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Preface

The unprecedented accumulation of high-throughput data from genomics, transcrip-

tomics, proteomics, metabolomics, phenomics, etc., has resulted not only in new

attempts to answer traditional biological questions and solve longstanding issues in

biology but also in the formulation of novel hypotheses that arise precisely from

this wealth of data. At the present, with thousands of biological data resources

and information systems inside the Internet, an unknown number of analysis tools,

and exponential growths of molecular data (especially high-throughput data), the

storage, processing, description, transmission, connection, and integrative analysis

of this data becomes a great challenge for bioinformatics. Thus, the so-called Big

Data becomes the new keyword describing the actual situation for which new

software tools are needed to analyze this exponentially increasing data.

Important applications of Big Data are systems biology and systems medicine.

For instance, hospital information systems represent complex patient data. The

diagnosis process is now supported by new methods of biotechnology using, for

example, high-throughput sequencing approaches. Therefore, we have complex

patient data inside the hospital information system which needs to be stored,

transported, and analyzed. New software tools are needed to allow the user-specific

data access and analysis of this data. Overall, to develop and implement new tools

for automatic data integration and analysis will help implement better diagnostic

methods in practice. In the future, the entire genomes of patients will be stored

within hospital information systems. Furthermore, it will be necessary to share the

genome sequences inside the hospital computer network and analyze the genome

data to detect, for example, cancer genes. With the availability of Internet, the

automatic integration and analysis of data are of the most relevant research topics

in computer science. In biology, such tools have become more and more important.

Methods like high-throughput sequencing and omics analysis are responsible for the

exponential data generation process.

This book will focus on the integration and analysis of omics data. The

Introduction will present relevant biological background and an overview of these

actual methods. When the Internet merged, methods such as data fusion and

federated database systems became relevant. The initial tools were implemented

v



vi Preface

and gave birth to a new field of research: Integrative Bioinformatics, which strives to

implement user-specific integration and analysis of complex data. The Introduction

of this book will give a definition and overview of this pertinent field of research.

Since then, complex information systems have been developed and implemented.

Finally, the data warehouse concept became more relevant. Today the data ware-

house concept is still the best construction for the implementation of integrative

information systems. The Information Fusion and Retrieval section will focus on

the said data warehouse concept. Furthermore, this part of the book will give an

overview of information retrieval and data mining tools, which allow the user-

specific identification and integration of data. Based on the methods described here,

we are able to implement user-specific integration tools. The analysis of this data can

be done using statistic, visualization, or animation tools. Furthermore, modeling and

simulation are important analysis methods. The Network Visualization, Modeling,

and Analysis section will focus on methods for network prediction, network

modeling, and simulation. In the case of network simulation, we prefer the Petri net

method, which allows the parallel simulation of complex metabolic pathways. Our

application section is divided into two parts. First, we focus on methods of BioData

Mapping. One interesting aspect is the possibility of molecular disease mapping

which allows the pathway prediction of any disease and the semiautomatic mapping

of this pathway into a virtual 3D cell. The genotype-phenotype map enables us

to uncover the casual networks inside the “black box” that lies between genotypes

and phenotypes with advances in high-throughput and high-dimensional genotyping

and phenotyping technologies. Another important and actual topic is presented by

the Biocompution section. After the reconstruction of a biological disease network,

the identification of biomarkers or hubs for further analysis is important. To realize

such tasks, the implementation of parallel algorithms is fundamental.

Important research topics for the next few years will be Big Data and Systems

Medicine. Integrative Bioinformatics will be fundamental in developments for both

fields and this book attempts to present an overview of relevant and actual research

activities.

We are very grateful to all the authors for sharing their time, wisdom, and

expertise. Finally, we want to thank Ms. Na Xu, the editor of Springer Beijing

Office, for her continuous advice.

Hangzhou, People’s Republic of China Ming Chen

Bielefeld, Germany Ralf Hofestädt

June 2013
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Part I

Introduction



Chapter 1

Integrative Bioinformatics

Ming Chen and Ralf Hofestädt

1.1 Introduction

Integrative Bioinformatics deals with the development of methods and tools to

solve biological problems as well as providing a better understanding or new

knowledge about biochemical phenomena by means of data integration and com-

putational experiments [7]. Current high-throughput technologies such as NMR,

mass spectrometry, protein/DNA chips, gel electrophoresis data, Yeast Two-Hybrid,

QTL mapping, and NGS generate large quantities of high-throughput data. The

challenge of Integrative Bioinformatics is to capture, model, simulate, integrate, and

analyze this huge amount of data in addition to the data represented by hundreds

of biological databases and thousands of scientific journals. The data needs to

be integrated and made available in a consistent way to provide new and deeper

insights into complex biological systems. Molecular biology produces this volume

of data based on high-throughput technologies. One characteristic of this data is

exponential growing. Therefore, storing and analysis of this molecular and cellular

data essentially uses methods and concepts of Bioinformatics. Currently, there are

more than 2,000 database and information systems available via the Internet, which

represent this molecular data. Every year new molecular databases and information

systems which can be used via the Internet crop up. The classical definition of an

information system is based on a database system which represents the data and

tools for the user-specific analysis of this data. Today an information system is or

can be embedded into the Internet as shown in Fig. 1.1.
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Fig. 1.1 Structure of a
complex information system
embedded into the Internet.
DB denotes a database system

One characteristic of all these bio-information systems is that updates of imple-

mented and running systems are constant. That is the reason that we have to handle

a very dynamic collection of different molecular database and information systems.

Most of these systems will lose their support sooner or later because financial

support of most of such projects is usually temporary. This creates a complicated

situation in molecular data today. All systems which are not adequately maintained

must be identified and checked before using their data for further analysis. At

that point it is important to note that the quality of molecular data presented by

these systems via the Internet must be guaranteed by each owner of the database

or information system. Until now, no quality standards have been defined for the

practical use of this data. Taking a look to all these systems, we can safely say

that most of them do not discuss this present data quality problem. Therefore,

regarding any molecular database or information system, we have to be careful when

using this molecular data for further analysis. Considering the actual molecular

database and information systems which are now available, it would be good news

for potential users to have a (semantic) overview of all these systems. A decade

ago Nucleic Acids Research began to support this task by publishing an annual

report of all molecular database systems. Recently we have developed an integrated

database of the published biological databases and tools, named Da&To (http://

bis.zju.edu.cn/DaTo), presenting helpful bio-web links including relevant database

systems. Beyond the discussion of data quality, it is also important to mention

that these systems are extremely heterogeneous in regard to the data structures,

data representations, data access, etc. Therefore, it is not easy to implement the

(semi-)automatic access to such bio-database and information systems. In terms of

the represented data and database systems, we can differ between public data, open

source data, and private data, which can only be used by special contracts. Overall

we would like to call this situation the molecular database problem. One reason for

this problem is the scientific foundation structure. In countries like Germany and

most other countries, scientists have access to financial support via projects paid

http://bis.zju.edu.cn/DaTo
http://bis.zju.edu.cn/DaTo
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for by private foundations or government-supported foundations or paid directly by

industry or the government. This kind of support is only for a limited time period.

The normal time period for supporting a project is 3–5 years. After that time such

projects and therefore most of the implemented systems will lose their support. This

is why most of the database systems have a short life span even if they are available

in the Internet years later. The only survival chance for a new and important system

is to award new grants or to start a company. This is a very bad situation and Europe

is presently trying to change it. The idea is to support national database centers in

the future. However, this kind of solution will only help to solve this problem for

the most relevant systems – so only for a subset of all systems. Another important

problem is caused by the different formats and data storage techniques which are in

use for all these systems. If there are no standards and no rules on how to prepare

a molecular database, nothing will be changed in the future. Overall this was and is

the main reason that the automatic process of data access continues to be difficult

even if the data is available via the Internet. From the outset, the development and

implementation of tools, which allow the user-specific data access based on that

distributed and heterogeneous molecular data, was an important part of Bioinfor-

matics. Therefore, new concepts and methods had to be developed and implemented

to solve this task. At the beginning federated database systems seemed useful. The

main disadvantage of this concept was and is that the data access process, which

connects such autonomous running database systems, is time consuming. Behind

these activities, specific integration tools like SRS [15] became popular, but did

not allow complete user-specific integration efforts until now. In addition, most

publications using integrative methods still use specific workflows. That means they

extend their own data by integrating relevant external data, which has to be identified

and extracted from specific database systems. Finally, they identify existing analysis

tools or implement new tools for further analysis of this molecular data. This is

the reason for the development of the data warehouse concept which has become

successful for bio and medical applications during the past few years. The key

idea of the data warehouse approach is to construct a new database system based

on user-specific data (lab data) including user-specific external data (coming from

relevant molecular databases) in combination with the user-relevant analysis tools.

Therefore, a data warehouse can be interpreted as a complex web-based information

system. Today more and more such bio-data warehouses are available.

When considering all these database activities, we can say that we presently

have a wide area of databases and integration tools available. On the other hand,

the analysis of this data is the key task of any user. Thousands of tools are

published each year for the analysis of molecular data. The actual problem is that

no one has a complete overview of existing algorithms and running tools for that

kind of molecular data analysis. We would like to call this the Bioinformatics

Analysis Gap. Different software tools could be implemented and new techniques

and algorithms are appearing every day. In our case, analysis of molecular data

can be a simple statistical approach or extend to complex simulations. Behind

the database activities which are listed by the Nucleic Acids Research, we can

see thousands of analysis tools which are available via the Internet. However,
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here we see the same situation: these tools are often no longer supported and the

documentation of most of these tools is also poor. Furthermore, quality standards

are not defined. From the beginning it was the idea of the international Journal of

Integrative Bioinformatics (http://journal.imbio.de/) to focus on exactly these kinds

of tasks: databases, integration, and analysis of integrated data [11]. After nearly 10

years of running this journal, we can see that the integration aspect is increasing in

importance. Topics like Systems Biology and now Systems Medicine concentrate

on this kind of data integration and analysis. In addition to the data storage and

integration problem, the adequate analysis of this data is a key problem today.

1.2 Databases and Integration

Biological and biomedical data have been systematically stored in hundreds of

public databases and information systems. A huge number of genes, enzymes, and

biological pathways have already been identified, isolated, sequenced, and collected

in these databases. For example, EMBL (http://www.ebi.ac.uk/embl/) and GenBank

(http://www.ncbi.nlm.nih.gov/Genbank/) contain DNA sequences and databases

like TRANSFAC/TRANSPATH (http://www.biobase.de/) bear the knowledge

about gene expression. Metabolic pathways and their single biochemical reactions

are stored in KEGG (http://www.genome.ad.jp/kegg/) and ExPASy (http://www.

expasy.org/). BRENDA (http://www.brenda-enzymes.info) provides the kinetics

of enzymatic-driven processes. Based on Da&To, we conducted a survey of all

published biological databases and tools (a total of 14,117 till July 15, 2012)

present in PubMed abstracts (over 3 million, since 1994). Undoubtedly, the USA,

Germany, and the UK are the top three countries that published, respectively, 40.21,

8.64, and 7.54 % of all databases and tools. China (5.08 %) ranks the fourth,

followed by France (4.53 %) and Japan (3.99 %). Most of these databases and

tools were published in Bioinformatics-related journals. The top three journals for

such publications are Bioinformatics (27.41 %), Nucleic Acids Research (20.54 %),

and BMC Bioinformatics (8.06 %), which all together accounts for more than one-

half of publications. The content of the publications was analyzed using MeSH

terms that are the tags for the topics of articles (http://www.ncbi.nlm.nih.gov/

mesh). We have found that the top 15 MeSHs rank differently over the years. By

clustering them, we found that one category, containing the five following MeSHs,

“Software,” “Internet,” “Animals,” “Human,” and “Algorithms,” almost ranked

nearly each year at the top of the top 15 MeSHs terms. Some hot spots switch

over years. For instance, before 2002, the category of “Information Storage and

Retrieval,” “Computer Communication, Network,” “Amino Acid Sequence, Data,”

and “Database, Factual” was a hot topic; while after 2003, “Database, Protein,”

“Database, Genetic,” “User Computer Interface,” and “Computational Biology,

methods” overwhelmed over the formers. Other MeSH terms, occurring at lower

frequencies, can indicate hot topic specific to some years. Further investigation

shows that the correlation network of the MeSHs can be divided into 41 modules,

http://journal.imbio.de/
http://www.ebi.ac.uk/embl/
http://www.ncbi.nlm.nih.gov/Genbank/
http://www.biobase.de/
http://www.genome.ad.jp/kegg/
http://www.expasy.org/
http://www.expasy.org/
http://www.brenda-enzymes.info
http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/mesh
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Fig. 1.2 The eight modules with their top 30 MeSHs

among which are 7 major modules (M40, M38, M31, M32, M28, M37, M39)

counting nearly 96 % of all databases and tools. The filtered network with these

seven modules is shown in Fig. 1.2 and their top 30 MeSHs are annotated.

As nearly all databases and tools were peer reviewed, giving them a quality

assurance, also most of them are products of short-term research projects or
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Fig. 1.3 Bioinformatics infrastructure for the analysis of metabolic diseases

PhD works, so they have to be freely accessible, but they are poorly maintained

afterwards. We express the wish that some international nonprofit group could take

care of them. Much more, we call upon to form a scientific society to maintain them

under a kind of copyright agreement.

There is a special interest in supporting the Systems Medicine tasks today.

Diseases are caused by gene defects and gene defects are responsible for defective

metabolic pathways. The focus of molecular medicine is on using exactly this kind

of data and analysis to understand the molecular behavior of any disease. Most of

this biomedical data is collected and presented by OMIM (http://www.ncbi.nlm.

nih.gov/Omim), which is a catalogue of medically important human traits, genes,

and disorders thought to have a genetic basis. MedlinePlus is a premier source of

health information for patients, families, and friends. Developed by the US National

Library of Medicine, part of the National Institutes of Health, MedlinePlus contains

web links to information on over 900 health topics. Other specific databases on

inborn defects are Metagene (http://www.metagene.de), which is designed to sup-

port the diagnosis of inborn metabolism defects. RAMEDIS (http://www.Ramedis.

de/) is a patient database of rare metabolic diseases. It develops a Bioinformatics

system for representing, modeling, and simulating genetic effects on gene regulation

and metabolic processes in human cells. This electronically available knowledge

of genes, enzymes, metabolic pathways, and metabolic diseases increases rapidly.

These databases are highly heterogeneous both in structure and in semantics and

give only highly specialized views of the biological systems.

In Fig. 1.3 we can see that tools are needed which deal with the development of

methods to facilitate the integration of data originating from multiple biological

resources. To study and understand a disease, we have to identify the relevant

biological networks which represent the molecular knowledge of the disease, as

http://www.ncbi.nlm.nih.gov/Omim
http://www.ncbi.nlm.nih.gov/Omim
http://www.metagene.de
http://www.Ramedis.de/
http://www.Ramedis.de/
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demonstrated in Fig. 1.3. Therefore, the first step is to identify the relevant molecular

database systems. The second step is to identify the project-specific data inside

any system. The last step is to extract this user-specific data and include this

data in the user-specific information system. The implementation of integrative

software methods will allow the identification, extraction, and prediction of these

networks for any disease [17]. The diversity of interfaces offered by the different

data resources requires the definition of interfaces and semantic tagging of the

different types of data. There are, for example, databases offering their information

by means of web services, others provide XML files or flat files, and there are several

offering HTML-based interfaces. Actual research focuses on the development of

methods for the automatic generation of interfaces to a diverse number of resources

based on the researchers’ needs and for the integration of the data contained in

these resources. Therefore, different systems employ ontologies and controlled

vocabularies to classify the information offered by the different data resources.

Overall, development of a user interface and web services is an important task in

realizing user-specific data integration.

Until now flat file systems (http://en.wikipedia.org/wiki/Flat file database) dom-

inate the visible biological database systems within the Internet. A flat file is a data

set which represents an implicit data structure. If a computer represents such a flat

file, we can define this as a data resource. A flat file consists of different lines which

represent data using the ASCII format. A simple example representing information

about an enzyme shows this kind of data structure:

ENTRY EC 2.1.3.3

NAME Ornithine carbamoyltransferase

Citrulline phosphorylase

Ornithine transcarbamylase

CLASS Transferases

Transferring one-carbon groups

Carboxyl- and carbamoyltransferases

SYSNAME Carbamoyl-phosphate

L-ornithine carbamoyltransferase

The end of each line is determined by a specific character or character list (often

enter). Furthermore, special separators are often used to identify different data

within one line. Keywords are in capital letters on the left side of each line such

as ENTRY, NAME, and SYSNAME. The keywords are important signals for the

so-called parser systems which realize the automatic identification and extraction of

data regarding such flat file systems.

The so-called data-based information systems are often systems where data is

represented as HTML data sets or other structured data. These systems represent

organized data. The main reason using data-based information systems is the user-

specific data access and data analysis via the Internet. Data modification inside

the system can be done only by the owner or administrator of the system. The

data access is based on the workload of the representing network and Internet.

Based on the URL of the data-based information system, relevant HTML pages

http://en.wikipedia.org/wiki/Flat_file_database
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representing the data can be identified. Overall that means that complex parser

systems must be developed and implemented to identify the user-specific data. After

this identification process, the parser is able to extract the data using simple copy

and paste functions.

More comfortable are Internet interfaces. Therefore, CGIs and mechanisms out

of the JavaWorld such as servlets or applets are useful. Based on these mechanisms,

a complex computation and representation of data is possible. The best situation for

implementation of automatic data access procedures is that data is represented by a

database system. In that case, data can be identified and extracted directly using the

database query language (e.g., SQL for relational database systems).

The presence of numerous informational and data resources on biological

data described above raises the acute problem of data integration and suitable

access. From the beginning of the Internet, more and more tools were developed

for user-specific data integration and analysis. Today, a lot of integration tools

for biological data sources are available and in use. These systems are based

on different data integration techniques, e.g., federated database systems (ISYS

[16] and DiscoveryLink [10]), multi-database systems (TAMBIS [18]), and data

warehouses (SRS [15] and Entrez [19]).

ISYS stands for Integrated SYStem and can be characterized as a component-

based implementation. The main goal of ISYS is to provide a dynamic and

flexible platform for integrating molecular biological data sources. This system was

developed as a Java application. The system must be installed based on a local

computer system. Different platforms like MS Windows or Solaris are supported.

The locally installed system accesses the distributed data sources on the Internet.

One main feature is the global view of integrated data sources with the help of

a global scheme. Materialization of the integrated sources is not required. ISYS

provides a JDBC (Java Database Connectivity) driver.

DiscoveryLink system was developed by IBM. It is also based on federated

database techniques. A federated system requires the development of a global

scheme. Thereby, the degree of integration must be rated as tight. DiscoveryLink

accesses its original data sources through views. Read-only SQL is supported as

query language. A JDBC and an ODBC (Open DataBase Connectivity) driver

are also provided, and different output formats can be generated as well. The

TAMBIS integration system is based on multi-database techniques. It can be used

through a Java applet. Due to the use of a multi-database query language, it

is not necessary to construct an integrated global scheme. Therefore, the degree

of integration can be described as loose. As a query language in TAMBIS, a

variety of the Collection Programming Language (CPL) [20] is implemented.

CPL is hardwired into the system architecture. This is why it is not so easy

to use this query language from outside of the system. Other disadvantages of

TAMBIS are the absence of an API or other public interfaces. The number of input

formats, which is limited to one, generated by the Java applet, proves also to be

disadvantageous.

SRS is based on local copies of each integrated data source with a special

format that is described in the ICARUS language specification. ICARUS can help
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represent the structure of the integrated data source. Through the use of these

local copies, SRS is completely materialized. But during this transfer into the new

format, no scheme integration is realized. Therefore, the degree of integration can

be characterized as loose. SRS runs on a web server and is accessible via any

web browser. An HTML interface for data queries is provided. Furthermore, the

system can be queried by constructing special URLs. But no query languages like

SQL or OQL (Object Query Language) are supported. SRS offers also a C-API.

Various output formats are possible (HTML or ASCII text). One problem with the

result presentation in SRS is the necessity to parse the outputs for further computer-

based processing. The absence of any scheme integration is also disadvantageous

for the use of the SRS. Similar to SRS is the Entrez system. This system integrates

only data sources of NCBI. No materialization of the integrated sources is realized.

Entrez uses views of the original sources. Consequently, scheme integration cannot

be established. Therefore, the degree of integration can be classified as loose. The

statements about SRS to query the system are completely transferable to Entrez.

There are no standard query languages, no standardized API, or no other interface

standards like JDBC. HTML is the only interface provided. Another Entrez feature

is the manual construction of special URLs. Various output formats prove to be

useful. These include HTML or ASCII text as well as XML and ASN.1 files. The

greatest disadvantage of the Entrez approach is the restricted number of integrated

data sources (only NCBI internal data sources) and the missing support of query

languages.

Furthermore, many more integration tools are available, most of them imple-

mented based on research projects. In our book Chaps. 4 and 5 will focus to this

topic.

1.3 BioWeb

Besides the structured data deposited in the molecular databases, biomedical

literature is published on the scale of over 500,000 documents per year and hosts

unstructured knowledge. Besides the databases discussed in Chap. 2, informa-

tion systems like PubMed (http://www.ncbi.nlm.nih.gov/pubmed) are bibliographic

databases that access bibliographic information and abstracts of published articles

in biomedical journals. Another archive of biomedical and life science literature is

PubMed Central (PMC). One of the values of PMC is the collection of full-text

articles, each of which complies with a common format. Due to the daily routine

of checking these bibliographic databases and very often the overwhelmingly long

list of search results, several web-based PubMed derivatives have been developed to

help users quickly and efficiently search and retrieve relevant publications utilizing

the services provided by PubMed and PMC databases. BioText (http://biosearch.

berkeley.edu/) differs from the other PubMed derivatives in searching the full text

and figure/table captions beyond the abstracts. Based on this kind of literature

data, different, so-called text and data mining tools are available today. These tools

http://dx.doi.org/10.1007/978-3-642-41281-3_4
http://dx.doi.org/10.1007/978-3-642-41281-3_5
http://dx.doi.org/10.1007/978-3-642-41281-3_2
http://www.ncbi.nlm.nih.gov/pubmed
http://biosearch.berkeley.edu/
http://biosearch.berkeley.edu/
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Fig. 1.4 Biosearch and Biomining are tools for user-specific search via the Internet (icons from
the web)

realize user-specific access to global data inside the web. To realize user-specific

access, text and data mining tools as well as search engines are necessary for

implementation (Fig. 1.4).

Today, we are more or less at the beginning of developing and implementing

complex mining and search tools which will allow identification and extraction of

user-specific web data. At present, this subject seems to be a new research topic

of information systems and one key issue is web semantics influencing mining and

searching. In our book, different chapters will focus on the important topic of new

mining and search tools. For web search, Chap. 3 will present an overview and a

“biogoogle” web search tool. Chapter 6 will present an overview of text mining and

a text mining tool. All in all, this topic is more complicated than simple database

integration, and the key problem is to handle the semantics of the web data, which

is still not solved.

1.4 Analysis and Simulation of Biological Networks

Based on the molecular database and information systems which are available

via the Internet, analysis of bio-data is the second important step of Integrative

Bioinformatics. Focusing on this actual research topic, the analysis of biological

networks is a central issue for the future of biotechnology and molecular medicine

as already seen in Chap. 2. Besides approaches of genome sequence comparison,

genome annotation, and enzyme assignment, Bansal [4] describes a framework

http://dx.doi.org/10.1007/978-3-642-41281-3_3
http://dx.doi.org/10.1007/978-3-642-41281-3_6
http://dx.doi.org/10.1007/978-3-642-41281-3_2


1 Integrative Bioinformatics 13

of automated reconstruction of metabolic pathways using the information on

orthologous and homologous gene groups archived in the GenBank. Allen [2]

presents a reconstruction method using the exploration of gene expression data with

factor analysis. Factor analysis is shown to identify and to group genes according

to membership within independent metabolic pathways for steady-state microarray

gene expression data. Boyer and Viari [5] propose a new formulation for the problem

of metabolic pathway reconstruction. They use an idea similar to that of Arita [3] to

consider chemical compounds as sets of individual atoms and reactions as transfers

(partial injections) of atoms between compounds.

Moreover, several software tools have been developed to assist reconstruction of

pathways. For instance, PathoLogic [13] is used by PathMiner by McShan et al.

[12]. However, they have a number of limitations. Predicting each gene function

based solely on sequence similarity often fails to reconstruct cellular functions

with all the necessary components. They do not contain comprehensive information

about metabolic pathways, such as physical and chemical properties of the enzymes

that are involved. Some approaches are not fully computer aided. The individual

database search process requires too much human intervention, and the quality of

annotation largely depends on the knowledge and work behavior of human experts.

The future of metabolic pathway analysis may depend upon its ability to capitalize

on the wealth of genetic and biochemical information currently being generated

from genomic and proteomic technologies.

An ideal system for metabolic pathway reconstruction would at least include a

web-based architecture to allow remote and local access to the different biological

databases. It would offer a proven approach that can perform complex queries,

data transformations, and data integration in one powerful biological tool, without

requiring extensive programming. An automated primary and secondary database

update and report system would enable the internal data to remain consistent,

accurate, and reliable, with the ability to incorporate information flowing from

experimental validation, such as gene expression, enzyme catalyzation, protein

interaction, and pathways. An essential feature would include a quality assurance

process to allow quick distribution of queries and retrieve primary results. In

light of these desirable features, Sebastian Janowski designed and implemented

the VANESA information system (Chap. 8) which has a single common data

representation to handle the diverse range of rudimentary data such as enzymes,

proteins, and metabolites as well as incomplete or fragments of gene sequences

of metabolic pathways. VANESA is able to edit, extend, visualize, and analyze

biological networks.

Nucleic acid and protein sequence comparison is an important tool in genome

informatics. Initial clues to understand the structure or function of a macromolecular

sequence arise from homologies to other macromolecules that have been previously

studied. Many applications and tools, such as BLAST (http://www.ncbi.nlm.nih.

gov/BLAST) and FASTA (http://www.ebi.ac.uk/fasta3), were developed to further

understand the biological homology and estimate evolutionary distance. Recently

the emphasis of research efforts has begun to turn away from gene sequences

to metabolic pathways. It is therefore not surprising that the development of

http://dx.doi.org/10.1007/978-3-642-41281-3_8
http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
http://www.ebi.ac.uk/fasta3
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computational algorithms to predict metabolism function from gene, amino acid

sequences, and metabolic networks is now a core aim of Bioinformatics. As more

genomes are sequenced and the metabolic pathways reconstructed, it becomes

possible to perform biological comparison from a biochemical-physiological per-

spective. Alignments represent one of the most powerful tools for comparative

analysis of metabolism. Metabolic pathway alignment is of importance to study

biology evolution, pharmacological targets, and other biotechnological applications,

such as metabolic engineering and metabolism computation. A metabolic pathway

alignment is a mapping of the coordinates of one pathway onto the coordinates of

one or more other pathways. For example, the same metabolic pathway from two

organisms may have diverged if the organisms evolved from a common ancestor,

where individual metabolites and enzymes may have been changed, added, or lost in

one pathway. This alignment involves recognition of metabolites that are common to

a set of function-related metabolic pathways, interpretation of biological evolution

processes, and determination of alternative metabolic pathways. Moreover, it aids

in function prediction and metabolism modeling. Although researches on genomic

sequence alignment have been intensively conducted, until now the metabolic

pathway alignment has been less studied. Several approaches of metabolic pathway

alignment have already been made by Dandekar et al. [8], Forst and Schulten [9],

and Pinter et al. [14]. However, their definitions of pathways are the traditional

biochemical pathways such as glycolysis, the pentose phosphate pathway, and the

citric acid cycle. Less effort is made on analysis of gene regulatory networks as well

as signaling pathways. Sebastian Janowski is handling biological networks which

include metabolic pathways and signal pathways. His VANESA tool also includes

different alignment algorithms.

In this book we present different chapters which represent new tools and

methods for reconstruction, visualization, and analysis of biological networks. The

aforementioned system, VANESA, is attending to of all these research topics and

offers tools for this type of bionetwork analysis.

1.5 Bio-data Warehouse

Having the Internet and hundreds of molecular database and information systems

which represent an exponential data-growing process, we can identify this contin-

ually increasing molecular data collection as the backbone of the virtual cell. That

means that the information which represents the virtual cell is on the increase within

the Internet every day. Furthermore, access and analysis of this data is fundamental

for the development of bio-research. The practical situation is that any bio-research

group tries to discuss a fundamental question (hypothesis). Based on their own data

(in-house or lab data), they need access to literature and database systems to con-

struct their specific model or working hypothesis. To discuss this model (hypothesis)

or test the quality of this model, user-specific data access has to first be implemented.

Having the complete biological knowledge (e.g., the representative biological
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Fig. 1.5 Architecture of a data-warehouse system

network of a disease), analysis tools can be used to discuss the open question or

hypothesis. In the case of Biology, today this working strategy is called Systems

Biology. Therefore, data extension will support the model development process

which is the first step taken for that kind of work. The next step is represented by

data analysis processes. The final step is to use this model as a specification for the

implementation of the simulation tool. Based on the simulation tool, experiments

can be simulated in hypothetical or virtual worlds. To realize such an analysis

scenario, we need to implement complex software systems. At present it seems

that bio-data warehouses are the best solution for data integration and analysis. The

idea behind the bio-data warehouse was to create a new database system based on

the relevant distributed data which is available in the Internet and relevant for the

project. Furthermore, the integration and access to the user-specific data analysis

tools is the second part of such a system. In contrast to integration by data linking

methods, data sets are identified and extracted from the original data resources.

Furthermore, the extracted data will be cleaned and finally transformed into the new

database system (called metadata system). This kind of integration can be called

true data integration as many resources verge into one new database system.

Figure 1.5 shows the architecture of the data warehouse. The data for the new

database system, which is in the center of the bio-data warehouse, comes from in-

house data (lab data) and from different data sources and database systems which are

available via the Internet. The second characteristic component of such a structure is

the analysis part of the system. User-specific analysis tools have to be implemented

or identified and integrated so that the user-specific analysis will be supported.

Chapter 4 shows the detailed description of the data integration component of a data

warehouse. Furthermore, this chapter presents an actual warehouse concept which

is currently in use in different projects. One of these projects is the VANESA system

presented by Sebastian Janowski. As mentioned previously, VANESA is a complex

http://dx.doi.org/10.1007/978-3-642-41281-3_4
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information system for the reconstruction and analysis of biological networks. Such

complex networks can be analyzed (tools of VANESA) or systematically visualized

3D, which is discussed in Chap. 7. This kind of data and representation is the

backbone of the representation of a virtual cell, which is discussed in the Chap.

10. The other important analysis is the simulation of this type of data. As regards

the literature, we can identify different methods and concepts for simulation of

biological networks or biochemical knowledge. Overall the Petri net representation

became well known during the last 10 years [1, 6].

In this book, the Chap. 9 from Fei Liu and Monika Heiner will present an

overview of Petri net modeling and simulation of biological networks.

1.6 Problems and Future

Molecular data is available via the Internet. Therefore, around 2,000 database

systems are available today. One problem using this kind of data is that most of these

systems are only supported for a few years. Another fundamental problem is the

data quality of these systems which can never be guaranteed. Most Bioinformatics

projects will receive financial support for the implementation of new database and

data analysis systems. The data quality is still not the focus of all these projects

until now. Even if it would be the main focus, we could not solve this problem,

because a high rate of error is already within the technologies which are presently

in use. Furthermore, the preparation of the experiments, the analysis technology,

and the data interpretation represents a high error rate. Another problem is finding

financial support so that relevant database systems which are already implemented

can be serviced, supplemented when necessary, and implemented in the future.

To realize the high goals, we need standards of data representation so that access

and data quality checks can be easily implemented in the future. The data quality

problem has not been at the center of discussion until now. However, taking a

look at the practical situation of bio-data handling, we can say that this problem

will come to focus very soon as most of the represented data seems to be dirty.

Based on this dirty bio-data, Systems Biology and Systems Medicine cannot be

successful in the future. One solution of the bio-data quality problem could be

the wiki approach. This is more or less the only chance to guarantee high quality

and the actualization of a dynamic bio-data for the future. But this approach will

be difficult to implement because the relevant database systems are already in the

hand of private companies and they will take to this idea of data representation.

Also the industry will have problems with these kinds of solutions. However, in the

future all foundations and government research centers can require all supported

cooperation partners to follow this rule of data representation. For the user-specific

data integration, it appears that the bio-data warehouse concept is already the

solution for most applications. Therefore, we need bio-data warehouse shells for

potential users and open software standards for the interfaces so that the updating

problem of such bio-data systems can be more easily solved. The integration of

http://dx.doi.org/10.1007/978-3-642-41281-3_7
http://dx.doi.org/10.1007/978-3-642-41281-3_10
http://dx.doi.org/10.1007/978-3-642-41281-3_9
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data is one important task which is more or less solved today. The other important

task is the identification of relevant analysis tools and the integration of these tools

within user-specific bio-data warehouses. This was the main reason publishing this

book because in the near future this problem needs to be solved using new methods

of Integrative Bioinformatics. The main application of Integrative Bioinformatics

is to support diagnosis and therapy methods and concepts. Based on complex bio-

data warehouses, we are able to realize the molecular disease mapping problem

[17]. In this case, we are able to identify the relevant biological networks of any

disease. Based on this knowledge, we are able to study the biochemical and genetic

behavior of these networks, which will allow the identification of targets, mutations,

and molecular defects which can be responsible for the disease. Molecular medicine

is already working in that direction, and the new scientific topic which joins together

Medicine, Molecular Medicine, and Integrative Bioinformatics is called Systems

Medicine. To understand the behavior of life, we have to implement the virtual

cell. The vision of the implementation of the virtual cell is the key connection

between Molecular Medicine, Systems Biology, Systems Medicine, and Integrative

Bioinformatics.

WWW-List of Selected Molecular Information Systems

Genes

EMBL – http://www.ebi.ac.uk/

The “EMBL Nucleotide Sequence Database” represents all known DNA and RNA

sequences.

GenBank – http://www.ncbi.nih.gov/Genbank/

NIH genetic sequence database.

HGMD – http://www.uwcm.ac.uk/medical genetics/

HGMD represents the Human Gene Mutation Database.

Proteins and Enzymes

ENZYME – http://www.expasy.org/enzyme/

ENZYME is a repository of information relative to the nomenclature of enzymes.

LIGAND – http://www.genome.ad.jp/ligand/

The Ligand Chemical Database for Enzyme Reactions is linking chemical and

biological aspects of life in the light of enzymatic reactions.

PDB – http://www.rcsb.org/pdb/

PDB presents 3D macromolecular structure data primarily determined experimen-

tally by X-ray crystallography and NMR.

PIR – http://pir.georgetown.edu/

This database is a comprehensive, annotated, and nonredundant set of protein

sequence databases in which entries are classified into family groups and where

alignments of each group are available.

http://www.ebi.ac.uk/
http://www.ncbi.nih.gov/Genbank/
http://www.uwcm.ac.uk/medical_genetics/
http://www.expasy.org/enzyme/
http://www.genome.ad.jp/ligand/
http://www.rcsb.org/pdb/
http://pir.georgetown.edu/
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PROSITE – http://www.expasy.ch/prosite/

PROSITE is a database of protein families and domains.

REBASE – http://rebase.neb.com/

Restriction Enzyme data BASE is a collection of information about restriction

enzymes.

SWISSPROT – http://www.expasy.org/sprot/

Protein sequence database.

Pathways

CSNDB – http://geo.nihs.go.jp/

The Cell Signaling Networks DataBase (CSNDB) is a data and knowledge base for

signaling pathways of human cells.

KEGG – http://www.genome.ad.jp/

The Kyoto Encyclopedia of Genes and Genomes represents information of pathways

that consist of interacting molecules or genes.

Gene Regulation

TRANSFAC – http://www.biobase.de

This database presents data about gene regulatory DNA sequences.

TRRD – http://www.bionet.nsc.ru/

Transcription Regulatory Regions Database.

Metabolic Diseases

OMIM – http://www3.ncbi.nlm.nih.gov/

The Online Mendelian Inheritance in Man database is a catalogue of human genes

and genetic disorders authored and edited by Dr. Victor A. McKusick and his

colleagues.

PATHWAY – http://oxmedinfo.jr2.ox.ac.uk/

PATHWAY is a database of inherited metabolic diseases. The database is divided

into two sections: substances and diseases.

PEDBASE – http://www.icondata.com/health/pedbase/

PEDBASE is a database of pediatric disorders. Entries are listed alphabetically by

disease or condition name.

RDB – http://www.rarediseases.org/

The Rare Disease Database is a delivery system for understandable medical

information to the public, including patients, families, physicians, medical

institutions, and support organizations.
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Chapter 2

An Overview of Gene Regulation

Andrew Harrison and Hugh Shanahan

Abstract It is not unreasonable to assume that in the near future next-generation

sequencing techniques will allow the sequencing of all the DNA and expressed

types of RNA involved in a given response or process. Such a range of data will

be necessary to unravel the complexities of the multiple layers involved in the

regulation of gene expression.

In this article we discuss a broad range of studies about gene regulation. These

involve studies of processes such as transcription and splicing, the production of a

variety of transcripts, and the involvement of protein–nucleic acid composites such

as chromatin. We seek to shed light on common themes that are beginning to develop

in these rapidly evolving, but intimately related, fields.

Keywords Gene expression • Post-transcriptional processing • Epigenetics •

Non-coding RNA • Genome tertiary structure
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EJC exon junction complex

NDR nucleosome-depleted region

ncRNA non-coding RNA

miRNA microRNA

Poly(dA:dT) double-stranded sequence of DNA composed of AT pairs

PAP poly(A) polymerase

PASR promoter-associated sRNA

PROMPTS promoter-associated transcripts

PTM posttranslational modification

RNAi RNA interference

RNP ribonucleoprotein

hnRNP heterogeneous nuclear ribonucleoprotein

mRNP messenger ribonucleoprotein

RNAPII RNA polymerase II

ssDNA single-stranded DNA

ssRNA single-stranded RNA

sRNA short RNA

siRNA small interfering RNA

SR Protein serine-rich protein

TSS transcription start site

TSSa-RNA transcription start-site-associated RNAs

2.1 Introduction

The development of sequencing technologies has resulted in dramatic reductions in

sequencing costs over the last decade [1]. There are already a broad range of high-

throughput sequencing technologies [2], with others, such as nanopore technology

[3], expected to arrive in the very near future. Our increasing ability to sequence

nucleic acids quickly and cheaply will transform many biological areas of research

[4]. This includes medicine, and the sequencing, and resequencing, of individuals is

already helping to illuminate the genetic changes responsible for cancer progression

[5]. The new sequencing technologies are also being used increasingly in fields

previously dominated by microarrays. Deep sequencing of RNA and recording

its abundance in the sample, referred to as RNA-Seq [6–8], has generated much

excitement and it has been claimed that it represents a revolutionary tool for

transcriptomics [9]. We are still in the early days of the revolution and many of the

RNA-Seq studies to date have been of a descriptive nature with basic data analysis

[10]. However, there is a rapid growth in techniques and software to analyse next-

generation RNA-Seq datasets [11] and increasingly sophisticated analyses are likely

to become the norm. Even in the absence of sophisticated analysis techniques, there

have been some fascinating results; for example, such experiments suggest that,

for humans, approximately 75 % of the total mRNAs within a cell are common

to all tissues, with about 8,000 protein-coding genes ubiquitously expressed [12].
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However, transcriptome complexity is observed to vary between tissues, with areas

such as the brain, kidney and testis expressing a greater diversity of mRNA than

tissues such as the muscle and liver. Other techniques whether sequencing is being

utilised include the measurement of protein–DNA interactions via ChIP-Seq [13].

Nonetheless, current next-generation sequencing presents challenges in assembly

and sequence accuracy due to short read lengths and method-specific sequencing

errors [14]. Understanding the physical causes impacting upon the fidelity of

sequencing is important in establishing the error composition of any sequence.

For example, a limitation of the 454 technology relates to sequences containing

consecutive instances of the same base, such as AAA or GGG [2]. With this

technology, the length of homopolymers is inferred from the signal intensity

because there is no terminal molecule preventing multiple contiguous additions at a

particular cycle. This results in a greater error rate than results from discriminating

between incorporation and nonincorporation. The major error type for the 454

platform is insertion-deletion rather than substitution, whereas the dominant error

for Illumina/Solexa is substitution, rather than insertions or deletions [2]. There are

also other biases in RNA-Seq data which may limit its adoption for large-scale

systems biology experiments [15]. For some applications, microarrays are more

sensitive than the current sequencing technologies. This is leading to many groups

using hybrids of sequencing and microarrays together, utilising the advantage

of both approaches whilst minimising the disadvantages of each technology’s

limitations [14, 16].

The meta-analysis of large datasets of gene expression is now helping to underpin

systems biology models, increasingly pointing to how the interactions between

groups of closely coupled proteins underpin gene expression in humans and other

higher eukaryotes [17, 18]. The implicit assumption of many current models in

systems biology is that regulation is for the most part mediated by transcriptional

regulatory networks [19]. However, this view has faced significant difficulties and

blind studies to perform the high-throughput identification of transcription factor

targets have provided very poor results [20]. Part of the problem is that the regulation

of gene expression in eukaryotes is very complex and strongly modulated by a

number of mechanisms beyond simple transcription factor complex formation. Our

understanding of the components involved in gene regulation, their complexity

as well as the interplay between different layers of regulation utilised within

cells has expanded rapidly in parallel with our ability to utilise high-throughput

sequencing.

Systems analysis of gene expression is identifying coordination and coupling

in transcription, coordination among transcription factors, coupling among

transcription factors and chromatin remodelers, a nuclear organisation coupled

to transcription, interwoven layers of mRNA processing involving the coupling

of transcription and splicing, coupling of transcription and export with quality

control processes, dynamic messenger ribonucleoprotein complexes, regulation

of cytoplasmic events from within the nucleus, coupling between transcription

and ribosomal synthesis and links between protein synthesis and degradation

[21]. Many of the molecular interactions responsible for coordination are being
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mapped out biochemically [22], detailing the lines of feedforward and feedback

between chromatin, RNA, multifunctional proteins and ribonucleoprotein (RNP)

complexes.

These complexities are leading to designs of next-generation sequencing experi-

ments increasingly requiring integrative approaches to bring together knowledge of

the multiple layers of regulation of gene expression. There are many threads linking

these layers and in this review we give a broad overview about the rapid progress

in understanding the regulation of genes via several mechanisms. We will begin

with transcriptional and post-transcriptional events. We will then discuss how the

structure of chromatin radically affects transcription. Following this, the major role

that non-coding RNA plays in regulation will be discussed. We will also highlight

a number of common themes that are emerging across these different layers of

regulation. Finally, we discuss how next-generation sequencing is poised to play

a significant role in the systems biology of the future, the huge data management

problem we face and how it will likely transform how we work together to better

understand gene regulation.

2.2 Transcription and Beyond

The transcription cycle begins with preinitiation complex formation, RNA poly-

merase II (RNAPII) recruitment, a transition to an initiating and then an elongating

RNAPII, and progressing to termination [23]. RNAPII will do work as it progresses

through transcription and the amount of energy required to break and make bonds

depends upon tertiary interactions between RNAPII, chromatin, nascent RNA and

ribonucleoproteins (RNPs).

2.2.1 The Dynamic Nature of RNAPII

It is increasingly clear that subtle changes in the structure of RNAPII occur as it

progresses through the transcription cycle. In particular, a relatively unstructured

protein domain lies below the RNA exit channel [22], the carboxy-terminal domain

(CTD) of RNAPII, and this serves as a binding pad for many nuclear factors, play-

ing a key role during transcriptional and co-transcriptional processing, including

terminating transcription.

The CTD has a simple heptad repeat structure, Tyr-Ser-Pro-Thr-Ser-Pro-Ser

(Y1S2P3T4S5P6S7), with 52 repeats in mammals [24]. The last repeat of the CTD

in vertebrates is followed by a conserved ten amino acid extension. Thirty-one

of the fifty-two repeats in the human CTD differ from the consensus heptad in

at least one position, with most of the nonconsensus repeats towards the carboxy

terminal of the CTD [24]. The presence of these divergent repeats enables additional

functionality. As shown in Fig. 2.1, dynamic and reversible modifications to CTD
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Fig. 2.1 A schematic diagram of the processes and interactions that occur in pre-mRNA and
how splicing is implemented (described in Sects. 2.2.1, 2.2.2, and 2.2.3). The formation of bonds
between the pre-mRNA and ssDNA is carried out by the formation of RNA secondary structure or
binding with mRNPs. Splicing is enhanced by SR proteins or inhibited by hnRNPs. Initiation and
termination of the transcript is aided by complex formation triggered by PTMs in the CTD region
of RNA PII

occur during the transcription cycle, including phosphorylation, glycosylation as

well as changes to the isomeric state of prolines. The appropriate recruitment of

factors at different stages of the cycle is closely related to these modifications and a

CTD code describing these coordinated changes is being actively sought [24].

All three serines of the CTD consensus repeat can undergo phosphorylation

[24]. Ser2 and Ser5 are dynamically phosphorylated and dephosphorylated during

the transcription cycle. Phosphorylation of Ser2 residues plays a major role in

enabling RNAPII to progress into an elongating form, as well as being involved in

splicing and polyadenylation events. Phosphorylation of Ser5 residues is greatest

near the 50 end of genes, with Ser5 phosphorylation helping in the addition of

a methylguanosine cap to the 50 end of the newly synthesised RNA. The CTD

loses most of its Ser5 phosphorylation before RNAPII reaches the polyadenylation

signals at the 30 ends of protein-coding genes. The dephosphorylation of Ser2 and

Ser5 during the transcription cycle is required for recycling RNAPII. Dynamic

phosphorylation of Ser7 has a role in some protein-coding genes at their 30 termini,

involved in either terminating transcription or 30 processing. Tyrosine and threonine

can also undergo phosphorylation, but it is presently unclear what functions these

play. Experiments to unravel the role of threonine are complicated by it being
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found in 15 positions in the nonconsensus repeats, as well as in its canonical

position 4 in the consensus repeats. Serines and threonines can also be glycosylated,

with phosphorylation and glycosylation appearing to be mutually exclusive [24].

Isomerisation of the two peptide-prolyl bonds, at positions 3 and 6, also occurs,

resulting in four possible configurations in each repeat.

2.2.2 The Folding and Binding of Proteins to Nascent

Pre-mRNA

Alterations in RNA structures represent a regulatory mechanism for many cellular

processes [25]. There is an intimate relationship between the binding of messenger

ribonucleoproteins (mRNPs) and RNA secondary structure, with some proteins

binding to single-stranded RNA (ssRNA) sequences [26] and others to double-

stranded RNA (dsRNA) sequences [27]. Heterogeneous RNPs (hnRNPs) are very

abundant in the cell and RNA–protein interactions act to modify the form of RNA

secondary structures and may act to inhibit the existence of structures in some

cases [28].

Pre-mRNA is free to fold only within a limited period after transcription, with an

upper limit of �100 nucleotides [29]. It is likely that co-transcriptional wrapping

up of RNA by folding, or through binding by mRNPs, occurs rapidly in order

to minimise the possibility of genomic mutations induced by the formation of R-

loops during transcription [30]. As shown in Fig. 2.1, an R-loop is a structure in

which an RNA molecule is partially or completely hybridised with one strand of

a double-stranded DNA, leaving the other strand unpaired [31]. Transcriptional

R-loop formation in higher eukaryotes is highly correlated with chromosome

instability. Little is known about the molecular mechanisms responsible for R-

loops influencing genome stability, but single-stranded DNA is more vulnerable to

mutations than double-stranded DNA [32]. Thus, extensive R-loop formation will

result in these transcribed regions being more susceptible to DNA-damaging agents

by increasing the frequency of single-stranded regions. R-loops will also act to slow

down elongation of RNAPII [22].

2.2.3 Post-transcriptional Splicing

RNA-Seq results suggest that almost all human protein-coding genes undergo

alternative splicing [33]. Furthermore, over 80 % of genes produce a minor isoform

with a relative abundance of 15 % or more of the major isoform. It has been recently

proposed that most alternative splicing is a consequence of noise in the splicing

machinery [34]. However, alternative splicing and polyadenylation are observed

to vary significantly between tissues, with coordinated changes in alternative
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splicing and polyadenylation between many genes being observed, suggesting that

alternative splicing provides a central contribution to the evolution of phenotypic

complexity in mammals [33].

Pre-mRNA splicing occurs co-transcriptionally in all eukaryotes [22]. However,

there is little overlap between groups of genes that are differentially spliced and

those that are differentially expressed [35]. As shown in Fig. 2.1, a small number

of RNA-binding proteins, usually members of the serine-rich protein (SR protein)

and hnRNP families, are involved in splicing regulation and the interplay of these

positive and negative factors acts to modulate the inclusion, or otherwise, of exons

[36]. SR proteins help to activate splicing by binding to exons and recruiting

the spliceosome. Most members of the SR protein family have their binding to

RNA affected by the conformation of the target RNA [37]. SR proteins exert

some of their stimulatory effect through stabilising RNA–RNA interactions during

spliceosome assembly and splicing catalysis [38]. HnRNP proteins, in contrast,

usually repress splicing by interfering with the spliceosome’s interactions with

splice sites. In particular hnRNP proteins may disrupt RNA–RNA interactions

through sequestering sequences [38].

The binding of these positive [39] and negative [40] regulators of splicing

has been shown to depend on RNA secondary structures. There seem to be two

mechanisms involved in how RNA secondary structure affects the choice of 50

and 30 splice site and branch point elements. The most common process results

from the presence of structural elements which may hinder the accessibility of

selected sequences by splicing factors [37] – depending on the system analysed,

this inhibition has been observed to target only the acceptor site, the donor site or

both. The second mechanism occurs when RNA secondary structures that do not

involve the conserved splicing sequences can vary the relative distance between

these elements – these changes then result in considerable variation in splice site

usage or efficiency [37]. Structural constraints also affect less-defined cis-acting

sequences such as exonic/intronic splicing enhancers or silencer elements [41].

Furthermore, RNA secondary structure has been proposed to influence splicing.

For example, secondary structural elements involving both exonic and intronic

sequences have been found in the dystrophin gene [42].

The advent of high-throughput sequencing experiments, in conjunction with exon

arrays, enables observations of co-regulated splicing events in groups of genes, as

well as the determination of sequence motifs associated with these events [35, 43].

Some of the sequence motifs now being associated with tissue-specific alternative

splicing are consistent with the binding patterns previously identified for known

splicing regulators, such as NOVA and FOX [35]. This suggests that as catalogues

of isoform expression profiles increase, they will provide sufficient sensitivity to

enable the discovery of weaker motifs indicative of novel splicing regulators. There

is a need for such analysis as there are more than 300 RNA-binding proteins in

mammalian genomes that may act as splicing regulators, yet little is presently known

about their binding specificity or their involvement in particular splicing events [35].

Mining of the existing datasets is already highlighting positional dependencies in the
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Fig. 2.2 A schematic diagram of the relationship between exon–intron boundaries, methylation
and nucleosome occupancy as described in Sect. 2.2.3. As noted in Sect. 2.3.6, there is a noticeable
peak in methylation (specifically CpG) at exon–intron boundaries and a trough at intron–exon
boundaries [48]

binding of regulators, with both NOVA and FOX binding as enhancers when they

are downstream of an alternative splicing exon, whereas they act as repressors when

they bind on the upstream side [35]. Combinations of hundreds of RNA features

are being assembled as part of large data-mining efforts to identify the principal

components of the splicing code [44].

Unravelling evidence of co-regulated splicing events in several genes is non-

trivial as it is very likely that splicing regulation can occur at every possible step

of the spliceosome assembly and catalysis pathway. Furthermore, there are large

numbers of factors involved in the splicing of each transcript and stochastic events

may be important during splicing because simple binding kinetics determines the

assembly pathways for a given pre-mRNA substrate [38]. Spliceosome assembly is

also modulated in response to transcriptional events and chromatin structure [38].

The rate of elongation affects splice site selection and exon skipping and, thereby,

the nature of the information expressed from a gene [45, 46]. Post-transcriptional

processing also involves a close relationship with how DNA is modified in its

accessibility during transcription [36, 47]. As shown in Fig. 2.2, chromatin organisa-

tion marks exon–intron structure and chromatin structure, via histone modifications,

modulates exon selection [48, 49]. Transitions in DNA methylation across junctions

of exons and introns may also be involved in splicing [50]. The differences in
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transcription rates that result from these chromatin modifications, as well changes in

nucleosome density [47], may be the principal cause for a large proportion of tissue-

specific, or development-specific, alternative splicing events [36]. It is now possible

to use high-throughput sequencing technologies to map histone methylation states

across the human genome [51]. We are therefore likely to see high-throughput

sequencing used in further integrative studies of the dynamic interplay between

proteins modifying chromatin, interacting with RNA, and their resulting impact

on alternative splicing. Efforts to crack the splicing code, e.g. [44], are likely to

be enhanced by knowledge about the tissue-specific modifications that chromatin

undergoes within particular genes of interest.

2.2.4 RNA Editing

RNA editing can provide a source of sequence variation between transcripts from

the same gene. The most common form of editing in eukaryotes is A-to-I, in which

adenosine is converted into inosine within double-stranded RNA and the inosine

is subsequently treated as guanosine by the spliceosome and ribosome [52]. Such

editing is apparent because of differences in the RNA sequence and the DNA

sequence. A-to-I editing is essential for the maintenance of normal life in mammals

[53]. Editing can undergo spatiotemporal regulation [52]. Furthermore, RNA editing

and alternative splicing are coupled, as modifying the RNA sequence can result in

novel splice sites [54]. Moreover, as shown in Fig. 2.3, multiple editing sites within

the same transcript are weakly correlated and so results in the production of diverse

transcriptomes, eclipsing the variety resulting from alternative splicing but with less

impact on the protein composition within cells [53]. The diversity resulting from

RNA editing may be a principal contributor to the adaptive evolution of phenotypic

complexity in mammals and be a dominant source of transcript diversity in the brain

[55]. However, editing has also been associated with a number of human pathologies

[56]. In particular, alterations in RNA editing impact upon a number of psychiatric

disorders [57], in particular upon an individual’s responsiveness to serotonergic

drugs. Polymorphisms in editing genes have also been recently associated with

extreme old age in humans [58]. High-throughput sequencing has already been used

to identify RNA-editing sites [59], and we are likely to see many further studies in

this area.

Meta-analysis of sequence differences in the small RNA component of rice and

Arabidopsis [60] indicates that sequences of many transcripts are likely modified

in vivo. These include N1-methyl modified purine nucleotides in tRNA, potential

deamination or base substitutions in microRNAs, 30 microRNA uridine extensions

and 50 microRNA deletions. However, the impact of editing, and other post-

transcriptional modifications, can mimic RNA-sequencing errors and a number of

sequence variations previously classed as sequencing errors may in fact result from

editing and other modification [60].
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Fig. 2.3 A summary of RNA editing as described in Sect. 2.2.4. The actual editing occurs in
double-stranded pre-mRNA which can then be edited by ADAR. We note that A-to-I editing is site
dependent, i.e. not every A is edited to an I and the editing depends on the site and condition

2.2.5 The Processing of the 30 Ends of Transcripts

There are a number of molecular mechanisms involved in processing the 30 ends

of pre-mRNAs in metazoans [61]. Transcripts are cleaved before acquiring a

polyadenylation (poly(A)) tail and the efficiency and specificity of this 30 processing

is regulated by large protein complexes, involving many factors. Transcription

factors and activators affect 30 processing and there is also crosstalk between factors

involved in transcription, splicing and this processing machinery. Furthermore, the

CTD of RNAPII helps to couple this regulatory network through acting as a site for

gathering and delivering polyadenylation factors [61].

The molecular machinery involved in 30 processing has a complex architecture,

containing over 80 proteins. As outlined in Fig. 2.4, there are several sub-complexes,

including cleavage and polyadenylation specificity factor (CPSF), cleavage stimula-

tion factor (CstF) and poly(A) polymerase (PAP) [61]. The poly(A) signal consists

of two sequence elements: an AAUAAA hexamer, or a variant such as AUUAAA,

is found 10–30 nucleotides upstream of the cleavage site that binds CPSF; a U/GU-

rich region is located approximately 30nt downstream of the cleavage site and

associates with CstF. The majority of transcriptional units contain more than one

poly(A) signal and the alternative choices act to change the coding sequence or the

sequences of the 30 untranslated region. This results in alternative protein isoforms

or transcripts that differ in their stability, localisation, transport and translation

properties [61]. Tissue-specific regulation of alternative polyadenylation has a

higher frequency than other types of alternative splicing [33].
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Fig. 2.4 A summary of the processing that occurs during cleavage of the 30 end of a transcript
as described in Sect. 2.2.5. The sub-complexes PAP, CPSF and CstF are not an exhaustive list
of the sub-complexes required for 30 processing. The CTD of RNA PII gathers and delivers
polyadenylation factors. The cleavage site lies between an upstream poly(A) region (10–30
nucleotides of the cleavage site), which CPSF binds to, and a downstream, U/GU-rich region (�30
nucleotides from the cleavage site) that CstF associates to

The interplay between several mechanisms involved in regulating 30 end pro-

cessing determines which of the transcriptional unit’s sites are chosen to be

polyadenylated [61]. Regulatory factors can compete with CPSF and CstF binding

to their sequence elements. There can also be cooperative interactions, resulting

from proteins bound to the transcript increasing the rate at which CPSF and CstF are

able to bind their respective elements. Factors bound to the pre-mRNA can inactivate

PAP. The rate of transcriptional elongation can shift the kinetic competition between

processes, resulting in not enough time for upstream sites to be chosen and therefore

the subsequent polyadenylation of downstream sites. Differential expression of

individual proteins which make up part of the large 30 processing complexes will act

to preferentially select suboptimal cis-elements. Factors involved in polyadenylation

can also be sequestered to the cytoplasm. The factors can also become bound into

other complexes in the nucleus, which can result in different choices of site. The

factors can also be posttranslationally modified, again altering which of the several

sites are chosen to be polyadenylated.

Chromatin structure also impacts upon the regulation of alternative polyadenyla-

tion [62]. The canonical polyadenylation signal 6-mer, AATAAA, is a poly(dA:dT)

tract, and such tracts act to stiffen DNA and deplete nucleosomes. Indeed, [62]

find that human polyadenylation sites (PAS) have strong nucleosome depletion in

conjunction with downstream nucleosome enrichment. Moreover, the downstream

nucleosome affinity is associated with increased usage of the PAS when there are

multiple sites available.
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2.2.6 Post-transcriptional Modifications and Folds Used

in Quality Control and Regulation

A number of post-transcriptional modifications are used by the cell to check the

fidelity of transcripts as they are produced. The addition of a cap to the 50 of the

nascent transcript is likely a switch that enables RNAPII to move from an abortive

state into a fully elongating state [22]. The poly(A) tail acts to enable transport of

mRNAs from the nucleus to the cytoplasm and affects both their stability and the

rate at which they are translated [61].

A key quality control process is the nonsense-mediated mRNA decay (NMD)

pathway [22]. This involves the exon junction complex (EJC), a group of proteins

which are deposited on spliced transcripts about 20 nucleotides upstream of exon–

exon junctions [22]. During the first round of translation for a newly synthesised

transcript, the presence of at least one EJC which is 50 or more nucleotides

downstream of a stop codon results in the transcript and recently translated peptide

being rapidly degraded. This targets those transcripts in which the first in-frame stop

codon is poorly placed for transcript termination, resulting in the constitutive stop

codon being either in the last exon or within 50 nucleotides of the final exon–exon

junction [22].

EJC deposition possibly evolved to enhance protein production and mRNA

surveillance [22]. However, NMD is used to play several regulatory roles in the

cell, other than just simply removing aberrant transcripts. For example, a number of

splicing factors appear to alter the production of their own isoforms in order to target

their transcripts to the NMD pathway whenever their intracellular concentrations

become too high. Moreover, splicing makes for better translation resulting from the

interactions between EJCs and complexes associated with ribosomes [22]. Further-

more, the EJC also interacts with proteins involved in directing mRNA localisation.

It is not just the EJC that acts to modulate the efficiency of an mRNA’s

localisation and translation efficiency. A number of features of the untranslated

regions of mRNAs control their metabolism [63], the regulation of which is likely

to depend on the tertiary structure of RNA as well as trans-acting factors. For

example, cis-acting elements in the mRNA, usually in the 30 untranslated regions

(UTR), mediate the subcellular region to which the transcript is localised. Whereas,

other elements in the 30 UTR, such as AU-rich elements, regulate mRNA decay.

Translation efficiency also depends on structures in the 50 UTRs as well as the length

of the 50 UTR.

2.2.7 Sequence Variations

Genome resequencing of individuals will identify the differences with other genome

sequences, and identify single-nucleotide variations, and whether the individual is

homozygous or heterozygous for such variations. Individual alleles may contain
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distinctive sequences and heterozygous individuals may produce expression of

different RNA sequences. RNA-Seq has now been used to detect single-nucleotide

variations in expressed exons of the human genome [64].

2.3 The Structure of Chromatin Impacts upon

Gene Regulation

Transcription and post-transcriptional processing occurs whilst RNAPII is progress-

ing through chromatin. Rather than just being a naked strand of DNA, instead

chromatin is a complex mixture of nucleic acid, proteins and covalently bound

modifications.

2.3.1 Nucleosomes

Constraints on DNA arise from its interactions with group of eight basic histone

proteins, collectively known as nucleosomes [65]. DNA and nucleosomes are

arranged as beads on a string, with a linker of naked DNA sequence bridging

two neighbouring DNA-wrapped nucleosomes. The nucleosomes act to neutralise

the self-repulsion of DNA resulting from the negatively charged phosphates in its

backbone, enabling DNA to be packaged efficiently and fit into the confined space

of the nucleus. As shown in Fig. 2.5, the histone core is composed of two copies of

four histone proteins (H2A, H2B, H3 and H4). Each octamer consists of two H3–H4

histone dimers bridged together as a stable tetramer that is flanked by two separate

H2A–H2B dimers [66]. DNA coils through a left-hand toroid around the histone

core, with approximately 147 bases looping 1.65 times around each nucleosome,

with each histone core anchoring 34–36 DNA base pairs through electrostatic,

hydrogen and nonpolar interactions [66]. A further linker histone, H1, protects

internucleosomal linker DNA near the nucleosome entry-exit point [66]. DNA and

nucleosomes may undergo further compacting into transcriptionally inactive 30 nm

fibres [65], as well as other high-order compactions.

A short basic stretch flanking lysine around position 16 of the histone H4

N-terminal domain directs internucleosomal contacts, which modifies high-order

chromatin structures [66]. The interaction between residues 16 and 20 of histone

H4 and two acidic patches on the C-terminal ’-helices of histone H2A present

on an adjacent nucleosome mediates in salt-dependent folding of chromatin.

Acetylation of lysine residues relieves positive charges, perturbing histone-DNA

contacts and affecting nucleosome stability [66]. Indeed, acetylation of lysine 16 on

H4 (H4K16ac) prevents the compaction of nucleosome arrays in vitro, likely via

electrostatic repulsion and hindering H2A contacts [66]. The acetylation of H4K16

also repels ATP-dependent chromatin-remodelling complexes, such as ACF, which

will only interact with histones in the absence of H4K16ac [66].
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Fig. 2.5 The nucleosome as described in Sect. 2.3.1. In (a) a cartoon representation of a
nucleosome structure determined from x-ray crystallography is shown (PDB code 1aoi) [223]. The
histone structure H1 was not determined in the structure. In (b) a schematic diagram to represent
the entire nucleosome, including the histone H1 structure, is shown. The core nucleosome structure
is composed of eight domains which are composed of four dimers of H2, H3 and H4 histones. The
DNA loops around this structure following this order of dimers: H2A–H2B, H3–H4, H3–H4 and
H2A–H2B. The H1 histone binds to the entry and exit DNA giving the structure stability. The DNA
turns 1.65 times and is comprised of 147 bases

2.3.2 Nucleosome Variants

Variants of histone combinations contribute to the properties of the nucleosomal

core particle and its role in building specialised structures as well as altering

transcriptional activity [66]. Histones H4 and H2B are largely invariant, whereas

there is more variety with H3 and H2A.
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The non-canonical H2A.Z is conserved from lower to higher eukaryotes. Nucle-

osomes can only incorporate one type of H2A variant because of steric clashes

between loops in H2A and H2A.Z. H2A.Z impacts upon nucleosome stability

and chromatin folding, resulting from a small destabilisation within H2A.Z-H3

interactions and a longer H2A.Z acidic patch, relative to H2A, used in H4 NTD

binding. Despite its conservation, there remains uncertainty about the function of

H2A.Z resulting from the rapid turnover rates of H2A.Z-containing nucleosomes

[66]. Another H2A variant unique to mammals is H2A.Bbd. H2A.Bbd–H2B dimers

dock on the (H3–H4)2 tetramer, producing nucleosome core particles that organise

about 118 base pairs of DNA but which are considerably less stable than the

canonical nucleosomes. The variant H2A.Bbd lacks the ubiquitinatable C-terminal

domain as well as the acidic patch that contacts the H4 N-terminal domain, making

nucleosomes containing H2A.Bbd resistant to salt-induced chromatin folding.

H2A.Bbd may reside within active chromatin [66].

Mammals have evolved a replication-dependent H3 variant, H3.1, that only dif-

fers from the non-canonical variant, H3.2, by the substitution of a single amino acid

[66]. H3.2-containing nucleosomes are probably associated with heterochromatin.

Whereas, the H3.3 histone variant differs from H3.1 by five amino acids and is

associated with euchromatin. H3.3-containing nucleosomes are unstable, with the

H3.3 histone undergoing rapid turnover. The displacement of nucleosomes during

transcription appears to be the primary role for H3.3 [66]. Cysteines that are found

in H3 variants may act to stabilise H3–H4 tetramers through disulphide bridges,

particularly under oxidative conditions [67]. A further cysteine in H3.1 variants

may also result in stabilising disulphide bridges between neighbouring nucleosomes

which both contain H3.1s, helping to compact higher-order structures of chromatin

[67]. There is also an H3.CenH3 variant that is involved in chromatin structures

associated with kinetochore assembly and function [66]. The different forms of

chromatin resulting from H3 variants and posttranslational modifications may result

in chromosomes having a “barcode structure” [67], influencing epigenetic states

during cellular differentiation and development.

The linker histone H1 acts to seal the two turns of nucleosomal DNA and is

required for changes in conformation between extended and compact chromatin

[68]. H1 also plays a role in establishing the spacing between nucleosomes,

maintaining the level of methylation in particular regions of the genome, regulating

a subset of cellular genes and acting to control development [68]. There are 11

variants of the linker histone H1 which is more than twice greater than the variability

of any core histone. H1 variants also show a greater degree of divergence from each

other than do the variants for other histones [68]. The variants are distinctive about

when they appear in the cell cycle, but there is presently considerable uncertainty in

their functionality [68].
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Fig. 2.6 A schematic
diagram of the relationship
between poly(dA:dT) density,
substitution rates and its
position between
nucleosomes as described in
Sect. 2.3.3

2.3.3 Nucleosome Positioning, Promoters and Gene Regulation

The code through which the genome sequence acts to position nucleosomes is

increasingly understood [69–71] and our knowledge of the role nucleosomes play in

gene regulation is rapidly evolving. DNA sequences have different abilities to bend

and modify their helical twist and these differences are amplified when wrapping

around the sharp bends of the nucleosome [70]. The bending around nucleosomes

is facilitated through approximately 10 bp periodicity of specific dinucleotides.

However, tracts of poly(dA:dT) are rigid and predicted to be unable to efficiently

loop around histones. As shown in Fig. 2.6, such tracts are, as expected, observed

to be free of nucleosomes [72] and play an important role in regulating nucleosome

positioning within neighbouring genomic sequences. The nucleosome positioning

code works in tandem with other regulatory codes in DNA [73], and amino acid

content of proteins are likely to be modified as a function of nucleosome occupancy

[74]. Moreover, [75] (see Fig. 2.6) have observed that substitution rates in linker

regions are approximately 10–15 % lower than in nucleosomal DNA, which may be

associated with higher DNA repair efficiencies in linker regions compared to nucle-

osomes. The roles that nucleosomes play in regulating transcriptional start sites,

discussed below, in conjunction with differences in rates of insertions and deletions,

and point mutations, between DNA wrapped around nucleosomes and that in linker

regions, act to leave a nucleosome-associated periodic pattern in genome sequences,

ultimately moulding the DNA sequence over evolutionary time scales [76].

The movement of nucleosomes by a few bases along DNA can dramatically

alter the accessibility of the genomic sequence. Variations in genome sequences

subsequently impact on nucleosome affinities and promoter structure, resulting in

distinct modes of gene regulation [72, 77]. Functional promoters in eukaryotes

must attract RNAPII and also evade the effects of nucleosomal repression. Cryptic

transcription may occur if the suppression induced by nucleosomes does not

function [78]. Typically, transcription start sites are found in nucleosome-free

regions [47] as a major mechanism for suppressing transcription is to wrap potential

transcription start sites around nucleosomes [79].
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Fig. 2.7 A schematic diagram relating the positioning of cis-regulatory regions, the transcription
start site (TSS) and nucleosomes for ubiquitously expressed and regulated yeast genes as described
in Sect. 2.3.3. In the ubiquitous case, cis-regulatory regions tend to lie in the linker regions with the
TSS at the start of a nucleosome. In addition such cis-regulatory regions do not have a TATA box.
Regulated genes, on the other hand, have their cis-regulatory regions lie in the exposed regions of
the nucleosomes and can be exposed or hidden more as individual nucleosomes slightly shift their
position. These regions tend to have a TATA box

The nucleosome positioning signals are used by eukaryotes to regulate gene

expression with distinct noise and activation kinetics through altering the architec-

ture of promoters [72]. As outlined in Fig. 2.7, “ubiquitously” expressed genes in

yeast have open promoters [80], characterised by a poly(dA:dT) tract resulting in

a large nucleosome-depleted region (NDR) close to the transcription start site, in

conjunction with accurately positioned nucleosomes further upstream. Associated

cis-regulatory sequences reside within the NDR and the lack of nucleosomes means

that transcription factors can bind to the regulatory DNA without competition.

TATA-binding boxes are typically not found within these promoters.

As outlined in Fig. 2.7, “regulated” genes in yeast have covered promoters [80],

with a more evenly distributed nucleosome positioning, resulting in transcription

factors and nucleosomes competing for access to DNA. Transcription factor binding

sites tend to be exposed on the nucleosome surface, near the border with a

linker [81]. The nucleosome positioning sequences for these promoters result in

high nucleosome occupancy close to the transcription start site. The regulation of

chromatin, via subtle changes in nucleosome positioning and accessibility of DNA

to transcription factors, enables large dynamic changes in expression [72, 77, 82].

TATA elements are frequently associated with this group of promoters [82].
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Mammalian genes that have broad CpG-enriched promoters tend to produce

multiple transcription start sites and are typically ubiquitously expressed [83]. The

regulation of which start site is chosen is associated with the methylation state of the

promoters [84]. Whereas mammalian genes with promoters containing a TATA box

tend to produce a sharp single transcriptional start site and typically produce tissue-

specific expression [83, 85]. In mammals promoters containing a TATA box evolve

slower than promoters containing CpG islands [86]. Furthermore, the sequence

of DNA at human promoters, enhancers and transcription factor binding sites, in

contrast to yeast, typically encodes high intrinsic nucleosome occupancy [87], with

these regions depleted in nucleosome-excluding poly(dA:dT) tracts.

The structure of DNA wrapped around nucleosomes details the tertiary structure

of a gene within a sequence and structural variations at the chromatin level are likely

to play a role in the regulation of the co-transcriptional processing of RNA. Long

poly(dA:dT) tracts, which exclude nucleosomes, are avoided in exonic sequences,

enabling an increased density of nucleosomes in exons [73]. Furthermore, differ-

ences in linker lengths between nucleosomes in exons and introns may result in

different chromatin-packing arrangements [73]. The positioning of nucleosomes

is also involved in exon definition events during co-transcriptional processing

[49, 88] and nucleosome depletion has been associated with the regulation of

polyadenylation [62]. Furthermore, [89] have identified peaks in the density of

H2A.Z-containing nucleosomes just downstream of start codons and just upstream

of stop codons in human T-cells.

2.3.4 Dynamic Nucleosomes and Gene Regulation

The regulation of the dynamics through which DNA alters its binding around

nucleosomes is intimately involved in controlling gene expression [90] and the

different mechanisms are outlined in Fig. 2.8. Models of such regulation are founded

on the idea that the regulation results from a competition between nucleosomes

and other DNA-binding proteins [91]. The affinities that these molecules have for

the sequence (binding affinity landscape) dictate their competitive and cooperative

interactions [91]. High nucleosome occupancy tends to reinforce cooperative

interactions between transcription factors in displacing nucleosomes [87].

DNA accessibility and nucleosome positioning are also regulated through

the action of ATP-dependent chromatin-remodelling complexes. Chromatin-

remodelling complexes are present at many promoters [92] and the dynamic

repositioning of nucleosomes has been associated with selecting the transcriptional

start site [65] as well as other aspects of the initial stages of transcription [93]. Also,

histone-devoid transcriptional start sites, in conjunction with the active cycling of

factors on and off a promoter, permit formation of preinitiation complexes that

are poised for transcription to be initiated [66, 90], a different state from a gene

that is fully repressed. The evolution of chromatin-remodelling complexes is likely

associated with changes in chromatin regulation during the evolution of vertebrates
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Fig. 2.8 A summary of the regulatory mechanisms that can be applied to the nucleosome as
described in Sect. 2.3.4. PTMs can be applied to the H2 histones. The H1 histone can interact
with transcription factors or chromatin-remodelling complexes. Furthermore, thermal fluctuations
may result in the transient exposure of DNA regulatory sites to proteins

from unicellular eukaryotes [92]. Complexes, such as the ISWI (imitation switch;

[94]) family, are involved in regulating higher-order chromatin structure [92],

promoting regularly spaced nucleosomes and gene silencing [66]. Whereas the

complex SWI/SNF (switching defective/sucrose non-fermentation; [94]) transiently

exposes DNA regulatory sites through creating loops on a nucleosome’s surface

[65]. Some of these SWI/SNF complexes, such as BAF complexes in mammals,

undergo progressive changes in subunit composition during the transition from

a pluripotent stem cell to a multipotent progenitor cell [92]. At least four ATP-

dependent remodelling complexes have nonredundant and specialised roles in

maintaining pluripotent chromatin within stem cells. Tissue-specific complexes

may enable matching between chromatin remodelling and transcription factors

[92]. This can result in co-regulation of many genes or be restricted to the activation

or repression of a single gene.

The disruption or displacement of nucleosomes will modify the rate at which

polymerases pass over the DNA or the rate at which transcriptional factors will

bind [65]. There are transcription-coupled changes in DNA topology or local

chromatin structure, with histone and nucleosome removal during elongation of

RNAPII [47]. The transit of RNAPII across the transcription unit is preceded by a
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leading wave of histone posttranslational modifications that open the chromatin and

transiently displace nucleosomes [95]. There are at least two processes by which this

happens. The first results from the nucleosome within transcriptionally active genes

having two components, a fluid H2A–H2B dimer and a stable H3–H4 tetramer –

H3–H4 tetramers are �20 times more stable than H2A–H2B dimers [90]. The

stability of the H2A–H2B dimer within the nucleosome will be further decreased

by posttranslational modifications such as ubiquitylation, phosphorylation and

acetylation. H2A–H2B dimers can also be exchanged through the actions of ATP-

dependent chromatin-remodelling complexes. The movement of the H2A–H2B

dimer could enable transcription factors and polymerases to access binding sites

on DNA. The second process results from the linker histone H1 and its subtypes,

associated with greater than 80 % of the nucleosomes in a mammalian nucleus,

having residence times of a few minutes in interphase, consistent with dynamic

interactions [90]. However, these residence times are variable and governed by the

phase of the cell cycle, posttranslational modifications to H1, the subtype of H1 and

competition for binding sites with other competing factors, such as transcription

factors and chromatin-remodelling complexes, each of which themselves show

dynamic interactions with chromatin [90]. Thus, alterations in residence times of

H1 can result in changes to the residence time of a transcription factor, changing

the balance between repression and activity. Thermal fluctuations of DNA wrapped

around nucleosomes may also result in transient exposure of DNA regulatory sites

to proteins. Such exposure is most energetically favourable towards the entrance

and exit points of the DNA around the nucleosome and, indeed, transcription factor

binding sites tend to be exposed near the border with a linker [81].

2.3.5 Histone Tails

Each histone has a tail which is targeted by a broad range of chemical moieties

at multiple sites. Virtually all exposed polar residues (and some of the prolines)

within the tails of histones are subject to covalent posttranslational modifications

(PTMs). These include acetylation, methylation, phosphorylation, ubiquitylation,

ADP-ribosylation, glycosylation [90] and SUMOylation [95], with lysine residues

modified by up to three methyl groups. Acetylation and methylation results in

only a small chemical group being added to the tail. However, ubiquitylation and

SUMOylation are large appendages, almost the same size as the histone proteins,

and their bulk could lead to more prominent changes in chromatin structure [95].

There is strong purifying selection among histone proteins and these targeted

residues [66]. There has been considerable effort in establishing whether, and how,

combinations of moieties on groups of histone tails act to produce a histone code

that is used to regulate chromatin compaction and transcription [66].

A series of interlocking histone PTMs occurs during initiation, early elongation

and mature elongation [95]. The transcriptional state of chromatin is correlated with

several histone PTMs [66]. For example, hypoacetylation of H4K30me3 (trimethy-
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lated lysine residue at position 30 of the H4 tail) and H3K27me3 is associated

with silenced chromatin, whereas hyperacetylation of H3K4me3 and H3K36me3

is associated with actively transcribed chromatin. Moreover, the distribution of

these marks can be distinctive, with H3K4me3 present at the beginning of genes

whereas H3K36me3 accumulating within the body and towards the downstream

region of genes [90]. However, single histone marks do not fully prescribe chromatin

structure and its impact upon transcription and different marks works in combination

when interacting with histone-binding proteins [66, 90]. Furthermore, experiments

on transcriptionally synchronised genes are beginning to unravel a transcriptional

clock controlled by dynamic nucleosomes [90]. Changes in the methylation and

acetylation status of the histone pass through cycles, with particular combinations

of histone modifications never coexisting on the same nucleosome at the same time.

However, the sequence of events at a nucleosome appears to depend on many factors

and there have been no simple rules describing the order of events [90]. In particular,

different causes for why a gene is induced produce distinctive histone modifications

[90]. Moreover, different sets of histone modifications act to regulate gene expres-

sion in high-CpG-content promoters and low-CpG-content promoters [23].

2.3.6 DNA Methylation

Cytosines within chromatin can be covalently modified so that they carry a methyl

group at position 5 within their pyrimidine rings [96]. 5-Methylation of cytosine

does not affect its base pairing with guanine, and cytosine is still replicated as

cytosine. A consensus view has been that DNA methylation always appears in a

CpG context (C followed by a phosphate and then a G, i.e. CG is on the same

strand). Methylation of CpG has high mutagenic potential [96], as 5-methylcytosine

can be deaminated to thymine. Such transitions accumulate over the course of

evolution resulting in CpG dinucleotides being markedly unrepresented in genomes

of vertebrates given the fraction of cytosines and guanines in the genome. However,

there are islands of CpGs which are found at the expected frequency, and these tend

to overlap with gene promoters [96].

Once a methyl is added to cytosine, it can be copied to newly synthesised

DNA, resulting in an epigenetic memory that can be conserved during cell division.

The DNA methylation pattern is maintained through mammalian development

by DNMT1, a methyltransferase that is associated with the replication complex

[97]. During cell division and DNA replication, DNMT1 is involved in recog-

nising methylated CpG residues on hemimethylated DNA and methylates the

opposite strand. However, epigenomic profiles also undergo targeted methylation

and demethylation alterations during development, and these differential changes

in methylation play a crucial role in cell lineage commitment [98]. For example,

targeted repression and de novo methylation of genes responsible for pluripo-

tency occur at gastrulation, whilst the embryo is beginning to separate into germ

layers [97]. The importance of epigenetic alterations that affect tissue-specific
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differentiation is such that their dysregulation could be the principal mechanism

through which epigenetic changes cause cancer [84]. Different tissues show marked

differences in DNA methylation [99], such that tissue-matched profiles from adult

patients of different ages have more in common with each other than do disparate

tissues from the same individual. Indeed, broad methylation patterns show tissue-

specific conservation from humans to mouse [84], such that the methylation profiles

of human and mouse brain cells, or human and mouse heart cells, have more in

common than do the profile of a human brain and human heart cell.

Methylation acts to change the properties of chromatin. For example, methylation

of DNA acts to modify nucleosome formation and positioning [96]. Biophysical

and structural studies of DNA indicate that CpG methylation reduces backbone

flexibility and dynamics, decreasing local DNA deformability. The position of 5-

methyl group in the major groove increases steric hindrances on DNA wrapping

around the nucleosome [96]. Only altering the conformation of a few nucleosomes

through methylation may result in a significant impact upon the regular spacing

arrays of nucleosomes expected to be involved in producing higher-order chromatin

structure [96].

The methylation of cytosines affects how chromatin can subsequently bind to

trans-acting factors and RNAPII. The binding of methylation to gene promot-

ers can act to suppress transcription, and so any methylation associated with

genes was believed to be indicative of transcriptional repression. However, this

view is undergoing revision following the results from whole-genome epigenomic

observations [99]. For example, a key function for differential methylation during

differentiation is associated with changes in alternative transcription start sites

[84]. Hypomethylation of promoters in conjunction with higher levels of gene-

body methylation is positively correlated with transcription [50]. There is also

recent evidence that DNA methylation acts to mark out aspects of gene structure

within chromatin but shows cell-type-specific differences. DNA methylation peaks

are found at the transcriptional start site in human T-cells [89]. Whereas DNA

methylation shows a trough at the transcriptional start site in human embryonic

stem cells and fibroblasts [50]. Both [50] and [89] find a drop in DNA methylation

at the transcriptional termination site. Exons typically show higher CpG methylation

fractions than do introns [50]. Interestingly, there is a sharp peak in CpG methylation

at the exon–intron junction and a sharp dip in CpG methylation at the intron–

exon junction [50], suggesting that transitions in DNA methylation are involved in

splicing regulation. DNA methylation also peaks just downstream of the start codon

and just upstream of the stop codon, suggesting that DNA methylation may be used

as a signal for the addition, or removal, of co-transcriptional modifications that will

only be utilised during translation at the ribosome [89]. Gene-body methylation may

also inhibit incorrect choice of start sites for transcription [99].

The view that methylation is restricted to CpG sites is being questioned due

to results from the first DNA methylomes that are now being sequenced at base

resolution [100]. Almost 100 % of the methylcytosines in fully differentiated

fibroblast cells are indeed in a CpG context, whereas pluripotent embryonic stem

cells show almost 25 % of the methylcytosines in a non-CpG context (C followed
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by a C, A or T; [100]). Moreover, 99 % of the methylation of CpG sites occurs

on both strands (the opposite strand is also CpG), whereas methylation on CHG

(where HDA, C or T) is highly asymmetrical, with 98 % of the cases being found

only on one of the strands rather than both [100]. Moreover, within embryonic stem

cells, non-CpG methylation is enriched within gene bodies but is depleted in DNA-

protein-binding sites and enhancers [100].

At this time it is unclear whether gene-body methylation, and its marking out

of gene structure, is restricted to subsets of genes in particular cell types. The

biological implications of such methylation as well as methylation’s interplay with

transcriptional elongation and splicing are still uncertain. Indeed, the initial findings

from whole-genome methylation profiles, from a small number of cell types,

indicate that we are still someway from understanding the biology of gene-body

DNA methylation. But the rate of discovery suggests that the next few years will

lead to a significant illumination of the role of DNA methylation in gene regulation

across the genome.

2.3.7 DNA Methylation Interactions with Histone Tails

There are regulatory interactions between enzymes involved in processing DNA

methylation and histone modifications [97] and these interactions play a crucial

role in mammalian development [101]. For example, G9a contains an SET domain

which acts as a histone methyltransferase, and G9a also contains an ankyrin

domain which recruits the DNA methyltransferases DNMT3A and DNMT3B.

DNA methylation patterns are erased in the early embryo, resulting from passive

demethylation caused by DNA (cytosine-5)-methyltransferase 1 (DNMT1) being

excluded from the nucleus [98]. Methylation profiles across the genome are then

re-established in each cell at approximately the time of implantation, through a

wave of de novo methylation whilst ensuring the CpG islands remain unmethylated

[97]. As shown in Fig. 2.9, the de novo DNA methylation template is written

through histone modifications, with patterns of methylation of H3K4 across the

genome being formed in the embryo before de novo DNA methylation. CpG islands

in the early embryo have RNAPII bound to them and this acts to recruit H3K4

methyltransferases. Whereas the rest of the genome contains nucleosomes with

unmethylated H3K4. Subsequently, de novo methylation occurs through the action

of DNMT3A and DNMT3L (DNMT3-like, a paralogue of DNMT3A) complexed

with DNMT3B. This recruits methyltransferases to DNA by binding to histone

H3, whereas any form of methylation of H3K4 acts to inhibit this methylation.

This results in de novo DNA methylation taking place at CpG sites throughout the

genome but being prevented at CpG islands because of the presence of H3K4me.

This model explains the strong anti-correlation between DNA methylation and

H3K4me in a number of cell types [97]. Moreover, a DNMT3A–DNMT3L tetramer

may oligomerise on DNA-containing histones without H3K4me and lead to the

nearly global methylation of the mammalian genome [101].
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Fig. 2.9 A schematic diagram explaining the mechanism how non-CpG island sites are methylated
in embryos as described in Sect. 2.3.7. In (a) CpG island sites are first bound by RNA PII
sites which then recruit the H3K4 methyltransferase, sites that will be methylated are bound
to nucleosomes. In (b) H3K4 methyltransferase in conjunction with DNMT3B, DNMT3A and
DNMT3L to methylate the relevant CpG site. The CpG island sites are protected from methylation
by the previously bound H3K4 methyltransferase

During post-implantation development, further epigenetic reprogramming occurs

in primordial germ cells [101]. DNA methylation patterns are re-established by

DNMT3A and the DNMT3B–DNMT3L complex at imprinted loci and transposable

elements during gametogenesis. Targeting to transposable elements may involve

Piwi-interacting RNAs, whilst targeting to imprinted genes involves the interactions

of DNMT3L with unmethylated H3K4 tails [101].

DNA methylation also helps to maintain patterns of histone modifications

through cell division [97]. During replication and cell division, regions that are

methylated tend to be reassembled in a closed conformation, containing histones

that are non-acetylated. Whereas unmethylated DNA gets repackaged in a confor-

mation that is more open, containing nucleosomes whose histone tails are acetylated

[97]. The mediation between DNA methylation and histone modifications likely

results from methylcytosine-binding proteins such as MECP2 and MBD2, which

are able to recruit histone deacetylases to methylated DNA. Enzymes such as

G9a and DNMT1 may also interact with DNA methylation sites and direct H3K9

dimethylation [97].
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2.4 The Spatial Organisation of the Genome in the Nucleus

Acts to Regulate the Expression of Genes

2.4.1 Gene Expression Is Localised

It is increasingly clear that genomes and gene regulation are organised non-

randomly in the nucleus [102]. Most nuclear events occur in spatially defined sites

and in dedicated nuclear bodies, rather than occurring ubiquitously throughout the

nucleus [103]. The formation of structures in the nucleus, such as Cajal bodies

[104], results from stochastic assembly and self-organisation. Similarly, biological

processes such as the formation of the DNA damage response may result from

self-organising events [105]. Indeed, whole genomes may be considered as self-

organising entities during mitosis, with networks of co-regulated gene expression

and chromosomal association that are mutually related during differentiation result-

ing in self-organising lineage-specific chromosomal topologies [106]. The density

of RNAPII may also act to regulate the colocalisation of gene expression [107].

Heterochromatin regions of the genome are usually found at the periphery of the

nuclear membrane and are usually silent, whereas more open chromatin associated

with active genes is typically found towards the centre. This is outlined in Fig. 2.10.

Such a situation is consistent with biophysical models of the entropic organisation of

self-avoiding polymers which suggest that long flexible polymers (associated with

gene-rich chromosomes) will move to the centre of a confining sphere, whereas

compact polymers (heterochromatin) will move to the periphery [108]. There is

increasing evidence that gene activation or silencing is frequently associated with

repositioning of the locus relative to nuclear compartments [109]. Active genes

dynamically colocalise to shared sites of ongoing transcription [110] and genes such

as Myc have been observed to preferentially relocate to regions in the nucleus at the

same time as other genes with which they are co-regulated [111]. The movement

of DNA into loops can result in proximal associations between co-regulated genes

which are separated along the genome sequence [112]. The initiation step of

transcription is required to tether genes to the same foci [113], but even in the

absence of transcription, there are still localised concentrations of RNAPII [113].

A model consistent with much of the experimental data is that there are transcription

zones within the nucleus in which RNAPII is concentrated locally through self-

assembly processes [114]. These dense regions of nuclear RNAPII concentration

have been termed factories, and it is possible that a transcriptional factory model

may describe an aspect of the architecture of all genomes [115].

The synthesis of mRNA in mammalian cells is observed to be stochastic [116],

with developmental genes exhibiting pulses of activity [117]. The stochastic nature

of gene expression results from dynamic passage of genes through transcription

factories [112]. Selection pressures will act upon groups of genes undergoing

coordinated stochastic transcriptional regulation, and chromosome organisation

shows the signature of selection for reduced gene expression noise [118]. Other
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Fig. 2.10 A schematic diagram of chromatin organisation and transcription factories as outlined
in Sects. 2.4.1 and 2.4.2. Heterochromatin (blue and black circles and lines) generally lies close
to the nuclear membrane. Free DNA loops extend into the centre of the nucleus where it passes
through regions of high RNA PII density referred to as transcription factories. Loops colocalise and
hence are co-regulated exhibiting a similar noise structure in their expression. This is consistent
with the stochastic nature of expression. The expanded region to the bottom of the diagram posits
a hypothesis that as the start and end regions of the gene are physically close to each other, RNA
PII can be re-recruited for transcription or be used for surveillance (Color figure online)

aspects of transcriptional regulation constrain the organisation of genes on eukary-

otic chromosomes [119–121], with the 3D regulation of gene expression directly

impacting upon genome evolution [122].

2.4.2 Loops and Networks of DNA Interactions Regulate

Gene Expression

Genomes show tissue-specific spatial organisation [123] and cell nuclei frequently

contain chromosome territories [124]. There is increasing evidence for three-

dimensional networks of chromosomal interactions [125].
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The topology of DNA around individual genes modifies gene regulation. As

shown in the blown up region of Fig. 2.10, loop structures in which the promoter and

terminator of a gene are in close proximity are associated with gene activity [22].

The role of the loop may be to increase the efficiency of recycling RNAP II back

to a promoter after it has reached the end of a gene. The loop may also be involved

in surveillance, with the results of an initial round of transcription being checked to

ensure authentic signals are in place.

There are also cell-type-specific long-range looping interactions between

enhancers and promoters which establish three-dimensional chromatin structures,

such as for the CFTR gene [126, 127].

The conformational contacts between separate regions of chromatin change

during cellular differentiation [128]. For example, extensive spatial chromatin

remodelling accompanies gene repression during cellular differentiation [128], with

repression of Hox A9, 10, 11 and 13 expression associated with the formation

of distinct higher-order chromatin contacts between genes. Whereas, different

chromatin conformations are associated with transcriptional activity. Major changes

in higher-order structures of chromatin interactions are being associated with

the regulation of transcriptional activity in increasing numbers of gene clusters,

including the Bithorax complex in Drosophila [129] and the human apolipoprotein

[130] and Hox A [128] gene clusters. The chromatin conformations may act as

an epigenetic memory [129]. The conformation changes during differentiation may

also be evolutionarily conserved [128].

DNA regulatory elements known as insulators mediate chromatin interactions,

resulting in the formation of chromatin loops [131]. The name arises from the insu-

lator’s role in preventing inappropriate interactions between groups of enhancers

and promoters. CCCTC-binding factor (CTCF) is one such insulator protein. CTCF

contains three domains, one of which is a DNA-binding domain with 11 zinc

fingers. It is evolutionally conserved from insects to mammals, and over 80 %

amino acid residues are identical between human, chicken and frog and up to

100 % conservation within the zinc finger-containing region [132]. CTCF binds

in tens of thousands of places across the genome, with the binding sites grouping

into different classes [133], each of which exhibits distinct evolutionary, genomic,

epigenomic and transcriptomic features. The chromatin architecture and form at

CTCF-binding sites can result in cell-type-specific changes [134]. Understanding

the code by which CTCF acts to coordinate the three-dimensional position and

regulation of genes within a cell’s nucleus is being actively sought [135]. CTCF

is believed to fit tightly into the linker region between nucleosomes [135], which

results in positioning of a nucleosome over a site acting to occlude the binding of

CTCF [136]. Furthermore, CTCF is sensitive to the presence of a 5-methyl group

in the major groove of DNA [96] and CTCF can only bind to unmethylated DNA

[135]. Moreover, the binding of CTCF, possibly through the action of chromatin

remodelers, acts to accurately position 20 nucleosomes, enriched in the histone

variant H2A.Z, both upstream and downstream of the site [137]. CTCF also acts to

demarcate cell-type-specific chromatin domains associated with active (H2AK5ac)

and repressive (H3K27me3) histone modifications [136]. CTCF has also been found
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Fig. 2.11 A schematic diagram of how CTCF and cohesin can bind chromosomes as explained in
Sect. 2.4.2. In (a) CTCF can bind between nucleosomes but cannot bind if its site is methylated.
In (b) CTCF in conjunction with cohesin can bind between the same chromosome or between
different chromosomes

to have a close relationship with the borders of lamina-associated domains [138],

0.1–10 megabase domains that are believed to anchor chromosomes to the nuclear

envelope.

The important role that CTCF plays in establishing patterns of nuclear architec-

ture and transcriptional control in vertebrates [139] is likely related to CTCF binding

to cohesion [140–143], which creates intrachromosomal and interchromosomal

links (shown in Fig. 2.11), resulting in a cell-type-specific network [134] that

determines the three-dimensional structure of the genome [144]. Cohesin and

CTCF are also involved in the maintenance of imprinting of loci such as the

IGF2 (insulin-like growth factor 2)/H19 (H19 fetal liver mRNA) genes. A set of

enhancers downstream of H19 play a role in regulating expression of both IFG2

and H19 – within developing embryos IGF2 is paternally expressed and H19 is

maternally expressed [141]. On the maternal locus there are two unmethylated

regions between IGF2 and H19 and where CTCF and a ring of cohesion can

associate. The interaction between CTCF cohesion from this pair of regions results

in a loop of chromatin-containing IGF2 which is then insulted from the action of the

downstream enhancers, and only H19 is subsequently expressed. However, on the

paternal locus, the region between IGF2 and H19 is methylated resulting in CTCF

being unable to bind, leading to the H19 locus being bypassed and IGF2 being able

to interact with the enhancers downstream of H19 [141].

Other elements may be involved in forming higher-order chromatin structures in

the nucleus. For example, Polycomb response elements mediate the formation of

chromosome higher-order structures in the Bithorax complex [129].
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2.5 Regulation of Gene Expression by Non-coding RNA

2.5.1 Short Non-coding RNAs Associated with the Start,

End and Enhancers of Genes

Short RNAs cluster at the 50 and 30 ends of genes [145]. A class of short transcripts

close to transcription start sites of genes have been observed to be present at low

abundance [79]. They have been named by several groups (promoter-associated

sRNAs (PASRs, [145]), transcription start-site-associated RNAs (TSSa-RNAs,

[146]) hereafter PASRs). PASRs are mostly derived from nucleosome-free DNA

[79]. As shown in Fig. 2.12, they flank active promoters, with a peak in the

abundance of short RNA antisense transcripts found �250 nucleotides upstream

of a gene’s transcription start site [146, 147] and a peak in the abundance of

short sense transcripts found between approximately 50 nucleotides [146] and 2.5

kilobases [148] downstream of the transcription start site [147]. Such divergent

transcription appears common for active promoters as most of them have engaged

polymerases upstream, in an orientation opposite to the proximal gene [147]. There

is a correlation in expression between PASRs and their proximal gene, suggesting

they are both responding to a common inducement of expression, even though the

transcripts are in opposite directions. The density of antisense termini-associated

sRNAs (TASRs), found towards the 30 ends of genes, is similarly correlated with

the expression of the proximal gene [145].

A further source of gene-associated short RNAs is enhancers [149, 150].

Enhancer RNAs (eRNAs) have already been found in macrophages [149] and neu-

rons [150] and it is likely that they will be identified in many, if not all, mammalian

cell types. Enhancers overlap a sizeable fraction of extragenic transcription sites in

higher eukaryotes [149]. In the studies of [149, 150], only a fraction of all enhancers

were found to be associated with RNAPII and eRNA synthesis, suggesting that

Fig. 2.12 A schematic diagram of the relationship between PASR expression levels and a TSS as
explained in Sect. 2.5.1
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there are a number of regulatory components involved with each enhancer. Changes

in eRNA synthesis are correlated strongly with changes of mRNA expression

at nearby genes [150], suggesting that eRNA synthesis may require a dynamic

interaction between an enhancer and a promoter. Furthermore, upstream extragenic

transcription frequently precedes the induction of an adjacent coding gene [149].

Transcripts from enhancers are not polyadenylated and they show little bias in

transcribing both strands [150] as well as being very unstable [149].

The level of H3K4me at the enhancer and eRNA synthesis are tightly correlated,

and so the process of eRNA synthesis may be to establish and maintain chromatin

in a state required for enhancer function [149]. Indeed, it is likely that the function

of many of these gene-associated short RNAs, including PASRs and TASRs, is to

mediate transcription-coupled changes in chromatin structure [79]. Such changes

may involve the prevention of nucleosomes obstructing transcription factor binding

sites [147] or facilitating initiation through the impact of negative supercoiling [146]

behind the passage of RNAP II. These will help promoter regions maintain a state

poised for subsequent regulation [146]. Polymerase resides on approximately 30 %

of human genes, with RNAP II observed to be pausing, appearing to wait for a signal

to begin elongating [147]. Genes that are developmentally regulated or that respond

to extracellular triggers are those that are likely to have pre-engaged RNAP II [22],

so as to speed up the rate at which the gene is ready for transcription. It is likely

that there is a rate-limiting step that stops RNAPII fully escaping into elongating

[79]. It is presently unclear what this trigger is, but it is likely to be associated with

pre-mRNA processing [22].

2.5.2 Long Non-coding RNAs

Significant numbers of long ncRNAs are regulated during development [151]. In

particular, the binding of transcription factors, along with evidence of selection,

conserved secondary structure, splicing patterns and subcellular localisation, sug-

gests the explicit regulation of non-coding transcription [152]. Long ncRNAs can

act as coactivators of transcription factors [153]. They can also act as “ligands” for

RNA-binding proteins, causing an allosteric change from an inactive to active con-

formation, which in turn can inhibit transcription through modifying transcription

factor and histone acetyltransferases [154]. Non-coding RNAs also modulate the

subcellular localisation of some transcription factors [151]. Non-coding RNAs can

also bind to, and regulate the action of, RNA polymerase II during heat shock [155].

Also, some of the transcripts labelled as non-coding may in fact be the source of

functional small peptides [156].

The wide variety of regulatory roles ncRNAs can play are shown in Fig. 2.13.

A number of chromatin-modifying enzymes contain RNA-binding motifs [157]

and long non-coding RNAs recruit chromatin-remodelling complexes to genomic

loci [152, 158–162]. Long non-coding RNAs act to direct genomic methylation

[163]. They also provide a scaffold for histone-modifying enzyme recruitment
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Fig. 2.13 An outline of the various roles long ncRNAs can play in regulation as explained in
Sect. 2.5.2

[164], leading to heterochromatin formation [165]. The non-coding transcripts act as

local modulators of chromatin structure, triggering chromatin modifications which

then expand along the chromosome, even though the neighbouring regions are

not complementary to the original transcript [164]. The expansion of the induced

chromatin changes may just be restricted locally, or they can expand further and

may underpin genomic imprinting [166] and X chromosome inactivation [167].

Another example is the expression of hundreds of long ncRNAs that are sequentially

expressed along the Hox loci, defining chromatin domains of differential histone

methylation and accessibility [168]. One of the ncRNAs in the Hox loci recruits the

Polycomb chromatin-remodelling complex and silences transcription across 40 kb

in trans through inducing chromatin to enter a repressive state.

Natural antisense transcripts can overlap part or all of another transcript [164] and

many protein-coding genes can be regulated by their antisense transcript partners.

The antisense transcripts can bind to their sense partners and enhance their stability,

through modifying the binding of an HuR protein and suppressing deadenylation

and decapping [169]. The binding of an antisense transcript can also induce changes

in RNA secondary structure which act to expose AU-rich elements and make the

sense transcript prone to degradation [170]. Interactions between sense and anti-

sense transcripts can also block the binding sites of other regulatory factors such as

microRNAs. This appears to be the case for “-secretase, a transcript regulated by its

antisense partner and likely related to the pathogenesis of Alzheimer’s disease [171].

Antisense RNAs typically undergo fewer splicing events than sense transcripts

[172]. However, natural antisense transcripts can modify the alternative splicing

isoforms of their sense partners [172, 173] and may also impact upon alternative

polyadenylation [164]. Furthermore, long ncRNAs can be processed to yield small
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RNAs and they can also modulate the efficiency by which other transcripts are cut

into small RNAs and interact with the RNAi pathway [174]. Endogenous siRNAs

have been observed to map to overlapping regions between sense and antisense

RNAs, and the RNAi pathway could regulate both the sense and antisense transcripts

in these cases [175]. However, the RNAi pathway is not responsible for antisense-

mediated regulation of the expression of some genes [175]. Duplex formation of

sense and antisense partners may also interact with the RNA-editing pathway [176].

In a number of cases, it appears to be the act of transcribing a non-coding

transcript, rather than the transcript itself, which acts to regulate a nearby protein-

coding gene. Transcriptional interference resulting from collisions between RNA

polymerases producing the sense and overlapping antisense expression may occur

[177], but this is likely not to be the predominant regulatory pathway mediated by

antisense transcripts [164]. Transcription of an ncRNA can pass across the promoter

of the protein-coding gene and interfere with transcription factor binding, preventing

the expression of the protein-coding gene [151]. Transcriptional elongation induces

the addition of histone marks that act to prevent transcription initiation from

locations within the body of the transcript [151]. ncRNA transcription can induce

histone modifications that repress the transcription of an overlapping protein-coding

gene. Furthermore, continuous transcription of ncRNA can prevent silencing of

genes by proteins such as Polycomb group proteins [178]. Non-coding RNAs

can also help to recruit Trithorax group proteins [179] which help to main active

transcription states by counteracting the effects of the Polycomb proteins.

2.5.3 Regulation by MicroRNAs

MicroRNAs (miRNAs) are short (�22nt) non-coding single-stranded RNAs [180].

They function by usually repressing mRNAs post-transcriptionally through com-

plementary binding to partial overlaps in target mRNAs. They play a central role in

coordinating the activities of many thousands of transcripts and they play an integral

role in the development and regulation of different cell types and tissues [181].

There are several good reviews of miRNA biogenesis, e.g. [182]. RNA poly-

merase II mediates the transcription of most miRNAs and is summarised here

and Fig. 2.14. Pri-miRNAs are long primary transcripts which typically form a

stem hairpin structure, a terminal loop and ssRNA flanking segments. The nuclear

enzyme Drosha, assisted by DGCR8 (DiGeorge syndrome critical region gene 8),

cleaves the RNA near the stem of the hairpin, about 11 bp away from the ssRNA–

dsRNA junction [182]. This releases a pre-miRNA which is then exported from

the nucleus by the protein exportin-5. In the cytoplasm, the enzyme Dicer further

cleaves the pre-miRNA near the terminal loop to yield a duplex of �22nt. One of

the strands is loaded into an Argonaute (AGO) protein, and this is used to guide

complementary target mRNA sequences for repression.

miRNAs have played a significant role in the phenotypic evolution of metazoans

[183] and there is a close coupling between miRNA evolution and the establishment
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Fig. 2.14 (a) A schematic diagram of a pri-miRNA and the region that eventually forms the
miRNA. In (b) we list one regulatory mechanism miRNAs can play in regulating genes explained
in Sect. 2.5.3. This case ensures that either gene 1 or gene 2 is expressed

of tissue identities early in bilaterian evolution [184]. An expansion in the number of

miRNAs has also been hypothesised to lie behind the origin of vertebrate complexity

[185]. The increase in new miRNA families is likely due to the ease in which they

are formed along with the wide impact they have on gene networks. The formation

of a new miRNA is likely related to pervasive transcription of sequences containing

hairpin loops, each of which is only a few mutations away from being a new miRNA

[180, 186]. Once a miRNA is operational, and modifying the regulation of many

genes, it undergoes very strong purifying selection meaning that their sequences

are extremely well conserved [180, 186], making miRNAs excellent phylogenetic

markers [187]. However, the targets to which miRNAs bind show little conservation

in animals, indicating that miRNA regulatory networks have undergone extensive

rewiring during metazoan evolution [180]. Unlike the continuous formation of

new miRNA families, there has been a much smaller expansion and evolution

of transcription factors during metazoan evolution [187]. Gene duplication is

the dominant source of new transcription factors. There is a greater chance of

evolutionary advantage for a duplicated transcription factor to undergo a few

mutations and bind to new targets of DNA than it is for a non-transcription factor

family member to mutate enough to be able to bind to DNA [187].

There appear to be two broad classes of miRNAs [188]. Class I miRNAs are

regulated by large numbers of transcription factors and are likely to function

within developmental programmes. Whereas class II miRNAs are regulated by

small numbers of transcription factors and are likely to function in maintaining

tissue identity in adults. The widespread regulation of genes by miRNAs leads to

many pathologies resulting from disruptions in the regulation of miRNAs, and they

are being increasingly identified as being involved in a range of diseases [189],
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including many neurodegenerative diseases [190]. Because of concerns about off-

target effects of new drugs, it is also being recognised increasingly that development

in pharmacogenomics will require greater knowledge of miRNAs [191].

The expression of many transcription factors is subject to miRNA regulation.

Feedback motifs are rare in pure transcription factor networks [192], and miRNAs

provide the necessary post-transcriptional feedback [193, 194]. miRNAs usually

repress gene expression, but not always [195]. One of the roles microRNAs

might play is to tune expression at threshold points [183], such that stochastic

gene expression programmes will have less noisy outcomes [196]. This type of

regulation is required as noise can induce bimodality in positive transcriptional

feedback loops [197]. The resulting robustness leads to stabilised developmental

pathways, increasing phenotypic reproducibility [198]. The networks through which

microRNAs act to regulate self-renewal in stem cells, as well as the transformation

of stem cells into differentiated cells, are beginning to be mapped out [199].

There are differences between transcription factor and miRNA regulation related

to biological processes in which they are involved. In animals, the repression

of miRNAs is usually weak compared to TF-mediated repression [180] and it

increasingly appears that miRNAs act to fine-tune the translational and transcrip-

tional output of TFs [200]. miRNAs can act to quickly suppress or reactivate

protein production at ribosomes [201], whereas changes in TF binding modifying

transcription rates take longer before the information feeds through to protein

production [195]. Furthermore, the actions of miRNAs, unlike TFs, can be localised

to different parts of a cell. This compartmentalising can then be used in processes

such as neurons requiring to regulate gene expression on a synapse-specific scale

rather than across the cell [202].

2.6 Common Themes

2.6.1 Structural Considerations

2.6.1.1 The Shape of RNA Impact upon Gene Regulation

RNA molecules form stable secondary and tertiary structures in vitro and in vivo

[203]. RNA secondary structures play an important role in binding splicing factors

[38], and the search for novel RNA-binding targets for well-known proteins can

be enhanced if secondary structure is taken into account [204]. Furthermore, the

binding of microRNAs to target sequences depends upon the local tertiary structure

of RNA [205]. Moreover, RNA editing also depends on the structure of the RNA,

as ADAR converts adenosines to inosines (A to I) using double-stranded RNA

substrates.

The reliable computational prediction of RNA structure would be very useful in

understanding its underlying function; however, despite some progress in the area,
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it remains a highly challenging problem [206]. Buratti and Baralle [37] cautioned

against the use of in silico predictions of pre-mRNA structure such as those obtained

by Mfold [207] and Pfold [208]. Buratti and Baralle [37] noted that existing

computer algorithms provide a folding prediction (and usually more than one) for

virtually any RNA sequence and are strongly biased by the length of the RNA

examined. Buratti and Baralle [37] discussed the example of NF-1 gene transcripts,

which are implicated in the generation of human tumours. Correlations between the

in silico changes in secondary structure and splicing in NF-1 are heavily dependent

on the RNA window. This makes it difficult to assign significance to them.

2.6.1.2 The Shape of DNA Impacts upon Gene Regulation

Gene regulation is related to the properties of chromatin in the nucleus. This ranges

from posttranslational modifications of histone tails which alter their propensity to

bind to each other or to allow transcription, to the movement of histones affecting

accessibility of binding sites for transcriptional factors, to the looping of DNA that

bring the 50 and 30 ends of active genes into proximity, to CTCF acting to regulate

networks of binding between different chromosomes and to the movement of co-

regulated genes in and out of transcriptional factories.

2.6.2 Gene Structure Is Written Out in Chromatin

The density of nucleosomes and lengths of linkers between nucleosomes differ in

exons and introns [73]. The positioning of nucleosomes, as well as histone mod-

ifications, is involved in co-transcriptional splicing decisions [48, 49]. Moreover,

nucleosome depletion has also been associated with the regulation of polyadenyla-

tion [62].

Gene-body DNA methylation also likely plays a role in splicing as exons show

higher methylation fractions than do introns and there are sharp transitions in methy-

lation states at exon–intron junctions [50]. Differences in DNA methylation also

occur at transcriptional start sites and termination sites [50, 89]. DNA methylation

acts to make DNA more rigid [96], and so the regulation of co-transcriptional events

may involve a feedback between nucleosome positioning and DNA methylation.

Interactions between DNA methylation and histone tail PTMs may also play a role

in regulating these events.

There are peaks in DNA methylation as well as in the density of H2A.Z-

containing nucleosomes just downstream of start codons and just upstream of stop

codons in human T-cells [89]. Given that the use of start and stop codons is not

required till translation, an exciting possibility arising from the observations of [89]

is that the chromatin markings may be indicative of co-transcriptional modification

events which act to label where a protein starts and finishes.
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2.6.3 Interacting Codes

Gene regulation appears to be intimately controlled through the actions of several

codes – namely, the modulation of a regulatory mechanism by the DNA or protein

sequence it encounters. Within the DNA sequence, there is a nucleosome positioning

code and this is increasingly well understood. There is likely a CTCF code

which helps to regulate the three-dimensional positioning of genes within a cell’s

nucleus. The heptad repeats in the CTD of RNAPII can undergo different types

of posttranslational modifications and these are intimately involved in regulating

the binding of factors required for many of the steps in transcription, post-

transcriptional processing and termination of transcription [24].

The tails of histones can undergo many types of posttranslational modifications.

However, cracking this histone code is proving challenging [66]. This is further

complicated by the interactions that occur between the CTD code and the histone

code [24]. Moreover, other chromatin-associated proteins, such as HP1, are also

posttranslationally modified resulting in the possibility of subcodes with the histone

code [209]. Furthermore, H3 histone variants modify the properties of chromatin

and their distribution along chromosomes is analogous to a barcode [67]. In

addition, much of the impact of H1 variants on the histone code remains to be

determined [68].

2.6.4 Kinetics and Competition Between Processes Underpin

Gene Regulation

Self-organisation and assembly of structures such as Cajal bodies [104] depends

upon the time-dependent concentrations of subcomponents. Furthermore, the move-

ment of genes in and out of transcription factories will also result in changes to

the rate of expression [112]. The form of chromatin also causes differences in

elongation rates which in turn affect splice site selection [47]. There are a number

of other steps available for regulation in splicing [38], encompassing a large number

of kinetic events. The kinetic parameters may have a determining role in splice-site

choice [36]. It is clear that in order to model how the changing form of recently

transcribed RNA impacts on post-transcriptional processes such as splicing, we

need to consider the implications of RNA secondary structure, the binding of

ribonuclear proteins, the speed of transcription, the form of chromatin and any

histone modifications and the dynamic interplay between all these processes.

There is binding competition between a number of processes. Many transcription

factors and chromatin-associated proteins have highly transient interactions with

chromatin, undergoing rapid cycles of binding and unbinding [103]. The high levels

of molecular crowding in the nucleus help to increase the efficiency of binding

resulting in local changes in density dramatically altering the rate at which nuclear

structures form [103]. Nucleosomes and transcription factors each have affinities
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for a DNA sequence and competitive and cooperative interactions between these

proteins act to determine their occupancy [70]. The cycling of factors on and off

promoters enables the formation of poised transcriptional complexes [90], which

are typically observed in approximately 30 % of promoters [22].

There are also interactions between different types of regulators. miRNAs can

bind to exon–exon junctions, suggesting that they can target splice isoforms [210].

An intron retention event can lead to transcripts containing miRNA-binding sites

that they would not otherwise have [211]. Moreover, the biogenesis of miRNAs can

result in crosstalk to pre-mRNA splicing [212]. The binding sites of RNA-binding

proteins can overlap with microRNA target sites [213] and RNA structure also acts

to modify microRNA binding [205]. RNA editing is also coordinated with splicing

[54] and there is a close interplay between editing and miRNAs [52]. There is

also crosstalk between RNA editing and RNA interference [214]. Next-generation

sequencing will increasingly underpin experiments to map out these networks of

interactions [43].

2.6.5 Gene Regulation Can Be Tissue Specific

Three-quarters of the mRNA in a cell are common across tissues, and about

8,000, or approximately one-third, of human protein-coding genes are ubiquitously

expressed [12]. However, much of the rest of RNA appears to be tissue specific

and likely underpins phenotypic complexity in mammals. Alternative splicing

and alternative polyadenylation vary between tissues [33]. The majority of retro-

transposon expression is tissue specific [215]. RNA editing is enhanced in the

brain [52]. Long non-coding RNAs show developmental regulation [151]. miRNAs

function in developmental programmes and maintain tissue identity [181]. The

state of chromatin also changes as cells transform from pluripotent stem cells

into multipotent progenitor cells and the composition of chromatin-remodelling

complexes are tissue specific [92].

2.7 Putting It All Together: How Would You Cope

if You Could Sequence Everything?

Despite the ferocious complexity of the different mechanisms involved in gene

regulation, common themes are emerging as demonstrated in the previous section

and summarised as a mind map in Fig. 2.15. It is not unreasonable to assume that in

the near future next-generation sequencing techniques will allow the sequencing of

all the DNA and expressed types of RNA involved in a given response or process [4].

Such a range of data will be necessary to unravel the complexity of the multilayered

regulation of gene expression.
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Fig. 2.15 Mind map of Sect. 2.6

A better understanding of chromatin and RNA biology will play a central role in

how we use cross-species information reliably. For example, alternative splicing

is likely to be one of the principal contributors to the evolution of phenotypic

complexity in mammals [33]. The splicing patterns in mammalian model organisms,

such as mice, are therefore likely to differ with humans in a number of ways, and so

differing populations of isoforms may complicate the interpretation of the negative

side effects of pharmaceuticals. RNA editing will also result in different transcript

populations in humans compared to other mammals [55], again complicating studies

to identify how drugs impact on gene expression systems. A further complication

is that of miRNAs, which play a key role in regulating tissue-specific transcription.

There are more than 100 extra miRNAs in humans compared to chimpanzees and

more than 150 extra miRNAs in human compared to mouse [183], and these extra

miRNAs are likely to result in gene expression patterns being found in humans that

are not found in our nearest neighbours.

One of the fundamental goals of systems biology is to generate meaningful

quantitative models of the regulation of gene expression. In order to do this, not

only must there be a significant increase in the types of data being collated (as

we have shown in this review), the amount of each type must also be increased

considerably. This is necessary to circumvent the so-called curse of dimensionality

where the output from all the genes is measured but only in a small number of

conditions. It will be necessary to bring multiple studies together, so as to identify

some of the subtle changes in gene expression that are biologically meaningful [17].

This indicates a huge increase in the amount of data being gathered, processed and

analysed. Already, genomics is one of many fields facing a deluge of data [216].

Bioinformatics repositories are already at the petabyte scale [217] – the growth of

sequencing data will result in the repositories transcending the exabyte scale within
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the decade. The archiving of next-generation sequencing data has well-established

resources such as the Short Read Archive [218]. In order to cope with the flow

of data, the Short Read Archive is adopting high-speed file transfer protocols,

at present fasp (Aspera Inc.). However, the transfer of data between external

bioinformatics laboratories is already leading to increasing problems in keeping

up-to-date [219] and things will only get worse. Moreover, the management of

next-generation sequencing data within institutions is already leading to a number

of bottlenecks, requiring increasing resources to be spent on systems administration

and computers [220] rather than on personnel to make use of the data. A further cost

which is only likely to escalate is that of power to run the facility. The computational

and staffing issues being faced by the genomics community are likely to limit the

democratisation of sequencing.

Genomics is not alone in facing a need for processing very large datasets. The

state of the art has arisen from commercial use [216], with organisations such

as Google efficiently processing searches and data mining on enormous datasets.

Virtually all of these organisations are rapidly implementing data centres to cope

with their data-processing requirements. The economies of scales associated with

centres mean that they can sell the resources to external users, through the cloud

computing model. Bioinformaticians have now begun to look at cloud computing

as one feasible solution to cope with the rapid growth of data [221]. There are now

increasing needs for large-scale biological data and computational infrastructure to

be developed on international scales, such as ELIXIR in Europe [222].

All of this will result in ever larger datasets requiring ever larger computational

and experimental infrastructure, as well as larger-sized teams to cope with the data

and use it to discover new biology. We can sequence everything, we can afford to

do so, we can learn huge amounts, and we will have to likely change some of our

working practises to be able to fully utilise the technology.
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Information Retrieval in Life Sciences:

A Programmatic Survey

Matthias Lange, Ron Henkel, Wolfgang Müller, Dagmar Waltemath,

and Stephan Weise

Abstract Biomedical databases are a major resource of knowledge for research in

the life sciences. The biomedical knowledge is stored in a network of thousands of

databases, repositories and ontologies. These data repositories differ substantially in

granularity of data, storage formats, database systems, supported data models and

interfaces. In order to make full use of available data resources, the high number

of heterogeneous query methods and frontends requires high bioinformatic skills.

Consequently, the manual inspection of database entries and citations is a time-

consuming task for which methods from computer science should be applied.

Concepts and algorithms from information retrieval (IR) play a central role

in facing those challenges. While originally developed to manage and query less

structured data, information retrieval techniques become increasingly important for

the integration of life science data repositories and associated information. This

chapter provides an overview of IR concepts and their current applications in life

sciences. Enriched by a high number of selected references to pursuing literature,

the following sections will successively build a practical guide for biologists and

bioinformaticians.
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3.1 Motivation: Information Systems in Life Sciences

The progress in molecular biology, ranging from experimental data acquisition on

individual genes and proteins, over postgenomic technologies, such as RNA-seq,

phenotyping, proteomics, systems biology and integrative bioinformatics aims to

capture the big picture of entire biological systems [55]. As a consequence of

this revolution, the amount of data in the life sciences has exploded. The wave of

new technologies, for example, in genomics, is enabling data to be generated at

unprecedented scales [85]. As of February 2013, NCBI GenBank provides access

to 162,886,727 sequences, and PubMed comprises over 22 million citations for

biomedical literature from MEDLINE, life science journals and online books. The

number of public available databases passed recently the high water mark of 1,512

[32]. This data deluge must now be harnessed and exploited.

Another aspect is the continuous developments in information procurement,

preparation and processing as shown in Fig. 3.1. Over the past years, information

processing techniques evolved from library research and individual data archives to

web-based systems using intercontinental high-speed network links for an ad hoc

data exchange, cloud computing and distributed databases. This continuous and

1980 1990 2000 2013

Fig. 3.1 The development of information processing in life sciences adapted from [101]
(Reprinted by permission from Macmillan Publishers Ltd, copyright 2002) – Classic database
management systems and the domain-specific modelling of project databases are replaced by
integrative technologies, i.e. data warehouses, data networks and information retrieval
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ongoing shift is attended by the use of database management systems (DBMS)

which are applied to the management of increasingly complex data structures

and voluminous content [98]. The key concepts in bioinformatics with regard

to data handling are a consistent classification and unambiguous definition of

the modelled biological objects in the databases, the raising use of ontologies,

connected with methods of knowledge processing, information extraction and data

mining [82, 97].

The consequences of this development are new requirements for information

retrieval methods. Typically, life scientists and bioinformaticians formulate their

queries rather vaguely. This does not necessarily happen due to inexperience or

ignorance but because their search is often explorative with no clear idea of the

expected answer. Vague queries though pose a problem on current databases and

information systems as these queries cannot be semantically interpreted, without

comprehensive semantic document tagging or the use of controlled vocabulary.

Much more specific problems such as data distribution and isolation, structural

heterogeneity, less metadata, interfaces query languages and deep (invisible) web

are further examples of the underlying challenges.

In this context, information retrieval (IR) is getting increased importance as

technology to face heterogeneities in data representation, storage and organisation

towards an efficient information access. The methods for representation and organ-

isation of information items should be designed in accordance to provide users

an easy access to the information of their interest [8]. The first step towards this

formulated aims is a raising need to find, extract, merge and synthesise information

from multiple, disparate sources [56]. In particular, the convergence of biology,

computer science and information technology will accelerate this multidisciplinary

endeavour. The basic needs for IR are summarised in [58]:

1. On-demand access and retrieval of the most up-to-date biological data and the

ability to perform complex queries across multiple heterogeneous databases to

find the most relevant information

2. Access to the best-of-breed analytical tools and algorithms for extraction of

useful information from the massive volume and diversity of biological data

3. A robust information integration infrastructure that connects various computa-

tional steps involving database queries, computational algorithms and application

software

Information retrieval in life science databases exhibits some fundamental dif-

ferences from the way people search in the web or in a general-purpose digital

library. First of all, links play a central role for data integration. Not only a

single article to a specific entity is of relevance, but all linked articles may be

relevant. However, articles just mentioning the entity of relevance may be irrelevant.

Second, life science databases are organised in a domain-centric manner, usually

concentrating around specific entity types (e.g. metabolomics). It is easy to extract

all domain information related to one entity. In contrast, it is very difficult to

collect comprehensive, cross-domain information on an entity if the knowledge is

spread across entities of different domains, e.g. genome structure-focused databases
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versus metabolite or pathway-centric ones. A similar picture of heterogeneity can

be observed in data access and querying. Methods spread among Boolean queries;

predefined queries in web information systems, also known as canned queries;

semantic web; keyword-based retrieval in text documents; relevance ranking; and

recommender systems are commonly used in life science dry labs.

In this chapter, we will subsequently introduce relevant concepts for information

retrieval in the life sciences. It is organised as follows: The Sect. 3.2 provides an

overview of basic concepts for data storage, metadata formats and query interfaces,

as well as data integration. The Sect. 3.3 then introduces the theoretical foundations,

the core concepts of information retrieval and the specific implementation in

life sciences. Here, the focus is on characteristics of information retrieval in the

life sciences, exploratory information retrieval, recommender systems, human–

computer interfaces and semantic aspects with an emphasis on model databases and

data networks. The life science search engine LAILAPS is presented as example for

an exploratory IR system. The last section contains a comprehensive summary of

this chapter.

3.2 Information Systems and Databases

In general, the term information system (IS) describes a somehow connected

compound of information [89]. In computer science, an information system aims,

manages and provides information to support all necessary processes and work-

flows, especially in companies. Usually, an information system consists of different

applications, which are interacting with a database management system (DBMS).

Information systems are a main focus in business information technology.

In computer science, a database (DB) is a well-structured and functionally

associated set of data [29]. A database is managed by a special software – the

so-called database management system (DBMS). Together, DB and DBMS form

a database system (DBS). The majority of database systems are using the relational

database model [18].

In life sciences, the term database is often used as a synonym for the term

information system. Since the data volume in life sciences is growing rapidly [82],

e.g. due to high-throughput technologies (see also Sect. 3.1), the importance of

information systems in this area of research is increasing continuously. Often

information systems in life sciences use a data basis that is not organised in database

management systems [17], but flat files, markup files, HTML or XML files instead.

Moreover, the systems are specific to only one data domain. A third characteristic of

information systems in life sciences is that they provide different means of access,

e.g. web interfaces, web services or static HTML pages, and provide different

data exchange formats. The resulting challenges will be described in the following

sections.
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3.2.1 Data Domains

A data domain comprises all data of a specific area, e.g. the domain of the sequence

data or the domain of the phenotypic data. Even though data domains can be

analysed separately, a combined analysis of multiple data domains, e.g. genotype–

phenotype correlations, provides a much higher chance for success. Subsequently,

some examples of data domain are listed. Without the intention of providing a

comprehensive classification of life science data domains, this list will give an

impression about their wide range and diversity.

• Sequence data: In biology, this term refers to sequences of nucleotides

(DNA sequence) or sequences of amino acids (amino acid sequence/protein

sequence), which are the result of a sequencing. Here, sequencing means the

determination of all sub-elements. Several sequencing technologies have been

developed. Examples are “classical” techniques, such as Sanger sequencing

(chain-termination method) [84], Maxam–Gilbert sequencing [73] or EST-based

sequencing [2], and next-generation sequencing (NGS) techniques, such as 454

pyrosequencing [72] or Illumina (Solexa) sequencing [11].

• Variation and marker data: In genetics, a marker is a piece of DNA with a known

location in the genome, which has different expressions in different organisms.

Examples are restriction fragment length polymorphism (RFLP) markers [13] or

single nucleotide polymorphism (SNP) markers [103]. Today, large amounts of

marker data can be obtained by high-throughput technologies.

• Expression data: Gene expression means the transformation of DNA information

into structures or functions of cells, e.g. the synthesis of enzymes. Depending

on different criteria, such as special tissues or compartments, developmental

stages or environmental effects, varying amounts of gene products are produced

(expressed). With array technologies [86] or by help of RNA-seq, a multitude of

product concentrations can be analysed simultaneously (expression profiling).

• Metabolic network data: Metabolic networks (pathways) are sequences of

biochemical reactions. They can be different depending on the organism, devel-

opmental stages, subcellular loci, etc. Data about these networks is an important

basis for the understanding of biological subjects at a systems level [104].

• Phenotypic data: The phenotype of an organism comprises all characteristics

(traits) which can be observed directly and indirectly. It covers a large variety of

traits. Besides traits that are mostly determined genetically (e.g. the hair colour),

there are also many traits which depend on environmental effects, such as biotic

or abiotic stresses.

• Passport data: Not often used in the “classical” bioinformatics, but for the

management of plant genetic resources (PGR) in the so-called gene banks,

passport data is indispensable. Passport data contains information, which is used

to uniquely identify genotypes.
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• Literature data: In science, the structured management of literature references

is of high importance. Central databases, such as NCBI PubMed1 or DBLP,2

collect millions of references from thousands of journals, proceedings, etc. and

provide this data to the scientific community. Such information is often used for

text mining approaches.

3.2.2 Data Interfaces and Query Methods

Data is only useful if it can be found on request. Consequently, appropriate query

mechanisms are a prerequisite to reusing existing knowledge in databases. In this

respect, queries should be independent from the physical data format, and it should

be possible to extract data by specific criteria or to perform database operations,

respectively. For performing database operations, query languages can be used,

which are based on a data model. Here, it can be distinguished between procedural

and declarative query languages. The former case can be implemented using

sequential programming or nesting of database operators, whereas in the latter case

only the structure of the results needs to be defined. In other words, only the “what”

will be specified, but not the “how”.

Data interfaces are necessary for linking applications and data management.

These interfaces can be implemented as so-called application programming inter-

faces (APIs). Common communication interfaces for linking applications and

databases are:

• (Local) File-based access: A simple method to access data is the use of files

from a local file system. This also includes network file systems, e.g. NFS,

and file access via data transfer protocols, e.g. FTP. For the data access, the

whole file must be parsed. Since the data format is known, data elements can

be extracted and then be transferred into data structures. Several parsers have

been implemented and are available via APIs (see Sect. 3.2.3).

• Remote procedure call (RPC): Another possibility for accessing data is the

call of distant (or remote) methods. These comprise protocols such as REST,3

SOAP,4 DCOM [16], .NET or CORBA [93]. These methods provide extended

functionality, ranging from simple method calls to distributed object networks,

web services or persistence frameworks. An essential feature of these standards

is the independence of programming languages.

• DBMS query APIs: A combination of data query languages and APIs enables

remote data access, similarly to DBMS functionality. The technology behind

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://dblp.uni-trier.de/
3http://www.ics.uci.edu/�fielding/pubs/dissertation/rest arch style.htm
4http://www.w3.org/TR/soap/

http://www.ncbi.nlm.nih.gov/pubmed/
http://dblp.uni-trier.de/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/TR/soap/
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Fig. 3.2 Abstract schema to data storage and format layer in life sciences

either embeds special database access commands into the programming language

or integrates the data query language with function calls using APIs. Here

already existing programming language-specific APIs and DBMS-specific APIs

can be reused. Moreover, DBMS abstracting architectures, such as JDBC [94] or

ODBC [33], are available.

3.2.3 Data Formats

A data format is a well-defined structure to persistently store data in one or more

files. File-based data formats are widely used for the exchange and presentation of

data in life sciences [1]. The actual data format is dependent on the storage level

and the required access patterns. As shown in Fig. 3.2, it is useful to distinguish

different storage layers, which are backend, data exchange and data presentation.

The backend layer has a particular emphasis on effective persistence and efficient

access structures. In contrast, the data exchange layer is focused on supporting a

platform-independent format enriched with structural and semantic metadata. The

presentation layer is optimised for an optimal layout and should be flexible to

support different HCI technologies and devices.

Whether the data backend is a DBMS or it is based on flat file techniques, data

independence can be assumed. Thus, data formats used here shall not be dealt with
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in detail. For data presentation, HTML is widely used as a data format. While

the content of HTML pages can also be extracted using parsers, however, HTML

only plays a minor role for data exchange. This is because HTML is mainly used

to present and structure elements and the focus is more on the visual layout of

data. This hampers the machine-based processing. A more suitable format for data

exchange is the Extensible Markup Language (XML).

In addition, the use of domain-specific, not necessarily formal, defined text flat

files plays an important role. Popular databases use such formats, e.g. EMBL [52].

Another example is the FASTA format [79] which was originally developed for

a bioinformatics tool for sequence comparisons. Today, it is a de facto standard

for sequence data exchange. A third example is the so-called two-letter code for

databases from the European Bioinformatics Institute (EBI) which uses attribute–

value pairs.

In the case of flat files, only an indispensable format description enables the

development of parsers. Such a description should contain the following elements:

• Allowed constructs: All allowed words are specified as combinations of valid

characters.

• Syntax description: The syntax specifies rules for constructing valid combina-

tions, sequences and structures of the constructs described above.

• Data schema semantics: Here, rules for mapping the data format structures into

elements and relationships of data schemata are specified.

For molecular biological databases, formal and informal descriptions of the

format are common practice for both, allowed constructs and syntax description.

In contrast, data schema semantics are only rarely described. An example is the

UniProt database [9] which provides an XML schema for the mapping of UniProt’s

XML format onto hierarchical structures of XML databases.

Informal descriptions allow to develop parsers manually by interpreting the given

rules, but they are not suitable to generate parsers automatically. For automatic

parser generation, however, a formal format description is indispensable. Formal

descriptions enable machine processing. Examples for appropriate notations from

computer science and bioinformatics are the Document Type Definition (DTD) for

XML or the Abstract Syntax Notation One (ASN.1). ASN.1 is, for example, used

at the National Center for Biotechnology Information (NCBI) for the specification

of data types. The UniProt consortium uses XML/DTD to format flat files, e.g. the

data exchange format of the UniProt database.

Especially for molecular biological databases, XML plays an important role in

data formatting. The following list contains several XML-based data formats [1]:

• Biopolymer Markup Language (BioML) [31]: BioML was developed for mod-

elling the hierarchical structures of organisms.

• Chemical Markup Language (CML) [75]: CML aims at managing different

chemical information in connection with additional information, e.g. publica-

tions.
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• KEGG Markup Language (KGML)5: KGML contains a DTD for the representa-

tion of metabolic pathways including metabolites and enzymes.

• Systems Biology Markup Language (SBML) [47]: SBML is a markup language

for the representation of computational models in biology. It contains structures

for describing subcellular loci (compartments), biochemical reactions and chem-

ical entities involved. Parameters can be declared both globally (for all reactions)

and locally (for a single reaction only). Furthermore, units and mathematical

rules can be specified.

• Taxonomic Markup Language [34]: The Taxonomic Markup Language contains

a DTD for the description of taxonomic relationships between organisms.

Apart from the above mentioned, many more XML-based data formats exist,

e.g. CellML (Cell Markup Language) [20] or MAGE-ML (MicroArray and Gene

Expression Markup Elements).6 The ongoing development of standard formats

for model representation is internationally being coordinated by the COMBINE

initiative.7

3.2.4 Metadata

Not only business companies are losing hundreds of billions of US dollars per

year due to bad data quality [27], this also holds true for other areas, including

the research sector. For a meaningful use of data – not only in running projects,

but also beyond – a high data quality is indispensable. Reaching this aim can be

supported by the substantial use of metadata. Metadata is additional information

provided together with the generated data. One major advantage of the availability

of metadata is that they help to perform promising data analysis using data from

different life science domains. Metadata is (structured) data describing a resource,

an entity, an object or other data. It is used to retrieve, use and maintain a resource, an

entity, etc. Unfortunately, often the acquisition of (primary) data and its subsequent

processing are not well documented. For example, additional information, such

as genotype, development and growth conditions, environmental conditions, tissue

or treatment of biological objects, is missing at all or is described using different

vocabularies. Further relevant information includes statistical methods or software

tools and the parameters applied onto the data. Frequently, this lack of metadata

leads to extra costs or additional personnel expenditures when aiming to reuse

data or reproduce a result, e.g. when being forced to perform the same experiment

multiple times.

5http://www.kegg.jp/kegg/xml/
6http://www.mged.org/Workgroups/MAGE/
7The computational modelling in biology network, COMBINE, http://co.mbine.org/.

http://www.kegg.jp/kegg/xml/
http://www.mged.org/Workgroups/MAGE/
http://co.mbine.org/


82 M. Lange et al.

The problems described above can be downsized by a complete and well-

structured documentation of all steps starting with the acquisition of raw data and

ending with the publication of results. Thus, the annotation of data with metadata

is one important factor for its interpretation, reusability and structuring. This is

reflected by manifold metadata schemata that are used in life sciences, mostly under

the umbrella of the Minimum Reporting Guidelines for Biological and Biomedical

Investigations (MIBBI) project [99]. Reporting guidelines define the minimum

information necessary to be provided with a biological or biomedical experiment.

The textual description of these information guidelines is often complemented by

a data format encoding exactly that information in XML format (see Sect. 3.2.3)

and providing mechanisms to link these XML elements with metadata in external

resources, such as bio-ontologies, or technical information (e.g. file creators or

modification dates for files). In general, it can be subdivided into semantic or

technical metadata.

3.2.4.1 Semantic Metadata

Semantic metadata is closely connected to the scientific data domains and comprises

an own universe of several hundreds of metadata schemata. For instance, in systems

biology, a review summarises 30 different standards for metadata and data exchange

formats [14]. Ontologies belong to semantic metadata. In computer science, an

ontology is a definition of classes (concepts, objects) and their relationships

(attributes, roles) [40]. It is well defined and contains the vocabulary of a data

domain, thus improving the interoperability between systems or the communication

between human beings.

Due to the growing amount of data in life sciences, it gets more and more

important to put this data into relation. Therefore, ontologies are increasingly

used [10]. Examples for life science ontologies are:

• Gene Ontology (GO) [6]: Molecular functions, biological processes and cellular

components

• Trait Ontology (TO) [50]: Phenotypic traits of plants

• Plant Ontology (PO) [7]: Anatomy and developmental stages of plants

• MGED Ontology (MO) [105]: Annotation of microarray experiments

The BioPortal [106] maintains and integrates bio-ontologies that adhere to the

requirements of the OBO foundry for open biological, high-quality ontologies [96].

Ontologies in the BioPortal can be browsed visually, and they contain cross-links

to other OBO ontologies, enabling extensive exploration of biological knowledge,

as well as thorough annotation of data. An annotation is a piece of meta-

information accompanying a data set. It describes or explains the subject or content

it refers to.
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3.2.4.2 Technical and Administrative Metadata

Technical and administrative metadata cover aspects of management and processing

of digital scientific resources. The collection and storage of structured technical

metadata is an important prerequisite for the automatic management and processing

of life science data sets. Technical metadata comprise aspects of how to access files,

i.e. information about the system requirements for use in terms of hardware and

software as well as the unique identification and documentation of the file format in

which the resource exists. Each data set should have a unique, persistent identifier,

which is identified regardless of its location.

For example, in life sciences, there is a deficiency of generally accepted conven-

tions for referencing data records. Proprietary identifiers, such as so-called accession

numbers, are designed as a unique combination of alphanumeric characters. For

example, the proprietary identifier Q8W413 in the UniProt database [69] refers to

the protein beta-fructofuranosidase.8 The enzyme 3.2.1.269 points

to the same entry but is interpreted as standard nomenclature for enzymes. In

The Arabidopsis Information Resource (TAIR), the locus tag At2g3619010 is

an identifier for the coding gene of the same protein in the plant Arabidopsis

thaliana (prefix At). Furthermore, the gene synonym AtFruct6 is an example for

a semantically enriched acronym of a gene: At denotes Arabidopsis thaliana and

Fruct beta-fructofuranosidase.

To overcome this problem, tools have been designed that resolve identifiers

and approaches to standardise technical metadata. Known resolver systems are,

for example, identifiers.org [51] and the UniProt database identifier mapping.11

Popular schemata for technical metadata are the Dublin Core Metadata Element

Set (DCMES),12 accepted as ISO standard 15836, as well as the closely related

DataCite Metadata Schema.13 DCMES was developed by scientists and librarians

to homogeneously describe digital objects using 15 mandatory elements. The

DataCite schema is less strict and comprises only 5 mandatory and 12 optional

elements. However, the most popular way of primary data annotation remains to be

semantically enriched file names.

8http://www.uniprot.org/uniprot/Q8W413
9http://www.expasy.org/enzyme/3.2.1.26
10http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G36190
11http://www.uniprot.org/?tab=mapping
12http://dublincore.org/documents/dces
13http://schema.datacite.org/meta/kernel-2.2/index.html

http://www.uniprot.org/uniprot/Q8W413
http://www.expasy.org/enzyme/3.2.1.26
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G36190
http://www.uniprot.org/?tab=mapping
http://dublincore.org/documents/dces
http://schema.datacite.org/meta/kernel-2.2/index.html
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3.2.5 Database Integration

In general, data integration is a service combining contents of multiple, often

heterogeneous, data sources, thus enabling to gain new insights [107]. In contrast

to the integration of information systems in business companies, data integration

in life sciences mainly focuses on combining data of heterogeneous sources, e.g.

from the World Wide Web. According to [87], heterogeneity can be classified

as (i) heterogeneity on systems level (different system properties of the sources,

e.g. optimiser strategies), (ii) heterogeneity on data model level (use of different

database models, e.g. relational or object-oriented model), (iii) heterogeneity on

schema level (e.g. different representation of similar data) and (iv) heterogeneity on

data level (e.g. different data for similar database objects).

Research in life sciences typically distinguishes two integration approaches [21]:

1. Virtual (or logical) data integration:

This type of integration is often used for web-based data sources. Here, an

integration system sends a query to several data sources and combines the results

into a report at runtime. Since no data is stored locally, the results are always up

to date, but the query performance is usually lower than with the materialised

integration.

2. Materialised (or physical) data integration:

Following this approach, data sources are queried for new data at regular

intervals, and this data is stored locally. The integration system then queries the

local data only, which has a higher performance than querying distributed sources

as with the virtual integration. However, the timeliness of the locally stored data

depends on the update intervals.

In the recent past, typical approaches using the virtual integration were multi-

database systems (MDBS) and mediator-based systems. Multi-database systems

extract data from several separate database systems and present this data using a

homogeneous view [83]. In contrast to these systems, which focus on data stored

in database systems, mediator-based systems [108] aim at integrating data stored

outside of databases, e.g. HTML or flat files. The latter approach is widely used in

bioinformatics. Examples for virtual integration in life sciences are Entrez [90], the

Sequence Retrieval System (SRS) [30] and the Distributed Annotation System [26].

The typical approach using materialised integration is the data warehouse (DWH)

approach which gained popularity in the end of the 1980s [23]. In contrast to OnLine

Transactional Processing (OLTP) systems, which are designed for management of

operative data (no historical data), data warehouses aim at providing non-volatile,

aggregated and time-dependent data for analyse purposes, e.g. decision support.

For setting up a data warehouse, data from different sources is extracted into a

so-called staging area, transformed and then integrated into the data warehouse.

Data marts are department-specific or application-specific and complement DWH,

aiming at answering particular questions. Here, the two contradictory approaches

of Inmon [49] (top-down approach) and Kimball [54] (bottom-up approach)
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are distinguished. According to Inmon, all necessary data is stored in the data

warehouse. Data marts are then derived from the data warehouse. In contrast,

Kimball regards the creation of data marts as the beginning of the warehousing

process. Thus, the data warehouse is a virtual collection of all data marts. Examples

for materialised integration in life sciences are Atlas [92], BioMart [53, 95] or

BioWarehouse [63].

The need for data integration in life sciences is increasing continuously [36]. So

far, the aim of data integration was to provide a homogeneous view onto the inte-

grated data. Recently, a paradigm change can be observed. As described in [19], it

gets more and more accepted that different users need different kinds of data integra-

tion, because the semantics of data depends on its context. This change in thinking

grounds in the fact that the number of scientific questions asked on the available data

increased tremendously (e.g. due to high-throughput technologies). Consequently,

extended possibilities of retrieving relevant information are necessary.

3.3 Information Retrieval

The increasing popularity of information retrieval as a method to handle semi-

structured data and to formulate fuzzy queries correlates with the growth of data

that is available online. This development is also reflected in milestones such as

the triumphant throughout of PubMed as the world’s most important biomedical

literature search engine since 1996 [100].

Because of heterogeneity in both, the schema and the system, it is hardly possible

to use structured query languages, i.e. SQL or OQL, to access the above-mentioned

distributed data. In contrast, the tendency is to apply search engines or information

systems to acquire speedily and precisely the information needed [24, 60, 68]. This

promising technology is effective for knowledge and data published in journal

articles or in its condensed form as hundreds of life science databases [32, 38].

Search engine technology provides efficient and intuitive IR methods to find

relevant data in a collection of distributed, heterogeneously structured and modelled

data repositories. Desktop search engines14 like Windows Search or Strigi are

popular at the scientists’ desktops. Frameworks like Apache Solr15 allow to embed

full text search and relevance ranking into data repositories, as well as faceted

search. The increasing availability and performance of this technology support the

trend to replace classic query forms and Boolean query languages by keyword-based

search and relevance filtering. This replacement gets increasingly important in life

science information systems and is also implemented in primary data repositories,

e.g. the DataCite Metadata Search.

14http://en.wikipedia.org/wiki/List of search engines#Desktop search engines
15http://lucene.apache.org/solr/

http://en.wikipedia.org/wiki/List_of_search_engines#Desktop_search_engines
http://lucene.apache.org/solr/
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Instead of referring to relevance ranking, in the following, the term ranked

retrieval will be used, which expresses the necessity to provide an order for results

from a data retrieval process. The interpretation of the term order is one central

concept of ranked retrieval. Mathematically, it is a partially ordered set R, where R

includes the result of a data retrieval query. Furthermore, for R a binary relation <

indicates that, for certain pairs of elements in the set, one of the elements precedes

the other. In the context of ranked retrieval, the relation r1 < r2 j r1; r2 2 R may have

different definitions. The definition of this order relation is the focus of the ranking.

The order of query results becomes particularly important when a query com-

prises a high number of results. The user should have the possibility to structure and

filter data, which are usually displayed as list of data records. If the data records

comprise many fields with a high number of individual values, the result listing

comprises data excerpts or even a list of access numbers, i.e. IDs. In that case, it is

of particular importance to provide a useful order.

Empirically, the word “useful” could have very different meanings. This meaning

is hardly dependent on the user’s pertinence. There are cases when the order is

defined by ordinal numbers, like publication date or serial numbers. Another order

criteria is the lexicographic order. But numeric or lexicographic ordering is not

necessarily a sufficient ranking criterion. Thus, defining relevance functions to

determine the relevance of a data item and mapping it to an orderable p-value is

one of the major challenges in IR.

In the following sections, two major categories of relevance ranking in life

sciences will be discussed. The first category is the explorative information retrieval

with the focus on an explorative and unbiased retrieval of data over a maximum set

of databases, where the relevance ranking is mainly based on popularity and struc-

ture in the data itself. The second category, semantic information retrieval, is based

on the presence of a model in a predefined network of data records that matches best

to a very focused query. The model uses word associations and property lists.

3.3.1 Explorative Information Retrieval

Explorative information retrieval is a concept which bases on the idea of exploratory

search [70] and represents the activities performed by researchers who are either:

• Unfamiliar with the domain of their goal

• Unsure about the ways to achieve their goals or

• Even unsure about their goals in the first place

In Fig. 3.3, the three major types of search are summarised as lookup, learn,

investigate and classified into the activities lookup search and exploratory search.

Following this argumentation, explorative IR combines diverse methods of

information retrieval, i.e. domain-specific text indexing, relevance feedback, rele-

vance prediction or recommender systems, with human-computer interaction (HCI)

in order to help users exploring data rather than performing lookup searches.
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Fig. 3.3 Common search activities in web search, which are labelled as lookup–learn–investigate
in [70] (©2006 Association for Computing Machinery, Inc. Reprinted by permission)

An up-to-date overview about the research activities on explorative IR can be found

at http://en.wikipedia.org/wiki/Exploratory search. Studies as the one described in

Marti Hearst’s book on Search User Interfaces [43] show that search behaviour

evolves over time and is strongly influenced by the presence and capabilities

of search engines. The main search engine experience of users is still contact

with relevance-ranked search. To our experience, current prevalent strategy in bio

information retrieval is ranked or Boolean search, combined with metadata-driven

browsing and recommendation for exploration of data sets. However, new types of

interfaces that emphasise exploratory search are also up-and-coming.

3.3.1.1 Relevance Ranking

“Just head for Google or Entrez and get the related web page or database entry.” This

is being said among biologists who search information about a certain object [24].

However, issues like finding reliable information about the function of a protein,

or identifying the protein that is involved in a certain activity of the cell cycle, are

much more challenging tasks. One has to choose (or screen) more than 1,512 life

science databases and billions of database records [32].

Intuitively, the first choice for information acquisition are web search engines.

Web site ranking techniques order query hits by relevance. However, trying to apply

ranking methods that were developed to rank natural language text or WWW sites

to life science content and databases is questionable [81]. For example, the top-

ranked Google hit for arginase is a Wikipedia page. This is because the page is

referenced by a high number of web pages or Google assigned a manual defined

priority rank. Here, the hypothesis is: A high hyperlink in-degree of a page means

high popularity and high popularity means high relevance [61].

http://en.wikipedia.org/wiki/Exploratory_search
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In order to find scientifically relevant database entries, scientists need strong

scientific evidence in relation to the specific research field. A dentist has other

relevance criteria than a plant biologist or a patent agent. The intuitive and

commonly used way at the scientist’s desktop is query refinement. Criteria like who

published in which journal, for which organism, evidence scores and surrounding

keywords are of major importance. Even complete search guides are published, e.g.

for dentists [22].

Other ranking algorithms use term frequency – inverse document frequency (TF–

IDF) as ranking criteria. Apache Lucene16 is a popular implementation of this

concept and is frequently used in bioinformatics, like LuceGene from the GMOD

project [77], which is used for the EBI search frontend EB-eye. The TF-IDF

approach works well but misses the semantic context between the database entries

and the query.

Another approach is probabilistic relevance ranking [48], where probabilistic

values for the relevance of database fields and word combinations have to be

predefined. In combination with a user feedback system, the probabilistic approach

shows promising ranking performance [4].

Semantic search engines use methods from natural language processing, seman-

tic tagging and dictionaries to predict the semantically most similar database entries.

Such conceptual search strategies, implemented in GoPubMed [25] or ProMiner

[41], are frequently used algorithms in text mining projects.

After choosing a ranking algorithm for a search engine, the next task is to define

possible ranking criteria. Conventional search engines use several ranking criteria.

Andrade and Silva consider the similarity between the result entry and the search

query itself as a top-ranking criterion [5]. The importance of linkage in ranking has

been put forward by PageRank, its variations and ranking extensions [81], which

now constitute a mature field.

Greifeneder [39] proposes several possible relevance criteria, including the

absolute or relative frequencies of the keyword(s) of the search query, the scope

or the actuality of the web page constituting the query result.

Schöch also mentioned the shortness of a URL and the order and the proximity

of the search query terms as a criterion [88]. Both Greifeneder and Schöch suggest

to check the entries for their popularity [39, 88]. This idea is based on centrality

computation, which is an important research area in network analysis. One popular

example for this usage is the PageRank algorithm of Google [15, 61].

3.3.1.2 Recommender Systems

In its most common formulation, the recommendation problem is reduced to the

problem of estimating ratings for the items that have not been seen by a user and

would be of interest. Intuitively, this estimation is usually based on the ratings given

16http://lucene.apache.org

http://lucene.apache.org
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Fig. 3.4 Recommender systems used in the EBI’s EB-eye IR system [37] (left) and NCBI PubMed
literature search (right) – cross database search data or abstracts for the term “breast cancer” result
in more than 486,000 hits in EBI databases and more than 255,000 in PubMed abstracts. The
queries were executed at 2013/01/25. In PubMed, “Related searches” and “Titles with your search
terms” suggest references using collaborative filtering. EB-eye makes intensive use of facets, which
may be applied to incrementally refine the query and related documents using vector space model

by this user to other items and on some other information [3]. In recommender

systems, the utility of a data record is usually represented by a rating, which indicates

how a particular user liked a particular data set. An example of a user-item rating is

PubMed’s “Related searches” and “Titles with your search terms” (see Fig. 3.4).

Recommendation in life science IR can be divided into the phases query

expansion and related documents prediction.

The first phase is query expansion. It describes the process of adding terms to

or deleting terms from the original query. Here, a recommender system should

anticipate from users strategies to find a pearl – the citation pearl growing strategy

and the building blocks strategy [28]. In case of the building blocks strategy, the user

divides the information retrieval problem into different concepts and assigns one or

more reference terms to each concept. This is embedded into an incremental process

of refinements until the most relevant document is selected by the user as local

optimum. The citation pearl growing strategy uses intermediate query result, which

is retrieved by a broad query, and interactively pick terms to expand the original

query. The concepts can be implemented in automatic query expansion systems

which make use of thesauri, ontologies and synonym lists and, in the case of pearl
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picking, use top-ranked query results, for example, by collaborative user rating, and

pick the relatively most frequent terms in the top documents to expand the query. An

add-on is the syntactic expansion of single terms. This is done by computing edit

distances to words in a dictionary, phonetic or word stem expansions. A popular

implementation of these concepts is the facets. EBI’s EB-eye IR system [37] and

the information retrieval portal GoPubMed [25], which use the Gene Ontology [6]

as thesaurus, are examples of successful application of facets in bioinformatics.

Section 3.3.1.3 include some more elaborations to HCI, in particular facets.

The second phase is related documents prediction (also known as “more like

this” or “page like this”). Based on a query result with relevance-ordered database

records, the task of the recommender system now is to extend the result set

with related documents. These related documents are not necessarily part of the

core result set. There are five major methods proposed to predict such neighbour

documents:

1. Shared terminology: Significant number of shared words; distance scoring using

vector space model.

2. Part-of data cluster: Data records are part of the same data partition, i.e. synthetic

genes and same species.

3. Cross references: Identifiers or explicit hyperlinks build data networks; distance

scoring is used to predict neighbours [74].

4. Collaborative filtering: Follow users, who already (successfully) refined queries;

filter user by client clustering, i.e. origin domain, country and user profile.

5. Content-based recommendation: Suggest data records, which were selected in

past in a close query session/time context.

The above methods are rarely implemented in life science IR systems. Some of

them apply shared terminology, cross references and part-of clusters, e.g. PubMed

or EB-eye.

3.3.1.3 Human–Computer Interfaces

Marti Hearst gives in her book a literature-based overview about challenges in

information retrieval interface design [43]. One interesting observation that she

makes and that is easily verified is that even after 15 years of HCI in web search,

general-purpose web search interfaces are still based on a one-line entry of search

terms coupled with some query suggestions.

However, in the past 10 years, a new search paradigm emerged, called Hierar-

chical Faceted Search (HFS) [42]. This search paradigm is especially convincing

for small, hand-picked data sets, i.e. the classic Nobel Prize Winners example

available.17 However, it has shown viability also for huge data sets such as search

results in online stores.

17http://flamenco.berkeley.edu/demos.html

http://flamenco.berkeley.edu/demos.html
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The goal of HFS is to enable users to explore data sets. It does so by guiding

the user, as well as efficiently communicating progress of the search and a position

within the collection. HFS is an improvement on classical hierarchical search. How

this works can simply be illustrated using a search for car by brand, size class, and

engine type. Each car has a given brand, a size class and engine type. They are facets

describing the car.

Classifying a given set of cars into one hierarchy, one would have to choose

which facet to put first. For example, should be browsed by engine type or rather by

size class first? Once the hierarchy is chosen, every user will have to go down the

predefined path to browse the cars collection.

The base innovation in HFS is to avoid this decision; instead it is accepted that

each item in the cars collection has multiple facets. Each facet corresponds to a

hierarchy of subsets, and each car is member of one subset for each of its facets.

The faceted search interface enables the user to choose the important facets and to

choose to which subsets a query result has to belong at the same time. For example,

users want a small car, they do not care about the engine type and it must be a

Chevrolet. They thus picked one subset of the size facet and one for the brand facet.

To get a feeling of the amazingly simple and intuitive browsing that can be

achieved this way, try the flamenco Nobel Prize Winners demo. Please note how

details play a big role in faceted search, for example, the display of query result

sizes before the query in order to give a preview of what can be expected when

clicking on a given facet.

While this example shows the advantages of faceted search, there are some

inconveniences that keep faceted search from wider use for large data collections:

• Too many facets and too large fan-out of facet hierarchies: In free data collec-

tions, there is a huge amount of potential facets. It is impossible to show all of

them on a screen.

• Absence of high-quality facet hierarchies: Annotated by hand, one can design

high-quality facets; however, automatic classification in high-quality facets is

hard.

GoPubMed (see example at Fig. 3.5) exemplifies strengths and challenges of

faceted search for biologists: On the one hand, the interface enables browsing via

facets, using the well-developed taxonomies that biology has to offer; on the other

hand, browsing uses a lot of its intuitivity with the huge fan-out of bio-ontologies.

GoPubMed counters this via emphasised display of top concepts and the possibility

for logged-in users to define favourite terms. Other possibilities of countering the

fan-out problem are subject of ongoing research. However, some systems recently

started to include elements of faceted search in addition to classic search, e.g. the

“browse targets” functionality in ChEMBL,18 or autocompletion with display of

result size previews in SABIO-RK.19

18https://www.ebi.ac.uk/chembl/malaria/target/browser/classification
19http://sabio.h-its.org

https://www.ebi.ac.uk/chembl/malaria/target/browser/classification
http://sabio.h-its.org
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Fig. 3.5 GoPubMed example search. Notice how care is taken to limit the fan-out of trees, keeping
it down to only 20 children of the “Knowledge Base” tree. However, already 20 entries have to
be read one by one. Logged-in users could counter this by using bookmarked terms for future
searches, thus creating search trails

3.3.1.4 The Explorative IR System LAILAPS

LAILAPS stands for “Life Science Application for Information Retrieval and

Lightweight API for Portable Search Engines” and as metaphor for the Greek

mythological dog who never failed to catch the prey what he was hunting. In IR

semantics, the aim is to provide a tool that supports the information discovery

in the world’s life science databases. This bold goal must meet continuously

changing requirements. Some are gained from over 10 years experience in dozens

of data management, database integration and analysis projects. The result is the

development of the LAILAPS IR system. This project has been running for 6 years

and combines state-of-the-art methods and concepts from the computer sciences,

life sciences and bioinformatics. Empirically collected user requirements from

bioinformaticians, IT-skilled biologists as well as less experienced students are

used to design an intuitive user interface and feedback system. The first LAILAPS

version was released in 2007 as an project that was coordinated by an European plant

science company. Motivated by insufficient relevance ranking and the high number

of unsorted query results from database query systems, the aim was to implement a

search engine for protein databases with a user-specific relevance ranking model.

The approach was to import major public protein databases – i.e. UniProt,

PIR and KEGG – into an in an EAV schema, decompose and tokenise the text,
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Table 3.1 LAILAPS feature set to score database entries

Feature class Description

Attribute Attribute in which the query term was found

Database Database origin of the entry

Frequency Frequency of all query terms in the entry and attribute

Co-occurrence Expresses how close and in which order the query term were found

Keyword Rating of keyword semantics sorrounding the query hits

Organism Organism to which the entry relates to

Raw data length Length of the raw data, which is embedded in the database entry

Text position Portion of the attribute covered by the query term

Synonym Information if the hit was produced by an automatic synonym expansion

compute a reverse text index and compute scores for data entities. The concept

of the LAILAPS query system is to support lists of search terms and phrases.

A search result is a relevance-ranked list of database entries. Each entry is displayed

in form of an rich snipped that summarised the content in one text line. The basis

of the relevance ranking is a set of nine classes of features, which are shown in

Table 3.1. The quantification of these features is computed for each result record as

static entry properties or as from the properties of the text index search itself. The

parameterisation of the relevance prediction algorithm is based on user feedback.

The user may explicitly rate the page quality or the web browser tracks the user

actions and estimates the page quality. This reference data is used to train user-

specific neural networks, which predict from feature scores the page relevance. The

initial training has been performed with a set of 1,089 manually relevance-rated

protein entries that results from 19 queries [60]. A 80=20 cross validation shows

a precision between 0.62 and 0.81, a recall of 1.00 and an f -score between 0.76

and 0.90.

The screenshots in Fig. 3.6 display the major components of the LAILAPS web

application. A portlet version is available to embed LAILAPS into a custom web

page.

Since 2011, the LAILAPS development is focused to support the explorative IR

in a genomic context. Here, LAILAPS is used to bridge genomic metadata, like

functional annotation to genes or other regions at a genome. The concept is:

1. Compile a domain specific list of data hubs, which acts as information retrieval

core.

2. Text search and relevance ranking.

3. Reverse identifier lookup.

The implementation of this concept for the genomic data domain underlines the

flexibility of LAILAPS concept. Here, the world’s major resources of genomic data

annotation are compiled in a list of eight major databases: Trait Ontology, Pfam,

Gramene, Plant Ontology, SwissProt, TrEMBL, Gene Ontology and PDB. Those

are indexed and linked back to the genomics data, i.e. the Genebank Informa-
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Fig. 3.6 The LAILAPS search engine for integrated search in transPLANT genomics data
network. Part (1) shows the entry point of the search engine. In screenshot (2), a result of a keyword
search for “barke”, a genotype of barley, is shown. The result contains relevance-ranked hits in
indexed genome annotation data hubs (UniProt, Gene Ontology, PFAM, etc.) and related linked
genomic resources, i.e. Ensembl, GnpIS, CR-EST. In screenshot (3), the integrated data browser
and feedback system, which act as input for the incremental training of the relevance predicting
neural network

tion System (GBIS) of the German ex-situ Genbank,20 EBI integrated genomics

information system Ensembl,21 and the INRA integrated genomics information

system GNpIS22 by the French INRA institute. The results of search queries

are relevance-ordered links to genomic data. LAILAPS is part of the transPlant

consortium to build a transnational plant genomic infrastructure and supported by

the European Commission within its 7th Framework Programme, under the thematic

area “Infrastructures”. The implementation of this IR infrastructure is available at

http://lailaps.ipk-gatersleben.de.

20http://gbis.ipk-gatersleben.de/gbis i/home.jsf
21http://www.ensembl.org
22http://urgi.versailles.inra.fr/gnpis

http://lailaps.ipk-gatersleben.de
http://gbis.ipk-gatersleben.de/gbis_i/home.jsf
http://www.ensembl.org
http://urgi.versailles.inra.fr/gnpis
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3.3.2 Semantic Information Retrieval

The focus of this book chapter has so far been on the integration and retrieval of

large-scale bioinformatics data. Another type of data that needs to be integrated are

computational simulation models. During the past decades, modelling and simula-

tion techniques have been used to answer biological questions. A consequence is the

development of computational models, often in the area of systems biology. Systems

biology is the study of complex biological systems by means of computational

approaches and methods. A computational model of a biological system then

represents aspects of that system, using, for example, mathematical equations. The

number of available models has grown steadily over the last decade, and so has the

models’ complexity [44]. Models are being shared and reused in standard formats

[102], so-called model representation formats (see Sect. 3.3.2.1). The increasing

number of models is stored and managed in model repositories such as BioModels

Database or PMR2 (see Sect. 3.3.2.2). To handle the models’ increasing complexity,

semantic annotation has been established as a tool to describe a model’s nature.

The novel research field of semantic systems biology investigates how to use these

annotations to improve model management tasks such as model retrieval, model

combination or version control. Section 3.3.2.3 focuses on annotation-based model

retrieval and ranking.

3.3.2.1 Model Representation Formats and Standards

To reuse existing model code, the code itself must, first, be made available in model

databases. Second, it must be encoded in exchangeable standard formats, which

can then be interpreted by software tools. BioModels Database [66] is one example

of an open model repository that freely distributes models in standard formats.

Frequently used model representation formats are all XML based; examples are the

aforementioned Systems Biology Markup Language (SBML [47]), CellML [20] or

NeuroML [35] for models of neuroscientific investigations. These standard formats

encode the necessary information to rebuild the model structure and underlying

mechanisms in a software environment, e.g. for simulation studies.

Together with the model, a whole plethora of meta-information is provided,

including the reference publication, the model authors, the semantics of the encoded

entities, the model curation state, the underlying mathematics or the graphical

representation of the model. Often, meta-information is encoded in bio-ontologies

[12] (e.g. Gene Ontology, GO [6], the Systems Biology Ontology (SBO) [65] or the

NCBI Taxonomy23) and linked to model entities through semantic annotations.

Model annotations mostly refer to technical and administrative information

(see Sect. 3.2.4.2), while annotations of model components point to background

23http://www.ncbi.nlm.nih.gov/Taxonomy/

http://www.ncbi.nlm.nih.gov/Taxonomy/
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knowledge from biology or chemistry. The annotation information may either be

contained in the model or it may be stored in an external file (see Sect. 3.2.4.1). As

well as the model encoding itself, the annotation would best be provided in a stan-

dardised form, e.g. using the Resource Description Framework (RDF) [62]. RDF

can be interpreted by a computer, and therefore RDF-encoded meta-information can

automise tasks such as mode search, comparison, merging or clustering [44,57,91].

The ontology terms are in addition highly linked and therefore allow to infer further

knowledge about the model.

Semantic annotations in RDF should follow the recommendation for model

annotations, called MIRIAM guidelines [64]. The MIRIAM guidelines describe

which additional information should be provided together with the model code and

how it should be encoded. The SBML standard follows these recommendations

and stores annotations as triplets of model entities, qualifiers and URIs pointing

to an ontology entry (a so-called identifier [59]). For example, the XML element

species represents an entity taking part in a biochemical reaction. The relation

between the annotated XML element, e.g. the species, and the ontology refer-

ence, e.g. a GO identifier, is expressed also using standardised qualifiers.24 The

strongest relation is build up by the IS qualifier, i.e. the XML element IS exactly

what is described in the ontology entry pointed to by the URI. Several weaker

qualifiers exist, e.g. isVersionOf.

The meta-information encoded in model annotations is a major resource for

information retrieval tasks. One prominent example is improved model search. For

example, a user searching for models dealing with caffeine may express this search

by typing caffeine or C8H10N4O2, or 1,3,7-trimethylpurine-2,6-

dione. A retrieval system is capable of finding the URIs pointing to ontology

entries dealing with caffeine and relating them back to models that contain

these URIs in their annotations. The basis is the creation of an index of terms

from available ontology information. Researchers may use these terms, which best

describe the nature of a particular molecule, to perform keyword-based searches.

Keywords are more intuitive than cryptic model URIs or computer-generated entity

names. If a model is properly annotated with ontology information about caffeine,

then the IR-based search will also cover synonyms and external descriptions.

Consequently, it is possible to retrieve models based on keywords that do not

necessarily occur in the model code itself.

3.3.2.2 Exemplary Model Databases and Repositories

Models in exchangeable standard formats need also be stored and made publicly

available to the modelling community to foster reuse. A number of databases and

repositories have been established over the past years. The following is a brief

review of selected model repositories [102].

24http://www.ebi.ac.uk/miriam/main/mdb?section=qualifiers

http://www.ebi.ac.uk/miriam/main/mdb?section=qualifiers
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One distributor of freely available SBML models is BioModels Database [66]. To

date it contains 436 curated and 497 non-curated models25 and several thousands of

automatically generated pathway models.26 The majority of models in BioModels

Database are concerned with signal transduction and metabolic processes. All

models of the curated branch are guaranteed to be valid SBML and to reproduce the

results described in the accompanying paper. Internally, metadata is extracted and

stored in a MySQL database. Metadata includes information about the submission

and modification dates of a model file, authors’ information, references and anno-

tations encoded as the aforementioned MIRIAM identifiers. Additionally, Apache

Lucene is used to index a subset of model elements and metadata. BioModels

Database supports browsing and searching for models. One way to browse is

the list of available models (sorted by BioModels Database ID (BMID), model

name, publication ID or date of last modification). Another way is to use a tree-

structured browser that is based on GO terms. When searching for a model, a

so-called multistep search is performed [66]. The system works in three sequential

steps. Given a search term, first, the metadata, publications and the annotations

stored in the MySQL database are queried. The result of this search is a set of

BMIDs. Secondly, the stored SBML XML files are queried, using the previously

generated indexes and parsing information such as the SBML notes tag. The

returned BMIDs are added to the result set. If the search included query terms from

external resources, then, thirdly, supplementary information is searched, using either

information available in the local MySQL database or web services. For the specific

case of searching for a term in a taxonomy, the taxonomy tree is also traversed for

neighbour terms, and model IDs associated with that term are added to the result

set. The output is generated by using the BMIDs to query the MySQL database for

the formerly extracted metadata that is necessary for display on the web site. Search

results are returned in an unordered result set.

The Physiome Model Repository (PMR2, [109]) is an online repository for

CellML models at different stages of curation. The Plone-based Content Manage-

ment System contains models of a wide range of different biological processes,

including signal transduction pathways, metabolic pathways, electrophysiology,

immunology, cell cycle, muscle contraction and mechanical models [67]. PMR2

intends to foster the processes of model curation and annotation so that ideally all

models replicate the results in the published paper and the search for models and

elements within models is facilitated. Models in the CellML Model Repository

are browsed by different (physiological) categories, including cell cycle, signal

transduction or metabolism. A CMS-wide full-text search allows for simple free

text search. A search by particular model features (e.g. specifically by author

or publication year) is not possible. Search results are returned in an unordered

result set.

25Twenty-fourth release of BioModels Database, December 2012.
26http://code.google.com/p/path2models/

http://code.google.com/p/path2models/
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ModelDB [45] is a format-independent database for curated models related

to computational neuroscience. It provides authors a repository for the storage

of models, in particular in preparation for submission in neuroscience journals.

ModelDB accepts models in any language for any environment [45]. It keeps the

originally submitted model files, that is, the complete code specifying the attributes

of the original biological system represented in the model, including interface

and control code to run the model in the associated simulation environment, and

a non-standardised readme text file explaining briefly how to use the provided

computer code. Additionally, ModelDB stores model meta-information, including

a concise statement of the model purpose, how to use it and a complete citation

of the reference publication [45]. The underlying database management system

is Oracle 10. as an instance of the Entity–Attribute–Value/Classes–Relationship

framework (EAV/CR, [71]) for data representation. The search functionality in

ModelDB relies on the meta-information entered by the model submitter. Search

by author name or accession number (ModelDB ID) is supported. The complete list

of models can be returned sorted by the model name or by the author. Additionally,

some predefined queries regarding different criteria such as cell type or simulators

are available. However, the queries do not incorporate the model files themselves;

as such a search on the model code is not possible. The meta-information is not

standardised, but consists of partially predefined strings and partially manually

entered data. Third-party knowledge is not incorporated in the search process; the

submitted models are not annotated.

JWS Online Model Database is part of the JWS Online Simulator [78], a web-

based simulator for biochemical kinetic models. The model repository serves as

the maintainer for a number of kinetic models that can be interactively run online. It

supports the search for SBML models by a limited number of characteristics, includ-

ing the author, publication title and journal, organism or model type. A web-based

tool offers a searchable categorisation of models in the repository, distinguishing,

for example, between cell cycle models and metabolism. A full-text search is not

supported. Search results are returned ordered by author name. As there does not

exist a publication on the technical background of the model repository, further

information about the backend of the provided interface cannot be provided.

3.3.2.3 Model Retrieval and Ranking

A common shortcoming of all above mentioned model repositories is their limited

ability to retrieve and rank models. A query containing domain-specific keywords

retrieves an unordered set of models. Thus, it is up to the user to browse the

results and inspect the models manually. The keywords searched for are not

necessarily present in a model itself; however, they might be related to a model

by an annotation. Progress in model search has been made with recently developed

IR methods for ranked model retrieval [44]. We elucidate here how a keyword-

based model search retrieves ranked results using the aforementioned model from
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Fig. 3.7 This figure shows what model information is stored into the model and semantic index.
Additionally, the search is expanded to retrieve models according to their biological content

BioModels Database.27 This SBML-encoded model contains five compartments,

five species, five rate rules and one assignment rule. Even though the model

is all about caffeine (see example from Sect. 3.3.2.1), related keywords like

C8H10N4O2, 1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione

or guaranine will not retrieve the model at all. This problem is solved by

incorporating a model annotation. Figure 3.7 shows an excerpt of the example

model. The model index holds information directly encoded in the model, i.e. the

model’s name, species or compartment names and also URIs used to annotate model

entities. The semantic index in addition stores all URIs and links back to models.

Here the textual content behind each URI is resolved and indexed.

The model retrieval is then performed using multiple steps. First, the specific

query is sent to the model index. If no models or only models matching poorly on

the query are retrieved, the search can be refined using the semantic index. Here, the

keywords are used to identify matching URIs used to annotate models. As URIs link

back to their corresponding models, it is possible to retrieve models using keywords

not encoded in the model itself. Such a query expansion is shown in Fig. 3.7 where

the term caffeine is used to add URIs to the original query. After all matching

models are retrieved, a score is computed for each match. The score mostly relies

on the concept of term frequency and inverse document frequency (see Sect. 3.3 for

explanation). However, also the importance of certain model components is taken

into account, e.g. a species is more important than a parameter value. In case of

27http://www.ebi.ac.uk/biomodels-main/BIOMD0000000241

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000241
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URIs, also the relation between URI and annotated entity denoted by the qualifier is

taken into account. A deeper explanation is given in [44]. The described approach

can be tested on BioModels Database.

Additional possibilities for model search emerge if the networks spanned by

several ontologies are integrated. Here, the so-called cross-links can be established

and evaluated. One approach is the Bio2RDF28 project which makes use of the vast

information encoded in life science databases. The basic idea is to convert and to

link the database contents with semantic web technologies [76]. After converting

and linking, each database provides a SPARQL point [80]. The SPARQL point

allows to create sophisticated queries on multiple data providers who also offer

a SPARQL point. As a result, a number of RDF-triples matching the query are

retrieved. Bio2RDF heavily uses semantic web technologies, allowing for automatic

traversal through the network. An integrated network of ontologies can be used with

OWL-based reasoning methods to identify model similarities (e.g. [46]).

In the ranked retrieval approach, which is closely related to a hierarchical faceted

search from Sect. 3.3.1.3, the starting point when querying such a network of

ontologies is one particular ontology entry, e.g. xanthine. If a user is interested in

models revealing information about xanthine and its derivatives, a URI pointing

to the xanthine entry is fed into the system. Thus, the descendants are retrieved

and added up, along with inter-ontology links for the specific entry, to form a

query. Finally, the query is sent to the model index, and a ranked list of models

is retrieved.

3.4 Summary

Due to the increasing demands for data management in the life sciences, information

retrieval is no longer just a buzzword. It has instead become a core concept in

bioinformatics and related research fields. However, while project proposals still

continue to ask for more storage in their budget plans, the aim should be to develop

methods for more efficient use of storage. The mere drop of files to the largest

possible secondary storage devices, i.e. hard drives or cloud storage solutions,

could mean a dead end. Current practice is the storage of working files using a

sophisticated naming system for files in combination with Microsoft Excel sheets to

link some metadata. This is particularly true for many wet lab desks, and it may be

suitable for personal- or even-group level data maintenance. The drawbacks of this

system, however, become obvious in its publication process. Highly personalised

data representation makes the data only discoverable by insiders, computer scientists

or skilled bioinformaticians. The data of interest first needs to be transferred into

well-modelled, granular structured and well-interfaced database systems before

being reused. A main argument for data reuse is that the distribution of knowledge

and later processing by computational analysis is essential to all scientific work.

28http://bio2rdf.org/

http://bio2rdf.org/
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In order to meet the demands expressed above, this chapter gave an overview of

core methods and technologies for modern information management in life sciences.

The first focus was on databases and information systems. In this context, the change

from flat file data exchange to relational database modelling over static database

integration approaches to flexible data networks using semantic technologies has

been described. Particularly exciting is the vision of a holistic view of a universe of

thousands of single yet integrated, well-structured databases. This is, in fact, the

real value of the data collected so far. It is not in the form of daily reinvented

project-related scripts. The development of such scripts demands time and expert

knowledge, and sometimes magic parameters and access paths are used. In contrast,

reusable frameworks such as open templates for a workflow-driven data analysis

should be preferred. The objective here is a sufficient standardisation and semantic

enrichment of the data.

Obviously, the creation of reusable frameworks is a laborious and costly process.

However, the overall gain for science will be even bigger. Therefore, lab staff needs

to be motivated to use lab information systems and to maintain their protocols,

observations and files in database systems. It continues at the scientist’s level, where

the data streams should be consolidated and properly semantically tagged, long-

term citable stored and linked in a scientific publication as supplemental material,

preferable in the already established domain databases. Finally, bioinformaticians

should place emphasis on the code and interface quality. Besides coding, scripting

and data analysis under time pressure, the potential lies in well-documented, object-

oriented developed and well-tested software as well as in the use of standard data

access protocols and interfaces. This enables the global scientific community to

extract all possible knowledge from the existing data.

In addition to the granular and integrated access to globally distributed data,

the selective access to information and their extraction is very important. Not the

mere of data volume matters. The high number of, on the first view separated, but

from a different perspective overlapping, data domains is often the most important

cost factor for information retrieval. It could be argued that the actual core of the

information retrieval is to find data and ultimately obtain information. This concern

is mainly reflected in the section information retrieval. The section has been written

with a focus on techniques and actual systems. Here, two most interesting aspects

were described in summary – the exploratory and the semantic retrieval.

The focus of the first is on relevance ranking in a set of data query results

and recommender systems to improve the query sensitivity and to filter the most

important data items in respect to the user’s needs. The second focus is on semantic

information retrieval, such as the use of metadata or semantic networks and, finally,

semantically interpreted data queries.

In this chapter, no evaluations of or recommendations for specific methods or

systems were made. This is due to the fact that such evaluations strongly depend

on actual applications, which are existing in a wide variety in life sciences. Instead,

an extensive list of references of relevant sources in primary literature as well as of

web sources was added, which should be seen as a starting point of own detailed

studies of the readers.
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WWW Link List

Resource Brief description WWW link

PubMed PubMed comprises citations for biomedical
literature

http://www.ncbi.nlm.
nih.gov/pubmed

DBLP The Computer Science Bibliography provides

bibliographic information on major computer
science journals and proceedings

http://dblp.uni-trier.de

SOAP The Simple Object Access Protocol is a protocol
specification for exchanging structured
information in computer networks

http://www.w3.org/TR/
soap

REST Representational State Transfer is a style of
software architecture for distributed systems
such as the World Wide Web

http://www.ics.uci.
edu/�fielding/pubs/
dissertation/rest arch
style.htm

KGML KEGG Markup Language (KGML) is an
exchange format of the KEGG pathway maps

http://www.kegg.jp/
kegg/xml

MAGE MicroArray and Gene Expression MAGE aims
to provide a standard for the representation of
microarray expression data

http://www.mged.org/
Workgroups/MAGE

COMBINE COMBINE (Computational Modeling in Biology
Network) is an initiative to coordinate the
development of the various community
standards and formats for computational
models

http://co.mbine.org

UniProt UniProt provides a comprehensive, high-quality
and freely accessible resource of protein
sequence and functional information

http://www.uniprot.org/
uniprot

ENZYME The Enzyme nomenclature database (ENZYME)
is a repository of information relative to the
nomenclature of enzymes

http://www.expasy.org/
enzyme

TAIR The Arabidopsis Information Resource (TAIR)
maintains a database of genetic and molecular

biology data for the model plant Arabidopsis
thaliana

http://www.arabidopsis.
org

DCES The Dublin Core Metadata Element Set (DCES)
is a vocabulary of 15 properties for use in
resource description

http://dublincore.org/
documents/dces
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(continued)

Resource Brief description WWW link

MDS The DataCite Metadata Store (MDS) is a
service for data publishers to mint DOIs and
register associated metadata

http://mds.datacite.org/

Wikipedia List of
Search Engines

List of search engines, including web search
engines, selection-based search engines,
metasearch engines, desktop search tools and
web portals and vertical market web sites
that have a search facility for online
databases

http://en.wikipedia.org/
wiki/List of search
engines

Apache Solr SolrTM is the popular, blazing fast open-source
enterprise search platform from the Apache
LuceneTM project

http://lucene.apache.org/
solr

Explorative IR Wikipedia overview about the research
activities on explorative information retrieval

http://en.wikipedia.org/
wiki/Exploratory search

Apache Lucene The Apache LuceneTM project develops
open-source search software

http://lucene.apache.org

Flamenco Flamenco search interface framework has the
primary design goal of allowing users to
move through large information spaces in a
flexible manner

http://flamenco.berkeley.
edu

Malaria Data Tar-
get Classification
Hierarchy

Example of faceted search in Malaria Data in
addition to classic search

https://www.ebi.ac.uk/
chembl/malaria/target/
browser/classification

SABIO-RK SABIO-RK is a curated database that contains
information about biochemical reactions and
their kinetic rate equations with parameters
and experimental conditions

http://sabio.h-its.org

LAILAPS LAILAPS (Life Science Application for
Information Retrieval and Lightweight API
for Portable Search Engines) aims to support
the information discovery in the world’s life
science databases

http://lailaps.ipk-
gatersleben.de

Ensembl The Ensembl project produces genome
databases for vertebrates and other
eukaryotic species and makes this
information freely available online

http://www.ensembl.org

GBIS/I Query portal to retrieve information from the
German federal ex situ seed collection

http://gbis.ipk-
gatersleben.de/gbis i/
home.jsf

GnPIS Genetic and Genomic Information System is a
tool aiming to provide simple and fast access
to the data located in all URGI (plant and
fungi data integration) databases

http://urgi.versailles.inra.
fr/gnpis

NCBI Taxonomy The Taxonomy Database is a curated
classification and nomenclature for all of the
organisms in the public sequence databases

http://www.ncbi.nlm.nih.
gov/Taxonomy
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(continued)

Resource Brief description WWW link

BioModels.net
qualifiers

The qualifier of an annotation should reflect the
relationships between the biological objects
represented by the model element and the
annotation

http://biomodels.net/
qualifiers

path2models The purpose of the project is to systematically
generate mathematical models corresponding
to the entire KEGG pathways and submit them
to BioModels Database

http://code.google.com/
p/path2models

BioModels
Database

BioModels Database is a repository hosting
computational models of biological systems

http://www.ebi.ac.uk/
biomodels-main

Bio2RDF Integration of ontology networks into biomodel
search

http://bio2rdf.org/

Identifiers.org Identifiers.org is a system providing resolvable
persistent URIs used to identify data

http://identifiers.org

SPARQL Query
Language

SPARQL can be used to express queries across
diverse data sources, whether the data is stored
natively as RDF or viewed as RDF via
middleware

http://www.w3.org/TR/
rdf-sparql-query
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32. Fernández-Suárez XM, Galperin MY (2013) The 2013 nucleic acids research database issue

and the online molecular biology database collection. Nucl Acids Res 41(D1):D1–D7
33. Geiger K (1995) Inside ODBC: [Der Entwicklerleitfaden zum Industriestandard für

Datenbank-Schnittstellen]. Microsoft Press, Unterschleissheim
34. Gilmour R (2000) Taxonomic markup language: applying XML to systematic data. Bioinfor-

matics 16(4):406–407



106 M. Lange et al.

35. Gleeson P, Crook S, Cannon R, Hines M, Billings G, Farinella M, Morse T, Davison A, Ray
S, Bhalla U et al (2010) Neuroml: a language for describing data driven models of neurons
and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000815

36. Goble C, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed
Inform 41(5):687–693

37. Goujon M, Valentin F, Miyar T, McWilliam H, Lopez R (2007) The EB-eye. EMBnetnews
13(4):18–21

38. Gray J (2007) Jim gray on eScience: a transformed scientific method. Retrieved
from http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th paradigm book
jim gray transcript.pdf

39. Greifeneder H (2010) Erfolgreiches SuchmaschinenMarketing: Wie Sie bei Google, Yahoo,
MSN & Co. ganz nach oben kommen, 2nd edn. Gabler Verlag

40. Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis
5(2):199–220

41. Hanisch D, Fundel K, Mevissen HT, Zimmer R, Fluck J (2005) Prominer: rule-based protein
and gene entity recognition. BMC Bioinform 6(Suppl 1):S14

42. Hearst M (2006) Design recommendations for hierarchical faceted search interfaces. In: ACM
SIGIR workshop on faceted search, Seattle

43. Hearst M (2009) Search user interfaces. Cambridge University Press, Cambridge/New York
44. Henkel R, Endler L, Peters A, Le Novère N, Waltemath D (2010) Ranked retrieval of

computational biology models. BMC Bioinform 11(1):423
45. Hines M, Morse T, Migliore M, Carnevale N, Shepherd G (2004) Modeldb: a database to

support computational neuroscience. J Comput Neurosci 17(1):7–11

46. Hoehndorf R, Dumontier M, Gennari JH, Wimalaratne S, de Bono B, Cook DL, Gkoutos
GV (2011) Integrating systems biology models and biomedical ontologies. BMC Syst Biol
5(1):124

47. Hucka M, Bergmann F, Keating S, Schaff J, Smith L (2010) The systems biology markup
language (SBML): language specification for level 3 version. http://sbml.org/Documents/
Specifications/SBML Level 3/Version 1/Core

48. Ide NC, Loane RF, Demner-Fushman D (2007) Essie: a concept-based search engine for
structured biomedical text. J Am Med Inform Assoc 14(3):253–263

49. Inmon W (2005) Building the data warehouse, 4th edn. Wiley, Indianapolis
50. Jaiswal1 P, Ware D, Ni J, Chang K, Zhao W, Schmidt S, Pan X, Clark K, Teytelman L,

Cartinhour S, Stein L, McCouch S (2002) Gramene: development and integration of trait and
gene ontologies for rice. Comparative and Functional Genomics 3(2):132–136

51. Juty N, Le Novère N, Laibe C (2012) Identifiers.org and miriam registry: community
resources to provide persistent identification. Nucl Acids Res 40(D1):D580–D586

52. Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates K, Browne P, van den Broek
A, Castro M, Cochrane G, Duggan K, Eberhardt R, Faruque N, Gamble J, Diez FG, Harte N,
Kulikova T, Lin Q, Lombard V, Lopez R, Mancuso R, McHale M, Nardone F, Silventoinen
V, Sobhany S, Stoehr P, Tuli MA, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R (2005)
The EMBL nucleotide sequence database. Nucl Acids Res 33(suppl 1):D29–D33

53. Kasprzyk A (2011) Biomart: driving a paradigm change in biological data management.
Database 2011:bar049

54. Kimball R (1998) Bringing up supermarts – a step-by-step approach to building a data
warehouse from granular data. DBMS and Internet Syst 11(1):47–53

55. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664
56. Krallinger M, Valencia A, Hirschman L (2008) Linking genes to literature: text mining,

information extraction, and retrieval applications for biology. Genome Biol 9(Suppl 2):S8
57. Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and

merging of SBML models with semanticsbml. Bioinformatics 26(3):421–422
58. Lacroix Z, Critchlow T (2003) Bioinformatics: managing scientific data. Morgan Kaufmann,

San Francisco

http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_jim_gray_transcript.pdf
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_jim_gray_transcript.pdf
http://sbml.org/Documents/Specifications/SBML_Level_3/Version_1/Core
http://sbml.org/Documents/Specifications/SBML_Level_3/Version_1/Core


3 Information Retrieval in Life Sciences: A Programmatic Survey 107

59. Laibe C (2011) Identifiers. org and miriam registry: perennial identifiers for crossreferencing
purposes. Available from Nature Precedings. http://dx.doi.org/10.1038/npre.2011.6479.1

60. Lange M, Spies K, Bargsten J, Haberhauer G, Klapperstück M, Leps M, Weinel C,
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Chapter 4

Data Warehouses in Bioinformatics

Benjamin Kormeier

Abstract The progress in the area of biological research in recent years has led to a

multiplicity of different databases and information systems. Molecular biology deals

with complex problems and an enormous amount of versatile data will be produced

by high-throughput techniques. Hence, the total number of databases, as well as the

data itself, is continuously increasing, and with it the distribution and heterogeneity

of the data rises. The importance of database integration has been recognized for

many years. Therefore, this chapter presents the problems in database integration

as well as a small selection of well-known existing integration systems which have

been developed. Finally, this chapter presents an in-house data warehouse approach

for biological data. Integrated data is the basis for network analysis, reconstruction,

and visualization.

4.1 Introduction

One of the main challenges in bioinformatics which began with research for

the Human Geome Project, is the integration of molecular data. Currently, high

throughput analysis delivers data of complete genomes, for instance short sequences

of all genes in an organism or thousands of expression patterns of a cell in

shortest time. Analysis of this high-throughput data by manual investigation using

publications or relevant databases is no longer possible. Consequently, the biologist

is supported by tools and methods that can accumulate experimental data with

complementary data sources, estimate the data and compare or classify the data.
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4.2 Problems in Database Integration

Molecular biological data has a high semantic heterogeneity that is usually caused

by experimental data extracted from a series of experiments. Molecular biology

deals with complex problems. Therefore, enormous amounts of versatile data will

be produced by experiments. The total number of databases, and of course the data

itself, is continuously increasing. Hence, the distribution and heterogeneity of the

data rises as well. Particularly, data heterogeneity is one of the main problems

in molecular biological data integration. Furthermore, technical heterogeneity is

caused by a high number of different formats and interfaces of the different

data sources. The data is mostly not available in a standard format which causes

structural heterogeneity. Missing standards and consensus for basic biological

terms produces semantic heterogeneity. Beside this problem, there are some more

problems in data integration. In the next sections, basic problems of data integra-

tion in the field of distribution, autonomy, and heterogeneity will be discussed.

Leser and Naumann define those fields as the so-called orthogonal dimensions

of data integration [16]. For this reason, in each dimension problems can occur

independently.

4.2.1 Distribution

Usually, data sources of an integrated system are distributed. That means each

and every source is located on a separate system and/or different locations. It will

be distinguished between physical and logical distributions. Physical distribution

is data that is physically and geographically organized on different distributed

systems. The following problems can be caused by physical distribution in data

integration: localization of data, data which is represented in multiple schemata,

and the optimization of distributed queries. The concept of data warehousing can

solve these problems of physical distribution. Data warehouses will be discussed

later in Sect. 4.3.4.

Homogeneous data of a system that is located at different logical places leads to

logical distribution. This means the system is redundant and several problems can

occur. The localization of this data is very difficult and ambiguous. For instance,

if a user has problems tracking the origin of the data. A possible solution could

be to provide metadata, for example, a global schema. Additionally, duplicates and

conflicts can occur with logical distribution. The system has to be identified in order

to fix these problems to guarantee consistent data.
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4.2.2 Autonomy

The distribution of several data sources leads automatically to the problem of

autonomy. Autonomy in data integration means the independence of the data source

that refers to access, configuration, development, and administration. Overall,

autonomy can be divided into the following four types [16]: design autonomy,

interface autonomy, access autonomy, and legal autonomy. A data source has

design autonomy when it has the freedom to decide how its data can be provided

and represented. This autonomy is also related to the data model, schema, and

transaction management or if a data source has the freedom to define the method

of access. For instance, defining a protocol for the query language of the system

is called interface autonomy. Interface autonomy is strongly related to design

autonomy, because the storage of data typically determines the data access. If

the system is able to decide who can access which data, then the data source is

access autonomous. Legal autonomy is achieved if the integration of a resource is

prohibited. Additional kinds of autonomy can be found in [7].

4.2.3 Heterogeneity

The major problem of data integration is heterogeneity that is caused by autonomy.

Distribution can also cause heterogeneity, but not in general. For instance, two infor-

mation systems that have identical methods, but do not provide identical models and

structures for data access, are called heterogeneous. Leser and Naumann enumerated

different kinds of heterogeneities: technical heterogeneity, syntactic heterogeneity,

data model heterogeneity, structural heterogeneity, schematic heterogeneity, and

semantic heterogeneity [16].

Technical heterogeneity is the implementation of different access methods to the

data source. This kind of problem is solved if the integrated system is able to query

the data source and the request returns a correct result set. Different representations

of the same issue are called syntactic heterogeneity. Different character encodings

in a data set are good examples of syntactic heterogeneity. This problem can easily

be solved by converting the data into a common format. Data model heterogeneity

exits, if data sets of a data source can be managed by different data models. One data

model is, for instance, object oriented and another one is relational. Hence, if both

data models are equivalent, then a data model heterogeneity is nonexistent. Design

autonomy often causes structural, schematic, and semantic heterogeneity in data

integration. Structural differences in the representation of data are called structural

heterogeneity. A special case of structural heterogeneity is schematic heterogeneity,

where different concepts of a data model describe the same issue or data. Semantic

heterogeneity characterizes the differences in sense, interpretation, types of terms,

and concepts. In particular, synonyms and homonyms play a major role in these

conflicts. These problems can be solved if schema elements have the same meaning

and an identical name.
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4.3 Approaches of Database Integration

The development of an integrated database system is a complex task, if a large num-

ber of heterogeneous databases have to be integrated. A blueprint of the architecture

of the integrated system is essential for success. In general, two architectures for

data integration exist. They are divided into materialized integration and virtual

integration. Materialized integration stores the whole data set of source persistent

in a database management system (DBMS). Periodic update strategies transfer

updated data and extensions to the global system. Then, the integration system

has to normalize the data and duplicates and failures have to be removed. Finally,

the central database will be updated to provide an up-to-date data set. Materialized

integration has the advantage of high velocity, because there is no communication

between different data sources, as well as no restriction of queries, which could be

the case in virtual integration systems.

Virtual integration does not store data in a persistent way. Usually, the data is

located on different local systems and queried by a global schema. A complex nor-

malization and transformation process is not necessary, as compared to materialized

integration. Queries are managed by a global schema, while the underlying data is

“virtually” available. The main task is to generate complex queries to get, transform,

and aggregate adequate data from different data sources. If data sources provide only

restricted interfaces it is a problem of virtual integration and queries of the global

schema cannot be answered or executed.

Major approaches of database integration in bioinformatics have been discussed

and reviewed in the last years.

• Hypertext navigation systems. HTML frontends linked to molecular biological

databases.

• Federated database systems and mediator-based systems are virtual integration

systems. They do not store any data in a global schema. Federated systems

integrate multiple autonomous database systems into a virtual single federated

database. Typically, each database is interconnected via a computer network or

in some cases the World Wide Web. Hence, the databases can be geographically

decentralized.

• Multi-database systems do not have a global schema. These systems interactively

generate queries for several databases simultaneously.

• Data warehouses are materialized integration approaches. They store data

persistent in a global data repository, which is typically a relational DBMS.

All these approaches have the same aim: providing techniques to overcome several

kinds of heterogeneous data and to provide a retrieval system for scientists to support

their research activities and experiments.
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4.3.1 Hypertext Navigation Systems

Nowadays, most databases are connected to the World Wide Web and can be

accessed with a common browser. Usually, many of these databases provide links

to other databases. Accession numbers (AC), unique identifiers, or other database

identifiers are used for linking database entries. Actually, many databases use

different identifiers or terms for the same entries; hence, interlinking databases is

a difficult task. Therefore, pair-wise or binary mappings between database entries

have to be generated to provide links between different databases. Mostly, databases

only provide cross-links with the most relevant databases.

Many other database attributes can be used for linking databases to each other,

for instance, EC numbers, CAS (Chemical Abstracts Service) registry numbers, GO

(Gene Ontology) terms, or other controlled vocabularies. Often, databases are not

linked with each other, even if they use the same controlled vocabulary. However, it

is not possible to link all the databases with each other. One reason is that providers

are not aware of all other relevant databases. Nevertheless, interlinked web sites are

a common way of database “integration”.

4.3.2 Multi-database Systems

Multi-database systems are usually a network of database systems [7]. The man-

agement of the whole data set is not controlled by the overall system. Independent

partitions control the data. Therefore, the user has access to the different data sources

using a common query language. Examples of conflicts of integration offered by the

provided query language are multiple redundant data, structural differences between

data sources or semantic heterogeneities.

Systems are called federated database systems if data sources maintain a certain

level of autonomy. In contrast, a central system takes control of data sets when the

system is no longer federated. It is not exactly defined by which level of autonomy

the border between federated database systems and multi-database systems is

arranged.

In a multi-database system, the schemata are divided into the internal layer,

the conceptual layer, and the external layer. The user has to define a view for

the required data. A query spanning multiple databases is specified by the multi-

database query language. In a central unit, the query is fractionalized and sent to the

different databases. The result sets are sent to the processing unit and returned as a

merged result to the user.
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4.3.3 Federated Database Systems

A federated database system (FDBS) consists of multiple cooperating component

systems that are autonomous. Moreover, it consists of a federated database man-

agement system that controls the component systems. Federated architectures differ

based on levels of integration with the component database systems. Furthermore,

they differ in the services offered by the federation, as well as in the extension of

the systems. A detailed definition was given by Sheth and Larson [19].

Federated database systems can be categorized as loosely or tightly coupled

systems depending on the level of coupling. In a loosely coupled FDBS, each

user is the administrator of his own federated schema. Each user is responsible

for understanding the semantics of objects in the export schemata. Users are also

responsible for the elimination of heterogeneities from the DBMS. Finally, users

are able to store their schema under their own accounts. A schema can be deleted at

any time by the user [19].

In tightly coupled FDBS, export schemata are created between the component

database administrator and federation database administrator. Usually, the com-

ponent database administrator has control over the export schemata, while the

federation database administrator has the authority to read the database to help

determine what data is available and where it is located. The federation database

creates and controls the federated schemata [19].

4.3.4 Data Warehouse Systems

Data warehouses (DWH) are the widely used architectures of materialized inte-

gration in informatics and especially in bioinformatics. Basically, data warehouses

are used in the field of information management. Data analysis, data mining,

and the long-term storage of business intelligence in companies are the major

advantages of data warehouse systems. In bioinformatics DWHs are usually used

for data integration. DWHs are often preferred in contrast with virtual integration

approaches, which have some disadvantages: no write access, poor speed of request

handling, problems in availability of data sources, and complexity of queries.

A general definition of a DWH was defined by Bauer and Günzel: “A data

warehouse is a physical database that provides an integrated view of arbitrary data

for analysis.” [1]. A DWH cannot be assigned to classical OLTP (online transaction

processing) systems, which are optimized for fast and reliable transaction handling.

Typically, most of the OLTP interactions are involved in a relatively small number

of rows a larger group of tables, by comparison with data warehouse systems.

DWHs are assigned to OLAP (online analytical processing) systems, which are

able to quickly answer multidimensional analytical queries. OLAP systems can

be classified into the category business intelligence, which also includes relational

reporting and data mining. Usually, in DWH, new data will be added; already stored

data will not be manipulated or overwritten.
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Typically, a data warehouse process is divided into four phases:

1. Data from different resources will be obtained. This means the data will

be extracted and transformed. This phase is called ETL process (extraction-

transform-load process).

2. The data will be saved persistently in the DWH.

3. The separated data will be divided into several data marts, if necessary.

4. The data of the DWH or data marts will be analyzed. Finally, the data will be

provided to external applications.

4.4 Data Warehouses

In this section, relevant and widely used data integration approaches and data

sources in the field of bioinformatics will be introduced. Usually, the data is

distributed in multiple data sources. Those sources differ in the biological context,

internal representation, used underlying systems, access possibility, and complexity.

Relevant integration approaches in the context of biological data warehouses

will be introduced. The focus lies on the data warehouse approaches Atlas,

Columba, BioWarehouse, and CoryneRegNet, because the systems are equipped

with important requirements in biological data integration that are relevant for

our data warehouse approach that will be discussed in the next section. Moreover

they are well-known examples in the literature of data integration approaches in

bioinformatics. Additionally, in Table 4.1, all data integration approaches will be

compared. Generally, in bioinformatics, integration approaches can be divided into

four classes [16]:

• Indexing systems: e.g., SRS (Sequence Retrieval System) [8], Entrez, and BioRS

• Multi-databases: e.g., OPM (Object Protocol Model) [4] and DiscoveryLink [9]

Table 4.1 Comparison of different data warehouse approaches. Advantages are marked in bold
letters

Property Atlas BioWarehouse Columba CoryneRegNet

Integration Tightly coupled Tightly coupled Loosely coupled Tightly coupled

DBMS MySQL MySQL, Oracle PostgreSQL PostgreSQL

Programming Java, C++, Perl Java, C Python, Perl PHP, Java

language

Architecture Application Application Web interface Web interface

Platform No (Unix systems) No (Linux systems) Yes Yes

independence

Updates Manually Manually Old Unknown

Maintenance Unknown Periodical Project ended Periodical

and development

License GNU MPL Freely available AFL

on request

Open source Yes Yes Unknown Yes
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• Ontology-based integration: e.g., TAMBIS (Transparent Access to Multiple

Bioinformatics Information Sources) [20] and ONDEX [12]

• Data warehouse: e.g., Atlas [18], BioWarehouse [15], Columba [22],

CoryneRegNet [2], ONDEX [12], and SYSTOMONAS [6]

To integrate medical and molecular biological data, the first step is to structure and

evaluate the amount of available data sources. A comparison and choice of data

sources is only possible on the basis of an adequate set of criteria. Currently, the

most important sources for medical and biological data, from our point of view,

are KEGG, BRENDA, EMBL-Bank, ENZYME, GO, HPRD, OMIM, UniProt, and

Transfac/Transpath. Based on relevant biological database and information systems,

data integration is an essential step in constructing biological networks.

4.5 Related Data Integration Approaches

The data warehouse infrastructures Atlas and BioWarehouse will be introduced in

this section. Both systems provide a software infrastructure that can be installed

and configured locally. They give a good insight into biological data integration.

Additionally, the Columba data warehouse with its web application (Sect. 4.5.3)

and the ontology-based data warehouse approach CoryneRegNet (Sect. 4.5.4) will

be discussed. Both systems give an insight in building web-based data warehouses

that become more and more popular. Another widely used ontology-based data

warehouse approach is ONDEX, which has already been introduced in Chap. 5. For

that purpose, ONDEX will not be described in this section.

4.5.1 Atlas

The Atlas system was developed at UBC Bioinformatics Centre (University of

British Columbia) in Canada. Atlas is freely available and is protected under the

terms of the GNU General Public License. A Unix operation system is required for

running the Atlas system.

The goal of Atlas is to provide data as well as a software infrastructure for

bioinformatics research and development. The biological data warehouse locally

stores and integrates the data from biological sequences, molecular interactions,

homology information, as well as functional annotations of genes and biological

ontologies.

The system architecture of Atlas consists of the data sources, an ontology system,

the relational data models, different APIs (application programming interfaces), and

applications. Figure 4.1 illustrates the system architecture of Atlas. The data sources

of Atlas are categorized into four classes: sequence, molecular interactions, gene-

related resources, and ontology. A complete list of the Atlas data sources could be

found in [18].
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Fig. 4.1 System architecture of the Atlas data warehouse according to [18]
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Each mentioned category has its own database schema in the Atlas relational

database model. A complete entity relationship schema of the data warehouse

approach is presented in [18]. Depending on the level of coupling, this approach

can be categorized as a tightly coupled system. As relational backend, Atlas uses

the MySQL DBMS.

The different APIs of Atlas are developed in three programming languages:

C++, Java, and Perl. But not every API is available in the respective programming

language. Furthermore, the APIs are divided into two classes: loader and retrieval.

The first is the loader APIs that consists of parsers to populate the relational

schemata and store the data in the Atlas databases. And the second class of APIs

is the retrieval APIs. Hence, APIs allow retrieval of the data and store it in the

data warehouse. Furthermore, they are necessary for developing custom retrieval

applications. Moreover, Atlas provides numerous Unix command line tools, such as

ac2seq which is able to find a sequence in FASTA format1 on the basis of accession

numbers. A user is also able to send direct SQL queries via MySQL client to the

data warehouse.

Atlas is designed to run as a service on a local computer system or server.

According to [18], it is also possible to access the system via the World Wide Web,

although this web site is currently unavailable. In summary, Atlas has a couple of

advantages: many tools, integrative database schema, short response time (because

of local installation), and complete access to the database. Some disadvantages of

the Atlas system have also been identified: extensive maintenance of the system,

high system requirement, not platform independent, the actuality of the data depends

on the user or administrator, tools are only available for command line, missing web

interface, and only MySQL is supported as database management system.

4.5.2 BioWarehouse

The BioWarehouse system was developed by the Bioinformatics Research Group

(SRI International), Computer Science Laboratory (SRI International), and Stanford

Medical Informatics (Stanford University). It is also part of the Bio-SPICE (Biologi-

cal Simulation Program for Intra- and Inter-Cellular Evaluation) project. Bio-SPICE

is an open-source framework and software toolset for systems biology. BioWare-

house is an open-source toolkit that integrates different biological databases, such

as ENZYME, KEGG, GO, and UniProt. The software is protected under terms of

the MPL (Mozilla Public License) and is currently available in version 4.6. The

software runs only under Linux operating systems, because the software is not

platform independent. BioWarehouse facilitates the creation of user-defined and

user-specific data warehouse instances. All available data sources for this toolkit can

be found in [15]. Similar to the Atlas system, different relational database schemata

1http://www.ncbi.nlm.nih.gov/blast/fasta.shtml

http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
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Fig. 4.2 The main data types in the BioWarehouse schema according to [15], and the relationships
between them. An arc represents a connection between two data types. For instance, the data type
Gene contains a column that references data type Protein

exist according to the different data types. BioWarehouse supports the MySQL

and Oracle database management systems. Figure 4.2 illustrates the BioWarehouse

database schema, whereas the entities symbolize the particular data type. Integration

of the different data sources is realized by a specific loader. Each loader is adapted

for a particular data source. The data is transformed into a consistent format, because

of heterogeneities between different data sources. Afterwards the data is transferred

into the database schema. Loaders have been implemented in the programming

languages C and Java. A unique feature of the BioWarehouse loaders is the error

tolerance during integration. In case an error occurs, the integration process will be

finished and incorrect data sets will be marked. Moreover, BioWarehouse provides

a set of Java utility classes that are useful for developers who want to construct their

own loaders or applications.

The BioWarehouse system can be used in two different ways: First, publicly

available versions of BioWarehouse called PublicHouse and EcoliHouse which

are available via the Internet. In addition, a user has to register to access public
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servers of BioWarehouse. Access to the system occurs via a MySQL client, such as

phpMyAdmin. In this way the user is able to manage the data sources and have not

only read access. The advantages of the system are an integrative database schema,

short response time (because of local installation), full access to the database,

and MySQL and Oracle supported. On the other hand, the disadvantages of this

data warehouse approach are, extensive maintenance of the system, high system

requirements, it is the administrators are responsible for keeping the data up-to-date,

a missing web interface and SQL knowledge is required.

4.5.3 Columba

The Columba data warehouse system was developed by the Department of

Computer Science, Humboldt-Universität zu Berlin, Department of Biochemistry,

Charité Universitätsmedizin Berlin, Zuse Institute Berlin, and University of Applied

Sciences Berlin. Columba integrates data from 12 heterogeneous biological data

sources in the field of protein structures and protein annotations. Proteins are the

most important aspect in Columba. The protein structure from the database PDB

plays a major role in the system. Furthermore, the PDB data is extracted and

enriched with additional information such as protein sequence, protein function and

involvement in biological networks, as well as membership of protein families.

Typically, several data sources are provided in different exchange formats, as

described in Sect. 4.2.3. If parsers from other projects, such as BioSQL and

BioPython, are not available for those formats, new parsers has to be developed.

Therefore, the programming languages Python and Perl were used. Columba uses

PostgreSQL as relational backend to manage the data. The Columba database

schema, as shown in Fig. 4.3, is comparable with a star schema. Hence, it is clear

that the core of Columba is the protein structures of PDB. Information related

to the protein structures are included into specific sub-schemata that comes from

different sources that are arranged around the main table. Each data source is

modeled as a different dimension and has its own sub-schema within the overall

schema of Columba. The Columba data warehouse approach has the advantage of

simple system maintenance, intuitive query model, and high recognition value of

the information.

Columba is accessible via a web interface which uses a common browser. The

web interface allows full-text search as well as attribute specific searches. The full-

text search engine is implemented with the extension Tsearch2 in PostgreSQL.

Furthermore, the search engine supports Boolean operators to link keywords with

each other.

In summary, Columba integrates different data sources for proteins which

simplify research in this area. On the other hand, Columba does not provide

comprehensive knowledge about molecular biology. This is a crucial disadvantage.

Redundancies could not be excluded, because every data source is an independent

dimension in the model.
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Fig. 4.3 Entity relationship diagram of Columba according to [22]

4.5.4 CoryneRegNet

The CoryneRegNet system was developed at the Center for Biotechnology

(CeBiTec), Bielefeld University. CoryneRegNet (Corynebacterial Transcription

Factors and Regulatory Networks) is an ontology-based data warehouse approach

which provides data about transcription factors and gene regulatory networks.

The system provides data about all recently sequenced corynebacteria and model

organism Escherichia coli, whereas the tool focuses on corynebacterium [17].

Figure 4.4 illustrates the system architecture of CoryneRegNet. Different data

sources are transformed by parsers into a consistent object-oriented ontology-based

data structure. The data structures of CoryneRegNet are closely related to ONDEX,

as described in Chap. 5. Finally, the ontology-based data structures are transformed

into a relational database model, because CoryneRegNet uses a MySQL database

as relational backend. Figure 4.5 shows the entity relationship diagram of

CoryneRegNet that consists of generalized data structure and ontological data

structure. All essential data such as genes and proteins are stored into the ontological

data structure.
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Fig. 4.4 System architecture of CoryneRegNet according to [2]

The CoryneRegNet application is accessible via a web service that is illustrated

in Fig. 4.4. Using this web service, it is possible to access additional and up-to-date

data dynamically. Overall, a web service can also have disadvantages in terms of

performance and security. Performance delays can occur because of high traffic.

CoryneRegNet is developed using PHP and Java programming language and has

a MySQL database management system as relational backend. The web interface

provides several search and analysis possibilities. Furthermore, transcription factors

and regulatory networks will be visualized in a Java applet.

In summary, CoryneRegNet has a user-friendly and intuitive web application,

and other applications can access CoryneRegNet via web services and provide addi-

tional information. However, a Java installation is required to visualize networks in

a Java applet. A disadvantage of the Java applets are longer loading times as well as

the web service. Similar to the Columba, CoryneRegNet is limited to bacteria as it

does not have general molecular knowledge.

4.5.5 Summary

In this section, the data integration approaches Atlas, BioWarehouse, Columba, and

CoryneRegNet were discussed. All projects use the data warehouse technique for

data integration. Atlas and BioWarehouse provide a software infrastructure for data

integration. In contrast, Columba and CoryneRegNet provide a web interface, and

therefore they are directly useable. Only CoryneRegNet additionally provides a web
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Fig. 4.5 Ontology-based entity relationship diagram of CoryneRegNet according to [3]

service. In Table 4.1 a comparison of the data warehouse systems on the basis

of different criteria is given. The advantages and disadvantages of the particular

software solution are marked. Today the Atlas and Columba projects are no longer

funded and will therefore cease to exist.

Platform independence and a user-friendly system are important criteria for

integration approaches. Typically, web applications are preferred as they are very

flexible and interactive. The term Web 2.0 characterizes flexible and interactive

web applications. Atlas, Columba, and CoryneRegNet support only one specific

DBMS. In comparison, BioWarehouse provides a choice between the MySQL and

Oracle database management systems. Columba and CoryneRegNet only provide a

restricted access to the database, but provide suitable query forms. In contrast, Atlas

and BioWarehouse support a complete database access.

4.6 BioDWH and DAWIS-M.D.

On the basis of the previously discussed problems in data integration and the

advantages/disadvantages of data warehouses approaches in bioinformatics, we

want to introduce the data warehouse infrastructure BioDWH [21] as well as our

web-based data warehouse information system DAWIS-M.D. [10]. The BioDWH

infrastructure is the basis for the DAWIS-M.D. information system. However,
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BioDWH is a Java implemented DWH infrastructure that uses a relational database

management systems, such as MySQL or Oracle, as backend. A unique feature of

BioDWH is a graphical user interface for parsing, loading, and updating the source

data into the data warehouse. Our infrastructure provides parsers for important

and widely used molecular databases, such as BRENDA, EMBL-Bank, ENZYME,

EPD, GO, HPRD, IntAct, iProClass, JASPAR, KEGG, MINT, OMIM, Reactome,

SCOP, TRANSFAC, TRANSPATH, and UniProt. Another key feature of the system

is a persistence layer that maintains the independence from the relational database

management system (RDBMS) and the application logic (i.e., the parser). The

Java application, object-relational mapping as a persistence method is a powerful

paradigm to represent objects in a relational database system. That means a

mapping between objects and metadata of the database is described. Basically, ORM

works with reversible transformation of data from one representation into another.

Moreover, the BioDWH infrastructure provides a plug-in architecture to include

a new parser into the system. The extraction, transformation, and loading (ETL)

process is implemented by the parser for the data source. Additionally, a monitor

component recognizes changes within the data sources and is able to start the ETL

process again. To keep the data warehouse up-to-date, updates of the data sources

have to be incrementally propagated. Therefore, our system uses a timestamp-based

and file-size-based monitor strategy.

Based on the BioDWH data warehouse infrastructure, the web-based data ware-

house information system DAWIS-M.D. (Data Warehouse Information System for

Metabolic Data) was implemented. For the information system, we developed an n-

tier architecture that realizes a platform independent web application (see Fig. 4.6).

A unique feature of DAWIS-M.D., in comparison with other systems as already

discussed in the previous section, is the interdependence between the application

logic and the RDBMS. Therefore, again the technique of object-relational mapping

is used. Hibernate was used as the framework to realize the ORM within the

persistence layer. As relational backend, we use a MySQL database. The following

data sources are integrated into DAWIS-M.D.: BRENDA, EMBL-Bank, ENZYME,

EPD, GO, HPRD, JASPAR, KEGG, OMIM, SCOP, TRANSFAC, TRANSPATH,

and UniProt. BioDWH maintains the up-to-dateness of the information/data in

DAWIS-M.D. The data from the databases is divided into 13 different domains:

Compound, Disease, Drug, Enzyme, Gene, Gene Ontology, Genome, Glycan,

Pathway, Protein, Reaction, Reactant Pair, and Transcription Factor. For each

domain a specific search form with auto-complete function is available via the

web application. The large number of biomedical databases and their various

information contents make the acquisition of information very time consuming,

inefficient, and difficult. Therefore, the web application provides an integrated view

of comprehensive biomedical knowledge from different data sources. Hence, it is

possible for the scientist to navigate quickly and efficiently in a large result set.

Moreover, DAWIS-M.D. provides a quick and efficient search in a large data set.

In most of the systems, relationships between other biological elements are not

identified or clearly represented. But it is essential for scientists to understand the

complex biological mechanisms and their interactions. Therefore, DAWIS-M.D. is
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Fig. 4.6 Schematic representation of the DAWIS-M.D. n-layer system architecture from the
original heterogeneous data sources to the web application layer

the identification and representation of relationships and interactions between other

biological elements or mechanisms.

4.7 Reconstruction and Visualization of Biological Networks

Based on Biological Data Warehousing

Using our data warehouse approach, described in the previous section, we have

already shown that data integration is useful for several biological questions. We

were able to build project-specific data warehouses for cardiovascular diseases [13],
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as well as general data warehouse systems (e.g., for metabolic data) [10]. Further-

more, it is possible using the data from BioDWH to generate and predict biological

networks and enrich them with additional information [5, 14]. Using the network

editor VANESA, different fields of studies are combined such as life science,

database consulting, modeling, and simulation for a semiautomatic reconstruction

of complex biological networks [11]. The idea of the reconstruction, visualization,

and analysis of molecular networks using the network editor VANESA is described

in Chap. 8.

CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is an approach to visualize

and analyze intercellular and intra-compartmental relationships by correlating

pathways with an abstract cell environment in 3D space. By using data coming

from our data warehouse, metabolic pathways from KEGG can be parsed. The

pathway structure, consisting of enzymes, their substrates, and products with the

connecting reactions, can be shown directly in a 3D layout within the cell. For the

enzymatic localization, terms from the databases BRENDA and UniProt are used.

Usually information exists on the subcellular level but also mapping information

about the intra-compartmental mapping may be derived. Sometimes the localization

information from the database contains comments specifying more precisely the

whereabouts of a protein then the regular cell component information. In this case,

CmPI uses the comment for mapping. More detailed information about visualization

and analysis of intercellular and intra-compartmental relationships by correlating

pathways with an abstract cell environment in 3D space can be found in Chap.

4.8 Summary

One of the major challenges in bioinformatics is the integration of molecular

biological information from heterogeneous, autonomous, and distributed data. Data

integration has been an important research field for the past decades and will

be for years to come, since the number of molecular databases is continuously

increasing. It is important that scientists can analyze information from different

data sources to meet their objectives. Consequently, existing data warehouse

systems Atlas, Columba, BioWarehouse, and CoryneRegNet were presented in

detail. On the basis of the discussed problems in data integration and the advan-

tages/disadvantages of the presented data warehouses approaches, we introduced

our own data warehouse approach DAWIS-M.D. that was constructed with the

BioDWH data warehouse infrastructure. Furthermore, this system is the basis for

the network modeling application VANESA and the interactive 3D cell visualization

tool CELLmicrocosmos. Overall, with this chapter, we gave an overview of a set

of systems that can solve the discussed problems in the field of biological data

integration.

10.
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13. Kormeier B, Hippe K, Töpel T, Hofestädt R (2009) CardioVINEdb: a data warehouse approach
for integration of life science data in cardiovascular diseases, Im Focus das Leben. Beiträge
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Chapter 5

Molecular Information Fusion in Ondex

Jan Taubert and Jacob Köhler

Abstract Current biological knowledge is buried in hundreds of proprietary and

public life-science databases available on the World Wide Web (WWW) and

millions of scientific publications. Gaining access to this knowledge can prove

difficult as each database may provide different tools to query or show the data and

may differ in their structure and user interface or uses a different interpretation of

biological knowledge than others. Systems approaches to biological research require

that existing biological knowledge (data) is made available to support on the one

hand the analysis of experimental results and on the other hand the construction and

enrichment of models. Data integration methods are being developed to address

these issues by providing a consolidated view of molecular information fused

together from multiple databases. However, a key challenge for data integration

is the identification of links between closely related entries in different life

sciences databases when there is no direct information that provides a reliable

cross reference. Here we describe and evaluate three data integration methods to

address this challenge in the context of a graph-based data integration framework

(the Ondex system). We give a quantitative evaluation of their performance in two

different situations: the integration and analysis of different metabolic pathways

resources and the mapping of equivalent elements between the Gene Ontology and

a nomenclature describing enzyme function.
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5.1 Introduction

Over the last decade, biological research has changed completely. The reductionism

approach of studying only a few biological entities at a time in the past is being

replaced by the study of the biological system as a whole today. Systems Biology

[1] seeks to understand how complex biological systems work by looking at all

parts of biological systems and how they interact with each other and form the

complete whole. Systems Biology can be seen as a cycle (see Fig. 5.1) consisting of

the following steps:

• Having a testable hypothesis about a biological system

• Conducting experimental validation of hypothesis

• Capturing and analysis of experimental results (usually ‘omics’ data)

• Gain new insights (data) about a biological system from analysis results

• Refine model about a biological system to derive new hypothesis

This process requires that existing biological knowledge (data) is made available

to support on the one hand the analysis of experimental results and on the other hand

the construction and enrichment of models for Systems Biology.

Effective integration of biological knowledge from databases scattered around

the internet and other information resources (e.g. experimental data) is recognised as

a prerequisite for many aspects of Systems Biology research and has been shown to

be advantageous in a wide range of use cases such as the analysis and interpretation

of ‘omics’ data [2], biomarker discovery [3] and the analysis of metabolic pathways

for drug discovery [4]. However, systems for data integration have to overcome

several challenges. For example, biological data sources may contain similar or

overlapping coverage, and the user of such systems is faced with the challenge of

generating a consensus data set or selecting the ‘best’ data source. Furthermore,

Experiment

Analysis

InsightsModel

Hypothesis
Additional

Data for analysis of

Experimental results

Data for model

Development

Fig. 5.1 Systems Biology cycle of experiment, analysis, insights, model and hypothesis together
with requirements for large data for analysis of experimental results and model development
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there are many technical challenges to data integration, like different access methods

to databases, different data formats, different naming conventions and erroneous or

missing data.

To address these challenges and enable effective integration of data in support

of Systems Biology research, the Ondex system [2, 5–7] which is presented in

this chapter was created. The Ondex system provides an integrated view across

biological data sources with the aim to enable the user to gain a better understanding

of biology from integrated knowledge. Ondex has been supported by BBSRC (http://

www.bbsrc.ac.uk/) as part of the systems approaches to biological research initiative

(SABR) and is now mainly being developed at Rothamsted Research, Manchester

University and Newcastle University. The first Ondex prototype was developed at

University of Bielefeld.

This book chapter is a summary and extension to previous work published in

[6, 8]. It adds a new dimension to previous work by presenting integration results

across time and using Homo sapiens as selected organism for metabolic pathway

resources. We will start out by surveying different life-science data integration

systems. This overview is followed by establishing a selection of challenges data

integration systems are faced with and dissecting how well current systems are

dealing with them. We then give a brief motivation and introduction for the Ondex

system. This is followed by presenting data integration and transformation methods

motivated by the stated challenges. The performance of the data integration methods

is then quantitatively evaluated in two different situations: the integration and

analysis of different metabolic pathways resources and the mapping of equivalent

elements between the Gene Ontology and a nomenclature describing enzyme

function. A brief discussion is given at the end of this book chapter.

5.1.1 Survey of Current Data Integration Systems

Several data integration systems for use in biology and related domains are in

use today. Some of them use a generic approach to answer a wide range of

biological questions. Others are more limited in their scope and application domain.

These systems are based on principles such as link integration and hypertext

navigation, data warehouses, view integration and mediator systems, workflows and

mashups [9].

Software tools that solve aspects of the data integration problem are being devel-

oped for some time. The early approaches, which produced popular software such as

SRS [10], use indexing methods to link documents or database entries from different

databases and provide a range of text and sequence-based search and retrieval

methods for users to assemble related data sets. The methods used by SRS (and

related tools) address what has been described as the technical integration challenge.

More recently, data integration approaches are developed that ‘drill down’ into

the data and seek to link objects at a more detailed level of description. Many of

these approaches exploit the intuitively attractive representation of data as graphs

http://www.bbsrc.ac.uk/
http://www.bbsrc.ac.uk/
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or networks with nodes representing things and edges representing how they are

related. For example, a metabolic pathway could be represented by a set of nodes

identifying the metabolites linked by edges representing enzymatic reactions. Data

integration systems that exploit graph-based methods include PathSys [11] or

BNCC [12] and the Ondex system [13]. Both BNCC and Ondex are available

as open source software.

The Visual Knowledge and BioCAD [14] software tools provide good examples

for how semantic networks can be used for representing biological knowledge. The

definition of the integration data structure of Ondex has been inspired by this use of

semantic networks in the biology domain.

Biozon [15] is a data warehouse which includes additional derived information,

such as sequence similarity or function prediction, between data entries. STRING

[16] shows that multiple information sources can be combined to provide evidence

for the relationship between proteins. Similar to Biozon and STRING, Ondex

facilitates the information fusion of other derived information between data entities.

Such information has been successfully used to improve genome annotation of

Arabidopsis thaliana in a use case of Ondex [17].

BNDB with BNCC is the most similar system to Ondex in terms of system

design and methodology. The NeAT [18] toolkit highlights how graph analysis

applied to biological networks can help to reveal new insights. Furthermore it is

a good example of providing such functionality via a web page.

Concluding from the presented systems and common practice in Systems Biol-

ogy [5, 19], the representation of biological data as graphs or networks is a preferred

choice. The complexity of the graphs or networks varies from tool to tool, for

example, NeAT works with simple node and edge lists, whereas BNDB/BNCC and

Ondex use a semantic-enriched graph model. Some tools like Biozon or STRING

focus on aspects of providing a ready integrated knowledge base to the users. On

the other hand, tools like Ondex, BNDB/BNCC or PathSys provide the user with

means to assemble integrated data sets on his/her own. Visual Knowledge/BioCAD

or NeAT emphasise on the biological pathways and networks analysis.

Graphical user interaction is realised in a variety of ways. Knowledge base-

focused projects like Biozon or STRING tend to use a web-based interface backed

by a relational database. Other data integration toolkits like BNDB/BNCC or

Ondex offer a database driven backend with a dedicated front-end application and

possible web service-based access. NeAT or Visual Knowledge/BioCAD loads and

integrates data in an ad hoc way as part of their analysis workflows.

5.1.2 Challenges for Data Integration

Biological knowledge such as protein interactions (Fig. 5.2a), metabolic pathways

(Fig. 5.2b) or biological ontologies (Fig. 5.2c) can be interpreted or understood

as a network or graph. Biological databases are, however, usually implemented

using table centric data structures, which do not readily allow the utilisation of
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Fig. 5.2 Examples of biological knowledge as graphs: (a) protein interactions (Reproduced
with permission from Jeong et al. [20] © Macmillan Magazines Ltd.), (b) metabolic pathways
(Reprinted from Ogata et al. [21] with permission from Elsevier), (c) biological ontologies
(Reprinted from Zhu et al. [22] under CC BY 2.0 licence © BioMed Central Ltd)



136 J. Taubert and J. Köhler

Table 5.1 Summarising outlined challenges for data integration systems

Challenge Summary

First challenge Representing biological data intuitively as a graph or network

Second challenge Overcoming the syntactic and semantic heterogeneities between data sources

Third challenge Provide a semantical consistent view on integrated information

Fourth challenge Keep track of provenance during integration process

Fifth challenge Domain-independent approach to data integration

Sixth challenge Create a robust, usable and maintainable framework for data integration

graph analysis methods. Ondex uses a graph-based data structure which has been

developed with an emphasis on providing integration of knowledge necessary for

Systems Biology. Such a graph-based data structure should allow for the integration

of heterogeneous data into a semantically consistent graph model and therefore

support graph-based analysis algorithms and visualisation.

Biological data integration has to face the two problems of syntactic and semantic

heterogeneity [23]. Syntactic heterogeneity is given by data being presented in

different formats or as free text, containing spelling mistakes, wrong formatting or

even missing data. Semantic heterogeneity is present in the different interpretations

of data formats, symbols and names:

• Ambiguity of synonyms (exact/related), for example, Na(C)/K(C)-ATPase vs.

just ATPase.

• Domain dependence of synonyms, for example, gene names in different

organisms.

• Silent errors, like a typo in ENZYME Nomenclature is still valid entry (1.1.1.1

vs. 1.1.1.11).

• Unification references to other data sources can be ambiguous, for example,

references to multiple splicing variants of a gene assigned to a protein.

• What is a gene, what is a protein and what is a transcript? Biological meaning is

subject to interpretation and might vary.

To overcome syntactic and semantic heterogeneity in the data sources, knowl-

edge modelling has to be adaptable for the respective domain of knowledge so

that heterogeneous data sources can be transformed into a semantical consistent

view. During this process it may be necessary to identify equivalent or redundant

information in the data. Novel integration methods will have to be introduced to

address this need. To establish trust in the integrated data, it is necessary to keep

track of provenance during the whole data integration process.

Although this work has been mainly motivated by data from the life sciences,

data integration is challenging in other data intensive sciences too. The integration

methods should address this by being mostly domain independent. An example of

a different application domain would be social networks. The methods presented

in this chapter have been implemented as the core of the Ondex framework [2, 5].

One key aspect of the work on Ondex is to create a robust, usable and maintainable

framework for data integration (Table 5.1).
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Table 5.2 Challenges addressed by previous and current work

First: data
intuitively

as graph or
network

Second:
addressing
syntactic and

semantic
conflicts

Third:
semantical

consistent
view

Fourth:

track
provenance

Fifth:

domain
independent

Sixth: robust,
usable,

maintainable
framework

Visual
Knowledge
and BioCAD

Yes No Yes No No Yes

Biozon No No Yes Yes No Yes

BNDB/BNCC Yes Partially Yes No Yes Yes

STRING Yes No Yes Yes No Yes

NeAT Yes No No No Yes No

5.1.3 Comparison with Related Work

None of the previous presented data integration systems do address all the above-

mentioned challenges as shown in Table 5.2.

The most important aspect not completely addressed by previous or related

work is the second challenge of addressing syntactic and semantic heterogeneities

between data sources in a systematic way. Knowledge base systems like STRING

or Biozon use their own predefined database schema and load data from other data

sources into this schema. During this process the mapping of source data to data

objects in the system is hardwired and difficult to change. Overlapping or conflicting

data between data sources usually does not get resolved. More complex systems like

BNDB/BNCC provide adapters or parsers for different data sources and let the user

of the system decide which selection of data source to integrate. Systems like NeAT

or Visual Knowledge/BioCAD rely on the data to be in the correct format involving

a larger amount of manual curation and work to be done upfront.

5.2 Motivation

Software designed for data integration in the life sciences has to address two

classes of problem. It must provide a general solution to the technical (syntactic)

heterogeneity, which arises from the different data formats, access methods and

protocols used by different databases. More significantly, it must address the

semantic heterogeneities arising from a number of sources in life-science databases.

The most challenging source of semantic heterogeneity comes from the diversity

and inconsistency among naming conventions for genes, gene functions, biological

processes and structures among different species (or even within species). In

recent years, significant progress in documenting the semantic equivalence of

terms used in the naming of biological concepts and parts has been made in the

development of a range of biological ontology databases which are coordinated
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Fig. 5.3 Data integration in Ondex consists of three steps: (1) import and conversion of data
sources into the data structure of Ondex (Data Input, left), (2) linking of equivalent or related
entities of the different data sources and transformation into a semantical consistent graph
(Transformation & Integration, middle), (3) knowledge extraction using the front-end application

or web interface (Visualisation & Analysis, right)

under the umbrella of organisations such as the Open Biomedical Ontologies

Foundry (http://www.obofoundry.org). However, the majority of biological terms

still remain uncharacterised and therefore require automated methods to define

equivalence relationships between them.

The integration of data in Ondex generally follows three conceptual stages as

illustrated in Fig. 5.3: (1) normalising into the Ondex data structure in order to

overcome predominantly technical heterogeneities between data exchange formats,

(2) identifying equivalent and related entities among the imported data to overcome

semantic heterogeneities at the entry level and (3) the data analysis, information

filtering and knowledge extraction.

In order to make the Ondex system as extensible as possible, the second

stage (middle bottom part in Fig. 5.3) has been separated both conceptually and

practically. The motivations for doing this are to preserve original relationships and

metadata from the original data source, make this integration step easily extensible

with new methods, implement multiple methods for recognising equivalent data

concepts to enhance the quality of integrated data and support reasoning methods

that make use of the information generated in this step to improve the quality of

integrated data.

The hypothesis here is that multiple methods for semantic data integration are

necessary because of ambiguities and inconsistencies in the source data that will

require different treatment depending on the source databases. In many cases, exact

linking between concepts through unique names will not always be possible and

therefore mappings will need to be made using inexact methods. Unless these inex-

act methods can be used reliably, the quality of the integrated data will be degraded.

http://www.obofoundry.org
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To calibrate the presented data integration methods with well-structured data, the

mapping of equivalent elements from the ontologies and nomenclatures extracted

from the ENZYME [24] and GO [25] databases is used. To evaluate mapping

methods in a more challenging integration task, the creation of an integrated

data set from two important biological pathway resources, the Reactome [26] and

HumanCyc [27] databases, is presented.

5.3 Methods

5.3.1 Data Import and Export

Following Fig. 5.3, the first step loads and indexes data from different sources.

Ondex provides several options for loading data into the internal data warehouse,

and a range of parsers have been written for commonly used data sources and

exchange formats. In addition users can convert their data into an Ondex-specific

XML or RDF dialect for which generic parsers are provided.

The role of all parsers is to load data from different data sources into the data

structure used in the Ondex framework. In simple terms, this data structure can

be seen as a graph, in which concepts are the nodes and relations are the edges.

By analogy with the use of ontologies for knowledge representation in computer

science, concepts are used to represent real-world objects [28]. Relations are used

to represent the different ways in which concepts are connected to each other.

Furthermore, concepts and relations may have additional properties and optional

characteristics attached to them.

During the import process, names for concepts are lexicographically normalised

by replacing non-alphanumeric characters with white spaces so that only numbers

and letters are kept in the name. In addition, consistency checks are performed to

identify, for example, empty or malformed concept names.

5.3.2 Data Integration Methods and Algorithms

The second step (following Fig. 5.3) links equivalent and related concepts and

therefore creates relations between concepts from different data sources. Different

combinations of mapping methods can be used to create links between equivalent

or related concepts. Rather than immediately merging elements that are found to be

equivalent, the mapping methods create a new equivalence relation between such

concepts. After enough trust has been established in the results of the mapping

methods by inspecting of these equivalence relations, then the information on

similar elements can be fused, which is also known as molecular information

fusion.
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Each mapping method can be configured to create a score value reflecting the

belief in a particular mapping and information about the parameters used. These

scores are assigned as edge weights to the graph and form the foundation for the

statistical analysis presented later. Additionally information on edges enables the

user to track evidence for why two concepts were mapped by a particular mapping

method.

Several constraints must be fulfilled before a mapping method creates a new

link between two concepts. Under the assumption that the integrated data sources

already contain all appropriate links between their own entries, new links are only

created between different data sources. Biological databases often provide an NCBI

taxonomy identifier for species information associated with their entries. If such

identifiers are found in the graph, the mapping method ensures, in most cases, that

relations are only created within the same species. In addition to species restriction,

a mapping method takes the concept class of a concept into account. Only equal

concept classes or specialisations of a concept class are considered to be included

in a mapping pair.

5.3.2.1 Accession-Based Mapping

Most of the well-structured and managed public repositories of life-science data use

accession coding systems to uniquely identify individual database entries. These

codes are persistent over database versions. Cross references between databases of

obviously related data (e.g. protein and DNA sequences) can generally be found

using accession codes, and these can be easily exploited to link related concepts.

Such concept accessions may not always present a one-to-one relationship between

entries of different databases. For example, a GenBank accession found in the

HumanCyc database is only unique for the coding region on the genome and not

for the expressed proteins, which may exist in multiple splice variants. References

presenting one-to-many relationships are call ambiguous. Concept accessions are

indexed for better performance during information retrieval. Accession-based map-

ping by default uses only non-ambiguous concept accessions to create links between

equivalent concepts, i.e. concepts that share the same references to other databases

in a one-to-one relationship. This behaviour can be changed using a parameter.

Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and

a set of relations R(O)�C(O)�C(O). Every concept c2C(O) has a concept class

cc(c)2CC(O), a data source identifier ds(c)2DS(O) and a list of concept accessions

ca(c)Df(ca1� : : : � can)jcaj 2CA(O)g. Each concept accession ca2CA(O) is a

triple caD (ds,acc,ambiguous), where ds is the identifier of the data source from

which the accession code acc is derived and ambiguous is either true or false. The

bijective function id assigns a consecutive number n2N to concepts and relations

in O separately starting with 1.
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ignore  true or false (default)

function AccessionBasedMapping(O, ignore) f

for all i2[1.. jC(O)j] do

for allj2[i.. jC(O)j] do

if 9x 2ca(ci)^x 2ca(cj)^(:x.ambiguous_ignore) do

if ds(ci)¤ds(cj)^cc(ci)Dcc(cj) do

O.createRelation(ci,cj)

g

Runtime Analysis

Assuming that the test if the two lists ca(ci) and ca(cj) have at least one concept

accession in common takes linear time with respect to the length of the lists, for

example, by using hashing strategies or ordered lists, and the average number of

concept accessions on concepts is �ca, then the total runtime of accession-based

mapping is T .n/ D 1
2

�

n2 C n
�

� �ca 2 O
�

n2
�

where n is the number of concepts

in the Ondex data structure.

5.3.2.2 Synonym Mapping

Entries in biological data sources often have one or more human-readable names,

for example, gene names. Depending on the data source, some of these names

will be exact synonyms such as the chemical name of a metabolite; others only

related synonyms such as a general term for enzymatic function. Exact synonyms

are especially flagged during the import process. Related synonyms are added to

concepts as additional concept names. Concept names are preprocessed to strip all

non-letter characters and stem special word cases before inserting them into the

full-text index. Concept names are indexed for better performance and potentially

fuzzy searches during information retrieval using the Apache Lucene (http://lucene.

apache.org/) full-text indexing system. Fuzzy searches as supported by Lucene can

be useful to overcome spelling mistakes, for example, PKM2 might be written as

PK-M2 [29]. The default method for synonym mapping creates a link between two

concepts if two or more concept names are matching (bidirectional best hits) to be

able to cope with ambiguity of names. As a simple example of such ambiguity, the

term ‘mouse’ shows that consideration of only one synonym is usually not enough

for the disambiguation of the word, i.e. ‘mouse’ can mean computer mouse or the

rodent Mus musculus. The threshold for the number of synonyms to be considered

a match and an option to use only exact synonyms are parameters in the synonym

mapping method.

http://lucene.apache.org/
http://lucene.apache.org/


142 J. Taubert and J. Köhler

Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and a

set of relations R(O)�C(O)�C(O). Every concept c2C(O) has a concept class

cc(c)2CC(O), a data source identifier ds(c)2DS(O) and a list of concept names

cn(c)Df(cn1� : : : � cnn)jcnj 2CN(O)g. Each concept name cn2CN(O) is a tuple

cnD (name, exact), where name is the actual name of the concept and exact is

either true or false. The bijective function id assigns a consecutive number n2N

to concepts and relations in O separately starting with 1.

num  1..N(default: 2)

exact  true (default) or false

function SynonymMapping(O, num, exact) f

for all i2[1.. jC(O)j] do

for allj2[i.. jC(O)j] do

if
jcn.ci / \ cn.cj /j � num^

.9 x 2 cn .ci /\ cn .cj /jx: exact _ : exact/
do

if ds(ci)¤ds(cj)^cc(ci)Dcc(cj) do

O.createRelation(ci,cj)

g

Runtime Analysis

Assuming that the intersection of cn(ci) and cn(cj) can be found in linear time with

respect to the size of the lists by using hashing strategies or ordered lists and the

average number of concept names per concept is �cn, then the total runtime of

synonym mapping is T .n/ D 1
2

�

n2 C n
�

� �cn 2 O
�

n2
�

where n is the number

of concepts in the Ondex data structure.

5.3.2.3 StructAlign Mapping

In some cases, two or more synonyms for a concept are not available in the data to

be integrated. To disambiguate the meaning of a synonym shared by two concepts,

the StructAlign mapping algorithm considers the graph neighbourhood of such

concepts. A breadth-first search for a given depth (�1) starting at each of the two

concepts under consideration yields the respective reachability list for each concept.

StructAlign processes these reachability lists and searches for synonym matches of

concepts at each depth of the graph neighbourhood. If at any depth one or more pairs

of concepts which share synonyms are found, StructAlign creates a link between the

two concepts under consideration.
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Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and

a set of relations R(O)�C(O)�C(O). Every concept c2C(O) has two additional

attributes assigned: (a) a concept class cc(c)2CC(O) characterising the type of real-

world entity represented by the concept (e.g. a gene) and (b) a data source identifier

ds(c)2DS(O) stating the data source (e.g. HumanCyc) the concept was extracted

from. Every relation r 2R(O) is a tuple rD (f, t) with f the ‘from’-concept and t

the ‘to’-concept of the relation. To improve performance the algorithm is making

use of indexing structures for concept names and the unique identifier returned by

the bijective function id which assigns a consecutive number n2N to concepts and

relations in O separately starting with 1.

index searchable index of concept names for concepts

cutoff  maximal depth of graph neighbourhood search

function StructAlign(O, index, cutoff) f

matches  new map of concepts to sets of concepts

// search for concept name hits

for all c2C(O) do

for all n2cn(c)jn.exact do

hits  index.search(n.name)

for allc0 2hits with ds(c)¤ds(c0)^cc(c)Dcc(c0)do

matches[c].add(c’)

connectivity new map of concepts to sets of concept

// calculate direct neighbourhood

for all r 2R(O) with rD(f,t) do

if ds(f)Dds(t)^f¤t do

connectivity[f].add(t)

connectivity[t].add(f)

reachability  clone(connectivity)

// modified breadth first search with depth cutoff

for all i2[1..cutoff] do

for all (x,(y1 : : : yn))2reachability do

for all j2[1..n] do

reachability[x].addAll(connectivity[yi])

// look at neighbourhood of bidirectional matches

for all (a,(b1 : : : bn)),(bi,(c1 : : : cm))2matchesja2

(c1 : : : cm) do

na  reachability[a]

nb  reachability[bi]

for all x 2na do

if 9y 2matches[x]jy 2nbdo

O.createRelation(a,bi)

g
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Runtime Analysis

Assuming the search for a concept name in the list of concept names takes

logarithmic time with respect to the length of the list (e.g. using a self-balancing

binary search tree [30]) and operations to manipulate maps and sets take constant

time using hashing strategies, the runtime analysis is: Let c be the number of

concepts, �cn the average number of concept names associated with a concept, r

be the number of relations, �r the average number of relations per concept in the

Ondex data structure and � a time constant for operations on maps and sets. The

worst-case runtime of the StructAlign algorithm is then:

1. Search for concept name matches

T1 .c; r/ D c � �cn � log .c � �cn/ � c ��

2. Calculation of direct neighbourhood

T2 .c; r/ D r � 2 ��

3. Modified breadth-first search with depth cut-off

T3 .c; r/ D cutoff � c � �r ��

4. Finding bidirectional matches in neighbourhood, log(c) search time for 9 y

T4 .c; r/ D c2 � c ��

T .c; r/ D T1 C T2 C T3 C T4

T .c; r/ D c � �cn � log .c � �cn/ � c ��C r � 2 ��

C cutoff � c � �r ��C c2 � c ��

Within a fully connected graph, the number of relations is rD c � (c� 1)/2 and

�rD c� 1.

T .c/ D

�

c � �cn � log .c � �cn/ � c C c � .c � 1/

C cutoff � c � .c � 1/C c2 � c

�

��

T .c/ D
�

c2 � �cn � log .c � �cn/C .1C cutoff / � c � .c � 1/C c3
�

��

T .c/ 2 O
�

c3
�
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Here the average number of concept names per concept is �cn� c. Hence the

algorithm has a worst-case runtime of O(c3). Although the expected runtime on

sparse graphs is O(c2) as the number of neighbours reachable for a certain depth in

a sparse graph is much smaller than the number of total concepts in the graph.

Worked Example for StructAlign

Figure 5.4 shows a simple example graph of metabolites (circles) and enzymes

(rectangles) originating from two data sources DB1 (left) and DB2 (right). All

concepts except for concept 2 have two synonyms (exact one listed first). The

‘consumes’ relation (vertical arrows) is present in both data sources DB1 and DB2.

StructAlign starts to consider the first pair of concepts, here concepts 1 and

3, which share at least one exact synonym (HC/KCATPase) and are of the same

concept class (enzyme). The reachability list of concept 1 includes concept 2 and

the reachability list of concept 3 includes concept 4. The undirected breadth-first

search of StructAlign will find concepts 2 and 4 both being present at depth 1. As

concepts 2 and 4 share at least one exact synonym (ATP) and are of the same concept

class (metabolite), StructAlign collected enough evidence to create a new relation

(horizontal arrows) between concepts 1 and 3. In the next step, StructAlign proceeds

to the next pair of concepts 2 and 4 between DB1 and DB2, which share at least one

exact synonym and will map them as being equivalent (horizontal arrows) because

of the name match present between concepts 1 and 3.
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5.3.2.4 Other Data Integration Methods

In addition to the mapping methods presented afore and evaluated in this study,

the following selection of mapping methods shows how other information can be

incorporated to deduce new relationships between concepts. This functionality is

similar to that seen in Biozon [15]. A more complete list of data integration methods

can be found on the Ondex web page (http://www.ondex.org).

Transitive Mapping

Transitive relationships between concepts are inferred from existing relations. For

example, if concept A is identified to be equivalent to concept B and concept B is

known to be equivalent to concept C, then a new equivalent relationship between

concept A and concept C is created by this mapping method.

Sequence Similarity Mapping

The computation of the similarity of gene or protein sequences is achieved by

exporting the sequence data into a FASTA [31] file and performing the matching

using BLAST [32] or TimeLogic Decypher (http://www.timelogic.com). The results

are used to create relations between concepts representing the genes or proteins. The

BLAST bit score and e-Value is assigned as attributes on these relations.

External2go Mapping

The GO consortium provides reference lists of GO terms that map terms to other

classification systems, for example, EC [24] enzymes or PFAM domains. The

external2go mapping parses these lists and creates relations between entries of the

GO database and entries of the other classification system.

These few examples together with the methods listed on the web page illustrate

the wide range of information which is utilised by mapping methods in Ondex

including simple name matches, sequence similarity search, orthology prediction,

graph-pattern matching and even complex text mining-based information retrieval.

Furthermore it is not difficult to add new mapping methods to Ondex.

5.3.3 Data Transformation Methods

After similar or equivalent concepts have been identified by mapping methods, the

relation collapse functionality is used to merge or fuse such clusters of similar

concepts connected by equivalence relations into one single concept. During

http://www.ondex.org
http://www.timelogic.com
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1 2 3

4 5 6

Fig. 5.5 Clustering of concepts, 1–2; start new cluster, 3–4; expand existing cluster, 5–6; merge
two existing clusters

this collapsing process, the molecular information of each original concept gets

transferred onto the newly created fused concept, henceforth called molecular

information fusion.

The collapsing of concepts consists of three main operations:

– Finding cluster of similar concepts

– Creating single collapsed concept

– Removing original concepts

Clustering of concepts, which is illustrated in Fig. 5.5, starts with iteration over

all equivalence relations. For each such relation, it is determined if at least one of

the two concepts connected by this relation is already a member of a cluster. If this

is not the case, the relation and the two concepts are considered as the first element

of a new cluster (steps 1 and 2). If one of the two concepts is already an element of

an existing cluster, then the relation is added to this cluster (steps 3 and 4). If the

two concepts are elements of two different clusters, these clusters are merged (steps

5 and 6).

The algorithm works with four temporary sets: nodes open, nodes closed,

edges open and edges closed. The ‘open’ sets contain all known elements yet

to explore. The ‘closed’ sets contain all already processed elements. The routine

iterates over all concepts in the Ondex graph. For each concept all its adjacent

relations are explored. If an equivalence relation is found, it is added to the

edges open set. The concept is then moved to nodes closed, and the algorithm

proceeds to explore all adjacent concepts of the elements of edges open and

moves them to edges closed. In this fashion the algorithm switches between ‘node

exploration’ and ‘edge exploration’ until no further elements to be processed are

found. To avoid visiting elements which have already been analysed again, they

are stored in a binary search tree so that they can be quickly re-identified. Hence

each initial concept of the iteration is checked against this data structure before

processing it.
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The actual collapse process, which is done for every identified cluster of

concepts, consists of the following steps:

• A collapse core node is created in the Ondex graph. If many nodes are collapsed

into a single node, all properties of the collapsed nodes are assigned to the single

representative.

• The edges going to nodes outside the current concept cluster are passed over to

the collapse core node.

• All concepts of the current concept cluster are removed from the Ondex graph.

Runtime Analysis

The ‘contains’ and ‘add’ operations on the set data types in this algorithm have a

runtime of O(log(n)) using tree-based set data types. Let c be the number of the

concepts in the Ondex graph and let �cs be the average cluster size. Then the worst-

case runtime of the concept clustering algorithm is

O D .c � �cs � log .�cs//

Hence the overall complexity of the algorithm is linear logarithmic.

5.3.4 Evaluation Methods

The mapping algorithms presented here can be configured using different param-

eters. According to the selection of the parameters, these methods yield different

mapping results. To evaluate their behaviour, two different test scenarios were used:

the mapping of equivalent elements in ontologies and the integration and analysis

of metabolic pathways.

The evaluation of a mapping method requires the identification of a reference

data set, sometimes also referred to as a ‘gold standard’, describing the links

that really exist between data and that can be compared with those which are

computed. Unfortunately, it is rare that any objective definition of a ‘gold standard’

can be found when working on biological data sets, and so inevitably most such

evaluations require the development of expertly curated data sets. Since these are

time consuming to produce, they generally only cover relatively small data subsets,

and therefore the evaluation of precision and recall is inevitably somewhat limited.

In the next section, the results of mapping together two ontologies, namely, the

Enzyme Commission (EC) nomenclature [24] and Gene Ontology (GO) [25], are

presented. In this case, the Gene Ontology project provides a manually curated

mapping to the ENZYME Nomenclature called ec2go. Therefore, ec2go has been

selected as the first gold standard. The cross references between the two ontologies

contained in the integrated data were also considered as the second gold standard

for this scenario.
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The following section also presents the results from the evaluation of a mapping

created between the two metabolic pathway databases Reactome and HumanCyc.

Unfortunately, a manually curated reference set is not available for this scenario.

Therefore, it was necessary to rely on the cross references between the two databases

that can be calculated through accession-based mapping as the nearest equivalent of

a gold standard for this scenario.

5.4 Results

The mapping algorithms were evaluated using the standard measures of precision

(Pr), recall (Re) and F1-score [33]:

Pr D
tp

tp C fp
Re D

tp

tp C f n
F1 D

2 � Pr �Re

PrCRe

The accession-based mapping algorithm (Acc) was used with default parameters,

i.e. only using non-ambiguous accessions. This choice has been made to obtain a

‘gold-standard’ through accession-based mapping, i.e. increasing the confidence in

the relations created. When evaluating the synonym mapping (Syn) and StructAlign

(Struct) algorithms, parameters were varied to examine the effect of the number of

synonyms that must match for a mapping to occur. This is indicated by the number

in brackets after the algorithm abbreviation (e.g. Struct(1)). A second variant of each

algorithm in which related synonyms of concepts were used to find a mapping was

also evaluated. The use of this algorithmic variant is indicated by an asterisk suffix

on the algorithm abbreviation (e.g. Syn(1)*).

5.4.1 Mapping Methods: ENZYME Nomenclature

vs. Gene Ontology

The goal of this evaluation was to maximise the projection of the Enzyme

Commission (EC) nomenclature onto the Gene Ontology. This would assign every

EC term one or more GO terms. This evaluation has been carried out twice, once in

January 2008 and a second time in the January 2013. The comparison of both results

highlights the improvements made to the mapping between the two ontologies

during this period.

For the first evaluation in 2008, ec2go (revision 1.67, downloaded 2008/01/21)

and gene ontology edit.obo (revision 5.661, downloaded 2008/01/21) obtained

from ftp://ftp.geneontology.org were used. Additionally enzclass.txt (last update

2007/06/19) and enzyme.dat (release of 2008/01/15) were downloaded from ftp://

ftp.expasy.org.

ftp://ftp.geneontology.org
ftp://ftp.expasy.org
ftp://ftp.expasy.org
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Table 5.3 Mapping results for ENZYME Nomenclature to Gene Ontology in 2008

TP, FP TP, FP Pr, Re [%] Pr, Re [%] F1-score F1-score

Method ec2go Acc ec2go Acc ec2go Acc

Ec2go 8063, 0 8049, 14 100.00, 100.00 99.83, 84.82 100:00 91:71

Acc 8049, 1441 9490, 0 84.82, 99.83 100.00, 100.00 91:71 100:00

Syn(1) 7460, 934 7462, 932 88.87, 92.52 88.90, 78.63 90:66 83:45

Syn(1)* 7605, 2581 7606, 2580 74.66, 94.32 74.67, 80.15 83:35 77:31

Syn(2)* 4734, 374 4738, 370 92.68, 58.71 92.76, 49.93 71:89 64:91

Syn(3)* 2815, 117 2816, 116 96.01, 34.91 96.04, 29.67 51:21 45:34

Struct(1) 1707, 63 1712, 58 96.44, 21.17 96.72, 18.04 34:72 30:41

Struct(1)* 1761, 279 1766, 274 86.32, 21.84 86.57, 18.61 34:86 30:63

Struct(2) 7460, 934 7462, 932 88.87, 92.52 88.90, 78.63 90:66 83:45

Struct(2)* 7605, 2581 7606, 2580 74.66, 94.32 74.67, 80.15 83:35 77:31

Struct(3) 7460, 934 7462, 932 88.87, 92.52 88.90, 78.63 90:66 83:45

Struct(3)* 7605, 2581 7606, 2580 74.66, 94.32 74.67, 80.15 83:35 77:31

Ec2go imported mapping list (1st gold standard), Acc accession-based mapping (2nd gold
standard), Syn synonym mapping, Struct StructAlign, * allow related synonyms, TP true positives,
FP false positives, Pr precision, Re recall, F1-score. Synonym mapping was parameterised with
a number that states how many of the names had to match to create a link between concepts.
StructAlign was parameterised with the depth of the graph neighbourhood

For the second evaluation in 2013, ec2go (revision 1.487, downloaded

2012/12/22) and gene ontology edit.obo (daily built, downloaded 2012/12/22) have

been retrieved, together with enzclass.txt (release of 2012/11/28) and enzyme.dat

(release of 2012/11/28).

The data files were parsed into the Ondex data structure and the mapping

algorithms applied using the Ondex pipeline. To determine the optimal parameters

for this particular application case, different combination of the mapping algorithms

with the variants and parameter options as described above have been systematically

tested. Table 5.3 summarises the mapping results and compares the performances

with the ‘gold standards’ data sets from ec2go and by accession mapping (Acc)

generated during our analysis in 2008. Table 5.4 shows the same information for

analysis results produced in 2013.

The first two rows of Tables 5.3 and 5.4 show the performance of the ‘gold

standard’ methods tested against themselves. As can be seen by reviewing the F1-

scores in the subsequent rows of Tables 5.3 and 5.4, the most accurate synonym

mapping requires the use of just one synonym. It does not help to search for

further related synonyms (Syn(1,2,3)*). The explanation for this is that the EC

nomenclature does not distinguish between exact and related synonyms. Therefore,

concepts belonging to the EC nomenclature have only one preferred concept name

(exact synonym) arbitrarily chosen to be the first synonym listed in the original data

sources. A large number of entries in the EC nomenclature only have one synonym

described, which explains the low recall of Syn(2)* and Syn(3)*.

The use of the more complex StructAlign algorithm, which uses the local graph

topology to identify related concepts, has low recall when only a single synonym is
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Table 5.4 Mapping results for ENZYME Nomenclature to Gene Ontology in 2013

TP, FP TP, FP Pr, Re [%] Pr, Re [%] F1-score F1-score

Method ec2go Acc ec2go Acc ec2go Acc

Ec2go 8120, 0 8117, 3 100.00, 100.00 99.96, 77.57 100:00 87:35

Acc 8117, 2347 10464, 0 77.57, 99.96 100.00, 100.00 87:35 100:00

Syn(1) 6954, 498 7024, 428 93.32, 85.64 94.26, 67.13 89:31 78:41

Syn(1)* 7413, 2181 7538, 2056 77.27, 91.29 78.57, 72.04 83:70 75:16

Syn(2)* 4673, 537 4748, 462 89.69, 57.55 91.13, 45.37 70:11 60:58

Syn(3)* 2841, 189 2886, 144 93.76, 34.99 95.25, 27.58 50:96 42:77

Struct(1) 1449, 77 1466, 60 94.95, 17.84 96.07, 14.01 30:04 24:45

Struct(1)* 1541, 293 1562, 272 84.02, 18.98 85.17, 14.93 30:96 25:40

Struct(2) 7041, 605 7116, 530 92.09, 86.71 93.07, 68.00 89:32 78:59

Struct(2)* 7413, 2273 7538, 2148 76.53, 91.29 77.82, 72.04 83:26 74:82

Struct(3) 7041, 605 7116, 530 92.09, 86.71 93.07, 68.00 89:32 78:59

Struct(3)* 7413, 2273 7538, 2148 76.53, 91.29 77.82, 72.04 83:26 74:82

Ec2go imported mapping list (1st gold standard), Acc accession-based mapping (2nd gold
standard), Syn synonym mapping, Struct StructAlign, * allow related synonyms, TP true positives,
FP false positives, Pr precision, Re recall, F1-score. Synonym mapping was parameterised with
a number that states how many of the names had to match to create a link between concepts.
StructAlign was parameterised with the depth of the graph neighbourhood

required to match and a depth cut-off of 1 is used (Struct(1) and Struct(1)*). This

almost certainly results from differences in graph topology between EC nomencla-

ture and Gene Ontology. The Gene Ontology has a more granular hierarchy, i.e.

there is more than one hierarchy level between two GO terms mapped to EC terms,

whereas the EC terms are only one hierarchy level apart. As the StructAlign depth

cut-off search parameters are increased, more of the graph context is explored and

accordingly the F1-scores improved.

Across both tables, the highest F1-scores come from Syn(1), Struct(2) and

Struct(3), respectively. Including the related synonyms into the search (the *

algorithm variants) did not improve precision. Neither did extending the graph

neighbourhood search depth from Struct(2) to Struct(3) as all the neighbourhood

matches had already been found within search depth 2.

During the integration of data from these data sets for this evaluation in

2008, some inconsistencies in the ec2go mapping list have been observed. The

identification of such data quality issues is often a useful side effect of developing

integrated data sets. The inconsistencies identified are listed in Table 5.5 and were

revealed during the import of the ec2go data file after preloading the Gene Ontology

and EC nomenclature into Ondex.

Presumably most of the problems are due to the previously disjoint development

of both ontologies, i.e. GO references that were transferred or EC entries being

deleted or vice versa. A few of the inconsistencies were possible typo errors. It

remains a possibility that other ‘silent’ inconsistencies are still in ec2go that these

integration methods would not find.



152 J. Taubert and J. Köhler

Table 5.5 Inconsistencies in ec2go in 2008

Accession Mapping Reason for failure

GO:0016654 1.6.4.- Enzyme class does not exist, transferred entries

GO:0019110 1.18.99.- Enzyme class does not exist, transferred entries

GO:0018514 1.3.1.61 Enzyme class does not exist, deleted entry

2.7.4.21 GO:0050517 GO term obsolete

GO:0047210 2.4.1.112 Enzyme class does not exist, deleted entry

1.1.1.146 GO:0033237 GO term obsolete

GO:0016777 2.7.5.- Enzyme class does not exist, transferred entries

GO:0004712 2.7.112.1 Enzyme class does not exist, possible typo

2.7.1.151 GO:0050516 GO term obsolete

Every inconsistency was checked by hand against gene ontology edit.obo, enz-
class.txt and enzyme.dat

A more recent analysis of data files used in 2013 revealed that the above

presented inconsistencies have been corrected. The only inconsistencies identified

in the newer data were:

• 1.3.5.6 to GO:0052889 (GO term is biological process, not molecular function)

• 2.5.1.46 to GO:0050983 (GO term is biological process, not molecular function)

• 2.1.1.35 to GO:0009021 (GO term obsolete)

5.4.2 Mapping Methods: Reactome vs. HumanCyc

The Reactome and HumanCyc pathway resources are both valuable for biologists

interested in metabolic pathway analysis. Due to the different philosophies behind

these two databases [34], however, they do have differences in their contents.

Biomedical scientists wishing to work with biochemical pathway information would

therefore benefit from a combined view of Reactome and HumanCyc and so this

makes a realistic test. These two databases were chosen for this evaluation, because

both pathway databases annotate metabolites and proteins in the pathways with stan-

dardised ChEBI [35] and UniProt [36] accessions, respectively. It is therefore pos-

sible to evaluate the precision, recall and F1-score of the different mapping methods

using accession-based mapping between these accession codes as a ‘gold standard’.

For this evaluation the BioPAX [37] representations of the Reactome database

(release 43 from 2012/12/10) obtained from http://www.reactome.org/download

and the HumanCyc database (release 16.5 from 2012/11/06) obtained from http://

humancyc.org/download.shtml were used. The Reactome database contained 1,387

metabolites and 4,650 proteins. The HumanCyc database contained 1,983 metabo-

lites and 2,690 proteins. The evaluation results from the mapping between metabo-

lites from these two databases are summarised in Table 5.6.

Accession-based mapping between metabolites found 856 out of 1,387 possible

mappings. A closer look reveals that ChEBI identifiers are not always assigned

http://www.reactome.org/download
http://humancyc.org/download.shtml
http://humancyc.org/download.shtml
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Table 5.6 Mapping results
for Reactome and HumanCyc
databases – metabolites

Method TP FP Pr [%] Re [%] F1-score

Acc 856 0 100:00 100:00 100:00

Syn(1) 218 530 29:14 25:47 27:18

Syn(1)* 468 1598 22:65 54:67 32:03

Syn(2)* 144 420 25:53 16:82 20:28

Syn(3)* 40 184 17:86 4:67 7:41

Struct(2) 238 606 28:20 27:80 28:00

Struct(2)* 430 1506 22:21 50:23 30:80

Struct(3) 238 606 28:20 27:80 28:00

Struct(3)* 430 1506 22:21 50:23 30:80

Acc accession-based mapping (gold standard), Syn synonym
mapping, Struct StructAlign, * allow related synonyms, TP

true positives, FP false positives, Pr precision, Re recall, F1-
score. Synonym mapping was parameterised with a number
that states how many of the names had to match to create a
link between concepts. StructAlign was parameterised with
the depth of the graph neighbourhood

Table 5.7 Mapping results
for Reactome and HumanCyc
databases – proteins

Method TP FP Pr [%] Re [%] F1-score

Acc 2826 0 100:00 100:00 100:00

Syn(1) 10 28 26:32 0:35 0:70

Syn(1)* 514 226 69:46 18:19 28:83

Syn(2)* 14 0 100:00 0:50 0:99

Struct(2) 46 36 56:10 1:63 3:16

Struct(2)* 288 112 72:00 10:19 17:85

Struct(3) 46 36 56:10 1:63 3:16

Struct(3)* 288 112 72:00 10:19 17:85

Acc accession-based mapping (gold standard), Syn synonym
mapping, Struct StructAlign, * allow related synonyms, TP

true positives, FP false positives, Pr precision, Re recall, F1-
score. Synonym mapping was parameterised with a number
that states how many of the names had to match to create a
link between concepts. StructAlign was parameterised with
the depth of the graph neighbourhood

to metabolite entries, most notably in HumanCyc. Therefore, the accession-based

mapping does miss possible links and cannot be used naively as a gold standard

for this particular application case. In this evaluation, accession-based mapping

underestimates possible mappings, which leads to low precision for synonym

mapping and StructAlign. A random set of the false-positive mappings returned

by Syn(2)* and Struct(3) has been manually reviewed, and this revealed that a large

number of the mappings made sense and metabolites shared very similar chemical

names. Subject to further investigation, this example shows that relying only on

accession-based data for integration might miss out some important links between

data sources.

The evaluation results from the mapping between proteins from Reactome and

HumanCyc are summarised in Table 5.7.
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The accession-based mapping between proteins uses the UniProt accessions

available in both Reactome and HumanCyc. Entries from HumanCyc can be labelled

with two or more UniProt accessions representing multiple proteins involved in the

same enzymatic function, whereas Reactome entries usually only have one UniProt

accession. This results in one-to-many hits between Reactome and HumanCyc

explaining why a total of 2,826 instead of only 2,690 mappings were found. This

is a good example of how the differences in the semantics between biological data

sources make it difficult to define a gold standard for evaluating integration methods.

The key finding from this evaluation based on mapping protein names is that

due to different protein naming conventions in each of the two databases, name-

based mapping methods cannot perform well. Manual inspection of a subset of

false-negative mappings and their protein names reveals that HumanCyc is using

longer names describing enzymatic functions (e.g. cytidine deaminase, cytidine

aminohydrolase), whereas Reactome uses short gene names (e.g. CDA, CDD).

5.4.2.1 Visualising Results

Data integration involving large data sets can create very large networks that

are densely connected. To reduce the complexity of such networks for the user,

information filtering, network analysis and visualisation (see Fig. 5.3, step 3)

are provided in a front-end application for Ondex [2]. The combination of data

integration and graph analysis and visualisation has been shown to be valuable for

a range of data integration projects in different domains, including microarray data

analysis [2], support of scientific database curation [38, 39] and assessing the quality

of terms and definitions in ontologies such as the Gene Ontology [40].

A particularly useful feature in the Ondex front-end is to visualise an overview

of the types of data that have been imported into Ondex. This overview is called

the Ondex meta-graph. It is generated as a network based on the data structure used

in Ondex, which contains a type system for concepts and relations. Concepts are

characterised using a class hierarchy and relations have an associated type. This

information about concept classes and relation types is visualised as a graph with

which the user can interact to specify semantic constraints – such as changing the

visibility of concepts and relations in the visualisation and analysis of the integration

data structure.

As an illustration, the integration of Reactome and HumanCyc for this evaluation

results in more than 61,000 concepts and 113,000 relations. The mapping methods

were run with optimal parameters identified in the previous section. After filtering

down to a specific pathway using methods available in the Ondex front-end, it was

possible to extract information from the integrated data as presented in Fig. 5.6.

Figure 5.6a displays parts of the MAP kinase cascade pathway from HumanCyc

(nodes and edges in black) mapped to the corresponding entries from Reactome

(indicated by bidirectional edges to blue nodes). It is now possible to visualise the

differences between the two integrated pathways. Reactome contains more protein

entities about a specific enzymatic function (e.g. proteins similar to phospho-MEK).
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Fig. 5.6 (a) MAP kinase cascade pathway from HumanCyc with entities from Reactome. Equiv-
alence relations are coloured by method (red D accession, blue D synonym, green D StructAlign)
and thickness by StructAlign score. (b) Meta-graph providing an overview of the integrated data;
node colour and shape distinguish classes; edge colour distinguishes different relation types (color
figure online)
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HumanCyc provides a larger pathway composed of more proteins than the pathway

in Reactome, as the pathway concept maps to two different Reactome entries (stars,

RAF/MAP kinase cascade).

The meta-graph is shown in Fig. 5.6b. This visualisation shows that the integrated

data set consists of pathways (Pathway), reactions (Reaction) which are part of

these pathways, metabolites (Compound) consumed or produced by the reactions,

enzymes (Enzyme) catalysing the reactions and several combinations of proteins

(Protein) and protein complexes (Protein complex) constituting the enzymes. The

meta-graph provides the user with a useful high-level overview of the conceptual

schema for this integrated data.

The last step to complete the molecular information fusion of the data presented

in Fig. 5.6a would be to select the best equivalence relations and use the relation

collapse data transformation to merge similar concept nodes together. To reduce

the number of false-positive mappings, one would choose only such equivalence

relations which are found by a combination of data integration methods (different

edge colours) and at the same time carry a high confidence score (edge thickness)

assigned by the data integration methods.

5.5 Discussion

Alternative methods for creating cross references (mappings) between information

in different but related data sources have been presented. This is an essential com-

ponent in the integration of data having different technical and semantic structures.

Two realistic evaluation cases were used to quantify the performance of a range

of different methods for mapping between the concept names and synonyms used

in these databases. A quantitative evaluation of these methods shows that a graph-

based algorithm (StructAlign) and mapping through synonyms can perform as well

as using accession codes. In the particular application case of linking chemical

compound names between pathway databases, the StructAlign and synonym-

based algorithms outperformed the most direct mapping through accession codes

by identifying more elements that were indirectly linked. Manual inspection of

the false-positive mappings showed that both StructAlign and synonym mapping

methods can be used where accession codes are not available to provide links

between equivalent data source concepts. The combination of all three mapping

methods yields the most complete projection between different data sources. This is

an important result, because it is not always possible to find suitable accession code

systems that provide the direct cross references between databases once you move

outside the closely related data sources that deal with biological sequences and their

functional annotations.

A similar approach to StructAlign called ‘SubTree Match’ has been described

in [41] for aligning ontologies. This work extends this idea into a more general

approach for data integration for biological networks and, furthermore, presents a

formal evaluation in terms of precision and recall.
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A particular challenge in this evaluation has been to identify suitable ‘gold

standard’ data sets against which to assess the success of the algorithms developed.

The results presented here are therefore not definitive, but represent the best

quantitative comparison that could be achieved in the circumstances. Therefore,

these results represent a pragmatic evaluation of the relative performance of the

different approaches to concept name matching for data integration of life-science

data sources.
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WWW Link List (In Order of First Occurrence)

Name of
resource Brief description WWW link

Ondex system Data integration, visualisation and analysis
framework for life-science data

http://www.ondex.org

BBSRC Biotechnology and Biological Sciences
Research Council in the United Kingdom

http://www.bbsrc.ac.uk

SRS Sequence Retrieval System for biological data http://www.instem.com/
solutions/srs.html

PathSys Graph-based system for creating a combined
database of biological pathways, gene
regulatory networks and protein interaction
maps

http://biologicalnetworks.net/
PathSys/

BNCC and
BiNA

Biological data warehouse combined with
biological network analyser

http://www.bina.unipax.info/

BioCAD Integrated software for biosystem reverse
engineering

http://biosoft.kaist.ac.kr/

Biozon Unified biological knowledge resource with
emphasis on protein and DNA
characterisation and classification

http://www.biozon.org

STRING Database of known and predicted protein
interactions

http://string-db.org/

NeAT Network Analysis Tools http://rsat.bigre.ulb.ac.be/

rsat/index neat.html

OBO Open Biomedical Ontologies Foundry http://www.obofoundry.org

ENZYME (EC) Nomenclature Committee of the International
Union of Biochemistry and Molecular
Biology

http://www.chem.qmul.ac.
uk/iubmb/enzyme/

(continued)

www.ondex.org
http://www.ondex.org
http://www.bbsrc.ac.uk
http://www.instem.com/solutions/srs.html
http://www.instem.com/solutions/srs.html
http://biologicalnetworks.net/PathSys/
http://biologicalnetworks.net/PathSys/
http://www.bina.unipax.info/
http://biosoft.kaist.ac.kr/
http://www.biozon.org
http://string-db.org/
http://rsat.bigre.ulb.ac.be/rsat/index_neat.html
http://rsat.bigre.ulb.ac.be/rsat/index_neat.html
http://www.obofoundry.org
http://www.chem.qmul.ac.uk/iubmb/enzyme/
http://www.chem.qmul.ac.uk/iubmb/enzyme/
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(continued)

Name of
resource Brief description WWW link

GO The Gene Ontology http://www.geneontology.
org/

Reactome Curated knowledgebase of biological pathways
in humans

http://www.reactome.org

HumanCyc Encyclopedia of Homo sapiens Genes and
Metabolism

http://humancyc.org/

NCBI Taxon-
omy

Provides a taxonomy browser, taxonomy
resources and other information

http://www.ncbi.nlm.nih.gov/
taxonomy

GenBank GenBank is the NIH genetic sequence database http://www.ncbi.nlm.nih.gov/
genbank/

Apache
Lucene

Open source full-text indexing system http://lucene.apache.org

BLAST The Basic Local Alignment Search Tool http://blast.ncbi.nlm.nih.gov

Decypher Hardware accelerated sequence aligner http://www.timelogic.com

PFAM Large collection of protein families http://pfam.sanger.ac.uk

Ec2go Mapping file from EC to GO http://www.geneontology.
org/external2go/ec2go

ChEBI Chemical Entities of Biological Interest http://www.ebi.ac.uk/chebi

UniProt Universal Protein Resource is a catalog of
information on proteins

http://www.uniprot.org
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(2008) Graph-based sequence annotation using a data integration approach. J Integr Bioinform
5(2):94. doi:10.2390/biecoll-jib-2008-94

18. Brohee S, Faust K, Lima-Mendez G, Sand O, Janky R, Vanderstocken G, Deville Y, van
Helden J (2008) NeAT: a toolbox for the analysis of biological networks, clusters, classes
and pathways. Nucleic Acids Res 36(Web Server issue):W444–W451. doi:gkn336 [pii]

10.1093/nar/gkn336
19. Dwyer T, Rolletschek H, Schreiber F (2004) Representing experimental biological data in

metabolic networks. Paper presented at the proceedings of the second conference on Asia-
Pacific bioinformatics, vol 29, Dunedin, New Zealand

20. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein
networks. Nature 411(6833):41–42. doi:10.1038/35075138

21. Ogata H, Goto S, Fujibuchi W, Kanehisa M (1998) Computation with the KEGG pathway
database. Biosystems 47(1–2):119–128

22. Zhu H, Cabrera RM, Wlodarczyk BJ, Bozinov D, Wang D, Schwartz RJ, Finnell RH (2007)
Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity.
BMC Dev Biol 7:128. doi:10.1186/1471-213X-7-128

23. Gardner SP (2005) Ontologies and semantic data integration. Drug Discov Today
10(14):1001–1007. doi:S1359-6446(05)03504-X [pii] 10.1016/S1359-6446(05)03504-X

24. Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28(1):304–305
25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski

K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S,
Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology:
tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29.
doi:10.1038/75556

26. Jupe S, Akkerman JW, Soranzo N, Ouwehand WH (2012) Reactome – a curated knowl-
edgebase of biological pathways: megakaryocytes and platelets. J Thromb Haemost.
doi:10.1111/j.1538-7836.2012.04930.x

27. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krumme-
nacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M,
Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways
and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res
40(Database issue):D742–D753. doi:10.1093/nar/gkr1014

28. Smith B (2004) Beyond concepts: ontology as reality representation. In: Varzi A, Vieu L (eds)
Proceedings of FOIS. IOS Press, Amsterdam

http://dx.doi.org/10.2390/biecoll-jib-2006-34
http://dx.doi.org/10.1186/1471-2105-8-S9-S2
http://dx.doi.org/10.1186/1471-2105-7-70
http://dx.doi.org/10.1093/nar/gkn760
http://dx.doi.org/10.2390/biecoll-jib-2008-94
http://dx.doi.org/10.1093/nar/gkn336
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1186/1471-213X-7-128
http://dx.doi.org/10.1016/S1359-6446(05)03504-X
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1111/j.1538-7836.2012.04930.x
http://dx.doi.org/10.1093/nar/gkr1014


160 J. Taubert and J. Köhler
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Chapter 6

Text Mining on PubMed

Timofey V. Ivanisenko, Pavel S. Demenkov, and Vladimir A. Ivanisenko

Abstract A technology of linguistic analysis with the use of computer methods is

called a text mining.

Computer tools based on this technology can provide a wide range of tasks,

including:

1. The task of finding a relevant literature with the user-specified criteria and

determination of the correspondence between single article or manually specified

picks of articles and researching area of knowledge or a set of predesignated areas

2. The task of identification and extraction of names of biological objects that can

be found in the raw text (e.g., genes, proteins, metabolites) with extra information

on them, such as the type of object and names of its synonyms

3. The task of establishment of relationships between objects that had been

automatically recognized in text with the representation of the obtained data in a

form convenient for the further analysis, for example, in the form of associative

networks

Keywords Text mining • Associative genetic networks • Automated PubMed

analysis • Knowledge extraction system

6.1 Systems for the Automated Search of Literature

Systems for the thematic search of the literature are extremely important in almost

any kind of scientific research. Their main task is automated determination of the

level of relevance between electronic publications and information of interest for
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specialists. The most common techniques for the development of such systems are

the use of logic and vector models as well as mining techniques; often they are

combined in order to improve the search.

6.1.1 Logical Query Model

Logical queries allow to perform search of documents with a user-specified strings

of keywords associated by logical operators AND/OR/NOT by comparison of user-

specified queries with all available documents. In case of full or partial string

matches, considering logical operators in the query, the document will be defined

as satisfying to the query or not. For example, the query «p53 AND open-angle

glaucoma» will display all documents containing a name of the protein “p53” and

“open-angle glaucoma” disease at the same time the query «p53 NOT cancer»

will show only documents that involve “p53,” but not involve a “cancer” disease.

The advantage of this method is its easy implementation. At the same time, its

main drawbacks are the lack of features for the formation of complex queries that

can allow, for example, to consider the relationships between objects, as well as

excessive search redundancy [1].

6.1.2 Vector Query Model

Vector query algorithm was proposed by Joyce and Needham [2]. It is based on the

idea that similar documents should meet to the simular requirements.

The algorithm is based on a representation of each document as a mathematical

vector of terms in which each term is corresponding to the frequency number of its

matches in the text, such vectors are related to control vector that is formed with a

user-specified query, and as a result the establishment of the extent to which articles

specified to the provided subject area takes place. This approach offers the feature

of the combination of similar documents into clusters, which can significantly

improve the time and the quality of search. The first query vector algorithm has

been implemented by Salton in SMART (Salton’s Magical Automatic Retriever of

Text) search engine [3].

6.1.3 Mining Methods

These methods include:

– Methods of the statistical correlations intended for the formation of rules for

establishment of relations between documents and prespecified categories [4].
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– Clustering methods based on different semantic attributes of the document set

with the use of linguistic and mathematical methods without a priori knowledge;

as a result of such analysis, a taxonomy of documents or visual map, providing

effective coverage of large amounts of data, is created [5].

– Methods for analysis of the relationships for identification of descriptors (key

phrases) in the documents that provide flexible navigation in text [6].

– Methods for the identification of facts designed for the extraction of knowledge,

in order to improve the classification, retrieval, and clusterization of docu-

ments [7].

6.1.4 Existing Search Systems

The Entrez system [8] (http://www.ncbi.nlm.nih.gov/sites/gquery) allows to make

search of information on biological databases supported by NCBI, such as PubMed,

GenBank, Structure, and Genome. It is based on a model of vector and logical

queries as well as mining techniques.

Muller and his colleagues developed a search engine, Textpresso [9] (http://www.

textpresso.org), specialized on Caenorhabditis elegans that includes over 3,800 of

full-text articles and 16,000 of abstracts. It is based on the modified vector method,

containing articles that were previously divided on separate sentences as well as on

terms appropriate to C. elegans and stored at the database; the search queries are

divided into words, and such approach allowed authors to improve the quality of

search in comparison with classical method of vector queries.

PubMatrix [10] (http://pubmatrix.grc.nia.nih.gov) is a system that allows to make

search on the PubMed database by comparing a user-specified sample of terms,

such as gene or protein names with a set of their functions. As a result, the system

provides a list of abstracts of scientific publications containing links between these

genes or proteins and their functions.

6.2 Systems for Automated Identification of Biological

Objects in Texts

Krauthammer and Nenadic distinguished three stages of automatic recognition of

biological objects [11]:

– Extraction of names, synonyms, and abbreviations in the unstructured text

– Identification and establishment of relationships between objects

– Representation of obtained information in the formalized form

There are three main approaches for automated identification of the names of

biological objects in text:

http://www.ncbi.nlm.nih.gov/sites/gquery
http://www.textpresso.org
http://www.textpresso.org
http://pubmatrix.grc.nia.nih.gov
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– With the use of rules and templates

– With the use of statistical and machine learning methods

– With the use of thematic vocabularies

6.2.1 Methods for Identification of the Biological Objects

with the Use of Rules and Templates

These methods are based on the use of a set of regular expressions (rules or

patterns) that normally are formed manually by specialists [12] and intended to

identification of terms according to their syntactic and semantic features. Ananiadou

and McNaught in their work concluded that systems implemented by use of these

methods can get the better-quality results in comparison to other approaches [13].

The main disadvantage of methods based on templates is a poor quality in analysis

of complex sentences.

6.2.2 Recognition of Biological Entities with the Use

of Statistical Algorithms and Machine Learning Methods

The use of statistical approaches allows the identification of terms based on the

frequency values of their occurrence in text; these methods are effective in solving

the problem of keywords. Systems based on machine learning methods are designed

to search for specified classes of terms in the text and allow to do direct identification

of objects with their classification with the help of “training samples.” These

samples are used to “train” method and allow them to produce high-quality object

recognition and classification on a specific biological problem. The main problems

of machine learning methods are poor availability of training samples and the high

need of a large amount of high-quality data [13].

Collier and colleagues used a hidden Markov model and automated analysis

of orthographic word features for the extraction of the terms related to the ten

predesignated classes [14]. The results of this system were highly dependent from

the quality of samples. Thus, for a class of proteins, F-score value was 75.9 %, while

F-score value for RNA was much less due to their low representation in the training

set. Similar results (F-score of 75 %) occurred in Morgan and colleagues’ analysis

of gene names for Drosophila genus (small flies) [15]. They used a hidden Markov

model in conjunction with contextual analysis and simple spelling rules.

Kazama and colleagues used the method of the support vector machine with a

GENIA training set [16, 17]. The so-called B-I-O tags were used for the annotation:

the B tag allowed to identify preterm structures, the I tag contrasted the words

forming the part of the term, and the O tag was used for words going after

terms. Tags were supplemented with information related to different classes of
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molecular-genetic objects. For instance, tag B protein was associated with the words

that were situated in front of the names of proteins. The F-score value for this

method was 50 %.

6.2.3 Recognition of Biological Objects with Dictionaries

These methods are based on the use of thematical words for the search for biological

object names by the comparing of text with terms from the dictionary. The advantage

of such approach over other methods is fast term classification by types with their

reference to the various databases. The main disadvantages are the inability to

recognize the novel names and a high degree of false-positive results related to short

and nonunique names [18].

The BioThesaurus web-based system [19] (http://pir.georgetown.edu/pirwww/

iprolink/biothesaurus.shtml) was designed for the establishment of interactions

between genes and proteins in unstructured text. The system was based on the use

of vocabulary compiled from the different databases: UniProt [20]; NCBI resources

devoted to genes and proteins [21], including Entrez Gene, RefSeq, and GenPept;

and genomic databases of model organisms such as MGD [22], SGD [23], RGD

[24], FlyBase [25], and WormBase [26] and some other sources. The total volume

of the dictionary was about 2.8 million of unique gene and protein names.

6.2.4 Recognition of Biological Objects with the Combining

of Different Methods

For today most of modern systems designed for the identification of names of

biological objects in texts are combining several different approaches. For example,

popular is a combination of methods based on patterns with machine learning. This

allows to achieve more higher values of completeness and accuracy. Tsuruoka and

Tsujii used the search with the dictionary along with machine learning methods

[27]. On the first step (recognition phase), the text was scanned using a dictionary

for protein name candidates. The problem of spelling variation was solved with an

approximate string-matching technique. On the second step (filtering phase), each

candidate was checked if it is a name of a protein or not with a machine learning

method. The classifier was trained on an annotated corpus GENIA [28] and used

the context of the term and the term itself as the features for the classification. Only

“accepted” candidates were recognized as names of proteins. The F-measure (the

harmonic value of the precision and recall values) for this system was 70.2 %.

Hakenberg with colleagues developed a GNAT system [29] (http://cbioc.eas.asu.

edu/gnat/) for the identification of the names of genes from various organisms in

the texts of abstracts of scientific publications. For the identification of gene names,

http://pir.georgetown.edu/pirwww/iprolink/biothesaurus.shtml
http://pir.georgetown.edu/pirwww/iprolink/biothesaurus.shtml
http://cbioc.eas.asu.edu/gnat/
http://cbioc.eas.asu.edu/gnat/
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dictionaries (for each of the 25 organisms, a separate dictionary was compiled) and

machine learning methods were used. The search of noncanonical forms of names

was done using automates with the ending number of states, while the identification

of canonical names was done with the help of dictionaries based on Entrez, GO,

UniProt, and other databases. The F-score of the system was 81.4 % (the precision

and recall were 90.8 % and 73.8 %, respectively).

6.3 Systems for the Recognition of Interactions Between

Biological Objects

For the solution of task of automated extraction of information about the molecular

and genetic interactions between biological objects from the literature, the following

methods are widely used:

– Methods based on the co-occurrence of objects in the text

– Methods based on a set of rules and patterns (shallow parsing)

– Methods based on a deep syntactic analysis of the separated sentences (full or

deep parsing)

The co-occurrence method is based on a calculation of the frequency of co-

occurrence of object names in the text. It is assumed that the more two objects can

be mentioned in the same text, the more likely they are related with each other. The

main advantages of these methods are the easy implementation and high value of

recall. But on the other side, the precision of such method is not very high and this

method does not allow the identification of type of relationships between objects.

Coremine Medical (http://www.coremine.com/medical) and FACTA [30] (http://

text0.mib.man.ac.uk/software/facta/main.html) are examples of such systems. At

the BRENDA database (http://www.brenda-enzymes.org), co-occurrence method

was used for the extraction of data about associations between diseases and

enzymes [31].

The shallow parsing is based on the extraction of information from texts

with the use of partial relations between words in a sentence using a set of

specific patterns and rules. A SUISEKI (System for Information Extraction on

Interactions) [32] designed for the automated analysis of the syntactic structure

of phrases and other developments for the extraction of protein interactions is

based on this method. The core of the system is the number of rules that allow

capturing different language constructions that are commonly used to describe

interactions. The rules are implemented as frames of the form “[protein/gene]

binds/associates/ : : : [protein/gene]” as well as the form describing specific rela-

tions, such as “[noun indicating interaction] of [protein/gene] with [protein/gene].”

The Chilibot [33] (http://www.chilibot.net) extracts sentences from abstracts of

scientific publications related to a pair or a list of genes, proteins, or keywords

and uses shallow parsing for the classification of the extracted sentences as

noninteractive, interactive, or simple abstract co-occurrence.

http://www.coremine.com/medical
http://text0.mib.man.ac.uk/software/facta/main.html
http://text0.mib.man.ac.uk/software/facta/main.html
http://www.brenda-enzymes.org
http://www.chilibot.net
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Information extraction systems based on the full-sentence parsing approach tend

to be more precise as they deal with the structure of an entire sentence, and variations

of the full parsing-based approach have been applied for biomedical information

retrieval. However, full parsers are significantly slower and require more memory

than shallow analyses because they have to deal with general syntactic ambiguity

and handle the full set of possible structures of whole sentences.

The full (deep) parsing is based on the language description with the help of

formal grammas. Such approach is usually more accurate than shallow parsing

as it is working with the structure of an entire sentence. On the other hand,

the main disadvantages are the full dependence from the quality and fullness of

the training set and high requirements to memory. The MedScan system [34]

(http://www.elsevier.com/online-tools/pathway-studio/training-support#faqs) from

Pathway Studio used a full syntactic parser for the analysis of the semantic and

lexical structure of sentences and search of interactions between various biological

objects, including small molecules, genes, proteins, protein functional classes,

diseases, and cell processes.

6.4 The ANDSystem Tool

The ANDSystem tool incorporates methods for automated extraction of knowledge

from the PubMed abstracts of scientific publications and factographic databases

[35]. The ANDSystem consists of three main modules: module of linguistic text

analysis and extraction of knowledge from text; the ANDCell database, containing

the results of knowledge extraction from PubMed in the form of associative

networks; and the ANDVisio tool that provides a graphical interface for ANDCell,

intended for the graphical visualization and analysis of associative gene networks

comprising relationships between biological processes, diseases, and molecular-

genetic objects (proteins, genes, metabolites). The vertices of such networks are

molecular-genetic objects, diseases, and processes while the edges between the

vertices represent types of associations. Considered are the following objects: genes,

proteins, microRNAs, metabolites, molecular processes and pathways, cellular

components, and diseases (Fig. 6.1).

The following types of relationships are established between molecular-genetic

objects: association, interactions, co-expression, treatment, Ôatalytic reactions, con-

version of molecules, degradation of a protein, regulation of gene expression,

regulation of activity or function, regulation of transport, regulation of stability or

degradation, and regulation of molecular-biological processes and diseases.

Algorithms for extraction of knowledge from text implemented in ANDSystem

are based on the use of dictionaries and templates [36]. A thesaurus of genes was

compiled with the use of the NCBI gene database; for the protein dictionary, a

Swiss-Prot database was used; a list of diseases was extracted from the PharmGKB;

for the metabolites, a ChEBI database was analyzed; biological processes and cellu-

lar components were obtained from Gene Ontology; and for microRNA, miRBase

http://www.elsevier.com/online-tools/pathway-studio/training-support#faqs
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Fig. 6.1 The associative network of relationship between human genes and proteins associated
with open-angle glaucoma and myopia generated with ANDVisio

was used. The extraction of relationships between described biological objects from

text was done with a help of about 4,000 manually created templates. The obtained

knowledge base now consists of over five million facts about relationships between

diseases, molecular-genetic objects, and biological processes.

With the ANDVisio, an associative network describing relationship between

human genes and proteins associated with open-angle glaucoma and myopia dis-

eases [37]. The built network contains 15 genes and 50 proteins that are associated

with myopia and open-angle glaucoma at the same time and over 400 relationships

between them (Fig. 6.1). It identified 26 pathways between myopia and open-

angle glaucoma containing the most important objects and relationships, including

SMAD3, PAX6, IPO13, GCR, NOE3, MYOC proteins, and the OLFM3 gene.

References

1. Shatkay H, Wilbur WJ (2000) Finding themes in medline documents: probabilistic similarity
search. In: Hoppenbro J, Souza Lima T, Papazoglou M, Sheth A (eds) Proceedings IEEE
advances in digital libraries 2000, Washington DC, May 2000, pp 183–192

2. Joyce T, Needham RM (1997) The thesaurus approach to information retrieval. American
documentation (1958) 9:192–197. In: Sparck Jones K, Willet P (eds) Readings in information
retrieval. Morgan Kaufmann Publishers Inc, California (1997), pp 15–20



6 Text Mining on PubMed 169

3. Salton G (1968) Automatic information organization and retrieval. McGraw Hill, New York
4. Sebastiani F (1999) Machine learning in automated text categorization. Technical report IEI-

B4-31-1999, Istituto di Elaborazione dell’Informazione. CNR, Pisa
5. -ËÓËÚÈÐÍÑ -¯, ¦ÈÓÃÔËÏÑÅ ¯¤ (2001) ±ÄÊÑÓ ÏÈÕÑÇÑÅ ÍÎÃÔÕÈÓËÊÃÙËË ÕÈÍÔÕÑÅÞØ

ÇÑÍÖÏÈÐÕÑÅ. ¯ÃÕÈÓËÃÎÞ ÏÈÉÇÖÐÃÓÑÇÐÑÌ ÍÑÐ×ÈÓÈÐÙËË §ËÃÎÑÆ, Õ 2, £ÍÔÃÍÑÅÑ, 2001
6. ¦ÃÅÓËÎÑÅÃ µ£, ¸ÑÓÑÛÈÅÔÍËÌ ¥· (2000) ¤ÃÊÞ ÊÐÃÐËÌ ËÐÕÈÎÎÈÍÕÖÃÎßÐÞØ ÔËÔÕÈÏ.

¶ÚÈÄÐËÍ,�ËÕÈÓ, ´ÃÐÍÕ-�ÈÕÈÓÄÖÓÆ, 2000
7. «ÎßËÐ °, -ËÔÈÎëÅ ´, µÃÐÍÑÅ ´, PâÄÞÛÍËÐ ¥ (2006) µÈØÐÑÎÑÆËË ËÊÅÎÈÚÈÐËâ ÊÐÃÐËÌ

ËÊ ÕÈÍÔÕÃ, ±ÕÍÓÞÕÞÈ ÔËÔÕÈÏÞ, 6, 2006
8. Schuler G, Epstein J, Ohkawa H, Kans J (1996) Entrez: molecular biology database and

retrieval system. Methods Enzymol 266:141–162
9. Muller HM, Kenny EE, Sternberg PW (2004) Textpresso: an ontology-based information

retrieval and extraction system for biological literature. PLoS Biol 2:309
10. Becker K et al (2003) PubMatrix: a tool for multiplex literature mining. BMC Bioinforma 4:61
11. Krauthammer M, Nenadic G (2004) Term identification in the biomedical literature. J Biomed

Inform 37:512–526
12. Krallinger M, Morgan A, Smith L, Leitner F, Tanabe L, Wilbur J, Hirschman L, Valencia A

(2008) Evaluation of text mining systems for biology: overview of the Second BioCreative
community challenge. Genome Biol 9(2):1

13. Ananiadou S, McNaught J (eds) (2006) Text mining for biology and biomedicine. Artech
House, Norwood

14. Collier N, Nobata C, Tsujii J (2000) Extracting the names of genes and gene products with a
hidden Markov model. In: Proceedings of COLING 2000, Saarbruecken, pp 201–207

15. Morgan A, Yeh A, Hirschman L, Colosimo M (2003) Gene name extraction using FlyBase
resources. In: Proceedings of NLP in biomedicine. ACL 2003, Sapporo, pp 1–8

16. Kazama J, Makino T, Ohta Y, Tsujii J (2002) Tuning support vector machines for biomedical
named entity recognition. In: ACL-02 workshop on natural language processing in biomedical
applications, Pennsylvania, July 2002

17. Kim JD, Ohta T, Tateisi Y, Tsujii J (2003) GENIA corpus – a semantically annotated corpus
for bio-textmining. Bioinformatics 19(1):180–182

18. Cohen KB, Hunter L (2005) Natural language processing and systems biology. In: Dubitzky
W, Azuaje F (eds) Artificial intelligence and systems biology. Springer, Dordrecht

19. Liu H, Hu ZZ, Zhang J, Wu C (2006) BioThesaurus: a web-based thesaurus of protein and
gene names. Bioinformatics 22:103–105

20. Bairoch A, Apweiler R, Wu CH et al (2007) The Universal Protein Resource (UniProt). Nucleic
Acids Res 35:193–197

21. Wheeler D, Church D, Federhen S et al (2003) Database resources of the National Center for
Biotechnology. Nucleic Acids Res 31:28–33

22. Eppig JT et al (2005) The Mouse Genome Database (MGD): from genes to mice — a
community resource for mouse biology. Nucleic Acids Res 33:471–475

23. Christie KR et al (2004) Saccharomyces Genome Database (SGD) provides tools to identify
and analyze sequences from Saccharomyces cerevisiae and related sequences from other
organisms. Nucleic Acids Res 32:311–314

24. De la Cruz N et al (2005) The Rat Genome Database (RGD): developments towards a phenome
database. Nucleic Acids Res 33:485–491

25. Drysdale RA, Crosby MA (2005) FlyBase: genes and gene models. Nucleic Acids Res
33:390–395

26. Chen N et al (2005) WormBase: a comprehensive data resource for Caenorhabditis biology and
genomics. Nucleic Acids Res 33:383–389

27. Tsuruoka Y, Tsujii J (2003) Boosting precision and recall of dictionary-based protein name
recognition. In: Ananiadou S, Tsujii J (eds) Proceedings of the ACL 2003 workshop on
natural language processing in biomedicine, Stroudsburg, July 2003, vol 13. Association for
Computational Linguistics, Stroudsburg, pp 41–48



170 T.V. Ivanisenko et al.

28. Ohta T, Tateishi Y, Mima H, Tsujii J (2002) Genia corpus: an annotated research abstract corpus
in molecular biology domain. In: Proceedings of the human language technology conference,
San Diego, March 2002

29. Hakenberg J et al (2008) Inter-species normalization of gene mentions with Gnat. Bioinfor-
matics 24:126–132

30. Tsuruoka Y, Tsujii J, Ananiadou S (2008) FACTA: a text search engine for finding associated
biomedical concepts. Oxford J 24(21):2559–2560

31. Scheer M, Grote A, Chang A et al (2011) BRENDA, the enzyme information system in 2011.
Nucleic Acids Res 39:670–676

32. Blaschke C, Valencia A (2001) The potential use of SUISEKI as a protein interaction discovery
tool. Genome Inform 12:123–134

33. Chen H, Sharp BM (2004) Content-rich biological network constructed by mining PubMed
abstracts. BMC Bioinforma 5:147

34. Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio – the analysis and navigation
of molecular networks. Bioinformatics 19(16):2155–2157

35. Demenkov PS, Ivanisenko TV, Kolchanov NA, Ivanisenko VA (2012) ANDVisio: a new tool
for graphic visualization and analysis of literature mined associative gene networks in the
ANDSystem. Silico Biol 11(3):149–161

36. Demenkov PS, Aman EE, Ivanisenko VA (2008) Associative network discovery (AND) –
the computer system for automated reconstruction networks of associative knowledge about
molecular-genetic interactions. Comput Technol 13(2):15–19

37. Podkolodnaya OA, Yarkova EE, Demenkov PS, Konovalova OS, Ivanisenko VA, Kolchanov
NA (2011) Application of the ANDCell computer system to reconstruction and analysis of

associative networks describing potential relationships between myopia and glaucoma. Russ J
Genet 1(1):21–28



Part III

Network Visualization, Modeling
and Analysis



Chapter 7

Network Visualization for Integrative

Bioinformatics

Andreas Kerren and Falk Schreiber

Abstract Approaches to investigate biological processes have been of strong

interest in the past few years and are the focus of several research areas like systems

biology. Biological networks as representations of such processes are crucial for an

extensive understanding of living beings. Due to their size and complexity, their

growth and continuous change, as well as their compilation from databases on

demand, researchers very often request novel network visualization, interaction, and

exploration techniques. In this chapter, we first provide background information

that is needed for the interactive visual analysis of various biological networks.

Fields such as (information) visualization, visual analytics, and automatic layout

of networks are highlighted and illustrated by a number of examples. Then, the state

of the art in network visualization for the life sciences is presented together with

a discussion of standards for the graphical representation of cellular networks and

biological processes.
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e-mail: andreas.kerren@lnu.se

F. Schreiber
Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, D-06120 Halle, Germany

IPK Gatersleben, Corrensstrasse 3, D-06466 Gatersleben, Germany
e-mail: schreibe@ipk-gatersleben.de
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7.1 Introduction

Many biological processes are represented as networks. Examples are networks

from the area of molecular biology, such as metabolic networks, protein interaction

networks, and gene regulatory networks, but also from other areas of the life

sciences such as ecological networks, phylogenetic networks, neuronal networks,

chemical structures, and infection networks. Network modeling, analysis, and

visualization are important steps towards a systems biological understanding of

organisms and organism communities. The graphical depiction of such networks

supports the understanding of the underlying processes and is essential to make

sense of much of the complex biological data that is now being generated.

A picture of a network is called a network diagram or a network map; see

Fig. 7.1 for an SBGN map of a metabolic pathway. A network diagram representing

Fig. 7.1 A map of a metabolic pathway shown in the SBGN standard [88], derived from
KEGG [61], computed and displayed by Vanted [110]



7 Network Visualization for Integrative Bioinformatics 175

biological processes consists of a set of elements (called nodes or vertices) and

their connections or interactions (called edges). These elements and connections

often have a defined appearance and are placed in a specific layout. Due to the size

and complexity of such networks, methods for their automatic visualization and

interactive exploration are desired.

Network diagrams or maps have been produced manually for a long time.

Examples are textbooks on biochemistry [8,96], biological network posters [94,99],

and some electronic information systems such as ExPASy [4] and KEGG [61]. The

drawings in these resources have been created manually long before their use and

provide only a restricted view of the data. These maps represent the knowledge

at the time of their generation and are static, hence cannot be changed by an end

user. Therefore, this type of biological network visualization is often called static

visualization.

Because of the size and complexity of biological networks, their steady growth

and continuous change, as well as the compilation of user-specific networks from

databases, novel automatic visualization, interaction, and exploration methods are

desired. The generation of a network map on demand is called dynamic visualiza-

tion. Such visualizations are automatically created by the end user from up-to-date

data. Their advantages are, inter alia, that they can be modified to provide particular

views at the data and often navigation and exploration methods are supported in

interactive systems.

This review gives a brief introduction into (information) visualization, visual

analytics, and automatic layout of networks, presents the state of the art in automatic

network visualization for the life sciences, and standards for the graphical represen-

tation of cellular networks and biological processes. It is structured in two main parts

as follows: Sect. 7.2 provides information about the foundations from computer

science in general and looks into the subareas of information visualization, graph

drawing (network visualization), and visual analytics in particular. Section 7.3 takes

a closer look at the visualization of biological networks and discusses methods,

some important tools, and the SBGN standard. It looks into the application and

extension of computer science methods for the special requirements of the life

sciences.

7.2 Background

The effective visualization of biological networks is influenced by research from

many different fields. In the past, such networks were simply considered as large

graphs (or hypergraphs), and a suitable visual representation was restricted to

finding an appropriate (static) graph layout. Nowadays, research in the visualization

of large and complex networks is more focused on interactive exploration and

analysis that includes the consideration of additional data that might be attached to

various graph elements or that might be the basis for the construction of biochemical

networks. The process of such a data collection and storage will heavily increase in
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the future. This is especially true in systems biology where, for example, the huge

amount of *omics data automatically generated by high-throughput technologies

[3, 39] lead to the challenge of interpreting all of these data sets in context of net-

works. The fundamental problem today is to transform the data—which is typically

not preprocessed, erratic, stored in idiosyncratic formats, sometimes uncertain, and

often composed of various types (multidimensional, time dependent, geospatial,

etc.)—into information and make it useful/available/analyzable to analysts. Often,

this challenge is called the information overload problem. Positive effects of such

a transformation are then to discover something that is interesting (like patterns or

outliers) or to monitor a huge data set in real time [70].

Because of this general view on the problem, we provide a more general

background section. First, we discuss the field of information visualization in the

next subsection. We highlight the most important definitions/aims and present a

brief high-level overview of visual representations and interaction techniques. Then,

we outline the field of graph drawing and discuss the most often used layout

algorithms. Finally, a relatively new field, called visual analytics, is introduced.

Due to page limitations, we cannot give a comprehensive overview of all aspects of

the aforementioned research fields. Instead, we present a selection of fundamental

ideas/approaches and refer to the literature including surveys.

7.2.1 Information Visualization

Information visualization (InfoVis) is a research area which focuses on the use of

interactive visualization techniques to help people understand and analyze data.

While related fields such as scientific visualization involve the presentation of

data that has some physical or geometric correspondence, information visualization

centers on abstract information without such correspondences, i.e., information that

cannot be mapped into the physical world in most cases. Examples of such abstract

data are symbolic, tabular, networked, hierarchical, or textual information sources.

The ever-increasing amount of data generated or made available every day amplifies

the urgent need for InfoVis tools. To give the field a firm base, InfoVis combines

several aspects of different research areas, such as scientific visualization, human-

computer interaction, data mining, information design, cognitive psychology, visual

perception, cartography, graph drawing, and computer graphics [73, 74].

7.2.1.1 The Importance of Human Visual Perception

and Visual Metaphors

Human information processing and the human capability of information reception

have to be adequately taken into account when developing visualization tools. This

should be reflected in an appropriate user interface design, a clean requirement

analysis and modeling, and perhaps most important an efficient interaction between
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the human analyst and the computer. Discussing the different features of our eye,

the various process models of human visual perception (incl. preattentive perception

and features) or our capabilities of pattern recognition would go beyond the scope

of this background section. There are many good textbooks that deal with these

topics in context of visualizations: we recommend the books of Ware [141], Kerren

et al. [74], and Ward et al. [140].

Edward Tufte, one of the leaders in the field of visual data exploration, describes

in his illustrated textbooks [131–133] how information can be prepared so that the

visual representation depicts both the data and the data context. The use of suitable

visual metaphors assists our brain in its endeavor to connect new information

received through the visual input channels to existing information stored in short- or

long-term memory [72]. Tufte inspired many InfoVis researchers in their ambition

to develop novel visual representations for the data sets under consideration (the

process of representing a concrete data set by an appropriate visual structure is

called “visual mapping”) as well as interaction techniques which support a better

understanding of the data.

7.2.1.2 Visual Representations

Visual mappings explain how data models can be expressed using visual metaphors

and be converted into corresponding visual representations which are suitable for

interaction. This is typically done in the 2D space, because 3D representations

usually introduce unnecessary clutter and navigation problems. We highlight the

most important visualization techniques for basic data types in the following

paragraphs. Of course there are other types of data that have to be considered.

We refer to the literature if the reader is interested to get more information, such

as [27, 102] for geo-spatial data, [2] for time-series data, or [41, 126, 140] for a

comprehensive discussion of visual representations in general.

Visualization Techniques for Multivariate Data

Multivariate (or multidimensional) data sets can mostly be described as data tables

with n data objects and m attributes/features, i.e., for each object exists an attribute

vector with m dimensions. The attribute values can be classified into nominal,

ordinal, or quantitative. In practice, we often have a large amount of data objects

and many attributes with different types. Finding a suitable visual representation

is thus challenging, and the right choice might depend on further parameters like

application domain, integration into a larger visualization environment, or support

of specific interaction techniques. In general, visual mappings for multivariate data

can roughly be categorized as follows:

Point-based approaches: This class of techniques projects n-dimensional objects

from the data space to a lower-dimensional—typically 2D—display space [140].
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Fig. 7.2 Some examples of often used visualization techniques. The screenshots in (a) and (b)
were produced with D3 [22]. (a) Parallel coordinates that visualize a nutrient content data set
with more than 1,000 data objects and 14 attributes (available online [31]). Note that the visible
polylines were interactively selected in the 3rd and 10th axes. (b) A scatterplot matrix showing
data from the Iris data set (available online [11]). Also in this case, the colored points indicate data
selected by the user (see the grey-colored selection in the plot of the first column, second row).
(c) Small icons/glyphs are embedded into the graph nodes of a metabolic network. In this case,
they indicate reachable nodes in other (color-coded) pathways [60]. (d) A pixel-based approach to
visualize weather data of a city. The rows represent years, and the temperatures (color-coded from
blue over white to red) of each day are ordered from left to right [90]. (e) Sample tag cloud of a
text document which is related to information visualization (generated with Wordle [32]) (Color
figure online)
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There are different variations: scatterplot matrices, for instance, consist of a grid

of 2D scatterplots each showing a possible pair of dimensions/attributes [19];

see Fig. 7.2b for an example. Dimensional reduction techniques, such as multidi-

mensional scaling (MDS) [92, 145], principal component analysis (PCA) [53], or

self-organizing maps (SOMs) [80], project n-dimensional data records into 2D/3D

directly. The idea is to preserve properties of the multivariate data space during the

projection, i.e., similar data objects in data space should also be similar in display

space which is represented by neighborhood. Note that absolute positions in the

display space are less important, in contrast to relative positions.

Axis-based approaches: Here, a multidimensional data object is usually repre-

sented by a polyline, and its attribute values are marked on coordinate axes which

can be arranged in various ways. Thus, the user can read the attribute values from

the intersections between the coordinate axes and the polyline. The most prominent

examples are parallel coordinate systems [49] (cf. Fig. 7.2a) or star plots [16] (also

called Kiviat diagrams).

Icon-based approaches: Icon- or glyph-based approaches are coherent graphical

entities that represent the attribute values of a data record by modification of the

entity’s visual features, such as line thickness, size, color, and orientation. There are

many different realizations, such as stick figures [106], Chernoff faces [18], or shape

coding [7]. A variant of so-called rose diagrams [100] is shown in Fig. 7.2c.

Pixel-based approaches: Such approaches try to maximize the available display

space by mapping attribute values to single pixels. There is only one degree of

freedom to represent such a value by a pixel: its color. Therefore, the challenge

in the development of pixel-based representations is to arrange the used pixels on

the screen in a meaningful way. Well-known examples are recursive patterns [65]

or the VisDB tool [66] for the analysis of databases. Figure 7.2d exemplifies the idea

in context of the visualization of weather data collected over time.

Visualization Techniques for Hierarchical Data and Networks

Networks and trees are in the center of our interest in this chapter. Therefore,

we provide an own Sect. 7.2.2 for a deeper discussion of suitable visualization

possibilities for these data types and focus there on traditional node-link approaches.

For the sake of completeness, we want to note that there are also so-called space-

filling methods that try to solve some conceptual problems of node-link diagrams,

such as the high space consumption and difficult inclusion of many (and complex)

attributes into the drawing. Treemaps fall into this category in which the hierarchy is

recursively mapped to rectangular areas [52]. Other examples are Beamtrees [134],

sunburst approaches [108], or network matrices [1].
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Visualization Techniques for Text and Documents

Today, the availability of texts and documents is overwhelming, and people want to

actively deal with them to solve specific problems. Typical questions are as follows:

what documents contain a text about a specific topic? Or are there similar documents

to those that I already have? Information visualization is capable of supporting the

aforementioned tasks in several ways.

Text visualization: First, we focus on approaches to the visualization of a single

text document. Tag Clouds provide information about the frequency of words

contained in a text [63]. The approach uses different font sizes for each word

in the text to indicate how often a certain word is used in comparison with the

other words as shown in Fig. 7.2e. Several extensions and related approaches exist,

such as Wordle or ManiWorlde [77, 138]. SparkClouds extend the original tag

cloud idea with a temporal variable by so-called sparklines [87]. Thus, trends

can easily be identified and analyzed. An approach for visual literary analysis is

called Literature Fingerprinting [67]. It supports the visual comparison of texts

by calculating features (e.g., word/sentence length or measurement of vocabulary

richness) for different hierarchy levels and by creating characteristic fingerprints of

the texts.

Document visualization: Collections of text documents can be structured to some

extent (software packages, wikis, etc.) or relatively unstructured (e-mails, patents,

etc.). Early approaches, e.g., Lifestreams [34], simply arranged documents accord-

ing to specific attribute values such as time tags. More recent works analyze the

documents by metrics, such as similarity, and perform cluster analyses or compute

SOMs. Conceptually similar (by looking at the resulting visual representation) is

ThemeScapes [147] that follows a natural landscape metaphor. Single documents

are categorized and then mapped to a document map as topic areas, whereas the

documents themselves are shown as small dots. “Mountains” in the landscape

represent document concentrations in a thematic environment (density), height lines

connect concept domains, etc. There are many more recent approaches that make

use of the same metaphor, such as [104]. In order to carry out comparisons of text

documents using tag clouds, Parallel Tag Clouds [20] arrange tags on vertical lines

for each document. Identical words are then highlighted by connection lines.

7.2.1.3 Interaction Techniques

Interaction techniques in information visualization are mechanisms “for modifying

what the users see and how they see it” [140]. There are many taxonomies of

interaction techniques in the literature which help to better understand the design

space of interaction; a nice overview is provided by Yi et al. [148]. In the following,

we present a simplified and shortened classification of interaction methods for

information visualization from our paper [70] which is based on [43] of its own:
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Data and view specification: This category focuses on the data space and how

the data is visually represented (corresponds to data transformations and visual

mappings in the InfoVis Reference Model [14]):

• Encode/visualize: Users can choose the visual representation of the data records

including graphical features, such as color and shape. Visual representations

typically depend on the data types as discussed in Sect. 7.2.1.2.

• Reconfigure: Some interaction techniques allow the user to map specific

attributes to graphical entities. An example is the mapping of attributes in a

multivariate data set to different axes in a scatterplot.

• Filter: This technique is of great importance as it allows the user to interactively

reduce the data shown in a view. Popular methods are dynamic queries by using

range sliders [146] or picking a set of nodes in a network visualization for further

analyses by performing a “lasso” selection [44].

• Sort: Ordering of records according to their values is a fundamental operation in

the visual analysis process. This is, for example, important in network analysis

where nodes might be sorted based on specific centrality values [150].

View manipulation: Our second category addresses interacting with visual repre-

sentations (view transformations in the InfoVis Reference Model).

• Select: Selection is often used in advance of a filter operation. The aim is to select

an individual object or a set of objects in order to highlight, manipulate, or filter

them out. Examples include putting a placemark on a virtual map to highlight a

spatial area or the specification of attribute ranges in parallel coordinate systems

as seen in Fig. 7.2a.

• Navigate/explore: This important class of interaction techniques typically modify

the level of detail in visualizations following the mantra overview first, zoom

and filter, and details on demand [121]. Well-known approaches are focus

and context [111], overview and detail [51], zooming and panning [137], and

semantic zooming [127].

• Coordinate/connect: Linking a set of views or windows together to enable the

user to discover related items. Brushing and linking techniques (e.g., histogram

brushing [89]) are used in almost all information visualizations, such as in [59].

• Organize: Large visualization systems often consist of several windows and

workspaces that have to be organized on the screen. Adding and removing views

can be confusing to the analyst. Some systems help the user to better overview

and to preserve his/her mental map by grouping of views or by assigning specific

places where they have to appear [50, 91].

Note that it is possible and also common practice to combine the aforementioned

techniques. The given literature references only point to selected example works

and make no claim to be complete.
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7.2.2 Graph Drawing and Network Visualization

In this subsection, we distinguish between graphs and multivariate networks. A

(simple) graph G D .V; E/ consists of a finite set of vertices (or nodes) V and a set

of edges E � f.u; v/ju; v 2 V; u ¤ vg, whereas a multivariate network N consists

of an underlying graph G plus additional attributes that are attached to the nodes

and/or edges. To describe the fundamental ideas of graph visualization algorithms

more efficiently, we have to provide some definitions:

• An edge e D .u; v/ with u D v is called a self-loop.

• If an edge e exists several times in E , then it is called a multiple edge.

• A simple graph has no self-loops and no multiple edges. Here, we assume that

all graphs are simple graphs for the sake of convenience.

• The neighbors of a node v are its adjacent nodes.

• The degree of a node v is the number of its neighbors.

• A directed graph (or digraph) is a graph with directed edges, i.e., .u; v/ are

ordered pairs of nodes.

• A directed graph is called acyclic if it has no directed cycles, i.e., there is no

directed path where the same node is visited twice.

• A graph is connected if there is a path between u and v for each pair .u; v/ of

nodes.

• A graph is planar if it can be drawn in the 2D plane without intersections of

edges (edge crossings).

7.2.2.1 Traditional Graph Drawing (GD)

Graph drawing algorithms compute a 2D/3D layout of the nodes and the edges,

mainly based on so-called node-link diagrams [141]. They play a fundamental role

in network visualization. Particular graph layout algorithms can give an insight

into the topological structure of a network if properly chosen and implemented.

The graph readability is affected by quantitative measurements called aesthetic

criteria [24], such as:

• Minimization of edge crossings

• Minimization of the drawing area

• Displaying the symmetries of the graph topology

• Constraining edge lengths

• Constraining the number of edge bends

• Maximization of the resolution

Thus, graph drawing generally deals with the ways of drawing graphs according

to the set of predefined aesthetic criteria [17]. A problem is that these criteria

are often contradictory, and problems which aim to optimize the criteria are often

NP-hard. Therefore, many GD algorithms are heuristics. Note that we only focus
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on traditional GD approaches in this subsection. There are further possibilities to

represent graphs, such as matrix representations [1] or hybridizations between both

approaches [44] (cf. Sect. 7.2.1.2).

In the following paragraphs, a selection of drawing approaches is presented.

These are layout methods for trees, force-based layout techniques, and hierarchical

drawings. There are many more approaches not discussed here, for instance,

orthogonal layouts [29], visualization of hypergraphs [9], or dynamic layouts for

graphs that change over time [25] (a possible application of dynamic approaches is

visualizing the evolution of biochemical networks [112], for instance). Implement-

ing good graph drawing algorithms is usually complicated and time-consuming.

Therefore, a number of different open source libraries were developed, such as

JUNG [105] and many others, that allow to simply call predefined methods for the

computation of a specific graph layout.

Tree Drawings

Trees are a special case of directed (acyclic) graphs that usually have a distinguished

node called the root of the tree. We can regard a tree as a digraph with all edges

oriented away from the root. A binary tree is a rooted tree where each node has at

most two children (we assume here that binary trees are ordered). The graph drawing

community developed a lot of different layout methods for binary and general trees.

In this context, there is another set of more specified aesthetic criteria especially for

(binary) trees:

• Nodes at the same level of the tree should lie along a straight line, and the straight

lines defining the levels should be parallel.

• A left subtree should be positioned to the left of its parent node and a right subtree

to the right.

• A parent node should be centered over its subtrees.

• Two isomorphic subtrees should be drawn equally. Graph isomorphism means

that there is a bijection between two graphs, so that any two nodes u and v are

adjacent in the first graph if and only if their bijections are adjacent in the second

graph.

• A tree and its mirror image should produce drawings that are reflections of one

another.

• Integer coordinates should be preferred which leads to a grid drawing at the end.

Many tree layout algorithms use a divide and conquer strategy, such as the well-

known Reingold/Tilford algorithm for binary trees [107]. In a postorder traversal of

the tree, the following simple steps are executed:

1. Draw the left subtree.

2. Draw the right subtree.

3. Combine both drawings with a specific minimum distance.
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Fig. 7.3 Two sample tree layouts that were computed and displayed by the yED graph editor [149].
The identical input tree has 30 nodes and 29 edges. (a) A standard tree layout for general trees.
(b) A so-called HV-drawing in which the layout algorithm switches between the horizontal and
vertical orientation

4. Place the root of both subtrees at the next upper level exactly in the center of its

subtrees.

5. In case the parent node has only one subtree, place the root in a specific horizontal

distance.

Reingold/Tilford runs in linear time and can relatively easily be extended for the

layout of general trees [13,139]. Of course, there are further possibilities of drawing

trees with the help of node-link diagrams, such as radial layouts, H-trees, or HV-

trees. We refer the reader to the standard literature [24, 64]. Figure 7.3 shows two

example layouts computed with the yED tool [149].

Force-Based Drawings

Force-based layout techniques use a physical analogy to draw graphs and are widely

used in practice. This is because of several reasons: the physical metaphor makes

them easy to understand and to code, the results are suitable for many application

fields, they are easy to extend with additional constraints, and the process of

obtaining an equilibrium state (see below) can be animated which looks pretty

nice. A simple version of a force-based layout algorithm using spring and electrical

repulsion forces is introduced in the following. Here, the edges between nodes are

modeled as springs, and the nodes can be considered as charged particles that repel

each other. For the x-component of the force vector on a node v, the following holds

(y-component analogous):

X

.u;v/2E

.stiuv.duv � luv// Oxuv C
X

.u;v/2V �V

repuv

d 2
uv

Oxuv (7.1)

Here, Oxuv denotes the unit vector of .xv�xu/. duv is the Euclidean distance between

u and v, luv is the zero-energy (natural) length of the spring between u and v (i.e., no

force if duv D luv), stiuv 2 Œ0; 1� is the stiffness of the spring between u and v (i.e.,

the larger this parameter the more the tendency for duv to be close to luv), and finally

repuv is the strength of the electrical repulsion between the two nodes. In Eq. 7.1,
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Fig. 7.4 Two sample graph layouts that were computed and displayed by the yED graph
editor [149]. The identical input digraph has 29 nodes and 39 edges. (a) Result of a force-based
layout algorithm. (b) Layered (or hierarchical) drawing

the first sum represents the spring force between two nodes u and v connected with

an edge and the second sum the repulsion force between v and other nodes. Both

forces together build a complete force system for all graph elements. Depending on

the underlying physical model, the repulsion forces avoid that nodes are getting

too close, and the spring forces provide a uniform edge length, for instance. In

the current formula, Hook’s law is used to specify the spring force between two

nodes, i.e., if the distance between the two nodes is larger than the natural length

of the spring, then the nodes attract each other. And the strength of the attraction is

proportional to the difference between distance and natural length.

A simple algorithm that computes a final graph layout consists of a loop which

firstly computes the forces of all nodes and then moves each node a bit into the

direction of its force vector computed in Eq. 7.1. At the beginning, all nodes are

positioned randomly. The loop is left if the sum of all forces together is small enough

(equilibrium state) or after a specific number of iterations. This strategy works for

undirected and directed graphs, with and without cycles, cf. Fig. 7.4a.

Layered (Hierarchical) Drawings of Directed Graphs

A general aim for the layout of a directed graph is to compute a so-called monotone

drawing in which all edges point into the same direction. Such a monotone drawing

has some advantages in the interpretation of the digraph’s topology [47]. Obviously,

the input digraph must be acyclic in that case, otherwise we would get edges that

flow backwards (called feedback edges). In practice this apparent hard condition is

not really a problem, because we can use such a drawing method for general directed
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graphs if we change the direction of a minimal number of the feedback edges. This

step is known as cycle removal. By doing so, we get a directed acyclic graph (DAG)

that is drawn by using a method for computing monotone layouts, such as a layered

drawing as explained in this paragraph. If the final layout is ready, we simply reverse

the feedback edges again.

Many people prefer a hierarchical structure of the final graph layout, i.e., the

nodes of the graph are arranged on vertical or horizontal, parallel layers in the 2D

plane. Often, such a structure is already given by the input data. For instance, if

someone wants to visualize hyperlinks (edges) between the HTML pages (nodes)

of a website, then usually the pages are already hierarchically organized. In the

following, we briefly present a standard technique for layered drawings that is based

on the fundamental work of Sugiyama et al. [129].

The basic idea is very simple and intuitive; it has three phases. In the first phase,

the nodes of the graph are assigned to a number of layers (we can skip this phase

if there is already a layering in the input graph). This layer assignment problem is

NP-complete if we want to minimize the height and the width of the final layering.

A further complication occurs if edges span over several layers: then we have to

introduce the so-called dummy nodes that lie on the spanned layers, i.e., a long

edge is thus subdivided by the dummy nodes. This strategy causes modified edges

which only reach from one layer to the next one (the digraph is called proper in such

cases) and is needed for the second phase. After the layer assignment, we have to

eliminate the number of edge crossings. This is done by reordering the graph nodes

and the dummy nodes within each layer. With the help of the dummy nodes, the

algorithm gets control over the edge positioning, and in consequence, it is possible

to avoid crossings of edges that span over several layers. Minimizing edge crossings

in a proper layered digraph is NP-complete, even if there are only two layers. Note

that the node positions (x-coordinates) on the layers are relative only up to now (the

y-coordinates of the nodes are already specified by the node layers if we assume

to have horizontal layers). The final phase is the real coordinate assignment of all

nodes on the layers, i.e., we assign concrete x-coordinates for each (normal and

dummy) node. Also this task leads to an optimization problem that can be solved,

for instance, by linear programming (LP). Constraints of the LP are then the fixed

orderings in the layers, and the target function is specified by the straightness of the

edges. As a final step, we remove the dummy nodes and obtain the wished layered

drawing as shown in Fig. 7.4b.

7.2.3 Multivariate Network Visualization

Good drawing algorithms as described in the previous subsection will not solely

solve the problem of visualizing multivariate networks. There are several reasons

for this statement. First, the most traditional graph drawings do not scale well,

i.e., they are not able to represent huge data sets with many thousands of nodes

and/or edges. Second, additional multivariate data cannot be intuitively embedded
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into a standard drawing. The InfoVis community tried to address those issues

by visualization approaches that provide filtering and interaction possibilities in

order to reduce the number of graph elements under consideration as well as by

methods to visually analyze attributes in context of the underlying graph topology.

Several approaches can be found in the literature that attempt to offer solutions for

the problem of visualizing multivariate networks: multiple and coordinated views,

integrated approaches, semantic substrates, attribute-driven layouts, and hybrid

approaches [57]. We will discuss these concepts in the following paragraphs:

Multiple and coordinated views: This category of solutions aims to combine

several views and present them together. Coordinated views allow the use of the

most powerful visualization techniques for each specific view and data set [41,109].

As an application example, we highlight the work of Shannon et al. [120] who

realized this idea in the network visualization domain. They use two distinct views:

one view shows a parallel coordinate approach for the visual representation of the

network attributes and the other view displays a node-link drawing of a graph. Their

tool is equipped with a variety of visualization and interaction techniques; both

views are coordinated by linking and brushing [126] techniques. The drawback of

multiple views is that they split the displayed data because of the spatial separation

of the visual elements.

Integrated approaches: To provide a combined picture, attributes and the under-

lying graph can be displayed in one single view. “Integrated views can save space

on a display and may decrease the time a user needs to find out relations; all data

is displayed in one place” [41]. One example is described in Borisjuk et al. [10]

work on the visualization of experimental data in relation of a metabolic network.

The authors used a straightforward approach by employing small diagrams instead

of representing the nodes as simple circles or rectangles. Each diagram, e.g., a bar

chart, shows experimental data that is related to the regarded node. This approach

provides a view to all available information, but the embedding of the visualizations

into the nodes causes the nodes to grow in size. This issue may affect the readability

of the network due to the overlaps that may appear when the number of nodes and

the attributes is high [71]. Thus, it does not scale well. However, the problem of

space usage and clutter introduced by such approaches can be avoided by using

focus and context techniques (cf. Sect. 7.2.1). Magic lenses are one of several

possibilities that are able to interactively visualize the node attributes within the

same view as exemplified in Fig. 7.5.

Semantic substrates: In order to further avoid clutter in multivariate network

visualizations, some researchers realized the idea of so-called semantic substrates

that “are non-overlapping regions in which node placement is based on node

attributes”: Shneiderman and Aris [122] introduced this idea and combined it

with sliders to control the edge visibility and thus to ensure comprehensibility of

the edges’ end nodes. One conceptual drawback of such approaches is that the

underlying graph topology is not (completely) visible.

Attribute-driven layouts: Those layouts use the display of the network elements to

present insight about the attached multivariate data instead of visualizing the graph
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Fig. 7.5 Overview of the Network Lens tool [58]. The graphical user interface is divided into three
distinctive parts: the main network visualization area, the lens information area on the right-hand

side, and the bottom part where user-produced lenses are preserved. It offers a way to visualize
additional network attributes (displayed inside of the circular lens), while preserving the overall
network topology and context. The lens in the screenshot covers one node only and shows a small
parallel coordinate diagram with four quantitative as well as four nominal attributes belonging to
that node. The user is able to move the lens with the mouse or to translate the graph behind the lens

topology itself. While being similar to semantic substrates, this technique does not

necessarily place the nodes into specific regions. Instead, it uses calculations based

on node attributes to control the placement of a node in the graph layout. An example

is PivotGraph [142] which uses a grid layout to show the relationship between

(node) attributes and links.

Hybrid approaches: They combine at least two of the previously discussed

techniques. The most common combinations are multiple coordinated views with

any of the integrated approaches. For instance, Rohrschneider et al. [112] integrate

additional attributes of a biological network inside the nodes and edges; see Fig. 7.6.

The authors also use other visual metaphors for creating multiple coordinated views

to show time-related data of the network.

7.2.4 Visual Analytics

Visual analytics (VA) “is the science of analytical reasoning facilitated by inter-

active visual interfaces” [130]. A crucial property of this research field is that

computational methods of data analysis are combined with interactive visualization
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Fig. 7.6 The screenshot shows a tool for the visual analysis of dynamic metabolic networks [112].
On the left-hand side, two time-series charts of selected attributes display attribute dynamics
over time. Interval charts represent the dynamic topology of the graph in terms of life times of
metabolites, enzymes, and reactions. On the right, the graph scene shows the set union graph (= the
super graph that summarizes all nodes/edges of the individual graphs that appear over time) with
the applied node coloring scheme which supports distinguishing between older and newer nodes

techniques in order to analyze data more efficiently. Automatic data analysis covers

various aspects from data storage and organization to automatic analysis algorithms,

such as support vector machines, neural networks, and PCA. It might be classified

among others into data management, data mining, and machine learning. For many

data analysis problems, fully automated analysis methods only work for well-

defined and well-understood problems, i.e., there has to exist a model of the

underlying problem [68]. Otherwise, traditional data mining techniques will not

work. Even if a model exists, then the results of the automated analyses have

to be sufficiently communicated to and interpreted by analysts. Here, interactive

visualizations come into the play as they are able to support the analyst to discover

(possibly unexpected) patterns, trends, or relationships in the data. Interaction tech-

niques (as presented in Sect. 7.2.1.3) are of particular importance to visually analyze

large volumes of data. Interaction allows, among other things, to explore “unknown”

data collections following Shneiderman’s mantra of information visualization [121]

or to build hypotheses with the help of “What if?” questions and to verify them

visually or with algorithmic methods. The need to combine interactive visualization

with computational analysis methods is obvious and opens novel possibilities to

address the information overload problem. A more detailed discussion on VA can

be found in [68, 69, 130].

As an example from the field of visual network analysis, we have selected

the ViNCent tool [75, 150] that combines exploratory data visualization with

automatic analysis techniques, such as computing a variety of centrality values

for network nodes as well as hierarchical clustering or node reordering based on

centrality values. Automatic and interactive approaches are seamlessly integrated

in one single analysis framework which provides insight into the importance of an

individual node or groups of nodes and allows quantifying the network structure;

see Fig. 7.7.



190 A. Kerren and F. Schreiber

Fig. 7.7 Overview of the ViNCent user interface [150]. The center shows the radial centrality
view of the input network. The right side displays the corresponding histograms of the network
centralities as well as detailed values of the network centralities for the currently hovered node.
Histograms can be used to filter the views. The left panel allows changing the render settings and
displays an overview of the respective node-link layout of the network. A node group has been
manually selected and is shown as a light-blue stripe along the outer circle in the centrality view as
well as in the overview (bottom left) by using a background region of the same color (Color figure
online)

7.3 Visualization of Biological Networks

Visual representations of biological networks are widely used in the life sciences.

Examples are shown in textbooks, on pathway posters, in databases, and by a

large number of tools for the analysis and visualization of biological processes.

Well-known software tools are listed in Sect. 7.3.1.2. Software tools often use

established layout methods as described in Sect. 7.2.2 to visualize biological

networks automatically. Sometimes those algorithms are modified, for example, by

adding extra forces to force-based approaches. However, often these methods do

not or only partly take into account specific requirements for the visualization of a

particular biological network, and hence these visualizations are usually difficult to

understand, especially if large networks are visualized.

In the following subsections, we will introduce some typical solutions for

common networks from molecular biology, discuss domain-adapted solutions for

particular networks, list major tools for the visualization of biological networks,

and finally discuss the Systems Biology Graphical Notation (SBGN) as the graphical

standard for biological networks.
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Fig. 7.8 Three sample layouts of biological networks. (a) and (b) were computed and displayed by
the Vanted system [110]; (c) was computed by BioPath [33]. (a) A gene regulatory network (nodes
represent genes, edges represent regulation, and labels show gene names). (b) A protein interaction
network (nodes represent proteins; edges represent interaction). (c) A metabolic network (nodes
represent metabolites, enzymes, and reactions; edges represent consumption and production)

7.3.1 Methods

7.3.1.1 Early Approaches

Driven by the emerging availability of biological networks from databases in the

mid-1990s, several groups started to either use existing graph drawing algorithms

or design extensions to these algorithms to automatically visualize biological

networks. In the following, we present such early work for the three major types

of networks from molecular biology.

Signal Transduction and Gene Regulatory Networks

These networks represent regulation or directed interaction between biological

entities (such as genes) and are usually modeled as directed graphs; see Fig. 7.8a.

There are two widely used methods to visualize such networks: force-based and

layered drawings. Several systems provide force-based graph drawing methods for
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the visualization of these networks, for example, PATIKA [23] and GeNet [118].

These tools typically use well-known force-based algorithms such as Eades’

algorithm [28], often based on existing layout libraries and systems like Pajek [5]

or yFiles [144]. There are some improvements of the general force-based method to

consider application-specific requirements such as the representation of subcellular

locations. One example is implemented in the PATIKA system.

Signal transduction and gene regulatory networks are directed graphs and, for

example, the visualization of the main direction is important to understand the flow

of information through the network. Therefore, layered drawing methods are often

employed for the computation of maps of these networks. Some tools using this

layout method are TransPath [85] and BioConductor [15]. Often layout libraries for

layered drawings such as dot [84] are used.

Protein Interaction Networks

These networks represent proteins and their interactions and are modeled as

undirected graphs; see Fig. 7.8b. Several systems which employ force-based graph

drawing methods for their visualization have been presented, for instance [12,42,98,

119]. Also some work on interactive exploration of protein interaction networks has

been done, for example, by combining circular and force-based layouts and smooth

transitions between subsequent drawings using animation [35].

Metabolic Networks

These networks represent the transformation of metabolites into each other and

are usually modeled as directed graphs; see Fig. 7.8c. There are two common

approaches to visualizing metabolic networks: force-based and layered drawing

methods. Several network analysis tools support force-based layouts, for exam-

ple, BioJAKE [113], Cytoscape [119], PathwayAssist [101], and VisANT [45].

Frequently they visualize not only metabolic but also other types of biolog-

ical networks. However, force-based approaches mostly do not meet common

application-specific requirements. Such requirements are, inter alia, different sizes

of nodes, the special placement of co-substances and enzymes, and the general

direction of pathways.

Layered drawings are often used as they emphasis the main direction in the

network. Tools supporting layered drawings are largely based on existing software

libraries. Such solutions show the main direction within networks and partly deal

with different node sizes. However, there is no specific placement of co-substances

or special pathways such as cycles. Examples are PathFinder [40] (which uses the

VCG library [114]) and BioMiner [123] (which employs yFiles [144]). The earliest



7 Network Visualization for Integrative Bioinformatics 193

approach to our knowledge is from Karp and Paley, where the complete network

is separated into parts such as trees, paths, and circles, and the parts are laid

out separately [62]. Although not a layered drawing algorithm as described in

Sect. 7.2.2, it results in an overall layout with some layered structure. Extended

layered drawings consider cyclic structures within the network or show pathways

of different topology using different layouts, such as the algorithm by Becker

and Rojas [6]. An advanced layered drawing algorithm for metabolic networks

considering all relevant visualization requirements has been presented in [115].

7.3.1.2 Current Approaches and Tools

There are many challenges in current research of biological network visualization

and visual analytics, such as visual analysis of integrated and correlated data,

visual comparison of networks, integrated and overlapping networks, graphical

representation of paths and flows, and hierarchical networks; see [3, 39]. Conse-

quently, this field has become very research active and, for example, several special

algorithms have been presented in the last few years concerning the layout of

biological networks. Among them are grid-based methods [81], clustered circular

layouts [38], and constraint-based methods [116]. The quality of these specialized

layout algorithms is often much better than just applying standard methods, an

example is shown in Fig. 7.1.

A broad range of more than 170 tools for the modeling, analysis, and visual-

ization of biological networks is nowadays available on the Internet. These tools

change often rapidly, new tools emerge, and old tools obtain new features or are

not longer maintained. Therefore, only a small set of some important tools will

be listed here. Other reviews are available, for example, Suderman and Hallett in

2007 compared more than 35 tools regarding network and data visualization [128];

Kono et al. compared tools for pathway representation, mapping and editing, and

data exchange in 2009 [83]; and Gehlenborg et al. looked at visualization tools for

interaction networks and biological pathways in 2010 [39].

The following tools may be of interest to the reader. As the functionality of the

tools changes rapidly over time, we do not provide a feature list but encourage the

reader to visit the respective tool websites given below:

• BiNa [86] (http://bit.ly/y6ix9i)

• BioUML [82] (http://bit.ly/yIETIt)

• CellDesigner [36, 37] (http://bit.ly/A0FQiF)

• CellMicrocosmos [125] (http://bit.ly/WJ8cnE)

• Cytoscape [119, 124] (http://bit.ly/wY2sbG)

• Omix [26] (http://bit.ly/zL52vB)

• Ondex [78, Chap. 5] (http://bit.ly/AetZjz)

http://bit.ly/y6ix9i
http://bit.ly/yIETIt
http://bit.ly/A0FQiF
http://bit.ly/WJ8cnE
http://bit.ly/wY2sbG
http://bit.ly/zL52vB
http://bit.ly/AetZjz
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• Pathway Projector [83] (http://bit.ly/zo5x2M)

• PathVisio [135] (http://bit.ly/zunwxW)

• Vanted [54, 110] (http://bit.ly/Aigr0T)

• VisAnt [45, 46] (http://bit.ly/agZBni)

7.3.2 SBGN Standard

Biological networks shown in books, articles, and online resources are often difficult

to understand as the same biological concept can be shown by using different

graphical representations. Therefore, it is time-consuming to get familiar with

the graphical notation used, but this also carries the danger of misinterpreta-

tion. Consequently, particularly for molecular-biological networks such as gene

regulatory, signal transduction, protein interaction, and metabolic networks, there

were several attempts to define a uniform representation. This includes Kitano’s

Process Diagrams [76], Kohn’s Molecular Interaction Maps [79], and Michal’s

representation of metabolic pathways [95]. However, a single map type is often not

enough to adequately illustrate the complexity of biological processes, and none of

the mentioned attempts has asserted itself as a widely used standard.

Since 2006, there is a new initiative which partly builds on earlier standardization

attempts and is closely connected with the successful exchange format SBML

(System Biology Markup Language) [48]: SBGN—the System Biology Graphical

Notation [88]. Additional material can be found under http://sbgn.org, and formal

specifications are available [93, 97, 103]; see the previously mentioned website for

the latest version of the specification.

SBGN supports three corresponding views or maps on a biological process: pro-

cess description which describes elements (cellular building blocks like molecules,

and nucleic acid sequences but also other information like observable events)

and interactions between these elements; entity relationship which presents the

interaction between biological entities and the influence of entities on other

elements; and activity flow which focuses on the flow of information from one

activity to another. These different language types enable to show different aspects

of biological processes. A process description contains, for example, a molecule

often several times in different states, e.g., phosphorylated or unphosphorylated,

while both other map types show in each case only one occurrence of such a

molecule. Figure 7.9 shows two molecular-biological networks in SBGN notation.

There are several tools supporting SBGN, including CellDesigner [36], EPE

(Edinburgh Pathway Editor) [30], PathVisio [135], and SBGN-ED [21] (an extension

of Vanted [110]). A comparison has been done by Junker et al. [56]. There is also

SBGN support for tool developers [136].

http://bit.ly/zo5x2M
http://bit.ly/zunwxW
http://bit.ly/Aigr0T
http://bit.ly/agZBni
http://sbgn.org
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Fig. 7.9 Two examples of SBGN maps. (a) Part of a metabolic pathway in SBGN notation
(pathway derived from MetaCrop [117], an information system based on Meta-All [143]). (b) Part
of a gene regulatory network in SBGN notation (derived from RIMAS [55])
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Chapter 8

Biological Network Modeling and Analysis

Sebastian Jan Janowski, Barbara Kaltschmidt, and Christian Kaltschmidt

Abstract Each scientist needs to be aware of the complexity of cellular life and

the modeling possibilities to be able to reconstruct, analyze, and simulate biological

systems. Bioinformatics modeling, analysis, and simulation are highly interdisci-

plinary disciplines using techniques and concepts from computer science, statistics,

mathematics, chemistry, biology, biochemistry, genetics, and physics, among others.

Without knowledge about these research topics, it is almost impossible to produce

good theoretical models, which can be used for hypothesis testing. Therefore, this

chapter gives an impression of what can be modeled from the bioinformatics and

biological point of view and introduces into biological networks, common analysis

techniques from graph theory, and possibilities to reconstruct, simulate, and share

biological networks based on database content.
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8.1 What Can or Should Be Modeled?

What is cellular life? The simplest answer from the biological point of view is

the following: anything that contains DNA or RNA [1], shows self-organization,

and has evolved over time as described by Manfred Eigen [2]. Motivated to seek

a theory to understand life, many decades ago researchers embarked on the study

of biological systems [3, 4]. Their main goal is not to imitate life but rather to

understand the universal logic and properties of living systems. Cellular functions

which do not rely on simple enumeration of molecular components and processes,

such as transcription, translation, and modifications, are carried out constantly.

These components never act as one independent element. Thus, present-day cellular

biology is challenged to reconstruct coupled dynamical models with many differing

elements and strongly interacting systems. Therefore, scientists endeavor to provide

a new look at data on the present organisms to validate or reject hypotheses.

The main task for modern biology is to trace phenotypical properties back to

specific molecules. Therefore, theoretical models are constructed, consisting of

the formation of switching rules that obligate cell features. With modern systems

biology and bioinformatics, those theoretical models are pictured. Therefore, natural

sciences produce a holistic view of different levels of organizations. Using causal

relations, theoretical models are constructed using several different switching rules.

Through the turning on and off of one or more genes, as controlled by one or more

molecules, the properties and dynamics of a cell can change. This can result in

different cell behavior, where the concentration of some other molecule is altered,

with the effect of turning on or off some other genes [1, 5].

Thus, to model and investigate cellular life, several different key components of

real-life systems have to be considered. The central dogma of molecular biology

stated by Francis Crick in 1958 describes the basic information flow in cells with

the following sentence: “DNA makes RNA, which in turn makes Proteins” [6, 7].

In general, this statement is correct, whereas it is very simplified. Nowadays,

natural science has investigated many processes and functions in detail, such as

transcription, translation, and posttranslational modification, among others, which

extend this stated dogma. The investigation of other regulatory processes, such as

microRNA fine regulation, is still in their beginning phases. Table 8.1 gives an

example of specific cell-type characteristics and dynamics to show the variety of

living organisms [8].

Although all these presented aspects have to be considered in the modeling of a

biological system and put into relationship with the biological dogma, it is neither

recommended nor practical to model all aspects. Too many unknown parameters

will come up, with the danger being that a fitted model will match to nearly anything.

Fitted parameters can be even misleading or become meaningless. Furthermore, the

larger the model, the longer it will take to determine parameters and to analyze

properties of interest. Therefore, each model has to be limited to a practical size and

linked to clear scientific questions.
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Table 8.1 Biological cell characteristics for E. coli, yeast (S. cerevisiae), and mammalian (human
fibroblast) based on [8]

Property E. coli

Yeast
(S. cerevisiae)

Mammalian
(human fibroblast)

Cell volume �1 �m3 �1,000 �m3 �10,000 �m3

Proteins/cell �4 � 106 �4 � 109 �4 � 1010

Genes �4,500 �6,600 �30,000

Size of regulator binding site �10 bp �10 bp �10 bp

Size of promoter �100 bp �1,000 bp �104 to 105 bp

Size of gene �1,000 bp �1,000 bp �104 to 106 bp
(with introns)

Diffusion time of protein
across cell

�0.1 s D D 10 �m2/s �10 s �100 s

Diffusion time of small
molecule across cell

�0.1 ms
D D 1; 000 �m2/s

�10 ms �0.1 s

Time to transcribe a gene �1 min (80 bp/s) �1 min �30 min (including
mRNA processing)

Time to translate a protein �2 min (40 aa/s) �2 min �30 min (including
mRNA nuclear
export)

One possibility to limit model size is by using biological networks. These

networks can be restricted to only one -omic level, such as metabolomics or

proteomics. The main advantage of biological networks is that they can be used to

answer scientific questions with the focus on important regulatory elements, rather

than building up whole systems.

8.2 Biological Networks

Cellular life is mostly a network of interacting elements. To visually represent

and analyze the various interactions and relationships, biological systems can

be modeled as biological networks, which are based on mathematical graphs

(see Definition 1).

Definition 1. A graph is an ordered pair G D .V; E/:

• Comprising of a set V of vertices and a set E of edges, where each edge is

assigned to two (not necessarily disjunct) vertices.

• The order of a graph is jV j, comprised of the number of vertices.

• The size of a graph is jEj, comprised of the number of edges.

• The degree of a vertex is the number of edges that connect to it and are defined

by NG.v/ or N.v/.
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The objects, represented by nodes, are called “vertices” and the links, represented

by directed or undirected arrows, are called “edges.” In general, the smallest level

of details is the molecular level, describing DNA, RNA, proteins, and metabolites

interacting with each other. Thus, nodes can be any kind of biological compounds

belonging to such a system. Edges are used to represent biological relations and

processes, such as activation, inhibition, and expression, among others. To model

all system elements, information flow, and dynamics, different biological networks

were introduced as described in the following:

• Transcription networks (or gene regulation networks)

Transcriptional networks control the gene expression within cells in time, space,

and amplitude [9]. Usually these kinds of networks describe how one gene is

controlled by the product of another gene. Therefore, the highly interconnected

processes are modeled with a directed graph, in which nodes represent gene,

transcription factors, and/or proteins and edges indicate mechanisms, such as

transcription, DNA binding, protein synthesis, and degradation, among others.

Furthermore, the synthesis of RNA, posttranscriptional events, mRNA turnover,

and translation can also be considered. However, as these kinds of networks

model a wide range of biological processes, they play a major role in protein-

protein interaction networks, signal transduction networks, metabolic networks,

and others, which are described in the following.

• Protein interaction networks

In terms of the degree of regulation, it becomes apparent that a protein can

never be investigated in isolation. Moreover, it has to be examined in the context

of other proteins and their interacting network, in the so-called protein-protein

interaction networks. The majority of biological processes within a cell are

controlled and mediated by proteins [1, 5]. They interact with other molecules,

such as low-molecular-weight compounds, lipids, and nucleic acids to ensure

transcription, translation, splicing, mechanical strength, transport, immunity,

signal transduction, growth, development, and many other processes. The types

of interactions range from transient interactions, occurring for a limited time,

such as they appear in protein kinases, protein phosphates, and others, up to static

interactions, such as the transfer of biosynthetic intermediates between catalytic

sites without the diffusion into the enzyme’s surrounding. A further important

aspect of protein-protein interaction is the signal transmissions from the external

environment to specific locations within the cells.

However, such protein-protein interaction networks enable the scientist to

investigate protein functions, system dynamics, and biological mechanisms

[9–15]. Reconstructing these kinds of networks, unknown proteins can be

grouped into known biological context and important proteins into functional

groups, subnetworks, and motifs identified and examined in detail. This kind of

analysis has become so important and powerful that it already contributes to new

therapeutic strategies [13, 16, 17].
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• Signal transduction networks

Signal transduction networks are of special interest in biological and medical

sciences as many diseases are related to disturbances in signaling networks [18].

In general, signal transduction links intracellular processes to the extracellular

environment of a cell. The general aim is to model and describe cellular functions

in response to external stimuli. Therefore, information transmission is modeled,

starting with the binding of extracellular ligands to receptors and resulting in cell

response that triggers a cascade of signal transduction reactions. The sequence

of reactions involved mainly relies on reversible chemical modifications and

complex formations, such as phosphorylation. The final targets of the processes

are transcription factors and metabolic enzymes. In summary, signal transduction

pathways transform a set of inputs into a set of outputs.

In contrast with other networks, such as protein-protein interaction networks,

signaling networks are basically directed. From the topological point of view, the

networks involve many different motifs, such as positive and negative feedback

loops. One of the most prominent examples is the negative feedback loop of the

transcription factor NF-�B [19, 20].

• Metabolic networks

Metabolic networks have a fundamental importance in biochemistry and biotech-

nology, as many scientists modify or alter metabolic networks to produce

fine chemicals, antibiotics, industrial enzymes, antibodies, etc. Furthermore,

metabolic networks are used in biomedicine enabling a better understanding

of metabolic mechanisms and for controlling infections. Therefore, scientists

examine differences, synergies, and other interactions between human beings

and pathogens. In general, the main goal of metabolic networks is the modeling

of cellular processes, such as the uptaking and digesting of substrates from the

environment, energy generation, growth, and cell survival, among others. Many

of these networks are available online in databases, such as KEGG [21], EcoCyc

[22], and BioCyc [23]. The networks refer to metabolites (amino acids, glucose,

polysaccharides, glycans, etc.) and their biochemical reactions.

• Correlation networks

Correlation networks represent statistical associations between variables derived

from experiments, such as derived from whole genome arrays, mass spectrom-

etry, and enzyme-based proteomic experiments, among others [9]. The global

analysis approach is to give a broad overview of the state of the organism.

Due to technological advances in systems biology, experimental approaches are

able to provide qualitative and quantitative information, which can be used for

comprehensive insights into biological systems.

Usually the resulting datasets are mainly independent variable-unit entries.

However, based on the experimentally measured values, correlations can be

determined from either the probability point of view or the strength of variable

units. The first approach measures if two values have a connection by coincidence

or if there seems to be a real link. Therefore, correlation coefficients are
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calculated expressing the connection probability. The accuracy of this approach

mainly depends on the sample size of the experiment. Examining a large number

of samples increases the probabilities for finding real connections and, moreover,

increases the probability of identifying whether weak connections are true. The

second approach only considers connection from the strength of variable units,

instead of the sampling size. However, an experimental validation based upon the

results is the best way to confirm a predicted correlation.

• Neuronal networks

In neuronal networks artificial neurons are connected to each other. The aim is to

reconstruct systems as they appear in real life [24,25]. Thus, connections between

neurons are modeled with neuronal summation, in which potentials and electric

gap junctions define firing strategies and signal transduction from one neuron

to another. In neuronal networks, neurons only respond to a subset of mostly

simple stimuli given by their neighbors, whereas, in real systems, the information

flow is based on inhibitory postsynaptic potentials and excitatory postsynaptic

potentials. The modeling and analysis of neuronal networks has attracted wide

interest in life sciences. For example, the subject of one application field is to

model systems which are able to learn complex patterns and therefore build a

kind of artificial intelligence.

• Phylogenetic networks

Phylogenetic networks describe the evolution and relationship between different

organisms. Usually, phylogenetic reconstructions are presented by trees rather

than networks, in which branch points represent the evolutionary separation of

two organisms. However, trees do not consider vertical and horizontal gene-

transfer events. Thus, phylogenetic networks describe evolutionary processes in

more detail. Kunin et al. give one prominent example of such a phylogenetic net-

work in their article “The net of life: Reconstructing the microbial phylogenetic

network” [26].

• Ecological networks

Ecological networks typically present food webs. Food webs are limited rep-

resentations of real ecosystems describing ecological communities focusing

on trophic interactions between consumers and resources (“what eats what”)

[27–29]. In general, two trophic categories exist, called trophic levels. The

first ones are the autotrophs, which produce organic matter from inorganic

substances. The second level, the heterotrophs, obtains organic matter by feeding

on autotrophs and other heterotrophs. It is a unified system of exchange,

adopted to analyze interrelationships between community structure, stability, and

ecosystem processes.

The analysis of food webs has shown that the evolution of realistic food web

structures can be explained on the basis of simple rules regarding population

abundance and species occurrence. For example, ecologists and mathematics

have figured out early on that the structure of food webs consists of nonrandom

properties, such as scaling laws. By examining a predator-prey model (resource-

consumer, plant-herbivore, parasite-host), it becomes obvious that the size of one

species is crucial to the stability of the whole system [30].
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However, food webs are an important representation for the prediction of

ecological events. They are mainly used to understand biological systems and

moreover to protect them from outside influences, such as climate change,

foreign wild species, and the narrowing of the habitat.

Summarized, the presented biological networks are able to capture all -omic

levels and, furthermore, able to model ecological events and other correlations.

With these advantages bioinformatics and systems biology have a set of powerful

integrated frameworks to present, integrate, and visualize knowledge. Furthermore,

graph theory comes with powerful approaches to analyze those networks as

described in the following.

8.3 Biological Network Analysis Based on Graph Theory

As mentioned in the previous section, graphs or networks can be used to model

many types of biological relations, biological processes, and biological questions.

Furthermore, geometry and topology can give important clues about organization

and information flow within a system. Graph analysis can determine structural

properties of a network. Furthermore, graph theory can analyze vertex degrees, path

lengths, diameter, and many other structural properties.

In general, graphs can have different types as presented in Fig. 8.1. In a directed

graph an edge between the vertices u and v is represented by the ordered pair .u; v/

[31]. Visually the ordered pair represents the direction of the arrowhead. However,

there is a big difference between directed and undirected graphs for a given number

Fig. 8.1 Different graph types as they may appear in biological networks: (a) undirected, (b)
directed, (c) mixed, (d) multigraph, (e) hyper-graph, (f) unconnected graphs, (g) tree, (h) rooted
tree, and (i) bipartite graph
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of vertices. The amount of directed graphs Ndir.V / with V vertices is much higher

than the amount of possible undirected graphs Nundir.V / [9]:

Ndir.V /

Nundir.V /
D 2

.V 2
�1/
2 (8.1)

A mixed graph has both directed and undirected pairs. In the biological context

it can represent protein-protein interaction networks, where some interactions

are undirected, such as protein-complex bindings, and some interactions, such

as activation, phosphorylation, and other processes are directed. A multigraph

contains multiple edges, where two or more edges are incident to the same two

vertices. A hyper-graph is characterized by more than two elements, which are

connected to one interaction. Hyper-graphs are often used to model metabolic

networks where several substances are used in one reaction to produce another

substance.

A graph is bipartite if there is a partition of its vertex set V D S [ T , such that

each edge in E has exactly one end vertex in S and one end vertex in T . A tree is an

undirected, acyclic graph, where vertices with only one edge are called leaves. All

other vertices are inner vertices. The depth of such a tree is the length of the path

from the root to a vertex. The height is the maximal depth. A rooted tree is often

regarded as a directed graph [31].

A subgraph G0 D .V 0; E 0/ of the graph G D .V; E/ is a graph where V 0 2 V

and E 0 2 E [31]. The density of a graph is given by

2 j E j

j V j .j V j �1/
(8.2)

This definition indicates how dense or connected a graph is determining vertex

degrees [32].

Two graphs G and G0 are isomorphic G ' G0, if there exist a bijection ' W

V � > V 0 between the vertex sets of G and G0, such that any two vertices u and

v of G are adjacent in G if and only if .u/ and .v/ are adjacent in G0, based on

xy 2 E , '.x/'.y/ 2 E 0 8x; y 2 V [31].

Global network properties are topological entities, such as distance, average

path length, and diameter. A path is a sequence .v0; e1; v1; e2; : : : ; vk�1; ek ; vk/ of

vertices and edges. The length of a path is given by its number of edges. The

distance between two vertices is given by dG.u; v/. A shortest path between two

vertices is a path with minimal length dij . The average path length is defined

by d D hdij i. The diameter is defined by dm D max.dij /, which represents

the maximum path length. The correlation between edges and vertices is given by

".G/ WD jEj=jV j [31, 32].

An Eulerian path is a path which contains every edge exactly once. A graph

is an Eulerian graph if it contains an Eulerian path [31]. A path in an undirected

graph that visits each vertex exactly once is called a Hamiltonian path. A graph

that contains a Hamiltonian path is a Hamilton graph [31].
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Going further into detail, vertex degrees and other topological indices are

described in the following, which serve as a base for centrality measurements.

Network centralities are a common method to determine important elements within

a system. In the social sciences it is a common task to model relationships with

graphs and, based on that, to identify people that are more influential than others.

Similar questions can also be asked of biological networks.

A centrality is defined by the function C W V 7! R on a directed or undirected

graph G D .V; E/, which assigns a real number to every vertex (vertex degree). If

one vertex is more central than another one, then C .v1/ > C .v2/ is given [33].

A vertex degree ıG.v/ D ı.v/ is the number of edges jE.v/j incident to the

vertex, with loops counted twice. The minimum degree is characterized by ı.G/ WD

minfd.v/ j v 2 V g, the maximum degree by �.G/ WD maxfd.v/ j v 2 V g, and the

average degree by:

d.G/ WD
X

v2V

d.v/

jV j
(8.3)

The relation between the degrees is given by ı.G/ � d.G/ � �.G/ [9, 31, 32].

However, centrality measurements are only comparable inside the same network,

and some measurements can only be applied on connected networks. One of the first

centrality measurements is the degree centrality, defined by

Cdeg.v/ WD jeje 2 E ^ v 2 ej (8.4)

This measurement counts the number of edges connected to a vertex. In several

studies, this measurement was used to identify essential elements within a biological

network. A study on Saccharomyces cerevisiae revealed that proteins with a high

degree centrality are more essential in comparison to others [34]. Other studies

described similar findings with degree centralities as described by Hahn et al. [35].

The average neighbor degree is defined by Junker and Schreiber [9]

ki;nn D
1

ki

Nv
X

j D1

Aij kj (8.5)

for each vertex ni over all vertices N . A is the adjacency matrix of the graph G.

Further centrality measurements are stated on network paths. They give informa-

tion about the importance of certain paths by using information about path length.

The first presented measurement is called eccentricity centrality. For every vertex it

determines the maximum distance to all other vertices. The vertex with the shortest

paths to all other vertices is the vertex with the highest eccentricity value. Formally,

the eccentricity centrality is defined as [36]

Cecc.v1/ WD
1

maxfdist.v1; v2/ W v2 2 V g
(8.6)
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The second important centrality measurement is the closeness centrality, which

assigns a vertex v a high value if the shortest path distances for all other vertices to

v is minimized. Formally, it is defined as [37]

Cclo.v1/ WD
1

P

v22V dist.v1; v2/
(8.7)

The shortest path betweenness centrality measures the ability to monitor

communication between other vertices. These vertices, which are on the shortest

paths between all other vertices, are the most relevant ones. Let �v1v2 be the number

of shortest paths between v1 and v2, whereas more than one shortest path can exist.

�v1v2.w/ denotes the number of shortest paths, including w as an interior vertex

which is neither start nor end vertex of the paths. The communication rate is given by

ıv1v2.w/ WD
�v1v2.w/

�v1v2

(8.8)

If no shortest path between v1 and v2 exists, then ıv1v2.w/ WD 0. With these

definitions the shortest path betweenness centrality can be defined as [38]

Cspb.w/ WD
X

v12V ^v1¤w

X

v22V ^v2¤w

ıv1v2.w/ (8.9)

A further centrality measurement is based on the eigenvector. It is used on

strongly connected graphs such as protein-protein interaction networks, to deter-

mine essential elements within a network. The eigenvector centrality is the

eigenvector Ceiv of the largest eigenvalue �max in absolute value of the equation

system �Ceiv D ACeiv, where A is the adjacency matrix of the graph G [39].

The clustering coefficient, a basic measurement for the local cohesiveness of

a network, measures the probability that two vertices with a common neighbor are

connected. In the case of undirected graphs, there exist Emax D ki .ki�1/=2 possible

edges between neighbors. The clustering coefficient Ci of the vertex ni is then given

as the number of edges Ei between the neighbors to the maximal number Emax with

[9]:

Ci D
2Ei

ki .ki � 1/
(8.10)

The matching index quantifies the similarity between two vertices on the

number of common neighbors. The index is based on the following definition [9]:

Mij D

P

common neighbors
P

total number of neighbors
D

PN
k;l AikAjl

ki C kj �
PN

k;l AikAjl

(8.11)
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Table 8.2 For a given
network size, many different
graphs can be reconstructed,
where the difference between
isomorphic and
non-isomorphic graphs is
significant

Number of connected Number of connected

Nodes isomorphic graphs non-isomorphic graphs

3 8 2

4 64 6

5 1,024 21

6 32,768 112

7 2,097,152 853

8 268,435,456 11,117

9 68,719,476,736 261,080

10 35,184,372,088,832 11,716,571

2 3 4 5 6 7

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

Min Std- Mean Std+ Max

distribution

R
a
n
g
e

Nodes

Average Neighbour Degree 30.00015.0000

Fig. 8.2 The analysis of the distribution of graphs with the same average neighbor degree
resembles a Gaussian curve, where thousands of different networks share the same average
neighbor degree. The conclusion is that one specific average neighbor degree cannot characterize
a unique network type [40]

In summary, all presented measurements are able to identify important ele-

ments within a graph. However, without a clear scientific question, the presented

approaches can be misleading. Furthermore, scientists need to have in mind that a

large set of graphs can share the same graph topological values [40]. In general,

the number of possible graphs for a given node size is very large as presented in

Table 8.2 [41]. Based on the non-isomorphic graphs, it was examined how many

graphs share the same graph topology. Figure 8.2 presents the distribution of graphs

with the same topological values.
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Inferentially, thousands of different graphs share the same topological values.

And having in mind that the discussed and examined graphs in biology have, in most

cases, more than 30 nodes, the number of different graphs with the same topological

values increases dramatically. Thus, graph theory has to be very carefully considered

and only applied when it is linked to a specific scientific question. However, based

on the presented definitions, a variety of analysis techniques are possible. The

approaches enable structural as well as individual node analysis. Thus, it is not

surprising, that applied to biological networks, it has become an important aspect

in systems biology, bioinformatics, and theoretical biology [9].

8.4 How Biological Networks Can Be Modeled

and Simulated

Modeling biological phenomena with the use of computer applications has become

a common task. Therefore, different modeling techniques exist to study and

analyze the dynamic details of biological systems. In general, biologists are more

familiar with mathematical modeling, whereas computer scientists are accustomed

to computational formalism. However, several approaches provide mathematical as

well as computational capacities. In order to give an overview of existing modeling

languages, the most important techniques in systems biology and biological network

modeling are briefly described in the following subsections.

8.4.1 Ordinary Differential Equations

One of the most powerful techniques in modeling system dynamics is ordinary

differential equations (ODEs), which provide a theoretical framework for discrete,

continuous, deterministic, and stochastic models. In general, they describe the

change rate of variables in the modeled system as a function of time. ODEs have

been applied and used in many application cases and proved themselves very useful

[8, 42, 43]. Furthermore, ODEs can be used to model entire systems with given

kinetics [44, 45]. One common example for modeling gene activation or positive

control is the Hill function in which the equilibrium binding of the transcription

factor to its site on the promoter is modeled from zero to its maximal saturated level

with Definition 2 (see Fig. 8.3 for a graphical representation).

Definition 2. A Hill function is defined by F.X�/ D
ˇX�n

Kn CX�n
, where:

• K is termed as the activation coefficient.

• ˇ the maximal expression level of the promoter.

• n the steepness of the input function (the larger the n is, the more steplike the

curve).
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Fig. 8.3 Graphical plot of one Hill function with different steepness parameters (n) for the
modeling of gene activation and positive control in biology

However, the model reconstruction with ODEs has some major drawbacks when

the kinetic system parameters involved are unknown. With increasing network size

and complexity, it becomes almost impossible to estimate all missing parameters.

Due to high-throughput techniques, a huge amount of qualitative data is avail-

able, but the parameter estimation still remains challenging. Furthermore, precise

quantitative measurements for parameter estimations are difficult to parametrically

explore. A further disadvantage of ODE network modeling and analysis is that

ODE-based models do not support any detailed insights into signal and information

flow within biological networks. Thus, information flow, biological cascades, and

system dependencies cannot be examined in detail.

8.4.2 Object-Oriented Modeling

Object-oriented modeling is a paradigm in which a system is primarily modeled

with a set of related, interacting objects and the functions and services they provide

[46]. These objects represent all entities relevant to the application (see Fig. 8.4 for

an example). Nearly anything can be an object, which is defined as an assembly of

classes. A class is a discrete reusable code block that has attributes, takes variables,

performs functions, and returns values, among others. In general, objects do not

exist in isolation from another. The relationships between the objects represent a

wide set of different connections and interactions, for example, how one protein

is related to a gene, or how one protein changes the state of another protein by

phosphorylation. However, the modeling task is always specified for one specific
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Fig. 8.4 An example of an object-oriented model in molecular biology. The model is focused
on a mandatory set of properties, whereas a complete model is made up of more attributes and
relationships. However, here, a protein can be a transcription factor regulating one or more specific
genes. One gene can be even regulated by more than one transcription factor. The genes are derived
from the class DNA, which contains a set of genes. Each gene alone or in combination with others
can be transcribed and translated into one or more proteins. Each class is characterized by specific
attributes, such as binding sites and nucleic acid sites, which are necessary for biological functions
and molecular processing

context, where objects belong to each other and share a set of properties and methods

to imitate the real-world system [47–49]. Using the standardized Unified Modeling

Language (UML) [50], the object-oriented models can be made visually accessible

through a set of graphic notation techniques.

8.4.3 Rule-Based Models

Rule-based specifications and formal grammars play an important role in the

creation of photorealistic virtual organisms. Particularly plants and scientific models

of vegetation structure are modeled with rule-based models [51]. One widely used

formalism is the Lindenmayer system, a parallel rewriting system on strings. Based

on an alphabet of symbols, a finite set of rules for string manipulations, a start

string called axiom, and a mechanism to visualize data, it is possible to model the

morphology of a variety of organisms. With an iterative process, which expands the

model with new structures in each time step, growth processes can be modeled and

simulated.

For example, having the axiom A and the rules A ! B (letter A will be

transformed into letter B) and the rule B ! AB (letter B will be transformed

into substring AB), a new string is generated in each time step by applying the

aforementioned rules. Based on the system settings the development sequence

for this model is described by A ! B ! AB ! BAB ! ABBAB !

BABABBAB ! : : :. Finally, the expanded string only needs to be visualized to see

developmental growth. In order to visualize this model, additional geometric rules

have to be defined, which reconstruct geometric structures based on the appearance
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and order of the letters in the development sequence. One of the first examples

of branching structures generated by an L-system was given by Prusinkiewicz and

Lindenmayer in 1990 [52].

8.4.4 Constraint-Based Models

Constraint-based models are mainly used for cellular metabolism. The main idea

of this approach is to describe detailed dynamic models with a set of constraints

which characterize the models’ possible behaviors. Therefore, stoichiometric,

thermodynamic, and enzyme capacity constraints are defined. Instead of single

solutions, a set of possible solutions represents different phenotypes which comply

with the constraints. Thus, models can comprise thousands of reactions, such as the

metabolic reconstruction of the bacterium Escherichia coli, where 2,583 constraint

reactions were defined [53]. Furthermore, these models and constraints can be used

for other metabolic engineering applications. However, the classical constraint-

based models focus at flux balance analysis of metabolic networks [54, 55].

8.4.5 Interacting State Machines

Interacting state machines are mathematical models for the description of temporal

behavior within a system. The model is based on the states of its parts and not on

its components. Therefore, hierarchies are expressed by diagram-based formalisms.

Each of the parts can be in one of a finite number of states, whereas the machine is

in only one state at a given time. However, by initiating a trigger event, the machine

can change its condition. The main advantage of interacting state machines is that

they require little quantitative data, as they model biological behavior in a qualitative

way [56,57]. Usually, models described with interacting state machines are used for

model checking and interactive execution.

8.4.6 Process Algebras

Process algebras are used for the modeling of concurrent systems. The language

provides a framework for the high-level description of interactions, communica-

tions, and synchronizations using a set of process primitives. Operators are used

to combine these primitives. Therefore, this approach provides algebraic laws for

the manipulation and analysis of process expressions using equational reasoning.

In most of the cases, process algebras are used in signal processing, as presented

in the work of Danos and Laneve. The authors introduced a protein algebra to

demonstrate how standard biological events can be expressed in simplified signaling

pathways [58].
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Fig. 8.5 An example of a simple cellular automaton with rules and settings of the “Game of Life”
approach by John Horton Conway. From left to right: initial state and configuration (generation 1),
second generation, and third generation

8.4.7 Cellular Automata

Cellular automata (CA) are used to model and simulate biological self-organization.

They use a paradigm of fine-grained, uniform, parallel computation, which was used

in many aspects of developmental biology [59–61]. With CA whole population

dynamics can be simulated in which each individual’s fate is dependent on its

neighbor’s behavior and existence. Therefore, a set of simple rules is defined that

mimics the physical laws of the given system. The evolution of a CA is determined

by its initial state, requiring no further input. The simulation is discrete in time,

space, and state and, once running, evolves with its own given rules.

The most prominent example of a CA is the “Game of Life” devised by the

British mathematician John Horton Conway in 1970 [62]. The example is based

on a simple deterministic CA consisting of a regular two-dimensional grid of cells,

in which each cell has a certain state: alive or dead. Every cell interacts with its

neighbors based on the set of applied rules at each time step (see Fig. 8.5).

The following rules are applied to the “Game of Life” to calculate and simulate

next generations:

• Any living cell with less than two living neighbors dies because of under

population.

• Any living cell with two or three living neighbors does not change in the next

generation.

• Any living cell with more than three living neighbors dies due to overcrowding.

• Any dead cell becomes alive by reproduction, when exactly three neighbors are

alive.

Those rules are applied repeatedly to create further generation. Finally after

n generations, a picture results that describes population structure, dynamics,

population features, and system robustness, among others.
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Fig. 8.6 A Bayesian network example from classical genetics studying mutations. (a) The
probability that the son has a mutation is 0.001. If we know that his grandfather has the same
mutation, the probability increases to 0.025. Thus, their genotypes are clearly dependent. But if
we also know that his father has the mutation as well, the son’s probability increases to 0.5. This
additional information indicates that his father, independent of whether his grandfather has or does
not have the mutation, only affects the son’s probability. Therefore, only one conditionally network
can be reconstructed (b), which matches the experimental data. All other possible networks are
disregarded

8.4.8 Agent-Based Systems

Agent-based systems are similar to the concept of cellular automata, focusing on

complex system behavior, structures, and phenomena in dynamics. This approach

describes and simulates operations and interactions of autonomous agents in a given

space. System operations and interactions are based on simple rules. However, in

contrast to CAs, the agents are not placed on a grid or any similar environment.

Moreover, the autonomous agents can freely move within the given 2D or 3D space.

The most prominent examples are from multicellular studies, such as tumor growth

studies [63], morphogenesis [64], and immune response [65].

8.4.9 Bayesian Networks

A technique for biological network modeling is the so-called “Bayesian networks”

theory. Bayesian networks are used for the automatic reconstruction of causal

signaling network models from experimentally derived data [66–68]. The core of

this approach is the notion of conditional independency. This approach calculates

probabilistic relationships to estimate which network structures, circuits, and motifs

can be derived from the given biological data. This results in one or a set of

possible directed acyclic graphs that match the experimental data conditions best.

Nodes, which are not connected within the graph, represent variables which are

conditionally independent. Nodes that are connected to each other represent strong

probabilistic relationships based on experimental conditions. One example of such

an approach is presented in Fig. 8.6.
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Fig. 8.7 A possible Boolean network based on three nodes (a), each having a state 0 (OFF) or 1
(ON). The states for each node are determined by the input of the other nodes. Nodes 1 and 2 copy
their single input, while node 3 performs the Boolean function NOR on its inputs as described in
the table (b). The dynamic system is described in (c), where filled nodes are on and lights are off

However, the reconstruction of such networks demands a large number of

datasets. The greater the network, the larger the necessary experimental datasets

must be. Otherwise, probabilistic relationships and independencies cannot be

determined.

8.4.10 Boolean Networks

In 1969, Boolean networks were introduced by Kauffman to model gene regulatory

networks [69]. Here, genes are modeled by Boolean variables which represent their

active and inactive states within the model. A Boolean network is a directed graph,

where all nodes are equivalent and receive information inputs from their neighbors.

Every node can only take two binary values, 0 (OFF) and 1 (ON). These values rep-

resent the dynamic activity and behavior of the involved elements. Information flow

and statement acting is determined by a logic rule. Therefore, the logical operators

and , or , and not are used. If the statement is true, the logical operation results in

an ON state; otherwise it remains in the OFF state (an example is given in Fig. 8.7).

The main advantage of this technique is the reduced number of parameters

necessary while still capturing network dynamics and producing biologically pre-

dictions and insights [70]. However, quantitative measurements cannot be included

for precise predictions and analysis.

8.4.11 Boolean Formalization

This approach formalizes in Boolean terms genetic situations for the description

of complex circuits [71–73]. The main goal of this language is to formalize a
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complex model in a compact and unambiguous way by functions of binary variables.

Therefore, three different types are defined and used. The genetic variable describes

the gene state, being normal or mutated, and the recognition site, being a promoter,

operator, terminator, or other. The environment describes temperature and the

presence of different substances. Internal variables are used to memorize previous

system states at a given time. Associated functions calculate the proceeding periods

of the system with regard to the present variables. In order to reduce the algebraic

expressions to its simplest form, tabulations of the logic equations as Veitch matrices

are used. The Veitch matrices give a clear and exhaustive view of all calculated

system states and show which states are stable and how the model proceeds from

state to state.

8.4.12 Petri Net

A Petri net is a mathematical modeling language for the description and analysis

of complex and distributed systems. Therefore, it provides an exact mathematical

definition of its execution semantics. The language was introduced by Carl Adam

Petri in 1962 [74] and constantly developed. Thus, this language comes with a well-

developed mathematical theory for process analysis.

Reisig et al. presented the first basic definition in their article “A Primer in

Petri Net Design” in 1982 [75]. This resulted in the general formalism presented

in Definition 3.

Definition 3. A basic Petri net is defined by the tuple PN D .P; T; F; W; m0/,

where:

• P D fp1; p2; : : : ; png is a finite set of places.

• T D ft1; t2; : : : ; tng is a finite set of transitions.

• P and T are pairwise disjoint.

• F � .P �T /[ .T �P / is a set of arcs from places to transitions and transitions

to places, where .pi ! tj / denotes the arc from place pi to transition tj and

.tj ! pi/ the arc from transition tj to place pi ,

• W is the weight function .W W F ! R/ which assigns every arc a non-negative

integer, where .f W pi ! tj / denotes the weight of the arc from place pi to

transition tj .

• m0 is the initial marking 8pi 2 P .

A Petri net is based on a directed bipartite graph, in which the nodes represent

transitions and places. Regarding the graphical representation, places are drawn as

circles, transitions are drawn as rectangles, and arcs are drawn as directed arrows.

The directed arcs describe which places are pre- and/or post-conditions for which

transitions. Each place can contain tokens, which are drawn as black dots. The start

configuration of a Petri net model is described by the state m0, which assigns tokens

to each place. With this graphical notation, processes such as choice, iteration, and

concurrent execution can be modeled stepwise and analyzed (see Fig. 8.8).
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Fig. 8.8 The possibility of modeling abstract biological processes with Petri nets. The model is
based on gene-controlled biochemical reactions, such as gene regulation and protein synthesis

Due to the presented formalism, Petri nets stand out by their balance between

modeling power and analyzability in comparison to other modeling techniques.

Furthermore, concurrent systems can be automatically determined, although some

of the systems are difficult and expensive to determine [76]. Thus, the various

modeling possibilities and analytic power of the proposed formalism offer a well-

developed basis for the description of chemical processes and a mathematical theory

for process analysis.

8.4.13 Visual Modeling

A further way to model a biological system is by using a standard graphical notation,

such as the Systems Biology Graphical Notation (SBGN) [77]. SBGN is a visual

language which focuses on the graphical notation of biological networks. It provides

a common notation to represent interactions and regulations between molecular

species, such as binding, complexation, and protein modification, among others.

It consists of three complementary languages: process diagram, entity relationship

diagram, and activity flow diagram. Together the different notations enable scientists

to represent biological networks in a standard and unambiguous way (see Fig. 8.9

for an example).

In summary, each modeling technique comes with specific features and con-

straints. In order to model and analyze a biological system a powerful theoretical

framework is necessary. Thus, visual languages such as SBGN are not suitable for
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Fig. 8.9 SBGN entity relationship diagram representing the effect of calmodulin binding on
CaMKII activity, using the nested entities of ER L2 V1 [78]

systems biology analysis, as they do not provide any kind of analytical environment.

Furthermore, these languages consider only a limited graphical representation of the

biological components. Object-oriented models are software-intensive and complex

systems. As systems evolve, classes and the function they perform need to be

changed more often. This can result in a schema, where complexity continuously

grows. Thus, a clean programming, organization, and notation are necessary during

model design and software implementation. Furthermore, well-defined interfaces

between objects are mandatory to keep the model maintainable. Otherwise, model

parameters can become distorted or even incorrect. Ambiguities in data flow can

also occur. Therefore, the following review only focuses on modeling techniques

that provide sophisticated analysis power and are clean and well defined in their

semantics. To show how often and in which application cases the aforementioned

techniques are used, Machado et al. summarized literature references, classified by

the type of biological process [79] (see Table 8.3). Boolean formalizations are not

considered in this review as this approach is frequently used in systems biology

and bioinformatics. Furthermore, the same or similar results can be produced with

Boolean networks, ODEs, or Petri nets, among others.

The first thing to point out is that all formalisms have been applied to signaling

networks. This is not surprising, as signaling networks have the largest number of

features, such as spatial localization, multistate components, network information

flow, and robustness, among others. Therefore, each of the presented formalisms

contributes with powerful features. A smaller number of formalisms are applied to

metabolic networks. However, this does not indicate that other formalisms are not

able to model those systems. Moreover, it seems that Petri nets, process algebras,
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Table 8.3 Overview of the amount of literature references using the pre-
sented formalism classified by the type of biological process [79]. Based
on the evaluated information, signaling networks have been modeled and
analyzed with all formalisms. Gene regulatory networks and metabolic
networks have only been modeled with specific techniques due to their
specific system dynamics and topology. However, differential equations,
constraint-based models, and Petri nets have been used as universal
techniques to examine all of the mentioned networks

Signaling
networks

Gene regulatory
networks

Metabolic
networks

Boolean networks C CC

Bayesian networks C CC

Petri nets CC C CC

Process algebras CC

Constraint-based models C C CC

Differential equations CC CC CC

Rule-based models CC

Interacting state machines CC

Cellular automata C C

Agent-based models CC C

constraint-based models, and differential equations seem to be powerful enough to

consider all aspects of metabolic system dynamics. A further observation indicates

that Petri nets, constraint-based models, differential equations, and cellular automata

are applied to all kinds of biological networks. This makes them potential candidates

for whole-cell modeling. The most powerful technique is still differential equations

modeling, which is also reflected by the data provided in the table. However, Petri

nets are among the formalisms that cover most of the features to model all kinds of

biological networks as described in Table 8.4. It is a universal graphical modeling

concept for representing processes from different application fields in nearly all

degrees of abstraction. Petri nets provide the qualitative modeling approach as well

as the quantitative one. Furthermore, qualitative and quantitative formalism can be

combined to one paradigm. The formalism is easy to understand and use.

Once a basic qualitative model is established, it can be successively enriched with

quantitative data. Thus, parameter estimations based on experimentally derived data

are not implicitly necessary in the network reconstruction process. Furthermore,

models can be modeled discretely as well as continuously. It is even possible to

integrate ODEs for precise model description.

Besides, Petri nets allow hierarchical structuring of models and thus offer the

possibility of different detailed views for every observer of the model. Petri net

theory provides a variety of established analysis techniques that are well suited

and applicable to biological network modeling. Moreover, database information,

as described in the following section, can be used to automatically reconstruct

sophisticated network and Petri net models.
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Table 8.4 Overview of implemented features for each modeling formalism based
on [79]: (+) supported feature and (e) available through extension. Based on the
provided data, the most powerful technique is the Petri net modeling as it includes
the advantages and features of all other formalisms
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8.5 Network Reconstruction

A biological network, as described in Sect. 8.2, consists of a set of different

biological elements being in interaction with each other. Such a network can be

reconstructed by hand, with experimental data, information from literature, and/or

database knowledge. In the first case, users need to put all involved elements into

relation and draw the resulting models as a graph. They have several possibilities

to model the system. They can use directed, undirected, mixed, or other graphs as

presented in Sect. 8.3. Furthermore, they can use a standard graphical notation, such

as SBGN for the visual modeling as presented in Sect. 8.4.13.

In terms of a network reconstruction with experimental data correlation, net-

works have to be reconstructed as described in Sect. 8.2. Therefore, a well-

established modeling and analysis technique is necessary. One possible approach

is the Bayesian networks as described in Sect. 8.4.9. Bayesian networks offer one

way to automatically reconstruct signaling networks from experimentally derived

data. The only disadvantage of this approach is the necessary input data. To be able

to produce unambiguous results, a huge set of experimental data is mandatory.

A further way to reconstruct biological networks is by using text mining

approaches [80, 81]. Text mining is equivalent to text analytics, with the goal of

turning text into data for further analysis. This approach can be used, for example, to

find interaction partners for a gene by analyzing a set of publications. The collected
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data is then modeled as a graph. In general, this technique is based on statistical

pattern learning. The main disadvantage of this approach is still the interpretation

of the input text. In many cases relations are identified which are positive false or

false positive. Although the analysis and results are becoming better and better, the

resulting networks need to be evaluated by an expert.

A more reliable way to reconstruct biological networks is by querying biological

databases. Therefore, more than 1,300 different biological databases exist that can

be accessed. Using complex queries, data transformations, and data integration

techniques, rudimentary data such as genes and proteins can be linked with each

other. Many databases provide links between the different biological compounds.

If such a link does not exist, it is even possible to establish connections by

mining genomic databases. Hence, several attempts have been made to reconstruct

metabolic pathways via genome sequence comparison [82, 83]. Such attempts have

a certain limit, as the results do not reflect all involved molecular functions. Due to

cellular functions, such as translation, transcription, post-modification, and many

more processes with genome sequence comparison and analysis, it is often not

possible to predict direct correlations and further regulatory or metabolic processes.

However, several databases do exist, which contain more detailed information

about metabolic pathways, such as the KEGG database [21]. The information about

the networks can be accessed via the Internet or by parsing provided flat-files.

The disadvantage with online access is that the elements cannot be analyzed and

combined with other -omic level data and experimental datasets. Therefore, flat files

have to be processed, filtered, normalized, and integrated into one model. Actually,

the KEGG database consists of more than 121 tables, where at least 23 tables are

necessary to reconstruct the backbone of a biological network. The other tables

store further information, such as diseases, drugs, and taxonomies (see Fig. 8.10 for

a simplified scheme of the KEGG database structure). With access to that data, it is

possible to reconstruct metabolic networks as they are presented by KEGG and to

analyze the biological elements in detail or overall context.

In terms of biological network reconstruction using database information, each

scientist should follow some basic recommendations:

1. All databases should be free of charge and accessible by using a SOAP or an

API.

2. All databases should use the same terms, identifiers, and publication structures

as cited in literature.

3. Provided datasets must be up to date and should not overlap.

4. The selected databases should be well curated.

5. Only databases which can be used for the reconstruction of biological networks

should be integrated.

6. The used databases should be focusing on the mechanisms which should be

modeled, such as metabolic pathways, signaling pathways, and protein-protein

interaction networks.

7. It should be possible to query each integrated database separately or in combina-

tion with each other.



8 Biological Network Modeling and Analysis 227

pathway

entry

component graphics

substrate

alt

0..1 0..1

0..∗

0..∗

1..∗

1

1..∗

1

1

1

1

2

0..∗

0..∗ 0..∗

0..∗
product

subtype

reaction relation

−name

−id

−id

−id
−name
−type

−name

−id
−name

−id
−name

−name

−name
−x
−y
−coords
−type
−width
−height
−fgcolor

−name

−value

−type

−entry1
−entry2
−type

−link
−reaction

−org
−number
−title
−image

Fig. 8.10 Simplified scheme of the KEGG database structure [84]. The pathway element is
the root element of the biological network, consisting of a list of entry, relation, and reaction
elements. Theses entities specify the graph information. Additional elements specify more detailed
information about the biological compounds, relations, and reactions within the model

8.6 Biological Network Exchange Formats

Molecular biotechnology, systems biology, bioinformatics, and many other dis-

ciplines in biology make it possible to reconstruct and analyze biological sys-

tems. More than 300 pathway or molecular interaction-related data resources,

visualization, and analysis software tools have been developed.1 However, the

diversity of tools shows several problems in sharing and moving models between

each other. An attempt to overcome this problem is the creation of standards

[85–87].

In an online survey, Klipp et al. asked 125 researchers (75 % modelers, 4 %

experimentalists, or 21 % both) covering various fields, such as modeling of individ-

ual pathways, investigation of complex processes, development and application of

computational methods, and software development about their opinion on standards

1The number of software applications has been approximated by counting software tools that
support SBML and CellML. Software tools are listed at http://www.sbml.org/ and http://www.
cellml.org/

http://www.sbml.org/
http://www.cellml.org/
http://www.cellml.org/
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[88]. About 80 % of the scientists considered the creation of standards necessary

or desirable. This is not surprising that science standards have many advantages as

listed in the following:

• Model definitions and entities are based on ontologies, defined nomenclature, and

restrictions. Thus, they become accessible and readable to a wide community.

• Standards improve communication between software tools, free exchange of

information, and comparison between different studies, which results in more

productive collaborations.

• Complementary resources from multiple simulation/analysis tools can work

together, instead of redefining and reconstructing models in each tool.

• Reimplementation of models becomes easier or dispensable, which reduces

duplication and redundancy.

• If tools are no longer supported, models developed within the tools can be

still used if they are based on standards. Information, knowledge, and research

progress is not lost and can be reused.

• Data curation teams can evaluate models without being restricted to a certain tool

or formalism.

• In the publication process, any curator can process annotation and normalization

before data is published and made available to the scientific community.

Scientists, simultaneously with both tool development and modeling projects,

have developed standards to share, evaluate, and analyze knowledge and informa-

tion. Standards are definitions in the form of common, inclusive, and computable

languages. Here, only XML-based formats are considered, since it is used as

universal language in data exchange. McEntire et al. [89] and Achard et al. [90]

have shown in their studies that this language is very flexible and simple to use and,

therefore, a powerful standard in bioinformatics and systems biology in comparison

to Comma Separated Values (CSV), Excel, and other file formats. More than 85

standards can be found within systems biology [87].

For the modeling and sharing of biological models, main standards exist,

such as the Systems Biology Ontology (SBO) [91], Systems Biology Markup

Language (SBML) [92, 93], the CellML [94], and BioPAX [95]. For the graphical

representation of biological pathways, languages such as the SBGN [77] have been

introduced (see Sect. 8.4). Model description achieves human and computational

usability, reusability, and interoperability when the encoded format is standardized.

Models or software tools without standardization are only of limited use, as they

do not provide the possibility to share, compare, and/or integrate large amount of

systems. Thus, it is important to use common standards as described in the following

section:

• Systems Biology Ontology (SBO)

The SBO ontology [91] is a well-defined logic about biological terms, including

single identifiers for each distinct entity, allowing clear reference and iden-

tification. Furthermore, it is augmented with terminological knowledge such

as synonyms, abbreviations, and acronyms. The terminology is also used to
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specify the type of the components being represented in a model and their role

in systems biology descriptions. Thus, the ontology allows unambiguous and

explicit understanding of the meaning of the involved components in a system

and, moreover, enables mapping between elements of different models encoded

in this format.

The ontology is a well-defined logic about biological terms, including a single

identifier for each distinct entity, allowing clear reference and identification.

It is composed of seven vocabulary branches: systems description parameter,

participant role, modeling framework, mathematical expression, occurring entity

representation, physical entity representation, and metadata representation. The

terminology is also used to specify the type of components represented in

a model and their role in systems biology descriptions. Thus, the ontology

allows unambiguous and explicit understanding of the meaning of the involved

components in a system and, moreover, enables mapping between elements of

different models encoded in this format.

• BioPAX

BioPAX is a standard language to represent biological pathways at the molecular

and cellular level [95]. The main goal of BioPAX is the exchange of information

between several pathway databases such as Reactome [96] and BioCyc [23]. It

was introduced through a community process to make complete representation of

basic cellular processes substantially easier to collect, to index, to interpret, and

to share. BioPAX covers concepts such as metabolic and signaling pathways,

gene regulatory networks, and genetic and molecular interactions. Therefore, it

has a structure for substances, interactions, pathways, and links to organisms

and experiments. The language is distributed as an ontology definition with

associated documentation and a validator for checking. Therefore, the BioPAX

community cooperates with the SBML and CellML mathematical modeling lan-

guage communities. For better accessing and manipulating data in the BioPAX

format, a house-implemented Java library called “Paxtool” is available. BioPAX

Level 3 is currently available at http://www.biopax.org.

• BioXSD

BioXSD is common exchange format for basic bioinformatics data [97]. Using

this format, it should be possible to establish a common web service for the

exchange of data for bioinformaticians in the World Wide Web. This format

should fill gaps between specialized XML formats such as SBML [92, 93],

MAGE-ML [98], GCDML [99], PDBML [100], MIF [101], and PhyloXML

[102]. Therefore, BioXSD defines data formats such as biological sequences,

sequence alignments, sequence annotation, and references to data, resources,

and vocabularies in a variety of possibilities. BioXSD serves as a canonical data

model and is available at http://bioxsd.org as version 1.1.

• CellML

CellML [94,103] is a language for representing mathematical models. Using dif-

ferential algebraic equations, any cellular model can be represented in CellML.

In addition, CellML represents entities using a component-based approach,

where relationships between components are represented by connections. The

http://www.biopax.org.
http://bioxsd.org
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developers have implemented an API for working with CellML models and files.

Thus, software developers do not need to reinvent the same functionality each

time they develop a new tool. The API enables users to retrieve information,

to manipulate, and to extend a model. The API interfaces are designed to be

independent in any programming language, platform, or vendor. At the present

time, CellML is available at http://www.cellml.org in version 1.1.

• MathML

MathML is a low-level specification for describing mathematics [104, 105].

It is used wherever mathematics needs to be handled by software, such as

mathematical expressions in web pages and workflows in science and technology.

Actually, MathML is available at http://www.w3.org/Math/ as version 3.

• PDBML

The PDB database is the single worldwide repository for macromolecular

structure data [106]. For more than 30 years, the data resources have used a

column-oriented format to store and share archival entries [100]. Facing more

and more complex data for macromolecular structures, the used data format

constrained several limitations such as internal structure and the organization

of records. Therefore, a new XML-based data format, called PDBML, has been

introduced [100]. It builds the content of the PDB exchange dictionary and can

be used as a specific exchange medium for detailed molecular protein structures,

such as data derived from experimental crystallography. PDBML is currently

available at http://pdbml.pdb.org as version 3.3 to all users.

• Systems Biology Markup Language (SBML)

SBML is an exchange format for representing biochemical reaction networks

[92, 93]. Using SBML, users are able to describe models in many areas of

computational biology, including cell signaling pathways, metabolic pathways,

and gene regulation. Therefore, SBML has the structure, ontology, and links,

for pathways and interactions. To enable mathematical descriptions, the SBML

Level 2 uses MathML for more complex mathematical formulas. This extends

the features of SBML and also results in a greater compatibility with CellML.

Furthermore, it provides the possibility to specify delay functions and define

discrete events that can occur at specified transitions in a certain state in

biological models. In order to help users to read, write, manipulate, translate, and

validate SBML files and data streams, the LibSBML API is available in different

common programming languages, such as Java, C, and C++. Presently, SBML

Level 2 is available at http://sbml.org/Software/libSBML and SBML Level 3 is

being developed.

One of the main standards for the modeling of biological systems is the

Systems Biology Ontology. Using this standard ensures the usability, reusability,

and interoperability of biological models. Furthermore, data exchange standards

can easily access models encoded in this format. For instance, SBML, MathML,

and CellML support SBO definitions, which makes it easy to translate any kind of

SBO model into such an exchange format. However, there is a significant difference

in the scope of the mentioned standard exchange formats. By studying the most

http://www.cellml.org
http://www.w3.org/Math/
http://pdbml.pdb.org
http://sbml.org/Software/libSBML
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important formats and considering recommendations from literature [86,87], SBML

and CellML are proposed as a means for the exchange of biochemical reaction

networks and models between different software tools. They provide an ontology

and structure that can even be used for simulations. They also provide constructs

that are similar to the object models used in packages specialized for simulating and

analyzing biochemical networks. CellML and SBML, embedding MathML, provide

users with the possibility for the representation of whole models in differential

algebraic expressions. Besides, SBML and CellML have an API, which allows

reading, writing, and manipulating models in an easy manner. Furthermore, SBML

and CellML have much in common, since the development of both standards takes

place cooperatively. Formats such as PDBML only focus on particular substances.

Thus, they are not appropriate for network models. This also applies to MathML,

which only provides basic mathematics. Furthermore, BioXSD and BioPAX exist

and can be used as data standards. However, BioXSD is focused on data that is

not supported by the main formats and thus very specialized and not capable of

representing the entire biological systems. BioPAX is only focused on pathway

maps, which can be shared between databases and tools. SBML and CellML can

support dynamic systems in ways not possible for BioPax.

8.7 Where to Find Biological Databases and Tools

for Network Reconstruction and Modeling

The first biological database emerged in 1965 when Margaret Dayhoff published the

Atlas of Protein Sequence and Structure [107]. In the 1970s the first protein structure

database, called PDB was found [108–110]. A few years later in 1981, the first

repository for nucleotide sequences was established called EMBL [111, 112] and

1 year later the GenBank [113,114]. Since then, more and more biological databases

have developed. The 19th annual database issue of NAR now lists more than 1,380

databases in molecular biology [115]. The Pathguide [116], a meta-database with

an overview of more than 325 biological pathway-related resources, with more than

100 databases focused on protein-protein interaction, is an additional important

resource for biological databases. To make it easier for researchers to quickly

find relevant information about useful molecular resources, tools, and databases,

community-curated databases with content and links to other biological databases

were established. Some of the most important are MetaBase [117], OBRC [118],

BioDBCore [119], and the Bioinformatics Links Directory [120, 121]. Currently,

more than 1,800 entries are listed in MetaBase, each describing different biological

databases. BioDBCore gives a brief description of the core attributes of biological

databases, whereas OBRC contains annotations and links for more than 1,700

bioinformatics databases and software tools. The Bioinformatics Links Directory

curates links to software tools and databases. Using these resources, users have the

possibility to contribute, update, and maintain database content.



232 S.J. Janowski et al.

Concerning software tools in bioinformatics, in 2011, the SBML website2 listed

more than 200 software tools which provide biological modeling based on the

SBML [92, 93]. Going further into details, Copeland et al. highlighted a small,

representative portion of available tools from each -omic area [122]. Still, this

review lists more than 30 tools specialized in biological modeling. However, the

state of the-art applications CellDesigner [123], Cell Illustrator [124], Cytoscape

[125], E-Cell [126], Gepasi [127, 128], JDesigner [129], VANESA in combination

with the PNlib [130, 131], and Snoopy [132, 133] are able to model, reconstruct,

visualize, and simulate biological systems in one single comprehensive framework.

8.7.1 CellDesigner

CellDesigner is a structured diagram editor for drawing gene regulatory and

biochemical networks. It was developed by the Systems Biology Institute (SBI)

in Tokyo, Japan [123]. The core members of this software application are Akira

Funahashi, Hiroaki Kitano, and Akiya Jouraku. The main goal of this application is

to visually represent biochemical reactions in a comprehensive graphical notation

such as SBGN (Systems Biology Graphical Notation) [77]. Besides, in the new

version it enables users to connect from species name or ID to the databases

Saccharomyces Genome Database [134], iHOP (Information Hyperlinked over

Proteins) [135], and the Genome Network Platform (http://genomenetwork.nig.ac.

jp). Furthermore, it is possible to get basic information about a biological element

from PubMed [136] or Entrez Gene, the search engine from NCBI (http://www.ncbi.

nlm.nih.gov). To assist users in the simulation, CellDesigner is able to connect to

the SBML ODE Solver [137] and Copasi, a biochemical network simulator [138].

Simulations can be set up in a control panel, where users are able to adjust system

amounts and parameters. CellDesigner is free of charge and available at http://www.

celldesigner.org in version 4.2 running under Windows and Linux.

8.7.2 Cell Illustrator

The software application Cell Illustrator [124] is a software platform for systems

biology that uses the concept of the Petri net language for the modeling and

simulating of biological networks. The first version of Cell Illustrator was published

as Genomic Object Net [139] in 2000 under Matsuno et al. at the Faculty of Science,

Yamaguchi University, Japan. The software application employs the concept of a

hybrid Petri net as the modeling and simulation method. To handle any type of

objects, the existing paradigm has been extended to hybrid functional Petri nets

2http://sbml.org/

http://genomenetwork.nig.ac.jp
http://genomenetwork.nig.ac.jp
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.celldesigner.org
http://www.celldesigner.org
http://sbml.org/
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with extension (HFPNe). This paradigm is more suitable for biological network

modeling and simulation, since HFPNe can handle discrete and continuous events

simultaneously. Any kind of function can be assigned to delay, weight, and speed

parameters of these elements. Additionally, ordinary differential equations can be

modeled and integrated into a subset of HFPNe.

Furthermore, Cell Illustrator is able to import pathways or single reactions from

the TRANSPATH database [140]. To import networks from other tools, SBML,

CellML, and BioPAX data exchange formats are supported. In addition, Cell

Illustrator has its own format called CSML. Simulation results can be visualized

in either 2D or 3D plots in an all-in-one-window environment. To make the network

visualization more legible, graph grid layout algorithms are implemented. The latest

version of Cell Illustrator is version 5.0, which is commercially an online version

available at http://www.cellillustrator.com.

8.7.3 Cytoscape

Cytoscape is an open-source bioinformatics software platform for data integration

and visualization [125]. The first version of Cytoscape was published by Shannon

et al. from the Institute for Systems Biology, Seattle, Washington [141]. Nowadays,

it is supported and funded by many different institutions, particularly by Agilent

Technologies, University of Toronto, Institute Pasteur, Memorial Sloan-Kettering

Cancer Center, Institute for Systems Biology, and the University of California

San Diego. Primarily, Cytoscape enables users to visualize molecular interaction

networks and biological pathways and integrate these with any type of attribute

data, such as gene expression profiles. Furthermore, Cytoscape supports standard

network and annotation files such as BioPAX [95], and SBML. Additional features

are available as plugins, which are developed by third parties focusing on network

and molecular profiling analyses, new layouts, additional file format support,

scripting, and connection with databases. For network reconstruction there is

the plug-in BioNetBuilder [142], which uses the databases KEGG [21], HPRD

[143], BioGrid [144], and GO [145], among others for its modeling. Furthermore,

simulation plug-ins exist, such as the SimBoolNet [146], for the simulation of

Boolean networks or FERN for the stochastic simulation and evaluation of reaction

networks [147]. Most of the plug-ins are available free of charge. Cytoscape

uses an open API based on Java technology and version 2.8.3 is available at

http://www.cytoscape.org.

8.7.4 E-Cell

The E-Cell project [126] is an international research project aimed at modeling

and reconstructing biological phenomena in silico. The main goal of this software

http://www.cellillustrator.com
http://www.cytoscape.org
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application is to develop a dynamical cell with all its functions. It has been

developed by Hashimoto et al. at the Institute for Advanced Biosciences, Keio

University, Yokohama, Japan. The software platform allows precise whole-cell sim-

ulations with object-oriented modeling. Therefore, numerical integration methods

are encapsulated into biologically related object classes. Virtually any integration

algorithm can be used for simulation [148]. Thus, users have the possibility to

define functions of proteins, protein-protein interactions, protein-DNA interactions,

regulation of gene expressions, and other cellular cell processes with a set of

functions rules. Therefore, hundreds of reaction rules are provided and available

for simulation progress. E-Cell version 3 is freely available at http://www.e-cell.org

and runs on several different platforms such as Microsoft Windows and Linux.

8.7.5 Gepasi

Gepasi is a software application for the modeling and simulating of biochemical

systems [127, 128]. It has been developed by Pedro Mendes at the Department of

Biological Sciences, University of Wales, Aberystwyth, UK. Gepasi uses mathemat-

ical formulas to transform biochemical properties into kinetic models. It provides a

number of tools to fit data, to optimize any function of the model, and to perform

metabolic control analysis and linear stability analysis. Sophisticated numerical

algorithms realize simulation processes and analysis tasks. The simulation results

can be plotted in 2D and 3D. Furthermore, the software application supports SBML

1.0 import and export. The latest version of Gepasi is 3.30 and freely available at

http://www.gepasi.org. It only runs using Microsoft Windows.

8.7.6 JDesigner

JDesigner is a software application that enables users to draw a biochemical

network, which can be exported to SBML for further processing [129]. The

development of JDesigner was supported by the California Institute of Technology,

Pasadena, California, and more recently by the KECK Institute of applied sciences,

Claremont, California USA. JDesigner represents networks by using one notation

for chemical species, which can be decorated with visual cues. This is also possible

for reactions. Although it is a network design tool it also supports simulations.

It has the ability to use JARNAC as a simulation server via the Systems Biology

Workbench (SBW) [129] which is an open-source framework connecting heteroge-

neous software applications. JDesigner is an open-source project distributed under

the LGPL license and available at http://sbw.kgi.edu/software/jdesigner.htm.

http://www.e-cell.org
http://www.gepasi.org
http://sbw.kgi.edu/software/jdesigner.htm
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8.7.7 VANESA

VANESA is a modeling software for the automatic reconstruction and analysis of

biological networks based on life-science database information [131, 149–153] and

constantly developed at the Bielefeld University. VANESA is platform independent

and available free of charge at www.vanesa.sf.net. Using VANESA, scientists are

able to model any kind of biological processes and systems as biological networks.

Scientists have the possibility to automatically reconstruct important biomedical

systems with information from the databases KEGG, MINT, IntAct, HPRD,

and BRENDA. Furthermore, users have the possibility to use graph theoretical

approaches in VANESA to identify regulatory structures and significant actors

within the modeled systems. These structures can then be further investigated in

the Petri net environment PNlib for hypothesis generation and in silico experiments.

The PNlib is the powerful new state-of-the-art Petri net simulation library

[130]. Proß et al. have developed the PNlib library using the Modelica language

[154] at the Department of Engineering and Mathematics, University of Applied

Sciences, Bielefeld, Germany. Modelica was developed and promoted by the

Modelica Association since 1996 for modeling, simulation, and programming.

Primarily it is focused on physical and technical systems and processes. Now,

Modelica, embedding the PNlib, provides the possibility to simulate biological

systems. VANESA and the PNlib are based on the xHPNbio formalism [131]. The

mathematical modeling concept xHPNbio was specially developed for scientists,

based on the demands of biological processes. The focus of this formalism is

the processing of experimental data to gain usable new insights about biological

systems.

8.7.8 Snoopy

Snoopy [132, 133] is a unifying Petri net framework to investigate biomolecular

networks. It has been designed and implemented by Heiner et al. at the Brandenburg

University of Technology at Cottbus, Germany. The simulation environment com-

prises a family of related Petri net classes, such as time Petri nets, stochastic Petri

nets, continuous Petri nets, hybrid Petri nets, colored Petri nets, and extended Petri

nets, among others. The mentioned classes enhance standard Petri nets in various

ways to meet the demands of biological scientists. For example, the extended

Petri nets are characterized by read arcs, inhibitor arcs, equal arcs, and reset arcs.

Using these formalisms, scientists are able to reconstruct and simulate any kind

of dynamic network. Larger networks can be hierarchically structured. If further

demands on the supported Petri nets should arise, the software application can be

extended by new properties and even by new Petri net classes. This is possible due

www.vanesa.sf.net.
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to the generic data structure of the software application. Furthermore, users are able

to move between the qualitative, stochastic, and continuous modeling paradigms.

However, this transformation from one paradigm into another is not possible without

information loss.

Simulation results are visualized within a built-in animation environment. To be

able to share results with other scientists and software applications, Snoopy offers

SBML support with both import and export functions. Snoopy is available for all

major operating systems, such as Windows, Linux, and Mac OS-X. It is available

free of charge at http://www-dssz.informatik.tu-cottbus.de/snoopy.html.

8.8 Discussion

Cellular life is very complex and governed by thousands of macroscopic functions

being constantly carried out. To produce good theoretical models which can be

used for hypothesis testing, the models need to be manageable. This can only be

achieved by reducing a biological system to the known and essential parts, which

are necessary to answer the underlying research questions. By trying to model a

complete system, regardless of the lack of data and parameters, it is very likely that

the modeled systems can be misleading. Therefore, any model needs to have a clear

focus rather than model all levels of biological details.

One of the best ways to start modeling a biological system is by using biological

networks. A small network consisting of known and already analyzed elements can

be the initial point for the reconstruction of a more significant system. Therefore,

there are different biological networks which can be used as powerful integrated

frameworks to present, integrate, and visualize knowledge. As these networks are

intuitive and easy to extend in knowledge, any scientist can work with them. With

biological networks different -omic levels can be modeled, describing elements such

as genes, RNAs, proteins, and metabolites being in interactions and relationships

with each other. Moreover, biological databases can be used to reconstruct or

enrich those networks with relevant information and new data. Kinetics and other

information can be queried to model a system in a more precise way. With database

integration modules, it is even possible to query multiple databases with one view

instead of consulting each database separately. Besides, data integration tools filter,

normalize, and link heterogeneous data from different distributed data sources.

A further advantage of biological networks is that a wide range of graphical

theoretical analysis techniques can be applied on reconstructed models. Graph

theory can give important clues about topological network properties, such as the

identification of the most important nodes within a system, or average path lengths

between different elements in a biological model. This is important in as much as

biological networks can become large and complex. Scientists need a tool which

assists them in identifying relevant information.

When it comes to simulating cell behavior, scientists often speak about ODE

modeling. Indeed, it is one of the most powerful approaches, but needs prior

http://www-dssz.informatik.tu-cottbus.de/snoopy.html
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knowledge in mathematics and a complete set of biological data and parameters.

These are high requirements for a modeling approach when scientists try to

reconstruct and understand system behavior or unknown regulatory processes. Thus,

a more intuitive approach is necessary, which can be used in the beginning without

biological data and is still able to imitate and predict cell behavior. Therefore, Petri

nets can be used for the description, simulation, and analysis of complex and dis-

tributed systems. Petri nets cover most of the needed features for network modeling

and provide qualitative as well as quantitative modeling features. Furthermore, it

is possible to integrate ODEs for precise model descriptions. Another advantage

of these modeling techniques is that each result can be shared within the scientific

community using data exchange formats.
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Ö, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna
A, Murray-Rust P, Neumann E, Ruebenacker O, Reubenacker O, Samwald M, van Iersel M,
Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A,
Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M,

Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M,
Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz
U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novère N,
Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The
BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942

96. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J,
Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu
G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological
pathways and processes. Nucleic Acids Res 37(Database Issue):619–622

97. Kalas M, Puntervoll P, Joseph A, Bartaseviciute E, Topfer A, Venkataraman P, Pettifer S,
Bryne JC, Ison J, Blanchet C, Rapacki K, Jonassen I (2010) BioXSD: the common data-
exchange format for everyday bioinformatics web services. Bioinformatics 26(18):540–546

98. Spellman PT, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bernhart D, Sherlock G,
Ball C, Lepage M, Swiatek M, Marks WL, Goncalves J, Markel S, Iordan D, Shojatalab M,
Pizarro A, White J, Hubley R, Deutsch E, Senger M, Aronow BJ, Robinson A, Bassett D,
Stoeckert CJ, Brazma A (2002) Design and implementation of microarray gene expression
markup language (MAGE-ML). Genome Biol 3(9):1–9

99. Kottmann R, Gray T, Murphy S, Kagan L, Kravitz S, Lombardot T, Field D, Glöckner FO
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Chapter 9

Petri Nets for Modeling and Analyzing

Biochemical Reaction Networks

Fei Liu and Monika Heiner

Abstract Petri nets have been widely used to model and analyze biochemical

reaction networks. This chapter gives an overview of different types of Petri nets

within a unifying Petri net framework that comprises the qualitative, stochastic,

continuous, and hybrid paradigms at both uncolored and colored levels. The Petri

net framework permits to investigate one and the same biological reaction network

with different modeling abstractions in various complementary ways. We describe

the use of the framework to investigate biochemical reaction networks with the help

of the unifying Petri net tool, Snoopy, and its close friends Charlie and Marcie. The

repressilator example serves as running case study.

Keywords Petri nets • Biochemical reaction networks • Unifying Petri net frame-

work • Qualitative • Stochastic • Continuous and hybrid Petri nets • Colored

Petri nets • Repressilator

9.1 Introduction

Modeling and analysis techniques have been widely used to study biochemical

reaction networks. A large variety of modeling approaches, e.g., ordinary (partial)

differential equations, Boolean networks, process algebras, and Petri nets, have been

applied for modeling a wide range of biochemical reaction networks (for reviews,
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see, e.g., [22] and Chap. 1 in this book). Among them, Petri nets are particularly

suitable for modeling the concurrent, asynchronous, and dynamic behavior of

biological networks. Reddy et al. [48] and Hofestädt [36] were the first to pick up

Carl Adam Petri’s idea for a graphical representation of stoichiometric equations

and applied qualitative Petri nets to model and analyze metabolic pathways. Since

that time, a large variety of Petri net classes, e.g., stochastic Petri nets, continuous

Petri nets, hybrid Petri nets, and colored Petri nets, have been developed for

modeling and analyzing different types of biological networks; see, e.g., [2,9,24,38].

Petri nets offer a number of attractive advantages for investigating biological

reaction networks [28]:

• Intuitive graphical and directly executable modeling formalisms

• Rich and mathematically founded analysis techniques

• Coverage of structural and behavioral properties as well as their relations,

• Integration of qualitative (i.e., time-free) and quantitative (i.e., time-dependent)

analysis techniques and methods, including animation (the token flow)

• Coverage of discrete (stochastic), continuous (deterministic), and hybrid

paradigms for quantitative analysis techniques and methods

• A wealth of computer tool support

This chapter gives an overview of different types of Petri nets within a unifying

Petri net framework and describes how they can be used to model and analyze

biochemical reaction networks with the help of the unifying Petri net tool, Snoopy

[31, 49] and its close friends Charlie [14, 56] and Marcie [32].

This chapter has been deliberately written in an informal style; no formal

definitions are given. We focus on an overview on the key concepts and their

applications in our previous work. For formal definitions, see Heiner et al. [28],

which also provides plenty of pointers where to continue reading.

This chapter is organized as follows. Section 9.2 gives an overview of our

unifying Petri net framework, followed by a description of each net class contained

in this framework from Sects. 9.3 to 9.7, respectively. After a brief description of

the tools we use, this chapter is concluded.

9.2 A Unifying Petri Net Framework

Petri nets may easily serve as a convenient umbrella formalism integrating qualita-

tive and quantitative (i.e., stochastic, continuous, or hybrid) modeling and analysis

techniques. Thus, Petri nets are immediately ready to address distinctive modeling

demands of systems and synthetic biology including those biochemical reaction

networks that may need several modeling paradigms.

Motivated by this application scenario, a unifying Petri net framework (see

Fig. 9.1) has been developed [25, 31], which can be divided into two levels:

uncolored [28] and colored [38]. Each level comprises a family of related Petri

net classes, sharing structure, but being specialized by their kinetic information.
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CTMC coupled by Markov jumps
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Fig. 9.1 A unifying Petri net framework, which has been implemented in the Petri net tool,
Snoopy (Reprinted from Heiner et al. [31] with kind permission from Springer Science + Business
Media B.V., Fig. 1, p. 399)

Specifically, the uncolored level contains qualitative (time-free) Petri nets (QPN )

as well as quantitative (time-dependent) Petri nets such as stochastic Petri nets

(SPN ), continuous Petri nets (CPN ), and generalized hybrid Petri nets (GHPN ).

The colored level consists of the colored counterparts of the uncolored level, thus

containing colored qualitative Petri nets (QPN C), colored stochastic Petri nets

(SPN C), colored continuous Petri nets (CPN C), and colored generalized hybrid

Petri nets (GHPN C).

Petri nets of these net classes can be converted into each other; see arrows in

Fig. 9.1. Obviously, there may be a loss of information in some directions (cf.

arrows labeled with “abstraction” in Fig. 9.1). The conversion between colored

and uncolored net classes is accomplished by means of user-guided folding or

automatic unfolding (cf. arrows labeled with folding and unfolding in Fig. 9.1).

Moving between the colored and uncolored level changes the style of representation

but does not change the actual net structure of the underlying biochemical reaction

network. Therefore, all analysis techniques available for uncolored Petri nets can be

applied to colored Petri nets as well.

Snoopy supports the simultaneous use of different net classes, which provides

the ground to investigate one and the same case study with different modeling

abstractions in various complementary ways [24, 28, 38].

We will address each net class in the framework in the following sections by

focusing on their application for investigating biochemical reaction networks.
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9.3 Qualitative Petri Nets (QPN )

9.3.1 Modeling

QPN comprise – first of all – the standard place/transition nets (P/T nets, Petri nets

for short) which basically correspond to the original ideas introduced by Carl Adam

Petri in 1962 [46]. Petri nets (see Fig. 9.2 for an introductory example) are bipartite-

directed multigraphs with two types of nodes, called places and transitions, which

are connected by arcs. Places (represented as circles) and transitions (represented

as boxes) model in our context biochemical species and reactions, respectively.

Arcs carry stoichiometric information, called weight or multiplicity. Tokens on

places represent the (discrete) quantities of species, which may be understood as

the number of molecules or the level of concentration of a species, or simply the

presence of, e.g., a gene. A particular arrangement of tokens over all places of a

Petri net specifies the current system state (marking). The initial state is called the

initial marking. For example, the initial marking in Fig. 9.2a consists of five tokens

on place H2 and three tokens on place O2.

The state of the system changes by the firing of transitions. A transition is enabled

to fire if all its preconditions are fulfilled, i.e., each of its pre-places contains at least

the number of tokens specified by the weight of the corresponding arc. Upon firing

of a transition, tokens from all its pre-places are removed, and tokens are added

to all its post-places, each according to the corresponding arc weights. See Fig. 9.2

for two state changes upon firing of transition t ; that is, two tokens on pre-place

H2 and one token on pre-place O2 are removed and two tokens are added to the

post-place H2O; i.e., we reach new markings. All markings, which can be reached

H2 5

O2

H2O

H2O

O2

H2

H2

O2

H2O4

t

t

t

2

2

2
2

2
2

a

b

c

Fig. 9.2 A Petri net model of the chemical reaction 2H2 C O2 ! 2H2O. The places labeled
with H2 and O2 are pre-places of the transition t, the place labeled with H2O its post-place. (a)
Initial marking before t fires, (b) marking reached by firing of t once, and (c) marking reached by
a second firing of t. The transition is not enabled anymore in the marking reached after these two
single firing steps



9 Petri Nets for Modeling and Analyzing Biochemical Reaction Networks 249

P1

P2 P4

P3

P3

P44P2

P1

t

t

P1

P2

P1+P2
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P1+P2

P2
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a
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Fig. 9.3 A Petri net with
marking-dependent arcs.
Each arc may be
marking-dependent, e.g., the
multiplicity of the post-arc
from transition t to place P3 is
an addition expression,
P1CP2. (a) Initial marking
before t fires, (b) marking
reached by firing of t

from a given marking by any firing sequence of arbitrary length, form the set of

reachable markings. The set of markings reachable from the initial marking builds

the state space of a given Petri net. The reachability graph of a Petri net comprises

these reachable markings as nodes and the transitions between them as edges. The

reachability graph is finite, iff (if and only if) the state space is finite.

QPN do not involve any timing aspects. The firing of a transition is atomic

and does not consume any time. So they allow us a purely qualitative modeling of

biochemical reaction networks.

The P/T nets have been enlarged to extended Petri nets (XPN ) by the provision

of special arc types such as read arcs (often also called test arcs), inhibitor arcs,

equal arcs, and reset arcs. All these special arcs are only allowed to go from places

to transitions. Read, inhibitor, and equal arcs add constraints on the firing of a

transition, but the connected places are not affected upon firing. A read arc (compare

Fig. 9.16) allows to model that some resource is required, but not exclusively

consumed upon firing. Hence, the same token can be used at the same time by many

transitions. An inhibitor arc (compare Fig. 9.10) reverses the logic of the enabling

condition of a place, i.e., it imposes a precondition that a transition may only fire

if the place contains less tokens than the weight of the arc indicates. An equal arc

imposes the precondition that a transition may only fire if the number of tokens on

the place connected by the equal arc is equal to the arc weight. A reset arc empties

the place connected by this arc once the transition fires; the number of tokens does

not matter.

Finally, the XPN can be further enriched to include marking-dependent arcs,

i.e., the arc multiplicities are allowed to be marking-dependent expressions of

various types in terms of transitions’ pre-places [10]. See Fig. 9.3 for a technical

example.

Modeling repressilator. We now use the repressilator [5] as an example to

illustrate a modular and stepwise construction of a Petri net model using Snoopy.

1. We start with designing a Petri net model of a gene, illustrated in Fig. 9.4a. The

presence of one gene allows the generation of proteins without consuming the

gene, while generated proteins can degrade. A possible run of this model is that

the transition generate fires twice, adding two tokens to the place protein, and

then transition degrade fires once, removing one token from place protein. We
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protein

gene gene_b

protein_b

blocked_b

protein_a

degrade

generate generate

unblock

degrade

block_b

a b

Fig. 9.4 (a) A Petri net model of a gene and (b) a Petri net model of a gene gate according to
Blossey et al. [5], who also inspired the layout: gene b may be blocked by protein a (Reprinted
from Heiner and Gilbert [25], Copyright 2013, with permission from Elsevier)

gene c

protein c

blocked cgene b protein b

blocked b

gene a

protein a

blocked a

block c

block b

generate c

unblock c

degrade c

generate b

unblock b degrade b

generate a

unblock a

degrade a

block a

Fig. 9.5 The repressilator – Petri net for three genes in a regulatory cycle (Reprinted from Heiner
and Gilbert [25], Copyright 2013, with permission from Elsevier)

obtain the marking where each place carries one token. It is easy to see that this

Petri net has an infinite number of reachable markings.

2. Next, we extend the basic behavior in Fig. 9.4a by allowing the gene to be

blocked by the protein produced by another gene, which makes a building block

called gene gate; see Fig. 9.4b. The behavior of Fig. 9.4b is different from that of

Fig. 9.4a, as a gene may be blocked or unblocked in Fig. 9.4b while it is always

unblocked in Fig. 9.4a.

3. When genes repress each other in a circular manner, we obtain a gene regulatory

cycle, the repressilator [5]; see Fig. 9.5, which is composed of three gene gates

with identical structure.
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Fig. 9.6 The repressilator – Petri net for three genes in a regulatory cycle represented using
logical nodes (here, places, cross-hatched) to preserve gene-centered modules. Logical nodes with
identical names serve as connectors; they are multiple representations of the same node used for
layout clarity. See also Fig. 9.7 (Reprinted from Heiner and Gilbert [25], Copyright 2013, with
permission from Elsevier)
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block_b
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generate_a
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degrade_a
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Fig. 9.7 The repressilator – Petri net for three genes in a regulatory cycle represented using logical
transitions. See also Fig. 9.6

Snoopy supplies two features for the design and systematic construction of

larger Petri nets – logical nodes and macro nodes. Logical nodes (i.e., logical

places/transitions) serve as connectors to avoid lengthy arcs, and macro transitions

(macro places) help to hide transition-bordered (place-bordered) subnets in order to

design hierarchically structured Petri nets.

Using logical nodes, we are able to represent the repressilator model in alterna-

tive ways highlighting the modular structure of the Petri net, which are illustrated in

Figs. 9.6 and 9.7, respectively, both of which are equivalent to Fig. 9.5.

Using macro transitions, we can hide all gene-related details while keeping the

protein places as interface; see Fig. 9.8. We obtain a hierarchical Petri net; Fig. 9.9

gives its top level. This Petri net is also equivalent to Figs. 9.5–9.7, it just uses a

different representation style.

9.3.2 Analysis

The QPN are time-free models; the qualitative analysis considers however all

possible behavior of the system under any timing. Thus, the QPN model itself

implicitly contains all possible time-dependent behaviors.
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GENE A

Fig. 9.8 Hierarchical structuring by the use of macro transitions. The uncolored nodes (left) make
the contents of the macro transition GENE A (right). The blue arcs highlight the connection to the
interface places

protein_c

protein_b

protein_a

GENE_A

GENE_CGENE_B

Fig. 9.9 Hierarchical Petri
net model of the repressilator
using macro transitions;
compare Fig. 9.8. Only the
top level is shown

Behavioral properties. There are three orthogonal general behavioral properties

which are usually explored first to gain some insights into the behavior of a Petri

net.

• Boundedness. A place is said to be k-bounded (bounded for short) if the maximal

number of tokens on this place is bounded by a constant k in all reachable

markings. A Petri net is k-bounded (bounded for short) if all its places are k-

bounded.

• Liveness. A transition is said to be live if it will always be possible to reach a

state (marking) where this transition gets enabled, whatever happens. A Petri net

is live if each transition is live.

• Reversibility. A Petri net is said to be reversible if the initial marking can be

reached again from each reachable marking.

For example, by playing the token game for our repressilator model (take any

Petri net in Figs. 9.5–9.7 and 9.9), we can easily figure out that the places gene i

and blocked i, with i D fa; b; cg, are 1-bounded. But the net is unbounded as all

places protein i are unbounded. If the generation of a protein occurs faster than its

degradation, infinite many tokens (molecules) will be accumulated. Furthermore,

we can argue that this Petri net is likely to be live and reversible.
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When models get more complicated, it might not be obvious anymore to decide

behavioral properties by reasoning only. Then, we need mathematically sound

analysis techniques. Petri net theory offers a rich body of such analysis techniques,

most of them are implemented in our analysis tool Charlie. We sketch here only a

few of them to give an impression of what kind of analysis techniques we have.

Structural properties. Structural properties [28, 41, 44] permit – if they hold – to

deduce behavioral properties of Petri nets from their structure without constructing

the complete or partial state space. If a property is proved structurally for a given

Petri net, it holds for this Petri net in any initial marking. The most important

structural properties can be classified as follows: elementary graph properties,

siphons/traps, and place/transition invariants.

Elementary graph properties. The elementary graph properties relate to the

following questions (see [28] for explanations of all the following terms):

• Is the Petri net pure (PUR), ordinary (ORD), homogeneous (HOM), conservative

(CSV), static conflict-free (SCF), connected (CON), or strongly connected (SC)?

• Does the Petri net have boundary nodes; i.e., input transitions (FT0), output

transitions (TF0), input places (FP0), or output places (PF0)?

• Does the Petri net structure obey the constraints of a state machine (SM),

synchronization graph (SG), extended free choice net (EFC), or extended simple

net (ES)?

Elementary graph properties occasionally permit on their own conclusions

on behavioral properties. For example, a Petri net having input transitions, i.e.,

transitions without pre-places, is unbounded (as the firing of input transitions does

not depend on any preconditions), or a Petri net having input places, i.e., places

without pre-transitions, is not live (as the tokens on an input place are sooner or later

used up). Our repressilator Petri net has output transitions, i.e., transitions without

post-places, which tells us that the model is either not live or unbounded (at least

the pre-place of the output transition had to be unbounded).

Siphons/traps. A nonempty set S of places of a Petri net is called a siphon if there

is no transition which has post-places in S , but no pre-places in S . Consequently,

every transition, which fires tokens onto a place in S , also has a pre-place in this

set, i.e., the set of pre-transitions of S is contained in the set of post-transitions of

S . Pre-transitions of a siphon cannot fire if the place set is clean, i.e., none of the

places carries a token. Therefore, a siphon cannot get tokens again, as soon as it is

clean, and then all its post-transitions are dead.

Contrary, a nonempty set Q of places of a Petri net is called a trap if there is no

transition which has pre-places in Q, but no post-places in Q. Consequently, every

transition, which subtracts tokens from a place of the trap set, also has a post-place in

this set, i.e., the set of post-transitions of Q is contained in the set of pre-transitions

of Q. Post-transitions of a trap always return tokens to the place set. Therefore, once

a trap contains tokens, it cannot become clean again.
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Siphon and trap are closely related but contrasting notions. When they come on

their own, we usually get deficient behavior. However, both notions have the power

to perfectly complement each other. A Petri net satisfies the siphon-trap property

(STP) if every siphon includes an initially marked trap. For certain combinations of

structural properties, we can derive behavioral properties. For example, if a net is

ORD and ES, and the STP holds, then the net is live. The STP holds also for our

repressilator model, but the net structure is beyond ES. Thus, we can only conclude

the absence of dead states, i.e., states where no transition is enabled.

Place/transition invariants. Place and transition invariants (P- and T-invariants

for short) play a crucial role in analyzing biological systems due to their biological

interpretations. Both of them can be obtained by solving a linear equation system

which describes the Petri net structure and which is independent of the initial

marking. Any linear combination of P-invariants (T-invariants) yields again a P-

invariant (T-invariant). Therefore, one is usually interested in minimal invariants,

i.e., invariants which cannot be described by a linear combination.

A P-invariant represents a set of places over which the weighted token count

keeps constant whatever happens in the Petri net. So a place belonging to a P-

invariant is k-bounded. We get the upper bound k by multiplying the invariant

with the initial marking. In metabolic networks, P-invariants often correspond to

conservation laws in chemistry, reflecting substrate conservations, while in signal

transduction networks, P-invariants often correspond to proteins and their possible

states.

A T-invariant describes a multiset of transitions; it can be interpreted in two

different ways. The multiset either specifies how often a transition has to fire to

return to the original marking, or the multiset gives the relative firing rates required

to keep the Petri net in the same state – the steady state.

Taking our repressilator model as an example, Charlie yields the following

results. The Petri net has three minimal P-invariants, one for each gene gate:

xi = (gene i, blocked i), where i D a; b; c. For each P-invariant, the constant token

sum is 1, which confirms our expectations: a gene is either blocked or unblocked, it

can neither disappear nor be multiplied.

The Petri net has also six minimal T-invariants, two for each gene gate:

y1i = (block i, unblock i) and y2i = (generate i, degrade i), where i D a; b; c,

which cover the whole Petri net, i.e., each transition belongs to a T-invariant.

These T-invariants confirm our previous observations that a balanced firing of these

transition sets reproduces the initial marking, and a balanced firing according to y2i

makes the Petri net bounded.

Model checking. If the state space is finite and of manageable size, analytical

model checking can be used to analyze QPN ; otherwise, simulative model

checking may help to obtain an approximative answer. In any case, the behavioral

properties of interest have to be expressed in temporal logics, e.g., in a branching

time temporal logic, one instance of which is computational tree logic (CTL) [11]

or in a linear-time logic (LTL) [47]. Both logics are supported by Marcie.
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Fig. 9.10 The repressilator in a bounded version – maximal K tokens can be accumulated on each
protein place. Inhibitor arcs (hollow circle as arc head) with arc weight K limit the generation of
proteins. K is a constant which is used to conveniently parameterize the model; compare Table 9.1

Table 9.1 State space growth for increasing K (maximum number of
each protein) (compare Fig. 9.10) computed with Marcie’s symbolic
state space representation. For the very specific case of our repressilator
example, we are able to specify a general formula for the state space
growth: 2n�.KC1/n, with n being the number of genes in the regulatory
circle (in our running example, we use n D 3)

K Number of states K Number of states

1 64 (1) 1,000 8,024,024,008 (9)

50 1,061,208 (6) 5,000 1,000,600,120,008 (12)

100 8,242,408 (6) 10,000 8,002,400,240,008 (12)

150 27,543,608 (7) 50,000 1,000,060,001,200,008 (15)

500 1,006,012,008 (9) 100,000 8,000,240,002,400,008 (15)

To be able to deploy CTL model checking, we introduce a bounded version of our

repressilator example; see Fig. 9.10. Its state space is finite but explosively grows as

illustrated in Table 9.1.

Having a bounded repressilator model, we can check behavioral properties

expressed as CTL properties. We give three examples for special behavioral

properties:

• Forever it holds, gene b is either unblocked or blocked.

AG Œ .gene b D 1 & blocked b D 0/ j .gene b D 0 & blocked b D 1/ �

• It is forever possible that there are at least k molecules of protein b; i.e., there

will be new proteins b forever, which includes liveness of transition degrade b.

AG EF Œ protein b � k �
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• It is possible that there are at least k molecules of each protein at the same time.

EF Œ protein a � k & protein b � k & protein c � k �

Here, A (for all paths) and E (there is one path) are path quantifiers, and G

(globally) and F (finally) are temporal operators. The CTL can also be used to

query the general behavioral properties. For more examples of temporal formulae,

the reader may wish to check, e.g., Heiner et al. [28] where model checking has

been explored for QPN .

9.3.3 Applications

There are quite a number of applications of qualitative Petri nets for modeling of

biochemical systems. In this chapter, we do not wish to give a review but just give

some examples.

Model validation by means of P-/T-invariant analysis is discussed in Heiner and

Koch [26] for three case studies: apoptosis, carbon metabolism in potato tuber, and

the glycolysis and pentose phosphate metabolism. Structural analysis has also been

used in Heiner [23] to derive coarse network structures highlighting the structural

principles inherent in the functional modules identified by T-invariants and in Heiner

and Sriram [27] to determine the core of a hypoxia response network and to identify

its fragile node.

The QPN have been deployed in Heiner et al. [28, 30] to model signal

transduction pathways, and their detailed analysis is exercised step by step.

In Blätke et al. [3], IL-6 signalling in the JAK/STAT signal transduction pathway

serves as case study to illustrate a modular protein-centered modeling approach.

9.4 Stochastic Petri Nets (SPN )

9.4.1 Modeling

The SPN extend QPN by assigning to transitions exponentially distributed

waiting times, which are specified by firing rate functions (stochastic rates, compare

Fig. 9.1). The underlying semantics of SPN is a continuous-time Markov chain

(CTMC). The SPN have been previously extended to generalized stochastic

Petri nets (GSPN ) [41] and later to deterministic and stochastic Petri nets

(DSPN ) [18].

Our extended stochastic Petri nets (XSPN ) [29], which comprise the GSPN

and DSPN , provide the four special arc types and marking-dependent arcs as

available for XPN and furthermore three special transition types: immediate

transitions (zero waiting time), deterministic transitions (deterministic waiting

time, relative to the time point where the transition gets enabled), and scheduled
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Table 9.2 Rate functions for the SPN repressilator model. MA.c/ denotes the mass action
function, where c is a kinetic parameter. See last column for the explicit rate functions for gene a

Transition class Kinetic parameter c Rate function pattern Example: gene a

Generate 0.1 MA.0:1/ 0:1 � gene a

Block 1.0 MA.1:0/ 1:0 � gene a � protein c

Unblock 0.0001 MA.0:0001/ 0:0001 � blocked a

Degrade 0.001 MA.0:001/ 0:001 � protein a

transitions (scheduled to fire, if any, at single or equidistant, absolute points of the

simulation time). In Snoopy, we do not distinguish between these three classes of

stochastic Petri nets. Thus, we usually call our extended stochastic Petri nets simply

SPN if confusion is precluded.

In biological reaction networks, rate functions are often marking-dependent. In

Snoopy, popular kinetics like mass action semantics [40] and level semantics [28]

are supported by predefined function patterns.

Modeling repressilator. Let us return to our repressilator model. If we associate a

rate function with each transition, e.g., the rate functions given in Table 9.2, we can

consider it as a stochastic repressilator model.

9.4.2 Analysis

The CTMC for a given SPN is isomorphic to the reachability graph of its

correspondingQPN , but edges are enriched by the transition rates. Thus, all QPN

analysis techniques can still be applied, and all behavioral properties which hold for

a QPN are still valid for the SPN . Additionally, we have the following techniques

to explore stochasticity.

Stochastic simulation. Stochastic simulation like the Gillespie stochastic simu-

lation algorithm (SSA) [21] generates random walks through the CTMC. Approxi-

mated traces can be obtained by averaging a number of simulation runs. Besides, the

unrestricted use of special (immediate, deterministic, scheduled) transitions destroys

the Markov property. But the adaptation of the Gillespie stochastic simulation

algorithm is rather straightforward and supported in Snoopy.

For example, assigning rates with the given kinetic parameters to any of our

repressilator Petri nets generates sustained oscillation for all proteins, with each

single run behaving differently. See Fig. 9.11 for a plot with the rates given in

Table 9.2.

Simulative model checking. To systematically explore simulation traces, we use

PLTLc [12], a probabilistic extension of LTL with constraints, to express our

behavioral properties of interest. Simulative model checking considers a finite set of

finite outputs from Gillespie’s exact SSA, i.e., a finite subset of the state space. This

permits to explore very big or even infinite state spaces in reasonable time or just to
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Fig. 9.12 Probability distribution of the value range for the protein places, determined by 10,000
stochastic simulation runs with � D 200;000 for the SPN repressilator model. Increasing the
number of runs smoothes the bell shape but does not shift the value range. Values beyond 158 are
most unlikely

obtain a first rough estimate. Each trace is evaluated to a Boolean truth value, and

the probability of a behavioral property holding true is approximated by the number

of traces with true values over the whole sample set. One has to consider a sufficient

amount of simulation traces to obtain reliable approximations. The number of traces

required increases with the expected confidence in the numerical results. Rare events

may dramatically increase the required size of the sample set.

Let us return to our running example. We use a PLTLc-specific feature to explore

the value range for the proteins – the free variables – which are specified by a

leading $.

• What is the probability that up to time point � one of the proteins rises above v?

We do not know which protein will start rising, so we use the disjunction.

PD‹Œ FŒ0;� � protein a > $v j protein b > $v j protein c > $v �

Simulative model checking yields the domain of the free variable v and the

probability of each interval; see Fig. 9.12. We observe that values beyond 150 are

increasingly unlikely. Thus, we take K D 160 as upper bound (see Fig. 9.10), which

cuts the infinite state space down to 33,386,248 states.



9 Petri Nets for Modeling and Analyzing Biochemical Reaction Networks 259

0.001

0.01

0.1

1

0 1 2 3 4 5 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101

102
103

104
105

106
107

108
109

110
111

112
113

lo
g

(p
ro

b
a

b
ili

ty
)

protein_b

probability
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Analytical model checking. As long as the underlying semantics of a stochastic

Petri net is described by a finite CTMC of manageable size, it can be analyzed

using such standard stochastic analysis techniques as transient analysis, steady-state

analysis, or analytical model checking [50, 51].

Transient analysis means to compute the transient probabilities to be in a

certain state at a specific time point using, e.g., the uniformization or Jensen

method [54]. Steady-state analysis computes the steady-state probabilities using,

e.g., Gaussian elimination or Jacobi iteration [45]. In analytical model checking,

special behavioral properties can be checked, which have been expressed in, e.g.,

Continuous Stochastic Logic (CSL), a stochastic counterpart of CTL which was

originally introduced in Aziz et al. [1].

For illustration, we compute for the bounded version of our repressilator model

(K D 160) the probability that in the steady state, there are k molecules of protein b;

see Fig. 9.13. The obtained probability distribution tells us that we have oscillations

with very sharp rise and fall, with peaks around 100. However, most of the time there

are only a few proteins. The expectation value EŒprotein b� D 33:18 corresponds

to the steady-state value which we observe when averaging over a sufficient amount

of simulation traces; see Fig. 9.14.

Likewise, we could use transient analysis to evaluate the following CSL

formulae.

• What is the probability that at time point � there are at least k molecules of

protein b?

PD‹ Œ FŒ�;� � . protein b � k / �

Increasing � will finally approach the steady-state values for any k � K .

• What is the probability that up to time point � there are at least k molecules of

each protein at the same time?

PD‹ Œ FŒ0;� � . protein a � k & protein b � k & protein c � k / �

The probability is technically larger than 0 for any k � K (as the property holds

for the QPN ), but drops dramatically with increasing k, and reaches very fast

insignificant values which are practically 0.
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Fig. 9.14 Average of 1,000 simulation traces for the SPN repressilator model. Increasing the
number of averaged traces smoothes the curves

Marcie supports standard stochastic analysis techniques and analytical model

checking for (Markovian) SPN and simulative model checking for XSPN . We

recommend Heiner et al. [29] and Schwarick et al. [51] for more illustrative

examples.

9.4.3 Applications

The SPN have been used in Heiner et al. [28, 30] to model and analyze signal

transduction pathways; the detailed analysis exploits analytical and simulative

model checking.

A classical example of prokaryotic gene regulation, the lac operon, is taken in

Heiner et al. [29] to demonstrate the power of XSPN for model-based design of

wet lab experiments. This paper may also serve as a gentle introduction into the use

of simulative model checking.

In Marwan et al. [42], the XSPN have been applied to investigate phosphate

regulation in enteric bacteria; modeling details and stochastic simulation runs

are given. There one also finds more information on how to control stochastic

simulation experiments in Snoopy.

9.5 Continuous Petri Nets (CPN )

9.5.1 Modeling

Continuous Petri nets offer a graphical way to specify systems of ordinary differ-

ential equations (ODEs) [28]. The discrete tokens, which we had so far in QPN

and SPN , are exchanged in CPN by real-valued tokens, one token for each place.

The instantaneous firing of a transition is carried out like a continuous flow. Its
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Table 9.3 The unreduced ODEs induced by the CPN repressilator
model, as generated by Snoopy. We deliberately give the unreduced
ODEs to highlight the relation to the generating CPN

d gene a

dt
D .0:1 � gene a/ C .0:0001 � blocked a/

�.0:1 � gene a/ � .1 � protein c � gene a/

d protein a

dt
D .0:1 � gene a/ C .1 � gene b � protein a/

�.0:001 � protein a/ � .1 � gene b � protein a/

d blocked a

dt
D .1 � protein c � gene a/ � .0:0001 � blocked a/

d gene b

dt
D .0:1 � gene b/ C .0:0001 � blocked b/

�.0:1 � gene b/ � .1 � protein a � gene b/

d protein b

dt
D .0:1 � gene b/ C .1 � gene c � protein b/

�.0:001 � protein b/ � .1 � gene c � protein b/

d blocked b

dt
D .1 � protein a � gene b/ � .0:0001 � blocked b/

d gene c

dt
D .0:1 � gene c/ C .0:0001 � blocked c/

�.0:1 � gene c/ � .1 � protein b � gene c/

d protein c

dt
D .0:1 � gene c/ C .1 � gene a � protein c/

�.0:001 � protein c/ � .1 � gene a � protein b/

d blocked c

dt
D .1 � protein b � gene c/ � .0:0001 � blocked c/

strength is determined by the continuous rate functions (deterministic rates, compare

Fig. 9.1), which are assigned to each transition. The CPN and SPN have the power

to approximate each other as it is depicted in Fig. 9.1.

Modeling repressilator. Let us return to the repressilator model in Fig. 9.5. If we

read tokens on each place as (real-valued) concentrations of species and associate a

deterministic rate function with each transition, e.g., the same rate functions as given

in Table 9.2, we can consider it as a continuous repressilator model. The underlying

ODEs of the continuous model as generated by Snoopy are given in Table 9.3.

From these ODEs, we can see that each place in the Petri net model is mapped

to a variable in the ODEs, and each variable gets its own equation. A place’s pre-

transitions increase the token value; thus, their rate functions appear as plus terms

in the equation. Contrary, post-transitions decrease the token value; thus, their rate
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Fig. 9.15 Plot of a continuous simulation run for the CPN repressilator model. For rate functions,
see Table 9.2. This plot suggests that the repressilator quickly reaches a steady state. The three
curves for the three proteins coincide, so we see only one of them. Contrary, Fig. 9.11 suggests that
the stochastic repressilator fluctuates around a steady-state value

functions appear as minus terms. A transition which is pre- and post-transition yields

two terms, which can be reduced by algebraically transforming the right-hand side

of the equation.

9.5.2 Analysis

Continuous simulation. The ODEs induced by a given CPN are usually not

linear, which calls for numerical integration algorithms. Snoopy supports 14

different stiff/unstiff ODE integrators to numerically solve the ODEs. These ODE

solvers range from simple fixed-step-size solvers (e.g., Euler), which are suitable for

unstiff CPN models, to more sophisticated variable-order, variable-step, multistep

solvers (e.g., backward differentiation formulas (BDFs)), which have to be used

for stiff CPN models. Snoopy’s implementation of the latter solvers builds on the

library SUNDIALS CVODE [35].

Running continuous simulation for the CPN repressilator model yields plots as

illustrated in Fig. 9.15.

Continuous model checking. The behavior of a CPN model is deterministic, i.e.,

each run with the same parameters yields the same results. Thus, the state space

can be considered as being continuous and linear. It can be explored by using, for

example, continuous linear temporal logic with constraints (LTLc) [7] or PLTLc

[12] in a deterministic setting. Both are interpreted over the continuous simulation

trace generated by numerically integrating ODEs. Please refer to Donaldson and

Gilbert [12] and Heiner et al. [28] for details about how to use MC2 tools to do

simulative model checking and a couple of biological examples.

For illustration, we specify the following PLTLc property for the CPN repressi-

lator model.
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• Does finally the value of protein b first rise and then fall; with other words: does

there exist a peak in the trace?

PD‹ Œ F Œ .d.protein b/ > 0/ & F Œ .d.protein b/ < 0/ � � �

The function d.species/ returns the derivative of the concentration of the species

at each time point. The probability is 1, i.e., there is a peak; see Fig. 9.15.

Other analysis techniques. Besides, all standard ODEs analysis techniques, e.g.,

bifurcation analysis, sensitivity analysis, and parameter scanning [52], are applica-

ble when the ODEs are exported to suitable tools, e.g., Matlab [43].

9.5.3 Applications

Gilbert and Heiner [19] present results of an investigation to integrate Petri nets

and ODEs for the modeling and analysis of biochemical networks and apply their

approach to a model of the influence of the Raf kinase inhibitor protein (RKIP) on

the extracellular signal-regulated kinase (ERK) signalling pathway.

A novel methodology for the engineering of biochemical network models is

proposed in Breitling et al. [6] and illustrated for signalling pathways. It includes

the structured design of ODEs using CPN and their systematic composition.

Soliman and Heiner [53] discuss sufficient conditions for the unique construction

of CPN models from ODEs. The challenge is to reveal the network structure which

is hidden in a given ODE. Generally, this reverse problem does not have a unique

solution, while the ODEs induced by a given CPN are uniquely defined.

9.6 Generalized Hybrid Petri Nets (GHPN )

9.6.1 Modeling

Snoopy integrates all functionalities of its stochastic and continuous Petri nets

(SPN and CPN ) into one net class, yielding generalized hybrid Petri nets

(GHPN ) [33, 34]. GHPN are specifically tailored (but not limited) to models

that require an interplay between stochastic and continuous behavior. They provide

a trade-off between accuracy and runtime of model simulation by adjusting the

number of stochastic transitions appropriately, which can be done either statically

(by the user) or dynamically (by the simulation algorithms). A typical application

of GHPN is the hybrid representation of biochemical reactions at different scales

(also called stiff systems), where slow reactions are represented by stochastic

transitions and fast reactions by continuous transitions.

Modeling repressilator. For illustration, we now interpret our repressilator Petri

net, reusing the rate functions given in Table 9.2, as a GHPN model. The 1-bounded
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Fig. 9.16 The GHPN model of the repressilator, where the continuous places (transitions) are
represented by shaded line circles (squares). Besides, the bidirectional arcs between places gene i

and transitions generate i are replaced by read arcs (black dots as arc heads) in order to comply
with the connection rules (a continuous transition is not allowed to remove from or write to a

discrete place)

places as determined by P-invariant analysis and the related transitions as deter-

mined by T-invariant analysis are kept discrete. The unbounded places and related

transitions are approximated by continuous places and transitions, respectively.

That is, places gene i and blocked i , and transitions block i and unblock i are

treated as discrete and all other nodes as continuous. To distinguish between discrete

and continuous nodes, we choose different graphical representations; see Fig. 9.16.

9.6.2 Analysis

Hybrid simulation. Snoopy’s hybrid simulation builds on Gillespie’s direct

method [21] to simulate stochastic transitions and on continuous simulation to

integrate the ODEs induced by the continuous transitions using SUNDIALS

CVODE [35].

For example, if we still assign the rates in Table 9.2 to the hybrid model and

consider them as stochastic or deterministic rates, depending on the transition type,

hybrid simulation yields plots as illustrated in Fig. 9.17.

Simulative model checking. Likewise, we can use PLTLc [12] to do simulative

model checking of a GHPN model, which also handles a subset of the state space,

e.g., a set of finite outputs from hybrid simulation in Snoopy.
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Fig. 9.17 Plot of one hybrid simulation run for the repressilator. For rate functions, see Table 9.2.
This plot suggests that GHPN are able to capture the oscillation. Repeated runs look differently;
thus, stochasticity is captured as well

For the hybrid repressilator model, we specify the following property using

PLTLc:

• What is the probability of protein i (i D a; b; c) to be sometimes (finally)

greater than 120?

PD‹ Œ F Œ protein i > 120 � �

With the same data as used for Fig. 9.17, it is evaluated for this single trace to 1

for protein c and 0 for the other proteins.

• What is the probability that there are k molecules of two proteins (here,

protein a and protein b) at the same time?

PD‹ Œ F Œ .protein a � k/ & .protein b � k/ � �

With the same data as used for Fig. 9.17, it is evaluated for this single run to 1 for

k D 1; 10; : : : ; 40, and 0 for k � 50.

9.6.3 Applications

In Herajy [33], GHPN are used to model and analyze three case studies: the

intracellular growth of bacteriophage T7, the eukaryotic cell cycle, and the circadian

rhythm. In all three cases, chemical reactions are divided into two groups: fast and

slow.

9.7 Colored Extensions

9.7.1 Modeling

Colored Petri nets [17, 37] are a high-level extension of standard Petri nets, where

a group of similar model components are represented by one component, each of

which is defined as and thus distinguished by a color.
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Colored Petri nets consist, as standard Petri nets, of places, transitions, and

arcs. Additionally, a colored Petri net model is characterized by a set of data

types [8], called color sets. Each place gets assigned a color set and may contain

distinguishable tokens colored with a color of this color set.

Modeling repressilator. Figure 9.18 gives a colored Petri net model for the

repressilator model in Fig. 9.6. A color set GeneSet is defined with three colors, a,

b, and c to distinguish three genes. Each place gets assigned this color set GeneSet.

By this way, we use one place to represent three similar objects, e.g., representing

three protein objects as one colored place protein.

As there can be several tokens of the same color on a given place, the tokens

on a place define a multiset over the place’s color set. For example, in Fig. 9.18,

we denote the initial marking for the place protein by a multiset expression,

1‘a++1‘b++1‘c, which means one token of each color of GeneSet.

Each transition gets a guard, which is a Boolean expression over variables,

constants, etc. The guard must be evaluated to true for the enabling of the transition.

The trivial guard “true” is usually not explicitly given. For example, in Fig. 9.18, all

colored transitions have the trivial guard “true.”

Each arc gets assigned an expression; the result type of this expression is a

multiset over the color set of the connected place. For example, in Fig. 9.18, we

define a variable x of GeneSet, which is used in arc expressions. The predecessor

operator “�” in the arc expression �x returns the predecessor of x in an ordered

finite color set. For example, if x D b, then �x returns a. If x is the first color, then

it returns the last color. For example, if x D a, then �x returns c. The result type of

each arc expression is a multiset over GeneSet.

Each uncolored net class has a colored counterpart [38], which inherits all

features of its corresponding uncolored net class, e.g., SPN C enjoy all special arc

types and transition types of SPN .
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Fig. 9.19 Plot of a stochastic simulation run for the repressilator with nine genes. For rate
functions, see Table 9.2

Snoopy provides various flexible ways to define declarations to be used in

the annotations of colored Petri nets. For example, rich data types for color set

definitions are supported: (1) simple types (dot, integer, string, Boolean, enumer-

ation, and index) and (2) compound types (product and union). Concise initial

marking specifications for larger color sets and individual rate function definitions

for each transition instance are supported. Syntax checking ensures the syntactical

correctness of constructed models.

A Petri net can be folded into a colored Petri net if the partition of place and

transition nodes is given. After that, colored Petri nets can show their attractive

advantage, scalability, e.g., changing the number of genes involved in the regulatory

cycle just requires to adapt the color set GeneSet appropriately. For example, if we

set GeneSet to, let’s say, nine colors, a–i, a stochastic simulation plot for nine genes

can be produced, illustrated in Fig. 9.19.

Vice versa, colored Petri nets with finite color sets can be automatically unfolded

into uncolored Petri nets, which then allows the application of all of the existing

powerful standard Petri net analysis techniques. For example, unfolding the colored

Petri net in Fig. 9.18 generates the Petri net given in Fig. 9.6.

Modeling procedure. Usually, modeling with colored Petri nets follows the

following procedure:

1. Convert an uncolored Petri net into a colored Petri net by using the predefined

color set Dot , which contains only one color called dot .

2. Identify similar subnets in the uncolored Petri net model. For example, we can

identify three similar subnets in Fig. 9.6, the three gene gates.

3. Define declarations, e.g., color sets, variables, or constants. For example, we

define a color set with three colors a, b, c to distinguish three similar subnets

in Fig. 9.6.

4. Assign color sets to places and define the initial marking.

5. Write and assign arc expressions.

6. Define guards for transitions.

7. Check the syntax of inscriptions of the net, e.g., arc expressions and guards.
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9.7.2 Analysis

In Snoopy, we support automatic unfolding of colored Petri nets into uncolored

Petri nets, so all the analysis techniques mentioned above for each uncolored Petri

net class can be equally applied to the corresponding colored Petri net class.

The key challenge when unfolding colored Petri nets is the computation of

all transition instances, which in fact is a combinatorial problem, suffering from

combinatorial explosion. For overcoming this, a constraint satisfaction approach

[55] has been employed. Specifically, the efficient search strategies of Gecode [16]

have been used to greatly improve the unfolding efficiency of colored Petri nets; see

Liu [38] for details.

9.7.3 Applications

In Liu et al. [39], colored Petri nets have been used to model cooperative ligand

binding and the repressilator, with the aim to illustrate how to use colored Petri nets

to model biological systems.

In Liu [38], three case studies have been given. The first case study illustrates how

to model a multicellular C. elegans vulval development system, where each cell is

encoded as color. The second describes the modeling of coupled Ca2C channels that

are arranged in two-dimensional space, where each channel is encoded as a color.

The third explores the use of colored Petri nets to model membrane systems, where

a membrane system composed of compartments is modeled as a colored Petri net

model by encoding each compartment as a color.

In Gao et al. [15], colored Petri nets are applied to model a tissue comprising

multiple cells hexagonally packed in a honeycomb formation in order to describe

the phenomenon of planar cell polarity (PCP) signalling in Drosophila wing, which

illustrates how to use colored Petri nets to address the multiscaleness problem in

systems biology.

In Gilbert et al. [20], phase variation in bacterial colony growth has been

studied using colored stochastic Petri nets and continuous diffusion using colored

continuous Petri nets.

9.8 Tools

BioModel Engineering of nontrivial case studies requires adequate tool support. We

deploy a sophisticated toolkit covering the whole framework:

• Snoopy [31, 49] is a platform to support the construction and anima-

tion/simulation of all the types of Petri nets discussed in this chapter, with

an automatic conversion between them. Obviously, there may be a loss of
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information in some directions (cf. arrows labeled with abstraction in Fig. 9.1).

The conversion between colored and uncolored net classes involves user-

guided folding or automatic unfolding. Snoopy supports several data exchange

formats, among them the following analysis tools in this list, as well as SBML

import/export, which opens the door to a bunch of tools popular in systems and

synthetic biology.

• Charlie [14, 56] permits the analysis of standard properties and applies standard

techniques of Petri net theory, expanded by explicit CTL and LTL model

checking.

• Marcie [32, 51] is a symbolic analysis tool of standard Petri net properties and

CTL model checking for QPN and CSL model checking for SPN . Exact

analyses are complemented by approximative PLTLc model checking built on

fast adaptive uniformization and distributed Gillespie simulation.

• MC2(PLTLc) [12] is a Monte Carlo Model Checker for properties written

in (PLTLc). MC2(PLTLc) can operate with stochastic/deterministic simulation

output, deterministic parameter scan output, or even wet lab data.

The Petri net tools are publicly available at http://www-dssz.informatik.tu-

cottbus.de, and MC2(PLTLc) at http://www.brc.dcs.gla.ac.uk/software/mc2/.All the

Petri net models of the repressilator used in this chapter can be downloaded at http://

www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples.

9.9 Conclusions

Petri nets have been widely used to model and simulate biochemical reaction

networks, and a variety of extensions of standard Petri nets have been developed. In

this chapter, we have first described a unifying Petri net framework that comprises a

structured family of Petri net classes and then given a brief introduction of each net

class in this framework.

Our running case study illustrates how to easily move between these Petri net

classes by the help of our Petri net tool Snoopy. An elaborated treatment of another

version of the repressilator [13] in the various paradigms can be found in Blätke

et al. [4].

This chapter is meant to give a general idea of how to use Petri nets for

modeling and analyzing biochemical reaction networks of various types with

different modeling paradigms. We gave plenty of pointers to related literature where

the interested reader may continue reading.
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WWW-List of Tools

Snoopy http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy

Charlie http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie

Marcie http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie

MC2 tool http://www.brc.dcs.gla.ac.uk/software/mc2/

Examples http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples
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Chapter 10

Network Analysis and Integration in a Virtual

Cell Environment

Björn Sommer

Abstract Integrative Bioinformatics combines a number of different disciplines

related to biology as well as informatics. One major target of this research area is

the creation of a virtual cell. Naturally, this topic is accompanied by a vast amount

of problems which arise due to the fact that a large number of highly specific

disciplines have to be addressed. In this publication a subproblem will be discussed,

functional cell modeling. Beginning with a virtual cell environment which provides

cell components featuring different subcompartmental layers, protein-related net-

works will be localized and visualized. For the localization, a data warehouse will

be accessed. Special interactive techniques will be applied to the semiautomatic

analysis of localization entries found in databases. Finally, different visualization

approaches will be shown, and 2D and 3D network visualization will be discussed,

as well as quantitative illustrations using charts.

10.1 Introduction

One of the most demanding tasks of today’s scientific community is revealing the

secrets of the biological cell. Three aspects make it nearly impossible to accomplish

this task: (1) the unimaginable complexity of the cell, (2) its extremely small scale,

and (3) the amount of differing disciplines to unite for this task.

The modeling and simulation of a virtual cell is one important approach to

understanding the functioning of the cell. In the past, approaches like VCell and

E-Cell were developed which mathematically simulated cells by using differential
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M. Chen and R. Hofestädt (eds.), Approaches in Integrative Bioinformatics:

Towards the Virtual Cell, DOI 10.1007/978-3-642-41281-3 10,
© Springer-Verlag Berlin Heidelberg 2014

275

mailto:bjoern@CELLmicrocosmos.org


276 B. Sommer

equations [15, 24]. Naturally, this mathematical simulations address only quan-

titative simulations ignoring molecular interactions. Atomistic simulations using,

e.g., molecular dynamic techniques are able to simulate small fragments of a

cell like a membrane patch or vesicles [4, 5, 10]. However, it is not possible to

simulate an entire cell taking molecular interactions into account. Alternatively,

many different cell visualization approaches were developed in recent years, such

as The Interactorium, MetNetVR, or Meta!Blast [26–28]. They visualize cells at the

mesoscopic scale, where cell components can be differentiated but not molecular

structures.

10.1.1 CELLmicrocosmos PathwayIntegration

This book is devoted to Integrative Bioinformatics which – as was discussed in the

preceding chapters – comprises a number of different disciplines uniting biology

and informatics. In this chapter a set of these disciplines will be applied to correlate

a virtual cell environment with metabolic networks. In this way the aforementioned

cellular mesoscopic level is combined with the functional level. For this purpose, the

CELLmicrocosmos 4.2 PathwayIntegration (CmPI) will be used, a cell modeling

and visualization environment [20, 21].

The mesoscopic level is represented by a set of cell components, such as the

cell membrane, the cytosol, and the extracellular matrix, the mitochondrion, and

the nucleus. These cell components are represented by three-dimensional models

as well as by color codes as shown in Fig. 10.5. These contrasting color codes are

based on the color alphabet developed by Green-Armytage, enabling a good visual

differentiation [9, 20].

The functional level is covered by two well-known metabolic pathways: the

citrate cycle and the glycolysis. Both pathways are interrelated, because the

glycolysis generates pyruvate which is needed to initiate the citrate cycle. An

important fact for subsequent analysis is that the localization of both pathways is

well known. The cytosol – the intracellular fluid surrounding all membrane-based

organelles – is the reaction chamber of the glycolysis. After a number of reactions,

the final product of the glycolysis, the pyruvate, is transported by a specific protein

through the inner mitochondrial membrane to the mitochondrial matrix. There, the

pyruvate is oxidatively decarboxylized by the pyruvate dehydrogenase complex,

resulting in the product acetyl CoA. This compound enters the citrate cycle which

is also located in the mitochondrial matrix. The final result of the citrate cycle is the

citrate [2, 6].

The following sections will discuss a workflow combining the mesoscopic and

the functional level by using Integrative Bioinformatics techniques.
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10.2 Relevant Databases

10.2.1 Metabolic Pathways from KEGG

First of all, the metabolic pathways have to be acquired from an electronical

source. One of the most acknowledged biochemical databases and one of the most

frequently used sources in Bioinformatics is the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [14]. It includes genomic, chemical, as wells as systemic

functional information, and it is available at http://www.kegg.jp/kegg/.

KEGG is partially freely, partly commercially available and has been developed

in the Kanehisa Laboratories of Kyoto University. It is well known for its two-

dimensional interlinked pathway maps. Figure 10.1 shows the human citrate cycle.

The KEGG identifier is “hsa00020,” where “hsa” is an abbreviation for the organism

(Homo sapiens) and 00020 is the KEGG-internal number of the pathway map.

KEGG contains a large number of different eukaryotic and prokaryotic organ-

isms which are all linked to different versions of the same pathway. The enzymes

Fig. 10.1 KEGG: the citrate cycle pathway of Homo sapiens, hsa00020 (Courtesy of/Copyright
2013 by Kanehisa Laboratories, source: http://www.kegg.jp. Reprinted with permission from [14])

http://www.kegg.jp/kegg/
http://www.kegg.jp
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in Fig. 10.1 are coded following the EC standard discussed in Sect. 10.2.2.2. The

enzymes are connected to their products and substrates which are named by their

commonly known identifiers. The connections symbolize the reactions and the

reactions’ directions are indicated by arrows. All other elements are interrelated

metabolic pathways. Here, the connection to the glycolysis can also be found.

Alternatively, it is possible to load externally created pathways into CmPI.

For this purpose, a SBML import has been integrated [12]. Biological network

reconstruction tools like VANESA (see Chap. 8: Biological Network Modeling and

Analysis) can be used to model networks which are then imported to CmPI and

localized in a virtual cell environment [13].

10.2.2 Protein Localization Databases

The digital data describing metabolic pathways is now available, and now the

question arises, how can this structure – visualized as a two-dimensional image

as was seen in Fig. 10.1 – be combined with the spatial structure of a cell?

Because KEGG does not provide information about the localization of the networks,

alternative sources have to be accessed. These sources will be discussed in this

section. Four databases will be introduced which can be applied to this problem.

10.2.2.1 Reactome

First of all, the Reactome databases should be introduced. It is developed by the

European Bioinformatics Institute (EBI) and different American institutes. It is

a freely available, curated Open Source project. Similar to KEGG, it contains

a large variety of different pathways and of course also a number of metabolic

pathways. The major focus lies on the human organism. Expert users may integrate

experimental data into Reactome. For each protein complex part, specific pathway

localization information is available [7]. The database is found at http://www.

reactome.org.

10.2.2.2 BRENDA and the Enzyme Classification

In contrast to the previous databases, the one following does not contain pathway

maps. BRENDA (BRaunschweig ENzyme Database) is developed and curated at

the TU Braunschweig. It can be freely accessed at: http://www.brenda-enzymes.org

A commercial version of BRENDA also exists which contains additional current

information. In BRENDA, the user finds functional structural and property-related

data which is mainly based on manually annotated references from primary

literature [19].

http://www.reactome.org
http://www.reactome.org
http://www.brenda-enzymes.org
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The classification of the different enzyme types – which was already shown

in Sect. 10.2.1 – follows the Enzyme Commission number (EC) classification,

which basically consists of four numbers subdivided by a period [25]. The first

number codes, e.g., (1) oxidoreductases, (2) transferases, (3) hydrolases, (4) lyases,

(5) isomerases, and (6) ligases.

It is important to note that the EC numbers do not usually describe one particular

protein. Instead, it applies to a number of different proteins which meet the criteria

of the specific EC definition. Therefore, a single EC number may describe a large

set of different proteins. The BRENDA databases link many EC numbers to specific

databases based on manually curated literature. Of course, the aforementioned

problem applies also to the localization, because it is not linked to a specific protein,

but a protein family.

10.2.2.3 UniProt

In contrast to BRENDA, UniProt contains information linked to specific proteins. It

is the freely accessible and regularly updated universal protein database for curated

as well as automatic acquired data. UniProt is a collaboration between the European

Bioinformatics Institute (EBI), the Protein Information Resource (PIR), and the

Swiss Institute of Bioinformatics (SIB). It is linked to various external databases,

such as BRENDA, Gene Ontology, and Reactome [8]. It is available at http://www.

UniProt.org.

UniProt contains different sub-databases, but for the localization of proteins,

this work will focus at the UniProt Knowledgebase (UniProtKB). The website and

the database contain a number of categories holding localization information, for

example:

• General annotation (comments)

– Subcellular location

• Ontologies

– Keywords


 Cellular component

• Gene Ontology

– Cellular component

The terms found in these categories may be a concrete cell component, an intra-

compartmental location, or a sentence describing location-related facts.

10.2.2.4 The Gene Ontology and the Redundancy of Terms

A problem which arises when dealing with the large variety of different components

of a cell is redundancy. Using the different databases previously introduced, a large

http://www.UniProt.org
http://www.UniProt.org
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number of different terms may describe the same entity. Just to give an example,

an excerpt of different terms provided by the databases BRENDA, UniProt, and

Reactome will now be listed for the term “plasma membrane.”

• BRENDA

– Cellular component

– Cell membrane

– Plasma membrane

– Cytoplasmic membrane

– Cell outer membrane

• UniProt

– Associated with the synaptic plasma membrane (by similarity)

– Integral to plasma membrane

– Intrinsic to internal side of plasma membrane

– Localized on the cell surface

• Reactome

– Integrin cell surface interactions

Obviously, each of these terms is associated with the plasma membrane. But it

also can be seen that each term contains additional information which might be

relevant in different contexts.

For a long time, the Gene Ontology (GO) has been addressing this problem

[1, 3]. This database contains gene-related protein information in conjunction with

structured, controlled vocabularies. The ontologies contain all these terms and link

them to the so-called GO-terms which are a quasi standard in the Bioinformatics

community. GO is located at http://www.geneontology.org.

Now, the GO vocabularies should be examined by looking again at the major term

“plasma membrane” which has the GO identifier “GO:005886.” Directly correlated

to this term is each of the three terms “cell membrane,” “plasma membrane,” and

“cytoplasmic membrane.”

But the other previously listed terms are more specific and are linked to the

following GO-terms:

• GO:0005887: integral to plasma membrane

• GO:0009279: cell outer membrane

• GO:0031235: intrinsic to internal side of plasma membrane

Now the question arises, how are these terms connected to the previously

mentioned term GO:005886 representing the plasma membrane? These hierarchical

dependencies are also addressed by GO, as can be seen in Fig. 10.2 showing the

GO Graph View for GO:0005887. The terms GO:005886 and GO:0031235 are

also contained and show spatial interdependencies: “integral to plasma membrane”

! “intrinsic to plasma membrane” (! “plasma membrane part”) ! “plasma

membrane.”

http://www.geneontology.org
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Fig. 10.2 Gene Ontology: graph view for the GO-term “integral to plasma membrane” (Courtesy
of/Copyright 2013 by The Gene Ontology, AmiGO version 1.8, http://amigo.geneontology.org.
Reprinted with permission from [1, 3])

But it also has to be mentioned that currently no GO identifiers were found for

the following entries:

• Localized on the cell surface

• Associated with the synaptic plasma membrane (by similarity)

• Integrin cell surface interactions

The problem which applies to all databases discussed here is that they have to be

continuously curated and extended.

http://amigo.geneontology.org
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10.2.3 DAWIS-M.D.

CmPI uses all previously discussed databases to solve the following application

case. To enable the fast access of this large amount of diverse data, all databases

were integrated in a data warehouse. The used data warehouse called DAWIS-

M.D. was already extensively discussed in Chap. 4: Data Warehouses in

Bioinformatics [11].

10.2.4 ANDCell

The previously mentioned databases contain a large amount of curated data. In many

cases there is no data found for a specific localization in these databases. But if the

user searches PubMed via its web interface, a publication might be found which

was published in the most recent year. Of course, this information will usually find

the way into the previously mentioned databases within the next new releases. But

sometimes this will take some time.

Therefore, an alternative way is needed to acquire this information directly from

PubMed. For this purpose, text mining is an appropriate approach. CmPI uses the

ANDCell database for this purpose [18]. This database was already discussed in

Chap. 6: Text Mining on PubMed.

10.3 Localizing Metabolic Pathways Using Integrative

Bioinformatics Techniques

Now that the basics has been discussed, the correlation of the mesoscopic and the

functional level has to be addressed by using CmPI. First of all, the metabolic

pathways will be downloaded, and then these pathways will be correlated with a

cellular environment by using the localization databases.

10.3.1 Downloading the Citrate Cycle and the Glycolysis

CmPI connects to DAWIS-M.D. to download the two pathways hsa00010, the

glycolysis, and hsa00020, the citrate cycle. Figure 10.3 shows the resulting two-

dimensional visualization of hsa00010 in the 2D viewer of CmPI and Fig. 10.4

hsa00020. Both layouts are based on the original KEGG layouts, the so-called

KGML (KEGG Markup Language) pathway maps. These pathway maps are well

known from the KEGG website which provides images for each pathway. If

comparing the original KGML layouts (Fig. 10.1) from the websites with the 2D

visualization of CmPI (Fig. 10.4), an important difference will be noted. The KGML

layouts often contain multiple instances of a protein. For example, the original
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Fig. 10.3 2D visualization of the glycolysis (hsa00010) in CmPI
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Fig. 10.4 2D visualization of the citrate cycle (hsa00020) in CmPI

hsa00020 map contains the compound C15973 twice. For CmPI, this is not possible,

because it always contains a single distinct instance of a distinct protein. The reason

is the localization-focused view of CmPI: each instance in a pathway has a unique

position. C15973 is connected to the enzyme 2.3.1.61 on the bottom and 2.3.1.12

on the top. In Fig. 10.3, representing the 2D visualization of CmPI, there is only a

single instance of compound C15973. Of course, all connections are still known.

10.3.2 First Localization Results

In Sect. 10.2.1 the localization of the citrate cycle and the glycolysis have been

already discussed; basically, the glycolysis is located at the cytosol and the citrate

cycle at the mitochondrion. Now, the question should be evaluated, if it is possible

to reproduce the localization of these two pathways by using the results from the

databases and by ignoring the previously mentioned advance information. If this

is possible, it can be stated that CmPI may be used to analyze the localization of

protein-related data sets where the localization is not known.
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Fig. 10.5 Color codes for all cell components coded in the following figures

Fig. 10.6 Initial Localization Chart, category “Localizations/Cm4” for hsa00010

Fig. 10.7 Initial Localization Chart, category “Localizations/Cm4” for hsa00020

First, the downloaded metabolic pathways are localized by using the connection

between CmPI and DAWIS-M.D. For this purpose, the EC identifier of each

protein is send to the localization databases combined with the information that

the organism of interest is “Homo sapiens.” Otherwise, the localization results

will contain a lot of information from other organisms. Now, a number of diverse

localizations are retrieved, as shown in Fig. 10.5 which also lists the color codes

used during the following analysis.

To analyze and filter this data, CmPI provides a special visualization, the

Subcellular Localization Charts.

Figures 10.6 and 10.7 show the initially assigned localizations by CmPI which

automatically selects the first entry in the alphabetically ordered list downloaded
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Fig. 10.8 Initial Localization Chart, category “Protein Localizations/Cm4” for hsa00010

Fig. 10.9 Initial Localization Chart, category “Protein Localizations/Cm4/” for hsa00020

from the databases as the potential localizations for each protein. Of course, the

result does not meet the expectations given by the literature. The glycolysis and

the citrate cycle each show five different localizations. For example, the result

“chloroplast” does not meet the expectations of a Homo sapiens-related cell. It will

be shown that only a few clicks are needed to assign the correct localizations.

10.3.3 Investigating the Preliminary Localizations

Now the Localization Charts will be used to investigate all localization entries found

in the databases. Each entry is one single result from one of the five localization

databases pointing to one single localization. Therefore, a single database like

UniProt usually provides multiple localization entries for a single protein. All local-

ization entries for glycolysis is shown in Fig. 10.8 and the citrate cycle in Fig. 10.9.

And obviously, recalling the initial expectations for both pathways seem to be

confirmed by a first glance at the images. While the enzymes of hsa00010 are

mainly localized at the cytosol, those of the hsa00020 are concentrated at the

mitochondrion. Moreover, it is interesting to note that the localization with the
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Fig. 10.10 Localization Chart, category “Protein Localizations/Cm4” after assigning the localiza-
tion “cytosol” to hsa00010

Fig. 10.11 Localization Chart, category “Protein Localizations/Cm4” after assigning the localiza-
tion “mitochondria” to hsa00020

second highest incidence is – in both cases – the localization with the highest priority

of the pathway vis-a-vis.

These images give a first idea of a localization, but it is very important to be

aware of the fact that the shown localizations apply to the complete pathway. This

visualization does not show any information about the single proteins. Therefore, it

might be that 50 % of the proteins cannot be localized to the localization confirmed

by the literature.

Using the Localization Charts, there are different ways to find a solution. Here, a

method will be chosen which quickly leads to the final localization.

A double-click is performed on each of the bars representing the dominant

localizations in Fig. 10.8, the cytosol, and Fig. 10.9, the mitochondrion. This action

is already sufficient to assign most of the proteins to the correct localizations for

both pathways, as can be seen by the resulting Localization Charts in Figs. 10.10

and 10.11.

Twenty two of twenty five enzymes were localized at the cytosol for the

glycolysis and 16 of 17 enzymes at the mitochondrion for the citrate cycle.

Therefore, the initial assumption was verified, but in addition to this, it is also

possible to interpret more. Glycolysis and citrate cycle interact, but by checking

the textbook, it is not known which concrete proteins are involved in the transition

between cytosol and the mitochondrion. By looking at Fig. 10.10, it is possible to

directly identify these enzymes; 1.8.1.4 and 2.3.1.12 are part of both pathways, and

the only localization in the context of these two pathways is the mitochondrion. In

addition, the enzyme 2.3.3.8, which here is only part of the citrate cycle, seems to

be an enzyme not localized in the mitochondrion but in the cytosol.
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Fig. 10.12 An excerpt of the Localization Table showing only hsa00020

Now, a more accurate examination of the different localizations should be

done by looking at the Localization Terms. The Localization Terms describe the

concrete entries downloaded from the databases which were used to map them

to the localizations inside CmPI. For example, the terms listed in Sect. 10.2.2.4 –

“associated with the synaptic plasma membrane (by similarity),” “integral to plasma

membrane,” and “intrinsic to internal side of plasma membrane” – each are mapped

to the Cm4 Localization, the cell membrane. The Localization Term used to map

2.3.3.8 to the cytosol is the “citrate lyase complex.” By examining Fig. 10.4, it can be

seen that 2.3.3.8 is directly involved in the generation of the citrate (C00158) which

is processed in the citrate lyase complex converting citrate to oxaloacetate [2, 6].

Next, the accuracy of the Membrane Localization of the citrate cycle should be

verified by looking at the Localization Table part of CmPI in Fig. 10.12. This figure

shows an excerpt of the Localization Table showing all citrate cycle-associated

enzymes. At a first glance it can be seen that most of the enzymes were correctly

localized to the mitochondrial matrix. But for the localization of the enzymes 1.2.4.2

and 1.3.5.1, the mitochondrial inner membrane was selected. The Localization Table

shown in Fig. 10.12 is interactive. Therefore, all found localizations can also be

found here by clicking the corresponding entry. For 1.3.5.1, an alternative option

to the mitochondrial matrix is only the outer membrane of the mitochondrion.

Therefore, the selection of the inner membrane seems to be correct. In contrast to

this, the enzyme 1.2.4.2 shows also an entry for the matrix which can be directly

selected in the Localization Table.

10.3.4 Examining an Outsider by Direct Access

to External Sources

Because the glycolysis is localized at the cytosol, Membrane Localizations as those

discussed for the citrate cycle (e.g., mitochondrial matrix or mitochondrial inner
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Fig. 10.13 The link to 2.7.1.147 from the Localization Table in CmPI; it shows additional
localization information

membrane) are not of relevance. But still there is one outsider enzyme – 2.7.1.147

– because this enzyme was localized at the extracellular matrix by the Localization

Term “extracellular region.” By using the Localization Table, the localization can

be examined with respect to its source. The database which provided this result

was GO based on the Localization Term “Inferred from electronic annotation.

Source: UniProtKB-SubCell.” The Localization Table can also be used to click

on the provided link which directly opens a web browser with the address “http://

www.ebi.ac.uk/QuickGO/.” Here, the link to the UniProt entry Q9BRR6 is shown,

based on two references (Fig. 10.13). Examining the UniProt entry shows that this

enzyme is also involved in the glycolysis. Concluding these observations there

are two potential reasons why the enzyme 2.7.1.147 was localized at extracellular

matrix:

1. The enzyme 2.7.1.147 is in fact located in the extracellular matrix during the

involvement in the glycolysis.

2. Due to the fact that the distance between the extracellular matrix and the

cytosol is too large, the second option is more probable. There is currently no

experimental proof available in the databases proving that this enzyme is located

in the cytosol.

In both cases it can be predicted that 2.7.1.147 will most probably be located at

the cytosol during the glycolysis, because all interacting enzymes are also found in

this cell component.

http://www.ebi.ac.uk/QuickGO/
http://www.ebi.ac.uk/QuickGO/
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10.3.5 Localization Result

Finally, it can be stated that the preliminary Localization Charts discussed in

Sect. 10.3.2 are visually equal to the final result. But two changes according to the

Membrane Localizations of two enzymes have to be done. The resulting localization

priority list would look like this:

1. Mitochondrial matrix

2. Mitochondrial inner membrane

3. Cytosol

4. Extracellular space

Therefore, it was shown that nearly no foreknowledge would have been needed

to predict the localization of these two pathways by using CmPI.

10.3.6 3D Visualization

Of course, the Subcellular Localization Charts of CmPI can be used to analyze

protein-related data sets without the intention to generate a virtual cell environment.

However, for a number of application cases, it will be relevant to visualize the

networks in correlation with a cell model.

In the previous sections, it was discussed how the databases are queried to get

(1) the metabolic pathways (the glycolysis and the citrate cycle) and (2) to localize

these pathways. Now, the networks have to be correlated with the cell components

inside the cell model. For this purpose, a geodesic layout is combined with an

Inverted Self-Organizing Map (ISOM) layout [17] and then mapped onto the surface

of the cell components [20, 21].

This process is subdivided into three steps. First, the nodes – representing the

enzymes, substrates, and products – are distributed onto the surface of a unit sphere

by using the geodesic layout [21]. By doing so, the layout tries to achieve a node

distribution where the distance between a given node and its neighboring nodes is

equal. In the second step, this initial layout is used to apply the ISOM layout [17].

This layout moves interconnected nodes – these are nodes connected by a reaction –

closer to each other, whereas those nodes without interconnections try to move away

from each other.

After the first two steps have been accomplished, the resulting layout is shown

in Fig. 10.14. This image shows an abstract SphereCell containing only cell com-

ponents relevant for the final localizations (from inside to outside): mitochondrion,

cytosol, cell membrane, and extracellular matrix [20]. The applied contrast color-

coding was also used for the enzyme localization and is described in Fig. 10.5.

The third step of the layout process is the mapping of the nodes onto the surface

of the cell components. This process is not needed in the case of the SphereCell,

because the layout is directly applied to its spherical cell components. But of course,

this extremely simplified representation of a cell is usually not sufficient, because
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Fig. 10.14 An abstract SphereCell correlated with the citrate cycle and glycolysis (color figure
online)

the cell components’ structure is not shown as well as the hierarchical structure of

the cell, which also is not represented correctly. In Fig. 10.15 the same layouts are

used with an animal cell model. And here, the third step has to be applied. The

layouted metabolic pathway has to be mapped onto the three-dimensional shapes

of the cell components [20]. The nodes which are visually not located at a specific

cell component are associated to the cytosol which is represented in the animal cell

model as an invisible structure.

Figure 10.16 shows an excerpt of the animal cell model, the mitochondrion,

including the largest part of the citrate cycle. The mitochondrion model is based

on a tomographic data set derived from the Cell Centered Database [16, 29]. Here,

the correlation of functional data with microscopic data is shown. It can be seen

that mostly all enzymes are located in the matrix region. Moreover, examining the

position of the 1.3.5.1 in Fig. 10.15 shows that it is correctly placed at the shape of

the inner mitochondrial membrane (see also Fig. 10.12).

Of course it has to be mentioned that the two-dimensional projections shown here

are not able to compete with an interactive three-dimensional visualization where

the user is able to use the different CELLmicrocosmos navigation methods. For

example, it is possible to navigate through the cell directly in the 3D viewer, but

the 3D view can also be moved to the corresponding enzymes by clicking on their

entries in the Localization Table (Fig. 10.12) or onto the nodes in the 2D viewer

(Figs. 10.3 and 10.4).

Finally, three alternative ways to visualize the localizations will be shown.

Figures 10.17 and 10.18 show the final localizations of the metabolic pathways
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Fig. 10.15 An animal cell model correlated with the citrate cycle and glycolysis (color figure
online)

Fig. 10.16 A mitochondrion model based on microscopic data correlated with the citrate cycle
and glycolysis (color figure online)
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Fig. 10.17 2D visualization of the glycolysis (hsa00010) in CmPI using the localization colors for
the enzymes
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Fig. 10.18 2D visualization of the citrate cycle (hsa00020) in CmPI using the Localization Colors
for the enzymes

by coloring the enzymes according the color codes known from Fig. 10.5. And

Fig. 10.19 shows all potential enzyme localizations found in the databases, provid-

ing a good overview of all available localization information.

10.4 Conclusions

In conclusion, it can be stated that Integrative Bioinformatics techniques can

be used to generate and analyze biological networks, to predict the localization

of its components, and to use different visualization techniques to enable the

discussion of potential results. It should be mentioned again that the information

provided by KEGG concerning the involved enzymes is quiet vague, because the

EC classification does not describe specific proteins, but protein families. Therefore,

many different localizations for each enzyme were available. Of course, CmPI was



10 Network Analysis and Integration in a Virtual Cell Environment 295

F
ig

.
1
0
.1

9
L

o
ca

li
za

ti
o
n

C
h
ar

t,
ca

te
g
o
ry

“P
ro

te
in

L
o
ca

li
za

ti
o
n
s/

C
m

4
”

sh
ow

in
g

al
l

p
o
te

n
ti

al
en

zy
m

e
lo

ca
li

za
ti

o
n
s

fo
u
n
d

in
th

e
d
at

ab
as

es



296 B. Sommer

already used to localize specific proteins in a cellular environment, for example, to

examine the localization of a cardiovascular disease-related protein set [22, 23].

Despite this fact, it was shown that the CmPI can be used (1) for the prediction

and analysis of the localization of protein-related networks or sets by using the

Subcellular Localization Charts and (2) to visualize and explore the results in two

and three dimensions. Therefore, the functional and mesoscopic level of cytology

can be combined; microscopic data sets – as known, e.g., from the Cell Centered

Database [16] – can be used as a base to combine spatial cellular structures with

metabolic pathways.
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Chapter 11

Bridging Genomics and Phenomics

Dijun Chen, Ming Chen, Thomas Altmann, and Christian Klukas

Abstract Genomics and phenomics are two fundamentally important branches of

biological sciences, and they stand at both ends of the multiple “omics” families.

A central goal of current biology is to establish complete functional links between

the genome and phenome, the so-called genotype–phenotype map. Recent advances

in high-throughput and high-dimensional genotyping and phenotyping technologies

enable us to uncover the casual networks inside the “black box” that lies between

genotypes and phenotypes using the principles of genome-wide association studies

(GWAS). Application of GWAS and analogous methodologies and incorporation

of multiple omics data begin to unravel the contribution of genetic variation to

phenotypic diversity. Integrating “omics” data at broad levels by using the systems-

biology approach is paramount to further bridging the gaps between genomics and

phenomics and eventually making accurate predictions of phenotypes based on

genetic contribution.
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11.1 Introduction

With the rapid advances of high-throughput resequencing and marker genotyping,

high-density genetic variation information (such as single-nucleotide polymor-

phisms, SNPs, and copy-number variants, CNVs) has been collected and need

to be linked with functions. Over the past few years, a multitude of genome-

wide association studies (GWAS) and related strategies have identified numerous

genetic variants associated with complex diseases or other traits in humans and

plants, providing valuable insights into their genetic architecture. These findings

are definitely enriching our knowledge about the genetic basis of phenotypic

variation and provide an opportunity for genetic testing. However, most variants

identified so far explain only a small proportion of the causal genetic factors,

leaving the remaining “missing” heritability to be explained [1]. Moreover, even

with a complete understanding of the genetics of a complex phenotypic trait,

it is still challenging to accurately predict phenotypic variation from individual

genetic codes. Furthermore, the majority of these disease- or trait-related variants

lie within noncoding regions of genomes, complicating their functional evaluation

and offering the greatest challenge in the “post-GWAS” era [2].

Globally linking genetic variants to phenotypic diversity is one of the key

goals of biology. Our understanding of such a genotype–phenotype map cannot

be established without detailed phenotypic data [3]. However, our ability to

characterise phenomes – the full set of phenotypes of an individual – largely lags

behind our ability to characterise genomes. Hence, phenomics – high-throughput

and high-dimensional phenotyping – is emerging as a suit of new technologies to

accelerate progress in our understanding of the relationship between genotype and

phenotype [3, 4].

In this chapter, we will first review the principle of dissecting genotypes and

monitoring phenotypes, usually in high-throughput manners. We also highlight

current approaches to obtaining phenomic data and the emerging applications of

large-scale phenotyping approaches in the phenomics era. We then outline the

current strategies, such as GWAS and analogous methodologies, for globally linking

genetic variation to phenotypic diversity. We summarise insights about the complete

“genotype–phenotype” map that could be established through integrating “omics”

data at broad levels in terms of a systems-biology approach. Related phenome

projects and phenomic tools are discussed. Please keep in mind that the results

discussed here are mostly based on research in humans and/or plants and that only

a subset of published information can be mentioned.
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11.2 Defining the Genotype and Phenotype

In this section, we outline the state-of-the-art methods used for the assessment

of genotypes and phenotypes and the corresponding mapping approaches for

linking genotypes to phenotypes at global levels (Table 11.1). We also present

phenomics-related projects that combine rich genomic data with data on quantitative

variation in phenotypes and which have recently been launched in both humans and

plants (Table 11.2). We highlight many emerging technologies developed for high-

throughput phenotyping in plants (Table 11.3).

11.2.1 Genetic Variation: Genotyping

Genotyping technology is referred to as the set of methodologies and protocols

used to elucidate the genetic makeup (genotype) of an individual, also known as

genotypic assaying. Genotyping is essential in deciphering the genetic causes of

complex phenomena, including health, disease, crop yields and evolutionary fitness.

Human genetic mapping was initially performed based on restriction fragment

length polymorphisms (RFLPs) [5, 6], amplified fragment length polymorphisms

(AFLPs) [7] and microsatellite markers (also known as short tandem repeats or

simple sequence repeats) [8]. More recently, SNPs, due to their high abundance,

low mutation rates and amenability to high-throughput analysis, have become the

markers of choice for linkage and linkage disequilibrium (LD) mapping [9, 10].

The usually binary SNP markers are well suited to automated, high-throughput

typing. Indeed, it is now feasible to genotype SNPs with high density at the

genome-wide scale by utilising array-based [11, 12] or sequencing-based [13, 14]

technologies (Table 11.1). Although high-throughput SNP arrays avoid time-

consuming cloning and primer design steps, they lack of the discovery process

and show bias towards genotyping new populations. Now, with the advent of next-

generation sequencing (NGS), new technologies such as reduced-representation

libraries (RRLs) [15] or complexity reduction of polymorphic sequences (CRoPS)

[16], restriction-site-associated DNA sequencing (RAD-seq) [17] and low-coverage

genotyping, including multiplexed shotgun genotyping (MSG) [18] or genotyping

by sequencing (GBS) [19], are capable of genome-wide marker discovery for

both model organisms and non-model species. Although sequence-level variants

have been catalogued more extensively, structural variations – including indels

(insertions/deletions), CNVs and inversions – are now investigated for their con-

tribution to complex traits, including many important common diseases [20].

CNVs can be identified with various genome analysis platforms, including array-

based comparative genomic hybridisation (CGH), SNP genotyping platforms and

NGS.
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Our knowledge regarding human genetic variations is mostly derived from the

international effort of the SNP Consortium [21] and the International HapMap

Project [22] (Table 11.2). Recent advances in sequencing technology make it

possible to comprehensively catalogue genetic variation in population samples.

Projects such as the Personal Genome Project (PGP) (e.g. diploid personal genomes

[23]), the 1000 Genomes Project (TGP) [24] and exome sequencing projects [25] are

under way in an attempt to elucidate the full spectrum of human genetic variations

as a foundation to investigate the relationship between genotype and phenotype.

For example, the Phase 1 publication of TGP in 2012 included whole-genome

sequences of 1,092 individuals from 14 populations. A total of 38 million SNPs,

1.4 million short indels and more than 14,000 larger deletions were identified

[26]. Notably, the genome of any apparently healthy individual carries more than

2,500 nonsynonymous variants at conserved regions, 20–40 variants identified as

damaging at conserved sites and 150 loss-of-function (LoF) variants in protein-

coding genes, some of which are known to cause Mendelian disease [26].

Meanwhile, genome-wide genotyping is extensively performed in plants in

recent years (Table 11.2), such as in Arabidopsis thaliana [27], rice [28], maize

[29, 30], sorghum [31] and barley [32]. These rich resources will ultimately help to

explore the genetic basis of plant agriculture-related traits, such as flowering time,

growth rate, yield and stress tolerance, and to improve crops and understand plant

adaptation.

11.2.2 Phenomics: Multilevel and Multidimensional

Assessment of Features

The term phenotype includes the composite of an organism’s observable traits or

characteristics – such as its morphological, developmental, physiological, patholog-

ical or biochemical properties, phenology and behaviour – that can be monitored,

quantified and/or visualised by some technical procedure. Phenomics is defined

as the study of all the phenotypes of an organism (phenome) that are the result

of genetic code (G), environmental factors (E) and their interactions (G�E). In

contrast to genotypes, which are essentially single one-dimensional as merely

determined by the linear DNA code, phenotypes are usually multi-dimensional and

are frequently capricious in different spatial and temporal situations. An important

field of research today is trying to improve, both qualitatively and quantitatively, the

capacity to measure phenomes. In broad definition, phenome includes epigenomics,

transcriptomics, proteomics, metabolomics and many other “omics” data regarding

quantitative measurement of biochemical and cellular processes. We have relatively

well-developed technologies of measurements, in vivo or in destructive manners, of

physiological states and other “internal phenotypes” (endophenotypes), such as gene

expression, protein and metabolite levels, whereas our ability to measure “external

phenotypes” (exophenotypes) is rapidly evolving.
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Fig. 11.1 The genotype–phenotype map (G-P map). The left panel shows the relationship of the
genotype space (G space) and the phenotype space (P space) [3]. The corresponding information
that transmits from G space to P space is shown in the right panel. Genotypes could gain
mutation and recombination over generations. Phenotypes can be broadly classified into internal

and external phenotypes. These internal phenotypes include properties from molecular, cellular or
tissue levels, which in turn shape external phenotypes such as morphology and behaviour. Upon the
environmental stimuli, the epigenetic process creates the phenotypes using genotype information.
External phenotypes can in turn shape the environment that an individual occupies, creating
complex feedback relationships between genes, environments and phenotypes. Natural selection
act in the P space to change the average phenotype of parents away from the average phenotype
of the generation. The importance of the environment suggests that we should explicitly broaden
the G-P map to the genotype–environment–phenotype (G-E-P) map. g: genotype; p: phenotype;
ip: internal phenotype

We will never be able to come even close to a complete characterisation of

the phenome due to its highly dynamic and high-dimensional properties. However,

increasing the quantitative information obtained by phenotypic measurements is an

important goal for phenomics [3]. Phenotypic variation, a fundamental prerequisite

and the perpetual force for evolution by natural selection, results from the complex

interactions between genotype and environment (G�E). Phenomic-wide data are

essential and necessary for enabling us to trace causal links in the genotype–

phenotype map (G-P map [33]) as they define the space of all possible phenotypes

(P space; Fig. 11.1).

High-throughput automated imaging is the ideal tool for phenomic studies.

Owing to the recent increased availability of high-precision robotic handling

machinery, many imaging-based technologies that span molecular to organismal

spatial scales have been or are being established and enable us to extract mul-
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tiparametric phenotypic information in great detail. Various detectors using a

broad range of the electromagnetic spectrum and magnetic resonance imaging

(MRI) with different scales of resolution are widely used imaging techniques

for phenotyping [34]. High-dimensional spatiotemporal data on many phenotype

classes such as morphology, behaviour, physiological state and locations of proteins

and metabolites can be captured by these imaging techniques and analysed via high-

performance computing [3]. In recent years, systems for performing high-content

microscopy-based assays have become available and are often used to investigate

the effects of chemical (such as drugs and small molecules) and genetic (loss-

of-function of genes using RNA interference [RNAi]) perturbations on cultured

cells [35–42]. Such genome-wide RNAi screens enable us to discover novel

gene functions and interrogate their functional relationships based on phenotypic

similarity analysis [43, 44]. These screens produced huge amount of high-content

image data that can be automatically processed using software tools such as ImageJ

[45], EBImage [46], CellProfiler [47] or PhenoRipper [48]. Traditional microscopy

is generally used in two-dimensional (2D) imaging. However, high-resolution and

dynamic three-dimensional (3D) imaging data can be acquired by confocal laser

scanning microscopy (CLSM), X-ray computerised tomography (CT) or MRI.

In plants, the “phenotyping bottleneck” [4] needs to be addressed by high-

throughput noninvasive technologies [49]. Thanks to developed new imaging

sensors (e.g. high-resolution imaging spectrometers) and the advanced software for

image analysis and feature extraction, a range of automated or semiautomated high-

throughput plant phenotyping systems (Table 11.3) have been recently developed

and applied to assess plant function and performance under controlled conditions

[50–58]. One of the pioneer platforms, PHENOPSIS [51], was developed for the

dissection of genotype� environment effects on different processes in Arabidopsis

thaliana with reproducible phenotyping. TraitMill [50, 52], GROWSCREEN [53,

55, 59], LIMINA [54], HYPOTrace [56], HTPheno [57] and LeafAnalyser [58]

provide general image-processing solutions for plant morphological measurements

(such as plant height, length and width, shape, projected area and biovolume) and

colorimetric analysis. Most recently, high-throughput phenotyping has been used

for three-dimensional plant analysis [60–64], focusing on a specific organs (e.g.

leaves, roots and aerials). However, most of these tools possess the inherent disad-

vantage that they are designed to address only very specific question [65]. Among

the advancing solutions, the state-of-the-art phenotyping platform developed by

LemnaTec (http://www.lemnatec.com/) is a robotic greenhouse system that uses

non-destructive imaging to monitor plant growth under controlled environmental

conditions (such as nutrition, water availability, irradiation and temperature) over

a period of time. Several ingenious imaging cameras, such as visible/colour/RGB

(red, blue and green) imaging, fluorescence, thermal and near-infrared imaging,

have been adopted in this system to assess the physical and physiological status

of plants, such us their geometric properties, pigment or fluorophore contents,

canopy temperature and tissue water content. LemnaTec systems have now been

deployed in growth champers or greenhouses (e.g. at the Leibniz Institute of Plant

Genetics and Crop Plant Research [IPK; Germany], the Australian Centre for

http://www.lemnatec.com/


11 Bridging Genomics and Phenomics 311

Plant Functional Genomics [ACPFG] at the University of Adelaide [Australia],

the Aberystwyth University [UK] and the PhenoArch at Institut National de la

Recherche Agronomique at Montpellier [France]) for high-throughput phenotyping

in Arabidopsis [66], wheat [67], barley [57] and maize (unpublished data). The

time-lapse phenotypic data from these large-scale phenotyping platforms provide an

invaluable opportunity to model and predict plant growth [67, 68]. Also, these data

can be used to map quantitative trait loci (QTL) for growth-related traits. Notably, a

recent phenotyping application was developed for QTL mapping in pepper plants

using phenotypic features such as leaf angle and leaf size from RGB images,

resulting in heritabilities of 0.56 and 0.70, respectively [69]. At the same time,

however, the huge amounts of imaging data generated from these platforms present

a great challenge for data analysis. As one solution, the Integrated Analysis Platform

(IAP; http://iap.ipk-gatersleben.de) [70] is being developed as a comprehensive

framework for high-throughput phenotyping in plants, which enables us to extract

a high-dimensional list of plant features from real-time images to quantify plant

growth and performance.

11.2.3 Defining Genotype–Phenotype Relationships

Understanding the interplay between genotype and phenotype (G-P map; Fig. 11.1)

is the ultimate goal in both genomics and phenomics research, which will yield

insights that are important for predicting disease risk and individual therapeutic

treatments in human population, for increasing the speed of selective breeding

traits in agriculturally import crops and for predicting adaptive evolution [71]. The

interactions between genotypes and phenotypes also inevitably involve the environ-

mental factors [3]. Thus, the interaction between genotype and phenotype has often

been conceptualised by the following relationship: genotype (G)C environment

(E)C genotype� environment (G�E)! phenotype (P). Since individuals them-

selves may influence the environment and exert different effects depending on their

characteristics, feedback of phenotypes needs to be considered in this concept.

Furthermore, the response of a certain genotype to an environmental factor may

depend strongly on the phenotypic status of the individual, which is the result of

events that occurred in its preceding life history. Towards understanding, the G-P

map will provide a framework for the development of personalised medicine and

crop breeding [72, 73].

Genomics and other highly parallel technologies – including epigenomics, tran-

scriptomics, proteomics, metabolomics and ionomics – have become the mainstay

in biological research. These recently developed technologies commonly termed

“omics” permit assessment of the entirety of the components of biological systems

at broad levels (Table 11.1). Furthermore, the emerging high-throughput phenotyp-

ing technology is moving towards comprehensive, quantitative high-dimensional

measurements of individuals (phenome). However, our current knowledge of the

genetic basis of complex phenotypic traits probably represents only the tip of

http://iap.ipk-gatersleben.de
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the iceberg. Why do even genetically identical twins often substantially differ

in phenotypic traits such as disease risk and drug response? Indeed, it is now

understood that the differences are to a large extent result of the epigenome and

involve chromatin modifications as well as myriads of noncoding RNAs (ncRNAs)

[74, 75]. The emerging task is to understand the complex relationships among

the genome, the epigenome, the environment and the phenome. The goal of

globally linking genotype to phenotype can only be achieved through integrating

information from different levels into an integrative model in terms of systems-

biology approaches, which makes prediction of phenotypes possible (Fig. 11.2).

This model should also consider the complex environmental factors in the real

world, which need to be very precisely defined. For example, it is now possible

to model rice transcriptome dynamics under fluctuating field conditions [76], rising

hopes to predict genome-wide transcriptional responses in the complex real-world

settings [77].

11.3 Approaches for Linking the Genome to the Phenome

11.3.1 QTL Detection Through Linkage and Association

Mapping: Identifying the Genetic Basis of Complex

Traits

Thanks to the advanced high-throughput experimental technologies such as microar-

ray and sequencing, high-density genotyping arrays are available and are widely

used recently to establish large-scale genome-wide maps of QTLs for various

phenotypes such as human diseases and agricultural traits [20, 79–81]. Genome-

wide association studies (GWAS, also called association mapping) are becoming the

preferred method to relate genetic variation to phenotypic diversity in populations

of unrelated individuals. The most common polymorphic markers used for GWAS

are sequence polymorphisms such as SNPs and structural variants such indels

and CNVs [20]. GWAS are now preferred over traditional family-based linkage

studies (linkage-based QTL mapping; Fig. 11.3) [82], which use interval mapping

to estimate the map position and effect of each QTL.

GWAS use dense maps of genetic markers that cover the whole genome to

look for allele-frequency differences between cases (e.g. patients with a specific

disease or individuals with a certain trait) and controls. Several powerful statistical

methods have been established to associate common complex trait with genomic

variations, including efficient mixed-model association (EMMA) [83], EMMA

expedited (EMMAX) [84], genome-wide EMMA (GEMMA) [85], mixed-model

and regression (GRAMMAR) [86], fast linear mixed models (FaST-LMM) [87],

general linear model and mixed linear model implemented in TASSEL (Trait

Analysis by aSSociation, Evolution and Linkage) [88] and the EIGENSTRAT

method [89]. In the past few years, intensive efforts in more than 1,500 GWAS



11 Bridging Genomics and Phenomics 313

Genomics

Transcriptomics

Epigenomics

Proteomics

Metabolomics

Phenomics

DNA  level

SNPs, CNVs

Chromatin level

DNA methylation

RNA level

transcript content

Protein level

protein content

Metabolite level

metabolic conent

Organism level

phenotypes
phQTLs

(GWAS)

mQTLs

(MWAS)

Genes

methQTLs

(EWAS)

eQTLs

(eQTL mapping)

pQTLs

(pQTL mapping)

Bioinformatics

Gene ontology

Gene

identification

Gene co-expression

Protein-protein

interactions (PPIs)

Pathway information

QTL coincidence

Trait correlation

Gene function

assessment

Gene regulatory networks

Environmental factors

F
e

e
d

b
a

c
k

Fig. 11.2 Chart flow of the assessment of gene function using quantitative trait locus (QTL)
analyses. Genetic markers (DNA level) such as SNPs and CNVs can be genotyped using next-
generation sequencing technology. Quantitative traits, such as DNA methylation level, transcript,
protein or metabolite content and biomass can be analysed using different detection methods.
The information flow is indicated with arrows. Environmental factors are also included. The data
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observed variation. The identification of the causal genes underlying the QTL, and ultimately
their functional characterisation, will be facilitated by the combined analysis of the data generated
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[78]. phQTLs: DNA methylation QTLs; eQTLs: expression QTLs; pQTLs: protein QTLs; mQTLs:
metabolic QTLs; phQTLs: phenotypic QTLs; GWAS: genome-wide association studies; EWAS:
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have uncovered hundreds of genetic variants associated with hundreds of dis-

eases and other traits [90], providing valuable insights into the complexities of

genetic architecture of human diseases. Although disease-associated variants in

protein-coding regions are expected to be more importantly related to trait/disease

diversity, the vast majority (80 %) of variants are found to fall outside cod-

ing regions, highlighting the importance of noncoding regions in the search for
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Association mapping (analogous to genome-wide association study [GWAS]) relies on correlations
between genetic markers and a phenotype among collections of diverse germplasm. Thus, the
recombination used in this strategy is historical. As shown in the figure, the association mapping
population is separated by many generations from its progenitors. In linkage-based studies, the
haplotype blocks in the mapping population may be large and, as a consequence, the causal locus
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2009, Macmillan Publishers Ltd. Part b is adapted from Suhre and Gieger [136]. Part c is
reproduced from Cookson et al. [123])
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disease-associated variants [1, 90]. However, the identified loci thus far explain only

a small fraction of the phenotypic diversity in humans, raising questions regarding

“the missing heritability” [1, 91]. An informative example is the investigation of

height in humans, which is 80–90 % heritable, but a list of loci that has been

detected in GWAS together accounts for less than 5 % of heritability for height [92].

Several explanations for this missing heritability have been proposed, including

rare variants, allelic heterogeneity, epigenetic variation (see the next section),

CNVs, gene–gene interactions and, perhaps most importantly, the environmental

uncertainty [1, 91]. Intriguingly, GWAS have shown to be even more successful

in plants than in humans [93], the key observation being that initial GWAS in

plants (e.g. in Arabidopsis [94], maize [95, 96] and rice [28]) have explained a

much greater proportion of the phenotypic variation. Perhaps the best example is a

study in rice [28], in which the authors performed low-coverage resequencing of the

genomes of a panel of about 500 rice landraces and identified 80 loci associated with

14 agronomic traits, explaining on average 36 % of the phenotypic variance. Several

of these loci matched previously characterised genes. The ongoing development of

technologies in both genotyping for detection of CNVs and other structural variants

and statistical methods for accurate association testing will help us to examine

potential sources of missing heritability and to better illuminate the causality of

complex traits/diseases.

Linkage-based QTL mapping approaches have proved to be enormously success-

ful for plant breeding and have identified loci with large effects of genetic variants

on complex traits, which include most agriculturally important traits [81, 97]. The

primary advantages of QTL mapping in plants are the great feasibility of creating

populations of segregating individuals showing measurable phenotypic variation.

However, the generation of crosses is time-consuming, and there is the necessity to

focus on traits that can be readily and accurately phenotyped. Furthermore, due to

the low frequency of recombinations represented in biparental mapping populations,

causal loci (QTLs) identified by linkage-based strategies can only be mapped to

large chromosomal regions, and tedious fine mapping needs to be carried out to

narrow down on candidate genes that can be subjected to targeted sequencing or

experimental perturbation [97, 98].

The emergence of a next-generation of mapping populations [97] overcomes

many of the limitations of biparental QTL mapping and association mapping. Such

experimental designs combine association and linkage analysis as they involve the

crossing of multiple parents and advance populations through several generations to

increase allelic richness and to improve resolution in genetic mapping. Such designs

include the nested association mapping (NAM) [95, 99, 100], the multiparent

advanced generation intercross (MAGIC) [101, 102] and the recombinant inbred

advanced intercross line (RIAIL) [103, 104] populations.

In a further aspect, it needs to be mentioned that genomic selection (GS)

[105], a genomics-based strategy for predicting phenotypes by the use of genome-

wide marker data, is receiving considerable attention among (animal and) plant

breeders. Similar to linkage and association mapping methods, GS starts with

the development of a prediction model on a training population with individuals



316 D. Chen et al.

characterised for genotype and phenotype. Unlike linkage and association mapping

approaches, GS models consider all markers as predictors and can thus capture more

of the variation due to small-effect QTLs. Most importantly, the training population

used in GS is generally closely related to the breeding population under selection.

This situation supports the use of GS models for most accurate predictions for

breeding [106].

11.3.2 EWAS: Linking Epigenetic Variation and Complex

Traits

In addition to genetic variability, epigenetic factors including DNA methylation, his-

tone modifications and ncRNAs (e.g. small interfering RNAs [siRNAs], microRNAs

[miRNAs] and large intergenic ncRNAs [lincRNAs]) are considered as the missing

part of the underlying molecular control of phenotypic variation (Table 11.1) [71,

75]. DNA methylation is the most studied epigenetic modification, and its variation

at a single CpG (cytosine–guanine dinucleotide) site (known as a methylation

variable position, MVP), CHG (HDA, T or C) or CHH contexts or a differentially

methylated region (DMR) can be considered as the epigenetic equivalent (heritable

epigenetic polymorphism) of an SNP in the context of genome [107]. While the

DNA-centric model (e.g. GWAS) has allowed scientists to uncover the molecular

genetic origins of Mendelian traits and diseases successfully, many complex traits

and diseases are non-Mendelian, making them hard to explain. Due to the elasticity

and plasticity of epigenetic factors, epigenetics can provide a novel framework

for the identification of aetiological factors in complex traits and diseases [108].

The direct evidence that epigenetics could “make the difference” comes from the

remarkably different epigenetic profiles, including disease-associated epigenetic

differences, in human monozygous (MZ) twins, who share an identical genotype

[109–111]. Indeed, with the recent advances in genomic technologies, the large-

scale, systematic epigenomic equivalents of GWAS, termed as epigenome-wide

association studies (EWAS), are emerging as the promising tool to investigate

human disease-associated epigenetic variation [71]. However, it is still challenging

in EWAS to distinguish whether epigenetic variation is the cause or functional

consequence of the identified effects. In this regard, the sample used in an EWAS

should ideally consist of MZ twins, to eliminate the influence of genetic background

on the identified epigenetic variation [71] and as recently demonstrated by several

studies [112–115]. Analysis of epigenetic variation is likely to be most successful

when integrating the analysis of genetic variants (i.e. QTL mapping), leading to

the identification of the underlying genetic variants that influence epigenetic state

(epigenotype). The loci that harbour genetic variants corresponding to methylation

states (e.g. MVPs or DMRs) have thus been termed methylation QTLs (methQTLs)

[116]. The most pronounced methQTLs influence epigenetic states in cis, and they

reside less than 50 bp from the CpG site in question [112]. The notion of methQTLs
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provides a general idea for integrated GWAS and EWAS (Fig. 11.3) to explore

genotypes that exert their function through epigenetic mechanisms, which can be

maintained and propagated during cell division, resulting in permanent maintenance

of the acquired phenotype [71, 108, 117].

At the same time, there is also evidence from plant research communities

that naturally occurring epigenetic changes (i.e. DMRs) in a single gene locus

(epiallele) can lead to heritable phenotypic variation [118–122]. The epialleles

often show increased cytosine methylation of the promoter and can result in

nearby gene expression changes that are sometimes transmitted across generations,

thus contributing to heritable phenotypic variation independent of DNA sequence

diversity. These outstanding resources will advance our understanding of the relative

roles of genetic and epigenetic variation in controlling quantitative trait variation in

plants.

11.3.3 Variation in Gene Expression: From eQTLs

to Phenotypes

Variation in gene expression is an important mechanism underlying phenotypic

variation such as disease susceptibility and drug response. DNA variants may

alter transcript abundance and splicing patterns through modification of regulatory

elements [123]. Genomic loci responsible for this genetic control are consequently

termed expression QTLs (eQTLs). The combination of high-throughput pheno-

typing and transcriptional profiling has allowed the systematic identification of

eQTLs (Fig. 11.3) [98]. In principle, eQTL mapping uses transcript abundance as

a phenotypic trait and maps the genomic loci controlling the transcript level, as

performed in the same manner of traditional QTL mapping of any other quantitative

trait phenotype [124]. According to the genomic context of transcripts, eQTLs can

be categorised into cis eQTLs if the molecular variants (e.g. SNPs) are mapped to

the approximate location (within 100 kb upstream and downstream [112, 125]) of

their gene-of-origin transcripts and trans eQTLs in other cases. Further statistical

analysis revealed a strong enrichment of cis eQTLs around transcription start sites

(TSSs) and within 250 bp upstream of transcription end sites (TESs) [126]. The cis-

acting variants are more likely in exonic regions than in intronic regions. Given that

genetic variation in the 30UTR of a gene may create or destroy a miRNA binding

site [127], the cis effects are likely mediated through miRNA-regulated pathways.

Besides this, cis-acting variants in promoter or enhancer regions may influence the

binding of transcription factors and thus promoter regulation. Nevertheless, it is still

not known whether trans effects are mediated through transcription factor variants

or through other mechanisms [123]. Generally, cis eQTLs tend to have stronger

influence on target gene regulation than trans eQTLs. Moreover, there exist the

so-called eQTL hot spots in which the expression levels of many transcripts are

associated with the variation.
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The resulting comprehensive eQTL maps provide potential insight into a bio-

logical basis for complex quantitative trait associations identified through GWAS

[123]. Since the expression of transcripts is subject to intensive gene regulation,

eQTL data should be interpreted further by the incorporation of additional biological

information, such as results from GWAS and EWAS as discussed above, and

analysis of regulatory networks, which are discussed below. This kind of integrated

analyses has been utilised in several studies [112, 114, 115, 128, 129].

Proteins are mainly responsible for the biological phenotype; they thus should

more accurately reflect the cellular physiological state or the changes induced

by disease processes, drug treatment or other influences, compared with genetic,

epigenetic or transcript variants. Various mechanisms of post-transcriptional regu-

lation can lead to changes in protein abundance in the absence of a corresponding

alteration of transcript levels, suggesting that the proteome is expected to provide

important biological insights and disease biomarkers that cannot be captured

through evaluation of the transcriptome alone [130]. We mention here that asso-

ciation mapping analysis could also be done at the protein level in terms of protein

QTL (pQTL or PQL [131]) mapping, in which protein abundance or modification is

treated as a phenotypic trait. pQTL mapping, complementary to eQTL mapping, is

now becoming feasible with technical advances in mass spectrometry (MS)-based

proteomics [130, 132, 133]. The little overlap between pQTLs and eQTLs from the

same study [134] indicates that the proteome and the transcriptome give distinct

insights into the diversity between different individuals and further highlights the

implications for systems-biology approaches that utilise such high-throughput data

into integrated analysis.

11.3.4 Genome-Wide Association Studies with Metabolomics:

Metabolic QTL Analysis

In addition to genomics, epigenomics, transcriptomics and proteomics, metabolomics

is emerging as a complementary approach for globally measuring ideally all

endogenous small organic molecules (metabolic traits; normally below 1,500 Da)

in a biological sample. However, unlike the transcriptome and to a lesser degree the

proteome, the metabolome is much more amenable to variation. The metabolome

is much more diverse in terms of chemical structure and function [135]. Metabolite

profiles capture important information on the environment (diet, lifestyle, gut

microbial activity and bacterial activity) that individuals experience and can give

an instantaneous snapshot of the individual’s physiological state at that particular

time under a particular set of conditions. Some changes in metabolite levels may

be a consequence of the phenotypic diversity; therefore, a metabolic trait presents

a functional intermediate trait or merely a correlated biomarker [136]. Noninvasive

metabolic methodologies include nuclear magnetic resonance (NMR) spectroscopy

[137], MS and high-performance liquid-phase chromatography (HPLC). Due
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to advances in these technologies, quantitative readouts for hundreds of small

molecules that are detected in large scale can now be provided. Experimental

design concerns the choice of which metabolites to study. While targeted methods

provide precise measurements of specific (known) metabolites and are easy to

replicate, nontargeted approaches are currently more promising as they provide

the opportunity to discover novel associations including hitherto uncharacterised

metabolites [136].

In the past few years, GWAS face the challenge that the effect of sizes of

genetic association is generally small and information on the underlying biological

processes is lacking [136]. These problems can be overcome, at least partially, by

association with metabolic traits as functional intermediates [138]. There is the

increased interest from the scientific community, and particularly plant biologists, in

integrating metabolic approaches into research with the aim to unravel phenotypic

diversity and its underlying genetic variation [78]. The combination of high-

throughput metabolic phenotyping with general QTL analysis has thus given birth

to the emerging field of metabolome-wide association studies (MWAS; Fig. 11.3).

The study of the chemical composition (i.e. the metabolite) of plants has

always been of great interest in biological research, in part because metabolic

phenotypes (metabotypes) largely reflect the developmental stage of the plant

and its interactions with the environment. In plants, the first studies combining

metabolic phenotyping with QTL analysis were performed in tomato [139–141] and

successfully uncovered loci (metabolite QTLs, mQTLs) regulating plant metabolite

composition. In Arabidopsis [142–147] and other crops, such as Brassica napus

[148, 149], potato [150], rice [151] and maize [138, 152], mQTL mapping analyses

have also been implemented using targeted and nontargeted metabolic profiling.

Metabolite profiling-based approaches furthermore provide important steps towards

the goal of hybrid performance prediction [152] and metabolomics-assisted crop

breeding [153].

Similar MWAS were later performed in human studies [154–158]. Large panels

of metabotypes have been analysed in association with genetic variants, disease-

related phenotypes and lifestyle and environmental parameters, allowing dissection

of the contribution of these factors to the aetiology of complex diseases [136]. These

MWAS have identified genetic factors reliably that influence intermediate traits on

phenotypes such as blood pressure [158], cardiometabolic disorder [157] and coro-

nary heart disease [159]. In summary, incorporation of GWAS and metabolomics

further refine the G-P map and eventually identify possible prognostic or diagnostic

biomarkers of disease risk and biomarkers for predictive plant breeding.

11.3.5 Systems Biology: Genome-Scale Networks That Link

Genes to Phenotypes

Associating sequence-level variation (such as SNPs and CNVs) with high-level

variation in organismal phenotypes (such as disease susceptibility or crop yield)
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omits all of the intermediate steps in the chain of causation from genetic perturbation

to phenotypic diversity. As mentioned above, intermediate molecular phenotypes

(endophenotypes) such as epigenetic variation, transcript/protein abundance and

metabolic traits vary genetically in populations and are themselves quantitative

traits [98]. These endophenotypes functionally link genetic variation to disease-

predisposing (for human) or biomass-predisposing (for plants) factors and then

to complex phenotypic end points. Excitingly, the so-called “genetical genomics”

approach [160] now enables us to integrate genetic variation, various endopheno-

typic variation and variation in organismal phenotypes in a linkage or association

mapping population in both human [161] and plants [162], allowing to interpret

quantitative genetic variation in terms of biologically meaningful causal networks

of correlated transcripts.

However, it is becoming clear that each of the intermediate steps in translating

biological information from genotype to phenotype does not stand alone [135]. The

omics technologies now enable us to understand the biology inside the “black box”

that lies between genotype and phenotype in terms of complex interacting networks

[135, 163] (Fig. 11.4). Although we are still far away from a holistic understanding

of the G-P map, systems biology is an emerging approach that aims to elucidate

higher-level behaviour of biological systems and focuses on complex interactions

within them, illuminating the path towards this ultimate goal – the complete G-

P map. The integrative systems approach tries to link together the single-level

omics data (e.g. genome, epigenome, transcriptome, proteome and metabolome)

and, over time (if available [164]), to reveal and model the dynamic molecular

regulatory networks or pathways from gene-to-function in order to bridge from

genomics to phenomics. With the availability of increasingly powerful omics-based

technologies, analytical and statistical tools and integrated knowledge bases, it

has become possible to establish new links between genes, biological functions

and a wide range of human diseases [165–179]. The comprehensive gene-disease

associations present important insights that different disease modules (i.e. diseases

share common genetic origins) could overlap and perturbations caused by one

disease could affect other disease modules [180]. The identification of disease

modules leads to the concept of the diseasome [165], which represents disease

networks whose nodes are diseases and whose links represent the shared molecular

relationships between the disease pairs. The underlying disease-associated cellular

components are mostly investigated with protein-coding genes [165, 166, 168,

176, 177], though miRNAs [173, 178, 181], large intergenic noncoding RNAs

(lincRNAs) [175] or metabolic pathways [171] are also investigated. Importantly,

uncovering such diseasome networks provides hints on how different phenotypes

are linked at the molecular level.

Although GWAS and analogous methodologies have presented large numbers of

disease-gene candidates, it still has the difficulty to identify the particular gene and

the causal mutation [180]. A series of sophisticated strategies have recently been

developed to predict potential disease genes (Fig. 11.5). These network-based tools

include linkage methods [182], functional module-based or “guilt-by-association”

methods [166, 176, 177] and diffusion-based methods [183, 184]. Furthermore, it is
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Fig. 11.4 Schematic diagram depicting the strategy for integrated analysis of genetic and omic
data. Large-scale genotyping and phenotyping are performed on segregating populations. Quanti-
tative traits can be analysed on different levels to identify responsible loci (QTLs) based on QTL
mapping approaches. Retrieved data can also be used in cluster analyses to identify gene-centred
networks. The methodology of the combined used of genetic and omic technologies is commonly
referred to as “genetical genomics” [160] and enables the elucidation of complex gene–phenotype
networks (the G-P maps). This figure extends the work from Keurentjes [135]

believed that genes tend to work in evolutionarily conserved pathways or modules;

so the G-P maps can potentially be transferred between different species. Based on

this assumption, orthologous phenotypes (phenologs) can be used to systematically
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Fig. 11.5 Methodologies for identifying trait-associated gene candidates. (a) Linkage methods.
These methods combine both the linkage analysis (to determine the linkage interval of a specific
trait) and protein–protein interaction (PPI) information. Genes (denoted as G1, G2 and so on)
located in the linkage interval whose protein products interact with a known trait-associated

protein are considered likely candidate genes. (b) Functional module-based or guilt-by-association
methods. Function modules are identified from clustering analysis of genome-scale networks.
The members of such modules are considered candidate genes linked to specific phenotypes. (c)
Diffusion-based methods. Starting from proteins that are known to be associated with a phenotype,
a random walker visits each node in the interactome with a certain probability. The outcome of
this algorithm is a trait-association score that is assigned to each protein, that is, the likelihood
that a particular protein is associated with the phenotype. (d) Phenologs (orthologous phenotypes).
Phenologs is used to map phenotypes between organisms based on significantly overlapping sets
of orthologous genes. Perturbation of overlapping modules of orthologous genes may result in one
set of phenotypes in one organism but a different set of phenotypes in another organism. The genes
in such modules are considered candidates associated with the corresponding phenotypes (Parts
a–c are modified from Barabasi et al. [180]. Part d is modified from McGary et al. [185])

predict genes associated nonobviously with diseases across different organisms

using overlapping sets of orthologous genes [185]. In summary, the value of these

tools is expected to increase with the wealth of disease gene candidates beyond

GWAS. Although most of the initial studies based on these tools were performed in

humans, similar strategies can also be applied to the plant biological research [186].

Indeed, networks for Arabidopsis [187], rice [188, 189] and maize [189] have been

shown to connect thousands of genes accurately to phenotypes.
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11.4 Perspectives and Future Challenges

The basic requirements for building an ideal phenomics realm are easy to imagine

but still hard to realise. We are facing great opportunities but also great challenges in

the areas of both genomics and phenomics. Although technically feasible, extensive

and intensive measurement of genetic contents (such as epigenetic modification,

gene expression, metabolite content) on large samples of genotypes across the full

range of spatial and temporal scales is costly. Furthermore, the high density of

genetic markers identified thus far yet awaits to be linked to their consequential

phenotypic traits. On the phenomics side, the major challenge resides in the

multitudes of phenotypic traits and environmental influences. The cost of a phenome

project using current technology is extremely high [3]. High-throughput and high-

resolution phenotyping technologies, for detection of both internal and external

phenotypes, especially in plants, have started to open new horizons [3, 49].

Extracting as much quantitative information as possible from phenotyping data is

a fundamental goal for phenomics. In other words, future phenomic efforts need

to focus on comprehensive and quantitative measurements of phenotypes, rather

than conventionally low-dimensional and qualitative phenotype categorisations [3].

Developments in phenomics will increase both the number of phenotypic traits that

are quantitatively assessed and the sample sizes (number of individuals or genotypes

characterised), resulting in major challenges with respect to data analysis. The

available state-of-the-art methods, such as partial least squares (PLS) regression,

principal component analysis (PCA), random forests (RF) and support vector

machines (SVM), can be used to address the high-dimensional phenomic data.

Another challenge in new analytics is automated analysis of phenotyping data, since

navigating the huge imaging data sets manually is extremely tedious.

Regarding linking genotype to phenotype, many important challenges remain:

(a) with respect to the problem of linking genes to traits, according to the observation

of vast numbers of associated variants located within noncoding regions of the

genome [90]; (b) with respect to epistatic interactions [190]; (c) with respect to

gene-environment interactions [191]; (d) with respect to epigenetic influences on

phenotypic variation; and (e) with respect to variation in the outcome of mutations

among individuals [73]. One promising solution here is to combine data from

multiple “omics” technologies in what may be termed “a genome-wide systems-

biology approach”.

In a nutshell, however, phenomics lags largely behind genomics. In contrast to

the situation in humans, in plant organisms it is relatively straightforward to carry

out systematic genetic screens and large-scale phenotyping under various controlled

environments. This provides unbiased assessment of the genetic complexity of

phenotypic traits [73]. The G-P maps are therefore ultimately expected to be more

complete and more systematic in plants than they may be in humans. Notably,

many ongoing developing or developed phenomics tools will give plant scientists

the power to unlock the information coded in genomes (Table 11.3). In the
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near future, the plant phenotypic landscape will be populated at a faster pace to

accelerate research in model organisms and to bridge the gap between genomics

and phenomics [3, 49].
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WWW List in This Chapter

• The NHGRI GWAS Catalogue: http://www.genome.gov/gwastudies/

A catalogue of published genome-wide association studies (GWAS)

• LemnaTec: http://www.lemnatec.com/

High-throughput and high-content screening solutions for plant phenomics

• IAP: http://iap.ipk-gatersleben.de/

An Integrated Analysis Platform (IAP) for plant high-throughput phenotyping

data analysis

• Note: Other useful links are listed in Tables 11.2 and 11.3.
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Chapter 12

Parallel Computing for Gene Networks

Reverse Engineering

Jaroslaw Zola

Abstract Gene networks provide a mathematical representation of gene inter-

actions that govern biological processes in every living organism. Given a gene

expression data, the goal of network inference is to reconstruct the underlying

regulatory network. The problem is challenging owing to the convoluted nature of

biological interactions and imperfection of experimental data. In many cases, the

resulting computational models are too complex to execute on a sequential computer

and require scalable parallel approaches. In this chapter, we describe network

inference methods based on information theory and show a parallel algorithm that

enables whole-genome networks reconstruction.

12.1 Introduction

Biological processes in every living organism are governed by complex interactions

between thousands of genes, gene products, and other molecules. Genes that are

encoded in the DNA are transcribed and translated to form multiple copies of

gene products including proteins and various types of RNAs. These gene products

coordinate to execute cellular processes or to regulate the expression of other genes

depending on the signals carried by, e.g., small molecules. Gene regulatory networks

are an attempt to develop a system-level model of these complex interactions, using

observations of gene expression.

Gene regulatory networks are typically expressed as graphs with vertices rep-

resenting genes and edges representing regulatory interactions between genes (see

Fig. 12.1). The functioning of a gene regulatory network in an organism determines

the expression levels of various genes to help carry out a biological process.
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Fig. 12.1 Example gene regulatory network. Here nodes represent genes, T-edges denote reg-
ulation in which a source gene inhibits expression of the target gene, and arrow edges denote
regulation in which a source gene induces expression of the target gene

Network inference, or reverse engineering, is the problem of predicting the under-

lying network from multiple observations of gene expressions (outputs of the

network). To infer a network, one relies on experimental data from high-throughput

technologies such as microarrays, or short-read sequencing, which measure a

snapshot of all gene expression levels under a particular condition or in a time series.

The problem of gene network inference is challenging for several reasons:

• Functioning of any complex organism involves thousands of genes, and usually

it is impossible to limit analysis to only a subset of them. In fact, in many cases,

the opposite situation takes place – gene networks are used to limit the number

of genes that should be target of a biological analysis.

• Despite the rapid progress in high-throughput biotechnology, the number of

available expression measurements often falls significantly short of what is

required by the underlying computational methods. At the same time, expression

data is inherently noisy and significantly influenced by experiment-specific

attributes. Consequently in many cases the number of genes in the network

significantly outnumbers the number of available expression measurements.

• Finally, our understanding of regulatory mechanisms (e.g., posttranscriptional

effects) is still limited, leading to many simplifications in the existing models of

regulation.

Due to its importance, gene network inference is an intensely studied problem for

which many techniques have been developed. Relevance networks [3, 7], Gaussian
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graphical models [6, 19], information theory-based methods [2, 9, 25], Bayesian

networks [10, 24] and dynamic models [12] are just some examples of the existing

approaches. At the same time, two key problems remain with the current methods.

The first one is the quality of reconstructed networks. In a recent comprehensive

study of 29 network inference methods, Marbach et al. concluded that many do

poorly on an absolute basis and 11 do no better than random guessing [15]. The

second challenge is computational complexity of the methods and their ability

to encompass data from organisms with thousands of genes and large number of

expression observations. The computational cost of network inference grows at

least as square of the number of the genes and at least linearly with the number of

experiments analyzed. Furthermore, statistical methods used to assess significance

of the inference, such as bootstrapping, add an extra layer of computational

complexity.

To overcome the above limitations and to improve accuracy of network inference

while scaling to large expression data, parallel methods for gene networks reverse

engineering have been recently proposed [18, 21, 25]. Thanks to the emergence

of inexpensive multi and many core processors, and almost ubiquitous adoption

of parallel computing, these methods become a solution of choice when large or

complex expression data has to be analyzed. More importantly, parallel methods

can be used to reconstruct genome-level interactions without sacrificing accuracy,

which is where sequential methods fall short.

In this chapter, we focus on application of parallel computing for reverse

engineering of gene regulatory networks. First, we explain how the sequential

inference process works and then we show how it can be scaled to large distributed

memory systems. We base our presentation on information-theoretic methods, a

popular class of inference algorithms. Finally, we discuss how to validate inference

algorithms in silico, and we demonstrate applicability of parallel methods in

reconstructing genome-level regulatory networks.

12.2 Network Inference Using Information Theory

In this section, we introduce a more formal statement of the network reconstruction

problem, and we present an inference procedure based on information theory. We

explain concepts of mutual information and data processing inequality and show

how mutual information can be estimated and its significance assessed. We start

however with a brief description of a general network inference process.

12.2.1 From Experiment to Network

The goal of network inference is to provide a qualitative, and if possible quantitative,

explanation of the observed expression data. The quality of the reconstructed
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Fig. 12.2 Typical process of reconstructing gene regulatory network

network and its information content are affected not only by the inference method

but also by the input data. Gene expression can be measured using several methods,

for instance, quantitative PCR, microarrays, or more recently RNA-seq. However,

irrespective of which method we select to measure genes expression, three important

questions must be answered: first, what should be the set of experimental conditions,

how the expression data should be preprocessed to obtain an expression profile

suitable for network inference, and finally, which inference method should be used

taking into account the two above.

Figure 12.2 illustrates an example inference process. We start with the data

acquisition. This step is determined by the underlying scientific hypothesis, which

in turn involves careful design of the biological experiment. Note that the data

gathered in the experiment can be, and usually is, extended with data deposited

in the public repositories, such as Gene Expression Omnibus (GEO) [17]. In

general, in this stage, we want to ensure that the collected expression data is

sufficient to obtain accurate predictions in the inference process. The following

step is to convert the aggregated data into an expression profile. The choice of

method depends purely on the experimental platform. For example, processing

microarrays will typically require sophisticated signal-calling procedures, followed

by filtering and normalization, while RNA-seq will most likely depend on reads

mapping and reads counting to obtain a digital expression. This stage is crucial

to minimize noise impact, to eliminate low-quality data, and to render different

experiments comparable. Only when the expression profile is ready a network

can be reconstructed. As we already mentioned, multiple inference methods exist

and which method should be used depends on many factors, including size of the

expression data and type of queries that the inferred network is meant to answer. In

this chapter, however, we consider an information-theoretic approach and its parallel

realization.
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12.2.2 Problem Formulation

Let us consider the following situation. We performed a set of m experiments,

e.g., microarray tests, and obtained expression measurements for n genes. We

will represent these genes as a set G D fg1; g2; : : : ; gng, where gi is a gene.

Furthermore, we will assume that the expression measurements have been post-

processed and normalized accordingly and taking into account properties of the

underlying technology. Collectively, we can represent such expression data as a

profile matrix Yn�m, where Y Œi; j � is an expression of gene gi in experiment j .

The core assumption of virtually all network inference methods is to represent

expression of a gene gi as a random variable Xi 2 X , X D fX1; : : : ; Xng, with

marginal probability pXi derived from some unknown joint probability characteriz-

ing the entire system. This random variable is described by a vector of observations

hxi;1; : : : ; xi;mi, where xi;j D Y Œi; j �. In this form, the network inference problem

becomes that of finding a model that best explains the data in Y. The problem can be

approached using a variety of methods, including Bayesian networks and Gaussian

graphical models. However, one class of methods that have been widely adopted

due to their effectiveness uses the concept of mutual information [2, 9, 25]. These

methods operate under the assumption that correlation of expression implies co-

regulation. Although not always true, the assumption is broadly accepted, especially

when analyzing microarray data.

Inference methods based on information theory usually proceed in two phases.

First, correlations between pairs of genes are detected. If expression of two genes

shows strong correlation, we can assume that they are interacting in the regulatory

processes and hence should be connected in the network. Unfortunately, looking

solely into pairwise correlations is insufficient to capture more complex regulatory

patterns. Consider a scenario where gene gx regulates gene gy , which in turn

regulates gz. If we analyze expression of all three genes, it is very likely that gx

and gz will be significantly correlated, even though they should not be directly

connected in the network. To account for such situations, in the second phase,

information-theoretic strategies perform additional check to detect and remove

indirect interactions.

12.2.2.1 Mutual Information

Let us now focus on how correlation between expression profile of two genes is

established. Recall that we represent expression of each gene as a random variable.

Although we are given observations of that variable, we do not know its actual

distribution. Moreover, the expression observations are delivered from inherently

noisy experiments and thus are not perfect. Consequently, to establish whether two

expression profiles are correlated, we have to account for potentially complex, e.g.,

nonlinear, patterns of correlations. This can be achieved using the concept of mutual

information [4].
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Mutual information is arguably the best measure of correlation between two

random variables. It is defined based on the entropy in the following way:

I.Xi IXj / D H.Xi/CH.Xj / �H.Xi ; Xj /; (12.1)

where entropy H is given as

H.X/ D �
X

pX .x/ log.pX .x//; (12.2)

pX defines the probability distribution of X , and
P

is replaced by integral if X

is continuous. Intuitively, mutual information I.Xi IXj / quantifies information that

both variables provide about each other. If two variables are correlated, then their

joint entropy is smaller than the sum of their individual entropies, and hence greater

is their mutual information. Note that from Eqs. (12.1) and (12.2), we can write

mutual information as

I.Xi IYi / D
X

xi

X

xj

pXi Xj .xi ; xj / log

 

pXi Xj .xi ; xj /

pXi .xi /pXj .xj /

!

; (12.3)

which is equivalent of the Kullback-Leibler divergence between distribution of

Xi and Xj when both variables are dependent (i.e., pXi Xj ) and when they are

independent (i.e., pXi Xj D pXi pXj ).

Mutual information is a symmetric, nonnegative function and is equal to zero

if and only if two random variables are independent. Consequently, to connect two

genes in the reconstructed network, we have to check if mutual information between

their expression profiles is greater than zero.

12.2.2.2 Data Processing Inequality

Having defined a correlation measure, we are left with the task of identifying

indirect interactions between genes. One popular approach to address this problem,

which first has been introduced in the ARACNe method [2], is to rely on the data

processing inequality principle, or DPI for short. Briefly, DPI states that if three

random variables Xi ; Xj ; Xk form a Markov chain in that order (i.e., conditional

probability of Xk depends only on Xj and is independent of Xi ), then I.Xi IXk/ �

I.Xi IXj /, which implies also that I.Xi IXk/ � I.Xj IXk/. In other words, Xk

cannot provide more information about Xi than Xj provides about Xi . The DPI

reasoning can be used to detect indirect interactions between genes: each time

the pair .Xi ; Xk/ satisfies both inequalities, the corresponding connection between

genes gi and gk can be removed from the network. Note that the above procedure

is based on the assumption that DPI implies independence of Xi and Xk given Xj .

This is not always true: in some situations the inequalities may hold even though
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Xi and Xk are dependent (consider for example, binary variables, where Xi and Xj

are uniform and Xk is a XOR function of Xi and Xj ). Nevertheless, DPI has been

shown to perform very well in practice.

12.2.2.3 Inference Algorithm

So far we defined two information-theoretic concepts that can be used to infer gene

regulatory networks – mutual information and DPI. Algorithm 12.1 shows how the

two are combined into a working solution.

We represent the network using adjacency matrix D. Although gene regulatory

networks are usually very sparse, initially we have to compute mutual information

between all
�

n
2

�

pairs of genes (line 1). Then, we remove edges between genes

that are not significantly correlated (lines 2–4) and proceed with the DPI phase

(lines 5–9).

Algorithm 12.1 Network inference using information theory

Input: Expression profile Yn�m, mutual information threshold I0

Output: Adjacency matrix Dn�n

1: DŒi; j � D Estimate I.Xi I Xj / from .Y Œi; ��; Y Œj; ��/
2: if DŒi; j � < I0 then

3: DŒi; j � D 0

4: end if

5: for all .i; k/ do

6: if 9j s:t: DŒi; k� � DŒi; j � and DŒi; k� � DŒj; k� then

7: DŒi; k� D 0

8: end if

9: end for

The main component of the algorithm is estimation of mutual information

from the expression data. Observe that although in Eq. (12.3) we express mutual

information through probability distributions, we do not know the distribution that

governs gene expression. Consequently, we have to estimate mutual information

from observations provided by the expression profile matrix Y . Fortunately, because

mutual information is a widely used concept, there are several estimators available.

Here, we will describe the B-spline-based estimator that has been proposed by Daub

et al. for analyzing expression data [5].

The estimator works by discretizing observations into b categories, but with the

assumption that given observation can be assigned simultaneously to k categories

with different weights. The weights are obtained using B-spline functions of order

k, defined over b uniformly spaced knot points. Note that knot points define bins

(categories) to which each continuous observation can be assigned. Let Bb
k be a B-

spline function of order k defined over b knot points. For a continuous observation,

this function returns a vector of size b with k nonnegative weights that indicate
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to which bins the observation should be assigned. Given two random variables Xi

and Xj with m observations, we can discretize them into variables A and B with

probabilities:

pA D
1

m

m
X

lD1

�

Bb
k.xi;l/

�

; (12.4)

and

pAB D
1

m

m
X

lD1

�

Bb
k.xi;l/ � Bb

k.xj;l/
�

; (12.5)

where in our case xi;j D Y Œi; j �. By plugging the resulting probabilities directly

into entropy calculations, we can compute marginal and joint entropy for A and

B and then approximate I.Xi IXj / � I.AIB/. A nice property of the B-spline

estimator is that it can be very efficiently implemented, and its complexity is of

order O.m/.

The last element of the inference algorithm is the choice of the threshold value

I0 to decide when correlation is significant. Recall that two random variables are

independent only if their mutual information is equal zero. However, because we

are estimating mutual information, it would be unrealistic to expect precise results.

Therefore, it is a common practice to assume that mutual information lower than the

carefully chosen cutoff I0 implies independence. There are different ways I0 can

be selected, and we describe one particular solution next.

12.2.2.4 Testing Significance of Mutual Information

As we already mentioned, using mutual information requires deciding when

its estimate implies independence. This can be regarded as assessing statistical

significance of the quantity I.Xi IXj / itself. This assessment can be done through

permutation testing.

Let �.Xi / D �.hxi;1; xi;2; : : : ; xi;mi/ denote a permutation of the vector of

m observations of Xi . If there exists dependency between Xi and Xj , it is

expected that I.Xi IXj / is significantly higher than I.�.Xi /IXj /. The permu-

tation testing method involves computing I.�.Xi /IXj / for all mŠ permutations

of hxi;1; xi;2; : : : ; xi;mi and accepting the dependency between Xi and Xj to be

statistically significant only if I.Xi IXj / > I.�.Xi /IXj / for at least a fraction

.1 � �/ of the mŠ permutations tested, for some small constant � > 0. As testing all

mŠ permutations is computationally prohibitive for large m, a large sampling of the

permutation space is considered adequate in practice.

Ideally, permutation testing should be conducted for assessing the significance of

each pair I.Xi IXj / using a large number of random permutations. Clearly, this is

computationally prohibitive. However, we proposed a simple solution to overcome
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this limitation, by using only a few random permutations per pair, while collectively

obtaining statistically meaningful results for all pairs [25].

Mutual information has the property of being invariant under homeomorphic

transformations:

I.Xi IXj / D I.f .Xi /Ih.Xj //; (12.6)

for any homeomorphisms f and h. Consider replacing the vector of observations for

Xi , i.e., hxi;1; xi;2; : : : ; xi;mi with the vector hrank.xi;1/; rank.xi;2/; : : : ; rank.xi;m/i,

where rank.xi;l/ denotes the rank of xi;l in the set fxi;1; xi;2; : : : ; xi;mg; i.e., we

replace each observation with its rank in the set of all observations. The transfor-

mation, which is termed rank transformation, while not continuous, is considered

a good approximation to homeomorphism [13]. In our case, instead of computing

mutual information of pairs of gene expression vectors directly, we equivalently

compute the mutual information of their rank transformed counterparts. With this

change, each observation vector is now a permutation of f1; 2; : : : ; mg. Therefore,

a permutation �.Xi / corresponds to some permutation of the observation vector

of any other random variable Xj . More formally, consider applying permutation

testing to a specific pair .Xi ; Xj / by computing I.�.Xi /IXj / for some randomly

chosen permutation � . For any other pair .Xk; Xl/, 9�
0; � 00 such that �.Xl/ D

� 0.Xj / and �.Xi / D � 00.� 0.Xk//. Since � is a random permutation, so is � 00 and

I.�.Xi /IXj / is a valid permutation test for assessing the statistical significance of

I.Xk IXl/ as well. Thus, each permutation test is a valid test for all
�

n

2

�

pairs of

observations.

Using the above procedure, we can easily find the threshold value I0. When

estimating mutual information for each rank transformed pair .Xi ; Xj /, we perform

additional q permutation tests. Then, I0 is the r th largest value among all values

generated by the permutation test, where r D .1 � �/ 
 q 

�

n

2

�

and � is a small

constant describing the significance level.

12.3 Parallel Method for Networks Inference

In the previous section, we explained how concepts from information theory and

statistics can be used for reverse engineering gene regulatory networks. Although

the resulting method is considered to be very accurate, it becomes limited for

reconstructing genome-level networks with thousands of genes. This is because the

whole-genome gene network reconstruction is both compute and memory intensive.

Memory consumption arises from the �.nm/ size of input data and from the �.n2/

dense initial network generated in the first phase of the reconstruction algorithm.

Computational cost is dominated by the O.n2/ computations of mutual information,

where the complexity of a mutual information estimator is at least O.m/, but

it can be O.m2/ for, e.g., Gaussian kernel estimator. As a result, large-scale

network construction is out of the scope of sequential methods, and scalable parallel

approach becomes necessary.
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Fig. 12.3 An example of
partitioning of matrix D for
eight processors. For each
block, the iteration number in
which it will be processed is
marked

Let p denote the number of processors in a parallel computer. Recall that we

represent the network using the standard adjacency matrix Dn�n. To store the

matrix in the distributed memory, we use row-wise data distribution where each

processor stores up to d n
p
e consecutive rows of the expression profile Y and the

same number of rows of the corresponding gene network adjacency matrix D. To

begin, each processor reads and parses its block of input data and then applies rank

transformation. The algorithm proceeds in three phases: in the first phase, mutual

information is computed for each of the
�

n
2

�

pairs of genes and q randomly chosen

permutations per pair. Note that the total number of permutations used in the test

is Q D q 

�

n
2

�

, allowing a small constant value of q for large n. In the second

phase, the threshold value I0 is computed. In the final phase, indirect interactions

are detected using DPI and removed.

12.3.1 Computing Mutual Information

Without loss of generality, we can assume that n is a multiple of p. To compute

mutual information between all pairs of genes, we first partition D into p � p

blocks of submatrices Di;j (0 � i; j < p), each of n
p
� n

p
size. Then we proceed

in dpC1

2
e iterations. In each iteration, a processor is assigned a submatrix. Its task

is to compute mutual information for each position in the submatrix, along with

mutual information of q random permutations for each position. Observe that to

do so, it requires the expression profile vectors of all genes representing rows

or columns in the submatrix. For blocks on the main diagonal, the same genes

represent both rows and columns. For other blocks, the row genes and column

genes are distinct. Because the matrix D is symmetric, we need to compute only

half of it, i.e., as Di;j D DT
j;i only one of them needs to be computed. We call

a set of p�.pC1/

2
submatrices containing only one of Di;j or Dj;i for each pair

.i; j /, to be the complete set of unique submatrices. The assignment of submatrices

to processors is as follows: in iteration i , processor with rank j is assigned the

submatrix Dj;.j Ci / mod p (see Fig. 12.3 for an illustration). It is easy to argue that

this scheme computes all unique submatrices.
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The assignment of submatrices to processors creates the same workload with

the following exceptions: in iteration 0, the submatrices assigned are diagonal, for

which we only need the lower (or upper) triangular part. As all processors are

dealing with diagonal submatrices in the same iteration, it simply means that this

iteration will take roughly half the compute time as others. The other exception may

occur during the last iteration. To see this, consider that the processors collectively

compute p submatrices in each iteration. The total number of unique submatrices is
p�.pC1/

2
. The following two cases are possible:

1. p is odd. In this case, the number of iterations is dpC1

2
e D pC1

2
. The total number

of submatrices computed is p�.pC1/

2
, which is the same as the total number of

unique submatrices. Since the algorithm guarantees that all unique submatrices

are computed, each unique submatrix is computed only once.

2. p is even. In this case, the number of iterations is dpC1

2
e D p

2
C 1, causing the

total number of submatrices computed to be p 

�

p

2
C 1

�

, which is p

2
more than

the number of unique submatrices. It is easy to show that this occurs because in

the last iteration, half the processors are assigned submatrices that are transpose

counterparts of the submatrices assigned to the other half (marked with darker

color in Fig. 12.3).

When p is even, we can optimize the computational cost by recognizing this

exception during the last iteration and having each processor compute only half

of the submatrix assigned to it, so that the processor which has the transpose

counterpart computes the other half. Note that this will save half an iteration,

significant only if p is small. For large p, we can ignore this cost and run the last

iteration similar to others.

Let us now compute the parallel runtime of the above method assuming a simple

point-to-point communication model with latency � and bandwidth 1
�

(adequate for

most distributed memory parallel systems). Under this model, the first phase takes

O
�

qn2m

p

�

compute time and O .p� C �nm/ time for communication. Thus, we

can scale p linearly with n while maintaining parallel compute time as the dominant

factor in runtime.

12.3.2 Computing I0

Having computed the adjacency matrix D, we have to now remove edges that are not

statistically significant, i.e., their mutual information is lower than I0. Recall that the

threshold is computed by finding the element with rank r D .1��/
q 

�

n
2

�

among the

q 

�

n
2

�

mutual information values computed as part of permutation testing. As each

processor stores at most
qn2

p
results of the permutation test, we can find the threshold

using a parallel selection algorithm. However, � is a very small positive constant

close to zero, and hence, the threshold value is close to the largest value in the sorted
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order of the computed mutual information values. Hence, we can proceed as follows:

each processor sorts its �
�

qn2

p

�

values and selects the r largest values. Then, a

parallel reduction operation is applied using the r largest values in each processor

as input. The reduction operator performs linear merging of two samples of size r

and retains the r largest elements. Once the r th globally largest value is found and

broadcast, each processor eliminates edges from its local adjacency matrix that are

below the threshold. This phase takes O
�

qn2 log n

p
C r log p

�

parallel compute time

and O ..� C �r/ log p/ parallel communication time. Assuming � < 1
p

, we can

expect linear scaling.

12.3.3 Removing Indirect Interactions

In the final phase of the algorithm, we have to apply DPI to prune indirect

interactions. To decide if a given edge DŒi; j � should be removed, we have to

compare it with all values DŒi; k� and DŒj; k�. Consequently, complete information

about rows i and j is needed. Because matrix D is stored row-wise, we have to

stream row j to the processor responsible for row i . Moreover, because matrix

D is symmetric, it is sufficient to analyze its upper (or lower) triangular part.

We can achieve this in p � 1 communication rounds, where in round i only

processors with ranks 0; 1; : : : ; p � i participate in communication and processing.

The parallel runtime of this phase is O
�

n3

p
C �p C �n2

�

. While this worst case

analysis indicates this to be the most compute-intensive phase of the algorithm, it

is not so. This is because DPI requires no significant computation and just single

memory write, and it needs to be applied only to current existing edges in the

network, and the network is expected to be significantly sparse.

12.3.4 Testing Parallel Scalability

The parallel approach described in the previous sections has been implemented in

the software package TINGe [1,25]. TINGe is a C++ software based on the Message

Passing Interface (MPI) that can be executed on large distributed memory machines.

It implements several low-level optimizations to exploit SIMD instructions of

modern processors during mutual information computations and uses MPI I/O

routines to handle large input and output data. TINGe employs the B-spline-based

mutual information estimator.

To demonstrate scalability of the parallel inference method, we executed TINGe

on the IBM Blue Gene/L system with p D 1;024 processors and analyzed four

different expression profiles with varying number of genes (n D 2;048 and n D

4;096) and varying number of observations (m D 911 and m D 2;996). We tested
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Table 12.1 TINGe runtime
in seconds for different
number of genes n and
different number of
expression observations m

m D 911 m D 2;996

p n D 2;048 n D 4;096 n D 2;048 n D 4;096

32 382 1,525 1,489 5,932

64 193 766 752 2,986

128 98 385 378 1,495

256 50 196 193 762

512 27 101 101 386

1,024 17 55 56 203

Fig. 12.4 Relative speedup of TINGe as a function of number of processors for the data sets with
911 observations (left) and 2;996 observations (right)

how runtime changes with the number of processors and what is the relative speedup

of the software. Results are summarized in Table 12.1 and Fig. 12.4.

Note that scalability is a crucial characteristic of any parallel software. If a

parallel application is scalable, we can decrease its runtime proportionally by

executing it on the larger number of processors, and we can solve larger problems.

On the other hand, software that scales poorly is of little use as it does not benefit

from the parallel hardware.

As we can see, TINGe maintains almost linear scalability up to 1;024 processors,

that is, with the increasing number of processors, its runtime decreases linearly. The

runtime grows as square function of the number of genes n and linearly with the

number of observations m. This is what we expected taking into account the O.m/

complexity of the B-spline-based mutual information estimator and the fact that

computations are dominated by the first phase, i.e., computing mutual information

between all pairs of genes.

12.4 Example Applications

So far we described a parallel information theory-based method for gene network

inference. We also demonstrated that the method scales very well on distributed

memory parallel systems and hence can be used to process large expression data.
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One remaining question that has to be addressed is the accuracy and applicability of

the method. In this section, we show how to assess quality of network inference

methods. Then, we analyze performance of TINGe, and we explain how it has

been used to reconstruct a genome-level regulatory network of the model plant

Arabidopsis thaliana.

12.4.1 Assessing Quality of Network Inference Methods

Computational methods for regulatory networks reverse engineering are necessarily

error-prone, owing to simplifications in the underlying models. This is not surprising

taking into account our limited understanding of regulatory processes. When

designing a new inference method, we would like to meet three main quality

criteria: sensitivity, specificity, and precision. Let TP denote the number of true

positives, i.e., the number of correctly predicted gene interactions (network edges);

FP be the number of false positives, i.e., incorrectly predicted edges; TN be the

number of correctly avoided edges; and, finally, FN be the number of incorrectly

avoided interactions. Then, sensitivity relates to the ability of the method to identify

positive results Sensitivity D TP
TPCFN

, and it is a fraction of correct interactions

predicted. Likewise, specificity relates to the ability of the method to identify

negative results Specificity D TN
TNCFP

, and it is a fraction of missing edges correctly

classified. Finally, precision describes predictive power of the method Precision D
TP

TPCFP
.

Having defined quality criteria, the question is how can we assess performance

of a particular method. Naturally, performing a biological experiment to confirm

predictions in the inferred network is the most desired approach. However, in

most cases, it is infeasible because of the cost and technical limitations (not all

interactions can be easily validated). To address this challenge, several researchers

proposed methods to perform quality assessment using a synthetic data [12, 14, 20,

23]. The basic idea of the approach is illustrated in Fig. 12.5.

The process starts with two input components – some known network structure

and a model of expression dynamics, which usually involves a set of differential

equations describing how regulators affect expression of the target gene [23]. The

input network is sampled to obtain a benchmark synthetic network. By combining

the synthetic network and the expression model, we can generate a synthetic gene

expression profile that next can be used as an input to the tested inference method.

Observe that the above process guarantees that we know both expression data and

the network from which this data has been derived. Consequently, we can easily

assess the quality of the inference method by comparing our prediction with the

synthetic network. This approach is very flexible – different models of regulation

and different sampling strategies can be used to generate synthetic data, and hence

to capture various properties of the real-life biological systems. There are several

tools that implement such strategy (see, for example, GNW [20], SynTReN [23],
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Fig. 12.5 Quality assessment of a network inference method using synthetic data

Table 12.2 Quality of ARACNe and TINGe using a 250-gene synthetic
network with two different sets of expression profiles

m D 500 m D 900

ARACNe TINGe ARACNe TINGe

Time (s) 473 24 1,866 40

Specificity 0.99 0.99 0.99 0.99

Sensitivity 0.42 0.42 0.44 0.44

Precision 0.52 0.52 0.56 0.57

TP 181 180 190 187

TN 30,535 30,538 30,553 30,562

FP 166 163 148 139

FN 243 244 234 237

or COPASI [12]). These tools provide a functionality to create benchmark data sets

with desired number of genes and observations and can be readily used to assess

quality of inference methods.

We used SynTReN to assess quality of two mutual information-based inference

methods: ARACNe and TINGe. Both tools use the same underlying inference algo-

rithm; however, ARACNe uses different methods to estimate mutual information

and to establish the threshold I0. We generated two synthetic regulatory networks,

each consisting of n D 250 genes, but differing in the number of expression

observations (m D 500 and m D 900, respectively). Table 12.2 shows that both

methods preserve very good precision and sensitivity, while TINGe outperforms

ARACNe in terms of the runtime. Increasing the number of observations improves

performance of both methods, which is expected as we gain more information with

more observations.

While synthetic data provides a convenient way to assess quality of inference

methods, we should keep in mind that it is not an ultimate quality indicator. This
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is because the way synthetic data is generated is model dependent, and hence, it is

subject to similar limitations as inference methods. Nevertheless, if a given inference

method performs well when tested with synthetic data, it is very likely that it will

perform well in practice. On the contrary, methods that perform poorly will fail

when analyzing real-life data.

12.4.2 Reconstructing Whole-Genome Network of Arabidopsis

Arabidopsis thaliana is the model plant to study plants’ biology and hence is

of great practical importance. Its genome contains estimated 27;000 genes, and

hence, constructing genome-level regulatory network becomes challenging both

computationally and in terms of assembling a sufficiently reach expression profile.

Consequently, reconstructing Arabidopsis network demonstrates applicability and

necessity of parallel inference methods.

We used TINGe to reconstruct the gene regulatory network of Arabidopsis [1].

We started reconstruction by obtaining a total of 3;546 nonredundant Affymetrix

ATH1 microarray observations, grouped into 197 experiments. Here, each experi-

ment contained several gene expression measurements related to the same biological

process or condition. The data was aggregated from the main Arabidopsis repos-

itories at NASC [16], GEO [17], ArrayExpress [8], and AtGenExpress [22]. It

covers different plant development stages and various treatment experiments, and

collectively it provides a broad overview of expression profiles in Arabidopsis.

To accommodate for the variability in this highly diverse collection, we devel-

oped the following pipeline to obtain the final expression profile. We first removed

microarrays which did not pass a rigorous quality control (e.g., exhibited prob-

lems, with RNA hybridization). For this we depended on several existing quality

indicators offered by the Affymetrix platform. The screening process returned

3;137 microarrays that were subject to normalization: we transformed expression

measures into log2 space and changed to Y Œi; j � D SŒi; j � � S i , where SŒi; j �

represents log2-transformed expression of gene i in observation j and S i is the

average expression of gene i across all the microarray chips in the experiment

containing chip j . Finally, the resulting expression was quantile normalized, and to

guarantee that the expression profile of every gene covers a wide range of expression

levels, expression profiles with interquartile range of expression lower than 0:65

were removed. As a result, we obtained the final expression matrix with m D 3;137

observations and n D 15;495 genes.

Using this data, TINGe constructed a whole-genome network in 30 min on

the IBM Blue Gene/L with p D 2;048 processors. I/O operations took 1 min,

finding threshold value I0 required 1 s, and application of DPI ran in 16 s. Analysis

of this network enabled several important insights into biological processes in

plants, for instance, the carotenoid biosynthesis. More importantly, this experiment

demonstrates that thanks to application of parallel computing, mutual information

methods can be used to reconstruct genome-level regulatory networks.
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12.5 Final Remarks

The problem of gene regulatory networks inference is one of many in the broad area

of computational systems biology. In this chapter, we covered information-theoretic

approach to the network inference, together with its scalable parallel implemen-

tation. We also demonstrated how application of parallel computing can be used

to reconstruct some of the largest gene regulatory networks. Recently, several

other parallel reverse engineering methods have been proposed [11, 18, 21]. These

methods use different criteria to model gene interactions, e.g. based on Bayesian

networks, or different approaches to parallelization, e.g., with GPU accelerators.

In spite of that parallel processing only recently attracted attention of systems

biology researchers. Together with the rapid progress in high-throughput biological

technologies, we can expect accumulation of massive and diverse expression data,

which will enable more complex and realistic models of regulation. Clearly, these

models will require large computational power offered by parallel systems.
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Chapter 13

Computational Biomarker Discovery

Fan Zhang, Xiaogang Wu, and Jake Y. Chen

Abstract The advent of omics technologies as genomics and proteomics has

brought the hope of discovering novel biomarkers that can be used to diag-

nose, predict, and monitor progress of disease. The importance of computational

biomarker discovery for diagnostic classification and prognostic assessment in the

context of microarray and proteomic data has been increasingly recognized. We

present an overview of computational methods and their applications to biomarker

F. Zhang
Department of Academic and Institutional Resources and Technology, University of North Texas
Health Science Center, Fort Worth, TX 76107, USA

Institute of Biopharmaceutical Informatics and Technology, Wenzhou Medical College, Wenzhou,
Zhejiang, China
e-mail: Fan.Zhang@unthsc.edu

X. Wu
School of Informatics, Indiana University, Indianapolis, IN 46202, USA

Indiana Center for Systems Biology and Personalized Medicine, Indianapolis, IN 46202, USA

Institute of Biopharmaceutical Informatics and Technology, Wenzhou Medical College, Wenzhou,
Zhejiang, China
e-mail: wu33@IUPUI.edu

J.Y. Chen (�)
School of Informatics, Indiana University, Indianapolis, IN 46202, USA

Department of Computer and Information Science, School of Science, Purdue University,
Indianapolis, IN 46202, USA

Indiana Center for Systems Biology and Personalized Medicine, Indianapolis, IN 46202, USA

Institute of Biopharmaceutical Informatics and Technology, Wenzhou Medical College, Wenzhou,
Zhejiang, China
e-mail: Jakechen@IUPUI.edu
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discovery with particular focus on genomics and proteomics data. One case

study is exemplarily presented, and relevant computational biomarker discovery

terminology and techniques are explained.

Keywords Biomarker discovery • Data mining • Breast cancer

13.1 Molecular Biomarkers: What and Why

13.1.1 Definition

A biomarker as defined by the National Cancer Institute is “a biological molecule

found in blood, other body fluids, or tissues that is a sign of a normal or abnormal

process, or of a condition or disease.” A biomarker may be used to see how well the

body responds to a treatment for a disease or condition. A biomarker is also called

molecular marker and signature molecule.

13.1.2 Application Types

Biomarkers can be used clinically to screen for, diagnose, or monitor the activity of

diseases and to guide molecularly targeted therapy or assess therapeutic response. In

the biopharmaceutical industry, biomarkers define molecular taxonomies of patients

and diseases and serve as surrogate endpoints in early-phase drug trials. Molecular

biomarkers can be much more sensitive than traditional lab tests. From a clinical per-

spective, biomarkers may have a variety of functions, which correspond to different

stages (Table 13.1) [1] in disease development, such as in the progression in cancer

or cardiovascular disease. Biomarkers can be used to detect and treat early-state

Table 13.1 Rationale and objectives for use of clinical application of cancer
biomarkers

Type of biomarker Objective for use

Screening To detect and treat early-state (pre)cancers

Diagnostic To definitively establish the presence of cancer

Prognostic To portend disease outcome at the time of diagnosis

without reference to any specific therapy

Predictive To predict outcome of a particular therapy

Monitoring To measure response to treatment and early detect
disease progression or relapse

Risk profiling To determine the risk profile

Companion To lead to companion diagnostic development

Toxicity To provide important, compound-specific information
regarding toxic drug side effects
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(pre)cancers in the asymptomatic patients (screening biomarkers), to definitively

establish the presence of cancer for those who are suspected to have the disease

(diagnostic biomarkers), or to portend disease outcome at the time of diagnosis

without reference to any specific therapy for those with overt disease (prognostic

biomarkers) for whom therapy may or may not have been initiated. Biomarkers can

be also used to predict outcome of a particular therapy (predictive biomarkers) or

to measure response to treatment and early detect disease progression or relapse

(monitoring biomarkers) [2]. In addition, biomarkers can be used to evaluate the

disease risk profile [3] (risk profiling), to lead to companion diagnostic development

(companion biomarker), and to provide important, compound-specific information

regarding toxic drug side effects (toxicity biomarker).

13.1.3 Clinical Application from a Historical Perspective

Biomarkers can be classified based on different parameters. They can be classified

based on their characteristics such as imaging biomarkers or molecular biomark-

ers. Imaging biomarkers are measurable characteristics obtained by imaging that

indicates a specific biological process is occurring in the body. Imaging-based

biomarkers employ a variety of technologies to capture images of anatomical and

physiological changes in the body, for example, X-ray, computed tomography

(CT), positron emission tomography (PET), single-photon emission computed

tomography (SPECT), and magnetic resonance imaging (MRI). Molecular biomark-

ers have been defined as biomarkers that can be discovered using basic and

acceptable platforms such as genomics and proteomics. Apart from genomics and

proteomics platforms, biomarker assay techniques, metabolomics, lipidomics, and

glycomics are also the most commonly used as techniques in identification of

biomarker.

A genomic biomarker is defined by FDA as a measurable DNA and/or RNA char-

acteristic that is an indicator of normal biological processes, pathogenic processes,

and/or response to therapeutic or other interventions. Similarly, the definitions can

be extended to other approaches such as proteomics, metabolomics, lipidomics, and

glycomics. The common genomic approach includes northern blot, gene expression,

SAGE, DNA microarray, and next-generation sequencing. Technologies involved in

proteomic biomarker research include 2D-GE, LS/MS, SELDI-TOF, Ab microar-

ray, and tissue microarray. Metabolomics approach is to characterize metabolite

differences between altered, stressed, or otherwise abnormal physiological states

by extracting, identifying, and quantifying all of the small molecule compounds

(e.g., metabolites). Lipidomics approach refers to the analysis of lipids. Three key

platforms used for lipid profiling include mass spectrometry, chromatography, and

nuclear magnetic resonance. Glycans have unique characteristics that are signifi-

cantly different from nucleic acids and proteins in terms of biosynthesis, structures,

and functions. Disease development and progression are usually associated with

alternations in glycosylation on tissue proteins and/or blood proteins. Glycans
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released from tissue/blood proteins hence provide a valuable source of biomarkers.

Three common platforms used for glycosylation analysis include lectin microarray,

MALDI-TOF MS/tandem MS, and HPLC/capillary electrophoresis.

13.2 Genome Technologies for Biomarker Development

13.2.1 High-Throughput Multiplexing Assays

High-throughput genomics technologies (e.g., gene expression microarrays)

have been tremendously changing biomedical research nowadays, which allow

researchers to simultaneously monitor the expression of tens of thousands of

genes [4]. Microarray data analysis has also become a common practice in many

experimental laboratories. Numerous literatures describe the innovative insights

within microarray data analysis [5, 6]. It has been widely applied into many

medical areas, including distinguishing disease subtypes [7], identifying candidate

biomarkers [8], and revealing the underlying molecular mechanisms of disease [9]

or drug response [10].

Gene expression microarrays can take a snapshot of all the transcriptional activity

in a biological sample, while it also generates a huge amount of data with intrinsic

noise (sample or instrument noise), which is still a quite challenging task to interpret

it even by exploiting modern computational and statistical tools [6, 11, 12]. This

challenge no longer lies in the acquisition of gene expression profiles, but rather in

the interpretation for the results to gain insights into biological mechanisms [13]. In

many cases, crucial genes show relatively slight changes, and many genes selected

are also poorly annotated [5]. From a biological perspective, functionally related

genes often display a coordinated expression to accomplish their roles in the cell

[14]. Hence, to translate such lists of differentially expressed genes into a functional

profile able to understand the underlying biological phenomena, one approach to

aid interpretation is to look for changes in a group of genes with a common function

(gene cluster) [5].

Accordingly, gene set analysis (GSA) methods aim to test the activity of such

gene clusters instead of testing the activity of individual genes—individual gene

analysis (IGA) [15]. In recent years, GSA approach has received a great deal of

attention, since it is free from the problems of the “cutoff-based” methods. In this

direction, GSA methods enable the understanding of cellular processes as an intri-

cate network of functionally related components [14]. Among these GSA methods,

gene set enrichment analysis (GSEA) is one of the most widely used methods

[13]. GSEA analyzes predefined gene sets based on prior biological knowledge

to determine whether this gene set as a whole exhibits differential expression.

GSEA has many advantages as it does not employ an arbitrary cutoff to select

significant genes. Instead, it uses all the information about every gene involved in

the experiment [11]. However, GSEA does rely on predefined gene sets (without
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gene interaction information), making IGA more beneficial when not much is

known about the biological function being considered [6]. Furthermore, GSEA still

assumes that more differentially expressed genes are more crucial to the biology,

which is not always true [11]. In many cases, extensive upstream data processing,

comprehensive gene selection statistics, and downstream pathway/network analysis

cannot be replaced by GSEA [11]. Therefore, gene expression signature analysis and

pathway analysis (using tools such as DAVID [16]) remain two separate processes.

Network-based gene expression analysis is proposed for candidate biomarker

discovery by integrating disease susceptibility genes, their gene expressions, and

their gene/protein interaction network [17, 18]. In 2007, Marc Vidal’s group at

Harvard constructed a protein interaction network for breast cancer susceptibility

using various “omics” datasets and identified HMMR as a new susceptibility locus

for the disease [17]. Later, Trey Ideker’s group at UCSD integrated protein network

and gene expression data to improve the prediction of metastasis formation in

patients with breast cancer [18]. The two studies marked the exciting beginning of

a new paradigm which suggests protein interaction networks and pathway, although

drafty, error-prone, and incomplete can serve as a molecular-level conceptual

roadmap to guide future microarray analysis.

13.2.2 Next-Generation Sequencing

Over the past 4 years, the application of automated Sanger sequencing for genome

analysis has been shift away. The automated Sanger method is considered as a

“first-generation” technology, and newer methods are referred to as next-generation

sequencing (NGS). These newer technologies constitute various strategies that rely

on a combination of template preparation, sequencing and imaging, and genome

alignment and assembly methods.

A great deal of NGS effort today centers on cancer, but other basic research areas

stand to benefit as well (e.g., immunogenetic studies, neurological and psychiatric

diseases, infectious diseases, metagenomics, evolution). NGS has empowered the

growth of epigenomics; several approaches exist, but bisulfite-enabled methyl-seq

currently dominates the scene.

NGS is also becoming increasingly popular for applications once dominated by

microarrays. ChIP-seq’s improved data quality compared to microarrays permits

greater accuracy in identifying protein-binding DNA targets. RNA-seq provides an

alternative to microarrays in assessing cell transcriptomes and is well on its way to

becoming the dominant mode in transcriptomics. Other applications of NGS include

microRNA-seq, targeted sequencing (sequence capture), de novo sequencing of

small genomes, whole-genome sequencing, resequencing of any genome, whole

exome sequencing, cancer genome sequencing, methylation, mutation and structural

DNA analysis, single molecule sequencing, SNP analysis, microbial/viral genome

sequencing, and bisulfite sequencing.



360 F. Zhang et al.

Next-generation sequencing has been applied to biomarker discovery, validation,

and characteristics. For example, two studies published recently showed convinc-

ingly that whole-genome sequencing of individual patients or affected families can

reveal the one gene out of some 25,000 in the human genome bearing a deleterious

mutation.

Baylor College of Medicine’s Jim Lupski, Richard Gibbs, and colleagues showed

that by sequencing the whole genome of an affected individual—in this case

Lupski himself—it is possible to identify the rogue gene for a recessive disease

by filtering the variations in the coding genes to focus on just those that are novel

and predicted to cause a significant phenotypic change [19]. Meanwhile, researchers

at the Institute of Systems Biology (ISB) identified the gene for a rare Mendelian

disorder called Miller syndrome by sequencing a family of four (parents and two

children) [20].

13.2.3 Clinical Proteomics

Clinical proteomics is the application of proteomic techniques to the field of

medicine with the aim of solving a specific clinical problem within the context of a

clinical study. In the past year significant commitments from research institute and

development of clinical proteomics have been witnessed. The application of clinical

proteomic research is growing rapidly in the field of biomarker discovery, especially

in the area of cancer diagnostics. Clinical proteomics holds the potential of taking

a snapshot of the total protein complement of a cell, or body fluid, and identifying

proteins as potential biomarkers for the differentiation of disease and health [21].

The study of clinical proteomic may provide us with opportunities in more effective

strategies for early disease detection and monitoring, more effective therapies, and

developing a better understanding of disease pathogenesis [22]. Such studies may

aim at earlier or more accurate diagnosis, improvement of therapeutic strategies, and

better evaluation of prognosis and/or prevention of the disease. Although clinical

proteomics currently mainly focuses on diagnostics and biomarker discovery, it

includes the identification of new therapeutic targets, drugs, and vaccines for better

therapeutic outcomes and successful disease prevention. In addition, success for

a clinical proteomics requires the communication among clinicians, statisticians,

bioinformatists, and biologists [23].

Recent advances in clinical proteomics technology, particularly liquid chro-

matography coupled with tandem mass spectrometry (LC-MS/MS), have enabled

biomedical researchers to characterize thousands of proteins in parallel in biological

samples. Using LC-MS/MS, it has become possible to detect complex mixtures

of proteins, peptides, carbohydrates, DNA, drugs, and many other biologically

relevant molecules unique to disease processes [24]. A modern mass spectrometry

(MS) instrument consists of three essential modules: an anion source module that

can transform molecules to be detected in a sample into ionized fragments: a



13 Computational Biomarker Discovery 361

mass analyzer module that can sort ions by their masses, charges, or shapes by

applying electric and magnetic fields: and a detector module that can measure

the intensity or abundance of each ion fragment separated earlier. Tandem mass

spectrometry (MS/MS) has the additional analytical modules for bombarding

peptide ions into fragment peptide ions by pipeline two MS modules together,

and therefore can provide peptide sequencing potentials for selected peptide ions

in real time. Recent developments of new generations of mass spectrometers and

improvements in the field of chromatography have revolutionized protein analytics.

Particularly the combination of liquid chromatography as a separation tool for

proteins and peptides with tandem mass spectrometry as an identification tool

referred to as LC-MS/MS has generated a powerful and broadly used technique

in the field of proteomics [25]. LC-MS/MS proteomics has been used to identify

candidate molecular biomarkers in a diverse range of samples, including cells,

tissues, serum/plasma, and other types of body fluids. For example, Flaubert

et al. discovered highly secreted protein biomarkers which changed significantly

in abundance, corresponding with aggressiveness by using LC-MS/MS to analyze

the secreted proteomes from a series of isogenic breast cancer cell lines varying in

aggressiveness: non-tumorigenic MCF10A, premalignant/tumorigenic MCF10AT,

tumorigenic/locally invasive MCF10 DCIS.com, and tumorigenic/metastatic MCF

10CA cl. D. They obtained proteomes from conditioned serum-free media, analyzed

the tryptic peptide digests of the secreted proteins using a Waters’ capillary liquid

chromatography coupled to the nanoflow electrospray source of a Waters’ Q-TOF

Ultima API-US mass spectrometer, and separated peptide on a C18 reversed-phase

column [26].

Figure 13.1 describes the typical workflow for identifying a biomarker from

LC-MS/MS: (1) protein separation, (2) enzyme digestion, (3) peptide separation,

(4) mass spectrometry, (5) database search, and (6) statistics analysis and pathway

analysis for biomarker.

13.3 Computational Method for Biomarker Identification

13.3.1 Computational Experimental Design

Experimental design is the process of planning a study to meet specified objectives.

The parts of an experiment design are as follows:

Hypothesis: A statement that predicts the outcome of testing the relationship

between the two groups as specified in the problem.

Materials and Procedure: A recipe for conducting the experiment. It consists of a

list of materials/equipment followed by step-by-step instructions.
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Fig. 13.1 Proteomics analysis using liquid chromatography coupled with tandem mass spectrom-
etry (LC/MS-MS) techniques

Statistical Analysis of Data

Measure of Variation: For qualitative data, a frequency table or histogram can be

used. For quantitative data, the range and standard deviation should be used.

Regression Analysis: Using an equation or graph to show the relationship of

variables; finding the line of best fit is often used.

Sample size: Sample size estimation is an important aspect of experimental

design, because without these calculations, sample size may be too high or

too low. If sample size is too low, the experiment will lack the precision to

provide reliable answers to the questions it is investigating. If sample size is

too large, time and resources will be wasted, often for minimal gain.

Variance Analysis: Each design can be analyzed by using a specific analysis of

variance (ANOVA) that is designed for that experimental design. An effect

is a change in the response due to a change in a factor level. There are

different types of effects. One objective of an experiment is to determine if

there are significant differences in the responses across levels of a treatment

(a fixed effect) or any interaction between the treatment levels. If this is always

the case, the analysis is usually easily manageable, given that the anomalies

in the data are minimal (outliers, missing data, homogeneous variances,

unbalanced sample sizes, and so on). A random effect exists when the levels

that are chosen represent a random selection from a much larger population of

equally usable levels. This is often thought of as a sample of interchangeable

individuals or conditions. The chosen levels represent arbitrary realizations

from a much larger set of other equally acceptable levels.
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Prospective Study: A study in which the subjects are identified and then followed

forward in time.

Retrospective Study: In medicine, a study that looks backward in time, usually

using medical records and interviews with patients who are already known to

have a disease.

13.3.2 Statistical Data Analysis

13.3.2.1 t-test

The t-test is a statistical hypothesis test in which the test statistic follows a Student’s

t distribution if the null hypothesis is supported and assesses whether the means of

two groups are statistically different from each other. Two-sample t-statistics and

Welch’s t-test statistics are used to calculate the p-value of null hypothesis that the

means of two normally distributed populations are equal, for equal variance and

unequal variance, respectively.

For equal variance, a 2-sample t-test statistics is calculated as

t D
X1 �X2

SX1X2 

q

1
n1
C 1

n2

(13.1)

where

SX1X2 D

r

.n1�1/S2
X1

C.n2�1/S2
X2

n1Cn2�2
. SX1X2 is an estimator of the common standard

deviation of the two samples. The degree of freedom for this test is n1C n2� 2.

For unequal variance, Welch’s t-test statistics is calculated as

t D
X1 �X2

SX1�X2

(13.2)

where

SX1�X2
D

q

S2
1

n1
C

S2
2

n2
. For use in significance testing, the distribution of the

test statistic is approximated as being a Student’s t distribution with the degrees

of freedom calculated using

df D

�

S2
1 =n1 C S2

2 =n2

�2

�

S2
1 =n1

�2
= .n1 � 1/C

�

S2
2 =n2

�2
= .n2 � 1/

: (13.3)
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13.3.2.2 GSEA

Though there are many variations on the gene set enrichment analysis (GSEA)

method, we describe here the version of the algorithm developed by Subramanian

and colleagues [13], which is the most widely used form of the GSEA method.

Suppose microarray data are given from samples belonging to two phenotypes,

phenotype 1 and phenotype 2 (e.g., control vs. experimental). In the microarray

data, each gene and each sample are given a gene expression value. Suppose a gene

set S is also given, usually derived from some common biological category. The

question here is whether the gene set S shows differential expression between the

two phenotypes.

First, an association score is calculated for each gene that measures the difference

of that gene’s expression in the two phenotypes using any suitable metric. For

example, we may compute for each gene an independent two-sample t-statistic

between phenotype 1 and phenotype 2 or the difference between signal-to-noise

ratios (mean divided by variance) in each phenotype. Second, all the N genes are put

into a list LDfg1, g2, : : : , gNg and the list is sorted by each gene’s association score

ri from most positive to most negative. Genes that appear toward the top of the list

are more expressed in phenotype 1 and genes that appear toward the bottom of the

list are more expressed in phenotype 2. Third, walk down the gene list and compute

a running sum. Each time a gene is hit in the gene set S, the sum is increased, and

each time a gene is not hit in the gene set S, the sum is decreased. The degree to

which the sum is increased or decreased is weighted and normalized so that the

total sum after going through all the genes is 0. Finally, let the enrichment score

(ES) be the maximum deviation of the running sum from 0. More specifically, for

some weighting parameter p, usually pD 1, let

Phit .S; i/ D
X

gj 2S;j �i

jrj j
p

NR
; where NR D

X

gj

ˇ

ˇrj

ˇ

ˇ

p

Pmiss .S; i/ D
X

gj …S;j �i

1
N �NS

; where NS D num of genes in S:

Then ES is the maximum deviation of Phit�Pmiss from 0.

In order to determine the significance of the ES, a number of permutations

are created and the ES for each permutation is recalculated. Permutations of the

phenotypes in the original microarray data are preferred over permutations of the

genes in the gene list, since this preserves the structure between genes. The ESs

of the permutations generate a null distribution, and a nominal p-value is given

by the number of permutations with a larger ES than the original data. This

nominal p-value is then used to help identify whether this gene set is associated

with the difference between the gene expression levels in the samples of the two

phenotypes.
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13.3.2.3 Bayesian Classification

A simple Bayesian classifier is the naive Bayes classifier which is a probabilistic

classifier based on applying Bayes’ theorem with strong (naive) independence

assumptions.

Assuming in general that Y is any discrete-valued variable and the attributes X1,

: : : , Xn are any discrete- or real-valued attributes, the naive Bayes classification

rule is

Y � D arg max
y2fy1;:::;ymg

P .Y jX1; : : : ; Xn / : (13.4)

Using Bayes’ theorem and assuming the attributes X1, : : : , Xn are all condition-

ally independent of one another given Y, the Eq. (13.4) can be rewritten as

Y � D arg max
y2fy1;:::;ymg

P .Y jX1; : : : ; Xn /

D arg max
y2fy1 ;:::;ymg

P .X1;:::;XnjY /P.Y /

P .X1;:::;Xn/

:::

D arg max
y2fy1;:::;ymg

1
P .X1;:::;Xn/

P.Y /

n
Y

iD1

P .Xi jY /: (13.5)

where P(Y) is the prior probability,
Q

n
i D 1P(XijY) is likelihood, and P(X1, : : : , Xn)

is evidence.

13.3.2.4 Bayesian Network

Bayesian networks are a probabilistic graphical model that represents a set of

random variables and their conditional independencies via a directed acyclic graph

(DAG) whose nodes represent random variables (observable quantities, latent

variables, unknown parameters, or hypotheses) and edges represent conditional

dependencies.

Let GD (V, E) be a directed acyclic graph (or DAG), and let XDfX1, X2,

: : : , Xng be a set of random variables. Suppose that each variable is conditionally

independent of all its non-descendants in the graph given the value of all its parents.

Then X is a Bayesian network with respect to G. Its joint probability density function

(with respect to a product measure) can be written as a product of the individual

density functions, conditional on their parent variables as follows [27]:

P .X1; : : : ; Xn/ D

n
Y

iD1

P .Xi jparents .Xi/ /; (13.6)

where parents (Xi) is the set of parents of Xi.
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For any set of random variables, the probability of any member of a joint

distribution can be calculated from conditional probabilities using the chain rule

as follows [27]:

P .X1 D x1; : : : ; Xn D xn/ D

n
Y

iD1

P .Xi D xi jXiC1 D xiC1; : : : ; Xn D xn /

(13.7)

13.3.3 Computational Data Analysis

13.3.3.1 Artificial Neural Network

Neural networks have several unique advantages and characteristics as research

tools for the cancer prediction problems [28–32]. A very important feature of

these networks is their adaptive nature, where “learning by examples” replaces

conventional “programming by different cases” in solving problems.

A generalized feed-forward neural network has three layers: input layer, hidden

layer, and output layer, and is trained using a back propagation supervised training

algorithm. The input is used as activation for the input layer and is propagated to the

output layer. The received output is then compared to the desired output and an error

value is calculated for each node in the output layer. The weights on edges going into

the output layer are adjusted by a small amount relative to the error value. This error

is propagated backwards through the network to correct edge weights at all levels.

13.3.3.2 Support Vector Machine

Support vector machine (SVM), a supervised learning method that analyzes data and

recognizes patterns for classification and regression analysis, performs classification

by constructing an N-dimensional hyperplane that optimally separates the data

into two categories. For example, the classification problem in biomarkers can

be restricted to consideration of the two-class problem without loss of generality

(functional biomarker and unfunctional biomarker). In this problem the goal is to

separate the two classes by a function which is induced from available samples.

In order to build a classifier to infer functional biomarker, we first perform an

extensive literature curation to determine the constituents of functional biomarker

and record the experiment condition of each functional biomarker, and build the

training pattern set. Each pattern contains several features such as species, tissue,

platform, time, and conditions. Then we will use support vector machine (SVM)-

based methods [33] to develop the classifier for functional biomarker. And then, we

will use randomly assigned patterns for validation. Last, we will apply the classifier

to predict functional biomarker from the mapping results of clinical proteomics.
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Consider the problem of separating the set of training patterns belonging to two

separate classes (1, functional biomarker;�1, unfunctional biomarker):

D D f.x1; y1/ ; : : : ; .xl ; yl /g ; x 2 R
n; y 2 f�1; 1g (13.8)

with a hyperplane

< w; x > Cb D 0: (13.9)

The set of patterns is said to be optimally separated by the hyperplane if it

is separated without error and the distance between the closest pattern and the

hyperplane is maximal. Without loss of generality it is appropriate to consider a

canonical hyperplane [34], where the parameters w, b are constrained by

min
i
j< w; xi > Cbj D 1: (13.10)

That is, the norm of the weight vector should be equal to the inverse of the distance

of the nearest point in the dataset to the hyperplane. A separating hyperplane in

canonical form must satisfy the following constraints:

yi Œ< w; xi > Cb� � 1 � ei ; i D 1; : : : ; l: (13.11)

Therefore, according to the structural risk minimization inductive principle, the

training of an SVM is to minimize the guaranteed risk bound

min
w;b;e

® .w; b; e/ D
1

2
wT wC

1

2
C

1
X

iD1

e2
i ; (13.12)

subject to the constraints

yi Œ< w; xi > Cb� � 1 � ei ; i D 1; : : : ; l: (13.13)

The above optimization problem can be used in a linear recognition problem,

but in this case, the classification problem is nonlinear. To solve the nonlinear

classification problem, we can map first the training data to another dot product

space (called the feature space) F via a nonlinear map ¥ W Rn ! F and then

perform the above computations in F. For example, we can use Gaussian radius

basis function (RBF) kernels function for SVM.

13.3.3.3 Leave-One-Out Cross-Validation Method

Some features may not be relevant to the prediction of functional biomarker.

Accordingly, we should use the leave-one-out cross-validation method to reduce
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the dimension of the features to overcome the risk of “overfitting” and determine

kernel feathers. The leave-one-out cross-validation method is described as follows:

Input: D D f.x1; y1/ ; : : : ; .xl; yl/g ; x 2 R
n; y 2 f�1; 1g

For tD 1 to n f

XtDfxl,mjm¤ tg//exclude t-th feature;

Train t-th SVM using [35];

Compute LOSS(t) using LOSS
�

yp�y
�

D

�

0 if ypDy

1 if yp¤y
//the loss of t-th SVMI

�

Output: pD arg maxtLOSS (t)//find the worst feature.

where l is the number of the specimen used for training, n is the number of the

used features during the procedure, and yi is the label of i-th specimen. The above

algorithms performed until the necessary number of features are reached.

13.3.3.4 Genetic Algorithms

Genetic algorithms are implemented in a computer simulation in which a population

of abstract representations (called chromosomes or the genotype of the genome) of

candidate solutions (called individuals, creatures, or phenotypes) to an optimization

problem evolves toward better solutions. As you can guess, genetic algorithms are

inspired by Darwin’s theory about evolution. Simply said, solution to a problem

solved by genetic algorithms is evolved.

Chromosomes

All living organisms consist of cells. In each cell there is the same set of

chromosomes. Chromosomes are strings of DNA and serve as a model for the whole

organism. A chromosome consists of genes, blocks of DNA. Each gene encodes a

particular protein. Basically, it can be said that each gene encodes a trait, for exam-

ple, color of the eyes. Possible settings for a trait (e.g., blue, brown) are called alle-

les. Each gene has its own position in the chromosome. This position is called locus.

Complete set of genetic material (all chromosomes) is called genome. Particular

set of genes in genome is called genotype. The genotype is with later development

after birth base for the organism’s phenotype, its physical and mental characteristics,

such as eye color, intelligence etc.

Reproduction

During reproduction, first occurs recombination (or crossover). Genes from parents

form in some way the whole new chromosome. The newly created offspring can
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then be mutated. Mutation means that the elements of DNA are a bit changed. These

changes are mainly caused by errors in copying genes from parents.

The fitness of an organism is measured by success of the organism in its life.

Genetic algorithms are inspired by Darwin’s theory about evolution. Solution to

a problem solved by genetic algorithms is evolved.

Algorithm is started with a set of solutions (represented by chromosomes) called

population. Solutions from one population are taken and used to form a new

population. This is motivated by a hope, that the new population will be better

than the old one. Solutions which are selected to form new solutions (offspring)

are selected according to their fitness—the more suitable they are, the more chances

they have to reproduce.

This is repeated until some condition (e.g., number of populations or improve-

ment of the best solution) is satisfied.

The basic genetic algorithm is outlined as follows:

1. [Start] Generate random population of n chromosomes (suitable solutions for

the problem).

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population.

3. [New population] Create a new population by repeating the following steps until

the new population is complete:

(a) [Selection] Select two parent chromosomes from a population according to

their fitness (the better fitness, the bigger chance to be selected).

(b) [Crossover] With a crossover probability, cross over the parents to form a

new offspring (children). If no crossover was performed, the offspring is an

exact copy of parents.

(c) [Mutation] With a mutation probability, mutate new offspring at each locus

(position in chromosome).

(d) [Accepting] Place new offspring in a new population.

4. [Replace] Use newly generated population for a further run of algorithm.

5. [Test] If the end condition is satisfied, stop, and return the best solution in current

population.

6. [Loop] Go to step 2.

13.3.3.5 Decision Trees

A decision tree (or tree diagram) is a decision support tool that uses a treelike

graph or model of decisions and their possible consequences, including chance

event outcomes, resource costs, and utility. These decisions generate rules for the

classification of a dataset. Specific decision tree methods include classification and

regression trees (CART) and chi-squared automatic interaction detection (CHAID).

CART and CHAID are decision tree techniques used for classification of a

dataset. They provide a set of rules that you can apply to a new (unclassified)

dataset to predict which records will have a given outcome. CART segments a
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dataset by creating 2-way splits while CHAID segments using chi square tests

to create multi-way splits. CART typically requires less data preparation than

CHAID.

13.3.3.6 Graph Theory

A graph refers to a collection of vertices or nodes and a collection of edges

that connect pairs of vertices and can be abstracted mathematically as a graph

G (V, E). The vertex set of G is usually denoted by V(G), and the edge set of

G is usually denoted by E(G). The degree, or valency, dG(v) of a vertex v in a

graph G is the number of edges incident to v, with loops being counted twice.

The vertex connectivity or connectivity �(G) of a graph G is the minimum number

of vertices that need to be removed to disconnect G. The graph theory has been

widely applied to the analysis of molecular interaction networks such as protein-

protein interaction networks, gene-gene co-expression networks, genetic interaction

networks, molecular co-annotation networks, literature co-occurrence networks, and

molecular entity association networks, where a vertex can represent gene, protein,

or pathway and the edge can represent interaction, similarity, or distance.

13.3.3.7 Nearest Neighbor Method

Nearest neighbor method is a technique that classifies each record in a dataset based

on a combination of the classes of the k record(s) most similar to it in a historical

dataset (where k� 1). This is sometimes called the k-nearest neighbor technique.

13.3.4 Biological Data Analysis

13.3.4.1 Gene Prioritization Based on Networks

Identification of disease genes is important to better understand gene functions.

Recently, a number of computational approaches have been developed to predict

or prioritize candidate disease genes. Network-based approaches have also been

employed to infer new candidate disease genes based upon network linkages

with known disease genes. Typically, these methods first construct a gene-gene or

protein-protein association network based on one or more types of genomic and

proteomic data and then rank candidate genes based on network proximity to know

disease-associated genes. The influx of human molecular interaction data, e.g., high-

throughput protein-protein interaction (PPI) data, has led to many recent studies

that aim to connect disease-modifying genes with other molecular interacting

entities [36–38]. In the chapter, we primarily focus on molecular interaction

network topological information that model physical interactions and functional
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relationship between proteins and use them to predict and prioritize disease genes

or disease biomarkers. A common assumption in these studies is that candidate

disease genes may be found in close topological proximity of known disease

genes in the molecular interaction network [36–40]. A seeding strategy is often

used, e.g., to incorporate prior knowledge of disease genes from public databases

such as OMIM (Online Mendelian Inheritance in Man) [41] or literature curation

and generate disease-specific context for subsequent network topological function

analysis. These methods usually correlate known disease genes with candidate

disease genes by relating their local topological features, such as node degrees

(the number of PPI connections to a node protein), closeness (average distance to

disease genes), and betweenness (average neighborhood overlapping with disease

genes) [39].

Recent progress has been made to prioritize genes in molecular interaction

networks using PageRank [42] and HITS [43], which were inspired by algorithms

to rank Web pages through Web links. These methods calculate scores to measure

global similarity between functionally known genes and unknown genes, outper-

forming local topological association methods [37]. For example, Sebastian et al.

used a random walk (RW) algorithm to rank candidate genes to known members of

a disease-gene family [37]. Wu et al. introduced the ant colony optimization (ACO)

algorithm into ranking yeast PPI network annotated with lethality information,

which revealed intriguing patterns [44]. Jing Chen et al. compared PageRank, HITS

with Priors, and K-step Markov method to estimate the relative importance of

candidate disease genes in PPI network to known disease genes [36], which found

that the three methods and their modifications yielded similar results. Huang et al.

evaluated how the quality of seed genes and PPI data affect the ranking results and

suggested that disease specific prior knowledge should be included in prioritizing

candidate disease genes whenever possible [45].

13.3.4.2 Pathway Analysis

A biological system is very dynamical and complex. Systems biology results show

that genes and proteins do not function in isolation [46]; instead, they work in

interconnected pathways and molecular networks [47]. A mere study of individual

molecules such as genes or proteins (which has been the traditional approach

for many years) cannot help in decoding the mystery of a system. Since we do

not completely understand the entire system globally, there is no cure for several

diseases or disorders such as cancer, AIDS etc. Also, there are certain processes

which we do not understand yet such as regeneration. Hence, obtaining a genome or

a proteome is just half the story. Studying the interactions between these molecules

is a step ahead to understand a biological system. As a part of this process, it is

also essential to visualize how a system behaves in response to various compounds

such as drugs. Only if we know all the interactions of a drug, it can be used as a

better cure.
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With the advent of high-throughput technology over the last decade, vast

amounts of data have been generated which has led to the development of systems

biology approaches that interrelate the elements of biological processes, such as

mRNAs, micro RNAs, and proteins, revealing higher-level pathways and networks

of organization. Systems biology first describes the elements of the system then the

biological networks that interrelate these elements and finally characterizes the flow

of information that links these elements and their networks to an emergent biological

process. A pathway network can be defined as a set of molecular interactions, and in

this set, a subset of genes that coordinate to achieve a specific task forms a pathway.

Interactions among several genes and gene products lead to biological processes.

Most of the effort these days is concerted on recognizing some patterns among

these networks and pathways. However, it is not enough to analyze patterns; we

need to understand their dynamical nature, that is, how they evolve and change. It is

important to understand the transition from DNA sequence to disease symptoms to

their therapeutic targets.

A biological pathway tries to understand a specific biological process. A

pathway is a series of interactions leading to a cellular process/molecular function.

Mathematically, pathways are described as graphs consisting of a node and edges. A

node represents a biological entity which can be a gene, protein, or any compound,

while edges reflect the relationship between two entities which it connects. The

relationship can be activation, inhibition, chemical modification, or undefined.

Also these edges can be directional or nondirectional. Pathways can be classified

into several categories. Some of the important biological categories are metabolic,

regulatory, protein function, and disease.

Biological pathway construction either follows a data-driven objective (DDO) or

knowledge-driven objective (KDO). DDO is derived from experimental data such

as genomic or proteomic data while KDO is constructed by considering a particular

domain of interest, such as disease, system etc. Literature is the main source of

information in KDO.

There are some pathway visualization tools such as CellDesigner, Cytoscape, and

Ingenuity etc. There are various tools available for manually curating the pathways:

Pathway Editor, Knowledge Editor, Map Editor, etc. Several tools such as Pathway

Studio, Pathway Finder, and PubGene use natural language processing (NLP) to

identify associations from literature which can be built into pathways. There are

some important pathway databases described below.

KEGG (Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/

kegg): It is a free, online, open source pathway database. Developed by Kanehisa

Laboratories, it is an integrated database resource consisting of 16 main databases

which contain systems and genomic and chemical information. KEGG consists of

pathways stored as pathway maps. They cover various domains such as metabolism

(the most popular domain in KEGG), genetic information processing (transcription,

translation, etc.), environmental information processing (cell growth, cell motility,

etc.), cellular processes (immune system, nervous system, etc.), and human diseases

(neurodegenerative, circulatory, etc.). It contains 343 pathway maps, 114 human

http://www.genome.jp/kegg
http://www.genome.jp/kegg
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diseases, 9,149 drugs, 5,135,391 genes in high-quality genomes, and 16,055

metabolites and other small molecules [48].

Reactome (http://www.reactome.org): It is also a free, online, curated, open

source pathway database. It cross-references several databases such as UniProt

(http://www.uniprot.org) and NCBI (http://www.ncbi.nlm.nih.gov). It contains

information about 23 species. For humans, it contains information on 3,916

proteins, 2,955 complexes, 3,541 reactions, and 1,045 pathways. It is an effort

of collaboration between Cold Spring Harbor Laboratory, Ontario Institute for

Cancer Research, European Bioinformatics Institute, Gene Ontology Consortium,

and New York University. It also offers tools for pathway analysis [49].

Pathguide (http://www.pathguide.org): It is a meta database which contains

information on various biological pathway resources. It contains information about

310 resources which include a listing of protein-protein interactions, metabolic

pathway, signaling pathways, pathway diagrams, transcription factors/gene regu-

latory networks, protein compound interactions, genetic interactions, and proteins

sequences. It contains this information about 24 different species [50].

BioCyc (http://biocyc.org): It is a collection of 505 pathway or genome

databases, and each database describes genome and metabolic pathways of a

single organism. It contains many tools such as for a comparative analysis, visual

analysis (editing of pathways, etc.), genome browser, and display of individual

metabolic maps. BioCyc is organized into three tiers: tier 1 contains an intensively

curated database, tier 2 contains computationally derived databases subject to

moderate curation, and tier 3 contains computationally derived databases with no

curation [51].

NCI pathway interaction database (http://pid.nci.nih.gov): It is very well struc-

tured and curated collection of biomolecular interactions and key cellular processes

pulled together into signaling pathways. It is a collaborative effort between National

Cancer Institute (NCI) and Nature Publishing Group (NPG). It contains 100 human

pathways with 6,298 interactions curated by NCl nature. And 392 human pathways

with 7,418 interactions imported from Reactome/BioCarta [52].

13.3.5 Validation

The technical validation of biomarkers depends on all aspects of the analytic

method, including specificity, sensitivity, bias, and robustness. Specificity, a measure

of true negatives among all negatives, refers to the probability that a validation

technique will indicate a positive test result when biomarker is positive. Sensitivity,

a measure of true positives among all positives, refers to the probability that

a validation technique will indicate a negative test result when biomarker is

negative. Bias refers to lack of representation of all cases covered due to lack in

sample size. Robustness refers to consistency of test results performed in different

conditions.

http://www.reactome.org
http://www.uniprot.org
http://www.ncbi.nlm.nih.gov
http://www.pathguide.org
http://biocyc.org
http://pid.nci.nih.gov
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13.4 Case: Breast Cancer Plasma Protein Biomarker

Discovery by Coupling LC-MS/MS Proteomics

and Systems Biology

Use our breast cancer example (only published results). It should cover genome

technology, experiment design, statistical/computational analysis, biological analy-

sis, validation, etc.

Breast cancer is worldwide the second most common type of cancer after

lung cancer. According to the American Cancer Society, this year in the USA,

approximately 192,370 women will be diagnosed with breast cancer, and about

40,170 women will die from the disease.

Biomarkers are important clinical tools for breast cancer screening and diagnosis

and also can be used by doctors to tailor patients’ treatments. There have been a

lot of researches about breast cancer biomarker identification. The researchers, led

by Prakash Rao, studied 102 women; 52 had breast cancers and 50 were women

who either had leukemia or fibrocystic breast disease or who had no cancer. They

found increased levels of riboflavin carrier protein (RCP) in the blood of the women

with breast cancer. Blood levels of RCP were more than nine times higher in

women with breast cancer than in women without the disease [53]. Dua used an

intraductal approach to identify breast cancer biomarker [54]. Ou used integrative

proteomic and gene expression mapping to identify breast cancer biomarkers [55].

Also proteomic analysis of breast nipple aspirate fluid (NAF) was used to identify

candidate markers of breast cancer [56].

The majority of current breast cancer biomarker identification is conducted using

established breast cancer cell lines [26, 57–60]. Cell lines are widely used in many

aspects of laboratory research and particularly as in vitro models in cancer research.

They have a number of advantages. But many researchers supported that the plasma

proteome profiling might have a higher chance to indentify biomarkers than proteins

present in other medium [61].

On the other hand, a protein biomarker or set of biomarkers that identify patients

with cancer from a single type of samples has proven elusive for most forms of

the disease. Therefore, comparing protein change in plasma proteome sample with

other types of sample may help to identify with a higher confidence a candidate set

of protein biomarker.

Moreover, as it is becoming increasingly apparent that genes do not function

alone but through complex biological pathways with more information revealed

through large-scale “omics” techniques, extensive pathway, network, and function

analysis of those identified protein biomarkers allowed us to discover their pro-

teomic signatures in plasma of patients at high risk for cancer disease.

In the case study, we showed how to apply “systems biology” approach to

the study of panel biomarker discovery problem in breast cancer proteomics data

study. First we used a t-statistics and permutation procedure to identify initial

protein biomarker candidates. Then an extensive literature-mining curation enabled

us to determine the final protein biomarkers. Last, focusing on these final protein
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biomarkers, we used gene ontology analysis and ingenuity pathway analysis to

validate the list and unravel the intricate pathways, networks, and functional

contexts in which genes or proteins function. Our results showed that the systems

biology approach is essential to the understanding molecular mechanisms of panel

protein biomarkers.

13.4.1 Experiment Design

Plasma protein profiles were collected in two batches, which we refer to as Study

A and B. Study A and B were processed in the same laboratory but at different

times. Each sample was analyzed in a single batch by mass spectrometry. In either

study, 80 plasma samples were collected (40 samples collected from women with

breast cancer and 40 from healthy volunteer women who served as controls). The

demography and clinical distribution of breast cancer stages/subtypes for Study A

and B are comparable.

We compared our results with 4 previously published proteomic studies of breast

cancer cell lines. Their methods and results presented in peer-reviewed journals [26,

57, 59, 60] have established a higher reliability. A total of 3,085 protein biomarkers

were identified from five breast cell lines, MCF-10A, BT474, MDA-MB-468, MD-

MB-468, and T47D/MCF7, in their papers.

13.4.2 Protein Identification and Quantification

For protein identification, tryptic peptides were analyzed using Thermo-Finnigan

linear ion trap mass spectrometer (LTQ) coupled with an HPLC system. Peptides

were eluted with a gradient from 5 to 45 % acetonitrile developed over 120 min

and data were collected in the triple-play mode (MS scan, zoom scan, and MS/MS

scan). The acquired raw peak list data were generated by Xcalibur (version 2.0)

using default parameters and further analyzed by the label-free identification and

quantitative algorithm using default parameters described by Higgs et al. [62].

MS database searches were performed against the combined protein dataset from

International Protein Index (IPI; version 3.60) and the nonredundant NCBI-nr

human protein database (updated 2009), which totaled 22,180 protein records.

Various data processing filters for protein identification were applied to control

false-discovery rate at below 5 % levels.

For protein quantification, first, all extracted ion chromatograms (XICs) were

aligned by retention time. Each aligned peak were matched by precursor ion,

charge state, fragment ions from MS/MS data, and retention time within a 1-min

window. Then, after alignment, the area under the curve (AUC) for each individually

aligned peak from each sample was measured, normalized, and compared for

relative abundance—all as described in [62]. Here, a linear mixed model generalized
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from individual ANOVA (analysis of variance) was used to quantify protein

intensities. In principle, the linear mixed model considers three types of effects

when deriving protein intensities based on weighted average of quantile-normalized

peptide intensities: (1) group effect, which refers to the fixed nonrandom effects

caused by the experimental conditions or treatments that are being compared; (2)

sample effect, which refers to the random effects (including those arising from

sample preparations) from individual biological samples within a group; and (3)

replicate effect, which refers to the random effects from replicate injections from

the same sample preparation.

13.4.3 “Systems Biology” Analysis

We applied “systems biology” approach to the study of panel biomarker discovery

problem in breast cancer proteomics data study in this study. Our strategies for

analyzing potentially noisy proteomics dataset are threefold. First, we used a t-

statistics and permutation procedures to calculate p-value for proteins changed in

all samples, instead of fold change or t-test for a given sample that are commonly

used in previous studies. This allowed us to enhance the statistical power to filter the

proteomics results. Second, we used extensive literature-mining curation to focus on

breast-cancer-relevant differentially expressed proteins only. This literature curation

step enabled us to concentrate on breast-cancer-relevant signals, with generally

noisy proteomics datasets. Third, we used gene ontology analysis and ingenuity

pathway analysis to identify and validate correlated changes due to cancer cell

signaling that may, individually, elude the detection.

13.4.3.1 t-statistics and Permutation Process

Our test statistic is a mean of 40 values (protein intensities in health samples) minus

the mean of another 40 values (protein intensities in cancer samples). A permutation

procedure was used to determine the p-value for each protein, representing the

chance of observing a test statistic at least as large as the value actually obtained. The

80 samples for each protein were permuted 100,000 times and the complete set of t-

tests was performed for each permutation. The permutation p-value for a particular

protein is the proportion of the permutations in which the permuted test statistic

exceeds the observed test statistic in absolute values. We chose a significance level

˛D 0.001 to select proteins where we estimated significant differences in the health

and cancer sampled. The corresponding “per-family Type 1 error rate, PFER,”

that is, the expected number of false positives for such a multiple test procedure,

is PFERD number of genes� 0.001. Alternatively, the nominal “false-discovery

rate, FDR,” or expected proportion of false positive among the genes declared

differentially expressed, is FDRDPFER/number of genes declared expressed.
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Table 13.2 Top networks involved

Primary network functions
Computed
score

Molecules
in network

Cancer, cell-to-cell signaling and interaction, hepatic
system disease

48 25

Genetic disorder, hematological disease, ophthalmic disease 43 24

Endocrine system disorders, skeletal and muscular system
development and function, tissue morphology

22 15

Cancer, cell cycle, reproductive system disease 22 14

Drug metabolism, small molecule biochemistry, cancer 18 12

Reprinted from Ref. [67], with kind permission from BMC Genomics

13.4.3.2 Pathway, Network, and Function Annotation Analysis

Ingenuity pathway analysis was used for building pathway and network. DAVID

database was used to study levels 2 and 5 of biological process in gene ontology.

13.4.4 Results

13.4.4.1 Pathway Analysis and Gene Ontology Categorization

of Significant Proteins

A total of 4,832 peptides in Study A are mapped to 1,422 proteins by searching

against IPI database. Using a t-statistics and permutation process described in the

method section and setting a p-value cutoff (0.001) after initial ANOVA analysis of

mass spectra data, we identified 254 statistically significant differentially expressed

proteins (PFERD 1.422, FDRD 0.0056), among which 208 are overexpressed and

46 are underexpressed in breast cancer plasma. Compared to the result of traditional

statistical test (PFERD 2.5596, FDRD 0.01), our result shows that the coupled

statistical process outperforms the sensitivity of a parametric traditional statistical

test that requires strong and sometimes untenable data assumptions since it is

nonparametric and requires no assumption about the distribution under the null

hypothesis.

A comparison of the set of 254 proteins with published findings from proteomic

analysis of human breast cancer cell lines yielded 26 proteins with differentially

expressed in human and cancer samples that were identified in breast cancer cell

lines. Top networks and canonical pathways were identified with ingenuity pathway

analysis (Tables 13.2 and 13.3, and Fig. 13.2). And level 2 of the biological

process in gene ontology is mainly studied (Table 13.4). An interesting finding from

pathway analysis is that those top networks and pathways shown in Tables 13.2

and 13.3, and Fig. 13.2, especially the top 1 network (cancer, cell-to-cell signaling

and interaction, hepatic system disease) and top 1 pathway (acute phase response
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Table 13.3 Top pathways
involved

Pathway �Log(p-value)

Acute phase response signaling 1.20EC01

Complement system 1.05EC01

Coagulation system 4.55EC00

PPAR signaling 1.90EC00

Glutathione metabolism 1.49EC00

Reprinted from Ref. [67], with kind permission
from BMC Genomics

Fig. 13.2 The 26 proteins are involved in a single cancer signaling network (Reprinted from Ref.
[67], with kind permission from BMC Genomics)

signaling), are validated by Study B dataset and the 26 candidate protein biomarkers

and are similar to previously reported works [63–65]. Another interesting finding

from gene ontology is the role of cellular metabolic process, and response to

external stimulus (especially proteolysis and acute inflammatory response in level 5)

in Table 13.4 in breast cancer was also reported by other authors. For example,

cancer, like other diseases, is accompanied by strong metabolic disorders [58]. And

It also was reported that stress and external stimulus such as microbial infections,

ultraviolet radiation, and chemical stress from heavy metals and pesticides affect the

progression of breast cancer [66].
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Table 13.4 Gene ontology
biological processes
enrichment analysis for 26
protein biomarkers

GO term Percentage

Response to external stimulus 50

Response to stress 46

Primary metabolic process 38

Defense response 38

Regulation of biological process 35

Establishment of localization 35

Regulation of biological quality 31

Anatomical structure development 27

Cellular metabolic process 27

Multicellular organismal development 27

Cell communication 27

Transport 27

Cellular component organization and biogenesis 23

Macromolecule metabolic process 23

Regulation of cellular process 19

Reprinted from Ref. [67], with kind permission from BMC
Genomics

13.4.4.2 Cross-Validation of Candidate Biomarkers

In order to validate the computational results, the same methods and procedures

as we used in Study A were applied to Study B. Forty-eight candidate protein

biomarkers were identified, of which 13 were found in common with the 26 protein

biomarkers we identified in Study A. Fisher’s exact test shows that our methods

are feasible and reliable (Fisher’s exact test, p-valueD 1.074e–09). Using ingenuity

pathway analysis and DAVID GO analysis, we also found that the 48 candidate

protein biomarkers identified from Study B have the similar pathway, network, and

function as the 26 candidate protein biomarkers identified from Study A.

13.5 Discussion: Biomarkers Toward Systems Biology

Research interest in identifying novel biomarkers has grown significantly in recent

years. Evolvement of biomarker concept toward systems biology [68] is shown in

the Fig. 13.3.

13.5.1 Single Biomarker

Known breast cancer susceptibility genes such as P53, BRCA1, BRCA2, ERBB2,

and PTEN account only for 15–20 % of the familial risk for breast cancer [69].

Identification of these genes and locus [70, 71], while extremely valuable, is only
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the first step to the development of molecular diagnosis and prognosis solutions.

Viewed from an emerging network biology perspective [72], these genes do not

function in isolation [46].

13.5.2 Dynamical Biomarker

Dynamical biomarker [73–75] was first introduced on a speech by A.L. Goldberger

in 2006 [76], which can be seen as an initiation of using nonlinear dynamical

properties as biomarkers, although this concept has not extended to the area of

molecular networks. It is found that both biological shape [77, 78] and physiological

signals [73, 75] have chaotic and/or fractal characteristics [79], which indicate

that many biological systems and networks could be analyzed effectively by

applying nonlinear dynamical approaches involving chaos, fractal, bifurcation,

pattern formation, and complex systems [74].

13.5.3 Network Biomarker

Network biomarker [18, 80, 81] is a new concept for candidate biomarker discovery

by integrating cancer susceptibility genes, their gene expressions, and their protein

interaction network. In 2007, Marc Vidal’s group at Harvard constructed a protein

interaction network for breast cancer susceptibility using various “omics” datasets

and identified HMMR as a new susceptibility locus for the disease [17]. Later,

Trey Ideker’s group at UCSD integrated protein network and gene expression data
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to improve the prediction of metastasis formation in patients with breast cancer

[18]. The two studies marked the exciting beginning of a new paradigm which

suggests protein interaction networks and pathway, although drafty, error-prone,

and incomplete can serve as a molecular-level conceptual road map to guide future

breast cancer biomarkers studies [82].

13.5.4 Systems Biomarker

Systems biomarker, as an innovative concept shown in the Fig. 13.3, derives

from the marriage of network biomarkers and dynamical biomarkers. Although

many methods have been presented in network biology, including network-based

gene ranking for molecular biomarker discovery [83], and graph clustering for

functional module discovery [84], it is still hard to find systems biomarkers hidden

in disease-specific molecular interaction networks. Although network biomarker can

be successfully applied in a small-scale breast cancer centered protein network,

it still lacks capability to analyze large-scale protein networks, which are always

visualized as “ugly” hairballs on 2D network layout. While the large-scale disease-

specific protein network modeling with gene expression profiles is a key step toward

systems biomarkers.

13.5.5 Network Biomarker Terrain

Using the concept of terrain to visualize gene expression profiles started from a

work by Stuart K. Kim et al. in 2001 [85]. They assembled data from C. elegans

DNA microarray experiments and visualized grouped co-regulated genes in a 3D

expression map that displays correlations of gene expression profiles as distances

in two dimensions and gene density in the third dimension. In a followed study

at 2008, Qian You et al. visualized an Alzheimer’s disease (AD)-specific protein

interaction network as a 3D terrain (GeneTerrain) and successfully characterized

the differentials between the three distinct stages of AD [86]. Network biomarker

terrain bridges the gap between network biomarker and dynamical biomarker, which

will finally implement the concept of systems biomarker.

13.6 Conclusions

This chapter has discussed some of the technologies that are available for computa-

tional biomarker discovery for diagnostic classification and prognostic assessment,

has explored how these technologies can be applied to the discovery of different

types of biomarkers, and, finally, has worked through many of the basic, but critical,
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issues associated with the generation and analysis of the microarray and proteomic

expression data. The bioinformatics discussed herein are required to ensure that

the data being produced are of high quality, that the experiments are appropriately

designed, that the methods are correctly performed, and that the results are analyzed

appropriately to identify biomarkers in a systematical biology way. We hope that this

will be useful in assisting the computational biomarker discovery efforts of current

and future genomics and proteomics researchers.
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