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Preface

The unprecedented accumulation of high-throughput data from genomics, transcrip-
tomics, proteomics, metabolomics, phenomics, etc., has resulted not only in new
attempts to answer traditional biological questions and solve longstanding issues in
biology but also in the formulation of novel hypotheses that arise precisely from
this wealth of data. At the present, with thousands of biological data resources
and information systems inside the Internet, an unknown number of analysis tools,
and exponential growths of molecular data (especially high-throughput data), the
storage, processing, description, transmission, connection, and integrative analysis
of this data becomes a great challenge for bioinformatics. Thus, the so-called Big
Data becomes the new keyword describing the actual situation for which new
software tools are needed to analyze this exponentially increasing data.

Important applications of Big Data are systems biology and systems medicine.
For instance, hospital information systems represent complex patient data. The
diagnosis process is now supported by new methods of biotechnology using, for
example, high-throughput sequencing approaches. Therefore, we have complex
patient data inside the hospital information system which needs to be stored,
transported, and analyzed. New software tools are needed to allow the user-specific
data access and analysis of this data. Overall, to develop and implement new tools
for automatic data integration and analysis will help implement better diagnostic
methods in practice. In the future, the entire genomes of patients will be stored
within hospital information systems. Furthermore, it will be necessary to share the
genome sequences inside the hospital computer network and analyze the genome
data to detect, for example, cancer genes. With the availability of Internet, the
automatic integration and analysis of data are of the most relevant research topics
in computer science. In biology, such tools have become more and more important.
Methods like high-throughput sequencing and omics analysis are responsible for the
exponential data generation process.

This book will focus on the integration and analysis of omics data. The
Introduction will present relevant biological background and an overview of these
actual methods. When the Internet merged, methods such as data fusion and
federated database systems became relevant. The initial tools were implemented
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and gave birth to a new field of research: Integrative Bioinformatics, which strives to
implement user-specific integration and analysis of complex data. The Introduction
of this book will give a definition and overview of this pertinent field of research.
Since then, complex information systems have been developed and implemented.
Finally, the data warehouse concept became more relevant. Today the data ware-
house concept is still the best construction for the implementation of integrative
information systems. The Information Fusion and Retrieval section will focus on
the said data warehouse concept. Furthermore, this part of the book will give an
overview of information retrieval and data mining tools, which allow the user-
specific identification and integration of data. Based on the methods described here,
we are able to implement user-specific integration tools. The analysis of this data can
be done using statistic, visualization, or animation tools. Furthermore, modeling and
simulation are important analysis methods. The Network Visualization, Modeling,
and Analysis section will focus on methods for network prediction, network
modeling, and simulation. In the case of network simulation, we prefer the Petri net
method, which allows the parallel simulation of complex metabolic pathways. Our
application section is divided into two parts. First, we focus on methods of BioData
Mapping. One interesting aspect is the possibility of molecular disease mapping
which allows the pathway prediction of any disease and the semiautomatic mapping
of this pathway into a virtual 3D cell. The genotype-phenotype map enables us
to uncover the casual networks inside the “black box” that lies between genotypes
and phenotypes with advances in high-throughput and high-dimensional genotyping
and phenotyping technologies. Another important and actual topic is presented by
the Biocompution section. After the reconstruction of a biological disease network,
the identification of biomarkers or hubs for further analysis is important. To realize
such tasks, the implementation of parallel algorithms is fundamental.

Important research topics for the next few years will be Big Data and Systems
Medicine. Integrative Bioinformatics will be fundamental in developments for both
fields and this book attempts to present an overview of relevant and actual research
activities.

We are very grateful to all the authors for sharing their time, wisdom, and
expertise. Finally, we want to thank Ms. Na Xu, the editor of Springer Beijing
Office, for her continuous advice.

Hangzhou, People’s Republic of China Ming Chen
Bielefeld, Germany Ralf Hofestadt
June 2013
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Introduction



Chapter 1
Integrative Bioinformatics

Ming Chen and Ralf Hofestéadt

1.1 Introduction

Integrative Bioinformatics deals with the development of methods and tools to
solve biological problems as well as providing a better understanding or new
knowledge about biochemical phenomena by means of data integration and com-
putational experiments [7]. Current high-throughput technologies such as NMR,
mass spectrometry, protein/DNA chips, gel electrophoresis data, Yeast Two-Hybrid,
QTL mapping, and NGS generate large quantities of high-throughput data. The
challenge of Integrative Bioinformatics is to capture, model, simulate, integrate, and
analyze this huge amount of data in addition to the data represented by hundreds
of biological databases and thousands of scientific journals. The data needs to
be integrated and made available in a consistent way to provide new and deeper
insights into complex biological systems. Molecular biology produces this volume
of data based on high-throughput technologies. One characteristic of this data is
exponential growing. Therefore, storing and analysis of this molecular and cellular
data essentially uses methods and concepts of Bioinformatics. Currently, there are
more than 2,000 database and information systems available via the Internet, which
represent this molecular data. Every year new molecular databases and information
systems which can be used via the Internet crop up. The classical definition of an
information system is based on a database system which represents the data and
tools for the user-specific analysis of this data. Today an information system is or
can be embedded into the Internet as shown in Fig. 1.1.
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Fig. 1.1 Structure of a
complex information system
embedded into the Internet.
DB denotes a database system
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One characteristic of all these bio-information systems is that updates of imple-
mented and running systems are constant. That is the reason that we have to handle
a very dynamic collection of different molecular database and information systems.
Most of these systems will lose their support sooner or later because financial
support of most of such projects is usually temporary. This creates a complicated
situation in molecular data today. All systems which are not adequately maintained
must be identified and checked before using their data for further analysis. At
that point it is important to note that the quality of molecular data presented by
these systems via the Internet must be guaranteed by each owner of the database
or information system. Until now, no quality standards have been defined for the
practical use of this data. Taking a look to all these systems, we can safely say
that most of them do not discuss this present data quality problem. Therefore,
regarding any molecular database or information system, we have to be careful when
using this molecular data for further analysis. Considering the actual molecular
database and information systems which are now available, it would be good news
for potential users to have a (semantic) overview of all these systems. A decade
ago Nucleic Acids Research began to support this task by publishing an annual
report of all molecular database systems. Recently we have developed an integrated
database of the published biological databases and tools, named Da&To (http://
bis.zju.edu.cn/DaTo), presenting helpful bio-web links including relevant database
systems. Beyond the discussion of data quality, it is also important to mention
that these systems are extremely heterogeneous in regard to the data structures,
data representations, data access, etc. Therefore, it is not easy to implement the
(semi-)automatic access to such bio-database and information systems. In terms of
the represented data and database systems, we can differ between public data, open
source data, and private data, which can only be used by special contracts. Overall
we would like to call this situation the molecular database problem. One reason for
this problem is the scientific foundation structure. In countries like Germany and
most other countries, scientists have access to financial support via projects paid
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for by private foundations or government-supported foundations or paid directly by
industry or the government. This kind of support is only for a limited time period.
The normal time period for supporting a project is 3—5 years. After that time such
projects and therefore most of the implemented systems will lose their support. This
is why most of the database systems have a short life span even if they are available
in the Internet years later. The only survival chance for a new and important system
is to award new grants or to start a company. This is a very bad situation and Europe
is presently trying to change it. The idea is to support national database centers in
the future. However, this kind of solution will only help to solve this problem for
the most relevant systems — so only for a subset of all systems. Another important
problem is caused by the different formats and data storage techniques which are in
use for all these systems. If there are no standards and no rules on how to prepare
a molecular database, nothing will be changed in the future. Overall this was and is
the main reason that the automatic process of data access continues to be difficult
even if the data is available via the Internet. From the outset, the development and
implementation of tools, which allow the user-specific data access based on that
distributed and heterogeneous molecular data, was an important part of Bioinfor-
matics. Therefore, new concepts and methods had to be developed and implemented
to solve this task. At the beginning federated database systems seemed useful. The
main disadvantage of this concept was and is that the data access process, which
connects such autonomous running database systems, is time consuming. Behind
these activities, specific integration tools like SRS [15] became popular, but did
not allow complete user-specific integration efforts until now. In addition, most
publications using integrative methods still use specific workflows. That means they
extend their own data by integrating relevant external data, which has to be identified
and extracted from specific database systems. Finally, they identify existing analysis
tools or implement new tools for further analysis of this molecular data. This is
the reason for the development of the data warehouse concept which has become
successful for bio and medical applications during the past few years. The key
idea of the data warehouse approach is to construct a new database system based
on user-specific data (lab data) including user-specific external data (coming from
relevant molecular databases) in combination with the user-relevant analysis tools.
Therefore, a data warehouse can be interpreted as a complex web-based information
system. Today more and more such bio-data warehouses are available.

When considering all these database activities, we can say that we presently
have a wide area of databases and integration tools available. On the other hand,
the analysis of this data is the key task of any user. Thousands of tools are
published each year for the analysis of molecular data. The actual problem is that
no one has a complete overview of existing algorithms and running tools for that
kind of molecular data analysis. We would like to call this the Bioinformatics
Analysis Gap. Different software tools could be implemented and new techniques
and algorithms are appearing every day. In our case, analysis of molecular data
can be a simple statistical approach or extend to complex simulations. Behind
the database activities which are listed by the Nucleic Acids Research, we can
see thousands of analysis tools which are available via the Internet. However,
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here we see the same situation: these tools are often no longer supported and the
documentation of most of these tools is also poor. Furthermore, quality standards
are not defined. From the beginning it was the idea of the international Journal of
Integrative Bioinformatics (http://journal.imbio.de/) to focus on exactly these kinds
of tasks: databases, integration, and analysis of integrated data [11]. After nearly 10
years of running this journal, we can see that the integration aspect is increasing in
importance. Topics like Systems Biology and now Systems Medicine concentrate
on this kind of data integration and analysis. In addition to the data storage and
integration problem, the adequate analysis of this data is a key problem today.

1.2 Databases and Integration

Biological and biomedical data have been systematically stored in hundreds of
public databases and information systems. A huge number of genes, enzymes, and
biological pathways have already been identified, isolated, sequenced, and collected
in these databases. For example, EMBL (http://www.ebi.ac.uk/embl/) and GenBank
(http://www.ncbi.nlm.nih.gov/Genbank/) contain DNA sequences and databases
like TRANSFAC/TRANSPATH (http://www.biobase.de/) bear the knowledge
about gene expression. Metabolic pathways and their single biochemical reactions
are stored in KEGG (http://www.genome.ad.jp/kegg/) and ExPASy (http://www.
expasy.org/). BRENDA (http://www.brenda-enzymes.info) provides the kinetics
of enzymatic-driven processes. Based on Da&To, we conducted a survey of all
published biological databases and tools (a total of 14,117 till July 15, 2012)
present in PubMed abstracts (over 3 million, since 1994). Undoubtedly, the USA,
Germany, and the UK are the top three countries that published, respectively, 40.21,
8.64, and 7.54 % of all databases and tools. China (5.08 %) ranks the fourth,
followed by France (4.53 %) and Japan (3.99 %). Most of these databases and
tools were published in Bioinformatics-related journals. The top three journals for
such publications are Bioinformatics (27.41 %), Nucleic Acids Research (20.54 %),
and BMC Bioinformatics (8.06 %), which all together accounts for more than one-
half of publications. The content of the publications was analyzed using MeSH
terms that are the tags for the topics of articles (http://www.ncbi.nlm.nih.gov/
mesh). We have found that the top 15 MeSHs rank differently over the years. By
clustering them, we found that one category, containing the five following MeSHs,
“Software,” “Internet,” “Animals,” “Human,” and “Algorithms,” almost ranked
nearly each year at the top of the top 15 MeSHs terms. Some hot spots switch
over years. For instance, before 2002, the category of “Information Storage and
Retrieval,” “Computer Communication, Network,” “Amino Acid Sequence, Data,”
and “Database, Factual” was a hot topic; while after 2003, “Database, Protein,”
“Database, Genetic,” “User Computer Interface,” and “Computational Biology,
methods” overwhelmed over the formers. Other MeSH terms, occurring at lower
frequencies, can indicate hot topic specific to some years. Further investigation
shows that the correlation network of the MeSHs can be divided into 41 modules,


http://journal.imbio.de/
http://www.ebi.ac.uk/embl/
http://www.ncbi.nlm.nih.gov/Genbank/
http://www.biobase.de/
http://www.genome.ad.jp/kegg/
http://www.expasy.org/
http://www.expasy.org/
http://www.brenda-enzymes.info
http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/mesh

1 Integrative Bioinformatics 7

—

T s,
Computational Biology
~—Softw: G
e b
User-
T S Mo e
sy

Saevalic

User-Computer Intertace
=Inte nel; H]
_E%.I i
g Ilirll
o )

Pe—cre-

Fig. 1.2 The eight modules with their top 30 MeSHs

among which are 7 major modules (M40, M38, M31, M32, M28, M37, M39)
counting nearly 96 % of all databases and tools. The filtered network with these
seven modules is shown in Fig. 1.2 and their top 30 MeSHs are annotated.

As nearly all databases and tools were peer reviewed, giving them a quality
assurance, also most of them are products of short-term research projects or
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Fig. 1.3 Bioinformatics infrastructure for the analysis of metabolic diseases

PhD works, so they have to be freely accessible, but they are poorly maintained
afterwards. We express the wish that some international nonprofit group could take
care of them. Much more, we call upon to form a scientific society to maintain them
under a kind of copyright agreement.

There is a special interest in supporting the Systems Medicine tasks today.
Diseases are caused by gene defects and gene defects are responsible for defective
metabolic pathways. The focus of molecular medicine is on using exactly this kind
of data and analysis to understand the molecular behavior of any disease. Most of
this biomedical data is collected and presented by OMIM (http://www.ncbi.nlm.
nih.gov/Omim), which is a catalogue of medically important human traits, genes,
and disorders thought to have a genetic basis. MedlinePlus is a premier source of
health information for patients, families, and friends. Developed by the US National
Library of Medicine, part of the National Institutes of Health, MedlinePlus contains
web links to information on over 900 health topics. Other specific databases on
inborn defects are Metagene (http://www.metagene.de), which is designed to sup-
port the diagnosis of inborn metabolism defects. RAMEDIS (http://www.Ramedis.
de/) is a patient database of rare metabolic diseases. It develops a Bioinformatics
system for representing, modeling, and simulating genetic effects on gene regulation
and metabolic processes in human cells. This electronically available knowledge
of genes, enzymes, metabolic pathways, and metabolic diseases increases rapidly.
These databases are highly heterogeneous both in structure and in semantics and
give only highly specialized views of the biological systems.

In Fig. 1.3 we can see that tools are needed which deal with the development of
methods to facilitate the integration of data originating from multiple biological
resources. To study and understand a disease, we have to identify the relevant
biological networks which represent the molecular knowledge of the disease, as
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demonstrated in Fig. 1.3. Therefore, the first step is to identify the relevant molecular
database systems. The second step is to identify the project-specific data inside
any system. The last step is to extract this user-specific data and include this
data in the user-specific information system. The implementation of integrative
software methods will allow the identification, extraction, and prediction of these
networks for any disease [17]. The diversity of interfaces offered by the different
data resources requires the definition of interfaces and semantic tagging of the
different types of data. There are, for example, databases offering their information
by means of web services, others provide XML files or flat files, and there are several
offering HTML-based interfaces. Actual research focuses on the development of
methods for the automatic generation of interfaces to a diverse number of resources
based on the researchers’ needs and for the integration of the data contained in
these resources. Therefore, different systems employ ontologies and controlled
vocabularies to classify the information offered by the different data resources.
Overall, development of a user interface and web services is an important task in
realizing user-specific data integration.

Until now flat file systems (http://en.wikipedia.org/wiki/Flat_file_database) dom-
inate the visible biological database systems within the Internet. A flat file is a data
set which represents an implicit data structure. If a computer represents such a flat
file, we can define this as a data resource. A flat file consists of different lines which
represent data using the ASCII format. A simple example representing information
about an enzyme shows this kind of data structure:

ENTRY EC2.1.3.3
NAME Ornithine carbamoyltransferase
Citrulline phosphorylase
Ornithine transcarbamylase
CLASS Transferases
Transferring one-carbon groups
Carboxyl- and carbamoyltransferases
SYSNAME  Carbamoyl-phosphate
L-ornithine carbamoyltransferase

The end of each line is determined by a specific character or character list (often
enter). Furthermore, special separators are often used to identify different data
within one line. Keywords are in capital letters on the left side of each line such
as ENTRY, NAME, and SYSNAME. The keywords are important signals for the
so-called parser systems which realize the automatic identification and extraction of
data regarding such flat file systems.

The so-called data-based information systems are often systems where data is
represented as HTML data sets or other structured data. These systems represent
organized data. The main reason using data-based information systems is the user-
specific data access and data analysis via the Internet. Data modification inside
the system can be done only by the owner or administrator of the system. The
data access is based on the workload of the representing network and Internet.
Based on the URL of the data-based information system, relevant HTML pages
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representing the data can be identified. Overall that means that complex parser
systems must be developed and implemented to identify the user-specific data. After
this identification process, the parser is able to extract the data using simple copy
and paste functions.

More comfortable are Internet interfaces. Therefore, CGIs and mechanisms out
of the JavaWorld such as servlets or applets are useful. Based on these mechanisms,
a complex computation and representation of data is possible. The best situation for
implementation of automatic data access procedures is that data is represented by a
database system. In that case, data can be identified and extracted directly using the
database query language (e.g., SQL for relational database systems).

The presence of numerous informational and data resources on biological
data described above raises the acute problem of data integration and suitable
access. From the beginning of the Internet, more and more tools were developed
for user-specific data integration and analysis. Today, a lot of integration tools
for biological data sources are available and in use. These systems are based
on different data integration techniques, e.g., federated database systems (ISYS
[16] and DiscoveryLink [10]), multi-database systems (TAMBIS [18]), and data
warehouses (SRS [15] and Entrez [19]).

ISYS stands for Integrated SYStem and can be characterized as a component-
based implementation. The main goal of ISYS is to provide a dynamic and
flexible platform for integrating molecular biological data sources. This system was
developed as a Java application. The system must be installed based on a local
computer system. Different platforms like MS Windows or Solaris are supported.
The locally installed system accesses the distributed data sources on the Internet.
One main feature is the global view of integrated data sources with the help of
a global scheme. Materialization of the integrated sources is not required. ISYS
provides a JDBC (Java Database Connectivity) driver.

DiscoveryLink system was developed by IBM. It is also based on federated
database techniques. A federated system requires the development of a global
scheme. Thereby, the degree of integration must be rated as tight. DiscoveryLink
accesses its original data sources through views. Read-only SQL is supported as
query language. A JDBC and an ODBC (Open DataBase Connectivity) driver
are also provided, and different output formats can be generated as well. The
TAMBIS integration system is based on multi-database techniques. It can be used
through a Java applet. Due to the use of a multi-database query language, it
is not necessary to construct an integrated global scheme. Therefore, the degree
of integration can be described as loose. As a query language in TAMBIS, a
variety of the Collection Programming Language (CPL) [20] is implemented.
CPL is hardwired into the system architecture. This is why it is not so easy
to use this query language from outside of the system. Other disadvantages of
TAMBIS are the absence of an API or other public interfaces. The number of input
formats, which is limited to one, generated by the Java applet, proves also to be
disadvantageous.

SRS is based on local copies of each integrated data source with a special
format that is described in the ICARUS language specification. ICARUS can help
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represent the structure of the integrated data source. Through the use of these
local copies, SRS is completely materialized. But during this transfer into the new
format, no scheme integration is realized. Therefore, the degree of integration can
be characterized as loose. SRS runs on a web server and is accessible via any
web browser. An HTML interface for data queries is provided. Furthermore, the
system can be queried by constructing special URLs. But no query languages like
SQL or OQL (Object Query Language) are supported. SRS offers also a C-APIL
Various output formats are possible (HTML or ASCII text). One problem with the
result presentation in SRS is the necessity to parse the outputs for further computer-
based processing. The absence of any scheme integration is also disadvantageous
for the use of the SRS. Similar to SRS is the Entrez system. This system integrates
only data sources of NCBI. No materialization of the integrated sources is realized.
Entrez uses views of the original sources. Consequently, scheme integration cannot
be established. Therefore, the degree of integration can be classified as loose. The
statements about SRS to query the system are completely transferable to Entrez.
There are no standard query languages, no standardized API, or no other interface
standards like JDBC. HTML is the only interface provided. Another Entrez feature
is the manual construction of special URLs. Various output formats prove to be
useful. These include HTML or ASCII text as well as XML and ASN.1 files. The
greatest disadvantage of the Entrez approach is the restricted number of integrated
data sources (only NCBI internal data sources) and the missing support of query
languages.

Furthermore, many more integration tools are available, most of them imple-
mented based on research projects. In our book Chaps. 4 and 5 will focus to this
topic.

1.3 BioWeb

Besides the structured data deposited in the molecular databases, biomedical
literature is published on the scale of over 500,000 documents per year and hosts
unstructured knowledge. Besides the databases discussed in Chap. 2, informa-
tion systems like PubMed (http://www.ncbi.nlm.nih.gov/pubmed) are bibliographic
databases that access bibliographic information and abstracts of published articles
in biomedical journals. Another archive of biomedical and life science literature is
PubMed Central (PMC). One of the values of PMC is the collection of full-text
articles, each of which complies with a common format. Due to the daily routine
of checking these bibliographic databases and very often the overwhelmingly long
list of search results, several web-based PubMed derivatives have been developed to
help users quickly and efficiently search and retrieve relevant publications utilizing
the services provided by PubMed and PMC databases. BioText (http://biosearch.
berkeley.edu/) differs from the other PubMed derivatives in searching the full text
and figure/table captions beyond the abstracts. Based on this kind of literature
data, different, so-called text and data mining tools are available today. These tools
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Fig. 1.4 Biosearch and Biomining are tools for user-specific search via the Internet (icons from
the web)

realize user-specific access to global data inside the web. To realize user-specific
access, text and data mining tools as well as search engines are necessary for
implementation (Fig. 1.4).

Today, we are more or less at the beginning of developing and implementing
complex mining and search tools which will allow identification and extraction of
user-specific web data. At present, this subject seems to be a new research topic
of information systems and one key issue is web semantics influencing mining and
searching. In our book, different chapters will focus on the important topic of new
mining and search tools. For web search, Chap. 3 will present an overview and a
“biogoogle” web search tool. Chapter 6 will present an overview of text mining and
a text mining tool. All in all, this topic is more complicated than simple database
integration, and the key problem is to handle the semantics of the web data, which
is still not solved.

1.4 Analysis and Simulation of Biological Networks

Based on the molecular database and information systems which are available
via the Internet, analysis of bio-data is the second important step of Integrative
Bioinformatics. Focusing on this actual research topic, the analysis of biological
networks is a central issue for the future of biotechnology and molecular medicine
as already seen in Chap. 2. Besides approaches of genome sequence comparison,
genome annotation, and enzyme assignment, Bansal [4] describes a framework
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of automated reconstruction of metabolic pathways using the information on
orthologous and homologous gene groups archived in the GenBank. Allen [2]
presents a reconstruction method using the exploration of gene expression data with
factor analysis. Factor analysis is shown to identify and to group genes according
to membership within independent metabolic pathways for steady-state microarray
gene expression data. Boyer and Viari [5] propose a new formulation for the problem
of metabolic pathway reconstruction. They use an idea similar to that of Arita [3] to
consider chemical compounds as sets of individual atoms and reactions as transfers
(partial injections) of atoms between compounds.

Moreover, several software tools have been developed to assist reconstruction of
pathways. For instance, PathoLogic [13] is used by PathMiner by McShan et al.
[12]. However, they have a number of limitations. Predicting each gene function
based solely on sequence similarity often fails to reconstruct cellular functions
with all the necessary components. They do not contain comprehensive information
about metabolic pathways, such as physical and chemical properties of the enzymes
that are involved. Some approaches are not fully computer aided. The individual
database search process requires too much human intervention, and the quality of
annotation largely depends on the knowledge and work behavior of human experts.
The future of metabolic pathway analysis may depend upon its ability to capitalize
on the wealth of genetic and biochemical information currently being generated
from genomic and proteomic technologies.

An ideal system for metabolic pathway reconstruction would at least include a
web-based architecture to allow remote and local access to the different biological
databases. It would offer a proven approach that can perform complex queries,
data transformations, and data integration in one powerful biological tool, without
requiring extensive programming. An automated primary and secondary database
update and report system would enable the internal data to remain consistent,
accurate, and reliable, with the ability to incorporate information flowing from
experimental validation, such as gene expression, enzyme catalyzation, protein
interaction, and pathways. An essential feature would include a quality assurance
process to allow quick distribution of queries and retrieve primary results. In
light of these desirable features, Sebastian Janowski designed and implemented
the VANESA information system (Chap. 8) which has a single common data
representation to handle the diverse range of rudimentary data such as enzymes,
proteins, and metabolites as well as incomplete or fragments of gene sequences
of metabolic pathways. VANESA is able to edit, extend, visualize, and analyze
biological networks.

Nucleic acid and protein sequence comparison is an important tool in genome
informatics. Initial clues to understand the structure or function of a macromolecular
sequence arise from homologies to other macromolecules that have been previously
studied. Many applications and tools, such as BLAST (http://www.ncbi.nlm.nih.
2ov/BLAST) and FASTA (http://www.ebi.ac.uk/fasta3), were developed to further
understand the biological homology and estimate evolutionary distance. Recently
the emphasis of research efforts has begun to turn away from gene sequences
to metabolic pathways. It is therefore not surprising that the development of
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computational algorithms to predict metabolism function from gene, amino acid
sequences, and metabolic networks is now a core aim of Bioinformatics. As more
genomes are sequenced and the metabolic pathways reconstructed, it becomes
possible to perform biological comparison from a biochemical-physiological per-
spective. Alignments represent one of the most powerful tools for comparative
analysis of metabolism. Metabolic pathway alignment is of importance to study
biology evolution, pharmacological targets, and other biotechnological applications,
such as metabolic engineering and metabolism computation. A metabolic pathway
alignment is a mapping of the coordinates of one pathway onto the coordinates of
one or more other pathways. For example, the same metabolic pathway from two
organisms may have diverged if the organisms evolved from a common ancestor,
where individual metabolites and enzymes may have been changed, added, or lost in
one pathway. This alignment involves recognition of metabolites that are common to
a set of function-related metabolic pathways, interpretation of biological evolution
processes, and determination of alternative metabolic pathways. Moreover, it aids
in function prediction and metabolism modeling. Although researches on genomic
sequence alignment have been intensively conducted, until now the metabolic
pathway alignment has been less studied. Several approaches of metabolic pathway
alignment have already been made by Dandekar et al. [8], Forst and Schulten [9],
and Pinter et al. [14]. However, their definitions of pathways are the traditional
biochemical pathways such as glycolysis, the pentose phosphate pathway, and the
citric acid cycle. Less effort is made on analysis of gene regulatory networks as well
as signaling pathways. Sebastian Janowski is handling biological networks which
include metabolic pathways and signal pathways. His VANESA tool also includes
different alignment algorithms.

In this book we present different chapters which represent new tools and
methods for reconstruction, visualization, and analysis of biological networks. The
aforementioned system, VANESA, is attending to of all these research topics and
offers tools for this type of bionetwork analysis.

1.5 Bio-data Warehouse

Having the Internet and hundreds of molecular database and information systems
which represent an exponential data-growing process, we can identify this contin-
ually increasing molecular data collection as the backbone of the virtual cell. That
means that the information which represents the virtual cell is on the increase within
the Internet every day. Furthermore, access and analysis of this data is fundamental
for the development of bio-research. The practical situation is that any bio-research
group tries to discuss a fundamental question (hypothesis). Based on their own data
(in-house or lab data), they need access to literature and database systems to con-
struct their specific model or working hypothesis. To discuss this model (hypothesis)
or test the quality of this model, user-specific data access has to first be implemented.
Having the complete biological knowledge (e.g., the representative biological
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network of a disease), analysis tools can be used to discuss the open question or
hypothesis. In the case of Biology, today this working strategy is called Systems
Biology. Therefore, data extension will support the model development process
which is the first step taken for that kind of work. The next step is represented by
data analysis processes. The final step is to use this model as a specification for the
implementation of the simulation tool. Based on the simulation tool, experiments
can be simulated in hypothetical or virtual worlds. To realize such an analysis
scenario, we need to implement complex software systems. At present it seems
that bio-data warehouses are the best solution for data integration and analysis. The
idea behind the bio-data warehouse was to create a new database system based on
the relevant distributed data which is available in the Internet and relevant for the
project. Furthermore, the integration and access to the user-specific data analysis
tools is the second part of such a system. In contrast to integration by data linking
methods, data sets are identified and extracted from the original data resources.
Furthermore, the extracted data will be cleaned and finally transformed into the new
database system (called metadata system). This kind of integration can be called
true data integration as many resources verge into one new database system.

Figure 1.5 shows the architecture of the data warehouse. The data for the new
database system, which is in the center of the bio-data warehouse, comes from in-
house data (lab data) and from different data sources and database systems which are
available via the Internet. The second characteristic component of such a structure is
the analysis part of the system. User-specific analysis tools have to be implemented
or identified and integrated so that the user-specific analysis will be supported.
Chapter 4 shows the detailed description of the data integration component of a data
warehouse. Furthermore, this chapter presents an actual warehouse concept which
is currently in use in different projects. One of these projects is the VANESA system
presented by Sebastian Janowski. As mentioned previously, VANESA is a complex
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information system for the reconstruction and analysis of biological networks. Such
complex networks can be analyzed (tools of VANESA) or systematically visualized
3D, which is discussed in Chap. 7. This kind of data and representation is the
backbone of the representation of a virtual cell, which is discussed in the Chap.
10. The other important analysis is the simulation of this type of data. As regards
the literature, we can identify different methods and concepts for simulation of
biological networks or biochemical knowledge. Overall the Petri net representation
became well known during the last 10 years [1, 6].

In this book, the Chap. 9 from Fei Liu and Monika Heiner will present an
overview of Petri net modeling and simulation of biological networks.

1.6 Problems and Future

Molecular data is available via the Internet. Therefore, around 2,000 database
systems are available today. One problem using this kind of data is that most of these
systems are only supported for a few years. Another fundamental problem is the
data quality of these systems which can never be guaranteed. Most Bioinformatics
projects will receive financial support for the implementation of new database and
data analysis systems. The data quality is still not the focus of all these projects
until now. Even if it would be the main focus, we could not solve this problem,
because a high rate of error is already within the technologies which are presently
in use. Furthermore, the preparation of the experiments, the analysis technology,
and the data interpretation represents a high error rate. Another problem is finding
financial support so that relevant database systems which are already implemented
can be serviced, supplemented when necessary, and implemented in the future.
To realize the high goals, we need standards of data representation so that access
and data quality checks can be easily implemented in the future. The data quality
problem has not been at the center of discussion until now. However, taking a
look at the practical situation of bio-data handling, we can say that this problem
will come to focus very soon as most of the represented data seems to be dirty.
Based on this dirty bio-data, Systems Biology and Systems Medicine cannot be
successful in the future. One solution of the bio-data quality problem could be
the wiki approach. This is more or less the only chance to guarantee high quality
and the actualization of a dynamic bio-data for the future. But this approach will
be difficult to implement because the relevant database systems are already in the
hand of private companies and they will take to this idea of data representation.
Also the industry will have problems with these kinds of solutions. However, in the
future all foundations and government research centers can require all supported
cooperation partners to follow this rule of data representation. For the user-specific
data integration, it appears that the bio-data warehouse concept is already the
solution for most applications. Therefore, we need bio-data warehouse shells for
potential users and open software standards for the interfaces so that the updating
problem of such bio-data systems can be more easily solved. The integration of
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data is one important task which is more or less solved today. The other important
task is the identification of relevant analysis tools and the integration of these tools
within user-specific bio-data warehouses. This was the main reason publishing this
book because in the near future this problem needs to be solved using new methods
of Integrative Bioinformatics. The main application of Integrative Bioinformatics
is to support diagnosis and therapy methods and concepts. Based on complex bio-
data warehouses, we are able to realize the molecular disease mapping problem
[17]. In this case, we are able to identify the relevant biological networks of any
disease. Based on this knowledge, we are able to study the biochemical and genetic
behavior of these networks, which will allow the identification of targets, mutations,
and molecular defects which can be responsible for the disease. Molecular medicine
is already working in that direction, and the new scientific topic which joins together
Medicine, Molecular Medicine, and Integrative Bioinformatics is called Systems
Medicine. To understand the behavior of life, we have to implement the virtual
cell. The vision of the implementation of the virtual cell is the key connection
between Molecular Medicine, Systems Biology, Systems Medicine, and Integrative
Bioinformatics.

WWW-List of Selected Molecular Information Systems

Genes

EMBL — http://www.ebi.ac.uk/

The “EMBL Nucleotide Sequence Database” represents all known DNA and RNA
sequences.

GenBank — http://www.ncbi.nih.gov/Genbank/

NIH genetic sequence database.

HGMD - http://www.uwcm.ac.uk/medical _genetics/

HGMD represents the Human Gene Mutation Database.

Proteins and Enzymes

ENZYME — http://www.expasy.org/enzyme/

ENZYME is a repository of information relative to the nomenclature of enzymes.

LIGAND - http://www.genome.ad.jp/ligand/

The Ligand Chemical Database for Enzyme Reactions is linking chemical and
biological aspects of life in the light of enzymatic reactions.

PDB — http://www.rcsb.org/pdb/

PDB presents 3D macromolecular structure data primarily determined experimen-
tally by X-ray crystallography and NMR.

PIR — http://pir.georgetown.edu/

This database is a comprehensive, annotated, and nonredundant set of protein
sequence databases in which entries are classified into family groups and where
alignments of each group are available.
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PROSITE - http://[www.expasy.ch/prosite/

PROSITE is a database of protein families and domains.

REBASE — http://rebase.neb.com/

Restriction Enzyme data BASE is a collection of information about restriction
enzymes.

SWISSPROT - http://www.expasy.org/sprot/

Protein sequence database.

Pathways

CSNDB - http://geo.nihs.go.jp/

The Cell Signaling Networks DataBase (CSNDB) is a data and knowledge base for
signaling pathways of human cells.

KEGG - http://www.genome.ad.jp/

The Kyoto Encyclopedia of Genes and Genomes represents information of pathways
that consist of interacting molecules or genes.

Gene Regulation

TRANSFAC - http://www.biobase.de

This database presents data about gene regulatory DNA sequences.
TRRD - http://www.bionet.nsc.ru/

Transcription Regulatory Regions Database.

Metabolic Diseases

OMIM - http://www3.ncbi.nlm.nih.gov/

The Online Mendelian Inheritance in Man database is a catalogue of human genes
and genetic disorders authored and edited by Dr. Victor A. McKusick and his
colleagues.

PATHWAY - http://oxmedinfo.jr2.ox.ac.uk/

PATHWAY is a database of inherited metabolic diseases. The database is divided
into two sections: substances and diseases.

PEDBASE — http://www.icondata.com/health/pedbase/

PEDBASE is a database of pediatric disorders. Entries are listed alphabetically by
disease or condition name.

RDB - http://www.rarediseases.org/

The Rare Disease Database is a delivery system for understandable medical
information to the public, including patients, families, physicians, medical
institutions, and support organizations.

References

1. Alla H, David R (1998) Continuous and hybrid Petri nets. J Circuit Syst Comput 8(1):159-188

2. Allen HD (2001) Reconstruction of metabolic pathways by the exploration of gene expression
data with factor analysis. Dissertation, Virginia Polytechnic Institute and State University,
Blacksburg, VA


http://www.expasy.ch/prosite/
http://rebase.neb.com/
http://www.expasy.org/sprot/
http://geo.nihs.go.jp/
http://www.genome.ad.jp/
http://www.biobase.de
http://www.bionet.nsc.ru/
http://www3.ncbi.nlm.nih.gov/
http://oxmedinfo.jr2.ox.ac.uk/
http://www.icondata.com/health/pedbase/
http://www.rarediseases.org/

(98]

V)]

~

10.

1

—

12.

13.

14.

15.

16.

17.

18.

19.

20.

Integrative Bioinformatics 19

Arita M (2000) Metabolic reconstruction using shortest paths. Simulat Pract Theory 8:109-125

. Bansal AK (2000) A framework of automated reconstruction of microbial metabolic pathways.

In: Proceedings of the IEEE international symposium on bio-informatics and biomedical
engineering, Arlington, VA, 8-11 November, pp 184-190

. Boyer F, Viari A (2003) An initio reconstruction of metabolic pathways. In: ECCB’2003

(European conference on computational biology), 27-30 September, Paris

Chen M, Hofestddt R (2003) Quantitative Petri net model of gene regulated metabolic networks
in the cell. In Silico Biol 3(3):347-365

Collado-Vides J, Hofestidt R (2002) Gene regulation and metabolism — post genomic
computational approaches. MIT Press, Cambridge, MA

. Dandekar T, Schuster S, Snel B (1999) Pathway alignment: application to the comparative

analysis of glycolytic enzymes. Biochem J 1:115-124

Forst CV, Schulten K (1999) Evolution of metabolisms: a new method for the comparison of
metabolic pathways using genomics information. J] Comput Biol 6:343-360

Haas LM, Schwarz PM, Kodali P, Kotlar E, Rice JE, Swope WC (2001) DiscoveryLink: a
system for integrated access to life sciences data sources. IBM Syst J 40:489-511

. Hofestddt R (ed) (2005) Yearbook bioinformatics 2004. IMBio, Informations management in

der Biotechnologie e.V, Magdeburg

McShan DC, Rao S, Shah I (2003) PathMiner: predicting metabolic pathways by heuristic
search. Bioinformatics 19(13):1692—-1698

Paley S, Karp PD (2002) Evaluation of computational metabolic pathway predictions for
Helicobacter pylori. Bioinformatics 18(5):715-724

Pinter RY, Rokhlenko O, Yeger-Lotem E et al (2005) Alignment of metabolic pathways.
Bioinformatics 21(16):3401-3408

Schaftenaar G, Cuelenaere K, Noordik JH, Etzold T (1996) A Tcl-based SRS v. 4 interface.
Comput Appl Biosci 12(2):151-155

Siepel A, Farmer A, Tolopko A, Zhuang M, Mendes P, Beavis W, Sobral B (2001) ISYS: a
decentralized, component-based approach to the integration of heterogeneous bioinformatics
resources. Bioinformatics 17:83-94

Sommer B, Ivanisenko V, Arrigo P, Hofestddt R (2012) Prediction and 3D visualization of
biological networks using cytological disease mapping. EMBnet J 18(Suppl B):115-116
Stevens R, Baker P, Bechhofer S, Ng G, Jacoby A, Paton NW, Goble CA, Brass A (2000)
TAMBIS: transparent access to multiple bioinformatics information sources. Bioinformatics
16:184-185

Tatusova TA, Karsch-Mizrachi L, Ostell JA (1999) Complete genomes in WWW Entrez: data
representation and analysis. Bioinformatics 15:536-543

Davidson SB, Overton C, Tannen V, Wong L (1997) BioKleisli: a digital library for biomedical
researchers. Int J Digit Libr 1:36-53



Chapter 2
An Overview of Gene Regulation

Andrew Harrison and Hugh Shanahan

Abstract It is not unreasonable to assume that in the near future next-generation
sequencing techniques will allow the sequencing of all the DNA and expressed
types of RNA involved in a given response or process. Such a range of data will
be necessary to unravel the complexities of the multiple layers involved in the
regulation of gene expression.

In this article we discuss a broad range of studies about gene regulation. These
involve studies of processes such as transcription and splicing, the production of a
variety of transcripts, and the involvement of protein—nucleic acid composites such
as chromatin. We seek to shed light on common themes that are beginning to develop
in these rapidly evolving, but intimately related, fields.
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EIC exon junction complex

NDR nucleosome-depleted region

ncRNA non-coding RNA

miRNA microRNA

Poly(dA:dT) double-stranded sequence of DNA composed of AT pairs
PAP poly(A) polymerase

PASR promoter-associated SRNA

PROMPTS promoter-associated transcripts

PTM posttranslational modification

RNAIi RNA interference

RNP ribonucleoprotein

hnRNP heterogeneous nuclear ribonucleoprotein
mRNP messenger ribonucleoprotein

RNAPII RNA polymerase IT

ssDNA single-stranded DNA

ssSRNA single-stranded RNA

sRNA short RNA

siRNA small interfering RNA

SR Protein serine-rich protein

TSS transcription start site

TSSa-RNA  transcription start-site-associated RNAs

2.1 Introduction

The development of sequencing technologies has resulted in dramatic reductions in
sequencing costs over the last decade [1]. There are already a broad range of high-
throughput sequencing technologies [2], with others, such as nanopore technology
[3], expected to arrive in the very near future. Our increasing ability to sequence
nucleic acids quickly and cheaply will transform many biological areas of research
[4]. This includes medicine, and the sequencing, and resequencing, of individuals is
already helping to illuminate the genetic changes responsible for cancer progression
[5]. The new sequencing technologies are also being used increasingly in fields
previously dominated by microarrays. Deep sequencing of RNA and recording
its abundance in the sample, referred to as RNA-Seq [6-8], has generated much
excitement and it has been claimed that it represents a revolutionary tool for
transcriptomics [9]. We are still in the early days of the revolution and many of the
RNA-Seq studies to date have been of a descriptive nature with basic data analysis
[10]. However, there is a rapid growth in techniques and software to analyse next-
generation RNA-Seq datasets [11] and increasingly sophisticated analyses are likely
to become the norm. Even in the absence of sophisticated analysis techniques, there
have been some fascinating results; for example, such experiments suggest that,
for humans, approximately 75 % of the total mRNAs within a cell are common
to all tissues, with about 8,000 protein-coding genes ubiquitously expressed [12].
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However, transcriptome complexity is observed to vary between tissues, with areas
such as the brain, kidney and testis expressing a greater diversity of mRNA than
tissues such as the muscle and liver. Other techniques whether sequencing is being
utilised include the measurement of protein—DNA interactions via ChIP-Seq [13].

Nonetheless, current next-generation sequencing presents challenges in assembly
and sequence accuracy due to short read lengths and method-specific sequencing
errors [14]. Understanding the physical causes impacting upon the fidelity of
sequencing is important in establishing the error composition of any sequence.
For example, a limitation of the 454 technology relates to sequences containing
consecutive instances of the same base, such as AAA or GGG [2]. With this
technology, the length of homopolymers is inferred from the signal intensity
because there is no terminal molecule preventing multiple contiguous additions at a
particular cycle. This results in a greater error rate than results from discriminating
between incorporation and nonincorporation. The major error type for the 454
platform is insertion-deletion rather than substitution, whereas the dominant error
for Illumina/Solexa is substitution, rather than insertions or deletions [2]. There are
also other biases in RNA-Seq data which may limit its adoption for large-scale
systems biology experiments [15]. For some applications, microarrays are more
sensitive than the current sequencing technologies. This is leading to many groups
using hybrids of sequencing and microarrays together, utilising the advantage
of both approaches whilst minimising the disadvantages of each technology’s
limitations [14, 16].

The meta-analysis of large datasets of gene expression is now helping to underpin
systems biology models, increasingly pointing to how the interactions between
groups of closely coupled proteins underpin gene expression in humans and other
higher eukaryotes [17, 18]. The implicit assumption of many current models in
systems biology is that regulation is for the most part mediated by transcriptional
regulatory networks [19]. However, this view has faced significant difficulties and
blind studies to perform the high-throughput identification of transcription factor
targets have provided very poor results [20]. Part of the problem is that the regulation
of gene expression in eukaryotes is very complex and strongly modulated by a
number of mechanisms beyond simple transcription factor complex formation. Our
understanding of the components involved in gene regulation, their complexity
as well as the interplay between different layers of regulation utilised within
cells has expanded rapidly in parallel with our ability to utilise high-throughput
sequencing.

Systems analysis of gene expression is identifying coordination and coupling
in transcription, coordination among transcription factors, coupling among
transcription factors and chromatin remodelers, a nuclear organisation coupled
to transcription, interwoven layers of mRNA processing involving the coupling
of transcription and splicing, coupling of transcription and export with quality
control processes, dynamic messenger ribonucleoprotein complexes, regulation
of cytoplasmic events from within the nucleus, coupling between transcription
and ribosomal synthesis and links between protein synthesis and degradation
[21]. Many of the molecular interactions responsible for coordination are being
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mapped out biochemically [22], detailing the lines of feedforward and feedback
between chromatin, RNA, multifunctional proteins and ribonucleoprotein (RNP)
complexes.

These complexities are leading to designs of next-generation sequencing experi-
ments increasingly requiring integrative approaches to bring together knowledge of
the multiple layers of regulation of gene expression. There are many threads linking
these layers and in this review we give a broad overview about the rapid progress
in understanding the regulation of genes via several mechanisms. We will begin
with transcriptional and post-transcriptional events. We will then discuss how the
structure of chromatin radically affects transcription. Following this, the major role
that non-coding RNA plays in regulation will be discussed. We will also highlight
a number of common themes that are emerging across these different layers of
regulation. Finally, we discuss how next-generation sequencing is poised to play
a significant role in the systems biology of the future, the huge data management
problem we face and how it will likely transform how we work together to better
understand gene regulation.

2.2 Transcription and Beyond

The transcription cycle begins with preinitiation complex formation, RNA poly-
merase [I (RNAPII) recruitment, a transition to an initiating and then an elongating
RNAPII, and progressing to termination [23]. RNAPII will do work as it progresses
through transcription and the amount of energy required to break and make bonds
depends upon tertiary interactions between RNAPII, chromatin, nascent RNA and
ribonucleoproteins (RNPs).

2.2.1 The Dynamic Nature of RNAPII

It is increasingly clear that subtle changes in the structure of RNAPII occur as it
progresses through the transcription cycle. In particular, a relatively unstructured
protein domain lies below the RNA exit channel [22], the carboxy-terminal domain
(CTD) of RNAPII, and this serves as a binding pad for many nuclear factors, play-
ing a key role during transcriptional and co-transcriptional processing, including
terminating transcription.

The CTD has a simple heptad repeat structure, Tyr-Ser-Pro-Thr-Ser-Pro-Ser
(Y1S2P3T4S5P6S7), with 52 repeats in mammals [24]. The last repeat of the CTD
in vertebrates is followed by a conserved ten amino acid extension. Thirty-one
of the fifty-two repeats in the human CTD differ from the consensus heptad in
at least one position, with most of the nonconsensus repeats towards the carboxy
terminal of the CTD [24]. The presence of these divergent repeats enables additional
functionality. As shown in Fig. 2.1, dynamic and reversible modifications to CTD
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Fig. 2.1 A schematic diagram of the processes and interactions that occur in pre-mRNA and
how splicing is implemented (described in Sects. 2.2.1, 2.2.2, and 2.2.3). The formation of bonds
between the pre-mRNA and ssDNA is carried out by the formation of RNA secondary structure or
binding with mRNPs. Splicing is enhanced by SR proteins or inhibited by hnRNPs. Initiation and
termination of the transcript is aided by complex formation triggered by PTMs in the CTD region
of RNA PII

occur during the transcription cycle, including phosphorylation, glycosylation as
well as changes to the isomeric state of prolines. The appropriate recruitment of
factors at different stages of the cycle is closely related to these modifications and a
CTD code describing these coordinated changes is being actively sought [24].

All three serines of the CTD consensus repeat can undergo phosphorylation
[24]. Ser2 and Ser5 are dynamically phosphorylated and dephosphorylated during
the transcription cycle. Phosphorylation of Ser2 residues plays a major role in
enabling RNAPII to progress into an elongating form, as well as being involved in
splicing and polyadenylation events. Phosphorylation of Ser5 residues is greatest
near the 5" end of genes, with Ser5 phosphorylation helping in the addition of
a methylguanosine cap to the 5’ end of the newly synthesised RNA. The CTD
loses most of its Ser5 phosphorylation before RNAPII reaches the polyadenylation
signals at the 3’ ends of protein-coding genes. The dephosphorylation of Ser2 and
Ser5 during the transcription cycle is required for recycling RNAPII. Dynamic
phosphorylation of Ser7 has a role in some protein-coding genes at their 3’ termini,
involved in either terminating transcription or 3’ processing. Tyrosine and threonine
can also undergo phosphorylation, but it is presently unclear what functions these
play. Experiments to unravel the role of threonine are complicated by it being
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found in 15 positions in the nonconsensus repeats, as well as in its canonical
position 4 in the consensus repeats. Serines and threonines can also be glycosylated,
with phosphorylation and glycosylation appearing to be mutually exclusive [24].
Isomerisation of the two peptide-prolyl bonds, at positions 3 and 6, also occurs,
resulting in four possible configurations in each repeat.

2.2.2 The Folding and Binding of Proteins to Nascent
Pre-mRNA

Alterations in RNA structures represent a regulatory mechanism for many cellular
processes [25]. There is an intimate relationship between the binding of messenger
ribonucleoproteins (mMRNPs) and RNA secondary structure, with some proteins
binding to single-stranded RNA (ssRNA) sequences [26] and others to double-
stranded RNA (dsRNA) sequences [27]. Heterogeneous RNPs (hnRNPs) are very
abundant in the cell and RNA—protein interactions act to modify the form of RNA
secondary structures and may act to inhibit the existence of structures in some
cases [28].

Pre-mRNA is free to fold only within a limited period after transcription, with an
upper limit of ~100 nucleotides [29]. It is likely that co-transcriptional wrapping
up of RNA by folding, or through binding by mRNPs, occurs rapidly in order
to minimise the possibility of genomic mutations induced by the formation of R-
loops during transcription [30]. As shown in Fig. 2.1, an R-loop is a structure in
which an RNA molecule is partially or completely hybridised with one strand of
a double-stranded DNA, leaving the other strand unpaired [31]. Transcriptional
R-loop formation in higher eukaryotes is highly correlated with chromosome
instability. Little is known about the molecular mechanisms responsible for R-
loops influencing genome stability, but single-stranded DNA is more vulnerable to
mutations than double-stranded DNA [32]. Thus, extensive R-loop formation will
result in these transcribed regions being more susceptible to DNA-damaging agents
by increasing the frequency of single-stranded regions. R-loops will also act to slow
down elongation of RNAPII [22].

2.2.3 Post-transcriptional Splicing

RNA-Seq results suggest that almost all human protein-coding genes undergo
alternative splicing [33]. Furthermore, over 80 % of genes produce a minor isoform
with a relative abundance of 15 % or more of the major isoform. It has been recently
proposed that most alternative splicing is a consequence of noise in the splicing
machinery [34]. However, alternative splicing and polyadenylation are observed
to vary significantly between tissues, with coordinated changes in alternative
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splicing and polyadenylation between many genes being observed, suggesting that
alternative splicing provides a central contribution to the evolution of phenotypic
complexity in mammals [33].

Pre-mRNA splicing occurs co-transcriptionally in all eukaryotes [22]. However,
there is little overlap between groups of genes that are differentially spliced and
those that are differentially expressed [35]. As shown in Fig. 2.1, a small number
of RNA-binding proteins, usually members of the serine-rich protein (SR protein)
and hnRNP families, are involved in splicing regulation and the interplay of these
positive and negative factors acts to modulate the inclusion, or otherwise, of exons
[36]. SR proteins help to activate splicing by binding to exons and recruiting
the spliceosome. Most members of the SR protein family have their binding to
RNA affected by the conformation of the target RNA [37]. SR proteins exert
some of their stimulatory effect through stabilising RNA-RNA interactions during
spliceosome assembly and splicing catalysis [38]. HnRNP proteins, in contrast,
usually repress splicing by interfering with the spliceosome’s interactions with
splice sites. In particular hnRNP proteins may disrupt RNA-RNA interactions
through sequestering sequences [38].

The binding of these positive [39] and negative [40] regulators of splicing
has been shown to depend on RNA secondary structures. There seem to be two
mechanisms involved in how RNA secondary structure affects the choice of 5’
and 3’ splice site and branch point elements. The most common process results
from the presence of structural elements which may hinder the accessibility of
selected sequences by splicing factors [37] — depending on the system analysed,
this inhibition has been observed to target only the acceptor site, the donor site or
both. The second mechanism occurs when RNA secondary structures that do not
involve the conserved splicing sequences can vary the relative distance between
these elements — these changes then result in considerable variation in splice site
usage or efficiency [37]. Structural constraints also affect less-defined cis-acting
sequences such as exonic/intronic splicing enhancers or silencer elements [41].
Furthermore, RNA secondary structure has been proposed to influence splicing.
For example, secondary structural elements involving both exonic and intronic
sequences have been found in the dystrophin gene [42].

The advent of high-throughput sequencing experiments, in conjunction with exon
arrays, enables observations of co-regulated splicing events in groups of genes, as
well as the determination of sequence motifs associated with these events [35, 43].
Some of the sequence motifs now being associated with tissue-specific alternative
splicing are consistent with the binding patterns previously identified for known
splicing regulators, such as NOVA and FOX [35]. This suggests that as catalogues
of isoform expression profiles increase, they will provide sufficient sensitivity to
enable the discovery of weaker motifs indicative of novel splicing regulators. There
is a need for such analysis as there are more than 300 RNA-binding proteins in
mammalian genomes that may act as splicing regulators, yet little is presently known
about their binding specificity or their involvement in particular splicing events [35].
Mining of the existing datasets is already highlighting positional dependencies in the
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Fig. 2.2 A schematic diagram of the relationship between exon—intron boundaries, methylation
and nucleosome occupancy as described in Sect. 2.2.3. As noted in Sect. 2.3.6, there is a noticeable
peak in methylation (specifically CpG) at exon—intron boundaries and a trough at intron—exon
boundaries [48]

binding of regulators, with both NOVA and FOX binding as enhancers when they
are downstream of an alternative splicing exon, whereas they act as repressors when
they bind on the upstream side [35]. Combinations of hundreds of RNA features
are being assembled as part of large data-mining efforts to identify the principal
components of the splicing code [44].

Unravelling evidence of co-regulated splicing events in several genes is non-
trivial as it is very likely that splicing regulation can occur at every possible step
of the spliceosome assembly and catalysis pathway. Furthermore, there are large
numbers of factors involved in the splicing of each transcript and stochastic events
may be important during splicing because simple binding kinetics determines the
assembly pathways for a given pre-mRNA substrate [38]. Spliceosome assembly is
also modulated in response to transcriptional events and chromatin structure [38].
The rate of elongation affects splice site selection and exon skipping and, thereby,
the nature of the information expressed from a gene [45, 46]. Post-transcriptional
processing also involves a close relationship with how DNA is modified in its
accessibility during transcription [36, 47]. As shown in Fig. 2.2, chromatin organisa-
tion marks exon—intron structure and chromatin structure, via histone modifications,
modulates exon selection [48, 49]. Transitions in DNA methylation across junctions
of exons and introns may also be involved in splicing [50]. The differences in
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transcription rates that result from these chromatin modifications, as well changes in
nucleosome density [47], may be the principal cause for a large proportion of tissue-
specific, or development-specific, alternative splicing events [36]. It is now possible
to use high-throughput sequencing technologies to map histone methylation states
across the human genome [51]. We are therefore likely to see high-throughput
sequencing used in further integrative studies of the dynamic interplay between
proteins modifying chromatin, interacting with RNA, and their resulting impact
on alternative splicing. Efforts to crack the splicing code, e.g. [44], are likely to
be enhanced by knowledge about the tissue-specific modifications that chromatin
undergoes within particular genes of interest.

2.2.4 RNA Editing

RNA editing can provide a source of sequence variation between transcripts from
the same gene. The most common form of editing in eukaryotes is A-to-I, in which
adenosine is converted into inosine within double-stranded RNA and the inosine
is subsequently treated as guanosine by the spliceosome and ribosome [52]. Such
editing is apparent because of differences in the RNA sequence and the DNA
sequence. A-to-I editing is essential for the maintenance of normal life in mammals
[53]. Editing can undergo spatiotemporal regulation [52]. Furthermore, RNA editing
and alternative splicing are coupled, as modifying the RNA sequence can result in
novel splice sites [54]. Moreover, as shown in Fig. 2.3, multiple editing sites within
the same transcript are weakly correlated and so results in the production of diverse
transcriptomes, eclipsing the variety resulting from alternative splicing but with less
impact on the protein composition within cells [53]. The diversity resulting from
RNA editing may be a principal contributor to the adaptive evolution of phenotypic
complexity in mammals and be a dominant source of transcript diversity in the brain
[55]. However, editing has also been associated with a number of human pathologies
[56]. In particular, alterations in RNA editing impact upon a number of psychiatric
disorders [57], in particular upon an individual’s responsiveness to serotonergic
drugs. Polymorphisms in editing genes have also been recently associated with
extreme old age in humans [58]. High-throughput sequencing has already been used
to identify RNA-editing sites [59], and we are likely to see many further studies in
this area.

Meta-analysis of sequence differences in the small RNA component of rice and
Arabidopsis [60] indicates that sequences of many transcripts are likely modified
in vivo. These include N1-methyl modified purine nucleotides in tRNA, potential
deamination or base substitutions in microRNAs, 3’ microRNA uridine extensions
and 5 microRNA deletions. However, the impact of editing, and other post-
transcriptional modifications, can mimic RNA-sequencing errors and a number of
sequence variations previously classed as sequencing errors may in fact result from
editing and other modification [60].
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Fig. 2.3 A summary of RNA editing as described in Sect. 2.2.4. The actual editing occurs in
double-stranded pre-mRNA which can then be edited by ADAR. We note that A-to-I editing is site
dependent, i.e. not every A is edited to an I and the editing depends on the site and condition

2.2.5 The Processing of the 3’ Ends of Transcripts

There are a number of molecular mechanisms involved in processing the 3’ ends
of pre-mRNAs in metazoans [61]. Transcripts are cleaved before acquiring a
polyadenylation (poly(A)) tail and the efficiency and specificity of this 3’ processing
is regulated by large protein complexes, involving many factors. Transcription
factors and activators affect 3’ processing and there is also crosstalk between factors
involved in transcription, splicing and this processing machinery. Furthermore, the
CTD of RNAPII helps to couple this regulatory network through acting as a site for
gathering and delivering polyadenylation factors [61].

The molecular machinery involved in 3’ processing has a complex architecture,
containing over 80 proteins. As outlined in Fig. 2.4, there are several sub-complexes,
including cleavage and polyadenylation specificity factor (CPSF), cleavage stimula-
tion factor (CstF) and poly(A) polymerase (PAP) [61]. The poly(A) signal consists
of two sequence elements: an AAUAAA hexamer, or a variant such as AUUAAA,
is found 10-30 nucleotides upstream of the cleavage site that binds CPSF; a U/GU-
rich region is located approximately 30nt downstream of the cleavage site and
associates with CstF. The majority of transcriptional units contain more than one
poly(A) signal and the alternative choices act to change the coding sequence or the
sequences of the 3’ untranslated region. This results in alternative protein isoforms
or transcripts that differ in their stability, localisation, transport and translation
properties [61]. Tissue-specific regulation of alternative polyadenylation has a
higher frequency than other types of alternative splicing [33].
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Fig. 2.4 A summary of the processing that occurs during cleavage of the 3’ end of a transcript
as described in Sect. 2.2.5. The sub-complexes PAP, CPSF and CstF are not an exhaustive list
of the sub-complexes required for 3’ processing. The CTD of RNA PII gathers and delivers
polyadenylation factors. The cleavage site lies between an upstream poly(A) region (10-30
nucleotides of the cleavage site), which CPSF binds to, and a downstream, U/GU-rich region (~30
nucleotides from the cleavage site) that CstF associates to

The interplay between several mechanisms involved in regulating 3’ end pro-
cessing determines which of the transcriptional unit’s sites are chosen to be
polyadenylated [61]. Regulatory factors can compete with CPSF and CstF binding
to their sequence elements. There can also be cooperative interactions, resulting
from proteins bound to the transcript increasing the rate at which CPSF and CstF are
able to bind their respective elements. Factors bound to the pre-mRNA can inactivate
PAP. The rate of transcriptional elongation can shift the kinetic competition between
processes, resulting in not enough time for upstream sites to be chosen and therefore
the subsequent polyadenylation of downstream sites. Differential expression of
individual proteins which make up part of the large 3’ processing complexes will act
to preferentially select suboptimal cis-elements. Factors involved in polyadenylation
can also be sequestered to the cytoplasm. The factors can also become bound into
other complexes in the nucleus, which can result in different choices of site. The
factors can also be posttranslationally modified, again altering which of the several
sites are chosen to be polyadenylated.

Chromatin structure also impacts upon the regulation of alternative polyadenyla-
tion [62]. The canonical polyadenylation signal 6-mer, AATAAA, is a poly(dA:dT)
tract, and such tracts act to stiffen DNA and deplete nucleosomes. Indeed, [62]
find that human polyadenylation sites (PAS) have strong nucleosome depletion in
conjunction with downstream nucleosome enrichment. Moreover, the downstream
nucleosome affinity is associated with increased usage of the PAS when there are
multiple sites available.
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2.2.6 Post-transcriptional Modifications and Folds Used
in Quality Control and Regulation

A number of post-transcriptional modifications are used by the cell to check the
fidelity of transcripts as they are produced. The addition of a cap to the 5 of the
nascent transcript is likely a switch that enables RNAPII to move from an abortive
state into a fully elongating state [22]. The poly(A) tail acts to enable transport of
mRNAs from the nucleus to the cytoplasm and affects both their stability and the
rate at which they are translated [61].

A key quality control process is the nonsense-mediated mRNA decay (NMD)
pathway [22]. This involves the exon junction complex (EJC), a group of proteins
which are deposited on spliced transcripts about 20 nucleotides upstream of exon—
exon junctions [22]. During the first round of translation for a newly synthesised
transcript, the presence of at least one EJC which is 50 or more nucleotides
downstream of a stop codon results in the transcript and recently translated peptide
being rapidly degraded. This targets those transcripts in which the first in-frame stop
codon is poorly placed for transcript termination, resulting in the constitutive stop
codon being either in the last exon or within 50 nucleotides of the final exon—exon
junction [22].

EJC deposition possibly evolved to enhance protein production and mRNA
surveillance [22]. However, NMD is used to play several regulatory roles in the
cell, other than just simply removing aberrant transcripts. For example, a number of
splicing factors appear to alter the production of their own isoforms in order to target
their transcripts to the NMD pathway whenever their intracellular concentrations
become too high. Moreover, splicing makes for better translation resulting from the
interactions between EJCs and complexes associated with ribosomes [22]. Further-
more, the EJC also interacts with proteins involved in directing mRNA localisation.

It is not just the EJC that acts to modulate the efficiency of an mRNA’s
localisation and translation efficiency. A number of features of the untranslated
regions of mRNAs control their metabolism [63], the regulation of which is likely
to depend on the tertiary structure of RNA as well as trans-acting factors. For
example, cis-acting elements in the mRNA, usually in the 3’ untranslated regions
(UTR), mediate the subcellular region to which the transcript is localised. Whereas,
other elements in the 3’ UTR, such as AU-rich elements, regulate mRNA decay.
Translation efficiency also depends on structures in the 5 UTRs as well as the length
of the 5 UTR.

2.2.7 Sequence Variations

Genome resequencing of individuals will identify the differences with other genome
sequences, and identify single-nucleotide variations, and whether the individual is
homozygous or heterozygous for such variations. Individual alleles may contain
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distinctive sequences and heterozygous individuals may produce expression of
different RNA sequences. RNA-Seq has now been used to detect single-nucleotide
variations in expressed exons of the human genome [64].

2.3 The Structure of Chromatin Impacts upon
Gene Regulation

Transcription and post-transcriptional processing occurs whilst RNAPII is progress-
ing through chromatin. Rather than just being a naked strand of DNA, instead
chromatin is a complex mixture of nucleic acid, proteins and covalently bound
modifications.

2.3.1 Nucleosomes

Constraints on DNA arise from its interactions with group of eight basic histone
proteins, collectively known as nucleosomes [65]. DNA and nucleosomes are
arranged as beads on a string, with a linker of naked DNA sequence bridging
two neighbouring DNA-wrapped nucleosomes. The nucleosomes act to neutralise
the self-repulsion of DNA resulting from the negatively charged phosphates in its
backbone, enabling DNA to be packaged efficiently and fit into the confined space
of the nucleus. As shown in Fig. 2.5, the histone core is composed of two copies of
four histone proteins (H2A, H2B, H3 and H4). Each octamer consists of two H3—H4
histone dimers bridged together as a stable tetramer that is flanked by two separate
H2A-H2B dimers [66]. DNA coils through a left-hand toroid around the histone
core, with approximately 147 bases looping 1.65 times around each nucleosome,
with each histone core anchoring 34-36 DNA base pairs through electrostatic,
hydrogen and nonpolar interactions [66]. A further linker histone, H1, protects
internucleosomal linker DNA near the nucleosome entry-exit point [66]. DNA and
nucleosomes may undergo further compacting into transcriptionally inactive 30 nm
fibres [65], as well as other high-order compactions.

A short basic stretch flanking lysine around position 16 of the histone H4
N-terminal domain directs internucleosomal contacts, which modifies high-order
chromatin structures [66]. The interaction between residues 16 and 20 of histone
H4 and two acidic patches on the C-terminal a-helices of histone H2A present
on an adjacent nucleosome mediates in salt-dependent folding of chromatin.
Acetylation of lysine residues relieves positive charges, perturbing histone-DNA
contacts and affecting nucleosome stability [66]. Indeed, acetylation of lysine 16 on
H4 (H4K16ac) prevents the compaction of nucleosome arrays in vitro, likely via
electrostatic repulsion and hindering H2A contacts [66]. The acetylation of H4K16
also repels ATP-dependent chromatin-remodelling complexes, such as ACF, which
will only interact with histones in the absence of H4K16ac [66].
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Fig. 2.5 The nucleosome as described in Sect. 2.3.1. In (a) a cartoon representation of a
nucleosome structure determined from x-ray crystallography is shown (PDB code 1aoi) [223]. The
histone structure H1 was not determined in the structure. In (b) a schematic diagram to represent
the entire nucleosome, including the histone H1 structure, is shown. The core nucleosome structure
is composed of eight domains which are composed of four dimers of H2, H3 and H4 histones. The
DNA loops around this structure following this order of dimers: H2A-H2B, H3-H4, H3-H4 and
H2A-H2B. The H1 histone binds to the entry and exit DNA giving the structure stability. The DNA
turns 1.65 times and is comprised of 147 bases

2.3.2 Nucleosome Variants

Variants of histone combinations contribute to the properties of the nucleosomal
core particle and its role in building specialised structures as well as altering
transcriptional activity [66]. Histones H4 and H2B are largely invariant, whereas
there is more variety with H3 and H2A.
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The non-canonical H2A.Z is conserved from lower to higher eukaryotes. Nucle-
osomes can only incorporate one type of H2A variant because of steric clashes
between loops in H2A and H2A.Z. H2A.Z impacts upon nucleosome stability
and chromatin folding, resulting from a small destabilisation within H2A.Z-H3
interactions and a longer H2A.Z acidic patch, relative to H2A, used in H4 NTD
binding. Despite its conservation, there remains uncertainty about the function of
H2A.Z resulting from the rapid turnover rates of H2A.Z-containing nucleosomes
[66]. Another H2A variant unique to mammals is H2A.Bbd. H2A.Bbd-H2B dimers
dock on the (H3—H4), tetramer, producing nucleosome core particles that organise
about 118 base pairs of DNA but which are considerably less stable than the
canonical nucleosomes. The variant H2A.Bbd lacks the ubiquitinatable C-terminal
domain as well as the acidic patch that contacts the H4 N-terminal domain, making
nucleosomes containing H2A.Bbd resistant to salt-induced chromatin folding.
H2A .Bbd may reside within active chromatin [66].

Mammals have evolved a replication-dependent H3 variant, H3.1, that only dif-
fers from the non-canonical variant, H3.2, by the substitution of a single amino acid
[66]. H3.2-containing nucleosomes are probably associated with heterochromatin.
Whereas, the H3.3 histone variant differs from H3.1 by five amino acids and is
associated with euchromatin. H3.3-containing nucleosomes are unstable, with the
H3.3 histone undergoing rapid turnover. The displacement of nucleosomes during
transcription appears to be the primary role for H3.3 [66]. Cysteines that are found
in H3 variants may act to stabilise H3—H4 tetramers through disulphide bridges,
particularly under oxidative conditions [67]. A further cysteine in H3.1 variants
may also result in stabilising disulphide bridges between neighbouring nucleosomes
which both contain H3.1s, helping to compact higher-order structures of chromatin
[67]. There is also an H3.CenH3 variant that is involved in chromatin structures
associated with kinetochore assembly and function [66]. The different forms of
chromatin resulting from H3 variants and posttranslational modifications may result
in chromosomes having a “barcode structure” [67], influencing epigenetic states
during cellular differentiation and development.

The linker histone H1 acts to seal the two turns of nucleosomal DNA and is
required for changes in conformation between extended and compact chromatin
[68]. H1 also plays a role in establishing the spacing between nucleosomes,
maintaining the level of methylation in particular regions of the genome, regulating
a subset of cellular genes and acting to control development [68]. There are 11
variants of the linker histone H1 which is more than twice greater than the variability
of any core histone. H1 variants also show a greater degree of divergence from each
other than do the variants for other histones [68]. The variants are distinctive about
when they appear in the cell cycle, but there is presently considerable uncertainty in
their functionality [68].
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2.3.3 Nucleosome Positioning, Promoters and Gene Regulation

The code through which the genome sequence acts to position nucleosomes is
increasingly understood [69—71] and our knowledge of the role nucleosomes play in
gene regulation is rapidly evolving. DNA sequences have different abilities to bend
and modify their helical twist and these differences are amplified when wrapping
around the sharp bends of the nucleosome [70]. The bending around nucleosomes
is facilitated through approximately 10 bp periodicity of specific dinucleotides.
However, tracts of poly(dA:dT) are rigid and predicted to be unable to efficiently
loop around histones. As shown in Fig. 2.6, such tracts are, as expected, observed
to be free of nucleosomes [72] and play an important role in regulating nucleosome
positioning within neighbouring genomic sequences. The nucleosome positioning
code works in tandem with other regulatory codes in DNA [73], and amino acid
content of proteins are likely to be modified as a function of nucleosome occupancy
[74]. Moreover, [75] (see Fig. 2.6) have observed that substitution rates in linker
regions are approximately 10—15 % lower than in nucleosomal DNA, which may be
associated with higher DNA repair efficiencies in linker regions compared to nucle-
osomes. The roles that nucleosomes play in regulating transcriptional start sites,
discussed below, in conjunction with differences in rates of insertions and deletions,
and point mutations, between DNA wrapped around nucleosomes and that in linker
regions, act to leave a nucleosome-associated periodic pattern in genome sequences,
ultimately moulding the DNA sequence over evolutionary time scales [76].

The movement of nucleosomes by a few bases along DNA can dramatically
alter the accessibility of the genomic sequence. Variations in genome sequences
subsequently impact on nucleosome affinities and promoter structure, resulting in
distinct modes of gene regulation [72, 77]. Functional promoters in eukaryotes
must attract RNAPII and also evade the effects of nucleosomal repression. Cryptic
transcription may occur if the suppression induced by nucleosomes does not
function [78]. Typically, transcription start sites are found in nucleosome-free
regions [47] as a major mechanism for suppressing transcription is to wrap potential
transcription start sites around nucleosomes [79].
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Fig. 2.7 A schematic diagram relating the positioning of cis-regulatory regions, the transcription
start site (T'SS) and nucleosomes for ubiquitously expressed and regulated yeast genes as described
in Sect. 2.3.3. In the ubiquitous case, cis-regulatory regions tend to lie in the linker regions with the
TSS at the start of a nucleosome. In addition such cis-regulatory regions do not have a TATA box.
Regulated genes, on the other hand, have their cis-regulatory regions lie in the exposed regions of
the nucleosomes and can be exposed or hidden more as individual nucleosomes slightly shift their
position. These regions tend to have a TATA box

The nucleosome positioning signals are used by eukaryotes to regulate gene
expression with distinct noise and activation kinetics through altering the architec-
ture of promoters [72]. As outlined in Fig. 2.7, “ubiquitously” expressed genes in
yeast have open promoters [80], characterised by a poly(dA:dT) tract resulting in
a large nucleosome-depleted region (NDR) close to the transcription start site, in
conjunction with accurately positioned nucleosomes further upstream. Associated
cis-regulatory sequences reside within the NDR and the lack of nucleosomes means
that transcription factors can bind to the regulatory DNA without competition.
TATA-binding boxes are typically not found within these promoters.

As outlined in Fig. 2.7, “regulated” genes in yeast have covered promoters [80],
with a more evenly distributed nucleosome positioning, resulting in transcription
factors and nucleosomes competing for access to DNA. Transcription factor binding
sites tend to be exposed on the nucleosome surface, near the border with a
linker [81]. The nucleosome positioning sequences for these promoters result in
high nucleosome occupancy close to the transcription start site. The regulation of
chromatin, via subtle changes in nucleosome positioning and accessibility of DNA
to transcription factors, enables large dynamic changes in expression [72, 77, 82].
TATA elements are frequently associated with this group of promoters [82].
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Mammalian genes that have broad CpG-enriched promoters tend to produce
multiple transcription start sites and are typically ubiquitously expressed [83]. The
regulation of which start site is chosen is associated with the methylation state of the
promoters [84]. Whereas mammalian genes with promoters containing a TATA box
tend to produce a sharp single transcriptional start site and typically produce tissue-
specific expression [83, 85]. In mammals promoters containing a TATA box evolve
slower than promoters containing CpG islands [86]. Furthermore, the sequence
of DNA at human promoters, enhancers and transcription factor binding sites, in
contrast to yeast, typically encodes high intrinsic nucleosome occupancy [87], with
these regions depleted in nucleosome-excluding poly(dA:dT) tracts.

The structure of DNA wrapped around nucleosomes details the tertiary structure
of a gene within a sequence and structural variations at the chromatin level are likely
to play a role in the regulation of the co-transcriptional processing of RNA. Long
poly(dA:dT) tracts, which exclude nucleosomes, are avoided in exonic sequences,
enabling an increased density of nucleosomes in exons [73]. Furthermore, differ-
ences in linker lengths between nucleosomes in exons and introns may result in
different chromatin-packing arrangements [73]. The positioning of nucleosomes
is also involved in exon definition events during co-transcriptional processing
[49, 88] and nucleosome depletion has been associated with the regulation of
polyadenylation [62]. Furthermore, [89] have identified peaks in the density of
H2A.Z-containing nucleosomes just downstream of start codons and just upstream
of stop codons in human T-cells.

2.3.4 Dynamic Nucleosomes and Gene Regulation

The regulation of the dynamics through which DNA alters its binding around
nucleosomes is intimately involved in controlling gene expression [90] and the
different mechanisms are outlined in Fig. 2.8. Models of such regulation are founded
on the idea that the regulation results from a competition between nucleosomes
and other DNA-binding proteins [91]. The affinities that these molecules have for
the sequence (binding affinity landscape) dictate their competitive and cooperative
interactions [91]. High nucleosome occupancy tends to reinforce cooperative
interactions between transcription factors in displacing nucleosomes [87].

DNA accessibility and nucleosome positioning are also regulated through
the action of ATP-dependent chromatin-remodelling complexes. Chromatin-
remodelling complexes are present at many promoters [92] and the dynamic
repositioning of nucleosomes has been associated with selecting the transcriptional
start site [65] as well as other aspects of the initial stages of transcription [93]. Also,
histone-devoid transcriptional start sites, in conjunction with the active cycling of
factors on and off a promoter, permit formation of preinitiation complexes that
are poised for transcription to be initiated [66, 90], a different state from a gene
that is fully repressed. The evolution of chromatin-remodelling complexes is likely
associated with changes in chromatin regulation during the evolution of vertebrates
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Fig. 2.8 A summary of the regulatory mechanisms that can be applied to the nucleosome as
described in Sect. 2.3.4. PTMs can be applied to the H2 histones. The H1 histone can interact
with transcription factors or chromatin-remodelling complexes. Furthermore, thermal fluctuations
may result in the transient exposure of DNA regulatory sites to proteins

from unicellular eukaryotes [92]. Complexes, such as the ISWI (imitation switch;
[94]) family, are involved in regulating higher-order chromatin structure [92],
promoting regularly spaced nucleosomes and gene silencing [66]. Whereas the
complex SWI/SNF (switching defective/sucrose non-fermentation; [94]) transiently
exposes DNA regulatory sites through creating loops on a nucleosome’s surface
[65]. Some of these SWI/SNF complexes, such as BAF complexes in mammals,
undergo progressive changes in subunit composition during the transition from
a pluripotent stem cell to a multipotent progenitor cell [92]. At least four ATP-
dependent remodelling complexes have nonredundant and specialised roles in
maintaining pluripotent chromatin within stem cells. Tissue-specific complexes
may enable matching between chromatin remodelling and transcription factors
[92]. This can result in co-regulation of many genes or be restricted to the activation
or repression of a single gene.

The disruption or displacement of nucleosomes will modify the rate at which
polymerases pass over the DNA or the rate at which transcriptional factors will
bind [65]. There are transcription-coupled changes in DNA topology or local
chromatin structure, with histone and nucleosome removal during elongation of
RNAPII [47]. The transit of RNAPII across the transcription unit is preceded by a
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leading wave of histone posttranslational modifications that open the chromatin and
transiently displace nucleosomes [95]. There are at least two processes by which this
happens. The first results from the nucleosome within transcriptionally active genes
having two components, a fluid H2A-H2B dimer and a stable H3—H4 tetramer —
H3-H4 tetramers are ~20 times more stable than H2A-H2B dimers [90]. The
stability of the H2A-H2B dimer within the nucleosome will be further decreased
by posttranslational modifications such as ubiquitylation, phosphorylation and
acetylation. H2A-H2B dimers can also be exchanged through the actions of ATP-
dependent chromatin-remodelling complexes. The movement of the H2A-H2B
dimer could enable transcription factors and polymerases to access binding sites
on DNA. The second process results from the linker histone H1 and its subtypes,
associated with greater than 80 % of the nucleosomes in a mammalian nucleus,
having residence times of a few minutes in interphase, consistent with dynamic
interactions [90]. However, these residence times are variable and governed by the
phase of the cell cycle, posttranslational modifications to H1, the subtype of H1 and
competition for binding sites with other competing factors, such as transcription
factors and chromatin-remodelling complexes, each of which themselves show
dynamic interactions with chromatin [90]. Thus, alterations in residence times of
HI can result in changes to the residence time of a transcription factor, changing
the balance between repression and activity. Thermal fluctuations of DNA wrapped
around nucleosomes may also result in transient exposure of DNA regulatory sites
to proteins. Such exposure is most energetically favourable towards the entrance
and exit points of the DNA around the nucleosome and, indeed, transcription factor
binding sites tend to be exposed near the border with a linker [81].

2.3.5 Histone Tails

Each histone has a tail which is targeted by a broad range of chemical moieties
at multiple sites. Virtually all exposed polar residues (and some of the prolines)
within the tails of histones are subject to covalent posttranslational modifications
(PTMs). These include acetylation, methylation, phosphorylation, ubiquitylation,
ADP-ribosylation, glycosylation [90] and SUMOylation [95], with lysine residues
modified by up to three methyl groups. Acetylation and methylation results in
only a small chemical group being added to the tail. However, ubiquitylation and
SUMOylation are large appendages, almost the same size as the histone proteins,
and their bulk could lead to more prominent changes in chromatin structure [95].
There is strong purifying selection among histone proteins and these targeted
residues [66]. There has been considerable effort in establishing whether, and how,
combinations of moieties on groups of histone tails act to produce a histone code
that is used to regulate chromatin compaction and transcription [66].

A series of interlocking histone PTMs occurs during initiation, early elongation
and mature elongation [95]. The transcriptional state of chromatin is correlated with
several histone PTMs [66]. For example, hypoacetylation of H4K30me3 (trimethy-
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lated lysine residue at position 30 of the H4 tail) and H3K27me3 is associated
with silenced chromatin, whereas hyperacetylation of H3K4me3 and H3K36me3
is associated with actively transcribed chromatin. Moreover, the distribution of
these marks can be distinctive, with H3K4me3 present at the beginning of genes
whereas H3K36me3 accumulating within the body and towards the downstream
region of genes [90]. However, single histone marks do not fully prescribe chromatin
structure and its impact upon transcription and different marks works in combination
when interacting with histone-binding proteins [66, 90]. Furthermore, experiments
on transcriptionally synchronised genes are beginning to unravel a transcriptional
clock controlled by dynamic nucleosomes [90]. Changes in the methylation and
acetylation status of the histone pass through cycles, with particular combinations
of histone modifications never coexisting on the same nucleosome at the same time.
However, the sequence of events at a nucleosome appears to depend on many factors
and there have been no simple rules describing the order of events [90]. In particular,
different causes for why a gene is induced produce distinctive histone modifications
[90]. Moreover, different sets of histone modifications act to regulate gene expres-
sion in high-CpG-content promoters and low-CpG-content promoters [23].

2.3.6 DNA Methylation

Cytosines within chromatin can be covalently modified so that they carry a methyl
group at position 5 within their pyrimidine rings [96]. 5-Methylation of cytosine
does not affect its base pairing with guanine, and cytosine is still replicated as
cytosine. A consensus view has been that DNA methylation always appears in a
CpG context (C followed by a phosphate and then a G, i.e. CG is on the same
strand). Methylation of CpG has high mutagenic potential [96], as 5-methylcytosine
can be deaminated to thymine. Such transitions accumulate over the course of
evolution resulting in CpG dinucleotides being markedly unrepresented in genomes
of vertebrates given the fraction of cytosines and guanines in the genome. However,
there are islands of CpGs which are found at the expected frequency, and these tend
to overlap with gene promoters [96].

Once a methyl is added to cytosine, it can be copied to newly synthesised
DNA, resulting in an epigenetic memory that can be conserved during cell division.
The DNA methylation pattern is maintained through mammalian development
by DNMT1, a methyltransferase that is associated with the replication complex
[97]. During cell division and DNA replication, DNMTT is involved in recog-
nising methylated CpG residues on hemimethylated DNA and methylates the
opposite strand. However, epigenomic profiles also undergo targeted methylation
and demethylation alterations during development, and these differential changes
in methylation play a crucial role in cell lineage commitment [98]. For example,
targeted repression and de novo methylation of genes responsible for pluripo-
tency occur at gastrulation, whilst the embryo is beginning to separate into germ
layers [97]. The importance of epigenetic alterations that affect tissue-specific
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differentiation is such that their dysregulation could be the principal mechanism
through which epigenetic changes cause cancer [84]. Different tissues show marked
differences in DNA methylation [99], such that tissue-matched profiles from adult
patients of different ages have more in common with each other than do disparate
tissues from the same individual. Indeed, broad methylation patterns show tissue-
specific conservation from humans to mouse [84], such that the methylation profiles
of human and mouse brain cells, or human and mouse heart cells, have more in
common than do the profile of a human brain and human heart cell.

Methylation acts to change the properties of chromatin. For example, methylation
of DNA acts to modify nucleosome formation and positioning [96]. Biophysical
and structural studies of DNA indicate that CpG methylation reduces backbone
flexibility and dynamics, decreasing local DNA deformability. The position of 5-
methyl group in the major groove increases steric hindrances on DNA wrapping
around the nucleosome [96]. Only altering the conformation of a few nucleosomes
through methylation may result in a significant impact upon the regular spacing
arrays of nucleosomes expected to be involved in producing higher-order chromatin
structure [96].

The methylation of cytosines affects how chromatin can subsequently bind to
trans-acting factors and RNAPII. The binding of methylation to gene promot-
ers can act to suppress transcription, and so any methylation associated with
genes was believed to be indicative of transcriptional repression. However, this
view is undergoing revision following the results from whole-genome epigenomic
observations [99]. For example, a key function for differential methylation during
differentiation is associated with changes in alternative transcription start sites
[84]. Hypomethylation of promoters in conjunction with higher levels of gene-
body methylation is positively correlated with transcription [50]. There is also
recent evidence that DNA methylation acts to mark out aspects of gene structure
within chromatin but shows cell-type-specific differences. DNA methylation peaks
are found at the transcriptional start site in human T-cells [89]. Whereas DNA
methylation shows a trough at the transcriptional start site in human embryonic
stem cells and fibroblasts [50]. Both [50] and [89] find a drop in DNA methylation
at the transcriptional termination site. Exons typically show higher CpG methylation
fractions than do introns [50]. Interestingly, there is a sharp peak in CpG methylation
at the exon—intron junction and a sharp dip in CpG methylation at the intron—
exon junction [50], suggesting that transitions in DNA methylation are involved in
splicing regulation. DNA methylation also peaks just downstream of the start codon
and just upstream of the stop codon, suggesting that DNA methylation may be used
as a signal for the addition, or removal, of co-transcriptional modifications that will
only be utilised during translation at the ribosome [89]. Gene-body methylation may
also inhibit incorrect choice of start sites for transcription [99].

The view that methylation is restricted to CpG sites is being questioned due
to results from the first DNA methylomes that are now being sequenced at base
resolution [100]. Almost 100 % of the methylcytosines in fully differentiated
fibroblast cells are indeed in a CpG context, whereas pluripotent embryonic stem
cells show almost 25 % of the methylcytosines in a non-CpG context (C followed
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by a C, A or T; [100]). Moreover, 99 % of the methylation of CpG sites occurs
on both strands (the opposite strand is also CpG), whereas methylation on CHG
(where H= A, C or T) is highly asymmetrical, with 98 % of the cases being found
only on one of the strands rather than both [100]. Moreover, within embryonic stem
cells, non-CpG methylation is enriched within gene bodies but is depleted in DNA-
protein-binding sites and enhancers [100].

At this time it is unclear whether gene-body methylation, and its marking out
of gene structure, is restricted to subsets of genes in particular cell types. The
biological implications of such methylation as well as methylation’s interplay with
transcriptional elongation and splicing are still uncertain. Indeed, the initial findings
from whole-genome methylation profiles, from a small number of cell types,
indicate that we are still someway from understanding the biology of gene-body
DNA methylation. But the rate of discovery suggests that the next few years will
lead to a significant illumination of the role of DNA methylation in gene regulation
across the genome.

2.3.7 DNA Methylation Interactions with Histone Tails

There are regulatory interactions between enzymes involved in processing DNA
methylation and histone modifications [97] and these interactions play a crucial
role in mammalian development [101]. For example, G9a contains an SET domain
which acts as a histone methyltransferase, and G9a also contains an ankyrin
domain which recruits the DNA methyltransferases DNMT3A and DNMT3B.
DNA methylation patterns are erased in the early embryo, resulting from passive
demethylation caused by DNA (cytosine-5)-methyltransferase 1 (DNMT1) being
excluded from the nucleus [98]. Methylation profiles across the genome are then
re-established in each cell at approximately the time of implantation, through a
wave of de novo methylation whilst ensuring the CpG islands remain unmethylated
[97]. As shown in Fig. 2.9, the de novo DNA methylation template is written
through histone modifications, with patterns of methylation of H3K4 across the
genome being formed in the embryo before de novo DNA methylation. CpG islands
in the early embryo have RNAPII bound to them and this acts to recruit H3K4
methyltransferases. Whereas the rest of the genome contains nucleosomes with
unmethylated H3K4. Subsequently, de novo methylation occurs through the action
of DNMT3A and DNMT3L (DNMT3-like, a paralogue of DNMT3A) complexed
with DNMT3B. This recruits methyltransferases to DNA by binding to histone
H3, whereas any form of methylation of H3K4 acts to inhibit this methylation.
This results in de novo DNA methylation taking place at CpG sites throughout the
genome but being prevented at CpG islands because of the presence of H3K4me.
This model explains the strong anti-correlation between DNA methylation and
H3K4me in a number of cell types [97]. Moreover,a DNMT3A-DNMT3L tetramer
may oligomerise on DNA-containing histones without H3K4me and lead to the
nearly global methylation of the mammalian genome [101].



44 A. Harrison and H. Shanahan

a HIK4
Mathyltransferaze
\ RNA PII
-
CpG Island
b

354
Mem::mmg RNA PII

1
CpG Island

Fig. 2.9 A schematic diagram explaining the mechanism how non-CpG island sites are methylated
in embryos as described in Sect. 2.3.7. In (a) CpG island sites are first bound by RNA PII
sites which then recruit the H3K4 methyltransferase, sites that will be methylated are bound
to nucleosomes. In (b) H3K4 methyltransferase in conjunction with DNMT3B, DNMT3A and
DNMTS3L to methylate the relevant CpG site. The CpG island sites are protected from methylation
by the previously bound H3K4 methyltransferase

During post-implantation development, further epigenetic reprogramming occurs
in primordial germ cells [101]. DNA methylation patterns are re-established by
DNMT?3A and the DNMT3B-DNMT3L complex at imprinted loci and transposable
elements during gametogenesis. Targeting to transposable elements may involve
Piwi-interacting RNAs, whilst targeting to imprinted genes involves the interactions
of DNMT3L with unmethylated H3K4 tails [101].

DNA methylation also helps to maintain patterns of histone modifications
through cell division [97]. During replication and cell division, regions that are
methylated tend to be reassembled in a closed conformation, containing histones
that are non-acetylated. Whereas unmethylated DNA gets repackaged in a confor-
mation that is more open, containing nucleosomes whose histone tails are acetylated
[97]. The mediation between DNA methylation and histone modifications likely
results from methylcytosine-binding proteins such as MECP2 and MBD2, which
are able to recruit histone deacetylases to methylated DNA. Enzymes such as
G9a and DNMT1 may also interact with DNA methylation sites and direct H3K9
dimethylation [97].
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2.4 The Spatial Organisation of the Genome in the Nucleus
Acts to Regulate the Expression of Genes

2.4.1 Gene Expression Is Localised

It is increasingly clear that genomes and gene regulation are organised non-
randomly in the nucleus [102]. Most nuclear events occur in spatially defined sites
and in dedicated nuclear bodies, rather than occurring ubiquitously throughout the
nucleus [103]. The formation of structures in the nucleus, such as Cajal bodies
[104], results from stochastic assembly and self-organisation. Similarly, biological
processes such as the formation of the DNA damage response may result from
self-organising events [105]. Indeed, whole genomes may be considered as self-
organising entities during mitosis, with networks of co-regulated gene expression
and chromosomal association that are mutually related during differentiation result-
ing in self-organising lineage-specific chromosomal topologies [106]. The density
of RNAPII may also act to regulate the colocalisation of gene expression [107].

Heterochromatin regions of the genome are usually found at the periphery of the
nuclear membrane and are usually silent, whereas more open chromatin associated
with active genes is typically found towards the centre. This is outlined in Fig. 2.10.
Such a situation is consistent with biophysical models of the entropic organisation of
self-avoiding polymers which suggest that long flexible polymers (associated with
gene-rich chromosomes) will move to the centre of a confining sphere, whereas
compact polymers (heterochromatin) will move to the periphery [108]. There is
increasing evidence that gene activation or silencing is frequently associated with
repositioning of the locus relative to nuclear compartments [109]. Active genes
dynamically colocalise to shared sites of ongoing transcription [110] and genes such
as Myc have been observed to preferentially relocate to regions in the nucleus at the
same time as other genes with which they are co-regulated [111]. The movement
of DNA into loops can result in proximal associations between co-regulated genes
which are separated along the genome sequence [112]. The initiation step of
transcription is required to tether genes to the same foci [113], but even in the
absence of transcription, there are still localised concentrations of RNAPII [113].
A model consistent with much of the experimental data is that there are transcription
zones within the nucleus in which RNAPII is concentrated locally through self-
assembly processes [114]. These dense regions of nuclear RNAPII concentration
have been termed factories, and it is possible that a transcriptional factory model
may describe an aspect of the architecture of all genomes [115].

The synthesis of mRNA in mammalian cells is observed to be stochastic [116],
with developmental genes exhibiting pulses of activity [117]. The stochastic nature
of gene expression results from dynamic passage of genes through transcription
factories [112]. Selection pressures will act upon groups of genes undergoing
coordinated stochastic transcriptional regulation, and chromosome organisation
shows the signature of selection for reduced gene expression noise [118]. Other
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Fig. 2.10 A schematic diagram of chromatin organisation and transcription factories as outlined
in Sects. 2.4.1 and 2.4.2. Heterochromatin (blue and black circles and lines) generally lies close
to the nuclear membrane. Free DNA loops extend into the centre of the nucleus where it passes
through regions of high RNA PII density referred to as transcription factories. Loops colocalise and
hence are co-regulated exhibiting a similar noise structure in their expression. This is consistent
with the stochastic nature of expression. The expanded region to the bottom of the diagram posits
a hypothesis that as the start and end regions of the gene are physically close to each other, RNA
PII can be re-recruited for transcription or be used for surveillance (Color figure online)

aspects of transcriptional regulation constrain the organisation of genes on eukary-
otic chromosomes [119-121], with the 3D regulation of gene expression directly
impacting upon genome evolution [122].

2.4.2 Loops and Networks of DNA Interactions Regulate
Gene Expression

Genomes show tissue-specific spatial organisation [123] and cell nuclei frequently
contain chromosome territories [124]. There is increasing evidence for three-
dimensional networks of chromosomal interactions [125].
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The topology of DNA around individual genes modifies gene regulation. As
shown in the blown up region of Fig. 2.10, loop structures in which the promoter and
terminator of a gene are in close proximity are associated with gene activity [22].
The role of the loop may be to increase the efficiency of recycling RNAP II back
to a promoter after it has reached the end of a gene. The loop may also be involved
in surveillance, with the results of an initial round of transcription being checked to
ensure authentic signals are in place.

There are also cell-type-specific long-range looping interactions between
enhancers and promoters which establish three-dimensional chromatin structures,
such as for the CFTR gene [126, 127].

The conformational contacts between separate regions of chromatin change
during cellular differentiation [128]. For example, extensive spatial chromatin
remodelling accompanies gene repression during cellular differentiation [128], with
repression of Hox A9, 10, 11 and 13 expression associated with the formation
of distinct higher-order chromatin contacts between genes. Whereas, different
chromatin conformations are associated with transcriptional activity. Major changes
in higher-order structures of chromatin interactions are being associated with
the regulation of transcriptional activity in increasing numbers of gene clusters,
including the Bithorax complex in Drosophila [129] and the human apolipoprotein
[130] and Hox A [128] gene clusters. The chromatin conformations may act as
an epigenetic memory [129]. The conformation changes during differentiation may
also be evolutionarily conserved [128].

DNA regulatory elements known as insulators mediate chromatin interactions,
resulting in the formation of chromatin loops [131]. The name arises from the insu-
lator’s role in preventing inappropriate interactions between groups of enhancers
and promoters. CCCTC-binding factor (CTCF) is one such insulator protein. CTCF
contains three domains, one of which is a DNA-binding domain with 11 zinc
fingers. It is evolutionally conserved from insects to mammals, and over 80 %
amino acid residues are identical between human, chicken and frog and up to
100 % conservation within the zinc finger-containing region [132]. CTCF binds
in tens of thousands of places across the genome, with the binding sites grouping
into different classes [133], each of which exhibits distinct evolutionary, genomic,
epigenomic and transcriptomic features. The chromatin architecture and form at
CTCF-binding sites can result in cell-type-specific changes [134]. Understanding
the code by which CTCF acts to coordinate the three-dimensional position and
regulation of genes within a cell’s nucleus is being actively sought [135]. CTCF
is believed to fit tightly into the linker region between nucleosomes [135], which
results in positioning of a nucleosome over a site acting to occlude the binding of
CTCEF [136]. Furthermore, CTCF is sensitive to the presence of a 5-methyl group
in the major groove of DNA [96] and CTCF can only bind to unmethylated DNA
[135]. Moreover, the binding of CTCE, possibly through the action of chromatin
remodelers, acts to accurately position 20 nucleosomes, enriched in the histone
variant H2A.Z, both upstream and downstream of the site [137]. CTCF also acts to
demarcate cell-type-specific chromatin domains associated with active (H2AK5ac)
and repressive (H3K27me3) histone modifications [136]. CTCF has also been found
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Fig. 2.11 A schematic diagram of how CTCF and cohesin can bind chromosomes as explained in
Sect. 2.4.2. In (a) CTCF can bind between nucleosomes but cannot bind if its site is methylated.
In (b) CTCF in conjunction with cohesin can bind between the same chromosome or between
different chromosomes

to have a close relationship with the borders of lamina-associated domains [138],
0.1-10 megabase domains that are believed to anchor chromosomes to the nuclear
envelope.

The important role that CTCF plays in establishing patterns of nuclear architec-
ture and transcriptional control in vertebrates [139] is likely related to CTCF binding
to cohesion [140-143], which creates intrachromosomal and interchromosomal
links (shown in Fig. 2.11), resulting in a cell-type-specific network [134] that
determines the three-dimensional structure of the genome [144]. Cohesin and
CTCF are also involved in the maintenance of imprinting of loci such as the
IGF2 (insulin-like growth factor 2)/H19 (H19 fetal liver mRNA) genes. A set of
enhancers downstream of H19 play a role in regulating expression of both IFG2
and H19 — within developing embryos IGF2 is paternally expressed and H19 is
maternally expressed [141]. On the maternal locus there are two unmethylated
regions between IGF2 and H19 and where CTCF and a ring of cohesion can
associate. The interaction between CTCF cohesion from this pair of regions results
in a loop of chromatin-containing IGF2 which is then insulted from the action of the
downstream enhancers, and only H19 is subsequently expressed. However, on the
paternal locus, the region between IGF2 and H19 is methylated resulting in CTCF
being unable to bind, leading to the H19 locus being bypassed and IGF2 being able
to interact with the enhancers downstream of H19 [141].

Other elements may be involved in forming higher-order chromatin structures in
the nucleus. For example, Polycomb response elements mediate the formation of
chromosome higher-order structures in the Bithorax complex [129].
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2.5 Regulation of Gene Expression by Non-coding RNA

2.5.1 Short Non-coding RNAs Associated with the Start,
End and Enhancers of Genes

Short RNAs cluster at the 5" and 3’ ends of genes [145]. A class of short transcripts
close to transcription start sites of genes have been observed to be present at low
abundance [79]. They have been named by several groups (promoter-associated
sRNAs (PASRs, [145]), transcription start-site-associated RNAs (TSSa-RNAs,
[146]) hereafter PASRs). PASRs are mostly derived from nucleosome-free DNA
[79]. As shown in Fig. 2.12, they flank active promoters, with a peak in the
abundance of short RNA antisense transcripts found ~250 nucleotides upstream
of a gene’s transcription start site [146, 147] and a peak in the abundance of
short sense transcripts found between approximately 50 nucleotides [146] and 2.5
kilobases [148] downstream of the transcription start site [147]. Such divergent
transcription appears common for active promoters as most of them have engaged
polymerases upstream, in an orientation opposite to the proximal gene [147]. There
is a correlation in expression between PASRs and their proximal gene, suggesting
they are both responding to a common inducement of expression, even though the
transcripts are in opposite directions. The density of antisense termini-associated
sRNAs (TASRs), found towards the 3’ ends of genes, is similarly correlated with
the expression of the proximal gene [145].

A further source of gene-associated short RNAs is enhancers [149, 150].
Enhancer RNAs (eRNAs) have already been found in macrophages [149] and neu-
rons [150] and it is likely that they will be identified in many, if not all, mammalian
cell types. Enhancers overlap a sizeable fraction of extragenic transcription sites in
higher eukaryotes [149]. In the studies of [149, 150], only a fraction of all enhancers
were found to be associated with RNAPII and eRNA synthesis, suggesting that
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Fig. 2.12 A schematic diagram of the relationship between PASR expression levels and a TSS as
explained in Sect. 2.5.1
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there are a number of regulatory components involved with each enhancer. Changes
in eRNA synthesis are correlated strongly with changes of mRNA expression
at nearby genes [150], suggesting that eRNA synthesis may require a dynamic
interaction between an enhancer and a promoter. Furthermore, upstream extragenic
transcription frequently precedes the induction of an adjacent coding gene [149].
Transcripts from enhancers are not polyadenylated and they show little bias in
transcribing both strands [150] as well as being very unstable [149].

The level of H3K4me at the enhancer and eRNA synthesis are tightly correlated,
and so the process of eRNA synthesis may be to establish and maintain chromatin
in a state required for enhancer function [149]. Indeed, it is likely that the function
of many of these gene-associated short RNAs, including PASRs and TASRs, is to
mediate transcription-coupled changes in chromatin structure [79]. Such changes
may involve the prevention of nucleosomes obstructing transcription factor binding
sites [147] or facilitating initiation through the impact of negative supercoiling [146]
behind the passage of RNAP II. These will help promoter regions maintain a state
poised for subsequent regulation [146]. Polymerase resides on approximately 30 %
of human genes, with RNAP II observed to be pausing, appearing to wait for a signal
to begin elongating [147]. Genes that are developmentally regulated or that respond
to extracellular triggers are those that are likely to have pre-engaged RNAP II [22],
so as to speed up the rate at which the gene is ready for transcription. It is likely
that there is a rate-limiting step that stops RNAPII fully escaping into elongating
[79]. It is presently unclear what this trigger is, but it is likely to be associated with
pre-mRNA processing [22].

2.5.2 Long Non-coding RNAs

Significant numbers of long ncRNAs are regulated during development [151]. In
particular, the binding of transcription factors, along with evidence of selection,
conserved secondary structure, splicing patterns and subcellular localisation, sug-
gests the explicit regulation of non-coding transcription [152]. Long ncRNAs can
act as coactivators of transcription factors [153]. They can also act as “ligands” for
RNA-binding proteins, causing an allosteric change from an inactive to active con-
formation, which in turn can inhibit transcription through modifying transcription
factor and histone acetyltransferases [154]. Non-coding RNAs also modulate the
subcellular localisation of some transcription factors [151]. Non-coding RNAs can
also bind to, and regulate the action of, RNA polymerase II during heat shock [155].
Also, some of the transcripts labelled as non-coding may in fact be the source of
functional small peptides [156].

The wide variety of regulatory roles ncRNAs can play are shown in Fig. 2.13.
A number of chromatin-modifying enzymes contain RNA-binding motifs [157]
and long non-coding RNAs recruit chromatin-remodelling complexes to genomic
loci [152, 158-162]. Long non-coding RNAs act to direct genomic methylation
[163]. They also provide a scaffold for histone-modifying enzyme recruitment
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Fig. 2.13 An outline of the various roles long ncRNAs can play in regulation as explained in
Sect. 2.5.2

[164], leading to heterochromatin formation [165]. The non-coding transcripts act as
local modulators of chromatin structure, triggering chromatin modifications which
then expand along the chromosome, even though the neighbouring regions are
not complementary to the original transcript [164]. The expansion of the induced
chromatin changes may just be restricted locally, or they can expand further and
may underpin genomic imprinting [166] and X chromosome inactivation [167].
Another example is the expression of hundreds of long ncRNAs that are sequentially
expressed along the Hox loci, defining chromatin domains of differential histone
methylation and accessibility [168]. One of the ncRNAs in the Hox loci recruits the
Polycomb chromatin-remodelling complex and silences transcription across 40 kb
in trans through inducing chromatin to enter a repressive state.

Natural antisense transcripts can overlap part or all of another transcript [164] and
many protein-coding genes can be regulated by their antisense transcript partners.
The antisense transcripts can bind to their sense partners and enhance their stability,
through modifying the binding of an HuR protein and suppressing deadenylation
and decapping [169]. The binding of an antisense transcript can also induce changes
in RNA secondary structure which act to expose AU-rich elements and make the
sense transcript prone to degradation [170]. Interactions between sense and anti-
sense transcripts can also block the binding sites of other regulatory factors such as
microRNAs. This appears to be the case for B-secretase, a transcript regulated by its
antisense partner and likely related to the pathogenesis of Alzheimer’s disease [171].

Antisense RNAs typically undergo fewer splicing events than sense transcripts
[172]. However, natural antisense transcripts can modify the alternative splicing
isoforms of their sense partners [172, 173] and may also impact upon alternative
polyadenylation [164]. Furthermore, long ncRNAs can be processed to yield small
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RNAs and they can also modulate the efficiency by which other transcripts are cut
into small RNAs and interact with the RNAi pathway [174]. Endogenous siRNAs
have been observed to map to overlapping regions between sense and antisense
RNAs, and the RNAi pathway could regulate both the sense and antisense transcripts
in these cases [175]. However, the RNAi pathway is not responsible for antisense-
mediated regulation of the expression of some genes [175]. Duplex formation of
sense and antisense partners may also interact with the RNA-editing pathway [176].
In a number of cases, it appears to be the act of transcribing a non-coding
transcript, rather than the transcript itself, which acts to regulate a nearby protein-
coding gene. Transcriptional interference resulting from collisions between RNA
polymerases producing the sense and overlapping antisense expression may occur
[177], but this is likely not to be the predominant regulatory pathway mediated by
antisense transcripts [164]. Transcription of an ncRNA can pass across the promoter
of the protein-coding gene and interfere with transcription factor binding, preventing
the expression of the protein-coding gene [151]. Transcriptional elongation induces
the addition of histone marks that act to prevent transcription initiation from
locations within the body of the transcript [151]. ncRNA transcription can induce
histone modifications that repress the transcription of an overlapping protein-coding
gene. Furthermore, continuous transcription of ncRNA can prevent silencing of
genes by proteins such as Polycomb group proteins [178]. Non-coding RNAs
can also help to recruit Trithorax group proteins [179] which help to main active
transcription states by counteracting the effects of the Polycomb proteins.

2.5.3 Regulation by MicroRNAs

MicroRNAs (miRNAs) are short (~22nt) non-coding single-stranded RNAs [180].
They function by usually repressing mRNAs post-transcriptionally through com-
plementary binding to partial overlaps in target mRNAs. They play a central role in
coordinating the activities of many thousands of transcripts and they play an integral
role in the development and regulation of different cell types and tissues [181].

There are several good reviews of miRNA biogenesis, e.g. [182]. RNA poly-
merase Il mediates the transcription of most miRNAs and is summarised here
and Fig. 2.14. Pri-miRNAs are long primary transcripts which typically form a
stem hairpin structure, a terminal loop and ssRNA flanking segments. The nuclear
enzyme Drosha, assisted by DGCRS8 (DiGeorge syndrome critical region gene 8),
cleaves the RNA near the stem of the hairpin, about 11 bp away from the ssSRNA—
dsRNA junction [182]. This releases a pre-miRNA which is then exported from
the nucleus by the protein exportin-5. In the cytoplasm, the enzyme Dicer further
cleaves the pre-miRNA near the terminal loop to yield a duplex of ~22nt. One of
the strands is loaded into an Argonaute (AGO) protein, and this is used to guide
complementary target mRNA sequences for repression.

miRNAs have played a significant role in the phenotypic evolution of metazoans
[183] and there is a close coupling between miRNA evolution and the establishment
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Fig. 2.14 (a) A schematic diagram of a pri-miRNA and the region that eventually forms the
miRNA. In (b) we list one regulatory mechanism miRNAs can play in regulating genes explained
in Sect. 2.5.3. This case ensures that either gene 1 or gene 2 is expressed

of tissue identities early in bilaterian evolution [184]. An expansion in the number of
miRNAs has also been hypothesised to lie behind the origin of vertebrate complexity
[185]. The increase in new miRNA families is likely due to the ease in which they
are formed along with the wide impact they have on gene networks. The formation
of a new miRNA is likely related to pervasive transcription of sequences containing
hairpin loops, each of which is only a few mutations away from being a new miRNA
[180, 186]. Once a miRNA is operational, and modifying the regulation of many
genes, it undergoes very strong purifying selection meaning that their sequences
are extremely well conserved [180, 186], making miRNAs excellent phylogenetic
markers [187]. However, the targets to which miRNAs bind show little conservation
in animals, indicating that miRNA regulatory networks have undergone extensive
rewiring during metazoan evolution [180]. Unlike the continuous formation of
new miRNA families, there has been a much smaller expansion and evolution
of transcription factors during metazoan evolution [187]. Gene duplication is
the dominant source of new transcription factors. There is a greater chance of
evolutionary advantage for a duplicated transcription factor to undergo a few
mutations and bind to new targets of DNA than it is for a non-transcription factor
family member to mutate enough to be able to bind to DNA [187].

There appear to be two broad classes of miRNAs [188]. Class I miRNAs are
regulated by large numbers of transcription factors and are likely to function
within developmental programmes. Whereas class II miRNAs are regulated by
small numbers of transcription factors and are likely to function in maintaining
tissue identity in adults. The widespread regulation of genes by miRNAs leads to
many pathologies resulting from disruptions in the regulation of miRNAs, and they
are being increasingly identified as being involved in a range of diseases [189],
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including many neurodegenerative diseases [190]. Because of concerns about off-
target effects of new drugs, it is also being recognised increasingly that development
in pharmacogenomics will require greater knowledge of miRNAs [191].

The expression of many transcription factors is subject to miRNA regulation.
Feedback motifs are rare in pure transcription factor networks [192], and miRNAs
provide the necessary post-transcriptional feedback [193, 194]. miRNAs usually
repress gene expression, but not always [195]. One of the roles microRNAs
might play is to tune expression at threshold points [183], such that stochastic
gene expression programmes will have less noisy outcomes [196]. This type of
regulation is required as noise can induce bimodality in positive transcriptional
feedback loops [197]. The resulting robustness leads to stabilised developmental
pathways, increasing phenotypic reproducibility [198]. The networks through which
microRNAs act to regulate self-renewal in stem cells, as well as the transformation
of stem cells into differentiated cells, are beginning to be mapped out [199].

There are differences between transcription factor and miRNA regulation related
to biological processes in which they are involved. In animals, the repression
of miRNAs is usually weak compared to TF-mediated repression [180] and it
increasingly appears that miRNAs act to fine-tune the translational and transcrip-
tional output of TFs [200]. miRNAs can act to quickly suppress or reactivate
protein production at ribosomes [201], whereas changes in TF binding modifying
transcription rates take longer before the information feeds through to protein
production [195]. Furthermore, the actions of miRNAs, unlike TFs, can be localised
to different parts of a cell. This compartmentalising can then be used in processes
such as neurons requiring to regulate gene expression on a synapse-specific scale
rather than across the cell [202].

2.6 Common Themes

2.6.1 Structural Considerations

2.6.1.1 The Shape of RNA Impact upon Gene Regulation

RNA molecules form stable secondary and tertiary structures in vitro and in vivo
[203]. RNA secondary structures play an important role in binding splicing factors
[38], and the search for novel RNA-binding targets for well-known proteins can
be enhanced if secondary structure is taken into account [204]. Furthermore, the
binding of microRNAs to target sequences depends upon the local tertiary structure
of RNA [205]. Moreover, RNA editing also depends on the structure of the RNA,
as ADAR converts adenosines to inosines (A to I) using double-stranded RNA
substrates.

The reliable computational prediction of RNA structure would be very useful in
understanding its underlying function; however, despite some progress in the area,
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it remains a highly challenging problem [206]. Buratti and Baralle [37] cautioned
against the use of in silico predictions of pre-mRNA structure such as those obtained
by Mfold [207] and Pfold [208]. Buratti and Baralle [37] noted that existing
computer algorithms provide a folding prediction (and usually more than one) for
virtually any RNA sequence and are strongly biased by the length of the RNA
examined. Buratti and Baralle [37] discussed the example of NF-1 gene transcripts,
which are implicated in the generation of human tumours. Correlations between the
in silico changes in secondary structure and splicing in NF-1 are heavily dependent
on the RNA window. This makes it difficult to assign significance to them.

2.6.1.2 The Shape of DNA Impacts upon Gene Regulation

Gene regulation is related to the properties of chromatin in the nucleus. This ranges
from posttranslational modifications of histone tails which alter their propensity to
bind to each other or to allow transcription, to the movement of histones affecting
accessibility of binding sites for transcriptional factors, to the looping of DNA that
bring the 5’ and 3’ ends of active genes into proximity, to CTCF acting to regulate
networks of binding between different chromosomes and to the movement of co-
regulated genes in and out of transcriptional factories.

2.6.2 Gene Structure Is Written Out in Chromatin

The density of nucleosomes and lengths of linkers between nucleosomes differ in
exons and introns [73]. The positioning of nucleosomes, as well as histone mod-
ifications, is involved in co-transcriptional splicing decisions [48, 49]. Moreover,
nucleosome depletion has also been associated with the regulation of polyadenyla-
tion [62].

Gene-body DNA methylation also likely plays a role in splicing as exons show
higher methylation fractions than do introns and there are sharp transitions in methy-
lation states at exon—intron junctions [50]. Differences in DNA methylation also
occur at transcriptional start sites and termination sites [50, 89]. DNA methylation
acts to make DNA more rigid [96], and so the regulation of co-transcriptional events
may involve a feedback between nucleosome positioning and DNA methylation.
Interactions between DNA methylation and histone tail PTMs may also play a role
in regulating these events.

There are peaks in DNA methylation as well as in the density of H2A.Z-
containing nucleosomes just downstream of start codons and just upstream of stop
codons in human T-cells [89]. Given that the use of start and stop codons is not
required till translation, an exciting possibility arising from the observations of [89]
is that the chromatin markings may be indicative of co-transcriptional modification
events which act to label where a protein starts and finishes.
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2.6.3 Interacting Codes

Gene regulation appears to be intimately controlled through the actions of several
codes — namely, the modulation of a regulatory mechanism by the DNA or protein
sequence it encounters. Within the DNA sequence, there is a nucleosome positioning
code and this is increasingly well understood. There is likely a CTCF code
which helps to regulate the three-dimensional positioning of genes within a cell’s
nucleus. The heptad repeats in the CTD of RNAPII can undergo different types
of posttranslational modifications and these are intimately involved in regulating
the binding of factors required for many of the steps in transcription, post-
transcriptional processing and termination of transcription [24].

The tails of histones can undergo many types of posttranslational modifications.
However, cracking this histone code is proving challenging [66]. This is further
complicated by the interactions that occur between the CTD code and the histone
code [24]. Moreover, other chromatin-associated proteins, such as HP1, are also
posttranslationally modified resulting in the possibility of subcodes with the histone
code [209]. Furthermore, H3 histone variants modify the properties of chromatin
and their distribution along chromosomes is analogous to a barcode [67]. In
addition, much of the impact of H1 variants on the histone code remains to be
determined [68].

2.6.4 Kinetics and Competition Between Processes Underpin
Gene Regulation

Self-organisation and assembly of structures such as Cajal bodies [104] depends
upon the time-dependent concentrations of subcomponents. Furthermore, the move-
ment of genes in and out of transcription factories will also result in changes to
the rate of expression [112]. The form of chromatin also causes differences in
elongation rates which in turn affect splice site selection [47]. There are a number
of other steps available for regulation in splicing [38], encompassing a large number
of kinetic events. The kinetic parameters may have a determining role in splice-site
choice [36]. It is clear that in order to model how the changing form of recently
transcribed RNA impacts on post-transcriptional processes such as splicing, we
need to consider the implications of RNA secondary structure, the binding of
ribonuclear proteins, the speed of transcription, the form of chromatin and any
histone modifications and the dynamic interplay between all these processes.

There is binding competition between a number of processes. Many transcription
factors and chromatin-associated proteins have highly transient interactions with
chromatin, undergoing rapid cycles of binding and unbinding [103]. The high levels
of molecular crowding in the nucleus help to increase the efficiency of binding
resulting in local changes in density dramatically altering the rate at which nuclear
structures form [103]. Nucleosomes and transcription factors each have affinities
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for a DNA sequence and competitive and cooperative interactions between these
proteins act to determine their occupancy [70]. The cycling of factors on and off
promoters enables the formation of poised transcriptional complexes [90], which
are typically observed in approximately 30 % of promoters [22].

There are also interactions between different types of regulators. miRNAs can
bind to exon—exon junctions, suggesting that they can target splice isoforms [210].
An intron retention event can lead to transcripts containing miRNA-binding sites
that they would not otherwise have [211]. Moreover, the biogenesis of miRNAs can
result in crosstalk to pre-mRNA splicing [212]. The binding sites of RNA-binding
proteins can overlap with microRNA target sites [213] and RNA structure also acts
to modify microRNA binding [205]. RNA editing is also coordinated with splicing
[54] and there is a close interplay between editing and miRNAs [52]. There is
also crosstalk between RNA editing and RNA interference [214]. Next-generation
sequencing will increasingly underpin experiments to map out these networks of
interactions [43].

2.6.5 Gene Regulation Can Be Tissue Specific

Three-quarters of the mRNA in a cell are common across tissues, and about
8,000, or approximately one-third, of human protein-coding genes are ubiquitously
expressed [12]. However, much of the rest of RNA appears to be tissue specific
and likely underpins phenotypic complexity in mammals. Alternative splicing
and alternative polyadenylation vary between tissues [33]. The majority of retro-
transposon expression is tissue specific [215]. RNA editing is enhanced in the
brain [52]. Long non-coding RNAs show developmental regulation [151]. miRNAs
function in developmental programmes and maintain tissue identity [181]. The
state of chromatin also changes as cells transform from pluripotent stem cells
into multipotent progenitor cells and the composition of chromatin-remodelling
complexes are tissue specific [92].

2.7 Putting It All Together: How Would You Cope
if You Could Sequence Everything?

Despite the ferocious complexity of the different mechanisms involved in gene
regulation, common themes are emerging as demonstrated in the previous section
and summarised as a mind map in Fig. 2.15. It is not unreasonable to assume that in
the near future next-generation sequencing techniques will allow the sequencing of
all the DNA and expressed types of RNA involved in a given response or process [4].
Such a range of data will be necessary to unravel the complexity of the multilayered
regulation of gene expression.



58 A. Harrison and H. Shanahan

Ginia Chromatin
structure
DNA F
structure
— Y
Gene
Regulation
Interacting

RNA

codes
structure

Competition
Kinetics p

between
processes

Fig. 2.15 Mind map of Sect. 2.6

A better understanding of chromatin and RNA biology will play a central role in
how we use cross-species information reliably. For example, alternative splicing
is likely to be one of the principal contributors to the evolution of phenotypic
complexity in mammals [33]. The splicing patterns in mammalian model organisms,
such as mice, are therefore likely to differ with humans in a number of ways, and so
differing populations of isoforms may complicate the interpretation of the negative
side effects of pharmaceuticals. RNA editing will also result in different transcript
populations in humans compared to other mammals [55], again complicating studies
to identify how drugs impact on gene expression systems. A further complication
is that of miRNAs, which play a key role in regulating tissue-specific transcription.
There are more than 100 extra miRNAs in humans compared to chimpanzees and
more than 150 extra miRNAs in human compared to mouse [183], and these extra
miRNAs are likely to result in gene expression patterns being found in humans that
are not found in our nearest neighbours.

One of the fundamental goals of systems biology is to generate meaningful
quantitative models of the regulation of gene expression. In order to do this, not
only must there be a significant increase in the types of data being collated (as
we have shown in this review), the amount of each type must also be increased
considerably. This is necessary to circumvent the so-called curse of dimensionality
where the output from all the genes is measured but only in a small number of
conditions. It will be necessary to bring multiple studies together, so as to identify
some of the subtle changes in gene expression that are biologically meaningful [17].
This indicates a huge increase in the amount of data being gathered, processed and
analysed. Already, genomics is one of many fields facing a deluge of data [216].
Bioinformatics repositories are already at the petabyte scale [217] — the growth of
sequencing data will result in the repositories transcending the exabyte scale within
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the decade. The archiving of next-generation sequencing data has well-established
resources such as the Short Read Archive [218]. In order to cope with the flow
of data, the Short Read Archive is adopting high-speed file transfer protocols,
at present fasp (Aspera Inc.). However, the transfer of data between external
bioinformatics laboratories is already leading to increasing problems in keeping
up-to-date [219] and things will only get worse. Moreover, the management of
next-generation sequencing data within institutions is already leading to a number
of bottlenecks, requiring increasing resources to be spent on systems administration
and computers [220] rather than on personnel to make use of the data. A further cost
which is only likely to escalate is that of power to run the facility. The computational
and staffing issues being faced by the genomics community are likely to limit the
democratisation of sequencing.

Genomics is not alone in facing a need for processing very large datasets. The
state of the art has arisen from commercial use [216], with organisations such
as Google efficiently processing searches and data mining on enormous datasets.
Virtually all of these organisations are rapidly implementing data centres to cope
with their data-processing requirements. The economies of scales associated with
centres mean that they can sell the resources to external users, through the cloud
computing model. Bioinformaticians have now begun to look at cloud computing
as one feasible solution to cope with the rapid growth of data [221]. There are now
increasing needs for large-scale biological data and computational infrastructure to
be developed on international scales, such as ELIXIR in Europe [222].

All of this will result in ever larger datasets requiring ever larger computational
and experimental infrastructure, as well as larger-sized teams to cope with the data
and use it to discover new biology. We can sequence everything, we can afford to
do so, we can learn huge amounts, and we will have to likely change some of our
working practises to be able to fully utilise the technology.
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Chapter 3
Information Retrieval in Life Sciences:
A Programmatic Survey
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Abstract Biomedical databases are a major resource of knowledge for research in
the life sciences. The biomedical knowledge is stored in a network of thousands of
databases, repositories and ontologies. These data repositories differ substantially in
granularity of data, storage formats, database systems, supported data models and
interfaces. In order to make full use of available data resources, the high number
of heterogeneous query methods and frontends requires high bioinformatic skills.
Consequently, the manual inspection of database entries and citations is a time-
consuming task for which methods from computer science should be applied.

Concepts and algorithms from information retrieval (IR) play a central role
in facing those challenges. While originally developed to manage and query less
structured data, information retrieval techniques become increasingly important for
the integration of life science data repositories and associated information. This
chapter provides an overview of IR concepts and their current applications in life
sciences. Enriched by a high number of selected references to pursuing literature,
the following sections will successively build a practical guide for biologists and
bioinformaticians.
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3.1 Motivation: Information Systems in Life Sciences

The progress in molecular biology, ranging from experimental data acquisition on
individual genes and proteins, over postgenomic technologies, such as RNA-seq,
phenotyping, proteomics, systems biology and integrative bioinformatics aims to
capture the big picture of entire biological systems [55]. As a consequence of
this revolution, the amount of data in the life sciences has exploded. The wave of
new technologies, for example, in genomics, is enabling data to be generated at
unprecedented scales [85]. As of February 2013, NCBI GenBank provides access
to 162,886,727 sequences, and PubMed comprises over 22 million citations for
biomedical literature from MEDLINE, life science journals and online books. The
number of public available databases passed recently the high water mark of 1,512
[32]. This data deluge must now be harnessed and exploited.

Another aspect is the continuous developments in information procurement,
preparation and processing as shown in Fig. 3.1. Over the past years, information
processing techniques evolved from library research and individual data archives to
web-based systems using intercontinental high-speed network links for an ad hoc
data exchange, cloud computing and distributed databases. This continuous and

Data Management

(Databases) Complex Data

(Integrated Databases)
Ontologies
Information

Molecular Biology Extraction
Data

Genome Information in the WWW

Post Genomic Technology
Distributed Computing & Databases

Integrative Biology /
Biomedicine / Environment

1980 1990 2000 2013

Fig. 3.1 The development of information processing in life sciences adapted from [101]
(Reprinted by permission from Macmillan Publishers Ltd, copyright 2002) — Classic database
management systems and the domain-specific modelling of project databases are replaced by
integrative technologies, i.e. data warehouses, data networks and information retrieval
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ongoing shift is attended by the use of database management systems (DBMS)
which are applied to the management of increasingly complex data structures
and voluminous content [98]. The key concepts in bioinformatics with regard
to data handling are a consistent classification and unambiguous definition of
the modelled biological objects in the databases, the raising use of ontologies,
connected with methods of knowledge processing, information extraction and data
mining [82,97].

The consequences of this development are new requirements for information
retrieval methods. Typically, life scientists and bioinformaticians formulate their
queries rather vaguely. This does not necessarily happen due to inexperience or
ignorance but because their search is often explorative with no clear idea of the
expected answer. Vague queries though pose a problem on current databases and
information systems as these queries cannot be semantically interpreted, without
comprehensive semantic document tagging or the use of controlled vocabulary.
Much more specific problems such as data distribution and isolation, structural
heterogeneity, less metadata, interfaces query languages and deep (invisible) web
are further examples of the underlying challenges.

In this context, information retrieval (IR) is getting increased importance as
technology to face heterogeneities in data representation, storage and organisation
towards an efficient information access. The methods for representation and organ-
isation of information items should be designed in accordance to provide users
an easy access to the information of their interest [8]. The first step towards this
formulated aims is a raising need to find, extract, merge and synthesise information
from multiple, disparate sources [56]. In particular, the convergence of biology,
computer science and information technology will accelerate this multidisciplinary
endeavour. The basic needs for IR are summarised in [58]:

1. On-demand access and retrieval of the most up-to-date biological data and the
ability to perform complex queries across multiple heterogeneous databases to
find the most relevant information

2. Access to the best-of-breed analytical tools and algorithms for extraction of
useful information from the massive volume and diversity of biological data

3. A robust information integration infrastructure that connects various computa-
tional steps involving database queries, computational algorithms and application
software

Information retrieval in life science databases exhibits some fundamental dif-
ferences from the way people search in the web or in a general-purpose digital
library. First of all, links play a central role for data integration. Not only a
single article to a specific entity is of relevance, but all linked articles may be
relevant. However, articles just mentioning the entity of relevance may be irrelevant.
Second, life science databases are organised in a domain-centric manner, usually
concentrating around specific entity types (e.g. metabolomics). It is easy to extract
all domain information related to one entity. In contrast, it is very difficult to
collect comprehensive, cross-domain information on an entity if the knowledge is
spread across entities of different domains, e.g. genome structure-focused databases
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versus metabolite or pathway-centric ones. A similar picture of heterogeneity can
be observed in data access and querying. Methods spread among Boolean queries;
predefined queries in web information systems, also known as canned queries;
semantic web; keyword-based retrieval in text documents; relevance ranking; and
recommender systems are commonly used in life science dry labs.

In this chapter, we will subsequently introduce relevant concepts for information
retrieval in the life sciences. It is organised as follows: The Sect. 3.2 provides an
overview of basic concepts for data storage, metadata formats and query interfaces,
as well as data integration. The Sect. 3.3 then introduces the theoretical foundations,
the core concepts of information retrieval and the specific implementation in
life sciences. Here, the focus is on characteristics of information retrieval in the
life sciences, exploratory information retrieval, recommender systems, human—
computer interfaces and semantic aspects with an emphasis on model databases and
data networks. The life science search engine LAILAPS is presented as example for
an exploratory IR system. The last section contains a comprehensive summary of
this chapter.

3.2 Information Systems and Databases

In general, the term information system (IS) describes a somehow connected
compound of information [89]. In computer science, an information system aims,
manages and provides information to support all necessary processes and work-
flows, especially in companies. Usually, an information system consists of different
applications, which are interacting with a database management system (DBMS).
Information systems are a main focus in business information technology.

In computer science, a database (DB) is a well-structured and functionally
associated set of data [29]. A database is managed by a special software — the
so-called database management system (DBMS). Together, DB and DBMS form
a database system (DBS). The majority of database systems are using the relational
database model [18].

In life sciences, the term database is often used as a synonym for the term
information system. Since the data volume in life sciences is growing rapidly [82],
e.g. due to high-throughput technologies (see also Sect.3.1), the importance of
information systems in this area of research is increasing continuously. Often
information systems in life sciences use a data basis that is not organised in database
management systems [17], but flat files, markup files, HTML or XML files instead.
Moreover, the systems are specific to only one data domain. A third characteristic of
information systems in life sciences is that they provide different means of access,
e.g. web interfaces, web services or static HTML pages, and provide different
data exchange formats. The resulting challenges will be described in the following
sections.
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3.2.1 Data Domains

A data domain comprises all data of a specific area, e.g. the domain of the sequence
data or the domain of the phenotypic data. Even though data domains can be
analysed separately, a combined analysis of multiple data domains, e.g. genotype—
phenotype correlations, provides a much higher chance for success. Subsequently,
some examples of data domain are listed. Without the intention of providing a
comprehensive classification of life science data domains, this list will give an
impression about their wide range and diversity.

Sequence data: In biology, this term refers to sequences of nucleotides
(DNA sequence) or sequences of amino acids (amino acid sequence/protein
sequence), which are the result of a sequencing. Here, sequencing means the
determination of all sub-elements. Several sequencing technologies have been
developed. Examples are “classical” techniques, such as Sanger sequencing
(chain-termination method) [84], Maxam—Gilbert sequencing [73] or EST-based
sequencing [2], and next-generation sequencing (NGS) techniques, such as 454
pyrosequencing [72] or Illumina (Solexa) sequencing [11].

Variation and marker data: In genetics, a marker is a piece of DNA with a known
location in the genome, which has different expressions in different organisms.
Examples are restriction fragment length polymorphism (RFLP) markers [13] or
single nucleotide polymorphism (SNP) markers [103]. Today, large amounts of
marker data can be obtained by high-throughput technologies.

Expression data: Gene expression means the transformation of DNA information
into structures or functions of cells, e.g. the synthesis of enzymes. Depending
on different criteria, such as special tissues or compartments, developmental
stages or environmental effects, varying amounts of gene products are produced
(expressed). With array technologies [86] or by help of RNA-seq, a multitude of
product concentrations can be analysed simultaneously (expression profiling).
Metabolic network data: Metabolic networks (pathways) are sequences of
biochemical reactions. They can be different depending on the organism, devel-
opmental stages, subcellular loci, etc. Data about these networks is an important
basis for the understanding of biological subjects at a systems level [104].
Phenotypic data: The phenotype of an organism comprises all characteristics
(traits) which can be observed directly and indirectly. It covers a large variety of
traits. Besides traits that are mostly determined genetically (e.g. the hair colour),
there are also many traits which depend on environmental effects, such as biotic
or abiotic stresses.

Passport data: Not often used in the “classical” bioinformatics, but for the
management of plant genetic resources (PGR) in the so-called gene banks,
passport data is indispensable. Passport data contains information, which is used
to uniquely identify genotypes.
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» Literature data: In science, the structured management of literature references
is of high importance. Central databases, such as NCBI PubMed! or DBLP2
collect millions of references from thousands of journals, proceedings, etc. and
provide this data to the scientific community. Such information is often used for
text mining approaches.

3.2.2 Data Interfaces and Query Methods

Data is only useful if it can be found on request. Consequently, appropriate query
mechanisms are a prerequisite to reusing existing knowledge in databases. In this
respect, queries should be independent from the physical data format, and it should
be possible to extract data by specific criteria or to perform database operations,
respectively. For performing database operations, query languages can be used,
which are based on a data model. Here, it can be distinguished between procedural
and declarative query languages. The former case can be implemented using
sequential programming or nesting of database operators, whereas in the latter case
only the structure of the results needs to be defined. In other words, only the “what”
will be specified, but not the “how”.

Data interfaces are necessary for linking applications and data management.
These interfaces can be implemented as so-called application programming inter-
faces (APIs). Common communication interfaces for linking applications and
databases are:

* (Local) File-based access: A simple method to access data is the use of files
from a local file system. This also includes network file systems, e.g. NFS,
and file access via data transfer protocols, e.g. FTP. For the data access, the
whole file must be parsed. Since the data format is known, data elements can
be extracted and then be transferred into data structures. Several parsers have
been implemented and are available via APIs (see Sect. 3.2.3).

* Remote procedure call (RPC): Another possibility for accessing data is the
call of distant (or remote) methods. These comprise protocols such as REST,?
SOAP,* DCOM [16], .NET or CORBA [93]. These methods provide extended
functionality, ranging from simple method calls to distributed object networks,
web services or persistence frameworks. An essential feature of these standards
is the independence of programming languages.

e DBMS query APIs: A combination of data query languages and APIs enables
remote data access, similarly to DBMS functionality. The technology behind

Thttp://www.ncbi.nlm.nih.gov/pubmed/

Zhttp://dblp.uni-trier.de/
3http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
“http://www.w3.org/TR/soap/
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Fig. 3.2 Abstract schema to data storage and format layer in life sciences

either embeds special database access commands into the programming language
or integrates the data query language with function calls using APIs. Here
already existing programming language-specific APIs and DBMS-specific APIs
can be reused. Moreover, DBMS abstracting architectures, such as JDBC [94] or
ODBC [33], are available.

3.2.3 Data Formats

A data format is a well-defined structure to persistently store data in one or more
files. File-based data formats are widely used for the exchange and presentation of
data in life sciences [1]. The actual data format is dependent on the storage level
and the required access patterns. As shown in Fig. 3.2, it is useful to distinguish
different storage layers, which are backend, data exchange and data presentation.
The backend layer has a particular emphasis on effective persistence and efficient
access structures. In contrast, the data exchange layer is focused on supporting a
platform-independent format enriched with structural and semantic metadata. The
presentation layer is optimised for an optimal layout and should be flexible to
support different HCI technologies and devices.

Whether the data backend is a DBMS or it is based on flat file techniques, data
independence can be assumed. Thus, data formats used here shall not be dealt with
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in detail. For data presentation, HTML is widely used as a data format. While
the content of HTML pages can also be extracted using parsers, however, HTML
only plays a minor role for data exchange. This is because HTML is mainly used
to present and structure elements and the focus is more on the visual layout of
data. This hampers the machine-based processing. A more suitable format for data
exchange is the Extensible Markup Language (XML).

In addition, the use of domain-specific, not necessarily formal, defined text flat
files plays an important role. Popular databases use such formats, e.g. EMBL [52].
Another example is the FASTA format [79] which was originally developed for
a bioinformatics tool for sequence comparisons. Today, it is a de facto standard
for sequence data exchange. A third example is the so-called two-letter code for
databases from the European Bioinformatics Institute (EBI) which uses attribute—
value pairs.

In the case of flat files, only an indispensable format description enables the
development of parsers. Such a description should contain the following elements:

* Allowed constructs: All allowed words are specified as combinations of valid
characters.

» Syntax description: The syntax specifies rules for constructing valid combina-
tions, sequences and structures of the constructs described above.

* Data schema semantics: Here, rules for mapping the data format structures into
elements and relationships of data schemata are specified.

For molecular biological databases, formal and informal descriptions of the
format are common practice for both, allowed constructs and syntax description.
In contrast, data schema semantics are only rarely described. An example is the
UniProt database [9] which provides an XML schema for the mapping of UniProt’s
XML format onto hierarchical structures of XML databases.

Informal descriptions allow to develop parsers manually by interpreting the given
rules, but they are not suitable to generate parsers automatically. For automatic
parser generation, however, a formal format description is indispensable. Formal
descriptions enable machine processing. Examples for appropriate notations from
computer science and bioinformatics are the Document Type Definition (DTD) for
XML or the Abstract Syntax Notation One (ASN.1). ASN.1 is, for example, used
at the National Center for Biotechnology Information (NCBI) for the specification
of data types. The UniProt consortium uses XML/DTD to format flat files, e.g. the
data exchange format of the UniProt database.

Especially for molecular biological databases, XML plays an important role in
data formatting. The following list contains several XML-based data formats [1]:

* Biopolymer Markup Language (BioML) [31]: BioML was developed for mod-
elling the hierarchical structures of organisms.

* Chemical Markup Language (CML) [75]: CML aims at managing different
chemical information in connection with additional information, e.g. publica-
tions.
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» KEGG Markup Language (KGML)’: KGML contains a DTD for the representa-
tion of metabolic pathways including metabolites and enzymes.

o Systems Biology Markup Language (SBML) [47]: SBML is a markup language
for the representation of computational models in biology. It contains structures
for describing subcellular loci (compartments), biochemical reactions and chem-
ical entities involved. Parameters can be declared both globally (for all reactions)
and locally (for a single reaction only). Furthermore, units and mathematical
rules can be specified.

» Taxonomic Markup Language [34]: The Taxonomic Markup Language contains
a DTD for the description of taxonomic relationships between organisms.

Apart from the above mentioned, many more XML-based data formats exist,
e.g. CelIML (Cell Markup Language) [20] or MAGE-ML (MicroArray and Gene
Expression Markup Elements).® The ongoing development of standard formats
for model representation is internationally being coordinated by the COMBINE
initiative.’

3.2.4 Metadata

Not only business companies are losing hundreds of billions of US dollars per
year due to bad data quality [27], this also holds true for other areas, including
the research sector. For a meaningful use of data — not only in running projects,
but also beyond — a high data quality is indispensable. Reaching this aim can be
supported by the substantial use of metadata. Metadata is additional information
provided together with the generated data. One major advantage of the availability
of metadata is that they help to perform promising data analysis using data from
different life science domains. Metadata is (structured) data describing a resource,
an entity, an object or other data. It is used to retrieve, use and maintain a resource, an
entity, etc. Unfortunately, often the acquisition of (primary) data and its subsequent
processing are not well documented. For example, additional information, such
as genotype, development and growth conditions, environmental conditions, tissue
or treatment of biological objects, is missing at all or is described using different
vocabularies. Further relevant information includes statistical methods or software
tools and the parameters applied onto the data. Frequently, this lack of metadata
leads to extra costs or additional personnel expenditures when aiming to reuse
data or reproduce a result, e.g. when being forced to perform the same experiment
multiple times.

Shttp://www.kegg.jp/kegg/xml/
Shttp://www.mged.org/Workgroups/MAGE/
"The computational modelling in biology network, COMBINE, http://co.mbine.org/.
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The problems described above can be downsized by a complete and well-
structured documentation of all steps starting with the acquisition of raw data and
ending with the publication of results. Thus, the annotation of data with metadata
is one important factor for its interpretation, reusability and structuring. This is
reflected by manifold metadata schemata that are used in life sciences, mostly under
the umbrella of the Minimum Reporting Guidelines for Biological and Biomedical
Investigations (MIBBI) project [99]. Reporting guidelines define the minimum
information necessary to be provided with a biological or biomedical experiment.
The textual description of these information guidelines is often complemented by
a data format encoding exactly that information in XML format (see Sect.3.2.3)
and providing mechanisms to link these XML elements with metadata in external
resources, such as bio-ontologies, or technical information (e.g. file creators or
modification dates for files). In general, it can be subdivided into semantic or
technical metadata.

3.2.4.1 Semantic Metadata

Semantic metadata is closely connected to the scientific data domains and comprises
an own universe of several hundreds of metadata schemata. For instance, in systems
biology, a review summarises 30 different standards for metadata and data exchange
formats [14]. Ontologies belong to semantic metadata. In computer science, an
ontology is a definition of classes (concepts, objects) and their relationships
(attributes, roles) [40]. It is well defined and contains the vocabulary of a data
domain, thus improving the interoperability between systems or the communication
between human beings.

Due to the growing amount of data in life sciences, it gets more and more
important to put this data into relation. Therefore, ontologies are increasingly
used [10]. Examples for life science ontologies are:

* Gene Ontology (GO) [6]: Molecular functions, biological processes and cellular
components

» Trait Ontology (TO) [50]: Phenotypic traits of plants

* Plant Ontology (PO) [7]: Anatomy and developmental stages of plants

* MGED Ontology (MO) [105]: Annotation of microarray experiments

The BioPortal [106] maintains and integrates bio-ontologies that adhere to the
requirements of the OBO foundry for open biological, high-quality ontologies [96].
Ontologies in the BioPortal can be browsed visually, and they contain cross-links
to other OBO ontologies, enabling extensive exploration of biological knowledge,
as well as thorough annotation of data. An annotation is a piece of meta-
information accompanying a data set. It describes or explains the subject or content
it refers to.
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3.2.4.2 Technical and Administrative Metadata

Technical and administrative metadata cover aspects of management and processing
of digital scientific resources. The collection and storage of structured technical
metadata is an important prerequisite for the automatic management and processing
of life science data sets. Technical metadata comprise aspects of how to access files,
i.e. information about the system requirements for use in terms of hardware and
software as well as the unique identification and documentation of the file format in
which the resource exists. Each data set should have a unique, persistent identifier,
which is identified regardless of its location.

For example, in life sciences, there is a deficiency of generally accepted conven-
tions for referencing data records. Proprietary identifiers, such as so-called accession
numbers, are designed as a unique combination of alphanumeric characters. For
example, the proprietary identifier Q8W413 in the UniProt database [69] refers to
the protein beta-fructofuranosidase.® The enzyme 3.2.1.26° points
to the same entry but is interpreted as standard nomenclature for enzymes. In
The Arabidopsis Information Resource (TAIR), the locus tag At2936190'0 is
an identifier for the coding gene of the same protein in the plant Arabidopsis
thaliana (prefix At). Furthermore, the gene synonym At Fruct6 is an example for
a semantically enriched acronym of a gene: At denotes Arabidopsis thaliana and
Fruct beta-fructofuranosidase.

To overcome this problem, tools have been designed that resolve identifiers
and approaches to standardise technical metadata. Known resolver systems are,
for example, identifiers.org [51] and the UniProt database identifier mapping.'!
Popular schemata for technical metadata are the Dublin Core Metadata Element
Set (DCMES),12 accepted as ISO standard 15836, as well as the closely related
DataCite Metadata Schema.!*> DCMES was developed by scientists and librarians
to homogeneously describe digital objects using 15 mandatory elements. The
DataCite schema is less strict and comprises only 5 mandatory and 12 optional
elements. However, the most popular way of primary data annotation remains to be
semantically enriched file names.

8http://www.uniprot.org/uniprot/Q8W413
http://www.expasy.org/enzyme/3.2.1.26
10http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G36190
Uhttp://www.uniprot.org/?tab=mapping

2http://dublincore.org/documents/dces
B3http://schema.datacite.org/meta/kernel-2.2/index.html
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3.2.5 Database Integration

In general, data integration is a service combining contents of multiple, often
heterogeneous, data sources, thus enabling to gain new insights [107]. In contrast
to the integration of information systems in business companies, data integration
in life sciences mainly focuses on combining data of heterogeneous sources, e.g.
from the World Wide Web. According to [87], heterogeneity can be classified
as (i) heterogeneity on systems level (different system properties of the sources,
e.g. optimiser strategies), (ii) heterogeneity on data model level (use of different
database models, e.g. relational or object-oriented model), (iii) heterogeneity on
schema level (e.g. different representation of similar data) and (iv) heterogeneity on
data level (e.g. different data for similar database objects).

Research in life sciences typically distinguishes two integration approaches [21]:

1. Virtual (or logical) data integration:
This type of integration is often used for web-based data sources. Here, an
integration system sends a query to several data sources and combines the results
into a report at runtime. Since no data is stored locally, the results are always up
to date, but the query performance is usually lower than with the materialised
integration.

2. Materialised (or physical) data integration:
Following this approach, data sources are queried for new data at regular
intervals, and this data is stored locally. The integration system then queries the
local data only, which has a higher performance than querying distributed sources
as with the virtual integration. However, the timeliness of the locally stored data
depends on the update intervals.

In the recent past, typical approaches using the virtual integration were multi-
database systems (MDBS) and mediator-based systems. Multi-database systems
extract data from several separate database systems and present this data using a
homogeneous view [83]. In contrast to these systems, which focus on data stored
in database systems, mediator-based systems [108] aim at integrating data stored
outside of databases, e.g. HTML or flat files. The latter approach is widely used in
bioinformatics. Examples for virtual integration in life sciences are Entrez [90], the
Sequence Retrieval System (SRS) [30] and the Distributed Annotation System [26].

The typical approach using materialised integration is the data warehouse (DWH)
approach which gained popularity in the end of the 1980s [23]. In contrast to OnLine
Transactional Processing (OLTP) systems, which are designed for management of
operative data (no historical data), data warehouses aim at providing non-volatile,
aggregated and time-dependent data for analyse purposes, e.g. decision support.
For setting up a data warehouse, data from different sources is extracted into a
so-called staging area, transformed and then integrated into the data warehouse.
Data marts are department-specific or application-specific and complement DWH,
aiming at answering particular questions. Here, the two contradictory approaches
of Inmon [49] (top-down approach) and Kimball [54] (bottom-up approach)
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are distinguished. According to Inmon, all necessary data is stored in the data
warehouse. Data marts are then derived from the data warehouse. In contrast,
Kimball regards the creation of data marts as the beginning of the warehousing
process. Thus, the data warehouse is a virtual collection of all data marts. Examples
for materialised integration in life sciences are Atlas [92], BioMart [53, 95] or
BioWarehouse [63].

The need for data integration in life sciences is increasing continuously [36]. So
far, the aim of data integration was to provide a homogeneous view onto the inte-
grated data. Recently, a paradigm change can be observed. As described in [19], it
gets more and more accepted that different users need different kinds of data integra-
tion, because the semantics of data depends on its context. This change in thinking
grounds in the fact that the number of scientific questions asked on the available data
increased tremendously (e.g. due to high-throughput technologies). Consequently,
extended possibilities of retrieving relevant information are necessary.

3.3 Information Retrieval

The increasing popularity of information retrieval as a method to handle semi-
structured data and to formulate fuzzy queries correlates with the growth of data
that is available online. This development is also reflected in milestones such as
the triumphant throughout of PubMed as the world’s most important biomedical
literature search engine since 1996 [100].

Because of heterogeneity in both, the schema and the system, it is hardly possible
to use structured query languages, i.e. SQL or OQL, to access the above-mentioned
distributed data. In contrast, the tendency is to apply search engines or information
systems to acquire speedily and precisely the information needed [24, 60, 68]. This
promising technology is effective for knowledge and data published in journal
articles or in its condensed form as hundreds of life science databases [32,38].

Search engine technology provides efficient and intuitive IR methods to find
relevant data in a collection of distributed, heterogeneously structured and modelled
data repositories. Desktop search engines'* like Windows Search or Strigi are
popular at the scientists’ desktops. Frameworks like Apache Solr!> allow to embed
full text search and relevance ranking into data repositories, as well as faceted
search. The increasing availability and performance of this technology support the
trend to replace classic query forms and Boolean query languages by keyword-based
search and relevance filtering. This replacement gets increasingly important in life
science information systems and is also implemented in primary data repositories,
e.g. the DataCite Metadata Search.

4http://en.wikipedia.org/wiki/List_of_search_engines#Desktop_search_engines
IShttp://lucene.apache.org/solr/
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Instead of referring to relevance ranking, in the following, the term ranked
retrieval will be used, which expresses the necessity to provide an order for results
from a data retrieval process. The interpretation of the term order is one central
concept of ranked retrieval. Mathematically, it is a partially ordered set R, where R
includes the result of a data retrieval query. Furthermore, for R a binary relation <
indicates that, for certain pairs of elements in the set, one of the elements precedes
the other. In the context of ranked retrieval, the relation r; < r, | r1, 7, € R may have
different definitions. The definition of this order relation is the focus of the ranking.

The order of query results becomes particularly important when a query com-
prises a high number of results. The user should have the possibility to structure and
filter data, which are usually displayed as list of data records. If the data records
comprise many fields with a high number of individual values, the result listing
comprises data excerpts or even a list of access numbers, i.e. IDs. In that case, it is
of particular importance to provide a useful order.

Empirically, the word “useful” could have very different meanings. This meaning
is hardly dependent on the user’s pertinence. There are cases when the order is
defined by ordinal numbers, like publication date or serial numbers. Another order
criteria is the lexicographic order. But numeric or lexicographic ordering is not
necessarily a sufficient ranking criterion. Thus, defining relevance functions to
determine the relevance of a data item and mapping it to an orderable p-value is
one of the major challenges in IR.

In the following sections, two major categories of relevance ranking in life
sciences will be discussed. The first category is the explorative information retrieval
with the focus on an explorative and unbiased retrieval of data over a maximum set
of databases, where the relevance ranking is mainly based on popularity and struc-
ture in the data itself. The second category, semantic information retrieval, is based
on the presence of a model in a predefined network of data records that matches best
to a very focused query. The model uses word associations and property lists.

3.3.1 Explorative Information Retrieval

Explorative information retrieval is a concept which bases on the idea of exploratory
search [70] and represents the activities performed by researchers who are either:

e Unfamiliar with the domain of their goal
* Unsure about the ways to achieve their goals or
* Even unsure about their goals in the first place

In Fig.3.3, the three major types of search are summarised as lookup, learn,
investigate and classified into the activities lookup search and exploratory search.
Following this argumentation, explorative IR combines diverse methods of
information retrieval, i.e. domain-specific text indexing, relevance feedback, rele-
vance prediction or recommender systems, with human-computer interaction (HCI)
in order to help users exploring data rather than performing lookup searches.
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Fig. 3.3 Common search activities in web search, which are labelled as lookup—learn—investigate
in [70] (©2006 Association for Computing Machinery, Inc. Reprinted by permission)

An up-to-date overview about the research activities on explorative IR can be found
at http://en.wikipedia.org/wiki/Exploratory search. Studies as the one described in
Marti Hearst’s book on Search User Interfaces [43] show that search behaviour
evolves over time and is strongly influenced by the presence and capabilities
of search engines. The main search engine experience of users is still contact
with relevance-ranked search. To our experience, current prevalent strategy in bio
information retrieval is ranked or Boolean search, combined with metadata-driven
browsing and recommendation for exploration of data sets. However, new types of
interfaces that emphasise exploratory search are also up-and-coming.

3.3.1.1 Relevance Ranking

“Just head for Google or Entrez and get the related web page or database entry.” This
is being said among biologists who search information about a certain object [24].
However, issues like finding reliable information about the function of a protein,
or identifying the protein that is involved in a certain activity of the cell cycle, are
much more challenging tasks. One has to choose (or screen) more than 1,512 life
science databases and billions of database records [32].

Intuitively, the first choice for information acquisition are web search engines.
Web site ranking techniques order query hits by relevance. However, trying to apply
ranking methods that were developed to rank natural language text or WWW sites
to life science content and databases is questionable [81]. For example, the top-
ranked Google hit for arginase is a Wikipedia page. This is because the page is
referenced by a high number of web pages or Google assigned a manual defined
priority rank. Here, the hypothesis is: A high hyperlink in-degree of a page means
high popularity and high popularity means high relevance [61].
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In order to find scientifically relevant database entries, scientists need strong
scientific evidence in relation to the specific research field. A dentist has other
relevance criteria than a plant biologist or a patent agent. The intuitive and
commonly used way at the scientist’s desktop is query refinement. Criteria like who
published in which journal, for which organism, evidence scores and surrounding
keywords are of major importance. Even complete search guides are published, e.g.
for dentists [22].

Other ranking algorithms use term frequency — inverse document frequency (TF-
IDF) as ranking criteria. Apache Lucene'® is a popular implementation of this
concept and is frequently used in bioinformatics, like LuceGene from the GMOD
project [77], which is used for the EBI search frontend EB-eye. The TF-IDF
approach works well but misses the semantic context between the database entries
and the query.

Another approach is probabilistic relevance ranking [48], where probabilistic
values for the relevance of database fields and word combinations have to be
predefined. In combination with a user feedback system, the probabilistic approach
shows promising ranking performance [4].

Semantic search engines use methods from natural language processing, seman-
tic tagging and dictionaries to predict the semantically most similar database entries.
Such conceptual search strategies, implemented in GoPubMed [25] or ProMiner
[41], are frequently used algorithms in text mining projects.

After choosing a ranking algorithm for a search engine, the next task is to define
possible ranking criteria. Conventional search engines use several ranking criteria.
Andrade and Silva consider the similarity between the result entry and the search
query itself as a top-ranking criterion [5]. The importance of linkage in ranking has
been put forward by PageRank, its variations and ranking extensions [81], which
now constitute a mature field.

Greifeneder [39] proposes several possible relevance criteria, including the
absolute or relative frequencies of the keyword(s) of the search query, the scope
or the actuality of the web page constituting the query result.

Schoch also mentioned the shortness of a URL and the order and the proximity
of the search query terms as a criterion [88]. Both Greifeneder and Schéch suggest
to check the entries for their popularity [39, 88]. This idea is based on centrality
computation, which is an important research area in network analysis. One popular
example for this usage is the PageRank algorithm of Google [15,61].

3.3.1.2 Recommender Systems
In its most common formulation, the recommendation problem is reduced to the

problem of estimating ratings for the items that have not been seen by a user and
would be of interest. Intuitively, this estimation is usually based on the ratings given

16http://lucene.apache.org
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Fig. 3.4 Recommender systems used in the EBI’s EB-eye IR system [37] (left) and NCBI PubMed
literature search (right) — cross database search data or abstracts for the term “breast cancer” result
in more than 486,000 hits in EBI databases and more than 255,000 in PubMed abstracts. The
queries were executed at 2013/01/25. In PubMed, “Related searches” and “Titles with your search
terms” suggest references using collaborative filtering. EB-eye makes intensive use of facets, which
may be applied to incrementally refine the query and related documents using vector space model

by this user to other items and on some other information [3]. In recommender
systems, the utility of a data record is usually represented by a rating, which indicates
how a particular user liked a particular data set. An example of a user-item rating is
PubMed’s “Related searches” and “Titles with your search terms” (see Fig. 3.4).

Recommendation in life science IR can be divided into the phases query
expansion and related documents prediction.

The first phase is query expansion. It describes the process of adding terms to
or deleting terms from the original query. Here, a recommender system should
anticipate from users strategies to find a pearl — the citation pearl growing strategy
and the building blocks strategy [28]. In case of the building blocks strategy, the user
divides the information retrieval problem into different concepts and assigns one or
more reference terms to each concept. This is embedded into an incremental process
of refinements until the most relevant document is selected by the user as local
optimum. The citation pearl growing strategy uses intermediate query result, which
is retrieved by a broad query, and interactively pick terms to expand the original
query. The concepts can be implemented in automatic query expansion systems
which make use of thesauri, ontologies and synonym lists and, in the case of pearl
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picking, use top-ranked query results, for example, by collaborative user rating, and
pick the relatively most frequent terms in the top documents to expand the query. An
add-on is the syntactic expansion of single terms. This is done by computing edit
distances to words in a dictionary, phonetic or word stem expansions. A popular
implementation of these concepts is the facets. EBI’'s EB-eye IR system [37] and
the information retrieval portal GoPubMed [25], which use the Gene Ontology [6]
as thesaurus, are examples of successful application of facets in bioinformatics.
Section 3.3.1.3 include some more elaborations to HCI, in particular facets.

The second phase is related documents prediction (also known as “more like
this” or “page like this”). Based on a query result with relevance-ordered database
records, the task of the recommender system now is to extend the result set
with related documents. These related documents are not necessarily part of the
core result set. There are five major methods proposed to predict such neighbour
documents:

1. Shared terminology: Significant number of shared words; distance scoring using
vector space model.

2. Part-of data cluster: Data records are part of the same data partition, i.e. synthetic
genes and same species.

3. Cross references: Identifiers or explicit hyperlinks build data networks; distance
scoring is used to predict neighbours [74].

4. Collaborative filtering: Follow users, who already (successfully) refined queries;
filter user by client clustering, i.e. origin domain, country and user profile.

5. Content-based recommendation: Suggest data records, which were selected in
past in a close query session/time context.

The above methods are rarely implemented in life science IR systems. Some of
them apply shared terminology, cross references and part-of clusters, e.g. PubMed
or EB-eye.

3.3.1.3 Human-Computer Interfaces

Marti Hearst gives in her book a literature-based overview about challenges in
information retrieval interface design [43]. One interesting observation that she
makes and that is easily verified is that even after 15 years of HCI in web search,
general-purpose web search interfaces are still based on a one-line entry of search
terms coupled with some query suggestions.

However, in the past 10 years, a new search paradigm emerged, called Hierar-
chical Faceted Search (HFS) [42]. This search paradigm is especially convincing
for small, hand-picked data sets, i.e. the classic Nobel Prize Winners example
available.” However, it has shown viability also for huge data sets such as search
results in online stores.

17http://flamenco.berkeley.edu/demos.html
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The goal of HFS is to enable users to explore data sets. It does so by guiding
the user, as well as efficiently communicating progress of the search and a position
within the collection. HFS is an improvement on classical hierarchical search. How
this works can simply be illustrated using a search for car by brand, size class, and
engine type. Each car has a given brand, a size class and engine type. They are facets
describing the car.

Classifying a given set of cars into one hierarchy, one would have to choose
which facet to put first. For example, should be browsed by engine type or rather by
size class first? Once the hierarchy is chosen, every user will have to go down the
predefined path to browse the cars collection.

The base innovation in HFS is to avoid this decision; instead it is accepted that
each item in the cars collection has multiple facets. Each facet corresponds to a
hierarchy of subsets, and each car is member of one subset for each of its facets.
The faceted search interface enables the user to choose the important facets and to
choose to which subsets a query result has to belong at the same time. For example,
users want a small car, they do not care about the engine type and it must be a
Chevrolet. They thus picked one subset of the size facet and one for the brand facet.

To get a feeling of the amazingly simple and intuitive browsing that can be
achieved this way, try the flamenco Nobel Prize Winners demo. Please note how
details play a big role in faceted search, for example, the display of query result
sizes before the query in order to give a preview of what can be expected when
clicking on a given facet.

While this example shows the advantages of faceted search, there are some
inconveniences that keep faceted search from wider use for large data collections:

* Too many facets and too large fan-out of facet hierarchies: In free data collec-
tions, there is a huge amount of potential facets. It is impossible to show all of
them on a screen.

» Absence of high-quality facet hierarchies: Annotated by hand, one can design
high-quality facets; however, automatic classification in high-quality facets is
hard.

GoPubMed (see example at Fig.3.5) exemplifies strengths and challenges of
faceted search for biologists: On the one hand, the interface enables browsing via
facets, using the well-developed taxonomies that biology has to offer; on the other
hand, browsing uses a lot of its intuitivity with the huge fan-out of bio-ontologies.
GoPubMed counters this via emphasised display of top concepts and the possibility
for logged-in users to define favourite terms. Other possibilities of countering the
fan-out problem are subject of ongoing research. However, some systems recently
started to include elements of faceted search in addition to classic search, e.g. the
“browse targets” functionality in ChEMBL,'® or autocompletion with display of
result size previews in SABIO-RK."?

18https://www.ebi.ac.uk/chembl/malaria/target/browser/classification
Yhttp://sabio.h-its.org
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Fig. 3.5 GoPubMed example search. Notice how care is taken to limit the fan-out of trees, keeping
it down to only 20 children of the “Knowledge Base” tree. However, already 20 entries have to
be read one by one. Logged-in users could counter this by using bookmarked terms for future
searches, thus creating search trails

3.3.1.4 The Explorative IR System LAILAPS

LAILAPS stands for “Life Science Application for Information Retrieval and
Lightweight API for Portable Search Engines” and as metaphor for the Greek
mythological dog who never failed to catch the prey what he was hunting. In IR
semantics, the aim is to provide a tool that supports the information discovery
in the world’s life science databases. This bold goal must meet continuously
changing requirements. Some are gained from over 10 years experience in dozens
of data management, database integration and analysis projects. The result is the
development of the LAILAPS IR system. This project has been running for 6 years
and combines state-of-the-art methods and concepts from the computer sciences,
life sciences and bioinformatics. Empirically collected user requirements from
bioinformaticians, I'T-skilled biologists as well as less experienced students are
used to design an intuitive user interface and feedback system. The first LAILAPS
version was released in 2007 as an project that was coordinated by an European plant
science company. Motivated by insufficient relevance ranking and the high number
of unsorted query results from database query systems, the aim was to implement a
search engine for protein databases with a user-specific relevance ranking model.
The approach was to import major public protein databases — i.e. UniProt,
PIR and KEGG - into an in an EAV schema, decompose and tokenise the text,
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Table 3.1 LAILAPS feature set to score database entries

Feature class Description

Attribute Attribute in which the query term was found

Database Database origin of the entry

Frequency Frequency of all query terms in the entry and attribute

Co-occurrence Expresses how close and in which order the query term were found
Keyword Rating of keyword semantics sorrounding the query hits

Organism Organism to which the entry relates to

Raw data length  Length of the raw data, which is embedded in the database entry

Text position Portion of the attribute covered by the query term

Synonym Information if the hit was produced by an automatic synonym expansion

compute a reverse text index and compute scores for data entities. The concept
of the LAILAPS query system is to support lists of search terms and phrases.
A search result is a relevance-ranked list of database entries. Each entry is displayed
in form of an rich snipped that summarised the content in one text line. The basis
of the relevance ranking is a set of nine classes of features, which are shown in
Table 3.1. The quantification of these features is computed for each result record as
static entry properties or as from the properties of the text index search itself. The
parameterisation of the relevance prediction algorithm is based on user feedback.
The user may explicitly rate the page quality or the web browser tracks the user
actions and estimates the page quality. This reference data is used to train user-
specific neural networks, which predict from feature scores the page relevance. The
initial training has been performed with a set of 1,089 manually relevance-rated
protein entries that results from 19 queries [60]. A 80/20 cross validation shows
a precision between 0.62 and 0.81, a recall of 1.00 and an f-score between 0.76
and 0.90.

The screenshots in Fig. 3.6 display the major components of the LAILAPS web
application. A portlet version is available to embed LAILAPS into a custom web
page.

Since 2011, the LAILAPS development is focused to support the explorative IR
in a genomic context. Here, LAILAPS is used to bridge genomic metadata, like
functional annotation to genes or other regions at a genome. The concept is:

1. Compile a domain specific list of data hubs, which acts as information retrieval
core.

2. Text search and relevance ranking.

3. Reverse identifier lookup.

The implementation of this concept for the genomic data domain underlines the
flexibility of LAILAPS concept. Here, the world’s major resources of genomic data
annotation are compiled in a list of eight major databases: Trait Ontology, Pfam,
Gramene, Plant Ontology, SwissProt, TTEMBL, Gene Ontology and PDB. Those
are indexed and linked back to the genomics data, i.e. the Genebank Informa-
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Fig. 3.6 The LAILAPS search engine for integrated search in transPLANT genomics data
network. Part (/) shows the entry point of the search engine. In screenshot (2), a result of a keyword
search for “barke”, a genotype of barley, is shown. The result contains relevance-ranked hits in
indexed genome annotation data hubs (UniProt, Gene Ontology, PFAM, etc.) and related linked
genomic resources, i.e. Ensembl, GnpIS, CR-EST. In screenshot (3), the integrated data browser
and feedback system, which act as input for the incremental training of the relevance predicting
neural network

tion System (GBIS) of the German ex-situ Genbank,”® EBI integrated genomics
information system Ensembl,’! and the INRA integrated genomics information
system GNpIS??> by the French INRA institute. The results of search queries
are relevance-ordered links to genomic data. LAILAPS is part of the transPlant
consortium to build a transnational plant genomic infrastructure and supported by
the European Commission within its 7th Framework Programme, under the thematic
area “Infrastructures”. The implementation of this IR infrastructure is available at
http://lailaps.ipk-gatersleben.de.

2Ohttp://gbis.ipk- gatersleben.de/gbis_i/home.jsf
2lhttp://www.ensembl.org
22http://urgi.versailles.inra.fr/gnpis
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3.3.2 Semantic Information Retrieval

The focus of this book chapter has so far been on the integration and retrieval of
large-scale bioinformatics data. Another type of data that needs to be integrated are
computational simulation models. During the past decades, modelling and simula-
tion techniques have been used to answer biological questions. A consequence is the
development of computational models, often in the area of systems biology. Systems
biology is the study of complex biological systems by means of computational
approaches and methods. A computational model of a biological system then
represents aspects of that system, using, for example, mathematical equations. The
number of available models has grown steadily over the last decade, and so has the
models’ complexity [44]. Models are being shared and reused in standard formats
[102], so-called model representation formats (see Sect.3.3.2.1). The increasing
number of models is stored and managed in model repositories such as BioModels
Database or PMR?2 (see Sect. 3.3.2.2). To handle the models’ increasing complexity,
semantic annotation has been established as a tool to describe a model’s nature.
The novel research field of semantic systems biology investigates how to use these
annotations to improve model management tasks such as model retrieval, model
combination or version control. Section 3.3.2.3 focuses on annotation-based model
retrieval and ranking.

3.3.2.1 Model Representation Formats and Standards

To reuse existing model code, the code itself must, first, be made available in model
databases. Second, it must be encoded in exchangeable standard formats, which
can then be interpreted by software tools. BioModels Database [66] is one example
of an open model repository that freely distributes models in standard formats.
Frequently used model representation formats are all XML based; examples are the
aforementioned Systems Biology Markup Language (SBML [47]), CellML [20] or
NeuroML [35] for models of neuroscientific investigations. These standard formats
encode the necessary information to rebuild the model structure and underlying
mechanisms in a software environment, e.g. for simulation studies.

Together with the model, a whole plethora of meta-information is provided,
including the reference publication, the model authors, the semantics of the encoded
entities, the model curation state, the underlying mathematics or the graphical
representation of the model. Often, meta-information is encoded in bio-ontologies
[12] (e.g. Gene Ontology, GO [6], the Systems Biology Ontology (SBO) [65] or the
NCBI Taxonomy??) and linked to model entities through semantic annotations.

Model annotations mostly refer to technical and administrative information
(see Sect.3.2.4.2), while annotations of model components point to background

Bhttp://www.ncbi.nlm.nih.gov/Taxonomy/
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knowledge from biology or chemistry. The annotation information may either be
contained in the model or it may be stored in an external file (see Sect.3.2.4.1). As
well as the model encoding itself, the annotation would best be provided in a stan-
dardised form, e.g. using the Resource Description Framework (RDF) [62]. RDF
can be interpreted by a computer, and therefore RDF-encoded meta-information can
automise tasks such as mode search, comparison, merging or clustering [44,57,91].
The ontology terms are in addition highly linked and therefore allow to infer further
knowledge about the model.

Semantic annotations in RDF should follow the recommendation for model
annotations, called MIRIAM guidelines [64]. The MIRIAM guidelines describe
which additional information should be provided together with the model code and
how it should be encoded. The SBML standard follows these recommendations
and stores annotations as triplets of model entities, qualifiers and URIs pointing
to an ontology entry (a so-called identifier [59]). For example, the XML element
species represents an entity taking part in a biochemical reaction. The relation
between the annotated XML element, e.g. the species, and the ontology refer-
ence, e.g. a GO identifier, is expressed also using standardised qualifiers.>* The
strongest relation is build up by the IS qualifier, i.e. the XML element IS exactly
what is described in the ontology entry pointed to by the URI. Several weaker
qualifiers exist, e.g. isVersionOf.

The meta-information encoded in model annotations is a major resource for
information retrieval tasks. One prominent example is improved model search. For
example, a user searching for models dealing with caffeine may express this search
by typing caffeine or CgH|oN4O,, or 1,3, 7-trimethylpurine-2,6-
dione. A retrieval system is capable of finding the URIs pointing to ontology
entries dealing with caffeine and relating them back to models that contain
these URIs in their annotations. The basis is the creation of an index of terms
from available ontology information. Researchers may use these terms, which best
describe the nature of a particular molecule, to perform keyword-based searches.
Keywords are more intuitive than cryptic model URIs or computer-generated entity
names. If a model is properly annotated with ontology information about caffeine,
then the IR-based search will also cover synonyms and external descriptions.
Consequently, it is possible to retrieve models based on keywords that do not
necessarily occur in the model code itself.

3.3.2.2 Exemplary Model Databases and Repositories

Models in exchangeable standard formats need also be stored and made publicly
available to the modelling community to foster reuse. A number of databases and
repositories have been established over the past years. The following is a brief
review of selected model repositories [102].

Zhttp://www.ebi.ac.uk/miriam/main/mdb?section=qualifiers
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One distributor of freely available SBML models is BioModels Database [66]. To
date it contains 436 curated and 497 non-curated models® and several thousands of
automatically generated pathway models.?® The majority of models in BioModels
Database are concerned with signal transduction and metabolic processes. All
models of the curated branch are guaranteed to be valid SBML and to reproduce the
results described in the accompanying paper. Internally, metadata is extracted and
stored in a MySQL database. Metadata includes information about the submission
and modification dates of a model file, authors’ information, references and anno-
tations encoded as the aforementioned MIRIAM identifiers. Additionally, Apache
Lucene is used to index a subset of model elements and metadata. BioModels
Database supports browsing and searching for models. One way to browse is
the list of available models (sorted by BioModels Database ID (BMID), model
name, publication ID or date of last modification). Another way is to use a tree-
structured browser that is based on GO terms. When searching for a model, a
so-called multistep search is performed [66]. The system works in three sequential
steps. Given a search term, first, the metadata, publications and the annotations
stored in the MySQL database are queried. The result of this search is a set of
BMIDs. Secondly, the stored SBML XML files are queried, using the previously
generated indexes and parsing information such as the SBML notes tag. The
returned BMIDs are added to the result set. If the search included query terms from
external resources, then, thirdly, supplementary information is searched, using either
information available in the local MySQL database or web services. For the specific
case of searching for a term in a taxonomy, the taxonomy tree is also traversed for
neighbour terms, and model IDs associated with that term are added to the result
set. The output is generated by using the BMIDs to query the MySQL database for
the formerly extracted metadata that is necessary for display on the web site. Search
results are returned in an unordered result set.

The Physiome Model Repository (PMR2, [109]) is an online repository for
CellML models at different stages of curation. The Plone-based Content Manage-
ment System contains models of a wide range of different biological processes,
including signal transduction pathways, metabolic pathways, electrophysiology,
immunology, cell cycle, muscle contraction and mechanical models [67]. PMR2
intends to foster the processes of model curation and annotation so that ideally all
models replicate the results in the published paper and the search for models and
elements within models is facilitated. Models in the CellML Model Repository
are browsed by different (physiological) categories, including cell cycle, signal
transduction or metabolism. A CMS-wide full-text search allows for simple free
text search. A search by particular model features (e.g. specifically by author
or publication year) is not possible. Search results are returned in an unordered
result set.

25Twenty-fourth release of BioModels Database, December 2012.
http://code.google.com/p/path2models/
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ModelDB [45] is a format-independent database for curated models related
to computational neuroscience. It provides authors a repository for the storage
of models, in particular in preparation for submission in neuroscience journals.
ModelDB accepts models in any language for any environment [45]. It keeps the
originally submitted model files, that is, the complete code specifying the attributes
of the original biological system represented in the model, including interface
and control code to run the model in the associated simulation environment, and
a non-standardised readme text file explaining briefly how to use the provided
computer code. Additionally, ModelDB stores model meta-information, including
a concise statement of the model purpose, how to use it and a complete citation
of the reference publication [45]. The underlying database management system
is Oracle 10. as an instance of the Entity—Attribute—Value/Classes—Relationship
framework (EAV/CR, [71]) for data representation. The search functionality in
ModelDB relies on the meta-information entered by the model submitter. Search
by author name or accession number (ModelDB ID) is supported. The complete list
of models can be returned sorted by the model name or by the author. Additionally,
some predefined queries regarding different criteria such as cell type or simulators
are available. However, the queries do not incorporate the model files themselves;
as such a search on the model code is not possible. The meta-information is not
standardised, but consists of partially predefined strings and partially manually
entered data. Third-party knowledge is not incorporated in the search process; the
submitted models are not annotated.

JWS Online Model Database is part of the JWS Online Simulator [78], a web-
based simulator for biochemical kinetic models. The model repository serves as
the maintainer for a number of kinetic models that can be interactively run online. It
supports the search for SBML models by a limited number of characteristics, includ-
ing the author, publication title and journal, organism or model type. A web-based
tool offers a searchable categorisation of models in the repository, distinguishing,
for example, between cell cycle models and metabolism. A full-text search is not
supported. Search results are returned ordered by author name. As there does not
exist a publication on the technical background of the model repository, further
information about the backend of the provided interface cannot be provided.

3.3.2.3 Model Retrieval and Ranking

A common shortcoming of all above mentioned model repositories is their limited
ability to retrieve and rank models. A query containing domain-specific keywords
retrieves an unordered set of models. Thus, it is up to the user to browse the
results and inspect the models manually. The keywords searched for are not
necessarily present in a model itself; however, they might be related to a model
by an annotation. Progress in model search has been made with recently developed
IR methods for ranked model retrieval [44]. We elucidate here how a keyword-
based model search retrieves ranked results using the aforementioned model from
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Modals by non-bogus authors describing
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when drinking a cup of colfes?

Fig. 3.7 This figure shows what model information is stored into the model and semantic index.
Additionally, the search is expanded to retrieve models according to their biological content

BioModels Database.?” This SBML-encoded model contains five compartments,
five species, five rate rules and one assignment rule. Even though the model
is all about caffeine (see example from Sect.3.3.2.1), related keywords like
CgH9N4Oy, 1,3, 7-trimethyl-3,7-dihydro-1H-purine-2,6-dione
or guaranine will not retrieve the model at all. This problem is solved by
incorporating a model annotation. Figure 3.7 shows an excerpt of the example
model. The model index holds information directly encoded in the model, i.e. the
model’s name, species or compartment names and also URIs used to annotate model
entities. The semantic index in addition stores all URIs and links back to models.
Here the textual content behind each URI is resolved and indexed.

The model retrieval is then performed using multiple steps. First, the specific
query is sent to the model index. If no models or only models matching poorly on
the query are retrieved, the search can be refined using the semantic index. Here, the
keywords are used to identify matching URIs used to annotate models. As URIs link
back to their corresponding models, it is possible to retrieve models using keywords
not encoded in the model itself. Such a query expansion is shown in Fig. 3.7 where
the term caffeine is used to add URIs to the original query. After all matching
models are retrieved, a score is computed for each match. The score mostly relies
on the concept of term frequency and inverse document frequency (see Sect. 3.3 for
explanation). However, also the importance of certain model components is taken
into account, e.g. a species is more important than a parameter value. In case of

2Thttp://www.ebi.ac.uk/biomodels-main/BIOMD000000024 1
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URISs, also the relation between URI and annotated entity denoted by the qualifier is
taken into account. A deeper explanation is given in [44]. The described approach
can be tested on BioModels Database.

Additional possibilities for model search emerge if the networks spanned by
several ontologies are integrated. Here, the so-called cross-links can be established
and evaluated. One approach is the Bio2RDF?® project which makes use of the vast
information encoded in life science databases. The basic idea is to convert and to
link the database contents with semantic web technologies [76]. After converting
and linking, each database provides a SPARQL point [80]. The SPARQL point
allows to create sophisticated queries on multiple data providers who also offer
a SPARQL point. As a result, a number of RDF-triples matching the query are
retrieved. Bio2RDF heavily uses semantic web technologies, allowing for automatic
traversal through the network. An integrated network of ontologies can be used with
OWL-based reasoning methods to identify model similarities (e.g. [46]).

In the ranked retrieval approach, which is closely related to a hierarchical faceted
search from Sect.3.3.1.3, the starting point when querying such a network of
ontologies is one particular ontology entry, e.g. xanthine. If a user is interested in
models revealing information about xanthine and its derivatives, a URI pointing
to the xanthine entry is fed into the system. Thus, the descendants are retrieved
and added up, along with inter-ontology links for the specific entry, to form a
query. Finally, the query is sent to the model index, and a ranked list of models
is retrieved.

3.4 Summary

Due to the increasing demands for data management in the life sciences, information
retrieval is no longer just a buzzword. It has instead become a core concept in
bioinformatics and related research fields. However, while project proposals still
continue to ask for more storage in their budget plans, the aim should be to develop
methods for more efficient use of storage. The mere drop of files to the largest
possible secondary storage devices, i.e. hard drives or cloud storage solutions,
could mean a dead end. Current practice is the storage of working files using a
sophisticated naming system for files in combination with Microsoft Excel sheets to
link some metadata. This is particularly true for many wet lab desks, and it may be
suitable for personal- or even-group level data maintenance. The drawbacks of this
system, however, become obvious in its publication process. Highly personalised
data representation makes the data only discoverable by insiders, computer scientists
or skilled bioinformaticians. The data of interest first needs to be transferred into
well-modelled, granular structured and well-interfaced database systems before
being reused. A main argument for data reuse is that the distribution of knowledge
and later processing by computational analysis is essential to all scientific work.

28http://bio2rdf.org/
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In order to meet the demands expressed above, this chapter gave an overview of
core methods and technologies for modern information managementin life sciences.
The first focus was on databases and information systems. In this context, the change
from flat file data exchange to relational database modelling over static database
integration approaches to flexible data networks using semantic technologies has
been described. Particularly exciting is the vision of a holistic view of a universe of
thousands of single yet integrated, well-structured databases. This is, in fact, the
real value of the data collected so far. It is not in the form of daily reinvented
project-related scripts. The development of such scripts demands time and expert
knowledge, and sometimes magic parameters and access paths are used. In contrast,
reusable frameworks such as open templates for a workflow-driven data analysis
should be preferred. The objective here is a sufficient standardisation and semantic
enrichment of the data.

Obviously, the creation of reusable frameworks is a laborious and costly process.
However, the overall gain for science will be even bigger. Therefore, lab staff needs
to be motivated to use lab information systems and to maintain their protocols,
observations and files in database systems. It continues at the scientist’s level, where
the data streams should be consolidated and properly semantically tagged, long-
term citable stored and linked in a scientific publication as supplemental material,
preferable in the already established domain databases. Finally, bioinformaticians
should place emphasis on the code and interface quality. Besides coding, scripting
and data analysis under time pressure, the potential lies in well-documented, object-
oriented developed and well-tested software as well as in the use of standard data
access protocols and interfaces. This enables the global scientific community to
extract all possible knowledge from the existing data.

In addition to the granular and integrated access to globally distributed data,
the selective access to information and their extraction is very important. Not the
mere of data volume matters. The high number of, on the first view separated, but
from a different perspective overlapping, data domains is often the most important
cost factor for information retrieval. It could be argued that the actual core of the
information retrieval is to find data and ultimately obtain information. This concern
is mainly reflected in the section information retrieval. The section has been written
with a focus on techniques and actual systems. Here, two most interesting aspects
were described in summary — the exploratory and the semantic retrieval.

The focus of the first is on relevance ranking in a set of data query results
and recommender systems to improve the query sensitivity and to filter the most
important data items in respect to the user’s needs. The second focus is on semantic
information retrieval, such as the use of metadata or semantic networks and, finally,
semantically interpreted data queries.

In this chapter, no evaluations of or recommendations for specific methods or
systems were made. This is due to the fact that such evaluations strongly depend
on actual applications, which are existing in a wide variety in life sciences. Instead,
an extensive list of references of relevant sources in primary literature as well as of
web sources was added, which should be seen as a starting point of own detailed
studies of the readers.
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WWW Link List

Resource Brief description WWW link

PubMed PubMed comprises citations for biomedical http://www.ncbi.nlm.
literature nih.gov/pubmed

DBLP The Computer Science Bibliography provides http://dblp.uni-trier.de

bibliographic information on major computer
science journals and proceedings

SOAP The Simple Object Access Protocol is a protocol
specification for exchanging structured
information in computer networks

REST Representational State Transfer is a style of
software architecture for distributed systems
such as the World Wide Web

KGML KEGG Markup Language (KGML) is an
exchange format of the KEGG pathway maps
MAGE MicroArray and Gene Expression MAGE aims

to provide a standard for the representation of
microarray expression data

COMBINE COMBINE (Computational Modeling in Biology
Network) is an initiative to coordinate the
development of the various community
standards and formats for computational
models

UniProt UniProt provides a comprehensive, high-quality
and freely accessible resource of protein
sequence and functional information

ENZYME The Enzyme nomenclature database (ENZYME)
is a repository of information relative to the
nomenclature of enzymes

TAIR The Arabidopsis Information Resource (TAIR)
maintains a database of genetic and molecular
biology data for the model plant Arabidopsis
thaliana

DCES The Dublin Core Metadata Element Set (DCES)
is a vocabulary of 15 properties for use in
resource description

http://www.w3.org/TR/
soap

http://www.ics.uci.
edu/~fielding/pubs/
dissertation/rest_arch_
style.htm
http://www.kegg.jp/
kegg/xml
http://www.mged.org/
Workgroups/MAGE

http://co.mbine.org

http://www.uniprot.org/
uniprot

http://www.expasy.org/
enzyme

http://www.arabidopsis.

org

http://dublincore.org/
documents/dces
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(continued)

Resource Brief description WWW link

MDS The DataCite Metadata Store (MDS) is a http://mds.datacite.org/
service for data publishers to mint DOIs and
register associated metadata

Wikipedia List of  List of search engines, including web search http://en.wikipedia.org/

Search Engines

Apache Solr

Explorative IR
Apache Lucene

Flamenco

Malaria Data Tar-
get Classification
Hierarchy
SABIO-RK

LAILAPS

Ensembl

GBIS/I

GnPIS

NCBI Taxonomy

engines, selection-based search engines,
metasearch engines, desktop search tools and
web portals and vertical market web sites
that have a search facility for online
databases

Solr™ is the popular, blazing fast open-source
enterprise search platform from the Apache
LuceneTM project

Wikipedia overview about the research
activities on explorative information retrieval

The Apache Lucene™ project develops
open-source search software

Flamenco search interface framework has the
primary design goal of allowing users to
move through large information spaces in a
flexible manner

Example of faceted search in Malaria Data in
addition to classic search

SABIO-RK is a curated database that contains
information about biochemical reactions and
their kinetic rate equations with parameters
and experimental conditions

LAILAPS (Life Science Application for
Information Retrieval and Lightweight API
for Portable Search Engines) aims to support
the information discovery in the world’s life
science databases

The Ensembl project produces genome
databases for vertebrates and other
eukaryotic species and makes this
information freely available online

Query portal to retrieve information from the
German federal ex situ seed collection

Genetic and Genomic Information System is a
tool aiming to provide simple and fast access
to the data located in all URGI (plant and
fungi data integration) databases

The Taxonomy Database is a curated
classification and nomenclature for all of the
organisms in the public sequence databases

wiki/List_of_search_
engines

http://lucene.apache.org/
solr

http://en.wikipedia.org/
wiki/Exploratory_search
http://lucene.apache.org

http://flamenco.berkeley.
edu

https://www.ebi.ac.uk/
chembl/malaria/target/
browser/classification
http://sabio.h-its.org

http://1ailaps.ipk-
gatersleben.de

http://www.ensembl.org

http://gbis.ipk-
gatersleben.de/gbis_i/
home.jsf
http://urgi.versailles.inra.
fr/gnpis

http://www.ncbi.nlm.nih.
gov/Taxonomy
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Resource Brief description WWW link
BioModels.net The qualifier of an annotation should reflect the http://biomodels.net/
qualifiers relationships between the biological objects qualifiers
represented by the model element and the
annotation
path2models The purpose of the project is to systematically http://code.google.com/
generate mathematical models corresponding p/path2models
to the entire KEGG pathways and submit them
to BioModels Database
BioModels BioModels Database is a repository hosting http://www.ebi.ac.uk/
Database computational models of biological systems biomodels-main
Bio2RDF Integration of ontology networks into biomodel http://bio2rdf.org/
search
Identifiers.org Identifiers.org is a system providing resolvable http://identifiers.org

persistent URIs used to identify data

SPARQL Query SPARQL can be used to express queries across http://www.w3.org/TR/
Language diverse data sources, whether the data is stored  rdf-sparql-query

natively as RDF or viewed as RDF via
middleware
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Chapter 4
Data Warehouses in Bioinformatics

Benjamin Kormeier

Abstract The progress in the area of biological research in recent years has led to a
multiplicity of different databases and information systems. Molecular biology deals
with complex problems and an enormous amount of versatile data will be produced
by high-throughput techniques. Hence, the total number of databases, as well as the
data itself, is continuously increasing, and with it the distribution and heterogeneity
of the data rises. The importance of database integration has been recognized for
many years. Therefore, this chapter presents the problems in database integration
as well as a small selection of well-known existing integration systems which have
been developed. Finally, this chapter presents an in-house data warehouse approach
for biological data. Integrated data is the basis for network analysis, reconstruction,
and visualization.

4.1 Introduction

One of the main challenges in bioinformatics which began with research for
the Human Geome Project, is the integration of molecular data. Currently, high
throughput analysis delivers data of complete genomes, for instance short sequences
of all genes in an organism or thousands of expression patterns of a cell in
shortest time. Analysis of this high-throughput data by manual investigation using
publications or relevant databases is no longer possible. Consequently, the biologist
is supported by tools and methods that can accumulate experimental data with
complementary data sources, estimate the data and compare or classify the data.
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4.2 Problems in Database Integration

Molecular biological data has a high semantic heterogeneity that is usually caused
by experimental data extracted from a series of experiments. Molecular biology
deals with complex problems. Therefore, enormous amounts of versatile data will
be produced by experiments. The total number of databases, and of course the data
itself, is continuously increasing. Hence, the distribution and heterogeneity of the
data rises as well. Particularly, data heterogeneity is one of the main problems
in molecular biological data integration. Furthermore, technical heterogeneity is
caused by a high number of different formats and interfaces of the different
data sources. The data is mostly not available in a standard format which causes
structural heterogeneity. Missing standards and consensus for basic biological
terms produces semantic heterogeneity. Beside this problem, there are some more
problems in data integration. In the next sections, basic problems of data integra-
tion in the field of distribution, autonomy, and heterogeneity will be discussed.
Leser and Naumann define those fields as the so-called orthogonal dimensions
of data integration [16]. For this reason, in each dimension problems can occur
independently.

4.2.1 Distribution

Usually, data sources of an integrated system are distributed. That means each
and every source is located on a separate system and/or different locations. It will
be distinguished between physical and logical distributions. Physical distribution
is data that is physically and geographically organized on different distributed
systems. The following problems can be caused by physical distribution in data
integration: localization of data, data which is represented in multiple schemata,
and the optimization of distributed queries. The concept of data warehousing can
solve these problems of physical distribution. Data warehouses will be discussed
later in Sect. 4.3.4.

Homogeneous data of a system that is located at different logical places leads to
logical distribution. This means the system is redundant and several problems can
occur. The localization of this data is very difficult and ambiguous. For instance,
if a user has problems tracking the origin of the data. A possible solution could
be to provide metadata, for example, a global schema. Additionally, duplicates and
conflicts can occur with logical distribution. The system has to be identified in order
to fix these problems to guarantee consistent data.
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4.2.2 Autonomy

The distribution of several data sources leads automatically to the problem of
autonomy. Autonomy in data integration means the independence of the data source
that refers to access, configuration, development, and administration. Overall,
autonomy can be divided into the following four types [16]: design autonomy,
interface autonomy, access autonomy, and legal autonomy. A data source has
design autonomy when it has the freedom to decide how its data can be provided
and represented. This autonomy is also related to the data model, schema, and
transaction management or if a data source has the freedom to define the method
of access. For instance, defining a protocol for the query language of the system
is called interface autonomy. Interface autonomy is strongly related to design
autonomy, because the storage of data typically determines the data access. If
the system is able to decide who can access which data, then the data source is
access autonomous. Legal autonomy is achieved if the integration of a resource is
prohibited. Additional kinds of autonomy can be found in [7].

4.2.3 Heterogeneity

The major problem of data integration is heterogeneity that is caused by autonomy.
Distribution can also cause heterogeneity, but not in general. For instance, two infor-
mation systems that have identical methods, but do not provide identical models and
structures for data access, are called heterogeneous. Leser and Naumann enumerated
different kinds of heterogeneities: technical heterogeneity, syntactic heterogeneity,
data model heterogeneity, structural heterogeneity, schematic heterogeneity, and
semantic heterogeneity [16].

Technical heterogeneity is the implementation of different access methods to the
data source. This kind of problem is solved if the integrated system is able to query
the data source and the request returns a correct result set. Different representations
of the same issue are called syntactic heterogeneity. Different character encodings
in a data set are good examples of syntactic heterogeneity. This problem can easily
be solved by converting the data into a common format. Data model heterogeneity
exits, if data sets of a data source can be managed by different data models. One data
model is, for instance, object oriented and another one is relational. Hence, if both
data models are equivalent, then a data model heterogeneity is nonexistent. Design
autonomy often causes structural, schematic, and semantic heterogeneity in data
integration. Structural differences in the representation of data are called structural
heterogeneity. A special case of structural heterogeneity is schematic heterogeneity,
where different concepts of a data model describe the same issue or data. Semantic
heterogeneity characterizes the differences in sense, interpretation, types of terms,
and concepts. In particular, synonyms and homonyms play a major role in these
conflicts. These problems can be solved if schema elements have the same meaning
and an identical name.
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4.3 Approaches of Database Integration

The development of an integrated database system is a complex task, if a large num-
ber of heterogeneous databases have to be integrated. A blueprint of the architecture
of the integrated system is essential for success. In general, two architectures for
data integration exist. They are divided into materialized integration and virtual
integration. Materialized integration stores the whole data set of source persistent
in a database management system (DBMS). Periodic update strategies transfer
updated data and extensions to the global system. Then, the integration system
has to normalize the data and duplicates and failures have to be removed. Finally,
the central database will be updated to provide an up-to-date data set. Materialized
integration has the advantage of high velocity, because there is no communication
between different data sources, as well as no restriction of queries, which could be
the case in virtual integration systems.

Virtual integration does not store data in a persistent way. Usually, the data is
located on different local systems and queried by a global schema. A complex nor-
malization and transformation process is not necessary, as compared to materialized
integration. Queries are managed by a global schema, while the underlying data is
“virtually” available. The main task is to generate complex queries to get, transform,
and aggregate adequate data from different data sources. If data sources provide only
restricted interfaces it is a problem of virtual integration and queries of the global
schema cannot be answered or executed.

Major approaches of database integration in bioinformatics have been discussed
and reviewed in the last years.

* Hypertext navigation systems. HTML frontends linked to molecular biological
databases.

o Federated database systems and mediator-based systems are virtual integration
systems. They do not store any data in a global schema. Federated systems
integrate multiple autonomous database systems into a virtual single federated
database. Typically, each database is interconnected via a computer network or
in some cases the World Wide Web. Hence, the databases can be geographically
decentralized.

* Multi-database systems do not have a global schema. These systems interactively
generate queries for several databases simultaneously.

* Data warehouses are materialized integration approaches. They store data
persistent in a global data repository, which is typically a relational DBMS.

All these approaches have the same aim: providing techniques to overcome several
kinds of heterogeneous data and to provide a retrieval system for scientists to support
their research activities and experiments.
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4.3.1 Hpypertext Navigation Systems

Nowadays, most databases are connected to the World Wide Web and can be
accessed with a common browser. Usually, many of these databases provide links
to other databases. Accession numbers (AC), unique identifiers, or other database
identifiers are used for linking database entries. Actually, many databases use
different identifiers or terms for the same entries; hence, interlinking databases is
a difficult task. Therefore, pair-wise or binary mappings between database entries
have to be generated to provide links between different databases. Mostly, databases
only provide cross-links with the most relevant databases.

Many other database attributes can be used for linking databases to each other,
for instance, EC numbers, CAS (Chemical Abstracts Service) registry numbers, GO
(Gene Ontology) terms, or other controlled vocabularies. Often, databases are not
linked with each other, even if they use the same controlled vocabulary. However, it
is not possible to link all the databases with each other. One reason is that providers
are not aware of all other relevant databases. Nevertheless, interlinked web sites are
a common way of database “integration”.

4.3.2 Multi-database Systems

Multi-database systems are usually a network of database systems [7]. The man-
agement of the whole data set is not controlled by the overall system. Independent
partitions control the data. Therefore, the user has access to the different data sources
using a common query language. Examples of conflicts of integration offered by the
provided query language are multiple redundant data, structural differences between
data sources or semantic heterogeneities.

Systems are called federated database systems if data sources maintain a certain
level of autonomy. In contrast, a central system takes control of data sets when the
system is no longer federated. It is not exactly defined by which level of autonomy
the border between federated database systems and multi-database systems is
arranged.

In a multi-database system, the schemata are divided into the internal layer,
the conceptual layer, and the external layer. The user has to define a view for
the required data. A query spanning multiple databases is specified by the multi-
database query language. In a central unit, the query is fractionalized and sent to the
different databases. The result sets are sent to the processing unit and returned as a
merged result to the user.
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4.3.3 Federated Database Systems

A federated database system (FDBS) consists of multiple cooperating component
systems that are autonomous. Moreover, it consists of a federated database man-
agement system that controls the component systems. Federated architectures differ
based on levels of integration with the component database systems. Furthermore,
they differ in the services offered by the federation, as well as in the extension of
the systems. A detailed definition was given by Sheth and Larson [19].

Federated database systems can be categorized as loosely or tightly coupled
systems depending on the level of coupling. In a loosely coupled FDBS, each
user is the administrator of his own federated schema. Each user is responsible
for understanding the semantics of objects in the export schemata. Users are also
responsible for the elimination of heterogeneities from the DBMS. Finally, users
are able to store their schema under their own accounts. A schema can be deleted at
any time by the user [19].

In tightly coupled FDBS, export schemata are created between the component
database administrator and federation database administrator. Usually, the com-
ponent database administrator has control over the export schemata, while the
federation database administrator has the authority to read the database to help
determine what data is available and where it is located. The federation database
creates and controls the federated schemata [19].

4.3.4 Data Warehouse Systems

Data warehouses (DWH) are the widely used architectures of materialized inte-
gration in informatics and especially in bioinformatics. Basically, data warehouses
are used in the field of information management. Data analysis, data mining,
and the long-term storage of business intelligence in companies are the major
advantages of data warehouse systems. In bioinformatics DWHs are usually used
for data integration. DWHs are often preferred in contrast with virtual integration
approaches, which have some disadvantages: no write access, poor speed of request
handling, problems in availability of data sources, and complexity of queries.

A general definition of a DWH was defined by Bauer and Giinzel: “A data
warehouse is a physical database that provides an integrated view of arbitrary data
for analysis.” [1]. A DWH cannot be assigned to classical OLTP (online transaction
processing) systems, which are optimized for fast and reliable transaction handling.
Typically, most of the OLTP interactions are involved in a relatively small number
of rows a larger group of tables, by comparison with data warehouse systems.
DWHs are assigned to OLAP (online analytical processing) systems, which are
able to quickly answer multidimensional analytical queries. OLAP systems can
be classified into the category business intelligence, which also includes relational
reporting and data mining. Usually, in DWH, new data will be added; already stored
data will not be manipulated or overwritten.
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Typically, a data warehouse process is divided into four phases:

1. Data from different resources will be obtained. This means the data will
be extracted and transformed. This phase is called ETL process (extraction-
transform-load process).

2. The data will be saved persistently in the DWH.

. The separated data will be divided into several data marts, if necessary.

4. The data of the DWH or data marts will be analyzed. Finally, the data will be
provided to external applications.

O]

4.4 Data Warehouses

In this section, relevant and widely used data integration approaches and data
sources in the field of bioinformatics will be introduced. Usually, the data is
distributed in multiple data sources. Those sources differ in the biological context,
internal representation, used underlying systems, access possibility, and complexity.

Relevant integration approaches in the context of biological data warehouses
will be introduced. The focus lies on the data warehouse approaches Atlas,
Columba, BioWarehouse, and CoryneRegNet, because the systems are equipped
with important requirements in biological data integration that are relevant for
our data warehouse approach that will be discussed in the next section. Moreover
they are well-known examples in the literature of data integration approaches in
bioinformatics. Additionally, in Table 4.1, all data integration approaches will be
compared. Generally, in bioinformatics, integration approaches can be divided into
four classes [16]:

* Indexing systems: e.g., SRS (Sequence Retrieval System) [8], Entrez, and BioRS
* Multi-databases: e.g., OPM (Object Protocol Model) [4] and DiscoveryLink [9]

Table 4.1 Comparison of different data warehouse approaches. Advantages are marked in bold
letters

Property Atlas BioWarehouse Columba CoryneRegNet
Integration Tightly coupled Tightly coupled Loosely coupled Tightly coupled
DBMS MySQL MySQL, Oracle PostgreSQL PostgreSQL
Programming Java, C++, Perl Java, C Python, Perl PHP, Java
language
Architecture Application Application Web interface ~ Web interface
Platform No (Unix systems) No (Linux systems) Yes Yes
independence
Updates Manually Manually Old Unknown
Maintenance Unknown Periodical Project ended Periodical
and development
License GNU MPL Freely available ~AFL

on request

Open source Yes Yes Unknown Yes
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* Ontology-based integration: e.g., TAMBIS (Transparent Access to Multiple
Bioinformatics Information Sources) [20] and ONDEX [12]

e Data warehouse: e.g., Atlas [18], BioWarehouse [15], Columba [22],
CoryneRegNet [2], ONDEX [12], and SYSTOMONAS [6]

To integrate medical and molecular biological data, the first step is to structure and
evaluate the amount of available data sources. A comparison and choice of data
sources is only possible on the basis of an adequate set of criteria. Currently, the
most important sources for medical and biological data, from our point of view,
are KEGG, BRENDA, EMBL-Bank, ENZYME, GO, HPRD, OMIM, UniProt, and
Transfac/Transpath. Based on relevant biological database and information systems,
data integration is an essential step in constructing biological networks.

4.5 Related Data Integration Approaches

The data warehouse infrastructures Atlas and BioWarehouse will be introduced in
this section. Both systems provide a software infrastructure that can be installed
and configured locally. They give a good insight into biological data integration.
Additionally, the Columba data warehouse with its web application (Sect.4.5.3)
and the ontology-based data warehouse approach CoryneRegNet (Sect.4.5.4) will
be discussed. Both systems give an insight in building web-based data warehouses
that become more and more popular. Another widely used ontology-based data
warehouse approach is ONDEX, which has already been introduced in Chap. 5. For
that purpose, ONDEX will not be described in this section.

4.5.1 Atlas

The Atlas system was developed at UBC Bioinformatics Centre (University of
British Columbia) in Canada. Atlas is freely available and is protected under the
terms of the GNU General Public License. A Unix operation system is required for
running the Atlas system.

The goal of Atlas is to provide data as well as a software infrastructure for
bioinformatics research and development. The biological data warehouse locally
stores and integrates the data from biological sequences, molecular interactions,
homology information, as well as functional annotations of genes and biological
ontologies.

The system architecture of Atlas consists of the data sources, an ontology system,
the relational data models, different APIs (application programming interfaces), and
applications. Figure 4.1 illustrates the system architecture of Atlas. The data sources
of Atlas are categorized into four classes: sequence, molecular interactions, gene-
related resources, and ontology. A complete list of the Atlas data sources could be
found in [18].
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Each mentioned category has its own database schema in the Atlas relational
database model. A complete entity relationship schema of the data warehouse
approach is presented in [18]. Depending on the level of coupling, this approach
can be categorized as a tightly coupled system. As relational backend, Atlas uses
the MySQL DBMS.

The different APIs of Atlas are developed in three programming languages:
C++, Java, and Perl. But not every API is available in the respective programming
language. Furthermore, the APIs are divided into two classes: loader and retrieval.
The first is the loader APIs that consists of parsers to populate the relational
schemata and store the data in the Atlas databases. And the second class of APIs
is the retrieval APIs. Hence, APIs allow retrieval of the data and store it in the
data warehouse. Furthermore, they are necessary for developing custom retrieval
applications. Moreover, Atlas provides numerous Unix command line tools, such as
ac2seq which is able to find a sequence in FASTA format' on the basis of accession
numbers. A user is also able to send direct SQL queries via MySQL client to the
data warehouse.

Atlas is designed to run as a service on a local computer system or server.
According to [18], it is also possible to access the system via the World Wide Web,
although this web site is currently unavailable. In summary, Atlas has a couple of
advantages: many tools, integrative database schema, short response time (because
of local installation), and complete access to the database. Some disadvantages of
the Atlas system have also been identified: extensive maintenance of the system,
high system requirement, not platform independent, the actuality of the data depends
on the user or administrator, tools are only available for command line, missing web
interface, and only MySQL is supported as database management system.

4.5.2 BioWarehouse

The BioWarehouse system was developed by the Bioinformatics Research Group
(SRI International), Computer Science Laboratory (SRI International), and Stanford
Medical Informatics (Stanford University). It is also part of the Bio-SPICE (Biologi-
cal Simulation Program for Intra- and Inter-Cellular Evaluation) project. Bio-SPICE
is an open-source framework and software toolset for systems biology. BioWare-
house is an open-source toolkit that integrates different biological databases, such
as ENZYME, KEGG, GO, and UniProt. The software is protected under terms of
the MPL (Mozilla Public License) and is currently available in version 4.6. The
software runs only under Linux operating systems, because the software is not
platform independent. BioWarehouse facilitates the creation of user-defined and
user-specific data warehouse instances. All available data sources for this toolkit can
be found in [15]. Similar to the Atlas system, different relational database schemata

Thttp://www.ncbi.nlm.nih.gov/blast/fasta.shtml
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Fig. 4.2 The main data types in the BioWarehouse schema according to [15], and the relationships
between them. An arc represents a connection between two data types. For instance, the data type
Gene contains a column that references data type Protein

exist according to the different data types. BioWarehouse supports the MySQL
and Oracle database management systems. Figure 4.2 illustrates the BioWarehouse
database schema, whereas the entities symbolize the particular data type. Integration
of the different data sources is realized by a specific loader. Each loader is adapted
for a particular data source. The data is transformed into a consistent format, because
of heterogeneities between different data sources. Afterwards the data is transferred
into the database schema. Loaders have been implemented in the programming
languages C and Java. A unique feature of the BioWarehouse loaders is the error
tolerance during integration. In case an error occurs, the integration process will be
finished and incorrect data sets will be marked. Moreover, BioWarehouse provides
a set of Java utility classes that are useful for developers who want to construct their
own loaders or applications.

The BioWarehouse system can be used in two different ways: First, publicly
available versions of BioWarehouse called PublicHouse and EcoliHouse which
are available via the Internet. In addition, a user has to register to access public
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servers of BioWarehouse. Access to the system occurs via a MySQL client, such as
phpMyAdmin. In this way the user is able to manage the data sources and have not
only read access. The advantages of the system are an integrative database schema,
short response time (because of local installation), full access to the database,
and MySQL and Oracle supported. On the other hand, the disadvantages of this
data warehouse approach are, extensive maintenance of the system, high system
requirements, it is the administrators are responsible for keeping the data up-to-date,
a missing web interface and SQL knowledge is required.

4.5.3 Columba

The Columba data warehouse system was developed by the Department of
Computer Science, Humboldt-Universitit zu Berlin, Department of Biochemistry,
Charité Universitidtsmedizin Berlin, Zuse Institute Berlin, and University of Applied
Sciences Berlin. Columba integrates data from 12 heterogeneous biological data
sources in the field of protein structures and protein annotations. Proteins are the
most important aspect in Columba. The protein structure from the database PDB
plays a major role in the system. Furthermore, the PDB data is extracted and
enriched with additional information such as protein sequence, protein function and
involvement in biological networks, as well as membership of protein families.
Typically, several data sources are provided in different exchange formats, as
described in Sect.4.2.3. If parsers from other projects, such as BioSQL and
BioPython, are not available for those formats, new parsers has to be developed.
Therefore, the programming languages Python and Perl were used. Columba uses
PostgreSQL as relational backend to manage the data. The Columba database
schema, as shown in Fig.4.3, is comparable with a star schema. Hence, it is clear
that the core of Columba is the protein structures of PDB. Information related
to the protein structures are included into specific sub-schemata that comes from
different sources that are arranged around the main table. Each data source is
modeled as a different dimension and has its own sub-schema within the overall
schema of Columba. The Columba data warehouse approach has the advantage of
simple system maintenance, intuitive query model, and high recognition value of
the information.

Columba is accessible via a web interface which uses a common browser. The
web interface allows full-text search as well as attribute specific searches. The full-
text search engine is implemented with the extension Tsearch2 in PostgreSQL.
Furthermore, the search engine supports Boolean operators to link keywords with
each other.

In summary, Columba integrates different data sources for proteins which
simplify research in this area. On the other hand, Columba does not provide
comprehensive knowledge about molecular biology. This is a crucial disadvantage.
Redundancies could not be excluded, because every data source is an independent
dimension in the model.
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Fig. 4.3 Entity relationship diagram of Columba according to [22]

4.5.4 CoryneRegNet

The CoryneRegNet system was developed at the Center for Biotechnology
(CeBiTec), Bielefeld University. CoryneRegNet (Corynebacterial Transcription
Factors and Regulatory Nerworks) is an ontology-based data warehouse approach
which provides data about transcription factors and gene regulatory networks.
The system provides data about all recently sequenced corynebacteria and model
organism Escherichia coli, whereas the tool focuses on corynebacterium [17].
Figure 4.4 illustrates the system architecture of CoryneRegNet. Different data
sources are transformed by parsers into a consistent object-oriented ontology-based
data structure. The data structures of CoryneRegNet are closely related to ONDEX,
as described in Chap. 5. Finally, the ontology-based data structures are transformed
into a relational database model, because CoryneRegNet uses a MySQL database
as relational backend. Figure 4.5 shows the entity relationship diagram of
CoryneRegNet that consists of generalized data structure and ontological data
structure. All essential data such as genes and proteins are stored into the ontological
data structure.



124 B. Kormeier

| ( g
EMMA | GenDB Webservice | Webservice
XML | Web service | | Web service 1 n
oy J N

BLAST
all-vs-all
Web server Apache
HTTP Precalculations FORCE
PWMs, PoSSuM-DB, P:;::’ protein
User ESA, ... J - .cluslenng

‘Web browser SOL

Web service
(SOAP)

Corynebacterial
genome annotations

PHP

DBMS
f SQU. a.ly'SQI.

-—

Corynebacterial
gene regulations
literature, predoctions,
experiments

Corynebacterial
stimulons
experiments

GraphVis
Java Applet

Front-End
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The CoryneRegNet application is accessible via a web service that is illustrated
in Fig. 4.4. Using this web service, it is possible to access additional and up-to-date
data dynamically. Overall, a web service can also have disadvantages in terms of
performance and security. Performance delays can occur because of high traffic.

CoryneRegNet is developed using PHP and Java programming language and has
a MySQL database management system as relational backend. The web interface
provides several search and analysis possibilities. Furthermore, transcription factors
and regulatory networks will be visualized in a Java applet.

In summary, CoryneRegNet has a user-friendly and intuitive web application,
and other applications can access CoryneRegNet via web services and provide addi-
tional information. However, a Java installation is required to visualize networks in
a Java applet. A disadvantage of the Java applets are longer loading times as well as
the web service. Similar to the Columba, CoryneRegNet is limited to bacteria as it
does not have general molecular knowledge.

4.5.5 Summary

In this section, the data integration approaches Atlas, BioWarehouse, Columba, and
CoryneRegNet were discussed. All projects use the data warehouse technique for
data integration. Atlas and BioWarehouse provide a software infrastructure for data
integration. In contrast, Columba and CoryneRegNet provide a web interface, and
therefore they are directly useable. Only CoryneRegNet additionally provides a web
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service. In Table 4.1 a comparison of the data warehouse systems on the basis
of different criteria is given. The advantages and disadvantages of the particular
software solution are marked. Today the Atlas and Columba projects are no longer
funded and will therefore cease to exist.

Platform independence and a user-friendly system are important criteria for
integration approaches. Typically, web applications are preferred as they are very
flexible and interactive. The term Web 2.0 characterizes flexible and interactive
web applications. Atlas, Columba, and CoryneRegNet support only one specific
DBMS. In comparison, BioWarehouse provides a choice between the MySQL and
Oracle database management systems. Columba and CoryneRegNet only provide a
restricted access to the database, but provide suitable query forms. In contrast, Atlas
and BioWarehouse support a complete database access.

4.6 BioDWH and DAWIS-M.D.

On the basis of the previously discussed problems in data integration and the
advantages/disadvantages of data warehouses approaches in bioinformatics, we
want to introduce the data warehouse infrastructure BioDWH [21] as well as our
web-based data warehouse information system DAWIS-M.D. [10]. The BioDWH
infrastructure is the basis for the DAWIS-M.D. information system. However,
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BioDWH is a Java implemented DWH infrastructure that uses a relational database
management systems, such as MySQL or Oracle, as backend. A unique feature of
BioDWH is a graphical user interface for parsing, loading, and updating the source
data into the data warehouse. Our infrastructure provides parsers for important
and widely used molecular databases, such as BRENDA, EMBL-Bank, ENZYME,
EPD, GO, HPRD, IntAct, iProClass, JASPAR, KEGG, MINT, OMIM, Reactome,
SCOP, TRANSFAC, TRANSPATH, and UniProt. Another key feature of the system
is a persistence layer that maintains the independence from the relational database
management system (RDBMS) and the application logic (i.e., the parser). The
Java application, object-relational mapping as a persistence method is a powerful
paradigm to represent objects in a relational database system. That means a
mapping between objects and metadata of the database is described. Basically, ORM
works with reversible transformation of data from one representation into another.
Moreover, the BioDWH infrastructure provides a plug-in architecture to include
a new parser into the system. The extraction, transformation, and loading (ETL)
process is implemented by the parser for the data source. Additionally, a monitor
component recognizes changes within the data sources and is able to start the ETL
process again. To keep the data warehouse up-to-date, updates of the data sources
have to be incrementally propagated. Therefore, our system uses a timestamp-based
and file-size-based monitor strategy.

Based on the BioDWH data warehouse infrastructure, the web-based data ware-
house information system DAWIS-M.D. (Data Warehouse Information System for
Metabolic Data) was implemented. For the information system, we developed an n-
tier architecture that realizes a platform independent web application (see Fig. 4.6).
A unique feature of DAWIS-M.D., in comparison with other systems as already
discussed in the previous section, is the interdependence between the application
logic and the RDBMS. Therefore, again the technique of object-relational mapping
is used. Hibernate was used as the framework to realize the ORM within the
persistence layer. As relational backend, we use a MySQL database. The following
data sources are integrated into DAWIS-M.D.: BRENDA, EMBL-Bank, ENZYME,
EPD, GO, HPRD, JASPAR, KEGG, OMIM, SCOP, TRANSFAC, TRANSPATH,
and UniProt. BioDWH maintains the up-to-dateness of the information/data in
DAWIS-M.D. The data from the databases is divided into 13 different domains:
Compound, Disease, Drug, Enzyme, Gene, Gene Ontology, Genome, Glycan,
Pathway, Protein, Reaction, Reactant Pair, and Transcription Factor. For each
domain a specific search form with auto-complete function is available via the
web application. The large number of biomedical databases and their various
information contents make the acquisition of information very time consuming,
inefficient, and difficult. Therefore, the web application provides an integrated view
of comprehensive biomedical knowledge from different data sources. Hence, it is
possible for the scientist to navigate quickly and efficiently in a large result set.
Moreover, DAWIS-M.D. provides a quick and efficient search in a large data set.
In most of the systems, relationships between other biological elements are not
identified or clearly represented. But it is essential for scientists to understand the
complex biological mechanisms and their interactions. Therefore, DAWIS-M.D. is
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the identification and representation of relationships and interactions between other
biological elements or mechanisms.

4.7 Reconstruction and Visualization of Biological Networks
Based on Biological Data Warehousing

Using our data warehouse approach, described in the previous section, we have
already shown that data integration is useful for several biological questions. We
were able to build project-specific data warehouses for cardiovascular diseases [13],
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as well as general data warehouse systems (e.g., for metabolic data) [10]. Further-
more, it is possible using the data from BioDWH to generate and predict biological
networks and enrich them with additional information [5, 14]. Using the network
editor VANESA, different fields of studies are combined such as life science,
database consulting, modeling, and simulation for a semiautomatic reconstruction
of complex biological networks [11]. The idea of the reconstruction, visualization,
and analysis of molecular networks using the network editor VANESA is described
in Chap. 8.

CELLmicrocosmos 4.2 Pathwaylntegration (CmPI) is an approach to visualize
and analyze intercellular and intra-compartmental relationships by correlating
pathways with an abstract cell environment in 3D space. By using data coming
from our data warehouse, metabolic pathways from KEGG can be parsed. The
pathway structure, consisting of enzymes, their substrates, and products with the
connecting reactions, can be shown directly in a 3D layout within the cell. For the
enzymatic localization, terms from the databases BRENDA and UniProt are used.
Usually information exists on the subcellular level but also mapping information
about the intra-compartmental mapping may be derived. Sometimes the localization
information from the database contains comments specifying more precisely the
whereabouts of a protein then the regular cell component information. In this case,
CmPI uses the comment for mapping. More detailed information about visualization
and analysis of intercellular and intra-compartmental relationships by correlating
pathways with an abstract cell environment in 3D space can be found in Chap. 10.

4.8 Summary

One of the major challenges in bioinformatics is the integration of molecular
biological information from heterogeneous, autonomous, and distributed data. Data
integration has been an important research field for the past decades and will
be for years to come, since the number of molecular databases is continuously
increasing. It is important that scientists can analyze information from different
data sources to meet their objectives. Consequently, existing data warehouse
systems Atlas, Columba, BioWarehouse, and CoryneRegNet were presented in
detail. On the basis of the discussed problems in data integration and the advan-
tages/disadvantages of the presented data warehouses approaches, we introduced
our own data warehouse approach DAWIS-M.D. that was constructed with the
BioDWH data warehouse infrastructure. Furthermore, this system is the basis for
the network modeling application VANESA and the interactive 3D cell visualization
tool CELLmicrocosmos. Overall, with this chapter, we gave an overview of a set
of systems that can solve the discussed problems in the field of biological data
integration.
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Chapter 5
Molecular Information Fusion in Ondex

Jan Taubert and Jacob Kohler

Abstract Current biological knowledge is buried in hundreds of proprietary and
public life-science databases available on the World Wide Web (WWW) and
millions of scientific publications. Gaining access to this knowledge can prove
difficult as each database may provide different tools to query or show the data and
may differ in their structure and user interface or uses a different interpretation of
biological knowledge than others. Systems approaches to biological research require
that existing biological knowledge (data) is made available to support on the one
hand the analysis of experimental results and on the other hand the construction and
enrichment of models. Data integration methods are being developed to address
these issues by providing a consolidated view of molecular information fused
together from multiple databases. However, a key challenge for data integration
is the identification of links between closely related entries in different life
sciences databases when there is no direct information that provides a reliable
cross reference. Here we describe and evaluate three data integration methods to
address this challenge in the context of a graph-based data integration framework
(the Ondex system). We give a quantitative evaluation of their performance in two
different situations: the integration and analysis of different metabolic pathways
resources and the mapping of equivalent elements between the Gene Ontology and
a nomenclature describing enzyme function.
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5.1 Introduction

Over the last decade, biological research has changed completely. The reductionism
approach of studying only a few biological entities at a time in the past is being
replaced by the study of the biological system as a whole today. Systems Biology
[1] seeks to understand how complex biological systems work by looking at all
parts of biological systems and how they interact with each other and form the
complete whole. Systems Biology can be seen as a cycle (see Fig. 5.1) consisting of
the following steps:

* Having a testable hypothesis about a biological system

* Conducting experimental validation of hypothesis

» Capturing and analysis of experimental results (usually ‘omics’ data)

* Gain new insights (data) about a biological system from analysis results
» Refine model about a biological system to derive new hypothesis

This process requires that existing biological knowledge (data) is made available
to support on the one hand the analysis of experimental results and on the other hand
the construction and enrichment of models for Systems Biology.

Effective integration of biological knowledge from databases scattered around
the internet and other information resources (e.g. experimental data) is recognised as
a prerequisite for many aspects of Systems Biology research and has been shown to
be advantageous in a wide range of use cases such as the analysis and interpretation
of ‘omics’ data [2], biomarker discovery [3] and the analysis of metabolic pathways
for drug discovery [4]. However, systems for data integration have to overcome
several challenges. For example, biological data sources may contain similar or
overlapping coverage, and the user of such systems is faced with the challenge of
generating a consensus data set or selecting the ‘best’ data source. Furthermore,

By [ SRR
Data for analysis of
: Experimental results

Data for model

Development
Model Insights ﬁgj

Fig. 5.1 Systems Biology cycle of experiment, analysis, insights, model and hypothesis together
with requirements for large data for analysis of experimental results and model development
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there are many technical challenges to data integration, like different access methods
to databases, different data formats, different naming conventions and erroneous or
missing data.

To address these challenges and enable effective integration of data in support
of Systems Biology research, the Ondex system [2, 5-7] which is presented in
this chapter was created. The Ondex system provides an integrated view across
biological data sources with the aim to enable the user to gain a better understanding
of biology from integrated knowledge. Ondex has been supported by BBSRC (http://
www.bbsrc.ac.uk/) as part of the systems approaches to biological research initiative
(SABR) and is now mainly being developed at Rothamsted Research, Manchester
University and Newcastle University. The first Ondex prototype was developed at
University of Bielefeld.

This book chapter is a summary and extension to previous work published in
[6, 8]. It adds a new dimension to previous work by presenting integration results
across time and using Homo sapiens as selected organism for metabolic pathway
resources. We will start out by surveying different life-science data integration
systems. This overview is followed by establishing a selection of challenges data
integration systems are faced with and dissecting how well current systems are
dealing with them. We then give a brief motivation and introduction for the Ondex
system. This is followed by presenting data integration and transformation methods
motivated by the stated challenges. The performance of the data integration methods
is then quantitatively evaluated in two different situations: the integration and
analysis of different metabolic pathways resources and the mapping of equivalent
elements between the Gene Ontology and a nomenclature describing enzyme
function. A brief discussion is given at the end of this book chapter.

5.1.1 Survey of Current Data Integration Systems

Several data integration systems for use in biology and related domains are in
use today. Some of them use a generic approach to answer a wide range of
biological questions. Others are more limited in their scope and application domain.
These systems are based on principles such as link integration and hypertext
navigation, data warehouses, view integration and mediator systems, workflows and
mashups [9].

Software tools that solve aspects of the data integration problem are being devel-
oped for some time. The early approaches, which produced popular software such as
SRS [10], use indexing methods to link documents or database entries from different
databases and provide a range of text and sequence-based search and retrieval
methods for users to assemble related data sets. The methods used by SRS (and
related tools) address what has been described as the technical integration challenge.

More recently, data integration approaches are developed that ‘drill down’ into
the data and seek to link objects at a more detailed level of description. Many of
these approaches exploit the intuitively attractive representation of data as graphs
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or networks with nodes representing things and edges representing how they are
related. For example, a metabolic pathway could be represented by a set of nodes
identifying the metabolites linked by edges representing enzymatic reactions. Data
integration systems that exploit graph-based methods include PathSys [11] or
BN++ [12] and the Ondex system [13]. Both BN++ and Ondex are available
as open source software.

The Visual Knowledge and BioCAD [14] software tools provide good examples
for how semantic networks can be used for representing biological knowledge. The
definition of the integration data structure of Ondex has been inspired by this use of
semantic networks in the biology domain.

Biozon [15] is a data warehouse which includes additional derived information,
such as sequence similarity or function prediction, between data entries. STRING
[16] shows that multiple information sources can be combined to provide evidence
for the relationship between proteins. Similar to Biozon and STRING, Ondex
facilitates the information fusion of other derived information between data entities.
Such information has been successfully used to improve genome annotation of
Arabidopsis thaliana in a use case of Ondex [17].

BNDB with BN++ is the most similar system to Ondex in terms of system
design and methodology. The NeAT [18] toolkit highlights how graph analysis
applied to biological networks can help to reveal new insights. Furthermore it is
a good example of providing such functionality via a web page.

Concluding from the presented systems and common practice in Systems Biol-
ogy [5, 19], the representation of biological data as graphs or networks is a preferred
choice. The complexity of the graphs or networks varies from tool to tool, for
example, NeAT works with simple node and edge lists, whereas BNDB/BN++ and
Ondex use a semantic-enriched graph model. Some tools like Biozon or STRING
focus on aspects of providing a ready integrated knowledge base to the users. On
the other hand, tools like Ondex, BNDB/BN++ or PathSys provide the user with
means to assemble integrated data sets on his/her own. Visual Knowledge/BioCAD
or NeAT emphasise on the biological pathways and networks analysis.

Graphical user interaction is realised in a variety of ways. Knowledge base-
focused projects like Biozon or STRING tend to use a web-based interface backed
by a relational database. Other data integration toolkits like BNDB/BN++ or
Ondex offer a database driven backend with a dedicated front-end application and
possible web service-based access. NeAT or Visual Knowledge/BioCAD loads and
integrates data in an ad hoc way as part of their analysis workflows.

5.1.2 Challenges for Data Integration

Biological knowledge such as protein interactions (Fig. 5.2a), metabolic pathways
(Fig. 5.2b) or biological ontologies (Fig. 5.2¢) can be interpreted or understood
as a network or graph. Biological databases are, however, usually implemented
using table centric data structures, which do not readily allow the utilisation of
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Fig. 5.2 Examples of biological knowledge as graphs: (a) protein interactions (Reproduced
with permission from Jeong et al. [20] © Macmillan Magazines Ltd.), (b) metabolic pathways
(Reprinted from Ogata et al. [21] with permission from Elsevier), (c¢) biological ontologies
(Reprinted from Zhu et al. [22] under CC BY 2.0 licence © BioMed Central Ltd)
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Table 5.1 Summarising outlined challenges for data integration systems

Challenge Summary

First challenge Representing biological data intuitively as a graph or network

Second challenge  Overcoming the syntactic and semantic heterogeneities between data sources
Third challenge Provide a semantical consistent view on integrated information

Fourth challenge ~ Keep track of provenance during integration process

Fifth challenge Domain-independent approach to data integration

Sixth challenge Create a robust, usable and maintainable framework for data integration

graph analysis methods. Ondex uses a graph-based data structure which has been
developed with an emphasis on providing integration of knowledge necessary for
Systems Biology. Such a graph-based data structure should allow for the integration
of heterogeneous data into a semantically consistent graph model and therefore
support graph-based analysis algorithms and visualisation.

Biological data integration has to face the two problems of syntactic and semantic
heterogeneity [23]. Syntactic heterogeneity is given by data being presented in
different formats or as free text, containing spelling mistakes, wrong formatting or
even missing data. Semantic heterogeneity is present in the different interpretations
of data formats, symbols and names:

* Ambiguity of synonyms (exact/related), for example, Na(+)/K(+)-ATPase vs.
just ATPase.

* Domain dependence of synonyms, for example, gene names in different
organisms.

 Silent errors, like a typo in ENZYME Nomenclature is still valid entry (1.1.1.1
vs. 1.1.1.11).

* Unification references to other data sources can be ambiguous, for example,
references to multiple splicing variants of a gene assigned to a protein.

* What is a gene, what is a protein and what is a transcript? Biological meaning is
subject to interpretation and might vary.

To overcome syntactic and semantic heterogeneity in the data sources, knowl-
edge modelling has to be adaptable for the respective domain of knowledge so
that heterogeneous data sources can be transformed into a semantical consistent
view. During this process it may be necessary to identify equivalent or redundant
information in the data. Novel integration methods will have to be introduced to
address this need. To establish trust in the integrated data, it is necessary to keep
track of provenance during the whole data integration process.

Although this work has been mainly motivated by data from the life sciences,
data integration is challenging in other data intensive sciences too. The integration
methods should address this by being mostly domain independent. An example of
a different application domain would be social networks. The methods presented
in this chapter have been implemented as the core of the Ondex framework [2, 5].
One key aspect of the work on Ondex is to create a robust, usable and maintainable
framework for data integration (Table 5.1).
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Table 5.2 Challenges addressed by previous and current work

Second:
First: data  addressing Third: Sixth: robust,
intuitively ~ syntactic and semantical Fourth: Fifth: usable,
as graph or semantic consistent track domain maintainable
network conflicts view provenance independent framework
Visual Yes No Yes No No Yes
Knowledge
and BioCAD
Biozon No No Yes Yes No Yes
BNDB/BN++  Yes Partially Yes No Yes Yes
STRING Yes No Yes Yes No Yes
NeAT Yes No No No Yes No

5.1.3 Comparison with Related Work

None of the previous presented data integration systems do address all the above-
mentioned challenges as shown in Table 5.2.

The most important aspect not completely addressed by previous or related
work is the second challenge of addressing syntactic and semantic heterogeneities
between data sources in a systematic way. Knowledge base systems like STRING
or Biozon use their own predefined database schema and load data from other data
sources into this schema. During this process the mapping of source data to data
objects in the system is hardwired and difficult to change. Overlapping or conflicting
data between data sources usually does not get resolved. More complex systems like
BNDB/BN-++ provide adapters or parsers for different data sources and let the user
of the system decide which selection of data source to integrate. Systems like NeAT
or Visual Knowledge/BioCAD rely on the data to be in the correct format involving
a larger amount of manual curation and work to be done upfront.

5.2 Motivation

Software designed for data integration in the life sciences has to address two
classes of problem. It must provide a general solution to the technical (syntactic)
heterogeneity, which arises from the different data formats, access methods and
protocols used by different databases. More significantly, it must address the
semantic heterogeneities arising from a number of sources in life-science databases.
The most challenging source of semantic heterogeneity comes from the diversity
and inconsistency among naming conventions for genes, gene functions, biological
processes and structures among different species (or even within species). In
recent years, significant progress in documenting the semantic equivalence of
terms used in the naming of biological concepts and parts has been made in the
development of a range of biological ontology databases which are coordinated
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Fig. 5.3 Data integration in Ondex consists of three steps: (1) import and conversion of data
sources into the data structure of Ondex (Data Input, left), (2) linking of equivalent or related
entities of the different data sources and transformation into a semantical consistent graph
(Transformation & Integration, middle), (3) knowledge extraction using the front-end application
or web interface (Visualisation & Analysis, right)

under the umbrella of organisations such as the Open Biomedical Ontologies
Foundry (http://www.obofoundry.org). However, the majority of biological terms
still remain uncharacterised and therefore require automated methods to define
equivalence relationships between them.

The integration of data in Ondex generally follows three conceptual stages as
illustrated in Fig. 5.3: (1) normalising into the Ondex data structure in order to
overcome predominantly technical heterogeneities between data exchange formats,
(2) identifying equivalent and related entities among the imported data to overcome
semantic heterogeneities at the entry level and (3) the data analysis, information
filtering and knowledge extraction.

In order to make the Ondex system as extensible as possible, the second
stage (middle bottom part in Fig. 5.3) has been separated both conceptually and
practically. The motivations for doing this are to preserve original relationships and
metadata from the original data source, make this integration step easily extensible
with new methods, implement multiple methods for recognising equivalent data
concepts to enhance the quality of integrated data and support reasoning methods
that make use of the information generated in this step to improve the quality of
integrated data.

The hypothesis here is that multiple methods for semantic data integration are
necessary because of ambiguities and inconsistencies in the source data that will
require different treatment depending on the source databases. In many cases, exact
linking between concepts through unique names will not always be possible and
therefore mappings will need to be made using inexact methods. Unless these inex-
act methods can be used reliably, the quality of the integrated data will be degraded.
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To calibrate the presented data integration methods with well-structured data, the
mapping of equivalent elements from the ontologies and nomenclatures extracted
from the ENZYME [24] and GO [25] databases is used. To evaluate mapping
methods in a more challenging integration task, the creation of an integrated
data set from two important biological pathway resources, the Reactome [26] and
HumanCyc [27] databases, is presented.

5.3 Methods

5.3.1 Data Import and Export

Following Fig. 5.3, the first step loads and indexes data from different sources.
Ondex provides several options for loading data into the internal data warehouse,
and a range of parsers have been written for commonly used data sources and
exchange formats. In addition users can convert their data into an Ondex-specific
XML or RDF dialect for which generic parsers are provided.

The role of all parsers is to load data from different data sources into the data
structure used in the Ondex framework. In simple terms, this data structure can
be seen as a graph, in which concepts are the nodes and relations are the edges.
By analogy with the use of ontologies for knowledge representation in computer
science, concepts are used to represent real-world objects [28]. Relations are used
to represent the different ways in which concepts are connected to each other.
Furthermore, concepts and relations may have additional properties and optional
characteristics attached to them.

During the import process, names for concepts are lexicographically normalised
by replacing non-alphanumeric characters with white spaces so that only numbers
and letters are kept in the name. In addition, consistency checks are performed to
identify, for example, empty or malformed concept names.

5.3.2 Data Integration Methods and Algorithms

The second step (following Fig. 5.3) links equivalent and related concepts and
therefore creates relations between concepts from different data sources. Different
combinations of mapping methods can be used to create links between equivalent
or related concepts. Rather than immediately merging elements that are found to be
equivalent, the mapping methods create a new equivalence relation between such
concepts. After enough trust has been established in the results of the mapping
methods by inspecting of these equivalence relations, then the information on
similar elements can be fused, which is also known as molecular information
fusion.
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Each mapping method can be configured to create a score value reflecting the
belief in a particular mapping and information about the parameters used. These
scores are assigned as edge weights to the graph and form the foundation for the
statistical analysis presented later. Additionally information on edges enables the
user to track evidence for why two concepts were mapped by a particular mapping
method.

Several constraints must be fulfilled before a mapping method creates a new
link between two concepts. Under the assumption that the integrated data sources
already contain all appropriate links between their own entries, new links are only
created between different data sources. Biological databases often provide an NCBI
taxonomy identifier for species information associated with their entries. If such
identifiers are found in the graph, the mapping method ensures, in most cases, that
relations are only created within the same species. In addition to species restriction,
a mapping method takes the concept class of a concept into account. Only equal
concept classes or specialisations of a concept class are considered to be included
in a mapping pair.

5.3.2.1 Accession-Based Mapping

Most of the well-structured and managed public repositories of life-science data use
accession coding systems to uniquely identify individual database entries. These
codes are persistent over database versions. Cross references between databases of
obviously related data (e.g. protein and DNA sequences) can generally be found
using accession codes, and these can be easily exploited to link related concepts.
Such concept accessions may not always present a one-to-one relationship between
entries of different databases. For example, a GenBank accession found in the
HumanCyc database is only unique for the coding region on the genome and not
for the expressed proteins, which may exist in multiple splice variants. References
presenting one-to-many relationships are call ambiguous. Concept accessions are
indexed for better performance during information retrieval. Accession-based map-
ping by default uses only non-ambiguous concept accessions to create links between
equivalent concepts, i.e. concepts that share the same references to other databases
in a one-to-one relationship. This behaviour can be changed using a parameter.

Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and
a set of relations R(O) C C(0) x C(0O). Every concept ¢ € C(0O) has a concept class
cc(c) € CC(0), adata source identifier ds(c) € DS(O) and a list of concept accessions
ca(c) ={(cai x ... X cay)|caj € CA(O)}. Each concept accession ca € CA(O) is a
triple ca = (ds,acc,ambiguous), where ds is the identifier of the data source from
which the accession code acc is derived and ambiguous is either true or false. The
bijective function id assigns a consecutive number n € N to concepts and relations
in O separately starting with 1.
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ignore <« true or false (default)
function AccessionBasedMapping (O, ignore) {
for all i€ [1..|Cc(0)|] do
for allje[i..|C(0)|] do
if dx€cal(c;) Ax€ecalcy) A(—x. ambiguousVignore) do
if ds(c;) #ds(cj) Acc(ci) =cc(cj) do
O.createRelation(c;, cy)

Runtime Analysis

Assuming that the test if the two lists ca(c;) and ca(c;) have at least one concept
accession in common takes linear time with respect to the length of the lists, for
example, by using hashing strategies or ordered lists, and the average number of
concept accessions on concepts is [, then the total runtime of accession-based
mapping is T'(n) = 1 (n® +n) * peq € O (n*) where n is the number of concepts
in the Ondex data structure.

5.3.2.2 Synonym Mapping

Entries in biological data sources often have one or more human-readable names,
for example, gene names. Depending on the data source, some of these names
will be exact synonyms such as the chemical name of a metabolite; others only
related synonyms such as a general term for enzymatic function. Exact synonyms
are especially flagged during the import process. Related synonyms are added to
concepts as additional concept names. Concept names are preprocessed to strip all
non-letter characters and stem special word cases before inserting them into the
full-text index. Concept names are indexed for better performance and potentially
fuzzy searches during information retrieval using the Apache Lucene (http://lucene.
apache.org/) full-text indexing system. Fuzzy searches as supported by Lucene can
be useful to overcome spelling mistakes, for example, PKM2 might be written as
PK-M2 [29]. The default method for synonym mapping creates a link between two
concepts if two or more concept names are matching (bidirectional best hits) to be
able to cope with ambiguity of names. As a simple example of such ambiguity, the
term ‘mouse’ shows that consideration of only one synonym is usually not enough
for the disambiguation of the word, i.e. ‘mouse’ can mean computer mouse or the
rodent Mus musculus. The threshold for the number of synonyms to be considered
a match and an option to use only exact synonyms are parameters in the synonym
mapping method.
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Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and a
set of relations R(O) C C(0O) x C(0). Every concept ¢ € C(O) has a concept class
cc(c) € CC(0), a data source identifier ds(c) € DS(O) and a list of concept names
cn(c) ={(cny x ... x cn,)|cn; € CN(O)}. Each concept name cn € CN(O) is a tuple
cn = (name, exact), where name is the actual name of the concept and exact is
either true or false. The bijective function id assigns a consecutive number n € N
to concepts and relations in O separately starting with 1.

num < 1..N(default: 2)
exact <« true (default) or false
function SynonymMapping (O, num, exact) {

for all ie[1..|C(0)|] do

for allje[i..|C(0O)|] do

len(ci) N en(c;)| = numA

3 xe cn ()N cn (cj)|x. exact v — exact)
if ds(c;) #ds(cj) Acc(c;) =cc(cy) do
O.createRelation(c;, cy)

if

Runtime Analysis

Assuming that the intersection of cn(c;) and cn(c;) can be found in linear time with
respect to the size of the lists by using hashing strategies or ordered lists and the
average number of concept names per concept is [, then the total runtime of
synonym mapping is 7'(n) = 3 (n? + n) * fies € O (n?) where n is the number
of concepts in the Ondex data structure.

5.3.2.3 StructAlign Mapping

In some cases, two or more synonyms for a concept are not available in the data to
be integrated. To disambiguate the meaning of a synonym shared by two concepts,
the StructAlign mapping algorithm considers the graph neighbourhood of such
concepts. A breadth-first search for a given depth (>1) starting at each of the two
concepts under consideration yields the respective reachability list for each concept.
StructAlign processes these reachability lists and searches for synonym matches of
concepts at each depth of the graph neighbourhood. If at any depth one or more pairs
of concepts which share synonyms are found, StructAlign creates a link between the
two concepts under consideration.



5 Molecular Information Fusion in Ondex 143

Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and
a set of relations R(O) C C(0O) x C(0). Every concept c € C(O) has two additional
attributes assigned: (a) a concept class cc(c) € CC(O) characterising the type of real-
world entity represented by the concept (e.g. a gene) and (b) a data source identifier
ds(c) € DS(O) stating the data source (e.g. HumanCyc) the concept was extracted
from. Every relation r € R(O) is a tuple r = (f;, ¢) with f the ‘from’-concept and ¢
the ‘to’-concept of the relation. To improve performance the algorithm is making
use of indexing structures for concept names and the unique identifier returned by
the bijective function id which assigns a consecutive number n € N to concepts and
relations in O separately starting with 1.

index <- searchable index of concept names for concepts
cutoff <« maximal depth of graph neighbourhood search
function StructAlign (O, index, cutoff) {
matches <- new map of concepts to sets of concepts
// search for concept name hits
for all ceC(0) do
for all necn(c)|n. exact do
hits <« index.search (n.name)
for allc ehits with ds(c) #ds(c’)Acc(c) =cc(c) do
matches [c] .add(c’)

connectivity<-new map of concepts to sets of concept
// calculate direct neighbourhood
for all reR(0) with r= (f,t) do
if ds(f) =ds(t)Af#t do
connectivity[f] .add (t)
connectivity[t] .add (f)
reachability <« clone (connectivity)
// modified breadth first search with depth cutoff
for all i€ [1l.. cutoff] do
for all (x, (y1...¥a)) €reachability do
for all je[l..n] do
reachability[x] .addAll (connectivity[yil)
// look at neighbourhood of bidirectional matches
for all (a, (by...by)), (bi, (c1 ... cp)) €Ematches|ac
(c1 ... cp) do
na < reachability[al
nb <« reachability [b;]
for all xena do
if dyematches[x]|y € nbdo
O.createRelation (a,b;)
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Runtime Analysis

Assuming the search for a concept name in the list of concept names takes
logarithmic time with respect to the length of the list (e.g. using a self-balancing
binary search tree [30]) and operations to manipulate maps and sets take constant
time using hashing strategies, the runtime analysis is: Let ¢ be the number of
concepts, [, the average number of concept names associated with a concept, r
be the number of relations, u, the average number of relations per concept in the
Ondex data structure and A a time constant for operations on maps and sets. The
worst-case runtime of the StructAlign algorithm is then:

1. Search for concept name matches
Ti(c,r) = ¢ % ey *log(c * fey) k€ % A
2. Calculation of direct neighbourhood
T(c,r)=r=2%xA
3. Modified breadth-first search with depth cut-off
T;5 (c,r) = cutoff *x ¢ * U, x A
4. Finding bidirectional matches in neighbourhood, log(c) search time for 3y

T4(c,r)=c2*c*A
T(c,r)=T1+T2+T3+T4
T (c,r)=c%* ey xlog(c * tep) kcx A4+r1x2% A

+cutoff x ¢ x y * A+c*xcx A

Within a fully connected graph, the number of relations is r =c « (¢ — 1)/2 and
ur=c—1.

T(c) = C*,chn*10g(C*p,C,,)*c2+c*(C_1) . A
+ cutoff xc % (c — 1)+ c* *xc¢

T(c) = (c? * pen * 10g (¢ * fhen) + (1 + cutoff) * ¢ * (c — 1) + ¢*) x A
T(c) € O (c?)
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Here the average number of concept names per concept is [, < ¢. Hence the
algorithm has a worst-case runtime of O(c?). Although the expected runtime on
sparse graphs is O(c?) as the number of neighbours reachable for a certain depth in
a sparse graph is much smaller than the number of total concepts in the graph.

Worked Example for StructAlign

Figure 5.4 shows a simple example graph of metabolites (circles) and enzymes
(rectangles) originating from two data sources DB1 (left) and DB2 (right). All
concepts except for concept 2 have two synonyms (exact one listed first). The
‘consumes’ relation (vertical arrows) is present in both data sources DB1 and DB2.

StructAlign starts to consider the first pair of concepts, here concepts 1 and
3, which share at least one exact synonym (H+/K4ATPase) and are of the same
concept class (enzyme). The reachability list of concept 1 includes concept 2 and
the reachability list of concept 3 includes concept 4. The undirected breadth-first
search of StructAlign will find concepts 2 and 4 both being present at depth 1. As
concepts 2 and 4 share at least one exact synonym (ATP) and are of the same concept
class (metabolite), StructAlign collected enough evidence to create a new relation
(horizontal arrows) between concepts 1 and 3. In the next step, StructAlign proceeds
to the next pair of concepts 2 and 4 between DB1 and DB2, which share at least one
exact synonym and will map them as being equivalent (horizontal arrows) because
of the name match present between concepts 1 and 3.
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5.3.2.4 Other Data Integration Methods

In addition to the mapping methods presented afore and evaluated in this study,
the following selection of mapping methods shows how other information can be
incorporated to deduce new relationships between concepts. This functionality is
similar to that seen in Biozon [15]. A more complete list of data integration methods
can be found on the Ondex web page (http://www.ondex.org).

Transitive Mapping

Transitive relationships between concepts are inferred from existing relations. For
example, if concept A is identified to be equivalent to concept B and concept B is
known to be equivalent to concept C, then a new equivalent relationship between
concept A and concept C is created by this mapping method.

Sequence Similarity Mapping

The computation of the similarity of gene or protein sequences is achieved by
exporting the sequence data into a FASTA [31] file and performing the matching
using BLAST [32] or TimeLogic Decypher (http://www.timelogic.com). The results
are used to create relations between concepts representing the genes or proteins. The
BLAST bit score and e-Value is assigned as attributes on these relations.

External2go Mapping

The GO consortium provides reference lists of GO terms that map terms to other
classification systems, for example, EC [24] enzymes or PFAM domains. The
external2go mapping parses these lists and creates relations between entries of the
GO database and entries of the other classification system.

These few examples together with the methods listed on the web page illustrate
the wide range of information which is utilised by mapping methods in Ondex
including simple name matches, sequence similarity search, orthology prediction,
graph-pattern matching and even complex text mining-based information retrieval.
Furthermore it is not difficult to add new mapping methods to Ondex.

5.3.3 Data Transformation Methods

After similar or equivalent concepts have been identified by mapping methods, the
relation collapse functionality is used to merge or fuse such clusters of similar
concepts connected by equivalence relations into one single concept. During
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Fig. 5.5 Clustering of concepts, /-2; start new cluster, 3—4; expand existing cluster, 5—-6; merge
two existing clusters

this collapsing process, the molecular information of each original concept gets
transferred onto the newly created fused concept, henceforth called molecular
information fusion.

The collapsing of concepts consists of three main operations:

— Finding cluster of similar concepts
— Creating single collapsed concept
— Removing original concepts

Clustering of concepts, which is illustrated in Fig. 5.5, starts with iteration over
all equivalence relations. For each such relation, it is determined if at least one of
the two concepts connected by this relation is already a member of a cluster. If this
is not the case, the relation and the two concepts are considered as the first element
of a new cluster (steps 1 and 2). If one of the two concepts is already an element of
an existing cluster, then the relation is added to this cluster (steps 3 and 4). If the
two concepts are elements of two different clusters, these clusters are merged (steps
5 and 6).

The algorithm works with four temporary sets: nodes_open, nodes_closed,
edges_open and edges_closed. The ‘open’ sets contain all known elements yet
to explore. The ‘closed’ sets contain all already processed elements. The routine
iterates over all concepts in the Ondex graph. For each concept all its adjacent
relations are explored. If an equivalence relation is found, it is added to the
edges-open set. The concept is then moved to nodes_closed, and the algorithm
proceeds to explore all adjacent concepts of the elements of edges_open and
moves them to edges_closed. In this fashion the algorithm switches between ‘node
exploration’ and ‘edge exploration’ until no further elements to be processed are
found. To avoid visiting elements which have already been analysed again, they
are stored in a binary search tree so that they can be quickly re-identified. Hence
each initial concept of the iteration is checked against this data structure before
processing it.
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The actual collapse process, which is done for every identified cluster of
concepts, consists of the following steps:

* A collapse core node is created in the Ondex graph. If many nodes are collapsed
into a single node, all properties of the collapsed nodes are assigned to the single
representative.

* The edges going to nodes outside the current concept cluster are passed over to
the collapse core node.

» All concepts of the current concept cluster are removed from the Ondex graph.

Runtime Analysis

The ‘contains’ and ‘add’ operations on the set data types in this algorithm have a
runtime of O(log(n)) using tree-based set data types. Let c be the number of the
concepts in the Ondex graph and let ., be the average cluster size. Then the worst-
case runtime of the concept clustering algorithm is

0 = (C * Ueg * 10g (/‘Lcs))

Hence the overall complexity of the algorithm is linear logarithmic.

5.3.4 Evaluation Methods

The mapping algorithms presented here can be configured using different param-
eters. According to the selection of the parameters, these methods yield different
mapping results. To evaluate their behaviour, two different test scenarios were used:
the mapping of equivalent elements in ontologies and the integration and analysis
of metabolic pathways.

The evaluation of a mapping method requires the identification of a reference
data set, sometimes also referred to as a ‘gold standard’, describing the links
that really exist between data and that can be compared with those which are
computed. Unfortunately, it is rare that any objective definition of a ‘gold standard’
can be found when working on biological data sets, and so inevitably most such
evaluations require the development of expertly curated data sets. Since these are
time consuming to produce, they generally only cover relatively small data subsets,
and therefore the evaluation of precision and recall is inevitably somewhat limited.

In the next section, the results of mapping together two ontologies, namely, the
Enzyme Commission (EC) nomenclature [24] and Gene Ontology (GO) [25], are
presented. In this case, the Gene Ontology project provides a manually curated
mapping to the ENZYME Nomenclature called ec2go. Therefore, ec2go has been
selected as the first gold standard. The cross references between the two ontologies
contained in the integrated data were also considered as the second gold standard
for this scenario.
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The following section also presents the results from the evaluation of a mapping
created between the two metabolic pathway databases Reactome and HumanCyc.
Unfortunately, a manually curated reference set is not available for this scenario.
Therefore, it was necessary to rely on the cross references between the two databases
that can be calculated through accession-based mapping as the nearest equivalent of
a gold standard for this scenario.

5.4 Results

The mapping algorithms were evaluated using the standard measures of precision
(Pr), recall (Re) and F;-score [33]:

tp tp 2 x Pr«Re

Pr=—2%t  Re=—%*_ F =
' tp+ fp ¢ tp+ fn ! Pr+Re

The accession-based mapping algorithm (Acc) was used with default parameters,
i.e. only using non-ambiguous accessions. This choice has been made to obtain a
‘gold-standard’ through accession-based mapping, i.e. increasing the confidence in
the relations created. When evaluating the synonym mapping (Syn) and StructAlign
(Struct) algorithms, parameters were varied to examine the effect of the number of
synonyms that must match for a mapping to occur. This is indicated by the number
in brackets after the algorithm abbreviation (e.g. Struct(1)). A second variant of each
algorithm in which related synonyms of concepts were used to find a mapping was
also evaluated. The use of this algorithmic variant is indicated by an asterisk suffix
on the algorithm abbreviation (e.g. Syn(1)*).

5.4.1 Mapping Methods: ENZYME Nomenclature
vs. Gene Ontology

The goal of this evaluation was to maximise the projection of the Enzyme
Commission (EC) nomenclature onto the Gene Ontology. This would assign every
EC term one or more GO terms. This evaluation has been carried out twice, once in
January 2008 and a second time in the January 2013. The comparison of both results
highlights the improvements made to the mapping between the two ontologies
during this period.

For the first evaluation in 2008, ec2go (revision 1.67, downloaded 2008/01/21)
and gene_ontology_edit.obo (revision 5.661, downloaded 2008/01/21) obtained
from ftp://ftp.geneontology.org were used. Additionally enzclass.txt (last update
2007/06/19) and enzyme.dat (release of 2008/01/15) were downloaded from ftp://
ftp.expasy.org.
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Table 5.3 Mapping results for ENZYME Nomenclature to Gene Ontology in 2008

TP, FP TP, FP Pr, Re [%] Pr, Re [%] Fi-score F;-score
Method ec2go Acc ec2go Acc ec2go Acc
Ec2go 8063, 0 8049, 14 100.00, 100.00  99.83, 84.82 100.00 91.71
Acc 8049, 1441 9490, 0 84.82, 99.83 100.00, 100.00  91.71 100.00

Syn(1) 7460, 934 7462, 932 88.87,92.52 88.90, 78.63 90.66 83.45
Syn(1)* 7605, 2581 7606, 2580  74.66, 94.32 74.67, 80.15 83.35 77.31
Syn(2)* 4734,374 4738, 370 92.68, 58.71 92.76, 49.93 71.89 64.91
Syn(3)* 2815, 117 2816, 116 96.01, 34.91 96.04, 29.67 51.21 45.34
Struct(1) 1707, 63 1712, 58 96.44,21.17 96.72, 18.04 34.72 30.41
Struct(1)* 1761, 279 1766, 274 86.32,21.84 86.57, 18.61 34.86 30.63
Struct(2) 7460, 934 7462, 932 88.87,92.52 88.90, 78.63 90.66 83.45
Struct(2)* 7605, 2581 7606, 2580  74.66, 94.32 74.67, 80.15 83.35 77.31
Struct(3) 7460, 934 7462, 932 88.87,92.52 88.90, 78.63 90.66 83.45
Struct(3)* 7605, 2581 7606, 2580  74.66, 94.32 74.67, 80.15 83.35 77.31

Ec2go imported mapping list (Ist gold standard), Acc accession-based mapping (2nd gold
standard), Syn synonym mapping, Struct StructAlign, * allow related synonyms, TP true positives,
FP false positives, Pr precision, Re recall, F;-score. Synonym mapping was parameterised with
a number that states how many of the names had to match to create a link between concepts.
StructAlign was parameterised with the depth of the graph neighbourhood

For the second evaluation in 2013, ec2go (revision 1.487, downloaded
2012/12/22) and gene_ontology _edit.obo (daily built, downloaded 2012/12/22) have
been retrieved, together with enzclass.txt (release of 2012/11/28) and enzyme.dat
(release of 2012/11/28).

The data files were parsed into the Ondex data structure and the mapping
algorithms applied using the Ondex pipeline. To determine the optimal parameters
for this particular application case, different combination of the mapping algorithms
with the variants and parameter options as described above have been systematically
tested. Table 5.3 summarises the mapping results and compares the performances
with the ‘gold standards’ data sets from ec2go and by accession mapping (Acc)
generated during our analysis in 2008. Table 5.4 shows the same information for
analysis results produced in 2013.

The first two rows of Tables 5.3 and 5.4 show the performance of the ‘gold
standard’ methods tested against themselves. As can be seen by reviewing the Fi-
scores in the subsequent rows of Tables 5.3 and 5.4, the most accurate synonym
mapping requires the use of just one synonym. It does not help to search for
further related synonyms (Syn(1,2,3)*). The explanation for this is that the EC
nomenclature does not distinguish between exact and related synonyms. Therefore,
concepts belonging to the EC nomenclature have only one preferred concept name
(exact synonym) arbitrarily chosen to be the first synonym listed in the original data
sources. A large number of entries in the EC nomenclature only have one synonym
described, which explains the low recall of Syn(2)* and Syn(3)*.

The use of the more complex StructAlign algorithm, which uses the local graph
topology to identify related concepts, has low recall when only a single synonym is
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Table 5.4 Mapping results for ENZYME Nomenclature to Gene Ontology in 2013

TP, FP TP, FP Pr, Re [%] Pr, Re [%] Fi-score F;-score
Method ec2go Acc ec2go Acc ec2go Acc
Ec2go 8120, 0 8117, 3 100.00, 100.00  99.96, 77.57  100.00 87.35
Acc 8117,2347 10464, 0 77.57,99.96  100.00, 100.00  87.35 100.00

Syn(1) 6954, 498 7024, 428 93.32, 85.64 94.26, 67.13 89.31 78.41
Syn(1)* 7413,2181  7538,2056  77.27,91.29 78.57,72.04 83.70 75.16
Syn(2)* 4673, 537 4748, 462 89.69, 57.55 91.13, 45.37 70.11 60.58
Syn(3)* 2841, 189 2886, 144 93.76, 34.99 95.25, 27.58 50.96 42.77
Struct(l) 1449, 77 1466, 60 94.95, 17.84 96.07, 14.01 30.04 24.45
Struct(1)* 1541, 293 1562, 272 84.02, 18.98 85.17, 14.93 30.96 25.40
Struct(2) 7041, 605 7116, 530 92.09, 86.71 93.07, 68.00 89.32 78.59
Struct(2)*  7413,2273  7538,2148  76.53,91.29 77.82,72.04 83.26 74.82
Struct(3) 7041, 605 7116, 530 92.09, 86.71 93.07, 68.00 89.32 78.59
Struct(3)*  7413,2273  7538,2148  76.53,91.29 77.82,72.04 83.26 74.82

Ec2go imported mapping list (Ist gold standard), Acc accession-based mapping (2nd gold
standard), Syn synonym mapping, Struct StructAlign, * allow related synonyms, TP true positives,
FP false positives, Pr precision, Re recall, F;-score. Synonym mapping was parameterised with
a number that states how many of the names had to match to create a link between concepts.
StructAlign was parameterised with the depth of the graph neighbourhood

required to match and a depth cut-off of 1 is used (Struct(1) and Struct(1)*). This
almost certainly results from differences in graph topology between EC nomencla-
ture and Gene Ontology. The Gene Ontology has a more granular hierarchy, i.e.
there is more than one hierarchy level between two GO terms mapped to EC terms,
whereas the EC terms are only one hierarchy level apart. As the StructAlign depth
cut-off search parameters are increased, more of the graph context is explored and
accordingly the F;-scores improved.

Across both tables, the highest F;-scores come from Syn(1), Struct(2) and
Struct(3), respectively. Including the related synonyms into the search (the *
algorithm variants) did not improve precision. Neither did extending the graph
neighbourhood search depth from Struct(2) to Struct(3) as all the neighbourhood
matches had already been found within search depth 2.

During the integration of data from these data sets for this evaluation in
2008, some inconsistencies in the ec2go mapping list have been observed. The
identification of such data quality issues is often a useful side effect of developing
integrated data sets. The inconsistencies identified are listed in Table 5.5 and were
revealed during the import of the ec2go data file after preloading the Gene Ontology
and EC nomenclature into Ondex.

Presumably most of the problems are due to the previously disjoint development
of both ontologies, i.e. GO references that were transferred or EC entries being
deleted or vice versa. A few of the inconsistencies were possible typo errors. It
remains a possibility that other ‘silent’ inconsistencies are still in ec2go that these
integration methods would not find.
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Table 5.5 Inconsistencies in ec2go in 2008

Accession Mapping Reason for failure

GO:0016654  1.6.4.- Enzyme class does not exist, transferred entries
GO:0019110  1.18.99.- Enzyme class does not exist, transferred entries
GO:0018514  1.3.1.61 Enzyme class does not exist, deleted entry
2.7.4.21 GO0:0050517 GO term obsolete

GO:0047210 2.4.1.112 Enzyme class does not exist, deleted entry
1.1.1.146 GO0:0033237 GO term obsolete

GO:0016777  2.7.5.- Enzyme class does not exist, transferred entries
GO:0004712  2.7.112.1 Enzyme class does not exist, possible typo
2.7.1.151 GO:0050516 GO term obsolete

Every inconsistency was checked by hand against gene_ontology_edit.obo, enz-
class.txt and enzyme.dat

A more recent analysis of data files used in 2013 revealed that the above
presented inconsistencies have been corrected. The only inconsistencies identified
in the newer data were:

* 1.3.5.6 to GO:0052889 (GO term is biological process, not molecular function)
e 2.5.1.46 to GO:0050983 (GO term is biological process, not molecular function)
e 2.1.1.35 to GO:0009021 (GO term obsolete)

5.4.2 Mapping Methods: Reactome vs. HumanCyc

The Reactome and HumanCyc pathway resources are both valuable for biologists
interested in metabolic pathway analysis. Due to the different philosophies behind
these two databases [34], however, they do have differences in their contents.
Biomedical scientists wishing to work with biochemical pathway information would
therefore benefit from a combined view of Reactome and HumanCyc and so this
makes a realistic test. These two databases were chosen for this evaluation, because
both pathway databases annotate metabolites and proteins in the pathways with stan-
dardised ChEBI [35] and UniProt [36] accessions, respectively. It is therefore pos-
sible to evaluate the precision, recall and F;-score of the different mapping methods
using accession-based mapping between these accession codes as a ‘gold standard’.

For this evaluation the BioPAX [37] representations of the Reactome database
(release 43 from 2012/12/10) obtained from http://www.reactome.org/download
and the HumanCyc database (release 16.5 from 2012/11/06) obtained from http://
humancyc.org/download.shtml were used. The Reactome database contained 1,387
metabolites and 4,650 proteins. The HumanCyc database contained 1,983 metabo-
lites and 2,690 proteins. The evaluation results from the mapping between metabo-
lites from these two databases are summarised in Table 5.6.

Accession-based mapping between metabolites found 856 out of 1,387 possible
mappings. A closer look reveals that ChEBI identifiers are not always assigned
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Table 5.6 Mapping results od
for Reactome and HumanCyc Metho TP FP Pr{%] Re[%] F-score

databases — metabolites Acc 856 0 100.00 100.00 100.00
Syn(1) 218 530 29.14 25.47 27.18
Syn(1)* 468 1598 22.65 54.67 32.03
Syn(2)* 144 420 25.53 16.82 20.28
Syn(3)* 40 184 17.86 4.67 7.41
Struct(2) 238 606 28.20 27.80 28.00
Struct(2)* 430 1506 22.21 50.23 30.80
Struct(3) 238 606 28.20 27.80 28.00
Struct(3)* 430 1506 22.21 50.23 30.80

Acc accession-based mapping (gold standard), Syn synonym
mapping, Struct StructAlign, * allow related synonyms, TP
true positives, FP false positives, Pr precision, Re recall, F1-
score. Synonym mapping was parameterised with a number
that states how many of the names had to match to create a
link between concepts. StructAlign was parameterised with
the depth of the graph neighbourhood

Table 5.7 Mapping results

Method TP FP Pr [% Re [% Fi-
for Reactome and HumanCyc Sl r 1%] ¢ [%] |50

databases — proteins Acc 2826 0 100.00 100.00  100.00
Syn(1) 10 28 2632 035 070
Syn(1)* 514 226 69.46 1819  28.83
Syn(2)* 14 0 10000 050  0.99
Struct(2) 46 36 5610 163 3.6
Stuct(2)* 288 112 7200  10.19  17.85
Struct(3) 46 36 5610  1.63 3.6

Struct(3)* 288 112 72.00 10.19 17.85

Acc accession-based mapping (gold standard), Syn synonym
mapping, Struct StructAlign, * allow related synonyms, TP
true positives, FP false positives, Pr precision, Re recall, F1-
score. Synonym mapping was parameterised with a number
that states how many of the names had to match to create a
link between concepts. StructAlign was parameterised with
the depth of the graph neighbourhood

to metabolite entries, most notably in HumanCyc. Therefore, the accession-based
mapping does miss possible links and cannot be used naively as a gold standard
for this particular application case. In this evaluation, accession-based mapping
underestimates possible mappings, which leads to low precision for synonym
mapping and StructAlign. A random set of the false-positive mappings returned
by Syn(2)* and Struct(3) has been manually reviewed, and this revealed that a large
number of the mappings made sense and metabolites shared very similar chemical
names. Subject to further investigation, this example shows that relying only on
accession-based data for integration might miss out some important links between
data sources.

The evaluation results from the mapping between proteins from Reactome and
HumanCyc are summarised in Table 5.7.
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The accession-based mapping between proteins uses the UniProt accessions
available in both Reactome and HumanCyec. Entries from HumanCyc can be labelled
with two or more UniProt accessions representing multiple proteins involved in the
same enzymatic function, whereas Reactome entries usually only have one UniProt
accession. This results in one-to-many hits between Reactome and HumanCyc
explaining why a total of 2,826 instead of only 2,690 mappings were found. This
is a good example of how the differences in the semantics between biological data
sources make it difficult to define a gold standard for evaluating integration methods.

The key finding from this evaluation based on mapping protein names is that
due to different protein naming conventions in each of the two databases, name-
based mapping methods cannot perform well. Manual inspection of a subset of
false-negative mappings and their protein names reveals that HumanCyc is using
longer names describing enzymatic functions (e.g. cytidine deaminase, cytidine
aminohydrolase), whereas Reactome uses short gene names (e.g. CDA, CDD).

5.4.2.1 Visualising Results

Data integration involving large data sets can create very large networks that
are densely connected. To reduce the complexity of such networks for the user,
information filtering, network analysis and visualisation (see Fig. 5.3, step 3)
are provided in a front-end application for Ondex [2]. The combination of data
integration and graph analysis and visualisation has been shown to be valuable for
a range of data integration projects in different domains, including microarray data
analysis [2], support of scientific database curation [38, 39] and assessing the quality
of terms and definitions in ontologies such as the Gene Ontology [40].

A particularly useful feature in the Ondex front-end is to visualise an overview
of the types of data that have been imported into Ondex. This overview is called
the Ondex meta-graph. It is generated as a network based on the data structure used
in Ondex, which contains a type system for concepts and relations. Concepts are
characterised using a class hierarchy and relations have an associated type. This
information about concept classes and relation types is visualised as a graph with
which the user can interact to specify semantic constraints — such as changing the
visibility of concepts and relations in the visualisation and analysis of the integration
data structure.

As an illustration, the integration of Reactome and HumanCyc for this evaluation
results in more than 61,000 concepts and 113,000 relations. The mapping methods
were run with optimal parameters identified in the previous section. After filtering
down to a specific pathway using methods available in the Ondex front-end, it was
possible to extract information from the integrated data as presented in Fig. 5.6.

Figure 5.6a displays parts of the MAP kinase cascade pathway from HumanCyc
(nodes and edges in black) mapped to the corresponding entries from Reactome
(indicated by bidirectional edges to blue nodes). It is now possible to visualise the
differences between the two integrated pathways. Reactome contains more protein
entities about a specific enzymatic function (e.g. proteins similar to phospho-MEK).
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Fig. 5.6 (a) MAP kinase cascade pathway from HumanCyc with entities from Reactome. Equiv-
alence relations are coloured by method (red = accession, blue = synonym, green = StructAlign)
and thickness by StructAlign score. (b) Meta-graph providing an overview of the integrated data;
node colour and shape distinguish classes; edge colour distinguishes different relation types (color

figure online)
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HumanCyc provides a larger pathway composed of more proteins than the pathway
in Reactome, as the pathway concept maps to two different Reactome entries (stars,
RAF/MAP kinase cascade).

The meta-graph is shown in Fig. 5.6b. This visualisation shows that the integrated
data set consists of pathways (Pathway), reactions (Reaction) which are part of
these pathways, metabolites (Compound) consumed or produced by the reactions,
enzymes (Enzyme) catalysing the reactions and several combinations of proteins
(Protein) and protein complexes (Protein complex) constituting the enzymes. The
meta-graph provides the user with a useful high-level overview of the conceptual
schema for this integrated data.

The last step to complete the molecular information fusion of the data presented
in Fig. 5.6a would be to select the best equivalence relations and use the relation
collapse data transformation to merge similar concept nodes together. To reduce
the number of false-positive mappings, one would choose only such equivalence
relations which are found by a combination of data integration methods (different
edge colours) and at the same time carry a high confidence score (edge thickness)
assigned by the data integration methods.

5.5 Discussion

Alternative methods for creating cross references (mappings) between information
in different but related data sources have been presented. This is an essential com-
ponent in the integration of data having different technical and semantic structures.
Two realistic evaluation cases were used to quantify the performance of a range
of different methods for mapping between the concept names and synonyms used
in these databases. A quantitative evaluation of these methods shows that a graph-
based algorithm (StructAlign) and mapping through synonyms can perform as well
as using accession codes. In the particular application case of linking chemical
compound names between pathway databases, the StructAlign and synonym-
based algorithms outperformed the most direct mapping through accession codes
by identifying more elements that were indirectly linked. Manual inspection of
the false-positive mappings showed that both StructAlign and synonym mapping
methods can be used where accession codes are not available to provide links
between equivalent data source concepts. The combination of all three mapping
methods yields the most complete projection between different data sources. This is
an important result, because it is not always possible to find suitable accession code
systems that provide the direct cross references between databases once you move
outside the closely related data sources that deal with biological sequences and their
functional annotations.

A similar approach to StructAlign called ‘SubTree Match’ has been described
in [41] for aligning ontologies. This work extends this idea into a more general
approach for data integration for biological networks and, furthermore, presents a
formal evaluation in terms of precision and recall.
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A particular challenge in this evaluation has been to identify suitable ‘gold
standard’ data sets against which to assess the success of the algorithms developed.
The results presented here are therefore not definitive, but represent the best
quantitative comparison that could be achieved in the circumstances. Therefore,
these results represent a pragmatic evaluation of the relative performance of the
different approaches to concept name matching for data integration of life-science
data sources.

Acknowledgements We would like to thank all current and previous contributors to the Ondex
system (see www.ondex.org). The main part of this work has been carried out at Rothamsted
Research. Rothamsted Research receives grant in aid from the Biotechnology and Biological
Sciences Research Council (BBSRC). This work was supported by BBSRC SABR award
BB/F006039/1 and TSB project TP 5082-33372. JT also would like to thank EMBL-EBI for
allowing time to write this chapter.

WWW Link List (In Order of First Occurrence)

Name of
resource

Brief description

WWW link

Ondex system

Data integration, visualisation and analysis
framework for life-science data

http://www.ondex.org

BBSRC Biotechnology and Biological Sciences http://www.bbsrc.ac.uk
Research Council in the United Kingdom

SRS Sequence Retrieval System for biological data  http://www.instem.com/

solutions/srs.html

PathSys Graph-based system for creating a combined http://biologicalnetworks.net/
database of biological pathways, gene PathSys/
regulatory networks and protein interaction
maps

BN++ and Biological data warehouse combined with http://www.bina.unipax.info/

BiNA biological network analyser

BioCAD Integrated software for biosystem reverse http://biosoft.kaist.ac.kr/
engineering

Biozon Unified biological knowledge resource with http://www.biozon.org
emphasis on protein and DNA
characterisation and classification

STRING Database of known and predicted protein http://string-db.org/
interactions

NeAT Network Analysis Tools http://rsat.bigre.ulb.ac.be/

rsat/index_neat.html

OBO Open Biomedical Ontologies Foundry http://www.obofoundry.org

ENZYME (EC) Nomenclature Committee of the International  http://www.chem.qmul.ac.
Union of Biochemistry and Molecular uk/iubmb/enzyme/

Biology

(continued)
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(continued)
Name of
resource Brief description WWW link
GO The Gene Ontology http://www.geneontology.
org/
Reactome Curated knowledgebase of biological pathways http://www.reactome.org
in humans
HumanCyc Encyclopedia of Homo sapiens Genes and http://humancyc.org/
Metabolism
NCBI Taxon- Provides a taxonomy browser, taxonomy http://www.ncbi.nlm.nih.gov/
omy resources and other information taxonomy
GenBank GenBank is the NIH genetic sequence database http://www.ncbi.nlm.nih.gov/
genbank/
Apache Open source full-text indexing system http://lucene.apache.org
Lucene
BLAST The Basic Local Alignment Search Tool http://blast.ncbi.nlm.nih.gov
Decypher Hardware accelerated sequence aligner http://www.timelogic.com
PFAM Large collection of protein families http://pfam.sanger.ac.uk
Ec2go Mapping file from EC to GO http://www.geneontology.
org/external2go/ec2go
ChEBI Chemical Entities of Biological Interest http://www.ebi.ac.uk/chebi
UniProt Universal Protein Resource is a catalog of http://www.uniprot.org
information on proteins
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Chapter 6
Text Mining on PubMed

Timofey V. Ivanisenko, Pavel S. Demenkov, and Vladimir A. Ivanisenko

Abstract A technology of linguistic analysis with the use of computer methods is
called a text mining.

Computer tools based on this technology can provide a wide range of tasks,
including:

1. The task of finding a relevant literature with the user-specified criteria and
determination of the correspondence between single article or manually specified
picks of articles and researching area of knowledge or a set of predesignated areas

2. The task of identification and extraction of names of biological objects that can
be found in the raw text (e.g., genes, proteins, metabolites) with extra information
on them, such as the type of object and names of its synonyms

3. The task of establishment of relationships between objects that had been
automatically recognized in text with the representation of the obtained data in a
form convenient for the further analysis, for example, in the form of associative
networks

Keywords Text mining ¢ Associative genetic networks ¢ Automated PubMed
analysis * Knowledge extraction system

6.1 Systems for the Automated Search of Literature

Systems for the thematic search of the literature are extremely important in almost
any kind of scientific research. Their main task is automated determination of the
level of relevance between electronic publications and information of interest for
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specialists. The most common techniques for the development of such systems are
the use of logic and vector models as well as mining techniques; often they are
combined in order to improve the search.

6.1.1 Logical Query Model

Logical queries allow to perform search of documents with a user-specified strings
of keywords associated by logical operators AND/OR/NOT by comparison of user-
specified queries with all available documents. In case of full or partial string
matches, considering logical operators in the query, the document will be defined
as satisfying to the query or not. For example, the query «p53 AND open-angle
glaucoma» will display all documents containing a name of the protein “p53” and
“open-angle glaucoma” disease at the same time the query «p53 NOT cancer»
will show only documents that involve “p53,” but not involve a “cancer” disease.
The advantage of this method is its easy implementation. At the same time, its
main drawbacks are the lack of features for the formation of complex queries that
can allow, for example, to consider the relationships between objects, as well as
excessive search redundancy [1].

6.1.2 Vector Query Model

Vector query algorithm was proposed by Joyce and Needham [2]. It is based on the
idea that similar documents should meet to the simular requirements.

The algorithm is based on a representation of each document as a mathematical
vector of terms in which each term is corresponding to the frequency number of its
matches in the text, such vectors are related to control vector that is formed with a
user-specified query, and as a result the establishment of the extent to which articles
specified to the provided subject area takes place. This approach offers the feature
of the combination of similar documents into clusters, which can significantly
improve the time and the quality of search. The first query vector algorithm has
been implemented by Salton in SMART (Salton’s Magical Automatic Retriever of
Text) search engine [3].

6.1.3 Mining Methods

These methods include:

— Methods of the statistical correlations intended for the formation of rules for
establishment of relations between documents and prespecified categories [4].
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— Clustering methods based on different semantic attributes of the document set
with the use of linguistic and mathematical methods without a priori knowledge;
as a result of such analysis, a taxonomy of documents or visual map, providing
effective coverage of large amounts of data, is created [5].

— Methods for analysis of the relationships for identification of descriptors (key
phrases) in the documents that provide flexible navigation in text [6].

— Methods for the identification of facts designed for the extraction of knowledge,
in order to improve the classification, retrieval, and clusterization of docu-
ments [7].

6.1.4 Existing Search Systems

The Entrez system [8] (http://www.ncbi.nlm.nih.gov/sites/gquery) allows to make
search of information on biological databases supported by NCBI, such as PubMed,
GenBank, Structure, and Genome. It is based on a model of vector and logical
queries as well as mining techniques.

Muller and his colleagues developed a search engine, Textpresso [9] (http://www.
textpresso.org), specialized on Caenorhabditis elegans that includes over 3,800 of
full-text articles and 16,000 of abstracts. It is based on the modified vector method,
containing articles that were previously divided on separate sentences as well as on
terms appropriate to C. elegans and stored at the database; the search queries are
divided into words, and such approach allowed authors to improve the quality of
search in comparison with classical method of vector queries.

PubMatrix [10] (http://pubmatrix.grc.nia.nih.gov)is a system that allows to make
search on the PubMed database by comparing a user-specified sample of terms,
such as gene or protein names with a set of their functions. As a result, the system
provides a list of abstracts of scientific publications containing links between these
genes or proteins and their functions.

6.2 Systems for Automated Identification of Biological
Objects in Texts

Krauthammer and Nenadic distinguished three stages of automatic recognition of
biological objects [11]:

— Extraction of names, synonyms, and abbreviations in the unstructured text
— Identification and establishment of relationships between objects
— Representation of obtained information in the formalized form

There are three main approaches for automated identification of the names of
biological objects in text:
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— With the use of rules and templates
— With the use of statistical and machine learning methods
— With the use of thematic vocabularies

6.2.1 Methods for Identification of the Biological Objects
with the Use of Rules and Templates

These methods are based on the use of a set of regular expressions (rules or
patterns) that normally are formed manually by specialists [12] and intended to
identification of terms according to their syntactic and semantic features. Ananiadou
and McNaught in their work concluded that systems implemented by use of these
methods can get the better-quality results in comparison to other approaches [13].
The main disadvantage of methods based on templates is a poor quality in analysis
of complex sentences.

6.2.2 Recognition of Biological Entities with the Use
of Statistical Algorithms and Machine Learning Methods

The use of statistical approaches allows the identification of terms based on the
frequency values of their occurrence in text; these methods are effective in solving
the problem of keywords. Systems based on machine learning methods are designed
to search for specified classes of terms in the text and allow to do direct identification
of objects with their classification with the help of “training samples.” These
samples are used to “train” method and allow them to produce high-quality object
recognition and classification on a specific biological problem. The main problems
of machine learning methods are poor availability of training samples and the high
need of a large amount of high-quality data [13].

Collier and colleagues used a hidden Markov model and automated analysis
of orthographic word features for the extraction of the terms related to the ten
predesignated classes [14]. The results of this system were highly dependent from
the quality of samples. Thus, for a class of proteins, F-score value was 75.9 %, while
F-score value for RNA was much less due to their low representation in the training
set. Similar results (F-score of 75 %) occurred in Morgan and colleagues’ analysis
of gene names for Drosophila genus (small flies) [15]. They used a hidden Markov
model in conjunction with contextual analysis and simple spelling rules.

Kazama and colleagues used the method of the support vector machine with a
GENIA training set [16, 17]. The so-called B-I-O tags were used for the annotation:
the B tag allowed to identify preterm structures, the I tag contrasted the words
forming the part of the term, and the O tag was used for words going after
terms. Tags were supplemented with information related to different classes of
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molecular-genetic objects. For instance, tag B protein was associated with the words
that were situated in front of the names of proteins. The F-score value for this
method was 50 %.

6.2.3 Recognition of Biological Objects with Dictionaries

These methods are based on the use of thematical words for the search for biological
object names by the comparing of text with terms from the dictionary. The advantage
of such approach over other methods is fast term classification by types with their
reference to the various databases. The main disadvantages are the inability to
recognize the novel names and a high degree of false-positive results related to short
and nonunique names [18].

The BioThesaurus web-based system [19] (http://pir.georgetown.edu/pirwww/
iprolink/biothesaurus.shtml) was designed for the establishment of interactions
between genes and proteins in unstructured text. The system was based on the use
of vocabulary compiled from the different databases: UniProt [20]; NCBI resources
devoted to genes and proteins [21], including Entrez Gene, RefSeq, and GenPept;
and genomic databases of model organisms such as MGD [22], SGD [23], RGD
[24], FlyBase [25], and WormBase [26] and some other sources. The total volume
of the dictionary was about 2.8 million of unique gene and protein names.

6.2.4 Recognition of Biological Objects with the Combining
of Different Methods

For today most of modern systems designed for the identification of names of
biological objects in texts are combining several different approaches. For example,
popular is a combination of methods based on patterns with machine learning. This
allows to achieve more higher values of completeness and accuracy. Tsuruoka and
Tsujii used the search with the dictionary along with machine learning methods
[27]. On the first step (recognition phase), the text was scanned using a dictionary
for protein name candidates. The problem of spelling variation was solved with an
approximate string-matching technique. On the second step (filtering phase), each
candidate was checked if it is a name of a protein or not with a machine learning
method. The classifier was trained on an annotated corpus GENIA [28] and used
the context of the term and the term itself as the features for the classification. Only
“accepted” candidates were recognized as names of proteins. The F-measure (the
harmonic value of the precision and recall values) for this system was 70.2 %.
Hakenberg with colleagues developed a GNAT system [29] (http://cbioc.eas.asu.
edu/gnat/) for the identification of the names of genes from various organisms in
the texts of abstracts of scientific publications. For the identification of gene names,
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dictionaries (for each of the 25 organisms, a separate dictionary was compiled) and
machine learning methods were used. The search of noncanonical forms of names
was done using automates with the ending number of states, while the identification
of canonical names was done with the help of dictionaries based on Entrez, GO,
UniProt, and other databases. The F-score of the system was 81.4 % (the precision
and recall were 90.8 % and 73.8 %, respectively).

6.3 Systems for the Recognition of Interactions Between
Biological Objects

For the solution of task of automated extraction of information about the molecular
and genetic interactions between biological objects from the literature, the following
methods are widely used:

— Methods based on the co-occurrence of objects in the text

— Methods based on a set of rules and patterns (shallow parsing)

— Methods based on a deep syntactic analysis of the separated sentences (full or
deep parsing)

The co-occurrence method is based on a calculation of the frequency of co-
occurrence of object names in the text. It is assumed that the more two objects can
be mentioned in the same text, the more likely they are related with each other. The
main advantages of these methods are the easy implementation and high value of
recall. But on the other side, the precision of such method is not very high and this
method does not allow the identification of type of relationships between objects.
Coremine Medical (http://www.coremine.com/medical) and FACTA [30] (http://
text0.mib.man.ac.uk/software/facta/main.html) are examples of such systems. At
the BRENDA database (http://www.brenda-enzymes.org), co-occurrence method
was used for the extraction of data about associations between diseases and
enzymes [31].

The shallow parsing is based on the extraction of information from texts
with the use of partial relations between words in a sentence using a set of
specific patterns and rules. A SUISEKI (System for Information Extraction on
Interactions) [32] designed for the automated analysis of the syntactic structure
of phrases and other developments for the extraction of protein interactions is
based on this method. The core of the system is the number of rules that allow
capturing different language constructions that are commonly used to describe
interactions. The rules are implemented as frames of the form “[protein/gene]
binds/associates/ . .. [protein/gene]” as well as the form describing specific rela-
tions, such as “[noun indicating interaction] of [protein/gene] with [protein/gene].”
The Chilibot [33] (http://www.chilibot.net) extracts sentences from abstracts of
scientific publications related to a pair or a list of genes, proteins, or keywords
and uses shallow parsing for the classification of the extracted sentences as
noninteractive, interactive, or simple abstract co-occurrence.
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Information extraction systems based on the full-sentence parsing approach tend
to be more precise as they deal with the structure of an entire sentence, and variations
of the full parsing-based approach have been applied for biomedical information
retrieval. However, full parsers are significantly slower and require more memory
than shallow analyses because they have to deal with general syntactic ambiguity
and handle the full set of possible structures of whole sentences.

The full (deep) parsing is based on the language description with the help of
formal grammas. Such approach is usually more accurate than shallow parsing
as it is working with the structure of an entire sentence. On the other hand,
the main disadvantages are the full dependence from the quality and fullness of
the training set and high requirements to memory. The MedScan system [34]
(http://www.elsevier.com/online-tools/pathway-studio/training-support#faqs) from
Pathway Studio used a full syntactic parser for the analysis of the semantic and
lexical structure of sentences and search of interactions between various biological
objects, including small molecules, genes, proteins, protein functional classes,
diseases, and cell processes.

6.4 The ANDSystem Tool

The ANDSystem tool incorporates methods for automated extraction of knowledge
from the PubMed abstracts of scientific publications and factographic databases
[35]. The ANDSystem consists of three main modules: module of linguistic text
analysis and extraction of knowledge from text; the ANDCell database, containing
the results of knowledge extraction from PubMed in the form of associative
networks; and the ANDVisio tool that provides a graphical interface for ANDCell,
intended for the graphical visualization and analysis of associative gene networks
comprising relationships between biological processes, diseases, and molecular-
genetic objects (proteins, genes, metabolites). The vertices of such networks are
molecular-genetic objects, diseases, and processes while the edges between the
vertices represent types of associations. Considered are the following objects: genes,
proteins, microRNAs, metabolites, molecular processes and pathways, cellular
components, and diseases (Fig. 6.1).

The following types of relationships are established between molecular-genetic
objects: association, interactions, co-expression, treatment, catalytic reactions, con-
version of molecules, degradation of a protein, regulation of gene expression,
regulation of activity or function, regulation of transport, regulation of stability or
degradation, and regulation of molecular-biological processes and diseases.

Algorithms for extraction of knowledge from text implemented in ANDSystem
are based on the use of dictionaries and templates [36]. A thesaurus of genes was
compiled with the use of the NCBI gene database; for the protein dictionary, a
Swiss-Prot database was used; a list of diseases was extracted from the PharmGKB;
for the metabolites, a ChEBI database was analyzed; biological processes and cellu-
lar components were obtained from Gene Ontology; and for microRNA, miRBase
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g YN

MYOC proteolysis

IGF2

Fig. 6.1 The associative network of relationship between human genes and proteins associated
with open-angle glaucoma and myopia generated with ANDVisio

was used. The extraction of relationships between described biological objects from
text was done with a help of about 4,000 manually created templates. The obtained
knowledge base now consists of over five million facts about relationships between
diseases, molecular-genetic objects, and biological processes.

With the ANDVisio, an associative network describing relationship between
human genes and proteins associated with open-angle glaucoma and myopia dis-
eases [37]. The built network contains 15 genes and 50 proteins that are associated
with myopia and open-angle glaucoma at the same time and over 400 relationships
between them (Fig. 6.1). It identified 26 pathways between myopia and open-
angle glaucoma containing the most important objects and relationships, including
SMAD3, PAX6, IPO13, GCR, NOE3, MYOC proteins, and the OLFM3 gene.
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Chapter 7
Network Visualization for Integrative
Bioinformatics

Andreas Kerren and Falk Schreiber

Abstract Approaches to investigate biological processes have been of strong
interest in the past few years and are the focus of several research areas like systems
biology. Biological networks as representations of such processes are crucial for an
extensive understanding of living beings. Due to their size and complexity, their
growth and continuous change, as well as their compilation from databases on
demand, researchers very often request novel network visualization, interaction, and
exploration techniques. In this chapter, we first provide background information
that is needed for the interactive visual analysis of various biological networks.
Fields such as (information) visualization, visual analytics, and automatic layout
of networks are highlighted and illustrated by a number of examples. Then, the state
of the art in network visualization for the life sciences is presented together with
a discussion of standards for the graphical representation of cellular networks and
biological processes.
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7.1 Introduction

Many biological processes are represented as networks. Examples are networks
from the area of molecular biology, such as metabolic networks, protein interaction
networks, and gene regulatory networks, but also from other areas of the life
sciences such as ecological networks, phylogenetic networks, neuronal networks,
chemical structures, and infection networks. Network modeling, analysis, and
visualization are important steps towards a systems biological understanding of
organisms and organism communities. The graphical depiction of such networks
supports the understanding of the underlying processes and is essential to make
sense of much of the complex biological data that is now being generated.

A picture of a network is called a network diagram or a network map; see
Fig. 7.1 for an SBGN map of a metabolic pathway. A network diagram representing

N -

Fig. 7.1 A map of a metabolic pathway shown in the SBGN standard [88], derived from
KEGG [61], computed and displayed by Vanted [110]
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biological processes consists of a set of elements (called nodes or vertices) and
their connections or interactions (called edges). These elements and connections
often have a defined appearance and are placed in a specific layout. Due to the size
and complexity of such networks, methods for their automatic visualization and
interactive exploration are desired.

Network diagrams or maps have been produced manually for a long time.
Examples are textbooks on biochemistry [8,96], biological network posters [94,99],
and some electronic information systems such as ExPASy [4] and KEGG [61]. The
drawings in these resources have been created manually long before their use and
provide only a restricted view of the data. These maps represent the knowledge
at the time of their generation and are static, hence cannot be changed by an end
user. Therefore, this type of biological network visualization is often called static
visualization.

Because of the size and complexity of biological networks, their steady growth
and continuous change, as well as the compilation of user-specific networks from
databases, novel automatic visualization, interaction, and exploration methods are
desired. The generation of a network map on demand is called dynamic visualiza-
tion. Such visualizations are automatically created by the end user from up-to-date
data. Their advantages are, inter alia, that they can be modified to provide particular
views at the data and often navigation and exploration methods are supported in
interactive systems.

This review gives a brief introduction into (information) visualization, visual
analytics, and automatic layout of networks, presents the state of the art in automatic
network visualization for the life sciences, and standards for the graphical represen-
tation of cellular networks and biological processes. It is structured in two main parts
as follows: Sect.7.2 provides information about the foundations from computer
science in general and looks into the subareas of information visualization, graph
drawing (network visualization), and visual analytics in particular. Section 7.3 takes
a closer look at the visualization of biological networks and discusses methods,
some important tools, and the SBGN standard. It looks into the application and
extension of computer science methods for the special requirements of the life
sciences.

7.2 Background

The effective visualization of biological networks is influenced by research from
many different fields. In the past, such networks were simply considered as large
graphs (or hypergraphs), and a suitable visual representation was restricted to
finding an appropriate (static) graph layout. Nowadays, research in the visualization
of large and complex networks is more focused on interactive exploration and
analysis that includes the consideration of additional data that might be attached to
various graph elements or that might be the basis for the construction of biochemical
networks. The process of such a data collection and storage will heavily increase in
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the future. This is especially true in systems biology where, for example, the huge
amount of *omics data automatically generated by high-throughput technologies
[3,39] lead to the challenge of interpreting all of these data sets in context of net-
works. The fundamental problem today is to transform the data—which is typically
not preprocessed, erratic, stored in idiosyncratic formats, sometimes uncertain, and
often composed of various types (multidimensional, time dependent, geospatial,
etc.)—into information and make it useful/available/analyzable to analysts. Often,
this challenge is called the information overload problem. Positive effects of such
a transformation are then to discover something that is interesting (like patterns or
outliers) or to monitor a huge data set in real time [70].

Because of this general view on the problem, we provide a more general
background section. First, we discuss the field of information visualization in the
next subsection. We highlight the most important definitions/aims and present a
brief high-level overview of visual representations and interaction techniques. Then,
we outline the field of graph drawing and discuss the most often used layout
algorithms. Finally, a relatively new field, called visual analytics, is introduced.
Due to page limitations, we cannot give a comprehensive overview of all aspects of
the aforementioned research fields. Instead, we present a selection of fundamental
ideas/approaches and refer to the literature including surveys.

7.2.1 Information Visualization

Information visualization (InfoVis) is a research area which focuses on the use of
interactive visualization techniques to help people understand and analyze data.
While related fields such as scientific visualization involve the presentation of
data that has some physical or geometric correspondence, information visualization
centers on abstract information without such correspondences, i.e., information that
cannot be mapped into the physical world in most cases. Examples of such abstract
data are symbolic, tabular, networked, hierarchical, or textual information sources.
The ever-increasing amount of data generated or made available every day amplifies
the urgent need for InfoVis tools. To give the field a firm base, InfoVis combines
several aspects of different research areas, such as scientific visualization, human-
computer interaction, data mining, information design, cognitive psychology, visual
perception, cartography, graph drawing, and computer graphics [73, 74].

7.2.1.1 The Importance of Human Visual Perception
and Visual Metaphors

Human information processing and the human capability of information reception
have to be adequately taken into account when developing visualization tools. This
should be reflected in an appropriate user interface design, a clean requirement
analysis and modeling, and perhaps most important an efficient interaction between
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the human analyst and the computer. Discussing the different features of our eye,
the various process models of human visual perception (incl. preattentive perception
and features) or our capabilities of pattern recognition would go beyond the scope
of this background section. There are many good textbooks that deal with these
topics in context of visualizations: we recommend the books of Ware [141], Kerren
et al. [74], and Ward et al. [140].

Edward Tufte, one of the leaders in the field of visual data exploration, describes
in his illustrated textbooks [131-133] how information can be prepared so that the
visual representation depicts both the data and the data context. The use of suitable
visual metaphors assists our brain in its endeavor to connect new information
received through the visual input channels to existing information stored in short- or
long-term memory [72]. Tufte inspired many InfoVis researchers in their ambition
to develop novel visual representations for the data sets under consideration (the
process of representing a concrete data set by an appropriate visual structure is
called “visual mapping”) as well as interaction techniques which support a better
understanding of the data.

7.2.1.2 Visual Representations

Visual mappings explain how data models can be expressed using visual metaphors
and be converted into corresponding visual representations which are suitable for
interaction. This is typically done in the 2D space, because 3D representations
usually introduce unnecessary clutter and navigation problems. We highlight the
most important visualization techniques for basic data types in the following
paragraphs. Of course there are other types of data that have to be considered.
We refer to the literature if the reader is interested to get more information, such
as [27,102] for geo-spatial data, [2] for time-series data, or [41, 126, 140] for a
comprehensive discussion of visual representations in general.

Visualization Techniques for Multivariate Data

Multivariate (or multidimensional) data sets can mostly be described as data tables
with n data objects and m attributes/features, i.e., for each object exists an attribute
vector with m dimensions. The attribute values can be classified into nominal,
ordinal, or quantitative. In practice, we often have a large amount of data objects
and many attributes with different types. Finding a suitable visual representation
is thus challenging, and the right choice might depend on further parameters like
application domain, integration into a larger visualization environment, or support
of specific interaction techniques. In general, visual mappings for multivariate data
can roughly be categorized as follows:

Point-based approaches:  This class of techniques projects n-dimensional objects
from the data space to a lower-dimensional—typically 2D—display space [140].
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Fig. 7.2 Some examples of often used visualization techniques. The screenshots in (a) and (b)
were produced with D3 [22]. (a) Parallel coordinates that visualize a nutrient content data set
with more than 1,000 data objects and 14 attributes (available online [31]). Note that the visible
polylines were interactively selected in the 3rd and 10th axes. (b) A scatterplot matrix showing
data from the Iris data set (available online [11]). Also in this case, the colored points indicate data
selected by the user (see the grey-colored selection in the plot of the first column, second row).
(c) Small icons/glyphs are embedded into the graph nodes of a metabolic network. In this case,
they indicate reachable nodes in other (color-coded) pathways [60]. (d) A pixel-based approach to
visualize weather data of a city. The rows represent years, and the temperatures (color-coded from
blue over white to red) of each day are ordered from left to right [90]. (e) Sample tag cloud of a
text document which is related to information visualization (generated with Wordle [32]) (Color
figure online)
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There are different variations: scatterplot matrices, for instance, consist of a grid
of 2D scatterplots each showing a possible pair of dimensions/attributes [19];
see Fig.7.2b for an example. Dimensional reduction techniques, such as multidi-
mensional scaling (MDS) [92, 145], principal component analysis (PCA) [53], or
self-organizing maps (SOMs) [80], project n-dimensional data records into 2D/3D
directly. The idea is to preserve properties of the multivariate data space during the
projection, i.e., similar data objects in data space should also be similar in display
space which is represented by neighborhood. Note that absolute positions in the
display space are less important, in contrast to relative positions.

Axis-based approaches: Here, a multidimensional data object is usually repre-
sented by a polyline, and its attribute values are marked on coordinate axes which
can be arranged in various ways. Thus, the user can read the attribute values from
the intersections between the coordinate axes and the polyline. The most prominent
examples are parallel coordinate systems [49] (cf. Fig. 7.2a) or star plots [16] (also
called Kiviat diagrams).

Icon-based approaches:  Icon- or glyph-based approaches are coherent graphical
entities that represent the attribute values of a data record by modification of the
entity’s visual features, such as line thickness, size, color, and orientation. There are
many different realizations, such as stick figures [106], Chernoff faces [18], or shape
coding [7]. A variant of so-called rose diagrams [100] is shown in Fig.7.2c.

Pixel-based approaches: ~ Such approaches try to maximize the available display
space by mapping attribute values to single pixels. There is only one degree of
freedom to represent such a value by a pixel: its color. Therefore, the challenge
in the development of pixel-based representations is to arrange the used pixels on
the screen in a meaningful way. Well-known examples are recursive patterns [65]
or the VisDB tool [66] for the analysis of databases. Figure 7.2d exemplifies the idea
in context of the visualization of weather data collected over time.

Visualization Techniques for Hierarchical Data and Networks

Networks and trees are in the center of our interest in this chapter. Therefore,
we provide an own Sect.7.2.2 for a deeper discussion of suitable visualization
possibilities for these data types and focus there on traditional node-link approaches.
For the sake of completeness, we want to note that there are also so-called space-
filling methods that try to solve some conceptual problems of node-link diagrams,
such as the high space consumption and difficult inclusion of many (and complex)
attributes into the drawing. Treemaps fall into this category in which the hierarchy is
recursively mapped to rectangular areas [52]. Other examples are Beamtrees [134],
sunburst approaches [108], or network matrices [1].
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Visualization Techniques for Text and Documents

Today, the availability of texts and documents is overwhelming, and people want to
actively deal with them to solve specific problems. Typical questions are as follows:
what documents contain a text about a specific topic? Or are there similar documents
to those that I already have? Information visualization is capable of supporting the
aforementioned tasks in several ways.

Text visualization:  First, we focus on approaches to the visualization of a single
text document. Tag Clouds provide information about the frequency of words
contained in a text [63]. The approach uses different font sizes for each word
in the text to indicate how often a certain word is used in comparison with the
other words as shown in Fig. 7.2e. Several extensions and related approaches exist,
such as Wordle or ManiWorlde [77, 138]. SparkClouds extend the original tag
cloud idea with a temporal variable by so-called sparklines [87]. Thus, trends
can easily be identified and analyzed. An approach for visual literary analysis is
called Literature Fingerprinting [67]. It supports the visual comparison of texts
by calculating features (e.g., word/sentence length or measurement of vocabulary
richness) for different hierarchy levels and by creating characteristic fingerprints of
the texts.

Document visualization: — Collections of text documents can be structured to some
extent (software packages, wikis, etc.) or relatively unstructured (e-mails, patents,
etc.). Early approaches, e.g., Lifestreams [34], simply arranged documents accord-
ing to specific attribute values such as time tags. More recent works analyze the
documents by metrics, such as similarity, and perform cluster analyses or compute
SOMs. Conceptually similar (by looking at the resulting visual representation) is
ThemeScapes [147] that follows a natural landscape metaphor. Single documents
are categorized and then mapped to a document map as topic areas, whereas the
documents themselves are shown as small dots. “Mountains” in the landscape
represent document concentrations in a thematic environment (density), height lines
connect concept domains, etc. There are many more recent approaches that make
use of the same metaphor, such as [104]. In order to carry out comparisons of text
documents using tag clouds, Parallel Tag Clouds [20] arrange tags on vertical lines
for each document. Identical words are then highlighted by connection lines.

7.2.1.3 Interaction Techniques

Interaction techniques in information visualization are mechanisms “for modifying
what the users see and how they see it” [140]. There are many taxonomies of
interaction techniques in the literature which help to better understand the design
space of interaction; a nice overview is provided by Yi et al. [148]. In the following,
we present a simplified and shortened classification of interaction methods for
information visualization from our paper [70] which is based on [43] of its own:



7 Network Visualization for Integrative Bioinformatics 181

Data and view specification:  This category focuses on the data space and how
the data is visually represented (corresponds to data transformations and visual
mappings in the InfoVis Reference Model [14]):

Encode/visualize: Users can choose the visual representation of the data records
including graphical features, such as color and shape. Visual representations
typically depend on the data types as discussed in Sect.7.2.1.2.

Reconfigure: Some interaction techniques allow the user to map specific
attributes to graphical entities. An example is the mapping of attributes in a
multivariate data set to different axes in a scatterplot.

Filter: This technique is of great importance as it allows the user to interactively
reduce the data shown in a view. Popular methods are dynamic queries by using
range sliders [146] or picking a set of nodes in a network visualization for further
analyses by performing a “lasso” selection [44].

Sort: Ordering of records according to their values is a fundamental operation in
the visual analysis process. This is, for example, important in network analysis
where nodes might be sorted based on specific centrality values [150].

View manipulation:  Our second category addresses interacting with visual repre-
sentations (view transformations in the InfoVis Reference Model).

Select: Selection is often used in advance of a filter operation. The aim is to select
an individual object or a set of objects in order to highlight, manipulate, or filter
them out. Examples include putting a placemark on a virtual map to highlight a
spatial area or the specification of attribute ranges in parallel coordinate systems
as seen in Fig. 7.2a.

Navigate/explore: This important class of interaction techniques typically modify
the level of detail in visualizations following the mantra overview first, zoom
and filter, and details on demand [121]. Well-known approaches are focus
and context [111], overview and detail [51], zooming and panning [137], and
semantic zooming [127].

Coordinate/connect: Linking a set of views or windows together to enable the
user to discover related items. Brushing and linking techniques (e.g., histogram
brushing [89]) are used in almost all information visualizations, such as in [59].
Organize: Large visualization systems often consist of several windows and
workspaces that have to be organized on the screen. Adding and removing views
can be confusing to the analyst. Some systems help the user to better overview
and to preserve his/her mental map by grouping of views or by assigning specific
places where they have to appear [50,91].

Note that it is possible and also common practice to combine the aforementioned
techniques. The given literature references only point to selected example works
and make no claim to be complete.
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7.2.2 Graph Drawing and Network Visualization

In this subsection, we distinguish between graphs and multivariate networks. A
(simple) graph G = (V, E) consists of a finite set of vertices (or nodes) V' and a set
of edges £ C {(u,v)|u,v € V,u # v}, whereas a multivariate network N consists
of an underlying graph G plus additional attributes that are attached to the nodes
and/or edges. To describe the fundamental ideas of graph visualization algorithms
more efficiently, we have to provide some definitions:

e Anedgee = (u,v) with u = v is called a self-loop.

» If an edge e exists several times in E, then it is called a multiple edge.

* A simple graph has no self-loops and no multiple edges. Here, we assume that
all graphs are simple graphs for the sake of convenience.

* The neighbors of a node v are its adjacent nodes.

e The degree of a node v is the number of its neighbors.

e A directed graph (or digraph) is a graph with directed edges, i.e., (u,v) are
ordered pairs of nodes.

e A directed graph is called acyclic if it has no directed cycles, i.e., there is no
directed path where the same node is visited twice.

e A graph is connected if there is a path between u and v for each pair (u,v) of
nodes.

* A graph is planar if it can be drawn in the 2D plane without intersections of
edges (edge crossings).

7.2.2.1 Traditional Graph Drawing (GD)

Graph drawing algorithms compute a 2D/3D layout of the nodes and the edges,
mainly based on so-called node-link diagrams [141]. They play a fundamental role
in network visualization. Particular graph layout algorithms can give an insight
into the topological structure of a network if properly chosen and implemented.
The graph readability is affected by quantitative measurements called aesthetic
criteria [24], such as:

e Minimization of edge crossings

* Minimization of the drawing area

* Displaying the symmetries of the graph topology
* Constraining edge lengths

* Constraining the number of edge bends

* Maximization of the resolution

Thus, graph drawing generally deals with the ways of drawing graphs according
to the set of predefined aesthetic criteria [17]. A problem is that these criteria
are often contradictory, and problems which aim to optimize the criteria are often
NP-hard. Therefore, many GD algorithms are heuristics. Note that we only focus
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on traditional GD approaches in this subsection. There are further possibilities to
represent graphs, such as matrix representations [1] or hybridizations between both
approaches [44] (cf. Sect. 7.2.1.2).

In the following paragraphs, a selection of drawing approaches is presented.
These are layout methods for trees, force-based layout techniques, and hierarchical
drawings. There are many more approaches not discussed here, for instance,
orthogonal layouts [29], visualization of hypergraphs [9], or dynamic layouts for
graphs that change over time [25] (a possible application of dynamic approaches is
visualizing the evolution of biochemical networks [112], for instance). Implement-
ing good graph drawing algorithms is usually complicated and time-consuming.
Therefore, a number of different open source libraries were developed, such as
JUNG [105] and many others, that allow to simply call predefined methods for the
computation of a specific graph layout.

Tree Drawings

Trees are a special case of directed (acyclic) graphs that usually have a distinguished
node called the root of the tree. We can regard a tree as a digraph with all edges
oriented away from the root. A binary tree is a rooted tree where each node has at
most two children (we assume here that binary trees are ordered). The graph drawing
community developed a lot of different layout methods for binary and general trees.
In this context, there is another set of more specified aesthetic criteria especially for
(binary) trees:

* Nodes at the same level of the tree should lie along a straight line, and the straight
lines defining the levels should be parallel.

* A left subtree should be positioned to the left of its parent node and a right subtree
to the right.

* A parent node should be centered over its subtrees.

* Two isomorphic subtrees should be drawn equally. Graph isomorphism means
that there is a bijection between two graphs, so that any two nodes u and v are
adjacent in the first graph if and only if their bijections are adjacent in the second
graph.

* A tree and its mirror image should produce drawings that are reflections of one
another.

* Integer coordinates should be preferred which leads to a grid drawing at the end.

Many tree layout algorithms use a divide and conquer strategy, such as the well-
known Reingold/Tilford algorithm for binary trees [107]. In a postorder traversal of
the tree, the following simple steps are executed:

1. Draw the left subtree.
2. Draw the right subtree.
3. Combine both drawings with a specific minimum distance.
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Fig. 7.3 Two sample tree layouts that were computed and displayed by the yED graph editor [149].
The identical input tree has 30 nodes and 29 edges. (a) A standard tree layout for general trees.
(b) A so-called HV-drawing in which the layout algorithm switches between the horizontal and
vertical orientation

4. Place the root of both subtrees at the next upper level exactly in the center of its
subtrees.

5. In case the parent node has only one subtree, place the root in a specific horizontal
distance.

Reingold/Tilford runs in linear time and can relatively easily be extended for the
layout of general trees [13,139]. Of course, there are further possibilities of drawing
trees with the help of node-link diagrams, such as radial layouts, H-trees, or HV-
trees. We refer the reader to the standard literature [24, 64]. Figure 7.3 shows two
example layouts computed with the yED tool [149].

Force-Based Drawings

Force-based layout techniques use a physical analogy to draw graphs and are widely
used in practice. This is because of several reasons: the physical metaphor makes
them easy to understand and to code, the results are suitable for many application
fields, they are easy to extend with additional constraints, and the process of
obtaining an equilibrium state (see below) can be animated which looks pretty
nice. A simple version of a force-based layout algorithm using spring and electrical
repulsion forces is introduced in the following. Here, the edges between nodes are
modeled as springs, and the nodes can be considered as charged particles that repel
each other. For the x-component of the force vector on a node v, the following holds
(y-component analogous):

Z (Stiuv(duv - Iuv))fcuv + Z rz,pzw )%uv (71)

(u,v)€E (uv)EV XV U

Here, X,, denotes the unit vector of (x, — x,,). d,, is the Euclidean distance between
u and v, [,,, is the zero-energy (natural) length of the spring between u and v (i.e., no
force if d,, = 1,,), stiy, € [0, 1] is the stiffness of the spring between u and v (i.e.,
the larger this parameter the more the tendency for d,, to be close to /,,), and finally
rep,, is the strength of the electrical repulsion between the two nodes. In Eq.7.1,
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Fig. 7.4 Two sample graph layouts that were computed and displayed by the yED graph
editor [149]. The identical input digraph has 29 nodes and 39 edges. (a) Result of a force-based
layout algorithm. (b) Layered (or hierarchical) drawing

the first sum represents the spring force between two nodes u and v connected with
an edge and the second sum the repulsion force between v and other nodes. Both
forces together build a complete force system for all graph elements. Depending on
the underlying physical model, the repulsion forces avoid that nodes are getting
too close, and the spring forces provide a uniform edge length, for instance. In
the current formula, Hook’s law is used to specify the spring force between two
nodes, i.e., if the distance between the two nodes is larger than the natural length
of the spring, then the nodes attract each other. And the strength of the attraction is
proportional to the difference between distance and natural length.

A simple algorithm that computes a final graph layout consists of a loop which
firstly computes the forces of all nodes and then moves each node a bit into the
direction of its force vector computed in Eq.7.1. At the beginning, all nodes are
positioned randomly. The loop is left if the sum of all forces together is small enough
(equilibrium state) or after a specific number of iterations. This strategy works for
undirected and directed graphs, with and without cycles, cf. Fig. 7.4a.

Layered (Hierarchical) Drawings of Directed Graphs

A general aim for the layout of a directed graph is to compute a so-called monotone
drawing in which all edges point into the same direction. Such a monotone drawing
has some advantages in the interpretation of the digraph’s topology [47]. Obviously,
the input digraph must be acyclic in that case, otherwise we would get edges that
flow backwards (called feedback edges). In practice this apparent hard condition is
not really a problem, because we can use such a drawing method for general directed
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graphs if we change the direction of a minimal number of the feedback edges. This
step is known as cycle removal. By doing so, we get a directed acyclic graph (DAG)
that is drawn by using a method for computing monotone layouts, such as a layered
drawing as explained in this paragraph. If the final layout is ready, we simply reverse
the feedback edges again.

Many people prefer a hierarchical structure of the final graph layout, i.e., the
nodes of the graph are arranged on vertical or horizontal, parallel layers in the 2D
plane. Often, such a structure is already given by the input data. For instance, if
someone wants to visualize hyperlinks (edges) between the HTML pages (nodes)
of a website, then usually the pages are already hierarchically organized. In the
following, we briefly present a standard technique for layered drawings that is based
on the fundamental work of Sugiyama et al. [129].

The basic idea is very simple and intuitive; it has three phases. In the first phase,
the nodes of the graph are assigned to a number of layers (we can skip this phase
if there is already a layering in the input graph). This layer assignment problem is
NP-complete if we want to minimize the height and the width of the final layering.
A further complication occurs if edges span over several layers: then we have to
introduce the so-called dummy nodes that lie on the spanned layers, i.e., a long
edge is thus subdivided by the dummy nodes. This strategy causes modified edges
which only reach from one layer to the next one (the digraph is called proper in such
cases) and is needed for the second phase. After the layer assignment, we have to
eliminate the number of edge crossings. This is done by reordering the graph nodes
and the dummy nodes within each layer. With the help of the dummy nodes, the
algorithm gets control over the edge positioning, and in consequence, it is possible
to avoid crossings of edges that span over several layers. Minimizing edge crossings
in a proper layered digraph is NP-complete, even if there are only two layers. Note
that the node positions (x-coordinates) on the layers are relative only up to now (the
y-coordinates of the nodes are already specified by the node layers if we assume
to have horizontal layers). The final phase is the real coordinate assignment of all
nodes on the layers, i.e., we assign concrete x-coordinates for each (normal and
dummy) node. Also this task leads to an optimization problem that can be solved,
for instance, by linear programming (LP). Constraints of the LP are then the fixed
orderings in the layers, and the target function is specified by the straightness of the
edges. As a final step, we remove the dummy nodes and obtain the wished layered
drawing as shown in Fig. 7.4b.

7.2.3 Multivariate Network Visualization

Good drawing algorithms as described in the previous subsection will not solely
solve the problem of visualizing multivariate networks. There are several reasons
for this statement. First, the most traditional graph drawings do not scale well,
i.e., they are not able to represent huge data sets with many thousands of nodes
and/or edges. Second, additional multivariate data cannot be intuitively embedded
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into a standard drawing. The InfoVis community tried to address those issues
by visualization approaches that provide filtering and interaction possibilities in
order to reduce the number of graph elements under consideration as well as by
methods to visually analyze attributes in context of the underlying graph topology.
Several approaches can be found in the literature that attempt to offer solutions for
the problem of visualizing multivariate networks: multiple and coordinated views,
integrated approaches, semantic substrates, attribute-driven layouts, and hybrid
approaches [57]. We will discuss these concepts in the following paragraphs:

Multiple and coordinated views:  This category of solutions aims to combine
several views and present them together. Coordinated views allow the use of the
most powerful visualization techniques for each specific view and data set [41,109].
As an application example, we highlight the work of Shannon et al. [120] who
realized this idea in the network visualization domain. They use two distinct views:
one view shows a parallel coordinate approach for the visual representation of the
network attributes and the other view displays a node-link drawing of a graph. Their
tool is equipped with a variety of visualization and interaction techniques; both
views are coordinated by linking and brushing [126] techniques. The drawback of
multiple views is that they split the displayed data because of the spatial separation
of the visual elements.

Integrated approaches:  To provide a combined picture, attributes and the under-
lying graph can be displayed in one single view. “Integrated views can save space
on a display and may decrease the time a user needs to find out relations; all data
is displayed in one place” [41]. One example is described in Borisjuk et al. [10]
work on the visualization of experimental data in relation of a metabolic network.
The authors used a straightforward approach by employing small diagrams instead
of representing the nodes as simple circles or rectangles. Each diagram, e.g., a bar
chart, shows experimental data that is related to the regarded node. This approach
provides a view to all available information, but the embedding of the visualizations
into the nodes causes the nodes to grow in size. This issue may affect the readability
of the network due to the overlaps that may appear when the number of nodes and
the attributes is high [71]. Thus, it does not scale well. However, the problem of
space usage and clutter introduced by such approaches can be avoided by using
focus and context techniques (cf. Sect.7.2.1). Magic lenses are one of several
possibilities that are able to interactively visualize the node attributes within the
same view as exemplified in Fig. 7.5.

Semantic substrates: In order to further avoid clutter in multivariate network
visualizations, some researchers realized the idea of so-called semantic substrates
that “are non-overlapping regions in which node placement is based on node
attributes”: Shneiderman and Aris [122] introduced this idea and combined it
with sliders to control the edge visibility and thus to ensure comprehensibility of
the edges’ end nodes. One conceptual drawback of such approaches is that the
underlying graph topology is not (completely) visible.

Attribute-driven layouts:  Those layouts use the display of the network elements to
present insight about the attached multivariate data instead of visualizing the graph
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Fig. 7.5 Overview of the Network Lens tool [58]. The graphical user interface is divided into three
distinctive parts: the main network visualization area, the lens information area on the right-hand
side, and the bottom part where user-produced lenses are preserved. It offers a way to visualize
additional network attributes (displayed inside of the circular lens), while preserving the overall
network topology and context. The lens in the screenshot covers one node only and shows a small
parallel coordinate diagram with four quantitative as well as four nominal attributes belonging to
that node. The user is able to move the lens with the mouse or to translate the graph behind the lens

topology itself. While being similar to semantic substrates, this technique does not
necessarily place the nodes into specific regions. Instead, it uses calculations based
on node attributes to control the placement of a node in the graph layout. An example
is PivotGraph [142] which uses a grid layout to show the relationship between
(node) attributes and links.

Hybrid approaches: They combine at least two of the previously discussed
techniques. The most common combinations are multiple coordinated views with
any of the integrated approaches. For instance, Rohrschneider et al. [112] integrate
additional attributes of a biological network inside the nodes and edges; see Fig. 7.6.
The authors also use other visual metaphors for creating multiple coordinated views
to show time-related data of the network.

7.2.4 Visual Analytics

Visual analytics (VA) “is the science of analytical reasoning facilitated by inter-
active visual interfaces” [130]. A crucial property of this research field is that
computational methods of data analysis are combined with interactive visualization
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Fig. 7.6 The screenshot shows a tool for the visual analysis of dynamic metabolic networks [112].
On the left-hand side, two time-series charts of selected attributes display attribute dynamics
over time. Interval charts represent the dynamic topology of the graph in terms of life times of
metabolites, enzymes, and reactions. On the right, the graph scene shows the set union graph (= the
super graph that summarizes all nodes/edges of the individual graphs that appear over time) with
the applied node coloring scheme which supports distinguishing between older and newer nodes

techniques in order to analyze data more efficiently. Automatic data analysis covers
various aspects from data storage and organization to automatic analysis algorithms,
such as support vector machines, neural networks, and PCA. It might be classified
among others into data management, data mining, and machine learning. For many
data analysis problems, fully automated analysis methods only work for well-
defined and well-understood problems, i.e., there has to exist a model of the
underlying problem [68]. Otherwise, traditional data mining techniques will not
work. Even if a model exists, then the results of the automated analyses have
to be sufficiently communicated to and interpreted by analysts. Here, interactive
visualizations come into the play as they are able to support the analyst to discover
(possibly unexpected) patterns, trends, or relationships in the data. Interaction tech-
niques (as presented in Sect. 7.2.1.3) are of particular importance to visually analyze
large volumes of data. Interaction allows, among other things, to explore “unknown”
data collections following Shneiderman’s mantra of information visualization [121]
or to build hypotheses with the help of “What if?” questions and to verify them
visually or with algorithmic methods. The need to combine interactive visualization
with computational analysis methods is obvious and opens novel possibilities to
address the information overload problem. A more detailed discussion on VA can
be found in [68, 69, 130].

As an example from the field of visual network analysis, we have selected
the ViNCent tool [75, 150] that combines exploratory data visualization with
automatic analysis techniques, such as computing a variety of centrality values
for network nodes as well as hierarchical clustering or node reordering based on
centrality values. Automatic and interactive approaches are seamlessly integrated
in one single analysis framework which provides insight into the importance of an
individual node or groups of nodes and allows quantifying the network structure;
see Fig.7.7.
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Fig. 7.7 Overview of the ViNCent user interface [150]. The center shows the radial centrality
view of the input network. The right side displays the corresponding histograms of the network
centralities as well as detailed values of the network centralities for the currently hovered node.
Histograms can be used to filter the views. The left panel allows changing the render settings and
displays an overview of the respective node-link layout of the network. A node group has been
manually selected and is shown as a light-blue stripe along the outer circle in the centrality view as
well as in the overview (bottom left) by using a background region of the same color (Color figure
online)

7.3 Visualization of Biological Networks

Visual representations of biological networks are widely used in the life sciences.
Examples are shown in textbooks, on pathway posters, in databases, and by a
large number of tools for the analysis and visualization of biological processes.
Well-known software tools are listed in Sect.7.3.1.2. Software tools often use
established layout methods as described in Sect.7.2.2 to visualize biological
networks automatically. Sometimes those algorithms are modified, for example, by
adding extra forces to force-based approaches. However, often these methods do
not or only partly take into account specific requirements for the visualization of a
particular biological network, and hence these visualizations are usually difficult to
understand, especially if large networks are visualized.

In the following subsections, we will introduce some typical solutions for
common networks from molecular biology, discuss domain-adapted solutions for
particular networks, list major tools for the visualization of biological networks,
and finally discuss the Systems Biology Graphical Notation (SBGN) as the graphical
standard for biological networks.
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Fig. 7.8 Three sample layouts of biological networks. (a) and (b) were computed and displayed by
the Vanted system [110]; (c) was computed by BioPath [33]. (a) A gene regulatory network (nodes
represent genes, edges represent regulation, and labels show gene names). (b) A protein interaction
network (nodes represent proteins; edges represent interaction). (¢) A metabolic network (nodes
represent metabolites, enzymes, and reactions; edges represent consumption and production)

7.3.1 Methods

7.3.1.1 Early Approaches

Driven by the emerging availability of biological networks from databases in the
mid-1990s, several groups started to either use existing graph drawing algorithms
or design extensions to these algorithms to automatically visualize biological
networks. In the following, we present such early work for the three major types
of networks from molecular biology.

Signal Transduction and Gene Regulatory Networks

These networks represent regulation or directed interaction between biological
entities (such as genes) and are usually modeled as directed graphs; see Fig.7.8a.
There are two widely used methods to visualize such networks: force-based and
layered drawings. Several systems provide force-based graph drawing methods for
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the visualization of these networks, for example, PATIKA [23] and GeNet [118].
These tools typically use well-known force-based algorithms such as Eades’
algorithm [28], often based on existing layout libraries and systems like Pajek [5]
or yFiles [144]. There are some improvements of the general force-based method to
consider application-specific requirements such as the representation of subcellular
locations. One example is implemented in the PATIKA system.

Signal transduction and gene regulatory networks are directed graphs and, for
example, the visualization of the main direction is important to understand the flow
of information through the network. Therefore, layered drawing methods are often
employed for the computation of maps of these networks. Some tools using this
layout method are TransPath [85] and BioConductor [15]. Often layout libraries for
layered drawings such as dot [84] are used.

Protein Interaction Networks

These networks represent proteins and their interactions and are modeled as
undirected graphs; see Fig. 7.8b. Several systems which employ force-based graph
drawing methods for their visualization have been presented, for instance [12,42,98,
119]. Also some work on interactive exploration of protein interaction networks has
been done, for example, by combining circular and force-based layouts and smooth
transitions between subsequent drawings using animation [35].

Metabolic Networks

These networks represent the transformation of metabolites into each other and
are usually modeled as directed graphs; see Fig.7.8c. There are two common
approaches to visualizing metabolic networks: force-based and layered drawing
methods. Several network analysis tools support force-based layouts, for exam-
ple, BioJAKE [113], Cytoscape [119], PathwayAssist [101], and VisANT [45].
Frequently they visualize not only metabolic but also other types of biolog-
ical networks. However, force-based approaches mostly do not meet common
application-specific requirements. Such requirements are, inter alia, different sizes
of nodes, the special placement of co-substances and enzymes, and the general
direction of pathways.

Layered drawings are often used as they emphasis the main direction in the
network. Tools supporting layered drawings are largely based on existing software
libraries. Such solutions show the main direction within networks and partly deal
with different node sizes. However, there is no specific placement of co-substances
or special pathways such as cycles. Examples are PathFinder [40] (which uses the
VCG library [114]) and BioMiner [123] (which employs yFiles [144]). The earliest
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approach to our knowledge is from Karp and Paley, where the complete network
is separated into parts such as trees, paths, and circles, and the parts are laid
out separately [62]. Although not a layered drawing algorithm as described in
Sect.7.2.2, it results in an overall layout with some layered structure. Extended
layered drawings consider cyclic structures within the network or show pathways
of different topology using different layouts, such as the algorithm by Becker
and Rojas [6]. An advanced layered drawing algorithm for metabolic networks
considering all relevant visualization requirements has been presented in [115].

7.3.1.2 Current Approaches and Tools

There are many challenges in current research of biological network visualization
and visual analytics, such as visual analysis of integrated and correlated data,
visual comparison of networks, integrated and overlapping networks, graphical
representation of paths and flows, and hierarchical networks; see [3, 39]. Conse-
quently, this field has become very research active and, for example, several special
algorithms have been presented in the last few years concerning the layout of
biological networks. Among them are grid-based methods [81], clustered circular
layouts [38], and constraint-based methods [116]. The quality of these specialized
layout algorithms is often much better than just applying standard methods, an
example is shown in Fig. 7.1.

A broad range of more than 170 tools for the modeling, analysis, and visual-
ization of biological networks is nowadays available on the Internet. These tools
change often rapidly, new tools emerge, and old tools obtain new features or are
not longer maintained. Therefore, only a small set of some important tools will
be listed here. Other reviews are available, for example, Suderman and Hallett in
2007 compared more than 35 tools regarding network and data visualization [128];
Kono et al. compared tools for pathway representation, mapping and editing, and
data exchange in 2009 [83]; and Gehlenborg et al. looked at visualization tools for
interaction networks and biological pathways in 2010 [39].

The following tools may be of interest to the reader. As the functionality of the
tools changes rapidly over time, we do not provide a feature list but encourage the
reader to visit the respective tool websites given below:

* BiNa [86] (http://bit.ly/y6ix9i)

e BioUML [82] (http://bit.ly/yIETIt)

e CellDesigner [36,37] (http://bit.ly/AOFQiF)

e CellMicrocosmos [125]  (http://bit.ly/WJ8cnE)
e Cytoscape [119,124]  (http://bit.ly/wY2sbG)

* Omix [26] (http://bit.ly/zL.52vB)

* Ondex [78, Chap.5] (http://bit.ly/AetZjz)


http://bit.ly/y6ix9i
http://bit.ly/yIETIt
http://bit.ly/A0FQiF
http://bit.ly/WJ8cnE
http://bit.ly/wY2sbG
http://bit.ly/zL52vB
http://bit.ly/AetZjz
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e Pathway Projector [83]  (http://bit.ly/z05x2M)
e PathVisio [135]  (http://bit.ly/zunwx W)

o Vanted [54,110]  (http://bit.ly/AigrOT)

o VisAnt [45,46]  (http://bit.ly/agZBni)

7.3.2 SBGN Standard

Biological networks shown in books, articles, and online resources are often difficult
to understand as the same biological concept can be shown by using different
graphical representations. Therefore, it is time-consuming to get familiar with
the graphical notation used, but this also carries the danger of misinterpreta-
tion. Consequently, particularly for molecular-biological networks such as gene
regulatory, signal transduction, protein interaction, and metabolic networks, there
were several attempts to define a uniform representation. This includes Kitano’s
Process Diagrams [76], Kohn’s Molecular Interaction Maps [79], and Michal’s
representation of metabolic pathways [95]. However, a single map type is often not
enough to adequately illustrate the complexity of biological processes, and none of
the mentioned attempts has asserted itself as a widely used standard.

Since 2006, there is a new initiative which partly builds on earlier standardization
attempts and is closely connected with the successful exchange format SBML
(System Biology Markup Language) [48]: SBGN—the System Biology Graphical
Notation [88]. Additional material can be found under http://sbgn.org, and formal
specifications are available [93,97, 103]; see the previously mentioned website for
the latest version of the specification.

SBGN supports three corresponding views or maps on a biological process: pro-
cess description which describes elements (cellular building blocks like molecules,
and nucleic acid sequences but also other information like observable events)
and interactions between these elements; entity relationship which presents the
interaction between biological entities and the influence of entities on other
elements; and activity flow which focuses on the flow of information from one
activity to another. These different language types enable to show different aspects
of biological processes. A process description contains, for example, a molecule
often several times in different states, e.g., phosphorylated or unphosphorylated,
while both other map types show in each case only one occurrence of such a
molecule. Figure 7.9 shows two molecular-biological networks in SBGN notation.

There are several tools supporting SBGN, including CellDesigner [36], EPE
(Edinburgh Pathway Editor) [30], PathVisio [135], and SBGN-ED [21] (an extension
of Vanted [110]). A comparison has been done by Junker et al. [56]. There is also
SBGN support for tool developers [136].


http://bit.ly/zo5x2M
http://bit.ly/zunwxW
http://bit.ly/Aigr0T
http://bit.ly/agZBni
http://sbgn.org
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Fig. 7.9 Two examples of SBGN maps. (a) Part of a metabolic pathway in SBGN notation
(pathway derived from MetaCrop [117], an information system based on Meta-All [143]). (b) Part
of a gene regulatory network in SBGN notation (derived from RIMAS [55])
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Chapter 8
Biological Network Modeling and Analysis

Sebastian Jan Janowski, Barbara Kaltschmidt, and Christian Kaltschmidt

Abstract Each scientist needs to be aware of the complexity of cellular life and
the modeling possibilities to be able to reconstruct, analyze, and simulate biological
systems. Bioinformatics modeling, analysis, and simulation are highly interdisci-
plinary disciplines using techniques and concepts from computer science, statistics,
mathematics, chemistry, biology, biochemistry, genetics, and physics, among others.
Without knowledge about these research topics, it is almost impossible to produce
good theoretical models, which can be used for hypothesis testing. Therefore, this
chapter gives an impression of what can be modeled from the bioinformatics and
biological point of view and introduces into biological networks, common analysis
techniques from graph theory, and possibilities to reconstruct, simulate, and share
biological networks based on database content.
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8.1 What Can or Should Be Modeled?

What is cellular life? The simplest answer from the biological point of view is
the following: anything that contains DNA or RNA [1], shows self-organization,
and has evolved over time as described by Manfred Eigen [2]. Motivated to seek
a theory to understand life, many decades ago researchers embarked on the study
of biological systems [3, 4]. Their main goal is not to imitate life but rather to
understand the universal logic and properties of living systems. Cellular functions
which do not rely on simple enumeration of molecular components and processes,
such as transcription, translation, and modifications, are carried out constantly.
These components never act as one independent element. Thus, present-day cellular
biology is challenged to reconstruct coupled dynamical models with many differing
elements and strongly interacting systems. Therefore, scientists endeavor to provide
a new look at data on the present organisms to validate or reject hypotheses.

The main task for modern biology is to trace phenotypical properties back to
specific molecules. Therefore, theoretical models are constructed, consisting of
the formation of switching rules that obligate cell features. With modern systems
biology and bioinformatics, those theoretical models are pictured. Therefore, natural
sciences produce a holistic view of different levels of organizations. Using causal
relations, theoretical models are constructed using several different switching rules.
Through the turning on and off of one or more genes, as controlled by one or more
molecules, the properties and dynamics of a cell can change. This can result in
different cell behavior, where the concentration of some other molecule is altered,
with the effect of turning on or off some other genes [1, 5].

Thus, to model and investigate cellular life, several different key components of
real-life systems have to be considered. The central dogma of molecular biology
stated by Francis Crick in 1958 describes the basic information flow in cells with
the following sentence: “DNA makes RNA, which in turn makes Proteins” [6, 7].
In general, this statement is correct, whereas it is very simplified. Nowadays,
natural science has investigated many processes and functions in detail, such as
transcription, translation, and posttranslational modification, among others, which
extend this stated dogma. The investigation of other regulatory processes, such as
microRNA fine regulation, is still in their beginning phases. Table 8.1 gives an
example of specific cell-type characteristics and dynamics to show the variety of
living organisms [8].

Although all these presented aspects have to be considered in the modeling of a
biological system and put into relationship with the biological dogma, it is neither
recommended nor practical to model all aspects. Too many unknown parameters
will come up, with the danger being that a fitted model will match to nearly anything.
Fitted parameters can be even misleading or become meaningless. Furthermore, the
larger the model, the longer it will take to determine parameters and to analyze
properties of interest. Therefore, each model has to be limited to a practical size and
linked to clear scientific questions.
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Table 8.1 Biological cell characteristics for E. coli, yeast (S. cerevisiae), and mammalian (human

fibroblast) based on [8]

Yeast Mammalian
Property E. coli (S. cerevisiae)  (human fibroblast)
Cell volume ~1 pm3 ~1,000um*®  ~10,000 m3
Proteins/cell ~4 x 10° ~4 % 10° ~4 x 1010
Genes ~4,500 ~6,600 ~30,000
Size of regulator binding site  ~10bp ~10bp ~10bp
Size of promoter ~100bp ~1,000 bp ~10* to 10° bp
Size of gene ~1,000 bp ~1,000 bp ~10* to 10° bp
(with introns)
Diffusion time of protein ~0.1s D = 10pm?/s ~10s ~100s
across cell
Diffusion time of small ~0.1 ms ~10ms ~0.1s
molecule across cell D = 1,000 pum?/s
Time to transcribe a gene ~1 min (80 bp/s) ~1min ~30 min (including
mRNA processing)
Time to translate a protein ~2 min (40 aa/s) ~2 min ~30 min (including
mRNA nuclear
export)

One possibility to limit model size is by using biological networks. These
networks can be restricted to only one -omic level, such as metabolomics or
proteomics. The main advantage of biological networks is that they can be used to
answer scientific questions with the focus on important regulatory elements, rather
than building up whole systems.

8.2 Biological Networks

Cellular life is mostly a network of interacting elements. To visually represent
and analyze the various interactions and relationships, biological systems can
be modeled as biological networks, which are based on mathematical graphs
(see Definition 1).

Definition 1. A graph is an ordered pair G = (V, E):

* Comprising of a set V' of vertices and a set E of edges, where each edge is
assigned to two (not necessarily disjunct) vertices.

¢ The order of a graph is |V|, comprised of the number of vertices.

¢ The size of a graph is | E |, comprised of the number of edges.

* The degree of a vertex is the number of edges that connect to it and are defined
by Ng(v) or N(v).
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The objects, represented by nodes, are called “vertices” and the links, represented
by directed or undirected arrows, are called “edges.” In general, the smallest level
of details is the molecular level, describing DNA, RNA, proteins, and metabolites
interacting with each other. Thus, nodes can be any kind of biological compounds
belonging to such a system. Edges are used to represent biological relations and
processes, such as activation, inhibition, and expression, among others. To model
all system elements, information flow, and dynamics, different biological networks
were introduced as described in the following:

¢ Transcription networks (or gene regulation networks)
Transcriptional networks control the gene expression within cells in time, space,
and amplitude [9]. Usually these kinds of networks describe how one gene is
controlled by the product of another gene. Therefore, the highly interconnected
processes are modeled with a directed graph, in which nodes represent gene,
transcription factors, and/or proteins and edges indicate mechanisms, such as
transcription, DNA binding, protein synthesis, and degradation, among others.
Furthermore, the synthesis of RNA, posttranscriptional events, mRNA turnover,
and translation can also be considered. However, as these kinds of networks
model a wide range of biological processes, they play a major role in protein-
protein interaction networks, signal transduction networks, metabolic networks,
and others, which are described in the following.
* Protein interaction networks

In terms of the degree of regulation, it becomes apparent that a protein can
never be investigated in isolation. Moreover, it has to be examined in the context
of other proteins and their interacting network, in the so-called protein-protein
interaction networks. The majority of biological processes within a cell are
controlled and mediated by proteins [1, 5]. They interact with other molecules,
such as low-molecular-weight compounds, lipids, and nucleic acids to ensure
transcription, translation, splicing, mechanical strength, transport, immunity,
signal transduction, growth, development, and many other processes. The types
of interactions range from transient interactions, occurring for a limited time,
such as they appear in protein kinases, protein phosphates, and others, up to static
interactions, such as the transfer of biosynthetic intermediates between catalytic
sites without the diffusion into the enzyme’s surrounding. A further important
aspect of protein-protein interaction is the signal transmissions from the external
environment to specific locations within the cells.

However, such protein-protein interaction networks enable the scientist to
investigate protein functions, system dynamics, and biological mechanisms
[9-15]. Reconstructing these kinds of networks, unknown proteins can be
grouped into known biological context and important proteins into functional
groups, subnetworks, and motifs identified and examined in detail. This kind of
analysis has become so important and powerful that it already contributes to new
therapeutic strategies [13, 16, 17].
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¢ Signal transduction networks

Signal transduction networks are of special interest in biological and medical
sciences as many diseases are related to disturbances in signaling networks [18].
In general, signal transduction links intracellular processes to the extracellular
environment of a cell. The general aim is to model and describe cellular functions
in response to external stimuli. Therefore, information transmission is modeled,
starting with the binding of extracellular ligands to receptors and resulting in cell
response that triggers a cascade of signal transduction reactions. The sequence
of reactions involved mainly relies on reversible chemical modifications and
complex formations, such as phosphorylation. The final targets of the processes
are transcription factors and metabolic enzymes. In summary, signal transduction
pathways transform a set of inputs into a set of outputs.

In contrast with other networks, such as protein-protein interaction networks,
signaling networks are basically directed. From the topological point of view, the
networks involve many different motifs, such as positive and negative feedback
loops. One of the most prominent examples is the negative feedback loop of the
transcription factor NF-« B [19, 20].

* Metabolic networks
Metabolic networks have a fundamental importance in biochemistry and biotech-
nology, as many scientists modify or alter metabolic networks to produce
fine chemicals, antibiotics, industrial enzymes, antibodies, etc. Furthermore,
metabolic networks are used in biomedicine enabling a better understanding
of metabolic mechanisms and for controlling infections. Therefore, scientists
examine differences, synergies, and other interactions between human beings
and pathogens. In general, the main goal of metabolic networks is the modeling
of cellular processes, such as the uptaking and digesting of substrates from the
environment, energy generation, growth, and cell survival, among others. Many
of these networks are available online in databases, such as KEGG [21], EcoCyc
[22], and BioCyc [23]. The networks refer to metabolites (amino acids, glucose,
polysaccharides, glycans, etc.) and their biochemical reactions.
* Correlation networks

Correlation networks represent statistical associations between variables derived
from experiments, such as derived from whole genome arrays, mass spectrom-
etry, and enzyme-based proteomic experiments, among others [9]. The global
analysis approach is to give a broad overview of the state of the organism.
Due to technological advances in systems biology, experimental approaches are
able to provide qualitative and quantitative information, which can be used for
comprehensive insights into biological systems.

Usually the resulting datasets are mainly independent variable-unit entries.
However, based on the experimentally measured values, correlations can be
determined from either the probability point of view or the strength of variable
units. The first approach measures if two values have a connection by coincidence
or if there seems to be a real link. Therefore, correlation coefficients are
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calculated expressing the connection probability. The accuracy of this approach
mainly depends on the sample size of the experiment. Examining a large number
of samples increases the probabilities for finding real connections and, moreover,
increases the probability of identifying whether weak connections are true. The
second approach only considers connection from the strength of variable units,
instead of the sampling size. However, an experimental validation based upon the
results is the best way to confirm a predicted correlation.

* Neuronal networks
In neuronal networks artificial neurons are connected to each other. The aim is to
reconstruct systems as they appear in real life [24,25]. Thus, connections between
neurons are modeled with neuronal summation, in which potentials and electric
gap junctions define firing strategies and signal transduction from one neuron
to another. In neuronal networks, neurons only respond to a subset of mostly
simple stimuli given by their neighbors, whereas, in real systems, the information
flow is based on inhibitory postsynaptic potentials and excitatory postsynaptic
potentials. The modeling and analysis of neuronal networks has attracted wide
interest in life sciences. For example, the subject of one application field is to
model systems which are able to learn complex patterns and therefore build a
kind of artificial intelligence.

¢ Phylogenetic networks
Phylogenetic networks describe the evolution and relationship between different
organisms. Usually, phylogenetic reconstructions are presented by trees rather
than networks, in which branch points represent the evolutionary separation of
two organisms. However, trees do not consider vertical and horizontal gene-
transfer events. Thus, phylogenetic networks describe evolutionary processes in
more detail. Kunin et al. give one prominent example of such a phylogenetic net-
work in their article “The net of life: Reconstructing the microbial phylogenetic
network” [26].

¢ Ecological networks
Ecological networks typically present food webs. Food webs are limited rep-
resentations of real ecosystems describing ecological communities focusing
on trophic interactions between consumers and resources (‘“what eats what”)
[27-29]. In general, two trophic categories exist, called trophic levels. The
first ones are the autotrophs, which produce organic matter from inorganic
substances. The second level, the heterotrophs, obtains organic matter by feeding
on autotrophs and other heterotrophs. It is a unified system of exchange,
adopted to analyze interrelationships between community structure, stability, and
ecosystem processes.

The analysis of food webs has shown that the evolution of realistic food web
structures can be explained on the basis of simple rules regarding population
abundance and species occurrence. For example, ecologists and mathematics
have figured out early on that the structure of food webs consists of nonrandom
properties, such as scaling laws. By examining a predator-prey model (resource-
consumer, plant-herbivore, parasite-host), it becomes obvious that the size of one
species is crucial to the stability of the whole system [30].
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However, food webs are an important representation for the prediction of
ecological events. They are mainly used to understand biological systems and
moreover to protect them from outside influences, such as climate change,
foreign wild species, and the narrowing of the habitat.

Summarized, the presented biological networks are able to capture all -omic
levels and, furthermore, able to model ecological events and other correlations.
With these advantages bioinformatics and systems biology have a set of powerful
integrated frameworks to present, integrate, and visualize knowledge. Furthermore,
graph theory comes with powerful approaches to analyze those networks as
described in the following.

8.3 Biological Network Analysis Based on Graph Theory

As mentioned in the previous section, graphs or networks can be used to model
many types of biological relations, biological processes, and biological questions.
Furthermore, geometry and topology can give important clues about organization
and information flow within a system. Graph analysis can determine structural
properties of a network. Furthermore, graph theory can analyze vertex degrees, path
lengths, diameter, and many other structural properties.

In general, graphs can have different types as presented in Fig. 8.1. In a directed
graph an edge between the vertices u and v is represented by the ordered pair (u, v)
[31]. Visually the ordered pair represents the direction of the arrowhead. However,
there is a big difference between directed and undirected graphs for a given number

2o

Fig. 8.1 Different graph types as they may appear in biological networks: (a) undirected, (b)
directed, (¢) mixed, (d) multigraph, (e) hyper-graph, (f) unconnected graphs, (g) tree, (h) rooted
tree, and (i) bipartite graph
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of vertices. The amount of directed graphs N; (1) with V' vertices is much higher
than the amount of possible undirected graphs Nynqi:(V') [9]:

Ngir(V) _ z(vz;n

— L = 8.1
Nundir(V) ( )

A mixed graph has both directed and undirected pairs. In the biological context
it can represent protein-protein interaction networks, where some interactions
are undirected, such as protein-complex bindings, and some interactions, such
as activation, phosphorylation, and other processes are directed. A multigraph
contains multiple edges, where two or more edges are incident to the same two
vertices. A hyper-graph is characterized by more than two elements, which are
connected to one interaction. Hyper-graphs are often used to model metabolic
networks where several substances are used in one reaction to produce another
substance.

A graph is bipartite if there is a partition of its vertex set V' = S U T, such that
each edge in E has exactly one end vertex in S and one end vertex in 7. A tree is an
undirected, acyclic graph, where vertices with only one edge are called leaves. All
other vertices are inner vertices. The depth of such a tree is the length of the path
from the root to a vertex. The height is the maximal depth. A rooted tree is often
regarded as a directed graph [31].

A subgraph G’ = (V', E’) of the graph G = (V, E) is a graph where V' € V
and E’ € E [31]. The density of a graph is given by

2Bl 82)
VTAVI-D

This definition indicates how dense or connected a graph is determining vertex
degrees [32].

Two graphs G and G’ are isomorphic G ~ G’, if there exist a bijection ¢ :
V— > V' between the vertex sets of G and G’, such that any two vertices u and
v of G are adjacent in G if and only if (1) and (v) are adjacent in G’, based on
xy € E & o(x)p(y) € E'Vx,y € V[31].

Global network properties are topological entities, such as distance, average
path length, and diameter. A path is a sequence (v, €1, vi, €2, ..., Vk—1, €k, Vi) Of
vertices and edges. The length of a path is given by its number of edges. The
distance between two vertices is given by dg (u, v). A shortest path between two
vertices is a path with minimal length d;;. The average path length is defined
by d = (d;;). The diameter is defined by d,, = max(d;;), which represents
the maximum path length. The correlation between edges and vertices is given by
e(G) = |E|/|V|[31,32].

An Eulerian path is a path which contains every edge exactly once. A graph
is an Eulerian graph if it contains an Eulerian path [31]. A path in an undirected
graph that visits each vertex exactly once is called a Hamiltonian path. A graph
that contains a Hamiltonian path is a Hamilton graph [31].



8 Biological Network Modeling and Analysis 211

Going further into detail, vertex degrees and other topological indices are
described in the following, which serve as a base for centrality measurements.
Network centralities are a common method to determine important elements within
a system. In the social sciences it is a common task to model relationships with
graphs and, based on that, to identify people that are more influential than others.
Similar questions can also be asked of biological networks.

A centrality is defined by the function ¢ : V' +— R on a directed or undirected
graph G = (V, E), which assigns a real number to every vertex (vertex degree). If
one vertex is more central than another one, then €' (v;) > % (v,) is given [33].

A vertex degree §g(v) = &(v) is the number of edges | E(v)| incident to the
vertex, with loops counted twice. The minimum degree is characterized by §(G) :=
min{d (v) | v € V}, the maximum degree by A(G) := max{d(v) | v € VV}, and the
average degree by:

d
d(G):=)_ % (8.3)
veV

The relation between the degrees is given by §(G) < d(G) < A(G) [9,31,32].

However, centrality measurements are only comparable inside the same network,
and some measurements can only be applied on connected networks. One of the first
centrality measurements is the degree centrality, defined by

Gaeg(v) = lele € E AV € e (8.4)

This measurement counts the number of edges connected to a vertex. In several
studies, this measurement was used to identify essential elements within a biological
network. A study on Saccharomyces cerevisiae revealed that proteins with a high
degree centrality are more essential in comparison to others [34]. Other studies
described similar findings with degree centralities as described by Hahn et al. [35].

The average neighbor degree is defined by Junker and Schreiber [9]

N,
1 <&
Kin = = ; Aiik; (8.5)

for each vertex n; over all vertices N. A is the adjacency matrix of the graph G.

Further centrality measurements are stated on network paths. They give informa-
tion about the importance of certain paths by using information about path length.
The first presented measurement is called eccentricity centrality. For every vertex it
determines the maximum distance to all other vertices. The vertex with the shortest
paths to all other vertices is the vertex with the highest eccentricity value. Formally,
the eccentricity centrality is defined as [36]

1
(gecc = . 8.6
1) max{dist(vi,vz) : vo € V} (86)
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The second important centrality measurement is the closeness centrality, which
assigns a vertex v a high value if the shortest path distances for all other vertices to
v is minimized. Formally, it is defined as [37]

1
Cao(v) = > (8.7)

eV dist(vy, )

The shortest path betweenness centrality measures the ability to monitor
communication between other vertices. These vertices, which are on the shortest
paths between all other vertices, are the most relevant ones. Let 0,,,, be the number
of shortest paths between v; and v,, whereas more than one shortest path can exist.
Oy,v, (W) denotes the number of shortest paths, including w as an interior vertex
which is neither start nor end vertex of the paths. The communication rate is given by

Oy, (W)

Buv, (W) 1= (8.8)

viva

If no shortest path between v, and v, exists, then §,,,,(w) := 0. With these
definitions the shortest path betweenness centrality can be defined as [38]

Copw) = Y () (8.9)

VIEVAVIFEW  nEV AmFEW

A further centrality measurement is based on the eigenvector. It is used on
strongly connected graphs such as protein-protein interaction networks, to deter-
mine essential elements within a network. The eigenvector centrality is the
eigenvector Cg;, of the largest eigenvalue A, in absolute value of the equation
system ACejy = AC.y, where A is the adjacency matrix of the graph G [39].

The clustering coefficient, a basic measurement for the local cohesiveness of
a network, measures the probability that two vertices with a common neighbor are
connected. In the case of undirected graphs, there exist Ey.x = k; (k;—1)/2 possible
edges between neighbors. The clustering coefficient C; of the vertex n; is then given
as the number of edges E; between the neighbors to the maximal number Ey,,x with

[9]:

2E;

)

(8.10)

The matching index quantifies the similarity between two vertices on the
number of common neighbors. The index is based on the following definition [9]:

Y~ common neighbors oo AikAj

My = = -
> total number of neighbors  k; + kj— Zk’l AikAji

8.11)
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Table 8.2 For a given

. . Number of connected ~ Number of connected
network size, many different

graphs can be reconstructed, Nodes  isomorphic graphs non-isomorphic graphs
where the difference between 3 8 2
isomorphic and 4 64 6
non-isomorphic graphs is 5 1,024 21
significant 6 32,768 112
7 2,097,152 853
8 268,435,456 11,117
9 68,719,476,736 261,080
10 35,184,372,088,832 11,716,571
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Fig. 8.2 The analysis of the distribution of graphs with the same average neighbor degree
resembles a Gaussian curve, where thousands of different networks share the same average
neighbor degree. The conclusion is that one specific average neighbor degree cannot characterize
a unique network type [40]

In summary, all presented measurements are able to identify important ele-
ments within a graph. However, without a clear scientific question, the presented
approaches can be misleading. Furthermore, scientists need to have in mind that a
large set of graphs can share the same graph topological values [40]. In general,
the number of possible graphs for a given node size is very large as presented in
Table 8.2 [41]. Based on the non-isomorphic graphs, it was examined how many
graphs share the same graph topology. Figure 8.2 presents the distribution of graphs
with the same topological values.
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Inferentially, thousands of different graphs share the same topological values.
And having in mind that the discussed and examined graphs in biology have, in most
cases, more than 30 nodes, the number of different graphs with the same topological
values increases dramatically. Thus, graph theory has to be very carefully considered
and only applied when it is linked to a specific scientific question. However, based
on the presented definitions, a variety of analysis techniques are possible. The
approaches enable structural as well as individual node analysis. Thus, it is not
surprising, that applied to biological networks, it has become an important aspect
in systems biology, bioinformatics, and theoretical biology [9].

8.4 How Biological Networks Can Be Modeled
and Simulated

Modeling biological phenomena with the use of computer applications has become
a common task. Therefore, different modeling techniques exist to study and
analyze the dynamic details of biological systems. In general, biologists are more
familiar with mathematical modeling, whereas computer scientists are accustomed
to computational formalism. However, several approaches provide mathematical as
well as computational capacities. In order to give an overview of existing modeling
languages, the most important techniques in systems biology and biological network
modeling are briefly described in the following subsections.

8.4.1 Ordinary Differential Equations

One of the most powerful techniques in modeling system dynamics is ordinary
differential equations (ODEs), which provide a theoretical framework for discrete,
continuous, deterministic, and stochastic models. In general, they describe the
change rate of variables in the modeled system as a function of time. ODEs have
been applied and used in many application cases and proved themselves very useful
[8, 42, 43]. Furthermore, ODEs can be used to model entire systems with given
kinetics [44, 45]. One common example for modeling gene activation or positive
control is the Hill function in which the equilibrium binding of the transcription
factor to its site on the promoter is modeled from zero to its maximal saturated level
with Definition 2 (see Fig. 8.3 for a graphical representation).
ﬁX *n

Definition 2. A Hill function is defined by F(X*) = ————, where:
* K is termed as the activation coefficient.
¢ B the maximal expression level of the promoter.
* n the steepness of the input function (the larger the » is, the more steplike the

curve).
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Activator concentration

v

Fig. 8.3 Graphical plot of one Hill function with different steepness parameters (n) for the
modeling of gene activation and positive control in biology

However, the model reconstruction with ODEs has some major drawbacks when
the kinetic system parameters involved are unknown. With increasing network size
and complexity, it becomes almost impossible to estimate all missing parameters.
Due to high-throughput techniques, a huge amount of qualitative data is avail-
able, but the parameter estimation still remains challenging. Furthermore, precise
quantitative measurements for parameter estimations are difficult to parametrically
explore. A further disadvantage of ODE network modeling and analysis is that
ODE-based models do not support any detailed insights into signal and information
flow within biological networks. Thus, information flow, biological cascades, and
system dependencies cannot be examined in detail.

8.4.2 Object-Oriented Modeling

Object-oriented modeling is a paradigm in which a system is primarily modeled
with a set of related, interacting objects and the functions and services they provide
[46]. These objects represent all entities relevant to the application (see Fig. 8.4 for
an example). Nearly anything can be an object, which is defined as an assembly of
classes. A class is a discrete reusable code block that has attributes, takes variables,
performs functions, and returns values, among others. In general, objects do not
exist in isolation from another. The relationships between the objects represent a
wide set of different connections and interactions, for example, how one protein
is related to a gene, or how one protein changes the state of another protein by
phosphorylation. However, the modeling task is always specified for one specific
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Fig. 8.4 An example of an object-oriented model in molecular biology. The model is focused
on a mandatory set of properties, whereas a complete model is made up of more attributes and
relationships. However, here, a protein can be a transcription factor regulating one or more specific
genes. One gene can be even regulated by more than one transcription factor. The genes are derived
from the class DNA, which contains a set of genes. Each gene alone or in combination with others
can be transcribed and translated into one or more proteins. Each class is characterized by specific
attributes, such as binding sites and nucleic acid sites, which are necessary for biological functions
and molecular processing

context, where objects belong to each other and share a set of properties and methods
to imitate the real-world system [47-49]. Using the standardized Unified Modeling
Language (UML) [50], the object-oriented models can be made visually accessible
through a set of graphic notation techniques.

8.4.3 Rule-Based Models

Rule-based specifications and formal grammars play an important role in the
creation of photorealistic virtual organisms. Particularly plants and scientific models
of vegetation structure are modeled with rule-based models [51]. One widely used
formalism is the Lindenmayer system, a parallel rewriting system on strings. Based
on an alphabet of symbols, a finite set of rules for string manipulations, a start
string called axiom, and a mechanism to visualize data, it is possible to model the
morphology of a variety of organisms. With an iterative process, which expands the
model with new structures in each time step, growth processes can be modeled and
simulated.

For example, having the axiom A and the rules A — B (letter A will be
transformed into letter B) and the rule B — AB (letter B will be transformed
into substring AB), a new string is generated in each time step by applying the
aforementioned rules. Based on the system settings the development sequence
for this model is described by A — B — AB — BAB — ABBAB —
BABABBAB — ....Finally, the expanded string only needs to be visualized to see
developmental growth. In order to visualize this model, additional geometric rules
have to be defined, which reconstruct geometric structures based on the appearance
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and order of the letters in the development sequence. One of the first examples
of branching structures generated by an L-system was given by Prusinkiewicz and
Lindenmayer in 1990 [52].

8.4.4 Constraint-Based Models

Constraint-based models are mainly used for cellular metabolism. The main idea
of this approach is to describe detailed dynamic models with a set of constraints
which characterize the models’ possible behaviors. Therefore, stoichiometric,
thermodynamic, and enzyme capacity constraints are defined. Instead of single
solutions, a set of possible solutions represents different phenotypes which comply
with the constraints. Thus, models can comprise thousands of reactions, such as the
metabolic reconstruction of the bacterium Escherichia coli, where 2,583 constraint
reactions were defined [53]. Furthermore, these models and constraints can be used
for other metabolic engineering applications. However, the classical constraint-
based models focus at flux balance analysis of metabolic networks [54, 55].

8.4.5 Interacting State Machines

Interacting state machines are mathematical models for the description of temporal
behavior within a system. The model is based on the states of its parts and not on
its components. Therefore, hierarchies are expressed by diagram-based formalisms.
Each of the parts can be in one of a finite number of states, whereas the machine is
in only one state at a given time. However, by initiating a trigger event, the machine
can change its condition. The main advantage of interacting state machines is that
they require little quantitative data, as they model biological behavior in a qualitative
way [56,57]. Usually, models described with interacting state machines are used for
model checking and interactive execution.

8.4.6 Process Algebras

Process algebras are used for the modeling of concurrent systems. The language
provides a framework for the high-level description of interactions, communica-
tions, and synchronizations using a set of process primitives. Operators are used
to combine these primitives. Therefore, this approach provides algebraic laws for
the manipulation and analysis of process expressions using equational reasoning.
In most of the cases, process algebras are used in signal processing, as presented
in the work of Danos and Laneve. The authors introduced a protein algebra to
demonstrate how standard biological events can be expressed in simplified signaling
pathways [58].
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i

Fig. 8.5 An example of a simple cellular automaton with rules and settings of the “Game of Life”
approach by John Horton Conway. From left to right: initial state and configuration (generation 1),
second generation, and third generation

8.4.7 Cellular Automata

Cellular automata (CA) are used to model and simulate biological self-organization.
They use a paradigm of fine-grained, uniform, parallel computation, which was used
in many aspects of developmental biology [59-61]. With CA whole population
dynamics can be simulated in which each individual’s fate is dependent on its
neighbor’s behavior and existence. Therefore, a set of simple rules is defined that
mimics the physical laws of the given system. The evolution of a CA is determined
by its initial state, requiring no further input. The simulation is discrete in time,
space, and state and, once running, evolves with its own given rules.

The most prominent example of a CA is the “Game of Life” devised by the
British mathematician John Horton Conway in 1970 [62]. The example is based
on a simple deterministic CA consisting of a regular two-dimensional grid of cells,
in which each cell has a certain state: alive or dead. Every cell interacts with its
neighbors based on the set of applied rules at each time step (see Fig. 8.5).

The following rules are applied to the “Game of Life” to calculate and simulate
next generations:

* Any living cell with less than two living neighbors dies because of under
population.

* Any living cell with two or three living neighbors does not change in the next
generation.

* Any living cell with more than three living neighbors dies due to overcrowding.

* Any dead cell becomes alive by reproduction, when exactly three neighbors are
alive.

Those rules are applied repeatedly to create further generation. Finally after
n generations, a picture results that describes population structure, dynamics,
population features, and system robustness, among others.
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Fig. 8.6 A Bayesian network example from classical genetics studying mutations. (a) The
probability that the son has a mutation is 0.001. If we know that his grandfather has the same
mutation, the probability increases to 0.025. Thus, their genotypes are clearly dependent. But if
we also know that his father has the mutation as well, the son’s probability increases to 0.5. This
additional information indicates that his father, independent of whether his grandfather has or does
not have the mutation, only affects the son’s probability. Therefore, only one conditionally network
can be reconstructed (b), which matches the experimental data. All other possible networks are
disregarded

8.4.8 Agent-Based Systems

Agent-based systems are similar to the concept of cellular automata, focusing on
complex system behavior, structures, and phenomena in dynamics. This approach
describes and simulates operations and interactions of autonomous agents in a given
space. System operations and interactions are based on simple rules. However, in
contrast to CAs, the agents are not placed on a grid or any similar environment.
Moreover, the autonomous agents can freely move within the given 2D or 3D space.
The most prominent examples are from multicellular studies, such as tumor growth
studies [63], morphogenesis [64], and immune response [65].

8.4.9 Bayesian Networks

A technique for biological network modeling is the so-called “Bayesian networks”
theory. Bayesian networks are used for the automatic reconstruction of causal
signaling network models from experimentally derived data [66—68]. The core of
this approach is the notion of conditional independency. This approach calculates
probabilistic relationships to estimate which network structures, circuits, and motifs
can be derived from the given biological data. This results in one or a set of
possible directed acyclic graphs that match the experimental data conditions best.
Nodes, which are not connected within the graph, represent variables which are
conditionally independent. Nodes that are connected to each other represent strong
probabilistic relationships based on experimental conditions. One example of such
an approach is presented in Fig. 8.6.
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Fig. 8.7 A possible Boolean network based on three nodes (a), each having a state 0 (OFF) or 1
(ON). The states for each node are determined by the input of the other nodes. Nodes 1 and 2 copy
their single input, while node 3 performs the Boolean function NOR on its inputs as described in
the table (b). The dynamic system is described in (¢), where filled nodes are on and lights are off

However, the reconstruction of such networks demands a large number of
datasets. The greater the network, the larger the necessary experimental datasets
must be. Otherwise, probabilistic relationships and independencies cannot be
determined.

8.4.10 Boolean Networks

In 1969, Boolean networks were introduced by Kauffman to model gene regulatory
networks [69]. Here, genes are modeled by Boolean variables which represent their
active and inactive states within the model. A Boolean network is a directed graph,
where all nodes are equivalent and receive information inputs from their neighbors.
Every node can only take two binary values, 0 (OFF) and 1 (ON). These values rep-
resent the dynamic activity and behavior of the involved elements. Information flow
and statement acting is determined by a logic rule. Therefore, the logical operators
and, or, and not are used. If the statement is true, the logical operation results in
an ON state; otherwise it remains in the OFF state (an example is given in Fig. 8.7).

The main advantage of this technique is the reduced number of parameters
necessary while still capturing network dynamics and producing biologically pre-
dictions and insights [70]. However, quantitative measurements cannot be included
for precise predictions and analysis.

8.4.11 Boolean Formalization

This approach formalizes in Boolean terms genetic situations for the description
of complex circuits [71-73]. The main goal of this language is to formalize a
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complex model in a compact and unambiguous way by functions of binary variables.
Therefore, three different types are defined and used. The genetic variable describes
the gene state, being normal or mutated, and the recognition site, being a promoter,
operator, terminator, or other. The environment describes temperature and the
presence of different substances. Internal variables are used to memorize previous
system states at a given time. Associated functions calculate the proceeding periods
of the system with regard to the present variables. In order to reduce the algebraic
expressions to its simplest form, tabulations of the logic equations as Veitch matrices
are used. The Veitch matrices give a clear and exhaustive view of all calculated
system states and show which states are stable and how the model proceeds from
state to state.

8.4.12 Petri Net

A Petri net is a mathematical modeling language for the description and analysis
of complex and distributed systems. Therefore, it provides an exact mathematical
definition of its execution semantics. The language was introduced by Carl Adam
Petri in 1962 [74] and constantly developed. Thus, this language comes with a well-
developed mathematical theory for process analysis.

Reisig et al. presented the first basic definition in their article “A Primer in
Petri Net Design” in 1982 [75]. This resulted in the general formalism presented
in Definition 3.

Definition 3. A basic Petri net is defined by the tuple PN = (P, T, F, W, my),
where:

e P ={p1, pa, ..., py}is afinite set of places.

e T ={t,t5,...,t,}is afinite set of transitions.

e P and T are pairwise disjoint.

e F C(PxT)U(T x P)isasetof arcs from places to transitions and transitions
to places, where (p; — t;) denotes the arc from place p; to transition ¢; and
(t; — pi) the arc from transition ¢; to place p;,

e W is the weight function (W : F — R) which assigns every arc a non-negative
integer, where (f : p; — t;) denotes the weight of the arc from place p; to
transition f;.

* my is the initial marking Vp;, € P.

A Petri net is based on a directed bipartite graph, in which the nodes represent
transitions and places. Regarding the graphical representation, places are drawn as
circles, transitions are drawn as rectangles, and arcs are drawn as directed arrows.
The directed arcs describe which places are pre- and/or post-conditions for which
transitions. Each place can contain tokens, which are drawn as black dots. The start
configuration of a Petri net model is described by the state m, which assigns tokens
to each place. With this graphical notation, processes such as choice, iteration, and
concurrent execution can be modeled stepwise and analyzed (see Fig. 8.8).
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Fig. 8.8 The possibility of modeling abstract biological processes with Petri nets. The model is
based on gene-controlled biochemical reactions, such as gene regulation and protein synthesis

Due to the presented formalism, Petri nets stand out by their balance between
modeling power and analyzability in comparison to other modeling techniques.
Furthermore, concurrent systems can be automatically determined, although some
of the systems are difficult and expensive to determine [76]. Thus, the various
modeling possibilities and analytic power of the proposed formalism offer a well-
developed basis for the description of chemical processes and a mathematical theory
for process analysis.

8.4.13 Visual Modeling

A further way to model a biological system is by using a standard graphical notation,
such as the Systems Biology Graphical Notation (SBGN) [77]. SBGN is a visual
language which focuses on the graphical notation of biological networks. It provides
a common notation to represent interactions and regulations between molecular
species, such as binding, complexation, and protein modification, among others.
It consists of three complementary languages: process diagram, entity relationship
diagram, and activity flow diagram. Together the different notations enable scientists
to represent biological networks in a standard and unambiguous way (see Fig. 8.9
for an example).

In summary, each modeling technique comes with specific features and con-
straints. In order to model and analyze a biological system a powerful theoretical
framework is necessary. Thus, visual languages such as SBGN are not suitable for
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Fig. 8.9 SBGN entity relationship diagram representing the effect of calmodulin binding on
CaMKII activity, using the nested entities of ER L2 V1 [78]

systems biology analysis, as they do not provide any kind of analytical environment.
Furthermore, these languages consider only a limited graphical representation of the
biological components. Object-oriented models are software-intensive and complex
systems. As systems evolve, classes and the function they perform need to be
changed more often. This can result in a schema, where complexity continuously
grows. Thus, a clean programming, organization, and notation are necessary during
model design and software implementation. Furthermore, well-defined interfaces
between objects are mandatory to keep the model maintainable. Otherwise, model
parameters can become distorted or even incorrect. Ambiguities in data flow can
also occur. Therefore, the following review only focuses on modeling techniques
that provide sophisticated analysis power and are clean and well defined in their
semantics. To show how often and in which application cases the aforementioned
techniques are used, Machado et al. summarized literature references, classified by
the type of biological process [79] (see Table 8.3). Boolean formalizations are not
considered in this review as this approach is frequently used in systems biology
and bioinformatics. Furthermore, the same or similar results can be produced with
Boolean networks, ODEs, or Petri nets, among others.

The first thing to point out is that all formalisms have been applied to signaling
networks. This is not surprising, as signaling networks have the largest number of
features, such as spatial localization, multistate components, network information
flow, and robustness, among others. Therefore, each of the presented formalisms
contributes with powerful features. A smaller number of formalisms are applied to
metabolic networks. However, this does not indicate that other formalisms are not
able to model those systems. Moreover, it seems that Petri nets, process algebras,
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Table 8.3 Overview of the amount of literature references using the pre-
sented formalism classified by the type of biological process [79]. Based
on the evaluated information, signaling networks have been modeled and
analyzed with all formalisms. Gene regulatory networks and metabolic
networks have only been modeled with specific techniques due to their
specific system dynamics and topology. However, differential equations,
constraint-based models, and Petri nets have been used as universal
techniques to examine all of the mentioned networks

Signaling Gene regulatory Metabolic

networks networks networks
Boolean networks + ++
Bayesian networks + ++
Petri nets ++ + ++
Process algebras ++
Constraint-based models + + ++
Differential equations ++ ++ ++
Rule-based models +4+
Interacting state machines 4+
Cellular automata + +
Agent-based models ++ +

constraint-based models, and differential equations seem to be powerful enough to
consider all aspects of metabolic system dynamics. A further observation indicates
that Petri nets, constraint-based models, differential equations, and cellular automata
are applied to all kinds of biological networks. This makes them potential candidates
for whole-cell modeling. The most powerful technique is still differential equations
modeling, which is also reflected by the data provided in the table. However, Petri
nets are among the formalisms that cover most of the features to model all kinds of
biological networks as described in Table 8.4. It is a universal graphical modeling
concept for representing processes from different application fields in nearly all
degrees of abstraction. Petri nets provide the qualitative modeling approach as well
as the quantitative one. Furthermore, qualitative and quantitative formalism can be
combined to one paradigm. The formalism is easy to understand and use.

Once a basic qualitative model is established, it can be successively enriched with
quantitative data. Thus, parameter estimations based on experimentally derived data
are not implicitly necessary in the network reconstruction process. Furthermore,
models can be modeled discretely as well as continuously. It is even possible to
integrate ODEs for precise model description.

Besides, Petri nets allow hierarchical structuring of models and thus offer the
possibility of different detailed views for every observer of the model. Petri net
theory provides a variety of established analysis techniques that are well suited
and applicable to biological network modeling. Moreover, database information,
as described in the following section, can be used to automatically reconstruct
sophisticated network and Petri net models.
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Table 8.4 Overview of implemented features for each modeling formalism based
on [79]: (+) supported feature and (e) available through extension. Based on the
provided data, the most powerful technique is the Petri net modeling as it includes
the advantages and features of all other formalisms
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Boolean networks + 4+ + 4+ e
Bayesian networks + + + +
Petri nets + 4+ + e e + e e e
Process algebras + e e + +
Constraint-based models + +
Differential equations e +
Rule-based models + + + + + + +
Interacting state + + + + + +
machines
Cellular automata + + + + +
Agent-based models + + + + +

8.5 Network Reconstruction

A biological network, as described in Sect. 8.2, consists of a set of different
biological elements being in interaction with each other. Such a network can be
reconstructed by hand, with experimental data, information from literature, and/or
database knowledge. In the first case, users need to put all involved elements into
relation and draw the resulting models as a graph. They have several possibilities
to model the system. They can use directed, undirected, mixed, or other graphs as
presented in Sect. 8.3. Furthermore, they can use a standard graphical notation, such
as SBGN for the visual modeling as presented in Sect. 8.4.13.

In terms of a network reconstruction with experimental data correlation, net-
works have to be reconstructed as described in Sect.8.2. Therefore, a well-
established modeling and analysis technique is necessary. One possible approach
is the Bayesian networks as described in Sect. 8.4.9. Bayesian networks offer one
way to automatically reconstruct signaling networks from experimentally derived
data. The only disadvantage of this approach is the necessary input data. To be able
to produce unambiguous results, a huge set of experimental data is mandatory.

A further way to reconstruct biological networks is by using text mining
approaches [80, 81]. Text mining is equivalent to text analytics, with the goal of
turning text into data for further analysis. This approach can be used, for example, to
find interaction partners for a gene by analyzing a set of publications. The collected
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data is then modeled as a graph. In general, this technique is based on statistical
pattern learning. The main disadvantage of this approach is still the interpretation
of the input text. In many cases relations are identified which are positive false or
false positive. Although the analysis and results are becoming better and better, the
resulting networks need to be evaluated by an expert.

A more reliable way to reconstruct biological networks is by querying biological
databases. Therefore, more than 1,300 different biological databases exist that can
be accessed. Using complex queries, data transformations, and data integration
techniques, rudimentary data such as genes and proteins can be linked with each
other. Many databases provide links between the different biological compounds.
If such a link does not exist, it is even possible to establish connections by
mining genomic databases. Hence, several attempts have been made to reconstruct
metabolic pathways via genome sequence comparison [82, 83]. Such attempts have
a certain limit, as the results do not reflect all involved molecular functions. Due to
cellular functions, such as translation, transcription, post-modification, and many
more processes with genome sequence comparison and analysis, it is often not
possible to predict direct correlations and further regulatory or metabolic processes.

However, several databases do exist, which contain more detailed information
about metabolic pathways, such as the KEGG database [21]. The information about
the networks can be accessed via the Internet or by parsing provided flat-files.
The disadvantage with online access is that the elements cannot be analyzed and
combined with other -omic level data and experimental datasets. Therefore, flat files
have to be processed, filtered, normalized, and integrated into one model. Actually,
the KEGG database consists of more than 121 tables, where at least 23 tables are
necessary to reconstruct the backbone of a biological network. The other tables
store further information, such as diseases, drugs, and taxonomies (see Fig. 8.10 for
a simplified scheme of the KEGG database structure). With access to that data, it is
possible to reconstruct metabolic networks as they are presented by KEGG and to
analyze the biological elements in detail or overall context.

In terms of biological network reconstruction using database information, each
scientist should follow some basic recommendations:

1. All databases should be free of charge and accessible by using a SOAP or an
APL

2. All databases should use the same terms, identifiers, and publication structures

as cited in literature.

. Provided datasets must be up to date and should not overlap.

. The selected databases should be well curated.

5. Only databases which can be used for the reconstruction of biological networks
should be integrated.

6. The used databases should be focusing on the mechanisms which should be
modeled, such as metabolic pathways, signaling pathways, and protein-protein
interaction networks.

7. It should be possible to query each integrated database separately or in combina-
tion with each other.

[N
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Fig. 8.10 Simplified scheme of the KEGG database structure [84]. The pathway element is
the root element of the biological network, consisting of a list of entry, relation, and reaction
elements. Theses entities specify the graph information. Additional elements specify more detailed
information about the biological compounds, relations, and reactions within the model

8.6 Biological Network Exchange Formats

Molecular biotechnology, systems biology, bioinformatics, and many other dis-
ciplines in biology make it possible to reconstruct and analyze biological sys-
tems. More than 300 pathway or molecular interaction-related data resources,
visualization, and analysis software tools have been developed.! However, the
diversity of tools shows several problems in sharing and moving models between
each other. An attempt to overcome this problem is the creation of standards
[85-87].

In an online survey, Klipp et al. asked 125 researchers (75 % modelers, 4 %
experimentalists, or 21 % both) covering various fields, such as modeling of individ-
ual pathways, investigation of complex processes, development and application of
computational methods, and software development about their opinion on standards

'The number of software applications has been approximated by counting software tools that
support SBML and CellML. Software tools are listed at http://www.sbml.org/ and http://www.
cellml.org/
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[88]. About 80 % of the scientists considered the creation of standards necessary
or desirable. This is not surprising that science standards have many advantages as
listed in the following:

* Model definitions and entities are based on ontologies, defined nomenclature, and
restrictions. Thus, they become accessible and readable to a wide community.

* Standards improve communication between software tools, free exchange of
information, and comparison between different studies, which results in more
productive collaborations.

e Complementary resources from multiple simulation/analysis tools can work
together, instead of redefining and reconstructing models in each tool.

* Reimplementation of models becomes easier or dispensable, which reduces
duplication and redundancy.

e If tools are no longer supported, models developed within the tools can be
still used if they are based on standards. Information, knowledge, and research
progress is not lost and can be reused.

» Data curation teams can evaluate models without being restricted to a certain tool
or formalism.

* In the publication process, any curator can process annotation and normalization
before data is published and made available to the scientific community.

Scientists, simultaneously with both tool development and modeling projects,
have developed standards to share, evaluate, and analyze knowledge and informa-
tion. Standards are definitions in the form of common, inclusive, and computable
languages. Here, only XML-based formats are considered, since it is used as
universal language in data exchange. McEntire et al. [89] and Achard et al. [90]
have shown in their studies that this language is very flexible and simple to use and,
therefore, a powerful standard in bioinformatics and systems biology in comparison
to Comma Separated Values (CSV), Excel, and other file formats. More than 85
standards can be found within systems biology [87].

For the modeling and sharing of biological models, main standards exist,
such as the Systems Biology Ontology (SBO) [91], Systems Biology Markup
Language (SBML) [92,93], the CellML [94], and BioPAX [95]. For the graphical
representation of biological pathways, languages such as the SBGN [77] have been
introduced (see Sect. 8.4). Model description achieves human and computational
usability, reusability, and interoperability when the encoded format is standardized.
Models or software tools without standardization are only of limited use, as they
do not provide the possibility to share, compare, and/or integrate large amount of
systems. Thus, it is important to use common standards as described in the following
section:

¢ Systems Biology Ontology (SBO)
The SBO ontology [91] is a well-defined logic about biological terms, including
single identifiers for each distinct entity, allowing clear reference and iden-
tification. Furthermore, it is augmented with terminological knowledge such
as synonyms, abbreviations, and acronyms. The terminology is also used to
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specify the type of the components being represented in a model and their role
in systems biology descriptions. Thus, the ontology allows unambiguous and
explicit understanding of the meaning of the involved components in a system
and, moreover, enables mapping between elements of different models encoded
in this format.

The ontology is a well-defined logic about biological terms, including a single
identifier for each distinct entity, allowing clear reference and identification.
It is composed of seven vocabulary branches: systems description parameter,
participant role, modeling framework, mathematical expression, occurring entity
representation, physical entity representation, and metadata representation. The
terminology is also used to specify the type of components represented in
a model and their role in systems biology descriptions. Thus, the ontology
allows unambiguous and explicit understanding of the meaning of the involved
components in a system and, moreover, enables mapping between elements of
different models encoded in this format.

* BioPAX
BioPAX is a standard language to represent biological pathways at the molecular
and cellular level [95]. The main goal of BioPAX is the exchange of information
between several pathway databases such as Reactome [96] and BioCyc [23]. It
was introduced through a community process to make complete representation of
basic cellular processes substantially easier to collect, to index, to interpret, and
to share. BioPAX covers concepts such as metabolic and signaling pathways,
gene regulatory networks, and genetic and molecular interactions. Therefore, it
has a structure for substances, interactions, pathways, and links to organisms
and experiments. The language is distributed as an ontology definition with
associated documentation and a validator for checking. Therefore, the BioPAX
community cooperates with the SBML and CellML mathematical modeling lan-
guage communities. For better accessing and manipulating data in the BioPAX
format, a house-implemented Java library called “Paxtool” is available. BioPAX
Level 3 is currently available at http://www.biopax.org.

* BioXSD
BioXSD is common exchange format for basic bioinformatics data [97]. Using
this format, it should be possible to establish a common web service for the
exchange of data for bioinformaticians in the World Wide Web. This format
should fill gaps between specialized XML formats such as SBML [92, 93],
MAGE-ML [98], GCDML [99], PDBML [100], MIF [101], and PhyloXML
[102]. Therefore, BioXSD defines data formats such as biological sequences,
sequence alignments, sequence annotation, and references to data, resources,
and vocabularies in a variety of possibilities. BioXSD serves as a canonical data
model and is available at http://bioxsd.org as version 1.1.

e CellML
CelIML [94,103] is a language for representing mathematical models. Using dif-
ferential algebraic equations, any cellular model can be represented in CellML.
In addition, CellML represents entities using a component-based approach,
where relationships between components are represented by connections. The
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developers have implemented an API for working with CellML models and files.
Thus, software developers do not need to reinvent the same functionality each
time they develop a new tool. The API enables users to retrieve information,
to manipulate, and to extend a model. The API interfaces are designed to be
independent in any programming language, platform, or vendor. At the present
time, CellML is available at http://www.cellml.org in version 1.1.

e MathML
MathML is a low-level specification for describing mathematics [104, 105].
It is used wherever mathematics needs to be handled by software, such as
mathematical expressions in web pages and workflows in science and technology.
Actually, MathML is available at http://www.w3.org/Math/ as version 3.

« PDBML
The PDB database is the single worldwide repository for macromolecular
structure data [106]. For more than 30 years, the data resources have used a
column-oriented format to store and share archival entries [100]. Facing more
and more complex data for macromolecular structures, the used data format
constrained several limitations such as internal structure and the organization
of records. Therefore, a new XML-based data format, called PDBML, has been
introduced [100]. It builds the content of the PDB exchange dictionary and can
be used as a specific exchange medium for detailed molecular protein structures,
such as data derived from experimental crystallography. PDBML is currently
available at http://pdbml.pdb.org as version 3.3 to all users.

¢ Systems Biology Markup Language (SBML)
SBML is an exchange format for representing biochemical reaction networks
[92, 93]. Using SBML, users are able to describe models in many areas of
computational biology, including cell signaling pathways, metabolic pathways,
and gene regulation. Therefore, SBML has the structure, ontology, and links,
for pathways and interactions. To enable mathematical descriptions, the SBML
Level 2 uses MathML for more complex mathematical formulas. This extends
the features of SBML and also results in a greater compatibility with CellML.
Furthermore, it provides the possibility to specify delay functions and define
discrete events that can occur at specified transitions in a certain state in
biological models. In order to help users to read, write, manipulate, translate, and
validate SBML files and data streams, the LibSBML API is available in different
common programming languages, such as Java, C, and C++. Presently, SBML
Level 2 is available at http://sbml.org/Software/libSBML and SBML Level 3 is
being developed.

One of the main standards for the modeling of biological systems is the
Systems Biology Ontology. Using this standard ensures the usability, reusability,
and interoperability of biological models. Furthermore, data exchange standards
can easily access models encoded in this format. For instance, SBML, MathML,
and CellML support SBO definitions, which makes it easy to translate any kind of
SBO model into such an exchange format. However, there is a significant difference
in the scope of the mentioned standard exchange formats. By studying the most
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important formats and considering recommendations from literature [86,87], SBML
and CellML are proposed as a means for the exchange of biochemical reaction
networks and models between different software tools. They provide an ontology
and structure that can even be used for simulations. They also provide constructs
that are similar to the object models used in packages specialized for simulating and
analyzing biochemical networks. CelIML and SBML, embedding MathML, provide
users with the possibility for the representation of whole models in differential
algebraic expressions. Besides, SBML and CelIML have an API, which allows
reading, writing, and manipulating models in an easy manner. Furthermore, SBML
and CellML have much in common, since the development of both standards takes
place cooperatively. Formats such as PDBML only focus on particular substances.
Thus, they are not appropriate for network models. This also applies to MathML,
which only provides basic mathematics. Furthermore, BioXSD and BioPAX exist
and can be used as data standards. However, BioXSD is focused on data that is
not supported by the main formats and thus very specialized and not capable of
representing the entire biological systems. BioPAX is only focused on pathway
maps, which can be shared between databases and tools. SBML and CellML can
support dynamic systems in ways not possible for BioPax.

8.7 Where to Find Biological Databases and Tools
for Network Reconstruction and Modeling

The first biological database emerged in 1965 when Margaret Dayhoff published the
Atlas of Protein Sequence and Structure [107]. In the 1970s the first protein structure
database, called PDB was found [108-110]. A few years later in 1981, the first
repository for nucleotide sequences was established called EMBL [111, 112] and
1 year later the GenBank [113,114]. Since then, more and more biological databases
have developed. The 19th annual database issue of NAR now lists more than 1,380
databases in molecular biology [115]. The Pathguide [116], a meta-database with
an overview of more than 325 biological pathway-related resources, with more than
100 databases focused on protein-protein interaction, is an additional important
resource for biological databases. To make it easier for researchers to quickly
find relevant information about useful molecular resources, tools, and databases,
community-curated databases with content and links to other biological databases
were established. Some of the most important are MetaBase [117], OBRC [118],
BioDBCore [119], and the Bioinformatics Links Directory [120, 121]. Currently,
more than 1,800 entries are listed in MetaBase, each describing different biological
databases. BioDBCore gives a brief description of the core attributes of biological
databases, whereas OBRC contains annotations and links for more than 1,700
bioinformatics databases and software tools. The Bioinformatics Links Directory
curates links to software tools and databases. Using these resources, users have the
possibility to contribute, update, and maintain database content.
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Concerning software tools in bioinformatics, in 2011, the SBML website? listed
more than 200 software tools which provide biological modeling based on the
SBML [92, 93]. Going further into details, Copeland et al. highlighted a small,
representative portion of available tools from each -omic area [122]. Still, this
review lists more than 30 tools specialized in biological modeling. However, the
state of the-art applications CellDesigner [123], Cell Illustrator [124], Cytoscape
[125], E-Cell [126], Gepasi [127, 128], JDesigner [129], VANESA in combination
with the PNlib [130, 131], and Snoopy [132, 133] are able to model, reconstruct,
visualize, and simulate biological systems in one single comprehensive framework.

8.7.1 CellDesigner

CellDesigner is a structured diagram editor for drawing gene regulatory and
biochemical networks. It was developed by the Systems Biology Institute (SBI)
in Tokyo, Japan [123]. The core members of this software application are Akira
Funahashi, Hiroaki Kitano, and Akiya Jouraku. The main goal of this application is
to visually represent biochemical reactions in a comprehensive graphical notation
such as SBGN (Systems Biology Graphical Notation) [77]. Besides, in the new
version it enables users to connect from species name or ID to the databases
Saccharomyces Genome Database [134], iHOP (Information Hyperlinked over
Proteins) [135], and the Genome Network Platform (http://genomenetwork.nig.ac.
jp). Furthermore, it is possible to get basic information about a biological element
from PubMed [136] or Entrez Gene, the search engine from NCBI (http://www.ncbi.
nlm.nih.gov). To assist users in the simulation, CellDesigner is able to connect to
the SBML ODE Solver [137] and Copasi, a biochemical network simulator [138].
Simulations can be set up in a control panel, where users are able to adjust system
amounts and parameters. CellDesigner is free of charge and available at http://www.
celldesigner.org in version 4.2 running under Windows and Linux.

8.7.2 Cell Illustrator

The software application Cell Illustrator [124] is a software platform for systems
biology that uses the concept of the Petri net language for the modeling and
simulating of biological networks. The first version of Cell Illustrator was published
as Genomic Object Net [139] in 2000 under Matsuno et al. at the Faculty of Science,
Yamaguchi University, Japan. The software application employs the concept of a
hybrid Petri net as the modeling and simulation method. To handle any type of
objects, the existing paradigm has been extended to hybrid functional Petri nets

2http://sbml.org/
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with extension (HFPNe). This paradigm is more suitable for biological network
modeling and simulation, since HFPNe can handle discrete and continuous events
simultaneously. Any kind of function can be assigned to delay, weight, and speed
parameters of these elements. Additionally, ordinary differential equations can be
modeled and integrated into a subset of HFPNe.

Furthermore, Cell Illustrator is able to import pathways or single reactions from
the TRANSPATH database [140]. To import networks from other tools, SBML,
CellML, and BioPAX data exchange formats are supported. In addition, Cell
Ilustrator has its own format called CSML. Simulation results can be visualized
in either 2D or 3D plots in an all-in-one-window environment. To make the network
visualization more legible, graph grid layout algorithms are implemented. The latest
version of Cell Illustrator is version 5.0, which is commercially an online version
available at http://www.cellillustrator.com.

8.7.3 Cytoscape

Cytoscape is an open-source bioinformatics software platform for data integration
and visualization [125]. The first version of Cytoscape was published by Shannon
et al. from the Institute for Systems Biology, Seattle, Washington [141]. Nowadays,
it is supported and funded by many different institutions, particularly by Agilent
Technologies, University of Toronto, Institute Pasteur, Memorial Sloan-Kettering
Cancer Center, Institute for Systems Biology, and the University of California
San Diego. Primarily, Cytoscape enables users to visualize molecular interaction
networks and biological pathways and integrate these with any type of attribute
data, such as gene expression profiles. Furthermore, Cytoscape supports standard
network and annotation files such as BioPAX [95], and SBML. Additional features
are available as plugins, which are developed by third parties focusing on network
and molecular profiling analyses, new layouts, additional file format support,
scripting, and connection with databases. For network reconstruction there is
the plug-in BioNetBuilder [142], which uses the databases KEGG [21], HPRD
[143], BioGrid [144], and GO [145], among others for its modeling. Furthermore,
simulation plug-ins exist, such as the SimBoolNet [146], for the simulation of
Boolean networks or FERN for the stochastic simulation and evaluation of reaction
networks [147]. Most of the plug-ins are available free of charge. Cytoscape
uses an open API based on Java technology and version 2.8.3 is available at
http://www.cytoscape.org.

8.7.4 E-Cell

The E-Cell project [126] is an international research project aimed at modeling
and reconstructing biological phenomena in silico. The main goal of this software
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application is to develop a dynamical cell with all its functions. It has been
developed by Hashimoto et al. at the Institute for Advanced Biosciences, Keio
University, Yokohama, Japan. The software platform allows precise whole-cell sim-
ulations with object-oriented modeling. Therefore, numerical integration methods
are encapsulated into biologically related object classes. Virtually any integration
algorithm can be used for simulation [148]. Thus, users have the possibility to
define functions of proteins, protein-protein interactions, protein-DNA interactions,
regulation of gene expressions, and other cellular cell processes with a set of
functions rules. Therefore, hundreds of reaction rules are provided and available
for simulation progress. E-Cell version 3 is freely available at http://www.e-cell.org
and runs on several different platforms such as Microsoft Windows and Linux.

8.7.5 Gepasi

Gepasi is a software application for the modeling and simulating of biochemical
systems [127, 128]. It has been developed by Pedro Mendes at the Department of
Biological Sciences, University of Wales, Aberystwyth, UK. Gepasi uses mathemat-
ical formulas to transform biochemical properties into kinetic models. It provides a
number of tools to fit data, to optimize any function of the model, and to perform
metabolic control analysis and linear stability analysis. Sophisticated numerical
algorithms realize simulation processes and analysis tasks. The simulation results
can be plotted in 2D and 3D. Furthermore, the software application supports SBML
1.0 import and export. The latest version of Gepasi is 3.30 and freely available at
http://www.gepasi.org. It only runs using Microsoft Windows.

8.7.6 JDesigner

JDesigner is a software application that enables users to draw a biochemical
network, which can be exported to SBML for further processing [129]. The
development of JDesigner was supported by the California Institute of Technology,
Pasadena, California, and more recently by the KECK Institute of applied sciences,
Claremont, California USA. JDesigner represents networks by using one notation
for chemical species, which can be decorated with visual cues. This is also possible
for reactions. Although it is a network design tool it also supports simulations.
It has the ability to use JARNAC as a simulation server via the Systems Biology
Workbench (SBW) [129] which is an open-source framework connecting heteroge-
neous software applications. JDesigner is an open-source project distributed under
the LGPL license and available at http://sbw.kgi.edu/software/jdesigner.htm.


http://www.e-cell.org
http://www.gepasi.org
http://sbw.kgi.edu/software/jdesigner.htm

8 Biological Network Modeling and Analysis 235
8.7.7 VANESA

VANESA is a modeling software for the automatic reconstruction and analysis of
biological networks based on life-science database information [131, 149-153] and
constantly developed at the Bielefeld University. VANESA is platform independent
and available free of charge at www.vanesa.sf.net. Using VANESA, scientists are
able to model any kind of biological processes and systems as biological networks.
Scientists have the possibility to automatically reconstruct important biomedical
systems with information from the databases KEGG, MINT, IntAct, HPRD,
and BRENDA. Furthermore, users have the possibility to use graph theoretical
approaches in VANESA to identify regulatory structures and significant actors
within the modeled systems. These structures can then be further investigated in
the Petri net environment PNIib for hypothesis generation and in silico experiments.

The PNIlib is the powerful new state-of-the-art Petri net simulation library
[130]. ProB et al. have developed the PNIib library using the Modelica language
[154] at the Department of Engineering and Mathematics, University of Applied
Sciences, Bielefeld, Germany. Modelica was developed and promoted by the
Modelica Association since 1996 for modeling, simulation, and programming.
Primarily it is focused on physical and technical systems and processes. Now,
Modelica, embedding the PNIlib, provides the possibility to simulate biological
systems. VANESA and the PNlib are based on the xHPNbio formalism [131]. The
mathematical modeling concept xHPNbio was specially developed for scientists,
based on the demands of biological processes. The focus of this formalism is
the processing of experimental data to gain usable new insights about biological
systems.

8.7.8 Snoopy

Snoopy [132, 133] is a unifying Petri net framework to investigate biomolecular
networks. It has been designed and implemented by Heiner et al. at the Brandenburg
University of Technology at Cottbus, Germany. The simulation environment com-
prises a family of related Petri net classes, such as time Petri nets, stochastic Petri
nets, continuous Petri nets, hybrid Petri nets, colored Petri nets, and extended Petri
nets, among others. The mentioned classes enhance standard Petri nets in various
ways to meet the demands of biological scientists. For example, the extended
Petri nets are characterized by read arcs, inhibitor arcs, equal arcs, and reset arcs.
Using these formalisms, scientists are able to reconstruct and simulate any kind
of dynamic network. Larger networks can be hierarchically structured. If further
demands on the supported Petri nets should arise, the software application can be
extended by new properties and even by new Petri net classes. This is possible due
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to the generic data structure of the software application. Furthermore, users are able
to move between the qualitative, stochastic, and continuous modeling paradigms.
However, this transformation from one paradigm into another is not possible without
information loss.

Simulation results are visualized within a built-in animation environment. To be
able to share results with other scientists and software applications, Snoopy offers
SBML support with both import and export functions. Snoopy is available for all
major operating systems, such as Windows, Linux, and Mac OS-X. It is available
free of charge at http://www-dssz.informatik.tu-cottbus.de/snoopy.html.

8.8 Discussion

Cellular life is very complex and governed by thousands of macroscopic functions
being constantly carried out. To produce good theoretical models which can be
used for hypothesis testing, the models need to be manageable. This can only be
achieved by reducing a biological system to the known and essential parts, which
are necessary to answer the underlying research questions. By trying to model a
complete system, regardless of the lack of data and parameters, it is very likely that
the modeled systems can be misleading. Therefore, any model needs to have a clear
focus rather than model all levels of biological details.

One of the best ways to start modeling a biological system is by using biological
networks. A small network consisting of known and already analyzed elements can
be the initial point for the reconstruction of a more significant system. Therefore,
there are different biological networks which can be used as powerful integrated
frameworks to present, integrate, and visualize knowledge. As these networks are
intuitive and easy to extend in knowledge, any scientist can work with them. With
biological networks different -omic levels can be modeled, describing elements such
as genes, RNAs, proteins, and metabolites being in interactions and relationships
with each other. Moreover, biological databases can be used to reconstruct or
enrich those networks with relevant information and new data. Kinetics and other
information can be queried to model a system in a more precise way. With database
integration modules, it is even possible to query multiple databases with one view
instead of consulting each database separately. Besides, data integration tools filter,
normalize, and link heterogeneous data from different distributed data sources.

A further advantage of biological networks is that a wide range of graphical
theoretical analysis techniques can be applied on reconstructed models. Graph
theory can give important clues about topological network properties, such as the
identification of the most important nodes within a system, or average path lengths
between different elements in a biological model. This is important in as much as
biological networks can become large and complex. Scientists need a tool which
assists them in identifying relevant information.

When it comes to simulating cell behavior, scientists often speak about ODE
modeling. Indeed, it is one of the most powerful approaches, but needs prior
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knowledge in mathematics and a complete set of biological data and parameters.
These are high requirements for a modeling approach when scientists try to
reconstruct and understand system behavior or unknown regulatory processes. Thus,
a more intuitive approach is necessary, which can be used in the beginning without
biological data and is still able to imitate and predict cell behavior. Therefore, Petri
nets can be used for the description, simulation, and analysis of complex and dis-
tributed systems. Petri nets cover most of the needed features for network modeling
and provide qualitative as well as quantitative modeling features. Furthermore, it
is possible to integrate ODEs for precise model descriptions. Another advantage
of these modeling techniques is that each result can be shared within the scientific
community using data exchange formats.
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Chapter 9
Petri Nets for Modeling and Analyzing
Biochemical Reaction Networks

Fei Liu and Monika Heiner

Abstract Petri nets have been widely used to model and analyze biochemical
reaction networks. This chapter gives an overview of different types of Petri nets
within a unifying Petri net framework that comprises the qualitative, stochastic,
continuous, and hybrid paradigms at both uncolored and colored levels. The Petri
net framework permits to investigate one and the same biological reaction network
with different modeling abstractions in various complementary ways. We describe
the use of the framework to investigate biochemical reaction networks with the help
of the unifying Petri net tool, Snoopy, and its close friends Charlie and Marcie. The
repressilator example serves as running case study.

Keywords Petrinets * Biochemical reaction networks * Unifying Petri net frame-
work ¢ Qualitative * Stochastic ¢ Continuous and hybrid Petri nets ¢ Colored
Petri nets * Repressilator

9.1 Introduction

Modeling and analysis techniques have been widely used to study biochemical
reaction networks. A large variety of modeling approaches, e.g., ordinary (partial)
differential equations, Boolean networks, process algebras, and Petri nets, have been
applied for modeling a wide range of biochemical reaction networks (for reviews,
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see, e.g., [22] and Chap. I in this book). Among them, Petri nets are particularly
suitable for modeling the concurrent, asynchronous, and dynamic behavior of
biological networks. Reddy et al. [48] and Hofestiddt [36] were the first to pick up
Carl Adam Petri’s idea for a graphical representation of stoichiometric equations
and applied qualitative Petri nets to model and analyze metabolic pathways. Since
that time, a large variety of Petri net classes, e.g., stochastic Petri nets, continuous
Petri nets, hybrid Petri nets, and colored Petri nets, have been developed for
modeling and analyzing different types of biological networks; see, e.g., [2,9,24,38].

Petri nets offer a number of attractive advantages for investigating biological
reaction networks [28]:

* Intuitive graphical and directly executable modeling formalisms

¢ Rich and mathematically founded analysis techniques

* Coverage of structural and behavioral properties as well as their relations,

» Integration of qualitative (i.e., time-free) and quantitative (i.e., time-dependent)
analysis techniques and methods, including animation (the token flow)

* Coverage of discrete (stochastic), continuous (deterministic), and hybrid
paradigms for quantitative analysis techniques and methods

* A wealth of computer tool support

This chapter gives an overview of different types of Petri nets within a unifying
Petri net framework and describes how they can be used to model and analyze
biochemical reaction networks with the help of the unifying Petri net tool, Snoopy
[31,49] and its close friends Charlie [14,56] and Marcie [32].

This chapter has been deliberately written in an informal style; no formal
definitions are given. We focus on an overview on the key concepts and their
applications in our previous work. For formal definitions, see Heiner et al. [28],
which also provides plenty of pointers where to continue reading.

This chapter is organized as follows. Section 9.2 gives an overview of our
unifying Petri net framework, followed by a description of each net class contained
in this framework from Sects. 9.3 to 9.7, respectively. After a brief description of
the tools we use, this chapter is concluded.

9.2 A Unifying Petri Net Framework

Petri nets may easily serve as a convenient umbrella formalism integrating qualita-
tive and quantitative (i.e., stochastic, continuous, or hybrid) modeling and analysis
techniques. Thus, Petri nets are immediately ready to address distinctive modeling
demands of systems and synthetic biology including those biochemical reaction
networks that may need several modeling paradigms.

Motivated by this application scenario, a unifying Petri net framework (see
Fig.9.1) has been developed [25, 31], which can be divided into two levels:
uncolored [28] and colored [38]. Each level comprises a family of related Petri
net classes, sharing structure, but being specialized by their kinetic information.
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Fig. 9.1 A unifying Petri net framework, which has been implemented in the Petri net tool,
Snoopy (Reprinted from Heiner et al. [31] with kind permission from Springer Science + Business
Media B.V.,, Fig. 1, p. 399)

Specifically, the uncolored level contains qualitative (time-free) Petri nets (QPN)
as well as quantitative (time-dependent) Petri nets such as stochastic Petri nets
(SPN), continuous Petri nets (CPN), and generalized hybrid Petri nets (GHPN).
The colored level consists of the colored counterparts of the uncolored level, thus
containing colored qualitative Petri nets (QPN C), colored stochastic Petri nets
(SPN©), colored continuous Petri nets (CPNC), and colored generalized hybrid
Petri nets (GHPNC).

Petri nets of these net classes can be converted into each other; see arrows in
Fig.9.1. Obviously, there may be a loss of information in some directions (cf.
arrows labeled with “abstraction” in Fig.9.1). The conversion between colored
and uncolored net classes is accomplished by means of user-guided folding or
automatic unfolding (cf. arrows labeled with folding and unfolding in Fig.9.1).
Moving between the colored and uncolored level changes the style of representation
but does not change the actual net structure of the underlying biochemical reaction
network. Therefore, all analysis techniques available for uncolored Petri nets can be
applied to colored Petri nets as well.

Snoopy supports the simultaneous use of different net classes, which provides
the ground to investigate one and the same case study with different modeling
abstractions in various complementary ways [24, 28, 38].

We will address each net class in the framework in the following sections by
focusing on their application for investigating biochemical reaction networks.
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9.3 Qualitative Petri Nets (QPN)

9.3.1 Modeling

QPN comprise — first of all — the standard place/transition nets (P/T nets, Petri nets
for short) which basically correspond to the original ideas introduced by Carl Adam
Petri in 1962 [46]. Petri nets (see Fig. 9.2 for an introductory example) are bipartite-
directed multigraphs with two types of nodes, called places and transitions, which
are connected by arcs. Places (represented as circles) and transitions (represented
as boxes) model in our context biochemical species and reactions, respectively.
Arcs carry stoichiometric information, called weight or multiplicity. Tokens on
places represent the (discrete) quantities of species, which may be understood as
the number of molecules or the level of concentration of a species, or simply the
presence of, e.g., a gene. A particular arrangement of tokens over all places of a
Petri net specifies the current system state (marking). The initial state is called the
initial marking. For example, the initial marking in Fig. 9.2a consists of five tokens
on place H, and three tokens on place O,.

The state of the system changes by the firing of transitions. A transition is enabled
to fire if all its preconditions are fulfilled, i.e., each of its pre-places contains at least
the number of tokens specified by the weight of the corresponding arc. Upon firing
of a transition, tokens from all its pre-places are removed, and tokens are added
to all its post-places, each according to the corresponding arc weights. See Fig. 9.2
for two state changes upon firing of transition #; that is, two tokens on pre-place
H, and one token on pre-place O, are removed and two tokens are added to the
post-place H,O; i.e., we reach new markings. All markings, which can be reached

a
H2 2
2 H20
02 t

b
H2 @9

0289

Cc

H2 2
02(3)

Fig. 9.2 A Petri net model of the chemical reaction 2H, + O, — 2H,0. The places labeled
with H, and O, are pre-places of the transition t, the place labeled with H,O its post-place. (a)
Initial marking before t fires, (b) marking reached by firing of t once, and (c¢) marking reached by
a second firing of t. The transition is not enabled anymore in the marking reached after these two
single firing steps

]2 (%) H20
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Fig. 9.3 A Petri net with
marking-dependent arcs.
Each arc may be
marking-dependent, e.g., the
multiplicity of the post-arc
from transition t to place P3 is
an addition expression,
P1+P2. (a) Initial marking
before t fires, (b) marking
reached by firing of t

from a given marking by any firing sequence of arbitrary length, form the set of
reachable markings. The set of markings reachable from the initial marking builds
the state space of a given Petri net. The reachability graph of a Petri net comprises
these reachable markings as nodes and the transitions between them as edges. The
reachability graph is finite, iff (if and only if) the state space is finite.

QPN do not involve any timing aspects. The firing of a transition is atomic
and does not consume any time. So they allow us a purely qualitative modeling of
biochemical reaction networks.

The P/T nets have been enlarged to extended Petri nets (XYPN) by the provision
of special arc types such as read arcs (often also called test arcs), inhibitor arcs,
equal arcs, and reset arcs. All these special arcs are only allowed to go from places
to transitions. Read, inhibitor, and equal arcs add constraints on the firing of a
transition, but the connected places are not affected upon firing. A read arc (compare
Fig.9.16) allows to model that some resource is required, but not exclusively
consumed upon firing. Hence, the same token can be used at the same time by many
transitions. An inhibitor arc (compare Fig. 9.10) reverses the logic of the enabling
condition of a place, i.e., it imposes a precondition that a transition may only fire
if the place contains less tokens than the weight of the arc indicates. An equal arc
imposes the precondition that a transition may only fire if the number of tokens on
the place connected by the equal arc is equal to the arc weight. A reset arc empties
the place connected by this arc once the transition fires; the number of tokens does
not matter.

Finally, the XPN can be further enriched to include marking-dependent arcs,
i.e., the arc multiplicities are allowed to be marking-dependent expressions of
various types in terms of transitions’ pre-places [10]. See Fig. 9.3 for a technical
example.

Modeling repressilator. We now use the repressilator [5] as an example to
illustrate a modular and stepwise construction of a Petri net model using Snoopy.

1. We start with designing a Petri net model of a gene, illustrated in Fig. 9.4a. The
presence of one gene allows the generation of proteins without consuming the
gene, while generated proteins can degrade. A possible run of this model is that
the transition generate fires twice, adding two tokens to the place protein, and
then transition degrade fires once, removing one token from place protein. We
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gene gene_b
unblock
generate generate
blocked_b
protein protein_b

protein_a

degrade degrade

Fig. 9.4 (a) A Petri net model of a gene and (b) a Petri net model of a gene gate according to
Blossey et al. [S], who also inspired the layout: gene b may be blocked by protein a (Reprinted
from Heiner and Gilbert [25], Copyright 2013, with permission from Elsevier)

blocked._a

unblock_a degrade_c

generate_a
generate_c

degrade_a

protein._a

protein_b blocked_c

block_b

blocked b unblock_b

Fig. 9.5 The repressilator — Petri net for three genes in a regulatory cycle (Reprinted from Heiner
and Gilbert [25], Copyright 2013, with permission from Elsevier)

obtain the marking where each place carries one token. It is easy to see that this
Petri net has an infinite number of reachable markings.

2. Next, we extend the basic behavior in Fig.9.4a by allowing the gene to be
blocked by the protein produced by another gene, which makes a building block
called gene gate; see Fig. 9.4b. The behavior of Fig. 9.4b is different from that of
Fig.9.4a, as a gene may be blocked or unblocked in Fig. 9.4b while it is always
unblocked in Fig. 9.4a.

3. When genes repress each other in a circular manner, we obtain a gene regulatory
cycle, the repressilator [5]; see Fig. 9.5, which is composed of three gene gates
with identical structure.
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gene.a gene b gene_c

unblock a unblock b unblock c

generate a generate b generate c

protein a@d

blocked b protein_c (3) (O bplockedc
protein.a protein_b

blocked.a proteinb
proteinc

degrade_a degrade b degrade_c

Fig. 9.6 The repressilator — Petri net for three genes in a regulatory cycle represented using
logical nodes (here, places, cross-hatched) to preserve gene-centered modules. Logical nodes with
identical names serve as connectors; they are multiple representations of the same node used for
layout clarity. See also Fig.9.7 (Reprinted from Heiner and Gilbert [25], Copyright 2013, with

permission from Elsevier)

gene a gene b gene c

unblock_ a unblock b

generate_c

unblock ¢

generate.a generate b

protein_a blocked a proteinb

block_ b

blocked b protein.c
block_c

blocked c

block_a

degrade_a degrade_b degrade_c

Fig. 9.7 The repressilator — Petri net for three genes in a regulatory cycle represented using logical
transitions. See also Fig. 9.6

Snoopy supplies two features for the design and systematic construction of
larger Petri nets — logical nodes and macro nodes. Logical nodes (i.e., logical
places/transitions) serve as connectors to avoid lengthy arcs, and macro transitions
(macro places) help to hide transition-bordered (place-bordered) subnets in order to
design hierarchically structured Petri nets.

Using logical nodes, we are able to represent the repressilator model in alterna-
tive ways highlighting the modular structure of the Petri net, which are illustrated in
Figs. 9.6 and 9.7, respectively, both of which are equivalent to Fig. 9.5.

Using macro transitions, we can hide all gene-related details while keeping the
protein places as interface; see Fig. 9.8. We obtain a hierarchical Petri net; Fig. 9.9
gives its top level. This Petri net is also equivalent to Figs.9.5-9.7, it just uses a
different representation style.

9.3.2 Analysis

The QPN are time-free models; the qualitative analysis considers however all
possible behavior of the system under any timing. Thus, the QPN model itself
implicitly contains all possible time-dependent behaviors.
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blocked.a

unblock-a
proteinc

GENE_A
generate_a

protein.a proteinc

degrade_a

proteina

Fig. 9.8 Hierarchical structuring by the use of macro transitions. The uncolored nodes (left) make
the contents of the macro transition GENE_A (right). The blue arcs highlight the connection to the
interface places

Fig. 9.9 Hierarchical Petri GENE_A
net model of the repressilator

using macro transitions; protein_a
compare Fig. 9.8. Only the
top level is shown

protein_c

protein_b

Behavioral properties. There are three orthogonal general behavioral properties
which are usually explored first to gain some insights into the behavior of a Petri
net.

* Boundedness. A place is said to be k-bounded (bounded for short) if the maximal
number of tokens on this place is bounded by a constant k in all reachable
markings. A Petri net is k-bounded (bounded for short) if all its places are k-
bounded.

* Liveness. A transition is said to be live if it will always be possible to reach a
state (marking) where this transition gets enabled, whatever happens. A Petri net
is live if each transition is live.

* Reversibility. A Petri net is said to be reversible if the initial marking can be
reached again from each reachable marking.

For example, by playing the token game for our repressilator model (take any
Petri net in Figs. 9.5-9.7 and 9.9), we can easily figure out that the places gene_i
and blocked, with i = {a, b, ¢}, are 1-bounded. But the net is unbounded as all
places protein_i are unbounded. If the generation of a protein occurs faster than its
degradation, infinite many tokens (molecules) will be accumulated. Furthermore,
we can argue that this Petri net is likely to be live and reversible.
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When models get more complicated, it might not be obvious anymore to decide
behavioral properties by reasoning only. Then, we need mathematically sound
analysis techniques. Petri net theory offers a rich body of such analysis techniques,
most of them are implemented in our analysis tool Charlie. We sketch here only a
few of them to give an impression of what kind of analysis techniques we have.

Structural properties. Structural properties [28,41,44] permit — if they hold — to
deduce behavioral properties of Petri nets from their structure without constructing
the complete or partial state space. If a property is proved structurally for a given
Petri net, it holds for this Petri net in any initial marking. The most important
structural properties can be classified as follows: elementary graph properties,
siphons/traps, and place/transition invariants.

Elementary graph properties. The elementary graph properties relate to the
following questions (see [28] for explanations of all the following terms):

s the Petri net pure (PUR), ordinary (ORD), homogeneous (HOM), conservative
(CSV), static conflict-free (SCF), connected (CON), or strongly connected (SC)?

* Does the Petri net have boundary nodes; i.e., input transitions (FTO0), output
transitions (TFO), input places (FP0), or output places (PF0)?

e Does the Petri net structure obey the constraints of a state machine (SM),
synchronization graph (SG), extended free choice net (EFC), or extended simple
net (ES)?

Elementary graph properties occasionally permit on their own conclusions
on behavioral properties. For example, a Petri net having input transitions, i.e.,
transitions without pre-places, is unbounded (as the firing of input transitions does
not depend on any preconditions), or a Petri net having input places, i.e., places
without pre-transitions, is not live (as the tokens on an input place are sooner or later
used up). Our repressilator Petri net has output transitions, i.e., transitions without
post-places, which tells us that the model is either not live or unbounded (at least
the pre-place of the output transition had to be unbounded).

Siphons/traps. A nonempty set S of places of a Petri net is called a siphon if there
is no transition which has post-places in S, but no pre-places in S. Consequently,
every transition, which fires tokens onto a place in S, also has a pre-place in this
set, i.e., the set of pre-transitions of S is contained in the set of post-transitions of
S. Pre-transitions of a siphon cannot fire if the place set is clean, i.e., none of the
places carries a token. Therefore, a siphon cannot get tokens again, as soon as it is
clean, and then all its post-transitions are dead.

Contrary, a nonempty set Q of places of a Petri net is called a trap if there is no
transition which has pre-places in Q, but no post-places in Q. Consequently, every
transition, which subtracts tokens from a place of the trap set, also has a post-place in
this set, i.e., the set of post-transitions of Q is contained in the set of pre-transitions
of Q. Post-transitions of a trap always return tokens to the place set. Therefore, once
a trap contains tokens, it cannot become clean again.
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Siphon and trap are closely related but contrasting notions. When they come on
their own, we usually get deficient behavior. However, both notions have the power
to perfectly complement each other. A Petri net satisfies the siphon-trap property
(STP) if every siphon includes an initially marked trap. For certain combinations of
structural properties, we can derive behavioral properties. For example, if a net is
ORD and ES, and the STP holds, then the net is live. The STP holds also for our
repressilator model, but the net structure is beyond ES. Thus, we can only conclude
the absence of dead states, i.e., states where no transition is enabled.

Place/transition invariants. Place and transition invariants (P- and T-invariants
for short) play a crucial role in analyzing biological systems due to their biological
interpretations. Both of them can be obtained by solving a linear equation system
which describes the Petri net structure and which is independent of the initial
marking. Any linear combination of P-invariants (T-invariants) yields again a P-
invariant (T-invariant). Therefore, one is usually interested in minimal invariants,
i.e., invariants which cannot be described by a linear combination.

A P-invariant represents a set of places over which the weighted token count
keeps constant whatever happens in the Petri net. So a place belonging to a P-
invariant is k-bounded. We get the upper bound k by multiplying the invariant
with the initial marking. In metabolic networks, P-invariants often correspond to
conservation laws in chemistry, reflecting substrate conservations, while in signal
transduction networks, P-invariants often correspond to proteins and their possible
states.

A T-invariant describes a multiset of transitions; it can be interpreted in two
different ways. The multiset either specifies how often a transition has to fire to
return to the original marking, or the multiset gives the relative firing rates required
to keep the Petri net in the same state — the steady state.

Taking our repressilator model as an example, Charlie yields the following
results. The Petri net has three minimal P-invariants, one for each gene gate:
x; = (gene i, blocked_i), where i = a, b, c. For each P-invariant, the constant token
sum is 1, which confirms our expectations: a gene is either blocked or unblocked, it
can neither disappear nor be multiplied.

The Petri net has also six minimal T-invariants, two for each gene gate:
y1; =(block.i, unblock_i) and y2; = (generate_i, degrade_i), where i = a,b,c,
which cover the whole Petri net, i.e., each transition belongs to a T-invariant.
These T-invariants confirm our previous observations that a balanced firing of these
transition sets reproduces the initial marking, and a balanced firing according to y2;
makes the Petri net bounded.

Model checking. If the state space is finite and of manageable size, analytical
model checking can be used to analyze QPN otherwise, simulative model
checking may help to obtain an approximative answer. In any case, the behavioral
properties of interest have to be expressed in temporal logics, e.g., in a branching
time temporal logic, one instance of which is computational tree logic (CTL) [11]
or in a linear-time logic (LTL) [47]. Both logics are supported by Marcie.
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blocked_a

unblock_a degrade_c

protein_c

generate_c

unblock_c

blocked_c

blocked_b unblock_b . degrade_b

Fig. 9.10 The repressilator in a bounded version — maximal K tokens can be accumulated on each
protein place. Inhibitor arcs (hollow circle as arc head) with arc weight K limit the generation of
proteins. K is a constant which is used to conveniently parameterize the model; compare Table 9.1

Table 9.1 State space growth for increasing K (maximum number of
each protein) (compare Fig.9.10) computed with Marcie’s symbolic
state space representation. For the very specific case of our repressilator
example, we are able to specify a general formula for the state space
growth: 2" % (K +1)", with n being the number of genes in the regulatory
circle (in our running example, we use n = 3)

K Number of states K Number of states

1 64 (1) 1,000 8,024,024,008 (9)
50 1,061,208 (6) 5,000 1,000,600,120,008 (12)
100 8,242,408 (6) 10,000 8,002,400,240,008 (12)
150 27,543,608 (7) 50,000  1,000,060,001,200,008 (15)
500  1,006,012,008 (9) 100,000  8,000,240,002,400,008 (15)

To be able to deploy CTL model checking, we introduce a bounded version of our
repressilator example; see Fig. 9.10. Its state space is finite but explosively grows as
illustrated in Table 9.1.

Having a bounded repressilator model, we can check behavioral properties
expressed as CTL properties. We give three examples for special behavioral
properties:

» Forever it holds, gene b is either unblocked or blocked.
AG [ (gene.b =1 & blocked_b =0) | (gene.b =0 & blocked b =1)]

« It is forever possible that there are at least k molecules of protein b; i.e., there
will be new proteins b forever, which includes liveness of transition degrade_b.
AG EF [ protein_b > k |
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It is possible that there are at least k molecules of each protein at the same time.
EF [ protein.a > k & protein.b >k & protein_.c > k|

Here, A (for all paths) and E (there is one path) are path quantifiers, and G
(globally) and F (finally) are temporal operators. The CTL can also be used to
query the general behavioral properties. For more examples of temporal formulae,
the reader may wish to check, e.g., Heiner et al. [28] where model checking has
been explored for QPN

9.3.3 Applications

There are quite a number of applications of qualitative Petri nets for modeling of
biochemical systems. In this chapter, we do not wish to give a review but just give
some examples.

Model validation by means of P-/T-invariant analysis is discussed in Heiner and
Koch [26] for three case studies: apoptosis, carbon metabolism in potato tuber, and
the glycolysis and pentose phosphate metabolism. Structural analysis has also been
used in Heiner [23] to derive coarse network structures highlighting the structural
principles inherent in the functional modules identified by T-invariants and in Heiner
and Sriram [27] to determine the core of a hypoxia response network and to identify
its fragile node.

The QPN have been deployed in Heiner et al. [28, 30] to model signal
transduction pathways, and their detailed analysis is exercised step by step.

In Blitke et al. [3], IL-6 signalling in the JAK/STAT signal transduction pathway
serves as case study to illustrate a modular protein-centered modeling approach.

9.4 Stochastic Petri Nets (SPN)

9.4.1 Modeling

The SPN extend QPN by assigning to transitions exponentially distributed
waiting times, which are specified by firing rate functions (stochastic rates, compare
Fig.9.1). The underlying semantics of SPA is a continuous-time Markov chain
(CTMC). The SPN have been previously extended to generalized stochastic
Petri nets (GSPN) [41] and later to deterministic and stochastic Petri nets
(DSPN) [18].

Our extended stochastic Petri nets (XSPN') [29], which comprise the GSPN
and DSPN, provide the four special arc types and marking-dependent arcs as
available for XYPA and furthermore three special transition types: immediate
transitions (zero waiting time), deterministic transitions (deterministic waiting
time, relative to the time point where the transition gets enabled), and scheduled
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Table 9.2 Rate functions for the SPN repressilator model. M A(c) denotes the mass action
function, where c is a kinetic parameter. See last column for the explicit rate functions for gene a

Transition class Kinetic parameter ¢ Rate function pattern Example: gene a

Generate 0.1 MA(0.1) 0.1 x gene_a

Block 1.0 MA(1.0) 1.0 * gene_a * protein_c
Unblock 0.0001 MA(0.0001) 0.0001 * blocked a
Degrade 0.001 MA(0.001) 0.001 * protein.a

transitions (scheduled to fire, if any, at single or equidistant, absolute points of the
simulation time). In Snoopy, we do not distinguish between these three classes of
stochastic Petri nets. Thus, we usually call our extended stochastic Petri nets simply
SPN if confusion is precluded.

In biological reaction networks, rate functions are often marking-dependent. In
Snoopy, popular kinetics like mass action semantics [40] and level semantics [28]
are supported by predefined function patterns.

Modeling repressilator. Let us return to our repressilator model. If we associate a
rate function with each transition, e.g., the rate functions given in Table 9.2, we can
consider it as a stochastic repressilator model.

9.4.2 Analysis

The CTMC for a given SPN is isomorphic to the reachability graph of its
corresponding QPN but edges are enriched by the transition rates. Thus, all QPN
analysis techniques can still be applied, and all behavioral properties which hold for
a QPN are still valid for the SPN . Additionally, we have the following techniques
to explore stochasticity.

Stochastic simulation. Stochastic simulation like the Gillespie stochastic simu-
lation algorithm (SSA) [21] generates random walks through the CTMC. Approxi-
mated traces can be obtained by averaging a number of simulation runs. Besides, the
unrestricted use of special (immediate, deterministic, scheduled) transitions destroys
the Markov property. But the adaptation of the Gillespie stochastic simulation
algorithm is rather straightforward and supported in Snoopy.

For example, assigning rates with the given kinetic parameters to any of our
repressilator Petri nets generates sustained oscillation for all proteins, with each
single run behaving differently. See Fig.9.11 for a plot with the rates given in
Table 9.2.

Simulative model checking. To systematically explore simulation traces, we use
PLTLc [12], a probabilistic extension of LTL with constraints, to express our
behavioral properties of interest. Simulative model checking considers a finite set of
finite outputs from Gillespie’s exact SSA, i.e., a finite subset of the state space. This
permits to explore very big or even infinite state spaces in reasonable time or just to
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Fig. 9.11 Plot of one stochastic simulation run for the SPN repressilator model; for rate
functions, see Table 9.2. Each single run looks differently in terms of oscillation, e.g., which gene
starts rising
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Fig. 9.12 Probability distribution of the value range for the protein places, determined by 10,000
stochastic simulation runs with t = 200,000 for the SPA repressilator model. Increasing the
number of runs smoothes the bell shape but does not shift the value range. Values beyond 158 are
most unlikely

obtain a first rough estimate. Each trace is evaluated to a Boolean truth value, and
the probability of a behavioral property holding true is approximated by the number
of traces with true values over the whole sample set. One has to consider a sufficient
amount of simulation traces to obtain reliable approximations. The number of traces
required increases with the expected confidence in the numerical results. Rare events
may dramatically increase the required size of the sample set.

Let us return to our running example. We use a PLTLc-specific feature to explore
the value range for the proteins — the free variables — which are specified by a
leading $.

* What is the probability that up to time point t one of the proteins rises above v?
We do not know which protein will start rising, so we use the disjunction.
P_+[ Fjoq) protein_a > $v| protein_b > $v | protein_c > $v|

Simulative model checking yields the domain of the free variable v and the
probability of each interval; see Fig.9.12. We observe that values beyond 150 are
increasingly unlikely. Thus, we take K = 160 as upper bound (see Fig. 9.10), which
cuts the infinite state space down to 33,386,248 states.
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Fig. 9.13 Probability distribution for having k molecules of protein b in the steady state; x-axis:
values with a probability below the (arbitrarily chosen) threshold (0.004) have been omitted, y-axis:
given in log scale

Analytical model checking. As long as the underlying semantics of a stochastic
Petri net is described by a finite CTMC of manageable size, it can be analyzed
using such standard stochastic analysis techniques as transient analysis, steady-state
analysis, or analytical model checking [50,51].

Transient analysis means to compute the transient probabilities to be in a
certain state at a specific time point using, e.g., the uniformization or Jensen
method [54]. Steady-state analysis computes the steady-state probabilities using,
e.g., Gaussian elimination or Jacobi iteration [45]. In analytical model checking,
special behavioral properties can be checked, which have been expressed in, e.g.,
Continuous Stochastic Logic (CSL), a stochastic counterpart of CTL which was
originally introduced in Aziz et al. [1].

For illustration, we compute for the bounded version of our repressilator model
(K = 160) the probability that in the steady state, there are k molecules of protein b;
see Fig.9.13. The obtained probability distribution tells us that we have oscillations
with very sharp rise and fall, with peaks around 100. However, most of the time there
are only a few proteins. The expectation value E[protein_b] = 33.18 corresponds
to the steady-state value which we observe when averaging over a sufficient amount
of simulation traces; see Fig.9.14.

Likewise, we could use transient analysis to evaluate the following CSL
formulae.

e What is the probability that at time point t there are at least k¥ molecules of
protein b?
P_y [Fq (proteinb> k)]
In