals with it accordingly.

p1
0

p1
2

p7

p8 p6 p9

p1

p2 p3

x

p5

p4 p1
1

0.
0

0.
5

1.
0

1.
5

Cluster dendrogram

t(d)
hclust (*, "complete")

H
ei

gh
t

Fig. 4.10  Dendrogram generated from the protein profiles dataset. Note that the profile of
protein p1 is shown as very different to the other profiles. Looking at Figure 4.4, this is not
surprising as the profile of p1 is clearly different from the others, effectively peaking much
earlier. In the PCA plot in Figure 4.8, p1 did not appear as such an outlier because, taking a
global view of the dataset across all samples, the variance associated with the first few points
in the profile was not particularly significant, so p1 would only appear as a outlier if less
significant PCs were plotted (i.e. PCs other than 1 and 2).

4.2 multivariate data analysis   197

dendrogram <- hclust(t(d), method = "complete", members = NULL)
plot(dendrogram)

Just as there is a choice of method for calculating the distance, or similarity,
between two samples, so there is a range of linkage algorithms for joining clus-
ters together as the clustering process progresses. Essentially, a linkage algorithm
defines which point in a cluster is used to represent that cluster when the dis-
tances are calculated. The most obvious approach is the weighted average, where
each cluster is represented by the average position in the variable space of the
samples that make up the cluster—this essentially represents the centre of gravity
of the cluster. Other popular methods include complete and single linkage. Using
complete linkage, the distance between two clusters is calculated using the lar-
gest distance between individual points in those clusters—this promotes tight
clusters over those with more variance. Single linkage is the opposite, where the
distance is measured according to the closest two points in the two clusters—this
allows clusters to be joined on the basis of just two similar samples, regardless of
the spread across the variable space that each cluster exhibits.

A more advanced linkage algorithm, called Ward’s method, moves away from
simple geometric solutions, and joins clusters not just on simple distance meas-
ures but according to which of the agglomerated clusters will have the least vari-
ance. This approach has the benefit of promoting tight clusters, but doesn’t suf-
fer the sensitivity to outliers found in complete linkage. For this reason, it is often
used as the linkage algorithm of choice. The hclust() function supports all the
above linkage methods, and these can be selected by setting the method param-
eter to "average", "complete", "single", or "ward".

Clearly, there is a wide range of possible combinations of parameters for
performing HCA, and experience shows that these can result in markedly dif-
ferent dendrograms, leading to potentially different interpretations of the data
set. It is therefore very important to ensure that the particular distance meas-
ures and linkage algorithms used are appropriate, either by considering in de-
tail how each approach works and how this relates to the particular data set
being analysed, or by following best practice described in the literature for
similar data sets. It is also important to consider the robustness of the results
obtained—if a particular clustering behaviour is observed only in the dendro-
gram created by a very specific set of HCA parameters, then it may not be wise
to assume that the clusters genuinely represent the relationships between the
samples.

In most applications, the purpose of hierarchical clustering is to reveal rela-
tionships between samples according the multiple measured variables for each
sample. Sometimes, however, we may instead (or also) want to reveal the rela-
tionships between the measured variables. A good example of this is gene expres-
sion data, where instead of clustering the samples, we often want to cluster the
genes according to the similarity of their behaviour across those samples. Doing
this in R is simply a matter of using the t() function to transpose the data prior
to the process of creating a dendrogram, so that the samples become variables
and vice versa.

198   4 analysis and visualisation of data using r

In situations where it is beneficial to get an indication of the detailed content
of the data matrix, as well as both the relationship between the samples and
between the variables, R has an excellent built-in function called heatmap(),
which uses dist() and hclust() to perform hierarchical clustering on the data
matrix and its transpose and then appends dendrograms generated from this to
the two sides of a square image representing the original data matrix. The rows
and columns of the data matrix are re-arranged such that they line up with their
respective dendrogram branches. The results of using this function with micro-
array data are shown in a later example.

4.2.5  Pattern recognition

In many bioinformatics applications, we are particularly interested in being able
to classify objects (be they samples, patients, or molecules) according to some
measured characteristics. For example, many papers have been published show-
ing how genomic, metabolomic, or proteomic profiles can be used to classify
biological samples according to phenotype, for example to differentiate between
healthy and diseased states for particular diseases. This is important because it
raises the possibility of detecting diseases according to the behaviour of multiple
biomarkers, rather than a single biomarker as has traditionally been the case.
This has the potential to improve accuracy of diagnosis, simply because it takes
into account more biological factors. Indeed, it is also the first step towards dis-
covering diagnostic biomarkers, which is a valuable activity in its own right. Such
classification could be done by looking at the output of an exploratory technique
such as HCA or PCA, but we really want an automated computational method if
we are to ensure objectivity and high data throughput.

Pattern recognition is one name given to the data analysis approach used
to achieve this. It involves building a classification model from a data matrix
acquired from samples of known class. The model is effectively a mathematical
transformation relating the measured variables to a number indicating the class
of sample (e.g. 0 for healthy, 1 for diseased). Crucially, a separate matrix of data
from samples of known class is collected and used to test the resulting classifica-
tion model. The performance of the classification model can therefore be quoted
using easily understood quantitative measures such as the proportion of test sam-
ples that are correctly identified by the model. Alternatively, the performance
can be specified in terms of the specificity and sensitivity of the model, which
are derived individually from the proportion of correctly identified positive sam-
ples and correctly identified negative samples. Some pointers for starting to build
classification models in R are provided in Section 4.3.3.

4.3  R packages

So far in this chapter, we have limited ourselves to using the basic installation of
R. This is useful in its own right, thanks to a number of powerful built-in pack-
ages, including graphics and stats, functions from both of which we have al-
ready used in this chapter. It is possible to find out which packages are present in

4.3 r packages   199

your particular installation of R by typing library() at the command prompt.
Although R clearly has a lot of functionality with just the basic packages, what
makes R particularly popular among the bioinformatics community is the vast
number of high quality user-contributed packages that are available. The number
of packages available is already impressive, and more are being released all the
time. Indeed, for many bioinformatics applications, there is probably an R pack-
age out there that does at least part of what you want—it is just a case of find-
ing it. This clearly saves a lot of coding effort, but you need to be prepared to
spend a substantial amount of time searching for packages, finding out how to
use them, and incorporating them into your own analysis pipeline. At the time
of writing there is no easy way to find the right package for a specific task, other
than browsing through the CRAN archive or searching the web with relevant
queries, for example 'R SVM package' for a package that implements support vec-
tor machines.

If you know the name of the package you want, the process of downloading and
integrating it into R is actually very straightforward. You simply select a package
from the CRAN archive and install it from within R, either via the Packages menu
in the R GUI if that is available in your operating system (Windows or Mac OS),
through the Linux package manager if you are using Linux (like Perl modules,
R packages are often available through the regular Linux package managers),
through the Tools menu or Packages tab in RStudio, or by typing the following at
the command line and following the on-screen instructions:

install.packages()

Alternatively, packages can be added from local archive files (.zip or .tar.gz),
which you might have acquired from the web, from a colleague, or perhaps even
written yourself (see Section 4.3.4). As with the CRAN packages, this can be done
via the R GUI in Windows and Mac OS, or under Linux with a command issued
from the Linux command line (not the R console):

R CMD INSTALL name_of_package

Some of the best known, and most useful, bioinformatics packages are part of
the Bioconductor Project (www.bioconductor.org). Bioconductor packages fall
roughly into two groups. Packages in the first group are designed to provide basic
infrastructure support for doing routine tasks—such as fetching data from reposi-
tories and manipulating data for later analysis—these can save a huge amount
of development time as you can avoid re-inventing the wheel when it comes to
tedious things like parsing specific data formats. The second type of Bioconductor
package provides R implementations of innovative techniques for the analysis
of biological data. It is gradually becoming the norm that someone publishing a
new data processing algorithm will make the algorithm available as an R package
for the benefit of the community, possibly as part of Bioconductor. For historical
reasons, many of the Bioconductor packages are oriented around microarray data
analysis, but many of these packages are being generalized or expanded to cover
other data types.

200   4 analysis and visualisation of data using r

4.3.1  Installing and using Bioconductor packages

Bioconductor packages can be installed like any other R packages, for example
Bioconductor’s popular limma package for microarray analysis can be seen
in the list of CRAN packages shown by install.packages(). However, as
Bioconductor is made up of a number of individual packages, many of which are
dependent on one another, it is recommended that newcomers start by installing
the core packages using the biocLite.R script provided at www.bioconduc-
tor.org. This can be done by typing the following at the command line:

source("http://www.bioconductor.org/biocLite.R")
biocLite()

This can take a few minutes as the packages are downloaded, unpacked, and
installed. Typing library() will confirm that R now has a number of additional
libraries installed, with names like Biobase and Biogenerics. Note that al-
though the installation of the package copies the relevant files, and makes the
package available to R, to actually use the functions within that package it is ne-
cessary to load the package into the current R session using the library() func-
tion. Once a package has been loaded in that way, it is possible to find descriptions
of the functions within that package using the help() function as described
earlier. This obviously requires you to know the names of functions in the pack-
ages. Larger packages often have general information about the package, which
can be accessed by passing the name of the package to the help() function. For
example, to get started with Bioconductor’s Biobase package, we would type:

library(Biobase) # load package
help(Biobase) # tell us something about the package

After loading Bioconductor packages, PDF documentation covering key topics
can be accessed from within R by typing openVignette() at the R prompt, and
selecting from the list of options that appear. You can also access the PDF docu-
mentation directly via the web, which is useful for researching which packages
to use without having to install them.

Getting data from GEO using the GEOquery package
Other elements of Bioconductor can be added at any time, simply by passing the
name of the desired package to the biocLite() function. In the example that
follows, we are going to see how a Bioconductor package called GEOquery can
be used to load data from the NCBI’s Gene Expression Omnibus (GEO) into R. The
GEOquery package can be added to R using the command below.

biocLite("GEOquery") # add GEOquery package to R

To make the functions from the package available for use in the current R ses-
sion, we must load it using the library() function:

library(GEOquery) # load package

4.3 r packages   201

The GEOquery package contains a function called getGEO(), which provides
an excellent example of the powerful capabilities of Bioconductor packages.
getGEO() provides a one-line solution to loading data from GEO straight into R.
For example, to load the data set with accession number GDS2577 into an object
called dset, the command is:

dset <- getGEO("GDS2577")

The GDS2577 data set was collected as part of a study into tissue repair mecha-
nisms (Otu et al., 2007). The data set contains gene expression data collected from
two very different mouse tissue types: developing embryonic liver and regener-
ating liver. Furthermore, each tissue type was analysed at multiple time points.

It may take a minute for getGEO() to download and parse the data, due to
the amount of data involved, and during the parsing stage R may become unre-
sponsive. Patience is a virtue here—eventually control will be passed back to the
R command line. The whole data set is now stored in the object dset. To avoid
having to go through the download and parsing process again, you might want
to save this object locally using R’s save() function. This function saves the spe-
cified object, or list of objects, in a file with the specified name. In the example
below, we save the dset object in the file "GDS2577".

save(dset, file="GDS2577") # �save dataset to the file
“GDS2577”

The object can then be quickly loaded back into workspace in a future session
using the load function:

load("GDS2577") # load dataset from file “GDS2577”

The dset object created by getGEO() is an instance of a fairly complex
data class, the structure of which mirrors that of the GEO database (specific-
ally GEO’s GDS class in this case). It is possible to extract information from
the GDS object using the operators discussed towards the end of Section 4.1.5.
For example, typing dset@header$description at the R prompt will return
the description of the data set from the header slot in the GDS object, which
contains metadata from the GEO record. However, this approach is not rec-
ommended as it depends on the internal structure of the object, which may
be different in future versions of GEOquery. Instead, you are encouraged to
use methods included in the GEOquery package that extract information from
the data structure for you. One such method is Meta(), which is used to re-
turn metadata associated with the data set, including the description of the
study, which would be retrieved by typing Meta(dset)$description. The
Columns() method returns a data frame containing information about the
individual samples. The first three columns returned from the GDS2577 data
set are shown below (a fourth column called description has been omitted as the
entries within it are rather detailed descriptions of each sample that would not
fit on the page).

202   4 analysis and visualisation of data using r

> Columns(dset)
 sample specimen time
1 GSM161128 developing liver 10.5 dpc
2 GSM161129 developing liver 10.5 dpc
3 GSM161130 developing liver 11.5 dpc
4 GSM161131 developing liver 11.5 dpc
5 GSM161132 developing liver 12.5 dpc
6 GSM161133 developing liver 12.5 dpc
7 GSM161134 developing liver 13.5 dpc
8 GSM161135 developing liver 13.5 dpc
9 GSM161136 developing liver 14.5 dpc
10 GSM161137 developing liver 14.5 dpc
11 GSM161138 developing liver 16.5 dpc
12 GSM161139 developing liver 16.5 dpc
13 GSM161108 regenerating liver 0 h
14 GSM161109 regenerating liver 0 h
15 GSM161110 regenerating liver 1 h
16 GSM161111 regenerating liver 1 h
17 GSM161112 regenerating liver 2 h
18 GSM161113 regenerating liver 2 h
19 GSM161114 regenerating liver 6 h
20 GSM161115 regenerating liver 6 h
21 GSM161116 regenerating liver 12 h
22 GSM161117 regenerating liver 12 h
23 GSM161118 regenerating liver 18 h
24 GSM161119 regenerating liver 18 h
25 GSM161120 regenerating liver 24 h
26 GSM161121 regenerating liver 24 h
27 GSM161122 regenerating liver 30 h
28 GSM161123 regenerating liver 30 h
29 GSM161124 regenerating liver 48 h
30 GSM161125 regenerating liver 48 h
31 GSM161126 regenerating liver 72 h
32 GSM161127 regenerating liver 72 h

This output shows the two types of sample in the data set, regenerating liver and
developing liver, and shows which sample is which. For each liver type, samples
were taken for analysis in duplicate at different time points. A data frame contain-
ing the actual expression data from these samples can be extracted from the dset
data set object using GEOquery’s Table() method. One way to inspect the data is
by assigning it to another object and then using the edit() function on that object.

X <- Table(dset)
X <- edit(X)

Looking at the table in the data editor provides a detailed view of the whole data
set. Each row is associated with a particular gene probe, which is identified by

4.3 r packages   203

the spot ID_REF (e.g. 1415672_at) and the gene name (e.g. Golga7). Each column
is associated with a particular sample, identified by its unique GEO ID, for ex-
ample GSM161129. The data clearly takes the form of a matrix, which means it
is suited to many different types of analysis, as explained earlier in this chapter.
Indeed, since the object returned by Table(X) is a data frame, we can deal with
it exactly as we dealt with data frames earlier. However, to make full use of the
many functions that Bioconductor provides for microarray analysis, it is neces-
sary to convert the data set object from the GEO-specific GDS class into a more
generic object based on the Biobase ExpressionSet class. GEOquery provides a func-
tion, GDS2Set() which does this conversion for us. If the do.log2 parameter
is set to TRUE, the expression values are transformed by taking logs to base two
during the conversion process, something that is commonly done in microarray
data analysis.

eset <- GDS2eSet(dset, do.log2 = TRUE) # �covert data to
experiment set

Again, this may take some time to complete, due to the size of the data set, but
now that we have the data in this generic Bioconductor format we can analyse
it using a wide range of functions from different Bioconductor packages. For ex-
ample, we can extract a matrix containing the actual expression data from the
data set using Bioconductor’s exprs() method, and use the familiar summary()
function to get some headline statistics on the gene expression for each sample.

Y <- exprs(eset) # extract the expression values
summary(Y) # show some statistics for each sample

Among other things, this reveals that there is a large number of missing values
associated with each sample, as evidenced by the number of NA entries. About
3% of 45,101 values are missing from most of these samples, which is not un-
common in such data. We can also have a cursory look at the relationship be-
tween the samples by using R’s heatmap() function to plot a heatmap and asso-
ciated dendrograms for a subset of the data (using just the first 50 probes in this
case, labelled with the identifiers from the GEO data set).

heatmap(Y[1:50,],labRow=X[1:50,2])

The result is shown in Fig. 4.11. A difference between the sample types can
clearly been seen, even with this very small arbitrary selection of gene probes.
This is not unexpected given the very different biology of regenerating and
developing tissue, and the clustering is very similar to that seen in the heatmap
for this experiment at the GEO website, which takes into account data from all
the probes. This kind of quick and dirty analysis of data is not recommended!
Normally, we would use proper gene selection criteria and take into account fac-
tors such as data scaling, but the aim of this example is simply to give a taste of
how—with very little code—data can be imported into R and visualized. Indeed,
the danger of using powerful tools such as R and Bioconductor is that complex

204   4 analysis and visualisation of data using r

functions can be used without any knowledge of their underlying statistical algo-
rithms, potentially leading to bogus results. We therefore recommend that you
always gain a good understanding of algorithms that you are using by reading
relevant background material, or by consulting experts in the subject.

Getting data from GEO is quite handy for a tutorial like this, because the pre-
processing has already been done before the data is deposited in GEO. In many
applications, the starting point is raw data from an instrument (e.g. .CEL files
from Affymetrix microarray analysis), and pre-processing is required before
any meaningful analysis can be done, but Bioconductor includes a number of
packages which include functions to make the transformation from raw data to
ExpressionSet object fairly painless. These packages tend to be platform dependent,
and include affy, arrayMagic, and oligo.

Bioconductor is a truly massive resource, and is one of the reasons for the popu-
larity of R among bioinformaticians, particularly those dealing with microarray
data. In this section, we have only scratched the surface of its functionality. The
main reason for not going further is the fact that the particular Bioconductor

G
S

M
16

11
28

G
S

M
16

11
29

G
S

M
16

11
30

G
S

M
16

11
31

G
S

M
16

11
33

G
S

M
16

11
32

G
S

M
16

11
35

G
S

M
16

11
39

G
S

M
16

11
38

G
S

M
16

11
36

G
S

M
16

11
37

G
S

M
16

11
34

G
S

M
16

11
25

G
S

M
16

11
17

G
S

M
16

11
14

G
S

M
16

11
15

G
S

M
16

11
18

G
S

M
16

11
21

G
S

M
16

11
19

G
S

M
16

11
16

G
S

M
16

11
08

G
S

M
16

11
26

G
S

M
16

11
27

G
S

M
16

11
23

G
S

M
16

11
24

G
S

M
16

11
10

G
S

M
16

11
11

G
S

M
16

11
09

G
S

M
16

11
12

G
S

M
16

11
13

G
S

M
16

11
20

G
S

M
16

11
22

Rpl23
Canx
Gm9846
Psma1
Ssr3
Copa
Psap
Psmb5
Nmt1
Golga7
Cdv3
Gps1
Anapc1
Snrnp27
Psenen
Mrpl27
Atp6v0d1
Ppm1a
Ube2g1
Rab14
Arfgef1
Xpo7
Ctbp1
Psph
Golm1
Tug1
Anapc2
Tmem129
Zkscan3
Wars
Dhrs1
Atg5
9130011J15Rik
Zranb1
Mtif2
Ddx24
Gbf1
G3bp2
Copg
Huwe1
Sar1a
Sap30l
Derl1
Rnf220
Cox18
Mrpl43
Dpm2
Dlg1
Trappc4

Fig. 4.11  Heatmap and associated dendrograms generated from the first 50 probes from
GEO dataset GDS2577. The expression of individual genes is clearly different between the
two sample types (developing and regenerating liver).

4.3 r packages   205

functionality of interest is naturally application dependent. Indeed, if you are
working on something other than microarray data you may well have to look
elsewhere to find useful packages. To learn more about Bioconductor we thor-
oughly recommend the book Bioinformatics and Computational Biology Solutions Using
R and Bioconductor (Gentleman et al., 2005). Such books should be quite accessible
now that this chapter has helped you overcome the hurdle of getting started
with R.

4.3.2  The RMySQL package for database connectivity

In the previous chapter we saw how easy it is to access MySQL databases in Perl
programs using the Perl DBI modules. Similar connectivity is provided in R by a
package called RMySQL, and the DBI package on which it is built. All we need do
to enable this functionality is to install the RMySQL package from CRAN and load
it into R. The associated DBI package will be installed and loaded automatically.
(If you are using Linux, it may be far more straightforward to search your package
manager first as this can solve problems with unmet dependencies.) Together,
these packages allow us to connect to a MySQL database, find out information
about it, input data, extract data directly into R objects, and even issue standard
SQL queries like those described Chapter 2. Similar packages are available for
other RDBMSs, but we focus on MySQL here since it is the RDBMS of choice in
this book. After downloading from CRAN, to load the RMySQL packages into R
ready for use, we must not forget the command:

library(RMySQL)

The examples below show how the available functions can be used to interact
with the example database from Chapter 2.1 If you have that database to hand,
you can issue these commands (inserting the correct username and password)
and you will get results back from the database. The process is very similar to
using Perl DBI, in that the first step is to establish a connection to the database.
This is done with the command below (entered on one line).

dbh <- dbConnect(dbDriver("MySQL"), dbname = "PCR_experiment",
user="conrad", password="donuts")

If the connection is successful, a database connection handle is returned (in
this case into dbh), and this is then used to refer to the database in subsequent
commands. For example, we can get a list of tables in the database by passing the
handle to the dbListTables() function. This is very similar to the MySQL SHOW
tables command, except that the tables are returned as a list within R instead
of just being printed to the screen.

> dbListTables(dbh)
[1] "experiment" "kit" "kit_order" "scientist" "supplier"

1If you don’t already have it, you can create and populate this database using the PCR_database_
create.txt and PCR_database_populate.txt source files available at www.bixsolutions.net.

206   4 analysis and visualisation of data using r

Where this functionality gets really useful is when we use much more powerful
functions such as dbReadTable(), which allows us to read data directly into a
data frame, and dbWriteTable(), which is used to populate a table with data
from R. An example of an R session in which the contents of a whole table is
extracted from the PCR_experiment database (previously opened with handle
in dbh) is shown below.

> orders <- dbReadTable(dbh,"Kit_order") # �copy data to data frame

> orders # �display content of data frame

 order_number manufacturer kit_name supplier

1 1 The Epsilon Kit Company Basic PCR Kit 1 Epsilon Chemicals

2 115 The Epsilon Kit Company Basic PCR Kit 2 �Epsilon Chemicals

3 121 The Epsilon Kit Company Basic PCR Kit 1 �Epsilon Chemicals

4 380 Simply Solutions PCR Visual Dye Kit Experiments_R_US

Reading whole tables into R somewhat defeats the purpose of having the data
in a database—normally it is desirable to only copy out the data you need, to
minimize memory usage and maximize performance. This can be achieved by
issuing queries using dbGetQuery(). In the example below, this function is used
to import just the costs of PCR kits from the Kit table of the example database.

> dbGetQuery(dbh,"SELECT kit_cost FROM Kit")
 kit_cost
1 49.99
2 19.99
3 29.99

Indeed, any valid SELECT query can be executed in this way, and the results
will be returned to a data frame in R, allowing you to process those results using
all the power of R and its associated packages. This ability to harness the comple-
mentary strengths of R and MySQL makes for a very powerful combination. In
the example interaction below, one of the more complex queries from Chapter 2
is issued and the output placed in a data frame called result.

> result = dbGetQuery(dbh,"SELECT scientist_email,
COUNT(scientist_email) FROM Experiment GROUP BY scientist_
email;")
> �result # check the results
scientist_email COUNT(scientist_email)

1 c.bessant@bixsolutions.net 1
2 d.oakley@bixsolutions.net 2
3 i.shadforth@bixsolutions.net 2

Even SQL commands that make major changes to the database, such as CREATE
and DROP statements, can be issued by calling dbGetQuery().

Finally, as with Perl, it is good practice to disconnect from the database once
you have finished with it, by calling the dbDisconnect() function.
dbDisconnect(dbh)

4.3 r packages   207

4.3.3  Packages for multivariate classification

There exists a plethora of methods for constructing a classification model—far
more than can be dealt with in detail here, but the details can be found in che-
mometrics textbooks (Brereton, 2009; Otto, 2007). Provided that samples from
similar classes cluster well in a PC scores plot, one of the easiest solutions is to
divide up the scores plot into sections using a collection of linear boundaries. New
samples are then identified according to which side of the boundaries they fall
on. This approach is referred to as linear discriminant analysis (LDA). LDA is cap-
able of automatically generating the boundaries using fairly simple mathematics,
and the technique can be extended to multiple dimensions—in three dimensions
the boundary becomes a two-dimensional plane, and in higher dimensions it’s
a hyper plane. This means that LDA can be used on the original data matrix as
well as on PCA scores, regardless of the number of variables measured. An R
implementation of LDA is provided as the function lda() in the MASS package
included in the basic R installation.

In more complex data sets, where there are many classes of sample or classes
of sample which cluster in an unusual shape or with a lot of variance, it is not
always possible to separate classes using simple linear features defined by LDA.
There are various approaches that can be used for these tougher problems, in-
cluding support vector machines (of which there is an implementation in a CRAN
package cryptically called e1071), random forests (see the randomForest pack-
age), and neural networks (with the nnet package).

4.3.4  Writing your own R packages

In the future, after acquiring a wealth of R experience, you might end up produ-
cing some really useful functions that you would like to share with the commu-
nity. The best way to do this is by making these functions available as a package.
Anyone can create a package, using commands available within R, and anyone
may submit a package for inclusion in CRAN.

An R package is not just a collection of functions—it must also include docu-
mentation and various other bits of information about the package. A package
may also include data, demos, and examples. When putting a package together,
these different components need to be placed in specifically named files and
subdirectories so that R knows where to find the relevant information when
someone installs your package on their computer. If you explore the directory
into which you have installed packages (typically the library subdirectory of
wherever you installed R) you will see that each package has its own directory,
each containing files and directories with standard names, such as CONTENTS,
help, and so on. The whole process of creating a package is necessarily prescrip-
tive, with a particular data format being required for the documentation, and
special attention being paid to filenames to ensure that the package functions
on all the operating systems that R supports. Perhaps most importantly, you also
need to make sure your package is thoroughly tested, and is optimized for speed
and memory usage. For these reasons, production of an R package is really only
a task for a very experienced R programmer so it is therefore not sensible to go

208   4 analysis and visualisation of data using r

into details in this introductory chapter. Suffice to say, producing your own pack-
ages is possible, and if you want to know more you should check out the Writing
R Extensions PDF manual that comes with R.

4.4  Integrating Perl and R

As we have emphasized throughout this book, increasingly few bioinformatics
tasks can be solved efficiently using a single tool. Integration of tools is therefore
crucial. We have already seen above how easy it is to hook up R to MySQL to en-
able R’s sophisticated analysis and visualization capabilities to be applied to data
stored in a relational database. What about integrating Perl with R? One of the
great benefits of R’s command-line interface is that it is very easy to construct
commands outside of R and pass them to R for processing. This means that we
are able to make use of the visualization capabilities of R, and the analysis cap-
abilities provided by R and the plethora of available packages, from within Perl
programs. Furthermore, the fact that R is open source means that such hybrid
software solutions can be distributed without concerns about licensing. An ex-
ample of integrating Perl and R, for the purpose to generating graphs within web
pages, is discussed further in Chapter 5.

4.5 Alternatives to R

There are many software packages available for the analysis of biological data.
Such software may be freely available via the web, it may come bundled with
an instrument (for example microarray scanners are likely to ship with image
processing software), or the software may be sold commercially (for example,
for protein identification from mass spectrometry data). Almost without excep-
tion, these packages feature graphical user interfaces to make their full range of
functionality available to the average biologist. As mentioned earlier, such user
interfaces actually make it more difficult to build bioinformatics solutions, particu-
larly where there is a need to integrate with other tools. In considering genuine
alternatives to R, we therefore restrict ourselves to packages that are primarily
command-line based, and which have native support for storage and manipu-
lation of matrices, something that we have seen is key in many bioinformatics
applications. It should be noted that this section is not exhaustive, but it captures
the main packages that we have seen in use across the bioinformatics community.

4.5.1  S+

S+ is a commercial statistics platform from TIBCO software (www.insightful.
com). In many ways, it is the obvious alternative to R, as both R and S+ are based
on the same underlying statistical language—S. Most code is therefore inter-
changeable between the two packages, and some R packages can be used with
S+. TIBCO also offer their own S+ specific add-ons, called modules. Having said
that, although R and S+ share the same core language, there are differences in
the S+ implementations of additional features, such as devices, certain graphics

functions, and Internet connectivity. So, for example, the main example pro-
grams in this chapter will not work in S+ without modification.

The main benefits that S+ offers are a more developed user interface, and more
consistent documentation. This makes the learning curve of S a little less challen-
ging than that of R, but the downside is that there are fewer S users than R users,
so free help and code are harder to find on the web. Due to the similarity with R,
there is little to add about S+, except to say that TIBCO tend to offer free trials of
the software, particularly for students, and that is by far the best way to find out
whether it is the tool for you.

4.5.2  Matlab

Matlab from Mathworks (www.mathworks.com) is another commercial al-
ternative to R, currently available for a range of operating systems including
Windows, Mac OS, and Linux. It has a strong pedigree in numerical data analysis
in the engineering sector and its use has more recently spread to the analysis of
chemical and biological data. Being a commercial package, it has many of the
same benefits as S-Plus, particularly excellent and consistent documentation.
There is a lot of common functionality between Matlab and R, but the syntax
is different. A sample Matlab session is shown below. The double arrow (>>) is
the Matlab command prompt, and the % symbol is used to denote the start of a
comment.

>> x = [2.0, 2.8, 3.9, 4.0, 4.8, 6.5] % assign vector to x
x =
 2.0000 2.8000 3.9000 4.0000 4.8000 6.5000
>> y = round(x.^2) % square elements of x and round
y =
 4 8 15 16 23 42
>> plot(x, y, 'b:') % plot y vs x as dotted blue line

If you are moving from Matlab to R, or vice versa, there is a very useful docu-
ment on CRAN called R for Octave Users (cran.r-project.org/doc/contrib/
R-and-octave.txt), which catalogues direct relationships between Matlab
syntax and the R equivalent. Alternatively, if you are moving from Matlab to R,
there is an R package called matlab available via CRAN that provides a subset
of popular Matlab functions for use in R, such as imagesc(), ones(), and re-
shape().

Matlab offers similar programming capabilities to R—programs can be writ-
ten in text-based .M files, and can include loops, conditional statements, and
user-defined functions. Matlab also has a reasonable object-oriented program-
ming model, which can be easier to get to grips with than R objects. Matlab
comes complete with a fully integrated IDE, which is very much like RStudio.
The IDE includes a graphical user interface designer called GUIDE, which allows
for the creation of front ends for Matlab code, such as the one shown in Fig. 4.12.
Although GUIs can be created in R, the process is not currently as slick as in
Matlab.

4.5 alternatives to r   209

210   4 analysis and visualisation of data using r

Visualization is another area where Matlab challenges R. Matlab’s graphs look
smarter than R base graphics (though the best R graphics packages can produce
output to rival Matlab) and as well as being able to manipulate the figures using
low-level graphics functions like those in R, all figures are interactive and their
detailed appearance can be tweaked via the graphical user interface. This is par-
ticularly useful when preparing figures for publication.

Toolboxes are the Matlab equivalent of R packages. Many toolboxes are sold by
Mathworks themselves, but there are several third-party commercial toolboxes
on the market, and even more freely available efforts. There is a dedicated bio-
informatics toolbox, which provides a reasonable core of functionality, but does
not have the breadth of coverage provided by Bioconductor.

The great disadvantage of Matlab is that it costs money, and people with whom
you may want to share your programs may not have access to it. Mathworks do
sell a compiler that allows Matlab programs to be made available as standalone
entities that don’t require the user to have a Matlab license, but this is not quite
the same as being able to pass someone your source code.

4.5.3  Octave

Octave, also referred to as GNU Octave, is to Matlab was R is to S-Plus. It is a free
package that has very similar syntax to Matlab. Indeed, with sufficient care, pro-
grams can be written that run on both Matlab and Octave without modification.
Octave’s website is www.octave.org, and the software can be freely downloaded
from there. Octave is primarily developed for Linux-based systems. At the time of

Fig. 4.12  A graphical front end for an exploratory data analysis application, created in
Matlab using GUIDE.

references   211

writing, a Mac OS version can be downloaded from the website, and Octave can
be made to run under Windows with some effort. Interactions with Octave are via
a command-line interface very similar to R and Matlab. The similarity with Matlab
means that Matlab syntax can be typed in right away, with familiar results. For
example, the interaction below mimics the Matlab example given previously.

octave:1> x = [2.0, 2.8, 3.9, 4.0 4.8 6.5] % assign vector to x
x =
 2.0000 2.8000 3.9000 4.0000 4.8000 6.5000
octave:2> y = round(x.^2) % square elements of x and round
y =
 4 8 15 16 23 42
octave:3> plot(x, y, 'b:')

Like R and Matlab, Octave offers various visualization capabilities. Visual results
are actually rendered by a separate program, Gnuplot, to which Octave sends
commands to produce the required graphics. In general, the visual output is in-
ferior to both R and Matlab.

Programming in Octave is very similar to programming in Matlab, thanks to
the similarity of syntax between the two. Like R and Matlab, Octave’s function-
ality can be increased through the addition of packages, many of which can be
found on Octave-Forge (octave.sourceforge.net). Generally, the Octave com-
munity tends to be focused more on engineering than biology, so there are slim
pickings for the bioinformatician in the packages available.

4.6  Summary

The ability to reliably perform advanced data analysis using the latest algorithms is
a key requirement in many bioinformatics applications, and R allows us to fulfil this
requirement in most cases. R’s key features are the inherent support for importing
and manipulating data matrices, the ease with which graphs can be constructed,
and the dynamic ecosystem that has delivered a plethora of packages covering
the majority of routine bioinformatics tasks. We have seen in this chapter how R
can provide a wide range of analyses, from simple statistics through to microarray
pre-processing and sophisticated data visualization and analysis, all with very little
actual coding. In the next chapter, we see how this power can be harnessed for use
in web-based tools through integration with Perl and web frameworks.

References
Brereton, R.G. (2009). Chemometrics for Pattern Recognition. Wiley: Chichester, UK.
Gentleman, R., Carey, V.P., Huber, W., & Irizarry, R.A. (2005). Bioinformatics and Computational Biology

Solutions Using R and Bioconductor. Springer-Verlag: Berlin.
Otto, M. (2007). Chemometrics: Statistics and Computer Application in Analytical Chemistry. Wiley: Chichester, UK.
Otu, H.H., NaxerovaK., Ho K., Can H., Nesbitt N., Libermann T.A., & Karp S.J. (2007) Restoration of

liver mass after injury requires proliferative and not embryonic transcriptional patterns. Journal of
Biological Chemistry, 282: 11197–204.

Sadowski, P., Dunkley, T. P. J., Shadforth, I. P., Dupree, P., Bessant, C., Griffin, J.L., & Lilley, K.S. (2006)
Quantitative proteomic approach to study subcellular localization of membrane proteins. Nature
Protocols, 1: 1778–89.

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

CHAPTER 5

Developing web resources

In this chapter we show how to bring together the skills covered in the previous
chapters to make data and analysis tools available via the web. This moves us onto
the subject of web development, a skillset that is frequently required in bioinfor-
matics and elsewhere. It is no coincidence that all the major biology databases, and
many of the key bioinformatics tools, are accessed via the web. The reason is that
everyone has a web browser, regardless of their operating system, and there are
plenty of helpful tools available for developing web interfaces to Perl programs and
MySQL databases. You might think that web interfaces are only important in situa-
tions where we want to make our work accessible via the Internet, but even for local
applications used by a single organization or group, a web interface accessible over
a local network is often the most painless way to interface users with your software.

5.1  Web servers

Before we get onto the task of web development, we first need a basic under-
standing of the tools responsible for serving content to web users—web servers. A
web server is a software package that runs on a computer (typically also called a
server when used for this, although it may be just a humble PC), and serves web
pages and related files to other users over a network. The Apache HTTP Server
(commonly referred to as Apache Web Server or just Apache) is the most popular
web server used in the world today, and is the server solution of choice in bio-
informatics due to being free, open source, fast, highly configurable, and avail-
able on most operating systems. Installing Apache is not a prerequisite for work-
ing through the examples in this chapter because you can view static web pages
simply by loading them into a browser, and for dynamic pages we will be using a
web framework that comes with its own development server. However, for more
serious web development you will ultimately need to have your own server, so
we explain how to go about this (with a focus on Apache) in Appendix B.

5.2  Introduction to HTML

HTML (short for HyperText Mark-up Language) is the text-based data format
that is the basic building block of the web that we know and love today. It is
a mark-up language based on the concepts of tags and content—very similar

214   5 developing web resources

to XML described in Chapter 2. Since it is a text-based format, it is possible to
generate and edit HTML documents in a standard text editor, such as those
reviewed at the start of Chapter 3. Just be sure to save the file with the exten-
sion .html. One main difference between HTML and XML is that in XML the
tags are freeform—you get to decide what they are, as the tags are directly
relevant to the data that they contain. In HTML the tags are already defined
in a vocabulary. The reason for this is that XML is a data storage and descrip-
tion language, so it needs to be flexible. HTML, on the other hand, is more
concerned with data presentation; therefore most of the tags used in HTML
dictate how your data is presented in a web page, so the definitions and syntax
of these tags needs to be established up front. Here are some simple examples
of HTML tags:

<p>This is a paragraph</p>
<p>�This is a paragraph with some bold text

</p>

As you can see, this is very similar to XML. Textual data is simply surrounded by
tags that indicate how the text will be formatted on the final web page. You may
also remember attributes in XML, these are options that can be added to a tag—
these are also present in HTML, as are nested tags. For example:

<table border="1" cellpadding="5" cellspacing="5">
 <tr>
    <td>Column 1</td>
    <td>Column 2</td>
 </tr>
</table>

As with XML, the attributes confer extra properties on the data that the tags
encase—in the above example we are dictating the size of the border and the spa-
cing between the cells and text for a table of data.

5.2.1  Creating and editing HTML documents

Before we move on to discussing more details of HTML, we need to decide on a
tool to use to create our web pages. As with Perl and R programming, the writ-
ing of HTML documents (as well as CSS and JavaScript, which we’ll briefly cover
later) can be done in any good text editor. There are many editors available that
are suitable for the job; in fact most of the tools listed in Chapter 3 can also be
used as editors for HTML, CSS, and JavaScript. Whatever you used for writing Perl
programs should be fine for working through this chapter.

5.2.2  The structure of a web page

The basic structure of a web page is shown below:

<doctype>
<html>

5.2 introduction to html   215

  <head>

  </head>
  <body>

  </body>
</html>

The entire page is surrounded in <html> tags; and within the page there are
two main sections: the <head> and <body> tags. In the head section we place
metadata about our web page, such as the title, the author, any copyright mes-
sages, keywords, and we also place links to external resources that can be used
in our web page, such as CSS or JavaScript files, which we will come to later. The
body section of the web page is home to all of the content of the web page.

The doctype declaration is the way of telling a web browser how the web page
is formatted (be it either HTML5—the current standard—or an earlier variant of
HTML), so it knows how to interpret the mark-up, and which rendering mode
it should use (web browsers have different rendering modes for different situa-
tions). Without this declaration at the top of the page, the browser would have to
guess which form of mark-up you are using, resulting in the page not displaying
in the way that was intended.

Here is an example of a doctype declaration for an older standard of HTML (ver-
sion 4.01, Transitional):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

And here is an example for the latest standard, HTML5:

<!DOCTYPE html>

You will notice that the latter example is vastly simplified and does not even
mention that it is for HTML version 5. The reason for this is that in previous ver-
sions of the HTML standard there was a DTD (Document Type Definition) specifi-
cation that defined exactly how the standard should be implemented. In HTML5
there is, at the time of writing, no complete and exhaustive specification (it is
still being actively developed and enhanced), so there is no DTD to link to. It is
still necessary to include the HTML5 doctype as it lets the web browser know to
use a standards-compliant rendering mode.

5.2.3  HTML tags and general formatting

Tables 5.1 and 5.2 list some of the most common HTML tags available for use
within web pages.

For more information on the tags available in HTML we recommend visiting the ex-
cellent W3Schools tutorial (www.w3schools.com/html/html5_intro.asp)—
this is particularly important because, although it is already in widespread use,
the HTML5 specification is still under development, so details may have changed

216   5 developing web resources

Table 5.2  Tags commonly used in the <body> section of web pages

HTML Description

<p> A paragraph tag – used to denote a paragraph of text.

<p>This is a paragraph of text.</p>

 A line break.

<hr /> A horizontal rule.

 Used to write important text (i.e. in bold).

<p>This is some bold text.</p>

 Used to write emphasised text (i.e. in italics).

<p>This is text in italics.</p>

<h1>,

<h2>,

...,

<hx>

Headings – the numbers indicate the level of heading.

<h1>Page Title</h1>

<h2>Sub-Title</h2>

<h3>3rd Level Title</h3>

<a> Links – these are used to create links between different pages within a website,
and also to link out to other websites.

internal link

external link

email
link

Table 5.1  Tags commonly used in the <head> section of web pages

HTML Description

<title> This defines the title of the webpage.

<meta> This is used for metadata such as author or keywords. i.e.:

<meta name="keywords" content="genes, genome" />
<meta name="description" content="..." />
<meta name="author" content=" name or email" />

<style> Used for in-line CSS style declarations (discussed later).

<link> Used to link an external file into our webpage i.e. a CSS stylesheet file:

<link rel="stylesheet" href="style.css"
type="text/css" />

<script> Used to add in-line JavaScript code to your webpages or link out to an external
JavaScript file:

<script src="code.js" type="text/JavaScript" />

<script type="text/javascript"> code ... </script>

5.2 introduction to html   217

HTML Description

,

Unordered (bulleted) and ordered (numbered) lists. These tags work in the
same way and share the same tag to define a ‘list item’:

 First on list
 Next on list

<table> These are used to make up tables and require the use of the extra tags <tr> for
a table row, <th> for a table heading column, and <td> for a normal table
column.

<table>
 <tr>
 <th>Heading 1</th>
 <th>Heading 2</th>
 </tr>
 <tr>
 <td>Content 1</td>
 <td>Content 2</td>
 </tr>
</table>

 Used to insert images into webpages. The src attribute indicates the image
filename and its position in the filesystem relative to the HTML file. The alt
attribute is a given name for your image that may be displayed under certain
circumstances.

<code> This is used to indicate programming code and will be printed to the screen
exactly as it is typed in the document.

<code>
 #! /usr/bin/perl
 print "Hello World!\n";
 exit;
</code>

<pre> This is used for pre-formatted text and will be printed to the screen exactly as it
it typed in the document.

<pre>
 This is some pre-formatted text.
 and it will be printed to screen as is,
 leading spaces and all.
</pre>

continued

218   5 developing web resources

since this book went to press. Before we move on, it is worth noting three rules
of good HTML writing practice that sometimes get overlooked:

◆	 In HTML, single (often known as empty) tags such as br, which produces a
line break, need to be self-closing: that is
 is incorrect, and should be

, where the forward slash before the greater than symbol indicates
that the tag is self-closing. Note however that there is one single exception
to this rule, the doctype tag. This does not need to be, and should not be,
closed.

◆	 Nested tags, that is tags opened inside another set of tags, must be closed within
the first set of tags, as tags are not allowed to overlap. Here is an example:

	 Hello is allowed,
	 Hello is not allowed as the tags overlap.

◆	 You must use lowercase letters for all tags and attributes. In addition to this,
attributes must be surrounded by quotes.

5.2.4  An example web page

Now that we have given you an overview of some of the more basic HTML tags,
we can put that all together to create an example web page that we can view in
a web browser. Create a file called test.html with your text editor and paste in
the code below (or, as usual, download it from www.bixsolutions.net).

<!DOCTYPE html>
<html>
 <head>
 <title>An Example Web page</title>
 <meta name="author" content="Joe Bloggs" />
 �<meta name="description" content="My First Web

page!" />
 </head>
 <body>
 <h1>My First Web page</h1>
 �<p>This is a quick test of some of the tags from the

book ... </p>

HTML Description

<!-- --> This is how we put comments in our document. These comments will not be
shown when the page is viewed in a browser.

<!-- This will not be printed to screen -->

<form> This creates a form for user input. A form can contain numerous other elements
such as text fields, check boxes, radio-buttons and more. We shall go into forms
and the elements that they contain in more detail shortly.

Table 5.2  (continued)

5.2 introduction to html   219

 �<p>This is a <a href="http://www.bixsolutions.
net">link to the book's web site.</p>

 <p>This is an unordered list:</p>

 unordered element 1
 unordered element 2

 <p>This is an ordered list:</p>

 element 1
 element 2

 <h2>More Stuff</h2>
 <p>This is an image:</p>
 �<!-- We're using an external image here for

convenience -->
 <!-- Oh, by the way - this is a comment! -->
 �<img src="http://www.rcsb.org/pdb/images/1cf3_

bio_r_250.jpg" alt="Glucose Oxidase" />
 <p>This is a table:</p>
 <table border="1" cellspacing="5" cellpadding="5">
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 </tr>
 <tr>
 <td>Data 1</td>
 <td>Data 2</td>
 </tr>
 </table>
 <p>Finally, this is a code example:</p>
 <code>
 #! /usr/bin/env perl

 print "Hello World!\n";

 exit;
 </code>
 </body>
</html>

Save this file and then open it up in a web browser. You should now have a
simple web page in front of you, demonstrating some of the structures and tags
that we have just described. This is all we are going to cover on basic HTML. A
good way to get more comfortable with it is to try to modify test.html and see
the results of your changes. If you want to go further, we recommend reading
through the tutorials on the W3Schools website and making a few more web
pages that link together using hyper-links (the <a> tag) to form a mini website.

220   5 developing web resources

5.2.5  Web standards and browser compatibility

As with all of the other subjects in this book, HTML is a form of programming
language, and as such it can be programmed correctly or incorrectly. The main
difference is that if you deviate from the HTML standard or make some other
mistake while writing a web page, nothing tells you that you have made a
mistake. In Perl, the program would refuse to run if there was a mistake in the
code; a web browser, on the other hand, will try to render a web page with many
errors in its code, and often does quite a good job at covering up the mistakes.
The ability of web browsers to deal with poorly formatted HTML code is both
a blessing and a curse. It is a blessing in the fact that you can get away with
small mistakes without ever realizing that you made them, and it is also a curse
when something very subtle goes wrong with your web page on a certain web
browser and you have to then spend hours trying to find what is causing the
problem. This is where following and adhering to the standards in the first place
can help because, if you have standards compliant HTML, all browsers should
render it nearly identically. We say nearly for a reason—unfortunately the render-
ing engines used in the different web browsers available today are quite different
to each other in the way that they handle fonts and spacing, and even in their
default behaviour. This is why you should always test your web pages on different
web browsers, even when your site has perfectly valid HTML, just to make sure
the page renders as you want it to.

To ensure that we are following the standards correctly we can check the code
using a validation tool. There are numerous different validation tools available on
the Internet either in the form of web based services or plugins for web brows-
ers. The one we recommend is the W3C validation service found at validator.
w3.org. This is built and run by the World Wide Web Consortium (W3C), the
people who write the specifications for HTML, so it is safe to say that if your page
passes as valid there, it really is valid. To use the validation service you can simply
give the tool a URL to check, upload a file, or cut and paste in some HTML code, it
will then check your code for correctness.

That concludes the basics of creating static web pages: pages that always dis-
play the same information. If we want to use the web as an interface for users to
interact with databases and analysis tools that we have written, then we need to
combine HTML with a programming language such as Perl.

5.3  Programming for the web using Perl

Perl has been used to create dynamic websites on the Internet for a very long
time, and is still in heavy use today. In the early days, a common approach to
creating web applications in Perl was to use a protocol (and module of the same
name) called CGI (Common Gateway Interface) that allows Perl code to run within
a web server. These days, however, CGI is not the recommended way of making a
web application because, although it makes it easy to get started on a simple ap-
plication, as the application becomes more complex it gets far harder to maintain
within the realms of CGI. The preferred method now is to use a web framework.

5.3 programming for the web using perl   221

There are many web frameworks available for Perl, a simple web search for ‘perl
web framework’ will point you to the most popular options of the moment. For
the purpose of this chapter, we have chosen to use Mojolicious (mojolicio.us)
as we have found it gives a good balance between power, flexibility, and ease of
learning.

5.3.1  Mojolicious::Lite

The recommended way to start working with the Mojolicious framework is to
begin with the Mojolicious::Lite package. This is a thin wrapper around the
full web framework, so everything you learn about Mojolicious::Lite will
also apply to full Mojolicious applications if you wish to pursue more advanced
web development in the future, but it has the advantage that your entire web ap-
plication is contained within a single file so it is easy to manage the code.

Before we get started, we must first install Mojolicious:

◆	 Windows: Search for and install the package ‘Mojolicious’ within PPM.

◆	 Linux: Search for and install Mojolicious via your package manager.

◆	 Mac OS X: Simply install via cpanm in the terminal (cpanm Mojolicious).

If you have any issues with the above, we would recommend consulting the in-
stallation instructions on the Mojolicious wiki: github.com/kraih/mojo/
wiki/Installation.

Hello, world
Let’s get started with Mojolicious::Light by building the most simple web
application possible:

#!/usr/bin/env perl

use Mojolicious::Lite;

get '/' => sub {
  my $self = shift;
  $self->render(text => 'Hello World!');
};

app->start;

Save this code into a file called hello_world.pl and enter the following com-
mand in the console:

morbo hello_world.pl

This starts up a web server called Morbo (bundled with Mojolicious for ease of devel-
opment and debugging), and you can now visit your application (in a web browser)
using the URL localhost:3000 and see that it simply prints the text, ‘Hello
World’. You can stop Morbo at any time be pressing Ctrl-C within the command-line

222   5 developing web resources

window, though it may take a few seconds for Morbo to respond to this. It is normal
at this point to ask who else might be able to log into your computer and see this
page—unless you have specifically configured your firewall to allow access to
Morbo, the answer, reassuringly, is nobody.

Let’s have a look at what we just did in more detail. The first obvious thing in
the code is that we use Mojolicious::Lite. You should also notice that we have
not used strict or warnings; these are not required as Mojolicious adds them
in automatically for us. The next piece of code starts with a Mojolicious supplied
function: get (this is what is known as a routing function). This command tells the
application, for all GET requests (a HTTP verb—the default request made by web
browsers to a web server), to the / address (the homepage), run the following sub-
routine. When invoked, the subroutine receives a Mojolicious::Controller
object ($self) that we call the render function on and pass our ‘Hello World’
text to. It is render that sends data to be presented in the web browser.

The final part of the application is the app->start command. This is required
at the end of all Mojolicious::Lite applications (instead of an exit statement)
to tell the server to start listening for connections. Quite a lot happened in this
first example, but it is all relatively straightforward and is boilerplate setup code
that you will need in all Mojolicious::Lite applications. The only real piece
of functionality in the above application was the render command.

Templates
In our first example we cheated slightly, in that we only output raw text to the
web browser; normally we would expect web applications to output HTML. The
way in which we generate HTML in Mojolicious applications is through the use of
templates. Let’s start with an example and expand upon this:

#!/usr/bin/env perl

use Mojolicious::Lite;

get '/' => sub {
  my $self = shift;
  $self->render('index');
};

app->start;
__DATA__

@@ index.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title>Hello, World!</title>
 </head>
 <body>

5.3 programming for the web using perl   223

 <p>Hello, World!</p>
 </body>
</html>

This example takes our initial application and adds in a few new concepts. The
first thing you will notice is that the call to render has been modified; instead of
passing through a text string, (denoted by text => in the previous example), we are
now passing the name of a template to call (index—found at the base of the code).

Below the main body of the application, and after the app->start call, we
have a __DATA__ literal; this tells Perl that the remainder of the text in the file is
not Perl code, but data for use in the above code. The way in which this is used in
Mojolicious::Lite is that we put our templates here, and separate them with
lines beginning with @@, where we also give a ‘filename’ to each template. In our
example we have a single template called index.html.ep, indicating that it is a
template called index, to represent HTML (.html)—the .ep part is the template
language in use (Embedded Perl). In a full (non-lite) Mojolicious application, these
templates would be separate files, but in a Lite application we can keep things
simple by having them within the same file as the code.

If you run this version of the application with Morbo, you can again visit it at
localhost:3000. You will see little difference in the appearance of the page
compared to the previous version, but at least you can now be comfortable in the
knowledge that the page is correctly rendered HTML, and it should be displayed
with a proper title in your browser.

Embedded Perl
The template language we use within this chapter is known as Embedded Perl
(EP). This is a simple template language bundled with Mojolicious that allows you
to write plain HTML and include small snippets of Perl code when needed. We
shall explain a little bit more about the use of EP in the next section and will be
using it throughout the rest of this chapter. We will not cover every detail. If you
want a complete explanation of EP and what it can do, please consult the docu-
mentation that we link to in the Going Further section a bit later.

Layouts
Most of the time when creating a modern web application you will have more
than one page within your site. If this is the case, and you are using templates,
you do not want to have to repeat the basic HTML skeleton for each and every
template that you create. This is where layouts are useful. Below is an example of
our previous application, modified to use a layout:

#!/usr/bin/env perl

use Mojolicious::Lite;

get '/' => sub {
  my $self = shift;

224   5 developing web resources

  $self->render('index');
};

app->start;
__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 </head>
 <body>
 <%= content %>
 </body>
</html>

@@ index.html.ep
% layout 'default';
% title 'Hello, World!';
<p>Hello, World!</p>

As you can see, not a huge amount has changed, but we now have two template
files, one called layouts/default.html.ep and the other index.html.ep;
the first being our new layout file, and the second being our template for the index
action. The naming scheme for the layout file is significant. In full Mojolicious
applications, you may want multiple layouts, so there would be a layouts direc-
tory and different templates can use different layouts. In Mojolicious::Lite
we have a name like layouts/xxx to mimic this structure.

The next thing to bring to your attention is the <%= title %> and <%=
content %> tags within the layout, these are EP tags (well, the <%= %> part is—
see Table 5.3 for details) that are used to denote the beginning and end of a block
of Perl code. In this case we are calling title and content attributes within
the context of the template (or the stash as it is known). Basically, the content
returns the HTML (and EP) of the template that is calling the layout, and title is
a variable that is defined in the template that is calling the layout, and if you look
at the index template you will see that this says to use the ‘default’ layout (via
the layout method), and sets a title via the title method.

5.3.2  Debugging Mojolicious applications

In the past, debugging web applications was a real pain, but with modern web
frameworks, debugging and fixing errors is a whole lot easier. To demonstrate
this, we are going to introduce a number of errors into our example code. First
off, let’s invoke a syntax error in our hello_world.pl Perl code so the code can-
not even run. Simply add some text in the space below the shebang line that is

5.3 programming for the web using perl   225

not a valid Perl statement and then try and run the program again with Morbo.
You will immediately notice that the web server has not started up correctly and
details of the syntax error are printed to your console; this is exactly like catching
syntax errors with regular Perl programs.

Now let’s look at other types of errors (non-syntax related). First off, fix the error
you introduced into the hello_world.pl code and save the file. If you have not
already stopped Morbo you should notice that it has automatically restarted itself
and the corrected web page is being served, because Morbo watches for changes
to your files. This is a very handy feature for developers as it means that you don’t
have to keep stopping and starting the server to see the effect of changes to your
code. Keep Morbo running, but now add a die statement in the middle of the
index action as so, then save your changes:

get '/' => sub {
  my $self = shift;
  die;
  $self->render('index');
};

This time all will appear normal in the terminal; but if you now visit local-
host:3000 again in your web browser; you should be greeted by the Mojolicious
error page, a screenshot of which is shown in Fig. 5.1. Error pages such as this are
a great development of modern web frameworks; in the top pane we have a snip-
pet of code, showing exactly where the program died, and below that we have a
table detailing the state and environment of the application when it crashed. This
is usually all the information you need to catch and fix most errors.

5.3.3  Routes

Routes in web applications mean matching the URL address (or path) requested
by the web browser to an action within your application. So far, in all our exam-
ples we have defined a single route; the '/' route for our index/home page,

Table 5.3  Embedded Perl tags and line-start characters

Tag Description

<% code %>

% code;

<%= code %>

%= code;

Perl code that is executed, but no output is generated.

<% %> variant can be anywhere within the line/text,
but the % variant must be at the start of a line – i.e. this line
can only be Perl code.

Perl code that is executed, and output is XML escaped before
being placed into the template.

<%== code %>

%== code;

<%# code (commented) %>

%# code (commented);

Perl code that is executed, and output is placed directly
into the template (no escaping).

This is a code comment – no output will be placed
into the generated template.

226   5 developing web resources

which is found when there is no path or just a trailing slash following a website’s
address (or domain name as it is more typically known). However, we can also as-
sociate actions or web pages with any other path you may wish, as demonstrated
in the example below.

#!/usr/bin/env perl

use Mojolicious::Lite;

get '/' => sub {
  my $self = shift;
  $self->render('index');
};

get '/foo' => sub {
  my $self = shift;
  $self->render('foo');
};

get '/protein/show/:id' => sub {
  my $self = shift;
  $self->render('protein_show');
};

Fig. 5.1  A screenshot of the Mojolicious error page. This shows exactly where errors are in
the code (in the top panel) and the current state/environment of the application (in the
bottom table).

5.3 programming for the web using perl   227

app->start;
__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 </head>
 <body>
 <%= content %>
 </body>
</html>

@@ index.html.ep
% layout 'default';
% title 'Home Page';
<h1>Home Page</h1>

@@ foo.html.ep
% layout 'default';
% title 'Foo';
<h1>Bar</h1>

@@ protein_show.html.ep
% layout 'default';
% title "PDB Structure: $id";
<img src="http://www.rcsb.org/pdb/images/<%= $id %>
_bio_r_500.jpg">

In this example application we have three routes defined. The first two are
quite straightforward; our home (/) route, as seen before and a simple route that
matches (/foo)–that is, www.example.com/foo would match this route if our
app was running at www.example.com. The third route is a dynamic route that
captures addresses that begin with /protein/show/, and have a simple string
after the /show/ part, for example /protein/show/3QVP will match this route.
A special feature of this route is that the last value within the URL will be cap-
tured by Mojolicious and placed within the stash, (with the variable name $id—
matching the :id we put in the route) so it is available within the controller (the
subroutine that is handling the route) and template. In this example, we insert $id
into a PBD URL that, provided $id is a valid PDB protein accession number, returns
an image of the protein for display within the page. A more common use case for
a feature like this might be to use the $id as a lookup key on a database record.

5.3.4  Interfacing with databases within a web application

Let us now look at a more useful example of a web application—displaying
information from a database. This is a common use of web applications in

228   5 developing web resources

bioinformatics and is a good way to combine the techniques of Perl DBI covered
in Chapter 3 with the power of Mojolicious.

In the following example, we connect to the public Ensembl database (www.
ensembl.org), query the database for a short list of genes and other informa-
tion, and then print these to a web page. Here is the complete code:

#!/usr/bin/env perl

use Mojolicious::Lite;
use DBI;
use DBD::mysql;

Create a database connection as an application attribute
app->attr(dbh => sub {
  my $self = shift;

  my $dbh = DBI->connect(
 �'DBI:mysql:homo_sapiens_core_47_36i:ensembldb.sanger.

ac.uk',
 'anonymous'
  );

  return $dbh;
});

get '/' => sub {
  my $self = shift;

  # Prepare our query
  �# NOTE: q() is the same as surrounding our text in single
  �# quotes.
  my $query = q(
 �SELECT es.synonym, sr.name, g.seq_region_start, g.seq_

region_end
 FROM seq_region sr, gene g, external_synonym es
 WHERE es.xref_id = g.display_xref_id
 AND sr.seq_region_id = g.seq_region_id
 AND es.synonym IS NOT NULL
 ORDER BY g.seq_region_start ASC
 LIMIT 500
  );
  my $dbh = $self->app->dbh;
  my $sth = $dbh->prepare($query);

  # Run the query
  $sth->execute();

5.3 programming for the web using perl   229

  # Stash the query string and the results
  $self->stash(
 query => $query,
 results => $sth->fetchall_arrayref()
  );

  $self->render('index');
};

app->start;
__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 </head>
 <body>
 <%= content %>
 </body>
</html>

@@ index.html.ep
% layout 'default';
% title "Example Database Query";
<h1>Example Database Query</h1>
<p>
  The table below was created by running this query on the
  'homo_sapiens_core' database at
  Ensembl
</p>
<pre>
  <%= $query %>
</pre>
<table border="1" cellpadding="3" cellspacing="3">
 <thead>
 <tr>
 <th>External Synonym</th>
 <th>Seq Region Name</th>
 <th>Seq Region Start</th>
 <th>Seq Region End</th>
 </tr>
 </thead>
 <tbody>
 <% foreach my $result (@{$results}) { %>

230   5 developing web resources

 <tr>
 <% foreach my $item (@{$result}) { %>
 <td><%= $item %></td>
 <% } %>
 </tr>
 <% } %>
 </tbody>
</table>

The above program is quite large, but when we break it down into smaller
sections, very little of the program is new to us—it is just a combination of the
techniques we have learned with Mojolicious and DBI. Below we define the basic
steps taken within the program:

1	 We declare the modules we are going to use (Morbo will return a compilation
error if these have not already been installed).

2	 We set up a connection to the database as an attribute on the Mojolicious ap-
plication itself. You will see that this is called in the index route with the
code $self->app->dbh. This is the preferred method of connecting to
resources such as databases in Mojolicious, as the connection code itself is
not run until it is requested within a route (this concept is often called lazy
evaluation).

3	 We declare the index route and, within that, we prepare a SQL query. Note
that this SQL query is not as straightforward as some of the examples that you
have seen thus far. Unfortunately, this is the reality of us using the Ensembl
database for our query—the Ensembl database has a large and complicated
schema. That said, it is only a combination of three table joins to gain access
to the information that we need—given time working with databases, queries
such as this become second nature.

4	 Following this we execute the SQL statement against the Ensembl database, re-
trieve the results and store this data, and the SQL query itself, within the stash:

 # Stash the query string and the results
 $self->stash(
 query => $query,
 results => $sth->fetchall_arrayref()
);

	 All this does is make these two variables ($query and $results) available
for use within the templates.

5	 Finally we render our template—you can clearly see how the stashed variables
are used in the code.

It is from these simple concepts that we can build larger and more powerful
web applications with Perl, DBI, and Mojolicious and it represents the core func-
tionality of many bioinformatics database front ends available on the web.

5.3 programming for the web using perl   231

5.3.5  Getting user input via forms

The most common way of getting information from users on the Internet is via
forms. They can be found on almost any website that allows user interaction and
should be instantly familiar to anyone using your web applications. Forms are
a standard part of HTML and are therefore very easy to implement. Here is the
basic structure of a HTML form:

<form action="URL for form handling" method="get/post">
 �contents of our form – standard HTML and form elements

allowed
</form>

Basically it is a <form> tag, with two attributes that dictate how the form, and
the information contained within it, are handled:

◆	 The first attribute, action, details where the information entered into the
form should be sent to be processed when it is submitted via the user clicking
a submit button. You set this attribute to a URL that points to a web application
route to handle the input from the form.

◆	 The second attribute is the method that the web browser should use to pass
these details on to our program. This is explained in more detail later.

The actual content and appearance of the form is defined by elements that are
placed between the two <form> tags. Table 5.4 lists the various input elements
available, but take note of the fact that most use the same tag (<input>), it is
only the type attribute that is used to differentiate them.

You will notice that there are three common attributes shared between the
form elements described. These are type, name, and value. Here is a brief de-
scription of their uses:

◆	 type—this attribute defines the type of input element.

◆	 name—this is used as an identifier for the information that a user enters into a
given form element. When we describe passing data from the form on to a
program to process the data, the information that is entered into each form
element will be accessed via the name attribute. A good way to think of this
would be that you are passing a data structure similar to a Perl hash, so the in-
formation contained within the form can be accessed via the name values of
each element. Note that things such as check boxes and radio buttons should
share the same name attribute when they are together in a group (for a single
question in your form). If they all have different names, the form would treat
them as if you were asking a separate question with each button or box.

◆	 value—in the case of check boxes, radio buttons, and selection drop downs,
(where we have pre-defined content) the content of the value attribute is what
is passed to your form parsing program (via the name attributes). Note that the
value attributes of buttons (submit and reset) are not passed onto our form
handling programs—these are used purely to tell the browser what text to
place on the buttons.

232   5 developing web resources

Table 5.4  Commonly used HTML form elements

Input Type Description

Text Fields Text fields are used wherever you want your users to type letters or numbers
into a form.

First name: <input type="text" name="firstname"
/>

Last name: <input type="text" name="lastname" />

Password Fields Password Fields are used whenever you want a user to input sensitive
information such as a password. They are basically text fields, but the text in
the box is only visible as a series of asterisks.

Username: <input type="text" name="user" />

Password: <input type="password" name="password" />

Text Areas Text areas are used when you want your users to enter a large chunk of text
(that could not reasonably be entered into a text field). Note that you must
define the size of the text area that is to be displayed with the rows and cols
attributes.

<textarea rows="10" cols="30">
 Please enter your text here.
</textarea>

Radio Buttons Radio buttons are used when you want your users to select exactly one item
from a number of choices that you offer them.

<input type="radio" name="sex" value="male">male
</input>

<input type="radio" name="sex" value="female">
female</input>

Checkboxes Checkboxes are used when you want users to select zero or more options from
a number of choices.

I have a bike:

<input type="checkbox" name="vehicle" value="Bike" />

I have a car:

<input type="checkbox" name="vehicle" value="Car" />

I have an airplane:

<input type="checkbox" name="vehicle"
value="Airplane" />

5.3 programming for the web using perl   233

Now, what happens once a form has been filled out by a user and they hit the
submit button? The information contained within the form is passed on to a
handling program, but before we show an example form and its associated form
handling code, we first need to describe the two methods of form submission.

Submitting forms via POST and GET
With HTML forms there are two ways to submit data, these are via POST and GET.
These two methods are introduced below.

◆	 GET—This method of form submission can be used whenever users are not
submitting sensitive data (i.e. a search form). It is not normally used when data
from a form is to be used to submit data to a database linked to a website (as
this can inadvertently reveal too much about the underlying structure of your
site and database and potentially leave you open to security breaches), and it is
most definitely NOT used for submissions that involve things like passwords.
The reason for this is that the information contained within your form becomes
part of the URL that the form gets submitted to, that is if you had a text box
with the name search_query, the URL constructed to deal with the form
would be something like:

/search?search_query=user_entered_string

	 where every entry in the form would follow the question mark (?) and mul-
tiple name/value pairs would be linked with an ampersand (&).

Input Type Description

Drop Down
Boxes

Drop down boxes are used as alternatives to radio buttons or check boxes. In
their default mode (shown below), the user can only select one option from a
defined list.

<select name="go_ontologies">
 �<option value="BP">Biological Process

</option>
 �<option value="MC">Cellular Component

</option>
 �<option value="MF">Molecular Function

</option>
</select>

Buttons Buttons are used to submit or reset forms. Reset buttons clear all user entered
information from a form, whereas a submit button will pass all of the
information held within the form to the handling code that is defined in the
form’s action attribute. Note, unlike other form elements the value attribute
on submit and reset buttons simply defines the text that is shown on the
button.

<input type="submit" value="Submit"/>

<input type="reset" value="Reset" />

234   5 developing web resources

◆	 POST—This method of form submission is used whenever you would like to
keep submitted information in the background, so it is not clear for anyone to
see once the form has been submitted. POST is suitable for forms that are used
to enter information into a database and password entries. The information
submitted from a form using POST is not appended onto the end of the pro-
cessing URL.

So, the basic rule of thumb is for simple things such as searches, use GET. One
of the benefits of this is that it allows people to link to predefined searches, as the
search parameter forms part of the URL and saves them submitting a form each
time they want to repeat an old search. One example of this is YouTube links, for
example www.youtube.com/watch?v=RVo7jCXwVKE. For anything that involves
entry to a database, or things such as password handling, use POST.1

Now that we have covered this, let’s look at an example of a form. The example
web application below defines a form for submitting a gene name to another
route for processing (we will complete the application and add the other route
shortly).

#! /usr/bin/env perl

use Mojolicious::Lite;

get '/' => sub {
  my $self = shift;
  $self->render('index');
};

app->start;
__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
  <head>
  <title><%= title %></title>
  </head>
  <body>
  <%= content %>
  </body>
</html>

@@ index.html.ep
% layout 'default';

1	 Although using POST hides submitted data from view, it will not stop someone intercepting the data
on its way to the server. Sensitive data should therefore also be encrypted—something we don’t have
space to cover here.

5.3 programming for the web using perl   235

% title 'Basic Web Form';
<h1>Basic Web Form Example</h1>
<p>
  Please enter a gene name and click 'Search' to get a
  report of information for a gene.
</p>
<p>
  (If you are at loss for a something to search for,
  try p53 or ATP%).
</p>
<form method="get" action="/results">
  <p>
  Gene:
  <input type="text" name="gene" size="15" />
  <input type="submit" value="Search" />
  <input type="reset" value="Clear" />
  </p>
</form>

As you can see, this is a pretty standard Mojolicious web application, we have a
single route and this page is generating a HTML form that is going to submit data
to a route called /results using the GET method. Now let’s add in the /results
route and its accompanying code and template.

#! /usr/bin/env perl

use Mojolicious::Lite;
use DBI;
use DBD::mysql;

app->attr(dbh => sub {
  my $self = shift;
  my $dbh = DBI->connect(
  �'DBI:mysql:homo_sapiens_core_47_36i:ensembldb.sanger.

ac.uk',
  'anonymous'
  );
  return $dbh;
});

get '/' => sub {
  my $self = shift;
  $self->render('index');
};

get '/results' => sub {

236   5 developing web resources

 my $self = shift;
 my $gene = $self->param('gene');

 my $query = q(
  SELECT es.synonym, sr.name, g.seq_region_start, g.seq_
region_end
  FROM seq_region sr, gene g, external_synonym es
  WHERE es.xref_id = g.display_xref_id
  AND sr.seq_region_id = g.seq_region_id
  AND es.synonym LIKE ?
  ORDER BY g.seq_region_start ASC
  LIMIT 500
);
 my $dbh = $self->app->dbh;
 my $sth = $dbh->prepare($query);

 $sth->execute($gene);

 $self->stash(
 gene => $gene,
 query => $query,
 results => $sth->fetchall_arrayref()
);

 $self->render('results');
};

app->start;
__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 </head>
 <body>
 <%= content %>
 </body>
</html>

@@ index.html.ep
% layout 'default';
% title 'Basic Web Form';
<h1>Basic Web Form Example</h1>
<p>

5.3 programming for the web using perl   237

 Please enter a gene name and click 'Search' to get a
 report of information for a gene.
</p>
<p>
 (If you are at loss for a something to search for,
 try p53 or ATP%).
</p>
<form method="get" action="<%= url_for '/results' %>">
 <p>
 Gene:
 <input type="text" name="gene" size="15" />
 <input type="submit" value="Search" />
 <input type="reset" value="Clear" />
 </p>
</form>

@@ results.html.ep
% layout 'default';
% title "Search Results For: '$gene'";
<h1>Search Results For: '<%= $gene %>'</h1>
<p>
 The table below was created by running this query on the
 'homo_sapiens_core' database at
 Ensembl
</p>
<pre><%= $query %></pre>
<table border="1" cellpadding="3" cellspacing="3">
 <thead>
 <tr>
 <th>External Synonym</th>
 <th>Seq Region Name</th>
 <th>Seq Region Start</th>
 <th>Seq Region End</th>
 </tr>
 </thead>
 <tbody>
 <% foreach my $result (@{$results}) { %>
 <tr>
 <% foreach my $item (@{$result}) { %>
 <td><%= $item %></td>
 <% } %>
 </tr>
 <% } %>
 </tbody>
</table>

238   5 developing web resources

The vast majority of the new additions to our program should already be fa-
miliar. It is essentially the same as the program from earlier in this section when
we talked to the Ensembl database via our web application. The only addition
here is that it is no longer a static query—we are now accepting input from the
user via a form (or via adding parameters to the URL). The way that we accept
input parameters within a Mojolicious application is through the use of the
$self->param function, which is used in the above program as follows:

my $gene = $self->param('gene');

This returns the content of the element with the nam gene on the form that we
set to forward to this program, and we use it as the argument in our query to
the database defined earlier in the program. This query is then run against the
Ensembl database, and the results returned as a web page exactly as before. This
is how we pass parameters from a web form to a program for processing, some-
thing that is widely used in online bioinformatics tools.

5.3.6  Deploying a Mojolicious application

So far we have only used Mojolicious with the local development server, Morbo. This
is a great way of developing your web application, but it is not suitable for support-
ing end users as it is only capable of handling a low volume of connections and is not
designed for production use (e.g. re-loading all of your Perl code on each request is
not very efficient). Therefore, when we deploy Mojolicious applications we use a dif-
ferent application server and setup—this process is commonly known as deployment.

There are several options available for deploying your Mojolicious web appli-
cations. If you are looking for a hosted solution where you do not have to take
care of the server setup and configuration, we would recommend Heroku (www.
heroku.com). Deploying an application to Heroku is very simple, and your first
basic application is free.

If, on the other hand, you already have access to your own Apache web
server (see Appendix B for details of how to do this) and would like to host your
web applications yourself, your options are much greater. Our recommended
method of deployment would be to use the Mojolicious application server2
Mojo::Server::Daemon (if your server runs Windows), or the Hypnotoad ap-
plication server (if your server runs Linux, Mac OS, or any other flavour of Unix)
and proxy requests to this via Apache. This deployment/application architecture is
described in Fig. 5.2. The reason we recommend this approach is that:

◆	 It allows you to host multiple web applications from the same server (using
Apache virtual hosts to proxy to many different Perl applications).

◆	 As a performance improvement, it allows you to use the Apache web server to
serve static files (images, CSS, and JavaScript files from the /public directory
in your application) directly, without going via the application server.

2	 An application server is a term used to describe the server process that runs your Perl code. Morbo is
another example of an application server.

5.4 advanced web techniques and languages   239

◆	 It separates your main web server (i.e. Apache, the thing that recognizes that
the incoming request is for www.example.com) from your application server
(your Perl application). This has a number of benefits:

■	 Security: you can run your Perl applications as simple, non-privileged user
accounts that are completely separate from Apache and the rest of your
system. If the worst happens and your application is compromised, intruders
would only have access to files and data available to the user you run your
Perl processes as, nothing more.

■	 You can update your Perl code without needing to re-start Apache. This is
most beneficial if you run multiple sites through a single Apache server as
only one of your websites potentially goes offline during deployment.

■	 If your web service becomes popular, or too resource intensive for your
single machine (hosting both Apache and your application servers), it is
quite simple to move your application server (Perl) onto another machine
(or multiple machines) and update your Apache proxy to point to the newer
machine(s).

For details of how to deploy a Mojolicious application using the methods
above, we refer you to mojolicio.us/perldoc/Mojolicious/Guides/
Cookbook#DEPLOYMENT (for Mojo::Server::Daemon), github.com/kraih/
mojo/wiki/Hypnotoad-prefork-web-server (for Hypnotoad) and github.
com/kraih/mojo/wiki/Apache-deployment for information on setting up
Apache as a proxy to your application.

5.3.7  Going further with Mojolicious

This brings us to the end of our basic introduction to Perl programming for the
web with Mojolicious. If you would like to learn more about Mojolicious, we rec-
ommend the screencast tutorials (mojocasts.com) and the Mojolicious docu-
mentation (mojolicio.us/perldoc) and wiki (github.com/kraih/mojo/
wiki).

5.4  Advanced web techniques and languages

The basics of HTML and web programming described so far are acceptable for
developing basic in-house bioinformatics tools; but if you aspire to become an
accomplished bioinformatics web developer, you will need to understand the
more advanced technologies that build on this basic foundation. In particular, it
is worth having an awareness of cascading stylesheets (CSS) and JavaScript—two
technologies found on almost all modern websites.

5.4.1  Cascading stylesheets

Cascading stylesheets (CSS) help make web applications look nicer—taking us
beyond that 1990s look of plain white backgrounds and standard black text. This
is done by defining a style for how the various different aspects of your HTML

240   5 developing web resources

pages are displayed—you can change almost anything: the font, colour, and size
of your text, as well as where different sections of your content are positioned.
The things that you can do purely with a good understanding of CSS are vast. In
this section we will look at the core concepts of CSS and point you in the direc-
tion of further learning resources.

The syntax of CSS is quite simple—it is just a list of style declarations that
can be stored in a separate file (known as a CSS stylesheet) or placed at the top
(within the <head> section) of a HTML page. A web browser will use these styles
when rendering the page. Here we concentrate on the latter (embedded within a
HTML page) use of CSS, which is fine for simple pages.

To demonstrate the effect of CSS on a HTML document, open up a HTML file
that you have created (for example test.html which we used to show off our
knowledge of HTML tags), and add the segment of code below somewhere be-
tween the <head> tags (e.g. just below the last <meta> tag), then open the file in
your browser to see how it affects the visual appearance of the page.

<style type="text/css">
 body {
 �font-family: 'Lucida Grande', Verdana, Arial, Sans-

Serif;
 color: #444;
 }

Users

Web server (Apache)

Application server (Perl)

MySQL
database

R process

Static
assets

Fig. 5.2  Our recommendation for the basic architecture of a deployed web application. In
this diagram we see the relationship between the different components of a web application
and the way in which data flows between them. The R process is optional – it is only
necessary if data analysis within R is required within the web application.

5.4 advanced web techniques and languages   241

 code {
 color: blue;
 }

 table th {
 background-color: black;
 color: white;
 }

 a:hover {
 text-decoration: underline;
 color: red;
 }
</style>

The CSS is the code enclosed within the <style> tags, which are used to inform
the web browser that the code within is CSS and should be treated as such. The
CSS is made up of a list of declarations; these start with the name of the element to
which the declarations are to be applied (e.g. the first declaration here is body) then
all styles that are to be applied to that element are enclosed within curly braces.

In the example above, we apply two style declarations to the contents of the
<body> tag within the HTML (everything that we see on our web page is housed
within the body tag so this is a good place to set default styles for the entire page
to follow)—these declarations are font-family and color. These two declara-
tions affect the font that is used to display all text within our web page, and the
colour that is used for the text. The font colour is defined by a hexadecimal code
#444—this translates to a light grey colour text; all colours in web pages can be
defined in this notation—for further information, consult the Wikipedia entry
on web colours (en.wikipedia.org/wiki/Web_colors).

In the next declaration, we alter the way in which code blocks appear in our
web page—we have changed the font colour to blue (notice how we can also use
the word blue to define the colour we wish to use—for simple colours we can use
the names, for more exotic shades we have to revert to using the hexadecimal
codes).

The third declaration defines new rules for table heading cells (<th> tags). We
colour the text white and make the background colour of the cell black.

Finally, we demonstrate one last concept of CSS: states. In this last declaration
we define what happens to links when they are hovered over (when a user puts
their mouse pointer over a hyperlink)—this is known as the hover state. In this
instance we define that the text that makes up the link should become under-
lined and red in colour—this is an effect that you would have no doubt noticed in
use all over the Internet to signify links. Other available states for use with links
and CSS are as follows:

◆	 link—this is a link that has not been used, nor is a mouse pointer hovering
over it,

242   5 developing web resources

◆	 visited—this is a link that has been used before, but has no mouse on it,

◆	 active—this is a link that is in the process of being clicked,

◆	 hover—this is a link that currently has a mouse pointer hovering over it/on it
(as used above).

As you can see from viewing your altered web page in a browser, just a small
amount of CSS can considerably improve the appearance of a web page. To find
out more about CSS, we recommend looking at the W3Schools website again—
the section covering CSS techniques (www.w3schools.com/css) is very clear
and concise. If you prefer a book, CSS3: The Missing Manual (McFarland 2013) is a
very good text to introduce you to the subject and will help you progress into
more advanced aspects of CSS quickly.

Using CSS stylesheets with Mojolicious
There are two simple ways to use CSS stylesheets within a Mojolicious applica-
tion. You can either include the CSS within the head tags of your template in
much the same way as we have just done in our above example, or you can store
the CSS as a static asset and then refer to it.

To use CSS as static assets you will need to create a public directory in the
same directory as your Mojolicious application, and within that we would recom-
mend creating another directory called stylesheets where you can house all
of your CSS stylesheets. Now, if you created a stylesheet called app.css within
that directory, you would simply have to add the following line of code within
the head section of your template in order to have it included in all your pages
that use that template:

<link href="/stylesheets/app.css" rel="stylesheet"
type="text/css" />

5.4.2  JavaScript, JavaScript libraries, and Ajax

What we have looked at so far with Perl and Mojolicious are server-side
technologies—all of the data processing happens on the web server, and only
HTML is sent out to the user’s browser. JavaScript, on the other hand, is a client-
side programming language—it runs within the browser of the person viewing
your web page and can only act on the content of the web page that the user
is viewing at the time. This sounds a lot more restrictive than Perl and other
server-side technologies, but the great benefit of JavaScript is the immediacy of
feedback, which can make web pages seem much more dynamic and interactive.
Before we move on, we should clear up one common misconception: JavaScript
has nothing to do with the Java programming language covered in the next
chapter—it is just a shared love of caffeinated beverages that caused the name
Java to be used for both languages. Some common uses of JavaScript are:

◆	 Validation—you can write JavaScript functions to check the content of web
forms; for example, when you ask a user for an email address you can

5.4 advanced web techniques and languages   243

immediately check that they have actually entered something that looks like a
valid e-mail address.

◆	 Dynamically changing the content of a web page—you can write JavaScript
functions that adapt the content of your web page based on a user’s actions.
Examples include multi-part forms, where the latter parts of the forms are de-
pendent on what was entered in the earlier part of the form, and collapsible
lists.

◆	 Animation—recent advances in JavaScript techniques make it possible to
produce detailed and very slick animations on almost any element of a HTML
page. It is possible to hide a section of content, and upon the click of a button
(or even just hovering over a defined item on your page), have another section
slide, fade, or just appear, ready for use.

◆	 Ajax—Ajax (Asynchronous JavaScript and XML) is a term used to describe one
of the more complex uses of JavaScript. The traditional method of sending data
to and from the server in web technologies is before and after each page refresh
(i.e. when you submit a form, data is sent to the server, and the web page does
a complete refresh whilst the form data is processed). Ajax changes this con-
cept slightly in that it allows communication of data in small pieces between
the web page and server without page refreshes, so you can submit forms or
perform searches on databases without having to do a full page refresh to get
your desired results to the screen. This allows web developers to produce a
much richer experience for their users and can make web-based applications
behave much more like desktop applications.

Given that JavaScript is not a core technology in bioinformatics, we cannot jus-
tify going into details of the language here. If you want to find out more, the
W3Schools site is a great place to get started (www.w3schools.com/js). In
terms of books, we recommend JavaScript: The Definitive Guide (Flanagan 2011) as
this covers the basics of the language and goes all the way up to more advanced
techniques. For Ajax development specifically, the Getting Started guide at the
Mozilla Development Centre (developer.mozilla.org/en-US/docs/AJAX/
Getting_Started) is a reasonable starting point. One thing to be wary of from
the very beginning is that JavaScript can behave differently in different web
browsers, so you need to test your code on the browsers that you think your users
are likely to be using.

Remarkably, it is possible to harness much of JavaScript’s client-side power
within your web pages with only the vaguest understanding of the language,
thanks to some mature JavaScript libraries that implement a range of popular
functionality. Importantly, these libraries have been written with maximum
browser compatibility in mind. The most popular libraries at the time of writ-
ing are:

◆	 jQuery (jquery.com)—The most widely used JavaScript library of those listed
here. jQuery aims to be ’a fast, small, and feature-rich JavaScript library. It
makes things like HTML document traversal and manipulation, event hand-
ling, animation, and Ajax much simpler’.

244   5 developing web resources

◆	 jQuery UI (jqueryui.com)—Governed by the jQuery Foundation, jQuery
UI is a set of user interface controls that can be used to give your web pages
a professional look and feel that makes your web applications easier to
interact with. The controls include things like Accordian, to support
expanding content on web pages, a date picker, and a progress bar. These
controls can be added to a HTML page by inserting just a few simple lines of
code.

◆	 Yahoo! User Interface Library (yuilibrary.com)—This is a set of JavaScript
utilities and controls, for building richly interactive web applications. YUI is not
as straightforward to learn and start working with as jQuery, but some web
developers prefer the approach that YUI adopts.

◆	 Dojo (dojotoolkit.org)—Like YUI, Dojo is a set of JavaScript utilities and
controls for building rich web applications. In addition to the basics, Dojo also
includes tools for optimizing web interfaces for mobile devices and has chart-
ing and graphics capabilities.

5.5  Data visualization on the web

One of the more challenging tasks that you might need to perform in bioinfor-
matics is that of producing graphical output derived from a given data set. We
saw in Chapter 4 that R is a very powerful tool to use for this, but what if you
want to make such figures available to people dynamically via the web? In this
section we explain some common techniques that you can use via Perl to produce
graphical displays dynamically on the web.

5.5.1  Using R graphics in Perl

In Chapter 4, we saw how visualizations such as plots, bar charts, and heatmaps
can be created using R’s powerful graphics capabilities. Generating these types
of sophisticated visualizations on the fly and serving them up within R would
clearly be very useful. The Statistics::R Perl module provides a basic bridge
between Perl and R, allowing you to do just that. The module can be installed
from CPAN, PPM, or your package manager as described previously.

Using Statistics::R
Using Statistics::R within your Perl programs is really rather simple and
best described with an example. Here is some code that sends commands to R to
produce a PNG output file within the current directory:

#! /usr/bin/env perl

use Statistics::R;

my $R = Statistics::R->new();
$R->startR;

$R->send('data <- c(1, 3, 6, 4, 9)');

5.5 data visualization on the web   245

$R->send('png("barplot.png", width=500, height=500)');
$R->send('barplot(data)');

$R->stopR;
exit;

As you would expect, we start off with a use statement for Statistics::R;
we then create a Statistics::R object ($R) and call the method startR on it—
this starts an R process that we can then talk to via our $R object. We then send
through R commands as simple text strings via the send method (again on our $R
object), before finally closing the R session with stopR.

In the above example we have only been communicating with R in one
direction—sending data from Perl into R—now what if we want to go the other
way and get the result of some computation from R into our Perl program? The
good news is that this is possible with Statistics::R, but the bad news is that
this is not friendly or graceful. Let’s show you what we mean with an example:

#! /usr/bin/env perl

use Statistics::R;

my $R = Statistics::R->new();
$R->startR;

$R->send('x = 123');
$R->send('print(x)');
my $ret = $R->read;

print "The returned value was: '$ret'\n";

$R->stopR;
exit;

This code works in the same way as the previous example; starting an R session
and sending some commands, but the main difference here is that we call the read
function on the Statistics::R object. This function reads the last output from
the R session and returns it. The above code will generate the following output:

The returned value was: '[1] 123'

As you can see this is taking the output from R that would otherwise be printed
to the terminal and returning it in full as a string to Perl—nothing more. This is
not ideal as it would be much more preferable to get a parsed output of this re-
sult (i.e. the number 123 as an integer in the above example), but we can under-
stand why this is the proposed solution as the output from R could be a vector, a
matrix, a string, an error message, or pretty much anything, so writing a generic
solution for all the possible combinations would be near impossible. At least,

246   5 developing web resources

because it is your program sending the R commands, you should know what
form of output you expect them to produce and can therefore write an output
handling subroutine to convert that to a Perl variable for further use.

Using Statistics::R in web applications
Now that we have an idea of what we can do with Statistics::R, we can use
this in the context of a web application. What we would like to do is demonstrate
a method for getting R generated images on the web using Mojolicious. This is
not entirely straightforward as we cannot simply get the resulting image from an
R program as a variable within our Perl program and show this to the user—we
need to save the images to disk (in a defined location) and serve them automatic-
ally via Mojolicious.

Before we get started with any code, we need to do a small amount of prepar-
ation. In the directory where you are going to write your web application, create
a directory called public, and within that directory, create another one called
r-images. Mojolicious has a useful feature where it serves static files automat-
ically for you, and the default location for static files is the public directory we
have just created. We created the r-images directory within public as it is not
normal practice to have files stored directly within public; usually we have a
series of directories for storing images, CSS, and JavaScript files separately, and in
our case r-images.

A complete program that produces a graph in R and displays it within a web
page is shown below.

#! /usr/bin/env perl

use Mojolicious::Lite;
use Statistics::R;
use DateTime;

app->attr(r => sub {
 my $self = shift;
 my $R = Statistics::R->new();
 return $R;
});

get '/' => sub {
 my $self = shift;

 # Build our R Script in a multi-line string
 my $timestamp = DateTime->now();
 my $img_name = "r-image-$timestamp.png";

 my $rcmd = <<RCMD;
rangescale <- function(X) {
 Xmax <- apply(X, 2, max)

5.5 data visualization on the web   247

 Xscaled <- scale(X, scale=Xmax, center=FALSE)
 return(Xscaled)
}

X <- read.table("http://www.bixsolutions.net/profiles.csv",
sep=",", header=TRUE)
Xscaled <- rangescale(X)
d <- dist(t(Xscaled), method="euclidean")
bitmap(file="$img_name", type="png256", width=6, height=6,
res=96)
dendrogram <- hclust(t(d), method = "complete", members =
NULL)
plot(dendrogram)
dev.off()
RCMD

 chdir('public/r-images');
 my $R = $self->app->r;
 $R->startR;
 $R->send($rcmd);
 $R->stopR;

 $self->stash(img_name => $img_name);
 $self->render('index');
};

app->start;
__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 </head>
 <body>
 <%= content %>
 </body>
</html>

@@ index.html.ep
% layout 'default';
% title 'Using R in a Perl Web App';
<h1>Using R in a Perl Web App</h1>
<p>Here is the resulting image generated by R</p>
<img src="/r-images/<%= $img_name %>" alt="R and Perl" />

248   5 developing web resources

No individual component of this program is particularly new to us, but the in-
novation here is in bringing everything together. The key steps in the program
are as follows:

1	 Before we declare any routes, we first set up the code for building a
Statistics::R object as an attribute on the Mojolicious application—just as
we did with our database connection code earlier.

2	 Then within the index route:

If you save this as a Perl file (in the public directory made earlier), run it
with Morbo, and visit localhost:3000 you should see an R-generated image
in the web page, a screenshot of which can be seen in Fig. 5.3. This image has
been generated by R code called via Perl and then inserted into a HTML page by
Mojolicious.

Fig. 5.3  A screenshot of a dendrogram automatically generated by R being displayed on a
Perl driven web page.

5.5 data visualization on the web   249

◆	 We first define a unique filename for our image with a timestamp as part of
the filename (using DateTime). We do this because we are programming for
a web page that could potentially be accessed multiple times by many dif-
ferent people—if we only had a single file name to use, we could be halfway
through writing one file when the next person comes along and starts over-
writing it. This way, we try to ensure that these sorts of file complications are
avoided.

◆	 We then declare our complete R program in a single string variable through
the use of a document (as described in Chapter 3). You will notice that we
are recycling one of the R programs from Chapter 4 (clustering performed
on the protein profiles data set). The data set in this instance is hard coded
into the program (well, a link to the CSV file on the Internet is). We only
did this for brevity so that the program is easier to read—this data could
just as easily have come from a database query, or from user input via
forms.

◆	 We then change our working directory to public/r-images and then run
the R script via Statistics::R, saving the image to disk before stashing
the image name (so we can use this in the template) and then rendering the
index template.

3	 Finally, in the index template we present a standard web page, but we also
insert a img tag with the src attribute pointing to our newly created image
file—this is all we need to do to get Mojolicious to serve the file correctly as it
is located within the public directory.

This is all we need to do to be able to use R generated images within our web
pages. It is not as elegant as we might like, because we have to first save the
images to disk before we can utilize them, but it is a simple approach that gen-
erally works well. If we were to make this available as a public service we would
need to periodically remove all of the images within the public/r-images dir-
ectory, otherwise we risk using up all the server’s storage.

Shiny: Serving R web output directly from R
As an alternative to the Statistics::R approach, a relatively new R package
called shiny, available from CRAN and documented at www.rstudio.com/
shiny, provides a particularly elegant way to make interactive R graphics and
tables available via the web. It runs a web server within R, serving up interactive
pages each of which can be defined by just two R programs: one to specify the
user interface to be displayed on the web page, and the second to perform the
data analysis and visualization that needs to take place on the server. At the time
of writing, shiny is still in beta, but it looks like it could become a very efficient
tool for visualizing data within websites.

In many applications, however, we might not need the sophistication of
processing and visualisation provided by R—we may just need simple graphs.
For these applications, there are many alternatives in Perl, one of which is
Chart::Clicker.

250   5 developing web resources

5.5.2  Plotting graphs with Chart::Clicker

Chart::Clicker is a graph drawing library built upon the Cairo graphics li-
brary that can be used to produce very pleasant and modern looking graphs.

Installing Chart::Clicker
Chart::Clicker is not a standard part of the Perl distribution, so we first need
to install it.

Windows
Unfortunately we were unable to find a good build of Chart::Clicker for the
Windows platform, owing to Chart::Clicker’s strong dependence on Unix tools.
If you particularly want to experiment with this, we recommend setting up a Linux
virtual machine as described in Appendix C. Alternatively, you can skip ahead to
the next section, which shows similar functionality from SVG::TT::Graph.

Linux
You should find pre-built packages for Chart::Clicker within your package
manager.

Mac OS
To get Chart::Clicker to work on Mac OS you have to jump through a few hoops
and install numerous dependency libraries. This is nothing too taxing, it just takes
a little while to complete. Below you will find all of the required commands needed
to get it installed; we have also posted these on the bixsolutions.net forum (www.
bixsolutions.net/forum/thread-98.html) for your convenience.

brew update
brew install fontconfig
brew install freetype
brew install libpng
brew install cairo

export ULOPT=/usr/local/opt
export LIBPKG=lib/pkgconfig

export PKG_CONFIG_PATH=/usr/X11/$LIBPKG:$PKG_CONFIG_PATH
export PKG_CONFIG_PATH=$ULOPT/pixman/$LIBPKG:$PKG_CONFIG_PATH
export PKG_CONFIG_PATH=$ULOPT/fontconfig/$LIBPKG:$PKG_CONFIG_
PATH
export PKG_CONFIG_PATH=$ULOPT/freetype/$LIBPKG:$PKG_CONFIG_
PATH
export PKG_CONFIG_PATH=$ULOPT/libpng/$LIBPKG:$PKG_CONFIG_PATH
export PKG_CONFIG_PATH=$ULOPT/cairo/$LIBPKG:$PKG_CONFIG_PATH

cpanm Chart::Clicker

Using Chart::Clicker
With Chart::Clicker installed correctly we can get started writing our first
program to demonstrate how it works:

5.5 data visualization on the web   251

#!/usr/bin/perl

use strict;
use warnings;

use Chart::Clicker;

Create a Chart::Clicker object.
my $cc = Chart::Clicker->new(
 width => 600,
 height => 400,
 format => 'png'
);

Add data to our chart.
$cc->add_data('Set 1', [5.8, 5.0, 4.9, 4.8, 4.5, 4.2]);
$cc->add_data('Set 2', [0.7, 1.1, 1.7, 2.5, 3.0, 4.5]);

Set a title for the chart.
$cc->title->text('Line Chart');
$cc->title->padding->bottom(5);

Finally, save our image.
$cc->write_output('chart_clicker_line.png');

exit;

The above example produces the graph shown in Fig. 5.4. The main steps in the
program are as follows:

1	 Make Perl aware that we need Chart::Clicker, via the use statement.

2	 Create a new Chart::Clicker object—to this we pass options for the size
and format of image that we want to output.

3	 Add our data sets to the Chart::Clicker object via the add_data method;
to this we pass a label for the data set, and the data set itself within an array
reference.

4	 Set any further rendering options for our chart; that is we set a title and a
small amount of padding below it.

5	 Write the resulting image into a file.

Chart::Clicker is very flexible in the types of graphs it produces, here is
an extension of the above code that produces a bar chart instead of a line graph:

#!/usr/bin/perl

use strict;
use warnings;

252   5 developing web resources

use Chart::Clicker;
use Chart::Clicker::Renderer::Bar;

Create a Chart::Clicker object.
my $cc = Chart::Clicker->new(
 width => 600,
 height => 400,
 format => 'png'
);

Add data to our chart. We use a hash this time to represent
data as we're drawing a bar chart and we want to say which
group the values belong to.
$cc->add_data('Set 1', { 1 => 5.8, 2 => 5.0, 3 => 4.9, 4 =>
4.8 });
$cc->add_data('Set 2', { 1 => 0.7, 2 => 1.1, 3 => 1.7, 4 =>
2.5 });

Set a title for the chart.
$cc->title->text('Bar Chart');
$cc->title->padding->bottom(5);

Replace the standard (Line) renderer.
my $renderer = Chart::Clicker::Renderer::Bar->new(opacity =>
.6);
$cc->set_renderer($renderer);

Get the image 'context' and set some values
my $def = $cc->get_context('default');
$def->range_axis->baseline(0); # Make the y-axis start at
$def->domain_axis->tick_values([qw(1 2 3 4)]); # x labels
$def->domain_axis->format('%d'); # x-axis label formatting

Ask clicker to "fudge" the edges with some padding so the
bars show up properly – this is a bug that we unfortunately
have to work around.
$def->domain_axis->fudge_amount(.25);

Finally, save our image.
$cc->write_output('chart_clicker_bar.png');

exit;

5.5 data visualization on the web   253

As you can see, this is a little more complex than the original example, but the
main thing to understand is that to produce a different type of chart, all you have
to do is change the renderer from the default—the rest of the code is really just
formatting to make the resulting image look nice.

There are many more renderers available for use with Chart::Clicker for
drawing other standard graph types and, if you need it, there is enough flexibility
to produce completely custom images. For more information on what you can
do with Chart::Clicker we recommend the CPAN documentation (metac-
pan.org/module/Chart::Clicker) and tutorial (metacpan.org/module/
Chart::Clicker::Tutorial).

Using Chart::Clicker in web applications
You are probably already thinking that images produced by Chart::Clicker
could quite nicely be incorporated in dynamically generated web pages. We
are happy to report that it is almost as simple as cutting and pasting your
Chart::Clicker code into a Mojolicious program, and it is also conceptually
simpler than our previous example of using R within a web application. Here is
the full code (there is no setup or directories needed):

#! /usr/bin/env perl

use Mojolicious::Lite;
use Chart::Clicker;
use Chart::Clicker::Renderer::Area;

1.250.00
0.70

1.97

3.25

4.52

5.80

2.50

Line Chart

Set 1Set 2
3.75 5.00

Fig. 5.4  A line graph produced using Chart::Clicker.

254   5 developing web resources

get '/' => sub {
 my $self = shift;
 $self->render('index');
};

get '/graph/:type' => sub {
 my $self = shift;
 my $type = $self->param('type');
 $self->res->headers->content_type('image/png');
 $self->res->body(draw_graph($type));
 $self->rendered(200);
};

sub draw_graph {
 my ($type) = @_;

 my $cc = Chart::Clicker->new(
 width => 400,
 height => 300,
 format => 'png'
);

 # Add data to our chart.
 $cc->add_data('Set 1', [5.8, 5.0, 4.9, 4.8, 4.5, 4.2]);
 $cc->add_data('Set 2', [0.7, 1.1, 1.7, 2.5, 3.0, 4.5]);

 set_renderer($cc, $type);

 $cc->draw;

 # return raw PNG binary data
 return $cc->rendered_data;
}

sub set_renderer {
 my ($cc, $type) = @_;

 if ($type eq "area") {
 my $renderer = Chart::Clicker::Renderer::Area->new(
 opacity => 0.75
);
 $cc->set_renderer($renderer);
 }
}

app->start;

5.5 data visualization on the web   255

__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 </head>
 <body>
 <%= content %>
 </body>
</html>

@@ index.html.ep
% layout 'default';
% title 'Using Chart::Clicker in a Web App';
<h1>Using Chart::Clicker in a Web App</h1>
<p>Here are the resulting images generated by
Chart::Clicker</p>

To see this code in action, save it in a Perl file and run it with Morbo. Now, if
you visit localhost:3000 in your web browser you should have a correctly
rendered web page with two images (the dynamically created graphs) displayed,
a screenshot of which you can see in Fig. 5.5.

This example gives us a full web application that dynamically generates images
for display on a web page. To achieve this we have simply put together our know-
ledge of Chart::Clicker and Mojolicious from before. The main difference be-
tween this example and the Statistics::R example is that we do not have to
save an image to disk when using Chart::Clicker, instead we can serve image
data directly from within Perl, so in order to do this we have created a second route
for serving the image data (as a single route can only serve one thing at a time—
text or binary (image) data, not both). Here’s the code for that route once again:

get '/graph/:type' => sub {
 my $self = shift;
 my $type = $self->param('type');
 $self->res->headers->content_type('image/png');
 $self->res->body(draw_graph($type));
 $self->rendered(200);
};

This route does the following:

1	 Captures the type of graph that we want to generate from the URL being used to
request our route (look at the index template to see how we’ve called this route).

256   5 developing web resources

2	 Sets the content_type of the response to image/png; this tells the web
browser to treat this response as a PNG formatted image.

3	 Places within the body of the response (what would normally be a template)
the result of our draw_graph function—this is the binary image data as we
are simply returning $cc->rendered_data from our function rather than
writing it to a file.

4	 Sets the status code of the response to 200—in HTTP, this means that our re-
sponse is ‘OK’ (i.e. this is normal and nothing has gone wrong).

These are the only new things—we are returning bespoke image data from a
Mojolicious route rather than text, or textual data from a template. The content of
the draw_graph function is almost identical to our previous Chart::Clicker
example, just in subroutine form.

This is a simple example of how you can use Chart::Clicker within a web
application. Admittedly it would not be this simple in a real bioinformatics web
application, as you would not usually hard code all of your graph data within the
program. More typically, you would take data from the user, from a data analysis
process, from a database query, or maybe a mixture of the three.

5.5.3  Plotting graphs with SVG::TT::Graph

The graphs generated by Chart::Clicker are perfectly functional and very
nice to look at, but Chart::Clicker is not the only chart drawing library avail-
able for Perl; one good alternative is SVG::TT::Graph.

Functionally SVG::TT::Graph is very similar to Chart::Clicker, the main
difference is the final output format of the images. With Chart::Clicker

Fig. 5.5  Chart::Clicker generated images in use within a Mojolicious web
application.

5.5 data visualization on the web   257

we have been producing bitmapped image files (JPEG, GIF, and PNG).
SVG::TT::Graph on the other hand produces SVG (Scalable Vector Graphics)
images. SVG is a graphics standard that allows the production of infinitely scal-
able high-quality graphics, by creating graphic objects that are rendered by the
browser rather than bitmapped images rendered on the server. SVG is an XML-
based format and is recognized and rendered well by the majority of modern web
browsers.

Installing SVG::TT::Graph
Installing SVG::TT::Graph and all of its dependencies is a fairly trivial process.

◆	 Windows: Search for and install the package ‘SVG-TT-Graph’ within PPM.

◆	 Linux: Search for and install SVG::TT::Graph via your package manager.

◆	 Mac OS X: Install via cpanm: cpanm SVG::TT::Graph.

Using SVG::TT::Graph
Using SVG::TT::Graph is very much like using Chart::Clicker. Let’s start
with our first example program.

#! /usr/bin/perl

use strict;
use warnings;

use SVG::TT::Graph::Bar;

Field names for the x-axis
my $fields = ["1st","2nd","3rd","4th","5th","6th","7th","8th",
"9th"];

Our data set
my $data1 = [1, 2, 5, 6, 3, 1.5, 1, 3, 4];

Create our new graph object
my $graph = SVG::TT::Graph::Bar->new({
 height => '300',
 width => '400',
 fields => $fields,
 x_title => 'X Label',
 show_x_title => 1,
 y_label => 'Y Label',
 show_y_title => 1,
 scale_integers => 1,
 stagger_y_labels => 2,
 show_graph_title => 1,
 graph_title => 'A simple graph'
});

258   5 developing web resources

Add data to our graph
$graph->add_data({
 data => $data1,
 title => 'Dataset 1',
});

Print our image to file
open(IMG, '>barchart.svg') or die $!;
print IMG $graph->burn();
close IMG;

exit;

The above code generates an output file called barchart.svg, which can be
viewed in any web browser that can handle SVG graphics. An example of the
output can be seen in Fig. 5.6.

As you can see this image is just as pleasing on the eye as the Chart::Clicker
graphs. Let’s go through the steps in the above example code to generate our
image:

1	 As with Chart::Clicker, we have a use statement that declares what type
of graph (renderer in the case of Chart::Clicker) we are going to produce:
use SVG::TT::Graph::graph_type ;. The options are Bar,
BarHorizontal, Line, Pie, and TimeSeries. In our examples, we are
going to show you the Bar and Line options—the others are just as straight-
forward.

2	 We establish the fields for our data to fit into, and then we establish a data set.
Note that these are both array references.

3	 We create a new SVG::TT::Graph object, passing it various attributes that
dictate how the resulting image will look. Note the differences here between

A simple graph

1st

1

2

3

4

5

6

0
2nd 3rd 4th 5th 6th 7th 8th 9th

1

2

5

6

3

1.5
1

3

4

X Label

Y
 S

ca
le

Fig. 5.6  A bar chart produced through the use of SVG::TT::Graph.

5.5 data visualization on the web   259

SVG::TT::Graph and Chart::Clicker—all of the attributes are set upfront
in the new() method with SVG::TT::Graph. Another difference is that
SVG::TT::Graph allows you to pass in a fields attribute—this lets you spe-
cify which fields your data points belong to, thus producing a more controlled
final chart with a nicely labelled x-axis.

4	 We load the data set into our graph with the use of the method add_data,
also passing a title for the data set. If we are adding more than one data set
(see below), this section of code is simply repeated with the new data set.

5	 Finally we print out our image using the ->burn function. In the above ex-
ample we simply print this to a file. Note that we do not need to set our
print mode to binary—because SVG is XML-based the file consists only of
text.

Now that we have explained the basics of using SVG::TT::Graph, we can
show you one of its major differences from Chart::Clicker, how bar charts
handle multiple data sets. Here is some code to demonstrate this:

#! /usr/bin/perl

use strict;
use warnings;

use SVG::TT::Graph::Bar;

Field names for the x-axis
my $fields = ["1st","2nd","3rd","4th","5th","6th","7th","8th",
"9th"];

Our data sets
my $data1 = [1, 2, 5, 6, 3, 1.5, 1, 3, 4];
my $data2 = [1, 1, 4, 7, 2, 3, 7, 4, 6];

Create our new graph object
my $graph = SVG::TT::Graph::Bar->new({
 height => '300',
 width => '400',
 fields => $fields,
 x_title => 'X Label',
 show_x_title => 1,
 y_label => 'Y Label',
 show_y_title => 1,
 scale_integers => 1,
 stagger_y_labels => 2,
 show_graph_title => 1,
 graph_title => 'A simple graph'
});

260   5 developing web resources

Add data to our graph
$graph->add_data({
 data => $data1,
 title => 'Dataset 1',
});

$graph->add_data({
 data => $data2,
 title => 'Dataset 2',
});

Print our image to file
open(IMG, '>barchart2.svg') or die $!;
print IMG $graph->burn();
close IMG;

exit;

If you run this program and look at the output, you will see that the way
SVG::TT::Graph handles multiple data sets in bar graphs is to produce com-
pound bar graphs where each data set is overlaid in front of the other. This
contrasts with the bar chart renderer from Chart::Clicker which pro-
duces charts in which the data sets are represented in separate bars (although
Chart::Clicker can also make compound bar charts). These types of com-
pound bar graphs can often be useful, but can easily become cluttered and hard
to understand if many data sets are represented. One workaround for this is to
use the line graph function of SVG::TT::Graph. To do this, just replace the two
instances of the word Bar in the above program with the word Line and run the
program again.

Using SVG::TT::Graph in web applications
Like Chart::Clicker, it is very easy to use SVG::TT::Graph within a web
application—in fact, the approach we take is identical (one route for serving the
index page, and another for serving dynamically generated graphs). Below is a
full example of a working web application that generates two images on a web
page—a screenshot of which can be seen in Fig. 5.7:

#! /usr/bin/env perl

use Mojolicious::Lite;
use SVG::TT::Graph::Bar;
use SVG::TT::Graph::Line;

get '/' => sub {

5.5 data visualization on the web   261

 my $self = shift;
 $self->render('index');
};

get '/graph/:type' => sub {
 my $self = shift;
 my $type = $self->param('type');
 $self->res->headers->content_type('image/svg+xml');
 $self->res->body(draw_graph($type));
 $self->rendered(200);
};

sub draw_graph {
 my ($type) = @_;

 my $fields = ["1st","2nd","3rd","4th","5th","6th","7th",
"8th","9th"];
 my $graph = svg_tt_graph_obj($type, $fields);

 $graph->add_data({
 data => [1, 2, 5, 6, 3, 1.5, 1, 3, 4],
 title => 'Dataset 1'
 });

 $graph->add_data({
 data => [1, 1, 4, 7, 2, 3, 7, 4, 6],
 title => 'Dataset 2'
 });

 return $graph->burn();
}

sub svg_tt_graph_obj {
 my ($type, $fields) = @_;

 my $graph_options = {
 height => '300',
 width => '400',
 fields => $fields,
 x_title => 'X Label',
 show_x_title => 1,
 y_label => 'Y Label',
 show_y_title => 1,
 scale_integers => 1,

262   5 developing web resources

 stagger_y_labels => 2,
 show_graph_title => 1,
 graph_title => 'A simple graph'
 };

 if ($type eq 'line') {
 return SVG::TT::Graph::Line->new($graph_options);
 } else {
 return SVG::TT::Graph::Bar->new($graph_options);
 }
}

app->start;
__DATA__

@@ layouts/default.html.ep
<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 </head>
 <body>
 <%= content %>
 </body>
</html>

@@ index.html.ep
% layout 'default';
% title 'Using SVG::TT::Graph in a Web App';
<h1>Using SVG::TT::Graph in a Web App</h1>
<p>Here are the resulting images generated by
SVG::TT::Graph</p>
<embed src="/graph/line" type="image/svg+xml" height="300"
width="400" />
<embed src="/graph/area" type="image/svg+xml" height="300"
width="400" />

The way in which the above code works is virtually identical to our
Chart::Clicker example except for three small differences:

◆	 The use of SVG::TT::Graph within the draw_graph subroutine.

◆	 The returned content type from the graph route is image/svg+xml.

◆	 Instead of using img tags, we use embed tags to embed SVG images within HTML.

It is also worth noting at this point that you can also produce SVG graphics
with Chart::Clicker. The changes are very minimal, we simply change the

5.5 data visualization on the web   263

returned content type (in the image route), used embed tags (in the outputted
HTML) and tell Chart::Clicker to output as SVG instead of PNG, so if you pre-
ferred the graphs produced by Chart::Clicker, but really wanted SVG output,
you can use this as you wish.

5.5.4  Primitive graphics with Perl

As in R, there are low-level functions for drawing primitive shapes in both the
Cairo and SVG graphics libraries available from CPAN (Cairo is the library that
Chart::Clicker builds upon). Although using these low-level functions can be
hard work, they are essential if you need to create the kind of very advanced
bespoke visualizations that can be extremely valuable in bioinformatics. For ex-
ample, they can be used to display gene structure, mass spectra, and interaction
networks. Much of the data visualization on bioinformatics websites therefore
employs these techniques. For more information about this topic, we refer you to
the documentation for the Cairo (cairographics.org) and SVG (search CPAN
for SVG) modules.

5.5.5  Drawing graphs and graphics using JavaScript

So far, we have talked about producing graphs and graphics on the server via R
and Perl. Another option is to produce graphics within the browser using JavaScript.
This can be appealing for two reasons: there are many JavaScript libraries for
producing graphs and other graphics and it also takes the burden of generating
images off your server and onto the user’s computer. Unfortunately, we do not

Fig. 5.7  SVG::TT::Graph generated images in use within a Mojolicious web
application.

264   5 developing web resources

have the space here to go into detail on this topic, but we can point you to a few
of our favourite JavaScript libraries for drawing web graphics:

◆	 D3.js (d3js.org)—A general-purpose data visualization framework capable of
producing rich and interactive visuals as well as basic graphs and plots.

◆	 Dojo (dojotoolkit.org)—One of the rich JavaScript toolkits mentioned
earlier in this chapter. Dojo includes a suite of graphics and charting capabilities.

◆	 Flot (flotcharts.org)—A graph-plotting library built on top of the jQuery
framework. Flot’s focus is on simple usage, attractive looks, and interactive
features.

◆	 Raphaël (raphaeljs.com)—A general-purpose graphics drawing library that
also has a charting component called gRaphaël (g.raphaeljs.com).

5.6  Summary

The main message to take from this chapter is that the extra work needed to add
a web interface to a software tool or database produced in Perl, R, or MySQL is
nothing to fear, so you can now start to implement fully fledged bioinformatics
solutions as conceptualized way back in Chapter 1 (Fig. 1.1). However, it should
be apparent that any serious project of this nature is likely to require a number of
different individual elements, such as HTML templates, CSS stylesheets, multiple
Perl programs, JavaScript, R code, and possibly an underlying relational database.
To develop such complex projects effectively requires a certain amount of dis-
cipline and organization—these traits are at the heart of software engineering, the
subject of the next chapter.

References
McFarland, D (2013). CSS3: The Missing Manual. O’Reilly: Sebastapol, California, USA.
Flanagan, D. (2011). JavaScript: The Definitive Guide. O’Reilly: Sebastapol, California, USA.

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

CHAPTER 6

Software engineering
for bioinformatics

With this book, a computer, and an Internet connection, you have everything you
need to start producing powerful bioinformatics software. This is mainly thanks
to the open-source software movement making incredibly powerful software de-
velopment tools freely available via the web, complete with detailed reference
documentation and support forums where you can get answers to even the most
specialized questions. However, this turns out to be both a blessing and a curse.

It is a blessing in that people with very little software development experience
are able to pull various pieces of software together, pasting in program code from
here and there, adding in a couple of powerful Perl modules and R packages,
and release the result back into the community. The curse is that this approach
(often called hacking) has some very real limitations in terms of the size and main-
tainability of the system you can build, and it is not always obvious where these
limits lie. Consequently, it is easy to spend a few days knocking together a per-
fectly respectable little program but ultimately frittering away years struggling
unsuccessfully to build it into something more substantial.

The problem is that hacking allows you to make very rapid progress at the start
of the project, but if that project starts to grow you may unwittingly cross some
boundary that starts to make your approach unproductive. The more boundaries
you cross, the worse your problems become, until eventually you stop making
any form of real progress. You may be working very hard and writing lots of code,
but your effort is entirely spent fixing problems and every problem you solve cre-
ates several more to take its place. Over the past 30 or so years, the discipline of
software engineering has developed specifically to ease the development of large
and maintainable systems. Many books have been written on the subject, among
which Software Engineering (Sommerville, 2010) is a good place to start.

Many of today’s bioinformaticians have no reason to become experts in soft-
ware engineering. They simply want to spend a few hours writing a self-con-
tained program for their own use, and may discard it in a matter of days or
weeks. However, as the bioinformatics field grows and matures, software projects
are gradually growing larger and more complex and are intended to serve con-
siderably larger user bases for many years or even decades. Of particular note is a

266   6 software engineering for bioinformatics

move towards multi-developer projects—many of today's bioinformatics projects
are team efforts. Maintaining efficiency when working on something with other
people is never easy and it becomes a particular challenge when working on com-
plex software, especially if team members are distributed around the globe or
come and go as the project progresses. Software engineering skills are therefore
becoming increasingly important in bioinformatics.

This chapter provides a practical introduction to some of the fundamental
areas of software engineering from which we feel you and your software would
gain the most immediate benefit. These areas are:

◆	 Unit testing—writing automated and repeatable tests for program code.

◆	 Version control—keeping track of changes in program code and sharing
program code among multiple developers.

◆	 Documentation—helping other developers, and your future self, understand
your program code.

◆	 User-centred design—ensuring your software is as easy as possible for the
intended audience to use.

◆	 Alternative programming languages—some people would argue that Perl is not
the best language for developing complex multi-developer projects. We there-
fore provide an introduction to other languages used in bioinformatics.

Arming yourself with this information, and getting a little practice, should open
the door for you to work on larger, more complex projects and even help you
understand how to make effective contributions to open-source projects, where
you can improve your software engineering expertise in the virtual company of
like-minded people.

6.1  Unit testing

It is obvious that anything newly designed needs to be tested before being
released to users, be it a new piece of software, a new pharmaceutical, or a new
toaster. In software development, the definition of testing can vary enormously.
In the worst case it is limited to the developer having a quick play around with
the software to see if it behaves as anticipated. This clearly lacks rigour, especially
when the developer is not the intended user—any fundamental problems, such
as references to non-existent libraries or syntax errors, will generate error mes-
sages, but more subtle mistakes in program logic may not be apparent. The field
of software engineering offers us a number of more rigorous testing protocols, of
which unit testing is one of the most popular. Indeed, many programmers would
say that unit testing is essential even for the simplest single-developer projects.

A simple definition of unit testing could be ‘the practice of creating tests that
exercise small units of program code to ensure that they are working as expected’.
In practice, this essentially means that we write programs that test small sections
(or units) of the program that we are developing. What we mean by a unit can
vary, but typically it would be a defined portion of logic in programming code,
such as a module, class, method, or subroutine. The tests can be used to confirm

6.1 unit testing   267

that the unit functions as intended when it is first written, but can also be re-
run as the program is further developed to ensure that nothing has been broken
along the way. It is particularly useful when optimizing code for performance—
this can involve extensive re-writing of code, so demonstrating that a unit still
works after such major changes is important. Similarly, it is useful to test after
performing maintenance, for example when code has had to be modified due to
changes in the underlying language or libraries used. As a program gets larger,
with more units of code, the number of unit tests that need to be applied will
similarly increase, but since these tests are automated no significant developer
time is needed to do this once the tests have been written. If done properly, it can
therefore be both a thorough and efficient way of testing software.

If well written, the tests also fulfil a very useful secondary role, which is to
formally define what exactly a given unit is supposed to do. The ultimate mani-
festation of this is test-driven development, where instead of starting off with a
textual specification of what a piece of program code should do, with all the
vagueness that can entail, it is possible to specify exactly how a piece of program
code should behave by writing a test—if it passes the test it meets the specifica-
tion. Just from this brief description, you have probably already thought of many
difficulties associated with this approach. Most obviously, the quality of software
developed in this way will be dependent on the quality of the tests, and how can
we be sure of writing good tests that cover all eventualities? It turns out that this
is a serious challenge, especially when user interfaces or database integration are
involved. As a result there are whole books dedicated to this field, such as Test-
Driven Development: By Example (Beck, 2003), which are well worth a look. In our
opinion, a pragmatic view would be that unit testing is an extremely valuable
tool but it does sometimes need to be supplemented by other testing methods.

6.1.1  Unit testing in practice

To understand what unit testing means in practice, let us consider an example
of testing a module written in Perl. In the following code snippet we have the
beginnings of a module called EnsemblTools.pm. The module is intended to be
a collection of simple tools for working with data and identifiers from Ensembl.

package EnsemblTools;

use MooseX::Declare;

class IdParser {
 has 'id' => (is => 'ro', isa => 'Str', required => 1);

 method is_valid_id {
 if ($self->id =~ /^ENS\D*[G|T]\d+$/) {
 return 1;
 } else {
 return 0;
 }
 }

268   6 software engineering for bioinformatics

 method species {
 if ($self->is_valid_id) {
 if ($self->id =~ /^ENS(\D*)[G|T]\d+$/) {
 if ($1 eq '') {
 return 'Human';
 } elsif ($1 eq 'MUS') {
 return 'Mouse';
 } else {
 return 'Unknown';
 }
 }
 }
 }
}
1;

This object oriented code (using MooseX::Declare, which we covered to-
wards the end of Chapter 3) is currently capable of performing only two tasks—
checking that Ensembl IDs are correctly formed, and determining the species
from Ensembl IDs.

Thus far we have been manually testing Perl programs like this, by run-
ning them and seeing if they work correctly. Then, after we make a change
we have to run the program again to make sure it still works. Even for a
simple program this is not only tedious, it is also hopelessly inadequate—we
do not formally define what we mean by the program ‘working correctly’ and
we usually cannot hope to verify the program’s output for even a fraction of
possible scenarios. As a program gets larger and more complex, this ad hoc
method of testing only gets more painful and less effective—hence the need
for unit testing.

We could just go ahead and start writing a Perl program to do unit testing on
this module—automatically applying the classes to Ensembl IDs and checking
that the correct results come back. However, this would require not just writing
the tests but also developing program code around those tests, for example, to
report the outcome of the tests in a consistent way. We can produce test code
much more effectively by utilizing test tools that do all the mundane work for
us. Some languages have unit testing functionality built-in as a fundamental part
of the language, but in Perl this functionality is provided by libraries, of which
there are several to choose from. The testing package that we are going to use in
this example is Test::More; this is usually included as part of the standard Perl
installation.
Test::More gives us a simple framework for writing tests on our code.

It does this by providing methods to check the output of our code units, and
by keeping track of which tests pass or fail. Before we get onto writing tests
for our EnsemblTools module, let’s introduce some of the basic functions of
Test::More in an example:

6.1 unit testing   269

#! /usr/bin/env per l

use strict;
use warnings;
use Test::More;

The ok() function simply checks if the evaluated code returns
true - if it does it passes, if not it fails.
ok(1 + 1 == 2); # pass
ok(1 + 2 == 4); # fail

k() also allows you to label your tests, this is good for
spotting which tests pass/fail in the program output.

ok(1 + 1 == 2, 'one plus one');

The is() function lets us declare that something is supposed
to be the same as something else.

my $gene_seq = 'ACTG';

is($gene_seq, 'ACTG'); # pass
is($gene_seq, 'AAAA'); # fail

Again, you can label your tests

is($gene_seq, 'ACTG', 'gene_seq is as expected');

done_testing;

Here we introduce three key functions in Test::More.

◆	 ok—This function simply checks that the evaluated code returns true. If it
does, the test passes; if not, it fails.

◆	 is—This checks that the two values passed to it are equal. If they are equal, the
test passes. If not, it fails.

◆	 done_testing With Test::More you must call the method done_testing
at the end of the program so that it knows all of your tests have been run. If
execution halts before done_testing is called, Test::More will indicate that
the test suite did not complete.

If you save the above code into a file and run it as a normal Perl program it will
generate the following output:

ok 1
not ok 2

270   6 software engineering for bioinformatics

Failed test at test_more_basics.pl line 11.
ok 3 - one plus one
ok 4
not ok 5
Failed test at test_more_basics.pl line 24.
got: 'ACTG'
expected: 'AAAA'
ok 6 - gene_seq is as expected
1..6
Looks like you failed 2 tests of 6.

This indicates that we ran six tests, and that two of them failed. As you can
see, writing basic unit tests is really very simple when using Test::More.
Some other useful test functions in Test::More (when working with mod-
ules) are:

◆	 use_ok—This simply checks that the module we are testing compiles correctly
and can be used (via the use declaration) within this script.

◆	 require_ok—This is like use_ok, but it calls require on the module (and
confirms the require was successful), so you can use the functions / classes in
the test without prefixing everything with the namespace of the module under
test.

Now that we have gone through the basics of Test::More, let’s have a look at
the test suite we have built for the EnsemblTools.pm example.

#! /usr/bin/env perl

use strict;
use warnings;
use Test::More;

use_ok('EnsemblTools');
require_ok('EnsemblTools');

create some parser objects
my $bad_obj = IdParser->new(id => 'qwerty');
my $human_gene_obj = IdParser->new(id => 'ENSG00000139618');
my $human_tran_obj = IdParser->new(id => 'ENST00000296271');
my $mouse_gene_obj = IdParser->new(id => 'ENSMUSG00000018666');
my $mouse_tran_obj = IdParser->new(id => 'ENSMUST00000093943');

test id checking
ok($bad_obj->is_valid_id == 0, 'identifies bad ids');
ok($human_gene_obj->is_valid_id == 1, 'human gene ids');
ok($human_tran_obj->is_valid_id == 1, 'human transcript ids');
ok($mouse_gene_obj->is_valid_id == 1, 'mouse gene ids');
ok($mouse_tran_obj->is_valid_id == 1, 'mouse transcript ids');

6.1 unit testing   271

test species extraction
is($human_gene_obj->species, 'Human', 'human (gene id)');
is($human_tran_obj->species, 'Human', 'human (transcript id)');
is($mouse_gene_obj->species, 'Mouse', 'mouse (gene id)');
is($mouse_tran_obj->species, 'Mouse', 'mouse (transcript id)');
done_testing;

This code should be saved (call it test_ensembl_tools.pl) in the same dir-
ectory as the module we are testing. All being well, executing the code should
result in the following output:

ok 1 - use EnsemblTools;
ok 2 - require EnsemblTools;
ok 3 - identifies bad ids
ok 4 - human gene ids
ok 5 - human transcript ids
ok 6 - mouse gene ids
ok 7 - mouse transcript ids
ok 8 - identifies human (gene id)
ok 9 - identifies human (transcript id)
ok 10 - identifies mouse (gene id)
ok 11 - identifies mouse (transcript id)
1..11

This signifies that all 11 of the tests that we defined have passed, and the
module is working as intended. When it comes to future development on the
module, we only need to re-run this script to make sure we haven’t broken any
existing code. Of course, if new functionality is added to the module it will be
necessary to add one or more additional tests, but it will still be important to run
the original tests because adding new features is a great way to break existing
functionality. To see what happens when a test fails, insert a trivial error into the
module by changing Human to Numan in the species method. When the test
program is run on this modified code, it will fail the two tests related to identi-
fying human IDs (tests 8 and 9).

We should mention that, in this example, although we have tested every code path
through the current EnsemblTools module, this is not really sufficient for produc-
tion-quality code as we have only used a single variant of each type of ID considered.
To feel more comfortable we would suggest having multiple variations on each type
of ID, covering the widest possible range of IDs that we would expect to see.

Going further
Testing software is unlikely to ever have the same kudos as actually develop-
ing new software functionality, but we hope this brief introduction has con-
vinced you that unit testing, in particular, can be a valuable part of building
bioinformatics solutions and that it is not actually too much of an overhead if you
use the right tools. Once you get used to writing tests, they don’t take long, and

272   6 software engineering for bioinformatics

if you get into the spirit of test-driven development they can even be quite fun.
Exactly what you test, and how you test, comes with experience and will vary
from project to project. In some development teams, unit testing is compulsory.

For more about unit testing Perl code, we recommend the Test::Tutorial
on CPAN (search.cpan.org/dist/Test-Simple/lib/Test/Tutorial.
pod), and the online documentation for Test::More (perldoc.perl.org/
Test/More.html). Most other languages have unit testing either built-in or sup-
ported by third-party add-ons. For example, R has the RUnit and testthat pack-
ages (both available via CRAN).

6.2  Version control

Whether you are working on your own, or as part of a team, if you are writing
program code it quickly becomes obvious that some form of version control is
essential. In this section we introduce one of the more common version control
tools used in bioinformatics today, but first we will give you an overview of what
version control is and why you should be doing it.

Version control is the practice of tracking changes within files (in particular
programming source code, but it can easily be used to track any other text-based
file) so that you can see what has changed in your files over time, who has made
the changes and (ideally) why the changes were made. This may sound like a te-
dious and unnecessary overhead on the already time consuming business of soft-
ware development, but it turns out to be incredibly useful and modern version
control software takes care of most of the tedium for us.

Most people when they start off use the 'versioned file' method—we have all
done this—where you put a date or a made-up version number within a filename,
and when it comes to doing a major edit you just save a copy with a new filename
containing the updated version or date. Getting this to work long term requires
great discipline as it can easily be forgotten, and when you start to share code
files with others and work as part of a team you are then relying on others to be
equally vigilant when it comes to saving new versions of the file. You will quickly
find that this approach falls down and just does not work long term; this is where
formal version control software can help.

As with all things in the software world, there are many different approaches
to solving this problem, and many advocates and critics of each approach. Before
we get into explaining any specific implementations in detail, we need to take a
look at the basic concepts of version control itself, and introduce the two main
types of version control that you are likely to come across.

6.2.1  The basics of version control

There are a number of basic conceptual items that are common to all forms of
version control:

◆	 Repository: The database storing the versioned files.

◆	 Server: The computer hosting the repository.

6.2 version control   273

◆	 Client: A computer connecting to the repository, for example the development
computer on which you are working with the files.

◆	 Working copy: Your local directory of the files, where you make changes.

◆	 Revision: A particular version of a file.

◆	 Trunk (or master): The primary location/branch for code in the repository.
Think of a version control repository as a tree—branches representing differ-
ent versions split off from the trunk (we will look at branches in more detail
shortly).

◆	 Codebase: A term commonly used to describe the collection of program files
associated with a particular project or version control repository.

In addition to these basic items, there are also fundamental actions that are com-
mon to all forms of version control:

◆	 Add: Add a file into a repository so it can be tracked with version control.

◆	 Check out: Download a file (or group of files) from the repository for editing.

◆	 Check in/commit: Upload one or more files to the repository. If the file has
changed, the file gets a new revision, and now other users can check out this new
revision.

◆	 Diff: Locate and show the differences between two revisions of a file.

◆	 Update: Synchronize your files with the latest from the repository by updating
to the latest version.

◆	 Revert: Discard local changes to your file(s) and reload the latest version from
the repository.

These actions are elaborated further in Figs. 6.1 and 6.2.
With a little thought, it becomes obvious that more complex scenarios can

emerge from this version control process when multiple developers are working
on the same codebase simultaneously. This gives rise to some more advanced
concepts that we must become familiar with:

◆	 Branching: The act of creating a copy of the file(s) under version control for a
specific purpose (bug fix, adding a new feature, etc.). Again, think of the code
like a tree, with branches stemming from the trunk.

◆	 Merging: The act of applying the changes from one version of a file into another;
that is merging the changed code from a branch into another (or into the trunk/
master branch).

◆	 Conflict: A conflict is what happens when pending changes from a merge oper-
ation contradict each other.

◆	 Resolve: The act of fixing the differences that contradict each other (arising from
a conflict) and checking in the fixed/correct revision.

Branching and merging are shown schematically in Fig. 6.3. We will leave further
elaboration of conflicts and conflict resolution until a little later with a practical
demonstration.

274   6 software engineering for bioinformatics

Trunk/master branch

Line 1

Revision 1

Line 1
Line 2

Working copy

Line 1
Line 2

Revision 2

Check out

CommitRevert

Fig. 6.2  An overview of how a developer would normally work with version control. The
developer checks out a copy of the codebase from the master branch in the repository,
makes some edits on their local (working) copy, and when they are finished they have the
choice of either reverting or committing their changes.

Trunk/master branch

Line 1 Line 1
Line 2

Line 1
Line 3

file.txt file.txt file.txt

Add and
commit Commit Commit

Revision 1 Revision 2 Revision 3

+ Line 2 – Line 2
+ Line 3

diff diff

Fig. 6.1  The simplest scenario of version control. A user has a file (named file.txt) with
some text in it; this is then added (and committed) to our repository’s master branch. This
file is then edited a subsequent two times with the changes made committed to the
repository after each change, thus creating three individual revisions of our file within the
repository (together with a record of the differences between each revision).

6.2 version control   275

6.2.2  Centralized versus distributed version control

There are two types of version control system in use today: centralized and distrib-
uted. In centralized version control systems there is a single server that acts as the
host for the code repository, and all developers (using their computers as clients)
need to connect to the server in order to check out, update, and commit code. A
diagram of this model can be seen in Fig. 6.4.

Centralized version control systems tend to be slightly older and more trad-
itional. Distributed version control systems, on the other hand, have gained
popularity in the last decade and by comparison are relatively young. The main
difference with a distributed version control system is that there is no require-
ment for a centralized server. Each developer has a full copy of the repository
and they can push and pull a set of changes (often known as a changeset) be-
tween them. This is shown in pictorial form in Fig. 6.5, but it is worth noting
that although this model of working with distributed version control systems is
possible, it is almost never used like this in practice because it would quickly be-
come impossible to track the changes from a large team of developers. All teams
usually still have a central version control repository that developers push/pull
changes to/from.

The obvious question then is: what is the point of distributed version con-
trol? Well, even though the vast majority of users do not use distributed version

Trunk/master branch

Feature branch

Line 1
Line 2

Revision 2

Line 1
Line 2
Line 4

Revision 3

Line 1
Line 2
Line 4
Line 5

Revision 4

Line 1
Line 2
Line 3

Revision 5

Line 1
Line 2
Line 3
Line 4
Line 5

Revision 6

+ Line 3

Diff

+ Line 4
+ Line 5

Diff

BRANCH

MERGE

Fig. 6.3  Branching and merging. Branching allows a developer to work privately on the
codebase without interrupting the master branch until his or her changes are ready to be
added in. Here we see that a feature branch is created with a number of changes made,
whilst at the same time an edit is made on the master branch. The final step is to merge this
branch back into the master branch – thus combining the new edits with the current
changes in the master branch.

276   6 software engineering for bioinformatics

Trunk/master branch

Line 1 Line 1
Line 2

Line 1
Line 3

Revision 1 Revision 2 Revision 3

+ Line 2 – Line 2
+ Line 3

Diff Diff

Developer 1 Developer 2

Version control server

Fig. 6.4  The centralised version control model. With a centralised version control system
all developers deal with the same version control server and commit all code changes there.

control in a truly distributed manner, this approach offers a number of very im-
portant benefits. Because every developer has a full local copy of the repository,
distributed version control systems are fast, especially for branching and mer-
ging. Furthermore, commits and changes can be made offline, and backing up
the repository is easy as every client has a complete copy of the codebase.

6.2.3  Git

Of the many version control systems available, we are going to focus here on a
relatively new distributed system called Git. Git was originally released in 2005
to support the development of the Linux kernel. Following on from its use in
the development of the Linux kernel, Git has become extremely popular in pro-
gramming circles for its speed and ease of use, as well as its advanced feature set.
Clearly, a system that is able to cope with something as complex as the develop-
ment of the Linux kernel should be capable of supporting even the most ambi-
tious bioinformatics project.

Getting started—installing Git
The first thing we must do before getting started with Git is to install it. Downloads
are available for all major operating systems on the Git website, but we do not
recommend using these downloads unless you are on Windows.

◆	 Windows users, head to git-scm.com/downloads, download the Windows
installer and install Git from there. Towards the end of the installation process
select the 'Run Git from with Windows Command Prompt' option so that Git is
added to the path and can be called from the command line in the following
examples. All other options can be left at their default settings.

6.2 version control   277

◆	 Linux users, install Git via your package manager.

◆	 Mac users, our recommendation is to install Git via homebrew (as we did with
MySQL in Chapter 2). In your terminal, simply run the command: brew
install git.

The only further configuration necessary is to tell Git who you are, so that it
can record who is making changes when you commit them. This can be done by
setting your name and e-mail address by opening a command window and issu-
ing commands like those below:

git config --global user.email f.sobotka@example.com
git config --global user.name "Frank"

Creating a Git repository
To start working with our fresh install of Git, we first need to create an example
project to manage with it. Create a directory somewhere on your computer
and call it my_project. Within that directory, create an empty text file called

Change A

Change B

Change C

Dev 1

Change C

Change A

Dev 3

Dev 2

Change B

Change A

Change B

Group repository

Pushes to main repository

Pushes between developers

Fig. 6.5  The distributed version control model. In distributed version control, each copy of
the repository (on a server somewhere, or on a developer's computer), has a full copy of the
version control history, and changes can be pushed and pulled between all of them. In this
example we have three developer's and a group repository, where the developers push/pull
changes from each other (dotted arrows) as well as the main group repository (solid arrows).
Whilst this activity is theoretically possible with distributed version control, the vast
majority of groups only ever push/pull changes from a centralised server (solid arrows only).

278   6 software engineering for bioinformatics

Working
directory

Staging area Git repository

Check out the project

Stage changes

Commit

Fig. 6.6  The Git model. The Git repository is where Git stores the version control database
for your project. The working directory is a single checkout of one version of the project.
These files are pulled out of the git repository and placed on disk for you to modify. The
staging area is a simple file, generally contained within your Git directory, which stores
information about what will go into your next commit.

file1.txt. Now enter the following commands at the command line (substitute
the first command to navigate to the location of your my_project directory).

cd my_project
git init .
git add .
git commit -m "Initial commit."

The three Git commands used above do the following:

◆	 init—Initialize an empty Git repository within your project directory.

◆	 add—Add all the current changes within the directory to the Git staging area.

◆	 commit—Commit the changes in the staging area into the repository.

These are the three commands you will always use to start working with Git in a
new (or even existing) project directory.

Git’s staging/committing model
In the previous step you may have picked up on us using the term staging area—
this is a concept common to many modern version control systems. The role of
the staging area, and its relationship with the working directory and the Git re-
pository, is explained in Fig. 6.6.

Viewing/committing new changes
Now that we have initialized the Git repository, we can start staging and com-
mitting changes to our project. First, open the text file file1.txt and add some
lines of text to it, then save the changes. Now execute the following command:

git status

6.2 version control   279

This should inform you that modifications have been detected within your file,
but that no changes have been added to commit (within the staging area). At this
point, it can be useful to see the changes in our files. This can be achieved with
the following command:

git diff

This command will give you a readout of your changed file(s), whilst highlighting
removed lines and text in red (also putting a – in the left gutter) and added lines
and text in green (also with a + in the left gutter), thus showing exactly what has
changed. For files that are too long to be shown in one go, the changes will be
displayed in a paged file buffer—you can scroll up and down the document using
the arrow keys, and when you are finished press the Q key to exit the buffer and
return to the command prompt.

If we are happy with these changes, it is now time to stage and commit
them into the Git repository. This can be achieved with the following two
commands:

git add file1.txt
git commit -m "I made some changes."

The first command adds the named file to the Git staging area, whilst the
second command commits the contents of the Git staging area to the Git re-
pository using the commit message (denoted by the –m argument) “I made
some changes.”. This has now recorded our changes permanently within the
Git repository.

Now, what if you want to see the recent activity in your Git repository? Run the
following command:

git log

This lists all of the commits to your repository; showing the commit ID, the au-
thor, the date and time of the commit, and the commit message. These are listed
in chronological order, with the most recent at the top. Here is an example of the
output from git log for two commits:

commit a89c9c56d3ca33199df659118965ef5cf0e92b9a
Author: Frank <f.sobotka@example.com>
Date: Wed May 29 14:30:56 2013 +0100

 I made some changes.

commit 7a6270bda82711bbe78f485aa6d6e3951cb901bd
Author: Frank <f.sobotka@example.com>
Date: Wed May 29 14:29:53 2013 +0100

 Initial commit.

280   6 software engineering for bioinformatics

Branching and merging
When you want to make large changes to a codebase (or even small additions in
many cases), a good strategy is to do all of your work in a branch as this leaves
the master branch open for other changes and bug fixes. It also means that the
master branch of your repository is always the latest stable version of your code,
and doesn’t have to contain any half-finished or experimental code (because you
would not merge your changes until they are complete).

Before creating new branches and making changes, it would be good to see
what branches we already have in our repository. We can do this with the follow-
ing command:

git branch

This should only list one branch for our example so far: master. Master is the de-
fault branch in a Git repository and it is what we have been interacting with thus
far. Other version control systems call this default branch trunk or main. You will
also notice an asterisk next to the word master—this indicates that this is your cur-
rently selected branch. Now let’s create a new branch in which to do some work:

git branch feature_branch
git checkout feature_branch

These commands create a new branch, called feature_branch and then
switches our working copy (by using checkout) to be the new branch. In order
to confirm that we have switched branches, you can run either git branch or
git status and these will inform you of your current branch. Now, make some
changes to file1.txt then add and commit them to the repository as before:

git add file1.txt
git commit -m "Updated content."

Now let’s switch back to working on the master branch:

git checkout master

After running this command, take a look at the contents of the file that you just
changed. You should now notice that your most recent changes have disappeared.
You now have two concurrent versions of the file—master and feature_
branch—that you can switch between. Let’s now merge the changes made to the
new branch back into the master branch with the following command:

git merge feature_branch

Once again, if you check the contents of the file you have edited, you will now
see your most recent changes have been added in. The key thing to take from this
example is that working in branches happens in the following steps:

1	 Create a new feature branch to work in and check it out.

2	 Make edits and commit in new branch.

6.2 version control   281

3	 Switch to target branch (for merging changes into).

4	 Merge feature branch.

A final, optional but recommended, step is to delete the feature branch as it has
now been merged back into master and is no longer needed. This will keep your
list of branches small and manageable as your codebase grows. The branch can
be deleted with the following command:

git branch -d feature_branch

Conflict resolution
Having started with branching and merging, we need to prepare ourselves for
the inevitable: managing conflicts. Conflicts occur in a number of ways, but by
far the most common is that the same line of code (or text in our example case)
is edited in a feature branch, and on the master branch prior to merging, and Git
(which knows nothing about programming or what you are trying to achieve)
cannot determine which is the preferred version of the code to use. This is when
a conflict is raised and a member of the team has to get involved to fix the mess.

We can simulate this exact scenario to show what happens when a conflict occurs,
and what you need to do to resolve it and move on with your work. First, ensure
you are still working within your current Git repository, and that you are on the
master branch. Now add a file called conflict.txt and enter the following text:

This is
some test
text

Now add the file to the Git repository and commit it:

git add conflict.txt
git commit -m "Add a file to test conflicts on."

Then create and checkout a new branch:

git checkout -b conflict_test_branch

Now we need to edit our file—let’s just change the last line so that the file
looks like this:

This is
some test
text for conflicts

Now add and commit these changes in our branch:

git commit -a -m "Add some text for testing conflicts."

Note the new trick on this commit line: the -a option. This combines the add
and commit step into one command, by adding ALL changes made within the

282   6 software engineering for bioinformatics

working copy to the staging area prior to committing. For brevity, you can com-
bine the two options and simply use -am for the same effect, which is what we
will do from now on. Now switch back to the master branch:

git checkout master

Opening the file will reveal that it has reverted to the original version without
the 'for conflicts' addition. This time, we will modify the file in a different way so
that it looks like this:

This is
some test
text to play with

Then commit these changes:

git commit -am "Correct the last line."

This is the final step needed to create the environment for a conflict. Let us
quickly recap how this happened. First we created a text file with some content,
then we created a branch, edited the file, and committed our changes within the
branch. Finally we returned to the master branch, and edited the same line of
text, and committed our changes in the master branch.

What we have done is to create two versions of the same file that are incompat-
ible because they have two different versions of the third line. We will therefore
generate a conflict if we try to merge the feature branch back into the master
branch:

git merge conflict_test_branch

Executing this command will result in the following output telling you that a
conflict has occurred:

Auto-merging conflict.txt
CONFLICT (content): Merge conflict in conflict.txt
Automatic merge failed; fix conflicts and then commit the
result.

If you now open conflict.txt you should see the following content:

This is
some test
<<<<<<< HEAD
text to play with
=======
text for conflicts
>>>>>>> conflict_test_branch

This is how Git lets us deal with conflicts in files: between the <<< and === char-
acters you find the content from the ‘left-hand’ side of the merge (in our case,

6.2 version control   283

the master branch, that we were trying to merge into), and between the === and
>>> you will find the content from the ‘right-hand’ side of the merge (the feature
branch that we were trying to merge from). It is now up to us to sort this out.

Obviously, in this example the decision as to what is the correct commit to pick
is only a matter of taste, but when this occurs in your program code, it will be
much clearer what the intentions of both commits were and you will be able to
correct the code easily. For the purpose of this example, let’s just merge the two
statements, so now modify the text in the file to look like this and save it:

This is
some test
text to play with conflicts

This has resolved the conflicts, but we now need to tell Git that we have fixed the
conflict. To get a clue as to what we need to do next, run git status—this will give
you the following output (or something similar depending on your version of Git):

On branch master

You have unmerged paths.

(fix conflicts and run "git commit")

#

Unmerged paths:

(use "git add <file>..." to mark resolution)

#

both modified: conflict.txt

#

no changes added to commit (use "git add" and/or "git commit -a")

So, in order to register our conflict as resolved, we need to add our file to the sta-
ging area:

git add conflict.txt

Finally, re-commit to complete the merge (note that we do not supply a commit
message here—Git will auto-generate one for us and open the message up in a
text editor):

git commit

This should now present you with the following commit message:

Merge branch 'conflict_test_branch'
* conflict_test_branch:
 Alter some text.
Conflicts:
 conflict.txt

If you are happy with this description of the merge, simply save the text and
exit the editor that Git opened up, and your merge will be completed and the

284   6 software engineering for bioinformatics

conflict resolved. The text editor that Git launches in these situations is usually
Vim, which is simple to use with as long as you know three basic commands:

◆	 Press i to enter insert mode—this allows you to enter text into the editor.

◆	 Press the escape key to leave insert mode (and return to normal mode).

◆	 Type :wq in normal mode in order to save and quit the editor.

Although this was a contrived example of a conflict, it serves the purpose of dem-
onstrating all the steps needed to resolve the conflicts that typically occur when
using Git.

Tags
When you have hit a distinct milestone in your code, for example your first stable
release to users, it is usually prudent to tag this version of your code so that, if
needed, you can once again check it out. In git this is performed with the tag
command. In your current repository you can enter the following command:

git tag v1.0.0

This command tags the most recent commit in the repository with the label
‘v1.0.0’. However, if you want to tag a commit other than the most recent, you
can simply pass a commit ID to the tag command to tag a specific commit, for
example:

git tag v1.0.0 e6e2eb456725cb10006fb15f6771489f8c4c9ab9

If you tag a commit in error, removing a tag from your history is simply a case
of using the -d command option (just like with branches). The following com-
mand will delete the tag ‘v1.0.0’ from the Git history:

git tag -d v1.0.0

If you would like to see your tags listed in the git log viewer (next to the
related commit), simply add the --decorate command-line option when request-
ing the log. This can, however, be a touch easy to miss (especially when you have
many branches and a lot of commits) so we would suggest the following options
when running git log as this makes the view far more compact and also shows
a visual representation of your branches.

git log --decorate --oneline --graph

Checking out old revisions or specific tags
As a project progresses you might find you need to be able to check out an old
version of your code. This is a very simple operation in Git; you simply pass the
commit ID or tag name to the checkout command:

git checkout e6e2eb456725cb10006fb15f6771489f8c4c9ab9
git checkout v1.0.0

6.2 version control   285

Reverting unwanted commits
Sometimes things do not go to plan, and even the best programmers commit
some code that is wrong or just plain broken. In these instances it is most useful
to be able to revoke the offending changes and roll back to code that worked.
With Git this is an easy and automated process, initiated by the git revert
command. The command is simply git revert followed by the commit ID you
wish to roll back the changes from, that is:

git revert e6e2eb456725cb10006fb15f6771489f8c4c9ab9

After you have run this command, your editor will be opened with a commit
message pre-entered, simply save this and close the editor in order to complete
the process—your commit has now been reverted.

Using remote Git repositories to share code
Thus far, all of our work has been done entirely locally on our computer—this
is great for learning about Git and managing your own projects, but the real
power of version control is the ability to work concurrently with other devel-
opers on a single codebase by using a remote Git repository. The basic concept
behind this approach is that different branches of the same project can exist in
different places. Let us imagine that a remote repository has been set up, con-
taining the master codebase of a project. This code can be pulled down from a
remote repository onto your local machine, and then modified in a newly cre-
ated local branch. When you are ready to merge your changes back into the
master branch, any recent changes to the master (on the repository) should first
be pulled into your local copy—this helps reveal potential conflicts early. Your
branch can then be merged into the updated master, and changes pushed up to
the remote repository.

We are not able to work through an example of this type of workflow here,
mainly due to the difficulty of maintaining a remote repository that every reader
can commit code to. However, you can discover a lot about the practicalities of
using Git with remote repositories by investigating the following Git commands:

◆	 clone—Copy a remote repository into a new local directory.

◆	 fetch—Download data, tags, and branches from a remote repository.

◆	 pull—Fetch from and merge with another repository or a local branch.

◆	 push—Upload data, tags, and branches to a remote repository.

◆	 remote—View and manage a set of remote repositories.

GUI tools and IDE integration
The command-line interface to Git is fast and easy to use once you get familiar with
it, but some developers prefer to use a graphical client to interact with their re-
positories. Git GUI is installed as part of the Windows installation, but there are a
number of others to choose from including SourceTree (sourcetreeapp.com) if
you are using Windows or Mac OS, or Giggle (wiki.gnome.org/Apps/giggle) or

286   6 software engineering for bioinformatics

QGit (goo.gl/b87Cy) if you are a Linux user. Another alternative for Windows is
TortoiseGit (code.google.com/p/tortoisegit)—this integrates Git functionality
right into the Windows explorer (as does Git GUI). In addition to these standalone
GUIs, some text editors and many IDEs (integrated development environments) have
integrated support for Git. Check the documentation for your tool of choice, as this
may be available as a plugin.

Going further with Git
Thus far we have covered all of the basic tasks you would ever want to do with
Git—armed with these commands alone (and a knowledge of remote reposi-
tories) you have more than enough information to be very effective at using Git
to manage your code. However, there are many more advanced tricks possible
with Git. Here are a few examples we would recommend looking up when you
have time:

◆	 reset—Reset your staging area or working directory to another point.

◆	 cherry-pick—Pull a single commit from one branch into another.

◆	 rebase—Re-apply a series of patches in one branch onto another and re-write
history.

◆	 bisect—Find by binary search the change that introduced a bug.

◆	 grep—Print files with lines matching a pattern in your codebase.

There is a wealth of information and guidance online for working with Git, but
the single best resource we can recommend is the Git website itself and the Pro
Git book (Chacon, 2009) that in available there free of charge (git-scm.com/
book).

6.2.4  Alternatives to Git

As we mentioned in the beginning of this section on version control, there are
many alternatives to Git. Essentially they all do the same thing—track changes to
files—but others may be more supported by your editor or IDE of choice, or your
company or team may even require their use. When we last checked there were
at least 30 different version control software packages in active use, here we give
a quick overview of three of the more common alternatives to Git.

◆	 Concurrent Versions System (CVS): Dating back to 1990, this is one of the oldest
version control systems that is still widely used today. It is a centralized version
control system (thus requiring a connection to a dedicated CVS server). We
would not suggest using it if you have the choice, as compared to more modern
equivalents it is slow, complicated to use, and has only a very basic feature set.

◆	 Subversion (SVN): SVN, released in 2000 was developed as a direct successor to
CVS and as such is almost identical in day-to-day use. SVN also fixed a lot of the
shortcomings found in CVS, thus leading to it being one of the most used ver-
sion control systems in the world. It is fast, can handle branching and merging
quite well, and has good support in many editors and IDEs. If you choose not to
use a distributed version control system, we would recommend Subversion.

6.2 version control   287

◆	 Mercurial (hg): Mercurial, like Git, is a distributed version control system. It was
also developed and released at the same time as Git, in 2005. In fact, they had
the same intended purpose—managing the Linux kernel project—but Git was
chosen for this task. As such Mercurial has an almost identical feature set (and
day-to-day usage pattern) to Git so almost everything you have learnt thus far
with Git is applicable to Mercurial, which is good news if you come to need to
use it.

6.2.5  Hosting and sharing your code on the Internet

Recent years have seen a proliferation of online code repositories that allow code
to be stored, backed up and shared online. The benefits are obvious. Simply hav-
ing your code stored somewhere else means that you are protected against loss
of valuable work if your local storage dies. More interestingly, a well-managed re-
pository can act as a central point to share code with co-developers and with the
world at large—this is the very essence of open source.

Here we introduce four of the most popular options for hosting a project on-
line. As well as the core functionality of the version control system(s) that they
support, each of these repositories also provides additional features to help sup-
port development, and it is often the quality of these extra features that per-
suades people to use one system over another. These extra features typically in-
clude issue tracking, wikis for creating documentation, pull requests and code
review tools, hosting of downloadable builds (i.e. software that end users can in-
stall and run), and automated e-mail notification of significant code changes such
as new commits. Issue trackers allow users and developers to post bug reports
and feature requests that can then be allocated to individual developers and sub-
sequently updated if and when they are addressed in the code—this can be a very
effective basis for managing a complex multi-developer project. Pull requests and
code review tools allow other developers to easily contribute code changes/fixes
to a project and give an interface to show the changes being proposed and a way
for other developers to comment on the changes before merging into a project.

GitHub (github.com)
When it comes to Git hosting, GitHub is the biggest, and many would say the
best, service for hosting source code and projects online. If your project is open
source, the hosting is free. Private repository hosting is available for a monthly
fee. In our opinion, GitHub has the most intuitive and friendly user interface of
all code hosting sites. To see it in action, take a look at github.com/dazoakley/
bbs-v2, our repository containing the main code examples from this book.

Bitbucket (bitbucket.org)
Bitbucket, from a company called Atlassian, is a direct competitor to GitHub and
offers many of the same services as well as a few others that GitHub does not pro-
vide. In particular, Bitbucket supports Mercurial as well as Git. Bitbucket’s issue
tracking features are integrated with Atlassian’s project management tool, Jira.
There are both free and paid accounts available depending on your needs, with

288   6 software engineering for bioinformatics

unlimited private repository hosting that is free of charge for projects with five
or fewer collaborators.

SourceForge (sourceforge.net)
SourceForge is the home of many prominent open-source projects, and offers
developers of open-source software useful tools to manage their project free of
charge. SourceForge supports Git, Subversion, and Mercurial. As well as the typ-
ical extra features, SourceForge also provides a project homepage and discussion
forums.

Google Code (code.google.com)
Alongside GitHub and SourceForge, Google Code is one of the more popular
code hosting services among bioinformatics developers, and once again offers
full functionality for open-source projects free of charge. Git, Subversion, and
Mercurial are all supported. An example of a Google Code project is mzq-lib
(code.google.com/p/mzq-lib), a Java library built around the mzQuantML
file format for working with the results of quantitative proteomics experiments.

6.2.6  Running your own code repository

Thus far we have only talked about third-party code-hosting solutions. These are
fine for most of the bioinformatics projects that are run out of academic institu-
tions, where open source is usually a must, but depositing valuable unreleased
code on other people’s servers can be less palatable in commercial environments.
In these cases it can make more sense to keep your code and project manage-
ment completely private on your own servers. There are many tools out there
to help you do this, but we cannot justify covering the complexities of this here.
If this type of use case is important to you, we recommend that you investigate
Redmine (www.redmine.org) and Gitlab (gitlab.org).

6.3  Creating useful documentation

Writing good documentation is sadly very often overlooked, especially by people
starting out in programming. It is easy to understand why—it takes time and
effort but it is nowhere near as interesting as building your software or adding
new features to it. However, if you want your software to be useful to end users,
or want other developers to help maintain your code (perhaps via one of the code
repositories introduced in the previous section), or incorporate it into their own
programs, it needs good documentation. There are three types of documentation
to consider:

◆	 Standalone documentation for end users (user manuals).

◆	 In-program documentation for end users (e.g. at the command line).

◆	 Documentation about your code for other developers.

We have all seen examples of the first type of documentation, typically in
the form of an instruction manual for a piece of software. Writing such

6.3 creating useful documentation   289

documentation requires considerable skill and patience, and benefits massively
from being trialled on typical users. However, it is the latter two types of docu-
mentation that we focus on here, and in particular the technical underpinnings
of these.

6.3.1  Documenting command-line applications

If you have used many command-line applications in the past you will know that
the best of them have good help text letting you know the various options and
parameters that they support. If you are not sure what we are talking about, try
typing git --help in your terminal. This command will produce a detailed list
of subcommands or options that can be passed to Git, to make it perform dif-
ferent tasks. Providing this kind of help functionality within our Perl programs
would obviously be a great boon for our users. The good news is that support for
this functionality is readily available in Perl.
Getopt::Long is a standard part of Perl that allows your programs to take

command-line options in exactly the same way as Git. This is a great library
that allows you to build up powerful command line utilities, but the one thing
it doesn’t do is automatically generate help text. This is where the module
Getopt::Long::Descriptive (available from CPAN in the usual way) comes
in. This is modelled on Getopt::Long, but is slightly simpler to use, and has the
added benefit of automatically supplying help text generated from the command-
line options you put in your code. Here is a short example script to demonstrate
how Getopt::Long::Descriptive works:

#! /usr/bin/env perl

use strict;

use warnings;

use Getopt::Long::Descriptive;

my ($opt, $usage) = describe_options(

  'my-program %o <some-arg>',

 ['server|s=s', "the server to connect to"],

 ['port|p=i', "the port to connect to", { default => 3306 }],

 ['verbose|v', "print every detail"],

 ['help', "print usage message and exit"],

);

print($usage->text), exit if $opt->help;

connect to our server... for example...

print "Connected to server!\n" if $opt->verbose;

As can be seen, Getopt::Long::Descriptive provides the describe_
options method in which we can describe the options available in our program.
The output of this method is two variables: $opt, the passed options from the
user, and $usage, a representation of the help text, automatically generated.

290   6 software engineering for bioinformatics

With this example, and the more detailed documentation on CPAN (bit.
ly/14OF8B7), it should be easy to see how this library can be used.

Now if you save the above code into a file (we'll call it opts_test.pl), and run
it, but adding --help after the program name in the command line, you will see
the automatically generated help text. For example:

$ perl opts_test.pl --help

my-program [-psv] [long options...] <some-arg>
 -s --server the server to connect to
 -p --port the port to connect to
 -v --verbose print extra stuff
 --help print usage message and exit

As you can see, this directly maps to what was entered in the code. This is a
great way of getting useful documentation to your users whilst making your pro-
grams work in a familiar way.

6.3.2  Documenting Perl code

Code documentation in Perl is in a format known as POD, which stands for Plain
Old Documentation (see perldoc.perl.org/perlpod.html for the detailed
specification) and refers to the format of documentation that Perl programmers
write within their code. POD documentation allows you to document your pro-
grams, methods, functions, and classes to help other developers to understand
your software, or even to remind yourself if you have been away from it for a
while, and to guide other programmers in the development of programs that
interact with your classes and functions.

The best way to illustrate the key POD concepts is to go through an example
Perl program to which POD code has been added, and show how you can subse-
quently extract the documentation out of this. For this example we return to the
code from Section 6.1 (unit testing), where we started putting together a small
module for dealing with data from Ensembl. Here is the code again, except this
time with some POD added:

package EnsemblTools;

use MooseX::Declare;

class IdParser {

 has 'id' => (is => 'ro', isa => 'Str', required => 1);

 method is_valid_id {

 if ($self->id =~ /^ENS\D*[G|T]\d+$/) {

 return 1;

 } else {

 return 0;

6.3 creating useful documentation   291

 }

 }

method species {

 if ($self->is_valid_id) {

 if ($self->id =~ /^ENS(\D*)[G|T]\d+$/) {

 if ($1 eq '') {

 return 'Human';

 } elsif ($1 eq 'MUS') {

 return 'Mouse';

 } else {

 return 'Unknown';

 }

 }

 }

 }

}

1;

__END__

=head1 EnsemblTools

EnsemblTools is a small helper library for interacting with

content from Ensembl (http://www.ensembl.org).

=head2 IdParser

EnsemblTools::IdParser - a helper object for parsing Ensembl ID's.

=over 1

=item new()

Create a new instance of EnsemblTools::IdParser. This method

requires an id to be passed in.

 my $id_parser = IdParser->new(id => 'ENSG00000139618');

=item is_valid_id()

Checks the validity of the id. Returns 1 (valid), 0 (non-valid).

=item species()

Extracts the species encoded in the id.

=back

=cut

292   6 software engineering for bioinformatics

As can be seen in the above, this is exactly the same code, except for the extra
content at the end of the file that makes up the POD documentation. The POD
documentation does not have to come at the end of the file—it can be placed
anywhere within the code, but for an example as small as this, it seems like
the best place to put it (you will soon decide which approach you personally
prefer once you start writing—and maintaining—some POD documentation of
your own).

Before we move on to showing how to extract this documentation out of your
code, we should first explain the one extra bit of syntax we have added in this
example that you would have not seen before – the __END__ literal. This is
one of Perl’s special literals (perldoc.perl.org/perldata.html#Special-
Literals) and is there simply to tell the Perl compiler that this is the end of
the code—no need to parse anything more from here. The reason we do this is
that in large modules/codebases, the documentation could be huge—if we let
the compiler run over all of the documentation, it would not cause any errors,
but it would be unnecessary processing that would make your programs slower
to start. With this directive, Perl knows to miss the final portion of the file and
move on to whatever it needs to do next.

Now that we have all of this documentation in our code, what can we do
with it? As we have seen, in this example it is quite easy to read the documen-
tation as it is, but we can make it even better via the use of the pod2text,
pod2html, pod2man, and pod2latex command-line utilities that come with
Perl.

Each one of these tools simply takes the name of the Perl file(s) to process as a
command-line argument and then extracts, converts, and formats any POD docu-
mentation found in the file(s) into the selected format. For example, this is what
pod2text produces when we run it on the example program file:

$ pod2text EnsemblTools.pm
EnsemblTools
 �EnsemblTools is a small helper library for interacting

with content from Ensembl (http://www.ensembl.org).

 IdParser
 �EnsemblTools::IdParser - a helper object for parsing

Ensembl ID's.

 new()
 �Create a new instance of EnsemblTools::IdParser. This

method requires an id to be passed in.

 my $id_parser = IdParser->new(id => 'ENSG00000139618');

 is_valid_id()
 �Checks the validity of the id. Returns 1 (valid), 0

(non-valid).

6.4 user-centred software design   293

 species()
 �Extracts the species encoded in the id.

As you can see, POD documentation is a great resource for other developers
who want to use our module as it gives them clear and concise instructions of
how to use the functions contained within. Having the code and documenta-
tion together in a single file makes it easy to update the documentation as the
program changes, and means that changes to the documentation can be tracked
by a version control system along with the changes to the code. Most modern
programming languages provide something similar to POD, so when using an-
other language we recommend spending a little time finding out about that lan-
guage’s in-code documentation method before starting on any serious projects.

6.4  User-centred software design

If you are writing bioinformatics software that will be used by other people, it
is worth thinking about who those people are before designing and building it.
Historically, many software developers working in bioinformatics have conceived
and designed software (its functionality, look and feel, display options, etc.) in
isolation from the intended users. Some of the resulting applications were not
user-friendly, being too complex and difficult for biologists to use.

It sounds obvious, but in many applications the developer is not the user. The
person you are designing the software for may not have the same needs, back-
ground, skills, and interests as you. Hence, taking a user-centred design (UCD)
approach can help you focus on getting the design right for the target audience
(Pavelin et al., 2012). Established UCD techniques can help you to explore the
problem your software will solve, characterize the people who will use it, and
inform the design of the user interface. Thus, using a UCD philosophy, you can
improve the likelihood of the research community benefiting from your efforts.
Such is the importance of UCD that it has become a discipline in itself, with
companies and individuals dedicated to maximizing the usability of their clients’
software. Specific examples of techniques you could employ to improve the user
experience include:

◆	 Interview potential users: aim to understand what your users need, how your
solution will fit into their existing activities, and the language they use to de-
scribe it. Use open questions such as ‘tell me about . . .’; ‘last time you tried to
do this, what happened?’

◆	 Derive user profiles: create two or three specific user types to describe why
and how people will use your software. Include their motivations for using the
application (such as their research questions), and their journeys through the
application (so-called ‘user stories’).

◆	 Card sort: get users to organize items/specific data into piles and give each
stack a name. This is to define the information architecture; for example, to
build intuitive menus and labels in your application.

294   6 software engineering for bioinformatics

◆	 Create mockups of your software: these can be paper or digital (such as using
a wire-framing tool like Balsamiq Mockups, available from balsamiq.com).
The 'paper prototyping' approach is a cheap and quick way to test the flow of
steps through a website or application, and can show whether displays are in-
tuitive. For testing interactions, you can even use a PowerPoint slideshow of
interface designs.

◆	 Test the software with users: try testing initial software designs with users—
this can be at the paper or interactive prototype stage. Using specific scenarios
('Imagine you have just done an experiment . . .') and tasks ('Find the informa-
tion about . . .'; 'Produce a sequence alignment . . .'), you will see the application
in action, and spot issues with the design. Ask the user to think out loud, and as
observer remember to refrain from explaining or showing the participant what
to do.

In summary, the key to creating good user experiences is to apply evidence of
user behaviour to the design of your software. Do not rely on your own assump-
tions. For a full account of applying UCD to a bioinformatics project see de Matos
et al. (2013).

A final thing to mention is that UCD does take resources, time, and effort, but
it is worthwhile when developing any software that requires extensive user inter-
action because it can make that software more usable. Your software may have a
novel algorithm or provide access to high quality data, but if users cannot under-
stand how to use it, your work will go to waste. Indeed, observing just a small
number of people interacting with a prototype can make a huge difference, and
if issues are spotted early, they are easier to fix.

6.5  Alternatives to Perl

As stated earlier, Perl is just one of many programming languages that can be used
in bioinformatics. In fact, any programming language could be used for bioinfor-
matics tasks, some are just more common than others due to technical benefits or
their established user base. Every language has strengths and weaknesses, so when it
comes to deciding which one to use for a given project you need to carefully consider
project requirements and the experience of your development team. In the follow-
ing few sections we will introduce some alternatives to Perl, namely Python, Ruby,
and Java. These are the more common languages used in bioinformatics, and most
programmers would agree that they are all in some way better than Perl, so having
an awareness of them is a good thing. Clearly, we do not have space to teach you
how to program in these three languages, but we can show you how to get started
in each language and explain the main differences among them. Finally, we briefly
cover a potential alternative to programming altogether—the Galaxy platform.

6.5.1  Python

Python is general-purpose programming language, first introduced in 1991. Its
syntax is similar to Perl and it could be used in any situation where Perl would

6.5 alternatives to perl   295

be considered useful. Given this, Python has become a very popular language
in the bioinformatics, scientific, and engineering fields over the last few years.
As a result, there is a large number of very advanced third-party libraries for
complex data processing activities that were previously the preserve of dedicated
data analysis packages such as R or Matlab. Indeed, there are libraries for natural
language processing, machine learning, image analysis, and statistical computa-
tion, among others. This makes Python a very compelling language to look into
when dealing with complex data, as there may already be a library there to get
you started very quickly. Python is also more suited than Perl to object-oriented
programming.

Downloading and installing Python
Getting Python installed and set up on your computer is a fairly easy process. If
you have a Mac, it is already there as it is part of the default operating system in-
stall, and if you are a Linux user this is most likely the case too. Simply type the
following at the command line to find out which (if any) version of Python you
have installed:

python --version

If you get an error indicating that Python is not installed, simply install it via
your package manager. If you do have Python already installed, but it is an old
version (older than 2.7), please look into upgrading your python install to the
most recent version of the 2.7 series.

Windows users should head to the Python website (python.org/download)
and download and run the Windows installer for the most recent build of Python
2.7 (2.7.4 at the time of writing). You will probably have to manually add the loca-
tion of Python to the Windows path. You can do this by executing the following
command (substituting C:\Python27\ with whatever is the location of Python
on your computer).

set PATH=%PATH%;C:\Python27\

At the time of writing there are two current stable releases of Python: 3.3.1 and
2.7.4. Python 3.x introduced changes that broke backwards-compatibility with
2.7.x and resulted in many widely-used third-party libraries becoming unsup-
ported. While there are efforts to support 3.x, much of the community still relies
on the 2.7.x series, so at this time, we would recommend you stick with the 2.7
series.

Something else to be wary of when getting into Python is that, unlike in most
other languages, whitespace is significant. When we get on to code examples in a
short while we shall explain this some more, but it is worth noting up front that
blocks in Python (if-else, while, for etc.) are not delimited by brackets or braces
but by the indentation of the code that follows them. This can come as a surprise
to Python newcomers. We shall discuss this more a little later, but for now let us
look at some simple Python examples.

296   6 software engineering for bioinformatics

Hello, world
The following is a basic Hello World program written in Python:

#! /usr/bin/env python
print "Hello, world!"

Like Perl, we open our program with a similar looking shebang line, this time
linking to the Python interpreter (but as with Perl, not strictly necessary in
Windows as we explained in Chapter 3). We then have a single-line program
that is essentially the same as its Perl equivalent save for two small differences.
The first is no semi-colons at the end of the line—you can use semi-colons if
you want, but they are strongly discouraged as such behaviour is not consid-
ered Pythonic. The second difference is that there is no newline character in the
string; this is not needed as Python’s print command automatically appends
one onto your string unless a comma character follows it, as in the example
below.

print "hello",

The last thing to note is that Python programs typically have the file ex-
tension .py. Just to check you have Python installed and working correctly,
save the above code into a file called hello.py and try running it from the
terminal:

python hello.py

Variables and data structures
The basic data structures and variables should be familiar from Perl:

#! /usr/bin/env python

this is a comment

a = 'ACBCDEFG' # string

b = 12 # integer

c = [1, 2, 3, 4, 5] # a list (array) of integers

d = { 'a': 1, 'b': 2 } # a dictionary (similar to a hash)

e = dict(a=1, b=2) # a dictionary identical to d, with the

 # �exception that keys do not require

 # quoting

accessing list and dictionary elements

c[0] # This returns 1

d['a'] # This also returns 1

The syntax for creating data structures in Python is almost identical to Perl refer-
ences, but with the two main differences. The first is that variable names do not
need to begin with a $, /@ or % symbol; and the second is that hashes (or dictionaries
as they are known in the Python world) have a slightly different syntax. Accessing

6.5 alternatives to perl   297

the elements of both arrays and hashes should also be very similar. The above code
includes a few comments—these are also formatted the same as in Perl.

Let’s look at some more complex data structures for which we used references
in Perl, this should not come as too much of a surprise:

a multi-dimensional list
a = [[1,2,3], [1, 'a']]

a dictionary containing other dictionaries and lists…
b = { 'an_array': [1,2,3], 'a_dictionary': {1: 'a', 2: 'b'} }

accessing the elements
a[0][1] # This returns 2
b['a_ dictionary'][1] # This returns 'a'

String interpolation
If we wanted to output a variable as part of a string in Perl, we might use the fol-
lowing code:

my $user = 'Dave';
say "Hello $user";

Here is the equivalent in Python:

user = 'Dave'
print "Hello {0}".format(user)

This is quite different to what we got used to in Perl. In Python, you cannot
simply embed variables in strings and have them returned correctly; instead you
must use placeholders (in this example the {0}) and call the format method on
the string, passing the variables to be used in the placeholders—this is analogous
to how we prepared database statements in Perl using DBI—create a statement
using placeholders, and then pass the variables into the placeholders. When there
is more than one variable, we need more than one placeholder, for example:

user = 'Dave'
family = 'Brent'
print "This is a message for {0} {1}".format(user,family)

Control structures, loops, and logic operators
Like most other programming languages, Python has the usual selection of con-
ditionals, loops, and control structures. Here are some examples of the Python
syntax for the common constructs that we saw previously in Perl:

IF-ELIF-ELSE blocks
if False:
 print 'this code will not run'
elif True:
 print 'this code will run'

298   6 software engineering for bioinformatics

else:
 print 'it will not get this far'

IF NOT blocks (UNLESS equivalent)
x = False
if x is not True:
 print 'x is {0}'.format(x)

FOR loops
a = range(0,10) # create a list containing the range 0 to 9
for i in a:
 print "element: {0}".format(i) # �print the variable in

the string

WHILE loops
i = 0
while i < 10:
 print "i = {0}".format(i)
 i += 1 # increment i by 1, Python does not have i++

The above code examples are mostly self-explanatory, but please take note
of our earlier warning: there are no brackets or braces to indicate these blocks
are opening or closing. This is due to the significance of the leading whitespace
within the blocks—this tells Python when the blocks start and end. If you remove
some of the indentation from the above code before running it, you will likely
get an IndentationError message telling you that this is invalid syntax. The
recommended standard is to use four spaces each time you indent code—never
tabs.

The final thing from the above code that is unfamiliar (compared to Perl) is the
use of the keywords True and False. In Python, True and False are built-in
Boolean types.

Regular expressions
Regular expressions in Python are quite different to those found in Perl. Let us
start with a short example:

import re

gid = 'ENSG000041_A'
matcher = re.compile('^ENSG\d+')

if matcher.search(gid):
 print "String is an Ensembl Gene ID."

This is a port from Perl to Python of one of the regular expression examples
in Chapter 3, demonstrating how you can search for a basic pattern such as that

6.5 alternatives to perl   299

of an Ensembl Gene ID. The first thing to note in this example is the import
statement at the top of the code; this is Python’s equivalent to the Perl use state-
ment—what we are importing here is Python’s built-in regular expression module
‘re’ as this is not loaded into all Python programs by default. We then compile a
regular expression using re.compile (note that the regular expression itself is
just a string in Python, it does not have to be enclosed in // characters) and then
use the .search method on the compiled regular expression, passing in a string
to search—this will return either a MatchObject (an object representing the
matched regular expression) or None (a built-in Python type) depending whether
the regular expression matches or not.

Let us expand upon this example to show how we would use matched variables
in Python:

import re
string = 'The Human Gene ID is ENSG000041 revision 1'
matcher = re.compile('The (.*) Gene.*(ENSG[0-9]+).*')
match = matcher.search(string)

if match is not None:
 print "Our gene ID is: {0}".format(match.group(2))
 print "Our species is: {0}".format(match.group(1))

The main difference to take home in this example is that we now interact
with the returned MatchObject from the .search method, by calling the
.group(x) method on it to retrieve the matched variables from the regular ex-
pression. This is equivalent to the $1, $2, and so on variables in Perl’s regular
expressions.

File operations
File operations in Python are best illustrated with a few well-commented code
examples:

Read the whole contents of a file into a string
contents = open("BRCA1.fasta","r").read()

Read the whole contents of a file into an array in memory
contents = open("BRCA1.fasta","r").readlines()

Iterate over the lines in a file
filehandle = open("BRCA1.fasta","r")
for line in filehandle:
 print line.rstrip()

Note for above, .rstrip is similar to chop() in Perl

Write to a file
output_file = open("output.txt","w")

300   6 software engineering for bioinformatics

output_file.write("This is some text\n")
output_file.close()

Write to a file using a context manager
Note - this will automatically close the file for you
with open("output.txt","w") as file:
 file.write("This is some text\n")

Append data to the end of a file.
with open("output.txt","a") as file:
 file.write("This is some more text\n")

Error handling
Error handling in Python is very similar to the eval method of error handling in
Perl, as it is performed via the use of try and except blocks. Here are some exam-
ples of how to handle unexpected errors, and raise your own using raise (Python's
equivalent of Perl's die). First, this is the syntax for raising your own errors:

if age > 45:
 # deliberatly raise an error.
 raise Exception("age must be under 45.")

Second, this is how to catch an unexpected error:

try:
 file = open("input.txt","r")

 # ...
 # some code with potential for error
 # ...

except IOError as e:
 # Handle a specific error class
 print "I/O error({0}): {1}".format(e.errno, e.strerror)
except:
 # Rescue all other errors.
 print "Unexpected error"
 raise

Object-oriented programming
Python embraces a lot of object-oriented programming (OOP) concepts, so it
should come as no surprise that writing OOP code in Python is straightforward.
However, unlike some more modern alternatives, Python is not a totally object-
oriented language. Here we provide a quick tour of what is possible, using some
familiar examples. The first example creates a basic class and performs some
simple interactions with it.

6.5 alternatives to perl   301

class Dog(object):
 def __init__(self, name=None, breed=None, age=None):
 self.name = name
 self.breed = breed
 self.age = age

def __str__(self):
 str = "{0} is a {1} and is {2} years old."
 out = str.format(self.name, self.breed, self.age)
 return out

now interact with Dog...
sam = Dog()
sam.name = "Sam"
sam.breed = "Terrier"
sam.age = 5

max = Dog("Max", "Hound", 8)

print sam
print max

This snippet of code demonstrates the basics of building a class in Python, mak-
ing instances of that class and some other useful tricks. In the first line we create a
class called Dog (that inherits from object—a built in Python class—signified by it
being in parenthesis after the class name), we then define two methods on the class
(note the use of the command def here, this is Python's equivalent to Perl’s sub).

The first method (__init__) is a constructor method that is invoked when the
object is created, and specifies that the object can take up to three arguments
(name, breed, and age), but note that these are all optional as they have default
values assigned to them (None in this case). These arguments are then stored in
the object’s attributes with the same name. The second method (__str__) is
automatically called when an instance of a Dog class is called in a string context,
for example when we try to print it. Finally, we create two instances of Dog. For
the first we create an instance with no properties and add them in subsequent
lines, in the second we populate all of the attributes as we create the instance,
just to demonstrate the ways in which objects can be built.

One thing to note from this code example is that we did not have to declare ob-
ject properties in advance like we did with Moose in Perl (using the has method).
This can be a good thing as you don’t have a lot of setup code defining properties/
interfaces, but also a bad thing in that it is not clear anywhere (except in the rest
of the code that interacts with the Dog class—which you would have to read)
what the complete set of properties for the given class are.

Inheritance
As with every other object-oriented language, Python supports class inherit-
ance, in fact we have already seen this as our classes in the previous section all

302   6 software engineering for bioinformatics

inherited their properties from object. Here is a simple example of how to use
inheritance with your own classes. To allow direct comparison with the Moose
code, let’s use the same example, starting with an Animal class followed by a
Dog and Cat class that both inherit from Animal.

class Animal(object):

 def __init__(self, name=None, breed=None, age=None):

 self.name = name

 self.breed = breed

 self.age = age

 self.human_years_multiplier = 1

 def human_age(self):

 return self.age * self.human_years_multiplier

 def __str__(self):

 str = "{0} is a {1} and is {2} years old."

 out = str.format(self.name, self.breed, self.human_age())

 return out

class Dog(Animal):

 def __init__(self, name=None, breed=None, age=None):

 parent_proxy = super(Dog, self)

 parent_proxy.__init__(name, breed, age)

 self.human_years_multiplier = 7

class Cat(Animal):

 def __init__(self, name=None, breed=None, age=None):

 parent_proxy = super(Cat, self)

 parent_proxy.__init__(name, breed, age)

 self.human_years_multiplier = 5

In this example we introduce a few more new Python concepts. The first is the
use of parenthesis after the name when referring to self.human_age within
the str.format statement above; this is required as we are calling a method,
not retrieving a property (as is the case with name and breed).

The second concept that we have introduced above is the use of the func-
tion super. This is used when you need to call methods from a parent class
that have been overridden in a child class. To use super you must pass the
type of the current class (e.g. Dog in the Dog class), and an instance of the class
in question (self); this then gives you a proxy to the methods on the parent
class (we call this parent_proxy above) which can be used to invoke the par-
ent’s version of the methods that have been overridden. In the example above
we execute the constructor method on the Animal class (__init__) within our
child classes (Dog and Cat) so that the properties (name, breed, and age) can
be set without us duplicating the code needed to do this, then we override the

6.5 alternatives to perl   303

human_years_multiplier property with the desired value from the child
class.

Multiple inheritance
The final OOP concept we would like to cover with Python is that of mul-
tiple inheritance. Multiple inheritance means that a class is permitted to in-
herit behaviour from multiple parent classes. Here is an example of that in
practice:

class Animal(object):
 def eat(self):
 print "i eat"

class Mammal(Animal):
 def breathe(self):
 print "i breathe"

class WingedAnimal(Animal):
 def flap(self):
 print "i flap my wings"

class Bat(Mammal, WingedAnimal):
 def __init__(self):
 print "i am a bat"

bat = Bat()
bat.eat()
bat.breathe()
bat.flap()

In this simple example we have a Bat class, which inherits from all three of
the other classes defined (Animal, Mammal, and WingedAnimal) to build up its
behaviour; this is done simply by listing more parent classes in the parenthesis
following the class name.

Multiple inheritance is a controversial subject in programming circles. Some
people believe it allows modelling all aspects of the world cleanly and clearly,
whereas opponents believe it can introduce too much complexity into a system.
As always, the best way to make a judgement is to experiment with multiple in-
heritance in a given application on which you are working to see whether or not
it brings benefits.

It is worth noting that Python is not the only language that supports multiple
inheritance; there are many others that allow you to use this programming style,
in fact Moose allows you to use multiple inheritance in Perl. The other two pro-
gramming languages covered in this book (Ruby and Java) do not implement
multiple inheritance, but similar functionality can be achieved using Ruby mixins
(covered later) and Java interfaces.

304   6 software engineering for bioinformatics

The Python ecosystem
Python’s equivalent of CPAN is the Python Package Index (pypi.python.org/
pypi), a collection of over 29,000 user-contributed libraries. These packages can
be installed via a command line tool called Pip (www.pip-installer.org).

Python is a popular language for creating web applications. Some of the more
popular web frameworks for this task are Django (www.djangoproject.com),
Flask (flask.pocoo.org), and Bottle (bottlepy.org) but there are many other
alternatives.

For scientific and engineering applications, including bioinformatics, Python is
extremely popular and well catered for in terms of supporting libraries. We list
here some that we believe to be the most useful for bioinformatics work:

◆	 BioPython (biopython.org)—a set of tools for biological computation in the
same vein as BioPerl.

◆	 matplotlib (matplotlib.org)—a 2D plotting/graphing library for creating
publication-quality figures.

◆	 SciPy (www.scipy.org)—a comprehensive library for mathematics, science,
and engineering.

◆	 scikit-learn (scikit-learn.org)—a suite of tools/libraries for machine learn-
ing tasks.

◆	 scikit-image (scikit-image.org)—tools for image processing.

◆	 IPython (ipython.org)—this provides an interactive front end for Python,
much like R Studio provides a front end for R.

◆	 Pandas (pandas.pydata.org)—a library providing high-performance, easy-to-
use data analysis tools and data structures.

Connecting to a MySQL database
Python has many different libraries for talking to databases, but the one that
we would recommend at this point is MySQLdb (sometimes also referred to as
'MySQL-python'). This is not a standard part of the Python distribution, so to get
started with it you will first need to install it. Linux users, you will find it in your
package manager, Windows and Mac OS users will need to install it via Pip:

pip install MySQL-python

If you have any problems installing this, pip usually guides you with some very
helpful instructions, but if you are still having trouble, head over to the forum at
www.bixsolutions.net for assistance.

Now that MySQLdb is set up, let’s write a basic program to interact with the
database we made earlier in Chapter 2:

#! /usr/bin/env python

import MySQLdb

6.5 alternatives to perl   305

connect to the database
con = �MySQLdb.connect('localhost', 'user', 'password',

'database');

get a 'cursor' for interacting with the db
�'MySQLdb.cursors.DictCursor' allows us to use column names
in resultsets
cur = con.cursor(MySQLdb.cursors.DictCursor)

run a query
cur.execute("SELECT * FROM Scientist")

fetch all the rows of data
for r in cur.fetchall():
 print "{0} {1}".format(r["title"], r["family_name"])

close the database connection
con.close()

The MySQLdb interface is quite similar to Perl DBI, you connect to your data-
base and get a database handle (or cursor as it’s more commonly known), then run
a query (via the .execute method on the cursor), and finally retrieve the results.

Going further with Python
Our recommended reference for Python programming is the Python documen-
tation website (docs.python.org). All the core features and the standard li-
brary are well documented there. The site also hosts a good tutorial (docs.
python.org/2/tutorial) which would be a great way to follow up what we
have discussed in this chapter. For a more in-depth look at Python we recom-
mend Think Python (Downey, 2012)—this book is available to purchase as a paper-
back but also freely available in electronic form (www.greenteapress.com/
thinkpython).

6.5.2 Ruby

Ruby is another scripting language (like Perl and Python) that has become popular
in the bioinformatics community. Introduced in 1995, it is the youngest language
that we cover in this book. Although Ruby does not quite have the depth and
breadth of third-party libraries available to it for complex data analysis tasks that
Python does, it has a very strong set of tools and culture for making web applica-
tions and unit testing. Ruby is also a fully object-oriented programming language,
with a simple and concise syntax that allows for the construction of full-featured,
complex applications with very little—but very clean and readable—code.

Downloading and installing Ruby
There are various ways to install the latest version of Ruby, as detailed on the
Ruby website’s download page (www.ruby-lang.org/en/downloads).

306   6 software engineering for bioinformatics

For Windows users, we would recommend using the suggested Ruby Installer—
available at rubyinstaller.org. During the installation, ensure the 'add Ruby
executables to Windows path' is checked so that you get effortless access to Ruby
from the command line.

Linux and Mac users may already have Ruby installed, but it is a rapidly devel-
oping language so we would recommend using the RVM (the Ruby Version
Manager), available from rvm.io, to ensure you have the latest version (2.0.0-
p195 at the time of writing).

Hello, world
Our first demonstration of Ruby code is the familiar Hello World example:

#! /usr/bin/env ruby
puts 'Hello, world!'

Like Perl and Python, the program begins with a shebang line (pointing to the
Ruby interpreter) and then we have a single line program. The only difference
here you may notice (compared to Perl and Python) is the command puts; this is
a Ruby function to print a line of text that is automatically followed by a newline
character.1 Ruby also has the print function (and this works identically to the
Perl print function), but the puts function is more commonly used in the Ruby
community.

The other main difference you will notice with this small example—there are
no semi-colons at the end of the lines. Like Python, these are also optional in
Ruby; and again like Python, you can use semi-colons if you like (out of habit), but
this is not encouraged.

Ruby programs typically have the file extension .rb. To check you have Ruby
installed and working correctly, save the above code into a file called hello_
world.rb and try running it from the terminal with the following command:

ruby hello_world.rb

Variables and data structures
Ruby takes many of its roots from Perl, so it should come as no surprise that
variables are very similar between the two languages. Some examples are shown
below.

#! /usr/bin/env ruby

this is a comment
a = 'ACBCDEFG' # string
b = 12 # integer
c = [1, 2, 3, 4, 5] # an array of integers
d = { 'a' => 1, 'b' => 2 } # a hash

1 In fact, Perl does have an equivalent function to puts, called say, but it is not widely used.

6.5 alternatives to perl   307

accessing array and hash elements
c[0] # This returns 1
d['a'] # This also returns 1

Like Python, the syntax for creating data structures in Ruby is essentially iden-
tical to Perl references. Comments also use the same (#) character. If we look at
some examples of more complex data structures, that we would have used refer-
ences for in Perl, you will see that the Ruby code is very clean, compact, and easy
to read, reducing the possibility of error:

a multi-dimensional array
a = [[1,2,3], [1, 'a']]

a hash containing other hashes and arrays…
b = { 'array' => [1,2,3], 'hash' => {1 => 'a', 2 => 'b'} }

accessing the elements
a[0][1] # This returns 2
b['hash'][1] # This returns 'a'

String interpolation
If we wanted to output a variable as part of a string in Perl, we might use the fol-
lowing code:

my $user = 'Dave';
;say "Hello $user";

The equivalent in Ruby is:

user = 'Dave'
puts "Hello #{user}"

In Ruby, it is necessary to surround any code that you want to be evaluated
within the string by the #{} construct. This may seem like extra work for no
extra benefit in this simple example, but this does allow for any Ruby code to be
executed within the context of the string. For example:

require 'date'
puts "It is #{DateTime.now} exactly..."

This code creates a new DateTime object for the current time (now), and out-
puts it as a string (within the context of our main string). As with Python, there
is a special method that is called when we want to represent an object as a string
(__str__ in Python) – this is to_s (meaning 'to string') in Ruby. So, DateTime.
now.to_s is essentially what we called above.

This small snippet of code also introduces another keyword of Ruby: re-
quire—this is analogous to the Perl use keyword and is used for including li-
brary code in your programs.

308   6 software engineering for bioinformatics

Conditionals, loops, and logic operators
Like all the other languages in this chapter, Ruby has the usual selection of condi-
tionals and loops. Examples of Ruby syntax for the most common constructs are
shown below.

IF/ELSE blocks
if false
 puts 'this code will not run'
elsif true
 puts 'this code will run'
else
 puts 'it will not get this far'
end

UNLESS blocks
unless 1 == 10
 puts '1 will never equal 10'
end

FOR loops
a = (1..10) # �create an array containing the

range 1 to 10
for i in a
 puts "element: #{i}" # print the variable in the string
end

another way of doing FOR loops – an EACH block
this will have the same result as above…
a.each do |i|
 puts "element: #{i}"
end

WHILE loops
a = 0
while a < 10
 puts "a = #{a}"
 a += 1 # �increment a by 1, Ruby does not

have a++
end

As you can see, Ruby syntax is similar to Perl and even more similar to Python.
One novelty here is the part that begins with a.each. This (specifically the
section of code between the do and end) is what is known as a block in Ruby.
A block can be thought of as an anonymous function that (in this example
above) is passed each element in the array as the variable i. The do/end form

6.5 alternatives to perl   309

of blocks is most common in Ruby, but you can also use curly brackets to form
blocks:

This is equivalent to the above.
each { |i|
 puts "element #{i}"
}

As is this, but compacted onto a single line
a.each { |i| puts "element #{i}" }

Regular expressions
Regular expressions in Ruby are almost identical to those found in Perl. Here is
the familiar Ensembl ID example written in Ruby:

id = 'ENSG000041_A'

if id =~ /^ENSG[0-9]+/
 puts "String is an Ensembl Gene ID."
end

if id.match("^ENSG[0-9]+")
 puts "String is an Ensembl Gene ID."
end

As you can see, Ruby supports the =~ operator that will be familiar from Perl,
but it also has a .match method for string objects that can be passed regular
expressions. The example below further illustrates Ruby regular expressions
with matched variables, again showing both the use of the =~ operator and the
.match method:

string = 'The Human Gene ID is ENSG000041 revision 1'

if string =~ /^The (.*) Gene.*(ENSG[0-9]+).*$/
 puts "Our gene ID is: #{$2}"
 puts "Our species is: #{$1}"
end

if match = string.match("^The (.*) Gene.*(ENSG[0-9]+).*$")
 puts "Our gene ID is: #{match[2]}"
 puts "Our species is: #{match[1]}"
end

This example takes regular expressions a little further via the use of matched
groups; as you can see the =~ method is identical to the Perl equivalent, as the
matched groups are captured in the $1, $2 … $n variables, whereas the .match

310   6 software engineering for bioinformatics

approach is more like Python, in that a MatchData object is returned (and stored
in the match variable above), and you can then call the matched groups found
from it.

File operations
File operations in Ruby are easy, much like in Perl and Python. Here are some
examples:

Read the whole contents of a file into a string
file = File.open("BRCA1.fasta","r").read

Read the whole contents of a file into an array
(this would also be the approach to use if you wanted to
read a file line by line)
file = []
File.open("BRCA1.fasta","r").each_line do |line|
 file.push(line.chomp)
end

Write to a file
file = File.open("output.txt","w")
file.puts "This is some text"
file.close

Write to a file using a block
File.open("output.txt","w") do |file|
 file.puts "This is some text"
end

Append data to the end of a file
File.open("output.txt","a") do |file|
 file.puts "This is some more text"
end

Error handling
Error handling in Ruby, like Python, is similar to the eval method of error hand-
ling in Perl, and is performed via the use of begin and rescue blocks. Here are
some examples of how to handle unexpected errors, and raise your own using
raise, as in Python but with different syntax. Here is an example of raising an
error:

if age > 45
 # deliberatly raise an error.
 raise "age must be under 45."
end

6.5 alternatives to perl   311

This is how we can catch unexpected errors:

begin
 file = File.new("input.txt","r")

 # ...
 # some code with potential for error
 # ...

rescue Errno::ENOENT => error
 # Handle a specific error class
 # - in this case, "file not found"

 warn "File, 'input.txt' not found!"
 raise
rescue => error
 # Rescue all other erorrs.

 warn "error: '#{error}' was raised..."
 raise
end

Object-oriented programming
Ruby is an inherently object-oriented programming language. Indeed, everything
in the language is an object. Even high-level Ruby functions (e.g. puts) belong to
a special object called Kernel. So everything we have done thus far with Ruby
has been creating and interacting with objects—when we have used the dot op-
erator in a statement like something.method_name we have been calling meth-
ods on objects. The way in which classes are defined and objects created is similar
to Python, but with different syntax, as shown in the example below.

class Dog
 def name
 @name
 end

 def name=(name)
 @name = name
 end

 def breed
 @breed
 end

 def breed=(breed)
 @breed = breed
 end

312   6 software engineering for bioinformatics

 def age
 @age
 end

 def age=(age)
 @age = age
 end

 def to_s
 "#{@name} is a #{@breed} and is #{@age} years old."
 end
end

now interact with Dog...
sam = Dog.new
sam.name = "Sam"
sam.breed = "Terrier"
sam.age = 5
puts sam.to_s

This code is fairly verbose, but illustrates the basics of building a class in Ruby
and making an instance of it. In the first line we create a class called Dog, and
define a number of methods on the class—all of which (bar one called to_s) are
getters and setters for instance variables within the class. These work in exactly
the same way as the has attribute declarations in Perl's Moose, but without the
built-in type checking. It is also worth noting the use of the @ character in Ruby—
this defines an instance variable (not an array). An instance variable is a variable
that is available to all other methods within an instance of the same class. The
final method, to_s, in the class returns information about the instance of a class
when it is referenced as a string, just like __str__ in Python. While the above
example is useful to illustrate Ruby’s OOP concepts, it is not typical Ruby code.
Here is the same example, written using a more common coding approach:

class Dog
 attr_accessor :name, :breed, :age

 def initialize(args={})
 @name = args["name"]
 @breed = args["breed"]
 @age = args["age"]
 end

 def to_s
 "#{name} is a #{breed} and is #{age} years old."
 end
end

6.5 alternatives to perl   313

sam = �Dog.new({ "name" => "Sam", "breed" => "Terrier", "age"
=> 5 })

max = Dog.new
max.name = "Max"
max.breed = "Hound"
max.age = 8
puts sam.to_s
puts max.to_s

This version of the code creates exactly the same Dog class, but does it with much
less code and allows for two ways of instantiating an instance of a Dog object. The
main reason for the brevity of this code is the removal of all the getter and setter
methods, which have been replaced with a single line of attr_accessor declara-
tions; attr_accessor is a built-in Ruby method that builds the getter and setter
methods for you—just like the has method from Perl's Moose. The other major
change in this version of the class is the inclusion of the initialize method
in the class; this is what is known as a constructor method and is what is called
when you call Dog.new() within the rest of the code (equivalent to __init__ in
Python). In our example we have an initialize method with an optional argu-
ment hash that can be passed to it (called args)—this is optional due to the ‘={}’
following its name (without it the calling code would have to pass something into
the new method); this means that if it is not passed by the caller, an empty hash is
used as its value. The value of this initialize method setup is shown at the end
of the example in the two different ways in which you can instantiate instances of
the Dog class—with a one line command or with multiple commands.

Inheritance
A short example of how inheritance is performed in Ruby is shown below. This
re-uses the same example of object inheritance that we used in both Moose and
Python—we start with an Animal class followed by a Dog and Cat class that both
inherit from Animal.

class Animal
 attr_accessor :name, :breed, :age

 def initialize(args={})
 @name = args[" name"]
 @breed = args["breed"]
 @age = args["age"]

 @human_years_multiplier = 1
 end

 def to_s
 #{@name} is a #{@breed} and is #{human_age} years old.

314   6 software engineering for bioinformatics

 end
 def human_age
 @age * @human_years_multiplier
 end
end

class Dog < Animal
 def initialize(args={})
 super
 @human_years_multiplier = 7
 end
end

class Cat < Animal
 def initialize(args={})
 super
 @human_years_multiplier = 5
 end
end

Two new pieces of Ruby syntax have been introduced here. These are the use
of the < character to indicate that one class inherits from another, and the super
function. The super function in Ruby works in a slightly different way to Python,
in that you do not need to build or access a proxy object for the parent class—we
simply call super, and that will run the same method in the parent class (with
the same arguments that were passed to the current method) and then return
to, and carry on the method in, the child class. So, in our example above, calling
super causes the parent class’s initialize method to run, we then carry on
running the initialize method in the child class, where we can override any
of the variables setup in the parent class—in our case we update the @human_
years_multiplier variable to the appropriate number for our given animal.

Modules and mixins
The final OOP concept we are going to look at in Ruby is that of modules and mix-
ins. The term module in Ruby refers to a collection of functions stored together
within a single namespace, much like the Perl modules we have been using pre-
viously; and the term mixin refers to the way in which the modules are used; they
are mixed-in to other classes and objects to extend functionality. Mixins are very
similar in concept to the Moose roles and traits that we looked at in Chapter 3,
in that they can provide additional functionality to a class or object, but the main
difference is that they do not perform the ‘interface’ function that is common
with traits—that is, you cannot declare that a consuming class must provide cer-
tain functions. This is best explained with an example:

module A
 def method_a_1

6.5 alternatives to perl   315

 puts "I'm calling Module A : method_a_1"
 end

 def method_a_2
 puts "I'm calling Module A : method_a_2"
 end
end

module B
 def method_b_1
 puts "I'm calling Module B : method_b_1"
 end

 def method_b_2
 puts "I'm calling Module B : method_b_2"
 end
end

class Sample
 include A
 include B

 def method_s_1
 puts "This is the method_s_1 in Sample"
 end
end

samp = Sample.new
samp.method_a_1
samp.method_a_2
samp.method_b_1
samp.method_b_2
samp.method_s_1

Here we create two modules, A and B, and then a class called Sample, which can
then consume (or include as is the common term, and keyword, in Ruby) the two
previous modules. We then instantiate an instance of Sample and demonstrate
how we can call all of the functions provided in both A and B via a Sample object.

The Ruby ecosystem
Ruby’s equivalent of the downloadable Perl modules (available from CPAN) are
known as gems. The main repository of gems—the equivalent of CPAN—can be
found at rubygems.org. From here you can browse tens of thousands of gems
that have been made for Ruby. Gems can be installed automatically via the com-
mand line client gem, which comes with Ruby. For example, to install the popular
biomart gem for interfacing with Biomart servers, we simply type:

gem install biomart

316   6 software engineering for bioinformatics

Ruby is a particularly popular language for developing web applications thanks
to web frameworks such as Ruby on Rails (rubyonrails.org) and Sinatra (www.
sinatrarb.com), but it is equally useful for any general programming task that
you might have used Perl for. The main reason why people may prefer Perl or
Python over Ruby is that Ruby’s bioinformatics ecosystem is not as mature as
either Perl or Python, but there are projects trying to address this. The most not-
able of these is BioRuby (bioruby.org)—a suite of bioinformatics tools for Ruby
in the same vein as BioPerl and BioPython.

Connecting to MySQL
Ruby has many different libraries (gems) available for connecting to and interact-
ing with databases, it even has a DBI interface analogous to the Perl variant, but
the one that we would recommend in standalone programs2 is Sequel (sequel.
rubyforge.org). Sequel is a third-party gem; it is not part of the standard Ruby
library so you will first need to install it (and the mysql2 gem that provides the
drivers for talking to MySQL):

gem install sequel
gem install mysql2

Windows users will need to install the Ruby Installer 'Development Kit' from
rubyinstaller.org before you can install and use these gems.

Once these are installed, using Sequel is quite a simple process. Here is an ex-
ample program interacting with the MySQL database we built in Chapter 2:

#! /usr/bin/env ruby

require "sequel"

connect to the database
DB = Sequel.connect(
 :adapter => "mysql2",
 :database => "my_database",
 :user => "me",
 :password => "my_password"
)

iterate over the Scientist table
DB["Scientist"].each do |s|
 puts [s[:title], s[:given_name], s[:family_name]].join(" ")
end

The code above needs little explanation—we simply connect to a database, and
then use a simple Sequel data set function ([]) to iterate over every row in the

2 Ruby web applications are usually written using frameworks such as Ruby on Rails, which tend to
come with their own preferred way of talking to databases.

6.5 alternatives to perl   317

Scientist table. Within the block you will notice that the row of data from the
table is returned as a hash. This is the simplest way of interacting with a database
via Sequel. Here is a second example, showing how to use custom SQL queries:

#! /usr/bin/env ruby

require "sequel"

connect to the database

DB = Sequel.connect(

 :adapter => "mysql2",

 :host => "ensembldb.sanger.ac.uk",

 :database => "homo_sapiens_core_47_36i",

 :user => "anonymous"

)

save an SQL statement into a string (using a heredoc in Ruby)

query = <<"SQL"

 SELECT �es.synonym, sr.name, g.seq_region_start, g.seq_region_end

 FROM seq_region sr, gene g, external_synonym es

 WHERE es.xref_id = g.display_xref_id

 AND sr.seq_region_id = g.seq_region_id

 AND es.synonym IS NOT NULL

 ORDER BY g.seq_region_start ASC

 LIMIT 500

SQL

use .fetch to run the query and iterate over the results

DB.fetch(query) do |row|

 puts "synonym: #{row[:synonym]}, name: #{row[:name]}"

end

In this example we once again connect to a database (this time the public
Ensembl mirror at the Sanger institute), then we prepare a SQL query in a string,
and finally run this query on the database (using the .fetch method on our DB
connection object) and iterate over the results.

Going further with Ruby
If you want to learn more about Ruby, we would recommend the book Programming
Ruby: The Pragmatic Programmers Guide (Thomas et al., 2013). This is the standard text
for any new Ruby programmer and will get you up to speed very quickly. A highly
recommended alternative is The Ruby Way (Fulton, 2006)—this book takes more of
a cookbook approach to learning Ruby, by showing you specific examples of how
you would solve a given problem. Finally, as with Python, Ruby has comprehen-
sive documentation on the Internet (hosted at ruby-doc.org), which serves as a
great reference and is of course likely to be more up to date than printed books.

318   6 software engineering for bioinformatics

6.5.3  Java

Java is a ubiquitous programming language, running not only on the desktop
computers and servers that we use for bioinformatics but also on smartphones
(Android apps are written in Java), Blu-ray players, smart cards, and a host of
other devices. This wide reach is due to the fact the Java was conceived from the
very beginning as a platform-independent language. In Java, programs are not
written to run on a specific operating system, but on something called the Java
virtual machine (JVM). JVMs are provided for all manner of different platforms,
including Windows, Linux, and Mac OS. Java programs interact exclusively with
the JVM, which in turn interacts with the operating system and underlying hard-
ware. Because the virtual machine is designed to look identical regardless of the
platform on which it is running, you can write a program in Java and run it un-
modified on any platform for which a JVM exists.3 Another benefit of the virtual-
ization approach is increased security—because every Java program is separated
from the operating system by the JVM there is a limit to the damage a malicious
or poorly written program can do. Java also has potential performance advan-
tages, because the source code is compiled to optimized bytecode prior to execu-
tion.

In terms of programming, Java is an inherently object-oriented language that
has a lot in common with the other languages that we have looked at—there
are variables of familiar types (strings, integers, arrays, etc.), conditional state-
ments, loops, comments, a documentation generator (called Javadoc), a unit
testing framework (JUnit), and mechanisms for dealing with files and errors.
However, Java does not share the scripting roots of Perl, Python and Ruby. It more
closely resembles the C++ language, which means that program code is gener-
ally more formal, consistent, and verbose. Such languages tend to be favoured
by computer scientists, who consider them to lead to more robust, efficient, and
readable code. They are generally less popular among infrequent coders, such as
biologists, who find the learning curve off-putting. However, Java is widely used
in bioinformatics, particularly in the proteome informatics community, for web
development, and for applications where a platform-independent client-side user
interface is required.

It is worth noting that, from the software development perspective, Java comes
in a range of distinct editions, each tailored to a specific type of application devel-
opment. In this chapter we will exclusively use the Standard Edition (Java SE),
which is intended primarily for producing computer-based applications that run
locally. The other edition of interest for bioinformatics work is the Enterprise
Edition (Java EE), for developing web-based applications.

Downloading and installing Java
It is possible to develop Java software as we have done for the scripting languages,
by typing programs in a text editor, and compiling and running them at the

3 Of course, programs written to take advantage of platform-specific hardware will not be fully
functional on devices that do not have that hardware.

6.5 alternatives to perl   319

command line. In practice, this is rarely done because of the relative complexity
of Java program code. Instead, many developers make use of a freely available
cross-platform IDE called NetBeans, which is highly optimized for Java. NetBeans
helps us edit and manage our code, even to the extent of providing automatic
code generation for routine tasks. For this tour of Java, we will be exclusively
using NetBeans.

Before installing NetBeans, we need to ensure that key Java components are
in place. Firstly, for the reasons explained earlier, you must have a JVM (often
referred to as the Java Runtime Environment, JRE, or simply Java) installed on your
computer before any Java program will run. You probably already have it, but
you can check and install it if necessary by following the simple instructions at
java.com.

The JVM only contains the basics needed to run Java programs, not the tools
to develop and compile them. Before we can start developing Java programs, we
need to install the Java software development kit, often called the Java Development
Kit (JDK) or Java Platform. The Java SE version of this can be downloaded via goo.
gl/UIPvF. Here you have the option to download the JDK by itself, or together
with NetBeans. Since we will be using NetBeans, we recommend the combined
download. After downloading, the installation is straightforward and default in-
stallation options can be used.

Hello, world
To get started writing Java code, we first need to launch NetBeans. This will
bring up a welcome page with links to various tutorials and information. The
functionality of NetBeans is almost overwhelming at first, with all this infor-
mation available and lots of menus across the top, each containing a large
number of options. It is worth spending considerable time exploring these
things, but for the moment we will go straight into writing our familiar ex-
ample program that writes out 'Hello, world'. The first step is to create a new
NetBeans project. From the File menu, select New Project. In the window
that appears, click Next to start a new Java Application. This will bring up a
second window in which you can specify the name of the project and the lo-
cation of the program files. Make changes there if you want, then click Finish
to create the project. You will then be taken to the code editor, where you
will see that NetBeans has already created the bare bones of your first Java
program.

As in Ruby, everything in Java is object-oriented, so your application is a class,
with a method (called main()) that is called automatically when you execute
your program. Note that main() has a string parameter called args—this will
contain any command-line parameters passed to the program. For a simple ex-
ample, we just need to add a line of code between the curly brackets ({ and })
that denote the code block belonging to the main() method so that the program
looks like the example below. Note that for reasons of space we have omitted
the white space and comments (in Java any text surrounded by /* and */) that
NetBeans inserts.

320   6 software engineering for bioinformatics

package javaapplication1;
public class JavaApplication1 {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

We can compile and run this within NetBeans by clicking the Run Project but-
ton (the green arrowhead) on the toolbar at the top of the NetBeans window. The
command-line output, together with some status information from NetBeans,
will appear in a pane within the NetBeans window, below the program code.

The line that we added uses the pre-wrapped System.out object, which rep-
resents the standard output steam—the command line in our case. This field
supports a number of methods, including println() which is used to output
text. As in Perl, lines must be terminated by a semi-colon. Compared to the other
languages in which we have implemented this example, there is no doubt that
Java is the most verbose by far. The program has at least twice as many lines as
the equivalent Perl code, and the command to print the welcome message is con-
siderably more complicated. This is one of the things that dissuades people from
using Java. However, in fairness, the coding overhead of Java is highly exagger-
ated in a trivial example such as this. It is in larger, more complex, applications
where the formality of Java really pays dividends. As one of our colleagues suc-
cinctly put it ‘for complex projects you need a complex language’.

The NetBeans IDE does a lot to mitigate Java's complexities. For example,
you may have noticed that as you typed the new line within NetBeans, hints
appeared to help you complete it, including a list of fields supported by the
System class, a list of methods supported by out, and the variable types
accepted by println(). Right clicking on an item within the program code
will bring up a menu, from which you can access Javadoc documentation for
that particular item. It is worth taking a look around to see what else NetBeans
offers as there really is a wealth of functionality there, including advanced code
navigation, integrated testing, debugging, profiling (finding out which parts of
your program take up the most compute time), and version control (Git is one of
several supported systems).

Running Java programs from the command line
Running programs within the NetBeans IDE, as we do in this chapter, is very con-
venient but does hide important steps that take place behind the scenes. What
actually happens when you click the Run Project button is that the classes get
compiled from the human readable .java text files into JVM readable .class
bytecode files. NetBeans then uses the locally installed JVM to execute the classes,
and captures the default output stream so that it can be displayed within the
NetBeans window.

Because Java applications usually contain multiple classes, all the classes for the
application are typically packaged into a single Java archive (.jar) file for distri-
bution. This can be executed from the command line simply by passing the name

6.5 alternatives to perl   321

of the .jar file to the Java VM using a command like the one below. Java is there-
fore just as suitable at Perl, Python, or Ruby for developing command-line tools.

java –jar JavaApplication1.jar

To see this in action for our example program, click on Clean and Build Project
from the Run menu in NetBeans. This builds the project into a .jar file and will
show you, via the output window, the command needed to execute it.

Variables and data structures
In Java, all variables must be declared and their type specified prior to use, or
when they are first assigned a value. Variables can only exist in methods and
classes, so must be defined within those code blocks in which they are to be
used. In the example program below some variables are declared and used within
main():

package javaapplication1;

public class JavaApplication1 {

 public static void main(String[] args) {

 int x; /* integer declared but not set */

 String a = "ACBCDEFG"; /* sting variable set and declared */

 int b = 12; /* integer declared and set */

 double p = 3.14; /* fractional number */

 int [] c = {1,2,3,4,5}; /* an array of integers */

 x = b + c[0]; /* �referencing first element of c

array */

 }

}

In Java, all but the most primitive data types are actually classes, so the instan-
tiations of these are objects rather than variables. In the above example, a is an
object because all strings are objects, and c is an object because it is an array. Like
any objects, a and c have properties and methods that can be used to interrogate
and manipulate them. All other more complex data types are also implemented
as classes.

String interpolation
The easiest way to output a variable as part of a string is to use the format
method, which is supported by System.out. Like Python, this requires place-
holders to be included in the string and variables to be provided for each of these
placeholders. The placeholders are then instantiated with the values of the vari-
ables at runtime. Here are some examples that could be inserted towards the end
of the code block in our simple program, above to report the values of the vari-
ables that were declared.

System.out.format("a = %s%n",a);
System.out.format("The value of p is %f%n",p);

322   6 software engineering for bioinformatics

System.out.format("�The value of p to one decimal place is
%.1f%n",p);

System.out.format("�The value of x is %d + %d = %d%n",b,
c[0],x);

Note that the placeholders must indicate the type of variable to be interpo-
lated: %s for a string, %d for an integer and %f for a fractional number. There
are other converters for date and time variables, and %n which inserts a newline
character. Detailed formatting information can be included in the string, such as
the number of decimal places to report for p in the third line.

Control structures, loops, and logic operators
The Java syntax for the key programming constructs is not dissimilar to Perl. In
some cases, Java offers multiple ways of writing the same thing, but these are the
most common:

/* single line conditional statement */
if (false) System.out.println("this code will not run");

/* multi-line conditional statement with else code */
/* brackets only needed for multi-line code blocks */
if (false) {
 System.out.println("this code will not run");
}
else {
 System.out.println("this code will run");
}

/* ten iteration for loop */
for (int a = 0; a < 10; a++) {
 System.out.format("i = %d%n",a);
}

/* ten iteration while loop */
int i = 0;
while (i < 10) {
 System.out.format("i = %d%n",i);
 i++;
}

The for loop is a typical example of the formality, or thoroughness, of Java.
When initializing the loop we must declare the loop variable and specify its type,
then explicitly state the condition that must be satisfied for the loop to continue
and how the loop variable will be altered each time around the loop. While this
may seem verbose, it allows for the creation of a wide range of different loops
while remaining eminently readable.

6.5 alternatives to perl   323

If you enter the if examples in NetBeans you will notice a small yellow warn-
ing icon appear next to some of the lines. Mousing over this icon reveals the hint
'the branch is never used'. This is an example of the real-time code checking that
NetBeans does for us—it uses its knowledge of the Java language to flag up typos,
syntax errors, and even logic errors like this one, where it has discovered that
those particular lines of code will never get called.

Object orientation
As already mentioned, Java was created with object-oriented programming in
mind from the outset, and we have had to use classes and objects to achieve
even the most fundamental things like writing text to the command line. As you
might expect, creating and working with your own objects in Java is both elegant
and efficient. Here is a version of our familiar pet example:

package javaapplication1;
public class JavaApplication1 {
 public static void main(String[] args) {

 /* define the Dog class */
 class Dog {
 String name;
 String breed;
 int age;

 String getDescription() {
 String out = �String.format("%s is a %s and is %d

years old.", name, breed, age);
 return out;
 }
 }

 /* use the Dog class to create a dog */
 Dog sam;
 sam = new Dog();

 /* set some of the Dog’s properties */
 sam.name = "Sam"
 sam.breed = "Terrier"
 sam.age = 5;

 /* tell us something about the dog */
 System.out.println(sam.getDescription());
 }
}

This clearly follows the same pattern as the similar examples for other lan-
guages, with arguably more readable syntax. All of the other standard function-
ality, such as inheritance, that makes OOP so efficient, is supported also.

324   6 software engineering for bioinformatics

Building a graphical user interface
Thanks to its object-oriented philosophy and a well-established library called
Swing, Java is particularly well suited to producing standalone software tools
with graphical user interfaces. Such tools are having something of resurgence
in the bioinformatics community, as the size of some data sets makes web-based
tools impractical for certain applications. The SeqMonk sequence data visualiza-
tion tool (www.bioinformatics.babraham.ac.uk/projects/seqmonk) is an
excellent example of the sophisticated interfaces that can be created by an expe-
rienced Java developer.

To illustrate the use of the Swing library, we are going to create a much simpler
application. Following the same process as before, create a new NetBeans project
called GUIverse. After creating the project, NetBeans will take you to the code
editor with the familiar automatically generated code to get us started. This time,
rather than start writing code, add a new file by selecting New File from the File
menu. In the dialogue box, select Swing GUI Forms from the left list and then
JFrame Form from the right list. Click Next, then Finish to create the form with
the default name NewJFrame. NetBeans will then take you to a newly created
tab in the editor, displaying a rather boring grey rectangle—this is our frame, or
window as we might more commonly call it. On the right of the NetBeans window
is a palette of GUI objects that can be added to this window. For the purpose
of this tutorial, just drag across one standard button and one label—it doesn’t
matter exactly where you place these in the frame. Clicking once on one of the
objects in the frame will cause its properties to be displayed in a panel to the
right of the NetBeans window. These properties can be edited, for example you
can change the text property of the button to OK. The button will change in the
frame to reflect this edit.

To see our new frame in action, we need to add the code below to the main()
method of GUIverse.java to create and display a frame like the one we created
(use the tabs at the top of the code panel to navigate between the different files).
The code for creating the frame object should be familiar from the earlier dog
example. The setVisible() method is used to bring the newly created frame
into view.

 NewJFrame mainwindow;
 mainwindow = new NewJFrame();
 mainwindow.setVisible(true);

Running this code will result in a window like the one you designed appearing
on the screen. It can be moved around and re-sized, but otherwise it does noth-
ing. To remove the window and quit the application, click the window’s close
icon.

If you clicked the OK button that we created, you will notice that it does noth-
ing. To make it perform some action we need to attach program code to it. To
do this, go back to the NewJFrame.java frame designer and double click the
button in the form. This will take you to the program code that underpins the
form, all of which has so far been auto-generated. In particular, it will take you

6.5 alternatives to perl   325

to a new method called jButton1ActionPerformed(). This is the event hand-
ling method that is automatically called when the user clicks the button. To add
some basic functionality to this button, insert the following command into this
method:

jLabel1.setText("The button changed me!");

Now, if you run the program and click on the OK button you will see that the
label changes. It is from this simple concept that even the most complex GUIs
can be built. Each GUI object has a range of events associated with it, and by writ-
ing code to deal with these events we can build up a fully functional application.
To take a more practical example, we might want to build an interface to scroll
through a visual representation of some data. A scrollbar would be added to the
frame and code written for the scrollbar’s adjustmentValueChanged event to
update the view of the data according to the position of the scrollbar whenever
the user moves it.

A major attraction of using Java to develop applications with GUIs is that the
GUIs are, like Java itself, platform independent. This is achieved by some clever
technologies, particularly layout managers that dynamically reorganize GUI
elements to fit the resolution of the display on which it is running. The details
of how GUI elements are displayed—the so-called look and feel—also changes to
match the operating system on which the application is being run, or you can set
it manually within the application.

The Java ecosystem
There are thousands of Java libraries available, and thanks to Java’s fundamental
strengths in terms of consistent syntax, object-oriented philosophy, and docu-
mentation generation, they are generally easy to use. The most important library
to be aware of is the Java API, which comes with the JDK that we already down-
loaded. The Java API is a collection of themed packages, each of which contains
a number of ready-baked classes that together cover most generic programming
tasks. At the time of writing, the current API is version 7, which contains liter-
ally thousands of classes, all of which are documented in detail at docs.or-
acle.com/javase/7/docs/api. The Swing package that we used for our GUI
example is part of the Java API. JDBC, for connecting Java programs to relational
databases is another very important part of the Java API.

For bioinformatics work, a collection of classes for common sequence ana-
lysis and structural biology tasks is provided by the BioJava project (biojava.
org). There are plenty of other relevant Java libraries out there but (unlike Perl,
Python, and Ruby) there is no single accepted repository for these, so finding
what you need is a case of searching the web or scanning the literature.

Going further with Java
While this section has discussed some of the distinguishing features of Java, and
demonstrated how to start programming in Java with NetBeans, it is probably fair
to say that becoming proficient in Java will take longer than it would in the other

326   6 software engineering for bioinformatics

languages that we have covered. Java makes available a lot of powerful function-
ality, but experience is needed to take full advantage of it. Our recommended
book for beginning Java is Learning Java (Niemeyer and Leuck, 2013). Head First
Java (Sierra and Bates, 2005) is another introductory Java book, which has become
popular thanks to its unusual but effective style of explaining complex concepts.

Official Java tutorials and the very latest documentation for the Java language
and the current Java API can be found on the Oracle website (www.oracle.com/
technetwork/java/javase/documentation for the Java SE edition). As we
have already seen, the NetBeans welcome page has links to a range of informa-
tion about Java programming and NetBeans. More information about NetBeans
itself can be found at netbeans.org.

6.5.4  Using Galaxy

As discussed in Chapter 1, recent years have seen the development of a number
of software platforms for joining bioinformatics tools together into more com-
plex pipelines, ostensibly removing the need to write bespoke software that con-
nects different tools. Such frameworks are not a total replacement for any of the
programming languages that we have been looking at in this chapter, because
it is still necessary to write new tools for new biological applications. However,
using these frameworks can save us from a lot of the mundane programming
work needed to integrate tools and interact with users.

At the time of writing, the pre-eminent workflow platform in bioinformatics
is Galaxy. Galaxy is accessed via a web browser, with information displayed in
the three main panes—the leftmost pane contains a list of tools available in the
Galaxy instance being used, the middle pane is used primarily to configure tools
and display results, and the rightmost pane records a history of files that have
been uploaded, analyses that have been done, and the results generated. Tools
can be executed individually, one after the other, or can be linked together in
workflows for automated analysis, either by schematically creating a workflow
or by creating one automatically from a recent analysis history.

The best way to get a feel for Galaxy is to visit the publicly available Galaxy
server at usegalaxy.org. For more serious work, Galaxy can be installed lo-
cally on Linux or Mac OS by following the simple instructions at getgalaxy.
org. There is no official support for Windows, so if you want to run Galaxy
under Windows you will need to create a Linux virtual machine as explained in
Appendix C (note that the Bio-Linux distribution has Galaxy pre-installed).

The simple concept underlying Galaxy, and most other workflow frameworks,
is that most bioinformatics tools can be considered as a piece of programmatic-
ally accessible software (e.g. a command-line tool or web service) that takes some
input data, usually together with some user-specified parameters, processes that
data, and produces some output. For a tool to be useable within Galaxy it must
have a wrapper that defines the types of input and output needed, the parameters
required from the user, and the structure of the command needed to execute the
tool. Galaxy wrappers must be written in a standard XML format (documented
at wiki.galaxyproject.org/Admin/Tools/ToolConfigSyntax). For each

references   327

tool, Galaxy is able to use the information contained in the wrapper to render a
simple user interface for specifying the input data and parameters, and can deter-
mine how to deal with the output produced when the tool is executed. It can also
work out which tools can be connected together in a workflow, by checking they
have compatible inputs and outputs.

If you are producing a command-line bioinformatics tool, there are compelling
benefits to writing a Galaxy wrapper for it: the web interface that Galaxy gener-
ates for the tool will be a lot easier for most biologists to use than the command
line, and integrating your tool with others in a pipeline should be effortless.
However, writing wrappers can become complicated for some tools and debug-
ging is not easy because a lot is happening out of sight, behind the scenes.

6.6  Summary

When starting out in programming, it is easy to dismiss the software engin-
eering practices introduced in this chapter as an unnecessary overhead, espe-
cially in bioinformatics where a piece of software may initially have few users
and there is pressure to get results out for an imminent publication or dead-
line. However, once you have a few programming projects under your belt, the
benefits become clear: good software engineering helps us create programs
that are more reliable, easier to use, easier to understand, and easier to extend
and maintain. Perhaps most importantly, it provides an effective framework
for the development of software by multi-developer teams. Thanks to various
extensions, we can adopt all the major software engineering practices in Perl.
However, more modern languages have been designed from the ground up
with these practices in mind, so they are seriously worth considering if you are
beginning a new project. Indeed, we have witnessed an increasing uptake of
Python and Ruby in the bioinformatics community. For the moment though,
due to the well-developed ecosystem and army of experienced developers, Perl
still dominates.

Regardless of the specific languages, libraries, and tools used, the core princi-
ples of data storage, programming, and data analysis covered in this book have
been established for many years, and are likely to remain at the core of bioinfor-
matics for decades to come. If you have grasped the concepts in this book, you
should be well prepared for the future. We wish you every success in building
your own bioinformatics solutions.

References
Beck, K. (2003). Test-Driven Development: By Example. Addison-Wesley: Boston, USA.
Chacon, S. (2009). Pro Git: Everything You Need to Know about the Git Distributed Source Control Tool. Apress:

New York, USA.
Downey, A.B. (2012). Think Python: How to Think Like a Computer Scientist. O’Reilly: Sebastopol, California,

USA.
Thomas, D., Fowler, C. & Hunt, A. (2013). Programming Ruby 1.9 & 2.0 (4th edition): The Pragmatic

Programmers’ Guide. The Pragmatic Programmers: Texas, USA.
Fulton, H. (2006). The Ruby Way: Solutions and Techniques in Ruby Programming. Addison-Wesley: Boston,

USA.

328   6 software engineering for bioinformatics

de Matos P., Cham J.A., Cao H., Alcántara R., RowlandF., Lopez R., & Steinbeck C. (2013). Enzyme
Portal: a case study in applying user-centred design methods in bioinformatics, BMC Bioinformatics,
14: 103.

Niemeyer. P. & Leuck, D. (2013). Learning Java (4th edition). O’Reilly: Sebastopol, California, USA.
Pavelin K., ChamJ.A., de Matos P., Brooksbank C., Cameron G. & Steinbeck C. (2012). Bioinformatics

meets user-centred design: a perspective, PLoS Computational Biology, 8(7): e1002554.
Sierra, K. & Bates, B. (2005). Headfirst Java. O’Reilly: Sebastopol, California, USA.
Sommerville, I. (2010). Software Engineering. Addison-Wesley: Boston, USA.

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

Appendix A: Using
command-line interfaces

This appendix provides a brief introduction to the use of command-line inter-
faces, for the benefit of those readers who do not have experience of working
with these. In this book, we use command lines to interact with three distinct
programs: MySQL, R, and the operating system (which may be Windows, Linux,
or Mac OS). Although specific commands vary between programs, all command-
line interfaces work in a similar way. In what follows, we concentrate on the op-
erating system as an example. Specific information about the command lines of
MySQL and R can be found throughout Chapters 2 and 4.

A.1  Getting to the operating system command line

Depending on your computer’s operating system, the command line can have
several names. On Windows PCs it is known as the command prompt, on Mac OS
and most recent Linux systems it is known as the terminal (older Unix variants,
and people experienced with such systems, may refer to it as the shell). The way
the command line is accessed varies according to the operating system.

Opening the Windows command prompt

The following method should work on all recent versions of Windows:

◆	 Press the Windows key on the keyboard. This will bring up the Start screen (or
the Start menu depending on your version of Windows).

◆	 Start typing ‘command prompt’ (without the quotes) until the command
prompt appears at the top of the list of apps (or programs in older versions of
Windows).

◆	 Hit the Enter key.

This should open a new window that by default has a black background with
white text on it. In that window you will see the command prompt, which will
look something like:

C:\Users\Conrad>

330   appendix a: using command-line interfaces

The prompt tells you that the operating system is ready for you to type a com-
mand. It also shows you (in the section before then > symbol) which directory
you are currently in. A directory is exactly the same as a Windows folder, but
the term directory is more typically used in programming languages and at the
command line. For example, you can list the contents of a directory by typing
dir (short for directory) and hitting return. In the list of items that is returned,
subdirectories are flagged with the label <DIR>.

You can move to another directory using cd (short for change directory). For ex-
ample, to move into a subdirectory called Desktop, we would use the command:

cd Desktop

Most folders contain a special folder denoted by two dots (..). This is actually a
shortcut to the parent folder. So, issuing the command below will move you up
one folder:

cd ..

The above examples move you to directories relative to the directory you are
currently in. If you want to move directly to a directory regardless of your current
location, you need to specify the new location from the disk drive downwards,
for example:

cd c:\Progam Files\R

This would take you to the R directory, within the Program Files directory
on your C: drive. In cases like this, where a file or folder name contains a space,
it is good practice to enclose the name in quotation marks to avoid confusion.

cd "c:\Progam Files\R"

To change to another drive, just type the letter of that drive followed by a
colon. So, to change to the E: drive just type e: and hit the Enter key.

Opening a Linux terminal

Depending on how you have Linux configured, you may not have a graphical
interface and will therefore already be at the command line. If not, you first
need to open up a terminal (or shell) window. To do this, look for an icon that
looks either like a picture of small computer monitor in black with white char-
acters on it, or, in some instances, an icon that looks like a sea shell. You may
need to access a list of applications to find this, for example in recent versions
of Ubuntu you need to click on the Ubuntu icon (Dash home), type the word
‘terminal’ (without the quotes) and the Terminal icon should appear for you to
click.

Any of these methods should open up a window that will have a solid back-
ground with contrasting text, often white on black. Within this window you
should see the Linux command prompt. Exactly how this looks will depend on
your particular flavour of Linux, but it will likely be similar to one of these:

A.2 general command-line concepts   331

$ /home>
username@computername:/home$
username@computername[/home]

This shows you your current directory—in this case the top level home direc-
tory. You can see the contents of the current directory by typing ls followed by
hitting the Enter key. As in Windows, you can change directory using cd. For
example:

cd BBS

takes you to a folder called BBS.

cd ..

takes you up one directory.

cd /usr/local/

will take you to the directory local within the usr directory. Note that the
slashes delineating the different directory levels are forward-slashes, whereas
Windows uses backslashes.

Opening a terminal in Mac OS

Mac OS has a terminal application very similar to the ones found in Linux. You
can find this in the Applications > Utilities directory. Once you have opened up
the Mac OS terminal (also sometimes referred to as Terminal.app), the situation is
very much the same as Linux, and the instructions described above apply.

A.2  General command-line concepts

Working directory and path

In operating systems (and in R) the concept of the working directory is important
when using the command line. The working directory is the directory you are in
at any given time. If you try to execute a file by typing its name, this is the first
place the operating system will look for the file. If the file is not in the working
directory it will not be found, unless its location is included in the path. The path
is a list of directories that you want the operating system to search every time
you try to access a program. Depending on the operating system you are using,
there are various ways of viewing or modifying the current path.

In Windows you can view the current path by typing PATH at the Command
Prompt. The path can be edited via Windows Control Panel (PATH is a system en-
vironment variable, so search for System Environment Variables within Control
Panel), but a simpler way to temporarily add a directory to the path is by modi-
fying the path at the command line using a command like the one below. This
example will add the C:\Python27 directory to the path for the duration of the
current Command Prompt session.

332   appendix a: using command-line interfaces

PATH=%PATH%;C:\Python27\

In Linux and Mac OS the current path can be viewed by typing echo $PATH.
The path can be edited using the export command. For example, the command
below temporarily appends /home/user/bin to your existing path for the dur-
ation of the current terminal session.

export PATH=$PATH:/home/user/bin

Parameters, arguments, options, and switches

Some commands, such as ls and dir are very simple and can just be typed by
themselves. Many other commands require one or more parameters to be spe-
cified. This is known as passing parameters (or passing arguments) and is done by
typing these parameters after the command, on the same line. One example is
the cd command shown earlier, which requires the name of the target directory
to be specified after the command.

On a similar theme, some commands have options or switches, which are used
to modify their behaviour. A good example of this is the Perl version switch (-v)
demonstrated at the start of Chapter 3. If this switch is included as part of the
Perl command, as shown below, Perl will just print its version number to the
screen, instead of actually executing any code.

perl –v

Through a combination of command-line arguments and switches, we are able
to control the behaviour of even very complex programs. A good example is the
blastn program (for more information see www.ncbi.nlm.nih.gov/books/
NBK1763) used to search for a sequence in a database. An example of blastn in
use is shown below.

blastn –db nt –query seq1.fasta –out results.out

Here, the combination of switches and parameters defines precisely how the
search is conducted. Specifically, the nt sequence database is selected with the
-db switch and the file containing the query sequence (the sequence we want to
look for) is specified as seq1.fasta by the -query switch. Similarly, the file to
which results will be written is specified using the –out switch. Looking at the
documentation at NCBI we can see that blastn supports many other possible
options, but where we are happy with an option being set to a default setting we
can simply omit these options.

Although this way of interacting with programs might seem arcane, and typing
such long commands may be prone to error, it actually becomes much more ef-
ficient than using a graphical interface if the same—or similar—operations need
to be completed repeatedly. In particular, it is easy to automatically generate and
execute these commands in Perl using its system() function, as described in
Chapter 3.

A.3 command-line tips   333

A.3  Command-line tips

There are various shortcuts that make life in the command line a little easier.
The details of these will vary according to which particular program or operating
system you are using, but something that is common to most is the ability to re-
call previous commands using the up and down arrow keys. This is particularly
useful if you want to repeat a command or type a command very similar to one
that you entered earlier (for example, if you made a typing error the first time, or
if just want to change one of the switches or parameters).

On recent versions of Windows and most Linux systems, the Tab key may also
be used to attempt to automatically complete directory, file, and command names
before you have finished typing them. This can speed up typing considerably as
you only need to enter the first few letters of a directory or file then press Tab;
however, the letters you enter should uniquely point to a single instance, or you
may either be given a list of possibilities or, on some systems, one of the options
will be selected for you. It is therefore wise to check any automatically completed
text. Automatic Tab completion for table and field names is also enabled in some
versions of MySQL.

Another handy feature is the path, described earlier. Having key tools, such as
Perl and MySQL, in your path makes life a lot easier because you don’t have to
spend so much time switching between directories. Similarly, file associations can
be useful. A file association is a link—known to the operating system—between a
specified file type extension, and a program that deals with such files. An example
of such an association would be to associate .pl files with the Perl interpreter
program, perl.exe (on a Windows system—it’s just called perl on Linux and
Mac). If this has been done, then a Perl program can be executed simply by typing
its name at the command prompt, so typing hello_world.pl on a Windows
system, or ./hello_world.pl on Linux or Mac OS would run the program with
that name directly, without you having to specify that Perl is needed to run it.

Finally, we should note that, throughout this book, when we show examples
of commands to be entered at the command line we do not show the command
prompt. The only exception to this is where we illustrate a sample command-line
session, and in those cases the command prompt is used to differentiate between
text that is typed in by the user and text returned to the screen by the computer.
This is most frequently used to demonstrate interactions with R in Chapter 4, and
occasionally with MySQL in Chapter 2.

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

Appendix B: Getting started
with Apache HTTP Server

To do any serious web development work, you will need access to your own fully
fledged web server. As mentioned in Chapter 5, Apache HTTP Server (commonly
just referred to as Apache) is the server software of choice for most applications in
bioinformatics and beyond. There are several ways to start using Apache:

◆	 Use a server provided by your organization. If you are working for a company, or in
an educational establishment, your organization may have server hardware on
which Apache is already installed. The administrator of this server would have
to give you a user account with permission to upload files to this server. You
can then copy files and web applications over to the server, and access them by
pointing your web browser to that server.

◆	 Buy a hosting package. There are many companies around the world offering
space on their servers for hosting websites, often at very competitive prices.
However, it is important to realize that not all web hosting is created equal. In
particular, to get a server capable of running applications that you have written
yourself, particularly incorporating database functionality, can be expensive.

◆	 Use a spare computer. If you own more than one computer, you can install web
server software such as Apache on one computer and use that as a web server.
You can then use this second computer to host your web pages and applica-
tions. One benefit of this approach is that the operating system on the server
(Linux would be a good choice) can be independent of the operating system on
your main computer (e.g. a Windows PC).

◆	 Use your own computer. This is the cheapest and simplest option, and is perfect
for development work. In this appendix we explain how to install Apache on
your computer—this is referred to as running the server locally (as opposed to
over a network). You can then connect to the Apache server from a browser on
that same computer, just as if you were accessing it over the Internet. This is
not a practical way of hosting a publicly available website, as it requires your
computer to be permanently on and accessible via the Internet, and you will be

336   appendix b: getting started with apache http server

sharing your computer’s processor and memory with visitors to your website.
However, it is a perfect approach for learning about developing web resources.

◆	 Use a virtual machine (VM) on your own computer. This is a combination of the pre-
vious two options, giving you the opportunity to run a server on a different
operating system than the one you use day to day. To do this, you would set up
a VM (see Appendix C), install the server software within that, and then con-
nect to it either from a browser within the VM or a browser in the host
operating system. This is useful if you need to build operating system specific
functionality into your web application.

B.1  Installing Apache

The process for installing and configuring your own instance of Apache depends
on your operating system.1 We recommend making sure that all network related
programs (e.g. browsers, e-mail, Skype, and any other chat software) are closed
prior to installing Apache as these can interfere with the installation process. Also,
we do not recommend running more than one web server on a single computer.

◆	 Windows users will find all the necessary instructions within the Apache docu-
mentation (httpd.apache.org/docs). Click on the documentation item for
the latest version of Apache and then you will find specific instructions for
Windows installation in the Platform Specific Notes section. As with software
downloaded in other chapters, it is best to look for the MSI file for easy
installation. These files are not hosted on the Apache website itself, but on a
number of mirror sites that are listed at www.apache.org/dyn/closer.
cgi/httpd/binaries/win32. Click through to one of the mirror sites, then
look through the list of downloads for the MSI file for the most recent no-SSL
version of Apache. It will be called something like httpd-2.2.22-win32-
x86-no_ssl.msi. Click on the filename to download it, and open the file to
begin installation of Apache. During installation, you will be prompted to enter
a domain name, server name, and e-mail address. Depending on how your com-
puter is set up, these fields may already be filled in, but if not you can enter
localhost for both domain and server, and your normal e-mail address.

◆	 If you are a Linux user, consult the documentation specific to your distribution—
Apache is a central part of the success of the Linux operating system and is easy
to install on all distributions.

◆	 Macintosh users already have Apache installed as part of the operating system,
and all web documents (HTML files) are stored in the Documents directory
found in /Library/WebServer/. All you need to do to start Apache is to acti-
vate ‘web sharing’ in the system preferences, or type apachectl start in the
terminal.

1	 At the time of writing, there is a choice of Apache installations—one with additional security
(SSL) and one without. For simplicity we recommend using the version without SSL while you are
learning, but suggest investigating SSL in future if you need secure connections to your web pages.

B.2 apache fundamentals   337

The way to test an Apache installation is to point your browser to your server—
the URL will be localhost if you are running Apache locally. If the installation
is successful you should see a simple ‘It works!’ message. At this point, you might
begin to wonder who else can see this page, and which of your other files they
can see. The answer is that only files placed in a specific location on your com-
puter can be accessed via Apache (see the next section), and these can only be
seen from remote computers if you do not have a functioning firewall, or you
have allowed incoming access to port 80 through your firewall. If you do not want
your web server accessible from other machines, make sure that your firewall is
turned on and is blocking incoming connections; if you do want to allow access to
your web server, consult the documentation for your firewall (most likely found
with the documentation for your operating system) and look for information on
how you can open up connections on specific ports to outside machines.

Once Apache is installed, using it to serve up your documents is simple. The only
things that you need to know are where Apache expects certain types of documents
to be stored, and the permissions that need to be applied to these documents.

B.2  Apache fundamentals

To ensure that users can access and view web content on your server, it is im-
portant to understand how to organise that content.

HTML documents

HTML documents are text-based files that get served up as static web pages by your
web server. In order for these to be served by Apache, they must be stored in a spe-
cific directory on the server—this is often known as the DocumentRoot or htdocs
and its location should be detailed within the server installation documentation.
Basically, if you store all of your HTML files here (or in subdirectories within this
directory), you will then be able to access these files via a web browser by point-
ing your web browser at the server. On Windows, your DocumentRoot will be
something like C:\Program Files (x86)\Apache Software Foundation\
Apache2.2\htdocs, depending on where you installed Apache and which ver-
sion you have (in this case 2.2); on Linux it is usually located at /var/www/, on
Mac OS it is located at /Library/WebServer/Documents.

Unix file ownership and permissions

Understanding the basics of file ownership and permissions is critical to working
successfully with Apache on Linux and Mac OS, so we provide here an overview
of the key concepts. Windows users can skip most of this section as file permis-
sions in Windows are much less strict, so there is no need to consider permis-
sions and ownership. In Windows you only need to ensure that you can modify
the content of Apache’s htdocs folder.2

2	 If you find that you are unable to modify the content of htdocs in Windows 8, right click on the
folder, select Properties, then in the Security tab of the window that appears select Users, and then
click Full control and OK.

338   appendix b: getting started with apache http server

All files and directories on a Unix based system are owned by a user and a
group, and the user, the group, and everyone else can be given specific privileges
to use, or indeed not use, a file or directory. To find out what user and group a file
belongs to, open up a terminal and run the following command in a directory of
your choice: ls -l. You will see output similar to that shown below:

-rw-rw-r-- 1 daz staff 4.5K 2007-02-28 14:40 image.gif
drwxr-xr-x 11 daz staff 374 2007-09-10 11:13 directory1/
drwxr-xr-x 8 daz staff 272 2007-12-01 15:31 directory2/
drwxr-xr-x 16 daz staff 544 2007-03-29 21:48 directory3/
-rw-rw-r-- 1 daz staff 3.9K 2007-02-28 14:40 index.html

In this example, all the files belong to the user daz and the group staff, indi-
cated by the names to the left of the file listing. We also need to take note of the
permissions granted to the files and directories—this is the matrix of d, r x, and
w symbols on the left. This basically tells us if the line refers to a directory (sig-
nified by a d), and then which users can read (r)/write (w)/execute (x) a file. The
layout of this matrix is shown below.

It is basically three groups of the letters r, w, and x for each possible type of user
that could access a file. If a letter is present, it means that the appropriate permis-
sion is granted to that type of user.

The reason that we need to have an understanding of this is that the Apache
web server runs as if it were being run from a user account—not from the root
(administrator) account—in order to protect the server from being compromised
should a security flaw be found in Apache. Therefore, any document that you cre-
ate for Apache to use must have appropriate permissions set so that Apache can
both access and handle the file accordingly. As such, from here we shall assume
that all documents that you create and place in your DocumentRoot directories
will be owned by the root user and also belong to the root user group (as if they
were created by the administrator of your system). If you decide to create files
in your own directories and then move/copy them into the Apache served direc-
tories, you can change the ownership of the files (over to the root user) using the
chown command, for which the generic syntax is:

chown new_owner:new_group file_name

An example of this would be:

chown root:root index.html

Then, finally, you will need to ensure that all of your files (i.e. HTML, CSS,
JavaScript, etc.) are readable by the server process, so we should ensure that the

B.2 apache fundamentals   339

files are readable by all users, but not writable or executable. These permissions
can be altered using the chmod command, the syntax for which is:

chmod modification_code file_name

The modification code refers to a code that defines the permissions that will
be applied to the file after using this command. The way these codes are con-
structed is complicated, but there is only really one that you are likely to need
whilst working with Apache and plain HTML: 744. Code 744 sets the permissions
of a file to be readable/writable/executable by its owner, but only readable by
everyone else, (rwxr--r-- if viewed via ls -l). For example:

chmod 744 index.html

Building Bioinformatics Solutions. Second Edition. Conrad Bessant, Darren Oakley and Ian Shadforth.
© Conrad Bessant, Darren Oakley, and Ian Shadforth 2014. Published 2014 by Oxford University Press.

Appendix C: Setting up
a Linux virtual machine
in Windows

This appendix explains how to set up a virtual Linux machine within Windows,
using Oracle’s VirtualBox software package. As a Windows user, if you follow
these instructions you can have a fully functioning instance of Ubuntu Linux run-
ning within a window on your Windows desktop. There are many motivations for
doing this: to get hands-on experience of Linux without affecting your Windows
installation; to use software that is not currently available on Windows; and to
test that software you develop in Windows is compatible with Linux. There are
many virtualization platforms to choose from. We suggest Oracle’s VirtualBox
because it is free and, in our experience, has proved to be reliable and easy to
configure and use.

We are going to use VirtualBox with Windows as the host OS and Ubuntu Linux
as the guest OS—so we will install VirtualBox on Windows and then set up a
Virtual machine (VM) running Ubuntu within VirtualBox. VirtualBox can also be
installed on Linux and Mac OS, and a whole range of different operating systems
can be installed within VirtualBox, so there are many more possible host/guest
combinations. For example, a Linux user may use VirtualBox to run an instance
of Windows, or even a different version of Linux. The latter option may sound
pointless, but it is a great way to test software compatibility on different Linux
distributions, or to evaluate different Linux distributions without the upheaval of
changing the OS that you use day to day.

C.1  Installing VirtualBox and configuring a virtual machine

To get a Linux VM running within Windows, it is necessary to complete three
main tasks. First, we must install the VirtualBox application on Windows. We
must then create a virtual machine within VirtualBox. Finally, we need to install
a Linux operating system (in this case Ubuntu) onto the virtual machine. The fol-
lowing instructions lead you through the process step by step.

342   appendix c: setting up a linux virtual machine in windows

Step 1: Obtain the latest Ubuntu disk image
Before we start the main tasks, we need to get hold of an operating system to
install on the VM when it is finally set up. Appropriately for a virtual machine,
operating systems can be obtained as disk images. Although a disk image is just
a single file (with the extension.iso), to VMs within VirtualBox it looks like a
physical disk full of files, just like a CD that you would use to install an operating
system on a real computer.

We are going to use the Ubuntu disk image, which is available from
www.ubuntu.com. When you navigate to the download page you will see that
there are a few different flavours of Ubuntu to choose from. The most appropriate
for our purposes is Ubuntu Desktop. There are differently numbered versions of
this—most noticeably a well-established version that has long term support (LTS)
and a newer version with cutting-edge features. Our recommendation would be
to select the LTS version (there is nothing stopping you setting up a separate
VM with the newer version some time later). You will also need to choose be-
tween a 32-bit or 64-bit version of Ubuntu. This distinction can be important for
some software, but if you do not have a particular reason to do otherwise we sug-
gest you download the 64-bit version unless you are running a 32-bit version of
Windows (you can find out by checking your system properties within Windows).

Step 2: Install VirtualBox
From the VirtualBox downloads page (www.virtualbox.org/wiki/
Downloads), download the installer for the latest version of the VirtualBox plat-
form package for Windows hosts. Execute the installer and follow the installa-
tion process—there should be no need to deviate from the default installation
settings.

Step 3: Create and configure a virtual machine
When you launch the VirtualBox application for the first time you will be pre-
sented with an essentially empty window, because there are no VMs to display.
To begin creating your first VM, click the New icon in the toolbar. You will be
prompted to give the machine a name (choose whatever you want), a type (choose
Linux) and a version (choose Ubuntu 64bit, or simply Ubuntu if you downloaded
the 32-bit version).

Clicking Next will take you to the next step, where you specify how much of
your computer’s memory (RAM) to allocate to this particular VM. The amount of
RAM to allocate will depend on several factors, particularly how much RAM your
PC has, what you intend to use the VM for, and what else Windows will be doing
while the VM is running. A convenient way to think about this is to remember
that, for all intents and purposes, the VM is a self-contained computer, so how
much memory would you want installed in the computer? Two gigabytes is prob-
ably an absolute minimum, but if your host PC only has 2GB that will clearly
be impossible so a compromise will be needed. There is no need to agonize too
much over this as RAM allocation can easily be changed later.

The next steps in setting up the VM deal with the creation of a virtual hard
drive for the machine to use. You will be invited to select various options during

C.1 installing virtualbox and configuring a virtual machine   343

this process. The default settings should be acceptable. The only thing we would
say is that if you have a lot of free disk space it can be a good idea to create a
fixed size hard drive (rather than the dynamically allocated default) because dy-
namically allocating disk space has an impact on performance and can confuse
software that checks free disk space (e.g. installers). Note that you can select the
location of virtual hard drive—it does not have to be the same hard disk on which
VirtualBox was installed. Regarding disk size, as with RAM, you need to think
about what would be sensible for the work you are proposing to do.

On completion of the VM creation process, the VM will be added to the previ-
ously empty list of VMs in the left part of VirtualBox’s main window, and the rest
of the window will show the specification of the VM (see Fig. C.1 for an example).

Step 4: Installing Ubuntu
You can now double click the VM in the list to start it. Dialogue boxes may pop up
while the VM is starting telling you about keyboard and mouse capture—it is safe
to dismiss these by clicking OK. Because there is no operating system installed
on the VM, VirtualBox will then prompt you to select a startup disk. You need to

Fig. C.1  The main window of VirtualBox, with a single VM called “BBS VM” shown in the
list of VMs in the pane on the left of the window, and the configuration details of that VM
on the right.

344   appendix c: setting up a linux virtual machine in windows

select the Ubuntu ISO disk image that you downloaded back in Step 1. Having
selected this, the Ubuntu installation process will start within the VM and you
will be given the option to select your language and either Try Ubuntu or Install
Ubuntu. Since we are starting with a new (virtual) machine, we need to select the
latter option.

As with any software installation, you will be given various options during the
process. It is safe to go with the default options throughout, even though some
sound very alarming, for example at one point you need to confirm that you are
going to ‘erase disk and install Ubuntu’. It is important to remember that the disk
Ubuntu is talking about is the virtual hard drive (this is the only disk it can see at
this point)—not your actual hard disk—so your Windows installation and any local
files are safe. Similarly, when you are prompted to restart the computer at the end
of the installation it will be the VM that re-starts, not your whole computer.

When the VM re-starts after installation, you should have a fully functioning
VM running the latest version of Ubuntu. You will see that VirtualBox seamlessly
routes the VM’s hardware interactions through Windows and out to your PC, so
you can access all the essential hardware on your PC including keyboard, mouse,
networking, and audio right away.

Step 5: Install guest add-ons
Although the VM is running, you may notice some issues, such as the inability
to make use of your PC’s full screen resolution. This is because, to function opti-
mally under Windows, it is necessary to install some VirtualBox add-ons within
Ubuntu. To do this, go to the Devices menu at the top of the VM’s window and
click Install Guest Addons. Once installation is complete, re-start Ubuntu. Ubuntu
should now adapt its resolution to whatever size you make the VM window.

C.2  Using the VM

Starting and stopping a VM

If you shut down the VM within Ubuntu (e.g. by clicking the cog icon in top right
and selecting Shut Down), the VM will automatically ‘power off’ and disappear
from view once Ubuntu has finished shutting down. However, if you simply try
to close the VirtualBox window in which the VM is running, you will be given the
option to save the machine state before leaving the VM—this allows you to carry
on exactly where you left off next time you use the VM.

However you close the VM, you can start it in future by launching VirtualBox
and double clicking on the name of the VM in the VM list.

Changing VM configuration

The configuration of a VM can be changed with VirtualBox by clicking the titles
of the configuration panes for the VM in the main VirtualBox window, so if you
come to regret any of the selections made when setting up the VM you can change
them here. Note that, just like a real computer, this can only be done when the
VM is ‘powered off’—not when it is in use or in a saved state.

C.3 other uses of virtual machines   345

Getting data to and from the VM

There are various options for moving data between Windows and the VM.
VirtualBox’s Shared Clipboard feature can be used to transfer small amounts of
data, such as commands or blocks of text. This can be enabled via the Shared
Clipboard item in the Devices menu when a VM is running. Enabling this in bidir-
ectional mode will all you to copy something from a Windows window and paste
it directly into a window in Ubuntu, and vice versa. For whole files and folders
the Drag’n’Drop functionality, which can also be enabled via the Devices menu,
makes it possible to drag files into Ubuntu from the Windows desktop.

A more elegant and programmatically accessible way of sharing data is to set
up shared storage. This could be a shared hard drive accessed over a network,
or a cloud storage solution such as Dropbox. It is also possible to set up a folder
that can be shared between Ubuntu and Windows on the same computer. These
folders can be created and configured by clicking on Shared Folders in a VM’s
configuration panel in the VirtualBox main window. When adding a folder you
will need to specify the location of the folder on the host (Windows) machine
and give the folder a name to be used within the VM. For ease of use, it is best to
make the folder auto-mount and permanent. When you restart the VM, you will
find the folder in the \media directory – it will have sf_ prefixing your chosen
name to indicate that it is a shared folder. To be able to access the folder from
within Ubuntu, you need to add yourself to a group called vboxsf, by executing
the following command at the command line (where username is your user-
name), and then rebooting the VM.

sudo usermod –a –g vboxsf username

Running a server within a VM

All of the server software that we may want to use—including Apache, Morbo, and
Galaxy—should run faultlessly under Ubuntu with a VirtualBox VM. However, by
default the server will only be accessible from inside the VM (i.e. as localhost).
To access from outside (e.g. from the host OS) you will need to set the VM’s
Network Adapter (accessed via the Devices menu) to Bridged Adapter rather than
the default NAT. You can then find the IP address of the VM by typing ifconfig
at the command line within the VM (the IP address is shown as the inet addr)
and use this address to access the server from your Windows browser.

C.3  Other uses of virtual machines

Creating a second VM running Bio-Linux

VirtualBox does not limit you to having a single VM configured at one time. A
new VM can be added to the list in the VirtualBox by clicking the New icon and
following the process explained earlier. This allows you to experiment with differ-
ent distributions of Linux, or indeed different operating systems altogether. One
distribution of particular note is Bio-Linux, which provides a version of Ubuntu

346   appendix c: setting up a linux virtual machine in windows

pre-loaded with hundreds of popular bioinformatics tools and documentation,
including a fully functioning Galaxy installation. To get a Bio-Linux VM up and
running, you just need to download the disk image from nebc.nerc.ac.uk/
nebc/tools/bio-linux and follow the instructions explained earlier in steps
3, 4, and 5 of Section C.1.

Distributing virtual machines

As with most virtualization platforms, VirtualBox provides the facility to export
a VM to a file. This file can then be passed to other people who can import it into
their own installation of VirtualBox and use that VM, complete with the OS and
all other software installed within it. This is particularly valuable for those of us
building bioinformatics solutions, because we can get our software into people’s
hands without them having to worry about any complex installation procedures
or dependencies (e.g. a particular version of a Perl may be required). This is not
really suitable for ultimate deployment of new bioinformatics tools, but it is an
efficient way to share prototype software with colleagues and can even be used
to make available all the software and data generated with a particular research
project. For example, a VM from the ENCODE project can be downloaded from
scofield.bx.psu.edu/~dannon/encodevm.

$ (in Perl)  79
$ (in R)  171
$_ (in Perl)  96
$ARGV (in Perl)  99
@ (in Perl)  85
\ (in Perl)  80, 118
% (in Perl)  89
% (in SQL)  64
%*% (R matrix multiplication operator)  168
<- (in R)  160

A
Access  50
accession number  11
Ajax  243
Apache  213, 335

installing  336
apply (R function)  176, 185
Array Express  12
atomicity of data  39
AUTOCOMMIT (SQL command)  68

B
Bioconductor  199
BioJava  325
Bio-Linux  345
BioPerl  142
BioPython  304
BioRuby  316
Bitbucket  287
BLAST  15

C
c (R concatenation function)  162
case sensitivity  18
CGI (common gateway interface)  220
Chart::Clicker (Perl module)  250
chmod (Linux command)  339
chomp (Perl function)  82
chop (Perl function)  82
chown (Linux command)  338
client-server  16

close (in Perl)  124
ClustalW  15
code repositories  272

central versus distributed  275
hosted online  287

command line  329
COMMIT (SQL command)  68
comparison operators 

in MySQL  64
in Perl  93
in R  182

conditional statements 
in MySQL (using WHERE)  64
in Perl  92
in Python  297
in R  182
in Ruby  308

CPAN (comprehensive Perl archive network)  141
Cpanm  75, 141
CREATE DATABASE  48, 53
CREATE TABLE  54
CSS (cascading style sheets)  239

D
Data::Dumper (Perl module)  110
data.frame (R function)  163
databases.  see also relational databases 

accessing from Perl  133
accessing from R  205
design and implementation  21
publicly available  10

data types 
in MySQL and SQL  35
in Perl  79
in R  169

DBD::MySQL (Perl module)  134
DBI (database interface) 

for Perl  133
for R  205

DELETE FROM (SQL command)  59
DESCRIBE (MySQL command)  55
die (in Perl)  99, 128
documentation (creating)  288

for command line users  289
within Perl code  290

DocumentRoot  337
Dojo  244, 264
DROP (SQL command)  60

Index

348   index

J
Java  318

ecosystem  325
installing  318

JavaScript  242
JOIN (SQL command)  66
jQuery  243

K
KEGG (Kyoto encyclopedia of genes and

genomes)  13
Komodo editor  76

L
library (R function)  200
Linux 

command line terminal  330
permissions  337
text editors  76

literature mining  8
loops 

in Perl  94
in R  182

LWP::Simple (Perl module)  129

M
MapReduce  51
Matlab  209
matplot (R function)  175
matrices  165
metabolomics  7
MIAME (minimum information from a

microarray experiment)  12
Microarrays  5, 200
mkdir (Perl function)  126
Module (in Ruby)  314
Mojolicious  221

application deployment  238
debugging  224
embedded Perl (EP)  223
layouts  223
templates  222

Mojolicious::Lite (Perl module)  221
Moose  145
multivariate data analysis  191

classification  198, 207
exploratory analysis  191

MySQL,  45. see also relational databases
accessing from Perl  133
accessing from Python  304
accessing from R  205
creating a database  48, 53

E
EBI  10
else, elsif (in Perl)  92
Emacs editor  76
EMBOSS (European molecular biology open

software suite)  15
Ensembl  11
error handling 

in Perl  127
in Python  300
in Ruby  310

eUtils  131
eval (in Perl)  128

F
factor (R function)  170
FASTA file format  22
firewalls  18, 337
flat files  22
for, foreach (in Perl)  94

G
Galaxy  326
Genbank  11

file format  23
GEO (gene expression omnibus)  12, 200
GET (in HTML)  222
get (in Perl)  130
getwd (R function)  174
Git  276

branching and merging  280
conflict resolution  281
installing  276, 288

Github  287
GO (gene ontology)  14
Google Code  288

H
Hadoop  51
heatmaps (creating with R)  203
hierarchical cluster analysis  194
HTML (hypertext markup language)  213

forms  231
tags  216, 217, 232

I
if (in Perl)  92
image analysis  168
INSERT INTO (SQL command)  57
InterPro  12

index   349

PostgreSQL  49
ppm  141
prcomp (R, function)  193
PRIDE (protein identifications database)  12
principal components analysis  192
print (Perl command)  77
proteomics  7
PubMed  131
Python  294

ecosystem  304
installing  295

Q
qw (Perl function)  86

R
R  157

calling from Perl  244
database connectivity  205
data frames  162, 171
devices  179
factors  170
graphics  174, 183, 204, 244
importing data  173
installing  159
modes  169
objects  169
packages  198
syntax  160

RDBMS (relational database management
system)  21

read.table (R function)  173
rect (R graphics function)  178, 183
references (in Perl)  103
regular expressions  117
relational databases  26

data types  35
designing  29
fields  33
foreign keys  44
keys  40
normalisation  32
querying  61

via Perl  136
via the web  227

schema  33
tables  28
transaction handling  68

rev (R function)  187
reverse complement  83
RNA-seq  5
ROLLBACK (SQL command)  68
Routes  225
RStudio  189
Ruby  305

ecosystem  315
installing  305

creating tables  54
error messages  53
installing  45
querying  61
reference manual  37
source files  60

MySQL Workbench  70

N
NCBI Toolbox  10
NetBeans IDE  319
normalisation (of a database)  32
NoSQL  70

O
Object oriented programming  143

in Java  323
in Perl  145
in Python  300
in Ruby  311

OBO (open biomedical ontologies)  14
Octave  210
OMIM (online Mendelian inheritance in man)  14
Ontologies  14
open (in Perl)  124
Oracle  50
order (R function)  186

P
Path  331
Pattern recognition  198
PDB (protein data bank)  13
pdf (R function)  179
Perl  73

arrays  85, 104
comparison operators  93
conditional statements  92
DBI (database interface)  133
error handling  127
file handling  123
graphics  250
hashes  89, 107
installing  74
loops  94
modules  115
references  103
regular expressions  117
subroutines  112
syntax  77
using command line arguments  99
variables  79

Perlbrew  74
POD (plain old documentation)  290
POST (in HTML)  234

350   index

text editors  76
transaction handling  68

U
Uniprot  11
unit testing  266
user centred design  293
user interface (developing) 

in Java  324
in Matlab  209
in Perl  97
for the web  220

use strict (in Perl)  101
use warnings (in Perl)  102

V
version control  272
VirtualBox  341
virtual machines  341

W
web forms  231
web servers  213, 238, 335
web standards  220
WHERE (in MySQL)  64
while (in Perl)  97
workflows  15
working directory  331

X
x11 (R function)  179
XML (extensible markup language)  23

S
s (Perl substitution operator)  83
sample (R function)  186
scale (R function)  176
scatter plots  191
SELECT (SQL command)  62
sequence analysis  5
setwd (R function)  174
shebang  78
Shiny  249
SHOW (MySQL command)  61
Software engineering  265
sort (R function)  186
source (R function)  181
SOURCE (SQL command)  60
SourceForge  288
S-Plus  208
SQL (structured query language)  52. see also

MySQL
Statistics::R (Perl module)  244
structural biology  8
sub (in Perl)  112
sublime text editor  76
Subversion (SVN)  286
summary (R function)  164
SVG::TT::Graph (Perl module)  256
Swing (Java library)  324
syntax (as a concept)  23
system (Perl function)  143
systems biology  7

T
tr (Perl transliteration operator)  84
table (R function)  189
test-driven development  267
Test::More (Perl module)  268
text (R graphics function)  178

	Cover

	Acknowledgements
	Preface to the Second Edition
	Contents
	1 Introduction
	1.1 From data to knowledge: the aim of bioinformatics
	1.2 Using this book
	1.2.1 About the coverage of this book
	1.2.2 Choice of tools
	1.2.3 Choice of operating system
	1.2.4 www.bixsolutions.net

	1.3 Principal applications of bioinformatics
	1.3.1 Sequence analysis
	1.3.2 Transcriptomics
	1.3.3 Proteomics
	1.3.4 Metabolomics
	1.3.5 Systems biology
	1.3.6 Literature mining
	1.3.7 Structural biology

	1.4 Building bioinformatics solutions
	1.5 Publicly available bioinformatics resources
	1.5.1 Publicly available data
	1.5.2 Publicly available analysis tools
	1.5.3 Publicly available workflow solutions

	1.6 Some computing practicalities
	1.6.1 Hardware requirements
	1.6.2 The command line
	1.6.3 Case sensitivity
	1.6.4 Security, firewalls, and administration rights

	References

	2 Building biological databases with SQL
	2.1 Common database types
	2.1.1 Flat text files
	2.1.2 XML
	2.1.3 Relational databases

	2.2 Relational database design—the ‘natural’ approach
	2.2.1 Steps 1–3: gather, group, and name the data
	2.2.2 Step 4: data types
	2.2.3 Step 5: atomicity of data
	2.2.4 Steps 6 and 7: indexing and linking tables
	2.2.5 Departure from design

	2.3 Installing and configuring a MySQL server
	2.3.1 Download and installation
	2.3.2 Creating a database and a user account

	2.4 Alternatives to MySQL
	2.4.1 PostgreSQL
	2.4.2 Oracle
	2.4.3 MariaDB
	2.4.4 Microsoft Access
	2.4.5 Big Data and NoSQL databases

	2.5 Database access using SQL
	2.5.1 Compatibility between RDBMSs
	2.5.2 Error messages
	2.5.3 Creating a database
	2.5.4 Creating tables and enforcing referential integrity
	2.5.5 Populating the database
	2.5.6 Removing data and tables from the database
	2.5.7 Creating and using source files
	2.5.8 Querying the database
	2.5.9 Transaction handling
	2.5.10 Copying, moving, and backing up a database

	2.6 MySQL Workbench: an alternative to the command line
	2.7 Summary
	References

	3 Beginning programming in Perl
	3.1 Downloading and installing Perl
	3.1.1 Older versions of Perl on Mac OS
	3.1.2 Older versions of Perl on Linux
	3.1.3 Installing Perl on Windows
	3.1.4 Compilers and other developer tools
	3.1.5 Before getting started
	3.2 Basic Perl syntax and logic
	3.2.1 Scalar variables
	3.2.2 Arrays
	3.2.3 Hashes
	3.2.4 Control structures and logic operators
	3.2.5 Writing interactive programs—I/O basics
	3.2.6 Some good coding practice
	3.2.7 Summary

	3.3 References
	3.3.1 Multidimensional arrays
	3.3.2 Multidimensional hashes
	3.3.3 Viewing data structures with Data::Dumper

	3.4 Subroutines and modules
	3.4.1 Making a Perl module

	3.5 Regular expressions
	3.5.1 Defining regular expressions
	3.5.2 More advanced regular expressions
	3.5.3 Regular expressions in practice

	3.6 File handling and directory operations
	3.6.1 Reading text files
	3.6.2 Writing text files
	3.6.3 Directory operations

	3.7 Error handling
	3.8 Retrieving files from the Internet
	3.8.1 Utilizing NCBI’s eUtilities
	3.9 Accessing relational databases using Perl DBI
	3.9.1 Installing DBD::MySQL
	3.9.2 Connecting to a database
	3.9.3 Querying the database
	3.9.4 Populating the database
	3.9.5 Database transactions and error handling

	3.10 Harnessing existing tools
	3.10.1 CPAN
	3.10.2 BioPerl
	3.10.3 System commands

	3.11 Object-oriented programming
	3.11.1 Object-oriented programming in Perl using Moose

	3.12 Summary
	References

	4 Analysis and visualisation of data using R
	4.1 Introduction to R
	4.1.1 Downloading and installing R
	4.1.2 Basic R concepts and syntax
	4.1.3 Vectors and data frames
	4.1.4 The nature of experimental data
	4.1.5 R modes, objects, lists, classes, and methods
	4.1.6 Importing data into R
	4.1.7 Data visualization in R
	4.1.8 Writing programs in R
	4.1.9 Some essential R functions
	4.1.10 The RStudio integrated development environment

	4.2 Multivariate data analysis
	4.2.1 Exploratory data analysis
	4.2.2 Scatter plots
	4.2.3 Principal components analysis
	4.2.4 Hierarchical cluster analysis
	4.2.5 Pattern recognition

	4.3 R packages
	4.3.1 Installing and using Bioconductor packages
	4.3.2 The RMySQL package for database connectivity
	4.3.3 Packages for multivariate classification
	4.3.4 Writing your own R packages

	4.4 Integrating Perl and R
	4.5 Alternatives to R
	4.5.1 S+
	4.5.2 Matlab
	4.5.3 Octave

	4.6 Summary
	References

	5 Developing web resources
	5.1 Web servers
	5.2 Introduction to HTML
	5.2.1 Creating and editing HTML documents
	5.2.2 The structure of a web page
	5.2.3 HTML tags and general formatting
	5.2.4 An example web page
	5.2.5 Web standards and browser compatibility

	5.3 Programming for the web using Perl
	5.3.1 Mojolicious::Lite
	5.3.2 Debugging Mojolicious applications
	5.3.3 Routes
	5.3.4 Interfacing with databases within a web application
	5.3.5 Getting user input via forms
	5.3.6 Deploying a Mojolicious application
	5.3.7 Going further with Mojolicious

	5.4 Advanced web techniques and languages
	5.4.1 Cascading stylesheets
	5.4.2 JavaScript, JavaScript libraries, and Ajax

	5.5 Data Visualization on the web
	5.5.1 Using R graphics in Perl
	5.5.2 Plotting graphs with Chart::Clicker
	5.5.3 Plotting graphs with SVG::TT::Graph
	5.5.4 Primitive graphics with Perl
	5.5.5 Drawing graphs and graphics using JavaScript

	5.6 Summary
	References

	6 Software engineering for bioinformatics
	6.1 Unit testing
	6.1.1 Unit testing in practice

	6.2 Version control
	6.2.1 The basics of version control
	6.2.2 Centralized versus distributed version control
	6.2.3 Git
	6.2.4 Alternatives to Git
	6.2.5 Hosting and sharing your code on the Internet
	6.2.6 Running your own code repository

	6.3 Creating useful documentation
	6.3.1 Documenting command-line applications
	6.3.2 Documenting Perl code

	6.4 User-centred software design
	6.5 Alternatives to Perl
	6.5.1 Python
	6.5.2 Ruby
	6.5.3 Java
	6.5.4 Using Galaxy

	6.6 Summary
	References

	Appendix A: Using command-line interfaces
	A.1 Getting to the operating system command line
	A.2 General command-line concepts
	A.3 Command-line tips

	Appendix B: Getting started with Apache HTTP Server
	B.1 Installing Apache
	B.2 Apache fundamentals

	Appendix C: Setting up a Linux virtual machine in Windows
	C.1 Installing VirtualBox and configuring a virtual machine
	C.2 Using the VM
	C.3 Other uses of virtual machines

	Index

