


Natural Computing Series
Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink
Leiden Center for Natural Computing

Advisory Board: S. Amari G. Brassard K.A. De Jong
C.C.A.M. Gielen T. Head L. Kari L. Landweber T. Martinetz
Z. Michalewicz M.C. Mozer E. Oja G. Păun J. Reif H. Rubin
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Preface

The discovery of the double-helix structure of DNA by Watson and Crick
more than fifty years ago was the starting point of a new era in molecular
biology. Since then, our knowledge of biological structures and processes has
grown tremendously. But many of these advances would have been unthinkable
without using computational methods. Computer science plays a leading role
in the emerging interdisciplinary field of bioinformatics. Only the interplay
between biological methods and concepts from informatics has enabled us to
successfully maintain projects such as the Human Genome Project. But com-
pleting this project also initiated further challenges for bioinformatics. The
main goal now is to analyze and make use of the collected data. Moreover,
new areas are explored, for instance, the prediction of the spatial structure of
proteins. These results will be useful for designing new drugs and improved
medical therapies; in this context, computer science faces bold challenges.
However, progress in molecular biology also influences the design and devel-
opment of computer science methods and concepts, as in the exciting research
field of molecular computing.

This book introduces some of the fundamental problems from the field of
bioinformatics; it discusses the models used to formally describe the problems,
and it analyzes the algorithmic approaches used to attack and eventually solve
them. This book can be regarded as a textbook, describing the topics in detail
and presenting the formal models in a mathematically stringent yet intuitive
way. Thus, it is well suited as an introduction into the field of bioinformatics
for students or for preparing introductory lectures. The spectrum of topics
includes classical subjects such as string algorithms, fundamental approaches
for sequencing DNA and for analyzing the sequencing data, but also more
recent subjects such as structure prediction for biomolecules and haplotyping
models. We have tried to present some fundamental ideas and approaches for
each of the topics in as much detail as possible, and also to give some insight
into current research.
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1

Introduction

Topics like biotechnology, genetics, and bioinformatics frequently find their
way into today’s headlines. This trend, often seen as the beginning of a new
era, was initiated by a seminal discovery more than fifty years ago, the dis-
covery of the DNA double helix structure by Watson and Crick in 1953. The
development in molecular biology continued to grow steadily from then, and it
became more and more important to the public, for example, with the launch
of the Human Genome Project in the 1990s and with the presentation of the
cloned sheep “Dolly.” In 2000, scientists eventually announced the complete
sequencing of the human genome.

Let us take a closer look at the task of DNA sequencing. The goal here
is to determine the sequence of nucleotides, which are the elementary build-
ing blocks in the human DNA, i.e., in the molecule storing our hereditary
information. From the viewpoint of informatics, we are looking for a string
made up from letters representing these nucleotides. Methods for reading their
sequence have already been known since the 1980s, but the length of DNA
molecules that can be sequenced using these methods is severely restricted.
Current methods enable us to read about 1 000 consecutive nucleotides. Nev-
ertheless, we are mainly interested in DNA molecules consisting of hundreds
of thousands of them. How can we reach our goal of sequencing in these cases?
One possible approach is the following: We generate a multitude of copies of
the DNA molecule of our interest. We randomly break each of these copies into
fragments. With high probability, the resulting fragments from different copies
overlap with each other. Ideally, these fragments are sufficiently short for di-
rect sequencing. Having performed these sequencing operations, we are left
with many string fragments of which we know that they occur as substrings
in the DNA sequence, and that these fragments may overlap with each other.
But we have no clue how to combine these fragments to achieve the complete
DNA sequence, since their order was lost in this process. Typically, we have
to reorder thousands of string fragments, a task we are not capable of doing
by hand. This is the point where informatics comes in. First of all, it gives us
the appropriate tools for managing the data, i.e., the set of string fragments.
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Moreover, it helps us to formalize how a clever reconstruction of the DNA
sequence would look. One possible example of such a formalization could be
to search for the shortest string containing all fragments as substrings. Then
we could try to solve the formalized problem with computational methods.
But this task is not as easy as it may seem. Due to the enormous number of
possible fragment orderings, we cannot rely on computational power alone;
even this very intuitive and apparently simple problem leaves us with a great
algorithmic challenge. Furthermore, even if we somehow succeed in finding
this shortest string containing all fragments, the question remains open as to
whether this string really coincides with the prospected DNA sequence, or
whether we have to look for some refined model incorporating further aspects
of the problem.

In this book, we will deal with questions of this type. In particular, we will
describe how to derive a formal model from a biological problem, and how to
find a solution to this formal model algorithmically.

Research problems in molecular biology typically do not arise with a given
completely formal description. In contrast, one has on the one hand a rather
concrete idea of the desired result, but on the other hand only a vague intuition
of how this goal could be achieved. Different biological or biotechnological ap-
proaches or methods in use can lead to the need for completely different com-
putational methods. Understanding the biological methods and approaches in
detail is in many cases possible for biologists only, but knowledge about the
basic principles and connections is very helpful for the computer scientists
dealing with these kinds of problems. Such knowledge alone enables them to
understand the real problems at hand and to possibly suggest modifications
to the methods that could help to make the underlying computational tasks
easier.

One major concern is that all biological data is inherently inexact. Exper-
imental methods are always error prone, and these errors have to be taken
into account in further processing steps. On the other hand, every solution
derived by computational methods for some biological problem is only a solu-
tion hypothesis in reality. Only by further investigations does it become clear
whether such a hypothesis really induces a biologically relevant solution or
whether different aspects of the original problem have to be incorporated into
the formal model to gain modified or enhanced solution hypotheses.

To be treated using algorithmic methods, a biological problem has to be
transformed into a formal model, i.e., into a formal specification of the prob-
lem identifying in particular the data at hand and the desired result. Without
such a formal model, it remains unclear how to reach the desired goal using
computational methods. In this context, each developed model has to be eval-
uated according to its ability to describe the relevant real-life aspects of the
given biological problem. For example, a common model of the DNA molecule
consists of a description of the linear sequence of the nucleotides in terms of
a string, as described above. In most cases, this model is sensible and offers
a convenient possibility for further processing using computational methods.
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But a DNA molecule is no string! For instance, if we want to examine the
spatial properties of a DNA molecule, modelling it as a string is clearly not
sufficient, and we have to look for new or enhanced models.

When we eventually succeed in finding an appropriate formal model for our
biological research problem, we can start to look for algorithmic approaches to
solving this formal problem. Even then, we should take the biological realities
as a guideline for our examinations. As an example, we will again consider the
string model of DNA molecules. Although strings can in general be composed
of arbitrarily many different letters, we do not have to take this into account
for our considerations, since the DNA is made up of only four different nu-
cleotides.

With this reasoning, we will try throughout this book to proceed using
the scheme

problem – model – algorithm

This means that we will, for every biological problem, describe the corre-
sponding formal model, or even several models, and discuss their advantages
and shortcomings. Only after that will we examine the algorithmic proper-
ties of the resulting formal models. Nevertheless, the focus of our attention
will lie on the formal models and the algorithmic approaches for finding solu-
tions for them, but not without keeping an eye on the underlying biological
applications.

The complete spectrum of computational methods is used for investigat-
ing problems from molecular biology. In particular, methods from the fields
of database management, statistics, and algorithmics are used. In this book,
we will focus on the algorithmic aspects. In the subsequent chapters, we will
also present some of the basic concepts from algorithm theory, for example,
algorithm design methods like dynamic programming, divide and conquer,
backtracking, branch and bound, and many more. We will in particular con-
sider the concept of approximation algorithms as it arises in the field of com-
binatorial optimization. But all the presented methods will be embedded into
the context of actual biological problems and are illustrated using concrete
examples.

This book is designed as a self-contained textbook. Its goal is to explain the
basic principles of algorithmic bioinformatics to students, and to help lecturers
prepare introductory courses on the subject. This book is primarily targeted
at graduate and advanced undergraduate students of computer science and at
life sciences students interested in algorithmics. To successfully read this book,
only very basic knowledge of data structures and algorithms is assumed. We
try to cover a multitude of problems, and to present an overview of the models
and the methods used for solving them. In this way, we hope to impart a solid
basis of knowledge enabling readers to build on and intensify their studies in
their respective research fields. Nevertheless, we have to mention that it is
impossible for an introductory textbook to cover all topics in depth; but we
hope that our choice of topics stimulates the reader’s interest.
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This book is divided into three parts. The first part serves as an intro-
duction to the field of bioinformatics. After a short overview of the biological
background and the basic notions of algorithmics, we will deal here with algo-
rithmic methods concerning strings, for instance, string matching algorithms
and methods for computing the similarity of strings. The second part is de-
voted to the field of DNA sequencing, which provides an important source of
data for further investigations. In this part, we deal with generating physical
maps and with different approaches and models of the actual DNA sequencing
process. This is followed by the third part, in which we analyze a multitude of
various problems arising in molecular biology. Among other problems, we deal
with signal finding in DNA sequences, phylogenies, haplotyping, and the com-
putation of spatial molecular structures. Furthermore, each chapter contains,
besides those sections in which we present the problems and their solutions in
detail, one section summarizing the presented material. This overview of re-
sults assists the readers in self-checking their understanding of the presented
material. Moreover, every chapter concludes with a section pointing to the
papers and books we used for preparing the chapter as well as to additional
literature, and thus directs the interested reader to sources for further study.

We have tried to motivate and to describe the presented topics as accu-
rately as possible. We appreciate any comments and suggestions as well as
any information about remaining errors. Please note the following website:

http://www.ite.ethz.ch/publications/bioinformatics

Finally, we hope that we will be able to create interest and excitement for
the field of bioinformatics. Please enjoy reading!



Part I

Introduction and Basic Algorithms



2

Basics of Molecular Biology

If one wants to consider questions in the area of molecular biology, as we do
in this book, it is an obligatory prerequisite for the development and the eval-
uation of abstract models and techniques to have at least a basic knowledge
about the fundamental principles of molecular biology. We therefore devote
this chapter to fundamentals concerning the topics of subsequent chapters,
and especially to the classes of biologically most relevant molecules, namely
proteins and nucleic acids. The description will be an abstraction and recapit-
ulation of biological knowledge only, and does not claim to be comprehensive
or fully detailed. It instead provides an overview of the basic relations in
molecular biology serving as a solid background for the problems we are go-
ing to consider later in this book. We will thus omit all details that are not
necessary for understanding the text.

We start this chapter by the description of proteins in Section 2.1 and
nucleic acids in Section 2.2, and their interaction for protein biosynthesis in
Section 2.3. Afterwards, we will present some standard techniques used for
the analysis of nucleic acids in Section 2.4, and we complete the chapter with
some bibliographic notes in Section 2.5.

2.1 Proteins

Proteins represent one of the most important of the molecule classes in liv-
ing organisms. Their functions include the catalysis of metabolic processes in
the form of enzymes; they play an important role in signal transmission, de-
fense mechanisms, and molecule transportation; and they are used as building
material, for example in hair.

Proteins are chains of smaller molecular entities, so-called amino acids,
which consist of a central carbon atom, denoted as Cα, connected to an amino
group (NH2), a carboxyl group (COOH), and a side chain (R), which is
specific for the particular amino acid. The fourth free binding site of Cα is
saturated by a single hydrogen (H) atom. In Figure 2.1, this general structure
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is shown. According to this, the particular amino acids only differ with respect
to their side chains, which also determine their chemical characteristics. We
will, however, not consider the detailed chemical structure of the side chains
any further.

In nature, there are several known amino acids, but only twenty of them
serve as standard building blocks of proteins; these are given in Table 2.1.
Next to the names of the amino acid, the corresponding abbreviation and the
so-called one letter code is shown. Furthermore, we refer to the polarity of the
amino acids, i.e., to their affinity to water, which will play an important role
in Section 13.3.

name Alanine Valine Leucine Isoleucine Phenylalanine
abbreviation Ala Val Leu Ile Phe
code A V L I F
polarity (H) (H) (H) (H) (H)

name Proline Methionine Serine Threonine Cysteine
abbreviation Pro Met Ser Thr Cys
code P M S T C
polarity (H) (H) (P) (P) (P)

name Tryptophan Tyrosine Asparagine Glutamine Aspartic acid
abbreviation Trp Tyr Asn Gln Asp
code W Y N Q D
polarity (H) (P) (P) (P) (P)

name Glutamic acid Lysine Arginine Histidine Glycine
abbreviation Glu Lys Arg His Gly
code E K R H G
polarity (P) (P) (P) (P) (P)

Table 2.1. The 20 standard amino acids and their affinity to water. Amino acids
that are polar and thus have the property of establishing hydrogen bonds with water
are called hydrophilic (P), while nonpolar amino acids are called hydrophobic (H)



2.2 Nucleic Acids 9

PSfrag replacements

H

H

H

H

H

H

H

N

N

R1

R1

R2

R2

O

O

OH

C

C

Cα

Cα

Cα

Cα

H2O

amino group

carboxyl group

peptide bond

Fig. 2.2. Schematic view of a peptide bond between two amino acids

The amino acids may link to each other by so-called peptide bonds. There,
a chemical bond is established between an amino group and a carboxyl group
releasing a water molecule. The schematic view of a peptide bond is shown in
Figure 2.2. These peptide bonds lead to a linear ordering of the amino acids,
forming a polypeptide chain. The backbone of this chain is formed following
the pattern

amino group — central carbon — carboxyl group — amino group

where the side chains of the amino acids are attached to the central carbon.
We may consider proteins essentially as polypeptide chains.1 Hence, the

essential information about a protein can be described in terms of the amino
acid sequence along the chain. Therefore, we may represent a polypeptide
chain as a string, writing down the amino acids using the one letter code and
fixing the reading direction from the end with the free amino group to the end
with the free carboxyl group. Correspondingly, we may also cast a protein as
a string. This string structure is referred to as the primary structure of the
protein. At the moment, we will ignore the spatial structure of the protein,
i.e., the positions of the single atoms in three-dimensional space, but we will
reconsider this in Section 13.3, where we will deal with the determination of
protein structures.

2.2 Nucleic Acids

Beside proteins, nucleic acids probably form the most important type of
molecule in organisms. In all living organisms, nucleic acids are responsible

1 Some proteins also consist of several polypeptide chains or may be supplemented
by other molecular structure, but we will abstract from this fact.
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for encoding and storing the heredity information. They allow for the trans-
mission of heredity information from one generation to another. Furthermore,
there is an amazing connection between nucleic acids and proteins; nucleic
acids serve as blueprints for the construction of proteins in the organism. Be-
fore we take a closer look at this process called protein biosynthesis in Section
2.3, we first study the structure of nucleic acids.

Similarly to proteins, which consist of a chain of amino acids, nucleic acids
are constructed as a chain of smaller entities, the nucleotides. A nucleotide
consists of a sugar, a phosphate, and a base (see Figure 2.3 (a)). The carbon
atoms of the sugar are numbered from 1′ to 5′ (see Figure 2.3 (b)). By linking
several nucleotides, we obtain a chain, whose backbone consists of sugar and
phosphate molecules linked to each other by the 5′ and 3′ carbon of the sugar.
For this reason one can naturally assign a reading direction to such a chain
from the free 5′ end to the free 3′ end (see Figure 2.4).

Like the side chains in the case of amino acids, the bases are the charac-
teristic distinctive features for nucleotides. Therefore, we can also write down
a nucleic acid as a sequence of bases along a polynucleotide chain.

Essentially, there are two different types of nucleic acids, namely deoxyri-
bonucleic acid, the famous DNA genes consist of, and ribonucleic acid, or
RNA for short. The prefixes deoxyribo and ribo refer respectively to the sug-
ars deoxyribose and ribose, constituting one of the differences between DNA
and RNA. Moreover, DNA usually includes the four bases adenine A, cytosine
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C, guanine G, and thymine T, while in RNA thymine is replaced by the base
uracil U.

With regard to the structural levels, there are crucial differences between
DNA and RNA, as we will see. A DNA molecule typically consists of a double
strand of two nucleotide chains. Bases along these two strands will pair with
each other with hydrogen bonds according to the patterns adenine-thymine
and cytosine-guanine. These pairs of bases are said to be complementary, or
Watson–Crick complementary; also the term Watson–Crick pair is used.2 As
the bases of the strands are complementary to each other, the sequence of
bases on one strand can be directly inferred from the sequence on the other
strand. However, one has to be aware that the reading directions of the two
strands are opposite. We will call the docking of complementary bases as well
as of complementary parts of strands hybridization in the following. Indeed,
the DNA typically occurs double stranded in nature. The resulting rope ladder
is twisted around an imaginary central axis to form the famous DNA double
helix (see Figure 2.5). In contrast, RNA usually occurs single stranded, which
allows regions of the same molecule to connect to complementary ones, result-
ing in various different shapes. We will discuss this in more detail in Section
13.1.

Regarding nucleic acids, we distinguish three levels of structure: The pri-
mary structure is again the string representation of the molecule; the sec-
ondary structure describes the complementary bases paired with each other
by means of hydrogen bonds; and finally, the tertiary structure refers to the
actual folding of the molecule in space.

We have already seen that we can specify nucleic acids by writing down
the sequence of bases in the polynucleotide chain. In the case of the double-
stranded DNA we often write down the sequence of both strands beneath each
other, where the reading direction is determined by the 5′ to 3′ orientation of
the upper strand. The sequence of the lower strand can be unambiguously3

determined by the upper one, substituting each base with its complement and
subsequently reversing the reading direction. We will call the resulting string
the reverse complementary string, or the reverse complement for short.

Example 2.1. Let s = AGACGT be the string representation of a DNA strand;
then s̄ = ACGTCT is the reverse complement of s, as one can see from the
following view on the DNA double strand.

s : 5′ . . . AGACGT . . . 3′

s̄ : 3′ . . . TCTGCA . . . 5′

According to this, it is not essential to distinguish between single- and
double-stranded DNA when referring to it in terms of strings.

2 Referring to James Watson and Francis Crick, who discovered the “secret of life,”
the structure of DNA, in 1953.

3 At least for our considerations; in general, a rare number of “mismatches” may
also occur.
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One possible measure of length for nucleic acids, which we will use exclu-
sively in the following, is to count the number of bases or base pairs occurring
in the molecule, or at an even higher level of abstraction, the length of the
corresponding string. Since bases typically occur pairwise in a DNA double
strand, the length is measured using the unit bp (standing for base pair). To
easily denote larger lengths, we will also use the units kbp and mbp (standing
for kilo base pair and mega base pair, respectively), where 1 kbp = 1 000 bp
and 1 mbp = 1 000 kbp. We will use this units also for RNA.

2.3 Hereditary Information and Protein Biosynthesis

In this section, we will sketch the central process in biology, the aforemen-
tioned protein biosynthesis, i.e., the transformation of information encoded
in DNA into sequences of polypeptides. But before starting, we first describe
some necessary terms in the context of the hereditary information. Here, we
restrict ourselves to higher organisms whose cells contain a real nucleus. These
organisms are called eucaryotes.

The amino acid sequence of proteins is encoded in the DNA; in particular,
we call a region of DNA encoding for a polypeptide a gene. A DNA molecule
containing several genes, as occurring in nature, is called a chromosome. In the
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nucleus, chromosomes often appear in pairs, where we will call corresponding
chromosomes homologous chromosomes. One of these is maternal and the
other is paternal; for example, human cells contain 46 chromosomes, 23 from
each mother and father. Generally, one also uses the term homology to denote
the correlation of related molecules of different organisms. The collection of
hereditary information in a cell is called its genome.

The DNA mainly occurs in the nucleus4 and is not able to leave it. On the
other hand, the “manufacturing halls” of proteins, the ribosomes, are located
outside the nucleus. The process of transforming genetic information encoded
in a sequence of nucleotides into a sequence of amino acids mainly consists of
two steps, as shown schematically in Figure 2.6.

In the first step, the required information is copied from the corresponding
gene and the copy leaves the nucleus. This is the so-called transcription step.
Here, the DNA helix is untwisted and its two strands are separated from
each other in the corresponding gene region. Then, catalyzed by an enzyme
called RNA polymerase, a complementary RNA copy of one particular of the
two strands (the so-called template strand) is synthesized. Not all parts of
the gene are used to encode the protein; there also exist “nonrelevant” areas.
The region of a gene is therefore divided into so-called exons and introns,
where only exons encode for the amino acid sequence and are thus considered
exclusively for the final copy of the DNA. The introns, on the other hand, are
removed from a preliminary version of the copy by a process called splicing.
Hence, the result of the transcription process is an RNA strand, consisting
solely of coding regions of the considered gene. Accordingly, this final copy is
denoted as messenger RNA, or mRNA for short. Next, this mRNA leaves the
nucleus and passes the information of the DNA on to the ribosomes.

In the ribosomes, the information stored in the mRNA is transformed into
an amino acid sequence. This process is called translation. Here, nonoverlap-
ping triples of bases, called codons, along the mRNA strand encode for partic-
ular amino acids. The mRNA is shifted through the ribosome codon by codon,
and at each step at another site of the ribosome the corresponding amino acid
is synthesized to a chain of amino acids at the use of another auxiliary RNA
molecule, the so-called transfer RNA, or tRNA for short, that carries amino
acids and a corresponding triple of bases, called anticodon, which is comple-
mentary to the current codon of the mRNA. This assignment is shown in Table
2.2. Note that there exist 43 = 64 different codons, but only 20 different amino
acids are used in protein syntheses. Thus, there is a natural redundancy, i.e.,
some amino acids are coded by several codons. Furthermore, the termination
of the synthesis is encoded in some of the codons; these are therefore called
STOP codons.

A tRNA with the corresponding anticodon binds to the mRNA, and re-
leases its amino acid, which joins the so far constructed chain of amino acids.

4 Furthermore, certain cellular organelles, the mitochondria and chloroplasts, con-
tain DNA for coding information too.
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first second position third
position G A C U position

Gly Glu Ala Val G

Gly Glu Ala Val A
G

Gly Asp Ala Val C

Gly Asp Ala Val U

Arg Lys Thr Met G

Arg Lys Thr Ile A
A

Ser Asn Thr Ile C

Ser Asn Thr Ile U

Arg Gln Pro Leu G

Arg Gln Pro Leu A
C

Arg His Pro Leu C

Arg His Pro Leu U

Trp STOP Ser Leu G

STOP STOP Ser Leu A
U

Cys Tyr Ser Phe C

Cys Tyr Ser Phe U

Table 2.2. Relation of codons to amino acids and STOP signals
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This process is terminated by a tRNA carrying a STOP signal, the unloaded
tRNA molecules can again attach to their specific amino acids, several of
which are floating around in the cell’s cytoplasm.
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2.4 Experimental Techniques

In this section, we will further study relevant basics of molecular biology and
some experimental techniques for the examination of nucleic acids. However,
we cannot deal with this subject exhaustively; instead, we will only present a
small sample of the known methods, partially in a simplified way.

2.4.1 Basic Terms and Methods

Let us consider a double-stranded DNA molecule. There exists the possibility
to separate the two strands by heating, a process called denaturation. On the
other hand, we call the association of complementary bases or even comple-
mentary strands hybridization.

Furthermore, there exist several ways to cut the sugar-phosphate backbone
of double-stranded DNA, such that smaller double strands, and not single
strands, as in the case of denaturation, arise again. Such a “vertical” cut can
be enabled, for example, by the use of vibration or sonic waves. The cutting
of a DNA double strand at a specific site can be performed using so-called
restriction enzymes. Each restriction enzyme detects a specific area in the
DNA sequence, denoted as restriction site, and cuts the DNA at this site or
near to it. We postpone a more detailed consideration of restriction enzymes
and their use for certain tasks to Section 7.1. The enzyme ligase enables the
reunification of DNA double strands that are cut in this way, i.e., it catalyzes
the linkage of the backbones of the nucleotide chains.

2.4.2 Duplication of DNA

To perform experiments, often a single DNA molecule is not sufficient, but
a high number of identical copies of the molecule is required. We will next
describe two methods to generate copies of DNA molecules.

Routinely, a technique called cloning is used. Here, the fragment of DNA
which one wants to copy, called insert in this context, is embedded into the
genome of a host organism (host for short), where it is duplicated during the
natural reproduction of the host by cell division. After that, the required DNA
fragment is extracted from the host’s genome again. This process is sketched
in Figure 2.7.

There are different types of organisms that may serve as hosts. The choice
depends on the length of the DNA fragment that has to be copied. The range
of possible lengths varies between 15 and 50 kbp for certain types of bacteria
and viruses, and up to several million base pairs for the case of artificial
chromosomes that are additionally inserted into the host.

Due to this procedure, it is not at all surprising that again and again
contaminations with the corresponding host DNA or changes by means of
errors in the replication process of the host are encountered in the duplicated
DNA; these have to be carefully considered in further examinations.
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Moreover, replication of DNA by means of cloning can lead to the loss of
complete fragments, since the insertion may have a lethal effect on the host
organism and is thus not duplicated at all.

Another complication may result from cloning several fragments from one
original sequence. Two fragments, that are nonconsecutive in the sequence,
link to each other during the cloning process. In this case, we gain a so-called
chimeric clone, a duplicated fragment that seems to indicate a consecutive
fragment that does not exist in reality. This implies particular complications
in the context of DNA sequencing.

Another method for the duplication of DNA was developed by Mullis in
1983 and performs an iterative doubling of DNA molecules in vitro.5 For this
method, we have to know the sequence of bases at the beginning as well as at
the end of the molecule. This enables us to construct short single strands of
DNA that are complementary to these parts, and that are denoted as primers
. The method, known as polymerase chain reaction, or PCR for short, works
as follows.

This procedure is depicted in Figure 2.8. Here, we denote the DNA we
intend to duplicate by d, its single strands by d1 and d2, and the primers by
p1 and p2. Note that, by n iterations of this method, 2n copies of the original
DNA may be produced. Besides the knowledge necessary of the primer se-
quence, another disadvantage of this method is the error rate. The occurrence
of an error in an early iteration may obviously replicate exponentially by this
method. Nevertheless, one should remember that also cloning, like nearly all
biological techniques, is error prone.

2.4.3 Gel Electrophoresis and Direct Sequencing

This section is devoted to a method that enables the separation of DNA
molecules according to their size. The corresponding procedure is called gel
electrophoresis and is based on the following idea. Due to the negative charge

5 For this technique Kary B. Mullis was awarded the Nobel price for chemistry in
1993.
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Method 2.1 Polymerase chain reaction (PCR)

Given: A DNA which has to be duplicated.
Step 1: Add into a test tube:
• The given DNA,
• primers p1 and p2 that are complementary to the beginning and the end of

the DNA,
• all nucleotides in sufficiently large quantity, and
• DNA polymerase, i.e., an enzyme that successively enables the extension of

a primer by single nucleotides according to a template.
Step 2: The following steps are repeated arbitrarily often:

1. Denature the DNA by heating.
2. Let the DNA cool down. During this process, primers will hybridize with

the DNA single strands that were dissolved by denaturation.
3. The primers will be elongated to complete complementary strands by means

of DNA polymerase.
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of DNA molecules, they move from the negative to the positive pole in an
electric field. If one applies such an electric field to a gel carrier plate on which
DNA is laid out, the migration speed of the molecules is inversely proportional
to their size. A smaller molecule will move faster through the gel structure,
while a larger one will be more restrained by the gel in its movement. This
idea is now utilized for our purpose. If a mixture of DNA molecules with
variable length is given on a gel next to the negative pole and the electric field
is switched on, the molecules start migrating and hence separate according
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to their length with time. To separate molecules of different orders of size,
one may use different types of gels. Using reference molecules whose size is
known in advance, this procedure may not only serve to separate the molecules
according to their size, but also to determine their actual size.

The separation process described above can also be utilized for determining
the sequence of bases in the DNA, i.e., the DNA sequence. This approach is
known as chain termination method.

Method 2.2 Chain termination method for sequencing DNA

Given: Four test tubes, labeled A, C, G, and T .
Step 1: Duplicate the DNA single strand that should be sequenced.
Step 2: Distribute the copies equally among the four test tubes A, C, G and T .
Step 3: Add to each test tube labeled I ∈ {A, C, G, T} all nucleotides that do not

contain base I, i.e., to test tube A add only nucleotides containing cytosine C,
guanine G, and thymine T; analogously for test tubes C, G, and T .

Step 4: Add to each test tube I ∈ {A, C, G, T} in a certain ratio:
• nucleotides that contain base I, and
• nucleotides that contain a chemically modified base I that does not allow

for the elongation of a DNA strand by means of DNA polymerase, i.e., after
adding such a nucleotide, the construction of the strand stops. (The modified
nucleotides are called dideoxynucleotides.)

Step 5: Add to each test tube A, C, G, and T primers of the DNA one wants to
sequence and DNA polymerase, and, with this, start the construction of the
complementary single strand. Since test tube I ∈ {A, C, G, T} also contains
such nucleotides that terminate the construction of the strand (ending with I),
it finally contains all DNA single strands ending with I with high probability.

Step 6: Lay out the content of the test tubes A, C, G, and T next to each other on
a gel and start gel electrophoresis. The bands along the paths for the test tubes
A, C, G, and T provide us the lengths after which the construction of the single
strand is stopped by means of introducing the chemically modified nucleotide.
This enables us to actually read the DNA sequence, which is therefore called a
read in this context.

Step 5 of this process is illustrated in Figure 2.9. The maximal length
of DNA molecules that can be sequenced using this method is nevertheless
strongly restricted. Currently it is possible to sequence molecules up to a
length of about 1 000 bp; afterwards, the errors due to the insufficient resolu-
tion of the gel get out of hand, such that the result is not sufficiently reliable.

With this experimental technique of direct sequencing, different types of
errors may occur. The read sequence can be erroneous due to inaccurate read-
ing of the experimental outcome, e.g., the bands indicating the spots of mi-
grated DNA may become fuzzy, indistinguishable, or may even miss com-
pletely. These sequencing errors are also often denoted as base call errors, and
one distinguishes essentially three types.
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Fig. 2.9. Sequencing a DNA molecule with base sequence GACTTAGATCAGGAACT using
the chain termination method. The shortest fragment, namely the one which only
consists of the nucleotide with base G, moves fastest, followed by the second largest
fragment with base sequence GA, and so on

• Insertion: A base appears at a position within the read where it is actually
not present.

• Deletion: A base is missing in the read, while it occurs in the actual se-
quence.

• Substitution: A base in the actual sequence is substituted by another one
in the read.

2.4.4 DNA Chips

Another useful technique enables us to determine whether a certain base se-
quence appears as a part of a nucleotide sequence or not. For this we use
hybridization experiments. Let us denote our nucleotide sequence by s and
the base sequence that we want to detect within s by t. We now synthesize
the complementary sequence t′ from t and test whether s and t′ hybridize
with each other. If this is the case, s contains the base sequence t; otherwise,
it does not.

To perform several of these hybridization experiments in parallel, one uses
DNA chips, also called DNA arrays. Let us assume that we would like to test
for the base sequences t1, . . . , tn within a nucleotide sequence s. We do not
have to know the actual sequence of s. Now, one “anchors” the complemen-
tary single-stranded sequences t′1, . . . , t

′
n of t1, . . . , tn at specific positions on a

surface (to be more precise, lets them “grow” there). The sequences that we
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want to test for are usually short nucleotide sequences, called probes in this
context. The layout of the probes on the surface is known, i.e., it is known
which probe corresponds to which position. After constructing this device,
which is actually the DNA chip, we add single stranded, labeled (for instance,
fluorescing) copies of the nucleotide sequence s. If the probes occur as com-
plementary sequences in s, the copies of s will hybridize, and will thus be
attached to the probe’s position on the DNA chip. Then, we wash away the
copies of s not hybridized with the probes and detect the positions where hy-
bridizations occurred using the labeling. Finally, we can infer which sequences
are contained in s and which are not. We summarize this procedure as Method
2.3.

Method 2.3 Detection of subsequences using a DNA chip

Step 1: Anchor probes at certain positions of a surface and obtain in this way a
DNA chip.

Step 2: Add labeled copies of the nucleotide sequence we want to scan. Copies will
hybridize with complementary probes.

Step 3: Reject non-hybridized copies of the nucleotide sequence.
Step 4: Detect, by means of the labeling, the spots on the DNA chip where hy-

bridizations have occurred and thus obtain the set of subsequences.

Using such hybridization experiments, several errors may occur. We cat-
egorize these errors into two classes. We call an error false positive, if the
DNA chip signals a hybridization of nucleotide sequence s with some probe
t′i, although the base sequence ti does not occur inside s, and therefore no hy-
bridization should have taken place. On the other hand, we call an error false
negative if the DNA chip does not signal a hybridization, while this should
happen, since the corresponding sequence is contained in s.

Finally, we would like to note that although we called the devices DNA
chips, the approach described above can in principle also be applied for other
(single-stranded) nucleic acids, e.g., for RNA.

2.5 Bibliographic Notes

Please note again that, in this chapter, facts have been presented in a simpli-
fied way. For further information we refer the reader to the following literature.

A substantial part of the presented facts is also discussed in the corre-
sponding chapters of the books by Setubal and Meidanis [180], Clote and
Backofen [49], and Waterman [201]. Further insights into molecular biology
can be found in a multitude of books on this subject, e.g., Campbell and Reece
[39] and Lewin [133].

The structure of DNA was investigated by Watson and Crick in 1953 [205],
who were together with Wilkins awarded the Nobel Prize for Medicine in 1962
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for their discovery. A report worth reading on the discovery of the DNA double
helix was authored by Watson [203]. We also recommend another book by
Watson [204] for insights into the development and history of genetics during
the last few decades. For the development of the PCR method, Mullis [171]
was awarded the Nobel Prize for Chemistry in 1993. The chain termination
method for DNA sequencing goes back to Sanger, Nicklen, and Coulson [172]
and is also known as Sanger method.
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Basic Concepts: Strings, Graphs, and

Algorithms

In this chapter we will give a very brief overview of the basic definitions and
concepts for dealing with strings, graphs, and algorithms needed throughout
this book. The goal of this chapter is mainly to remind the reader of the most
important concepts and to establish our notations. In Section 3.4 we have
listed references to some introductory textbooks where the topics sketched in
this chapter are presented in greater detail.

3.1 Strings

Many biological structures can be naturally represented by strings, and we
will frequently use this representation throughout the book. In this section,
we will formally define strings, present some useful notations, and illustrate
some simple properties of strings.

Definition 3.1. An alphabet Σ is a finite nonempty set. The elements of
an alphabet are called characters , letters , or symbols . A string s over an
alphabet Σ is a (finite) concatenation of symbols from Σ. The length of a
string s is the number of symbols in s, it is denoted by |s|. For each symbol
x, |s|x denotes the number of occurrences of the symbol x in s. This implies

|s| =
∑

x∈Σ

|s|x .

The empty string λ denotes the string of length 0.
We denote by Σn the set of all strings of length n over the alphabet Σ,

and by Σ∗ =
⋃

i>0 Σ
i the set of all strings over Σ.

In the existing bioinformatics literature, the notions “string” and “se-
quence” are often used synonymously. In this book, we will usually use the
term “sequence” for biological objects like DNA sequences, while in the con-
text of our abstract models we will only use the term “string.”
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Definition 3.2. Let s and t be strings over an alphabet Σ, then s · t, or st for
short, denotes the concatenation of s and t.

Definition 3.3. Let s and t be strings over an alphabet Σ.

• s is a substring of t, if there exist strings u and v such that t = usv.
• s is a prefix of t, if there exists a string v such that t = sv.
• s is a suffix of t, if there exists a string u such that t = us.
• s is called a proper substring [prefix, suffix] of t, if s is a substring [prefix,

suffix] of t, and s 6= t.
• s is a subsequence of t, if all symbols of s appear in the same order (but

not necessarily contiguously) also in t.

The empty string λ is considered a prefix (suffix) of any string. In this
context, λ is also called the empty prefix (empty suffix).

Please note that in contrast to the terms “string” and “sequence,” which
may be used synonymously, the terms “substring” and “subsequence” have
different meanings.

The following example illustrates the above definitions.

Example 3.1.

• Let Σ = {a, b, c}. Then abcabc is a string over Σ, |abcabc| = 6, and
|abcabc|a = |abcabc|b = |abcabc|c = 2.

• Let abc and cba be two strings over Σ. Then abc · cba = abccba is the
concatenation of abc and cba; furthermore, λ · abc = abc and cba · λ = cba.

• The string abc is a substring of abc, but not a proper substring of abc; the
string ca is a proper substring of abcabc.

• The string ab is a proper prefix of abc; the string c is a proper suffix of
abc.

• The string aa is a subsequence of abca, but the string acb is not a subse-
quence of abca. ♦

We will now define a notation for dealing with substrings.

Definition 3.4. Let Σ be an alphabet, let s = s1 . . . sn, for s1, . . . , sn ∈ Σ, be
a string. For all i, j ∈ {1, . . . , n}, i < j, we denote the substring si . . . sj by
s[i, j]. Furthermore we denote the i-th symbol si of s also by s[i].

Next, we will consider the overlapping of strings.

Definition 3.5. Let s and t be strings over an alphabet Σ. If there exists a
partition of s and t with the properties

(i) s = xy,
(ii) t = yz,
(iii) x 6= λ and z 6= λ, and
(iv) |y| is maximal with (i), (ii), and (iii),
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then y is called the overlap of s and t, denoted by Ov(s, t), and the string xyz
is called the merge of s and t, denoted by 〈s, t〉. We denote the string x by
Pref (s, t) and the string z by Suff (s, t). By ov (s, t) [pref (s, t), suff (s, t)] we
denote the length of Ov(s, t) [Pref (s, t),Suff (s, t)].

If ov (s, t) = 0 for two strings s and t, then Ov(s, t) is also called the empty
overlap of s and t; in this case the merge of s and t equals their concatenation.

We now illustrate this definition by an example.

Example 3.2. Let s = cccababab and t = abababddd be two strings over the
alphabet Σ = {a, b, c, d}. Then 〈s, t〉 = cccabababddd is the merge of s and t;
the overlap of s and t is Ov(s, t) = ababab. Furthermore, Pref (s, t) = ccc and
Suff (x, t) = ddd. ♦

Please note that Definition 3.5 requires, for any two arbitrary strings s and
t, that Pref (s, t) 6= λ and Suff (s, t) 6= λ. It therefore can also be interesting
to consider the overlap of a string with itself. For example, for the string
s = ababab, we have Ov(s, s) = abab.

For any two strings s and t, we know s = Pref (s, t)Ov(s, t) and t =
Ov(s, t)Suff (s, t).

We close this section with the definition of string homomorphisms.

Definition 3.6. Let Σ1 and Σ2 be two alphabets. A function h : Σ∗1 → Σ∗2
is called a string homomorphism (or homomorphism for short), if all strings
x, y ∈ Σ∗1 satisfy

h(x · y) = h(x) · h(y). (3.1)

Please note that due to Equation (3.1) a homomorphism h is uniquely
determined by the definition of its values h(a) for all a ∈ Σ1, and that in
particular h(λ) = λ holds.

3.2 Graphs

The most important data structures for many algorithms in bioinformatics
besides strings are graphs, and especially trees. In this section, we will there-
fore present the most important notations from the area of graph theory.
For a more detailed introduction to graph theory we refer the reader to the
references given in Section 3.4.

Definition 3.7. An (undirected) graph G is a pair G = (V,E), where V is a
finite set of vertices and E ⊆ {{x, y} | x, y ∈ V and x 6= y} is a set of edges.

Two vertices x, y ∈ V are called adjacent if {x, y} ∈ E. A vertex x ∈ V is
called incident to an edge e ∈ E, if x ∈ e.

The degree of a vertex x is the number of edges incident to x; we denote
it by deg(x). The degree of a graph G is defined as the maximum degree over
all vertices in V .

A graph G = (V,E) is called complete if E = {{x, y} | x, y ∈ V and x 6= y}
holds, i.e., if there exists an edge between any pair of distinct vertices.
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Fig. 3.1. The graph given in Example 3.3

We often visualize a graph by drawing the vertices as dots and the edges
as lines between them, as shown in the following example.

Example 3.3. Let G = (V,E) be a graph with V = {v1, v2, v3, v4, v5} and
E = {{v1, v2}, {v1, v4}, {v1, v5}, {v2, v3}, {v2, v5}, {v3, v4}}. Then G can be
visualized as shown in Figure 3.1. ♦

Now we define the notion of a subgraph of a given graph.

Definition 3.8. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.We say
that G2 is a subgraph of G1, if V2 ⊆ V1 and E2 ⊆ E1.

Let G = (V,E) be a graph, let V ′ be a subset of V . The subgraph of G
induced by V ′ is the graph G′ = (V ′, E′), where E′ = {{x, y} ∈ E | x, y ∈ V ′}.

We next give a definition that allows us to consider sequences of vertices
in a graph.

Definition 3.9. Let G = (V,E) be a graph. A path in G is a sequence
of vertices P = x1, x2, . . . , xm, xi ∈ V for all i ∈ {1, . . . ,m} such that
{xi, xi+1} ∈ E holds for all i ∈ {1, . . . ,m − 1}. The length of the path P
is the number m− 1 of edges {xi, xi+1} between consecutive vertices in P . A
path P = x1, x2, . . . , xm is called simple if either all vertices x1, x2, . . . , xm

of the path are pairwise different or if x1, x2, . . . , xm−1 are pairwise different
and x1 = xm holds.

A path P = x1, x2, . . . , xm with x1 = xm is called a cycle; a simple cycle is
a simple path of length > 3 that is also a cycle. A simple cycle in G containing
all vertices from V is called a Hamiltonian cycle of G.

A path (cycle) that uses every edge of E exactly once is called an Eulerian
path (Eulerian cycle. )

An edge between two nonconsecutive vertices on a cycle is called a chord
of the cycle.

The graph G is said to be connected if, for all x, y ∈ V , there exists a path
between x and y.

A graph that does not contain any cycle of odd length is called bipartite.

In the following, we typically consider only simple paths and simple cycles,
and we call them “paths” and “cycles” respectively for short. If we want to
consider a non-simple path or cycle, we mention this explicitly.
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Next, we give the formal definition of a tree, which is an important special
case of a graph.

Definition 3.10. Let T = (V,E) be a graph. The graph T is a tree , if it is
connected and does not contain any simple cycle. The vertices of degree 1 in
a tree are called leaves; the vertices of degree > 2 are called inner vertices.

A tree may have a specially marked vertex that is called the root. In this
case we call the tree a rooted tree.

The following property of trees will be useful in the sequel. For the (simple)
proof we refer the reader to the literature referenced in Section 3.4.

Lemma 3.1. Let T = (V,E) be a tree. Then there exists exactly one simple
path between x and y for any two vertices x, y ∈ V . ut

Definition 3.11. Let G = (V,E) be a graph, let T = (V ′, E′) be a tree. If
V = V ′ and E′ ⊆ E, then T is called a spanning tree of G.

If for each edge in a graph a direction is given, one gets a directed graph
that can be formally defined as follows.

Definition 3.12. A directed graph is a pair G = (V,E), where V is a finite
set of vertices and E ⊆ {(x, y) | x, y ∈ V and x 6= y} is a set of directed
edges.

We also say that the edge (x, y) starts in vertex x and ends in vertex y.
The indegree of a vertex x, denoted by indeg(x), is the number of edges

ending in x; the outdegree of x, denoted by outdeg(x), is the number of edges
starting in x.

A (simple) directed path in a directed graph G = (V,E) is a sequence P =
x1, . . . , xm of vertices such that (xi, xi+1) ∈ E holds for all i ∈ {1, . . . ,m−1},
where either x1, . . . , xm are pairwise distinct, or x1, . . . , xm−1 are pairwise
distinct and x1 = xm.

In analogy to Definition 3.9, one can define Hamiltonian paths and cycles,
as well as Eulerian paths and cycles, also for directed graphs.

We note that a rooted tree unambiguously induces a directed graph, where
all edges are oriented from the root in the direction of the leaves. Therefore,
we speak of a directed tree in this context. This means that in a directed
tree the root has an indegree of 0, all other vertices have indegree 1, and the
leaves are exactly the vertices of outdegree 0. If there exists an edge (x, y) in
a directed tree, we call x the parent of y and we call y the child of x.

If furthermore a linear order is defined on the children of every vertex, we
call this tree an ordered tree.

We will now define a special type of tree, where the degree of the vertices
is bounded.
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Definition 3.13. A directed binary tree is a directed tree, where each inner
vertex has outdegree 2.

An undirected unrooted binary tree is an (undirected) tree, where each
inner vertex has degree 3.

Often one wants to add some inscriptions to the vertices or edges of a
graph. In this case, we speak of edge-labeled or vertex-labeled graphs. The most
frequently used form of labeling is the assignment of some costs or weights
to each edge via some cost function δ : E →

�
. A graph with such a cost

function is called an edge-weighted graph, and we denote it by (V,E, δ).

3.3 Algorithms and Complexity

In this section we present some different types of algorithmic problems and
briefly describe how to measure the complexity of algorithms. We give no for-
mal definition of the term “algorithm” here. For our purposes it suffices to
understand an algorithm as a sequence of computational steps that is imple-
mentable as a program in an arbitrary (imperative) programming language
like C or Pascal. In this book, we describe the presented algorithms in a kind
of pseudo programming language that allows, besides the usual constructions
like while loops, for loops, if-then-else commands, and assignments, also ar-
bitrary mathematical formulas and the use of natural language. This allows
us to abstract from implementation details and to focus on clearly presenting
the ideas behind the algorithms.

We can use algorithms to solve different types of problems; here, we es-
sentially distinguish between decision problems, optimization problems, and
computing problems. In the following, we specify these classes of problems in
greater detail; for more formal definitions we refer the reader to the biblio-
graphic notes in Section 3.4.

For a decision problem, the task is to test some condition for the given
input, and to output Yes if the input satisfies the condition and No if it
does not. Thus, to define a decision problem it is sufficient to specify the set
of allowed inputs and the condition to be tested. An example of a decision
problem is the following.

Example 3.4. The Hamiltonian cycle problem is the following decision prob-
lem.

Input: An undirected graph G = (V,E).
Output: Yes if G contains a Hamiltonian cycle. No otherwise. ♦

Thus, in the case of a decision problem, the task is to compute a function
from the set of inputs to the set {Yes,No}. This class of tasks can obviously
be generalized by computing an output from an arbitrary domain for a given
input, which leads to the class of computing problems. If the output is uniquely
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determined for every input, we call the corresponding computing problem a
function computing problem; otherwise, we call it a relation computing prob-
lem. The following example shows a computing problem, or more precisely, a
function computing problem.

Example 3.5. The problem of computing the overlap of two strings is the fol-
lowing function computing problem.

Input: Two strings s and t over an alphabet Σ.
Output: The overlap Ov(s, t) of s and t. ♦

In the case of an optimization problem, we assign to each input a set
of feasible solutions. Then a cost function assigns a cost to each of these
feasible solutions and the goal is to find a feasible solution with minimum
or maximum cost. For the specification of an optimization problem, it is thus
neccessary to specify the following four parameters: the set of input instances,
the set of feasible solutions for each input instance, the cost function for the
feasible solutions, and the optimization goal. More formally, we describe an
optimization problem by a quadruple U = (I,M, cost , goal), where I is the
set of input instances, M(I) is the set of feasible solutions for input I ∈ I,
cost is the cost function that assigns a cost value to each feasible solution
(depending on the actual input instance), and goal is the optimization goal,
i.e., either minimization or maximization.

We will now illustrate the notion of an optimization problem with the
example of the Traveling Salesman Problem, which consists of finding a min-
imum cost Hamiltonian cycle in an edge-weighted complete graph. The name
of this problem stems from the following motivation: A traveling salesman
wants to visit n customers in n different cities. He knows the pairwise dis-
tances between these cities and wants to find a shortest cyclic tour starting
at home, visiting each of the n cities exactly once, and eventually returning
home.

Definition 3.14. The traveling salesman problem, TSP for short, is the fol-
lowing optimization problem:

Input: An undirected complete edge-weighted graph G = (V,E, d) with n ver-
tices and a cost function d : E →

�
>0.

Feasible solutions: All Hamiltonian cycles in G.
Costs: The costs of a feasible solution C = x1, . . . , xn, x1 correspond to the

sum of the edge weights on this cycle, i.e.,

cost(C) =

(
n−1∑

i=1

d({xi, xi+1})

)

+ d({xn, x1}.

Optimization goal: Minimization.
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We have just seen how to classify and describe algorithmic problems. Now
we want to present some tools for the analysis of algorithms. When we have
given an algorithm for some problem, we often want to determine its com-
plexity. There are different measures for the complexity of an algorithm; the
most frequently used measures are the running time and the amount of mem-
ory used. We will in the following restrict our attention to the analysis of the
running time.

The running time of an algorithm A on an input x is considered to be
the number of elementary computation steps the algorithm performs on it,
we denote it by TimeA(x). Usually, one is not only interested in the running
time of an algorithm on one specific input, but one wants to get an estimate
of the running time on any input, depending on the length of the input only.
For this reason we define the running time for any input of length n as

TimeA(n) = max{TimeA(x) | x is an input instance of length n}.

In this way we can interpret the running time of an algorithm as a function
TimeA : � → � that determines the growth of the running time from the
input length. Since the exact running time of an algorithm is hard to calculate
in most cases, and since it is subject to implementation details, we will in the
following restrict ourselves to an asymptotic analysis based on the so-called
Landau symbols. Using this notation, we can simply refer to the order of the
running time, which provides us with the most meaningful information in
most cases.

Definition 3.15. Let f : � → � >0 and g : � → � >0 be two arbitrary func-
tions. Then, we define the function classes O(f(n)), Ω(f(n)), and Θ(f(n))
as follows:

g(n) ∈ O(f(n)) ⇐⇒ there exist n0 ∈ � and c ∈ � ,

such that g(n) 6 c · f(n) for all n > n0,

g(n) ∈ Ω(f(n)) ⇐⇒ there exist n0 ∈ � and d ∈ � ,

such that g(n) > (1/d) · f(n) for all n > n0,

g(n) ∈ Θ(f(n)) ⇐⇒ g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n)).

Informally speaking, Definition 3.15 says that every function in O(f(n))
is asymptotically growing at most as fast as f(n) and that every function in
Ω(f(n)) is asymptotically growing at least as fast as f(n). This implies that
Θ(f(n)) is the class of all functions that are asymptotically growing exactly
as fast as f(n).

It is easy to show that every polynomial p(n) of degree k lies in Θ(nk);
for example, 3n3 + 5n2− n+ 7 ∈ Θ(n3). This means that for determining the
Landau symbols we can ignore constant factors and lower-order terms.

We call f(n) a polynomially bounded function if there exists a k ∈ � such
that f(n) ∈ O(nk).
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We have seen above how to determine the complexity of a given algorithm;
in the following, we want to analyze the complexity of problems. Let X be
an algorithmic problem. We say that X is solvable in O(f(n)) time if there
exists an algorithm A with TimeA(n) ∈ O(f(n)) that solves the problem X .

Experience shows that in most cases a problem is practically solvable in
reasonable time if there exists a polynomial-time algorithm for it, and that
getting the solution in reasonable time is in most cases impossible if there is
no polynomial-time algorithm known. Thus, we define the class P as the set of
all decision problems for which there exists a deterministic polynomial-time
algorithm. An algorithm is called deterministic if its whole computation is
uniquely fixed by the input.

The class NP is defined as the set of decision problems for which there ex-
ists a nondeterministic polynomial-time algorithm. For a formal introduction
to the concept of nondeterminism we refer the reader to the references given
in Section 3.4. Informally, NP is the class of all decision problems for which it
is possible to check in polynomial time if a given solution candidate is indeed
a solution.

Example 3.6. The Hamiltonian cycle problem presented in Example 3.4 above
belongs to NP, since for a given sequence of vertices it is possible to check
in polynomial time if, on the one hand all vertices of the input graph appear
exactly once, and if, on the other hand, for any two consecutive vertices there
exists an edge in the graph. ♦

From the definition of P and NP it is immediately clear that P ⊆ NP
holds. It is not known if this inclusion is strict, but it is a common belief
that P is a proper subset of NP. There are many problems in NP for which
there is no known deterministic polynomial-time algorithm. Although we do
not know about a method for proving for any problem in NP that it does
not belong to P, there is a method to prove for many problems that they
are computationally hard in the following sense: We say that a problem X
is NP-hard if the assumption that X would be solvable deterministically in
polynomial time implies that every problem in NP would also belong to P. If
an NP-hard problem belongs to the class NP itself, we call it NP-complete .
Thus, the NP-complete problems are the hardest problems within the class
NP. So far, there are some thousands of NP-complete problems known, and for
all of them there are only algorithms with exponential running time known.
In most cases, these algorithms are of little use for practical applications since
the running time on inputs of realistic sizes would amount to thousands or
millions of years or even more.

To prove its NP-hardness for a given decision problem X , it suffices to
design an algorithm which transforms any input instance IY of a problem
already known as NP-hard into an input instance IX of X in polynomial
time, such that IX satisfies the condition of X if and only if IY satisfies the
condition of Y . Such an algorithm is called a polynomial-time reduction from
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Y to X . We will present some examples of such reductions throughout this
book.

We have just seen how to prove the hardness of a decision problem via
the concept of NP-completeness. Now we want to apply this concept also to
optimization problems.

We note that one can canonically find a decision problem for each opti-
mization problem by introducing a threshold on the cost of a feasible solution
for the input and asking whether (in case of a minimization problem) there ex-
ists a feasible solution with costs less than the threshold. We will now formally
define this threshold problem.

Definition 3.16. Let U = (I,M, cost , goal) be an optimization problem. If
the optimization goal is minimization (maximization), then we define the
threshold problem for U to be the following decision problem:

Input: An input instance I ∈ I and a number t ∈
�

>0.
Output: Yes if there exists a feasible solution x ∈ M(I) satisfying cost(x) 6 t

(cost(x) > t). No otherwise.

We now call an optimization problem NP-hard if the corresponding thresh-
old problem is NP-hard. In the following, we also call the threshold problem
for a given optimization problem the corresponding decision problem.

We have now seen that there are problems for which there is little hope
of finding an exact solution within reasonable time, and we have described
some methods for proving such hardness for a given problem. This raises
the question of how to handle such problems to find at least in some sense
a reasonable suboptimal solution. There are many different approaches to
answer this question; a detailed overview of these methods can be found in
the references given in the last section of this chapter, and we will present
some examples of these methods in subsequent chapters. We will just detail
one approach in the following, suitable for optimization problems, the design
of so-called approximation algorithms. The basic idea of this approach is to
relax the requirement of finding an optimal solution for the problem instance,
and to also accept feasible solutions whose costs differ from the optimal cost
only by a (small) constant factor.

We call an algorithm for an optimization problem consistent if it outputs
a feasible solution for every input instance. For all consistent algorithms, we
now can define the notion of the approximation ratio.

Definition 3.17. Let U = (I,M, cost , goal) be an optimization problem; let
A be a consistent algorithm for U . For each input instance I ∈ I we define
the approximation ratio of A on I by

RA(I) =







cost(A(I))

Opt(I)
if goal = minimization,

Opt(I)

cost(A(I))
if goal = maximization,
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Algorithm 3.1 Spanning tree algorithm for the metric TSP

Input: An undirected complete edge-weighted graph G = (V, E, d) with n vertices
and an edge weight function d : E → ��� 0.

1. Compute a minimum spanning tree T of G, i.e., a spanning tree of minimum
weight.

2. Choose an arbitrary vertex v ∈ V and execute a depth-first search in T from
v. Enumerate the vertices in the order in which they are visited for the first
time during the depth-first search. Let vi1 , . . . , vin be this enumeration of the
vertices.

3. Let H := vi1 , . . . , vin , vi1 .

Output: The Hamiltonian cycle H of G.

where Opt(I) denotes the cost of an optimal solution for I.
For every number δ > 1 we say that A is an δ-approximation algorithm

for U if
RA(I) 6 δ

holds for all I ∈ I.

This means that a δ-approximation algorithm always outputs a feasible
solution whose cost differs at most by a factor of δ from the cost of an optimal
solution. We illustrate the definition of an approximation algorithm by the
following example. We consider a restricted version of the traveling salesman
problem as defined in Definition 3.14, where all edge costs obey the following
condition.

Let G = (V,E, d) be an undirected complete edge-weighted graph with n
vertices and an edge weight function d : E →

�
>0, given as an input for the

TSP. We say that d satisfies the triangle inequality if, for all x, y, z ∈ V the
following inequality holds:

d({x, y}) 6 d({x, z}) + d({y, z}). (3.2)

Informally speaking, the triangle inequality ensures that no detour can be
cheaper then the direct path between any two vertices. The restriction of the
TSP to input instances obeying the triangle inequality is called the metric TSP
or ∆-TSP. It is possible to show that the metric TSP is also NP-hard. We
consider the so-called spanning tree algorithm for the metric TSP as detailed
in Algorithm 3.1.

Before we will show that the spanning tree algorithm is an approximation
algorithm for the metric TSP, we will illustrate its work with an example.

Example 3.7. We consider the work of the spanning tree algorithm on the
graph with five vertices as shown in Figure 3.2 (a). The edge weights of this
graph obviously obey the triangle inequality. The unique minimum spanning
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Fig. 3.2. An example for the work of Algorithm 3.1

tree is shown in Figure 3.2 (b). Figure 3.2 (c) shows the execution of a depth-
first search in the spanning tree; the resulting Hamiltonian cycle is shown in
Figure 3.2 (d). The cost of this Hamiltonian cycle is 61. In contrast to this,
an optimal Hamiltonian cycle has a cost of only 52, as shown in Figure 3.2
(e). ♦

Now we will prove that the spanning tree algorithm in any case computes
a Hamiltonian cycle that is at most twice as long as the optimal one.

Theorem 3.1. Algorithm 3.1 is a polynomial 2-approximation algorithm for
the metric TSP.

Proof. The computation of a minimum spanning tree as well as the depth-first
search1 are possible in polynomial time; for a detailed analysis, see the refer-
ences in Section 3.4. It is thus obvious that Algorithm 3.1 runs in polynomial
time.

We will now analyze the approximation ratio of the algorithm on an in-
put instance G = (V,E, d). If we delete an arbitrary edge from an arbitrary
Hamiltonian cycle C of G, we get a spanning tree of G. This means that ev-
ery Hamiltonian cycle is as least as expensive as the minimum spanning tree.
Thus, this holds also for the optimal Hamiltonian cycle Hopt, i.e.,

cost(Hopt) > cost(T ). (3.3)

1 Depth-first search is an efficient method for completely traversing a given graph,
for details we refer the reader to the references given in Section 3.4.
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The depth-first search in T traverses each edge exactly twice; thus, the
traversed (non-simple) path P in G has exactly two times the cost of the
constructed minimum spanning tree. The algorithm constructs a Hamiltonian
cycle H = vi1 , . . . , vin

, vi1 from this path by choosing the first occurrence
of each vertex. Thus, in H some subpaths of P , those consisting of already
visited vertices, are cut short by direct edges. Due to the triangle inequality,
the direct edge from a vertex vij

to a vertex vij+1 has at most the weight of
the corresponding subpath in P ; thus,

cost(H) 6 2 · cost(T ). (3.4)

From (3.3) and (3.4) we get

cost(H)

cost(Hopt)
6

2 · cost(T )

cost(T )
= 2.

Thus, Algorithm 3.1 is a 2-approximation algorithm for the metric TSP. ut

As a final remark we note that the best known approximation algorithm
for the metric TSP reaches an approximation ratio of 3

2 .

3.4 Bibliographic Notes

A detailed introduction to the theory of strings is given in the textbooks
by Gusfield [91] and Crochemore and Rytter [54]. An introduction to graph
theory can be found in many good textbooks, such as those by Diestel [58],
Harary [99], and Golumbic [85].

The books by Cormen et al. [51], Hromkovič [105], and Aho et al. [3, 4]
give a good overview of the field of algorithmics. An introduction to com-
plexity theory including a formal definition of the classes P and NP can be
found in the books by Hromkovič [104], Hopcroft et al. [103], and Sipser [181].
The book by Garey and Johnson [79] gives an in-depth description of the
theory of NP-completeness and also a list of many NP-complete problems.
The theory of approximation algorithms is discussed in detail in the books by
Vazirani [196], Hromkovič [105], and Ausiello et al. [18]. The above-mentioned
3
2 -approximation algorithm for the metric TSP goes back to Christofides [43].
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String Algorithms

In this chapter we will present some basic algorithms and data structures for
dealing with strings. This includes methods for the exact comparison of strings
and for finding repetitive structures in strings. While some of the presented
approaches can be used directly for problems arising in molecular biology,
for example, for the search for repeats in a DNA sequence, other methods
presented here will serve as subprocedures for solving more complex problems
in later chapters of this book.

The chapter is organized as follows: We introduce the basic problem of
string matching in Section 4.1, and we present a simple algorithm for it.
Sections 4.2 and 4.3 contain improved algorithmic approaches to the string
matching problem. Section 4.4 is devoted to the presentation of an impor-
tant data structure for handling strings, called suffix tree. We will consider in
Section 4.5 some variants of the string matching problem that can be solved
efficiently using suffix trees. Subsection 4.5.4 deals with another basic prob-
lem: the search for identical substrings in a given string. Finally, Section 4.6
introduces another powerful tool for dealing with strings, the suffix array. The
chapter concludes with a summary in Section 4.7 and some bibliographic notes
in Section 4.8.

4.1 The String Matching Problem

The most elementary problem when dealing with strings is probably the string
matching problem, which consists of finding a (usually short) string, the pat-
tern , as a substring in a given (usually very long) string, the text . This prob-
lem arises in many different applications, also outside of molecular biology,
for example, in text editors or search engines for the Internet. An important
application in molecular biology is the search for a newly sequenced DNA
fragment, possibly coding for a gene, in a genome database. Although one
usually prefers to allow a certain error rate for this search, an algorithm for
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Algorithm 4.1 Naive string matching algorithm

Input: A pattern p = p1 . . . pm and a text t = t1 . . . tn.

I := ∅
for j := 0 to n−m do

i := 1
while pi = tj+i and i � m do

i := i + 1
if i = m + 1 then {p1 . . . pm = tj+1 . . . tj+m}

I := I ∪ {j + 1}

Output: The set I of positions, where an occurrence of p as a substring in t starts.

the exact string matching problem can be used as a subroutine, as we will see
in the context of the FASTA method in Subsection 5.2.1.

First, we give a formal definition of the string matching problem.

Definition 4.1. Let Σ be an arbitrary alphabet. The (exact) string matching
problem is the following computing problem:

Input: Two strings t = t1 . . . tn and p = p1 . . . pm over Σ.
Output: The set of all positions in the text t, where an occurence of the pattern

p as a substring starts, i.e., a set I ⊆ {1, . . . , n−m+ 1} of indices, such
that i ∈ I if and only if ti . . . ti+m−1 = p.

The first naive approach for solving the string matching problem consists
of sliding a window with the pattern p over the text t, and testing for each
position of the window whether this substring of the text coincides with the
pattern. More formally speaking, the algorithm tests for each position i ∈
{1, . . . , n−m} if the condition ti . . . ti+m = p holds (see Algorithm 4.1).

Figure 4.1 shows an example of the work of the naive string matching
algorithm. In the worst case, this algorithm needs m comparisons for each
i, which sums up to an overall running time in O(m · (n −m)). The strings
t = an and p = am make up a worst-case example for this algorithm. Even if
we consider a modification of the algorithm that outputs only the first position
j where tj . . . tj+m−1 = p holds, the naive string matching algorithm has a
running time in O(m·(n−m)), as the input instance t = an−1b and p = am−1b
shows.

Our goal in the following is to find more efficient methods for solving the
string matching problem. We will reach this goal by exploiting the structure
of the pattern or of the text in order to save some comparisons. This general
idea is illustrated by the following example.

Example 4.1. Let t = ababb and p = abb. When comparing p with t1t2t3, we
recognize that p1 = t1 and p2 = t2, but p3 6= t3. Since we know that p1 6= p2,
p2 = t2 implies that shifting the pattern by one position cannot be successful.

♦
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Fig. 4.1. An example for the work of the naive string matching algorithm

In the following sections we will present several different algorithms which
use some preprocessing before starting the actual comparison of the strings.
We will distinguish two classes of methods, depending on whether the pre-
processing is done on the pattern p or on the text t. We will start with some
methods using a preprocessing of p. In Section 4.4 we will then present the
concept of string matching via suffix trees, which is based on preprocessing
the text.

4.2 String Matching Automata

With the first approach, which we will follow in this section, we will show
that, after a clever preprocessing of the pattern, one scan of the text from left
to right will suffice to solve the string matching problem. Furthermore we will
see that the preprocessing can also be realized efficiently; it is possible in time
in O(|p| · |Σ|), where Σ is the alphabet over which the text t and the pattern
p are given. This approach is based on the concept of finite automata. We will
now give a very short definition of finite automata, as much as is needed to
understand the string matching method. A more detailed presentation can be
found, for example, in the textbooks by Hromkovič [104] or Hopcroft et al.
[103].

Informally speaking, a finite automaton can be described as a machine
that reads a given text once from left to right. At each step, the automaton is
in one of finitely many internal states, and this internal state can change after
reading every single symbol of the text, depending only on the current state
and the last symbol read. By choosing the state transitions appropriately, one
can determine from the current state after reading a symbol whether the text
contains the pattern as a suffix. This means that a special automaton can find
all positions in the text t where the pattern p ends.

Definition 4.2. A finite automaton is a quintuple M = (Q,Σ, q0, δ, F ), where
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Fig. 4.2. A finite automaton for the string matching problem with the pattern
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state is marked by a double circle and the initial state is marked by an incoming
unlabeled arrow

• Q is a finite set of states,
• Σ is an input alphabet,
• q0 ∈ Q is the initial state,
• F ⊆ Q is a set of accepting states , and
• δ : Q × Σ → Q is a transition function describing the transitions of the

automaton from one state to another.

We define the extension δ̂ of the transition function to strings over Σ by
δ̂(q, λ) = q and δ̂(q, xa) = δ(δ̂(q, x), a) for all q ∈ Q, a ∈ Σ and x ∈ Σ∗. Thus,

δ̂(q, x) is the state M reaches from the state q by reading x.

We say that the automaton M accepts the string x ∈ Σ∗, if δ̂(q0, x) ∈ F .

To solve the string matching problem we construct a finite automaton,
called string matching automaton, that, for a given pattern p = p1 . . . pm,
accepts all texts ending with the pattern p. We first illustrate the idea of the
construction with an example.

Example 4.2. We construct a string matching automaton M for the pattern
p = aba. We define M = (Q,Σ, q0, δ, F ), where Σ = {a, b}, Q = {0, . . . , 3},
q0 = 0, F = {3}, and δ is given by the following table:

state input symbol following state
0 a 1
0 b 0
1 a 1
1 b 2
2 a 3
2 b 0
3 a 1
3 b 2

The automaton M is shown graphically in Figure 4.2.
On the input t = bababaa the automaton passes through the following

states:



4.2 String Matching Automata 41

Read prefix state of the automaton
λ 0
b 0
ba 1
bab 2
baba 3
babab 2
bababa 3
bababaa 1

We note that, after reading a prefix of t, the automaton is in the accepting
state 3 if and only if the prefix ends with the pattern p = aba. ♦

In the following, we describe a systematic way to construct a finite au-
tomaton for any given pattern p that solves the string matching problem for
p and an arbitrary text t, based on the method shown in the above example.

The idea behind this string matching automaton is the following: For a
pattern p of length m we define a sequence of m + 1 states, connected by
a path of transitions labeled with p. In addition to these transitions, which
are directed from the initial state to the accepting state, we add outgoing
transitions for every state labeled with the respective missing symbols from Σ.
These transitions point in the backward direction or from a state to itself. The
endpoints of these transitions can be determined from the overlap structure
of the pattern with itself.

To describe the overlap structure, we need a variant of the overlap of two
strings as defined in Section 3.1.

Definition 4.3. Let s, t be strings. If there exist some strings x, y, and z from
Σ∗ satisfying the conditions

(i) s = xy,
(ii) t = yz, and
(iii) |y| is maximal with (i) and (ii),

then Ov(s, t) := y is called the generalized overlap of s and t. We denote the
length of Ov(s, t) by ov(s, t).

The generalized overlap needed here differs from the overlap defined in
Definition 3.5 in that any one of the strings s and t is allowed to be a sub-
string of the other. Now we can determine the transition function of a string
matching automaton as follows.

Definition 4.4. Let p = p1 . . . pm ∈ Σm for an arbitrary alphabet Σ. We
define the string matching automaton for p as the finite automaton Mp =
(Q,Σ, q0, δ, F ), where Q = {0, . . . ,m}, q0 = 0, F = {m}, and the transition
function δ is defined by

δ(q, a) = ov(p1 . . . pqa, p) for all q ∈ Q and a ∈ Σ.
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Algorithm 4.2 Construction of a string matching automaton

Input: A pattern p = p1 . . . pm over an alphabet Σ.

for q := 0 to m do

for all a ∈ Σ do

{Compute δ(q, a) = ov(p1 . . . pqa, p)}
k := min{m, q + 1}+ 1
repeat

k := k − 1
until p1 . . . pk = pq−k+2 . . . pqa
δ(q, a) := k

Output: The string matching automaton Mp = ({0, . . . , m}, Σ, 0, δ, {m}).

Thus, the transition function of the string matching automaton for a pat-
tern p can be constructed as shown in Algorithm 4.2.

In the following we will examine the connection between string matching
automata and the calculation of overlaps more formally. We first need the
following lemma.

Lemma 4.1. Let Σ be an alphabet and let n,m ∈ � . Let x = x1 . . . xn ∈
Σn, y = y1 . . . ym ∈ Σm, and a ∈ Σ. If i = ov (x, y), then

ov (xa, y) = ov(y1 . . . yia, y).

Proof. We start by proving the following inequality:

ov (xa, y) 6 ov (x, y) + 1. (4.1)

To prove Inequality (4.1) we distinguish two cases: If ov (xa, y) = 0 holds,
then the proposition is obvious. Thus, let ov (xa, y) = r > 0. Then y1 . . . yr is
a suffix of xa, and thus y1 . . . yr−1 is a suffix of x. This implies ov(x, y) > r−1,
from which Inequality (4.1) follows.

We will now prove the claim of the lemma. From i = ov(x, y) we know
that x = x′y1 . . . yi for some x′ ∈ Σ∗. Furthermore, ov (x′y1 . . . yia, y) =
ov (y1 . . . yia, y) holds, since we know that ov (x′y1 . . . yia, y) 6 i + 1 from
Inequality (4.1). This immediately implies the claim. ut

With Lemma 4.1 we are now able to prove that it is possible to compute
the overlap of all prefixes of an arbitrary text with a pattern p using a string
matching automaton.

Lemma 4.2. Let p = p1 . . . pm ∈ Σm be a pattern and let Mp = (Q,Σ, q0, δ, F )
be the string matching automaton for p. Let t = t1 . . . tn ∈ Σ

n be an arbitrary
text. Then, for all i ∈ {0, . . . , n},

δ̂(q0, t1 . . . ti) = ov (t1 . . . ti, p).
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Proof. We will prove the claim by induction on i. For i = 0 the claim obviously
holds, since δ̂(q0, λ) = q0 = 0 = ov (λ, p). For the induction step from i to i+1
we denote by q the state the automaton has reached after reading t1 . . . ti, i.e.,
q = δ̂(q0, t1 . . . ti). Then,

δ̂(q0, t1 . . . ti+1) = δ(δ̂(q0, t1 . . . ti), ti+1)

= δ(q, ti+1).

Following the definition of the transition function of Mp, this implies

δ̂(q0, t1 . . . ti+1) = ov (p1 . . . pqti+1, p).

From the induction hypothesis we know that q = ov (t1 . . . ti, p), which to-
gether with Lemma 4.1 implies

δ̂(q0, t1 . . . ti+1) = ov (p1 . . . pqti+1, p)

= ov (t1 . . . titi+1, p).

This completes the proof of the claim. ut

Using Lemma 4.2 we are now able to prove that the string matching au-
tomaton for a pattern p really solves the string matching problem for an
arbitrary text t ∈ Σ∗ and the pattern p.

Theorem 4.1. Let p = p1 . . . pm ∈ Σm be a pattern and let Mp = (Q,Σ, q0, δ, F )
be the string matching automaton for p. Let t = t1 . . . tn ∈ Σn be an arbitrary
text. Then, for all i ∈ {1, . . . , n},

p is a suffix of t1 . . . ti ⇐⇒ δ̂(q0, t1 . . . ti) ∈ F.

Proof. The claim immediately follows from Lemma 4.2 and the fact F = {m}.
ut

This theorem enables us to solve the string matching problem using finite
automata, as shown in Algorithm 4.3.

Now that we have seen how the string matching automata can solve the
string matching problem, we will analyze the time complexity of the method.
The construction of the string matching automaton Mp for a given pattern
p = p1 . . . pm ∈ Σm by Algorithm 4.2 needs time in O(|Σ| · m3), since the
automaton for p has exactly m+1 states, and the computation of a transition
needs O(m2) time for every pair of state and input symbol. Nevertheless, there
is a method known to construct the string matching automaton Mp in time
O(|Σ| ·m), but it is quite technical. Therefore we will not present it here, but
refer the reader to the references given in Section 4.8.

The application of Mp on a text t = t1 . . . tn needs time in O(n) since the
automaton reads each symbol of t exactly once. Overall, the string matching
problem for p and t is solvable in time O(n+ |Σ| ·m) using finite automata.
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Algorithm 4.3 String matching with finite automata

Input: A text t = t1 . . . tn ∈ Σn and a pattern p = p1 . . . pm ∈ Σm.

Compute the string matching automaton Mp = (Q, Σ, q0, δ, F ) using Algorithm
4.2.
q := q0

I := ∅
for i := 1 to n do

q := δ(q, ti)
if q ∈ F then

I := I ∪ {i−m + 1}

Output: The set I of those positions where p starts as a substring in t.

This solution to the string matching problem is especially efficient if
the task is to search for a given pattern p of length m in k different texts
t(1), . . . , t(k). In this case one has to construct the string matching automaton
for p only once in time O(|Σ| ·m), and after that the actual search within the
text t(i) is possible in time O(|t(i)|).

4.3 The Boyer–Moore Algorithm

In this section we will present the Boyer–Moore algorithm for the string match-
ing problem. It is based on a similar idea as the naive algorithm, but saves a
lot of comparisons by using clever preprocessing.

Although the time complexity of the Boyer–Moore algorithm can in the
worst case be as high as that of the naive algorithm, in many practical ap-
plications its running time usually is very good. Therefore, it is often used in
practice.

The Boyer–Moore algorithm utilizes the following basic idea. Similarly to
the naive algorithm, it shifts the pattern along the text from left to right and
compares p1 . . . pm with tj+1 . . . tj+m for 0 6 j 6 n − m. But, in contrast
to the naive algorithm, the comparison is done from right to left, i.e., pm is
compared to tj+m first. As soon as a position i occurs where pi and tj+i differ,
the pattern is shifted to the right. The number of positions the pattern can be
shifted without missing an occurrence of p in t is computed using two rules.
To apply these rules efficiently, preprocessing of the pattern is necessary.

The two rules are as follows. The bad character rule says that the pattern
can be shifted to the rightmost occurrence of the symbol tj+i in the pattern.
The good suffix rule claims that the pattern can be shifted to the next occur-
rence of the suffix pi+1 . . . pm in p. On an intuitive level, this means that as we
have already matched a suffix of the pattern, we know the following symbols
in t, and thus we may shift the pattern to a position where this particular
sequence of symbols occurs again. Please note that the bad character rule



4.3 The Boyer–Moore Algorithm 45

PSfrag replacements

a aaaa

aaaa

aaaa

aaaa

a aaaa

a aaaa

b

b

b

bb bbbb

b bb bbbb

b bb bbbb

bb

bb

c

c

cccc

c cccc

c cccc

c

c

p

t

6=

+4

+5

(a)

(b)

(c)

Fig. 4.3. An example for the application of the rules in the Boyer–Moore algorithm:
(a) the comparison of the pattern p with a substring of the text t, the longest identical
suffix of p is shaded grey; (b) the shift of the pattern for the next comparison
according to the bad character rule; (c) the shift according to the good suffix rule

Algorithm 4.4 Preprocessing for the bad character rule

Input: A pattern p = p1 . . . pm over an alphabet Σ.

for all a ∈ Σ do β(a) := 0
for i := 1 to m do β(pi) := i

Output: The function β.

might well propose a shift to the left, but such a shift will never be executed
since the good suffix rule will always propose a shift to the right.

An example for the application of these rules is shown in Figure 4.3. At
each step, the possible shift is calculated according to both rules and the shift
with the larger value is realized.

We show that these rules are correct and efficiently implementable. Let
us start with the bad character rule. For implementing this rule, it suffices to
compute, in a preprocessing step, a function β that assigns the position of its
last occurrence in p to each symbol from Σ (or the value 0, if the symbol does
not occur in p). This computation can be done using Algorithm 4.4.

Algorithm 4.4 obviously has a running time in O(m+ |Σ|).

Lemma 4.3. Let pi+1 . . . pm = tj+i+1 . . . tj+m and pi 6= tj+i = a. Then the
pattern can be shifted for the next comparison, according to the bad character
rule, by i− β(a) positions without missing an occurrence of p in the text t.
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Proof. For the proof we distinguish three cases:

(1) If the symbol a does not occur in p, i.e., if β(a) = 0 holds, the pattern p
can obviously be shifted completely past tj+i; thus, a shift by i−β(a) = i
positions is possible.

(2) If the last occurrence of a in p is at a position k < i, the pattern can be
shifted by i− k = i− β(a) positions to the right.

(3) If the last occurrence of a in p is at a position k > i, the bad character rule
requires a shift of the pattern to the right by i− k positions. Since i− k
is negative in this case, a shift to the left is indicated, which obviously is
not helpful for the algorithm. Such a shift will never be executed since the
good suffix rule always allows for a shift to the right, as we see below. ut

We now consider the good suffix rule. For this rule, an efficient prepro-
cessing step is also possible, for which we need the notion of suffix similarity
of strings.

Definition 4.5. Let s and t be two strings. We say that s is suffix similar to
t, or s ∼ t, if s is a suffix of t or t is a suffix of s.

Intuitively, Definition 4.5 says that s and t can be aligned at their right
ends such that all corresponding symbols are equal.

Using this notation, we reformulate the good suffix rule as follows:

Good Suffix Rule If pi+1 . . . pm = tj+i+1 . . . tj+m and pi 6= tj+i, then shift the
pattern for the next comparison to the right by m − γ(i + 1) positions,
where

γ(i) = max{0 6 k < m | pi . . . pm ∼ p1 . . . pk}.

We will show in the following that we can compute all values γ(i) for all
2 6 i 6 m in time O(|Σ| ·m) using string matching automata.

We will do the computation of γ in two steps. By definition, the following
holds for all 2 6 i 6 m:

γ(i) = max{0 6 k < m | pi . . . pm ∼ p1 . . . pk}

= max{max{0 6 k < m | pi . . . pm is a suffix of p1 . . . pk},

max{0 6 k < m | p1 . . . pk is a suffix of pi . . . pm}}.

These two cases are shown in Figure 4.4.
We start with determining, for all 2 6 i 6 m, the value

γ′(i) = max{0 6 k < m | pi . . . pm is a suffix of p1 . . . pk}.

This is equivalent to solving the following subproblem.

Given a pattern p = p1 . . . pm, compute the last occurrence of each
suffix pi . . . pm of p within p1 . . . pm−1, for 2 6 i 6 m.
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To solve this subproblem we compute the function γ ′ : {2, . . . ,m} →
{0, . . . ,m−1}, where γ ′(i) = max{1 6 k 6 m−1 | pi . . . pm = pk−m+i . . . pk},
if such a k exists, and γ ′(i) = 0 otherwise.

To compute γ′ using string matching automata, we reformulate the above
problem.

Given a pattern p = p1 . . . pm, compute the first occurrence of each
prefix pm . . . pi of pR = pm . . . p1 in pm−1 . . . p1 for 2 6 i 6 m.

This obviously is an equivalent formulation for all 1 6 i 6 m − 1, γ ′(i) =
min{1 6 k 6 m− 1 | pm . . . pi = pk . . . pk−m+i}, if such a k exists.

A first, naive approach for solving this problem could be to construct the
string matching automata for pm . . . pi for all i ∈ {2, . . . ,m} and to apply
them to the text pm−1 . . . p1. But this approach is far too time consuming, as
it needs time in O(|Σ| ·m2). But the string matching automata for pm . . . pi

are very similar for all i. The next lemma shows that it suffices to construct
the automaton for pm . . . p2.

Lemma 4.4. Let Mi = ({0, . . . ,m− i+ 1}, Σ, δi, 0, {m− i+ 1}) be the string
matching automaton for pm . . . pi and let t = t1 . . . tn be an arbitrary text. If
tk . . . tk−m+i is the first occurrence of pm . . . pi in t, the following holds for all
1 6 j 6 k −m+ i:

δ̂i(q0, t1 . . . tj) = δ̂2(q0, t1 . . . tj). (4.2)

If pm . . . pi does not occur as a substring in t, Equation (4.2) holds even for
all 1 6 j 6 n.

Proof. The claim of the lemma directly follows from the construction of the
string matching automata. The outgoing transitions of the firstm−i+1 states
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are the same in both automata, Mi and M2. To get into one of the additional
states in M2, the automaton must have reached the state m − i + 1 before.
But this implies that the automaton has read the substring pm . . . pi. ut

Since we are only interested in the first occurrence of each prefix pm . . . pi,
Lemma 4.4 allows us to simulate the computation of all string matching
automata Mi for 2 6 i 6 m by one computation of M2 by just stor-
ing the sequence of reached states while reading the text pm−1 . . . p1. Let
q0, qm−1, . . . , q1 be this sequence of states. Then γ ′(i) can for all 2 6 i 6 m be
determined as γ′(i) = max{j | qj = i} if the state i was reached while reading
the string pm−1 . . . p1, and as γ′(i) = 0 otherwise.

We will now show how we can use the sequence q0, qm−1, . . . , q1 of states
to compute for all 2 6 i 6 m the value of

γ′′(i) = max{0 6 k < m | p1 . . . pk is a suffix of pi . . . pm},

and thus also the function γ we are actually interested in.
If the string matching automaton M2 for pm . . . p2 ends in state q1 = j

after reading the text pm−1 . . . p1, then pm . . . pj are the last symbols read due
to the construction of the automaton, and j is minimal with this property. In
other words, pm . . . pj is a suffix of pm−1 . . . p1, and pm . . . pj′ is not a suffix of
pm−1 . . . p1 for all j′ < j. This means that pj . . . pm is a prefix of p1 . . . pm−1

and that j is minimal with this property. Thus, we can set γ ′′(i) = m− j + 1
for all 2 6 i 6 j (see Figure 4.4 (b)). For all other values of i, γ ′′(i) = 0 holds.

These considerations can be put together to yield Algorithm 4.5 for com-
puting the function γ for the good suffix rule.

The construction of the string matching automaton needs time inO(|Σ|·m)
as we have seen in Section 4.2; all further steps of Algorithm 4.5 can obviously
be done in time O(m). Thus, the preprocessing for the good suffix rule needs
time in O(|Σ| ·m) overall.

The Boyer–Moore algorithm, as shown in Algorithm 4.6, now combines
the above preprocessing steps with the scanning of the text according to the
two rules.

We now analyze the running time of the Boyer–Moore algorithm. The
preprocessing of the two functions β and γ needs time in O(|Σ| ·m) as shown
above. After each comparison, the pattern is shifted according to these two
rules. Since γ(i) < m− 1 holds for all i, the shift proposed by the good suffix
rule is always positive. But in the worst case it is possible that the pattern is
shifted exactly one position to the right in every step, and the computation of
this shift might even need a comparison of the complete pattern in every step.
This means that the Boyer–Moore algorithm has a worst-case running time in
O(|Σ| ·m+ n ·m), which does not improve over the naive algorithm. On the
other hand, the Boyer–Moore algorithm is quite fast in practice; the worst
case occurs very rarely. By modifying the preprocessing, it is also possible
to guarantee a worst-case running time in O(n +m) (see the bibliographical
notes at the end of this chapter).
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Algorithm 4.5 Preprocessing for the good suffix rule

Input: A pattern p = p1 . . . pm over an alphabet Σ.

1. Construct the string matching automaton M = (Q, Σ, q0, δ, F ) for pm . . . p2.
2. Determine the sequence q0, qm−1, . . . , q1 of states M is traversing while reading

the input pm−1 . . . p1.
3. Compute the function γ′:

for i := 2 to m do γ′(i) := 0
for j := 1 to m− 1 do γ′(qj) := j

4. Compute the function γ′′:

for i := 2 to m do

if i � q1 then

γ′′(i) := m− q1 + 1
else

γ′′(i) := 0

5. Compute the function γ:

for i := 2 to m do γ(i) := max{γ′(i), γ′′(i)}

Output: The function γ.

Algorithm 4.6 Boyer–Moore algorithm

Input: A pattern p = p1 . . . pm and a text t = t1 . . . tn over an alphabet Σ.

1. Compute from p the function β for the bad character rule.
2. Compute from p the function γ for the good suffix rule.
3. Initialize the set I of positions, where p starts in t, by I := ∅.
4. Shift the pattern p along the text t from left to right:

j := 0
γ(m + 1) := m {Good suffix rule not applicable for pm = tj+m}
while j < n −m do

{Compare p1 . . . pm and tj+1 . . . tj+m starting from the right}
i := m
while pi = tj+i and i > 0 do

i := i− 1
if i = 0 then

I := I ∪ {j} {The pattern p starts in t at position j}
{Compute the shift of the pattern according to the bad character rule and
the good suffix rule}
j := j + max{i− β(tj+i), m− γ(i + 1)}

Output: The set I of all positions j in t where the pattern p starts.
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Fig. 4.5. A simple suffix tree for the text t = dabdac

4.4 Suffix Trees

In the preceding sections we have seen how to speed up the search for a solution
for the string matching problem by preprocessing the pattern. In this section
we will see that preprocessing of the text also can be advantageous. We will
present the method of suffix trees which enables us, after a preprocessing of
the text, to solve the string matching problem in linear time with respect to
the length of the pattern. This method can offer a great speedup, especially
in cases where we want to compare many different patterns to the same text.
This problem often occurs in molecular biology; for example, when we want
to compare many newly sequenced DNA fragments to a database of known
DNA sequences. Furthermore, the method is applicable to many variants and
extensions of the string matching problem as we show in the next section.

We know that the pattern occurs in the text if and only if it is the prefix of
a suffix of the text. The idea behind the method of suffix trees is to compute
and to efficiently store information about the suffix structure of the text. We
will start with the definition of a simple variant of suffix trees, also called a
trie in the literature.

Definition 4.6. Let t = t1 . . . tn ∈ Σn be a text. A directed tree Tt = (V,E)
with a root r is called a simple suffix tree for t if it satisfies the following
conditions.

1. The tree has exactly n leaves which are labeled 1, . . . , n.
2. The edges of the tree are labeled with symbols from Σ.
3. All outgoing edges from an inner vertex to its children are labeled with

pairwise different symbols.
4. The path from the root to the leaf i is labeled ti . . . tn. (In this context, the

labeling of a path is the concatenation of the edge labels on this path.)

Figure 4.5 shows a simple suffix tree for the text dabdac as an example.1

Now, a natural question is whether there exists a simple suffix tree for any
arbitrary text t. Unfortunately, this is not the case. A simple suffix tree for a

1 We assume that all edges are directed from the root in direction to the leaves,
and therefore we do not mark the direction of the edges in our figures.
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Algorithm 4.7 Construction of a simple suffix tree

Input: A string t = t1 . . . tn ∈ Σn.

Let t′ := t$ for a symbol $ /∈ Σ, let Σ′ = Σ ∪ {$}.
{Compute a simple suffix tree Tt′ for t′}
Initialize Tt′ with a root r and an empty set of edges.
for i := 1 to n do

{Insert the suffix ti . . . tn$ into the tree}
Starting from the root r, search for a path in Tt′ , labeled with a maximal prefix
ti . . . tji and ending in the vertex xi. {This path is uniquely determined and
does not end in a leaf.}
Add a path xi, yiji+1 , . . . , yin , yin+1 , labeled tji+1 . . . tn$, to the tree, where
yiji+1 , . . . , yin , yin+1 are new, additional vertices.
Label the new leaf yin+1 with i.

Output: The constructed simple suffix tree Tt′ for t′ = t$.

text t exists if and only if no suffix of t is also a prefix of another suffix of t.
Since, if a suffix s is a prefix of another suffix s′, then the path labeled s, which
is uniquely determined according to condition (3), does not end in a leaf of
the tree, contradicting condition (4) of the definition of a simple suffix tree.
Fortunately, there is a simple strategy to extend the applicability of suffix
trees to arbitrary texts. This strategy is to append a new symbol $ /∈ Σ to
the text t, to construct the suffix tree for t$, and to subsequently ignore all
edge labels $. The use of the additional symbol $ guarantees that no suffix of
t$ can be the prefix of another suffix.

Algorithm 4.7 constructs a simple suffix tree for a text t$. In Figure 4.6,
an example for the construction of a simple suffix tree is shown. We will prove
the correctness of Algorithm 4.7 in the following.

Theorem 4.2. Let t = t1 . . . tn ∈ Σn be a string and let $ /∈ Σ. Then Algo-
rithm 4.7 constructs a simple suffix tree for t$.

Proof. We have to show that the graph constructed by Algorithm 4.7 is a
directed tree satisfying conditions (1) to (4) from Definition 4.6. In each step,
only one path, consisting of newly added vertices, is added to the graph via
exactly one new edge. Since the construction starts with a single vertex, which
is a tree, the resulting graph is also a tree after each step. We now show that
conditions (1) to (4) are also satisfied.

(1) The suffixes are inserted into the tree in order of decreasing length. This
ensures that in every step i the vertex xi, where the new path is appended,
is not a leaf. Furthermore, since no suffix of t$ can be the prefix of another
suffix, the path added in step i is nonempty for all i. In each of the n+ 1
steps the number of leaves hence increases by one; thus, condition (1) is
satisfied.
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Fig. 4.6. The construction of a simple suffix tree for the text abab$ using Algorithm
4.7

(2) Condition (2) obviously holds (for the alphabet Σ ′ = Σ ∪ {$}).
(3) Condition (3) follows from the fact that in step i the algorithm searches

for the path of maximal length, starting in the root and labeled with a
prefix of ti . . . tn$, and appends the new path at the end vertex of this
maximal path. If the algorithm would add an edge to xi with a label
a ∈ Σ′ already existing on another outgoing edge of xi, the path to xi

would not be maximal.
(4) Condition (4) directly follows from the construction of the algorithm. ut

If we know a simple suffix tree Tt for the text t, we can easily solve the
string matching problem for t and an arbitrary pattern p. We start in the
root of the tree Tt and search for a path labeled p. If such a path exists, it is
uniquely determined due to condition (3) in the definition of a simple suffix
tree. In this case, p is the prefix of a suffix of t, i.e., it is a substring of t.
Every leaf in the subtree rooted at the end vertex of this path corresponds to
an occurrence of p in t. If there is no path from the root in Tt that is labeled
p, then p obviously is no substring of t.

Using this method we can decide in O(|p|) time whether p is a substring
of t or not. If we want to find all positions where p starts in t, the running
time depends on the size of the subtree rooted at the end vertex labeled p.
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This raises a problem, since the simple suffix tree for a string t can reach a
size in Ω(|t|2), and thus the subtree can be too large for efficient traversal.

Example 4.3. An example where the size of a simple suffix tree is of quadratic
order is the text tn = anbnc for n ∈ � . The simple suffix tree for t3 is depicted
in Figure 4.7 (a). ♦

This problem can be solved by using a more efficient representation of
suffix trees. To shorten the description of a suffix tree we use two ideas. First,
we can eliminate all vertices of outdegree 1 in a suffix tree if we allow for
(nonempty) strings over Σ as edge labels. Second, we do not have to write
down the strings occurring as edge labels. Since all of them are substrings of t,
it suffices to write down their starting and ending positions in t. This shortens
the representation of an edge label of length k if 2 · log2 n 6 k · log2 |Σ|, and
thus k > 2 · log2(n−|Σ|) holds. Note that we need log2 |Σ| bits for coding one
alphabet symbol, which is especially important in the case of large alphabet
sizes. These considerations lead us to the following definition.

Definition 4.7. Let t = t1 . . . tn ∈ Σn be a text. A directed tree Tt = (V,E)
with a root r is called a compact suffix tree for t if it satisfies the following
conditions:

1. The tree has exactly n leaves, labeled 1, . . . , n.
2. Every inner vertex of Tt has at least two children.
3. The edges of the tree are labeled with substrings of t; every substring of

length k is represented by its starting and ending position in t if k >

2 · log2(n− |Σ|) holds.
4. All labels of the edges going out from an inner vertex to its children start

with pairwise different symbols.



54 4 String Algorithms

5. The path from the root to the leaf i is labeled ti . . . tn. Here, the labeling
of a path is understood as the concatenation of the (uncompressed) edge
labels on the path.

As an example, Figure 4.7 (b) shows the compact suffix tree for the text
t3 = a3b3c from Example 4.3. In the following we determine the size of a
compact suffix tree.

Lemma 4.5. Let t = t1 . . . tn ∈ Σn be a text. A compact suffix tree Tt for t
has O(n logn) size.2

Proof. Every suffix tree for t has exactly n leaves. Since Tt is a compact suffix
tree for t, every inner vertex of Tt has at least two children. This implies that
Tt has at most n− 1 inner vertices. Thus Tt has at most 2n− 1 vertices and
hence at most 2n − 2 edges. The label on each edge has length in O(logn);
thus, the representation of Tt needs space in O(n logn) overall. ♦

We will now describe an algorithm that computes a compact suffix tree
for a given string t by first constructing a simple suffix tree for t and then
transforming it into a compact suffix tree. For this algorithm we first need the
following definition.

Definition 4.8. Let t = t1 . . . tn ∈ Σn be a string and let t′ = t$ for a
symbol $ /∈ Σ. Let Tt′ = (V,E) be a (simple or compact) suffix tree for t′

with an edge labeling function label : E → Σ∗. For every vertex x ∈ V , we
define the path label pathlabel (x) as the labeling of the path from the root to
x, i.e., as the concatenation of the (uncompressed) edge labels on the path.
Furthermore, we define the string depth depth of x in Tt′ to be the length of
the path label pathlabel (x), i.e., the string depth is the sum of the lengths of
the (uncompressed) edge labels on the path from the root to x.

Moreover, if Tt′ is a simple suffix tree, we define Pos(x) for every vertex
x ∈ V as the minimal label of a leaf in the subtree of Tt′ rooted at x.

In a simple suffix tree the string depth of a vertex coincides with the usual
graph-theoretic definition of the depth of this vertex, i.e., with the number of
edges on the path from the root to this vertex.

2 In the literature, the size of a compact suffix tree is often given as linear, i.e.,
as in O(n). This results from the use of two different complexity measures. If we
assume that all occurring values are of approximately the same size, we can view
the size as a constant. This is called a measurement according to the uniform
cost measure. If this simplification is not necessary for the analysis, or the size of
the values significantly varies and depends on the input size, we often use the so-
called logarithmic cost measure that takes into account the size of the used values.
This cost measure enlarges the computed complexity by a logarithmic factor.
But one should keep in mind that the input size also has to take into account
this logarithmic factor. For example, the size of an input string s = s1 . . . sn is
n · log2 |Σ| within this model.
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Algorithm 4.8 Construction of a compact suffix tree

Input: A string t = t1 . . . tn ∈ Σn.

1. Let t′ := t$ for a symbol $ /∈ Σ, let Σ′ := Σ ∪ {$}, and compute a simple suffix
tree Tt′ = (V, E) with edge labeling label : E → Σ for t′ using Algorithm 4.7.

2. Eliminate the vertices of degree 2:

Let X := {v ∈ V | v has exactly one child}.
while X 6= ∅ do

Choose an x ∈ X, let y be the parent of x, let z be the child of x.
Replace the edges (y, x) and (x, z) by the edge (y, z) with the label
label(y, z) = label(y, x)label(x, z) and delete the vertex x.

3. Compress the long edge labels:

for all e = (x, y) ∈ E do

if |label(e)| � 2 · log2(n − |Σ
′|) then

{Replace the label of the edge by the corresponding pair of starting and
ending positions in t′}
label ′(e) := [Pos(y) + depth(x),Pos(y) + depth(x) + |label(e)| − 1]

else

label ′(e) := label(e)

Output: The constructed compact suffix tree with edge labeling label ′.

Using the notions from Definition 4.8, we are now able to compute the
edge labels of the compact suffix tree. To determine the compressed label of
an edge we have to find a position in t′ where the uncompressed label of the
edge starts as a substring. For an edge (v, x) in the tree, Pos(x) + depth(v)
gives the first position in t′, where the label of (v, x) starts: Pos(x) is the
starting position of the first (longest) suffix of t′ containing the label of this
edge as a substring, and depth(v) is the number of symbols of this suffix
that have already been read. Based on this idea, Algorithm 4.8 constructs a
compact suffix tree for a given string.

Since the simple suffix tree can be of quadratic size in the length of string
t, Algorithm 4.8 has a worst-case running time in O(n2). But there are algo-
rithms known for constructing a compact suffix tree directly in linear time,
without constructing the simple suffix tree in an intermediate step.

Theorem 4.3. A compact suffix tree for a given string s = s1 . . . sn can be
constructed in O(n logn) time, i.e., in time linear in the size of the suffix
tree. ut

We will not prove Theorem 4.3 here since the known algorithms for linear-
time suffix tree construction are technically quite involved. Instead, we refer
the reader to the references given in Section 4.8.

The following Algorithm 4.9 describes how the string matching problem
can be solved using compact suffix trees. The idea behind this algorithm is to
construct the compact suffix tree for the given text, and to search for a path
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in the suffix tree that starts in the root and is labeled with the given pattern.
If the given pattern ends within the label of the edge (v, x), the labels of all
leaves in the subtree rooted at x correspond exactly to those positions in the
text where the pattern starts as a substring.

We now analyze the time complexity of Algorithm 4.9.

Theorem 4.4. Algorithm 4.9 solves the string matching problem for a text t =
t1 . . . tn and a pattern p = p1 . . . pm over an alphabet Σ in time in O(n log n+
m · |Σ|+k), where k is the number of occurrences of p in t, and |Σ| < n

c
holds

for some constant c > 2.

Proof. Following the considerations above, it is clear that Algorithm 4.9 solves
the string matching problem. The construction of the compact suffix tree is
possible in O(n logn) due to Theorem 4.3. We will in the following analyze the
time used by an appropriate implementation of the remainder of Algorithm
4.9.

The initialization in step 2 can obviously be done in constant time. We now
determine the time necessary for executing the main loop in step 3. We start
by determining the overall time the algorithm needs for finding the correct
child of the current vertex in all executions of step 3 (a). We note that an edge
label of the form [a..b] codes for a substring of length Ω(logn), since |Σ| < n

c

holds, and thus the minimum length 2 · log2(n− |Σ|) of a compressed label is
in Ω(logn). This means that, while reading p, at most O( m

log n
) compressed

edge labels can occur on the path from the root. Reading such a compressed
edge label needs time in O(logn). Every current vertex has up to |Σ| children,
which have all to be checked in the worst case. If the algorithm checks the
children of x in an order where all edges with uncompressed labels precede
those with compressed labels, we can guarantee that compressed edge labels
are only read in steps in which the correct label also is compressed. Computing
such an ordering is obviously possible in O(|Σ|) time. Thus, the reading of
compressed edge labels overall needs time in O( m

log n
· log n · |Σ|) = O(|Σ| ·m).

For all uncompressed edge labels, only the first symbol has to be read to find
the correct edge. Any path from the root to a vertex in the tree at which
it can be decided whether p occurs as a substring in p or not, has at most
m edges. Thus, the algorithm needs at most O(|Σ| · m) time for reading
the uncompressed edge labels. Overall, this implies that finding the correct
outgoing edge for the actual current vertex needs O(|Σ| ·m) time.

The comparison of p with the labels on the correct edges in all executions
of step 3 (b) can be done in O(m) time since every symbol in p is compared
exactly once, and since for the edges with compressed edge labels, only a prefix
of the uncompressed label is considered that does not contain any symbol not
needed for the comparison.

It remains for us to estimate the time complexity for traversing the subtree
whose leaves determine the starting positions of p in t in Step 4. Since this
subtree has exactly k leaves, it has at most 2k− 1 vertices overall, since each
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Algorithm 4.9 String matching with compact suffix trees

Input: A pattern p = p1 . . . pm and a text t = t1 . . . tn over an alphabet Σ.

1. Construct the compact suffix tree Tt′ = (V, E) for t′ = t$, $ /∈ Σ, with root r
and edge labeling function label ′.

2. Initialization:

x := r {Current vertex}
i := 1 {Current position in p}
found := false {Pattern not yet found}
possible := true {Finding the pattern still possible}

3. while not found and possible
a) Search for an edge starting at x, whose label starts with

pi:

fitting := false {Label pi not yet found}
U := set of the children of x {Children of x that still have to be investi-
gated}
while not fitting and U 6= ∅ do

Choose v ∈ U .
if label ′((x, v)) = piα for some α ∈ (Σ ∪ {$})∗ then

fitting := true
label := label ′((x, v))

else if label ′((x, v)) = [k..l] and tk = pi then

fitting := true
l′ := min{l, k + m− i}
label := tk . . . tl′ {Read only the part of the edge label that is neces-
sary for the comparison with the remainder of p}

else

U := U − {v}

b) Compare edge label with that part of p that still has to be
read:

if (pi . . . pm is no prefix of label) and (label is no prefix of pi . . . pm) then

possible := false {p does not occur as a substring in t}
else if label is a prefix of pi . . . pm then

x := v
i := i + |label |

else {pi . . . pm is a prefix of label}
x := v
found := true

4. if found then

Compute the set I of leaf labels in the subtree rooted at x, for example,
using a depth-first search in this subtree.

Output: The set I of positions in t, where p starts as a substring.
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inner vertex has at least two children. Due to the fact that the traversal can
ignore the edge labels, it can be executed in O(k) time. ut

From the running time analysis of Algorithm 4.9 we can conclude that the
use of suffix trees for the string matching problem is especially useful if one
wants to search for several different patterns within the same text. In this
case, the suffix tree has to be constructed only once and each given pattern p
of length m that occurs k times in the text can then be found in O(m · |Σ|+k)
time.

4.5 Further Applications of Suffix Trees

In this section, we will introduce some variants and generalizations of the
string matching problem as well as some other string problems that can be
efficiently solved using suffix trees.

4.5.1 Generalized Suffix Trees and the Substring Problem

This subsection is dedicated to a generalization of suffix trees that can be used
to store information about several different texts. We furthermore present the
substring problem as the first application of these generalized suffix trees. Let
us start with the definition of the problem.

Definition 4.9. The substring problem is the following computing problem:

Input: A pattern p and N texts t1, . . . , tN over an alphabet Σ.
Output: A set I ⊆ {1, . . . , N} of indices such that i ∈ I if and only if p is a

substring of ti.

Database searching is one of the typical applications of the substring prob-
lem, for example, finding all DNA sequences in a given database that contain
a newly sequenced DNA fragment as a substring.

For solving the substring problem efficiently, we construct a suffix tree
that, for a given sequence of texts t1, . . . , tN over an alphabet Σ, contains all
suffixes of the single texts. The idea behind the construction of such a suffix
tree is to first concatenate all texts, separated by pairwise different separator
symbols $1, . . . , $N /∈ Σ. After that we construct a compact suffix tree for the
string t′ = t1$1t2$2 . . . tN$N without compressing the edge labels. This suffix
tree then obviously contains all suffixes of the strings t1, . . . , tN in its path
labels, but the suffixes of the texts t1, . . . , tN−1 do not end in the leaves of the
tree. We will now show that all separator symbols only occur in the labels of
edges incident to the leaves of the tree.

Lemma 4.6. Let the texts t1, . . . , tN over an alphabet Σ be given. Let T
be the compact (uncompressed) suffix tree for t′ = t1$1t2$2 . . . tN$N , where
$1, . . . , $N /∈ Σ are pairwise different. Then the separator symbols $i, 1 6 i 6

N , only occur in the labels of edges incident to a leaf of T .
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Proof. If the separator symbol $i would occur in the label of an edge between
two inner vertices x and y, where x is the parent of y, then at least two
different suffixes w$iu and w$iv would have to exist in t′, since y has at least
two children. But this obviously contradicts the fact that every separator
symbol occurs exactly once in t′. ut

This lemma implies that we can get the desired tree containing all suffixes
of all given texts by deleting, for every edge incident to a leaf, the part of the
label after the first occurrence of a separator symbol. In the resulting tree, we
can then obviously compress all long edge labels as described in Section 4.4
by replacing them with pointers to their starting and ending positions in t′.
We will summarize these considerations in the following definition.

Definition 4.10. Let t1, . . . , tN be texts over an alphabet Σ, and let $1, . . . , $N

/∈ Σ be pairwise different symbols. A generalized suffix tree for t1, . . . , tN is
constructed from a compact, uncompressed suffix tree for t′ = t1$1t2$2 . . . tN$N

by the following steps:

1. Replace every edge label of the form u$iw, where u ∈ Σ∗ and w ∈ (Σ∪{$j |
1 6 j 6 N})∗, with the edge label u$i.

2. Label every leaf with a pair (i, j) consisting of the index of the correspond-
ing text ti and the starting position j of the corresponding suffix in ti.

3. Compress the long edge labels as described in Section 4.4.

In Step 1, the suffix after the first occurrence of a separator symbol is
removed from each edge label. The labeling of the leaves in Step 2 can be
done efficiently as follows: The parameter i is the same as the index of the
separator symbol in the label of the incident edge, and j can be determined
from the leaf label of the compact suffix tree for t′ and the lengths of the given
texts. We will now illustrate Definition 4.10 with an example.

Example 4.4. We consider the two texts aba and ab. Figure 4.8 (a) shows the
compact suffix tree for aba$1ab$2, and Figure 4.8 (b) shows the generalized
suffix tree for aba and ab.

As an example, the label of the leaf (2, 1) can be determined as follows:
The first component of the leaf label is given as the index of the separator
symbol that is the end symbol of the label of the edge incident to the leaf,
i.e., it indicates the text to which the suffix corresponding to the leaf belongs.
The second component indicates the starting position of this suffix in the text;
it can be calculated from the label of the corresponding leaf in the compact
suffix tree, as shown in Figure 4.8 (a), by subtracting the length of the first
text (including the first separator symbol). ♦

Using generalized suffix trees, we can now solve the substring problem in a
way analogous to the one we have described for the string matching problem
using suffix trees in Section 4.4. We first construct the generalized suffix tree
for the given texts and then search for a path starting from the root and
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labeled with the given pattern. If we have found such a path, the leaves of
the subtree beneath this path describe all occurrences of the pattern in the
texts. The desired index set I can thus be determined as the set of all first
components of leaf labels in this subtree, or equivalently as the set of all
indices i such that $i occurs in an edge label in this subtree.

Since the generalized suffix tree has a size in O(n logn), where n denotes
the total length of all texts, and since it can also be constructed in time
O(n log n), with a construction similar to that of the compact suffix tree for
a single text (see the references in Section 4.8), we have the following time
complexity for solving the substring problem.

Theorem 4.5. Let p = p1 . . . pm be a pattern and let t1, . . . , tN , N ∈ � −{0}
be N texts of total length n over an alphabet Σ. Then the substring problem is
solvable in O(n logn+m · |Σ|+k) time, where k is the number of occurrences
of p in t1, . . . , tN , and |Σ| < n

c
holds for some constant c > 2.

Proof. The proof is analogous to that of Theorem 4.4. The construction of the
generalized suffix tree for t1, . . . , tN is possible in O(n logn) time, the search
for the pattern p in the suffix tree needs time in O(m · |Σ|), and the traversal
of the subtree can be done in O(k) time. ut
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Algorithm 4.10 Computation of the longest common substring

Input: A sequence t1, . . . , tN of N strings over an alphabet Σ.

1. Construct the generalized suffix tree T for t1, . . . , tN .
2. Label every inner vertex x of the suffix tree with a subset M(x) ⊆ {1, . . . , N},

such that i ∈M(x) if and only if there exists a leaf labeled (i, j) in the subtree
rooted at x for some arbitrary j, i.e., if a suffix of ti is contained in this subtree.

3. Between all inner vertices of T with label {1, . . . , N}, find a vertex xmax with
maximum string depth, i.e., with depth(xmax) = max{depth(x) | M(x) =
{1, . . . , N}}.

4. Compute αmax as the label of the path from the root of the suffix tree to xmax.

Output: The longest common substring αmax of t1, . . . , tN .

4.5.2 Longest Common Substrings

This subsection is dedicated to determining the longest common substring of
a set of given strings. This task can also be easily and efficiently accomplished
using generalized suffix trees. The problem of finding common substrings oc-
curs in molecular biology, for example, in the context of finding especially
important regions in the DNA sequence: To find regions in the DNA contain-
ing genes which are important for the survival of the organism, we can use
the following approach. We examine the DNA of several closely related organ-
isms. Then we can assume that these DNA sequences agree (almost) perfectly
in those regions necessary for the survival of the organism, since mutations
in these regions are much more improbable than elsewhere. This means that
common substrings can point out important coding regions in the DNA. In
the following, we present a method for finding the longest common substring
of a given set of strings. This problem can formally be posed as follows.

Definition 4.11. The problem of determining the longest common substring
of a given set of strings, the longest common substring problem, is the fol-
lowing optimization problem:

Input: A set M = {t1, . . . , tN} of strings over an alphabet Σ.
Feasible solutions: All strings t that are a substring of ti for all 1 6 i 6 N .
Costs: The costs of a feasible solution t are cost(t) = |t|.
Optimization goal: Maximization.

Algorithm 4.10 solves the longest common substring problem. For any
vertex x of the suffix tree, depth(x) denotes the sum of the lengths of the edge
labels on the path from the root to the vertex x, as defined in Definition 4.8.

Before proving the correctness of Algorithm 4.10, we illustrate its work
with an example.

Example 4.5. Let the strings t1 = bcabcac, t2 = aabca, and t3 = bcaa be given.
A generalized suffix tree for t1, t2, and t3 is shown in Figure 4.9. The boxed
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Fig. 4.9. The determination of a longest common substring for the strings t1 =
bcabcac, t2 = aabca, and t3 = bcaa using Algorithm 4.10

numbers in the figure show the string depth depth(z) for every inner vertex z.
Furthermore, for every inner vertex z, the set M(z) constructed in step 2 of
Algorithm 4.10 is shown. The algorithm now determines the vertex with the
greatest string depth, whose M -set contains the indices of all input strings. In
our example this is the vertex x with string depth depth(x) = 3. The longest
common substring, in our example the string bca, can now be read as the path
label on the path from the root to the vertex x.

This example shows that it is important to use the string depth, i.e., the
total length depth(x) of all edge labels on the path from the root to the vertex
x, as a measure for the depth of a vertex x, and not, for example, the number
of edges on this path. The deepest vertex according to the latter measure
is the vertex y, whose path label corresponds to the non-maximal common
substring ca. ♦

Theorem 4.6. Let N strings t1, . . . , tN , N ∈ � − {0}, of total length n over
an alphabet Σ be given. Then, Algorithm 4.10 computes the longest common
substring of t1, . . . , tN in O(n · (logn+N · (N + |Σ|))) time.

Proof. We first show that Algorithm 4.10 computes the longest common sub-
string for t1, . . . , tN . Let, for every vertex x of the generalized suffix tree, α(x)
be the path label on the path from the root to the vertex x. Then i ∈ M(x)
holds if and only if α(x) is a prefix of a suffix of ti. Thus, α(x) is a common
substring of all strings ti with i ∈M(x). Hence, α(x) is a common substring
of t1, . . . , tN if and only if M(x) = {1, . . . , N} holds. Since xmax is chosen by
the algorithm such that αmax = α(xmax) is the longest substring with this
property, αmax is a longest common substring.
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We will now analyze the running time of Algorithm 4.10. The construction
of the generalized suffix tree needs time in O(n log n). The labeling of the
inner vertices can be done bottom-up, starting with the leaves. The label of
an arbitrary inner vertex x can be computed as the union of the sets of labels
of its children. Since the separator symbols can only occur in the labels of
edges incident to a leaf of the generalized suffix tree according to Lemma 4.6,
only the parent vertex of a leaf can have up to N + |Σ| children. All other
inner vertices have at most |Σ| children. Thus, for the parent vertices of the
leaves, a union of up to N+ |Σ| sets has to be constructed, while, for all other
inner vertices, a union of at most |Σ| sets of cardinality 6 N . In total, this
needs time in O(n · (N + |Σ|) ·N +n · |Σ| ·N) = O(n ·N · (N + |Σ|)). For the
execution of Algorithm 4.10, we only need the information whether or not,
for a given vertex x, the set M(x) equals the set {1, . . . , N} of all indices; we
can easily store this information in every inner vertex while constructing the
sets M(x). Then, checking this condition is possible in constant time for every
vertex x. Finding the vertex xmax and reading αmax is thus obviously possible
in linear time with respect to the size of the suffix tree, i.e., in O(n log n). ut

One can easily see that the above method can be generalized to compute
the longest common substring of at least k of the givenN strings. Furthermore,
the starting positions of all occurrences of the longest common substring in
t1, . . . , tN can also be computed using this method.

Moreover, this approach can be used to compute all common substrings
of a given length l. This can be done by outputting the path labels of all
paths leading to a vertex with label {1, . . . , N} and string depth l. This task
is motivated for N = 2 by the biological problem of DNA contamination. If
a DNA sequence is duplicated by cloning, it is often contaminated by parts
of the DNA of the host organism. If the DNA sequence of the host organ-
ism is known, one can test after duplication, whether the duplicated DNA is
contaminated by comparing it to the host DNA and searching for common
substrings exceeding a certain length threshold.

4.5.3 Efficient Computation of Overlaps

In this subsection we will present an efficient method for computing all pair-
wise overlaps for a given set of strings using generalized suffix trees. The
computation of all pairwise overlaps is an important subproblem whose so-
lution is used in some approaches for DNA sequencing. We will discuss this
issue in greater detail in Chapter 8.

The naive computation of the overlap of two strings of lengths n and m,
as used in Algorithm 4.2 for computing the transition function of a string
matching automaton, needs time in O((min{n,m})2). For the computation
of all pairwise overlaps of N strings of approximately the same size n

N
, this

approach would give us an algorithm with running time in O(N 2 · ( n
N

)2) =
O(n2), where n is the total length of all given strings. Using generalized suffix
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Algorithm 4.11 Computation of all pairwise overlaps

Input: A sequence t1, . . . , tN of N strings over an alphabet Σ.

1. Construct the generalized suffix tree T for t1, . . . , tN with root r.
2. Label each inner vertex x of the suffix tree with a subset L(x) ⊆ {1, . . . , N},

such that i ∈ L(x) holds if and only if x is incident to an edge with label $i.
3. for j := 1 to N do

x := r
while x is no leaf do

for all i ∈ L(x) do

if depth(x) < min{|ti|, |tj |} then

u(ti, tj) := depth(x)
U(ti, tj) := pathlabel (x)

x := child of x on the path with label tj$j

Output: The overlaps Ov(ti, tj) = U(ti, tj) and their lengths ov(ti, tj) = u(ti, tj),
for all i, j ∈ {1, . . . , N}.

trees, the time complexity can be reduced significantly, as we will show with
the following Algorithm 4.11, which solves this task in O(n · (logn+ |Σ|+N))
time.

Before proving the correctness of Algorithm 4.11 and estimating its run-
ning time, we will illustrate its work with an example.

Example 4.6. We want to compute the pairwise overlaps of the strings t1 =
aba, t2 = bab, and t3 = aabb. According to Algorithm 4.11, we first construct
a generalized suffix tree for these strings. This suffix tree is shown in Figure
4.10. To enhance readability, the labels of the leaves are not shown since they
are not used by this algorithm. For every inner vertex x, the set L(x) and the
string depth depth(x) are annotated; the latter is shown boxed.

We will now show, as an example, how the algorithm computes the overlap
of t2 with t1 in Step 3. In this case, j = 1 and i = 2. The algorithm starts
in the root r of the suffix tree. Since r is not a leaf, i is contained in L(r),
and depth(r) = 0 < 3 = min{|t2|, |t1|} holds; it defines u(t2, t1) = 0 und
U(t2, t1) = λ. Then the algorithm proceeds to the next vertex on the path
with label t1, in this example, vertex y. Since 2 /∈ L(y), u and U are not
modified here, but the algorithm proceeds to vertex z, which is the next vertex
on the path labeled t1. The index 2 is contained in L(z), and depth(z) =
2 < 3 = min{|t2|, |t1|} holds; thus, u(t2, t1) = depth(z) = 2 and U(t2, t1) =
pathlabel (z) = ab are defined. The next vertex visited by the algorithm is
already a leaf; hence the algorithm outputs the correct result ov (t2, t1) =
u(t2, t1) = 2 and Ov(t2, t1) = U(t2, t1) = ab. ♦

Theorem 4.7. Let t1, . . . , tN be N strings, N ∈ � − {0}, of total length n
over an alphabet Σ. Then Algorithm 4.11 computes all pairwise overlaps in
time O(n · (logn+ |Σ|+N)).
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Proof. We will first prove the correctness of Algorithm 4.11. If i ∈ L(x) for an
inner vertex x of the suffix tree and i ∈ {1, . . . , N}, then the label pathlabel (x)
of the path from the root to x is a suffix of ti. This holds since the vertex x
is incident to an edge labeled with the separator symbol $i according to the
definition of L(x), and is thus adjacent to a leaf labeled (i, k) for some k. Since
pathlabel (x) is also a prefix of tj , if x lies on the path labeled tj$j , pathlabel (x)
denotes a (not necessarily maximal) overlap of ti and tj . On the other hand,
following the construction of a suffix tree, all possible overlaps of ti and tj
can be described in this way. This implies that the algorithm determines the
correct overlap, since it computes the overlap of ti with tj as pathlabel (x) for
the deepest vertex x on the path labeled by tj$j , for which i ∈ L(x) holds and
for which the length depth(x) of the path label on the path from the root to
x is still smaller as the lengths of ti and tj . The latter condition guarantees
that neither ti is a substring of tj nor vice versa. Please note that initializing
the values u(ti, tj) and U(ti, tj) is not necessary since for each j the algorithm
starts in the root r, for which L(r) = {1, . . . , N} holds, and hence the overlap
is initialized with λ at this stage of the algorithm..

Now we will analyze the time complexity of the algorithm. The construc-
tion of the generalized suffix tree is again possible in O(n logn) time. The
calculation of the sets L(x) needs time in O(N + |Σ|) for each vertex, sum-
ming up to O(n·(N+|Σ|)) in total. Thus, it remains for us to analyze the time
complexity of step 3. Since the total length of all given strings is n, the total
length of all explored paths is in O(n). Furthermore, the total cardinality of all
sets L(x) is also in O(n), since every occurrence of an index in a set L(x) corre-
sponds to a certain suffix of ti. Thus, in Step 3 at most O(n) values are changed
overall. The time for finding the correct paths also depends on the number of
children of the visited vertices. Every vertex can have at most |Σ| +N chil-
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dren; this corresponds to the size of the alphabet, extended by the separator
symbols. This means that the computation of the correct paths needs overall
time in O(n · (|Σ|+N)). For the complete algorithm, this results in a running
time in O(n log n+n·(N+|Σ|)+n+n·(|Σ|+N)) = O(n·(logn+|Σ|+N)). ut

4.5.4 Repeats in Strings

The search for repeated substrings, repeats for short, in a given DNA sequence
is another interesting biological task. Knowing these repeats can be helpful for
designing improved models or algorithms in many biological applications. We
distinguish between exact repeats , where the same substring occurs several
times in the given sequence, and approximate repeats , where very similar,
but not necessarily the same, substrings occur several times. Furthermore, we
distinguish overlapping and disjoint (i.e., nonoverlapping) repeats.

Exact repeats, where overlaps are allowed, can be efficiently determined
using suffix trees as we will show in the following. Since, with any string x, also
every substring of x is an exact repeat, we are mainly interested in maximal
repeats that cannot be expanded at their ends. We will start with the formal
definition of exact repeats.

Definition 4.12. Let t = t1 . . . tn ∈ Σn and p = p1 . . . pm ∈ Σm be strings
with 0 < m 6 n. Let t0 = tn+1 = $ /∈ Σ. Then p is an exact repeat in t if there
exist i, j with 0 6 i, j 6 n− 1, i 6= j, and p = ti+1 . . . ti+m = tj+1 . . . tj+m. If,
furthermore, ti 6= tj and ti+m+1 6= tj+m+1 holds, p is called a maximal exact
repeat in t.

In the remainder of this section we only consider exact repeats, and we will
call them repeats for brevity. First, we formally define the problem of finding
maximal repeats.

Definition 4.13. The problem of determining all maximal exact repeats (re-
peat search problem) is the following computing problem:

Input: A string t = t1 . . . tn over an alphabet Σ.
Output: The set R of all maximal exact repeats in t.

Again, we will utilize the concept of a suffix tree for this task. The following
lemma shows the connection between maximal repeats for a string t and the
suffix tree for it.

Lemma 4.7. Let t be a string, T be the compact suffix tree for t, and p be
a maximal repeat in t. Then there exists an inner vertex x in T with p =
pathlabel (x).

Proof. Let p = p1 . . . pm. Since p is a maximal repeat, there are two different
positions i and j in t, such that p = ti+1 . . . ti+m = tj+1 . . . tj+m and ti+m+1 6=
tj+m+1 hold. Hence there are two different substrings in t starting with p; thus,
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the vertex y with p = pathlabel (y) has to have at least two children in a simple
suffix tree for t. This implies that the compact suffix tree T for t contains an
inner vertex x with p = pathlabel (x). ut

Lemma 4.7 implies the following claim about the possible number of max-
imal repeats.

Corollary 4.1. Let t = t1 . . . tn ∈ Σn be a string. Then there are at most
n− 1 maximal repeats in t.

Proof. The compact suffix tree T for t has n leaves and thus at most n − 1
inner vertices. ut

Note that it is nevertheless possible that several different maximal repeats
in a string t share the same starting position: In the string t = aabcbabacabcc,
for example, both ab (due to aabcbabacabcc) and abc (due to aabcbabacabcc)
are maximal repeats.

In the following, we present a method for finding those inner vertices of a
suffix tree whose path labels correspond to maximal repeats. For this, we will
need the following definition.

Definition 4.14. Let t = t1 . . . tn ∈ Σn be a string and let 2 6 i 6 n. Then
ti−1 is called the left-symbol of i.

Let T be a suffix tree for t and let x be a leaf of T . Then the left-symbol of
x is defined as the left-symbol of the starting position of the suffix pathlabel (x).
Let v be an inner vertex of T . Then v is called left-diverse if the subtree rooted
at v contains two leaves with different left-symbols.

Note that, together with a vertex v, all of its ancestors in the suffix tree are
left-diverse. The property of left-diversity now gives us a criterion for finding
the maximal repeats.

Theorem 4.8. Let t = t1 . . . tn ∈ Σn be a string and let T be a compact suffix
tree for t with root r. Then a string p ∈ Σ∗ is a maximal repeat in t if and
only if there exists a left-diverse vertex x 6= r in T with p = pathlabel (x).

Proof. We show first that the path label of a left-diverse vertex always is a
maximal repeat. Let x be a left-diverse vertex with path label p. Then there
exist two leaves y1 with left-symbol a and y2 with left-symbol b in the subtree
rooted at x, such that a 6= b holds.

If the paths from x to y1 and y2 are disjoint, as shown in Figure 4.11 (a),
then there are two substrings apcw1 and bpdw2 of t, where c, d ∈ Σ and c 6= d
hold. This implies that p is a maximal repeat in this case.

If the paths from x to y1 and y2 are not disjoint, i.e., if the labels of both
paths start with the same symbol c ∈ Σ, then there exists a further path
from x to another leaf y3 with left-symbol e, whose label starts with a symbol
d 6= c, since x is an inner vertex of a compact suffix tree. This situation is
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shown in Figure 4.11 (b). Also in this case p is a maximal repeat in t because
of the substrings epd and apc occurring in t if e 6= a holds, or because of the
substrings epd and bpc if e 6= b holds.

It remains for us to show that a maximal repeat p always corresponds to
the path label of a left-diverse vertex. From Lemma 4.7 we know that there
exists a vertex x in T with pathlabel (x) = p. But the vertex x also has to
be left-diverse, since there have to exist two starting positions of p in t with
different left-symbols. ut

Since the property of left-diversity is passed from one vertex to all its
successors, the left-diverse vertices of a compact suffix tree can be computed
in linear time, starting from the parents of the leaves. For this computation
we just have to store in each inner vertex x either the unique left-symbol
in all leaves of the corresponding subtree or the fact that x is left-diverse.
We can then deduce the left-diversity of a vertex from information about its
children. Thus, the repeat search problem can be solved efficiently according to
Theorem 4.8. Furthermore, Theorem 4.8 suggests a compact representation of
the set of all maximal repeats. If we delete vertices from the suffix tree for the
given string that are not left-diverse, we get a subtree where the path labels
are in one-to-one correspondence with the maximal repeats. For a given string
of length n, this representation is of size O(n log n), although the total length
of all maximal repeats can be of order Ω(n2).

4.6 Suffix Arrays

In this section, we consider another very useful data structure for dealing with
strings, the so-called suffix array. The suffix array for a given string is a linear
array containing all suffixes of the string in lexicographical order. Similarly
to suffix trees, suffix arrays can also be used for efficiently solving the string
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matching problem, as well as for solving several other string problems. For
convenience, we consider the uniform cost measure for measuring the time
complexity of our algorithms throughout this section; for example, we will
assume that any comparison of numbers can be performed within constant
time.3

We start with the formal definition of the lexicographical order of strings.

Definition 4.15. Let Σ = {a1, . . . , ak} be an alphabet with a linear ordering
a1 ≺ . . . ≺ ak on its symbols. Let s = s1 . . . sn and t = t1 . . . tm be two strings
over Σ. Then, s is lexicographically smaller than t, written as s ≺lex t, if
there exists an index j 6 min{m,n} such that s1 . . . sj−1 = t1 . . . tj−1 and
either sj ≺ tj or j = n < m.

A sequence of strings p1, . . . , pl over Σ is said to be in lexicographical
order, if p1 ≺lex . . . ≺lex pl holds.

We are now ready to define the suffix array for a given string. We assume
for the remainder of this section that all alphabets used are ordered; thus, the
lexicographical order of the considered strings is always well defined.

Definition 4.16. Let s = s1 . . . sn be a string over an ordered alphabet.
The suffix array for s is an array A(s) = (j1, . . . , jn) of indices such that
s[j1, n] ≺lex s[j2, n] ≺lex . . . ≺lex s[jn, n] holds.4

We illustrate this definition with an example.

Example 4.7. Consider the string s = ababbabbb. If we assume a ≺ b, this
implies the following lexicographical order of the suffixes of s:

s[1, 9] = ababbabbb
s[3, 9] = abbabbb
s[6, 9] = abbb
s[9, 9] = b
s[2, 9] = babbabbb
s[5, 9] = babbb
s[8, 9] = bb
s[4, 9] = bbabbb
s[7, 9] = bbb

From this order we can directly read out the suffix array

A(s) = (1, 3, 6, 9, 2, 5, 8, 4, 7)

for the string s. ♦

3 Using the logarithmic cost measure and thus taking into account the actual length
of the numbers involved, as we did it in the previous sections for the suffix tree
algorithms, would result in an increase in the running time by a logarithmic
factor.

4 Please recall that s[i, j] denotes the substring si . . . sj of s according to Definition
3.4.
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Algorithm 4.12 String matching using a suffix array

Input: A text t and a pattern p over an ordered alphabet Σ, and a suffix array A(t)
for the text t.

1. Use binary search to find the first position i and the last position j in the suffix
array such that p starts as a substring in t at positions A(t)[i] and A(t)[j].

2. I := {A(t)[i],A(t)[i + 1], . . . ,A(t)[j]}.

Output: The set I of all positions, where p starts as a substring in t.

If we are given a suffix array for a text t, we can very efficiently solve the
string matching problem for t and any pattern p. Due to the lexicographical
ordering of the suffixes, all suffixes starting with the pattern p appear con-
secutively within the suffix array. Thus, the string matching problem can be
solved very efficiently using binary search in the suffix array as shown in detail
in Algorithm 4.12.

Theorem 4.9. Algorithm 4.12 solves the string matching problem for a text
t = t1 . . . tn and a pattern p = p1 . . . pm over an ordered alphabet Σ in
O(m log n+ k) time, where k is the number of occurrences of p in t.

Proof. It is immediate from the definition of a suffix array that the algorithm
solves the string matching problem. We will now analyze its time complexity.
The binary search needs O(logn) steps; in each step the pattern has to be
compared to the respective substring of t given by the suffix array. Each of
these comparisons needs at most O(m) time. Thus, Step 1 of the algorithm
can be implemented in O(m logn) time. Outputting all k positions obviously
needs time in O(k). ut

Theorem 4.9 implies that the string matching problem can be solved very
efficiently once we are given a suffix array of the text. In the following we
present an efficient algorithm for constructing a suffix array for a given string.
We start with describing a special sorting strategy for integer values, the
radix sort algorithm, which we need as a subprocedure in our algorithm. The
radix sort algorithm is a stable sorting algorithm in the sense of the following
definition.

Definition 4.17. Let A be some sorting algorithm for integer values. A is
called stable, if any two items with the same value appear in the same order
in the sorted output as in the input.

We first describe a well-known sorting strategy for efficiently sorting an
array of integers from a limited range of values. This sorting method is called
counting sort (or bucket sort), and it is based on counting the number of
occurrences in the input for each element of the value range. This method is
shown in detail in Algorithm 4.13.
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Algorithm 4.13 Counting Sort

Input: An array A = (A(1), . . . , A(n)) of integers from the range {0, . . . , k}.

1. Counter initialization:

for i := 0 to k do

c(i) := 0

2. Count the number of elements of each type:

for j := 1 to n do

c(A(j)) := c(A(j)) + 1

3. Count the number of elements less or equal to i:

for i := 1 to k do

c(i) := c(i) + c(i − 1)

4. Calculate the position of each element in the sorted array:

for j := n downto 1 do

B(c(A(j))) := A(j)
c(A(j)) := c(A(j))− 1

Output: The sorted array B = (B(1), . . . , B(n)).

Lemma 4.8. Algorithm 4.13 is a stable algorithm for sorting an array of n
integers from the range {0, . . . , k} with running time in O(n + k).

Proof. Obviously, Algorithm 4.13 correctly sorts the given input array in time
O(n + k). We now show that it also is a stable sorting algorithm. After Step
3, the counter c(i) contains the last position that will contain value i in the
sorted array, for all i ∈ {0, . . . , k}. In Step 4, the elements from A are inserted
into their respective last possible positions in B in descending order, i.e., from
A(n) to A(1); thus the order of elements with the same value is not changed.

ut

We now use Algorithm 4.13 as a subprocedure in our radix sort algorithm
for sorting arbitrary integers. We assume that the input numbers are given in
k-ary notation for some k, for example, in decimal representation. The idea
behind the radix sort algorithm is to sort the numbers according to each digit
of their representation, starting with the least significant digit. This method
is shown in detail in Algorithm 4.14. We assume that the index 1 corresponds
to the least significant digit.

Theorem 4.10. Algorithm 4.14 sorts a given array A = (a1, . . . , an) of inte-
gers of length d in k-ary representation in time O((n + k) · d).

Proof. The time complexity of Algorithm 4.14 is a direct consequence of the
time complexity of Algorithm 4.13. We now show that Algorithm 4.14 cor-
rectly sorts its input by using induction on the length d of its input numbers.
Obviously, the algorithm gives the correct result for d = 1. For numbers of
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Algorithm 4.14 Radix Sort

Input: An array A = (a1, . . . , an) of integers of length d in k-ary representation.

for i := 1 to d do

Sort A according to the i-th digit using Algorithm 4.13.

Output: The sorted array.

length d, the algorithm ignores the most significant digit during the first d−1
iterations of the for loop and thus sorts the numbers correctly according to
the d − 1 least significant digits due to the induction hypothesis. In the last
iteration, the numbers are sorted according to the most significant digit us-
ing Algorithm 4.13, which is a stable sorting algorithm according to Lemma
4.8. This stability implies that the numbers are correctly sorted after the last
iteration. ut

We are now ready to present an efficient algorithm for constructing a
suffix array. It is called skew algorithm, and it is based on the following idea:
For a given string s, the algorithm first recursively constructs a suffix array
A1,2 = A1,2(s) for two thirds of all suffixes, more precisely, for all suffixes
with starting positions i 6≡ 0 (mod 3). With the help of this array A1,2, it
then constructs a second suffix array A0 = A0(s) for all suffixes with starting
positions i ≡ 0 (mod 3). In the last step, it merges these two arrays into one.

The main idea behind this algorithm is a clever implementation of the
merging step. For merging the two constructed arrays, we have to succesively
compare the elements from both arrays to each other. The idea is to compare
a suffix s[j, n] with j ≡ 0 (mod 3) to a suffix s[i, n] with i ≡ 1 (mod 3) by
comparing the pairs (sj , s[j+1, n]) and (si, s[i+1, n]). This pair representation
enables us to perform the comparison in constant time since both j + 1 6≡ 0
(mod 3) and i+ 1 6≡ 0 (mod 3), and thus their relative order is already given
by A1,2. Analogously, a suffix s[j, n] with j ≡ 0 (mod 3) and a suffix s[i, n]
with i ≡ 2 (mod 3) can be compared in constant time by comparing the
triples (sj , sj+1, s[j + 2, n]) and (si, si+1, s[i+ 2, n]).

The skew algorithm is presented in more detail in Algorithm 4.15. For
analyzing its correctness and running time, we first need a more detailed
description of Step 4 of the algorithm. Merging two sorted arrays can be easily
done in linear time5 if it is possible to compare two elements in constant time.
We now show that, after a linear-time preprocessing step, we are indeed able
to compare an element from A1,2 to an element from A0 in constant time. For
this, we first need the following definition of an inverse suffix array.

5 We can use the merge phase of the well-known mergesort algorithm which is
described for instance in Chapter 2.3.1 of [51].
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Algorithm 4.15 Skew algorithm for constructing a suffix array

Input: A string s = s1 . . . sn over the ordered alphabet {1, . . . , n}.

1. Initialization:
a) Define sn+1 := 0, sn+2 := 0, and sn+3 := 0, and let s denote the string

s1 . . . sn+3.
b) Let Si := si . . . sn be the i-th suffix of s for all 0 � i � n + 1.
c) Let ki = max{k � n + 1 | k ≡ i (mod 3)}, for i ∈ {1, 2};

let li := |{k � n + 1 | k ≡ i (mod 3)}|, for i ∈ {1, 2}.
2. Construct the suffix array A1,2 for the set S1,2 of all suffixes Si such that i 6≡ 0

(mod 3):
a) Let ti := s[i, i + 2] for all 0 � i � n + 1 such that i 6≡ 0 (mod 3).
b) Sort the triples ti, for all i � max{k1, k2}, i 6≡ 0 (mod 3), using radix sort

(Algorithm 4.14).
c) Assign lexicographical names t′i ∈ {1, . . . , d 2

3
(n + 1)e} to the triples, i.e.,

define the t′i such that t′i = t′j if ti = tj , and t′i < t′j if ti ≺lex tj .
d) If all t′i are distinct, construct A1,2 directly from the order of the ti; else,

recursively compute the suffix array Ã for the string

s̃ = s̃1 . . . s̃l1+l2 := t′1t
′
4t

′
7 . . . t′k1

· t′2t
′
5t

′
8 . . . t′k2

and construct A1,2 from Ã by substituting the indices of the t′i for the
indices of the s̃j .

3. Construct the suffix array A0 for the set S0 of all suffixes Si such that i ≡ 0
(mod 3):
a) Represent Si by the pair (si, Si+1) for all 1 � i � n such that i ≡ 0 (mod 3).
b) Consider the order of S0 as given by the order of the second component of

its elements in A1,2, and sort S0 by counting sort (Algorithm 4.13) with
respect to the first components.

4. Merge the two suffix arrays A1,2 and A0 into a suffix array A(s).

Output: The constructed suffix array A(s).

Definition 4.18. Let A be a suffix array for a string s = s1 . . . sn. The inverse
suffix array for s is an array A such that A(i) = j if and only if A(j) = i, for
all 1 6 i 6 n.

Intuitively speaking, the j-th entry A(j) of the inverse suffix array de-
scribes the position of element j in the suffix array A. Thus, the inverse suffix
array enables us to determine the relative order of two given elements within
a given suffix array in constant time. Obviously, the inverse suffix array can be
constructed from the suffix array in linear time. The following lemma shows
that it can be used for comparing elements from A0 and A1,2 in constant
time.

Lemma 4.9. Let s = s1 . . . sn be a string over the ordered alphabet {1, . . . , n}
and let A1,2 and A0 be the suffix arrays constructed in steps 2 and 3 of Al-

gorithm 4.15. If the inverse suffix array A
1,2

corresponding to A1,2 is given,
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then any suffix corresponding to an element from A0 can be compared to any
suffix corresponding to an element from A1,2 in constant time.

Proof. For the proof we distinguish two cases. To compare a suffix Sj with
j ≡ 0 (mod 3) to a suffix Si with i ≡ 1 (mod 3), we represent Sj by the
pair (sj , Sj+1) and Si by the pair (si, Si+1). Both Sj+1 and Si+1 correspond
to entries from A1,2, since j + 1 ≡ 1 (mod 3) and i + 1 ≡ 2 (mod 3). Their
relative order is given by their positions in A1,2, which can be determined in

constant time from A
1,2

.
To compare a suffix Sj with j ≡ 0 (mod 3) from A0 to a suffix Si with

i ≡ 2 (mod 3), we represent Sj by the triple (sj , sj+1, Sj+2) and Si by the
triple (si, si+1, Si+2). In this case, both Sj+2 and Si+2 correspond to entries
from A1,2, since j+2 ≡ 2 (mod 3) and i+2 ≡ 1 (mod 3). Their relative order

is thus given by their positions in A1,2, and can again be read from A
1,2

in
constant time. ut

Before we proceed with proving the correctness of the skew algorithm and
analyzing its running time, we illustrate its work on two examples. We start
with a simple example which does not need any recursion.

Example 4.8. We consider the string s = 12123221. The second step of the
algorithm constructs a suffix array for all suffixes starting at positions i 6≡ 0
(mod 3). The following table shows the suffixes, the corresponding triples ti,
and their lexicographical names t′i as constructed in Step 2 of the algorithm.

i si Si ti t′i
1 1 12123221 121 2
4 2 23221 232 5
7 2 21 210 3
2 2 2123221 212 4
5 3 3221 322 6
8 1 1 100 1

Since in this example all ti are different, all t′i are also different, and the
algorithm can directly construct the suffix array A1,2 = (8, 1, 7, 2, 4, 5).

In Step 3, the algorithm constructs a suffix array for all suffixes starting
at positions i ≡ 0 (mod 3). These suffixes and their pair representations as
used by the algorithm are shown in the following table.

i si Si (si, Si+1)
3 1 123221 (1, S4)
6 2 221 (2, S7)

The suffixes S4 and S7 appear in A1,2 in the order S7, S4; the algorithm
therefore stably sorts the sequence (2, S7), (1, S4) with respect to the first
component, and thus computes the suffix array A0 = (3, 6) in Step 3.
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In Step 4, the algorithm merges the two suffix arraysA1,2 = (8, 1, 7, 2, 4, 5)
and A0 = (3, 6). The pair and triple representations of the suffixes used for
the comparisons are shown in the following table.

i (si, Si+1) (si, si+1, Si+2)
3 (1, S4) (1, 2, S5)
6 (2, S7) (2, 2, S8)
1 (1, S2)
4 (2, S5)
7 (2, S8)
2 (2, 1, S4)
5 (3, 2, S7)
8 (1, 0, S10)

The first comparison performed by the algorithm is between S8 and S3. Since
8 ≡ 2 (mod 3), the triple representation is used for this comparison. S8 =
(1, 0, S10) ≺lex (1, 2, S5) = S3 holds due to the second component of the
triples. Thus, the suffix array starts with A(1) = 8.

Secondly, the algorithm compares S1 and S3. Since 1 ≡ 1 (mod 3), the pair
representation of the suffixes is used for this comparison. S1 = (1, S2) ≺lex

(1, S4) = S3 holds since the index 2 occurs before the index 4 in A1,2. Thus,
A(2) = 1.

After another four comparisons of this type, all elements of A0 are in-
serted into the constructed suffix array A, and the algorithm returns A =
(8, 1, 3, 7, 2, 6, 4, 5). ♦

With the next example, we will illustrate the recursive structure of the
skew algorithm.

Example 4.9. We consider the string s = 1221221. The triples ti and their
lexicographical names t′i for all i 6≡ 0 (mod 3), as constructed in the second
step of the algorithm, are shown in the following table.

i ti t′i
1 122 2
4 122 2
7 100 1
2 221 3
5 221 3

In this example, the lexicographical names t′i are not pairwise distinct; to
obtain the suffix array A1,2, the skew algorithm is recursively started on the
string

s̃ = 22133.

The following table shows the correspondence between positions in s̃ and s.
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i j t′i = s̃j

1 1 2
4 2 2
7 3 1
2 4 3
5 5 3

The algorithm now recursively constructs the suffix array Ã = (3, 2, 1, 5, 4)
for s̃. Converting the indices according to the above table yields the partial
suffix array A1,2 = (7, 4, 1, 5, 2) for s. In Step 3, the algorithm computes the
array A0 = (6, 3), and in step 4, these two arrays are merged into the suffix
array A = (7, 4, 1, 6, 3, 5, 2). ♦

We are now ready for analyzing the skew algorithm.

Theorem 4.11. Let s = s1 . . . sn be a string over the ordered alphabet
{1, . . . , n}. Then Algorithm 4.15 constructs a suffix array A(s) for s in time
O(n).

Proof. We start with proving the correctness of Algorithm 4.15. Step 1 of
the algorithm contains some initializations; the correctness of steps 3 and
4 is obvious. The crucial part is to prove the correctness of step 2. If all
considered triples ti are distinct, the corresponding suffixes are also distinct,
and the lexicographical names t′i obviously imply the order of these suffixes,
and thus the suffix array A1,2. But if some of the triples, and hence also
some of the lexicographical names, are identical, we have to show that the
recursively computed suffix array Ã for the string s̃ is, after renaming the
indices, equal to the array A1,2 for the string s.

To see this, we first observe that titi+3 . . . tk1 = Si for all i ≡ 1 (mod 3),
and titi+3 . . . tk2 = Si for all i ≡ 2 (mod 3). This implies that t′it

′
i+3 . . . t

′
k1

=

s̃[ i+2
3 , l1] represents the suffix Si for all i ≡ 1 (mod 3) and t′it

′
i+3 . . . t

′
k2

=

s̃[l1 + i+1
3 , l2] represents the suffix Si for all i ≡ 2 (mod 3).

Concatenating t′1 . . . t
′
k1

and t′2 . . . t
′
k2

does not cause any problem if we can
prove that s̃l1 = t′k1

is always unique, i.e., distinct from all other t′i, since in
this case comparing a suffix of s̃ starting at position j 6 l1 to another suffix
x of s̃ always yields the same result as comparing s̃[j, l1] to x. It remains for
us to show that s̃l1 is always unique.

Obviously, tk1 and tk2 are the only triples that may contain the symbol 0,
and the number of zeros in tk1 and tk2 always has to be different. Since we
defined k1 = max{k 6 n + 1 | k ≡ 1 (mod 3)}, we have guaranteed that tk1

contains at least one zero in any case (more precisely, it contains one zero if
n ≡ 1 (mod 3), two zeros if n ≡ 2 (mod 3), and three zeros if n ≡ 0 (mod 3)).
Thus, the triple tk1 , and also its lexicographical naming t′k1

, have to be unique.
This proves the correctness of the recursion in step 2, and thus of the skew
algorithm.
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We will now analyze the running time of the algorithm. Obviously, the
initialization in step 1 can be done in linear time. Determining the triples and
assigning the lexicographical names in step 2 can obviously be implemented in
O(n) time, the same time bound follows for the radix sorting from Theorem
4.10. Thus, step 2 without the recursive call can be executed in linear time.
Step 3 is also implementable in linear time; finding the order of the elements
from S0 requires one pass through the array A1,2, and the counting sort is
possible in linear time according to Lemma 4.8. The linear running time of
step 4 follows from Lemma 4.9.

With every recursive call, the length of the string is reduced by a factor
of roughly 2

3 ; thus, the overall running time T (n) of the skew algorithm on a
string of length n satisfies the recurrence T (n) = T (d 2n

3 e) + O(n). It can be
fairly easily seen that this recurrence has the solution T (n) = O(n). We will
not give a detailed proof here.6 ut

4.7 Summary

The string matching problem is a basic string problem that consists of finding
all positions in a given text where a given pattern starts as a substring. This
problem can be solved with a naive approach by sliding the pattern along the
text and testing for equality at each position. This naive algorithm takes time
in O(m · (n−m)), where n is the length of the text and m is the length of the
pattern.

More efficient algorithms for the string matching problem are based on
preprocessing either the pattern or the text. One possible approach is based
on the concept of finite automata. When constructing a string matching au-
tomaton in a clever way, the string matching problem can be solved using this
automaton in O(n + m · |Σ|) time, where Σ is the alphabet over which the
text and the pattern are given.

The Boyer–Moore algorithm is another method based on preprocessing
the pattern. This algorithm is based on a similar strategy as that of the
naive algorithm, but in the case of inequality of the pattern and the text
at one position, it can shift the pattern more than one position for the next
comparison. The Boyer–Moore algorithm often achieves the best running time
in practice although its worst-case time complexity is not better than that of
the naive algorithm.

A preprocessing of the text can be done using suffix trees, which constitute
a clever representation of all suffixes of the text and allows for efficient solu-
tions for many variants of string matching problems. A suffix tree for a given
text of length n can be constructed in O(n logn) time. After that, the actual

6 A detailed introduction to solving recurrence equations, also covering the so-called
master theorem, from which the solution for this recurrence directly follows, can
be found in [51].
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string matching with a given pattern of length m is possible in O(m · |Σ|+ k)
time, where k is the number of occurrences of the pattern in the text. Using
suffix trees is especially advantageous if one wants to compare many different
patterns to the same text.

Furthermore, suffix trees can be used to solve many other string problems
efficiently. One example is the substring problem consisting of finding all those
texts in a given set of texts containing a given pattern. Further problems which
are solvable using suffix trees include the computation of longest common
substrings or of all pairwise overlaps of a given set of strings. Also, exact
repeats within a given string can be computed efficiently using suffix trees.

Further useful data structures for string processing are suffix arrays. A
suffix array is an array describing the lexicographical order of all suffixes of a
given string. Suffix arrays allow for an efficient solution of the string matching
problem and can be constructed in linear time according to the uniform cost
measure.
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to Rytter [170] as well as Apostolico and Giancarlo [15].

Simple suffix trees were used for the first time for the string matching prob-
lem by Aho, Hopcroft, and Ullman [3]. The first algorithms for constructing
a compact suffix tree in linear time are due to Weiner [207] and McCreight
[144]. The easiest and most often used linear-time algorithm for constructing
a compact suffix tree was designed by Ukkonen [193].

7 The corresponding chapter in the second edition [51] has been shortened and no
longer includes the presentation of the Boyer–Moore algorithm.
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Alignment Methods

After having seen some basic algorithms for the exact string matching problem
in the preceding chapter, in this chapter we consider problems arising from
dealing with erroneous string data. Since the data we are provided with in
biological applications are always obtained through experiments, and are thus
subject to measurement errors, we will generalize the question from the last
chapter: Instead of exactly comparing two strings, we want to know if the given
strings coincide approximately, or if a given pattern is approximately contained
as a substring in a given text. To reach this goal we will define different notions
of similarity for strings, and we will present algorithms for comparing strings.
The idea behind these so-called alignment methods is to align the given strings
by inserting gaps such that as many positions as possible coincide.

In the literature, the notion of sequences (instead of strings) is mostly used
in the context of alignment methods. This is motivated by the fact that in this
context subsequences play a more important role than substrings. To improve
readability and to avoid using two notions for the same object, we will also
use the term strings in this chapter.

Alignment methods have multiple applications in molecular biology, such
as the comparison of different sequences of the same gene (from different ex-
periments or labs), or the search for a given string as subsequence in a database
of strings. Furthermore, alignment algorithms are often used as subprocedures
for solving more complex problems like the computation of approximate over-
laps, which are useful for some approaches to DNA sequencing.

The importance of these alignment methods is not based only on the han-
dling of error-prone data. They are, for example, also needed for the com-
parison of DNA sequences (or protein sequences) of different organisms. The
similarity of the sequences determined in this way can then be used as a
measure of the degree of relationship of these organisms.

This chapter is organized as follows. In Section 5.1 we will present methods
for the alignment of two strings. Section 5.2 is dedicated to some heuristic
approaches based on alignments to searching a database. The generalization
of the alignment notion to multiple strings can be found in Section 5.3. In
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Section 5.4 we summarize the results of this chapter, and in Section 5.5 we
make some bibliographic remarks.

5.1 Alignment of Two Strings

In this section we will consider the basic task of computing an optimal align-
ment of two given strings, i.e., an alignment leading to a maximal similarity
of the aligned strings. We will first define the notion of alignment formally,
and then describe an efficient algorithm computing an optimal alignment of
two strings. After that, we will consider some variants and generalizations of
the described method.

5.1.1 Basic Definitions

As described in the introduction to this chapter, we will denote by the align-
ment of strings the result of inserting gaps into the strings such that afterwards
as many positions as possible coincide. We now give a formal definition of an
alignment.

Definition 5.1. Let s = s1 . . . sm and t = t1 . . . tn be two strings over an
alphabet Σ. Let - /∈ Σ be a gap symbol and let Σ ′ = Σ ∪ {-}. Let h : (Σ′)∗ →
Σ∗ be a homomorphism defined by h(a) = a for all a ∈ Σ, and h(-) = λ.

An alignment of s and t is a pair (s′, t′) of strings of length l > max{m,n}
over the alphabet Σ ′, such that the following conditions hold:

(a) |s′| = |t′| > max{|s|, |t|},
(b) h(s′) = s,
(c) h(t′) = t, and
(d) there is no position containing a gap symbol in s′ as well as in t′, i.e.,

s′i 6= - or t′i 6= - for all i ∈ {1, . . . , l}.

Informally speaking, conditions (b) and (c) in Definition 5.1 state that
deleting all gap symbols from s′ (or t′) yields the string s (or t). We illustrate
this definition by the following example.

Example 5.1. Let s = GACGGATTATG and let t = GATCGGAATAG. A possible
alignment of s and t is:

s′ = GA-CGGATTATG

t′ = GATCGGAATA-G

By inserting a gap after the second symbol of s and before the last symbol of
t, the resulting strings s′ and t′ coincide at all positions, except for the third,
eighth, and eleventh. ♦

As shown in Example 5.1, the two strings of an alignment are often written
one below the other, i.e., we can consider the alignment to be a (2× l)-matrix.
The columns of this matrix are also called the columns of the alignment. We
distinguish four types of columns:
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Insertion: The first string has a gap symbol in this column.
Deletion: The second string has a gap symbol in this column.
Match: Both strings coincide in this column.
Substitution/Mismatch: Both strings do not coincide in this column, but

there is no gap symbol.

This means that an alignment can also be described as a sequence of
insertions, deletions, and substitutions applied to the first string in order to
yield the second string. Inserting a gap into the second string corresponds to
deleting a symbol from the first string; inserting a gap into the first string
corresponds to inserting an additional symbol.

We want to use alignments for defining a measure of similarity of strings.
We define the score of an alignment as follows.

Definition 5.2. Let s and t be two strings over an alphabet Σ. Let p(a, b) ∈
�

for all a, b ∈ Σ, and let g ∈
�

.
The score δ of an alignment (s′, t′) of length l with s′ = s′1 . . . s

′
l and

t′ = t′1 . . . t
′
l is first defined column-wise: For x, y ∈ Σ, let δ(x, y) = p(x, y).

Furthermore, let δ(-, y) = δ(x, -) = g. The score of an alignment is then
defined as the sum of the values over all columns, i.e.,

δ(s′, t′) =
l∑

i=1

δ(s′i, t
′
i).

For an alignment score δ, we furthermore define an optimization goal
goal δ ∈ {min,max}.

Here, the optimization goal goal δ depends on the choice of the parameters
p(a, b) and g. For the parameters p(a, b), we normally assume that p(a, b) =
p(b, a) holds for all a, b ∈ Σ.

Using the score of an alignment, we now define the similarity of two strings
as the score of an optimal alignment of these two strings according to the
optimization goal of the scoring function.

Definition 5.3. Let s and t be two strings over an alphabet Σ, and let δ be
an alignment scoring function. The similarity simδ(s, t) of s and t according
to δ is the score of an optimal alignment of s and t, i.e.,

simδ(s, t) = goal δ{δ(s
′, t′) | (s′, t′) is an alignment of s and t}.

If the alignment scoring function is clear from the context, we also write sim
instead of simδ.

There are many ways to choose these parameters, we will postpone a
detailed discussion of this problem to Section 5.1.4 and only present two simple
variants here.
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The simplest way to score an alignment consists of simply counting the
number of insertions, deletions, and substitutions. In this case we define
p(a, b) = 1, if a 6= b, and p(a, a) = 0 for all a, b ∈ Σ, and g = 1. The
resulting similarity measure is called edit distance or Levenshtein distance.

Another commonly used choice of the parameters is p(a, a) = 1, p(a, b) =
−1, if a 6= b, and g = −2. In this case, the similarity of two strings is the
maximum score of an alignment of the strings.

5.1.2 Global Alignment

In this subsection we present a method for the comparison of two strings. We
generalize this method in the next subsection such that it is also suitable for
the computation of similar substrings. To distinguish these two approaches,
we call the computation of the similarity of the entire strings global alignment,
and the computation of similar substrings local alignment.

We now present an algorithm that computes an alignment with optimal
score for two given strings. We start by giving a formal definition of the
problem.

Definition 5.4. The problem of determining an optimal global alignment of
two strings, the global alignment problem, is the following optimization prob-
lem:

Input: Two strings s and t over an alphabet Σ and an alignment scoring func-
tion δ with an optimization goal goal δ.

Feasible solutions: All alignments of s and t.
Costs: For each alignment A = (s′, t′) of s and t, the costs are cost(A) = δ(A).
Optimization goal: The optimization goal goal δ of the scoring function δ.

For simplicity, in the remainder of this section, we assume that the opti-
mization goal of the scoring function is to maximize the score over all align-
ments. This is no real restriction since all presented approaches directly carry
over to the case of minimization.

The algorithm for computing an optimal alignment, as we will describe
it, is based on the method of dynamic programming. The main idea is to
compute an optimal alignment for all pairs of prefixes of the given strings.

Let s = s1 . . . sm and t = t1 . . . tn be two given strings over an alphabet
Σ. If we also count the empty prefix, there are m + 1 possible prefixes of s
and n+ 1 possible prefixes of t. We construct an ((m + 1)× (n+ 1))-matrix
M of similarity values for the optimal alignments of all pairs of prefixes. This
means that the matrix entry M(i, j) gives the score of an optimal alignment of
s1 . . . si and t1 . . . tj . Particularly, the matrix entry M(m,n) gives the score of
an optimal alignment of s and t. We call this matrix M the similarity matrix
for s and t.

The idea behind the dynamic programming now is to calculate the simi-
larity value for two strings from the similarity values of their shorter prefixes.
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This approach makes it possible to start with the shortest prefixes and to
successively compute the similarity values for all longer prefixes.

The score of the optimal alignment of s1 . . . si with the empty prefix of
t is obviously sim(s1 . . . si, λ) = g · i, for all i ∈ {1, . . . ,m}. Analogously,
sim(λ, t1 . . . tj) = g · j holds for all j ∈ {1, . . . , n}. Using these values we can
initialize the first row and the first column of our matrix M .

We now want to compute an optimal alignment of the prefixes s1 . . . si and
t1 . . . tj under the assumption that we already know the optimal alignments
for all pairs of shorter prefixes. For the last column of the alignment1 there are
three possibilities: The last column consists of si and tj or exactly one of the
two strings of the alignment ends with a gap symbol. In each of these cases
the score of the alignment can be calculated from the score of an alignment
of shorter, already known prefixes adding the score of the last column. Thus,
the score of an optimal alignment can be computed as the maximum value of
the three cases, as follows:

sim(s1 . . . si, t1 . . . tj) = max







sim(s1 . . . si−1, t1 . . . tj) + g
︸ ︷︷ ︸

Insertion

,

sim(s1 . . . si, t1 . . . tj−1) + g
︸ ︷︷ ︸

Deletion

,

sim(s1 . . . si−1, t1 . . . tj−1) + p(si, tj)
︸ ︷︷ ︸

Match/Mismatch

(5.1)

From this formula, we can see that for the computation of the matrix entry
M(i, j) only the matrix entries M(i−1, j), M(i, j−1), and M(i−1, j−1) are
needed. After initializing row 0 and column 0 of the matrix with the multiples
of g, the matrix can be filled row-wise (or column-wise) as shown in Figure
5.1.

Every path through this matrix starting at position (0, 0), ending at posi-
tion (m,n), and using only steps to the next position at the right, below, or
diagonally down right, corresponds to a feasible alignment of s and t. Here, a
step to the right corresponds to an insertion, i.e., to a gap in s, a step down
corresponds to a deletion, i.e., to a gap in t, and a diagonal step corresponds
to a match or mismatch.

Example 5.2. For the two strings s = AAAT and t = AGT, an application of
Equation (5.1) results in the similarity matrix shown in Figure 5.2 (a). Here,
we assume p(a, a) = 1, p(a, b) = −1 for a 6= b, and g = −2. ♦

Algorithm 5.1 computes the similarity of two given strings s and t by
constructing the similarity matrix for s and t using dynamic programming
according to Equation (5.1).

1 Recall that we can view an alignment as a (2× l)-matrix.
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Fig. 5.2. (a) The similarity matrix for the strings from Example 5.2; (b) the com-
putation of an optimal alignment for the strings using Algorithm 5.2

Using the similarity matrix, we now can recursively compute an optimal
alignment of s and t with Algorithm 5.2. The idea behind Algorithm 5.2 is to
recursively reduce the computation of an optimal alignment of s1 . . . si and
t1 . . . tj to the computation of an optimal alignment of s1 . . . si−1 and t1 . . . tj ,
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Algorithm 5.1 Computation of the similarity

Input: Two strings s = s1 . . . sm and t = t1 . . . tn.

1. Initialization:

for i = 0 to m do

for j = 0 to n do

M(i, j) := 0

2. Initialization of the borders:

for i = 0 to m do

M(i, 0) = i · g
for j = 0 to n do

M(0, j) = j · g

3. Filling the matrix:

for i = 1 to m do

for j = 1 to n do

M(i, j) := max{M(i − 1, j) + g,
M(i, j − 1) + g,
M(i− 1, j − 1) + p(si, sj)}

Output: sim(s, t) = M(m, n).

of s1 . . . si and t1 . . . tj−1, or of s1 . . . si−1 and t1 . . . tj−1, depending on which
of the three cases was used for computing M(i, j).

Example 5.3. The similarity for the two strings from Example 5.2 is sim(s, t) =
−1.

Every path from position (4, 3) to position (0, 0) following the arrows (as
shown in Figure 5.2 (b)) corresponds to an optimal alignment; the optimal
alignment computed by Algorithm 5.2 corresponds to the path shown with
bold arrows. In this example, the optimal alignments of s and t are:

AAAT

-AGT

AAAT

A-GT

AAAT

AG-T

♦

We now analyze the time complexity of Algorithms 5.1 and 5.2.

Theorem 5.1. Let s = s1 . . . sm and t = t1 . . . tn be two strings over an
alphabet Σ. Using Algorithms 5.1 and 5.2, an optimal alignment of s and t
can be computed in O(m · n) time.

Proof. Computing the similarity matrix M with Algorithm 5.1 needs time in
O(n·m), since for the computation of every single matrix entry only constantly
many calculations are needed. Algorithm 5.2, called with the parameters n
and m, needs at most m+ n recursive calls before termination, since in every
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Algorithm 5.2 Computation of an optimal alignment

Input: A similarity matrix M for two strings s = s1 . . . sm and t = t1 . . . tn.
Call the recursive procedure Align(m, n).

Output: The alignment (s′, t′) of s and t.
Procedure Align(i, j):

if i = 0 and j = 0 then

s′ := λ
t′ := λ

else

if M(i, j) = M(i − 1, j) + g then

(s, t) := Align(i − 1, j)
s′ := s · si

t′ := t · -
else if M(i, j) = M(i, j − 1) + g then

(s, t) := Align(i, j − 1)
s′ := s · -
t′ := t · tj

else {M(i, j) = M(i − 1, j − 1) + p(si, tj)}
(s, t) := Align(i − 1, j − 1)
s′ := s · si

t′ := t · tj

return (s′, t′)

recursive call the value of at least one of the parameters is strictly reduced.
Since the remainder of Algorithm 5.2 has only constant time complexity, the
algorithm has an overall running time in O(n+m). ut

Algorithm 5.2 can be enhanced such that it outputs the set of all optimal
alignments. But note that there can be exponentially many optimal align-
ments. For example, for every n ∈ � there are

(
2n
n

)
optimal alignments for

the strings s = A2n and t = An, since the score does not depend on the place-
ment of the n gaps, and there are

(
2n
n

)
possible placements. An algorithm that

explicitly outputs all optimal alignments thus has an exponential worst-case
running time.

In the following we present another approach for computing the optimal
alignment of two strings relying on a graph-theoretic formulation of the prob-
lem.

Definition 5.5. Let s = s1 . . . sm and t = t1 . . . tn be two strings over an
alphabet Σ and let δ be an alignment scoring function with parameters p(a, b)
and g for all a, b ∈ Σ. The edit graph for s and t according to δ is a directed
acyclic, edge-weighted graph Gδ(s, t) = (V,E, c), where

• V = {0, . . . ,m} × {0, . . . , n},
• E = {((i, j), (i, j + 1)) | 0 6 i 6 m and 0 6 j 6 n− 1}

∪ {((i, j), (i+ 1, j)) | 0 6 i 6 m− 1 and 0 6 j 6 n}
∪ {((i, j), (i+ 1, j + 1)) | 0 6 i 6 m− 1 and 0 6 j 6 n− 1}, and
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• c : E →
�

, c((i, j), (i, j + 1)) = c((i, j), (i + 1, j)) = g, c((i, j), (i + 1, j +
1)) = p(si+1, tj+1) for all i, j.

We illustrate this definition with the two strings from Example 5.2.

Example 5.4. Figure 5.3 shows the edit graph for the strings s = AAAT and
t = AGT. ♦
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Fig. 5.3. The edit graph for the strings s = AAAT and t = AGT from Example 5.2

In the edit graph, the horizontal edges correspond to the gaps in s, the
vertical edges correspond to the gaps in t, and the diagonal edges correspond
to the matches and mismatches. Thus, every path from the vertex (0, 0) to
the vertex (m,n) corresponds to a feasible alignment of the given strings. An
optimal alignment of s and t can hence be computed by finding a path of
maximal weight in Gδ(s, t) from the vertex (0, 0) to the vertex (m,n). There
are simple and efficient algorithms known for computing such a path between
two given vertices in a directed graph. We will not present such an algorithm
here, since it can be found in many introductory textbooks about algorithms,
as in [51].

5.1.3 Local and Semiglobal Alignment

We now show how to use the methods described in the previous subsection
for the comparison of substrings of two given strings. This is a natural gener-
alization of the methods for finding exact substrings as presented in Chapter
4 for the error-prone case.
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The first problem we want to look at is the computation of an optimal
local alignment according to the following definition.

Definition 5.6. Let two strings s = s1 . . . sm and t = t1 . . . tn over an alpha-
bet Σ and an alignment scoring function δ with optimization goal maximiza-
tion be given. A local alignment of s and t is a (global) alignment of substrings
s = si1 . . . si2 and t = tj1 . . . tj2 .

An alignment A = (s′, t
′
) of the substrings s and t is an optimal local

alignment of s and t according to δ if the following holds:

δ(A) = max{sim(s, t) | s is a substring of s, t is a substring of t}.

Now we can formally define the problem of finding an optimal local align-
ment as follows.

Definition 5.7. The problem of computing an optimal local alignment, the
local alignment problem, is the following optimization problem:

Input: Two strings s and t over an alphabet Σ and an alignment scoring func-
tion δ with maximization as its optimization goal.

Feasible solutions: All local alignments of s and t, i.e., all global alignments
for all possible substrings s of s and t of t.

Costs: For a local alignment A = (s′, t
′
) of the substrings s and t, the costs

are cost(A) = δ(A).
Optimization goal: Maximization.

For computing local alignments one only uses alignment scoring functions
with maximization as the optimization goal. If one would use a scoring func-
tion like the edit distance, whose optimization goal is minimization, the opti-
mal alignment would often be very short, only one symbol long in the worst
case, and thus would not give any reasonable information.

The computation of an optimal local alignment is used, for example, for
comparing unknown DNA or protein sequences. In these sequences, often only
some parts are similar to each other; these similarities often cannot be found
via a global alignment, as shown by the following example.

Example 5.5. Let s = AAAAACTCTCTCT and t = GCGCGCGCAAAAA be two strings.
Consider the scoring function from Example 5.2 which scores a match with
+1, a mismatch with −1 and a gap with −2. In each of the two strings, the
substring AAAAA obviously occurs. Using the method of local alignment, we
can find the region of high similarity. An optimal local alignment is

AAAAA(CTCTCTCT)
(GCGCGCGC)AAAAA

with a score of 5. However, the optimal global alignment

AAAAACTCTCTCT

GCGCGCGCAAAAA

with score −11 does not give much information. ♦
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To compute an optimal local alignment, it suffices to modify the global
alignment algorithms presented above. We again compute an ((m+ 1)× (n+
1))-matrix M , where M(i, j) equals the highest score of an alignment between
a suffix of s1 . . . si and a suffix of t1 . . . tj . For computing M we can use the
following recursion:

M(i, j) = max







M(i− 1, j) + g,
M(i, j − 1) + g,
M(i− 1, j − 1) + p(si, tj),
0

As in the case of the global alignment, we additionally store, for each entry
of the matrix, which of the four cases yielded the maximum in the recursion
formula. Row 0 and column 0 of the matrix can be initialized with 0, since an
alignment of the empty substrings with score 0 is always a feasible solution.

The score of an optimal local alignment is the highest value occurring in
the matrix M . The corresponding local alignment can be found using a path
along the stored pointers from the position of the highest entry to a position
with value 0.

The method of using edit graphs can also be generalized to the case of local
alignments: First construct the edit graph Gδ = (V,E, c) for two given strings
s = s1 . . . sm and t = t1 . . . tn according to an alignment scoring function δ,
and then add edges of weight 0 from the vertex (0, 0) to all other vertices and
from all other vertices to the vertex (m,n). In this extended edit graph, any
path of maximal weight from the vertex (0, 0) to the vertex (m,n) corresponds
to an optimal local alignment of s and t.

Another generalization of global alignment is the so-called semiglobal align-
ment, where one looks for an alignment of the entire strings, but where gap
symbols at the beginning or at the end of the strings may be added without
cost. The semiglobal alignment can be applied to compare strings of signifi-
cantly different length. The computation of a semiglobal alignment for a long
string t and a short string p can be viewed as a method for approximate string
matching. The semiglobal alignment of t and p yields the substring of t that
is most similar to p. The following example shows that neither the global nor
the local alignment is suitable for this task.

Example 5.6. We consider the strings

s = ACTTTATGCCTGCT and t = ACAGGCT

and the alignment scoring function scoring a match with 1, a mismatch with
−1, and a gap with −2. An optimal global alignment of s and t is

ACTTTATGCCTGCT

AC---A-G---GCT

with score −7. But the alignment
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ACTTTAT-GCCTGCT

-----ACAGGCT---

with score −13 looks more reasonable, since the string t stays more compact.
If now the gaps before the first symbol of t and after the last symbol of t
are ignored, this leads to a score of 0. Thus, using this semiglobal alignment
method, this alignment get a significantly better score than the optimal global
alignment.

Please note that our favorite alignment cannot be derived from the optimal
local alignment of s and t. This optimal local alignment is

(ACTTTATGCCT)GCT
(ACAGG)GCT.

♦

We distinguish several variants of semiglobal alignment, such as whether
the gaps are for free only at the beginning, only at the end, or at both the
beginning and end of the strings. These different variants can be useful in
different applications. For example, if we ignore the gaps at the beginning of
the first string and at the end of the second string, we have the possibility to
compute an approximate overlap of the two strings. The computation for all of
these variants can be easily reduced to the computation of a global alignment.

Let s = s1 . . . sm and t = t1 . . . tn be two strings over an alphabet Σ. We
consider the case where gaps without cost are allowed at the end of the first
string. Let (s′, t′) be an alignment of s and t of length l, where t′j = sm holds
for a position 1 6 j < l, i.e., where s′j+1 . . . s

′
l consists of gap symbols only.

If we score the columns j + 1, . . . , l with 0, the score of this alignment equals
the score of a global alignment of s with the prefix t′1 . . . t

′
j of t. In the matrix

M computed by Algorithm 5.1, the last row contains the scores of optimal
alignments of s with all prefixes of t. Thus, the score of an optimal semiglobal
alignment of this type is just the maximum of all values in the bottom row
of M . Analogously, the score of an optimal semiglobal alignment ignoring the
gaps at the end of t can be computed as the maximum of the values in the
rightmost column of M .

We now consider the case where the gap symbols at the beginning of s are
for free. The score of an optimal semiglobal alignment of this type equals the
score of an optimal global alignment between s and a suffix of t. This score
can be computed with a variant of Algorithm 5.1, where the first row of the
matrix is initialized with zeros instead of multiples of the gap score. We leave
a formal proof of the correctness of this modified algorithm to the reader.
Analogously, the score of an optimal semiglobal alignment where the gaps at
the beginning of t are ignored can be computed with a variant of Algorithm
5.1, where the first column of the matrix is initialized with zeros.

These changes of Algorithm 5.1 for the semiglobal alignment are summa-
rized in Table 5.1. Please note that all four variants can also be arbitrarily
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Gap symbols without cost Change of Algorithm 5.1

Beginning of first string Initialize first row of M with zeros

End of first string Similarity equals maximum of the last row

Beginning of second string Initialize first column of M with zeros

End of second string Similarity equals maximum of the last column

Table 5.1. The different variants of semiglobal alignment
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Fig. 5.4. The similarity matrix for computing the approximate overlap of the strings
from Example 5.7

combined. An algorithm for determining approximate overlaps can be con-
structed by initializing the first column of the matrix M with zeros and taking
the maximum of all values in the last row of M as output.

The following example shows how to actually determine the approximate
overlap of two strings using semiglobal alignment.

Example 5.7. Consider the strings s = AAAT and t = AGTA. We want to com-
pute the approximate overlap of s and t according to the scoring function
from Example 5.2 that scores a match with 1, a mismatch with −1, and a gap
with −2. This leads to the similarity matrix shown in Figure 5.4.

In this matrix, the first column was initialized with zeros and the first row
with the multiples of the gap score as in Algorithm 5.1. Then the matrix was
filled using the recurrence from step 3 of Algorithm 5.1. The maximum value
1 in the last row of the matrix now gives the score of an optimal approximate
overlap of s and t. The corresponding semiglobal alignment

AAAT-

-AGTA
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can now be computed with Algorithm 5.2, starting from the matrix entry
(4, 3). ♦

5.1.4 Generalized Scoring Functions

In the previous subsections we have always used very simple scoring functions
for the alignments. In this subsection we will present several possibilities for
generalizing these scoring functions. These generalizations can be used to
design more exact models of the underlying biological problems.

Scoring of Gaps

One problem that can arise with the scoring functions introduced above is the
scoring of gaps. When comparing biological sequences, an alignment where the
gap symbols occur in longer blocks should be scored better than an alignment
where the gap symbols occur solitarily and scattered over the strings. To deal
with this problem we will use the following definition.

Definition 5.8. Let s and t be two strings, let (s′, t′) be an alignment of s
and t. A substring s′i+1 . . . s

′
i+k = -k, where s′i, s

′
i+k+1 6= - (or a substring

t′j+1 . . . t
′
j+k = -k, where t′j , t

′
j+k+1 6= -) is called a gap of length k. 2

Up to now, we have scored a gap of length k with k · g, where g was
the score of a single gap symbol. In many biological contexts, the affine gap
score, where a gap of length k is scored with −(% + σk) for some %, σ > 0,
is more appropriate. In addition to the part σk that is proportional to the
length of the gap, the opening of a gap is also penalized with a negative score.
Depending on the choice of the parameters % and σ, this can lead to a better
score for long gaps than in the initial approach of counting the number of gap
symbols only.

Computing an optimal alignment with affine gap scores is still possible
using the dynamic programming approach, but the recurrence formula gets
far more complicated. We will not present the resulting algorithm in detail
here, but refer the reader to the references given in Section 5.5.

Scoring Matrices

Another problem occurs mainly when comparing protein sequences. Here, sub-
stitutions between certain pairs of amino acids are more likely than between
others. This can be explained by the fact that there are amino acids with
similar chemical properties as well as chemically very different amino acids. If
a mutation replaces one amino acid by another one with very different proper-
ties, then it is very likely that this will cause the protein to lose its biological

2 In the literature, “-” is often called space and a gap of arbitrary length is called
gap.
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function. In many cases this can result in a disadvantage for the concerned
organism, in the worst case its death, so that a protein changed in this way
has a low probability of being passed on to the next generation.

To take into account these differences in alignment of protein sequences,
we have to assign different scores to different substitutions, i.e., we have to
determine the parameters p(a, b) of the scoring function in an adequate way.
These parameters obviously can be written as a (|Σ| × |Σ|)-matrix, which
we call the scoring matrix. For the alignment of protein sequences we hence
need a (20×20)-matrix containing a score for each pair of amino acids. There
are essentially two methods for generating such a scoring matrix for protein
alignments, which we briefly describe in the following.

The first approach is based on the construction of so-called PAM matrices.
3 To describe PAM matrices, we first need the following definition.

Definition 5.9. An accepted mutation of a protein is a mutation that does
not at all or only to a small extent alter the biological function of a protein,
so that it can be passed on to the next generation.

Two protein sequences s and t are said to be one PAM unit apart from
each other or at PAM distance 1 if s was transformed into t by a sequence of
accepted point mutations (i.e., substitutions of single amino acids, not inser-
tions or deletions) such that there occurs one point mutation per 100 amino
acids on average.

Two protein sequences that are k PAM units apart do not necessarily
differ in k percent of their positions, since several mutations might occur at
the same position. The PAM distance as defined above is an idealistic measure
that cannot be determined exactly in practice. A k-PAM matrix is a scoring
matrix that is suitable for comparison of protein sequences that are k PAM
units apart. This raises the question of how to determine the k-PAM matrices.

We describe the construction of a k-PAM matrix in an ideal case. We
assume that we know many pairs of homologous4 protein sequences, of which
we also know that they are k PAM units apart. Since we measure the distance
between two sequences as the number of substitutions, we further assume that
we know the optimal alignment, i.e., the positions of the gaps, for each pair
of homologous sequences.

Let A be the set of all alignments of the given set of sequence pairs, and let
Col (A) be the multiset of all columns in A that do not contain a gap symbol.
We then define, for each pair (ai, aj) of amino acids (symbols), the function
value freq(ai, aj) as the relative frequency of columns containing the values ai

and aj , i.e., of the columns (ai, aj) and (aj , ai), under all columns in Col (A).
This means that

3 The acronym PAM is explained differently in the literature: PAM stands for either
point accepted mutations or percent of accepted mutations.

4 Two protein sequences are called homologous if the corresponding proteins have
the same biological function (for example, in different organisms).
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freq(ai, aj) =
number of occurrences of (ai, aj) and (aj , ai) in Col(A)

2 · |Col (A)|
.

This definition in particular ensures that freq(ai, aj) = freq(aj , ai) holds.
Furthermore, we define for each amino acid ai the function value freq(ai)

as the relative frequency of the amino acid ai within all alignments, i.e.,

freq(ai) =
number of occurrences of ai within all alignments

total length of all sequences
.

Using the function freq , we then define the entry (i, j) of the k-PAM matrix
PAM k as

PAM k(i, j) = log
freq(ai, aj)

freq(ai) · freq(aj)
.

This definition can be motivated as follows: The entry (i, j) describes the
ratio of the probability with which the symbol ai is transformed into the
symbol aj by accepted mutations to the probability that this pair of symbols
occurs by chance within an alignment. To simplify calculations, the ratio is
logarithmized subsequently. This makes it possible to calculate the product of
ratios for several columns of a given alignment simply as the sum of the PAM
values. In practice, the values PAM k(i, j) are furthermore multiplied by 10
and rounded to the next integer to accelerate calculations.

But since in practice we do not have ideal data for counting the frequencies
of the substitutions, the actual computation of the PAM matrices uses more
complicated methods. These methods are based on the following idea. In the
first step, one chooses a set of very similar sequences that descend from a com-
mon ancestor, and of which one can assume that they are only one PAM unit
apart. Since these sequences are very similar, they also have approximately
the same length, and it is easily possible to determine the positions of the
gaps in an optimal alignment. Thus, the assumptions for the ideal method
are satisfied, and one can construct a 1-PAM matrix. Starting with the func-
tion values freq(ai, aj) and freq(ai) for all symbols ai and aj , calculated for
determining this matrix, one can also compute a k-PAM matrix for greater
values of k as follows: Let F be a (20 × 20)-matrix such that F (i, j) is the
probability that ai mutates to aj within one PAM unit (not depending on
the actual occurrence frequency of ai). Then, the matrix F k, i.e., k times the
product of F with itself, specifies the probability of substitutions in sequences
that are k PAM units apart. Using this matrix F k, one can compute the entry
(i, j) of the k-PAM matrix PAM k as

PAM k(i, j) = log
freq(ai) · F

k(i, j)

freq(ai)freq(aj)
= log

F k(i, j)

freq(aj)
.

It is possible to show that the k-PAM matrix computed in this way is
symmetric, i.e., that PAM k(i, j) = PAM k(j, i) holds, but we will not present
the proof here.
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Since in practice the PAM distance of the protein sequences one wants
to compare is unknown, one normally uses some standard values; the values
k = 40, k = 100, or k = 250 are commonly used.

The second type of scoring matrices often used in practical applications
are the so-called BLOSUM matrices. As a basis for calculating the BLOSUM
matrices, the so-called BLOCKS database was used; it contains information
about similar regions in the amino acid sequences of related proteins. These
data were obtained from the multiple alignment5 of related protein sequences.
A short, contiguous interval without gaps in such a multiple alignment is called
a block. In the BLOCKS database, not the complete multiple alignments are
stored, but only those blocks that are longer than some threshold length. A
block in the BLOCKS database that corresponds to an interval of length n
of a multiple alignment of k sequences r1, . . . , rk can be viewed as a matrix
B(i, j) with k rows and n columns.

In such a block, some of the rows can be identical or nearly identical, but
for the computation of the BLOSUM matrix we are only interested in those
pairs of rows which differ in at least a certain percentage of all positions. More
precisely, we consider all pairs of matrix entries (B(i1, j), B(i2, j)), 1 6 j 6 n,
such that the rows i1 and i2 of B differ at least at x% of the positions. For the
computation of the BLOSUM-x matrix, we determine the set P of all such
pairs from all blocks from the BLOCKS database and compute for all amino
acids the relative frequency freq(a, b) of the amino acid pair (a, b) in P and
the relative frequency freq(a) of the amino acid a in all pairs from P . Then
we can compute the entry (i, j) of the BLOSUM-x matrix BLOSUM x as

BLOSUM x(i, j) = 2 · log2

freq(ai, aj)

freq(ai) · freq(aj)
,

rounded to the next integer value.
In contrast to the PAM matrices, the BLOSUM-x matrices were obtained

(at least for high values of x) from the data of protein sequences that are
evolutionarily far apart. This is an advantage, since also the protein sequences
that one wants to compare using the scoring matrices are often not closely
related. The commonly used values for the parameter x lie between 50 and
80; most commonly, the BLOSUM-62 matrix is used.

5.2 Heuristic Methods for Database Search

Although the alignment algorithms presented in the previous section have
polynomial running time, they are too slow for searching in very large DNA
or protein databases. Thus, in practice often faster heuristic methods are used,
but these methods do not guarantee finding the optimal solution.

5 A multiple alignment is an alignment of more than two strings. We present some
approaches for computing multiple alignments in Section 5.3.
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There are essentially two program systems for database search that are
widely used and give useful solutions in most cases. In this section, we will
present the algorithmic ideas underlying these programs. For a more detailed
discussion of these heuristics we refer the reader to the literature given in
Section 5.5.

5.2.1 The FASTA Heuristic

The first heuristic we present here is the program FASTA.6 The program
FASTA is permanently under development, and there exist several variants
of it. We only describe the action of the program in principle. In the FASTA
method, the pattern (the database query) is subsequently compared to all
sequences stored in the database. We call these stored sequences database
strings in the following. The comparison of the pattern to one of the database
strings can be divided into four steps.

1. First, one chooses a parameter k and searches for all exact matches of
length k between the pattern and the database string. Such an exact
match is called a hot spot and can be unambiguously described by the
pair of starting positions in the pattern and the database string. Typical
values for the parameter k are k = 6 for the comparison of DNA sequences
and k = 2 for protein sequences. For the search for such short matches one
does not need complicated string matching algorithms, but it is sufficient
for an efficient implementation to build a table in a preprocessing step
that contains for each possible hot spot the positions in the pattern and
the database string where the hot spot starts.

2. In the second step of the procedure one tries to cluster the hot spots. For
this reason we consider a matrixM , similar to the similarity matrix used in
Algorithm 5.1 for the global alignment, where the rows correspond to the
symbols of the pattern p and the columns correspond to the symbols of the
database string t. The matrix entry at position (i, j) is 1 if pi = tj , and 0
otherwise. In this matrix, each hot spot (i, j) corresponds to a segment of a
diagonal starting at position M(i, j) (see the example in Figure 5.5). Note
that it is not necessary for the algorithm to explicitly construct the entire
matrix M , since we only consider so-called diagonal runs, i.e., segments of
diagonals from the matrix starting with a hot spot and ending with a hot
spot. Every diagonal run gets scored, every contained hot spot contributes
positively to the score, and every gap between two consecutive hot spots
contributes negatively to the score, depending on the length of the gap.
The algorithm then determines the ten diagonal runs with the best scores.
Note that computing the diagonal runs can be done efficiently, in time
proportional to the number of hot spots. Each of the ten chosen diagonal

6 The name FASTA is an abbreviation for “fast all.” Here, “all” refers to the fact
that the program FASTA can be used for both DNA and protein sequences, in
contrast to its predecessor FASTP, which was suitable for protein sequences only.
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runs determines an alignment of a substring of the pattern with a substring
of the database string; it can contain matches and mismatches, but not
insertions or deletions. For each of these substring pairs, the algorithm
now determines an optimal local alignment with the algorithm presented
in Section 5.1, using one of the scoring matrices presented above. The
best partial alignment found in this way is called init1 , and will serve as
a starting point for step 4.

3. Nevertheless, in the third step all of the ten computed partial alignments
are considered if their similarity values exceed a certain threshold. The al-
gorithm tries to put these partial alignments together to achieve a longer
alignment with a better score. This task can be described as a graph-
theoretic problem: The partial alignments are represented as vertices in a
directed graph labeled with the scores of the corresponding partial align-
ments. Let u be such a partial alignment ending at position (i, j), and
let v be another partial alignment starting at position (i′, j′). Then the
graph contains a directed edge from u to v if and only if i < i′ and j < j′

hold, i.e., if the two partial alignments can be connected to yield a longer
alignment. This edge is labeled with a negative weight depending on the
distance of the positions (i, j) and (i′, j′) in the matrix. Then, an optimal
alignment composed from the given partial alignments can be determined
as a path of optimal score in the graph, where the score of a path is the
sum of the vertex and edge labels on the path. The alignment constructed
in this way is output as one solution by the FASTA algorithm.

4. In the fourth step, the algorithm computes an alternate solution, based
on the optimal partial alignment init1 computed in Step 2. This solution
is computed using the exact algorithm for local alignments, where the
computation of the similarity matrix is limited to a band of limited width
around the diagonal containing the partial alignment init1 .

These four steps are carried out for all strings stored in the database. Sub-
sequently, the FASTA algorithm estimates the significance of the computed
solutions using statistical methods, i.e., the algorithm tries to estimate the
probability with which the similarity of a found solution could have occurred
purely by chance. The used statistical methods are beyond the scope of this
book, we refer the reader to the bibliography cited in Section 5.5.

Example 5.8. The principle of the work of the FASTA algorithm is shown in
Figure 5.5 for the strings TACCGA and ACTGAC. ♦

5.2.2 The BLAST Heuristic

The second commonly used heuristic for search in sequence databases is
the BLAST algorithm.7 This program exists in many different implementa-
tions and variants, optimized, for example, for the search in DNA or protein
databases. We just describe the main idea of the BLAST algorithm.

7 An acronym for “Basic Local Alignment Search Tool.”
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Fig. 5.5. The principle of the FASTA heuristic on the strings TACCGA and ACTGAC.
The hot spots for k = 2 are shown as pairs of black dots in the matrix; a diagonal
run is shaded dark. In this example, the optimal partial alignment coincides with the
diagonal run. The lightly shaded area shows a band of width 3 around the partial
alignment, within which an optimal local alignment is searched for in step 4

The BLAST algorithm consists of two components, a search algorithm and
a statistical evaluation of the computed solutions. The search algorithm can
be divided into the following three steps.

1. In the first step, the algorithm looks for so-called hits, i.e., similar sub-
strings of a given length w in the pattern and in the database string.
Typical values for the parameter w are w = 11 for DNA sequences and
w = 3 for protein sequences. In contrast to the hot spots in the FASTA
algorithm, the BLAST algorithm does not only search for exact matches
of length w, but for all local alignments without gaps whose score exceeds
a certain threshold. This threshold depends on the scoring matrix used.
By using appropriate data structures, this step can be implemented in
linear time.

2. In the second step, the algorithm searches for all pairs of hits that are
at most at distance d from each other. Hits that do not belong to such
a pair are not considered by the algorithm. The typically used values for
the parameter d depend on the length w of the hits; for example, for hits
of length 2 in protein sequences the value d = 16 is often used.

3. Now the algorithm tries to extend the pairs of hits by adding further align-
ment columns at both ends of the hits until the score does not increase any
more. The initial BLAST version did not allow gaps in these extensions of
the alignment. In more recent versions, the insertion of gaps is possible. If
after this extension step the score of a pair of hits is above some threshold
S, it is called a high scoring pair (HSP). The high scoring pairs, in the
order of decreasing scores, constitute the output of the BLAST algorithm.

Furthermore, the BLAST algorithm computes a so-called bit score from the
score of an HSP. This bit score is independent from the scoring matrix used
and allows the direct comparison of different computations with different scor-
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ing matrices. Finally, as with the FASTA algorithm, the BLAST algorithm
also estimates the statistical significance of the computed results.

5.3 Multiple Alignments

In the previous sections we have seen how to compute alignments of two
strings. We now want to discuss the question of whether it is possible to find
efficient algorithms also for the comparison of more than two strings. We will
present some approaches to multiple alignment, i.e., to the alignment of mul-
tiple strings, in this section. We will see that the problem of computing a
multiple alignment is algorithmically significantly harder than the computa-
tion of an alignment of two strings.

5.3.1 Definition and Scoring of Multiple Alignments

Multiple alignment can be formally defined analogously to the alignment of
two strings as follows.

Definition 5.10. Let s1 = s11 . . . s1m1 , . . . , sk = sk1 . . . skmk
be k strings

over an alphabet Σ. Let - /∈ Σ be a gap symbol and let Σ ′ = Σ ∪ {-}. Let
h : (Σ′)∗ → Σ∗ be a homomorphism, defined by h(a) = a for all a ∈ Σ and
h(-) = λ.

A multiple alignment of s1, . . . , sk is a k-tuple (s′1, . . . , s
′
k) of strings of

length l > max{mi | 1 6 i 6 k} over the alphabet Σ ′, such that the following
conditions are satisfied:

(a) |s′1| = |s
′
2| = . . . = |s′k|,

(b) h(s′i) = si for all i ∈ {1, . . . , k}, and
(c) there does not exist any position where a gap occurs in all s′i, i.e., for all

j ∈ {1, . . . , l} there exists an i ∈ {1, . . . , k}, such that s′i,j 6= -.

The length l = |s′i| is also called the length of the multiple alignment
(s′1, . . . , s

′
k).

Informally speaking, condition (b) in Definition 5.10 says that deleting all
gaps from the string s′i yields the string si.

The next question is, how can we define the score of a multiple alignment?
We present two different answers to this question.

For the first approach we need the definition of a consensus for a multiple
alignment. Informally, a consensus of a multiple alignment can be determined
by choosing from each column one of the most frequently occurring symbols.
The distance of the alignment to the consensus then can be defined as the
number of occurrences of symbols in the alignment that do not agree with the
consensus in their columns.



102 5 Alignment Methods

Definition 5.11. Let (s′1, . . . , s
′
k) be a multiple alignment of the strings s1, . . . ,

sk ∈ Σ∗ and let l = |s′1| be the length of the alignment.
A string c = c1 . . . cl ∈ Σ

l is called a consensus for (s′1, . . . , s
′
k) if

cj = argmax
a∈Σ

|{s′ij = a | 1 6 i 6 k}| for all 1 6 j 6 l.

The distance of an alignment (s′1, . . . , s
′
k) with |s′1| = l to a consensus c is

defined as

dist(c, (s′1, . . . , s
′
k)) =

l∑

j=1

|{s′ij | 1 6 i 6 k, s′ij 6= cj}|.

Any two consensus strings for a given multiple alignment are related as
follows.

Lemma 5.1. Let (s′1, . . . , s
′
k) be a multiple alignment, and let c and c be two

consensus strings for this alignment. Then

dist(c, (s′1, . . . , s
′
k)) = dist(c, (s′1, . . . , s

′
k)).

Proof. For the proof, we consider one column j of the alignment. If cj 6= cj
holds, the symbols cj and cj have to occur the same number of times in this
column j. This implies

|{s′ij | 1 6 i 6 k, s′ij 6= cj}| = |{s
′
ij | 1 6 i 6 k, s′ij 6= cj}|.

Since this holds for any column, summation over all columns of the alignment
yields the claim. ut

Since the distance to a consensus is independent of the choice of the con-
sensus string, we define the distance to consensus for a multiple alignment
(s′1, . . . , s

′
k) as the distance to an arbitrary consensus. This distance to con-

sensus can be used as a measure for scoring a multiple alignment, such that
a smaller distance to consensus means a better alignment.

We will illustrate this definition with an example.

Example 5.9. Consider the following alignment of the strings s1 = AATGCT,
s2 = ATTC, and s3 = TCC:

s′1 = AATGCT

s′2 = A-TTC-

s′3 = ---TCC

c = AATTCT

Then c is a consensus of this alignment and dist(c, (s′1, s
′
2, s
′
3)) = 1 + 2 + 1 +

1 + 0 + 2 = 7. ♦

Now we can formally define the problem of determining a multiple align-
ment with minimal distance to consensus as follows.
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Definition 5.12. The problem of computing a multiple alignment with mini-
mum distance to consensus, the MultConsensusAlign problem, is the fol-
lowing optimization problem:

Input: A set S = {s1, . . . , sk} of strings over an alphabet Σ.
Feasible solutions: All multiple alignments of S.
Costs: The costs of a multiple alignment (s′1, . . . , s

′
k) with a consensus c are

cost((s′1, . . . , s
′
k)) = dist(c, (s′1, . . . , s

′
k)).

Optimization goal: Minimization.

Note that Definition 5.11 gives only one possible definition of a consen-
sus, often called majority voting. In the literature, the notion of consensus is
often used in a broader sense for some string that is derived from a multiple
alignment by some algorithm.

Another way of scoring a multiple alignment is based on reducing this
problem to the computation of the scores of all pairwise alignments of the
given strings. This idea leads to the following definition.

Definition 5.13. Let Σ be an alphabet, let - /∈ Σ be a gap symbol, and let
δ be a scoring function for the alignment of two strings over the alphabet Σ
with optimization goal minimization, extended by an appropriate definition of
δ(-, -).

The score δSP of a multiple alignment (s′1, . . . , s
′
k) of length l as the sum

of pairs, or SP-score for short, is first defined column-wise. For all 1 6 j 6 l,
let

δSP(s′1j , . . . , s
′
kj) =

k∑

i=1

k∑

r=i+1

δ(s′ij , s
′
rj).

The score of the alignment is then defined as the sum of scores over all
columns, i.e.,

δSP(s′1, . . . , s
′
k) =

l∑

j=1

δSP(s′1j , . . . , s
′
kj).

We illustrate the SP-score of a multiple alignment with an example.

Example 5.10. Consider the following alignment from Example 5.9:

s′1 = AATGCT

s′2 = A-TTC-

s′3 = ---TCC.

As an alignment score, we will use the edit distance, i.e., δ(a, b) = 0 if a = b,
and δ(a, b) = 1 if a 6= b, for all a, b ∈ {A, C, G, T, -}. Then the SP-score of this
alignment is as follows:
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δSP(s′1, s
′
2, s
′
3) =

6∑

j=1

3∑

i=1

3∑

r=i+1

δ(s′ij , s
′
rj)

=

6∑

j=1

(δ(s′1j , s
′
2j) + δ(s′1j , s

′
3j) + δ(s′2j , s

′
3j))

= (0 + 1 + 1) + (1 + 1 + 0) + (0 + 1 + 1) + (1 + 1 + 0)

+(0 + 0 + 0) + (1 + 1 + 1)

= 11.

♦

Now we can formally define the problem of computing a multiple align-
ment with optimal SP-score as follows. Keep in mind that in this section all
considered alignment scoring functions will have minimization as their opti-
mization goal. We will nevertheless use the notion of “similarity” for the score
of an optimal alignment, although one could also call this value the degree of
“non-similarity” since a similarity value of 0 corresponds to a total agreement
of both strings.

Definition 5.14. The problem of computing a multiple alignment with opti-
mal SP-score, the MultSPAlign problem, is the following optimization prob-
lem:

Input: A set S = {s1, . . . , sk} of strings over an alphabet Σ and an alignment
score δ.

Feasible solutions: All multiple alignments of S.
Costs: The costs of a multiple alignment (s′1, . . . , s

′
k) are

cost((s′1, . . . , s
′
k)) = δSP(s′1, . . . , s

′
k).

Optimization goal: Minimization.

5.3.2 Exact Computation of Multiple Alignments

For computing an optimal multiple alignment, we can generalize the dynamic
programming approach used for the pairwise alignment. Consider an input
of k strings s1, . . . , sk, for which we want to compute an optimal multi-
ple alignment. Then, we can use a k-dimensional array M , where the en-
try A(i1, . . . , ik) contains the score of an optimal multiple alignment of the
prefixes s11 . . . s1i1 , . . . , sk1 . . . skik

.
But this approach raises some difficulties, it is of limited use, especially for

high values of k. One of the problems is that the data structure for maintaining
a k-dimensional array is quite complex and difficult to handle if the parameter
k is not known in advance but is part of the input, i.e., if one wants to construct
a program that can compute an optimal multiple alignment for an arbitrary
number of strings.
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On the other hand, the time and space complexities of this method depend
exponentially on the parameter k. To compute one entry of the array, we have
to find a minimum of 2k−1 values. In the case of the alignment of two strings,
we constructed the minimum of three values corresponding to the three cases
of inserting a gap into the first, the second, or none of the given strings. In
the case of multiple alignment we now have to consider a special case for
each possible combination of gaps in the current column of the alignment.
Furthermore, the calculation of these values is more complicated in each of
the cases. For example, if we consider the SP-score, computing the score of
the current column requires time quadratic in k. If we assume that all given
strings have the same length n, the array has nk entries, and the computation
of the array has time complexity in O(k2 · 2k · nk).

Thus, the dynamic programming method is only applicable for multiple
alignment if one wants to compare only very few, say, three or four, strings.
Essentially, there are no better methods known for exactly computing the
optimal multiple alignment. On the contrary, this problem is NP-hard if the
number k of strings is considered to be a part of the input.

For showing the NP-hardness of multiple alignment, we will first formally
define the decision version of this problem and the problem we want to reduce
it to.

Definition 5.15. The decision version of the multiple alignment problem with
SP-score (DecMultSPAlign problem) is defined as follows:

Input: A positive integer k and a set S = {s1, . . . , sk} of strings over an
alphabet Σ, a scoring function δ : (Σ ∪ {-})2 →

�
, and a positive integer

d.
Output: Yes if there exists a multiple alignment of the strings in S that has

an SP-score with respect to δ less or equal to d. No otherwise.

Definition 5.16. A supersequence of a set S = {s1, . . . , sk} of strings is a
string containing each si as a subsequence for all i ∈ {1, . . . , k}. The deci-
sion version of the shortest common supersequence problem over the binary
alphabet Σ = {0, 1} (Dec(0,1)ShortestSuperseq problem) is defined as
follows:

Input: A positive integer k and a set S = {s1, . . . , sk} of strings over the
alphabet Σ = {0, 1} and a positive integer m.

Output: Yes if there exists a common supersequence t of the strings from S,
such that |t| 6 m. No otherwise.

Middendorf [145] has shown by a reduction from the vertex cover problem
that this problem is NP-complete; we skip the proof here.

Lemma 5.2. The Dec(0,1)ShortestSuperseq problem is NP-complete.
ut
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Using Lemma 5.2, we are now able to prove the hardness of computing
the multiple alignment with SP-score.

Theorem 5.2. The DecMultSPAlign problem is computationally hard in
the sense that any algorithm solving it can be used to construct an algorithm
for the Dec(0,1)ShortestSuperseq problem only with a polynomial blow-
up in the running time.

Proof. We will present a polynomial-time reduction from the Dec(0,1)Short-
estSuperseq problem to the DecMultSPAlign problem. Consider a set
S = {s1, . . . , sk} of strings over the alphabet {0, 1} and a natural number
m as an input for the Dec(0,1)ShortestSuperseq problem. Without loss
of generality, we assume that max{|si| | 1 6 i 6 k} 6 m holds. Further-
more, we may assume without loss of generality that m 6 ||S|| holds, where

||S|| =
∑k

i=1 |si| denotes the total length of all input strings. This assumption
ensures that the value of m is polynomially bounded by the input size.

For this input, we now construct m + 1 different input instances for the
DecMultSPAlign problem and show that there exists a common superse-
quence for S of length less than or equal to m if and only if for at least one
of the constructed input instances for the DecMultSPAlign problem there
exists a multiple alignment with SP-score below the given threshold.8

The idea behind the reduction is the following: We construct the input
instance for the DecMultSPAlign problem by using the same strings that
are given as input for the Dec(0,1)ShortestSuperseq problem plus two
additional strings made from new symbols. Furthermore, we define the scor-
ing function and the threshold d for the SP-score in such a way that we
can guarantee that in every solution with an SP-score below the threshold
d no column contains both 1s and 0s. If we can additionally ensure that the
length of the multiple alignment has to be 6 m, the alignment immediately
gives us a solution to the Dec(0,1)ShortestSuperseq problem. Since we
do not know in advance how many 0-columns and how many 1-columns the
DecMultSPAlign solution has, we have to construct m+ 1 different input
instances.

More formally, we can construct the input instances for the DecMultSP-
Align problem as follows:

• For all i, j ∈ � such that i+ j = m, let Xi,j = S ∪ {ai, bj}, where a and b
are two new symbols.

8 Note that this does not imply the NP-hardness of the DecMultSPAlign problem
in the usual sense, since we are using a variant of reduction here which constructs
polynomially many input instances of the DecMultSPAlign problem for one
input instance of the Dec(0,1)ShortestSuperseq problem. The usual reduc-
tions used to prove NP-hardness have to transform the given input instance into
exactly one input instance of the other problem. For a discussion of the various
types of possible reductions and the relations between them see [79, 124].
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δ 0 1 a b -

0 2 2 0 2 1
1 2 2 2 0 1
a 0 2 0 3 1
b 2 0 3 0 1
- 1 1 1 1 0

Table 5.2. The alignment scoring function in the proof of Theorem 5.2

• Let d = (k−1) · ||S||+(k+1) ·m, where ||S|| =
∑

s∈S |s| denotes the total
length of all strings in S.

• Let the alignment scoring function δ : ({0, 1, a, b, -})2 →
�

be defined as
shown in Table 5.2.

Now it suffices to prove the following claim:

The set S has a supersequence t of length m if and only if one of the
sets Xi,j has a multiple alignment with SP-score 6 d according to δ.

To prove this claim we will show the two implications separately.

1. Consider, for an Xi,j , a multiple alignment A = (s′1, . . . , s
′
k, α, β) with

SP-score less or equal to d, where α is the row corresponding to the string
ai and β is the row corresponding to bj . We first consider the restriction
A′ of A containing the rows s′1, . . . , s

′
k only. We show that the score of

A′ always is (k − 1) · ||S||, independent of the actual alignment A. To see
this, we first examine one column of A′. If this column contains exactly l
gaps, the comparison of gaps with non-gaps contributes costs of l · (k− l),

and the (k−l)(k−l−1)
2 different pairs of non-gaps contribute costs of 2 each.

This amounts to a total cost of this column of

l · (k − l) + 2 ·
(k − l)(k − l− 1)

2
= (k − 1) · (k − l).

Now let x be the number of columns of A′ and let y be the number of gap
symbols in A′. Then ||S|| = k ·x− y holds. Furthermore, let lp denote the
number of gaps in column p of A′ for all 1 6 p 6 x. Then the score of A′

satisfies

δSP(A′) =

x∑

p=1

(k − 1) · (k − lp) = (k − 1) ·
x∑

p=1

(k − lp)

= (k − 1) · (k · x− y) = (k − 1) · ||S||.

We will now column-wise determine the costs contributed by the compar-
ison of α and β with A′. In a column containing an a (or b) we call any 1
(or 0) a bad symbol. For determining the costs, we distinguish three types
of columns.
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Consider a column where either α contains an a or β contains a b (but
not both). If there are no bad symbols inside the column, it contributes
costs of k+1; in other words, costs of k− l for comparing the gap symbol
in α or β with A′, where l again denotes the number of gaps within this
column of A′, costs of l for comparing the a or b to A′, and an additional
cost of 1 for the comparison of α and β. Any bad symbol gives additional
costs of 2.
Now consider a column containing both a and b. It contributes costs of
2k + 3, independent of A′: The comparison of a and b contributes 3, the
comparison of a 0 or 1 with a and b contributes 2, since the 0 or 1 is a bad
symbol with respect to either a or b, and the comparison of a gap symbol
with a and b contributes 2.
Finally, consider a column with gaps in both α and β. Such a column
contributes costs of 2 · (k − l), where l is the number of gaps in A′ within
this column. Since l < k holds (otherwise the column would consist of
only gaps, contradicting the definition of an alignment), the costs of this
column are at least 2.
Summarizing the above arguments, we have established the following for
a column c with l gaps in the A′ rows:

cost(c) =







k + 1 gap in either α or β,

2k + 3 no gap in α or β,

> 2 gaps in both α and β.

(5.2)

We now show that any alignment of Xi,j with an SP-score 6 d has a
length of m and does not contain any bad symbols.
According to the calculation above, it is clear that any alignment of length
exactly m without bad symbols has costs of (k− 1)||S||+m · (k+ 1) = d,
since no column with gaps in both α and β can exist in such an alignment.
It remains for us to show that any other alignment has higher costs. Obvi-
ously, any bad symbol increases the costs. Let us assume that there exists
at least one column containing both a and b. Separating this column into
two columns, one containing all zeros and the a, the other containing all
ones and the b, decreases the cost by at least 1 (from 2k+ 3 to 2 · (k+ 1),
according to Equation (5.2)). Thus, for every alignment with a and b in-
side the same column, there exists a cheaper alignment. This implies that
no alignment of length < m with costs 6 d can exist. We now consider
an alignment with x > m columns. As shown above, we may assume that
no column contains both a and b. Thus, there are m columns containing
either a or b and x−m columns with gaps in both α and β. This amounts
to costs of at least (k − 1)||S||+m · (k + 1) + 2(x−m) > d according to
the above calculations. Thus, no alignment with x 6= m columns can have
costs 6 d.
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From such an alignment of length m and without bad symbols, we can
obtain a common supersequence t for s1, . . . , sk of length m: We define
tl = 0 if αl = a and tl = 1, if βl = b.

2. Consider a common supersequence t for S of length m. Let i denote the
number of zeros in t and let j denote the number of ones in t. We will
show that the set Xi,j has a multiple alignment with SP-score 6 d. Since
t is a supersequence of S, there exists an alignment of p and t without
mismatches for every string p ∈ S. To construct a multiple alignment of
Xi,j , we just combine these alignments without mismatches. We assign
the symbols a of the string ai to the 0-columns of this multiple alignment
of S, and the symbols b of the string bj to the 1-columns. Then the SP-
score of this multiple alignment (without the string t) is exactly d, as can
easily be seen using calculations analogous to those in the first part of this
proof. ut

5.3.3 Combining Pairwise Alignments

Since we have seen in the previous subsection that determining an optimal
multiple alignment exactly is hardly possible in practice, we want to present
a method in this subsection that enables us to find at least an approximate
solution to the problem. The idea behind this approach is to construct a
multiple alignment by combining a set of pairwise alignments of the given
strings.

For this approach, we first need the definition of compatibility of multiple
alignments.

Definition 5.17. Let S = {s1, . . . , sk} be a set of strings and let T =
{si1 , . . . , sim

} be a subset of S. Let A′ = (s′1, . . . , s
′
k) be a multiple alignment

of S, and let A′′ = (s′′i1 , . . . , s
′′
im

) be a multiple alignment of T .
The alignment A′ is called compatible with the alignment A′′ if the restric-

tion of A′ to the rows i1, . . . , im, where all columns consisting of gap symbols
only are eliminated, equals the alignment A′′.

We will illustrate this definition with an example.

Example 5.11. Let S = {ACGG, ATG, ATCGG}, T1 = {ACGG, ATG}, and T2 =
{ATG, ATCGG}. The alignment

A-CGG

A--TG

ATCGG

of S is compatible with the alignment

ACGG

A-TG

of T1, since restricting the alignment of S to the first two rows yields



110 5 Alignment Methods

A-CGG

A--TG,

and eliminating the second column, consisting of gap symbols only, yields
the above alignment of T1. On the other hand, this alignment of S is not
compatible with the alignment

AT-G-

ATCGG

of T2, since restricting the alignment of S to the second and third row yields
another alignment: namely the alignment

A--TG

ATCGG.

♦

We will now show how to construct a multiple alignment using a tree of
pairwise alignments. For this we will need the following definition.

Definition 5.18. LetS = {s1, . . . , sk} be a set of strings over an alphabet Σ.
A tree T = (V,E) with V = {s1, . . . , sk}, where every edge {si, sj} ∈ E is
labeled with an optimal alignment (s′i, s

′
j) for si and sj , is called an alignment

tree for S.

It is now possible to show that, starting from an alignment tree for a given
set of strings, one can always compute a compatible multiple alignment.

Theorem 5.3. Let S = {s1, . . . , sk} be a set of strings over an alphabet Σ
and let T = (V,E) be an alignment tree for S. Then a multiple alignment
(s′′1 , . . . , s

′′
k) for S, which is compatible with the optimal pairwise alignments

(s′i, s
′
j) for all {si, sj} ∈ E, can be efficiently determined. ut

The alignment (s′′1 , . . . , s
′′
k) is also called compatible multiple alignment of

S according to T . We will not present the proof of Theorem 5.3 here; we refer
the reader to the bibliographic notes in Section 5.5.

In the following we consider the special case where the alignment tree is
a star, i.e., a tree with a center vertex c and k − 1 leaves connected to the
center. This special case is called star alignment. .

The algorithm for the star alignment is based on first choosing one of
the given strings as the center of the star and then iteratively combining
the optimal pairwise alignments of all other given strings with the center to
achieve a compatible multiple alignment. If we have already constructed a
multiple alignment of the strings c and s1, . . . , si and want to combine it with
an optimal pairwise alignment of c and si+1, we proceed using the principle
“Once a gap — always a gap.” This means that we try to insert as few gap
symbols as possible into both alignments such that the resulting extensions
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Algorithm 5.3 Star Alignment

Input: A set S = {s1, . . . , sk} of strings.

1. Compute the center c of the star:

for i := 1 to k do

for j := i to k do

Compute an optimal pairwise alignment of si and sj and determine its
score sim(si, sj).

Define c as the string t minimizing the sum � s∈S sim(t, s).
Define T to be the star with center c and leaves S − {c}.

2. Compute a compatible multiple alignment:

for i := 2 to k do

Compute a multiple alignment of c and s1, . . . , si that is compatible with T
from the already known compatible multiple alignment of c and s1, . . . , si−1

and the optimal pairwise alignment of c and si using the principle “Once
a gap — always a gap”.

Output: The computed multiple alignment of S, which is compatible with T .

of c coincide. This procedure is shown in Algorithm 5.3. We assume that the
scoring function is chosen in such a way that an optimal alignment has a
minimum score.

We illustrate the principle “Once a gap — always a gap” with an example.

Example 5.12. Consider the four strings c = ATGCATT, s1 = AGTCAAT, s2 =
TCTCA, and s3 = ACTGTAATT with the alignments

c′ : ATG-CATT
s′1 : A-GTCAAT
s′2 : -TCTCA--

and
c′′ : A-TGC-ATT
s′′3 : ACTGTAATT.

Inserting the gaps from both alignments into the string c yields the string
c′′′ = A-TG-C-ATT, and keeping the columns from both alignments leads to
the following multiple alignment of all four strings:

c′′′ : A-TG-C-ATT
s′′′1 : A--GTC-AAT
s′′′2 : --TCTC-A--
s′′′3 : ACTG-TAATT.

♦

Example 5.12 moreover shows that using this method does not always
result in an optimal multiple alignment. It would clearly have improved the
total alignment to replace the string s′′′3 with the string ACTGT-AATT.
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But we will show in the following that Algorithm 5.3 achieves a good
approximation of an optimal multiple alignment, if the scoring function used
has some nice properties. The next definition formalizes the properties we
have to assume.

Definition 5.19. A scoring function δ : (Σ ∪ {-})2 →
�

is called good if it
satisfies the following properties.

(i) δ(a, a) = 0 holds for all a ∈ (Σ ∪ {-}).
(ii) For all a, b, c ∈ (Σ ∪ {-}) the triangle inequality holds:

δ(a, c) 6 δ(a, b) + δ(b, c).

Another property of good scoring functions is given by the following
lemma.

Lemma 5.3. Let δ be a good scoring function. Then δ(a, b) > 0 holds for all
a, b ∈ (Σ ∪ {-}).

Proof. We know 0 = δ(a, a) 6 δ(a, b) + δ(b, a) = 2 · δ(a, b) for all a, b ∈
(Σ ∪ {-}). ut

To prove that Algorithm 5.3 achieves a good approximation of the optimal
multiple alignment we need the following lemma.

Lemma 5.4. Let δ : (Σ ∪ {-})2 →
�

be a good scoring function. Let S =
{c, s1, . . . , sk} be a set of strings. Let T = (S,E) be a star with center c and let
(c′, s′1, . . . , s

′
k) be a multiple alignment of S that is compatible with T . Then,

for all i, j ∈ {1, . . . , k},

δ(s′i, s
′
j) 6 δ(s′i, c

′) + δ(c′, s′j) = sim(si, c) + sim(c, sj).

Proof. Since the score δ(s′i, s
′
j) of the pairwise alignment equals the sum of

scores of symbol pairs over all columns, the claimed inequality directly follows
from the triangle inequality we have required for δ. The claimed equality
holds since the pairwise alignments between si and c as well as between c and
sj , induced by the multiple alignment (c′, s′1, . . . , s

′
k), are optimal, and since

δ(-, -) = 0 holds. ut

Now we have gathered all prerequisites for proving that Algorithm 5.3
computes a good approximation of an optimal multiple alignment.

Theorem 5.4. Let δ be a good scoring function, and let δSP be the SP-scoring
function induced by δ. Let S = {s1, . . . , sk} be a set of strings, and let
simSP(S) be the SP-score of an optimal multiple alignment for S. Then the
multiple alignment (s′1, . . . , s

′
k) computed by Algorithm 5.3 satisfies

δSP(s′1, . . . , s
′
k) 6

(

2−
2

k

)

· simSP(s1, . . . , sk).
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Proof. Let (s′′1 , . . . , s
′′
k) be an optimal multiple alignment of S according to

the SP-scoring, i.e., let δSP(s′′1 , . . . , s
′′
k) = simSP(s1, . . . , sk).

We define

v(s′1, . . . , s
′
k) =

k∑

i=1

k∑

j=1

δ(s′i, s
′
j) = 2 · δSP(s′1, . . . , s

′
k)

and

v(s′′1 , . . . , s
′′
k) =

k∑

i=1

k∑

j=1

δ(s′′i , s
′′
j ) = 2 · δSP(s′′1 , . . . , s

′′
k) = 2 · simSP(S).

To prove the claim of the theorem it suffices to show that

v(s′1, . . . , s
′
k)

v(s′′1 , . . . , s
′′
k)

6 2−
2

k
.

Let
M = min

t∈S

∑

s∈S

sim(s, t) =
∑

s∈S

sim(c, s) =
∑

s∈S−{c}

sim(c, s).

Without loss of generality we assume that c = sk holds.
Following Lemma 5.4, we know

v(s′1, . . . , s
′
k) =

k∑

i=1

k∑

j=1

δ(s′i, s
′
j) 6

k∑

i=1

k∑

j=1

(sim(si, c) + sim(sj , c))

=

k−1∑

i=1

k−1∑

j=1

(sim(si, c) + sim(sj , c))

=
k−1∑

i=1

k−1∑

j=1

sim(si, c) +
k−1∑

i=1

k−1∑

j=1

sim(sj , c)

= 2 · (k − 1) ·
k−1∑

i=1

sim(si, c) = 2 · (k − 1) ·M.

On the other hand,

v(s′′1 , . . . , s
′′
k) =

k∑

i=1

k∑

j=1

δ(s′′i , s
′′
j ) >

k∑

i=1

k∑

j=1

sim(si, sj)

> k ·
k∑

j=1

sim(c, sj) = k ·M

since, due to the choice of c = argmint∈S

∑

s∈S sim(t, s) we have, for any fixed
i,
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k∑

j=1

sim(si, sj) >

k∑

j=1

sim(c, sj).

Hence,
v(s′1, . . . , s

′
k)

v(s′′1 , . . . , s
′′
k)

6
2 · (k − 1) ·M

k ·M
= 2−

2

k
.

ut

Theorem 5.4 shows that Algorithm 5.3 is a (2− 2
k
)-approximation algorithm

for the multiple alignment of k strings according to the SP-score for any good
scoring function. It is possible to show that it also achieves a 2-approximation
for scoring according to the distance to consensus. But the proof for this claim
is a little more involved, and we will not present it here.

5.4 Summary

Computing optimal alignments is a method for comparing strings. One tries
to align the strings with each other by inserting gaps, such that the aligned
strings coincide as much as possible. For two given strings, an optimal align-
ment can be computed efficiently using the method of dynamic programming.
We distinguish between global and semiglobal alignments for comparing the
entire strings and local alignments for the search for substrings of maximal
similarity.

To compare biological sequences, in particular protein sequences, one needs
scoring matrices indicating the similarity of the single symbols. In practice,
mainly two kinds of matrices are used, the PAM matrices and the BLOSUM
matrices.

For searching biological databases one can use the alignment methods
presented. But these exact methods often are still too slow for large databases.
Therefore one normally uses heuristic methods. The best-known heuristics are
the FASTA and the BLAST algorithms.

For comparing more than two strings simultaneously there are several ways
of defining the score of a multiple alignment. Extending the exact algorithms
from two strings to more strings is possible in principle, but inefficient. But
under certain conditions it is possible to compute a good approximation of an
optimal multiple alignment.

5.5 Bibliographic Notes

The textbooks by Gusfield [91], Pevzner [159], and Setubal and Meidanis [180]
as well as the lecture notes by Schnitger [177] (in German) present the different
approaches and methods for computing alignments in detail. A presentation
of the many statistical approaches for the alignment problem, which we have
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not discussed here, can be found in the books by Ewens and Grant [68], Clote
and Backofen [49], Waterman [201], and Durbin et al. [62].

The algorithm for the global alignment of two strings is due to Needleman
and Wunsch [147]; the algorithm for local alignment was designed by Smith
and Waterman [184]. The edit distance as an alignment scoring function was
first proposed by Levenshtein [132]. The use of affine gap scores was investi-
gated independently by several researchers; for a detailed discussion and the
detailed recursion formula see the book by Gusfield [91].

The PAM scoring matrices for the alignment of protein sequences are due
to Dayhoff et al. [57], the BLOSUM matrices were developed by Henikoff and
Henikoff [102]. The FASTA heuristics goes back to Lipman and Pearson [140,
155]; the description of a more current version of the program, which is always
under development can for example be found in the work by Pearson [154].
Altschul et al. [10] developed the original version of the BLAST heuristic.
An extended version that also allows the insertion of gaps while extending
the hits is decribed in the paper by Altschul et al. [11]. A more detailed
discussion of practical applications of these heuristics can be found in the
books by Hansen [98] and Rauhut [164] (both in German). The analysis of
the statistical significance of the results produced by the BLAST algorithm is
described in detail in the book by Ewens and Grant [68].

The SP-score for multiple alignments was introduced by Carillo and Lip-
man [41]. The scoring by the distance to consensus was investigated by Li
et al. [134]. The NP-completeness of the multiple alignment problem with
SP-score was proved by Wang and Jiang [199]; the NP-completeness result
for the problem of the shortest common supersequence used in their proof is
due to Middendorf [145]. The concept of alignment trees and the proof that
there exists a compatible multiple alignment for any alignment tree are due to
Feng and Doolittle [72]. The approximation algorithm for the star alignment
with SP-score was designed by Gusfield [90]. Also, for computing a multi-
ple alignment with distance to consensus score there exists an approximation
algorithm, described in the book by Gusfield [91].
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DNA Sequencing
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Introduction and Overview

DNA sequencing, i.e., determining the sequence of bases within a nucleic acid
molecule, is an essential issue in molecular biology leading to a multitude
of combinatorial problems. Thus, for solving these problems it is almost in-
evitable to use computational support. However, before we start describing
the particular approaches to accomplish this task, as well as the resulting
formal models, we will first discuss the importance of this topic.

For almost all living beings, in particular for humans, DNA provides the
molecular structure carrying all information on the construction of other
molecules. Thus, it plays a central role in the development of single individ-
uals and in the controlling of vital processes inside organisms. Accordingly,
DNA is often called the blueprint of life. Moreover, copies of the DNA are
passed over from one generation to the other. This process from time to time
leads to alterations of the base sequence, and hence also of its encoded infor-
mation. While most of these alterations are insignificant, some of them may
also have an enormous impact. Thus, knowledge about the information en-
coded in the DNA is crucial for understanding of many genetical diseases and
evolutionary relations between species. This information essentially consists
of the sequence of bases along the DNA molecule. We sketch some general
approaches for deriving this base sequence.

First of all, we recall the chain termination method for sequencing as
presented in Section 2.4.3. Using this method, the direct reading of bases is
currently limited to about 1 000 bp, since longer DNA molecules will lead to
non-tolerable error rates. In contrast, the total length of the human genome
is about 3.5 Gbp, i.e., some million times of the molecule length that can be
handled by this method. To address this problem, several different approaches
have been proposed, two of which we outline in the following.

The first approach uses the following idea. We cut several copies of the
investigated DNA molecule into a multitude of overlapping pieces that we will
call fragments. These fragments have a length of about 50-300 kbp. During
this process, the order of the fragments gets lost and has to be recovered using
combinatorial methods. After having reconstructed this order, we are provided



120 6 Introduction and Overview

with a so-called physical map of the molecule, which gives us an overview of
the order and relative positions of the fragments. At the same time, we obtain
a set of short regions along the DNA of which we know the base sequence
and the exact position. These regions are called markers of the physical map.
They may help us to determine the position of an unknown fragment within
the DNA if we know that the marker is inside the fragment.

After we construct a physical map of the investigated DNA, a process we
refer to as physical mapping, we aim at determining the base sequence of the
single fragments independently. These fragments are not as large as the origi-
nal DNA molecule, but are nevertheless far too large to be sequenced directly
by means of the chain termination method. Thus, we again generate copies of
the fragments and cut them into overlapping pieces, which are this time short
enough for direct sequencing.1 Here, the ordering of the subfragments again
gets lost, and it has to be restored by clever combinatorial methods.

This clearly is only a rough outline of the first approach for DNA sequenc-
ing. It neglects many problems, additional information, and details. Some of
these refinements will be discussed in the subsequent chapters. The interna-
tional Human Genome Project essentially followed this approach. This project
was launched in the early 1990s with the goal of sequencing the whole human
genome, and it was more or less successfully finished in 2001 [106]. But this
obviously does not mean that the task of DNA sequencing with all its prob-
lems can be considered to be definitively solved. Also, in the future, there will
be an (even greater) need for the information coded in the DNA. A partic-
ularly important issue is the identification of gene positions within the now
known base sequence, and to further utilize this knowledge, for instance, in
the study of genetical defects.

The second approach for DNA sequencing, which we present next, is
mainly based on the massive use of computational power and on clever al-
gorithms, and was pursued by the company Celera Genomics [197]. The idea
is based on simply omitting the costly first step of the previously described
approach, i.e., the detour of physical mapping. Instead, the second step, con-
sisting of cutting the DNA into fragments, sequencing these fragments, and
recovering their order, is performed directly utilizing massive computing power
and some additional information. For example, the length of the fragments is
measured and, for each fragment, both prefix and suffix are sequenced. Al-
though this may not cover the whole fragment, one gains two subsequences
at a specified distance along the DNA, so-called mate pairs. This is called
the whole genome shotgun approach, where the shotgun method refers to one
possible implementation of the second step, i.e., sequencing the subfragments,
in the first approach.

This raises the question, how helpful is it to determine the DNA sequence
of one human individual, or even the common sequence of several individuals?

1 If the subfragments are also too long to be totally sequenced, only a prefix or
suffix of appropriate length will be sequenced.
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In this context, we would like to mention the fact that the genome of all
humans is identical up to 99.7%. Thus, a single DNA sequence can also serve
as the basis for the solution of more general issues.

An excellent discussion of the issues presented is contained in an article
by Myers [146], which is also very readable for computer scientists.

When describing the efforts for the sequencing of the human genome, we
also have to critically discuss the results currently achieved. The sequences
derived from both of these projects are by no means unambiguous. Moreover,
there exist a number of differences that must be resolved by further inves-
tigations, such that eventually a more or less complete and unique sequence
is achieved. But such a unique sequence itself does not provide us with the
crucial structures within the sequence, such as the positions of genes. While
the basic data is already available, the analysis requires a lot of additional
effort.

Having given these introductory remarks on DNA sequencing, we now
describe the approaches presented in more detail. In Chapter 7, we focus on
methods for physical mapping. The physical maps obtained may then serve
as a prerequisite for DNA sequencing, and also as a source of information
for many other biomolecular issues. In Chapter 8, we present some methods
for sequencing DNA molecules that are too long for the direct sequencing
approach. We also discuss the shotgun approach mentioned above in more
detail.
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Physical Mapping

In the previous chapter we gave an intuition of our understanding of physical
mapping and how we can utilize it in the context of DNA sequencing. We
now make this more concrete by presenting some methods for the construc-
tion of such physical maps as well as by considering the resulting algorithmic
problems. Let us start with a definition.

Definition 7.1. Let D be a DNA sequence. A physical map consists of a set
M of genetic markers and a function p : M → Pot( � ) assigning to each
marker in M the positions of its occurrence in D. (A marker can typically be
seen as a short DNA sequence.) The computation of such a physical map is
denoted as physical mapping.

The idea of a physical map is illustrated in Figure 7.1. Their usage is not
restricted to the context of DNA sequencing; physical maps can moreover be
utilized as a source of information for numerous other tasks. They may help,
for instance, in the search of certain genes within a DNA sequence.

In the next sections we will present two different approaches to physical
mapping in more detail. Section 7.1 is devoted to mapping based on restriction
site data, while the methods described in Section 7.2 are based on hybridiza-
tion data. The main statements of this chapter will be summarized in Section
7.3 and followed by some references to the literature for further reading in
Section 7.4.

7.1 Restriction Site Mapping

The procedure for physical mapping we describe in the following is based
on the application of restriction enzymes. These enzymes have the capability
to recognize short subsequences within the DNA and to cut the DNA at,
or near, this site. The sites are specific to each restriction enzyme and are
accordingly called restriction sites, i.e., each restriction enzyme corresponds
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PSfrag replacements
DNA sequence

Marker

Fig. 7.1. Schematic view of a physical map

to a subsequence that defines the restriction site. The process of cutting the
DNA by a restriction enzyme is called digestion.

A multitude of restriction enzymes occurring in nature, together with their
corresponding restriction sites, are known. These will typically be denoted by
a combination of the name of the organism where the enzyme was discovered
first and a roman number. For instance, the restriction enzyme HindIII was
first extracted from the bacterium Haemophilus influenzae Rd. Since we do
not need such comprehensive information for our purpose, for simplification
we denote the enzymes using the characters A, B, . . . , and so on. An example
for the function of restriction enzymes is depicted in Figure 7.2.

PSfrag replacements

A A G C T T

T T C G A A

A A G C T T

T T C G A A

Fig. 7.2. Restriction site of restriction enzyme HindIII

We will now use restriction enzymes to cut the considered DNA and then
determine the positions of the restriction sites along it from the resulting
fragments. In this context, the restriction sites may serve as the markers of a
physical map. In this procedure, furthermore, the ordering of the fragments
resulting from the digest of the DNA is determined. Thus, it becomes possible
to consider these fragments independently from each other in a step of DNA
sequencing, i.e., to determine the sequence of the fragments separately and
assemble the resulting sequences according to the ordering of the fragments
thereafter, to finally obtain the total sequence of the considered DNA (as
we described in greater detail in Chapter 6). Two approaches following the
rough scheme described above will be presented in more detail in the next
subsections.

7.1.1 The Double Digest Approach

Problem Setting

The idea of the double digest approach is to digest the considered DNA by
two restriction enzymes separately, and then, in an additional experiment, by
both of these enzymes. Thus, we have three digest experiments, one with the
first enzyme, one with the second, and one that is a combination of the two.
The lengths of the fragments resulting from the three setups are determined
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and used for the computation of the ordering of the fragments, and hence also
of the ordering of the restriction sites and their positions.

A schematic view of this double digest approach is given next.

Method 7.1 The double digest approach

Input: The considered DNA molecule D and two distinct restriction enzymes A and
B.
1. Generate three copies of D.1

2. Apply enzyme A to the first, enzyme B to the second, and both enzyme
A and enzyme B to the third copy. We obtain a set of unordered fragment
from each copy.

3. Determine the lengths of the fragments of D and obtain three multisets:
• ∆(A): Contains the lengths of the fragments resulting from the digest

of the (first) copy of D by enzyme A.
• ∆(B): Contains the lengths of the fragments resulting from the digest

of the (second) copy of D by enzyme B.
• ∆(AB): Contains the lengths of the fragments resulting from the digest

of the (third) copy of D by enzyme A and enzyme B.
Output: The multisets ∆(A), ∆(B), ∆(AB).

PSfrag replacements
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Fig. 7.3. Schematic view of the double digest approach

The principle of the approach is shown in Figure 7.3. Note the following
two facts: Ideally a full digest is performed in this approach, i.e., the DNA is
cut at each occurrence of the restriction site of the applied restriction enzyme;
and the resulting sets∆(A),∆(B), and∆(AB) actually denote multisets, since
fragment lengths may occur more than once.
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From the multisets ∆(A), ∆(B) and ∆(AB), we want, if possible, to re-
construct the ordering of the derived fragments and thus also of the positions
of the restriction sites. This implies the so-called double digest problem. Before
we give a formal definition, we will describe the underlying idea in an intuitive
way.

We look for the orderings of the fragments of the multisets ∆(A) and
∆(B); we denote these orderings by π and φ, respectively. If we now order
the fragments of ∆(A) according to π and the fragments of ∆(B) according
to φ, then the restriction sites resulting from the overlay of the two orderings,
i.e., from the boundaries of the fragments, should imply the fragment lengths
within ∆(AB). See Figure 7.4 for a concrete example.
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Fig. 7.4. Schematic view of the double digest problem. Find orderings π and φ of
A and B, such that the multiset C is implied

To formalize this intuitive idea of the desired ordering, we start with some
notations. We abstract from the biological data and consider general multisets
A, B, and C instead of the multisets ∆(A), ∆(B), and ∆(AB). We refer to
a triple of multisets such as A,B,C over positive integers ( � − {0}) as DD
instances in the following.

Definition 7.2. Let X = {x1, . . . , xn} be a multiset with elements from � −
{0}. Let π = (xi1 , . . . , xin

) be an ordering of the elements from X. By

Pos(π) =







k∑

j=1

xij
| 0 6 k 6 n







we denote the position set of ordering π.
Conversely, let Y = {y1, . . . , yp} with y1 < y2 < · · · < yp be a set of

elements from � . We denote by Dist(Y ) the multiset

Dist(Y ) = {|yi+1 − yi| | i ∈ {1, . . . , p− 1}}
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of distances between consecutive elements in Y . We call Dist(Y ) the distance
set of Y .

In our model the position set corresponds to an ordering of fragment
lengths, i.e., to the positions of the endpoints of the fragments in the DNA
molecule according to the given order (starting from 0). In Figure 7.4 the
position sets are given in terms of intervals along a line. In some sense the dis-
tance set of a set denotes the inverse of the construction of a position set; from
the positions of the endpoints of fragments along the molecule we can infer
the multiset of fragment lengths by applying the function Dist . In particular
Dist(Pos(π)) = X holds for each ordering π of a multiset X .

The following definition specifies when we call a pair of orderings consistent
with the data received from a double digest experiment.

Definition 7.3. Let A, B, and C be multisets with elements from � − {0},
where n = |A| and m = |B|. Let π and φ be orderings of the elements from
A and B, respectively. The pair (π, φ) is called a feasible solution to the DD
instance A,B,C, if

Dist(Pos(π) ∪ Pos(φ)) = C.

We are now ready to define our double digest problem.

Definition 7.4. The double digest problem, DDP for short, is the following
computing problem.

Input: A DD instance A,B,C with elements from � − {0}.
Output: An element of the set

M = {(π, φ) | (π, φ) is a feasible solution to A,B,C}

or the value 0 if M = ∅.

We also denote the setM as the set of feasible solutions for the particular
DDP.

Let us bring this definition in line with our intuition. Consider a pair of
orderings (π, φ) from the set of feasible solutions for DDP. We can imagine
arranging the fragments according to the orderings along the number line,
starting with 0. We thus obtain all positions along the number line where
fragments adjoin each other, which correspond to the sets Pos(π) and Pos(φ),
respectively. The set Pos(π) ∪ Pos(φ) thus corresponds to the overlay of the
two number lines. The positions in Pos(π) ∪ Pos(φ) can hence be identified
(from a biological point of view) as the restriction sites of A or B. That is, the
distances between adjacent points in Pos(π)∪Pos(φ) must meet the multiset
C = ∆(AB) to guarantee a useful ordering of the fragments. This issue is
clarified in Figure 7.4 by an example.

In principle, the following holds: If a DD instance A,B,C does not obey
the equation
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∑

x∈A

x =
∑

y∈B

y =
∑

z∈C

z,

the set of feasible solutions for this input is necessarily empty. Informally, this
equation holds if the multisets A, B and C result from the partition of the
same basic distance. On the level of our biological motivation, it hence must
hold that the lengths of the digested DNA sequences are all the same. Inputs
that do not satisfy this equality need not to be considered and can be rejected
directly. On the other hand, one has to note that we rely on ideal data in this
context, which does not contain any errors, such as measurement errors.

Problem Complexity

A naive approach to solving the DDP is to test all possible orderings for the
multisets A and B. This will result in up to (|A|)! · (|B|)! possible order-
ings2 that have to be tested according to our definition. In a realistic setting,
where there might be thousands of fragments for each restriction enzyme, this
approach is obviously not practical.

We show next that the existence of a polynomial algorithm for DDP di-
rectly implies P = NP , and thus there is only slight hope that we can come
up with an efficient solution for the problem. To prove this, we consider the
corresponding decision problem.3

Definition 7.5. The decision version of the double digest problem, DecDDP
for short, is the following problem.

Input: A DD instance A,B,C with elements from � − {0}.
Output: Yes if M 6= ∅, No otherwise, where M denotes the set of feasible

solutions for the DDP with input A,B,C.

We are now able to prove the NP-completeness of DecDDP and hence
show that there most likely exists no efficient solution. To do so, we use a
reduction to the following set partition problem that is well known to be
NP-complete [79].

Definition 7.6. The set partition problem is the following decision problem.

Input: A set X = {x1, . . . , xn} with elements from � − {0}.
Output: Yes if there exists a partition of X into disjoint sets Y and Z, such

that ∑

y∈Y

y =
∑

z∈Z

z.

No otherwise.

2 The maximum number of possible orderings occurs if neither A nor B includes
multiple elements. In this case, the orderings π and φ are simply permutations of
the elements.

3 The DDP itself is actually a computing problem (see Section 3.3).
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Thus, the set partition problem asks whether there exists a bipartition
of the input set X such that the sum of the elements in both parts of the
bipartition are equal.

Theorem 7.1. DecDDP is NP-complete.

Proof. To prove this we have to show two facts, namely, that DecDDP
belongs to the class NP and that each problem in NP can be reduced to
DecDDP in polynomial time.

1. Since we are able to check in polynomial time for each given pair of order-
ings (π, φ) whether it is a feasible solution for the DDP or not, DecDDP
belongs to NP.

2. To show that all problems within NP can be polynomially reduced to
DecDDP, we present a polynomial-time reduction of the set partition
problem to DecDDP.
Let X be an instance of the set partition problem. We can naturally
restrict ourselves to setsX , where the overall sum of the included elements
is even, since otherwise clearly no partition of the required type can exist.
We now transform X into an input I = (A,B,C) for the DecDDP as
follows:

• A = X ,
• B = {α

2 ,
α
2 }, where α =

∑

x∈X

x,

• C = X .

Here, the partition given by B forces a partition of A = X into two parts
of exactly the same size. This construction is visualized in Figure 7.5.
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Fig. 7.5. Reduction of the set partition problem to the DecDDP
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It remains for us to show that there exists a solution for the set partition
problem on input X if and only if there exists at least one feasible solution
for the DDP on input I , i.e., if and only if DecDDP gives output Yes.

a) According to the set partition problem, let X be decomposable into
two disjoint sets Y and Z with

∑

y∈Y y =
∑

z∈Z z. Then π =
(ρ(Y ), ρ′(Z)) and φ = (α

2 ,
α
2 ) is a feasible solution to the DDP on

input I for any arbitrary orderings ρ of Y and ρ′ of Z.
b) Let (π, φ) be a feasible solution to the DDP on input I and let π =

(xj1 , . . . , xjn
). Then there exists an index n0 with

n0∑

i=1

xji
=

n∑

i=n0+1

xji
,

since this decomposition has to be possible due to the choice of B =
{α

2 ,
α
2 } and C = X . Thus there also exists a feasible solution to the

set partition problem on X . ut

Hence, under the assumption P6=NP, already the decision version of DDP
is not efficiently solvable, and one can thus easily conclude that DDP is also
not efficiently solvable. If there were an efficient algorithm which is able to
compute a feasible solution for the DDP, or to recognize that there is none,
one could also directly infer an efficient method for the decision problem
DecDDP.

Multiple Solutions

Another difficulty of the DDP depends on the fact that for a single input
there may exist several feasible solutions. A trivial example for this is the
reverse ordering of the elements in a feasible solution (π, φ). These two pos-
sibilities obviously always exist. But there might be also other solutions. For
example, consider the input instance given in Figure 7.4. Besides the so-
lution (π, φ) depicted there, the feasible solution (π′, φ′) with the ordering
π′ = (2, 2, 7, 7, 4, 5, 7) of elements in A and the ordering φ′ = (7, 2, 10, 4, 2, 5, 4)
of elements in B is only one of more than 2 000 other feasible solutions for
this rather small instance of the DDP. One approach to handling the large
number of solutions is to join several solutions to a single class of solutions and
to consider only one representative of each class. We make some bibliographic
remarks on this in Section 7.4.

Problem Variants

Due to the fact that DecDDP is NP-complete and, moreover, due to the dif-
ficulty of several different feasible solutions described above, usually heuristics
are used to address the DDP; they try to find a feasible solution but might
fail, even if one exists. Another often considered variant of the DDP is to
assign a cost value to each possible pair of orderings describing its distance
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from a feasible solution. A pair with cost value 0 would correspond to a fea-
sible solution for the original DDP. In this case, heuristics are also applied to
find orderings with as low cost values as possible. Bibliographic notes to this
approach are again given in Section 7.4.

In our description of the double digest approach we did not explicitly
exclude the case where the restriction enzymes used share some common re-
striction sites.4 If we assume this property, we obtain a restricted variant of
the DDP known as disjoint DDP. For this problem, the proof of Theorem 7.1
is obviously invalid, since there we constructed an instance of the DDP, whose
position set is actually not disjoint. Nevertheless, Cieliebak et al. [46] proved
the NP-completeness of the disjoint DDP.

7.1.2 The Partial Digest Approach

Problem Setting

In the sequel, we consider a method that in contrast to the double digest ap-
proach discussed above uses a single restriction enzyme only. In this approach,
the duration of exposure to the enzyme is varied, such that, most likely, the
considered DNA is not cut at all restriction sites, and thus fragments appear
that still contain some restriction sites of the enzyme used. This is actually
the difference between a complete digest and a partial digest. The general idea
of the partial digest approach is presented in the following.

Method 7.2 The partial digest approach

Input: The considered DNA sequence D and an restriction enzyme A.
1. Generate several copies of D.
2. Apply the enzymeA in separated experiments with different duration on the

single copies and obtain a set of fragments from each experimental setup.
3. Determine the length of the resulting fragments of D and combine all these

lengths into a single multiset ∆p(A).
Output: The multiset ∆p(A).

By this procedure we have a partial digest only in nearly all experimental
set-ups. Therefore, we denote the resulting multiset by ∆p(A) to explicitly
distinguish it from the multiset ∆(A) obtained by the double digest approach.
The basic principle of this approach is illustrated in Figure 7.6.

We subsequently assume that the partial digest experiment described
above provides ideal data in the sense of the following definition.

4 Indeed, there exist restriction enzymes whose restriction sites are not disjoint,
but admittedly, a common application of those enzymes does not appear to be
meaningful in this context.
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Fig. 7.6. The partial digest approach

Definition 7.7. The multiset ∆p(A) obtained by a partial digest experiment
is called ideal if the length of each possible fragment occurs exactly once, i.e.,
if, for c1, . . . , ck, c1 < c2 < . . . < ck, the positions of restriction sites of A
along D (respectively the endpoints of the DNA) satisfy

∆p(A) = {cj − ci | 1 6 i < j 6 k}.

That is, each possible combination of two restriction sites of A (or end-
points of the DNA) leads to exactly one fragment whose length is then in-
cluded in ∆p(A). By an ideal partial digest experiment we thus obtain a

multiset with exactly
(
k
2

)
elements, where k − 2 is the number of restriction

sites along the investigated DNA.5 This view is presented in Figure 7.7; the
positions of restriction sites (endpoints) are denoted by x1, . . . , xk.

From the data we obtained from an (ideal) partial digest experiment we
would now like to reconstruct the ordering of the fragments, or the positions of
the restriction sites. To formally define this task, we first describe the solutions
that are consistent with the data from a partial digest experiment. Instead
of ∆p(A), we will now, as in the double digest approach, leave the explicit
biological setting and use the term A instead.

Definition 7.8. Let A be a multiset with
(
k
2

)
elements from � −{0}, and let

P = {x1, . . . , xk} be a set of elements from � , where x1 = 0 and x1 < x2 <

5 Additionally, we have the two endpoints of the DNA.
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x3 < · · · < xk. We denote such a set P as the point set. For such a point set
P , one can compute the multiset

Distp(P ) = {xj − xi | 1 6 i < j 6 k}

of all pairwise distances of elements from P . A point set P is called a feasible
solution for A if its induced pairwise distances actually meet A, i.e., if

Distp(P ) = A.

Definition 7.9. The partial digest problem, PDP for short, is the following
computing problem.

Input: A multiset A with
(
k
2

)
elements from � − {0}.

Output: An element from the set M = {P | P is a feasible solution for A},
or the value 0 if M = ∅.

A point set P ∈M is also called a feasible solution for the PDP.
Informally, the partial digest problem is to reconstruct the positions P =

{x1, . . . , xk} of restriction sites from the multiset A. Note that in contrast
to the DDP, we do not search for an ordering of the elements from A, since
we do not know which fragment lengths correspond to the distances between
adjacent restriction sites. Fragments including restriction sites therefore form
a structure of overlapping regions (see Figure 7.7).
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Fig. 7.7. Schematic view of the PDP

To consider the PDP in more detail, we first give a more precise charac-
terization of the structure of feasible solutions, and thus of the structure of
A. For this purpose, we introduce the following notation.
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Definition 7.10. Let A be a multiset with
(
k
2

)
elements from � −{0}, and let

P = {x1, x2, . . . , xk}, with xi ∈ � for all i ∈ {1, . . . , k}, x1 = 0, and xi < xi+1

for all i ∈ {1, . . . , k − 1}, be a feasible solution for the input instance A of
PDP. Then,

levelP (i) = {xj+i − xj | j ∈ {1, . . . , k − i}} ⊆ A

denotes the multiset of distances whose corresponding endpoints have distance
i in P for 1 6 i 6 k − 1.

As with the point set P , the single levels are primarily unknown. But this
definition will be helpful in further analysis of the PDP. Let us now give some
remarks on the single levels.

Remark 7.1. Let A be a multiset with
(
k
2

)
elements from � − {0} and let

P = {x1, x2, . . . , xk} be a feasible solution for the PDP on input A. Then,

• |levelP (i)| = k − i.
• In our biological motivation, levelP (1) corresponds to the multiset of

lengths whose corresponding fragments are bordered (as in DDP) by adja-
cent restriction sites (or endpoints of the DNA). We denote these elements
of levelP (1) as atomic distances, or atoms for short.

• levelP (k − 1) = {ymax}, where ymax = maxA.
levelP (k−1) thus contains only the length of the DNA sequence itself, i.e.,
the distance between the two endpoints of the DNA.

• The levels form a kind of disjoint partition,6

levelP (1) ∪̇m levelP (2) ∪̇m . . . ∪̇m levelP (k − 1) = A,

where ∪̇m denotes the disjoint union of multisets.

Algorithmic Approaches

Let us first consider the naive approach for solving the PDP, i.e., testing all
reasonable point sets. In this case, according to the overlap of the fragments
(see Figure 7.7), it is not sufficient to simply check all possible orderings of
elements from A. Rather, we have to choose the atomic distances from A first,
and to check all possible orderings for each of these choices. It is not surprising
that this procedure is, as in the case of the DDP, not applicable in practice.
Namely, we would have to choose k − 1 atomic distances first, which would

result in up to
(

(k
2)

k−1

)

possibilities. Additionally, we would have to check for

each of these choices all possible orderings of the k − 1 distances. This sums

6 Note that we consider a partition of A into multisets here. Therefore, disjoint
in this context means that the sum of occurrences of each element in the single
multisets adds up exactly to the number of occurrences in A.
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up to
(

(k
2)

k−1

)

· (k−1)! possibilities we would have to test, i.e., an exponentially

large quantity that is not verifiable in reasonable time.
Note that determining level∆p(A)(1), and thus the atomic distances, is

experimentally easy by simply performing a full digest experiment using A.
Hence, one could determine level∆p(A)(1) as∆(A), but in this case the number
of possibilities is (k − 1)!, which is far too large.

We now present an algorithm for the PDP that, instead of naively testing
all possibilities, develops partial solutions stepwise and only takes into further
consideration those that have the chance to be completed to feasible solutions.
The running time of this approach will be O(2k) for an input A with

(
k
2

)

elements, and while still exponentially large in the worst case, smaller than
in the previous naive approach. However, as we will see, this algorithm is also
suitable in practice, since for many inputs it needs only polynomial time.

The Backtracking Method

This algorithm is based on a widely used algorithmic design method, the so-
called backtracking. Parts of the solution are specified successively if they can
be further refined to a complete solution, or, if this turns out to be impossible,
are excluded from the specification of the solution (this is also called the
backtracking step). In this way one can examine all possible solutions, while
aberrations can be recognized and excluded from further considerations. We
will clarify this method in detail with the following algorithm for the PDP.
Here, the specification of a partial solution corresponds to fixing a part of
the point set that is further completed by adding points step by step. If it is
recognized that a part of the point set (partial solution) cannot be extended
to a complete solution, the last added position is removed from the subset and
not added again. Once the algorithm reaches a feasible solution, it outputs
this and stops its calculation.

Before we start describing the details of this algorithm, we introduce the
following notation. Let δ be the function that for a given positive integer y
and a given set of positive integers X = {x1, . . . , xn} computes the multiset
of pairwise distances between y and all numbers from X ; thus,

δ(y,X) = {|x− y| | x ∈ X, x 6= y}.

Applied to our problem, the function δ hence computes all distances that
newly appear if we introduce the position y as a point into the set X .

To actually implement the backtracking step, we will use a stack7 to store
each added position used to reconstruct the previous configuration in case of
a backtracking step. Let us now consider Algorithm 7.1.

7 A stack denotes a data structure that directly corresponds to an ordinary stack.
Using an operation called Push we can file an element on the top of the stack;
using an operation called Pop we can remove the topmost element from the stack.
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Algorithm 7.1 PDP Backtracking

Input: A multiset A with � k

2 � elements from � − {0}.
1. Sort the elements of A according to their size.
2. X := ∅ {the so far constructed point set}
3. S := empty stack {stack to control backtracking steps}
4. {Place the largest fragment}

ymax := max A {the largest element in A}
X := X ∪ {0, ymax} {x1 := 0, xk := ymax}
A := A− {ymax}

5. Place further fragments (right or left) by a recursive call of procedure
Place(X, A, S).

Procedure Place(X, A,S)

if A = ∅ then

Output: “feasible solution” X; halt

y := max A {the largest element in the current set A}
if δ(y,X) ⊆ A then {placement on left-hand side}

A := A− δ(y,X)
X := X ∪ {y}
Push(y, S)
Place(X, A, S)

else if δ(ymax − y,X) ⊆ A then {placement on right-hand side}
A := A− δ(ymax − y,X)
X := X ∪ {ymax − y}
Push(ymax − y, S)
Place(X, A, S)

else if S 6= empty stack then {backtracking is possible}
y′ := Pop(S) {recall last position from stack}
A := A ∪ (δ(y′, X)− {0}) {reconstruct previous distance set}
X := X − {y′} {reconstruct previous position set}
return {backtrack to invoking procedure}

else {backtracking is impossible}
S = empty stack
Output: “There is no feasible solution!”; halt

First of all, we can restrict the inputs for Algorithm 7.1 to multisets of
(
k
2

)
elements for some natural number k, since otherwise there cannot exist a

solution for the PDP for that input.
Now we have to describe how points are successively added to our par-

tial solution. This is not done by simply checking all points, but in a clever
way. Starting from the empty point set as the initial partial solution, the al-
gorithm successively places the largest remaining distance y at the left-hand
side, [0 . . . y], or at the right-hand side, [ymax−y . . . ymax], of the considered in-
terval [0 . . . ymax], if such an placement is possible, i.e., if all resulting distances
δ(y,X) [resp. δ(ymax − y,X)] are still included in our set A. If a placement
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at the left-hand side is possible, this placement will be checked until either a
solution is found or a placement of the current element becomes impossible.
In the latter case, the previous decision to place the element at the left-hand
side is revised and the element is placed at the right-hand side if possible. If
both placements turn out to be impossible, because the resulting distances are
not included in A, and if additionally no decision remains that can be revised
(i.e., if the stack is empty), then there exists no feasible solution for the given
input as we will formally show in Theorem 7.2. In this way, all possible solu-
tions are successively built from partial specifications, where partial solutions
that provably cannot be extended to complete solutions are rejected as early
as possible.

We illustrate this algorithm with the following example.

Example 7.1. Let us consider the multiset

A = {1, 2, 3, 4, 5, 5, 7, 7, 9, 9, 10, 10, 12, 14, 19}

with
(
6
2

)
= 15 elements.

After execution of steps 1-4 we have

PSfrag replacements
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In the sequel, we present the values of the relevant variables after each exe-
cution of the procedure Place and illustrate the so far specified subsolution
with a figure.

(a) X = {0, 19}; A = {1, 2, 3, 4, 5, 5, 7, 7, 9, 9, 10, 10, 12, 14};
y = 14; S = ();
δ(14, X) = {5, 14} ⊆ A;
⇒ Placement of the distance 14 at the left-hand side.
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(b) X = {0, 14, 19}; A = {1, 2, 3, 4, 5, 7, 7, 9, 9, 10, 10, 12};
y = 12; S = (14);
δ(12, X) = {2, 7, 12} ⊆ A;
⇒ Placement of the distance 12 at the left-hand side.
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(c) X = {0, 12, 14, 19}; A = {1, 3, 4, 5, 7, 9, 9, 10, 10};
y = 10; S = (14, 12);
δ(10, X) = {2, 4, 9, 10} 6⊆ A;
δ(19− 10, X) = δ(9, X) = {3, 5, 9, 10} ⊆ A;
⇒ Placement of the distance 10 at the right-hand side.
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(d) X = {0, 9, 12, 14, 19}; A = {1, 4, 7, 9, 10};
y = 10; S = (14, 12, 9);
δ(10, X) = {1, 2, 4, 9, 10} 6⊆ A;
δ(19− 10, X) = δ(9, X) = {0, 3, 5, 9, 10} 6⊆ A;
⇒ Execution of a backtracking step. Undo the placement of step (c).
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(e) X = {0, 12, 14, 19}; A = {1, 3, 4, 5, 7, 9, 9, 10, 10};
y = 10; S = (14, 12);
δ(10, X) = {2, 4, 9, 10} 6⊆ A;
δ(19 − 10, X) = δ(9, X) = {3, 5, 9, 10} ⊆ A; undone by backtracking in
step (d).
⇒ Since there is no further possibility to place y, a backtracking step is
again performed. Undo the placement of step (b).
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(f) X = {0, 14, 19}; A = {1, 2, 3, 4, 5, 7, 7, 9, 9, 10, 10, 12};
y = 12; S = (14);
δ(12, X) = {2, 7, 12} ⊆ A; undone by backtracking in step (e).
δ(19− 12, X) = δ(7, X) = {7, 7, 12} ⊆ A;
⇒ Placement of the distance 12 at the right-hand side.
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(g) X = {0, 7, 14, 19}; A = {1, 2, 3, 4, 5, 9, 9, 10, 10};
y = 10; S = (14, 7);
δ(10, X) = {3, 4, 9, 10} ⊆ A;
⇒ Placement of the distance 10 at the left-hand side.
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(h) X = {0, 7, 10, 14, 19}; A = {1, 2, 5, 9, 10};
y = 10; S = (14, 7, 10);
δ(10, X) = {0, 3, 4, 9, 10} 6⊆ A;
δ(19− 10, X) = δ(9, X) = {1, 2, 5, 9, 10} ⊆ A;
⇒ Placement of the distance 10 at the right-hand side.

PSfrag replacements

0 7 9 10

12

14 19

Hence, the point set P = {0, 7, 9, 10, 14, 19} is a feasible solution to the PDP
with input A = {1, 2, 3, 4, 5, 5, 7, 7, 9, 9, 10, 10, 12, 14, 19}. The reverse ordering
of the atomic distances gives the point set P = {0, 5, 9, 10, 12, 19}, which
obviously is a feasible solution as well. ♦

Based on this example, we can establish the following two facts.
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Remark 7.2.

(i) If P = {0, x2, x3, . . . , xk} is a feasible solution of the PDP for a multiset
A, P = {0, xk−xk−1, xk−xk−2, . . . , xk−x2, xk} is also a feasible solution.
We call P the inverse solution to P .

(ii) The placement of the first distance in step 5 of Algorithm 7.1 is arbitrary.
Both placements (left and right) are always possible if there exists any
feasible solution. The choice of the right-hand side instead of the left-
hand side may lead to the inverse solution.8

Figure 7.8 shows the search tree constructed by our algorithm for the input
from Example 7.1.
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Fig. 7.8. Search tree of Algorithm 7.1 for the input from Example 7.1. Each ver-
tex is labeled with its specified subsolution. Edges of the type ⊥ denote invalid
specifications of solutions

We show next that our algorithm works correctly.

Theorem 7.2. Let A be an input for the PDP. If there exist feasible solutions
for the PDP with input A, then Algorithm 7.1 will compute one of them.

Proof. Algorithm 7.1 examines all possible solutions in which the longest re-
maining distance y is placed at either the left-hand or the right-hand side.
Thus, it is sufficient to show that we can traverse all possible solutions in this

8 This is not inevitable. If there exist more than two feasible solutions (P and P )
for the particular input instance, one of these further solutions may be computed
by a placement of the distance at the right-hand side, since the preference is to
place distances on the left-hand side from that time on.



140 7 Physical Mapping

way, i.e., that a placement of y is only possible at the left-hand side or the
right-hand side.

Let X = {0, x2, x3, . . . , ymax} be the partial solution constructed so far, A
be the multiset of remaining distances originating from the input multiset, and
y be the largest distance in A. Note that 0 and ymax were already introduced
to the partial solution X in step 4 of Algorithm 7.1. Assume now, in contrast
to our claim, that we are able to place the distance y “in the middle” of our
position set, that is, within an interval [z . . . z + y] with 0 < z < ymax − y (in
particular, z /∈ {0, ymax − y}). At this point we will consider three different
cases and show that each of them yields a contradiction.

• If z+y /∈ X then z+y ∈ A must hold, since 0 ∈ X . But this contradicts the
assumption that y is the largest remaining distance in A, because y < z+y
(see Figure 7.9 (a)).

• If z /∈ X then ymax − z ∈ A must hold, since ymax ∈ X . But this again
contradicts the assumption that y is the largest remaining distance in A,
because y < ymax − z (see Figure 7.9 (b)).

• Finally, in the case that both positions z and z + y are already included
in X , a placement of y within this interval is impossible, since otherwise
distances of length 0 must appear that are not included in the original
multiset, and hence also not in the current multiset A. ut
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Fig. 7.9. For a placement of y within the interval [z . . . z + y] either the longer
distance z + y occurs in A (a), or the longer distance ymax − z occurs in A (b)

Theorem 7.3. Algorithm 7.1 has a worst-case running time of O(2k ·k log k)
for an input A with

(
k
2

)
elements.

Proof. The sorting of the elements of A in step 1 of our algorithm is possi-
ble in time O(k2 log k).9 The initializations in steps 2 to 4 can be done in
constant time. According to the proof of Theorem 7.2, the algorithm in the
worst case checks all possibilities to place the k − 1 currently longest dis-
tances to either the left-hand side or the right-hand side. Hence, we have at
most 2k−1 possible placements. For each placement we have to compute the

9 There are well known algorithms that sort a multiset of n elements in time
O(n log n) (see [51]).
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at most O(k) distances, that came along with this placement by the func-
tion δ. To check whether these distances occur in A, we may perform a bi-
nary search O(k) times. This implies a running time of O(k log k) for the
placement of a distance. If we implement the set A using a data structure
that allows us to label chosen distances, the backtrack step can be viewed as
the reverse of a placement step, and thus also runs in time O(k log k). This
hence implies a complexity of O(k log k) for each placement and backtracking
step, respectively. Summing up, we obtain the claimed total running time of
O(2k · k log k + k2 · log k) = O(2k · k log k). ut

Our backtracking algorithm thus has the positive property that the run-
ning time, while still being exponential, is significantly reduced with respect
to the naive approach. Moreover, this running time concerns the worst case
only. Indeed, it is possible to show an expected polynomial running time for
inputs resulting from a random decomposition of a basic distance. If we thus
assume that in practice, since the restriction sites are more or less randomly
distributed over the DNA, only a constant number of backtracking steps is
required, i.e., that the number of backtracking steps is independent of k, we
are able prove the following theorem.

Theorem 7.4. Under the assumption that the number of backtracking steps
required by Algorithm 7.1 is independent of k for an input A of size

(
k
2

)
, the

running time of Algorithm 7.1 is in O(k2 log k). If this is measured with respect
to the input size n =

(
k
2

)
, this implies a running time of O(n logn).

Proof. Due to our assumption, only a constant number of wrong placements
will occur. The algorithm will thus place at most O(k) many distances
altogether. To perform the sorting of multiset A in Step 1 of Algorithm
7.1, a running time in O(k2 log k) is required. Placements and backtrack-
ing steps can, analogously to the proof of Theorem 7.3, be performed in time
O(k log k), which finally implies a total running time of O(k2 log k+k2 log k) =
O(k2 log k). ut

On the negative side, we refer to a result in the bibliographic notes that
shows that inputs for the PDP exist on which Algorithm 7.1 requires an
exponential running time.

However, another advantage of our backtracking algorithm is that it can
be easily modified to compute not only one but all feasible solutions. In the
biological framework of physical mapping, this may in fact be a crucial aspect
that may in practice enable us to further analyze different proposed solutions
and to verify their correctness also from the biological point of view.

7.1.3 Comparison of Methods for Restriction Site Mapping

Both methods for restriction site mapping discussed in the previous two sec-
tions depend on the decomposition of DNA by means of restriction enzymes.



142 7 Physical Mapping

In this decomposition, the ordering of the resulting fragments is lost. Our
desire to reconstruct the order and thus to get the ordering of the restric-
tion sites that provides the physical map led us to the combinatorial tasks
presented above.

The double digest approach, where the DNA is fully digested each by two
restriction enzymes A and B as well as by a combination of both enzymes, has
the advantage of being easier to handle from an experimental point of view. On
the other hand, there is the provable hardness of the resulting combinatorial
problem to reconstruct the ordering of the fragments. We have proved the
NP-hardness of the decision variant of this problem and thus shown that our
computational problem is NP-hard in the sense that there does not exist any
polynomial algorithm for this problem, unless P = NP. To date, essentially
heuristic approaches have been used that do not claim any quality of the
computed solutions, but obtain quite good results in practice.

The partial digest approach is based on a partial digest of the DNA in
different setups, which ideally provides all fragments that are bordered by
any pair of restriction sites within the original DNA sequence. The large ex-
perimental effort is obvious. To ensure the generation of all these fragments,
much care and time are required. On the other hand, the resulting combina-
torial problem can be solved by an exact exponential algorithm by applying
a backtracking approach; moreover, the resulting algorithm turns out to be
applicable in practice, since for practical instances the running time may es-
sentially decrease. Whether there exists an exact algorithm with polynomial
running time on all input instances is still unknown, but also the NP-hardness
of the problem has not been shown yet.

To recapitulate, one may note:

• double digest: simple experiments — difficult combinatorial problem.
• partial digest: complex experiments — easy combinatorial problem.

At the end of this section, we have to admit that all our considerations
were based on idealized data. In the experimental process of collecting data to
investigate in our combinatorial tasks, errors are indispensable. In particular,
measuring errors may occur, but there might be also other error sources. For
instance, the assumption of ideal data in the case of partial digest experiments
can be easily invalid, for instance, if a fragment is missing or the same fragment
appears more than once.

All these sources of error do not simplify the problems; actually the prob-
lems arising become more complex. To account for measurement errors, it
is especially necessary to allow for a certain variability with respect to the
distance in the tasks, for instance, by introducing a kind of relative variance.
Further errors may lead to almost invincible problems. The use of heuristics
appears to be the only choice in this case. We will again deal with this task
in Section 7.4.
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7.2 Fingerprinting and Mapping by Hybridization

First, we recapitulate our main objective again. In essence, our goal is the
construction of a physical map, i.e., the derivation of a collection of markers
and their positions along a DNA strand. For this purpose we decomposed
the DNA under investigation and subsequently tried to order the resulting
fragments according to their order in the original DNA.

If we now start with decompositions of the original DNA that lead to
overlapping fragments, as in the partial digest approach, we may try to use
the overlaps of the fragments to determine the ordering.

But how can we derive the overlapping structure of the fragments? Gener-
ally speaking, one may try to describe each fragment by specific characteristics
that can be compared to a keyword collection and that can, furthermore, be
easily inferred. These characteristics of fragments are referred to as their fin-
gerprints. The method of fingerprinting depends on the assumption that frag-
ments with similar fingerprints will overlap in the original DNA sequence; and,
conversely, that overlapping fragments will have similar fingerprints. Thus, it
becomes possible to derive conclusions concerning the overlap of the frag-
ments by the fingerprints, and, from that, one may in the next step develop
hypotheses on the ordering of fragments in the original DNA.

It remains for us to find suitable candidates for fingerprints. We will now
present some useful examples of fingerprints of fragments that have already
been applied in practice.

• Restriction site mapping: If restriction site maps of the single fragments,
as discussed in the previous section, are available, we may assume that
two fragments overlap if both have a series of consecutive fragments in the
restriction site map in common. This process can be understood as a kind
of a hierarchical approach decomposing the fragments whose fingerprints
we want to determine into even smaller fragments by means of restriction
site mapping. The restriction site maps of these smaller subfragments are
subsequently used as fingerprints of the larger fragments.

• Fragment sizes after digestion by a restriction enzyme: Instead of fully
computing a restriction site map and using it as a fingerprint, one might
be content with the lengths of the fragments resulting from a digest of
the DNA by a restriction enzyme. If a significant part of these lengths
agree with each other, one might presume an overlap of the corresponding
fragments.

• Hybridization data: Many recent approaches are based on fingerprints that
originate from hybridization data. The rest of this section is devoted to
the discussion of these approaches and to the detailed modelling of the
inferred algorithmic tasks.

First, let us recall the definition of hybridization from Chapter 2. Hy-
bridization is the connection of two complementary nucleic acid chains, as a
rule according to the Watson-Crick complement. In this way we have a sort
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of substring test available, since we can conclude that a certain string is a
substring of a nucleic acid chain, if the chain and the complement of the con-
sidered string hybridize. Actually, the DNA chips presented in Section 2.4.4
are suitable to perform this test.

In the following we do not further elaborate on the fact that complementary
nucleic acid chains pair by hybridization, but we undertake our considerations
with respect to an abstract substring test only. We call the known nucleic acid
chains, on whose occurrences as substrings we want to test, probes, and we
call the nucleic acid chains we want to investigate clones.10 The substring test
performed in this way we also call a hybridization experiment.

The physical mapping based on hybridization experiments proceeds ac-
cording to the following scheme.

Method 7.3 Mapping by Hybridization

Given: The DNA sequence D under investigation.
1. Cut, according to an arbitrary method (restriction enzymes, sonic waves,

vibration), several copies of D into a set of fragments. This set will include
overlapping fragments with high probability.

2. For each of the fragments generate copies that will be used within a hy-
bridization experiment. The fragments are called clones.

3. Let C = {c1, . . . , cn} be the set of clones (also called clone library), and
choose a set of probes P = {p1, . . . , pm}.

4. Perform all hybridization experiments (ci, pj), 1 � i � n, 1 � j � m, (for
example, by means of a DNA chip).

Output: An (n×m)-hybridization matrix H, where

H(i, j) = � 1 if ci and pj hybridize, and
0 otherwise.

From this hybridization matrix H we now want to reconstruct the original
ordering of the clones along the DNA D. The positions of the probes that will
be known afterwards can then serve as markers of the physical map. At this
point we have to note that by means of the hybridization matrix we cannot
determine how often each clone occurs in the considered probe. We are only
able to distinguish whether a probe never occurs or occurs at least once. The
definition of the resulting task is given next.

Definition 7.11. The problem of Mapping by Hybridization, MbH for short,
is given as follows.

Input: An (n×m)-hybridization matrix H.

10 This notation goes back to the duplication of molecules by means of cloning to
obtain the large amount of identical molecules required for hybridization experi-
ments.
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Output: An ordering of clones and probes, respectively, that explains the data
given by H as well as possible.

At this level, the above definition is, due to the term “explains . . . as well
as possible”, quite informal, and from a mathematical point of view not easy
to handle. Therefore, we present an example in Figure 7.10 to get a deeper
understanding about the correspondence between an ordering of clones and
probes, along with the hybridization matrix.

A B C D

c1 1 1 0 0
c2 1 1 1 1
c3 1 0 0 1
c4 0 0 0 1
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Fig. 7.10. Hybridization matrix and two derived orderings of clones or probes. Both
orderings will lead to the given hybridization matrix. Note that in ordering (a) the
probe A occurs twice and in ordering (b) the clone c1 is completely covered by clone
c2

At this point it is useful to recall that a hybridization matrix is derived
from experimental data and we thus have to account for errors in this context.
Therefore, in the above definition, we ask for an explanation of the data from
H that is as good as possible, i.e., for a good ordering of clones (or probes).
We distinguish between the usual error types for DNA chips, as false positive
and false negative. If a position (i, j) of a hybridization matrix contains the
value 1 even though probe pj is not a substring of clone ci, i.e., if there is no
hybridization between pj and ci, then a false positive hybridization error has
occurred at this position. If, on the other hand, no entry occurs at a certain
position of the hybridization matrix, though the corresponding clone contains
the corresponding probe as a substring, the error type is called false negative.

To evaluate the performance of the following models and algorithms for
the mapping problem, we have to keep an eye on the errors in hybridiza-
tion matrices. Nevertheless, we consider idealized hybridization matrices here,
whose data is reliable, i.e., error free.
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To specify the definition of the problem of mapping by hybridization, we
distinguish two cases concerning the frequency of occurrences of probes. In
the first case we assume that each probe appears only once within the inves-
tigated DNA. In this context, the term mapping with unique probes is used.
Subsequently, we will also deal with the case where probes may appear several
times along the DNA, referred to as mapping with non-unique probes.

7.2.1 Mapping with Unique Probes

Before we formally present the problem setting and develop approaches for
the mapping with unique probes, we should first justify our assumption of the
uniqueness of the probes. In experiments following this approach, often so-
called STS probes are used. The acronym STS derives from the term sequence-
tagged sites. These special probes are mostly extracted from the clones them-
selves and are of a length that they can be assumed to occur at most once
along the DNA with high probability. We usually do not have a single probe in
the sense of a connected nucleotide sequence, but rather a pair of substrings
of 18 bp that are separated by 200 to 1000 bp. Since we can consider the
resulting special data analogously to our previous setting, we abstract from
this pair representation and use our usual model described above.

How can we now envision our problem in the context of unique probes? We
are looking for a permutation (remember we are dealing with unique probes)
of the probes that corresponds to their real ordering along the DNA. We know
that each probe appears exactly once in our DNA sequence. If, for instance,
the correct ordering of probes is p1, p2, . . . , pm, this implies that no clone can
hybridize with probes pi and pi+2 without hybridizing with probe pi+1. At
the level of the hybridization matrix, this corresponds to the fact that, for a
correct ordering of the probes, i.e., the columns, only a consecutive interval
of 1s can occur for each clone in its corresponding row. This property of the
matrices will be formalized by the following definition.

Definition 7.12. Let A be an (n×m)-matrix with entries from {0, 1}. We say
that A has the consecutive ones property (C1P), if there exists a permutation
π of the columns of A such that in each row no 0 occurs between two 1s, i.e.,
for all rows i = 1, . . . , n the following holds:

If A(i, π(k)) = 1 and A(i, π(l)) = 1 for π(k) < π(l),
this implies that A(i, j) = 1 for all j ∈ {π(k) + 1, . . . , π(l)− 1}.

If A already shows this special form, i.e., if π is the identical permutation,
we say that A is in consecutive ones form (C1F).

Thus, we can formulate our goal as follows. Since, according to our assump-
tion, our input hybridization matrix H does not contain any errors, we know
that a valid ordering of the probes exists. Our goal is to find a corresponding
permutation of the columns (probes) that transfers H into C1F.
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How we can finally gain the ordering of the fragments from a C1F rep-
resentation is demonstrated in Figure 7.10, where the C1F representation of
the given hybridization matrix has the following form.

D A B C
c1 0 1 1 0
c2 1 1 1 1
c3 1 1 0 0
c4 1 0 0 0

The sequence of probes is thus changed from A,B,C,D to D,A,B,C. This
corresponds to a column permutation (4, 1, 2, 3).

It remains for us to actually compute the C1F representation of a given
hybridization matrix. So, in what follows, we present an algorithm that de-
termines whether a matrix has the C1P and, if so, computes a permutation
of the columns corresponding to a C1F.

If we want to prove that a hybridization matrix satisfies the C1P, a possible
approach would be to list all permutations of the columns (i.e., the probes),
to apply each of these to the matrix, and to subsequently check whether the
resulting matrix is in C1F. This naive approach will obviously not lead us to
our goal, since there exist n! many different permutations of n columns, which
are impossible to check efficiently for realistic values of n.

Another useful requirement for our algorithm checking for the C1P, other
than that it should be efficient, would be for it to compute and output all
column permutations that transfer the hybridization matrix into C1F. On the
other hand, the number of these valid permutations may also be quite large,
which would lead to a loss of efficiency.

Nevertheless, despite of all these difficulties, in this case we can actually
achieve our goal by the following idea of representing sets of permutations in
a clever way. We now introduce a related data structure, the so-called PQ-
trees.11

Definition 7.13. Let U = {u1, . . . , un} be a finite set of elements. A PQ-tree
on U is a structure T = (V,E, r, B, label, type) such that

(i) (V,E) is an ordered tree rooted at r ∈ V ,
(ii) B ⊆ V is the set of leaves from (V,E),
(iii) label : B → U is a bijection from the leaves to U , and
(iv) type : V −B → {P,Q} is a mapping of the inner vertices to either type P

or type Q.

Each leaf in a PQ-tree is thus labeled with exactly one element from U
and, conversely, each element from U is assigned to exactly one leaf. Each
inner vertex of T is either of type P or Q; for simplicity, we call the vertices
P -vertices and Q-vertices, respectively. (The exact meaning of P -vertices and
Q-vertices is discussed later.)

11 Recall the general definition of trees in Chapter 3.2.
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Graphically, we represent P -vertices as cycles and Q-vertices as rectangles.
An example of such a PQ-tree is given in Figure 7.11.
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Fig. 7.11. Representation of a PQ-tree with three P -vertices, one Q-vertex, and
leaves A, . . . , H

PQ-trees represent a certain subset of permutations of their leaves and thus
also of the set U . The restrictions with respect to the set of all permutations
is thus given by the order of P - and Q-vertices within the tree. We first define
the obvious permutation which we can directly infer from the order of the
leaves in the graphical representation.

Definition 7.14. Let U be a set, T be a PQ-tree on U , and (v1, . . . , vn) be
the leaves in T according to their ordering from left to right.12 We define the
front of T as

Front(T ) = (label(v1), . . . , label(vn)),

that is, the permutation of the elements of U obtained by reading the labels of
the leaves from left to right.

A PQ-tree T now represents all permutations of elements from the set
U that are fronts of trees reachable from T , if we are allowed to apply the
following two operations to the inner vertices of T .

Definition 7.15.
Let T be a PQ-tree on a set U = {u1, . . . , un}. Then, we denote the following
operations on T as legal operations:

(i) The ordering of the children of a P -vertex may be changed arbitrarily, and
(ii) the ordering of the children of a Q-vertices may be reversed, i.e., if

ui1 , . . . , uik
denotes the original ordering of the children (reading from

left to right), it may be changed to uik
, . . . , ui1 . Other changes regarding

the order of the children of a Q-vertex are not allowed.

12 Recall that a PQ-tree is an ordered tree, i.e., for each vertex the order of its
children is given.
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We now define the set Consist(T ) of permutations induced by T and call
them consistent permutations of T . Let T ∼ T ′ iff there exists a series of legal
operations transforming T into T ′ for two PQ-trees T and T ′; then,

Consist(T ) = {Front(T ′) | T ∼ T}.

A nice and illustrative way to describe the set of consistent permutations
of a PQ-tree T is to think about T as mobile, fixed at the root vertex of T .
While from each P -vertex only single threads originate that can be ordered in
an arbitrary way, a Q-vertex may be seen as a strip of paperboard on which
the single submobiles are fixed according to a certain order; by a rotation of
180◦ they can only reverse their ordering, and cannot arbitrarily change it.

Two PQ-trees T and T ′ are said to be equivalent, if they represent the
same set of consistent permutations, i.e., if Consist(T ) = Consist(T ′).

Let us first consider the PQ-tree shown in Figure 7.12 consisting of only
one P -vertex as the root and the elements u1, . . . , un as leaf vertices. According
to the legal operation (i) in Definition 7.15, this tree represents all possible
permutations of u1, . . . , un in a very compact way. We denote this special
PQ-tree also as the universal tree over the elements u1, . . . , un. Furthermore,
we will call the special PQ-tree having no vertices the empty tree.
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Fig. 7.12. Universal PQ-tree TU on the set U = {u1, . . . , un}

To represent different sets of permutations that depend on restrictions ac-
cording to the consecutiveness of certain elements using a PQ-tree, we proceed
as follows.

Input: A set U = {u1, . . . , un} of pairwise different elements and a set of
restrictions R ∈ Pot(U). A restriction R ∈ R is thus a subset of U .

Output: All permutations π of elements in U such that for all restrictions
R ∈ R the elements of R are consecutive in π.

To solve this problem we proceed in two steps.

1. We start with a universal PQ-tree TU over the elements of U .
2. For each restriction R ∈ R, we transform the current PQ-tree, such that

the set of consistent permutations satisfies the restriction R.

We now describe the second step in more detail and call the transforma-
tion of a PQ-tree T according to a single restriction R a reduction. For such
a reduction, the tree we want to reduce is traversed upwards starting at the
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leaves, where certain rules are applied, if possible. Intuitively, these rules will
describe the necessary transformations that are required to obtain a tree sat-
isfying the restriction. We discuss this issue in greater detail later. First, we
present Algorithm 7.2, which performs the transformation just described. For
data management we use a queue, i.e., a special data structure that allows to
remove first the elements that are inserted first (the FIFO principle — first
in, first out). The operations for insertion and removal of elements in a queue
are denoted as Enqueue and Dequeue, respectively. Such a queue thus simply
corresponds to a waiting line at a cash register in a supermarket.

Algorithm 7.2 Reduce(T,R)

Input: A PQ-tree T on a set U = {u1, . . . , un} and a restriction R ⊆ U .

1. L := queue of all leaves from T .
2. while L is not empty do

2.1 x := Dequeue(L) {Extract an element x from queue L.}
2.2 if x is a leaf then

if x ∈ R then

mark x as full
else

mark x as empty
2.3 else if at the subtree with root x a rule may be applied then

apply the rule on T
2.4 else

output T := empty tree
2.5 if R ⊆ {y | y is a descendant of x in T} then

output T
2.6 if each sibling vertex of x was considered then

y := parent of x
Enqueue(L, y) {Insert parent vertex of x into L.}

Output: The PQ-tree T reduced according to R.

The rules referred to in Algorithm 7.2 always consist of a pattern-
replacement pair, with the obvious meaning that if a pattern can be matched
to the subtree considered, it is substituted with the replacement. It will turn
out in the construction of the rules that if there exists an applicable rule in
step 2.3 of the algorithm, the rule is unique.

If none of the rules can be applied, the algorithm outputs the empty tree
to signal that no permutation exists, which, starting from the PQ-tree T , can
satisfy the additional restriction R. Step 2.6 takes care that the algorithm
traverses further upward to a parent vertex only if all of its children have
already been processed.
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In the following, we describe the rules applied in step 2.3 in greater detail.
For this, we have to give some notations first. With respect to a reduction for
a restriction R, we call a vertex x of the PQ-tree T considered

• full, if it is or all its descendent vertices are included in R,
• empty, if neither it nor any of its descendent vertices is included in R, or
• partial, if some, but not all, of its descendent vertices are included in R.13

Vertices of T that are either full or partial are called pertinent. The per-
tinent subtree of T with respect to R, Pertinent(T,R), is the subtree of
minimal height of T , whose front contains all elements from R, i.e., R ⊆
Front(Pertinent(T,R)). By this, the pertinent subtree as well as its root
vertex, Root(T,R), are uniquely determined.

We now describe the single rules graphically. As usual, we will represent P -
vertices by circles and Q-vertices by rectangles. Child vertices will be depicted
by triangles independent of their types. To distinguish between a full and an
empty vertex, we shade the full vertices. The figures show the patterns on
their left-hand sides and the corresponding replacements on their right-hand
sides.

First, we describe the replacement rules for the case where the current
vertex x considered in step 2 of Algorithm 7.2 is of type P . If all its children
are empty nothing happens; if they are all full, we propagate this information
to vertex x and mark x as full as well (see Figures 7.13 and 7.14).
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x

Fig. 7.13. Rule P.0: If all children are empty, nothing happens

PSfrag replacements

x

Fig. 7.14. Rule P.1: If all children are full, the considered root is marked full

If only some of the children of the P -vertex considered are full, none are
partial, and the current vertex is also the root of the pertinent tree, i.e.,

13 The following description of the rules will show that this predicate will be assigned
to Q-vertices only.
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x = Root(T,R), then the full child vertices are joined together by means of
a new P -vertex and thus separated as a group from the empty vertices (see
Figure 7.15). One should note that, using legal operation (i), all children of
x can be ordered in the way shown in the figure. The rule will be applied
accordingly.
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x

Fig. 7.15. Rule P.2: A subset of the child vertices is full, none are partial, and the
considered P -vertex x is the root of the pertinent subtree

In the case where the considered P -vertex x is not the root of the pertinent
subtree, the partial vertices come into consideration. Graphically, we will shade
the partial vertices only partly, so that shadows indicate the side where full
child vertices appear.

If x is not the root of the pertinent subtree, its full children must be
grouped in such a way that they can, by applying other rules on the other
full vertices,14 appear in a consecutive series afterwards. Therefore, we utilize
a newly added partial Q-vertex (see Figure 7.16).
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x

Fig. 7.16. Rule P.3: A subset of the children is full, none are partial, and the
considered P -vertex x is not the root of a pertinent subtree

Next, we consider the cases where the P -vertex x under consideration has
exactly one partial child vertex. Such a situation may directly arise from the
application of rule P.3. We distinguish again two cases depending on whether
x is the root of the pertinent subtree or not. The corresponding replacement
rules P.4 and P.5 are shown in Figures 7.17 and 7.18, respectively. In essence,
they correspond to a generalized version of rules P.2 and P.3.

14 There must exist other full vertices, since otherwise x would be the root of the
pertinent subtree.
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Fig. 7.17. Rule P.4: Exactly one child of x is partial and x is the root of the
pertinent subtree
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Fig. 7.18. Rule P.5: Exactly one child of x is partial and x is not the root of the
pertinent subtree
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Thus, the only remaining case is where the considered P -vertex has exactly
two partial child vertices (see Figure 7.19). If a vertex has more than two par-
tial children, one can easily conclude that the restriction cannot be satisfied,
because then empty vertices would have to appear between full vertices. The
same holds for the case where the considered vertex x has two partial children
and is not the root of the pertinent subtree.

It hence suffices to specify one rule for the handling of two partial child
vertices of x, where x is the root of the pertinent tree. All other cases, for
which no rules exist, will be rejected by the algorithm by giving the empty
PQ-tree as output.
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x

Fig. 7.19. Rule P.6: Two children of x are partial and x is the root of the pertinent
subtree

At this point, we have discussed all cases where the considered vertex was
of type P . In all cases not stated explicitly, the demanded restriction is not
applicable, since full and empty vertices would be inevitably nested into one
another. This does not satisfy the demand of the restriction.

Next, we consider vertices of type Q. Analogously to the rules for P -
vertices with only empty or only full child vertices, the rules Q.0 and Q.1
apply for Q-vertices, as shown in Figures 7.20 and 7.21, respectively.
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Fig. 7.20. Rule Q.0: If all children are empty, nothing happens
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x

Fig. 7.21. Rule Q.1: If all children are full, the considered root is marked full

Of interest now are the remaining cases, in which the Q-vertex considered
has different (with respect to their being empty, full, or partial) child vertices.
In a generalized way, we only consider cases with at most one or two partial
child vertices. Similarly to the discussion in the context of P -vertices, no
other possibilities exist, since otherwise the restriction cannot be satisfied.
The resulting rules are shown in Figures 7.22 and 7.23.
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Fig. 7.22. Rule Q.2: At most one child of x is partial
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x

Fig. 7.23. Rule Q.3: Two children of x are partial and x is the root of the pertinent
subtree
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With the rules P.0 to P.6 andQ.0 toQ.3 we have completed the description
of Algorithm 7.2 and are now able to present an algorithm for the consecutive
ones problem.

Algorithm 7.3 Consecutive ones

Input: An (n ×m)-matrix M with entries from {0, 1}.

1. U := the set of column indices of M
2. T := universal PQ-tree on U
3. for i = 1 to n do

R := {u ∈ U | M(i, u) = 1} {Indices of columns that have the entry 1 in
row i}
T := Reduce(T, R)
if T = empty PQ-tree then

Output: “M does not satisfy the C1P.”
4. Output: “M satisfies the C1P and is in C1F for all permutations in

Consist(T ).”

Theorem 7.5. Let M be an (n×m)-matrix with entries from {0, 1} and let
k be the number of 1s in M . Then Algorithm 7.3 solves the consecutive ones
problem in time O(n+m+ k). ut

The proof of this theorem requires, besides other things, a skillful im-
plementation of the replacement rules, which would be beyond the scope of
this chapter. Therefore, we omit the proof of Theorem 7.5 and illustrate the
strategy of Algorithm 7.3 by an example instead. To do so, we consider the
hybridization matrix given in Figure 7.24 and describe the work of Algorithm
7.3 and the application of the single rules to this matrix in Figures 7.25 to
7.29.

A B C D E F G H

I 1 1 0 0 0 1 0 0
II 0 0 0 1 1 0 1 0

III 0 1 0 0 0 0 0 1
IV 1 1 1 0 0 1 0 0
V 0 0 0 1 0 0 0 1

Fig. 7.24. Hybridization matrix H with set P = {A, B, C, D, E, F, G, H} of probes
and set C = {I, II, III, IV, V} of clones

We start with the universal PQ-tree on elements {A, . . . , H} and subse-
quently consider the restrictions Ri with i ∈ {I, . . . ,V} enforced by the rows
of H successively. As in the replacement rules above, we will mark the vertices
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universal PQ-tree

Row I, RI = {A, B, F}, Reduce(T0, RI):

Row II, RII = {D, E,G}, Reduce(T1, RII):
Row III, RIII = {B, H}, Reduce(T2, RIII):

Row IV, RIV = {A, B, C, F}, Reduce(T3, RIV):
Row V, RV = {D, H}, Reduce(T4, RV):

Fig. 7.25. Execution of Algorithm 7.3 on the hybridization matrix from Figure 7.24
(row I)

by different shadings as empty, full, or partial. The leaves, i.e., the elements
from {A, . . . , H}, are marked as full by setting the characters to bold face,
and the vertex under consideration is denoted by x. Moreover, one should
keep in mind that, in addition to the application of the rules, legal operations
on the current PQ-trees may be performed to fit the trees to the pattern.
Furthermore, inner vertices with only one successor do not make sense, and
that is why we merge such vertices into a single one in this example.

Clearly, if the algorithm leads to several possible orderings of the probes,
then we cannot unambiguously reconstruct the original ordering of probes
along the DNA molecule on the basis of the hybridization matrix only.

7.2.2 Mapping with Unique Probes and Errors

In the previous section we discussed the consecutive ones problem as a possible
model for mapping by hybridization with unique probes on error-free data.
Here, we present some ideas how to handle the corresponding problem on data
that is error prone.

For this, we investigate how the entries of the hybridization matrix will
change due to different error types. Let us assume we know the ordering of the
columns, that is, the ordering of the probes in the original DNA sequence, and
that the columns in our given hybridization matrixH are ordered according to
this. If the data represented by H is error free, then the hybridization matrix
H has consecutive ones form. Now, let us consider the case where errors occur
while experimentally determining the hybridization data.

• If a false negative error arises, then within the hybridization matrix a 0
occurs at a position where there should be a 1. If this error does not take
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universal PQ-tree
Row I, RI = {A, B, F}, Reduce(T0, RI):

Row II, RII = {D, E,G}, Reduce(T1, RII):

Row III, RIII = {B, H}, Reduce(T2, RIII):
Row IV, RIV = {A, B, C, F}, Reduce(T3, RIV):

Row V, RV = {D, H}, Reduce(T4, RV):

Fig. 7.26. Execution of Algorithm 7.3 on the hybridization matrix from Figure 7.24
(row II)

place at the border of a series of consecutive 1s in H, but somewhere in
the middle, then the series of 1s is interrupted by a 0 and split into two
blocks. We call this break in the contiguous series of 1s a gap.

0 0 1 1 1 0 1 1 0 0
↑

• If, on the other hand, a false positive error occurs, and this does not by
chance flip a 0 into a 1 at the border of a series of 1s within a row of the
hybridization matrix, then a new block of 1s emerges that consists of a
single 1 and is separated from the other block of 1s by a gap:

0 0 1 1 1 0 0 1 0 0
↑

• Another error not considered so far is caused by so-called chimeric clones.
By this we mean the joining of two fragments that have not been adjacent
to each other in the original DNA into a single fragment. Thus, we have two
parts of DNA that appear to be consecutive, although they are actually
not. Such chimeric clones may, for instance, occur during the duplication of
DNA by means of host organisms as described in Section 2.4.2. At the level
of the hybridization matrix, where we again assume a correct ordering of
the columns, a chimeric clone may lead to the situation where two blocks of
1s are separated by a gap of multiple 0s, for these blocks actually represent
single fragments of the DNA that are melded together and are therefore
considered as a single fragment in the hybridization matrix, i.e., as a single
row in the matrix:
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Row I, RI = {A, B, F}, Reduce(T0, RI):

Row II, RII = {D, E,G}, Reduce(T1, RII):

Row III, RIII = {B, H}, Reduce(T2, RIII):

Row IV, RIV = {A, B, C, F}, Reduce(T3, RIV):
Row V, RV = {D, H}, Reduce(T4, RV):

Fig. 7.27. Execution of Algorithm 7.3 on the hybridization matrix from Figure 7.24
(row III)

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0
↑ ↑ ↑ ↑

Dealing with errors, we usually apply a general parsimony principle. So,
even if there might be errors in our hybridization data, we assume that the
number of errors with respect to the correctly determined data is relatively
small. According to our previous discussion of some different error types and
the resulting gaps in the hybridization matrix with a correct ordering of
columns (probes), it is meaningful to try to minimize the number of gaps
between blocks of consecutive 1s in the hybridization matrix.

Definition 7.16. The gap minimization problem, GMinP for short, is the
following optimization problem.

Input: An (n×m)-matrix A with entries from {0, 1}.
Feasible solutions: For all inputs A,

M(A) = {(i1, . . . , im) | (i1, . . . , im) is a permutation of (1, . . . ,m)}.

Costs: For all feasible solutions π = (i1, . . . , im) ∈M(A),

cost(π,A) = Number of gaps included in the matrix that results

from the application of the column permutation π on A,
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Row I, RI = {A, B, F}, Reduce(T0, RI):

Row II, RII = {D, E,G}, Reduce(T1, RII):
Row III, RIII = {B, H}, Reduce(T2, RIII):

Row IV, RIV = {A, B, C, F}, Reduce(T3, RIV):

Row V, RV = {D, H}, Reduce(T4, RV):

Fig. 7.28. Execution of Algorithm 7.3 on the hybridization matrix from Figure 7.24
(row IV)

where a gap denotes a block of consecutive 0s within one row of the matrix
that is bordered by 1s.

Optimization goal: Minimization.

If the the data contains no error, GMinP corresponds to determining a
column permutation such that no gaps occur in the resulting matrix. In other
words, it is equivalent to determine the C1F of a matrix and hence meets the
modelling of the error-free case of the previous section. For convenience, we
assume for the rest of this section that the considered hybridization matrix
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Row I, RI = {A, B, F}, Reduce(T0, RI):

Row II, RII = {D, E,G}, Reduce(T1, RII):
Row III, RIII = {B, H}, Reduce(T2, RIII):

Row IV, RIV = {A, B, C, F}, Reduce(T3, RIV):

Row V, RV = {D, H}, Reduce(T4, RV):

Fig. 7.29. Execution of Algorithm 7.3 on the hybridization matrix from Figure 7.24
(row V)

does not contain any row exclusively consisting of 0s. There would be no data
that allows for a meaningful placement of a fragment corresponding to such
a row. We can therefore a priori ignore such rows.

To further analyze the GMinP, we now deal with another representation
of the problem, and represent parts of the input in terms of a weighted graph.

Definition 7.17. Let A be a (n×m)-matrix with entries from {0, 1}. Then the
column distance graph G∆ = (V,E, c) is an undirected edge-weighted graph
with

• V = {1, . . . ,m}
• E = {{i, j} | 1 6 i, j 6 m, i 6= j}
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• c : E → � , where c(i, j) = |{k | 1 6 k 6 n,A(k, i) 6= A(k, j)}|

The column distance graph thus is a complete graph whose vertices cor-
respond to the columns of the matrix and the edge-costs c(i, j) denote the
number of rows in which columns i and j differ. The distance given by func-
tion c between two columns of matrix A is also known as Hamming distance.

Let us now consider the situation where a gap occurs in a row k of matrix
A. In this case at least one alternation from 1 to 0, between column i and
i + 1, and one alternation from 0 to 1, between column j and j + 1, takes
place:

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0
↑ ↑ ↑ ↑
i i+ 1 j j + 1

Now, let us consider the column distance graph G∆ corresponding to ma-
trix A and a path within this graph that corresponds to the order of the
columns in A. Then, a gap in row k will contribute the value 1 to the edge
cost of each of the edges {i, i+1} and {j, j+1}. Accordingly, a gap contributes
the value 2 to the total cost of the path15.

Informally, we are able to rephrase GMinP as follows: Find a path within
the column distance graph G∆ of A that visits each vertex exactly once and
has minimum cost.

At this point, a problem occurs. The first alternation from a 0 to a 1 within
a row of the matrix contributes to the costs of the path as well, as does the
last alternation. But these alternations are not caused by a gap. If we were
able to guarantee that exactly two alternations of this kind would occur in
each row, we would be able to solve our gap-minimization problem by finding
the path of minimal cost as described above. Unfortunately, in general we
cannot guarantee this property. Consider

(a) 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1

(b) 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0

Both rows (a) and (b) have exactly one gap. But in row (a) only two
alternations occur while in row (b) four such alternations appear.

In what follows, we show how we can enforce exactly two alternations not
originating from a gap for each row. For this, we simply extend our matrix by
a column that consists of 0s only. Furthermore, instead of considering paths
we will switch to cycles in the column distance graph. In this way, we are able
to prove the following theorem.

Theorem 7.6. Let A be an (n×m)-matrix with entries from {0, 1}. Let A′ be
the (n× (m+ 1))-matrix resulting from A after adding a specific 0-column p′.

15 As usual, the cost of the path corresponds to the sum of edge costs along the
path.
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G∆ denotes the column distance graph belonging to A′. Let π be a permutation
of the columns in A and let Aπ be the resulting column-permuted matrix.
Accordingly, let Cπ be the cycle in G∆ that visits the vertices starting with p′,
respecting permutation π, and finally coming back to p′ again. The edge costs
of this cycle now satisfy

cost(Cπ) = 2 · l + 2 · n,

where l denotes the number of gaps in Aπ.

Proof. The proof of this theorem is based on the idea that by introducing the
special column p′ we are able to break up the cycle Cπ by simply deleting the
vertex p′. So we obtain a path that exactly corresponds to permutation π.16

On the level of the column distance graph, our procedure now guarantees two
alternations at the border for each row, one from a 0 to a 1 and one from a 1
to a 0, respectively.

For the costs of the cycle Cπ we now derive the following:

cost(Cπ) =
∑

{i,j}∈Cπ

c({i, j}) =
∑

{i,j}∈Cπ

n∑

k=1

δ(A(k, i), A(k, j))

=

n∑

k=1

∑

{i,j}∈Cπ

δ(A(k, i), A(k, j)), (7.1)

where δ(x, y) = 1 iff x 6= y.
According to Equation (7.1), we can sum up the costs for the single rows

separately. Let us therefore consider an arbitrary row k with 1 6 k 6 n,
and let us additionally denote by cost(k) the number of alternations from a
0 to a 1 and from a 1 to a 0, respectively, within this row, i.e., cost(k) =
∑

{i,j}∈Cπ
δ(A(k, i), A(k, j)). Let lk be the number of gaps in row k in matrix

Aπ. We know that for each gap in row k exactly two alternations occur. We
further know that at the borders of row k exactly two alternations occur as
well, either because the first column of the k-th row of Aπ already contains a
0 or due to the alternation to the special column p′. The same similarly holds
for the last column of Aπ.17 Thus, we have for the costs of each row k,

cost(k) = 2 · lk + 2. (7.2)

By applying
∑n

k=1 lk = l and Equations (7.1) and (7.2), we obtain the claimed
result. ut
16 Since a cycle in an undirected graph does not have a direction, the resulting

path may also correspond to the reverse permutation of π. We will omit this case
here, since it is not essential to the claim of the theorem but would make the
presentation of the proof unnecessarily tangled.

17 Note that we have excluded rows solely consisting of zeros.
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By this result we have shown that we can reduce the GMinP to finding
a cycle in a complete, undirected, and edge-weighted graph that visits each
vertex (except for the start and end vertices) exactly once and has minimum
costs. But this is actually the well-known traveling salesman problem we al-
ready considered in Section 3.3.

Unfortunately, this is an NP-hard optimization problem, and therefore
the above procedure does not lead to an efficient algorithm for our original
GMinP problem. But GMinP is known to be NP-hard as well [79], which
shows that our reasoning has at least not essentially complicated our problem.

So, let us further consider in more detail the TSP and, in particular, the in-
stances arising from our construction. The structure of the inputs of the TSP
we obtained by our reduction of GMinP may possibly show some properties
that help us simplify the computation of solutions for these instances. Ana-
lyzing the structure of input instances is a general technique that might help
simplify hard problems and achieve a deeper understanding of the reasons for
their hardness.

Indeed, we can recognize in our case that the cost function implied by the
column distance graph G∆ satisfies the triangle inequality, i.e., for all vertices
v1, v2, v3 in G∆,

c({v1, v3}) 6 c({v1, v2}) + c({v2, v3}).

On an intuitive level, the triangle inequality implies that using a detour
cannot be cheaper than using the direct path in the graph.

The cost function of the column distance graph corresponds to the Ham-
ming distance between the single columns; therefore, it is easy to ensure that
this cost function indeed obeys the triangle inequality.

Let us, at this point, summarize what we have so far undertaken to address
the problem of physical mapping with unique probes and errors. By consid-
ering different types of errors we motivated our modelling of the problem in
terms of the GMinP. Afterwards, we showed that we can solve GMinP by
using the TSP. Unfortunately, the TSP in general is not only an NP-hard
optimization problem, but it is furthermore impossible to approximate it by
any factor, unless P = NP. Therefore, we investigated the input instances
resulting from our reduction of GMinP to TSP in more detail and found out
that the cost function of the constructed column distance graph satisfies the
triangle inequality.

We considered the TSP with triangle inequality (∆-TSP) in Section 3.3
and presented a 2-approximation algorithm (Algorithm 3.1) for it. A 3

2 -
approximation algorithm is also known, whose solutions are thus guaranteed
to be at most 1.5 times more expensive than the optimal one [43]. Moreover,
a huge number of heuristic algorithms exists for the ∆-TSP that cannot give
any performance guarantee, but that are used in practice, since they achieve
reasonably good results in many cases. References to some of the heuristics
can be found in Section 7.4 at the end of this chapter.
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With this reference to algorithms for solving the ∆-TSP we conclude our
considerations concerning the GMinP and finally discuss some problems in
the modelling of physical mapping with unique probes and errors.

For instance, the question arises whether a column permutation, i.e., an
ordering of the probes, which obtains a minimal number of gaps in the matrix,
but leads to a result where all rows except one consist of a single block of 1s
(but where the remaining row has the form . . . 01010101010101 . . .) is really
meaningful. This is clearly not what we desire, since it seems to be rather
unlikely that no fragment shows any error, except for one, where instead a
huge number of errors occur. Furthermore, thinking it over, it comes to mind
that not only should the distribution of gaps within the matrix follow some
reasonable assumptions, but the resulting blocks of 1s in the single rows should
not become too small.

Again, all models are only approximating the biological problems; their
usefulness has to be verified in practice, and their hypotheses must be tested
experimentally.

7.2.3 Mapping with Non-unique Probes

After having presented a procedure for obtaining the original ordering of the
probes (and thus also of the clones) from hybridization data based on unique
probes, we will now discuss some of the issues arising from hybridization data
based on non-unique probes. That is, we do not assume that each probe occurs
only once in the investigated DNA strand.

We present one possible model in this framework. For this, we again assume
that the given hybridization data is error free. Then we search for the ordering
along our investigated DNA. On the one hand, probes may occur multiple
times; on the other hand, the probes hybridizing with a certain clone should
occur consecutively in the desired ordering. Let us assume that we have given
the hybridization data between clones c1, . . . , cn and probes p1, . . . , pm. Let s
be a string over the alphabet of probes, i.e., over ΣP = {p1, . . . , pm}. We say
that s covers a clone ci if s contains a substring t that solely consists of probes
that hybridize with ci, where the ordering of probes and their multiplicity in
t is irrelevant.

We now assume that probes along the DNA may indeed occur multiple
times, but rather infrequently. Thus, we search for the shortest string s cov-
ering all clones. This leads to the following optimization problem:

Definition 7.18. The shortest covering string problem is the following opti-
mization problem.

Input: An (n×m)-matrix A with entries from {0, 1}.
Feasible solutions: For all inputs A,

M(A) = {s ∈ {1, . . . ,m}∗ | for all 1 6 i 6 n there exists a substring t of

s such that char(t) = {j | A(i, j) = 1}},
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where char(t) denotes the set of characters occurring in t. Hence, M(A)
corresponds to the set of all possible strings s over the alphabet of probes
covering every clone.

Cost: For all feasible solutions s ∈M(A):

cost(s, A) = |s|.

Optimization goal: Minimization.

This again is a hard combinatorial problem, and we do not consider ap-
proaches for addressing this problem here. Instead, we illustrate the problem
setting with the example given in Figure 7.30.

A B C D E F G

c1 1 1 0 1 0 0 0
c2 0 1 0 1 0 0 1
c3 1 0 0 1 1 0 1
c4 1 1 0 1 1 1 0
c5 0 1 1 1 1 1 0
c6 0 0 1 0 1 0 1
c7 0 1 0 0 0 1 1

PSfrag replacements

AA BBB CDD EE FF GG

c1
c2

c3
c4

c5
c6

c7

Fig. 7.30. Hybridization matrix and a feasible solution of the shortest covering
string problem

Finally, at the end of this section we would like to note that also this
modelling should be critically questioned, since some probes can indeed occur
more frequently than others in the considered DNA, which would question
the exclusive search for the shortest string only.

7.3 Summary

A physical map consists of a collection of known (short) sequences of nu-
cleotides, called markers, and their locations along the considered DNA
molecule. For constructing these maps several approaches are known, lead-
ing to various kinds of combinatorial problems.

In restriction site mapping, restriction enzymes are used to cut the DNA
molecule into smaller fragments. In this process, their ordering gets lost and
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has to be reconstructed. In doing so, the positions of the restriction sites along
the molecule are determined, and hence restriction sites may serve as markers.

One approach in this context is that of the double digest. Here, in three
different attempts, copies of the examined DNA are digested (i.e. cut) by two
different restriction enzymes as well as by a combination of both. Afterwards,
the lengths of the resulting fragments are determined, and the original or-
dering of the fragments is reconstructed using these lengths. This problem is
called the double digest problem (DDP). It turns out that it is algorithmically
difficult to handle, since on the one hand, the decision variant of the DDP is
NP-hard and, on the other hand, numerous different solutions can often be
derived from the given data. Thus, appropriate heuristics are often used to
address this problem.

In contrast, the partial digest approach uses only a single restriction en-
zyme, but tries to derive all fragments that are bordered by either restriction
sites or the ends of the molecule, varying the time of exposing copies of the
molecule to the restriction enzyme. This means that, in contrast to the dou-
ble digest approach, the resulting fragments can still contain restriction sites.
Therefore, we call this type of action a partial digest, distinguishing it from
the full digest of the double digest approach. In the partial digest approach,
the lengths of the fragments are again measured, which ideally leads to a
multiset of exactly

(
k
2

)
elements, i.e., the multiset of all pairwise distances be-

tween restriction sites (or endpoints) of the molecule, where k−2 denotes the
number of restriction sites along the molecule. The resulting combinatorial
problem is known as the partial digest problem (PDP). There are no results
concerning the NP-hardness of PDP so far, but a polynomial-time algorithm
has not been discovered yet. Besides the naive approach of testing all possi-
ble orderings, there exists a backtracking algorithm, achieving good results
in practice, although in the worst case the algorithm was shown to require
exponential running time.

A second approach for the construction of physical maps depends on hy-
bridization experiments. For physical mapping in general, the examined DNA
is decomposed into fragments and for each of these fragments a most possibly
characteristic fingerprint is computed. Fingerprints then serve as the data to
reconstruct the ordering of the fragments (which is our desired task). Now,
overlapping fragments should have similar fingerprints, and nonoverlapping
fragments should have different fingerprints. In mapping by hybridization,
the fingerprints consist of information about whether a fragment hybridizes
with a certain known nucleotide sequence, called a probe, or not. In this kind
of experiments, fragments are also called clones. Essentially, two types are
distinguished.

If the probes are unique in the considered DNA molecule, the reconstruc-
tion problem can be reduced to the question of whether the hybridization
matrix, representing the result of the hybridization experiment for each clone-
probe pair, can be transformed by permuting its columns to obtain consecu-
tive blocks of 1s in each of its rows. This problem has been addressed in the
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context of some graph-theoretic problems, and a polynomial-time algorithm
is known that uses PQ-trees as fundamental data structures. To incorporate
experimental data errors, this model can be weakened, and one may want
to minimize the number of blocks of consecutive 1s in the permuted matrix.
This leads to an NP-hard optimization problem that can be represented as
a variant of the well-known traveling salesman problem (TSP), the metric
TSP, where edge costs are required to obey the triangle inequality. Efficient
approximation algorithms are known to solve this problem.

If one allows for multiple occurrences of probes along the considered DNA
molecule, the corresponding problem may be modeled in terms of the shortest
covering string problem, where the goal is to minimize the multiplicity of
different probes in the reconstruction of their order.

7.4 Bibliographic Notes

The subject of physical mapping is addressed with different focus in the text-
books by Pevzner [159], Setubal and Meidanis [180], and Waterman [201].

The first physical mapping by means of restriction enzymes was published
by Danna et al. [56]. In 1987, Goldstein and Waterman examined the DDP,
and showed that it is NP-hard and that the number of feasible solutions may
increase exponentially with the number of restriction sites [84]. Approaches to
join a multitude of feasible solutions to equivalence classes of solutions were
considered by Schmitt and Waterman [176] and Pevzner [158]. Heuristics to
solve the DDP are proposed in the book by Waterman [201]. Cieliebak et
al. [46] investigate the complexity of variants of the DDP with respect to
error-prone data.

An analogy of the PDP arises in the area of computational geometry and
is known there as the turnpike reconstruction problem. The backtracking algo-
rithm presented in Section 7.1.2 was originally presented by Skiena et al. [182]
to solve this problem. An example, where this algorithm needs exponential
running time was proposed by Zhang [210]. Skiena and Sundaram [183] stud-
ied an extension of the backtracking algorithm also to address error-prone
data. Furthermore, a pseudopolynomial algorithm for the PDP is known, i.e.,
an algorithm which runs in polynomial time with respect to the size of the
largest distance in the given multiset (see Rosenblatt and Seymour [168]).
Cieliebak et al. proved in [47] that for disturbed data PDP is NP-hard. An
overview of complexity results concerning these problem variants of restriction
site mapping can also be found in the PhD thesis by Cieliebak [45].

A quite recent approach in the area of physical mapping by means of re-
striction enzymes is optical mapping. Here, copies of the investigated DNA
are stretched upon an object slide below a microscope and subsequently di-
gested by restriction enzymes. The fragments of the stretched DNA molecules
may contract again, which causes gaps in the DNA strand that are visible
under the microscope. In this approach, the ordering of fragments remains
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unchanged but other combinatorial problems may arise, some of which are
described by Karp and Shamir [117].

There is a multitude of papers concerning the subject of physical mapping
by means of hybridization data. For an introduction, we refer the reader to the
work of Alizadeh et al. [8, 9], Greenberg and Istrail [87], and the books already
mentioned above. As early as 1965, Fulkerson and Gross [77] presented an
algorithm to decide whether a matrix has the consecutive-ones property or not,
which is very well demonstrated in the book by Setubal and Meidanis [180].
The use of PQ-trees to solve this task was proposed in the recommendable
article by Booth and Lueker [36]. To model the combinatorial problems arising
in this framework, interval graphs were often used. An introduction to the
theory of interval graphs and their relation to the consecutive-ones property
of matrices is given in the textbook by Golumbic [85].

The representation of the problem of physical mapping with unique probes
and errors, as well as the connection of this problem to the ∆-TSP, orig-
inates from the book by Setubal and Meidanis [180]. The reference to the
NP-hardness of GMinP can be found in the book by Garey and Johnson
[79] as problem (SR17). The book by Hromkovič [105] includes, besides a very
nice overview on algorithmic methods for solving hard optimization problems,
also a multitude of approaches to address the TSP with triangle inequality. A
more comprehensive overview on techniques applied to the TSP can be found
in [130].

The modelling of mapping with non-unique probes in terms of the shortest
covering string problem was proposed by Alizadeh et al. [8].
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DNA Sequencing

In this chapter we will study the process of sequencing DNA and nucleotide
sequences in general, i.e., of determining the sequence of bases along a nu-
cleic acid molecule. Throughout this chapter, we will consider the DNA as a
standard example of nucleic acids.

As we have already seen in Chapter 2, it is possible to determine the se-
quence of a DNA molecule by means of the chain termination method, which
is also referred to as direct sequencing. By today’s methods, this technique
is applicable to read about 1 000 consecutive base pairs. Unfortunately, for
longer molecules this method becomes too error prone to give reliable state-
ments. On the other hand, our practical applications require the sequencing of
molecules of length up to 50-300 kbp. To close this gap between requirements
and possibilities enabled by sequencing techniques based on the chain termi-
nation method, different experimental methods have been developed, which
in turn lead to various combinatorial questions.

This chapter is devoted to the presentation of two of these experimental
techniques, known as shotgun sequencing and sequencing by hybridization. In
particular, the first procedure represents a widely used approach for sequenc-
ing of DNA and leads to various combinatorial problems we study in more
detail in Section 8.1. Afterwards, we take a closer look at the concept of se-
quencing by hybridization in Section 8.2. To conclude, a summary and some
bibliographic notes on the topic of DNA sequencing are given in Section 8.3
and Section 8.4, respectively.

8.1 Shotgun Sequencing

The process of shotgun sequencing depends on the following idea. Since the
investigated DNA molecule is too long to be sequenced directly, we generate a
large number of copies of the molecule and arbitrarily cut them into random
fragments. While doing so, the order of the fragments along the DNA gets lost.
Each fragment, or at least each fragment’s starting piece (as long as possible),
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is now sequenced directly. We thus obtain a set of overlapping fragments of
known sequences. The remaining task is to reassemble the sequence of the
original molecule from these fragments.

This procedure is summarized below.

Method 8.1 Shotgun Sequencing

Input: A DNA molecule D.
1. Generate a set C = {D1, . . . ,Dm} of copies of D.
2. Cut each copy from C randomly into smaller fragments. This results in a

set of overlapping fragments F = {f1, . . . , fn}.
3. Determine the sequence of all the fragments (or their starting sequences) by

means of direct sequencing. This gives us a set of strings S = {s1, . . . , sn}
over the alphabet ΣDNA = {A, C, G, T}.

Output: The set of strings S = {s1, . . . , sn} corresponding to the sequences of the
fragments in F .

To perform these steps, one has to apply different experimental techniques.
Copying DNA sequences may, for instance, be done by cloning them (see
Section 2.4.2); random cuts could be obtained using vibration; and sequencing
the resulting fragments is typically done using the chain termination method
(see Section 2.4.3).

This now leads to the so-called fragment assembly problem.

Definition 8.1. Let D be the DNA molecule we want to sequence. Let S =
{s1, . . . , sn} be the set of strings obtained by shotgun sequencing D. Then the
fragment assembly problem is defined as follows.

Input: A set of strings S = {s1, . . . , sn}.
Output: An ordering of the strings in S corresponding to the ordering of the

fragments in the original DNA molecule D.

It is of course clear that we can derive the desired sequence directly from
such an ordering.

To give an idea of the sizes that may actually occur in shotgun experiments,
we refer to an example given by Myers [146].

Example 8.1. Let D be the DNA we want to sequence. We denote by l the
length of D and assume an average length of l = 100 kbp. We further assume
that we sequence n = 1 500 fragments during our shotgun experiment and
that each of these fragments have average length f = 500 bp. Therefore, we
obtain a data set of size n · f = 750 kbp that we have to analyze. Altogether,
each base pair of the given DNA D is thus sequenced c = f ·n

l
= 7.5 times on

average. The value of c is also referred to as the coverage. ♦

To solve the fragment assembly for a given set of strings, in general, one
follows an overlap — layout — consensus scheme, whose single phases are
next described in more detail.
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Overlap: In the first step, all possible pairwise overlaps between the strings are
computed. It is important to note that overlaps do not necessarily refer
to exact suffix-prefix pairs as considered in Section 4.5.3, but a certain
number of errors may occur, as described in the context of alignments in
Chapter 5.

Layout: Subsequently, the overlap information is used to infer an ordering on
the strings that resembles their ordering in the original DNA molecule as
much as possible. The structure obtained by this is called the layout.

Consensus: Finally, this layout serves to determine a string that most prob-
ably corresponds to the considered DNA molecule.

The phases are illustrated in Figure 8.1.
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Fig. 8.1. Schematic representation of the overlap — layout — consensus phases for
solving the fragment assembly problem

We have already proposed methods in Section 4.5.3 to compute the overlap
between strings, and we will not further discuss the subject here. The layout
resembles in its structure a semiglobal alignment of multiple strings as we
studied it in Section 5.1.3. Nevertheless, due to the enormous number of strings
occurring in this framework, typically no alignment methods are applied to
actually compute the layout, since they would be inefficient.
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The computation of the layout will play a central role in the modeling, and
in the algorithmic approaches for the fragment assembly problem as discussed
in the following sections.

To elucidate the computation of the consensus, we nevertheless stay with
the picture of a multiple alignment to illustrate the structure of a layout. From
the layout, we can derive the consensus in different ways. Often, a majority
voting is used, where the character occurring most frequently in a column of
the alignment (layout) is set to be the corresponding entry of the consensus.
This also fits to the definition of consensus given in Section 5.3.1.

Before we discuss the modeling process for the fragment assembly problem
in more detail, we first address some potential error sources in the underlying
data and some biological facts that must be taken into account in evaluating
the models with respect to their practical applicability.

8.1.1 Crucial Points to Be Considered in a Suitable Model

Due to the lab techniques required to perform shotgun sequencing, certain
errors may occur. In particular, the direct sequencing of DNA (by the chain
termination method) may lead to the presence of insertions, deletions, and
substitutions as discussed in Section 2.4.3.

Moreover, specific problems may occur in the context of shotgun sequenc-
ing, such as chimeric clones. When carrying out the shotgun experiment, it
may happen that fragments from different regions of the DNA join each other
to form a single fragment. Hence, in the resulting data two DNA regions seem
to appear consecutively although they are spatially separated in the original
DNA (see Figure 8.2). The fragments resulting from the join of the two DNA
regions are called chimeric clones.

Some addditional biological facts must be regarded when modeling the
fragment assembly problem.

Incomplete coverage: In Example 8.1, we have seen how to compute the
average coverage c of a shotgun experiment. But a high average coverage by
no means guarantees a complete coverage of the considered DNA molecule
by fragments. That is, there may exist regions of the molecule that are not
covered by any fragment (see Figure 8.3). There are different possible reasons
for this: one, for instance, may be the toxic effect of a fragment that would
normally appear in the region on the host organism used for cloning it.

Unknown orientation: The orientation of fragments gets lost during the
shotgun experiment. Thus, the reading direction is unknown and we are not
sure whether the resulting strings occur as they are in the DNA sequence
or as their reverse complement. Therefore, we have to deal with these two
possibilities in fragment assembly.

Repeats: Another particularity of DNA, which we must take into account
in fragment assembly, is the appearance of multiple numbers of identical (or
nearly identical) substrings at different positions of DNA, called repeats. These
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repeats may occur in various different types, with different lengths and dif-
ferent levels of similarity. The presence of repeats leads to the necessity in
fragment assembly to distinguish whether the overlap of two fragments re-
sults from an actual overlap of these fragments in the original DNA or from
the fact that these fragments occur only within the same repeats. We will
consider this problem in more detail when we analyze the particular models.
Furthermore, an unfavorable distribution of the repeats may lead to situations
that do no longer allow the unique reconstruction of regions between them
(see Figure 8.4).

The next point is neither an error nor a characteristic that may trouble
our fragment assembly model. Indeed, we should also care about including all
available data into our model to obtain the most realistic one with the most
reliable results. One such data is the length of the original DNA. This length,
or at least a good estimate, can be easily determined by gelelectrophoresis (as
discussed in detail in Section 2.4.3). Incorporating this additional knowledge
into our model may substantially increase its reliability.

PSfrag replacements
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Fig. 8.2. Illustration of a chimeric clone
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Fig. 8.3. Illustration of an incomplete coverage of DNA by fragments

While all these observations should be considered in the context of model-
ing the fragment assembly problem, we have to also accept restrictions of the
formal model for the sake of its simplicity. Indeed, the solutions obtained based
on a simple model can be good enough, such that comprehensive and complex
models without any approach to achieve good solutions are no longer advan-
tageous. It may furthermore be possible to successively extend basic models
to more complex ones and to cover more and more parameters in doing so. In
general, nevertheless, the above observations should be taken into account for
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the evaluation of models for fragment assembly in order to ensure the most
reliable modeling.

According to these remarks, the subsequent sections will deal with some
approaches to model and solve the fragment assembly problem to a certain
extent. Starting with a very abstract model, we will present some possible
extensions to make it more realistic.

8.1.2 The Shortest Common Superstring Problem

The Model

A first and rather simple approach to modeling fragment assembly is to cast
it as a shortest common superstring problem. According to this, we may un-
derstand the following problem setting as one possible model of the fragment
assembly problem, where admittedly none of the above described problem
parameters are considered yet. The idea behind using the shortest common
superstring problem for modeling is based on the assumption that a string
containing all strings resulting from the shotgun experiments as substrings
that is as short as possible seems to be a fairly good approximation of the
desired DNA sequence.

Definition 8.2. The shortest common superstring problem, SCS for short,
is the following optimization problem.

Input: A set S = {s1, . . . , sn} of strings over an alphabet Σ.
Feasible solutions: Each superstring w of S, i.e., each string w that contains

all strings si ∈ S as substrings.
Costs: The length of the superstring, cost(w) = |w|.
Optimization goal: Minimization.

Accordingly, we call an optimal solution for the SCS a shortest common su-
perstring of S.
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Thus, for a given set of strings, we want to compute a shortest string that
contains all given strings as substrings.

Let us assume that the set S contains two different strings s and t, where
t is a proper substring of s. Then, the string t obviously plays no role in
computing the superstring, since a superstring w containing s as a substring
automatically also contains the substring t. Therefore, we can without loss of
generality assume the input set for the SCS to be substring free.

Definition 8.3. A set of strings S is said to be substring free if no pair of
strings (s, t), s 6= t, exists in S such that t is a substring of s.

In the context of the shortest common superstring problem another opti-
mization problem is often considered, where the goal is to compute a super-
string maximizing the compression. To explain this in more detail, we first
define what we will understand by the term trivial superstring.

Definition 8.4. A trivial superstring wT of a set S = {s1, s2, . . . , sn} is ob-
tained by concatenating all strings in S in an arbitrary order,

wT = s1 · s2 · . . . · sn.

The length of a trivial superstring is thus the sum of the lengths of the strings
in S. We will denote this length by

‖S‖ = |wT | =
n∑

i=1

|si|.

It is immediately clear that a trivial superstring is a feasible solution to
the SCS, but the worst one.

Now, by compression we mean the number of characters that are saved by
a superstring with respect to the trivial one.

Definition 8.5. Let w be a superstring of a set S = {s1, s2, . . . , sn}. The
compression of w is defined as

comp(w, S) = ‖S‖ − |w|.

The relation between the length of a trivial superstring, the length of a
superstring w, and the compression of superstring w is illustrated in Figure
8.5. If the set S is clear from the context, we also write comp(w) for short,
instead of comp(w, S).

At this point, we can define a variant of the shortest common superstring
problem, where we seek to maximize the compression. This receives the same
type of input and also has the same set of feasible solutions, but differs in the
costs and the optimization goal.

Definition 8.6. The maximum compression common superstring problem,
MCCS for short, is the following optimization problem.
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PSfrag replacements length of a trivial superstring

|w| comp(w)

Fig. 8.5. Length of a trivial superstring, length of a superstring w, and compression
of superstring w

Input: A set S = {s1, . . . , sn} of strings over an alphabet Σ.
Feasible solutions: Each superstring w of S.
Cost: The compression of superstring w, cost(w) = comp(w, S).
Optimization goal: Maximization.

Often one refers to the shortest common superstring problem with length
measure in the case of SCS and to the shortest common superstring problem
with compression measure in case of MCCS. It should be clear from the defini-
tion that an optimal solution to the SCS is an optimal solution to the MCCS
as well, and vice versa. On the other hand, as we will see in the following, per-
formance ratios of approximation algorithms are in general not transferable
between the two optimization problems.

To achieve a deeper understanding of the above definitions, let us consider
the following example.

Example 8.2. Let S = {ababaa, bab, caba, aaddd, aabca, aacab} be a set of
strings over the alphabet {a, b, c, d}. We observe that the string bab is a sub-
string of the string ababaa and therefore, according to our insight above, we
can ignore it. Thus, let us consider the substring-free set

S′ = {ababaa, caba, aaddd, aabca, aacab}.

One trivial superstring for S ′ is, e.g., wT = ababaacabaaadddaabcaaacab,
with length |wT | = 25. The superstring w1 = aadddcababaabcaacab, on the
other hand, results from the following alignment of strings from S ′:

a a c a b
a a b c a

a b a b a a
c a b a

a a d d d
a a d d d c a b a b a a b c a a c a b

The superstring w1 has length 19, it hence achieves a compression of
comp(w1, S

′) = 6.
Compared with this, a shortest superstring w2 = aacababaabcaaddd can

be obtained by the following alignment of strings from S ′:
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a a d d d
a a b c a

a b a b a a
c a b a

a a c a b
a a c a b a b a a b c a a d d d

This superstring has a length of 16 and hence achieves a compression of
comp(w2, S

′) = 9. ♦

To gain a better intuition on the problems, we will now introduce two
graphs that can be viewed as a special representation of the inputs for SCS
and MCCS, respectively. Therefore, please first recall the definition of a merge
〈s, t〉 of two strings s = uv and t = vw as presented in Definition 3.5, which
denotes the string uvw resulting from merging s and t with a maximum length
region of overlap v. Here, we denote the overlap1 v by Ov(s, t) and the prefix u
of the merge 〈s, t〉 by Pref (s, t). We call the length pref (s, t) = |Pref (s, t)| of
this prefix the distance between s and t. Accordingly, let ov(s, t) = |Ov(s, t)|.
The merge 〈s, t〉 hence consists of pref (s, t) many characters from s followed
by t. It is therefore easy to compute the distance given the length of the
overlap, and vice versa (clearly, we also need the length of s):

pref (s, t) = |s| − ov (s, t).

Definition 8.7. Let S = {s1, . . . , sn} be a set of strings over an alphabet Σ.
The overlap graph Gov (S) of S is the complete edge-weighted directed graph
Gov (S) = (V,E, c), where

• V = S and E = V 2, and
• c : E → � , with c(si, sj) = ov(si, sj) for all si, sj ∈ V .

That is, the edges are labeled with the lengths of the overlaps between the
strings connected by them.

Accordingly, the distance graph Gpref (S) of S is the complete edge-weighted
directed graph Gpref (S) = (V,E, c), where

• V = S and E = V 2, and
• c : E → � , with c(si, sj) = pref (si, sj) for all si, sj ∈ V .

That is, instead of labeling the edges with the lengths of the overlaps, we
label them by the corresponding distances.

Note that when we first defined directed graphs in Definition 3.12, we
considered them to contain no self-loops.2 However, in this particular context,
self-loops are obviously absolutely meaningful, describing the overlap of a
string with itself.

The overlap graph for the input instance from Example 8.2 is shown in
Figure 8.6; the distance graph for the same input is shown in Figure 8.7.

1 As we are dealing with superstrings here, we are looking for exact, and not ap-
proximate, overlaps.

2 A self-loop in a directed graph is an edge (v, v) pointing from vertex v to itself.
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In Section 4.5.3, we proposed a method enabling us to compute all pairwise
overlaps of a set S of n strings in time O(‖S‖·(n+log ‖S‖)). So, we can directly
infer the following theorem.

Theorem 8.1. Let S = {s1, . . . , sn} be a set of strings over an alphabet Σ.
The computation of the overlap graph as well as of the distance graph of S
can be done in time O(‖S‖ · (n+ log ‖S‖)). ut

Note that an edge (s, t) in the distance graph (overlap graph) corresponds
in a natural way to a merge of the strings s and t.



8.1 Shotgun Sequencing 181

As an edge can be identified with a merge, we can similarly consider a path
in the distance graph (overlap graph) as a sequence of several merges. As an
example, let (s1, s2, . . . , sk) be a directed path in a distance graph (overlap
graph]); then, we denote the corresponding string by

〈s1, s2, . . . , sk〉 = Pref (s1, s2)Pref (s2, s3) . . .Pref (sk−1, sk)sk.

This string thus has length

|〈s1, s2, . . . , sk〉| = pref (s1, s2) + pref (s2, s3) + · · ·+ pref (sk−1, sk) + |sk|.

Therefore, we may generally define a superstring by an ordering of the strings
in the input set.

Definition 8.8. Let S = {s1, . . . , sn} be a set of strings, let π = (si1 , . . . , sin
)

be an ordering of the strings. Then the superstring wπ induced by π is

wπ = 〈si1 , . . . , sin
〉 = Pref (si1 , si2) · Pref (si2 , si3) · . . . · Pref (sin−1 , sin

) · sin
.

Based on these considerations, we can recognize a relation between the SCS
and the traveling salesman problem (TSP).3 Namely, to solve the SCS, we are
looking for an ordering of strings, i.e., a directed tour in the distance graph
visiting each vertex exactly once, which has the minimal cost with respect to
its induced superstring. Let us assume that we have a solution for the TSP for
a given distance graph, i.e., a tour visiting all vertices and of minimal cost.
Let this solution be given in terms of a permutation π = (si1 , . . . , sin

). Its
costs with respect to the TSP is thus

costTSP(π) = pref (si1 , si2)+pref (si2 , si3)+. . .+pref (sin−1 , sin
)+pref (sin

, si1).

From this we can directly obtain a feasible solution for the corresponding
SCS by computing the induced superstring wπ of length

costSCS(wπ) = pref (si1 , si2) + pref (si2 , si3) + . . .+ pref (sin−1 , sin
) + |sin

|.

Knowing that the distance of two strings pref (s, t) is always smaller than the
length of the string s itself, we can directly infer that the cost of the solution
for the TSP is at least as high as the cost of the corresponding SCS solution.
In this way, we obtain a directed path from a solution of the TSP whose
induced superstring might be a good candidate for a short superstring. Let
OptTSP be the cost of an optimal solution for the TSP on the distance graph
for a set of strings S, and let OptSCS be the length of an optimal solution for
the SCS on the same set of strings S; then, we have

OptTSP 6 OptSCS−ovmin 6 OptSCS,

3 Here we have to deal with the variant of the TSP where the input graph is
directed.
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where ovmin denotes the minimum length of an overlap between two strings
in S.

However, this procedure still does not lead us to an efficient method for
solving the SCS, since the TSP is, as we have already pointed out in Section
3.3, an NP-hard optimization problem.

Therefore, let us at this point consider the complexity of the SCS itself
and subsequently propose some approaches to solve it. Assume that a set
S = {s1, . . . , sn} is given. A simple way to determine a shortest superstring
for S would consist of examining all different orderings of strings from S
and choosing the shortest of the induced superstrings. But as the number of
different orderings of n strings is n!, this approach is certainly not applicable
in practice, where values of n may be quite large.

Indeed, the SCS also turns out to be computationally difficult and therefore
the existence of a polynomial-time algorithm solving it is highly unlikely. To
make this more precise, we consider the decision version Dec-SCS of the SCS.

Definition 8.9. The decision version of the shortest common superstring
problems, DecSCS for short, is defined as follows.

Input: A set S = {s1, . . . , sn} of strings over an alphabet Σ and an integer k.
Output: Yes if there exists a superstring w of S, where |w| 6 k, and No

otherwise.

This problem was shown to be NP-complete by Gallant et al. in [78].

Theorem 8.2. DecSCS is NP-complete. ut

We omit the proof of this theorem here and instead refer the reader to the
literature referenced in Section 8.4.

As we have seen in Theorem 8.2, DecSCS is NP-complete, and there-
fore it is highly unlikely that we can design an algorithm for SCS or MCCS
which computes an optimal solution in polynomial time. Therefore, we will,
as in Section 7.2 (where we examined the mapping with unique probes and
errors) reduce our requirements and search for rather good solutions instead
of necessarily optimal ones. We hence consider the concept of approximation
algorithms and try to find ones that compute solutions deviating from an
optimal one as little as possible.

The Greedy Algorithm

An especially simple approach to design an approximation algorithm for the
SCS is based on the greedy method (see Algorithm 8.1). Here, we successively
merge those strings that have the largest overlap and thus determine a su-
perstring step by step. In general, greedy algorithms proceed by developing
a solution stepwise, using a locally optimal subsolution in each step. They
have their name due to their property of acting greedily — “Always take the
largest (best) piece of the cake.”
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Algorithm 8.1 Greedy Superstring

Input: A set of strings S = {s1, . . . , sn}.

while |S| > 1 do

1. Find si, sj ∈ S, si 6= sj , that have a maximum overlap among all strings
in S.

2. Let s′ = 〈si, sj〉 be the merge of strings si and sj .
3. Delete si, sj from S and insert s′ into S.

Output: The only remaining string wgreedy ∈ S.

Let us now consider the operation of Algorithm 8.1 from a different point
of view.

Let the input S be given in terms of an overlap graph as described in
Definition 8.7; then, Algorithm 8.1 always searches for an edge (si, sj) with
the highest weight in the graph that is not a self-loop4, and merges the strings
corresponding to the incident vertices with each other. After this, the vertices
si and sj are united into one single vertex that now represents the merge
s′ = 〈si, sj〉 of the two strings. Furthermore, all outgoing edges of vertex si and
all incoming edges of vertex sj are deleted from the graph. This contraction
is repeated until only one vertex remains in the graph, representing the final
superstring.

On a slightly more abstract level, we can also view Algorithm 8.1 as com-
puting a Hamiltonian path in the overlap graph, i.e., as a directed path visiting
each vertex exactly once. For that, let S again be given in terms of an overlap
graph. The algorithm now chooses each time an edge with maximal weight
that is not a self-loop, such that the set of chosen edges still can be extended to
a Hamiltonian path. That is, the new edge must lead neither to the situation
where there exists a vertex whose indegree or outdegree with respect to the
chosen edges is greater than one, nor to the situation where the newly chosen
edge generates a directed cycle together with some of the edges chosen so far.
Algorithm 8.1 in this way computes a Hamiltonian path of the overlap graph,
and the final superstring corresponds to the one induced by the ordering of
strings (vertices) along this path.

We illustrate the work of Algorithm 8.1 with the following example.

Example 8.3. We consider the input instance S ′ = {ababaa, caba, aaddd, aabca,
aacab} from Example 8.2. All pairwise overlaps between strings in S ′ are
shown in Table 8.1 (see also the overlap graph in Figure 8.6).

On this input, Algorithm 8.1 now operates as follows: It chooses a pair of
strings with maximal overlap. In this case the pair (caba, ababaa) as well as
the pair (aacab, caba) are suitable, since both achieve an overlap of 3. Let us

4 The usage of self-loops is explicitly prohibited, as the algorithm demands si 6= sj

in step 1.
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ababaa caba aaddd aabca aacab

ababaa 1 0 2 2 2

caba 3 0 1 1 1

aaddd 0 0 0 0 0

aabca 1 2 1 1 1

aacab 2 3 0 0 0

Table 8.1. Pairwise overlaps between strings from Example 8.3

assume that the algorithm chooses the pair (caba, ababaa) and thus computes
the merge 〈caba, ababaa〉 = cababaa. After executing this step, the set of
remaining strings is

{cababaa, aaddd, aabca, aacab}.

The procedure is now iterated. Accordingly, in the next step the algorithm
creates the merge 〈aacab, cababaa〉 = aacababaa leading to the set

{aacababaa, aaddd, aabca}.

In the following step, the algorithm chooses a pair with overlap 2, for instance,
(aacababaa, aaddd), and creates the corresponding merge 〈aacababaa, aaddd〉 =
aacababaaddd. Then, the remaining set is

{aacababaaddd, aabca}.

In the last step, the algorithm performs the merge

〈aabca, aacababaaddd〉 = aabcaacababaaddd,

and hence we obtain the superstring

wgreedy = aabcaacababaaddd

of length 16 and compression comp(wgreedy) = 9. In this particular example,
wgreedy is in fact a shortest superstring for the input S ′. But this need not be
the case in general, as we will see in a later example. ♦

Before we examine the running time of Algorithm 8.1, we present the
following observation on its work on substring free instances.

Lemma 8.1. If a substring free set S = {s1, . . . , sn} is input to Algorithm
8.1, the set S remains substring free during the computation.

Proof. Let S = {s1, . . . , sn} be a substring free set of strings. A merge s′ =
〈si, sj〉 performed by Algorithm 8.1 cannot become a superstring of strings in
S except for si and sj . Assume the contrary, i.e., that there exists a string
t ∈ S such that t is a substring of s′. As S was assumed to be substring free, t
is neither a substring of si nor of sj . Hence, the overlap Ov(si, sj) is a proper
substring of t. But then, t has a larger overlap with either si or sj than si has
with sj , which contradicts the greedy property of Algorithm 8.1. ut
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We are now ready to consider the running time of Algorithm 8.1.

Theorem 8.3. For an input S = {s1, . . . , sn}, Algorithm 8.1 computes a su-
perstring of S in time O(‖S‖ · (n+ log ‖S‖)).

Proof. By the description of the algorithm and the discussion above, it is clear
that the output is actually a superstring. We now analyze its running time.

Before we actually start to consider steps 1 to 3 in the while loop, we
first compute all pairwise overlaps between the strings in S and subsequently
construct a sorted list of them.

According to Theorem 8.1, we can compute all overlaps in time O(‖S‖ ·
(n + log ‖S‖)). As we will ignore self-loops, i.e., merges of type 〈si, si〉 here,
we may ignore the overlaps and set the corresponding values to −1.

We are now provided with a matrix A containing n2 entries that we want
to sort. As each entry corresponds to the length of an overlap, it is a natural
number, and it is definitively smaller than ‖S‖. Thus, we can sort these ele-
ments in time O(n2 + ‖S‖) ⊆ O(n · ‖S‖) using counting sort (see Algorithm
4.13).

We may additionally assume that there is a pointer assigned to each ele-
ment of the sorted array, denoted by L, referring to the corresponding entry in
A, i.e., providing us with the pair of strings which corresponds to this overlap.

For these preprocessing steps, we thus require time in O(‖S‖·(n+log‖S‖)).
Now, let us consider steps 1 to 3 of the algorithm.

In step 1, we have to determine the pair (si, sj) with the largest overlap.
Thanks to our sorted array L and its assigned pointers, we can do so in
constant time.

In steps 2 and 3 we have to perform the merge s′ = 〈si, sj〉, remove si and
sj from the current set of strings, and insert s′ there. With respect to our
implementation, we thus have to perform an update on the overlap matrix A
and on the sorted array L.

To update A, we have to insert s′ into the matrix. The corresponding
entries can be easily computed by A[s′, t] = A[sj , t], A[t, s′] = A[t, si], and
A[s′, s′] = −1, for all t in the current set S without si, sj , and s′. Here, we
set A[s′, s′] = −1 to guarantee the condition si 6= sj in step 1. The rows and
columns corresponding to si and sj are removed from A. This update process
can be done in time O(n).

To update L, we simply remove its first entry and rearrange the pointers
to A. If there was a pointer to A[sj , t], set it to A[s′, t], and if there was a
pointer to A[t, si], set it to A[t, s′]. Observe that by introducing s′ we cannot
obtain “new” values of overlaps, since this would imply that the current S is
not substring free which contradicts our assumption in Lemma 8.1. Moreover,
we remove all elements from L that point to entries A[si, t] and A[t, sj ]. By
following the pointers in the opposite direction, this step can be implemented
in time O(n). Finally, the first element of L might now be deleted, since it
is of type A[si, t] or A[t, sj ]. To find the new first element of L requires O(n)
steps, since at most this number of elements is removed.
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Since steps 1 to 3 of the algorithm will be executed O(n) times altogether,
we can, with the above considerations, derive a running time of O(n2). To-
gether with the effort needed for preprocessing the data, we obtain the claimed
result, O(n2 + ‖S‖ · (n+ log ‖S‖)) = O(‖S‖ · (n+ log ‖S‖)). ut

Let us now illustrate the work of the algorithm on the level of strings.

Example 8.4. Let S = {c(ab)m, (ba)m, (ab)mc} be an input for the SCS over
the alphabet Σ = {a, b, c} for an arbitrary natural number m. Algorithm
8.1 runs on this input as follows. The algorithm starts with computing the
pair with a maximal overlap in S. This is the pair (c(ab)m, (ab)mc) with an
overlap of length 2m. Then, the two strings are merged together and thus,
after the first pass through steps 1 to 3 of the algorithm, we obtain the set
{(ba)m, c(ab)mc}. Since the string c(ab)mc starts and ends with character c
and the string (ba)m consists solely of characters a and b, the only remaining
way to generate a superstring is to concatenate both strings. The overlap is 0 in
this case. Algorithm 8.1 hence computes either the superstring (ba)mc(ab)mc
or the superstring c(ab)mc(ba)m, each having length 4m+ 2.

But, if we take a closer look at our example, we recognize that it is favorable
to move the string (ba)m between the two strings c(ab)m and (ab)mc. This
procedure results in the optimal (shortest) superstring ca(ba)mbc of length
2m+ 4 for our input S.

The approximation ratio achieved by Algorithm 8.1 in this example is thus
about 2, since the fraction 4m+2

2m+4 converges to 2 for m tending to infinity.

The above example thus shows that Algorithm 8.1 cannot achieve an ap-
proximation ratio better than 2 in general. On the positive side, it was shown
that Algorithm 8.1 always computes a superstring that is at most 4 times as
long as the optimal one [33].

Theorem 8.4. Algorithm 8.1 (Greedy Superstring) is a 4-approximation al-
gorithm for the SCS. ut

We will not prove this result here, because it is beyond the scope of this
chapter. Note that, although a 4-approximation has been shown for Algo-
rithm 8.1, no one has been able so far to actually find an example on which
the algorithm performs this badly. Indeed, the example above, showing an
approximation ratio of 2, is the worst example known. Thus, there is still a
gap according to the exact approximation ratio achieved by the algorithm.5

In general, it is assumed that Algorithm 8.1 is indeed a 2-approximation al-
gorithm for the SCS; only the corresponding proof is still missing.

In the framework of superstrings, we have defined, besides the SCS, also
another optimization problem, the MCCS. Now, let us analyze how Algorithm

5 Note that for problems this is by no means unusual; but for a certain algorithm
— actually a very simple one — this circumstance is quite unsatisfactory.
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8.1 performs with respect to this optimization goal, i.e., to maximizing the
compression.

We note here that, although the optimization problems SCS and MCCS
have the same optimal solutions, the approximate solutions can vary arbitrar-
ily. That is, an ε-approximation for one problem does not necessarily imply an
ε-approximation for the other one. Figure 8.8 illustrates this fact and shows
why the approximation ratios cannot be transfered directly.

PSfrag replacements

trivial solution

trivial solution

optimal solution

optimal solution

computed solution

computed solution

(a)

(b)

Fig. 8.8. (a) An input instance for which the computed solution is a good approx-
imation with respect to the length, but does not imply a good approximation with
respect to the compression. (b) The opposite case. The length of the superstring is
represented by a solid line and the size of the compression by a dotted line

We will now examine the approximation performance of Algorithm 8.1
with respect to MCCS.

Theorem 8.5. Algorithm 8.1 (Greedy Superstring) is a 2-approximation al-
gorithm for the MCCS. ut

We will omit the proof of this theorem here. Instead, we will, using a simple
argument, present a weaker version of the above statement.

Theorem 8.6. Algorithm 8.1 (Greedy Superstring) is a 3-approximation al-
gorithm for the MCCS.

Proof. Let wopt be a shortest superstring for an input S = {s1, . . . , sn}. Thus,
each string s ∈ S occurs on at least one position in wopt as a substring. Let
πopt = (si1 , . . . , sin

) be the order of strings in S induced by their first oc-
currence in wopt. As wopt is a shortest superstring, we may represent wopt

by a sequence of merges 〈. . . 〈〈si1 , si2〉, si3〉 . . . 〉, sin
〉 according to πopt.

6 Let
Mopt = {〈si1 , si2〉, 〈si2 , si3〉, . . . , 〈sin−1 , sin

〉} denote the set of merges per-
formed in the optimal solution on the level of the single strings in S. In
our visualization of superstrings in terms of Hamiltonian paths in the overlap
graph,Mopt corresponds to the set of edges on this path. Now, the compression

6 It is important that wopt is a shortest superstring, since otherwise a merge would
not necessarily represent it. For example, for the strings ab and ba, the string
abba is in fact a superstring, but it is different from the merge 〈ab, ba〉 = aba.
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provided by the optimal solution is given by comp(wopt) =
∑

m∈Mopt
ov (m),

the sum of the lengths of the overlaps of merges in Mopt.
In the same way, the superstring wgreedy computed by Algorithm 8.1 de-

termines an ordering of the strings in S. Let this one be given by πgreedy =
(sj1 , . . . , sjn

). Accordingly, denote the set of merges in the greedy solution
respecting πgreedy by Mgreedy = {〈sj1 , sj2〉, 〈sj2 , sj3〉, . . . , 〈sjn−1 , sjn

〉}.
We now examine the amount of compression of the optimal solution wopt

that we can lose when performing a merge of the greedy solution. In particular,
we show that each of these merges can rule out at most three merges in the
optimal solution, such that they can no longer be performed.

Let m = 〈sjk
, sjk+1

〉 be a merge of the greedy solution.7 There are three
types of merges with respect to the ordering πopt = (si1 , . . . , sin

) of strings in
the optimal solution wopt.

1. If m = 〈sil
, sil+1

〉 for some l (1 6 l 6 n−1), then the merge performed by
Algorithm 8.1 corresponds to a merge of the optimal solution wopt, and
thus m does not rule out any other merge of the optimal solution (see
Figure 8.9 (a)).

2. If m = 〈sil
, sil+h

〉 for appropriate l and h with 1 < h 6 n−l, then m corre-
sponds to a kind of forward merge in wopt, and at most two merges of the
optimal solution become forbidden, namely, 〈sil

, sil+1
〉 and 〈sil+h−1

, sil+h
〉

(see Figure 8.9 (b)).
3. If m = 〈sil+h

, sil
〉 for appropriate l and h with 1 < h 6 n − l, then

m corresponds to a kind of backward merge in wopt and at most three
merges of the optimal solution become forbidden, namely, 〈sil+h

, sil+h+1
〉,

〈sil−1
, sil
〉, and one of the merges in M = {〈sil

, sil+1
〉, . . . , 〈sil+h−1

, sil+h
〉},

since the use of all merges in M would imply a cycle, which is not allowed
(see Figure 8.9 (c)).

Hence, any merge in Mgreedy may rule out at most three merges in Mopt.
We denote the set of merges in Mopt that are prevented by a merge m ∈
Mgreedy by prevent(m).

Now, we are ready to estimate the ratio between the compression provided
by the optimal and the greedy solution. Since each merge m ∈ Mgreedy can
rule out at most three merges in Mopt as shown above, it holds that, for all
m ∈Mgreedy,

|prevent(m)| 6 3.

Since Algorithm 8.1 always chooses a remaining merge with maximal overlap,
we obtain, for all m ∈Mgreedy,

ov (m) >
1

3




∑

m′∈prevent(m)

ov (m′)



 . (8.1)

7 Note that we may consider any merge from the greedy solution here, since the
order how the merges were performed according to πgreedy is irrelevant.
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PSfrag replacements
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sil+h
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Fig. 8.9. (a) The merge m = 〈sil
, sil+1〉 is part of the optimal solution wopt given

as a Hamiltonian path within the overlap graph. (b) How two merges of wopt can
be ruled out by one merge of Algorithm 8.1. (c) The case in which one merge of
the algorithm rules out three merges of the optimal solution. We depict the merge
computed by the algorithm as a dashed arrow (note the different direction in (b)
and (c)) and mark the forbidden merges of the optimal solution with a double slash
on the edges

Note that Inequality (8.1) holds in particular if m ∈ Mgreedy ∩ Mopt, i.e.,
if prevent(m) = ∅. Additionally, it is easy to recognize that for each merge
m′ ∈Mopt we have

m′ ∈Mgreedy or there exists an m ∈Mgreedy with m′ ∈ prevent(m). (8.2)

The statement (8.2) is immediate, since the existence of a merge m′ that
does not satisfy this requirement implies that additional merges have to be
performed to obtain a connected superstring.

Since the compression is the sum of the achieved overlaps, we can estimate
the approximation ratio of Algorithm 8.1 as follows:

comp(wopt)

comp(wgreedy)
=

∑

m′∈Mopt
ov (m′)

∑

m∈Mgreedy
ov (m)

(8.1)

6

∑

m′∈Mopt
ov (m′)

∑

m∈Mgreedy

1
3 (
∑

m′∈prevent(m) ov(m′))

=

∑

m′∈Mopt
ov(m′)

1
3

∑

m∈Mgreedy

∑

m′∈prevent(m) ov (m′)

(8.2)

6

∑

m′∈Mopt
ov(m′)

1
3

∑

m′∈Mopt
ov (m′)

= 3

This completes our proof. ut
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The Cycle Cover Algorithm

Besides the above presented approach for approximating the SCS using a
greedy method, there exists another common approach that is based on the
computation of a minimum cycle cover in the distance graph. Before we con-
sider this approach in detail, we first formally define the term minimum cycle
cover.

Definition 8.10. Let G = (V,E,w) be a complete directed graph with a weight
function w : E → � . A cycle cover C of G is a set of directed cycles in G,
C = {c1, . . . , ck}, such that each vertex in V is contained in exactly one cycle
ci ∈ C, 1 6 i 6 k.

The cost cost(C) of a cycle cover C = {c1, . . . , ck} is the sum of all edge-
weights of all edges contained in the cycles:

cost(C) =
k∑

i=1

∑

e∈ci

w(e)

A minimum cycle cover Cmin(G) of a graph G is a cycle cover of G with
minimum cost.

It is a known fact that one can efficiently compute such a minimum cycle
cover of a graph. We will not consider the algorithms here, but refer the reader
to the bibliographic notes at the end of this chapter instead.

We have already discussed at the beginning of this section that, if we are
able to determine one cycle in the distance graph with cost as small as possible,
i.e., a solution of the directed TSP, then this would also imply a good solution
for the SCS. The idea of Algorithm 8.2 is based on getting close to such a
cycle with minimal cost by using an algorithm for computing a minimum cycle
cover.8 In fact, the computation of a minimum cycle cover is done twice. A
minimum cycle cover of the distance graph is first computed, followed by the
computation of a second minimum cycle cover on representatives of each of the
computed cycles. Now, the obtained cycles are concatenated and expanded to
finally achieve a superstring.

Note that the expansion of rc in Step 7 to a superstring on the vertices in
cycle c is actually longer than necessary, but has the property of starting and
ending with rc, which is of particular importance, since this expansion has to
replace rc in w′.

Additionally, it is important to note that although we compute cycle covers
with respect to the distance between strings, i.e., on the distance graph, we
also refer to the overlap between strings, as, for instance, in Step 5; i.e., we
are also concerned with the overlap graph.

The work of Algorithm 8.2 is illustrated by the following example.

8 This algorithm is also called generic superstring algorithm in the literature, be-
cause it provides the algorithmic idea on which a number of good approximation
algorithms for the SCS are based.
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Algorithm 8.2 Cycle Cover Superstring Algorithm (CCSA)

Input: A set of strings S = {s1, . . . , sn} and the corresponding distance graph
Gpref (S).

1. Compute a minimum cycle cover C of Gpref (S).
2. For each cycle c ∈ C, choose an arbitrary representative rc. Denote the set of

representatives by R = {rc | c ∈ C}.
3. Compute the subgraph G′ of Gpref (S) induced by R.
4. Compute a minimum cycle cover C ′ of G′.
5. In each cycle c′ = (c′1, . . . , c

′
kc′

) ∈ C′ delete the edge corresponding to a minimal

overlap. Let, without loss of generality, (c′kc′
, c′1) be this edge. The strings in

the remaining path are now merged in order. Thus, for all c′ ∈ C′, a string
uc′ = 〈c′1, . . . , c

′
kc′
〉 is obtained.

6. Concatenate all the strings uc′ for all c′ ∈ C′ and denote the resulting string by
w′.

7. Let c = (c1, . . . , ckc) be a cycle in the cycle cover C. Since c is a cycle, we can,
without loss of generality, assume that the chosen representative rc corresponds
to vertex c1.
Replace each representative rc in w′ by the concatenation of all prefixes in cycle
c followed by rc itself, i.e., by

Pref (rc, c2)Pref (c2, c3)Pref (c3, c4) . . .Pref (ckc−1, ckc)Pref (ckc , rc)rc.

We denote the resulting string by w.

Output: The string wcc = w.

Example 8.5. Let S be an input for Algorithm 8.2. Let us consider the distance
graph G = Gpref (S). We determine the minimum cycle cover C as shown in
Figure 8.10 (i). According to the labels used there, we can write the set S as

S = {a1, . . . , a4, b1, . . . , b6, c1, . . . , c4, d1, . . . , d5, e1, . . . , e5, f1, f2, g1, g2, g3}.

From each cycle in C, we choose a representative ri with i ∈ {a, b, c, d, e, f, g}
and consider the subgraph G′ of G induced by these representatives. For this
subgraph, we again determine a minimum cycle cover C ′ and obtain in this
way the cycles (ra, rb, rc), (rd, re), and (rf , rg), as shown in Figure 8.10 (ii).

From each of these cycles we now remove the edge that corresponds to
the merge with the smallest overlap. This is illustrated in Figure 8.10 (ii)
by a double crossing on the edge. We obtain the strings u1 = 〈rb, rc, ra〉,
u2 = 〈re, rd〉, and u3 = 〈rf , rg〉, which are now concatenated to obtain the
string w′ = u1u2u3. Finally, we replace the representatives in w′ by their
corresponding cycles; that is, we obtain the following superstring:

w = 〈〈b1, . . . , b6〉, 〈c1, c2, c3, c4〉, 〈a1, a2, a3, a4〉〉

·〈〈e1, . . . , e5〉, 〈d1, . . . , d5〉〉

·〈〈f1, f2〉, 〈g1, g2, g3〉〉
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Fig. 8.10. Illustration of the work of Algorithm 8.2 on the instance from Example
8.5

From the procedure of the algorithm, it should be clear that the computed
string wcc is a superstring for the given input. Furthermore, we show that
Algorithm 8.2 is an approximation algorithm for the SCS.

Theorem 8.7. Algorithm 8.2 (CCSA) is a 3-approximation algorithm for the
SCS.
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Proof. We split the proof of this claim into parts. Before discussing the parts
in detail, we first sketch the overall structure of the proof.

(i) We start showing that the costs of a minimum cycle cover in a distance
graph establish a lower bound on the length of the shortest superstring.

(ii) Then we estimate the length of strings uc′ computed in step 5 of Algorithm
8.2.

(iii) This yields an estimate for the length of string w′ computed in step 6
based on the cost of the minimum cycle cover C ′ and the overlap lost
during the constructing of strings uc′ .

(iv) Based on this, we can estimate the length of the computed superstring
w with respect to the length of a shortest superstring for S and the lost
overlap.

(v) Finally, we estimate the lost overlap in terms of the cost of cycle cover C
and obtain the desired result.

Before we actually start considering these claims, we first introduce some
notation.

• Let OptSCS(S) denote the length of a shortest superstring of a set S, and
let OptCC(G) denote the cost of a minimum cycle cover for a graph G.

• By cost(c) we mean the overall length of a cycle c.
• As in Algorithm 8.2, we use c to refer to cycles in the cycle cover C of G

and c′ to refer to those in C ′.
• The length of a minimal overlap in a cycle c′ ∈ C ′ is denoted by min-ov(c′).

Accordingly, let min-ov(C ′) denote the sum of the lengths of the minimal
overlaps over all cycles c′ ∈ C ′, i.e., min-ov(C ′) =

∑

c′∈C′ min-ov(c′).
• Moreover, we use sum-ov(c′) to denote the sum of overlaps along all edges

of cycle c′ ∈ C ′, and, accordingly, sum-ov(C ′) to denote the sum of all
overlaps along edges within C ′, i.e., sum-ov(C ′) =

∑

c′∈C′ sum-ov(c′).

We are now ready to prove the claims (i) to (v) above.
Proof of (i): As already discussed after Definition 8.8, an optimal solution

for the TSP on the distance graph G for a set of strings S is cheaper than an
optimal solution for the SCS for S. As a solution to the TSP is a special type
of cycle cover, consisting of a single cycle, a minimum cycle cover is cheaper
than an optimal TSP tour. This implies

cost(C) = OptCC(Gpref (S)) 6 OptSCS(S) (8.3)

and
cost(C ′) = OptCC(Gpref (R)) 6 OptSCS(R). (8.4)

Since R ⊆ S, a shortest superstring for R is clearly at least as short as a
shortest superstring for S. Together with (8.4) this implies

cost(C ′) = OptCC(Gpref (R)) 6 OptSCS(R) 6 OptSCS(S). (8.5)



194 8 DNA Sequencing

Proof of (ii): We now determine the length of string uc′ computed in step
5. Let c′ = (c′1, . . . , c

′
kc′

) ∈ C ′ and let (c′kc′
, c′1) be the edge with minimal

overlap min-ov(c′). Then,

uc′ = 〈c′1, . . . , c
′
kc′
〉

= Pref (c′1, c
′
2) . . .Pref (c′kc′−1, c

′
kc′

)c′kc′

= Pref (c′1, c
′
2) . . .Pref (c′kc′−1, c

′
kc′

)Pref (c′kc′
, c′1)Ov(c′kc′

, c′1).

Thus, the length |uc′ | of uc′ is

|uc′ | = pref (c′1, c
′
2) + · · ·+ pref (c′kc′−1, c

′
kc′

) + pref (c′kc′
, c′1) + ov (c′kc′

, c′1)

= cost(c′) + min-ov(c′). (8.6)

Proof of (iii): Using (8.6), we can compute the length of w′ as computed
in step 6 of the algorithm.

|w′| =
∑

c′∈C′

|uc′ | =
∑

c′∈C′

cost(c′) +
∑

c′∈C′

min-ov(c′)

= cost(C ′) + min-ov(C ′). (8.7)

Proof of (iv): In step 7, we replace each representative rc in w′, for any
c = (c1, . . . , ckc

) ∈ C, by the string

Pref (rc, c2)Pref (c2, c3)Pref (c3, c4) . . .Pref (ckc−1, ckc
)Pref (ckc

, rc)rc.

Thus, the length of w′ is increased by pref (rc, c2) + pref (c2, c3) + · · · +
pref (ckc

, rc), which is exactly cost(c).
Therefore, for the length of the computed superstring w, we obtain

|w| = |w′|+
∑

c∈C

cost(c)

= |w′|+ cost(C)

(8.7)
= cost(C ′) + min-ov(C ′) + cost(C)

(8.3,8.5)

6 2 ·OptSCS(S) + min-ov(C ′) (8.8)

Proof of (v): It remains for us to estimate the total length min-ov(C ′) of
the overlap that was lost in Step 5 of the algorithm. Since each cycle consists
of at least two edges and since we removed the one with minimal overlap, we
can guarantee that

min-ov(C ′) 6
1

2
· sum-ov(C ′). (8.9)

Combining Inequalities (8.8) and (8.9), we obtain
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|w| 6 2 ·OptSCS(S) +
1

2
· sum-ov(C ′). (8.10)

We now have to show that sum-ov(C ′) 6 2 ·OptSCS(S). For this, we apply
the following lemma, which was proved by Blum et al. [33].9

Lemma 8.2. Let c and c′ be two different cycles in a minimum cycle cover
C, and let s ∈ c and s′ ∈ c′ be two strings in these cycles; then, the overlap
of s and s′ satisfies ov (s, s′) < cost(c) + cost(c′). ut

All vertices in a cycle c′ ∈ C ′ belong to different cycles within C. Thus,
we can infer from Lemma 8.2 that

sum-ov(C ′) 6 2 · cost(C) (8.11)

Combining this with Inequalities (8.10) and (8.3) eventually yields our
claimed result:

|w| 6 2 ·OptSCS(S) +
1

2
· sum-ov(C ′) 6 3 ·OptSCS(S).

ut

Although, according to this result, Algorithm 8.2 guarantees a better ap-
proximation ratio than the previously presented Algorithm 8.1 (Greedy Su-
perstring), in practical applications the latter is preferred. This is supported
by the conjecture that the algorithm Greedy Superstring actually is a 2-
approximation algorithm, but mainly it is used because of its easy imple-
mentation and its good adaptability, which lead to good results in practice.

Evaluation of the Shortest Superstring Model

For practical applications it is thought necessary to adapt the algorithms in
an appropriate way, since the modeling in terms of the shortest common su-
perstring problem clearly still has some drawbacks with respect to our original
fragment assembly problem. According to the overview of error sources given
in Section 8.1.1, we will now briefly discuss some of these drawbacks.

The modeling in terms of the shortest common superstring problem takes
into account neither the problem setting of sequencing errors, nor incomplete
coverage, unknown orientation of the strings, or the occurrence of chimeric
clones.

If one wants additionally to account for sequencing errors, one has to
consider overlaps between strings that allow for a certain number of errors,
as discussed in Subsection 8.1.1. The unknown orientation may be modeled
by considering either the string itself or its reverse complement for the SCS.

9 Although the proof of this lemma is not overly complicated, it requires a lot
of additional notation and prerequisites; thus, we omit it here for the sake of
simplicity.
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But a naive approach to this would directly lead to a combinatorial explosion
of the number of possibilities, since for each considered string there exist two
possibilities.

The lack of data in the case of incomplete coverage of DNA by fragments
or the occurrence of chimeric clones can only be eliminated by additional effort
– for instance, by preprocessing or by further experiments.

In particular, with respect to repeats, the modeling of fragment assembly
in terms of shortest common superstrings seems to be counterintuitive. It
may actually lead to the merge of exact repeats (or even inexact repeats if
we allow sequencing errors) that occur at different positions within the DNA,
since we cannot distinguish between overlaps resulting from real overlaps in
the original DNA or those due to repeats occurring at different positions of
the DNA. A possible consequence of this focus on the shortest superstring
according to repeats is illustrated in Figure 8.11. Problems arising in the
presence of repeats are also addressed by clever preprocessing of data based
on the knowledge of certain repeat sequences.

PSfrag replacements

RR

R R′

Fig. 8.11. One of the two occurrences of a repeat R may be considerably shortened
if fragment assembly is modeled in terms of SCS. Here, the original DNA strand is
depicted at the top, and a possible reconstruction based on the SCS at the bottom.
Fragments shown as dashed lines will be assigned to only one of the two repeats
(here, to the left-hand one) by the SCS algorithm, since they lie completely inside
the repeat R

In the following section we will present two models that take into account
some of these problems in their formalization of the fragment assembly pro-
cess.

8.1.3 Refined Models for Fragment Assembly

We will now exemplarily study two refinements of the shortest common su-
perstring approach that will improve applicability in practice.
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The Reconstruction Model

In this section we will discuss a model regarding sequencing errors as well as
the unknown orientation of the DNA fragments resulting from a shotgun ex-
periment. To model sequencing errors, we have to fix a measure to determine
whether two strings are overlapping or not, even if their suffix-prefix pairs do
not match exactly, i.e., in the presence of errors. Measures for the similarity
of (or the distance between) strings have already been considered in Chapter
5 in the context of the alignment problem. Here, we consider a variant of the
edit distance that was introduced in Chapter 5. Recall that the edit distance
measures the distance between two strings by counting the number of inser-
tions, deletions, and substitutions that are necessary to transform one string
into another. We now define the substring edit distance, which, in contrast to
the original edit distance, does not penalize the deletion of characters at the
beginning or end of the second string. Thus, it corresponds to a variant of the
semiglobal alignment studied in Section 5.1.3.

Definition 8.11. Let s and t be two strings over a common alphabet Σ. Then,
the substring edit distance eds(s, t) between s and t is defined as

eds(s, t) = min
x∈SubStr(t)

ed(s, x),

where SubStr(t) denotes the set of all substrings of t, and ed denotes the edit
distance.

Due to its relation to semiglobal alignments, the substring edit distance
can be efficiently computed.

The idea behind our model is to allow for a certain number of errors,
counted according to the previously defined substring edit distance, in the
reconstruction of DNA in terms of a “superstring.” The threshold on the
number of errors will be proportional to the length of the considered string.
We refer to this by introducing an error tolerance value ε that specifies the
average number of errors per character.

Besides sequencing errors, we will also account for the unknown orientation
of the fragments by demanding that either the string itself or its reverse com-
plement occurs in the reconstructed DNA sequence. Note that, since we are
dealing with the reverse complements of strings, we have to restrict ourselves
to strings, where such a reverse complement is properly defined. Therefore we
explicitly adhere to the alphabet ΣDNA in the following definitions.

Definition 8.12. The reconstruction problem is the following optimization
problem.

Input: A set of strings S = {s1, . . . , sn} over ΣDNA = {A, C, G, T} and an error
tolerance value ε ∈ [0, 1] � .
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Feasible solutions: Each string w, such that, for all i = 1, . . . , n, the following
holds:

min{eds(si, w), eds(si, w)} 6 ε · |si|, (8.12)

where si denotes the reverse complement of si.
Costs: The length of w, cost(w) = |w|.
Optimization goal: Minimization.

By demanding in Inequality 8.12 the occurrence (with respect to a certain
error tolerance) of either the string or its reverse complement, we model the
unknown orientation. However, we still do not take into account complications
that arise in the presence of chimeric clones, repeats, and incomplete coverage.
Before extending the reconstruction problem to additionally account for the
issue of incomplete coverage, we will briefly state its complexity. The following
theorem was proved by Kececioglu [119].

Theorem 8.8. The reconstruction problem is NP-hard. ut

A possibility to solve the reconstruction problem is based on an extension
of the usual layout — overlap — consensus phases. First, we compute an
overlap graph that includes overlaps that respect the above discussed error
tolerance but that does not have to be exact. Then, each string gets assigned
an orientation and subsequently the phases layout and overlap are performed.
For a more detailed discussion of this, we refer the reader to the bibliographic
notes in Section 8.4.

The Multicontig Model

The following model will extend the reconstruction problem to account for
incomplete coverage. To achieve this, we consider the ordering of strings in a
layout. In such a layout, we focus on the overlap between strings and demand
that the length of an important overlap, one which constitutes the only con-
nection between two blocks of strings, must exceed a certain minimal size. We
introduce a threshold T denoting this minimal overlap. At positions where
we cannot guarantee the minimal size T for an important overlap, we split
the consensus into parts, each called a contig. The idea is that, even though
incomplete coverage may indeed appear, it does so only rarely. Following this
parsimony principle, we aim at minimizing the number of resulting contigs.

We will now formally specify this idea and introduce some additional no-
tation.

Definition 8.13. Let S = {s1, . . . , sn} be a set of strings over an alphabet
Σ. Let L be a layout10 of the strings in S, and let c be the corresponding
consensus. According to the layout, we can assign a sequence in the consensus

10 Recall that we may consider a layout as a semiglobal multiple alignment of the
strings.
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c to each string si ∈ S, which we denote by c[l(si), r(si)]. Here, l(si) refers to
the start position (left border) and r(si) to the end position (right border) of
the sequence belonging to si in c (as we will account for sequencing errors, si

is not required to be a substring of c).
We will now specify our notion of an important overlap. If two strings

si and sj overlap in L, i.e., if they have a common overlapping region
c[l(sj), r(si)], and no further string sk in L properly covers this overlap-
ping region, i.e., there exists no k ∈ {1, . . . , n} such that l(sk) < l(sj)
and r(si) < r(sk), then we call such an overlap a link. The size of a link
c[l(sj), r(si)] is defined by its length |c[l(sj), r(si)]| = r(si)− l(si) + 1.

A link in L with the smallest overlap is called a weakest link.
Let T ∈ � be a threshold. If a weakest link in L has at least size T , we

call L a T -contig. We say that the corresponding set S of strings admits a
T -contig.

With this definition, we have formalized our demand for reasonably sized
important overlaps. It remains for us to include the modeling of sequencing
errors and unknown orientation. We have to take into account that, while
defining T -contigs, we fixed the position of the appearance of each string in
the consensus by fixing its left and right border. Thus, we relinquished the free
choice of a potential consensus when comparing the strings to any position,
as was the case with the reconstruction problem.

In this context we introduce the following notion.

Definition 8.14. Let S = {s1, . . . , sn} be a set of strings over an alphabet
ΣDNA = {A, C, G, T}. Let L be a layout of the strings in S, where either each
string si or its reverse complement si occurs, and let c be the corresponding
consensus. Moreover, let ε ∈ [0, 1] � be a error tolerance value. We call c an
ε-consensus if

ed(si, c[l(si), r(si)]) 6 ε · |si|, if si ∈ L, and

ed(si, c[l(si), r(si)]) 6 ε · |si|, if si ∈ L

for all i = 1, . . . , n.

Provided with these auxiliaries, we are ready to define the multicontig
problem.

Definition 8.15. The multicontig problem is the following optimization prob-
lem.

Input: A set S = {s1, . . . , sn} of strings over an alphabet ΣDNA = {A, C, G, T},
a threshold T ∈ � , and an error tolerance value ε ∈ [0, 1] � .

Feasible solutions: Each partition of set S into subsets C1, . . . , Ck such that,
for all 1 6 i 6 k, the following holds:
There exists a layout Li of Ci, such that
• Li is a T -contig, and
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• Li induces an ε-consensus.
Costs: The number of subsets, i.e., cost(C1, . . . , Ck) = k.
Optimization goal: Minimization.

We are thus looking for a partition of the set of strings such that each of
the resulting subsets admits a T -contig, which again induces an ε-consensus.
Here, we are aiming at minimizing the number of subsets.

To illustrate this model, we will next present a small example, disregarding
the appearance of reverse complements for the sake of convenience.

Example 8.6. Let S = {s1, . . . , s8} = {GTAGTA, GCATCC, TCAGTTA, ACGTGA,
TGAGC, CTTTGCA, CAGGCA, AGCCATT} be a set of strings over the alphabet
ΣDNA = {A, C, G, T}. Moreover, let T = 2 and ε = 1

6 . A feasible solution
for the multicontig problem for the input instance (S, T, ε) is the partition of
S into subsets C1 = {GTAGTA, GCATCC, TCAGTTA}, C2 = {ACGTGA, TGAGC}, and
C3 = {CTTTGCA, CAGGCA, AGCCATT}. To prove this claim, we present a layout Li

for each set Ci, being a T -contig and simultaneously inducing an ε-consensus.
Layout L1 is shaped as follows:

s1 G T A G T A

s2 G C A T C C

s3 T C A G T T A

c1 G T A G C A T C C G T T A

with consensus c1 = GTAGCATCCGTTA. At positions 5 and 9, the entries in s1
and s3 differ from those in c1. Since s1 is of length 6 and s3 is of length 7,
both deviations are inside the error tolerance range for ε = 1

6 . Thus, c1 is an
ε-consensus. The overlap between s1 and s2 and the overlap between s2 and
s3 are links. Both links are of size 3, hence, also weakest links; and because
T = 2, the layout L1 is a T -contig.

For the subsequently described layouts L2 and L3, one can prove that they
are T -contigs and that they induce an ε-consensus in an analogous way.

Layout L2 is shaped as follows:

s4 A C G T G A

s5 T G A G C

c2 A C G T T A G C

Layout L3 is shaped as follows:

s6 C T T T G C A

s7 C A G G C A

s8 A G C C A T T

c3 C T T T G C A G G C A T T

Note that although the overlap between strings s6 and s8 in L3 has length only
1, the layout L3 is nevertheless a T -contig, since the overlap region between
s6 and s8 does not constitute a link as it is completely covered by s7. ♦
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We will not study this model in more detail here, but conclude our dis-
cussion of the shotgun sequencing approach. For further information we refer
the reader to the literature referenced in Section 8.4.

8.2 Sequencing by Hybridization

In this section, we will present an approach for sequencing DNA that does
not depend on the shotgun method, but that tries to reconstruct the DNA
sequence from the set of substrings of a certain length that are contained in
the sequence.

To test whether certain strings occur as substrings in the considered DNA,
we use DNA arrays, as described in Section 7.2. Recall that in this context
we use the word probe to denote a short DNA sequence that we are testing
for being a substring of a larger one.

Method 8.2 Sequencing by Hybridization — SbH

Input: A DNA molecule D and a natural number l.
1. Generate a DNA chip that contains all different probes of length l, where

each probe is assigned to a specific position on the chip.
2. Generate a number of copies of D.
3. Expose the generated copies to the DNA chip and detect the positions where

hybridizations between probes and DNA occurred.
Output: The set of strings S = {s1, . . . , sn} ⊆ Σl

DNA of length l that are contained
as substrings in D.

The set of strings of length l that we obtain by such a hybridization ex-
periment is called the l-spectrum of the DNA; or spectrum for short, if l is
clear from the context. We note that, ideally, such a spectrum contains ex-
actly those strings of length l that are substrings of the corresponding DNA
sequence.11 In particular, this also means that a string of length l that is not
a substring of the DNA is not contained in the l-spectrum.

The task is now to reconstruct the original DNA sequence from its spec-
trum. To formalize this, we first define the compatibility of a string and a
spectrum.

Definition 8.16. Let w be a string and S = {s1, . . . , sn} be an l-spectrum.
Then, w is compatible with S if w contains each string from S as a substring
and contains no other substrings of length l. A string w that is compatible
with S is simply compatible if w contains each string in S exactly once.

A string is thus compatible with a spectrum if it corresponds to the data
given by it. We can now specify our problem setting.

11 If errors occur during the experiment, this is not the case in general.
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Definition 8.17. The SbH reconstruction problem is the following computing
problem.

Input: An l-spectrum S = {s1, . . . , sn} with strings over an alphabet Σ.
Output: A string w ∈ Σ∗ compatible with S.

To solve this problem, we may use the method described in Section 8.1
and consider the spectrum as a set of strings, treating it as an instance of
the SCS. With respect to our intended application, this means reconstructing
the original DNA sequence using the same approaches as for the SCS. But
doing so, we are again faced with an algorithmically hard problem, and we
disregard the additional information provided by the l-spectrum, namely, that
it contains all strings of length l occurring in the DNA.

We will now present an alternative approach to solve the SbH reconstruc-
tion problems that, using this information, leads to an efficient algorithm. For
this, we first define the representation of a spectrum in terms of a graph, the
spectrum graph.

Definition 8.18. Let S be an l-spectrum with strings over an alphabet Σ. The
(l-)spectrum graph Gspectrum(S) = (V,E, label) is defined as follows:

• The vertex set corresponds to the set of all strings of length l− 1 over the
alphabet Σ, i.e., V = Σl−1.

• Two vertices x and y are connected by a directed edge if there exists a
string s ∈ S such that x is a prefix and y is a suffix of s, i.e.,

E = {(x, y) | x, y ∈ V, such that there exists some s ∈ S with 〈x, y〉 = s}.

• Each edge (x, y) ∈ E is labeled with the last character yl−1 of y, i.e.,
label((x, y)) = yl−1.

For a path x1, x2, . . . , xk in Gspectrum(S), we call pathlabel the string induced
by it, i.e., the string corresponding to the first vertex concatenated with the
labels along the path,

pathlabel(x1, x2, . . . , xk) = x1label((x1, x2))label((x2, x3)) . . . label((xk−1, xk)).

To illustrate Definition 8.18, we show the spectrum graph for the 3-
spectrum S = {abc, bbc, bcc, bcd, ccd, cda, cdb, dbb} in Figure 8.12.

For further investigations, we can clearly ignore the vertices of a spectrum
graph that are not incident to any edge. Therefore, we omit isolated vertices
of the spectrum graph in the following.

We now transfer the SbH reconstruction problem to the problem of finding
an Eulerian cycle in a spectrum graph. To do so, we recall some definitions
from graph theory. An Eulerian path in a directed graph G is a path that
traverses each edge in G exactly once. Similarly, an Eulerian cycle in a directed
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Fig. 8.12. The spectrum graph for the 3-spectrum S = {abc, bbc, bcc, bcd, ccd,
cda, cdb, dbb}. Vertices without incident edges are omitted

graphG is a cycle that traverses each edge of G exactly once.12 A graph having
such an Eulerian cycle is called Eulerian.

From the definition of spectrum graph (Definition 8.18) and compatibility
(Definition 8.16), we can deduce the following theorem.

Theorem 8.9. Let S be an l-spectrum with strings over an alphabet Σ. A
string w is simply compatible with S if and only if w corresponds to the labeling
of an Eulerian path in the spectrum graph Gspectrum(S).

Proof. To prove this theorem, we first observe that, as a direct consequence
of Definition 8.18, for each edge (x, y) in the spectrum graph Gspectrum(S) =
(V,E, label), pathlabel(x, y) = x · label((x, y)) is in the spectrum S.

Now, let w be a simply compatible string to a spectrum S. Then w contains
each string in S exactly once as a substring. We can thus construct a path
from w by considering the substrings w[1, l], w[2, l+1], w[3, l+2], . . . , w[|w|−
l+1, |w|] of w, where l denotes the length of strings in S, and inserting for each
substring w[i, i + l − 1] the edge (x, y) into the path, where pathlabel(x, y) =
x · label((x, y)) = w[i, i + l − 1]. Since w is simply compatible with s, each
edge of the spectrum graph is traversed by the constructed path exactly once;
hence, it is an Eulerian path.

For the reverse direction of the proof, each edge (x, y) of an Eulerian
path P in Gspectrum(S) corresponds to a string from the spectrum, namely,
to pathlabel(x, y) = x · label((x, y)). Merging these strings according to their
order in P yields a simply compatible string w. ut

Theorem 8.9 implies that, for a spectrum originating from an error-free
hybridization experiment and under the assumption that each string in S
occurs exactly once as a substring in the DNA, the desired DNA sequence
corresponds to a labeling of an Eulerian path in the spectrum graph. Each
Eulerian path in the spectrum graph hence corresponds to a simply compatible
path of the spectrum and vice versa. Our SbH reconstruction problem thus

12 Note that an Eulerian path/cycle may have to visit the vertices of G more than
once.
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has an unique solution if and only if the spectrum graph contains a unique
Eulerian path.

We illustrate this connection between a simply compatible string for a
spectrum and an Eulerian path in the spectrum graph with the following
example.

Example 8.7. Let S = {abc, bbc, bcc, bcd, ccd, cda, cdb, dbb} be a 3-spectrum.
The corresponding spectrum graph is given in Figure 8.12. There exist two
simply compatible strings for this spectrum, w1 = abcdbbccda and w2 =
abccdbbcda. The Eulerian paths in Gspectrum(S) are shown in Figures 8.13
(a) and 8.13 (b). ♦
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Fig. 8.13. Eulerian paths in the spectrum graph given in Figure 8.12

Before we present an algorithm to compute an Eulerian path in a graph,
we first state some relations between Eulerian paths and cycles, and some
properties of the considered graphs. We start with the following definition.

Definition 8.19. Let G = (V,E) be a directed graph and let v ∈ V be a vertex
in G. We call v balanced if the indegree of v is the same as the outdegree of v,
i.e., if indeg(v) = outdeg(v). Vertex v is called semi-balanced if the indegree
and outdegree of v differ by exactly one, i.e., if | indeg(v)− outdeg(v)| = 1.

The following theorem presents a well-known result from graph theory.
We will therefore omit its proof here and instead refer to standard books on
graph theory, such as [58, 81].

Theorem 8.10. Let G = (V,E) be a connected directed graph. Then,

(i) G is Eulerian (i.e., G contains an Eulerian cycle) if and only if all vertices
in G are balanced, and

(ii) G contains an Eulerian path if and only if G is Eulerian or there exist two
semi-balanced vertices a and b such that indeg(a)+indeg(b) = outdeg(a)+
outdeg(b), and all vertices in x ∈ V − {a, b} are balanced. ut
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Algorithm 8.3 Computing an Eulerian cycle

Input: A connected directed graph G = (V, E), whose vertices are all balanced.

Choose a vertex v1 ∈ V arbitrarily.
C := v1

while E 6= ∅ do

1. Choose an arbitrary vertex x in C.
2. Starting at x, construct a maximal simple directed path P . This is always

a cycle, since all vertices in G are balanced.
3. Set E := E − {e | e is an edge in path P}.
4. Merge C and P into a cycle:

Let C = x1, . . . , xi, . . . , xk, x1 and P = xi, y1, . . . , yp, xi.
Set C := x1, . . . , xi, y1, . . . , yp, xi, xi+1, . . . , xk, x1.

Output: The Eulerian cycle C.

As a consequence of this theorem, we obtain the following relation. If G is
a non-Eulerian graph, but contains an Eulerian path, then we can extend the
edge set of G by a directed edge between the semi-balanced vertices a and b,
such that all vertices become balanced. In this way, we can obtain an Eulerian
graph G′ from G.

We now search for an Eulerian path in the spectrum graph according to
Theorem 8.9 to obtain a simply compatible string. We may then consider the
string as a possible solution to our original DNA reconstruction problem. As
we have seen above, we can look for an Eulerian cycle instead of an Eulerian
path in an extended spectrum graph. Algorithm 8.3 solves this problem. The
idea is to construct a set of arbitrary edge-disjoint cycles, which are subse-
quently merged into a single cycle in Step 4 of the while loop. We illustrate
the merging process in Figure 8.14.
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It is easy to recognize that Algorithm 8.3 can be implemented to run in
time linear in the number of edges of G. Thus, we will not formally prove this
claim, but instead we state the following theorem as a direct consequence of
our considerations above.
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Theorem 8.11. There exists a linear-time algorithm to compute a simply
compatible string for a given spectrum if possible, i.e., an algorithm that solves
the SbH reconstruction problem restricted to simply compatible strings. ut

We discuss some shortcomings of this model. To do so, we rephrase our
original task. We want to sequence a DNA molecule based on the spectrum of
the DNA obtained by a hybridization experiment. This l-spectrum contains
all strings of a specific length l that occur as substrings in the DNA sequence.
The task is to derive the original DNA sequence from this data.

As we have seen above, a string w compatible with the spectrum corre-
sponds to a DNA sequence consistent with the data. A simply compatible
string, i.e., a string containing no string of the spectrum more than once, cor-
responds to an Eulerian path in the spectrum graph. Eulerian paths in graphs
can be easily computed using Algorithm 8.3.

If we have determined such an Eulerian cycle (or the corresponding Eule-
rian path or simply compatible string), we are equipped with one hypothesis
for the DNA sequence demanded. However, there might be several admissi-
ble hypotheses, since the same graph may contain several different Eulerian
cycles.

Moreover, we obtain only simply compatible strings, which do not neces-
sarily match the real problem setting, since there may be several positions in
the original DNA where a certain substring occurs.

Another problem is caused by the technical realization of this method. In
the classical SbH setting, only relatively small probe lengths could be realized
on a DNA chip, which allows only sequencing of molecules of about 200 bp
length. This is clearly not sufficient, since sequencing the molecules can easily
be done using the chain termination method studied in Section 2.4.3. Errors
that may occur during the hybridization experiments are also not taken into
account. So refined and improved settings are required.

Additionally, the multiplicity of the strings in the spectrum is unknown
from the experiment but it is of high interest for the more or less unique
reconstruction of the DNA sequence. If the multiplicity were known, we could
extend the definition of compatible strings in an appropriate way and thus
reduce the set of potential solutions essentially.

Although the above approach seems unsuitable for DNA sequencing today,
many approaches for other problems arising in molecular biological research
utilize the same basic idea, namely, the usage of hybridization experiments
for producing the data. We refer the reader for instance to Section 7.2, where
we considered the problem of mapping by hybridization. Furthermore, there
exists the possibility to improve the results by applying several different meth-
ods to reduce the shortcomings of certain methods. From this point of view,
the approach presented appears to be by no means of theoretical interest only.
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8.3 Summary

Computing the DNA sequence is a fundamental precondition for further study
of biological molecules. But by using the chain termination method we can
only sequence relatively short molecules.

For sequencing longer molecules, often the shotgun sequencing method is
used, where copies of the DNA molecule, whose sequence we are looking for,
are cut into overlapping fragments. The sequence of these (short) fragments is
then computed using the chain termination method. Subsequently, we try to
reconstruct the original sequence by combinatorial approaches using the frag-
ment sequences. This last step is called the fragment assembly problem, and
for its solution often three phases are distinguished. First, one computes the
pairwise overlap between all fragments; then one determines an overlap struc-
ture of all fragments, which is called a layout; and, finally, infers a consensus
from this.

Considering these phases from an algorithmic point of view, one has to keep
in mind potential sources of errors and problems arising from the application of
the method itself. For instance, sequencing errors, such as insertions, deletions,
and substitutions, can occur during sequencing the fragments. Moreover, there
is the risk that cloning of the original DNA might lead to contamination
with host DNA, that the orientation of the fragments gets lost, that only an
incomplete coverage of the original DNA by the fragments occurs, or that
repeats in the DNA sequence complicate the reconstruction, and many more
things. All this should be taken into account when evaluating the performance
of algorithmic approaches to tackle the problem.

A very basic combinatorial model is the shortest common superstring prob-
lem, SCS for short. Here, one tries to compute the shortest superstring for a
given set of strings. Since this problem is known to be NP-hard, one often
considers approximation algorithms whose solutions can be evaluated with
respect to two different cost measures. These cost measures are on the one
hand the length of the computed superstring and, on the other hand, the
number of characters saved compared to the trivial solution, i.e., the con-
catenation of all strings in the given set. We refer to them as the length and
compression measures, respectively. Many approximation algorithms for the
SCS are based on the representation of the input set in terms of an overlap
or distance graph. The complete directed graphs contain, besides the strings
themselves modeled as vertices, also the length of the overlap or the distances
between the corresponding pairs of strings given as edge weights.

Algorithm 8.1 (Greedy Superstring) chooses a pair of strings with maximal
overlap and merges them. This process is iterated until only one superstring
remains. It has been shown that this algorithm achieves a 4-approximation
with respect to the length measure and a 2-approximation with respect to the
compression measure. In contrast, Algorithm 8.2 (CSSA) determines a super-
string by computing a cycle cover. The algorithm obtains a 3-approximation.
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Two other models of the fragment assembly problem extend this basic
concept and take into account sequencing errors, the unknown orientation of
the fragments, and a possibly incomplete coverage of the DNA. These models
lead to the reconstruction problem and the multicontig problem.

Besides the shotgun approach, another method for sequencing DNA has
been proposed. Here, one tries to reconstruct the DNA utilizing knowledge
about the substrings of a specific length that occur in the original DNA. The
information about the substrings is obtained by performing hybridization ex-
periments using a DNA chip. For this reason, the method is called sequencing
by hybridization (SbH). By means of such experiments, substrings of a specific
fixed length l that occur in the DNA are derived. The set of these substrings
is called the l-spectrum of the DNA and can be represented naturally in terms
of a spectrum graph. It is easy to see that an Eulerian path in such a spectrum
graph corresponds to a string that is consistent with the spectrum and may
thus serve as an admissible hypothesis for the desired DNA sequence. Since
Eulerian paths of graphs can be efficiently computed, the resulting combinato-
rial problem can be solved in reasonable time. Nevertheless, other difficulties
arising with this model, lead to the problem that, till now, the application
of this method allows only the reliable sequencing of DNA molecules whose
length is below the length of molecules that can be directly sequenced using
the chain termination method.

8.4 Bibliographic Notes

Several other books on bioinformatics comprehensively deal with the subject
of DNA sequencing; we refer the reader to the books by Waterman [201],
Setubal and Meidanis [180], Gusfield [91], and Pevzner [159]. A very recom-
mendable presentation of this subject can also be found in the survey by Myers
[146], the source of Example 8.1. It also contains further refinements of the
models, aiming for better practical applicability.

The shortest common superstring problem was studied by many authors;
in particular, Gallant et al. [78] showed the NP-hardness of the problem. Ex-
plicit lower bounds on the approximability were given by Vassilevska [195].
Algorithm 8.1 (Greedy Superstring) was proposed and investigated by Tarhio
and Ukkonen [190, 192] and Turner [191]. They dealt with efficient imple-
mentation of individual steps and proved the 2-approximation with respect
to the compression measure. The 3-approximation result goes back to a work
by Jenkyns [108] concerning the traveling salesman problem. The proof that
Algorithm 8.1 achieves a 4-approximation with respect to the length mea-
sure is due to Blum et al. [33]. There, one can also find modified versions of
the greedy algorithm and the algorithm based on the cycle cover approach.
The particular version of Algorithm 8.2 (CCSA) which we presented here
follows the presentation given by Armen and Stein [16, 17]. A multitude of
results were obtained by starting from this generic approach to determine a
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superstring using a cycle cover, finally resulting in the presentation of a 2.5-
approximation algorithm by Sweedyk [187]. The computation of a cycle cover
for a given graph is possible in polynomial time, since this problem can be
viewed as the assignment problem, which is a special type of matching prob-
lem. An efficient algorithm to solve this assignment problem can be found
in the book by Papadimitriou and Steiglitz [153]. Note that in the literature
cycle covers are often also referred to as 2-factors.

The reconstruction problem, which is more suitable for the intended ap-
plication of DNA sequencing, was comprehensively studied by Kececioglu and
Myers in [120]. The proof of its NP-hardness was given by Kececioglu [119].
Our presentation of the reconstruction and multicontig problem follows the
description by Setubal and Meidanis [180].

The method of sequencing by hybridization (SbH) is comprehensively stud-
ied in the book by Pevzner [159]. Pevzner [157] moreover showed the relation
between solutions to the SbH reconstruction problem and Eulerian paths in
the spectrum graph. In the literature, one can also find approaches for re-
finements of the SbH method that include and utilize knowledge of the ap-
proximate position of the substrings or of the usage of universal bases for
hybridization experiments; this may lead to a larger number of substrings one
can test for. This will yield significant progress in making the SbH more suit-
able for practice. Examplarily, we refer in this context to the work done by
Ben-Dor et al. [25] and Frieze et al. [76].
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Finding Signals in DNA Sequences

In the previous chapters, we have seen how the sequence of DNA molecules
can be determined. Our next question is, how can we find out something about
the biological meaning of such DNA sequences. In this chapter, we will deal
with some approaches for addressing this problem. To be more concrete, we
want to find interesting regions, called signals, within a given DNA sequence.
Such signals can be restriction sites, binding sites for proteins, or even genes
or certain parts of genes.

Most approaches for finding such signals are based on statistical methods.
We do not discuss the statistical approaches in detail within this book, but
we present some simple examples and try to give an idea of the modeling and
the commonly used methods. For a more detailed overview of the statistical
methods we refer the reader to the bibliographic notes in Section 9.6.

This chapter is organized as follows. In Section 9.1 we present some meth-
ods for finding identical or similar substrings in a given set of DNA sequences,
which can be interpreted as signals within the DNA. A special kind of sig-
naling substring, the tandem repeats, is introduced in Section 9.2. The two
approaches presented in these sections are of purely combinatorial nature; in
contrast, in the following two sections we will deal with two statistical ap-
proaches for signal finding, the determination of frequent or rare substrings
in Section 9.3 and the use of Hidden Markov Models in Section 9.4. As usual,
we will close the chapter with a summary in Section 9.5 and bibliographic
remarks in Section 9.6.

9.1 Identical and Similar Substrings

One of the subproblems occurring when attempting to decrypt the biological
meaning of a DNA sequence is finding the binding sites. Binding sites are
regions within the DNA where a certain protein can attach, for example, for
regulating the transcription of a gene. With the currently known experimental
methods, it is not possible to determine the binding sites exactly. Such an
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experiment rather yields a DNA fragment of length m that contains (with
high probability) a binding site of length l, with l� m.

The execution of several such experiments then leads to the combinatorial
problem of finding a (longest) common substring, also called a magic word in
this context. For this problem, we have presented Algorithm 4.10 in Section
4.5 solving it efficiently using generalized suffix trees.

Unfortunately, this algorithm is not applicable for finding more compli-
cated patterns than simple substrings within the given DNA sequences. But
the binding sites of proteins are often made up of several substrings; for exam-
ple, the restriction site of the restriction enzyme XcmI is of the form CCAN9TGG,
where N9 denotes a substring consisting of nine arbitrary nucleotides. There
exist even more complicated patterns, where, for example, the length of some
part may vary. Currently, there are no approaches known for efficiently and
exactly finding such complex signals.

One approach to allow at least for short substrings consisting of arbitrary
nucleotides is to allow mismatches within the magic word. Given n DNA
sequences, our goal is to find a magic word occurring in all DNA sequences
approximately, i.e., with a limited number of mismatches. This task can be
seen as a special case of a local multiple alignment where no gaps are allowed.
To formally describe the problem, we need the following definition.

Definition 9.1. Let s = s1 . . . sm and t = t1 . . . tm be two strings of the same
length m. The Hamming distance dH(s, t) of s and t is defined as the number
of positions 1 6 i 6 m where si 6= ti.

Using this definition, we can now formalize the problem as follows.

Definition 9.2. The consensus string problem is the following optimization
problem:

Input: A set of n strings {s1, . . . , sn} ⊆ Σ
m and a natural number l.

Feasible solutions: All (n + 1)-tuples (t, t1, . . . , tn), where ti is a substring of
length l of si for 1 6 i 6 n. The string t ∈ Σl is called the median string.

Costs: The costs of a feasible solution are

cost(t, t1, . . . , tn) =

n∑

i=1

dH(t, ti).

Optimization goal: Minimization.

Unfortunately, the consensus string problem is a hard optimization prob-
lem, as shown by the following theorem.

Theorem 9.1. The consensus string problem is NP-hard. ut
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Algorithm 9.1 Consensus string approximation

Input: A set S = {s1, . . . , sn} ⊆ Σm of n strings and two natural numbers l and r.

1. Initialization:

c′ :=∞
u′ := λ
for i := 1 to n do v′

i := λ

2. for all (u1, . . . , ur), where ui ∈ Σl is a substring of some string in S for all i
do

Compute the consensus u of u1, . . . , ur (see Definition 5.11)
for i := 1 to n do

Compute a substring vi of si with minimum Hamming distance to u
c := � n

i=1 dH(u, vi)
if c < c′ then

c′ := c
u′ := u
for i := 1 to n do v′

i := vi

Output: (u′, v′
1, . . . , v

′
n) with costs c′.

Theorem 9.1 was proved by Li et al. [135]. We do not present the proof
here; instead, we describe an approximation algorithm for the consensus string
problem. This algorithm, Algorithm 9.1, works as follows. It chooses an r-tuple
(u1, . . . , ur) of (not necessarily different) substrings of length l of the given
strings s1, . . . , sn and determines via majority voting according to Definition
5.11 the consensus u of these substrings. After that, the algorithm computes
for each of the given strings si the substring vi with the smallest Hamming
distance to u. The algorithm repeats this procedure for every possible choice
of the r-tuple (u1, . . . , ur) and outputs the v1, . . . , vn, u where the sum of the
Hamming distances between u and the vi becomes minimal. The parameter r
can be used to influence the approximation ratio of Algorithm 9.1, as shown
by the following theorem.

Theorem 9.2. For each constant r > 3, Algorithm 9.1 is a polynomial ap-
proximation algorithm for the consensus string problem with an approximation
ratio of

1 +O

(√

log r

r

)

and a running time in O(nr+1 · (m− l + 1)r+1 · l).

Theorem 9.2 was also proved by Li et al. [134, 135]. Since the complete
proof of the achieved approximation ratio is technically very involved, we just
present the idea behind the proof.

Proof idea. We first determine the running time of Algorithm 9.1. The
initialization in step 1 can obviously be done in O(n) time. We now count
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the number of iterations of step 2. There are n strings in S and m − l + 1
possible starting positions in each of the strings from S for each ui. Hence,
there are (n · (m − l + 1))r ways to choose the r-tuple (u1, . . . , ur). Thus,
the algorithm executes (n · (m− l+ 1))r iterations of step 2. In each of these
iterations, the algorithm computes the consensus of the strings u1, . . . , ur; this
is possible in O(r · l) time. The computation of a substring vi with minimum
Hamming distance from u can be done in O(l · (m − l + 1)) time, since one
has to calculate the sum of l values for m− l + 1 possible starting positions.
The computation of all vi is possible in O(n · l · (m− l+ 1)) time. Computing
c clearly can be done in time O(n · l). This yields an overall running time in
O(n · l · (m − l + 1)) for one iteration of step 2. This estimate follows from
the fact that we may assume r < n, since for r > n the algorithm checks
all feasible solutions for the consensus string problem and thus computes an
exact solution. Hence, the overall running time of the algorithm sums up to
O(n+ (n · (m− l + 1))r · (n · l · (m− l + 1))) = O(nr+1(m− l + 1)r+1l).

We will now describe the idea of estimating the approximation ratio of Al-
gorithm 9.1. Consider an input instance consisting of a set S = {s1, . . . , sn} ⊆
Σm of n strings and two natural numbers l and r. Let (s, t1, . . . , tn) be an
optimal solution for this input with cost copt =

∑n
i=1 dH(s, ti).

For all (i1, . . . , ir) ∈ {1, . . . , n}r, let si1,...,ir
be a consensus of ti1 , . . . , tir

,
and let ci1,...,ir

=
∑n

i=1 dH(si1,...,ir
, ti). The idea now is to approximate the

optimal consensus with an si1,...,ir
for an appropriate r-tuple (i1, . . . , ir) ∈

{1, . . . , n}r.
It is possible to show that, for r numbers i1, . . . , ir ∈ {1, . . . , n} chosen

independently and uniformly at random, the expected value of ci1,...,ir
can be

estimated as follows:

E[ci1,...,ir
] 6

(

1 +O

(√

log r

r

))

· copt. (9.1)

Inequality (9.1) was proved by Li et al. [135]; we skip the technically in-
volved proof here.

Inequality (9.1) implies that there exist i′1, . . . , i
′
r ∈ {1, . . . , n} such that

ci′1,...,i′r
6

(

1 +O

(√

log r

r

))

· copt.

Since our algorithm considered all possible r-tuples of substrings, it considered
also the r-tuple (ti′1 , . . . , ti′r ). Thus, the solution given by the algorithm is at
least as good as the solution (si′1,...,i′r

, ti′1 , . . . , ti′r ), which implies the claimed
approximation ratio. �

Note that the approximation ratio of Algorithm 9.1 gets better with in-
creasing values of r, and that the algorithm even computes the optimal so-
lution for r > n. An algorithm, for which one can force an arbitrarily good
approximation by changing a parameter, such that the running time stays
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polynomial in the input length but may increase exponentially in the size
of the parameter, is called a polynomial-time approximation scheme (PTAS).
This means that for a PTAS one can start with a desired prescribed approx-
imation ratio δ and can then compute the mimimum value of the parameter
that is sufficient to ensure the ratio δ.

9.2 Tandem Repeats

Another type of interesting structures within the DNA sequence are repeats,
i.e., repeated substrings. In Section 4.5.4 we have seen how to efficiently com-
pute all repeats in a given string using suffix trees. In this section we want to
investigate a special type of repeats, the tandem repeats. In its simplest form,
a tandem repeat consists of two consecutive copies of the same substring, i.e.,
it is of the form xx for some substring x. In a broader sense, sequences of sev-
eral consecutive copies of the same substring, i.e., substrings of the form xi

for some substring x and some i > 2, are called tandem repeats. Furthermore,
DNA sequences often contain approximate tandem repeats, i.e., sequences of
consecutive similar substrings.

Identifying tandem repeats is of biological interest for several reasons. On
the one hand, some genetic diseases are caused by a defect in the DNA where
a certain substring in a tandem repeat is repeated ten, or a hundred, times
more often than in the corresponding tandem repeat in the DNA of a healthy
organism. On the other hand, tandem repeats play an important role in gene
regulation. Moreover, tandem repeats are often used as markers for DNA
fingerprinting, since the number of repetitions in a tandem repeat often varies
from one individual to another.

In the following, we present an efficient method for determining all exact
tandem repeats of the form xx in a given string. For this, we first have to
solve the following subproblem: For two positions in a given string s, find the
longest substring starting at both positions in s.

Definition 9.3. Let s = s1 . . . sn be a string and let l, r ∈ {1, . . . , n} be two
positions in s. The longest common extension lce(l, r) of l and r in s is de-
fined as the longest substring t1 . . . tk of s such that t1 . . . tk = sl . . . sl+k−1 =
sr . . . sr+k−1.

Determining the longest common extension for a single pair of positions
(l, r) can obviously be done in time O(n) by comparing iteratively, for all
k > 0, the symbols sl+k and sr+k until a mismatch occurs. But for the efficient
computation of tandem repeats, we have to compute the longest common
extension for many pairs of positions in a given string. This problem can be
formalized as follows.

Definition 9.4. The problem of computing the longest common extension for
a set of position pairs in a string, the longest common extension problem, is
the following computing problem:
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Input: A string s = s1 . . . sn of length n over an alphabet Σ and a set of
position pairs P = {(l1, r1), . . . , (lp, rp)}, where (li, ri) ∈ {1, . . . , n}2, li <
ri, for all 1 6 i 6 p.

Output: The longest common extensions lce(l1, r1), . . . , lce(lp, rp).

The longest common extension problem is obviously solvable in O(n · p)
time. But using suffix trees, we can design a more efficient algorithm such
that, after constructing the suffix tree and some further preprocessing in time
O(n log n), computing the longest common extension for two arbitrary posi-
tions is possible in constant time. Recall that a suffix tree for a string s is a
rooted tree where each suffix of s is assigned to a leaf, and where the label-
ing of the path from the root to a leaf equals the suffix of s corresponding
to the leaf. The label of the path from the root to a vertex x is denoted by
pathlabel (x). A detailed description of suffix trees and their applications can
be found in Sections 4.4 and 4.5.

The additional preprocessing required is based on the following fact.

Lemma 9.1. Let s = s1 . . . sn be a string, l and r be two positions in s, and
T be a compact suffix tree for s. Let x be the lowest common ancestor1 of the
two leaves in T labeled l and r. Then,

lce(l, r) = pathlabel (x).

Proof. Let u be the leaf in T labeled l, and let v be the leaf in T labeled
r. Then, pathlabel (u) = sl . . . sn and pathlabel (v) = sr . . . sn hold. According
to the definition of a suffix tree, the label of the path to the lowest com-
mon ancestor x of u and v is the longest common prefix of pathlabel (u) and
pathlabel (v). Thus, lce(l, r) = pathlabel (x). ut

The basic idea of an efficient method for solving the longest common ex-
tension problem is shown in Algorithm 9.2.

Theorem 9.3. The longest common extension problem for a string s of length
n and p position pairs is solvable in O(n logn+ p+L) time, where L denotes
the length of the output, i.e., the total length of all longest common extensions.

Proof idea. To prove the claim of the theorem, we consider Algorithm 9.2.
According to Lemma 9.1, it is obvious that the algorithm solves the longest
common extension problem.

We now estimate the running time of Algorithm 9.2. Computing the com-
pact suffix tree in step 1 is possible in O(n log n) time. The computation of
the data structure in step 2 can also be done in O(n logn) time. But since
the construction is technically very involved, we will not present the details
here. We refer the reader to the bibliographic notes at the end of this chapter.

1 For any two vertices u and v in a suffix tree, the lowest common ancestor in T is
the root of the smallest subtree of T containing both u and v.
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Algorithm 9.2 Computing the longest common extensions

Input: A string s = s1 . . . sn of length n over an alphabet Σ and a set of position
pairs P = {(l1, r1), . . . , (lp, rp)}, where (li, ri) ∈ {1, . . . , n}2, li < ri, for all
1 � i � p.

1. Compute a compact suffix tree T for s.
2. Compute an additional data structure with which it is possible to compute the

lowest common ancestor x of any pair (u, v) of leaves in T in constant time.
3. for i = 1 to p do

Determine the lowest common ancestor xi of the two leaves with labels li
and ri in T .
Define lce(li, ri) := pathlabel (xi).

Output: The longest common extensions lce(l1, r1), . . . , lce(lp, rp).

The very rough idea of the construction is based on the fact that the regular
structure of a binary tree enables us to assign labels to the vertices such that
the lowest common ancestor of two vertices can be found by just comparing
the labels. With a technically involved construction, it is possible to embed
such a binary tree into the given suffix tree and to use it for the computation
of the lowest common ancestor.

Due to the preprocessing in steps 1 and 2, one iteration of the loop in step 3
needs constant time for the lookup plus time proportional to the length of the
longest common extension for outputting it. Thus, Step 3 can be executed in
O(p+L) time. Overall, the algorithm hence has a running time in O(n logn+
p+ L). �

In the following we will employ this solution to the longest common ex-
tension problem for designing an efficient algorithm for computing all exact
tandem repeats of the form xx in a given string. We start by defining this
problem more precisely.

Definition 9.5. The problem of computing all exact tandem repeats in a
string, the tandem repeat problem, is the following computing problem:

Input: A string s = s1 . . . sn.
Output: The set of all pairs (i, k) with i, k ∈ {1, . . . , n}, such that

si . . . si+k−1 = si+k . . . si+2k−1.

The idea behind the algorithm for computing all tandem repeats is based
on the principle of “divide and conquer.” Here, the given problem is divided
into smaller subproblems that are easier to solve, and subsequently the so-
lutions for the subproblems are merged together to yield a solution for the
original problem. In our case, the problem can be divided in the following
way. Let s = s1 . . . sn be the given string and let h = bn

2 c. Then, the problem
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of determining all tandem repeats in s is equivalent to solving the following
four subproblems:

1. Compute all tandem repeats that are completely included in the first half
of s, i.e., in s1 . . . sh.

2. Compute all tandem repeats that are completely included in the second
half of s, i.e., in sh+1 . . . sn.

3. Compute all tandem repeats whose first half includes the position h, i.e.,
all tandem repeats (i, k) with i 6 h 6 i+ k − 1.

4. Compute all tandem repeats whose second half includes the position h,
i.e., all tandem repeats (i, k) with i+ k 6 h 6 i+ 2k − 1.

The first two subproblems are of the same form as the original problem; they
can be solved recursively using the same method. The third and the fourth
subproblems are obviously symmetric to each other; thus, it suffices to present
a solution to the third subproblem in the following.

To do so, we introduce a method for determining all tandem repeats of
fixed length whose first half includes the position h. Iterating over all possible
lengths then solves the third subproblem. First, we need another definition.

Definition 9.6. For a string s = s1 . . . sn and two positions i, j ∈ {1, . . . , n},
we denote by lce(i, j) the longest substring t = t1 . . . tk such that t1 . . . tk =
si−k+1 . . . si = sj−k+1 . . . sj , i.e., the longest common extension from the po-
sitions i and j to the left.

Using this definition we can formulate the following property, valid for all
tandem repeats of fixed length 2l whose first half includes the position h.

Lemma 9.2. Let 1 6 l 6 bn−h
2 c and let q = h+ l. Let l1 = |lce(h, q)| and let

l2 = |lce(h− 1, q − 1)|. Then, the following hold:

(i) If there exists a tandem repeat of length 2l whose first half contains the
position h, then l1 + l2 > l.

(ii) If l1 + l2 > l holds, then those tandem repeats of length 2l whose first half
contains the position h start at positions h− l2, . . . , h+ l1 − l.

Proof. The preconditions of the lemma are depicted graphically in Figure 9.1.
Based on this figure, we can now prove the claims of the lemma.

(i) If there exists a tandem repeat of length 2l whose first half contains the
position h, then q = h+l is the corresponding position in the second half of
the tandem repeat. Hence, there exists a common substring in s starting at
positions h and q that corresponds to the suffix of the two halves within
the tandem repeat. This substring has length at most l1 = |lce(h, q)|.
Furthermore, there exists a common substring in s ending at positions
h − 1 and q − 1 that correspond to the prefixes of the two halves within
the tandem repeat. This substring has length at most l2 = |lce(h−1, q−1)|.
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Fig. 9.1. The situation in the proof of Lemma 9.2

Since every position between h and q belongs to one of the two halves
within the tandem repeat, the substring between h and q has to be covered
by the suffix of the first half and the prefix of the second half; this implies
l1 + l2 > l.

(ii) On the other hand, if we assume that l1 + l2 > l holds, then we have
the situation shown in Figure 9.1. From the figure it is apparent that the
substrings sh−l2 . . . sh+l1−1 and sq−l2 . . . sq+l1−1 are equal. This results
in l1 + l2 − l different tandem repeats of length 2l starting at positions
h− l2, . . . , h− l1 + l. ut

Algorithm 9.3 employs Lemma 9.2 to solve the third subproblem for com-
puting the tandem repeats.

Algorithm 9.3 Solving the third subproblem for the computation of tandem
repeats

Input: A string s = s1 . . . sn.

1. Compute a compact suffix tree and a data structure for efficiently computing
the longest common extensions for s and for s = sn . . . s1 (needed for efficiently
computing lce).

2. R := ∅
h := bn

2
c

for l = 1 to bn−h
2
c do

q := h + l
l1 := lce(h, q)
l2 := lce(h− 1, q − 1)
if l1 + l2 � l then

for j := h− l2 to h + l1 − l do

R := R ∪ {(j, l)}

Output: The set R of all tandem repeats whose first half contains position h in s.



222 9 Finding Signals in DNA Sequences

Algorithm 9.4 Computing all tandem repeats

Input: A string s = s1 . . . sn.

• R := ∅
• Call the recursive procedure tandemrepeat(s1 . . . sn).

Output: The set R of all tandem repeats in s.

Procedure tandemrepeat(s1 . . . sn):
if n > 1 then

• h := bn
2
c

• tandemrepeat(s1 . . . sh)
• tandemrepeat(sh+1 . . . sn)
• Compute all tandem repeats in s1 . . . sn whose first half contains the position

h using Algorithm 9.3 and add them to the set R.
• Compute all tandem repeats in s1 . . . sn whose second half contains the

position h using Algorithm 9.3 on the input instance sn . . . s1, and add them
to the set R.

Theorem 9.4. Algorithm 9.3 computes all tandem repeats in a string s =
s1 . . . sn whose first half contains the position h = bn

2 c in s in O(n log n+ p)
time, where p is the number of such tandem repeats.

Proof. The correctness of Algorithm 9.3 directly follows from Lemma 9.2. Step
1 of the algorithm is possible in O(n logn) time according to Theorem 9.3.
Since every tandem repeat is found and output exactly once by Algorithm
9.3, the execution of all inner for loops in step 2 needs a time in O(p). Using
the data structures constructed in step 1, computing l1 and l2 is possible in
constant time within each execution of the loop in step 2. This implies that
all operations within one execution of the outer for loop in step 2 can be done
in constant time, excluding the inner for loop for inserting the found tandem
repeats into the set R. Hence, the second step of the algorithm needs time in
O(bn−h

2 c + p) = O(n + p). This directly implies the claimed overall running
time for Algorithm 9.3. ut

Algorithm 9.4 now summarizes the complete procedure for computing all
tandem repeats.

Theorem 9.5. Algorithm 9.4 solves the tandem repeat problem for a string
of length n containing p tandem repeats in O(n · (logn)2 + p) time.

Proof. Following the above discussion it is obvious that Algorithm 9.4 solves
the tandem repeat problem. In the following, we analyze its time complexity
on an input instance s = s1 . . . sn containing p tandem repeats. Since the algo-
rithm computes each tandem repeat of s exactly once, it needs O(p) time for
updating the set R. We now estimate the running time of all other operations
of the algorithm.
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One call of the procedure tandemrepeat for a string of length m, excluding
the recursive procedure calls, needs additional time in O(m logm), as shown
in the proof of Theorem 9.4. The length of the considered string is divided
by two with each recursive call of the procedure tandemrepeat; thus, the
algorithm has a recursion depth of dlog2 ne. On the i-th level of the recursion,
there are 2i subproblems of size 6 d n

2i e that have to be solved. This implies
that, for some constant c > 1, the overall complexity of the algorithm can be
estimated by

p+

dlog2 ne
∑

i=0

2i ·
(

c ·
n

2i
· log2

( n

2i

))

= p+ c ·

dlog2 ne
∑

i=0

n · log2

( n

2i

)

6 p+ c · dlog2 ne · n log2 n

∈ O(n · (logn)2 + p).

ut

Theorem 9.5 shows that Algorithm 9.4 achieves a significant improvement
over a naive algorithm for computing all tandem repeats. Such a naive algo-
rithm would check for the existence of a tandem repeat for each length and
each starting position. This would lead to a running time in O(n3), since every
single test needs O(l) time, and l can be as large as n

2 .
Computing approximate tandem repeats can be done using a similar divide

and conquer approach. In this case, computing the longest common extensions
has to be replaced by computing the longest similar extensions, for example,
with a variant of the alignment methods presented in Section 5.1. Details of
this approach can be found in the literature cited in Section 9.6.

9.3 Frequent and Infrequent Substrings

Another way to find interesting sections in a DNA sequence is by analyzing
the frequencies of the occurring substrings. This approach is based on the
idea that substrings occurring significantly more frequently or significantly
less frequently in the DNA sequence than would be expected in a random
string of the same length could point to coding regions of the DNA. One
example for the biological relevance of infrequent substrings occurs in the
DNA of many bacteriophages. In this DNA, substrings of length four or six
corresponding to binding sites of restriction enzymes occur significantly less
frequently than would be expected in random strings. On the other hand, a
significantly higher frequency can point to biologically meaningful regions, for
example, to regulatory regions involved in gene expression.

Our goal in this section is to compare, for every substring t of length l
in a given string s of length m, the number of occurrences of t in s with the
expected number of occurrences of t in a random string of length m. To decide
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Algorithm 9.5 Frequency Analysis for Substrings

Input: A string s of length m over an alphabet Σ and a natural number l.

for all t ∈ Σl do

• Compute the number h(t) of occurrences of t in s.
• Compute the expected number of occurrences of t in a random string of

length m and its variance.

Output: All strings t of length l, whose actual frequency in s differs significantly
from the expected frequency in a random string.

if the actual frequency significantly differs from the expected frequency in a
random string, we calculate not only the expected value of the frequency in
a random string but also its variance. This method is shown schematically in
Algorithm 9.5.

Recall that the variance of a random variable X is defined as

Var(X) = E[X2]−E[X ]2,

where E[X ] denotes the expectation of X . This means that the variance mea-
sures how much the value of the random variable oscillates around the ex-
pected value. If the variance is large, it might happen that the value of the
random variable differs a lot from the expected value. If we want to compare
the measured value of a random variable with its expected value, the variance
gives us a measure for the significance of this difference.

Although the expected frequency of a substring t of length l in a random
string2 of length m depends on the lengths l and m only, the variance depends
on the string t itself. The reason for this is that the number of possible self-
overlaps differs for different strings. This implies that the variance for the
frequency of self-overlapping substrings like aaa differs completely from the
variance for non-self-overlapping substrings like abc. To describe this more
formally, we need the following definition.

Definition 9.7. Let t = t1 . . . tl be a string of length l. The autocorrelation

of t is a binary string c(t) = c
(t)
0 . . . c

(t)
l−1, where

c
(t)
i =

{

1 if t1 . . . tl−i = ti+1 . . . tl,

0 otherwise.

Intuitively, c
(t)
i indicates whether the prefix of t of length l − i coincides with

the suffix of t of length l − i.

2 By a random string of length m over an alphabet Σ, we mean a string of length
m where at each position one character from Σ is chosen uniformly and indepen-
dently at random. Such a string is also called a Bernoulli string .
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i t1 . . . tl−i ti+1 . . . tl c
(t)
i

0 ababa ababa 1
1 abab baba 0
2 aba aba 1
3 ab ba 0
4 a a 1

Table 9.1. The autocorrelation for the string t = ababa from Example 9.1

The autocorrelation polynomial of t is defined as

corr t(x) =
l−1∑

i=0

c
(t)
i · x

i.

Note that c
(t)
0 = 1 holds for any string t. We illustrate this definition with

an example.

Example 9.1. Consider t = ababa. The values c
(t)
i and the corresponding pre-

fixes and suffixes of t are shown in Table 9.1. The corresponding autocorrela-
tion polynomial for t is corr t(x) = 1 + x2 + x4. ♦

The following theorem describes how to compute the expected value and
the variance of the number of occurrences of a pattern t = t1 . . . tl in a
random string s = s1 . . . sm. For simplicity, we assume that the random
string s is cyclic, i.e., we also count the pattern occurrences of the form
t1 . . . tl = sm−j+1 . . . sms1 . . . sl−j .

Theorem 9.6. Let Σ be an alphabet of size k and let s = s1 . . . sm be a
cyclic Bernoulli string of length m, i.e., let every si be chosen uniformly and
independently at random from Σ. Let t ∈ Σ l be a pattern we want to search
for in s.

Consider, for 1 6 i 6 m, the random variable Xi defined by

Xi =

{

1 if t starts at position i in s,

0 otherwise.

Then the number of occurrences of t in s is given by the random variable
X =

∑m
i=1Xi, and we can compute the expectation and the variance of X as

follows:

(a) E[X ] = m · p, where p = E[Xi] = 1
kl , and

(b) Var [X ] = pm ·
(
2corr t

(
1
k

)
− (2l− 1)p− 1

)
.

Proof. (a) Since s is a Bernoulli string over an alphabet of size k and |t| = l
holds, it is immediately clear that p = E[Xi] = 1

kl . Due to the linearity of
expectation, we know E[X ] =

∑m
i=1 E[Xi] = m · p.
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(b) The variance Var [X ] of the random variable X can be computed as
Var [X ] = E[X2]−E[X ]2, where

E[X2] = E




∑

16i,j6m

Xi ·Xj



 =
∑

16i,j6m

E[Xi ·Xj ]

and

E[X ]2 =

(
m∑

i=1

E[Xi]

)2

=
∑

16i,j6m

E[Xi] · E[Xj ].

Hence,

Var [X ] = E[X2]−E[X ]2 =
∑

16i,j6m

(E[Xi ·Xj ]−E[Xi] · E[Xj ]).

Let d(i, j) be the shortest distance between the positions i and j in the
cyclic string s. Then the following holds:

Var [X ] =
∑

16i,j6m

d(i,j)>l

(E[Xi ·Xj ]−E[Xi] ·E[Xj ])

+
∑

16i,j6m

d(i,j)=0

(E[Xi ·Xj ]−E[Xi] · E[Xj ])

+
∑

16i,j6m

0<d(i,j)<l

(E[Xi ·Xj ]−E[Xi] ·E[Xj ])

We will now determine the values of these three sums separately. For the
first sum we have

∑

16i,j6m

d(i,j)>l

(E[Xi ·Xj ]−E[Xi] · E[Xj ]) = 0,

since the random variables Xi and Xj are independent in this case.
Moreover,

∑

16i,j6m

d(i,j)=0

(E[Xi ·Xj ]−E[Xi] · E[Xj ])

=
∑

16i6m

(E[Xi ·Xi]−E[Xi] ·E[Xi]) = m(p− p2).

Now it remains for us to calculate the last sum. We know that
∑

16i,j6m

0<d(i,j)<l

(E[Xi ·Xj ]−E[Xi] ·E[Xj ])

=

m∑

i=1

l−1∑

r=1

∑

|i−j|=r

(E[Xi ·Xj ]−E[Xi] ·E[Xj ]).
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If c
(t)
r = 0, then Xi ·Xi+r = 0 holds for all i. But if c

(t)
r = 1 holds, then

it is possible that t starts in s at positions i and i + r. In this case, the
expected value E[Xi · Xi+r] is the product of the probability p that t
starts at position i + r and the probability that si . . . si+r−1 = t1 . . . tr
holds. Hence,

E[Xi ·Xi+r] = c(t)r · p ·
1

kr
.

For every i there are exactly two positions j with d(i, j) = r; hence,

m∑

i=1

l−1∑

r=1

∑

|i−j|=r

E[Xi ·Xj ] =
m∑

i=1

l−1∑

r=1

2p·c(t)r ·
1

kr
=

m∑

i=1

2p·

(

corr t

(
1

k

)

− 1

)

.

Furthermore,

l−1∑

r=1

∑

|i−j|=r

E[Xi] · E[Xj ] =

l−1∑

r=1

∑

|i−j|=r

p2 = 2(l − 1)p2.

This implies

m∑

i=1

l−1∑

r=1

∑

|i−j|=r

(E[Xi ·Xj ]−E[Xi] ·E[Xj ])

=

m∑

i=1

(

2p ·

(

corr t

(
1

k

)

− 1

)

− 2(l − 1)p2

)

= pm ·

(

2corr t

(
1

k

)

− 2− 2(l − 1)p

)

.

Overall, we get

Var [X ] = pm ·

(

2corr t

(
1

k

)

− 2− 2(l − 1)p

)

+m(p− p2)

= pm ·

(

2corr t

(
1

k

)

− (2l − 1)p− 1

)

.

ut

Using the formulas proved in Theorem 9.6, we can now execute the neces-
sary calculations for Algorithm 9.5, and we obtain a method for choosing the
substrings of a given (short) length in a given string, that occur significantly
more frequently or significantly less frequently than expected in a random
string.
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9.4 Hidden Markov Models

In the previous section we analyzed the frequency of short substrings within
random strings, and we used this analysis to find highly non-random regions
within an entire DNA sequence. But it might also happen that a certain
substring occurs rarely within some regions of the DNA sequence, but sig-
nificantly more frequently in other regions. Aa an example, we consider the
so-called CG-islands. The string CG is the rarest dinucleotide in general within
many genomes, but in some regions of the DNA the substring CG occurs very
frequently. The regions containing many CG-dinucleotides are called CG-islands.
CG-islands are of biological interest, since in many genomes they occur in prox-
imity to the coding regions, and thus can be used for predicting the locations
of genes within the DNA sequence.

In this section we present a method that allows us to find the CG-islands in
a given DNA sequence. As a tool, we will use Hidden Markov Models, which
can informally be described as a kind of probabilistic finite automata that,
in contrast to common finite automata, do not read an input but output a
symbol at each computation step. More formally, a Hidden Markov Model can
be defined as follows.

Definition 9.8. A Hidden Markov Model (HMM) is a quintuple M =
(Σ,Q, q0, δ, η), where

• Σ is an alphabet,
• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• δ is a (|Q| × |Q|)-matrix of transition probabilities, and
• η is a ((|Q| − 1)× |Σ|)-matrix of emission probabilities.

The matrix entry δ(p, q) indicates the probability of a transition from state
p to state q. Here, δ(p, q0) = 0 and

∑

q∈Q δ(p, q) = 1 hold for all p ∈ Q.
The matrix entry η(q, a) indicates for all states q ∈ Q−{q0} and all a ∈ Σ

the probability that the symbol a is output in state q. Here,
∑

a∈Σ η(q, a) = 1
for all q ∈ Q− {q0}.

A path in M is a sequence π = q0, q1, . . . , qn of states, starting with the
initial state.

We will first illustrate the work of an HMM with a simple example that is
not motivated by any biological application.

Example 9.2. We consider the following experiment: For a series of dice rolls,
sometimes a fair die is used, i.e., a die returning each of the numbers from
{1, . . . , 6} with probability 1

6 , and sometimes an unfair die is used, returning
the result 6 with probability 1

2 and all other numbers with probability 1
10 .

The die is changed after each roll with probability 1
20 . At the beginning, one

of the two dice is chosen with probability 1
2 .

This experiment can be described by the HMMM = (Σ,Q, q0, δ, η), where
the components are defined as follows:
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Fig. 9.2. An HMM for the dice experiment from Example 9.2

• Σ = {1, 2, 3, 4, 5, 6},
• Q = {q0, F, U},

• δ q0 F U

q0 0 1
2

1
2

F 0 19
20

1
20

U 0 1
20

19
20

• η 1 2 3 4 5 6

F 1
6

1
6

1
6

1
6

1
6

1
6

U 1
10

1
10

1
10

1
10

1
10

1
2

This HMM is shown graphically in Figure 9.2; the transitions are labeled
with the transition probabilities and in the states the emission probabilities
for all possible outputs are given. The state F corresponds to rolling the fair
die and the state U corresponds to rolling the unfair die. ♦

For a given HMM M, a path π in M, and a string x, we are now able to
compute the probability that the path π is followed and that the string x is
output on this path.

Lemma 9.3. Let M = (Σ,Q, q0, δ, η) be an HMM, π = q0, q1, . . . , qn be a
path in M, and x = x1 . . . xn ∈ Σn be a string. Then, the probability that the
HMM follows the path π and outputs the string x can be computed as
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Prob[x ∧ π] =
n∏

i=1

(δ(qi−1, qi) · η(qi, xi)).

Proof. The probability that the HMM follows the path π equals the product
of the transition probabilities, i.e.,

Prob[π] =

n∏

i=1

δ(qi−1, qi).

For the path π, the conditional probability that x is output, if the HMM
follows π, is

Prob[x | π] =

n∏

i=1

η(qi, xi).

Thus, the probability Prob[x ∧ π] of the HMM following π and outputting x
is given by the product of the two probabilities. ut

Example 9.3. In the dice experiment from Example 9.2, the probability of
rolling a 6 within three consecutive rolls with the unfair die chosen at the
beginning and replaced by the fair die after two rolls corresponds to the prob-
ability of following the path π = q0, U, U, F in the corresponding HMM and
outputting the string x = 666. This probability can be computed using Lemma
9.3 as

Prob[x ∧ π] =

3∏

i=1

(δ(qi−1, qi) · η(qi, xi))

= δ(q0, U) · η(U, 6) · δ(U,U) · η(U, 6) · δ(U, F ) · η(F, 6)

=
1

2
·
1

2
·
19

20
·
1

2
·

1

20
·
1

6

=
19

19200
≈ 0, 00099.

♦

We have seen above how to compute the emission probability of a string on
a given path in an HMM. But the applications often raise another question.
For example, in the dice experiment from Example 9.2, we would like to know,
if we can determine, from a given series of die rolls, for which rolls the fair
die was used and for which rolls the unfair die was used. This corresponds to
computing, for a given HMM M and a given string x, the path π in M that
generated the string x.3 Since this path π generally cannot be determined
exactly, we are looking for the most probable path. We can formally describe
this problem as follows.

3 This task also gives us an explanation for the name Hidden Markov Model. The
notion Markov Model is used for random processes where the current state de-
pends on the immediate predecessor state only, and the word Hidden points out
that the current state is normally unknown (or hidden) in typical applications.
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Definition 9.9. The HMM decoding problem is the following optimization
problem:

Input: An HMM M = (Σ,Q, q0, δ, η) and a string x = x1 . . . xn ∈ Σ
n.

Feasible solutions: All paths π = q0, . . . , qn of length n in the HMM M.
Costs: For a feasible solution π, the costs are given by the probability that M

outputs the string x on the path π, i.e.,

cost(π) = Prob[x | π].

Optimization goal: Maximization.

Fortunately, the HMM decoding problem is solvable in polynomial time.
We can use a dynamic programming approach in the following way: We com-
pute, for all states of the HMM and for all prefixes of the given string, the
most probable path ending in this state and emitting this prefix of the string.
The following lemma shows how to compute these most probable paths.

Lemma 9.4. LetM = (Σ,Q, q0, δ, η) be an HMM and let x = x1 . . . xn ∈ Σn

be a string. Let σq(i) be the probability of the most probable path ending in the
state q for the prefix x1 . . . xi for all q ∈ Q and for all 0 6 i 6 n. Then,

σq0 (0) = 1 and

σq(0) = 0 for all q ∈ Q− {q0} (9.2)

holds, and, for all q ∈ Q− {q0} and for all 1 6 i 6 n,

σq(i) = η(q, xi) ·max
p∈Q

(σp(i− 1) · δ(p, q)). (9.3)

Proof. The first state in any path is always q0; thus, the HMM is always in the
state q0 after reading the empty prefix of x. Hence, σq0(0) = 1 and σq(0) = 0
hold for all q ∈ Q− {q0}. This proves Equation (9.2).

The path with maximum emission probability for the prefix x1 . . . xi ending
in state q can be computed, for all 1 6 i 6 n and for all q ∈ Q − {q0}, as
follows: Let π = q0, q1, . . . , qi be the path with the highest emission probability
for x1 . . . xi ending in state q = qi. Then the probability σqi

(i) of this path
can be calculated as

σqi
(i) = σqi−1(i− 1) · δ(qi−1, qi) · η(qi, xi).

Since π is the path with highest emission probability for x1 . . . xi ending in q,
no path containing a second to last state other than qi−1 can have a higher
emission probability; hence,

σq(i) = η(qi, xi) ·max
p∈Q

(σp(i− 1) · δ(p, qi)).

This proves Equation (9.3). ut
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Algorithm 9.6 Viterbi algorithm

Input: An HMM M = (Σ, Q, q0, δ, η) and a string x = x1 . . . xn ∈ Σn.

1. Initialization:

σq0 (0) := 1
for all q ∈ Q− {q0} do

σq(0) := 0

2. Computing σq(i):

for i = 1 to n do

for all q ∈ Q− {q0} do

σq(i) := η(q, xi) ·maxp∈Q(σp(i− 1) · δ(p, q))
ptr q(i) := argmaxp∈Q(σp(i− 1) · δ(p, q))

3. Traceback for computing a most probable path π∗:

Prob[x | π∗] := maxp∈Q−{q0}(σp(n))
π∗

n := argmaxp∈Q−{q0}
(σp(n))

for i := n − 1 downto 0 do

π∗
i := ptrπ∗

i+1
(i + 1)

Output: π∗ = π∗
0 , . . . , π∗

n as a most probable path for x in M with the probability
Prob[x | π∗].

Algorithm 9.6 uses Equations (9.2) and (9.3) from Lemma 9.4 to solve
the HMM decoding problem. This algorithm is called Viterbi algorithm, after
its inventor. Using Equations (9.2) and (9.3), it computes the probability
of a most probable path for a given string x = x1 . . . xn in a given HMM
M. This probability can in general be reached on several different paths.
To compute one of the most probable paths, the Viterbi algorithm uses a
traceback approach similar to the one we used for computing optimal pairwise
alignments in Section 5.1.

Theorem 9.7. The Viterbi algorithm solves the HMM decoding problem for
an HMM with k states and a string of length n in O(n · k2) time.

Proof. Let M = (Σ,Q, q0, δ, η) be an HMM and let x = x1 . . . xn ∈ Σn.
We first show that the Viterbi algorithm solves the HMM decoding problem.
According to Lemma 9.4, the algorithm computes the correct values of σq(i)
for all q ∈ Q and for all 0 6 i 6 n. For all 1 6 i 6 n and for all q ∈ Q− {q0},
the algorithm saves in the variable ptr q(i) the second to last state on a most
probable path for the prefix x1 . . . xi ending in state q.4 Using these values,
the algorithm can trace back the most probable path for x in step 3.

Now, we analyze the time complexity of the Viterbi algorithm. The ini-
tialization in step 1 clearly is possible in O(k) time. In step 2, the algorithm

4 This means that we interpret argmax in such a way that an arbitrary argument
delivering the maximum value is chosen.
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has to execute two nested for loops which cause the inner block of statements
to be executed O(n · k) times. In each of these executions, the maximum over
O(k) values has to be calculated; this results in an overall time in O(n · k2)
for step 2. The traceback in step 3 then needs time in O(n), and hence the
total time complexity of the Viterbi algorithm is in O(n · k2). ut

Note that, in practice, often all calculations are done using the logarithms
of the probabilities. This has two advantages: On the one hand, the emission
probabilities get very small for longer strings, as we have already seen in
Example 9.3, which can lead to significant rounding errors in the calculations.
On the other hand, the recursion formula (9.3) can be replaced by

σq(i) = log η(q, xi) + max
p∈Q

(σp(i− 1) + log δ(p, q)) (9.4)

when using the logarithms. This replaces a multiplication operation by a less
expensive addition operation.

In the following we show how to use the HMM method and the Viterbi
algorithm to solve the problem of the CG-islands. We note that the problem
of determining the CG-islands in a DNA sequence is very similar to computing
a solution to the dice experiment from Example 9.2. In the dice experiment,
we are given a sequence of outcomes of die rolls and we want to decide which
results were obtained using the fair die and which were obtained using the
unfair one. In the CG-island problem, we want to decide which regions of a
given DNA sequence belong to a CG-island and which do not. In both cases,
the regions in the sequence we want to separate from each other differ by the
emission probabilities. But while we are looking for the frequent occurrence
of a single symbol, the 6, in the dice example, we are looking for the frequent
occurrence of a substring of length 2 in the DNA sequence. Thus, the HMM
for the CG-island problem needs a larger number of states.

The CG-island problem can be modeled by the HMMMCG = (ΣDNA, Q, q0,
δ, η), where the components are defined as follows:

• ΣDNA = {A, C, G, T}.
• Q = {q0, A+, C+, G+, T+, A−, C−, G−, T−}. Here the states marked +

model CG-islands, and the states marked − model the rest of the DNA
sequence.

• The transition probabilities can be estimated from testing data, i.e., by
counting DNA sequences with already known CG-islands. We know that
the probability of going into a state marked + or of staying inside states
marked + is significantly lower than for states marked −. This models
the fact that the CG-islands only make up a small part of the entire DNA
sequence. The special property of CG-islands is modeled by

δ(C+, G+)� δ(C−, G−).

• For the emission probabilities, we have
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remainder of the DNA sequence. The labeling of the transitions with the corre-
sponding transition probabilities are only shown exemplarily in the figure for the
transitions from C+ to G+ and from C− to G−. The transitions between the two
classes and from the initial state are only shown schematically; X and Y stand for
all symbols in {A, C, G, T}. Moreover, the emission probabilities are omitted since
the emitted symbol is unambiguously determined in every state of the HMM

η(A+, A) = η(A−, A) = 1,

η(C+, C) = η(C−, C) = 1,

η(G+, G) = η(G−, G) = 1,

η(T+, T) = η(T−, T) = 1.

This means that in the states X+ and X− only the symbol X can be
emitted for all X ∈ {A,C,G, T}.

The HMM MCG is shown schematically in Figure 9.3. Using the Viterbi
algorithm we can now determine a most probable path π inMCG for any given
DNA sequence. The path π then gives us a hypothesis where the CG-islands
are located within the sequence, namely, at the positions where the symbols
of the sequence were emitted from a state marked +.
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9.5 Summary

After having sequenced a DNA, the next important problem is to determine
biologically interesting regions within the DNA sequence, called signals. There
are many approaches for addressing and, at least partially, solving this prob-
lem. Some of these approaches use combinatorial techniques; many are based
on statistical methods.

One of the combinatorial approaches is the computation of identical or
similar substrings in several DNA sequences. This leads to the consensus string
problem which consists of finding, for a given set of strings and a given length,
a median string of this length that has a minimum overall Hamming distance
to some substring from each of the given strings. This problem is NP-hard
but well approximable.

Also, computing tandem repeats, i.e., consecutive identical substrings, in
a DNA sequence can be used for finding signals. This problem is efficiently
solvable using suffix trees.

One of the statistical approaches for signal finding is to determine all
substrings in the DNA sequence that occur significantly more frequently or
significantly less frequently than one would expect in a random sequence of
the same length. The difficulty here lies in judging the significance of the
frequency, since the variance for the number of expected occurrences of a
substring depends on the structure of its self-overlaps. This difficulty can be
overcome by determining the autocorrelation polynomial of the substring.

Another statistical tool that has many applications in molecular biology
are Hidden Markov Models, which one can think of as probabilistic finite
automata emitting one symbol at each computational step. Using Hidden
Markov Models, one can for example determine the CG-islands within a DNA
sequence. These are regions in the DNA where the normally rare dinucleotide
CG occurs very frequently; they point to coding regions in many genomes.

9.6 Bibliographic Notes

An overview of the different approaches for signal finding in DNA sequences is
given in the books by Pevzner [159], Ewens and Grant [68], Durbin et al. [62],
and Clote and Backofen [49]. An introduction to the needed background in
statistics and probability theory can also be found in the book by Ross [169].

The book by Pevzner [159] gives a good overview over the different
methods for determining identical or similar substrings. The proof of NP-
completeness of the consensus string problem goes back to Li et al. [135]. The
approximation algorithm presented for the consensus string problem was also
designed and analyzed by Li et al. [134, 135].

The biological importance of tandem repeats was described by Benson [26].
Our presentation of the computation of all tandem repeats leans on the book
by Gusfield [91]. The efficient computation of the lowest common ancestor in
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a suffix tree was first described by Harel and Tarjan [100]; a simplified version
is due to Schieber und Vishkin [175]; this method is also described in detail
in the book by Gusfield [91]. Main and Lorentz [142] have introduced the first
algorithm for determining all tandem repeats; an extension to tandem repeats
with a constant number of mismatches is due to Landau und Schmidt [126].
Crochemore [53] designed an algorithm for efficiently computing all tandem
repeats with more than two copies.

The papers by van Helden et al. [194], Leung et al. [131], and Karlin et
al. [114] point out examples for the biological importance of significantly more
frequent or significantly less frequent substrings. An overview of the different
approaches and statistical models for determining frequent or infrequent sub-
strings is given in the books by Ewens and Grant [68] and Pevzner [159] and
in the survey paper by Reinert et al. [165]. The model we presented here was
investigated by Pevzner et al. [160] and by Gentleman and Mullin [82], the def-
inition of the autocorrelation polynomial goes back to Guibas und Odlyzko
[88]. A more recent, rather combinatorial approach is due to Apostolico et
al. [14].

The Hidden Markov Models were introduced by Baum and Petrie [23];
an overview can be found in the paper by Rabiner [163] or in the book by
Durbin et al. [62]. The application of Hidden Markov Models to the CG-island
problem was initially proposed by Churchill [44]. The dice example is taken
from the book by Durbin et al. [62]. The Viterbi algorithm was designed by
Viterbi [198]. There are many more applications of Hidden Markov Model in
molecular biology, for an overview we refer the reader to the books by Ewens
and Grant [68], Durbin et al. [62], and Baldi and Brunak [21].
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Genome Rearrangements

In Chapter 5 we saw how to compare DNA sequences to each other. As a
measure for this comparison we used the number of local mutations needed
to transform one sequence into the other. Besides the local mutations, i.e.,
deleting, inserting, and substituting a single nucleotide, another kind of mu-
tation also occurs in nature, changing the DNA sequence at a higher level.
These mutations cut out larger parts of a chromosome and put it back into
the sequence at another position or in reverse orientation.

We may assume that mutations of this type normally cut the DNA se-
quences between the genes only, since cutting a gene usually leads to its
destruction, and this will normally decrease the fitness of the organism or
may even have a lethal effect. This means that the genes themselves are not
altered by these mutations, but only their order changes. We call this kind of
mutations genome rearrangements in the following.

We can now use the number of such genome rearrangements as a measure
of the distance between entire genomes. We discuss some of the resulting
models here. The chapter is organized as follows. In Section 10.1 we introduce
different models of genome rearrangements. We then look at two different
models in greater detail in Sections 10.2 and 10.3. These models differ in
whether or not we also distinguish, in addition to the order of the genes, their
reading direction. Section 10.4 is devoted to a question related to genome
rearrangements. We compare organisms whose genomes are distributed over
several chromosomes, and where we do not know the exact order of the genes
but know only their assignment to the chromosomes. The chapter closes with
a summary in Section 10.5 and bibliographic remarks in Section 10.6.

10.1 Modeling

In closely related species, the DNA sequences coding for single genes often
are nearly identical. If one wants to build a phylogenetic tree of such closely
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related species,1 a comparison of the sequences of single genes does not help
much, since the differences are too small. On the other hand, often the order of
the genes varies a lot. Thus, it looks promising to compare the entire genomes
with each other and to use the number of genome rearrangements needed to
transform one genome into another as a measure of evolutionary distance.

We distinguish between different types of transformations that can al-
ter the order of the genes. First, we distinguish between intrachromosomal
transformations, changing the order of the genes within one chromosome, and
interchromosomal transformations, exchanging parts of gene sequences be-
tween different chromosomes. Figure 10.1 schematically shows some possible
transformations.

Figures 10.1 (a) and (b) show two types of intrachromosomal transforma-
tions. A reversal (also called inversion), as shown in Figure 10.1 (a), cuts out
a part of the gene sequence and puts it back in reverse orientation. A transpo-
sition, as shown in Figure 10.1 (b), also cuts out a part of the gene sequence,
but it puts it back in the same orientation at another position.

In Figure 10.1 (c), one possible type of interchromosomal transformation
is shown, the reciprocal translocation which interchanges the ends of two chro-
mosomes.

In a special case, occurring, for example, in mitochondrial genomes or in
the genomes of chloroplasts,2 reversals occur as essentially the only form of
genome rearrangements. We study this case in greater detail in the following.
To determine the distance between two genomes, we try to find the minimum

1 We present some methods for building phylogenetic trees in detail in Chapter 11.
2 Mitochondria and chloroplasts are cell organelles carrying their own genomes.

These genomes are especially well studied since they are on the one hand rather
small and on the other hand easier to extract from a cell for further investigation,
due to the fact that there are usually several hundreds of copies of these genomes
within a single cell.
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number of reversals transforming one genome into another. We first investi-
gate the special case where each genome consists of exactly one chromosome.
We further assume that there are no multiple occurrences of the same gene
within a genome. We can hence describe the order of the genes by a per-
mutation, identifying one element of the permutation with each particular
gene such that the same element is assigned to homologous genes3 in both
organisms. A reversal of a part of the gene sequence corresponds to a reversal
of the permutation. Thus, we can now formalize our task as the problem of
transforming a given permutation into another given permutation with the
minimum number of reversals. This is equivalent to the problem of sorting a
permutation by reversals, since we can assume without loss of generality that
the target permutation is the identity permutation.

In this case there are still two possible models depending on whether or
not we also know the reading direction of the genes or.4 If the reading direc-
tion is unknown, the resulting problem is to sort a normal permutation by
reversals. We will deal with this problem in Section 10.2. But if the reading
direction is known, this leads to the problem of sorting a directed permutation
by reversals.5 A directed permutation is a permutation where each element
gets assigned one of two directions. We formally define this problem in Section
10.3. As an illustrative example, Figure 10.2 shows a series of reversals trans-
forming the order of genes in the mitochondrial genome of cabbage (Brassica
oleracea) into the order of the respective homologous genes in the mitochon-
drial genome of turnip (Brassica campestris). Here, the minus signs indicate
a reading direction from right to left.

10.2 Sorting Undirected Permutations

In this section we deal with the problem of sorting a normal undirected per-
mutation with a minimum number of reversals. We start with the formal
definition of a reversal.

Definition 10.1. Let π = (π1, . . . , πn) be a permutation of order n. For 1 6

i < j 6 n, an (i, j)-reversal is a permutation ρ(i, j), such that

π · ρ(i, j) = (π1, . . . , πi−1, πj , πj−1, . . . , πi+1, πi, πj+1, . . . , πn).

Moreover, we define an (i, i)-reversal to be the identity permutation, and,
for 1 6 j < i 6 n, let the (i, j)-reversal be the same as the (j, i)-reversal.

3 Two genes in different but related organisms are called homologous if they have
the same ancestor gene in evolutionary history.

4 A different reading direction of two genes can occur if a subset of the genes is
transcribed from one strand of the DNA and the remainder of the genes are
transcribed from the other strand.

5 In the literature, directed permutation are often also called signed permutations,
the problem is accordingly described as sorting a signed permutation by reversals.
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Using this notation, we can now define the problem of sorting a permuta-
tion by reversals as follows.

Definition 10.2. The problem of sorting an (undirected) permutation by re-
versals, the MinSR problem, is the following optimization problem:

Input: A natural number n and a permutation π = (π1, . . . , πn) of order n.
Feasible solutions: Every sequence ρ1, . . . , ρt of reversals of order n, such that

the identity permutation can be described as the consecutive application of
the permutations ρ1, . . . , ρt to π, i.e., πρ1 · · · ρt = (1, . . . , n).

Costs: For each feasible solution ρ1, . . . , ρt, the cost is the number t of rever-
sals.

Optimization goal: Minimization.

In the definition of the MinSR problem, we have assumed that the second
permutation, i.e., the one we want to transform the first permutation into, is
the identity permutation. Note that this is no real restriction, we can always
attain this by renumbering the genes appropriately. We illustrate the above
definitions with an example.

Example 10.1. Consider the permutations π = (2, 1, 3, 7, 5, 4, 8, 6) and σ =
(1, 2, 3, 4, 5, 6, 7, 8). Then, π can be transformed into σ by the reversals shown
in Figure 10.3. ♦

The question now is whether the MinSR problem is efficiently solvable.
Unfortunately, the answer is negative, as shown by the following theorem.

Theorem 10.1. The MinSR problem is NP-hard. ut
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Theorem 10.1 was proved by Caprara [40]. But the reduction used in the
proof is technically quite involved; we thus skip the proof here.

Since there is no hope for an exact polynomial-time solution to the prob-
lem, we present an approximation algorithm achieving an approximation ratio
of 2. For this algorithm, we need the following definitions.

Definition 10.3. Let π = (π1, . . . , πn) be a permutation of order n. We define
π0 = 0 and πn+1 = n + 1. Then, we call ext(π) = (π0, π1, . . . , πn, πn+1) the
extended representation of π.

In the remainder of this chapter, we no longer make a sharp distinction
between a permutation π and its extended representation ext(π); we use the
notion ext(π) only occasionally for clarification.

Definition 10.4. Let π = (π1, . . . , πn) be a permutation of order n. A break-
point of π is a pair (i, i + 1) ∈ {0, . . . , n} × {1, . . . , n + 1} of positions such
that |πi − πi+1| 6= 1 holds. By brp(π) we denote the number of breakpoints of
π.

The following example illustrates this definition.

Example 10.2. Consider the permutation π = (4, 3, 2, 7, 1, 5, 6, 8) of order 8.
Here, ext(π) = (0, 4, 3, 2, 7, 1, 5, 6, 8, 9). In the following representation, a
breakpoint (i, i+ 1) of π is depicted by a vertical line between πi and πi+1:

0 4 3 2 7 1 5 6 8 9

♦

Note that the identity permutation is the only permutation without break-
points, since the elements 0 and n+ 1 of ext(π) cannot be moved away from
their positions by any reversal.

The notion of breakpoints now enables us to determine a lower bound for
the number of reversals necessary to transform a given permutation π into
the identity permutation.
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Lemma 10.1. Let π be a permutation of order n. Then, at least dbrp(π)/2e
reversals are necessary to transform π into the identity permutation of order
n.

Proof. Since the identity permutation is the only permutation without break-
points, transforming a given permutation into the identity permutation is
equivalent to eliminating all breakpoints. An (i, j)-reversal can only affect the
breakpoints (i−1, i) and (j, j+1); thus, each reversal can decrease the number
of breakpoints by at most 2. ut

We show that it is possible to find a sequence of reversals sorting an
arbitrary given permutation and eliminating on average one breakpoint with
each reversal. For the proof we need another definition.

Definition 10.5. Let π be a permutation of order n. Let k = brp(π), and let
(i1, i1 + 1), . . . , (ik, ik + 1), for i1 < · · · < ik, be the breakpoints of π. Then
we call the k + 1 sequences s0 = (π0, . . . , πi1 ), s1 = (πi1+1, . . . , πi2), . . . , sk =
(πik+1, . . . , πn+1) the strips of π.

The strip sj is called ascending if πij+1 < . . . < πij+1 , and descending if
πij+1 > . . . > πij+1 , for all 0 6 j 6 k. A strip sj of length 1, i.e., a strip
consisting of only one element of the permutation, is also called descending if
1 6 j 6 k− 1. But if the strips s0 or sk consist of one element only, they are
called ascending.

Informally speaking, the strips of a given permutation are the maximal as-
cending or descending sequences of elements, separated by breakpoints. The
seemingly arbitrary convention about which strips of length 1 are called as-
cending or descending will be motivated later by our algorithm. First, we
illustrate Definition 10.5 with the permutation from our above example.

Example 10.3. The permutation π = (4, 3, 2, 7, 1, 5, 6, 8) has five breakpoints,
as we saw in Example 10.2. The breakpoints separate ext(π) into the strips
s0 = (0), s1 = (4, 3, 2), s2 = (7), s3 = (1), s4 = (5, 6), and s5 = (8, 9). The
strips s0, s4, and s5 are ascending; the strips s1, s2, and s3 are descending. ♦

Note that the identity permutation can also be characterized as the only
permutation consisting only of a single ascending strip. As we will see, the
descending strips play an important role for eliminating the breakpoints of a
given permutation.

Lemma 10.2. Let π be a permutation of order n. Let k ∈ {0, . . . , n + 1} be
an element of ext(π).

(a) If k lies in a descending strip of ext(π), and k − 1 lies in an ascending
strip of ext(π), then there exists a reversal ρ such that brp(πρ) < brp(π).

(b) If l lies in a descending strip of ext(π), and l+1 lies in an ascending strip
of ext(π), then there exists a reversal σ such that brp(πσ) < brp(π).
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Proof. (a) Let k lie in a decreasing strip s and let k − 1 lie in an ascending
strip s′. Then k as well as k − 1 have to be the last element of their
respective strips, and thus are part of a breakpoint. We distinguish two
cases with respect to the order of the two strips s und s′. A reversal ρ
eliminating one breakpoint is shown for the case where s precedes s′ in
ext(π) in Figure 10.4 (a), and for the opposite case in Figure 10.4 (b).

(b) The proof is analogous to the proof of (a). Let l lie in a descending strip
s, and let l+1 lie in an ascending strip s′. We again distinguish two cases
according to the order of s and s′. A reversal σ removing one breakpoint
is shown in Figure 10.4 (c) for the case where s precedes s′ in ext(π), and
in Figure 10.4 (d) for the opposite case. ut
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From Lemma 10.2 we can conclude that the existence of a descending strip
always ensures that we can find a reversal eliminating at least one breakpoint.

Lemma 10.3. Let π be a permutation with a descending strip. Then, there
exists a reversal ρ such that brp(πρ) < brp(π).

Proof. We choose k as the smallest element of π occurring in a descending
strip. Then the element k − 1 has to lie in an ascending strip; this also holds
for the case k = 1, since we have defined the strip (π0) = (0) to be ascending.
We can then simply apply Lemma 10.2 (a). ut

To reach our goal of finding a series of reversals eliminating one breakpoint
per reversal on average, we now have to consider permutations consisting of
ascending strips only. We show that this situation cannot occur too often and
that it is always preceded by a reversal eliminating two breakpoints.
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Lemma 10.4. Let π be a permutation without descending strips. Then π is ei-
ther the identity permutation or there exists a reversal ρ such that πρ contains
a descending strip and brp(πρ) 6 brp(π) holds.

Proof. Let π be different from the identity permutation. Then π contains at
least two breakpoints, as the following consideration shows: We know that
π0 = 0 as well as πn+1 = n + 1 lie in ascending strips. If 0 and n + 1 would
lie within the same strip, then π would be the identity permutation. Thus,
there exist at least two ascending strips s0 = (π0, . . . , πi) = (0, . . . , i) and
s1 = (πj , . . . , πn+1) = (j, . . . , n + 1) in π with j > i + 1. Hence, at least the
breakpoints (i, i+ 1) and (j − 1, j) exist in π.

The reversal ρ, reversing the part of π between the two breakpoints, turns
the strips in between into descending strips and does not create a new break-
point. This reversal is shown in Figure 10.5. ut

We next show that there always exists a strategy such that a permuta-
tion without descending strips is only reached by a reversal eliminating two
breakpoints (with the exception of a starting permutation without ascending
strips).

Lemma 10.5. Let π be a permutation with a descending strip. Let k be the
smallest element in a descending strip of π and let l be the largest element in
a descending strip of π. Let ρ be the reversal placing k − 1 next to k, and let
σ be the reversal placing l + 1 next to l. If πρ as well as πσ do not contain
any descending strip, then ρ = σ and brp(πρ) = brp(π) − 2.

Proof. Since k is the smallest element within a descending strip, k − 1 has
to lie within an ascending strip. According to Lemma 10.2 (a), this results in
one of the two situations shown in Figures 10.4 (a) and (b). If k − 1 lies to
the right of k, then the reversal preserves the descending strip containing k
(see Figure 10.4 (a)). We thus can assume that k − 1 lies to the left of k in π
(see Figure 10.4 (b)).

Since l is the largest element in a descending strip, l + 1 has to lie within
an ascending strip. According to Lemma 10.2 (b), this results in one of the
two situations shown in Figures 10.4 (c) or (d). If l + 1 lies to the left of l,
then this reversal preserves the descending strip containing l (see Figure 10.4
(d)). We thus can assume that l + 1 occurs to the right of l in π (see Figure
10.4 (c)).
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Algorithm 10.1 Approximation algorithm for the MinSR problem

Input: A permutation π of order n.

1. Set list := ∅.
2. while π is not the identity permutation do

if π has a descending strip then

Compute the smallest element k inside a descending strip of π.
Compute the position i of k in π and the position i′ of k − 1 in π.
if i < i′ then

ρ := (i + 1, i′)-reversal of ext(π)
else {i > i′}

ρ := (i′ + 1, i)-reversal of ext(π)
if πρ has no descending strip then

Compute the largest element l in a descending strip of π.
Compute the position j of l in π and the position j′ of l + 1 in π.
if j < j′ then

ρ := (j, j′ − 1)-reversal of ext (π)
else {j > j′}

ρ := (j′, j − 1)-reversal of ext(π)
else {π has no descending strip}

ρ := reversal cutting at the first two breakpoints of ext(π)
π := πρ
list := list ∪ ρ

Output: The list list of reversals.

These considerations imply that k has to lie within the part of the permu-
tation reversed by σ, since otherwise the descending strip containing k in π
would be preserved in πσ. Analogously, l has to lie inside the interval reversed
by ρ. We now show that this implies ρ = σ.

If we assume ρ 6= σ, then there exists a strip belonging to the interval
of only one of the two reversals, and, without loss of generality, only to the
interval of ρ. If this strip is ascending in π, it is descending in πρ; if it is
descending in π, it is preserved or even prolonged in πσ. Since neither of
these cases is possible, no such strip exists, and thus ρ = σ. The reversal
ρ = σ hence eliminates two breakpoints since it brings k and k − 1 as well as
l and l+ 1 next to each other in πρ. ut

Lemmas 10.3, 10.4, and 10.5 now imply a 2-approximation algorithm for
the MinSR problem (see Algorithm 10.1).

Before we start proving the approximation ratio of Algorithm 10.1, we
illustrate its work with an example.

Example 10.4. We consider the permutation π = (3, 4, 1, 2, 7, 8, 5, 6). An op-
timal sequence of reversals for sorting π is shown in Figure 10.6 (a), Figure
10.6 (b) shows the sequence of reversals computed by Algorithm 10.1. In Fig-
ure 10.6 (b), the ascending strips are marked with arrows from left to right,
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Fig. 10.6. Sorting the permutation π = (3, 4, 1, 2, 7, 8, 5, 6). (a) An optimal reversal
sequence; (b) the sequence computed by Algorithm 10.1

and the descending strips are marked with arrows from right to left. In the
given permutation ext(π), there are no descending strips; hence, the algorithm
reverses the strip between the first two breakpoints. This reversal does not
eliminate any breakpoint. In the next step, 3 is the smallest element in a de-
scending strip, and the algorithm tries to place element 3 next to element 2
by a reversal. The algorithm succeeds by reversing the strip (1, 2); this leads
to a permutation that still has a descending strip, (4, 3, 2, 1). Trying to place
the smallest element 1 in this descending strip next to 0 fails, since this would
generate a permutation without descending strips. The algorithm thus places
the largest element 4 in the descending strip next to 5. This results in a per-
mutation containing the descending strip (8, 7). Using two further reversals,
placing the smallest element in a descending strip next to its predecessor, the
algorithm eventually reaches the identity permutation after five reversals.

But the optimal solution only needs four reversals, as shown in Figure 10.6
(a). Note that two of the reversals cut at positions inside a strip, while the
algorithm generally cuts at breakpoints only. This shows that in general it
may be advantageous to split already sorted regions. ♦

Theorem 10.2. Algorithm 10.1 is a polynomial-time 2-approximation algo-
rithm for the MinSR problem.

Proof. According to Lemma 10.1, it suffices to prove that every reversal com-
puted by the algorithm eliminates one breakpoint on average.

If the current permutation contains a descending strip, the reversal carried
out by the algorithm eliminates one breakpoint, according to Lemma 10.3,
if the resulting permutation also contains a descending strip. If the resulting
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permutation consists of ascending strips only, the executed reversal eliminates
two breakpoints, according to Lemma 10.5.

If the current permutation consists of ascending strips only, the executed
reversal does not increase the number of breakpoints, according to Lemma
10.4. This situation can only occur at the very beginning of the computation
or immediately after a reversal eliminating two breakpoints. Thus, every such
reversal, except the one at the very beginning, can be compensated by the
preceding reversal to achieve two eliminated breakpoints by two reversals. The
reversal at the beginning of the computation can be compensated by the last
reversal, which has to eliminate two reversals since there does not exist any
permutation with exactly one breakpoint.

Overall, each reversal carried out by the algorithm eliminates at least one
breakpoint on average. ut

We will now analyze the time complexity of Algorithm 10.1. A permuta-
tion of order n can contain at most n + 1 breakpoints. Since the number of
breakpoints is on average reduced by at least one with each executed reversal,
the algorithm needs at most n + 1 executions of the outer while loop. The
operations in each execution of the while loop, i.e., the computation of the
descending strips in at most two different permutations, can obviously be done
in linear time. Overall, this results in time complexity of O(n2) for sorting a
permutation of order n.

There are several other approximation algorithms known for the MinSR
problem. Currently, the best known algorithm was designed by Berman et
al. [31] and reaches an approximation ratio of 1.375. This algorithm is based
on technically very involved constructions; we will thus not present it here.

10.3 Sorting Directed Permutations

In this section we deal with the problem of sorting a directed permutation by
reversals. As already described in Section 10.1, a directed permutation is one
where each element additionally gets assigned one of two directions. We start
with a more formal definition.

Definition 10.6. A directed permutation of order n is defined as an n-tuple

π = (π1, . . . , πn), where πi ∈ {
−→
1 , . . . ,−→n ,

←−
1 . . . ,←−n } for 1 6 i 6 n, such that

from each set {
−→
j ,
←−
j }, 1 6 j 6 n, exactly one element occurs in π.

Moreover, let
−−−→
Permn denote the set of all directed permutations of order

n.

For example,
−→
1
←−
3
←−
5
−→
2
←−
4 is a directed permutation of order 5.

We will now formally define the notion of a reversal for a directed permu-
tation.
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Definition 10.7. Let π = (π1, . . . , πn) be a directed permutation of order n.

For 1 6 i 6 j 6 n, an (i, j)-reversal of order n is a function ρ(i, j) :
−−−→
Permn →

−−−→
Permn such that

π · ρ(i, j) = (π1, . . . , πi−1, πj , πj−1, . . . , πi+1, πi, πj+1, . . . , πn),

where πk = −→x if πk =←−x , and πk =←−x if πk = −→x , for all 1 6 k 6 n.

An example for the application of reversals to a directed permutation is
shown in Figure 10.2 in Section 10.1.

We can now formally define the problem of sorting a directed permutation
with a minimum number of reversals as follows.

Definition 10.8. The problem of sorting a directed permutation with a mini-
mum number of reversals, the MinOSR problem, is the following optimization
problem:

Input: A natural number n and two directed permutations π and σ of order n.
Feasible solutions: Every sequence ρ1, . . . , ρt of reversals of order n, such that

πρ1 . . . ρt = σ.
Costs: For each feasible solution ρ1, . . . , ρt, the costs are given by the number

t of reversals.
Optimization goal: Minimization.

Note that in the case of directed permutations, the choice of the permu-
tation σ, into which π has to be transformed, really does matter. In contrast
to the undirected case, transforming π into the directed identity permutation

(
−→
1 ,
−→
2 , . . . ,−→n ) is a proper subproblem of the MinOSR problem.

Also, we can ask whether the problem it is efficiently solvable. But in
contrast to the case of the undirected permutations, the answer is surprisingly
positive, as shown by the following theorem.

Theorem 10.3. The MinOSR problem is optimally solvable in polynomial
time. ut

Theorem 10.3 was proved in 1995 by Hannenhalli and Pevzner [96]. But
the algorithm by Hannenhalli and Pevzner is technically quite involved; thus,
we skip it here.

Up to now, we have always modeled a genome by a linear sequence of
genes. But in many organisms the genes are distributed over several chromo-
somes. In this case, a genome can be modeled as an (unordered) set of linear
gene sequences. The operations on such genomes are not limited to intrachro-
mosomal ones such as reversals, but they also include translocations cutting
off part of a chromosome and appending it to another chromosome. Comput-
ing a minimal sequence of operations from this extended operation set that
transforms a given genome into another one is also possible in polynomial
time as shown by Hannenhalli and Pevzner [97]. This construction uses simi-
lar techniques as the proof of Theorem 10.3 in [96], but it is technically even
more involved.
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10.4 Computing the Syntenic Distance

In the preceding sections we presented different methods for comparing two
genomes whose sequences of genes were known to us. But in many cases we
do not have such exact data. For a given genome with several chromosomes,
it is easier to find out the assignment of the genes to the chromosomes than to
determine the exact order of the genes. Also, this data, though less precise, can
be used to estimate the distance between genomes. In this model, we consider
three types of interchromosomal mutations: the division of a chromosome into
two parts, called fission, the merging of two chromosomes into one, called
fusion, and the so-called translocation, where a part is cut off from each of
two chromosomes each and appended to the other chromosome. The minimum
number of such operations necessary to transform a given genome into another
one is called the syntenic distance of the genomes.6

For the formal definition of this model, we assume that the set of genes is
the same in both considered genomes, or put another way, we only consider
the genes for which we also know their homologue in another genome.

Consider two genomes G1 and G2, let G = {g1, . . . , gm} be the set of genes
occurring in both genomes. Then, in our context, we can describe G1 and G2

as two partitions G1 = {S1, . . . , Sk} and G2 = {T1, . . . , Tn} of G, where the
single sets of the partitions correspond to the chromosomes. Our task now is
to transform the partition G1 into the partition G2 using the smallest possible
number of operations modeling the interchromosomal mutations as described
above.

Before we present a formal definition of this model, we briefly discuss its
drawbacks. There are several reasons why the syntenic distance calculated
within this model can differ significantly from the true evolutionary distance
of the genomes. The main problem is that, in nature, genes are linearly ordered
on a chromosome, and translocations occurring in nature only exchange parts
of the chromosomes, while retaining the order of the genes, such as with
the reciprocal translocations shown in Figure 10.1 (c). This can lead to the
situation where the computed syntenic distance is smaller than the number
of real transformations. Another problem with the model is that, in nature,
fusions and fissions are much scarcer than reciprocal translocations, in contrast
to our model where all operations are counted with the same weight. Moreover,
the synteny data used in practice is often incomplete, since not all genes in the
given genomes are known and not all homologies between the known genes
have been determined.

In spite of all these problems, computing the syntenic distance can be a
sensible model for computing the distance between genomes where the true
order of the genes is unknown.

For formally describing a genome and the operations on it, we use a slightly
generalized model. As a ground set (set of genes) we allow an arbitrary finite

6 This notion goes back to the fact that two genes lying on the same chromosome
are called syntenic.
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set, and as a genome over this ground set we allow an arbitrary family of
nonempty subsets of the ground set whose union equals the ground set, i.e.,
we allow a gene to occur on different chromosomes. This generalization of the
definition will later allow for a reformulation of the problem which makes the
proofs easier.

Definition 10.9. Let G = {g1, . . . , gm} be a set and let G1 = {S1, . . . , Sk} and

G2 = {T1, . . . , Tn}, where Si ⊆ G, Si 6= ∅, for all 1 6 i 6 k, and
⋃k

i=1 Si = G;
and Tj ⊆ G, Tj 6= ∅, for all 1 6 j 6 n, and

⋃n
j=1 Tj = G.

We call G1 and G2 genomes over G. We denote the set of all genomes over
G by ΓG. The following three operations are called syntenic operations:

• A fusion is a function φ : ΓG → ΓG such that the following holds for
G2 = φ(G1): There exist i1, i2 ∈ {1, . . . , k} and j1 ∈ {1, . . . , n} such that
Si1 ∪ Si2 = Tj1 and {Si | i /∈ {i1, i2}} = {Tj | j 6= j1} hold.

• A fission is a function ψ : ΓG → ΓG such that the following holds for
G2 = ψ(G1): There exist i1 ∈ {1, . . . , k} and j1, j2 ∈ {1, . . . , n} such that
Si1 = Tj1 ∪ Tj2 and {Si | i 6= i1} = {Tj | j /∈ {j1, j2}} hold.

• A translocation is a function ρ : ΓG → ΓG such that the following holds
for G2 = ρ(G1): There exist i1, i2 ∈ {1, . . . , k} and j1, j2 ∈ {1, . . . , n} such
that Si1 ∪ Si2 = Tj1 ∪ Tj2 and {Si | i /∈ {i1, i2}} = {Tj | j /∈ {j1, j2}} hold.

Informally speaking, a fusion corresponds to merging two chromosomes, a
fission corresponds to breaking one chromosome into two, and a translocation
corresponds to the exchange of genes between two chromosomes.

Now we are ready to define the syntenic distance of two genomes formally.

Definition 10.10. Let G be a finite set and let G1 and G2 be two genomes
over G. Then we define the syntenic distance syn(G1,G2) of G1 and G2 as the
minimum number of syntenic operations necessary to transform G1 into G2.

We illustrate the definitions with an example.

Example 10.5. LetG = {g1, . . . , g8} be a set and let G1 = {{g1, g3, g4}, {g2, g6},
{g5, g7, g8}} and G2 = {{g1, g2}, {g3, g4, g5}, {g6, g7, g8}} be two genomes.
Then, G1 can be transformed into G2 by the following operations:

G1 = {{g1, g3, g4}, {g2, g6}, {g5, g7, g8}}
fusion
−→ {{g1, g3, g4}, {g2, g5, g6, g7, g8}}

translocation
−→ {{g1, g2}, {g3, g4, g5, g6, g7, g8}}

fission
−→ {{g1, g2}, {g3, g4, g5}, {g6, g7, g8}} = G2

Here, the first executed operation is a fusion of the second and the third
subsets. The second operation is a translocation exchanging the elements g3

and g4 from the first subset for the element g2 from the second subset. In the
last step, a fission of the second subset is executed.
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But this sequence of operations is not optimal; the transformation of G1

into G2 is also possible using only two translocations:

G1 = {{g1, g3, g4}, {g2, g6}, {g5, g7, g8}}

−→ {{g1, g2}, {g3, g4, g6}, {g5, g7, g8}}

−→ {{g1, g2}, {g3, g4, g5}, {g6, g7, g8}} = G2

♦

Lemma 10.6. Let G be a finite set. Then the syntenic distance syn is a met-
ric7 on ΓG.

Proof. Obviously, syn(G,G) = 0 holds for any G ∈ ΓG, since no syntenic
operation is needed to transform G into itself. It is also clear that the tri-
angle inequality syn(G1,G2) 6 syn(G1,G3) + syn(G3,G2) is satisfied for all
G1,G2,G3 ∈ ΓG. It remains for us to show that the syntenic distance is sym-
metric, i.e., that syn(G1,G2) = syn(G2,G1) holds for all G1,G2 ∈ ΓG. This
immediately follows from the fact that there exists an inverse operation for
each syntenic operation. For a fission, this is the fusion of the two constructed
subsets; for a fusion, it is an appropriate fission; and for any translocation,
there obviously exists another translocation undoing it. ut

According to the symmetry shown in Lemma 10.6, we can assume with-
out loss of generality that the second genome does not contain fewer subsets
(chromosomes) than the first one. We will now formally define the problem of
determining the syntenic distance.

Definition 10.11. The problem of computing the syntenic distance, the Min-
Synteny problem, is the following optimization problem:

Input: A finite set G and two genomes G1,G2 ∈ ΓG.
Feasible solutions: Every sequence θ1, . . . , θl of syntenic operations satisfying
G1θ1 · · · θl = G2.

Costs: For a feasible solution θ1, . . . , θl, the costs are cost(θ1, . . . , θl) = l.
Optimization goal: Minimization.

As the following theorem shows, the MinSynteny problem is a hard op-
timization problem, and thus also the computing problem is hard.

Theorem 10.4. The MinSynteny problem is NP-hard. ut

Theorem 10.4 was proved by DasGupta et al. [55], we skip the proof here.
In the following we show that the MinSynteny problem can be approxi-

mated with an approximation ratio of 2.
As the first step, we present a method for transforming any input instance

of the MinSynteny problem to some type of normal form that will facilitate
our proofs.

7 Recall that a metric on a set S is a function d : S × S → � � 0 satisfying the
conditions d(x, x) = 0, d(x, y) = d(y, x) (symmetry), and d(x, y) � d(x, z)+d(z, y)
(triangle inequality) for all x, y, z ∈ S.
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Definition 10.12. Let G be a finite set and let G1 = {S1, . . . , Sk} ∈ ΓG and
G2 = {T1, . . . , Tn} ∈ ΓG be two genomes over G, where n > k.

We define G′ = {1, . . . , n}, G′2 = {{1}, . . . , {n}}, and G ′1 = {S′1, . . . , S
′
k},

where
S′i =

⋃

x∈Si

{j | x ∈ Tj}

for all 1 6 i 6 k. The pair (G ′1,G
′
2) is then called the compact representation

of (G,G1,G2).

The following example illustrates the computation of the compact repre-
sentation.

Example 10.6. Consider G = {g1, . . . , g8} and the genomes

G1 = {{g1, g3, g4}, {g2, g6}, {g5, g7, g8}}

and
G2 = {{g1, g2}, {g3, g4, g5}, {g6, g7, g8}}

from Example 10.5.
Then, G′ = {1, 2, 3} holds, and thus G ′2 = {{1}, {2}, {3}}. The first subset

of G1 contains elements from the first and the second subset of G2, the second
subset of G1 contains elements from the first and the third subset of G2, and
the third subset of G1 contains elements from the second and the third subset
of G2. Hence, G′1 = {{1, 2}, {1, 3}, {2, 3}}. ♦

The compact representation of an input instance for the MinSynteny
problem is obviously computable in polynomial time. The following lemma
shows that (G′1,G

′
2) can really be used as a representation of (G,G1,G2).

Lemma 10.7. Let G be a finite set and let G1 = {S1, . . . , Sk} ∈ ΓG and
G2 = {T1, . . . , Tn} ∈ ΓG be two genomes over G, where n > k. Moreover, let
(G′1,G

′
2) be the compact representation of (G,G1,G2).

Then, syn(G1,G2) = syn(G′1,G
′
2).

Proof idea. The proof of the claim is based on the following idea: To
transform G1 into G2 by a sequence of syntenic operations, in the set Si,
1 6 i 6 k, all the elements that are to be transferred into the same set Tj can
be grouped together. Then it is possible to show that there always exists an
optimal sequence of syntenic operations where no such group of elements is
divided by fission or translocation.

This means that every set {j} in the definition of G ′2 stands for the subset
Tj of G2, and every j ∈ S′i in the definition of G′1 stands for the set of all
elements that have to be moved to Tj . �

Note that the definition of G ′1 may lead to the situation where an element
j might occur in several sets S ′i, as we have seen in Example 10.6. This is the
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reason we defined the syntenic operations not just for partitions of a ground
set in Definition 10.9.

For the remainder of this section we assume that all input instances for the
MinSynteny problem are given by their compact representation. An input
instance for the MinSynteny problem can be described by a graph as follows.

Definition 10.13. Let I = (G1,G2) be the compact representation of an input
instance for the MinSynteny problem, where G2 = {{1}, . . . , {n}} and G1 =
{S1, . . . , Sk}. The synteny graph for I is an undirected graph Syngraph(I) =
(V,E) with V = G1 and {Si, Sj} ∈ E if and only if i 6= j and Si ∩ Sj 6= ∅, for
all 1 6 i, j 6 k.

If p is the number of connected components of Syngraph(I), we say that p
is the number of components of I.

Informally, the synteny graph can be described as the intersection graph
of the sets from G1.

We now show how to derive a lower bound on the syntenic distance based
on the number of components of the input instance.

Lemma 10.8. Let I = (G1,G2) be the compact representation of an input
instance for the MinSynteny problem with p components. Moreover, let G2 =
{{1}, . . . , {n}} and G1 = {S1, . . . , Sk}.

Then, syn(G1,G2) > n− p.

Proof. Let θ1, . . . , θm be an optimal sequence of syntenic operations for I . Let
H0 = G1 and let Hl = G1θ1 . . . θl for all 1 6 l 6 m. Moreover, let Il = (Hl,G2)
for all 0 6 l 6 m. According to our assumption, p is the number of components
of I0, and n is the number of components of Im. We show that Il can have at
most one more component than Il−1. This immediately implies the claim.

Let Hl−1 = {T1, . . . , Tkl−1
} and Hl = {T ′1, . . . , T

′
kl
}. We distinguish three

cases according to the type of the syntenic operation θl.

• If θl is a fusion merging Ti and Tj to yield T ′q, then the two components
containing Ti and Tj in Syngraph(Il−1) are also merged in Syngraph(Il),
and all other components remain the same. In this case Syngraph(Il) hence
has at most as many components as Syngraph(Il−1).

• If θl is a fission dividing Ti into T ′q and T ′r, then there are two possi-
ble situations. If the component of Syngraph(Il−1) containing Ti remains
connected without Ti, then T ′q and T ′r lie inside the same component in
Syngraph(Il), and the number of components does not change. If the com-
ponent C of Syngraph(Il−1) containing Ti gets disconnected without Ti,
then Syngraph(Il) has exactly one component more than Syngraph(Il−1),
since all vertices from C lie either in the component of T ′q or in the com-
ponent of T ′r in Syngraph(Il).

• If θl is a translocation that transforms Ti and Tj into the new sets T ′q
and T ′r, we again distinguish two situations. If the vertices T ′q and T ′r are
connected by an edge in Syngraph(Il), then Syngraph(Il) has at most as
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Algorithm 10.2 Approximation algorithm for the MinSynteny problem

Input: The compact representation I = (G1,G2) of an input instance for the Min-
Synteny problem, where G2 = {{1}, . . . , {n}} and G1 = {S1, . . . , Sk}.

1. Compute the synteny graph Syngraph(I) and determine its connected compo-
nents C1, . . . , Cp.

2. For each connected component, execute as many fusions as necessary to shrink
it to a single vertex.

3. Separate the single elements within each vertex by a sequence of fissions.

Output: The sequence of executed fusions and fissions.

many components as Syngraph(Il−1), since every path through Ti or Tj in
Syngraph(Il−1) can be substituted by a path through T ′q or T ′r, or both, in
Syngraph(Il). If the edge between the vertices T ′q and T ′r is missing, then
Syngraph(Il) has at most one more component than Syngraph(Il−1), since
deleting an edge can increase the number of components by at most one.

ut

Now, Algorithm 10.2 computes a 2-approximation for the MinSynteny
problem; it uses only fusions and fissions.

Theorem 10.5. Algorithm 10.2 is a polynomial-time 2-approximation algo-
rithm for the MinSynteny problem.

Proof. Let ki be the number of vertices within the component Ci and let ni

be the number of all distinct elements in all sets in Ci, for all 1 6 i 6 p.
According to the definition of Syngraph(I),

∑p
i=1 ni = n and

∑p
i=1 ki = k

hold. The algorithm executes exactly ki − 1 fusions and ni − 1 subsequent
fissions for each component Ci; this adds up to n+k−2p syntenic operations.
From n > k we know that n+ k− 2p 6 2 · (n− p). Since according to Lemma
10.8 at least n − p syntenic operations are necessary, the algorithm yields a
2-approximation.

All steps of the algorithm are obviously executable in polynomial time; an
efficient algorithm for computing the connected components of a graph can
be found in Chapter 21 of the book by Cormen et al. [51]. ut

The following example shows that there exists an input where Algorithm
10.2 needs exactly twice as many syntenic operations as an optimal solution.

Example 10.7. Let I = (G1,G2) be the compact representation of an input
instance for the MinSynteny problem, where G2 = {{1}, . . . , {n}} and G1 =
{{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , n}}.

Then the synteny graph for i consists of exactly one component, and Al-
gorithm 10.2 executes n− 1 fusions and n− 1 fissions.

But, in this example, n − 1 translocations are sufficient: First, execute a
translocation transforming the sets {1, 2, . . . , n− 1} and {1, 2, . . . , n} into the
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sets {1, 2, . . . , n− 1} and {n}, and continue this iteratively to transform the
sets {1, 2, . . . , n− i} and {1, 2, . . . , n− i+1} into the sets {1, 2, . . . , n− i} and
{n− i+ 1}. ♦

10.5 Summary

One approach for estimating the degree of relationship between organisms or
species is the comparison of whole genomes, based on the order of the genes.
This approach is especially useful for comparing closely related genomes where
the sequences of homologous genes do not differ too much, but the order of
the genes within the genome is rather different.

In genome rearrangements, one assumes that a linear order of the genes is
known for two given genomes, and that one order has been reached from the
other by a sequence of operations such as reversals. One tries to find a sequence
of as few reversals as possible that produces this transformation. The problem
can be modeled by undirected permutations if the reading direction of the
genes is unknown. The resulting optimization problem is NP-hard, but there
exist several approximation algorithms. If, additionally, the reading direction
of the genes is known, the problem can be modeled by directed permutations,
which leads to an optimization problem that is solvable in polynomial time.

Another model for comparing whole genomes is the computation of the
syntenic distance. Here, one assumes that the genes of a genome are spread
over several chromosomes, and that only the corresponding chromosomes are
known for the genes, not the exact order of the genes. Computing the syntenic
distance is also NP-hard, and for this problem there are also approximation
algorithms known with a constant approximation ratio.
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in the books by Setubal and Meidanis [180] and Pevzner [159].
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al. [31].

A polynomial-time algorithm for sorting a directed permutation by rever-
sals was invented by Hannenhalli and Pevzner [96]; simplifications to their
proof can be found in the papers by Bergeron [28] and Bergeron et al. [29].
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The paper by Hannenhalli and Pevzner [96] also contains the biological ex-
ample shown in Figure 10.2. More efficient algorithms for sorting directed
permutations were designed by Berman and Hannenhalli [30] and by Kaplan
et al. [113]. A generalization of this approach to genomes with more than one
chromosome is also due to Hannenhalli and Pevzner [97].

The model of the syntenic distance was proposed by Ferretti et al. [73], the
approximation algorithm presented is due to DasGupta et al. [55]. The model
was further investigated by Liben-Nowell and Kleinberg [136, 138, 122, 137]
and by Pisanti and Sagot [162]. The suitability of syntenic data for estimating
distances between genomes was investigated by Ehrlich et al. [174, 65] using
statistical methods.

A detailed overview of the different models of genome rearrangements
containing several approaches not presented in this book is given in the paper
by Sankoff and El-Mabrouk [173]. Another approach, investigated by Bafna
and Pevzner [20], sorts a permutation by transpositions (see Figure 10.1 (b)).

Instead of merely counting the number of operations required to transform
one genome into another, Pinter and Skiena [161] considered weighted reversal
operations, assigning a certain weight to each reversal with respect to the
length it operates on, and tried to find a reversal sequence of minimum weight.
Further studies in this context were performed by Bender et al. [24] and
Swidan et al. [188].
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Phylogenetic Trees

An important topic in biology is the reconstruction of kindred relations within
a given set of biological objects. These objects can, for example, be different
biological species or even different single genes. In this context, these objects
are often called taxa.1 The most commonly used approach for reconstructing
relations between taxa is the construction of a phylogenetic tree, also called
phylogeny for short. This denotes a tree where each leaf is labeled with exactly
one of the taxa and where the inner vertices represent their hypothetical
ancestors, such that the distance between two taxa in the tree serves as a
measure for their degree of relationship.

There are many different models and approaches for constructing phyloge-
netic trees, some of which we will present in this chapter. The different models
can, on the one hand, be classified by the goal they are trying to reach, i.e.,
by the conditions the constructed tree has to satisfy, and, on the other hand,
by the type of given information about the relation of the taxa.

In most cases, we assume that a phylogenetic tree is a binary tree, i.e.,
that each inner vertex has exactly three neighbors (except for a root vertex, if
it exists, which may have two neighbors). If there is a root known in the tree,
it represents the common ancestor of all taxa. In this case, the tree determines
an unambiguous direction of evolution. Restricting ourselves to binary trees
means that we assume that an elementary evolutionary step always consists
of dividing one taxon into two different taxa. Some methods for determining
phylogenies do not allow us to deduce the direction of evolution. In this case,
we can only construct an undirected tree without a distinct root vertex. An-
other difference between the approaches is that we are in many cases only
able to determine the topology of the tree, i.e., its branching structure, but
in other cases we are also able to assign lengths to the edges of the tree that
correspond to the time that has passed between the two branching events at

1 The notion taxa (in singular, taxon) is derived from taxonomy (from the Greek
taxis = order, classification), denoting the classification of organisms in a biolog-
ical system.
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the ends of the edge, or the time from the last branching event up to the
present if the edge is incident to a leaf.

According to the data given for constructing the phylogenetic tree, we
distinguish mainly two types of information. The first type of information
is a distance measure assigning a distance to each pair of taxa. This can for
example be an alignment score if the taxa are given as homologous genes from
different individuals, or it can be any of the measures for the comparison of
whole genomes, as described in Chapter 10, if the taxa are whole genomes
(or their respective biological species). The other type of information that
can serve as an input is a set of attributes (often called characters) that can
take one of finitely many values (often called states) for each of the taxa,
together with a matrix describing which state each character takes for each
taxon. If the taxa are biological species, the characters might be phenotypical
data like the number of legs, the ability to fly, or the color of hair, but may
also be genotypical data like the number of chromosomes, the presence of
distinct genes, or something similar. If we want to construct a phylogenetic
tree for a set of homologous genes, we can also use a multiple alignment of the
gene sequences for determining the characters; every position of the alignment
defines a character; the state at a position corresponds to the nucleotide at
the position.

As we can see from the above discussion, constructing phylogenetic trees
is a very extensive area; it would require a book of its own to cover the topic
in depth. We thus limit ourselves here to presenting some examples for algo-
rithmically interesting approaches. The chapter is organized as follows: In the
first two sections we present two approaches for constructing a phylogenetic
tree from the pairwise distances of the given taxa. Section 11.1 deals with
the special case of ultrametric distances; in this case, the constructed phylo-
genetic tree can be uniquely determined. In Section 11.2 we characterize the
set of distance measures for which it is possible to construct a phylogenetic
tree that reflects the given distances. The next two sections are dedicated
to determining a phylogenetic tree from character data. In Section 11.3 we
investigate characters that can have only two distinct states, and in Section
11.4 we present some methods using the DNA sequences of homologous genes
as character data. The chapter closes with a summary in Section 11.5 and
bibliographic notes in Section 11.6.

11.1 Ultrametric Distances

In this section we deal with computing a phylogenetic tree for a given set of
taxa for which a distance measure is known for the pairwise distances between
the taxa. We do not investigate arbitrary distance measures, but only those
having some useful properties. To describe these properties in greater detail,
we first need the formal definition of a metric.
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Definition 11.1. Let A be a set of taxa. Let d : A×A→
�

>0 be a function.
Then, d is a metric on A if it satisfies the following properties:

(i) For all a, b ∈ A, d(a, b) = 0 holds if and only if a = b.
(ii) For all a, b ∈ A, d(a, b) = d(b, a) (symmetry).
(iii) For all a, b, c ∈ A, d(a, b) 6 d(a, c) + d(c, b) (triangle inequality).

In the following, we consider a further restriction of metric distance mea-
sures, as described by the following definition.

Definition 11.2. Let A be a set of taxa. Let d : A×A→
�

>0 be a metric on
A. Then d is a ultrametric if it additionally satisfies the following three point
condition:

For all a, b, c ∈ A, two of the distances d(a, b), d(a, c), d(b, c) are equal
and not smaller than the third one.

The three point condition says that, for three arbitrarily chosen taxa
a, b, c ∈ A, one of the conditions d(a, b) 6 d(a, c) = d(b, c), d(a, c) 6 d(a, b) =
d(b, c), and d(b, c) 6 d(a, b) = d(a, c) holds. This means that the three point
condition is a stronger restriction than the triangle inequality.

Our goal is to find a phylogenetic tree with a root where the edge lengths
are also known, and where the path lengths from the root to a leaf are equal
for all leaves. Here, the length of a path is defined, as usual, as the sum of
edge lengths on the path. Such a phylogenetic tree is called an ultrametric
tree. An ultrametric tree corresponds to an ideal model of evolution where the
evolution speed is the same within each branch of the tree.

We start with a formal definition of an ultrametric tree.

Definition 11.3. Let A = {a1, . . . , an} be a set of taxa. A directed edge-
weighted tree T = (V,E, d) with root r and edge weight function d : E →

�
>0

is an ultrametric tree for A if it satifies the following conditions:

(i) T is a binary tree, i.e., every inner vertex of T has exactly two successors.
(ii) T has exactly n leaves, labeled with the taxa {a1, . . . , an}.
(iii) The sum of edge weights on every path from the root to any leaf is the

same.

The distance between two arbitrary vertices x and y of T is the sum of edge
weights on the path from x to y in T ; we denote it by distT (x, y).

We first illustrate Definition 11.3 with an example.

Example 11.1. In Figure 11.1, an ultrametric tree for the taxa {a, b, c, d, e}
is shown. Since the direction of the edges is uniquely determined by fix-
ing the root, we have not shown it explicitly in the figure. In this example,
distT (r, x) = 6 holds for all leaves x ∈ {a, b, c, d, e}. ♦
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Fig. 11.2. The situation in the proof of Lemma 11.1

We show that an ultrametric tree for a given set of taxa, together with a
given distance measure where the distances between the leaves correspond to
the given distances between the taxa, exists if and only if the given distance
measure is an ultrametric. We start by proving one direction of this claim.

Lemma 11.1. Let A be a set of taxa and let T = (V,E, d) be an ultrametric
phylogenetic tree for A. Then, the distances distT between the taxa in T define
an ultrametric on A.

Proof. Let a, b, c ∈ A be three leaves in T . It suffices to show that distT (a, b),
distT (a, c), and distT (b, c) satisfy the three point condition, since conditions (i)
and (ii) of Definiton 11.1 are trivially satisfied and the three point condition is
a stronger condition than the triangle inequality. We first assume that a = b
holds. Then,

0 = distT (a, b) 6 distT (a, c) = distT (b, c);

hence, the three point condition is satisfied. In the following, we assume that
a, b, and c are pairwise distinct. Without loss of generality, we further assume
that there exists a vertex v that is a common ancestor of a and b, but not
of c. Moreover, let u be the least common ancestor of a, b, and c, and let r
denote the root of T . This leads to the situation shown in Figure 11.2. Since
T is an ultrametric tree, we know that

distT (r, a) = distT (r, b) = distT (r, c). (11.1)

Since the paths from r to a and from r to b differ only below v, this also
implies that distT (v, a) = distT (v, b). Thus,

distT (a, c) = distT (a, v) + distT (v, c) = distT (b, v) + distT (v, c) = distT (b, c).
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To satisfy the three point condition, it remains for us to show that distT (a, b) 6

distT (a, c) holds. Equation (11.1) implies distT (u, a) = distT (u, c). Thus,

distT (a, c) = 2 · distT (a, u)

= 2 · (distT (a, v) + distT (v, u))

> 2 · (distT (a, v))

= distT (a, b).

The distances between the taxa a, b, and c hence satisfy the three point
condition, and distT is thus an ultrametric. ut

We now constructively prove the other direction, showing that there always
exists an ultrametric tree for a set A of n taxa for any given ultrametric
distance function on A. We design an algorithm constructing an ultrametric
tree for this type of input. The algorithm is based on the following idea.

The vertices of the tree will be subsets of A. The algorithm starts with
the set of all singleton subsets of A as vertices and computes their pairwise
distances. The vertices will later become the leaves of the tree, but they are
not yet connected. Next, the algorithm chooses two subsets at the minimum
distance in the forest constructed so far that do not yet have an ancestor in
the forest, and their union is added as a vertex to the forest, connected via
edges to the two chosen subsets. Then the algorithm calculates the distance
of the new vertex to all other vertices in the graph. After n − 1 steps, this
yields a tree whose root is labeled with the whole set A. As we later show, the
tree constructed in this way is ultrametric. This idea is described in greater
detail in Algorithm 11.1, also called the UPGMA algorithm 2.

Before we prove the correctness of the UPGMA algorithm, we first illus-
trate its work with an example.

Example 11.2. Consider the set A = {a, b, c, d, e} of taxa with the following
distance function δ : A×A→ � :

δ a b c d e
a 0 12 12 12 12
b 12 0 4 6 6
c 12 4 0 6 6
d 12 6 6 0 2
e 12 6 6 2 0

It is easy to check that δ is an ultrametric distance function. The work of
Algorithm 11.1 on the input A and δ is shown in Figure 11.3. There, for each
step of the algorithm the already constructed part of the ultrametric tree as
well as the distance function dist on the current set Γ are shown. As can be
seen from the figure, the algorithm outputs the ultrametric tree from Example
11.1. ♦

2 The acronym UPGMA stands for Unweighted Pair Group Method with Arithmetic
Mean.
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dist {a} {b} {c} {d} {e}
{a} 0 12 12 12 12
{b} 12 0 4 6 6
{c} 12 4 0 6 6
{d} 12 6 6 0 2
{e} 12 6 6 2 0

dist {a} {b} {c} {d, e}
{a} 0 12 12 12
{b} 12 0 4 6
{c} 12 4 0 6
{d, e} 12 6 6 0

dist {a} {b, c} {d, e}
{a} 0 12 12
{b, c} 12 0 6
{d, e} 12 6 0

dist {a} {b, c, d, e}
{a} 0 12

{b, c, d, e} 12 0

Fig. 11.3. The work of Algorithm 11.1 on the input instance from Example 11.2
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Algorithm 11.1 UPGMA algorithm for constructing an ultrametric tree

Input: A set A = {a1, . . . , an} of taxa and an ultrametric distance function δ :
A×A→ ��� 0.

1. Initialization:
a) Define Γ := {{a1}, . . . , {an}}.
b) Define dist({ai}, {aj}) := δ(ai, aj) for all i, j ∈ {1, . . . , n}.
c) Define height({ai}) := 0 for all i ∈ {1, . . . , n}.
d) Let V := Γ and E := ∅.

2. while |Γ | � 2 do

a) Find C1, C2 ∈ Γ , C1 6= C2, such that dist(C1, C2) is minimal, and define
D := C1 ∪ C2.

b) Let Γ := (Γ − {C1, C2}) ∪ {D}.

c) Let dist(D, X) = dist(X, D) :=
dist(C1, X) + dist(C2, X)

2
for all X ∈ Γ .

d) Define V := V ∪ {D} and E := E ∪ {(D, C1), (D, C2)}.

e) Define height(D) :=
dist(C1, C2)

2
.

f) Define d(D, C1) := height (D)− height(C1) and
d(D, C2) := height (D)− height(C2).

Output: The ultrametric tree T = (V, E, d) for A.

We now prove the correctness of the UPGMA algorithm and estimate its
running time.

Theorem 11.1. For a given set A = {a1, . . . , an} of taxa and an ultrametric
distance function δ on A, Algorithm 11.1 computes an ultrametric tree for A
in O(n3) time.

Proof. We start with proving the correctness of Algorithm 11.1. The algorithm
obviously constructs a tree. It starts with the set of leaves {a1}, . . . , {an} and
adds a new vertex in each execution of the while loop in step 2 (d) that merges
two already existing subtrees. By definition of the edge weights in step 2 (f)
it is clear that in every subtree the distance from its root to all leaves is the
same. We call this distance from a vertex X to all leaves in the subtree rooted
at X the height of X , and we denote it by height(X). The height is initialized
with 0 in step 1 (c) for the leaves and calculated for a new vertex in step 2
(e).

It remains for us to show that the edge weights computed in step 2 (f) are
well defined, i.e., that they will never get negative. To prove this, it suffices
to show, for a newly constructed vertex D with its children C1 and C2, that
height(D) > height(C1) and height(D) > height(C2) holds. This follows from
the fact that the algorithm chooses two subsets with minimum distance in
step 2 (a). For a formal proof, we show the following generalization: Let Di

be the vertex added in the i-th iteration of step 2, let C1,i and C2,i be its
children, let Vi be the vertex set after iteration i, and let Γi be the set Γ after
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iteration i. Then, for all 1 6 i 6 n − 1 and for all X ∈ Vi−1 the following
holds:

height (Di) > height(X).

We prove this claim by induction on the number i of iterations. For the first it-
eration, the claim follows immediately, since all leaves have height 0 according
to step 1 (c). For the induction step, we consider the vertex Di+1. Due to the
induction hypothesis, it is sufficient to show that height(Di+1) > height (Di),
since only the vertex Di+1 was added in iteration i + 1. According to the
computation of height in step 2 (e) of the algorithm it remains to show that

dist(C1,i+1, C2,i+1) > dist(C1,i, C2,i). (11.2)

For the proof of Inequality (11.2), we distinguish two cases according to
whether Di is a child of Di+1 or not. The two cases are shown schemati-
cally in Figure 11.4. We first consider the case where Di is not a child of
Di+1. The resulting situation is shown in Figure 11.4 (a). In particular, this
implies that C1,i+1, C2,i+1, C1,i, C2,i ∈ Γi−1. Since in step 2 (a) of the i-th
iteration the vertices C1,i and C2,i were chosen as those with the minimum
distance dist(C1,j , C2,j), Inequality (11.2) follows immediately.

We now investigate the case where Di is a child of Di+1. Without loss
of generality we assume that Di = C1,i+1 holds. The resulting situation is
shown in Figure 11.4 (b). In particular, C2,i+1, C1,i, C2,i ∈ Γi−1. Due to the
criterion of choice in step 2 (a), this implies dist(C1,i, C2,i) 6 dist(C1,i, C2,i+1)
and dist(C1,i, C2,i) 6 dist(C2,i, C2,i+1), since the vertices C1,i and C2,i were
chosen in the i-th iteration. Following the computation of dist in step 2 (c),
this leads to

dist(C1,i+1, C2,i+1) = dist(Di, C2,i+1)

=
dist(C1,i, C2,i+1) + dist(C2,i, C2,i+1)

2

>
dist(C1,i, C2,i) + dist(C1,i, C2,i)

2
= dist(C1,i, C2,i).
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This proves the correctness of the UPGMA algorithm. We now analyze its
running time.

The initialization of Γ , height , V , and E in steps 1 (a), (c), and (d) can
be done in O(n) time, the initialization of dist in step 1 (b) needs time in
O(n2). Overall, step 1 has a running time in O(n2). The while loop in step
2 is executed exactly n − 1 times, since exactly one vertex is added in each
iteration, and a binary tree with n leaves has exactly n − 1 inner vertices.
Step 2 (a) needs time in O(n2), since the minimum of O(n2) values has to
be calculated. All other substeps during one iteration of the while loop are
obviously possible in O(n) time. Overall, step 2, and thus the entire algorithm,
runs in O(n3) time. ut

It is even possible to show that the ultrametric tree computed by the
UPGMA algorithm is unique up to isomorphism for every input with an ul-
trametric distance function. For details we refer the reader to the bibliographic
remarks in Section 11.6.

Finally, we note that the UPGMA algorithm can also be used as a heuristic
for inputs where the distance function is not ultrametric. But in this case the
calculated edge lengths cannot be used since they might become negative.
In spite of this, the topology of the computed tree is in many cases a useful
approximation of the real phylogenetic tree.

11.2 Additive Trees

In the previous section we saw how to reconstruct a phylogenetic tree for
a set of taxa with ultrametric distances. Unfortunately, the distance data
occurring in practice often is not ultrametric. In this section we present a
method for constructing a phylogenetic tree under slightly weaker assumptions
about the given distance measure. But for this purpose we consider a slightly
different model, where we allow the taxa to be assigned not only to the leaves
of the tree but also to its inner vertices. This model is especially suitable
for reconstructing a phologenetic tree for a set of taxa containing not only
extant species but also extinct species that are supposed to belong among the
ancestors of the extant ones considered. We start by formally defining this
model.

Definition 11.4. Let A be a set of n taxa and let δ : A × A →
�

>0 be a
metric distance measure on A. Let T = (V,E, d) be an edge-weighted tree with
A ⊆ V . For all a, b ∈ A, let dist(a, b) denote the sum of edge weights on the
path from a to b in T . The tree T is called an additive tree for A and δ if
dist(a, b) = δ(a, b) holds for all a, b ∈ A.

The problem we face now is to decide, for a given set A of taxa with a
given distance measure δ, whether there exists an additive tree for A and δ.
We will see that it is possible to answer this question in polynomial time.
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In the following, we restrict our attention to the special case of the problem
where one of the given taxa is assigned to each vertex in the tree.

Definition 11.5. Let A be a set of taxa and let δ be a metric distance measure
on A. An additive tree T = (V,E, d) for A and δ is called a compact additive
tree for A and δ if V = A holds.

We now formally define the problem we want to solve in the remainder of
this section.

Definition 11.6. The problem of determining a compact additive tree, the
CompactAddTree problem, is the following computing problem:

Input: A set A of taxa and a metric distance measure δ : A×A→
�

>0.
Output: A compact additive tree for A and δ, if it exists, and an error message

otherwise.

To solve the CompactAddTree problem we use the following represen-
tation of the input data.

Definition 11.7. Let A be a set of taxa and let δ be a metric distance measure
on A. The distance graph for A and δ is the complete edge-weighted graph
G(A, δ) = (V,E, d) with V = A and d(a, b) = δ(a, b) for all a, b ∈ A.

The following theorem shows how to compute a compact additive tree
from the distance graph.

Theorem 11.2. Let A be a set of taxa and let δ be a metric distance measure
on A. If there exists a compact additive tree T for A, then T is the uniquely
determined minimum spanning tree of G(A, δ).

Proof. Let T be a compact additive tree for A and δ. We show that no edge
outside of T can be contained in a minimum spanning tree. Let e = {x, y} be
an edge not contained in T . Since the path from x to y in T has to have a
total weight of δ(x, y), and since all edge weights in T are strictly greater than
0, δ(x, y) has to be strictly greater than the weight of every single edge on the
path from x to y in T . We show that e cannot be contained in any minimum
spanning tree of G(A, δ). This implies that T is the unique minimum spanning
tree of G(A, δ).

For the proof, we assume that e = {x, y} is not contained in T , but in a
minimum spanning tree T ′ = (A,E′) of G(A, δ). Let G′ = (A,E′−{e}) be the
graph originating from deleting the edge e from T ′, and let S and S′ be the
connected components of G′. Without loss of generality we assume that x lies
inside S and y lies inside S′. Then, there exists an edge e′ on the path P from x
to y in T connecting a vertex from S with a vertex from S ′. Since e′ is an edge
in T , in particular, since e′ 6= e holds, and since e′ connects S and S′, it is not
an edge in T ′. This implies that also T ′′ = (A, (E′−{e})∪{e′}) is a spanning
tree of G(A, δ). As shown above, the weight δ(x, y) of e is strictly greater
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than the weight of any edge on the path P , and thus strictly greater than the
weight of e′. Hence, T ′′ has a strictly lower weight than T ′, contradicting the
assumption that T ′ is a minimum spanning tree. ut

Algorithm 11.2 solves the CompactAddTree problem by computing a
minimum spanning tree of G(A, δ) and simultaneously checking its unique-
ness as well as the additivity constraint. The computation of the minimum
spanning tree is based on Prim’s algorithm, i.e., the algorithm starts with
an arbitrary vertex and successively adds the cheapest edge from the so far
constructed subtree to a vertex not yet reached. If there is more than one
cheapest edge in some step, the algorithm rejects the input, since the mini-
mum spanning tree cannot be unique in this case.

Algorithm 11.2 Computation of a compact additive tree

Input: A set A = {a1, . . . , an} of taxa and a metric distance measure δ on A.

1. Compute the distance graph G(A, δ) = (V, E′).
2. Initialize the tree T = (U, E, δ) with U := {a1} and E := ∅.
3. while U 6= V do

a) Compute the edge {x, y} in G(A, δ) with the smallest weight such that
x ∈ U and y ∈ V − U .

b) Check whether the chosen edge is uniquely determined. If not, stop the
computation with the output “There is no compact additive tree.”

c) Check whether if the additivity constraint for y and for all vertices in U is
satisfied. If not, stop the computation with the output “There is no compact
additive tree.”

d) Define U := U ∪ {y} and E := E ∪ {{x, y}}.

Output: The compact additive tree T = (U, E, δ).

We now prove the correctness of Algorithm 11.2 and analyze its running
time. For the proof of correctness, we need the following well-known result.

Lemma 11.2. Let G = (V,E, d) be a complete edge-weighted graph, let U be
a proper subset of V , and let {u, v} be an edge of minimal weight such that
u ∈ U and v ∈ V − U . Then there exists a minimum spanning tree of G
containing the edge {u, v}.

Proof. For the proof we assume that there is no minimum spanning tree of
G containing {u, v}. Let T be an arbitrary minimum spanning tree of G. If
we add {u, v} to T , this generates a cycle containing the edge {u, v}. Since u
and v are also connected in T and u ∈ U, v ∈ V − U holds, there is another
edge {u′, v′} inside this cycle with u′ ∈ U and v′ ∈ V − U . The graph T ′ =
(T ∪{u, v})−{u′, v′} is another spanning tree of G that is no more expensive
than T due to the minimal costs of {u, v}. This contradicts the assumption
that there is no minimum spanning tree containing {u, v}. ut
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Theorem 11.3. Algorithm 11.2 solves the CompactAddTree problem for
a set A of n taxa and a metric distance function δ in O(n2 logn) time.

Proof. We first prove the correctness of the algorithm. Since, for every itera-
tion of the while loop in step 3, the claim of Lemma 11.2 holds for the current
set U and the newly chosen edge {x, y}, the algorithm computes a minimum
spanning tree, if it does not terminate before because of a violated uniqueness
or additivity constraint. Due to Theorem 11.2, the computed spanning tree is
a compact additive tree for A and δ since the algorithm stops its computation
as soon as the uniqueness constraint is violated.

Computing the distance graph in step 1 can be done in O(n2); the initial-
ization in step 2 is obviously possible in linear time. The algorithm needs at
most n − 1 iterations of the while loop in step 3. The computations during
one iteration can be done in O(n logn) time; this results in an overall running
time in O(n2 logn). ut

11.3 Characters with Binary States

In the previous sections we have seen two examples for constructing a phy-
logenetic tree from pairwise distances of the given taxa. In the remainder of
this chapter we present some approaches for constructing phylogenetic trees
based on the knowledge of discrete characters of the taxa. We start in this
section with a simple special case, where each character has exactly two dif-
ferent states. We denote these states by 0 and 1, and we additionally make
the following assumptions.

• All characters are inherited independently from each other.
• The evolution of each character can only lead from state 0 to state 1; there

is no development back from 1 to 0.
• The states of the characters for the ancestors of the given taxa in the

phylogenetic tree are purely hypothetical and do not infer anything about
the characters of the real ancestors. In other words, the method just serves
for clustering the given taxa, and not for predicting the character states
of the ancestors.

We start with a discussion of the biological relevance of the model. In every
approach for phylogeny construction based on character data, one assumes
that the same character states in different taxa imply a common ancestor.
But this is not always the case in nature. Particularly, identical phenotypical
character states3 could also be due to convergence phenomena, i.e., to the in-
dependent development of similar characters, like the ability to fly in birds and

3 Phenotypical characters are characters describing the outward appearance of an
organism, whereas genotypical characters are characters that can be determined
from the genes or the DNA sequences.
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character

taxon d1 d2 d3 d4 d5 d6

a1 0 0 0 0 1 0
a2 0 1 0 0 1 0
a3 0 0 1 1 0 0
a4 1 0 1 1 0 0
a5 0 0 1 0 0 1

Table 11.1. An example of a binary character matrix

bats. Such misleading convergence effects can mostly be avoided by consid-
ering genotypical characters only. One frequently used method for extracting
characters is the comparison of non-coding regions within the DNA sequence.
Another type of genotypical character, giving very reliable results and even
having binary states, is a statement about the regulation of protein expres-
sion of the following form: “The presence of protein A increases/decreases the
expression of protein B.”

The assumption that the states of a character can only evolve in one
direction is justified by the fact that backward developments occur very rarely
in nature.

In the following, based on the above assumptions, we present an efficient
method for constructing a phylogenetic tree. To proceed, we first need the
following formal definition of characters.

Definition 11.8. Let A = {a1, . . . , an} be a set of n taxa and let D =
{d1, . . . , dm} be a set of m characters. An (n×m)-matrix M , where M(i, j) =
α holds if and only if the taxon ai takes the state α ∈ {0, 1} for the character
dj for all 1 6 i 6 n, 1 6 j 6 m, is called binary character matrix for A and
D.

If a binary character takes the state 1 in a taxon, we also say that this
taxon has this character. The following example illustrates this definition.

Example 11.3. Let A = {a1, . . . , a5} be a set of taxa and let D = {d1, . . . , d6}
be a set of binary characters. A binary character matrix for A and D is shown
in Table 11.1. ♦

We now construct a tree whose leaves correspond to the given taxa. The
root of this tree is to represent a common ancestor of all given taxa that
do not have any of the considered characters. The edges of the tree will be
labeled with the characters in such a way that every taxon has exactly its
characters (those in state 1) occurring as labels on the path from the root to
the respective leaf. Moreover, every character will occur as a label of exactly
one edge in the tree. We formalize this goal with the following definition.
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Fig. 11.5. A perfect phylogenetic tree for the character matrix from Table 11.1

Definition 11.9. Let A = {a1, . . . , an} be a set of taxa, let D = {d1, . . . , dm}
be a set of binary characters, and let M be a binary character matrix for A
and D. A perfect phylogenetic tree for M is a (partially) edge-labeled rooted
tree T = (V,E, d) with exactly n leaves satisfying the following conditions:

(i) The leaves of T correspond to the taxa in A.
(ii) The edge labeling function d : E → D∪{λ} assigns either the empty label

λ or an element from D to each edge; moreover, each of the characters
from D gets assigned to exactly one edge of T .

(iii) For each taxon ai, the set of edge labels on the path from the root to the
leaf ai is exactly the set of characters of ai.

We illustrate also this definition with an example.

Example 11.4. Figure 11.5 shows a perfect phylogenetic tree for the character
matrix from Table 11.1. As we can see from this example, it is not necessary
that each edge be labeled with a character. ♦

We now formally define the problem of determining a perfect phylogenetic
tree.

Definition 11.10. The problem of deciding the existence of a perfect phylo-
genetic tree, the ExPerfPhyl problem, is the following decision problem:

Input: A set A = {a1, . . . , an} of taxa, a set D = {d1, . . . , dm} of binary
characters, and a binary character matrix M for A and D.

Output: Yes if there exists a perfect phylogenetic tree for M , No otherwise.

The problem of computing a perfect phylogenetic tree, the PerfPhyl problem,
is the following computing problem:

Input: A set A = {a1, . . . , an} of taxa, a set D = {d1, . . . , dm} of binary
characters, and a binary character matrix M for A and D for which a
perfect phylogenetic tree exists.

Output: A perfect phylogenetic tree T for M .



11.3 Characters with Binary States 271

M ′ character

taxon d3 d4 d5 d1 d2 d6

c1 c2 c3 c4 c5 c6

a1 0 0 1 0 0 0
a2 0 0 1 0 1 0
a3 1 1 0 0 0 0
a4 1 1 0 1 0 0
a5 1 0 0 0 0 1

Table 11.2. The column-wise sorted matrix M ′ from Example 11.5

We now proceed as follows. We first present an algorithm solving the
PerfPhyl problem under an additional precondition regarding the form of
the character matrix. After that we show that this additional condition exactly
characterizes the set of character matrices that allow for a perfect phylogenetic
tree. We then close this section with an algorithm testing a character metrix
for the condition and thus solving the ExPerfPhyl problem.

To be able to formulate the condition, we first introduce the following
notion for each character, referring to the set of taxa having the character.

Definition 11.11. Let A = {a1, . . . , an} be a set of taxa, let D = {d1, . . . , dm}
be a set of binary characters, and let M be a binary character matrix for A
and D. For all 1 6 j 6 m, let Aj denote the set of taxa having the character
dj .

Two set Ai and Aj are called tree compatible, if either they are disjoint
or one is a subset of the other.

We now present an algorithm constructing, for a set A of n taxa, a set
D of m characters, and a binary character matrix M for A and D, a perfect
phylogenetic tree under the condition that, for all i, j ∈ {1, . . . ,m}, the sets
Ai and Aj are tree compatible. This algorithm is based on the following idea.
It first sorts the columns of M by decreasing number of 1s. Then it iteratively
constructs a tree whose vertices are labeled with subsets of A. It starts with
the root of the tree and labels it with the entire set A. For each column j of M ,
the algorithm searches for the vertex labeled with the smallest superset of Aj

and adds a new vertex labeled Aj as its child. In the last step, the algorithm
adds all missing singleton sets from A as leaves at appropriate positions in
the tree. The method is shown in Algorithm 11.3.

The following example illustrates the work of Algorithm 11.3.

Example 11.5. If the character matrix from Table 11.1 is sorted column-wise
by decreasing number of 1s, this yields the matrix M ′ as shown in Table 11.2.
From this, Algorithm 11.3 constructs a perfect phylogenetic tree as shown in
Figure 11.6. The constructed tree corresponds to the perfect phylogenetic tree
from Figure 11.5. ♦
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Algorithm 11.3 Construction of a perfect phylogenetic tree

Input: A set A = {a1, . . . , an} of taxa, a set D = {d1, . . . , dm} of binary characters,
and a binary character matrix M for A and D, such that all sets Ai and Aj are
pairwise different and tree compatible.

1. Sort the columns of M by decreasing number of ones.
2. Initialization:

V := {A}
E := ∅

3. for j := 1 to m do

Search for the vertex X ∈ V representing the smallest superset of Aj .
V := V ∪ {Aj}
E := E ∪ {(X, Aj)}
d(X, Aj) := dj

4. for i := 1 to n do

if {ai} /∈ V then

Search for the vertex X ∈ V representing the smallest set containing ai.
V := V ∪ {{ai}}
E := E ∪ {(X, {ai})}
d(X, {ai}) := λ

Output: The perfect phylogenetic tree T = (V, E, d) for M .
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Fig. 11.6. The perfect phylogenetic tree constructed by Algorithm 11.3 in Example
11.5. (a) The tree after step 3; (b) the complete tree after step 4

We now prove the correctness of Algorithm 11.3 and analyze its running
time.

Theorem 11.4. Algorithm 11.3 solves the PerfPhyl problem for a set A of
n taxa, a set D of m characters, and a character matrix M for A and D in
time O(n·m2) if the sets Ai and Aj are tree compatible for all i, j ∈ {1, . . . ,m}.

Proof. We first show that Algorithm 11.3 constructs a perfect phylogenetic
tree for M if the conditions of the theorem are satisfied. We assume without
loss of generality that all columns of M are pairwise different. (We can delete
identical columns without losing any information.)
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According to the sorting of the columns of M and our additional condi-
tion for M , we can guarantee that for two sets Ai and Aj with i < j either
Ai and Aj are disjoint or Aj ( Ai holds. This implies that the algorithm
always considers the larger set first. Because of the precondition of the the-
orem, the smallest superset of the currently considered set Aj in step 3 is
always uniquely determined, and because of sorting the columns in step 1,
all occurring supersets of Aj are already present in the tree. We now have to
show that the three properties of a perfect phylogenetic tree from Definition
11.9 are satisfied for the constructed tree T . Step 4 of the algorithm ensures
that the leaves of T are exactly the singleton sets {ai} for 1 6 i 6 n. The edge
label dj is placed on exactly one edge by the algorithm for all j ∈ {1, . . . ,m},
i.e., on the newly constructed edge in the j-th iteration of step 3. Thus, T
satisfies the first and the second property of a perfect phylogenetic tree. It
remains to show that exactly those edge labels occur on the path from the
root to the leaf {ai} that correspond to the characters of ai. But this follows
from the fact that the algorithm chooses the smallest superset of the current
set Aj , and the sets Aj are sorted by decreasing size. Thus, the vertices on
the path from the root to the leaf {ai} are exactly the sets Aj where ai ∈ Aj .

We now analyze the time complexity of the algorithm. Counting the num-
ber of ones in the columns of M is obviously possible in O(n ·m) time; the
subsequent sorting can be done in O(m logm). Since there are at most m = 2n

different characters, step 1 can be executed in O(n ·m) time. The initializa-
tion in Step 2 is obviously possible in constant time. Searching for the vertex
representing the smallest superset of the current set Aj in step 3 of the algo-
rithm can be done in O(n ·m) time, since Aj has to be compared to at most
m other sets of size at most n. Step 3 hence needs overall time in O(n ·m2).
Searching for the vertex representing the smallest set containing ai in step 4
can be executed in time O(m), since the test, whether or not ai is contained
in Aj , can be implemented in constant time by a table lookup. Thus, step
4 can be implemented in O(n · m) time, and Algorithm 11.3 needs time in
O(n ·m2) overall. ut

The following theorem shows that the additional precondition constitutes
no essential restriction, since it exactly characterizes the character matrices
for which a perfect phylogenetic tree exists.

Theorem 11.5. Let A = {a1, . . . , an} be a set of taxa, let D = {d1, . . . , dm}
be a set of binary characters, and let M be a binary character matrix for A
and D. Then there exists a perfect phylogenetic tree for M if and only if Ai

and Aj are tree compatible for all i, j ∈ {1, . . . ,m}.

Proof. It is a direct consequence of Theorem 11.4 that tree compatibility
implies the existence of a perfect phylogenetic tree,

If on the other hand there is a perfect phylogenetic tree given for the
character matrix M , it is easy to see that a set Ai corresponds to the set of
leaves inside the subtree rooted at the edge labeled i. Since two such subtrees
are either disjoint or included in each other, the claim follows. ut
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Theorem 11.5 implies that Algorithm 11.3 solves the PerfPhyl problem.
There exists an even more efficient algorithm solving the PerfPhyl problem
in O(n · m) time. We refer the reader to the bibliographic notes in Section
11.6.

After we have seen how to solve the PerfPhyl problem under the assump-
tion that there exists a perfect phylogenetic tree for any input, the question
remains open on how to efficiently check for the existence of such a tree.

The ExPerfPhyl problem could, for example, be solved by directly
checking the tree compatibility condition from Theorem 11.5. Since there are
m sets Ai, each possibly of size O(n), and all pairs of these sets have to be
considered, a naive implementation results in a running time in O(n ·m2) for
the test. A more efficient algorithm for the ExPerfPhyl problem is based on
the following idea: The algorithm sorts the columns of the binary character
matrix M by decreasing number of 1s and calculates, for each 1 in M , the
column number of the next 1 to the left of it. If there is a column in M con-
taining two 1s with different such values, then there is no perfect phylogenetic
tree for M , as we show in the following. This method is shown in Algorithm
11.4.

Theorem 11.6. Algorithm 11.4 solves the ExPerfPhyl problem for a set
A of n taxa, a set D of m characters, and a character matrix for A and D in
O(n ·m) time.

Proof. We first prove the correctness of Algorithm 11.4. It suffices to show
that the existence of a column in L containing two different values not equal
to 0 implies the existence of two indices j, j ′ ∈ {1, . . . ,m} such that the
sets Aj and Aj′ are not tree compatible. Let j be a column index such that
L(i1, j) = l1 6= l2 = L(i2, j) for some i1, i2 ∈ {1, . . . , n} and l1 < l2 and both
l1, l2 6= 0. According to the definition of L, this implies that ai1 , ai2 ∈ Aj ,
ai2 ∈ Al2 , and, because l1 < l2, also ai1 /∈ Al2 holds. Since the columns are
sorted,

Aj 6⊆ Al2 . (11.3)

From ai1 ∈ Aj and ai1 /∈ Al2 we know

Al2 6⊆ Aj . (11.4)

Since ai2 ∈ Aj and ai2 ∈ Al2 , the following holds:

Aj ∩ Al2 6= ∅. (11.5)

From (11.3), (11.4), and (11.5) we can infer that the sets Aj and Al2 are not
tree compatible.

Sorting the columns by decreasing number of 1s can be done in O(n·m), as
shown in the proof of Theorem 11.4. The initialization of the auxiliary (n×m)-
matrix in step 2 is also possible in O(n · m) time. Furthermore, computing
L in step 3 and checking L in step 4 are obviously also implementable in
O(n ·m) time, and hence the overall running time of Algorithm 11.4 is also
in O(n ·m). ut
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Algorithm 11.4 Existence of a perfect phylogenetic tree

Input: A set A = {a1, . . . , an} of taxa, a set D = {d1, . . . , dm} of binary characters,
and a binary character matrix M for A and D.

1. Sort the columns of M by decreasing number of 1s.
2. Initialize an auxiliary matrix L:

for i = 1 to n do

for j = 1 to m do

L(i, j) := 0

3. Compute in L for each 1 in M the position of the rightmost one to its left (−1,
if such a 1 does not exist).

for i = 1 to n do

k := −1
for j = 1 to m do

if M(i, j) = 1 then

L(i, j) := k
k := j

4. Check whether two different values 6= 0 occur in a column of L (if so, no perfect
phylogenetic tree exists):

p := true
for j = 1 to m do

l := 0
for i = 1 to n do

if L(i, j) 6= 0 then

if l = 0 then

l := L(i, j)
else if l 6= L(i, j) then

p := false

Output: Yes if p = true, No otherwise.

We illustrate the work of Algorithm 11.4 with an example.

Example 11.6. Sorting the character matrix from Table 11.1 column-wise by
decreasing number of 1s yields the matrix M ′ shown in Table 11.2.

From this, Algorithm 11.4 constructs the matrix L as shown in Table 11.3.
Since every column of L contains only one value not equal to 0, there exists a
perfect phylogenetic tree for the given character matrix M . ♦

11.4 The Parsimony Principle and the Quartet Method

In this section, we discuss in greater detail the possibility of using DNA se-
quences of homologous genes as characters.

We assume that the taxa are given by a set of strings of identical length.
The strings are to model a set of homologous genes; they can be determined,
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L character

taxon d3 d4 d5 d1 d2 d6

c1 c2 c3 c4 c5 c6

a1 0 0 -1 0 0 0
a2 0 0 -1 0 3 0
a3 -1 1 0 0 0 0
a4 -1 1 0 2 0 0
a5 -1 0 0 0 0 1

Table 11.3. The auxiliary matrix L from Example 11.6

for example, by a multiple alignment of the DNA sequences of the genes. We
can then interpret the single columns of the alignment as the characters. A gap
symbol occurring in the multiple alignment can be interpreted as an additional
state of the characters, or we can restrict our attention to the columns of the
alignment without gap symbols.

Our goal is to construct the topology of an unrooted binary phylogenetic
tree for a given set of such taxa and characters, such that the leaves of the tree
correspond to the given taxa. This means that we do not attempt to estimate
the length of the tree edges, and hence a phylogenetic tree constructed in this
way can only give us information about the relative degree of the kindred
inside the given set of taxa.

The construction of such a phylogenetic tree is done in two steps. First,
we present a method for measuring the costs of a given topology for a given
set of taxa and characters. After that we discuss some ways for computing (at
least approximately) the topology with minimal costs.

Measuring the costs of a given phylogenetic tree is based on the following
idea. We are given a binary tree whose leaves are labeled with DNA sequences
of length k. Now we search for a labeling of the inner vertices with DNA
sequences of length k such that the following cost measure is minimized: For
each edge {x, y} in the tree, we count the number of substitutions that are
necessary to transform the DNA sequence in x into the DNA sequence in
y. Then we sum up the numbers over all edges to yield the overall cost of
the tree. This method of calculating the costs of a phylogenetic tree is often
called parsimony principle in the literature. We formally define this method
as follows.

Definition 11.12. Let S = {s1, . . . , sn} be a set of taxa. An unrooted phy-
logenetic tree for S is an unrooted binary tree4 with exactly n leaves that are
(one-to-one) labeled with the taxa from S.

4 Recall that an unrooted binary tree was defined in Definition 3.13 as a tree where
each inner vertex has degree 3.
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Definition 11.13. The problem of measuring the cost of an unrooted phylo-
genetic tree according to the parsimony principle, the parsimony problem, is
the following optimization problem:

Input: A set S = {s1, . . . , sn} of strings of length k over an alphabet Σ and
an unrooted phylogenetic tree T = (V,E) for S.

Feasible solutions: For an input instance, every function β : V → Σk assign-
ing strings from Σk to the vertices of T is a feasible solution if the leaves
of the tree are mapped to the strings given in the input.

Costs: For a feasible solution β, the costs are defined as

cost(β) =
∑

{x,y}∈E

distH(β(x), β(y)),

where distH denotes the Hamming distance5 of two strings.
Optimization goal: Minimization.

For an optimal solution β, we refer to cost(β) also as to the parsimony
score of T .

Next, we present a method for solving the parsimony problem based on
the following idea. First, we insert an additional root at an arbitrary position
in the tree by replacing an arbitrary edge with a root vertex with two incident
edges. Then we traverse the tree bottom-up, starting at the leaves, and store
a set of feasible labels for every vertex. Here, a string is considered to be a
feasible label if it minimizes the Hamming distance between a vertex and its
children. In an additional top-down traversal of the tree, we choose one of
the feasible strings for each vertex. This method is shown in greater detail in
Algorithm 11.5; it is called Fitch algorithm, after its inventor.

Before we prove the correctness of the Fitch algorithm and analyze its
running time, we first illustrate its work with an example. Since the algorithm
handles each position of the given strings separately, it is sufficient to consider
strings of length 1 in the example.

Example 11.7. In Figure 11.7 (a), an unrooted phylogenetic tree is shown as
an input for the parsimony problem, where the leaves are labeled with strings
of length 1. From this, Algorithm 11.5 constructs a binary tree with a root r
by expanding the edge drawn in bold in Figure 11.7 (a). The resulting tree is
shown in Figure 11.7 (b). The R-sets, which are computed recursively in step
4 of the algorithm, are also shown. Moreover, all of those vertices are marked
with +1, where the computation of the respective R-set leads to incrementing
the counter cost . Figure 11.7 (c) shows a possible resulting tree after the
traceback in step 5, where the edges with Hamming distance 1 are labeled 1.
Finally, in Figure 11.7 (d) the result for the original unrooted tree is shown.

♦

5 Recall that the Hamming distance of two strings was introduced in Definition 9.1
as the number of positions where the strings differ from each other.
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Algorithm 11.5 Fitch algorithm for the parsimony problem

Input: A set S of n strings of length k over an alphabet Σ and an unrooted phylo-
genetic tree T = (V, E) for S.

1. Construct a tree T ′ = (V ′, E′) with root r /∈ V by defining V ′ := V ∪ {r} and
E′ := (E − {{x, y}}) ∪ {{x, r}, {y, r}} for some arbitrary edge {x, y} ∈ E.

2. Initialize the set R(x, l) of feasible symbols at position l of the label of x with ∅
for all x ∈ V ′ and all positions l ∈ {1, . . . , k}.

3. Initialize a counter c by 0, counting the number of necessary mismatches.
4. for l := 1 to k do

Call the procedure Fitch(r, l).
5. Traceback:
• Choose for the root r one of its children y and define, for all positions

l ∈ {1, . . . , k},

β(r, l) := a for some arbitrary a ∈ R(y, l) ∩R(r, l).

• Traverse T ′ top-down from the root to the leaves and define, for each vertex
y with parent x and for each position l ∈ {1, . . . , k},

β(y, l) :=

�
β(x, l) if β(x, l) ∈ R(y, l),

a ∈ R(y, l) arbitrary otherwise.
(11.6)

• Define β(x) := β(x, 1) . . . β(x, k) for all x ∈ V and cost(β) := c.

Output: The strings β(x) for all vertices x ∈ V and the costs cost(β) of the label.

Procedure Fitch(x, l):
1. If x is a leaf, then determine the string t = t1 . . . tk with which x is labeled

and define R(x, l) := {tl}.
2. If x is an inner vertex, do the following:
• Determine the two children y and z of x and call the procedures

Fitch(y, l) and Fitch(z, l) to determine the sets R(y, l) and R(z, l).
• If R(y, l) ∩ R(z, l) 6= ∅ holds, then there is no mismatch necessary on

the edges from x to y and to z at position l; thus, define R(x, l) :=
R(y, l) ∩R(z, l).

• If R(y, l) ∩ R(z, l) = ∅ holds, then a mismatch is necessary; increment
the counter cost by 1 and define R(x, l) := R(y, l)∪R(z, l); this ensures
that a mismatch at position l will occur on only one of the two edges
{x, y} and {x, z}.
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Fig. 11.7. An example for the work of the Fitch algorithm

As the following theorem shows, the Fitch algorithm gives us an efficient
method for solving the parsimony problem.

Theorem 11.7. Algorithm 11.5 solves the parsimony problem in O(n·k) time.

Proof. We first prove the correctness of Algorithm 11.5. We note that the
algorithm treats the positions of the given strings separately, i.e., it is sufficient
to analyze the behavior of the algorithm for a fixed position l only.

To all leaves of the tree, the procedure Fitch assigns only the symbol
that is already given in the input as a feasible label. Since the traceback
in step 5 chooses only symbols from the R-set, as computed by the Fitch
procedure, as final labels, a feasible function β is calculated for all leaves
of the tree; it remains for us to show that β leads to a minimum number
of mismatches. We now consider an inner vertex x with children y and z.
Whenever it is possible that the labels of y and z agree at position l, the
procedure Fitch chooses exactly these feasible agreeing symbols as feasible
labels for x, by defining R(x, l) = R(y, l) ∩ R(z, l). If this is not possible, the
comparison of the labels of x and its children enforces a mismatch at position
l. The procedure then assures that such a mismatch only occurs in comparison
with one of the children by defining R(x, l) = R(y, l) ∪ R(z, l). At the same
time, it increments the counter cost for the number of mismatches by 1. This
guarantees that the second case of Equation (11.6), where the symbol chosen
does not agree with the one already chosen for the parent vertex, can occur
at most once in the traceback for computing the β values for y and z. Hence,
the algorithm constructs a function β with a minimum number of mismatches
for the extended tree T ′.
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It remains for us to show that this result can be carried over to the original
tree t without the root r. This follows from the fact that, due to the first
substep of step 5, the root always gets the same label as one of its children.
The root can hence be deleted without changing the number of mismatches.
Thus, Algorithm 11.5 solves the parsimony problem.

For analyzing the running time of the algorithm, we treat |Σ| as a constant,
and thus the R-sets are of constant size as well. Since every vertex is considered
exactly once for each position in the recursive calls of the procedure Fitch as
well as in the traceback step, and since the running time is constant in each
of these cases, the algorithm has an overall running time in O(n · k). ut

With the Fitch algorithm we have seen a method for determining the cost
of a given topology. But our goal is to find the topology with minimum cost.
We first define this problem formally.

Definition 11.14. The problem of finding an unrooted phylogenetic tree min-
imizing the parsimony score for a given set of strings, the MinParTop prob-
lem, is the following optimization problem:

Input: A set S of n strings of length k.
Feasible solutions: Every unrooted phylogenetic tree for S.
Costs: The cost of a feasible solution is the optimal parsimony score of the

tree.
Optimization goal: Minimization.

A naive approach to solving the MinParTop problem could be to examine
all possible unrooted phylogenetic trees with n leaves, and to choose the one
with the minimum parsimony score. But this is not possible efficiently, since
there are exponentially many such binary trees, as shown by the following
theorem.

Theorem 11.8. For all n > 3, the number of non-isomorphic unrooted phy-
logenetic trees for n taxa is

n∏

i=3

(2i− 5) =
(2n− 4)!

2n−2 · (n− 2)!
.

Proof idea. We first note that an unrooted binary tree with n leaves
has exactly 2n− 3 edges. This can be easily shown using induction on n. For
n = 3 there is exactly one such binary tree. Now, every binary tree with n
leaves can be constructed from a binary tree with n − 1 leaves by dividing
an arbitrary edge by an additional vertex and appending the new leaf to this
new inner vertex. There are 2(n− 1)− 3 = 2n− 5 ways of doing this. Using a
simple inductive argument, the claim follows. The construction used is shown
in Figure 11.8 for n = 4. �

Unfortunately, there is no efficient algorithm for the MinParTop problem
known. Hence, one mostly uses heuristic methods in practice. Besides general
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heuristics like local search or simulated annealing, which can be used for many
different problems,6 some more specific heuristics have been developed. We
examine one of them, successfully used in practice.

This heuristic is based on the idea of assembling a phylogenetic tree for
a set S of n taxa from phylogenetic trees for subsets of S. Usually, one uses
subsets of size 4; therefore, this approach is called quartet method. To describe
the method in greater detail, we first need the formal definition of a quartet.

Definition 11.15. A quartet is an unrooted phylogenetic tree for four taxa.
For a set S = {a, b, c, d} there are exactly three different quartets; they cor-
respond to the three trees with four leaves each as shown in Figure 11.8. We
denote these quartets by (a, b; c, d), (a, c; b, d), and (a, d; b, c), where the first
two and the last two entries denote the pairs of leaves having a common parent
vertex.

An optimal quartet for S is a quartet with the minimum parsimony score.

We now give a definition allowing us to compare a quartet to a larger
unrooted phylogenetic tree.

Definition 11.16. Let S be a set of n taxa, and let T be an unrooted phylo-
genetic tree for S. Let S ′ = {a, b, c, d} be a subset of S, and let Q = (a, b; c, d)
be a quartet for S′. Let P1 be the path from a to b in T , and let P2 be the path
from c to d in T . Then Q is said to be consistent with T if the two paths P1

and P2 are disjoint.

Looking at quartets for finding a reasonably good solution to the Min-
ParTop problem is motivated by the following result.

6 For an overview of these general heuristics, see, for example, the book by
Hromkovič [105].
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Theorem 11.9. Let S be a set of taxa, and let T be an unrooted phylogenetic
tree for S. Let QT be the set of all quartets consistent with T . Then T can be
uniquely reconstructed from QT in polynomial time. ut

Theorem 11.9 was proved by Buneman [38]; we skip the proof here.
This theorem implies that, if we succeed in finding all consistent quartets

of the phylogenetic tree wanted, we are able to uniquely reconstruct the tree.
But since we do not know any method for this, we try to approximate the set of
all consistent quartets by computing the quartet with the optimal parsimony
score for all subsets of four taxa. This computation can obviously be done in
polynomial time, since for a set S of n taxa there are

(
n
4

)
∈ O(n4) subsets

of four elements, and for each of these subsets we just have to compute the
parsimony score of three binary trees. This is possible in time proportional to
the length of the taxa strings using Algorithm 11.5. Starting with the quartets,
we then try to find an unrooted phylogenetic tree T such that a maximum
number of quartets is consistent with T . This problem can be formalized as
follows.

Definition 11.17. The problem of finding an unrooted phylogenetic tree with
which a maximum number of quartets is consistent, the MaxQuartettCon-
sist problem, is the following optimization problem:

Input: A set S of n taxa.
Feasible solutions: Every unrooted phylogenetic tree T for S.
Costs: For such a binary tree T , the costs are given by the number of all

optimal quartets for subsets of S that are consistent with T .
Optimization goal: Maximization.

Unfortunately, even the MaxQuartettConsist problem is a hard opti-
mization problem, as shown by the following theorem.

Theorem 11.10. The MaxQuartettConsist problem is NP-hard. ut

Theorem 11.10 was proved by Berry et al. [32], we do not present the
proof here. On the other hand, Jiang et al. [109] have shown that the optimal
solution to the MaxQuartettConsist problem can be approximated arbi-
trarily well, but with a running time that is exponential in the reciprocal value
of the desired approximation ratio.7 Since the algorithm is technically very
involved, we do not present it here. Instead, we investigate a heuristic for the
MaxQuartettConsist problem, for which no proof of an approximation
ratio is known, but which is frequently used in practice.

The heuristic is called quartet puzzling. Its idea is based on choosing a
random order of the taxa, starting with the optimal quartet for the first four

7 This means that the algorithm is, like Algorithm 9.1 from Section 9.1 for the
consensus string approximation, an example of a polynomial-time approximation
scheme.



11.5 Summary 283

Algorithm 11.6 Quartet puzzling

Input: A set S of n taxa.

1. Compute the optimal quartet Q(S′) for each four element subset S′ ⊆ S (ac-
cording to the parsimony score).

2. Choose an order a1, . . . , an of the elements in S uniformly at random.
3. Define T := Q({a1, a2, a3, a4}).
4. for i := 5 to n do

• Initialize the costs of all edges in T with 0.
• For all S′ = {b1, b2, b3} ⊆ {a1, . . . , ai−1} such that Q({b1, b2, b3, ai}) is of

the form (b1, b2; b3, ai), increase the edge costs on the path from b1 to b2 in
T by 1 each.

• Choose an edge {x, y} in T with minimum cost, delete it, and insert a new
vertex that is adjacent to x and y and the new leaf ai.

Output: The unrooted phylogenetic tree T for S.

taxa according to this order, and then inserting one taxon after another into
the tree, where the optimal quartets are used to find a good position for
insertion. This method is presented in greater detail in Algorithm 11.6.

Often, steps 2 to 4 of Algorithm 11.6 are executed several times, and some
kind of consensus of the computed solutions is constructed. This method is
based on the idea that edges occurring in many of the computed trees de-
scribe a biologically meaningful connection with high probability. Computing
the edge costs in step 4 is based on the following idea: The edges, where in-
serting the current taxon would lead many quartets to be inconsistent with
the constructed tree, get a bad value. We now illustrate the work of Algorithm
11.6 with an example.

Example 11.8. Let S = {a, b, c, d, e} be a set of taxa and let (a, b; c, d),
(a, b; c, e), (a, d; b, e), (a, c; d, e), and (b, d; c, e) be the optimal quartets for all
four element subsets of S. Let a, b, c, d, e be the order chosen in step 2 of
Algorithm 11.6. Then, the algorithm starts with the quartet (a, b; c, d) and
computes the edge costs from the other quartets of the tree and, eventually,
an unrooted phylogenetic tree for the entire set S, as shown in Figure 11.9.

♦

Finally, we note that the quartet method can also be naturally used for
other scoring functions than the parsimony score, since the parsimony score
is only used in step 1 of Algorithm 11.6, and the rest of the algorithm is
independent of the actual computation of the optimal quartets.

11.5 Summary

A tree describing kindred relations between different biological objects like
species and homologous genes, the taxa, is called a phylogenetic tree. There
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Fig. 11.9. An example for the work of Algorithm 11.6

are many different models of phylogenetic trees. In some models, the edges
of the tree are labeled with distances between the taxa; other models simply
try to describe the branching structure of the phylogenetic tree. Moreover, a
phylogenetic tree can have a distinguished root vertex indicating the direction
of evolution, or it can be unrooted, describing the relative degree of the kindred
between the species. Computing a phylogenetic tree can be based on different
kinds of information; one mainly distinguishes between distance information
and discrete character state information.

If the distances in a given set of taxa are ultrametric, i.e., if for any three
taxa two of the distances are identical and larger than the third, the (binary)
phylogenetic tree is unique, and it is possible to compute it efficiently. A less
stringent restriction on the given distance measure is additivity. If a distance
measure is additive, there exists a phylogenetic tree whose edge labels exactly
represent the distances. In contrast to ultrametric trees, the taxa are mapped
not only to the leaves of the tree, but also to the inner vertices. The additivity
constraint is efficiently verifiable, and computing a phylogenetic tree from
additive distances can be done efficiently.

If a set of discrete characters is given as input instead of a distance measure,
one usually tries to determine the topology of the phylogenetic tree without
edge labeling. If the characters can only take one of two distinct states, and,
additionally, the state of any character is assumed to change only in one
direction, it is possible to efficiently determine whether a phylogenetic tree
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consistent with the characters exists. If such a tree exists, it is also possible
to compute it efficiently.

One can also consider DNA sequences directly as taxa; the characters are
then the columns, without gaps, of a multiple alignment. Within this model,
one can score a given phylogenetic tree for a given set of taxa according to the
parsimony principle. For this approach, one also determines a DNA sequence
for each inner vertex of the tree such that the number of mismatches along
the edges of the tree is minimized. Computing the parsimony score can be
done efficiently for a given tree, but there is no polynomial-time algorithm
known for determining a tree with the minimum parsimony score. Hence,
heuristic methods are often used to approximate a solution. One heuristic
approach is to compute the phylogenetic tree for a given set of taxa from the
optimal phylogenetic trees for all four element subsets of taxa. Finding an
optimal solution for this quartet method is still NP-hard, but there are good
approximation algorithms as well as practically successful heuristics known
for this problem.

11.6 Bibliographic Notes

An introduction to the field of phylogenetic trees is given in the books by
Gusfield [91], Setubal and Meidanis [180], Clote and Backofen [49], Ewens
and Grant [68], and Durbin et al. [62]. In the last three of these books, also an
overview of the numerous statistical approaches for determining phylogenies,
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we also want to mention the survey papers by Swofford and Olsen [189] and
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was presented by Fitch and Margoliash [75]. In the book by Gusfield [91],
another algorithm for determining ultrametric trees is described that runs in
time O(n2) for n taxa. Since the distances occurring in practice are not ultra-
metric in most cases, Farach et al. [69] have developed a method for finding
an ultrametric tree under the assumption that, instead of exact distances, an
interval is given for each pair of taxa, within which the distance of the taxa
has to lie. This so-called sandwich approach is also described in the book by
Setubal and Meidanis [180].

Constructing phylogenies from additive distances is described in the books
by Gusfield [91] and Setubal and Meidanis [180], as well as in a survey paper
by Barthelemy und Guenoche [22]. The first solution to the problem is due to
Buneman [38].
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[178] counted the number of unrooted phylogenetic trees. The quartet method
is presented in the book by Clote and Backofen [49], and in a comprehensive
survey paper by Kearney [118]. The reconstruction of a phylogenetic tree from
the set of its consistent quartets is due to Buneman [38]. The NP-hardness
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approximation scheme for this problem goes back to Jiang et al. [109], and
the method of quartet puzzling was proposed by Strimmer and von Haeseler
[186].
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Haplotyping

Many organisms, including all vertebrates, have a diploid genome, i.e., their
genome contains two copies of each chromosome. The two copies are called
haplotypes ; they are not identical, but differ slightly from each other. Nor-
mally, one of the copies is inherited from the father and the other one is
inherited from the mother. Therefore, it is very helpful, for example, for inves-
tigating complex genetic diseases, to know both haplotypes; but unfortunately
it is difficult to determine the haplotypes of a given organism experimentally.
Sequencing methods as described in Chapters 6 to 8 only yield information
about the genotype, which consists of some kind of consensus of the two hap-
lotypes. This results from the fact that it is hard to extract exactly one copy
of one chromosome from a cell for further investigation instead of extracting
the entire DNA from the nucleus.

In this chapter, we present some computational methods for inferring the
haplotypes from genotype data. There are two main approaches for reaching
this goal, depending on the input data. In the first scenario, we are given the
genotype information for a population of several related individuals, and we
look for the set of haplotypes occurring within the population. We describe
this approach in Section 12.1. The second approach, described in Section
12.2, tries to infer the haplotypes for a single individual from genotype data
of sequenced DNA fragments.

The first of the above approaches especially relies on the assumption that
one of the haplotypes as a whole is inherited from the father, and the other
is inherited as a whole from the mother. But, in nature, recombination events
might also occur, leading to the situation where a haplotype of the child is
composed from parts of two parental haplotypes. Nevertheless, such recombi-
nation does not occur very frequently; thus, in a small population there most
probably exist long blocks inside the chromosomes that were not divided by
recombination events in any of the corresponding haplotypes.

As usual, we conclude this chapter with a summary, in Section 12.3, and
some bibliographic notes, in Section 12.4.
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12.1 Inferring Haplotypes from a Population

The goal of this section is to present some methods for inferring the haplotypes
in a population of related individuals, given their genotypes. To develop a
formal model, we have to make some assumptions on the given data.

The most important differences between the DNA sequences of different
individuals of a species are the single nucleotide polymorphisms, or SNPs
(pronounced “snips”) for short. A SNP is a difference occurring at a single
position of the DNA sequences, where each of two (or even more) nucleotides
is present in a significant fraction of the population; usually, this fraction is
assumed to be at least 10%. We call the positions in the sequences where
SNPs occur SNP sites. SNPs with more than two different nucleotides are
very rare, and we assume for the rest of this chapter that only two different
nucleotides occur at each SNP site. In this context, we abstract from the
concrete nucleotides and use the symbols 0 and 1 instead.

In the following, we will slightly abstract from biological reality by consid-
ering SNPs to be the only differences between the considered DNA sequences.
We further assume that we are given a map of the genome containing all SNP
positions. Such a map of SNP sites has already been compiled for the human
genome.

Since we know the SNP positions in the DNA sequence and do not care
about possible further differences between the sequences, we can restrict our
attention to the sequence of SNP sites, without considering the rest of the
genome. When considering a genotype, we can distinguish between two types
of SNP sites: If the two corresponding haplotypes agree at the position, the
site is called homozygous ; if the haplotypes disagree, it is called heterozygous.
We can now define our formal model of haplotypes and genotypes.

Definition 12.1. For a given genome with m SNP sites, a haplotype is de-
noted by a vector (h1, . . . , hm) ∈ {0, 1}m, where the entry hi of this vector
describes which of the two possible nucleotides the haplotype carries at SNP
site i.

A genotype is denoted by a vector (g1, . . . , gm) ∈ {0, 1, 2}m, where gi co-
incides with the value of the respective haplotypes if i is a homozygous site,
and gi = 2 if i is a heterozygous site.

We say that a genotype g ∈ {0, 1, 2}m can be resolved by a pair of haplo-
types h, h′ ∈ {0, 1}m if hi = h′i = gi for all 1 6 i 6 m such that gi ∈ {0, 1},
and hi 6= h′i for all 1 6 i 6 m such that gi = 2. The unordered haplotype pair
{h, h′} is called a resolving pair for the genotype g.

We illustrate this formal definition with a short example.

Example 12.1. Consider an individual X , whose genome contains five SNP
sites, where the two copies of its chromosome, restricted to the SNP sites, are
x1 = CATAG and x2 = CAATC. These haplotypes can be formally represented
by the vectors h1 = (1, 0, 0, 0, 0) and h2 = (1, 0, 1, 1, 1). The corresponding
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genotype ofX is g = (1, 0, 2, 2, 2), since the first two SNP sites are homozygous
while the last three sites are heterozygous.

Conversely, given the genotype g as above, {h1, h2} is a resolving pair for
g; but {h′1, h

′
2} is also a resolving pair for g, where h′1 = (1, 0, 1, 0, 1) and

h′2 = (1, 0, 0, 1, 0). ♦

Note that the mapping of the nucleotides to the symbols 0 and 1 can be
made arbitrarily, as long as, for each SNP site, the two possible nucleotides
are mapped onto different symbols. For example, it is possible to map an A to
1 at one site and to 0 at another site.

In the next lemma, we count the number of resolving pairs for a given
genotype.

Lemma 12.1. Let g = (g1, . . . , gm) ∈ {0, 1, 2}m be a genotype with exactly l
entries of value 2. Then there exist 2l different resolving pairs for g.

Proof. Each of the l heterozygous positions i, where gi = 2, can be resolved
independently in one of two possible ways. ut

We describe a set of genotypes or haplotypes by a matrix defined as follows.

Definition 12.2. Let S = {s1, . . . , sm} be a set of SNPs, let G = {g1, . . . , gn}
be a set of genotypes for S, and let H = {h1, . . . , hk} be a set of haplotypes for
S. A genotype matrix for S and G is an (n×m)-matrix M over {0, 1, 2} such
that M(i, j) = gi(j) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. A haplotype
matrix for S and H is a (k ×m)-matrix M over {0, 1} such that M(i, j) =
hi(j) for all i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}.

As mentioned above, our goal in this section is, given the genotypes of
a population, to deduce the set of haplotypes that are present within it. Of
course, we can easily find a resolving pair of haplotypes for any genotype
independently. But this would lead to exponentially many feasible solutions, as
shown by Lemma 12.1, in contrast to the one true, biological solution we want
to find. In order to get biologically meaningful results, we have to add some
requirements for a solution to be feasible. Several different approaches have
been discussed in the literature; see Section 12.4 for an overview. The approach
we follow in the remainder of this section is based on perfect phylogenetic
trees.

Recall our definition of a perfect phylogenetic tree in Section 11.3. For a
binary character matrix for k taxa and m characters, Definition 11.9 defines
a perfect phylogenetic tree as a rooted tree with exactly k leaves labeled with
the taxa, where the root is labeled with the all-zero vector, and each character
appears as a label of exactly one edge. The label describes the unique point
in the tree where the character changes from 0 to 1.

In our current scenario, the taxa correspond to the haplotypes and the
characters correspond to the SNPs. But since the values 0 and 1 for the
two occurring nucleotides at any SNP site were chosen arbitrarily, we cannot
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guarantee that the common ancestor of all present haplotypes corresponds to
the all-zero vector. Thus, we have to relax the definition of a perfect phylogeny
to allow for an arbitrary root.

Definition 12.3. Let H = {h1, . . . , hk} be a set of haplotypes, let S =
{s1, . . . , sm} be a set of SNPs, and let M be a haplotype matrix for H and
S. An undirected perfect phylogenetic tree for M is a (partially) edge-labeled
tree T = (V,E, d) with a root r and exactly k leaves satisfying the following
conditions:

(i) The leaves in T correspond to the haplotypes in H and are labeled with
the respective vectors.

(ii) The root r is labeled with some binary vector (r1, . . . , rm) of length m.
(iii) The edge-labeling function d : E → S ∪ {λ} assigns either the empty label

λ or one of the elements from S to each edge such that each SNP from S
gets assigned to exactly one edge in T .

(iv) For any haplotype hi, the set of edge labels on the path from r to the leaf
hi equals the set of SNPs in which hi and the label of r differ.

Our goal is now to resolve a given set of k genotypes into a set of at most
2k haplotypes for which a perfect phylogenetic tree exists. We can formally
state the problem as follows.

Definition 12.4. The perfect phylogeny haplotyping problem, or the PPH
problem for short, is the following computing problem:

Input: A set S of m SNPs, a set G of k genotypes, and a genotype matrix MG

for S and G.
Output: A set H of at most 2k haplotypes and a haplotype matrix MH for S

and H, such that H contains a resolving pair for each genotype g ∈ G and
there exists an undirected perfect phylogenetic tree T for H; or an error
message if no such H exists.

In the remainder of this section, we show how to efficiently solve the PPH
problem. We will start by characterizing the sets of haplotypes that allow for
a perfect phylogenetic tree. We first need the following definition.

Definition 12.5. A complete pair matrix is a (4 × 2)-matrix over {0, 1},
containing all four possible rows (0, 0), (0, 1), (1, 0), and (1, 1) (in arbitrary
order).

Any complete pair matrix satisfies the property described by the following
lemma.

Lemma 12.2. Let M be a complete pair matrix, and let M ′ be the (4 × 2)-
matrix obtained by flipping the entries in one column of M , i.e., M ′(i, j) =
1−M(i, j) for i ∈ {1, 2, 3, 4} an M ′ is also a complete pair matrix.

Proof. We leave the very easy proof to the reader. ut
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In the following, we frequently analyze submatrices1 formed by two columns
of the original matrix. We will use the following notation.

Definition 12.6. Let M be a (genotype or haplotype) (n × m)-matrix. For
any two columns j1, j2 ∈ {1, . . . ,m}, let M [j1,j2] denote the restriction of M
to the two columns j1 and j2.

Example 12.2. Consider the genotype matrix

MG =









2 2 2
1 1 2
0 0 1
2 0 1
1 1 0









.

Then,

M
[1,3]
G =









2 2
1 2
0 1
2 1
1 0









.

♦

The next lemma characterizes the haplotype matrices for which an undi-
rected perfect phylogenetic tree exists.

Lemma 12.3. Let M be a haplotype matrix for k haplotypes and m SNPs.
Then there exists an undirected perfect phylogenetic tree for M if and only if
M does not contain a complete pair matrix as a submatrix.

Proof. We show the two implications of the claim separately. First, we assume
that there exists a complete pair matrix M ′ as a submatrix of M . It is easy
to see that M ′ does not admit an undirected perfect phylogenetic tree. Intu-
itively, for any root labeling, it is not possible to place the four leaves inside a
tree such that each of the two edge labels describing the change in the value in
its column appears exactly once. More formally, one could perform a complete
case analysis over all possible edge-labeled trees with four leaves and any root
labeling, but we omit the details here. Thus, M ′ does not admit an undirected
perfect phylogeny, and this obviously implies that M also does not.

For the other direction of the proof, let T = (V,E, d) be an undirected
perfect phylogenetic tree for M with root r labeled (r1, . . . , rm). We can con-
struct a new matrix M ′ from M by exchanging 0s and 1s in all columns j
where rj = 1. Then, T with root label (0, . . . , 0) is an undirected phylogenetic
tree for M ′. Since the root label now is the all-zero vector, T can be seen as a

1 Here, by submatrix we mean a matrix induced by any subset of rows and columns.
Thus, a submatrix does not have to be contiguous.
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perfect phylogeny in the sense of Definition 11.9, and we can apply Theorem
11.5 to it.

As in Section 11.3, let, for any column i of M ′, Ai denote the set of row
indices where column i contains the value 1. From Theorem 11.5 we know
that the sets Ai and Aj are either disjoint or one of the sets is contained in
the other, for any two columns i and j. If the sets Ai and Aj are disjoint, then
M ′[i,j] does not contain the row (1, 1). If Ai ⊆ Aj , then M ′[i,j] does not contain
the row (1, 0); and analogously, if Ai ⊇ Aj , then M ′[i,j] does not contain the
row (0, 1). Thus, M ′ does not contain a complete pair matrix. According to
Lemma 12.2, this implies thatM also does not contain a complete pair matrix.

ut

We use this characterization in the sequel to describe an efficient algorithm
for the PPH problem. Let S = {s1, . . . , sm} be a set of m SNPs, let G =
{g1, . . . , gn} be a set of genotypes, and let MG be a genotype matrix for
S and G. We describe an algorithm that constructs a (2k × m)-haplotype
matrix MH resolving MG if such a matrix exists, or outputs an error message
otherwise. For any row i of MG, MH will contain two rows i and i′ such
that the corresponding haplotypes hi and hi′ resolve the genotype gi. In the
following, we assume that row i in MG is resolved by the rows i and i′ = n+ i
in MH .

Note that, for any i and j such that MG(i, j) ∈ {0, 1}, the corresponding
entries of MH are unambiguously given as MH(i, j) = MH(i′, j) = MG(i, j),
i.e., the homozygous entries from the genotype matrix are copied into the
respective positions of the haplotype matrix. Also, all rows i of MG containing
exactly one 2-entry can be resolved unambiguously (up to the order of the
rows i and i′ of MH). But already for two 2-entries, there are two essentially
different ways of resolving a row, as shown in the following example.

Example 12.3. Consider the row (2, 2) in a genotype matrix containing only
two columns. This row can be resolved to

(
0 1
1 0

)

or

(
0 0
1 1

)

.

♦

For any pair (j1, j2) of columns ofMG, it is easy to see whether the columns

can be resolved such that M
[j1,j2]
H does not contain a complete pair matrix.

This is due to the fact that every row inM
[j1,j2]
G containing exactly one 2-entry

unambiguously determines two rows of M
[j1,j2]
H . Thus, the rows of M

[j1,j2]
G

different from (2, 2) unambiguously define a set of rows of M
[j1,j2]
H . If this set

does not already contain all four rows of a complete pair matrix, then it is also

possible to resolve any (2, 2)-rows in M
[j1,j2]
G without generating a complete

pair matrix (see Example 12.3).
This observation motivates the following definition.
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Definition 12.7. Let MG be a (n×m)-genotype matrix. We call MG regular
if any column pair (j1, j2) can be resolved without generating a complete pair
matrix.

In the following, we restrict our attention to regular genotype matrices, and
we distinguish two types of column pairs, depending on whether the restricted
matrix contains the row (2, 2) or not.

Definition 12.8. Let j1 and j2 be two columns of MG. We call j1 and j2
companion columns, or companions for short, if there exists a row i such that
MG(i, j1) = MG(i, j2) = 2. Such a row is called a companion row for j1 and
j2.

As we have seen in Example 12.3, there are two ways to resolve the entries
MG(i, j1) and MG(i, j2) for any companion pair (j1, j2) with companion row
i: Either both columns get the same value in the i-th and i′-th rows of MH , or
they get different values in both rows. This motivates the following definition.

Definition 12.9. Let j1 and j2 be two companion columns of a genotype ma-
trix MG with companion row i, and let MH be a haplotype matrix for MG. If
MH(i, j1) = MH(i, j2) and MH(i′, j1) = MH(i′, j2), we call j1 and j2 equated
with respect to i; if MH(i, j1) 6= MH(i, j2) and MH(i′, j1) 6= MH(i′, j2), we
call them negated with respect to i.

The following lemma shows that two columns cannot be equated with
respect to one companion row and negated with respect to another.

Lemma 12.4. Let j1 and j2 be two companion columns of MG, and let i1 and
i2 be two companion rows for j1 and j2. Then, in any PPH solution, j1 and
j2 cannot be equated with respect to i1 and negated with respect to i2.

Proof. Assume to the contrary that j1 and j2 are equated with respect to
i1 and negated with respect to i2. Then the rows i1 and i′1, restricted to j1
and j2, are (0, 0) and (1, 1), and the rows i2 and i′2, restricted to j1 and j2,
are (0, 1) and (1, 0). This implies that MH contains a complete pair matrix,
contradicting Lemma 12.3. ut

Lemma 12.4 gives the idea for the following definition.

Definition 12.10. Let j1, j2 be two companion columns of MG. The haplotype
matrix MH equates j1 and j2 if, for any companion row i for j1 and j2, j1
and j2 are equated with respect to i. The haplotype matrix MH negates j1 and
j2 if, for any companion row i for j1 and j2, j1 and j2 are negated with respect
to i.

In some cases, the entries of MG directly force any algorithm to equate
(or negate) a given companion pair, as we show in the following example.
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Example 12.4. Consider the genotype matrix

MG =





2 2
2 1
0 2



 .

If the two columns of this matrix are negated, this leads to the haplotype
matrix

MH =











0 1
1 0
0 1
1 1
0 0
0 1











containing a complete pair matrix. But equating the two columns leads to the
haplotype matrix

MH =











0 0
1 1
0 1
1 1
0 0
0 1











,

which is a feasible solution to the PPH problem. ♦

We now formally characterize the patterns in MG forcing two columns to
be equated or negated.

Definition 12.11. Let j1 and j2 be two companion columns of MG. A pair
(i1, i2) of non-companion rows for j1 and j2 is called a forcing pair for j1
and j2 if any possible way of resolving of i1 and i2 forces the companion pair
(j1, j2) either to be equated or to be negated. The restriction of a forcing pair
to the columns j1 and j2 is called a forcing pattern.

Example 12.5. Consider again the genotype matrix

MG =









2 2 2
1 1 2
0 0 1
2 0 1
1 1 0









from Example 12.2. Then, {2, 3} is a simple forcing pair for the columns
1 and 2 of MG, that forces them to be equated; the corresponding forcing
pattern is {(0, 0), (1, 1)}. Similarly, (3, 5) is a forcing pair for the columns 2
and 3 of MG, forcing them to be negated; the corresponding forcing pattern
is {(0, 1), (1, 0)}. ♦
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Lemma 12.5. Let j1 and j2 be two companion columns of MG, and let (i1, i2)

be a pair of non-companion rows for j1, j2 in M
[j1,j2]
G such that MG(i1, j1) =

MG(i2, j2) = 2. Then, (i1, i2) is a forcing pattern for j1, j2.

Proof. Let x = MG(i1, j2) and y = MG(i2, j1). Since (i1, i2) are non-
companion rows, we know that x, y ∈ {0, 1}, i.e., M [j1,j2] restricted to the
rows i1 and i2 has the form (

2 x
y 2

)

for some x, y ∈ {0, 1, 2}. Thus, M
[j1,j2]
H has to contain the rows (x, 0), (x, 1),

(0, y), and (1, y). An easy case distinction based on the values of x and y
shows that the columns j1 and j2 have to be equated if x 6= y, and they have
to be negated if x = y. ut

We can now combine the results from Example 12.5 and Lemma 12.5 to
obtain the following characterization lemma.

Lemma 12.6. Let j1 and j2 be two companion columns of MG. Then

(a) {(0, 0), (1, 1)}, {(0, 2), (1, 1)}, {(1, 2), (0, 0)}, {(2, 0), (1, 1)}, {(2, 1), (0, 0)},
{(0, 2), (2, 1)}, and {(1, 2), (2, 0)} are forcing patterns forcing the compan-
ion columns to be equated,

(b) {(0, 1), (1, 0)}, {(0, 2), (1, 0)}, {(1, 2), (0, 1)}, {(2, 0), (0, 1)}, {(2, 1), (1, 0)},
{(0, 2), (2, 0)}, and {(1, 2), (2, 1)} are forcing patterns forcing the compan-
ion columns to be negated, and

(c) there are no other forcing patterns.

Proof. We observe that, in order to be a forcing pattern, a pair of rows in

M
[j1,j2]
G has to be resolved into a set of rows in M

[j1,j2]
H , which includes ei-

ther the set E = {(0, 0), (1, 1)} or the set N = {(0, 1), (1, 0)}, but not both

(otherwise, M
[j1,j2]
H would contain a complete pair matrix, and MG would not

be regular). If M
[j1,j2]
H includes the set E, this companion pair is forced to

be equated; if M
[j1,j2]
H includes the set N , the companion pair is forced to be

negated. This, together with Lemma 12.5, immediately implies claims (a) and
(b).

It is easy to see that a companion pair is not forced to be equated or

negated if neither E nor N are included in M
[j1,j2]
H . An easy case analysis

based on this observation proves claim (c); we leave the details to the reader.
ut

But not just the matrix entries inside a companion pair can force it to be
equated or negated. As we will see, this information can be propagated from
one companion pair to another. For convenience, we first introduce a function
indicating which companion pairs are equated and which ones are negated.



296 12 Haplotyping

Definition 12.12. Let MG be a regular genotype matrix, and let MH be a hap-
lotype matrix that is a feasible solution to the PPH problem with input MG. Let
P ⊆ S×S be the set of pairs of companion columns of MG. Then the indicator
function for MH is a function IMH

: P → {0, 1} such that IMH
(j1, j2) = 0 if

j1 and j2 are equated in MH , and IMH
(j1, j2) = 1 if j1 and j2 are negated in

MH .
Whenever MH is clear from the context, we write I instead of IMH

.

Lemma 12.7. Let MG be a regular genotype matrix, and let MH be a feasible
solution to the PPH problem. Let j, k, and l be three pairwise different columns
of MG such that there exists a row i where MG(i, j) = MG(i, k) = MG(i, l) =
2. Then, I(j, k) = I(j, l)⊕I(l, k), where ⊕ denotes the exclusive-or operator.2

Proof. It is easy to observe that the indicator function I is defined in such
a way that I(j1, j2) = MH(i, j1) ⊕MH(i, j2) holds for any two companion
columns j1 and j2 with companion row i. Thus, we have

I(j, l)⊕ I(l, k) = MH(i, j)⊕MH(i, l)⊕MH(i, l)⊕MH(i, k)

= MH(i, j)⊕MH(i, k)

= I(j, k)

ut

We now show that finding a feasible indicator function, i.e., equating or
negating the companion pairs respecting the forcing patterns and the prop-
agation rule from Lemma 12.7, is sufficient to construct a feasible haplotype
matrix.

We start with the formal definition of a feasible indicator function.

Definition 12.13. Let MG be a regular genotype matrix, and let P be the set
of companion pairs for MG. An indicator function I : P → {0, 1} is called
feasible for MG if it satisfies the following conditions for all columns j, k,
and l:

(a) If (j, k) is a companion pair and there exists a forcing pattern forcing (j, k)
to be equated, then I(j, k) = 0.

(b) If (j, k) is a companion pair and there exists a forcing pattern forcing (j, k)
to be negated, then I(j, k) = 1.

(c) If there exists a row i such that MG(i, j) = MG(i, k) = MG(i, l) = 2, then
I(j, k) = I(j, l)⊕ I(l, k).

Lemma 12.8. Let MG be a regular genotype matrix, and let P be the set of
companion pairs for MG. Then there exists a feasible solution MH to the PPH
problem if and only if there exists a feasible indicator function I : P → {0, 1}.

2 Recall that, for Boolean variables x and y, the exclusive-or operator is defined by
x⊕ y = 1 if x 6= y, and x⊕ y = 0 if x = y.
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Proof. For the first direction of the proof, let MH be a feasible haplotype ma-
trix for MG. This matrix MH defines an indicator function IMH

as described
in Definition 12.12. Since MH is a feasible solution to the PPH problem, IMH

has to obey all restrictions posed by conditions (a) and (b) of Definition 12.13
according to the definition of forcing patterns (otherwise, MH would con-
tain a complete pair matrix); furthermore, IMH

also satisfies condition (c) of
Definition 12.13 due to Lemma 12.7.

For the opposite direction, consider Algorithm 12.1. This algorithm con-
structs a haplotype matrix MH from a given indicator function I. We now
show that the haplotype matrix constructed by Algorithm 12.1 is indeed a
feasible solution to the PPH problem if the given indicator function satisfies
conditions (a) to (c) of Definition 12.13. This means we have to show that the
constructed haplotype matrix does not contain a complete pair submatrix.

We first show that all values MH(i, j) are independent of the choice of
the companion column in the “else if” part of the algorithm, i.e., we want to
show that, for all i and for all j ′1 < j′2 < j such that MG(i, j′1) = MG(i, j′2) =
MG(i, j) = 2, the following holds:

MH(i, j′1)⊕ I(j, j
′
1) = MH(i, j′2)⊕ I(j, j

′
2) (12.1)

For the proof, we use induction on the number of possible choices for such a
companion column. We look at one iteration of the algorithm considering the
position (i, j) of the matrix. For the induction basis, if there is at most one
index j′ < j such that i is a companion row for (j, j ′), the claim is trivial for
j. For the induction step, let j ′1 6= j′2 be two companion columns for j such
that j′1 < j′2 < j and MG(i, j′1) = MG(i, j′2) = MG(i, j) = 2. According to our
induction hypothesis, we know that MH(i, j′2) is uniquely defined as

MH(i, j′2) = MH(i, j′1)⊕ I(j
′
1, j
′
2).

Plugging in condition (c) from Definition 12.13, which says

I(j′1, j
′
2) = I(j′1, j)⊕ I(j

′
2, j),

we get
MH(i, j′2) = MH(i, j′1)⊕ I(j

′
1, j)⊕ I(j

′
2, j),

which is obviously equivalent to Equation (12.1). We have now seen that the
haplotype matrix MH computed by Algorithm 12.1 is uniquely determined
for any input genotype matrix MG. Any restriction of MH to a pair of non-
companion columns does not contain a complete pair matrix since MG is
regular, and any restriction of MH to a companion pair does not contain a
complete pair matrix either, due to conditions (a) and (b) of Definition 12.13.
Thus, MH is a feasible solution to the PPH problem. ut

According to Lemma 12.8, finding a feasible indicator function is sufficient
for solving the PPH problem. In the following, we describe how to efficiently
perform this task. Our approach is based on constructing a graph whose ver-
tices are the columns of MG and whose edges describe the companion pairs.
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Algorithm 12.1 Constructing a haplotype matrix from an indicator function

Input: A regular (n×m)-genotype matrix MG with set P of companion pairs and
a feasible indicator function I : P → {0, 1} for MG.

for j := 1 to m do

for i := 1 to n do

if MG(i, j) ∈ {0, 1} then

MH(i, j) := MG(i, j)
MH(i′, j) := MG(i, j)

else if there exists some j′ < j such that i is a companion row for (j, j′)
then

MH(i, j) := MH(i, j′)⊕ I(j, j′)
MH(i′, j) := MH(i′, j′)⊕ I(j, j′)

else

MH(i, j) := 0
MH(i′, j) := 1

Output: The (2n ×m)-haplotype matrix MH .

Definition 12.14. Let MG be a regular genotype (n × m)-matrix, and let
P be the set of companion pairs for MG. The companion graph for MG is
an edge-labeled (undirected) graph C(MG) = (V,EP , l) where the vertex set
V = {1, . . . ,m} is the set of columns of MG, the edge set EP is defined by
{x, y} ∈ EP if and only if (x, y) ∈ P (and thus also (y, x) ∈ P ), and l : EP →
{F,N} is an edge-labeling function such that l(e) = F if the corresponding
companion pair has a forcing pattern, and l(e) = N otherwise. We call the
edges of C(MG) that are labeled F forced edges, and the edges labeled N non-
forced edges.

The restriction of C(MG) to the forced edges (on the same vertex set V )
is called forcing graph for MG, and it is denoted by F (MG).

If MG is clear from the context, we write C and F instead of C(MG) and
F (MG).

We will illustrate this definition with the following example.

Example 12.6. Consider the following regular genotype matrix

MG =







2 2 1 0 2
0 1 1 2 2
0 1 0 0 1
0 2 1 2 1






.

The companion graph C(MG) for MG is shown in Figure 12.1; the forcing
graph F (MG) for MG is the subgraph of C(MG) containing only the edges
with label F. ♦

Obviously, the companion graph and forcing graph for a given regular
genotype matrix can be easily constructed using the characterization of forcing
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Fig. 12.1. The companion graph for the genotype matrix from Example 12.6

patterns from Lemma 12.6. We will show in the following how to infer a feasible
indicator function for MG from the companion graph, i.e., we will show how
to define an indicator function I : EP → {0, 1}. The values of the indicator
function can be easily set for any companion pair having a forcing pattern: If
the forcing pattern forces the companion pair to be negated, then we set the
value to 1; if it forces them to be equated, we set the value to 0.

It remains for us to show how to assign an indicator value to the edges of
C(MG) labeled N. The algorithm for finding the value is based on the following
idea: Consider an arbitrary triangle inside C(MG) where the indicator function
has already been set for two of the three edges. Then the value of the third
edge can be inferred as the exclusive-or value of these two values, following
condition (c) from Definition 12.13. We show that we can solve our problem
using this simple inference rule.

In the first step, we partition the companion graph with respect to the
connected components of the forcing graph.

Definition 12.15. Let G = (V,E) be an (undirected) graph. The subgraph
H = (Z,E′) induced by a subset Z ⊆ V is called a connected component of
G if any two vertices z1, z2 ∈ Z are connected via a path in H, and if H is
inclusion-maximal with this property.

Every given graph can easily and very efficiently be partitioned into its
connected components. For details, see the book by Cormen et al. [51].

Our algorithm computes the connected components of the forcing graph,
and then considers the subgraphs of the companion graph induced by the
vertex sets of the components.

Definition 12.16. Let MG be a genotype matrix, C be its companion graph,
and F be its forcing graph. Let F1, . . . , Fk be the connected components of F
for some k ∈ � . For any i ∈ {1, . . . , k}, let Ci denote the subgraph of C
induced by V (Fi). We call the subgraphs C1, . . . , Ck the forcing components
of C.

We will illustrate this definition with the following example.
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Fig. 12.2. The companion graph, forcing graph, and forcing components for the
genotype matrix from Example 12.7

Example 12.7. Consider the following regular genotype matrix

MG =











0 0 2 0 1 1
0 0 2 0 2 1
0 0 0 0 2 2
2 2 2 0 1 1
2 2 0 0 1 1
0 2 0 2 1 1











.

The companion graph C for MG is shown in Figure 12.2 (a), the forcing graph
F for MG is depicted in Figure 12.2 (b), and Figure 12.2 (c) shows the forcing
components of C. ♦

In the following, we will see that the indicator function can be uniquely
determined inside each forcing component using the inference rule based on
condition (c) from Definition 12.13 as described above. The algorithm for
computing the indicator function inside a forcing component of F is formalized
in Algorithm 12.2.

To prove the correctness of Algorithm 12.2, we first need the following
lemma.

Lemma 12.9. Let MG be a regular genotype matrix, and let C be its com-
panion graph. Then, every cycle in C of length > 4 containing a non-forced
edge e has a chord adjacent to e.

Proof. Consider a non-forced edge e = {j1, j2} inside a cycle H of length
> 4 in C. There exist two vertices j0 and j3 such that j0, j1, j2, and j3
are pairwise distinct and the path P = j0, j1, j2, j3 is part of the cycle H .
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Algorithm 12.2 Computing the indicator function inside a component

Input: A regular (n×m)-genotype matrix MG with set P of companion pairs, and
a forcing component D in the companion graph C for MG.

1. For all forced edges e ∈ E(D)∩E(F ), set the value I(e) of the indicator function
according to Lemma 12.6.

2. Let E′ := E(D) ∩E(F ) be the set of edges for which the value of the indicator
function is already set.

3. while E′ 6= E(D) do

3.1. Find a triangle of edges e1, e2, e3 in C such that e1, e2 ∈ E′ and e3 /∈ E′.
3.2. Set I(e3) := I(e1)⊕ I(e2).
3.3. Set E′ := E′ ∪ {e3}.

Output: The indicator function I for the companion pairs inside D.

This implies that (j0, j1), (j1, j2), and (j2, j3) are companion pairs by the
definition of the companion graph. Thus, there exist rows i1, i2, and i3 in
MG such that MG(i1, j0) = MG(i1, j1) = 2, MG(i2, j1) = MG(i2, j2) = 2, and
MG(i3, j2) = MG(i3, j3) = 2. The corresponding submatrix of MG, under the
assumption that i1, i2, i3 are pairwise distinct, is

j0 j1 j2 j3
i1 2 2 y
i2 2 2
i3 x 2 2

We will now analyze the possible values for the entries x = MG(i3, j1) and

y = MG(i2, j2). If both x and y are from the set {0, 1}, then M
[j1,j2]
G contains

a forcing pattern, contradicting our assumption that {j1, j2} is a non-forced
edge. Thus, at least one of x and y has to be a 2. (Note that it is immediately
clear that x or y has to be 2 if i1, i2, and i3 are not pairwise distinct.) If x = 2,
then j1 and j3 are companions; if y = 2, then j0 and j2 are companions. Thus,
at least one of the edges {j0, j2} and {j1, j3} is contained in E(C), and so the
cycle H has a chord. ut

We are now ready to prove that Algorithm 12.2 outputs a feasible indicator
function for a single forcing component, and that this indicator function is
unique.

Lemma 12.10. For a given genotype matrix MG, which admits a feasible so-
lution to the PPH problem, and a given forcing component D of its companion
graph C, Algorithm 12.2 outputs the unique feasible indicator function for D.

Proof. To prove the correctness of the algorithm, it suffices to show that the
inference rule is always applicable, i.e., that a triangle of edges can always
be found in step 3.1. Inside the forcing component D, the two endpoints of
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any non-forced edge e = {x, y} obviously have to be connected via a path
in F , and thus via a path in D′ = (V (D), E′), by the definition of a forcing
component. Now, choose such a non-forced edge e from E(D)−E ′, i.e., an edge
that has not yet been assigned an indicator value, such that the shortest path
in D′ between its endpoints is of minimal length. If this path is of length 2,
we have found an appropriate triangle (see Figure 12.3 (a)). Otherwise, e lies
on a cycle of length at least 4 in D′. According to Lemma 12.9, this cycle has
a chord e′ adjacent to e. If this chord e′ belongs to E′, there is a shorter path
in D′ between the endpoints of e contradicting our assumption (see Figure
12.3 (b)); if e′ belongs to E(D) − E′, there is a path in D′ connecting the
endpoints of e′ that is shorter than the one connecting the endpoints of e,
again a contradiction (see Figure 12.3 (c)). Thus, in every iteration of the
while loop in step 3, an appropriate triangle can be found.PSfrag replacements
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Fig. 12.3. Situations considered in the proof of Lemma 12.10. In (a) an appropriate
triangle was found, while (b) and (c) illustrate that, otherwise, there is a contradic-
tion in the choice of the edge e. Edges drawn as thin lines belong to E ′ and have
thus been assigned an indicator value.

Now we prove that the indicator function found by Algorithm 12.2 is
uniquely determined and does not depend on the order in which the edges
are chosen. Since the input admits a solution to the PPH problem, there
exists a feasible indicator function for MG according to Lemma 12.8. Let I0
be such a feasible indicator function. We show that the indicator function
I determined by the algorithm coincides with I0 on all edges inside D. It
is clear that the two functions coincide on the forced edges. We proceed by
induction on the number of edges that have received their indicator value
by the algorithm. Consider the currently chosen triangle e1, e2, e3. By the
induction hypothesis, I(e1) = I0(e1) and I(e2) = I0(e2). By condition (c) of
Definition 12.13, I0(e3) = I0(e1)⊕I0(e2) = I(e1)⊕I(e2), and this is exactly
the value assigned to e3 in Step 3.2 of the algorithm. ut

We have now seen how to determine the values of the indicator function in-
side a forcing component. In the following, we describe how we can extend the
indicator function across the forcing components. Obviously, every connected
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Algorithm 12.3 Computing the indicator function

Input: A regular (n×m)-genotype matrix MG with set P of companion pairs, the
(connected) companion graph C for MG, and the forcing graph F for MG.

1. Compute the set D = {D1, . . . , Dk} of forcing components of C.
2. Determine the component graph G for MG.
3. Compute a spanning tree T of G.
4. Let η1, . . . , ηr be the edges of T .
5. for i = 1 to r do

5.1. Let ei be some arbitrary edge from E(ηi).
5.2. Set I(ei) arbitrarily.
5.3. E(F ) := E(F ) ∪ {ei}.

6. Set the other indicator values using Algorithm 12.2.

Output: An indicator function I for MG.

component of the companion graph can be handled independently. Thus, we
assume in the following that C is connected.

The main idea is to connect the forcing components with each other via a
minimum-cardinality set of (non-forced) edges. The edges from this set can be
labeled with arbitrary indicator values, and afterwards we can view them as
forced edges and apply Algorithm 12.2. To make this argument more formal,
we define the following auxiliary graph whose vertices are the forcing compo-
nents, and where two vertices are connected if the respective components are
connected (by non-forced edges) in C.

Definition 12.17. Let MG be a regular genotype matrix with set P of com-
panion pairs, let C be the (connected) companion graph for MG, and let
D = {D1, . . . , Dk} be the set of forcing components of C for some k.

The component graph for C is an undirected graph G = (D, E) where E =
{{Di, Dj} | Di, Dj ∈ D and there exist x ∈ Di and y ∈ Dj such that {x, y} ∈
E(C)}.

For each edge η = {Di, Dj} ∈ E, denote by E(η) the set of edges in C
between Di and Dj, i.e., let E(η) = {{x, y} ∈ E(C) | x ∈ Di and y ∈ Dj}.

Since we have assumed that C is connected, G is also connected. We will
see in the following that the values of the indicator function can be arbitrarily
chosen on a spanning tree of G, and that this choice unambiguously determines
the indicator values on all edges of C. So, our algorithm computes a spanning
tree T on the component graph; chooses, for each edge of this tree, one cor-
responding edge of C; and assigns the values on these edges arbitrarily. After
this, the edges can be handled as if they were additional forced edges (now
their value is forced by the decision of the algorithm), and Algorithm 12.2 can
be applied to determine the remaining values of the indicator function. We
summarize this procedure in Algorithm 12.3.
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To show the correctness of Algorithm 12.3, we start by proving that any
choice of indicator values for the edges from T leads to a feasible indicator
function.

Lemma 12.11. Let MG be a regular genotype matrix that admits a feasible
solution to the PPH problem, let C be the connected companion graph for MG,
let G be the corresponding component graph, and let T be a spanning tree of
G. For each edge ηi of T , let ei ∈ E(ηi) be the edge chosen in step 5.1 of
Algorithm 12.3 for some i ∈ {1, . . . , |E(T )|}. Then, there exist two feasible
indicator functions I1 and I2 for MG satisfying I1(ei) = 1 and I2(ei) = 0.

Proof. Since MG admits a solution to the PPH problem, there exists a feasible
indicator function I0 forMG. Let I0(ei) = a ∈ {0, 1}. We show the existence of
a feasible indicator function I satisfying I(ei) = 1−a. We define I(e) = I0(e)
for all e /∈ E(ηi) and I(e) = 1−I0(e) for all e ∈ E(ηi). To prove the feasibility
of I, we have to show that, for any triangle of edges e, e′, e′′ in C, the condition

I(e) = I(e′)⊕ I(e′′) (12.2)

holds. If none of these edges is contained in E(ηi), Equation (12.2) imme-
diately follows from the feasibility of I0. Since the edges in E(ηi) connect
two forcing components of C, it is not possible that exactly one or all three
edges belong to E(ηi). Let us assume now that exactly two edges of {e, e′, e′′}
belong to E(ηi); without loss of generality, let these be the edges e′ and
e′′. From the feasibility of I0, we know that I0(e) = I0(e′) ⊕ I0(e′′) =
(1− I(e′))⊕ (1− I(e′′)) = I(e′)⊕ I(e′′), which proves (12.2). ut

From Lemma 12.11 we can now directly conclude the correctness of Algo-
rithm 12.3.

Lemma 12.12. Let MG be a regular (n×m)-genotype matrix that admits a
solution to the PPH problem, with set P of companion pairs; let C and F
be the (connected) companion graph and forcing graph for MG, respectively.
Then, Algorithm 12.3 computes a feasible indicator function I for MG.

Proof. The correctness of the algorithm follows directly from the correctness
of Algorithm 12.2, as proved in Lemma 12.10, and from Lemma 12.11. ut

Algorithm 12.1 and Algorithm 12.3 together imply a polynomial-time al-
gorithm for constructing a haplotype matrix for a given (n × m)-genotype
matrix. This algorithm is summarized in Algorithm 12.4.

Theorem 12.1. For any given genotype matrix MG, Algorithm 12.4 solves
the PPH problem in polynomial time.

Proof. The correctness of Algorithm 12.4 directly follows from Lemma 12.12
and Lemma 12.8, and its running time is obviously polynomial. ut
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Algorithm 12.4 Solving the PPH problem

Input: A genotype matrix MG.

1. Compute the companion graph C and the forcing graph F for MG.
2. Compute the connected components C1, . . . , Cl of C.
3. for i := 1 to l do

3.1. Let M
(i)
G denote the restriction of MG to the rows corresponding to V (Ci).

3.2. Compute an indicator function Ii for M
(i)
G using Algorithm 12.3.

3.3. Construct a haplotype matrix M
(i)
H from Ii using Algorithm 12.1.

4. Construct a haplotype matrix MH for MG by joining M
(1)
H , . . . , M

(l)
H .

5. Check if MH is a feasible solution, i.e., if it does not contain a complete pair
matrix as a submatrix.

Output: The constructed haplotype matrix MH if it is feasible; an error message
indicating that there is no solution otherwise.

Using appropriate data structures, it can be shown that it is possible to
implement this algorithm to run in O(nm2) time. From a biological point of
view, it is interesting to be able to compute not only one feasible haplotype
matrix, but the set of all feasible matrices. It has been shown that this can
be done using the algorithm, i.e., every possible choice of indicator values
for the edges connecting the forcing components yields one feasible haplotype
matrix, and these are all the possible matrices, independent of the choice of
the spanning tree. For details we refer the reader to the literature referenced
in Section 12.4.

12.2 Haplotyping a Single Individual

We have seen in the previous section how to determine the set of haplotypes
occurring in a population of several individuals. In this section, we present an
approach for computing the haplotypes of a single individual. Of course, it is
impossible to guess a meaningful pair of haplotypes if we are given only the
genotype sequence of the individual. Instead, we try to infer the haplotypes
from DNA fragments obtained by some shotgun sequencing experiment. Recall
that the idea behind the shotgun sequencing approach is to cut the given DNA
into short fragments that can be directly sequenced and to assemble them into
one DNA sequence using combinatorial methods. The method was described
in detail in Chapter 8. Although it is very hard to separate the two haplotypes
when extracting the DNA from the organism, we may well assume that every
single fragment is part of only one of the haplotypes. Thus, our goal is to
partition the set of fragments into two sets according to the haplotype they
were taken from.

To describe the approach more formally, we have to rely on the following
assumptions: As in the previous section, we consider SNPs to be the only
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differences between the two haplotypes. We assume that all SNP sites are
known to us and that we can efficiently determine which SNPs are contained
in each of the fragments. More formally, we assume that our input describes
the values the fragments show at each SNP site.

Definition 12.18. Let F = {f1, . . . , fn} denote a set of fragments, and let
S = {s1, . . . , sm} denote a set of SNP sites. A SNP matrix for F and S is an
(n ×m)-matrix M over {0, 1, -}, where M(i, j) = - if the fragment fi does
not contain the SNP site sj , and M(i, j) = x ∈ {0, 1} states that fragment fi

takes the value x at SNP site sj .

We illustrate Definition 12.18 with the following example.

Example 12.8. Consider the set F = {f1, . . . , f5} of fragments and the set
S = {s1, . . . , s6} of SNPs. A possible SNP matrix M for F and S is shown
below:

s1 s2 s3 s4 s5 s6
f1 - 0 1 1 - 1
f2 1 0 0 - - 0
f3 1 0 1 - 1 1
f4 1 - - 0 - 0
f5 - 0 1 - 1 -

♦

As the first step, we consider the case where the input data does not contain
any errors. In this case, we call the given SNP matrix error-free, and our task
turns out to be quite easy. Obviously, two fragments have to be assigned to
different haplotypes if there exists a SNP where they have different values from
the set {0, 1}. We call such a situation a fragment conflict. We can construct
a graph with the fragments as its vertices and the fragment conflicts as its
edges. We make this formal in the following definition.

Definition 12.19. Let M be an (n×m)-SNP matrix for a set F = {f1, . . . , fn}
of fragments and a set S = {s1, . . . , sm} of SNP sites. A fragment conflict in
M is an (unordered) pair {fi1 , fi2} of fragments such that there exists a SNP
site sj ∈ S with {M(i1, j),M(i2, j)} = {0, 1}.

The fragment conflict graph for M is an undirected graph GF = (F,E)
whose vertices are the fragments from F , and whose edges are the fragment
conflicts in M , i.e., E = {{fi1 , fi2} | there exists an sj ∈ S with {M(i1, j),
M(i2, j)} = {0, 1}}.

We will illustrate this definition with the following example.

Example 12.9. Consider the SNP matrix M from Example 12.8. The fragment
conflict graph for M is shown in Figure 12.4. ♦
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Fig. 12.4. The fragment conflict graph for the SNP matrix from Example 12.8

Thus, for error-free data, the genotype has to be resolvable into two hap-
lotypes; we present a formal condition for this in the following. We start with
a formal description of our haplotyping problem in the error-free case.

Definition 12.20. The error-free single individual haplotyping problem is
the following computing problem:

Input: An error-free (n × m)-SNP matrix M for a set F = {f1, . . . , fn} of
fragments and a set S = {s1, . . . , sm} of SNP sites.

Output: A partition of F into two sets (haplotypes) H1 and H2, such that
conflicts occur only between fragments from different haplotypes, i.e., for
any conflict {f, f ′}, f ∈ H1 and f ′ ∈ H2, or vice versa.

To solve this problem, we will use the following observation. We see that
the conflict graph from Example 12.9 is bipartite. The next lemma states that
this is the case for all fragment conflict graphs corresponding to error-free SNP
matrices.

Lemma 12.13. Let M be an error-free SNP matrix and let GF be the frag-
ment conflict graph for M . Then, GF is bipartite.

Proof. Assume to the contrary that GF contains a cycle C = f1, . . . , f2i+1, f1
of odd length. Obviously, if f1 belongs to the first haplotype, then f2 has to
belong to the second haplotype, because {f1, f2} is a conflict. Analogously, f3

has to belong to the first haplotype, f4 to the second, and so on. Finally, f2i+1

again has to be part of the first haplotype. But then, f1 and f2i+1 belong to
the same haplotype, a contradiction to our assumption that {f2i+1, f1} is a
fragment conflict. ut

Although the fragment conflict graph might be bipartite also in the pres-
ence of errors, we expect most errors to destroy the bipartiteness of the graph.
In the remainder of this section, we thus assume that a SNP matrix is error-
free if and only if the corresponding fragment conflict graph is bipartite.
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Algorithm 12.5 Solving the error-free single individual haplotyping problem

Input: An error-free (n×m)-SNP matrix M for a set F = {f1, . . . , fn} of fragments
and a set S = {s1, . . . , sm} of SNP sites.

1. Construct the fragment conflict graph GF for M .
2. Compute a bipartition of GF into the two vertex sets H1 and H2, using, for

example, breadth-first search.

Output: The two haplotypes H1 and H2.

Definition 12.21. Let M be an (n ×m)-SNP matrix. We call M error-free
if its fragment conflict graph is bipartite.

Lemma 12.13 now gives us a simple algorithm for the error-free single in-
dividual haplotyping problem: We just have to construct the fragment conflict
graph, and to find a bipartition of it. This is summarized in Algorithm 12.5.

Theorem 12.2. Algorithm 12.5 computes a solution to the error-free single
individual haplotyping problem in O(n2 ·m) time.

Proof. From the above discussion, it is obvious that the algorithm solves the
problem. We now analyze its running time. The fragment conflict graph can
be constructed by checking, for each SNP site and for each pair of fragments,
whether the SNP induces a conflict on this pair of fragments. Thus, its con-
struction takes time in O(n2 · m). Computing the bipartition can be done
using breadth-first search. This is possible in O(n + k) time, where k is the
number of fragment conflicts in M . For details see for instance the book by
Cormen et al. [51]. Since k < n2, the second step of the algorithm can be
performed in O(n2) time. ut

Please note that the solution to our problem is unique if and only if the
fragment conflict graph is connected. Otherwise, the information gathered in
the SNP matrix does clearly not suffice to completely determine the haplo-
types.

Unfortunately, the data generated by biological experiments is rarely error-
free. Thus we devote the remainder of this section to dealing with errors in
the SNP matrix. As mentioned above, if there are false entries in the matrix,
the fragment conflict graph will most likely become non-bipartite. So our goal
will be to find a minimal set of changes which, applied to the SNP matrix,
make the resulting fragment conflict graph bipartite again.

One can imagine several sources of errors occurring during the shotgun
sequencing experiments. We will concentrate on two types of errors here: First,
the examined DNA could be contaminated, leading to some fragments that do
not belong to one of the two haplotypes we are looking for. Second, although
one has a map of the SNP sites of the organism, it might contain errors;
especially, it might propose SNPs at some sites where in reality there are none.
These two types of errors lead to the following two optimization problems.
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Definition 12.22. The minimum fragment removal problem, the MFR prob-
lem for short, is the following optimization problem:

Input: An (n × m)-SNP matrix M for a set F = {f1, . . . , fn} of fragments
and a set S = {s1, . . . , sm} of SNP sites.

Feasible solutions: All subsets F ′ ⊆ F of fragments such that the SNP matrix
for F − F ′ and S is error-free.

Costs: The cardinality of the subset F ′.
Optimization goal: Minimization.

The minimum SNP removal problem, the MSR problem for short, is the
following optimization problem:

Input: An (n × m)-SNP matrix M for a set F = {f1, . . . , fn} of fragments
and a set S = {s1, . . . , sm} of SNP sites.

Feasible solutions: All subsets S ′ ⊆ S of SNP sites such that the SNP matrix
for F and S − S′ is error-free.

Costs: The cardinality of the subset S ′.
Optimization goal: Minimization.

Unfortunately, the MFR and MSR problems are hard in their general
formulation. We prove the NP-hardness of the MFR problem by a reduction
from a graph problem. To do this, we first need to show that every undirected
graph can be transformed into a SNP matrix.

Lemma 12.14. Let G = (V,E) be an undirected graph with n vertices and
m edges. Then there exists an (n × m)-SNP matrix such that G equals the
fragment conflict graph GF for M .

Proof. For a graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge set
E = {e1, . . . , em}, we associate a fragment with each of the vertices, i.e., we
set fi = vi for all i ∈ {1, . . . , n}, and we associate a SNP with each edge of G,
i.e., we set sj = ej for all j ∈ {1, . . . ,m}. Now we can define the SNP matrix
M as follows: For each edge ej = {vi, vi′}, where i < i′, we set M(i, j) = 0,
M(i′, j) = 1, and M(l, j) = - for all l ∈ {1, . . . , n} − {i, i′}.

Then, obviously, every edge from G corresponds to an edge in GF , and
vice versa. Note that this transformation requires only polynomial time. ut

The transformation from the proof of Lemma 12.14 is illustrated with the
following example.

Example 12.10. Consider the graph G from Figure 12.5. We construct for it
the following SNP matrix M :

e1 e2 e3 e4 e5 e6 e7
v1 0 0 0 - - - -

v2 1 - - 0 0 0 -

v3 - 1 - - 1 - 0
v4 - - 1 1 - - -

v5 - - - - - 1 1
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Fig. 12.5. The graph from Example 12.10

Then, obviously, G = GF holds. ♦

We are now ready to prove the NP-hardness of the MFR problem. We use
a reduction from the following problem.

Definition 12.23. The minimum vertex bipartizer problem is the following
optimization problem:

Input: An undirected graph G = (V,E).
Feasible solutions: All subsets B ⊆ V such that the subgraph of G induced by

V −B is bipartite.
Costs: The cost of a feasible solution is the cardinality of the set B.
Optimization goal: Minimization.

Lemma 12.15 ([208]). The minimum vertex bipartizer problem is NP-hard.
ut

Now we can easily show that the MFR problem is also hard.

Theorem 12.3. The MFR problem is NP-hard.

Proof. Consider a graph G = (V,E) as an input for the minimum vertex
bipartizer problem. We can construct a SNP matrix M from G using the
construction from the proof of Lemma 12.14. Since each fragment in this
matrix M corresponds to exactly one vertex of G, removing a minimum set of
fragments from M is equivalent to removing a minimum set of vertices from
G. Thus, Lemma 12.15 implies the NP-hardness of the MFR problem. ut

Lancia et al. have shown that the MSR problem is NP-hard [125]; we will
skip the proof here.

Theorem 12.4 ([125]). The MSR problem is NP-hard. ut
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In the following, we will consider a special case of the MFR and MSR
problems that admits a polynomial-time solution. In the traditional shotgun
approach for DNA sequencing, as described in Section 8.1, the fragments rep-
resent contiguous regions of the DNA, and thus also include a contiguous set
of SNP sites. In terms of the matrix representation, this means that the non-
gap entries in each row of the SNP matrix will be consecutive. For this special
case, both the MFR and the MSR problems can be solved by polynomial-time
dynamic programming algorithms. We focus on the algorithm for the MSR
problem. The algorithm for the MFR problem is slightly more involved; we
refer to the literature given in Section 12.4 for the details.

We first define the special case more formally.

Definition 12.24. Let S={s1, . . . , sm} be a set of SNPs, let F = {f1, . . . , fn}
be a set of fragments, and let M be a SNP matrix for S and F . We say that
M is gapless if, in each row of M , all non-gap entries appear consecutively,
i.e., if for each fragment (row) fi there exist two SNPs (columns) sli and sri

such that M(i, j) = - for all j < li and for all j > ri, and M(i, j) ∈ {0, 1}
for all li 6 j 6 ri.

In the following, we restrict our attention to SNP matrices where every
column contains at least one 1 and at least one 0. This is no real restriction,
since a SNP site, in which all fragments agree, obviously does not help in
distinguishing the two haplotypes.

Definition 12.25. Let S={s1, . . . , sm} be a set of SNPs, let F = {f1, . . . , fn}
be a set of fragments, and let M be a SNP matrix for S and F . If, for any
SNP si, there exist two fragments fji

and fj′
i

such that M(ji, i) = 1 and
M(j′i, i) = 0, we call M reduced.

To describe the algorithm for the MSR problem on gapless SNP matrices,
we first need the notion of conflicts between SNPs.

Definition 12.26. Let S={s1, . . . , sm} be a set of SNPs, let F = {f1, . . . , fn}
be a set of fragments, and let M be a SNP matrix for S and F . Then, an
(unordered) pair {s, s′} of SNPs is called a SNP conflict if there exist two
fragments f and f ′ such that

• M(f, s),M(f, s′),M(f ′, s),M(f ′, s′) ∈ {0, 1}, and
• M(f, s) = M(f, s′) if and only if M(f ′, s) 6= M(f ′, s′).

We will also say that the SNPs s and s′ are in conflict.
In other words, s and s′ are in conflict, if the submatrix defined by s, s′,

f , and f ′ contains three 1-symbols and one 0-symbol, or vice versa.

Definition 12.26 also implies that, for a SNP matrix M and a SNP conflict
{s, s′} with the corresponding fragments f and f ′, M(f, s) = M(f ′, s) if and
only if M(f, s′) 6= M(f ′, s′).

The following lemma states that a reduced gapless SNP matrix M cannot
be error-free if it contains two SNPs that are in conflict.
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Fig. 12.6. An example for the fragment cycle in the proof of Lemma 12.16. (a) An
odd cycle C in the fragment conflict graph; the edge labels indicate the SNP indices
on which the respective fragments disagree; (b) the corresponding directed cycle D
in the SNP matrix

Lemma 12.16. Let M be a reduced gapless SNP matrix. Then M is error-free
if and only if it does not contain two SNPs that are in conflict.

Proof. We first show that a SNP matrix containing a SNP conflict cannot be
error-free. Consider two SNPs s and s′ that are in conflict, and let f and f ′ be
two fragments responsible for that conflict. Then, without loss of generality,
we may assume that M(f, s) = M(f ′, s) = M(f, s′) = 0 and M(f ′, s′) = 1.
Since M is reduced, this implies that there exists a third fragment f ′′ such
that M(f ′′, s) = 1. This leads to the following submatrix:

s s′

f 0 0
f ′ 0 1
f ′′ 1

Now we see that {f, f ′} is a fragment conflict due to s′, and {f, f ′′} and
{f ′, f ′′} are fragment conflicts due to s. Thus, there exists a triangle in GF ,
i.e., GF is not bipartite. According to Lemma 12.13, M is not error-free.

For the other direction, we again prove its negation, namely, that a non-
error-free matrix implies a SNP conflict. To do so, we need some additional
notation. Consider a cycle C = f1, . . . , fk, f1 in the fragment conflict graph.
For simplicity of notation, we define fk+1 = f1. For each edge {fi, fi+1}
in C, we find a SNP with index si such that M(fi, si) 6= M(fi+1, si). The
cycle C together with the SNPs defines a directed cycle D in the matrix
M in the following sense: We consider the matrix entries as vertices; then,
the cycle D is composed of horizontal arcs from M(fi, si−1) to M(fi, si) (if
si−1 6= si) and vertical arcs from M(fi, si) to M(fi+1, si). An example is
shown in Figure 12.6. A maximal sequence of consecutive vertical arcs is
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Fig. 12.7. The situation in the proof of Lemma 12.16. (a) A part of the assumed
cycle D; (b) the respective part of the new cycle D′ of lesser weight

called a vertical run. We call the minimum number of vertical runs in any
cycle D in M corresponding to an odd cycle in GF the weight of M .

Assume that there exists a matrix that is not error-free and does not
contain any SNP conflicts. Choose such a matrix M of minimum weight.
Consider a cycle D in M with the minimum number of vertical runs that
corresponds to an odd cycle C = f1, . . . , fk, f1 in GF . D has to contain at
least two vertical runs, since otherwise D would be a cycle within only one
column of M and would have the same length as C. But on such a cycle D, the
values 0 and 1 would alternate, which contradicts the odd length of cycle C.
The idea is to construct an alternative cycle D′ together with a corresponding
SNP matrix M ′ under the assumption that there are no SNP conflicts, such
that D′ in M ′ has a smaller number of vertical runs, but still corresponds
to an odd cycle C ′ in GF , hence contradicting our choice of M . We want to
consider the rightmost vertical run of D. Since the order of the fragments in
M does not affect the structure of the fragment conflict graph, we may assume
without loss of generality, that the rightmost vertical run starts in fragment
fi, ends in fj , and contains all fragments fi+1, . . . , fj−1 as vertices for some
i < j. This implies that si−1 6 si and sj 6 si.

Assume without loss of generality that si−1 6 sj holds; the proof for the
other case is analogous. Then we have the situation shown in Figure 12.7 (a).
We know that M(fi, sj) = M(fj , sj) if and only if M(fi, si) = M(fj , si), since
otherwise M would contain a SNP conflict. Now we construct a new cycle D′

from D as follows: First, we replace all entries in rows fi+1, . . . , fj−1 by gaps,
except for the entries in column sj , which are set to yield a sequence of alter-
nating zeros and ones. Then, we replace the horizontal arc from M(fi, si−1)
to M(fi, si) with the arc from M(fi, si−1) to M(fi, sj); we delete the hori-
zontal arc from M(fj , si) to M(fj , sj); and we replace the vertical run from
M(fi, si) to M(fj , si) by the vertical run from M(fi, sj) to M(fj , sj). This
operation defines a new matrix M ′ and leads to the new cycle D′ shown in
Figure 12.7 (b). Obviously, we have not induced any new SNP conflicts by
this transformation, and the number of vertical runs in D′ is decreased by
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one with respect to the number of vertical runs in D, since the vertical run
starting at M(fi, sj) in D′ is joined with the vertical run starting at M(fj , sj).
Furthermore, the cycle C ′ in the fragment conflict graph G′F for M ′ is of odd
length, since it contains exactly as many vertices as C. This gives us a con-
tradiction to our assumption of M being of minimum weight. Thus, we have
proved that any gapless matrix that is not error-free has to contain a SNP
conflict, or, in other words, that no error-free gapless SNP matrix can contain
a SNP conflict. ut

Before we present an algorithm for the MSR problem, we first prove an-
other property of SNP conflicts.

Lemma 12.17. Let M be a gapless reduced SNP matrix with SNP set S =
{s1, . . . , sm}. Let 1 6 i < j < k 6 m. If {si, sj} and {sj , sk} are no SNP
conflicts, then {si, sk} is also not a SNP conflict.

Proof. Assume to the contrary that si and sk are in conflict. Then there exist
two fragments f and f ′ such that M(f, si),M(f, sk),M(f ′, si),M(f ′, sk) ∈
{0, 1} and that M(f, si) = M(f ′, si) if and only if M(f, sk) 6= M(f ′, sk).
Assume without loss of generality that M(f, si) = M(f ′, si), and thus
M(f, sk) 6= M(f ′, sk). Since i < j < k and M is gapless,M(f, sj),M(f ′, sj) ∈
{0, 1} holds. If M(f, sj) = M(f ′, sj), then sj and sk are in conflict; otherwise
sj and si are in conflict. So, our assumption leads to a contradiction; and we
have also shown that si and sk are not in conflict. ut

We are now ready to present a polynomial-time algorithm for the MSR
problem on gapless SNP matrices. According to Lemma 12.16, it is sufficient
to remove a minimum cardinality set of SNPs such that the resulting sub-
matrix does not contain any SNP conflicts. For convenience, we do not try
to minimize the number of SNPs to remove, but we instead try to find a
maximum cardinality set of SNPs that do not have any SNP conflicts be-
tween them. The algorithm is based on dynamic programming. Recall that
dynamic programming algorithms construct the solution for a problem in-
stance from partial solutions, i.e., from solutions for parts of the given problem
instances. In our case, as partial solutions for an input matrix with SNP set
{s1, . . . , sm}, the algorithm will calculate the maximum non-conflicting SNP
sets Pj ⊆ {s1, . . . , sj} containing sj , for all j ∈ {1, . . . ,m}.

We first formally fix our notation in the following definition.

Definition 12.27. Let M be a gapless reduced (n × m)-SNP matrix for the
SNP set S = {s1, . . . , sm}. For each SNP sj , for 1 < j < m, we denote by
Good(sj) the set of all SNPs with a smaller index, that are not in conflict
with sj , i.e., Good(sj) = {si | i < j and {si, sj} is not a SNP conflict}.

Furthermore, for each j ∈ {1, . . . ,m}, we denote by Pj a maximum-
cardinality subset of non-conflicting SNPs from {s1, . . . , sj} that contains sj .
Moreover, we set P0 = ∅.
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Algorithm 12.6 Solving the MSR problem on gapless SNP matrices

Input: A gapless reduced SNP matrix for a SNP set S = {s1, . . . , sm} and a fragment
set F = {f1, . . . , fn}.

1. Construct the sets Good(sj) for all sj ∈ {s1, . . . , sm}.
2. Set P0 := ∅.
3. for j := 1 to m do

3.1 Set Aj := argmaxPi:si∈Good(sj ) |Pi|.

3.2 Set Pj := {sj} ∪Aj .
4. Set P := argmaxPj :j∈{1,...,m} |Pj |.

Output: The computed maximum non-conflicting SNP set P .

We now show how we can recursively compute the sets Pj .

Lemma 12.18. Let M be a gapless reduced (n×m)-SNP matrix for the SNP
set S = {s1, . . . , sm}. Then the partial solution Pj to the MSR problem can be
computed as follows: Let Aj = argmaxPi:si∈Good(sj) |Pi| be one of the largest
of all sets Pi where si ∈ Good(sj). Then Pj = {sj} ∪ Aj .

Proof. Let si ∈ Good(sj). Then, {sj}∪Pi is a set of non-conflicting SNPs for
all i < j, due to Lemma 12.17. It remains for us to show that {sj} ∪ Aj is
the largest non-conflicting subset of {s1, . . . , sj} containing sj . Assume that
there is a larger non-conflicting set X ⊆ {s1, . . . , sj} containing sj . Let i′ < j
be the largest index such that si′ ∈ X . Then, X −{sj} ⊆ {s1, . . . , si′} is a set
of non-conflicting SNPs containing si′ , and |X − {sj}| > |Pi′ |, contradicting
the definition of Pi′ . ut

Based on Lemma 12.18, we can now formulate an algorithm for solving
the MSR problem on gapless SNP matrices; it is given as Algorithm 12.6.

Theorem 12.5. Algorithm 12.6 finds a maximum-cardinality set of SNPs for
a given gapless reduced (n×m)-SNP matrix in time O(n ·m2).

Proof. The correctness of the algorithm immediately follows from Lemma
12.18. Constructing the sets Good(sj) for all SNPs can be done in O(n ·m2)
time, and computing all partial solutions using the sets Good(sj) can be
implemented in O(m2) time. ut

Note that, using Algorithm 12.6, we are able to solve the MSR problem
in polynomial time not only on gapless matrices, but also on matrices for
which a permutation of the SNPs exists that makes the matrix gapless. The
existence of such a permutation can be efficiently tested; and if such a per-
mutation exists, it can also be found efficiently. The algorithm is analogous
to the algorithm for transforming a binary matrix into consecutive-ones form,
presented in Section 7.2.1.
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In concluding this section, let us briefly discuss the relevance of gapless in-
puts. At first glance, they appear to be the only meaningful ones, as fragments
are usually considered to be sequenced completely, resulting in a contiguous
region in the SNP matrix. However, errors occurring during these reading
techniques, as well as the application of concepts like mate pairs (as shortly
discussed in Chapter 6), where only a prefix and a suffix of the fragment is
actually sequenced, may lead to the presence of gaps in real data.

If the number of gaps is bounded by a constant, then the dynamic pro-
gramming approach presented above can be extended in an appropriate way
to yield good results for this case also.

12.3 Summary

Many organisms have a diploid genome, i.e., two slightly different copies of
each genome, called haplotypes. The most frequent differences between the
two haplotypes of an organism are the single nucleotide polymorphisms, or
SNPs for short. Standard sequencing techniques only reveal the genotype, i.e.,
a sort of consensus of the two haplotypes. Since haplotype information is im-
portant, for example, for tracking genetic diseases, but experimentally difficult
to obtain, computational methods are used for inferring the haplotypes from
the given genotypes.

One approach proposed in this context uses the genotypes from a popu-
lation of individuals and tries to resolve them into a set of haplotypes that,
on the one hand, are consistent with the genotypes, and that, on the other
hand, adhere to a perfect phylogeny model. From a computational point of
view, this leads to the PPH problem solvable in polynomial time.

Another approach tries to infer the haplotypes of a single individual. Here,
one tries to partition the DNA fragments from a shotgun sequencing experi-
ment into the two haplotypes. The resulting combinatorial problem is to find
a bipartition of a graph representing the fragments as vertices and the incom-
patibilities between them as edges. It is actually easily solvable for error-free
data, where the input data is a bipartite graph itself, but becomes hard in its
most general formulation, where, in the presence of errors, we seek to remove
a minimal number of fragments (or SNPs) from the input data such that the
induced graph becomes bipartite again. A special case, where the considered
fragments are contiguous strips of the DNA and where all SNP sites inside the
fragments have been detected, becomes polynomially solvable by a dynamic
programming approach.

12.4 Bibliographic Notes

An overview of the different models for haplotyping is given in the survey
papers by Bonizzoni et al. [35] and Halldorsson et al. [95], as well as in the
book edited by Istrail et al. [107].
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we presented in Section 12.1 goes back to a paper by Bafna et al. [19], a very
similar algorithm was independently proposed by Eskin et al. [66]. Ding et
al. presented a linear-time algorithm for the PPH problem in [61]. A good
overview of other approaches to the haplotyping problem in populations is
given by Gusfield [94].

The problem of haplotyping a single individual was introduced by Lancia
et al. [125]. In this paper, the MFR and MSR problems were defined and
their hardness was proven. The paper also proposed the first polynomial (but
involved) algorithms for the gapless case; we have taken the proof of Lemma
12.16 from it. Rizzi et al. [167] presented simple dynamic-programming algo-
rithms for the MSR and MFR problems; our presentation of Algorithm 12.6
is based on this paper. The algorithms were also extended to the case of a
constant number of gap symbols per fragment in [167]. Another fast (but in-
exact) heuristic for the MFR problem was proposed by Panconesi and Sozio
[152].
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Higher-Dimensional Structures of Biomolecules

In the previous chapters, we more or less exclusively focussed on the primary
structure, i.e., we dealt with the linear sequence of the basic units of the
considered molecules only. But for the function of the molecules in living
beings, their spatial structure is of essential significance. The spatial structure
enables or prohibits binding to other molecules and in this way determines
the particular function of the molecule. Because of this important fact, we will
devote the subsequent sections to certain topics dealing with higher structural
levels of molecules.

Although determining the spatial structure of a molecule directly is pos-
sible by X-ray crystallography and other methods, the procedures are very
costly and require a lot of effort. Hence, one tries to infer information about
the spatial structure of the molecule by analyzing its known primary structure.
The methods applied in this context are manifold and complex. The difficulty
of this task is due to many different factors; for instance, there may be several
exceptions from the “rules” describing the folding process of the particular
molecule; thus, considering all rules is not possible. Furthermore, the spatial
structure may depend not only on the primary structure of the molecule, but
also on other influencing factors, such as the surrounding medium or specific
substrates. Due to this, all structures derived from the primary structure of
the molecule must be viewed as candidates only, and must subsequently be
verified (or falsified) by further experiments.

For all molecules considered in the previous chapters, i.e., nucleic acids and
proteins, their higher-dimensional structures are divided into a hierarchical
system. The basis is in all cases formed by the above mentioned primary
structure, i.e., the sequence of nucleotides or amino acids, respectively, along
the molecule. Based on this, we distinguish between secondary, tertiary, and,
in the case of proteins, quaternary structures. The particular levels of structure
are defined for certain types of molecules in a slightly different way; we discuss
this topic in more detail later.

In Section 13.1 we take a closer look at the structural hierarchy of RNA
and present some approaches to obtain its secondary structure. The knowledge
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of the higher-dimensional structure of molecules can also serve as additional
information (besides the primary structure) when comparing two molecules.
Basic approaches, showing how this is possible in the case of RNA secondary
structures, is discussed in Section 13.2. Finally, Section 13.3 is devoted to
methods and approaches for determining higher-dimensional structures of pro-
teins. The chapter is closed with a summary in Section 13.4 and references to
further reading in Section 13.5.

13.1 RNA Secondary Structure Prediction

Before we start describing the structural hierarchy of RNA, we briefly review
its composition. An RNA molecule consists of a chain of nucleotides, that
may contain the bases adenine, cytosine, guanine, and uracil. In contrast to
DNA molecules, which consist of two complementary chains of nucleotides
connected to each other by hydrogen bonds between complementary bases,
RNA usually occurs as a single-stranded molecule. There exists the possibility
of pairings between complementary bases of the same RNA strand, which
results in various different spatial structures.

As mentioned in the introduction to this chapter, we call the series of
nucleotides along the RNA molecule its primary structure. This corresponds
to the representation of RNA in terms of a string over the alphabet ΣRNA =
{A, C, G, U}, as considered in previous chapters.

On the other hand, we call the folding of the RNA strand with itself
by means of hydrogen bonds between bases at different positions in the same
RNA strand its secondary structure. We will make this precise in the following
definition and propose a representation for it.

Definition 13.1. Let r = r1r2 . . . rn, where ri ∈ ΣRNA for 1 6 i 6 n, be
the primary structure of an RNA in its string representation. A secondary
structure of RNA can then be represented in terms of a set SecStructr of
pairs of indices from {1, . . . , n},

SecStructr ⊆ {(i, j) | 1 6 i < j 6 n},

where base ri is paired with base rj .
Moreover, SecStructr should satisfy the following properties:

(i) Each index k ∈ {1, . . . , n} occurs at most once in a pair from SecStructr.
(ii) For each pair (i, j) from SecStructr, either (ri, rj) is a Watson-Crick pair,

i.e., (ri, rj) ∈ {(A, U), (U, A), (C, G), (G, C)}, or (ri, rj) ∈ {(G, U), (U, G)}. We
call these base pairs also valid base pairs in the following.

(iii) For each pair (i, j) from SecStructr, j − i > 4 holds.

These properties impose some rather weak constraints on the general def-
inition of secondary structures; they ensure, to some extent, the feasibility of
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computation. Intuitively, property (i) requires that each base can be paired
with at most one other base. Hence, a base is either paired or unpaired. Prop-
erty (ii) ensures that a base pair is either a Watson-Crick pair or one of the
also relatively stable pairs (G, U) or (U, G). While in reality other pairings may
also occur, they are so rare that we may ignore them here. To allow for pair-
ings in the same molecule, the RNA strand has to fold to a certain degree.
Property (iii) describes the fact that the bends within such foldings cannot be
too sharp, since this is prohibited by the binding angles between the atoms.
We thus assume in particular that no pair should occur in the secondary struc-
ture where the corresponding bases are at distance less than 4 in the primary
structure.

The real spatial conformation of RNA, i.e., the positions of the single
atoms in space, the angle of the bindings, and so on, is referred to as the ter-
tiary structure of RNA. According to this, the secondary structure represents
a kind of transition on the way from the primary structure of the molecule to
its actual spatial form. That it is indeed a hierarchical intermediate, becomes
clear from Figure 13.1, where the secondary structure of a tRNA, often de-
scribed as trefoil-shaped, contrasts with the tertiary structure, which rather
resembles an “L”. Nevertheless, it is useful to try to figure out the secondary
structure of an RNA first and then utilize the information obtained to gain a
hypothesis of the tertiary structure of the molecule, if the secondary structure
does not reveal the molecule’s fundamental characteristics.
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In the following, we present various approaches to deriving the secondary
structure of RNA from its primary structure.

13.1.1 Minimizing the Free Energy

Many algorithmically oriented approaches are based on the idea of computing
the secondary structure that minimizes the free energy of the molecule. In
this context, the free energy of a molecule refers to its potential to further
release energy by participating in additional chemical bonds. Since in nature
the molecules that have the least possible free energy are known to be the most
stable ones, we try to figure out the secondary structure having the least free
energy. Differences in the free energy of the molecules depend on the bindings
between the bases of the RNA and are usually computed experimentally. We
now specify the possible types of bindings and the resulting substructures in
more detail.

To do so, we first define when a base, or a base pair, is reachable from a
particular base pair.
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Based on this definition, we can now describe the above mentioned sub-
structures of a secondary structure of RNA. We distinguish the following
types of substructures that can be inferred by base pairings in the secondary
structure of an RNA.

Definition 13.2. Let r be the primary structure of an RNA, let SecStructr

be a corresponding secondary structure, and let (i, j) ∈ SecStructr be a base
pair in the secondary structure. Then, (i, j), or the induced substructure (see
Figure 13.3) of the RNA, is called:

• Stacked pair if (i+1, j− 1) ∈ SecStructr, i.e., if the reachable base pair is
directly adjacent. A series of consecutive stacked pairs is called a stem.

• Hairpin loop if no base pair in SecStructr is reachable from (i, j), i.e., a
loop without any further base pair emerges from the base pair (i, j).

• Bulge if there exists a base pair (i′, j′) ∈ SecStructr reachable from (i, j)
such that either i′ − i > 1 or j − j′ > 1 holds (but not both at the same
time). Intuitively, there emerges a kind of bulb on one side of the double
strand induced by the base pairs (i, j) and (i′, j′).
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• Interior loop if there exists a base pair (i′, j′) ∈ SecStructr reachable from
(i, j) such that i′ − i > 1 as well as j − j ′ > 1 hold. In this case, a bulb
emerges between (i, j) and the reachable base pair (i′, j′) that does not
contain a further base pair.

• Multiple loop if there is more than one other base pair reachable from
(i, j). These structures may have various different forms.

We denote the number of bases reachable from base pair (i, j) as the size of
the substructure.

We refer to the collection of the substructures hairpin loop, bulge, interior
loop, and multiple loop as loops for short.PSfrag replacements
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It is easy to imagine that a substructure consisting of many stacked pairs
will have a stabilizing effect. On the other hand, the other substructures will
have, to a certain extent, a destabilizing effect on the secondary structure,
where the degree of destabilization corresponds to the number of reachable
(unpaired) bases. Due to this, the free energies of stems are negative, while
those of loops are positive.1

Before we discuss some algorithmic approaches for addressing our problem,
we define another complex substructure, called pseudoknot.

Definition 13.3. Let r be the primary structure of an RNA. A corresponding
secondary structure SecStructr contains a pseudoknot if there exist two base
pairs (i, j) and (k, l) in SecStructr such that i < k < j < l holds.

Such a pseudoknot is shown in Figure 13.4. Pseudoknots occur in real
secondary structures of RNA. But since they often essentially complicate the

1 Recall that as little as possible free energy is assumed to correspond to a confor-
mation of high stability.
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prediction of a secondary structure, they are omitted in most approaches
for solving this problem; but they may be reconsidered in the following step
for computing the tertiary structure of the RNA. Next, we present some al-
gorithms that depend on the assumption that no pseudoknots occur inside
the desired secondary structure. References to methods to actually introduce
pseudoknots are given in the bibliographic notes in Section 13.5.

The Algorithm of Nussinov

One of the first approaches to determine the secondary structure of RNA from
its primary structure was presented by Nussinov et al. [151] in 1978. The basic
idea is to try maximizing the number of base pairs in the computed secondary
structure. That is, the focus is on the number of stabilizing bindings only, while
the kind of resulting substructures are left out of consideration. The algorithm
is based on the method of dynamic programming we used in Chapter 5 for
computing similarities between sequences. To apply this method to our task
here, we consider substrings of different lengths of the string corresponding to
the primary structure of the RNA. For each of the substrings, we compute an
optimal (with respect to the measure described above) secondary structure,
and the use secondary structures already computed for shorter substrings
to successively derive secondary structures of longer substrings. We use the
following notations. Let r = r1r2 . . . rn be the string representation of the
primary structure of the considered RNA. By Si,j we denote the optimal
secondary structure for substring ri . . . rj . We refer to the number of base
pairs contained in this secondary structure as BP(Si,j), i.e., BP(Si,j) = |Si,j |.
Now, the algorithm in principle fills up an (n×n)-matrix with value BP(Si,j)
at position (i, j). Finally, the value at position (1, n) gives the desired result,
the number of base pairs in the computed secondary structure. The particular
secondary structure can then, starting from the final value, be reconstructed
using a trace-back approach in a way similar to that shown in Chapter 5
for determining the alignment from the similarity matrix. The algorithm is
presented in Figure 13.1; here, δ : ΣRNA ×ΣRNA → {0, 1} denotes a function
that yields 1 if the argument is a valid base pair, and 0 otherwise.

The cases considered in the recurrences are visualized in Figure 13.5 to
show the intention behind them in more detail. Case (i) corresponds to the
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Algorithm 13.1 Nussinov’s Algorithm

Input: A string r = r1 . . . rn.
1. Initialization:

for i = 2 to n do BP(Si,i−1) := 0
for i = 1 to n do BP(Si,i) := 0

2. Recurrence:

for l = 1 to n− 1 do

for i = 1 to n − l do

j := i + l;

BP(Si,j) := max ���� ���
BP(Si+1,j) (i)
BP(Si,j−1) (ii)
BP(Si+1,j−1) + δ(ri, rj) (iii)
maxk,i<k<j{BP(Si,k) + BP(Sk+1,j)} (iv)

Output: BP(S1,n)

possibility that base ri will not be paired, and thus there is no change in the
number of base pairs from substructure Si+1,j to Si,j . The analogous case
where rj is not paired, is depicted as case (ii), and we thus obtain the same
number of base pairs as in Si,j−1. The possibility that bases ri and rj bind
to each other is shown as case (iii). Accordingly, the number of base pairs
in the resulting secondary structure Si,j is increased by 1 compared with
BP(Si+1,j−1) if δ(ri, rj) = 1, i.e., if (ri, rj) is a valid base pair. Case (iv)
represents the scenario where the optimal secondary structure is composed of
two parts, Si,k and Sk+1,j . This type of composition implies, in particular,
that pseudoknots cannot be considered here.
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Algorithm 13.1 computes along this line only the optimal number of base
pairs in a secondary structure; the structure itself can be inferred via a trace-
back approach as presented in the context of alignment algorithms.

Clearly, the procedure is a very rough simplification of reality, since only
the number of base pairs in the secondary structure is considered here. There-
fore, it is appropriate to extend this algorithm, at least in such a way that
the particular free energy of the single base pairings is also considered. To
do so, we denote by fe(ri, rj) the free energy of base pair (ri, rj) and refine
the above algorithm by including function fe instead of δ in case (iii). Since
the free energy of a binding is negative, we then search for the structure that
minimizes the energy. The modified algorithm then uses the recurrence

E(Si,j) = min







E(Si+1,j) (i)
E(Si,j−1) (ii)
E(Si+1,j−1) + fe(ri, rj) (iii)
mink,i<k<j{E(Si,k) + E(Sk+1,j)} (iv)

(13.1)

where E refers to the free energy of the secondary structure (based on base
pairs) and does not only count the number of base pairs BP as Algorithm 13.1
does. Using the function fe , we can furthermore do without the assumption of
considering valid base pairs only, since valid base pairs will, by evaluation of
the experimentally obtained function fe , yield lower free energies than invalid
base pairs.

At this point, let us briefly consider the running time of Algorithm 13.1.
Essentially, the algorithm computes values in the above right triangle of an
(n× n)-matrix (see Figure 13.6); this requires O(n2) steps. The computation
of values for the cases (i), (ii), and (iii) in the recurrence only needs a constant
effort. On the other hand, up to n different possibilities for the parameter k
must be tested in case (iv). This requires O(n) time, which altogether leads
to a running time of the algorithm in O(n3).

Additionally, we would like to mention that Algorithm 13.1 in its present
form does not take into account the bending property of Definition 13.1 (iii),
but it is easy to come up with an appropriate extension (simply check whether
the two bases of a possible pair are at the required distance).

The Algorithm of Zuker

Until now we have considered the free energy on the level of base pairs only
for predicting the secondary structure of RNA, without taking into account
what kinds of substructures with respect to Definition 13.2 result from such
pairings. But the free energy of the secondary structure essentially depends on
the substructures; stems have stabilizing effects (negative free energy), while
loops have destabilizing effects (positive free energy). To take these effects into
account, we now present a refined procedure that is also based on the method
of dynamic programming and was proposed by Zuker and Stiegler [212].
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Algorithm 13.2 Zuker’s Algorithm - Basic recurrence
Input: A string r = r1 . . . rn.
Recurrence:

for l = 1 to n− 1 do

for i = 1 to n − l do

j := i + l;

E(Si,j) := min ���� ���
E(Si+1,j) (i)
E(Si,j−1) (ii)
E(Li,j) (iii)
mink,i<k<j{E(Si,k) + E(Sk+1,j)} (iv)

Output: E(S1,n)

We restrict ourselves here to the presentation of the recurrence; the ini-
tialization corresponds to that from Algorithm 13.1. We denote by E(Si,j),
for each secondary structure Si,j , the minimal free energy, where we addi-
tionally consider the different possibilities of substructures as well. The basic
recurrence of Zuker’s Algorithm is similar to recurrence (13.1) in the modified
algorithm by Nussinov, and is presented as Algorithm 13.2.

Case (iii) in the recurrence corresponds to a pairing between bases ri and
rj , as in Algorithm 13.1. But here we additionally consider the substructure
induced by this base pair for determining the free energy. Therefore, we denote
by Li,j a substructure with minimal free energy that results from a base pairing
(ri, rj). Before we actually give a recurrence for the computation of E(Li,j),
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we introduce some notation for the experimentally determined free energy of
substructures.

Definition 13.4. • festacked denotes the free energy of a stacked pair, namely,
the additional free energy released by another base pairing within a stem
(stabilizing, thus negative).

• fehairpin(k) denotes the free energy of a hairpin loop of size k (destabilizing,
thus positive).

• febulge(k) denotes the free energy of a bulge of size k (destabilizing, thus
positive).

• feinterior(k) denotes the free energy of an interior loop of size k (destabi-
lizing, thus positive).

Recall that we referred to the free energy of base pair (ri, rj) as fe(ri, rj).
Hence, except the formation of stacked pairs, all the substructures have

a destabilizing effect, and thus the free energies will in general have positive
values.

Based on the notations for specific free energy types introduced above, we
can now formulate the recurrence for E(Li,j) in Algorithm 13.3.

Algorithm 13.3 Zuker’s Algorithm — Recurrence for E(Li,j)

E(Li,j) :=

������������������ �����������������

fe(ri, rj) + festacked +E(Si+1,j−1),
if Li,j is a stem (a)

fe(ri, rj) + fehairpin(j − i− 1),
if Li,j is a hairpin loop (b)

mink � 1{fe(ri, rj) + febulge(k) + E(Si+k+1,j−1)},
if Li,j is a bulge at ri (c)

mink � 1{fe(ri, rj) + febulge(k) + E(Si+1,j−k−1)},
if Li,j is a bulge at rj (d)

mink1,k2 � 1{fe(ri, rj) + feinterior(k1 + k2) + E(Si+k1+1,j−k2−1)},
if Li,j is a interior loop (e)

(13.2)

For a better understanding of the particular cases we refer the reader to
Figure 13.3.

After describing Algorithm 13.2 completely, we now consider its running
time. Analogously to the analysis of Algorithm 13.1, we want to fill up a ma-
trix of size O(n2) with values for the corresponding free energy for a given
input string r = r1 . . . rn. As in Algorithm 13.1, cases (i) and (ii) in the basic
recurrence in Algorithm 13.2 require a constant effort, case (iv) requires a lin-
ear effort. To determine the effort in case (iii) (computing E(Li,j)) we have to
consider the recurrence (13.2). Here, (a) and (b) again imply a constant effort,
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and (c) and (d) a linear one. On the other hand, a naive implementation2 of
(e) will lead to an effort in O(n2), since all possible values for parameters k1

and k2 have to be tested (1 6 k1, k2 6 n). Altogether, we can conclude that
Algorithm 13.2 can be implemented to require a running time in O(n4).

Also, Algorithm 13.2 is based on simplifying assumptions: On the one
hand, no pseudoknots are considered, and on the other hand, multiple loops
and other conformations influencing the free energy are not taken into account.
Nevertheless, this algorithm constitutes the basis for many extensions that
also account for these. We come back to this topic in Section 13.5.

The algorithm can be modified in such a way that not only optimal (with
respect to the considered model) secondary structures can be computed, but
also approximate ones. This set of similarly good hypotheses can then be
further tested for relevance in biological experiments.

13.1.2 Stochastic Context-Free Grammars

In this section we deal with another approach to compute good hypotheses
for the secondary structure of RNA. The idea is to describe the secondary
structure of RNA with a set of context-free rules, which are applied with a
certain probability. The possibility of a base pairing (C, G) may, for instance,
be modeled by using a rule of type A→ CAG. We make this approach concrete
in the following. To start, we give the definition of a context-free grammar.

Definition 13.5. A context-free grammar G is a 4-tuple G = (N,T, P, S),
where N and T are alphabets, with N ∩ T = ∅.

• N is called the alphabet of non-terminals,
• T is called the alphabet of terminals,
• S ∈ N is called the start symbol, and
• P ⊆ N× (N ∪T )∗ is called the set of productions (derivation rules), where

P is a finite set. We also represent an element (u, v) ∈ P as u→ v.

Let u, v ∈ (N ∪ T )∗, and u = w1Aw2 and v = w1v
′w2 for some w1, w2 ∈

(N ∪ T )∗. If there exists a production (A, v′) ∈ P , then we say that v is
derived from u in G and denote this by u ⇒G v. By ⇒∗G we refer to the
reflexive and transitive closure of ⇒G. (That is, in a derivation we allow for
an arbitrary number of arbitrary productions.) A series of the form w0 ⇒G

w1 ⇒G . . .⇒G wn will be called a derivation in G.
A string w ∈ T ∗ is generated by a grammar G if there exists a derivation

of the form S ⇒∗G w. The set of strings generated by G is called the language
of G (or generated by G)

L(G) = {w ∈ T ∗ | S ⇒∗G w}.

2 References to a more efficient implementation can be found in Section 13.5.
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Fig. 13.7. Schematic view of the secondary structure from Example 13.1

In the previous definition, context-freeness refers to the kind of rules al-
lowed in the grammar, where the left-hand side consists of a single non-
terminal only, and thus the application of a production does not rely on the
context, i.e., the surrounding symbols, of the non-terminal.

As this brief definition suffices for our purposes, we do not further discuss
the theory of grammars here. Instead, we motivate it by a short example how
we would like to model the secondary structure of an RNA by means of a
context-free grammar.

Example 13.1. Let r = AGACUAGGCCGUCUA be the string representation of an
RNA and let a corresponding secondary structure be given by SecStructr =
{(1, 14), (2, 13), (3, 12), (4, 11)} (see also Figure 13.7). Let us now consider the
following context-free grammar G = ({S}, {A, C, G, U}, P, S), with

P = {S → AS | CS | GS | US,

S → SA | SC | SG | SU,

S → ASU | USA | CSG | GSC,

S → A | C | G | U}.

Here, the notation S → u | v is used as an abbreviation for the two rules S → u
and S → v. Note that grammar G (like every grammar) is independent from
the actual string we may derive, and thus universally applicable to all possible
strings.

Next, we show that r is contained in the language L(G) by exposing a
derivation. To do this, we successively apply productions from the first line of
the above set of productions to subsequently generate the particular characters
in r.3

S ⇒G AS ⇒G AGS ⇒G AGAS ⇒G AGACS ⇒G AGACUS ⇒G AGACUAS

⇒G AGACUAGS ⇒G AGACUAGGS ⇒G AGACUAGGCS ⇒G AGACUAGGCCS

⇒G AGACUAGGCCGS ⇒G AGACUAGGCCGUS ⇒G AGACUAGGCCGUCS

⇒G AGACUAGGCCGUCUS ⇒G AGACUAGGCCGUCUA

3 Actually, L(G) contains all strings over the alphabet ΣRNA, i.e., L(G) = Σ∗
RNA,

as each string can easily be derived by applying the productions in line 1 (or line
2) only.
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But there also exists a derivation for r in G whose sequence of productions
mirrors the secondary structure SecStructr.

S ⇒G SA ⇒G ASUA ⇒G AGSCUA ⇒G AGASUCUA ⇒G AGACSGUCUA

⇒G AGACUSGUCUA ⇒G AGACUASGUCUA ⇒G AGACUAGSGUCUA

⇒G AGACUAGGSGUCUA ⇒G AGACUAGGCSGUCUA ⇒G AGACUAGGCCGUCUA

In this derivation, we used, after applying production S → SA from the second
line of P to obtain the overhanging A, derivation rules of type S → XSY from
the third line of P to describe the base pairings of the secondary structure.
From the rules used in the derivation, we can directly infer the secondary
structure. ♦

We have seen in the previous example how to draw conclusions on the
secondary structure of an RNA from the application of certain productions in
a derivation of the RNA’s string representation. We now extend the notion of
context-free grammars by a stochastic component to evaluate positively those
derivations that represent a good hypothesis for the secondary structure of
the considered RNA.

Definition 13.6. A stochastic context-free grammar Gstoch = (N,T, P, S, ρ)
is a context-free grammar G = (N,T, P, S), with an additional function ρ :
P → [0, 1], that assigns a probability to each production in P such that, for
all A ∈ N ,

∑

x∈(N∪T )∗

A→x∈P

ρ(A→ x) = 1.

A stochastic context-free grammar thus assigns a probability to each pro-
duction. Hence, also each derivation of a string w gets assigned a probability,
namely the product of probabilities of the productions used in the deriva-
tion. Let α be a derivation in a stochastic context-free grammar Gstoch =
(N,T, P, S, ρ); then,

Prob(α) = ρ(p1) · ρ(p2) · . . . · ρ(pk)

gives the probability of derivation α in Gstoch, where p1, . . . , pk is the series
of production used in α.4 The probability of a string w to be generated by a
stochastic context-free grammar Gstoch = (N,T, P, S, ρ) is then the sum of all
probabilities of all derivations for w in Gstoch:

Prob(w) =
∑

α is derivation for w in Gstoch

Prob(α).

4 Note that some productions may be applied several times within a derivation,
accordingly, there may exist i and j, i 6= j, where pi = pj .
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We have seen in Example 13.1 how a derivation can correspond to the
secondary structure of an RNA. Our next goal is to assign a high probability
to a derivation, that leads to a good hypothesis for the secondary structure.
This implies the following tasks.

1. Generating a stochastic context-free grammar: Let D be a set of training
data consisting of pairs of primary and secondary structures of RNA.
From this, a stochastic context-free grammar should be constructed whose
derivations of a primary structure r in D have high probability if these
derivations mirror the corresponding secondary structure of r.

2. Determining the most probable derivation: Let Gstoch be a stochastic con-
text-free grammar as constructed in step 1. For the primary structure r
of an RNA with a yet unknown secondary structure, we want to compute
the most probable derivation of r in Gstoch. This is based on the hope that
structures in D learned in step 1 can be generalized to the unknown sec-
ondary structure sequence r, to obtain a good hypothesis of the secondary
structure of r by finding a derivation with high probability. Formally, we
would like to determine β as

β = argmax
α
{Prob(α) | α is a derivation of r}.

In this book, we do not further discuss the construction of a grammar as
required in step 1, instead we will describe a procedure for step 2. Regarding
approaches to perform step 1, we refer the reader to the bibliographic notes
in Section 13.5.

First, let us restrict the general form of a context-free grammar in such a
way that we only allow a particular type of derivation rule.

Definition 13.7. A context-free grammar G = (N,T, P, S) is said to be in
Chomsky normal form, CNF for short, if all productions in P are of type

• A→ BC, where A,B,C ∈ N , or
• A→ a, where A ∈ N and a ∈ T .

It is possible to show that all context-free grammars can be transformed
into a grammar in CNF, such that the languages generated are the same. We
will not prove this in general, but exemplarily consider production S → CSG
from Example 13.1. Recall, S ∈ N denotes a non-terminal, and C, G ∈ T
are terminals of our grammar. Production S → CSG can now be replaced by
productions S → XY , X → C, Y → SZ, and Z → G, where X,Y, Z ∈ N are
new non-terminals, without changing the language of the grammar.

Now, a stochastic context-free grammar is in Chomsky normal form, if the
corresponding context-free grammar is in Chomsky normal form. Transform-
ing an arbitrary stochastic context-free grammar into a stochastic CNF re-
quires the transformation of the underlying grammar. Moreover, it is possible
to transform the probabilities ρ of productions as well, such that correspond-
ing derivations will have also the same probability. For our example above, let
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the original probability of production S → CSG be given by ρ(S → CSG). We
denote the probabilities of productions in the corresponding grammar in CNF
by ρ′, and they may be set to ρ′(S → XY ) = ρ(S → CSG), ρ′(X → C) = 1,
ρ′(Y → SZ) = 1, and ρ′(Z → G) = 1.

Next, we introduce a structure that nicely represents derivations of a gram-
mar.

Definition 13.8. Let G = (N,T, P, S) be a context-free grammar. A directed
ordered rooted tree DG is called a derivation tree of G if

• The root is labeled with the start-symbol S.
• Each inner vertex is labeled with a symbol from N .
• Each leaf is labeled with a symbol from T ∪ {λ}.
• Letting A be the label of an inner vertex n and B1, B2, . . . , Bk be the la-

beling of its children in left-to-right order,we have

A→ B1B2 . . . Bk ∈ P.

• For a vertex n labeled λ, n is a leaf and the only child of its parent vertex.

A derivation tree DG,w of string w in grammar G is now a derivation tree
of G such that the labeling of leaves of DG,w read in left-to-right order yields
w. A derivation tree in this way specifies a certain selection of productions
to derive a particular string. However, the order of applying these rules may
vary. Let us consider the following example.

Example 13.2. Let G be the grammar from Example 13.1; i.e.,

P = {S → AS | CS | GS | US,

S → SA | SC | SG | SU,

S → ASU | USA | CSG | GSC,

S → A | C | G | U}.

The derivation trees of the string r = AGACUAGGCCGUCUA that correspond
to the derivations in Example 13.1 are shown in Figure 13.8 (a) and (b),
respectively. If we now extend P by another production S → SS, we can,
for the string r′ = {AGAC}, get a derivation tree as shown in Figure 13.9.
Here, |r′| non-terminals S are produced first by multiple application of the
rule S → SS, and then the particular terminals are derived using productions
of the form S → a, a ∈ {A, C, G, U}. This derivation tree represents a number
of different derivations:

S ⇒G SS ⇒G SS S ⇒G AS S ⇒G AG S

⇒G AG SS ⇒G AG AS ⇒G AGAC (13.3)

S ⇒G SS ⇒G S SS ⇒G S SC ⇒G S AC

⇒G SS AC ⇒G SG AC ⇒G AGAC (13.4)

S ⇒G SS ⇒G SS S ⇒G AS S ⇒G AS SS

⇒G AG SS ⇒G AG SC ⇒G AGAC (13.5)
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Fig. 13.8. Derivation trees for r = AGACUAGGCCGUCUA and G from Example 13.2
(the direction of the edges is implicitly considered to be from top to bottom)
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Derivation (13.3) is also called left-most derivation, since always the left-most
non-terminal is replaced; analogously, we refer to derivation (13.4) as the right-
most derivation. Besides left- and right-most derivations, also combinations
of both may occur, as in case of derivation (13.5). ♦

Thus, we have seen that a derivation tree may describe several different
derivations, but each of them uses the same collection of productions. Since
in stochastic context-free grammars probabilities are assigned to the produc-
tions, each derivation represented by a particular derivation tree of a stochastic
context-free grammar has the same probability. Therefore, it is meaningful to
look at the probability of a derivation tree for a string and a given stochastic
context-free grammar instead of the probability of a particular derivation. We
now aim at determining such a derivation tree with maximum probability.

To do so, we again use an approach that depends on the concept of dynamic
programming. The algorithm in some sense resembles the Viterbi algorithm
for HMMs presented in Section 9.4. We are given a string r and a stochastic
context-free grammar G in CNF. Starting with the terminal symbols in r,
we now try to go back to the starting symbol S by reversing the possible
productions. During this process we store the probabilities of the productions,
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Algorithm 13.4 Stochastic CYK algorithm

Input: A stochastic context-free grammar Gstoch in CNF and a string w = w1 . . . wn

over the alphabet T .

1. Initialization:

for i = 1 to n do

for l = 1 to m do

γ(i, i, l) = ρ(Al → wi);

2. Recurrence:

for d = 1 to n− 1 do

for i = 1 to n − d do

for l = 1 to m do

j := i + d
γ(i, j, l) = max

Al→AxAy∈P

k=i,...,j−1

{γ(i, k, x) · γ(k + 1, j, y) · ρ(Al → AxAy)};

Output: γ(1, n, 1)

to finally yield the derivation tree (the order of application of productions is
not determined by this approach) with maximal probability. This algorithm
is a modification of the CYK algorithm, named after its inventors Cocke,
Younger, and Kasami, that was originally designed to compute whether or
not a given string w can be generated by a given context-free grammar G in
CNF, i.e., whether or not w ∈ L(G) holds.

To describe the algorithm, we use the following notation. Let Gstoch =
(N,T, P,A1, ρ) be the considered stochastic context-free grammar in CNF,
where N = {A1, . . . , Am}.5 For the sake of simplicity we may assume that
productions not occurring in P are assigned probability 0 by ρ. Furthermore,
let w = w1 . . . wn be a string over the alphabet T . By γ(i, j, l) we denote the
maximal sum of probabilities of productions to generate the string wi . . . wj ,
starting with the non-terminal Al in Gstoch. These probabilities are first com-
puted for strings of length 1, and then successively for longer substrings of w
until, finally, γ(1, n, 1) yields the maximal probability of generating the string
w using Gstoch. The algorithm is given as Algorithm 13.4. Again, it only com-
putes the value of the maximal probability, not the desired derivation tree
itself. Similarly to determining the optimal alignment in Chapter 5, we can
apply a traceback approach here.

Due to the nested for loops in step 2 and the computation of the maximum
over all possible values k, this algorithm requires a running time in O(n3 ·m).
As a rule, it is implemented using the logarithms of the probabilities. The
reasons for this were discussed in the context of the Viterbi algorithm in
Section 9.4.

5 P thus contains productions of type Ah → AiAj and Ah → b only.
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Algorithm 13.5 Computing a most probable derivation based on Nussinov’s
algorithm

Input: The grammar Gstoch as described above and a string r = r1 . . . rn.
1. Initialization:

for i = 2 to n do

γ(i, i − 1) := 0
for i = 1 to n do

γ(i, i) := max{ρ(S → riS), ρ(S → Sri)}

2. Recurrence:

for all j − i = 1 to n − 1 do

γ(i, j) := max ���� ���
γ(i + 1, j) · ρ(S → riS)
γ(i, j − 1) · ρ(S → Srj)
γ(i + 1, j − 1) · ρ(S → riSrj)
maxk,i<k<j{γ(i, k) · γ(k + 1, j) · ρ(S → SS)}

Output: γ(1, n).

In concluding this section, we will Algorithm 13.1 described in Sec-
tion 13.1.1 and show how this algorithm can be simulated using a stochas-
tic context-free grammar. Let us therefore consider the extended stochastic
context-free grammar from Example 13.2, namely, Gstoch = ({S}, {A, C, G, U},
P, S, ρ), where

P = {S → AS | CS | GS | US, (13.6)

S → SA | SC | SG | SU, (13.7)

S → ASU | USA | CSG | GSC, (13.8)

S → SS, (13.9)

S → λ}.

The productions in (13.6) correspond to the case in Nussinov’s algorithm
where base ri does not perform a binding (see Figure 13.5 (i)); in an analogous
way, the productions in (13.7) correspond to the case where rj is unpaired (see
Figure 13.5 (ii)). The pairing of bases ri and rj is resembled by the derivation
rules in (13.8) (see Figure 13.5 (iii)); and the splitting into two substructures
is simulated in (13.9) (see Figure 13.5 (iv)). Finally, the production S → λ
allows for eliminating useless non-terminals S.

For this grammar, one may now estimate the probability function ρ based
on training data, transform it into CNF, and then determine the most probable
derivation tree for a string r in the resulting grammar. From this we may
then obtain the secondary structure of r. However, in this case one can also
apply a recurrence that essentially resembles that of Nussinov’s algorithm, and
achieves the most probable derivation tree directly, thus avoiding the detour
of transforming the grammar into CNF. The resulting algorithm is presented
as Algorithm 13.5.
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Finally, we again point out that modelling secondary structures of RNA
by means of stochastic context free grammars has some advantages. It enables
us to assign a probability to each secondary structure (each derivation tree) of
an RNA r, and hence we can compute not only optimal, but also near optimal
structures (of course according to our model only), as hypotheses for the real
secondary structure of the molecule. It is worth noting that the stochastic
context-free grammar used for the modelling process, is independent of the
particular RNA sequence considered, i.e., it is generally applicable.

13.2 Structure-Based Comparison of Biomolecules

After having investigated some methods for deriving the secondary structure
of an RNA from its primary structure in the previous section, we now want to
present a possible application of the newly gained knowledge on the secondary
structure. When we investigated similarities between RNA sequences before,
it was based on their primary structures only; corresponding methods were
considered in Chapter 5. Next, we would like to design a way to include this
additional knowledge in the comparison. Let us therefore consider the sec-
ondary structure of an RNA as shown in Figure 13.10 (a). If we now represent
the primary structure as a string maintaining in terms of arcs the connections
between pairs of characters, that correspond to base pairs in the secondary
structure, then we obtain the representation given in Figure 13.10 (b). We
call this kind of representation arc-annotated string.
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Fig. 13.10. (a) The secondary structure of an RNA; (b) the corresponding arc-
annotated string
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At this point we abstract from the particular meaning of an arc-annotated
string as a representation of RNA secondary structure, and examine this no-
tion in its whole generality.

Definition 13.9. Let s = s1s2 . . . sn be a string over an alphabet Σ and let
P ⊆ {(i, j) | 1 6 i < j 6 n} be an unordered set of position pairs in s. We
call S = (s, P ) an arc-annotated string6 with string s and arc set P . A pair
(i, j) from the arc set P is called an arc.

The arc-annotated string shown in Figure 13.10 (b) thus has the formal
representation S = (s, P ), where

s = AGGUCAGAGACGCUACGAU and

P = {(1, 19), (4, 10), (5, 9), (11, 17), (12, 16)}

How can we now measure the similarity between two arc-annotated
strings? Let us first recall the (global) alignment of two strings, as presented
in Section 5.1.2. If we value each match 1, and each mismatch and gap 0, we
get the particular problem of searching the longest common subsequence.

Definition 13.10. The longest common subsequence problem, LCS for short,
is the following optimization problem.

Input: Two strings s = s1s2 . . . sn and t = t1t2 . . . tm over a common alphabet
Σ.

Feasible solutions: Each common subsequence7 w ∈ Σ∗ of s and t.
Cost: The length of subsequence w, cost(w) = |w|.
Optimization goal: Maximization.

Hence, given two strings s and t, we search for the longest string w that
is a subsequence of s as well as of t that originates from deleting characters
at certain positions in s and t, respectively.

Example 13.3. Let s = abcdabcdabcd and t = dcaaabaabdcd. A longest com-
mon subsequence of s and t is w = aababcd, having length 7.

− − a b c d a b c d a b − c d
d c a − a − a b a − a b d c d

♦

On the other hand, one may also understand each subsequence as a map-
ping of positions in one string to positions in the other.

6 In the literature, the term arc-annotated sequence is also used.
7 Recall that a string w is called a subsequence of a string s if all symbols in w

occur in the same order as in s. A subsequence is thus not necessarily a substring
(see Definition 3.3).
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Definition 13.11. Let s = s1s2 . . . sn and t = t1t2 . . . tm be two strings and
let w = w1w2 . . . wk be a common subsequence of s and t. Then a bijective
mapping ϕ from a subset Ms of {1, . . . , n} onto a subset Mt of {1, . . . ,m} is
called consistent with w if it satisfies the following properties.

(i) Mapping ϕ preserves the order of symbols along the strings s and t, i.e.,
for all i1, i2 ∈Ms,

i1 < i2 ⇐⇒ ϕ(i1) < ϕ(i2).

(ii) The symbols on positions assigned by ϕ are equal, i.e., for all i ∈Ms,

si = tϕ(i).

A mapping consistent with a common subsequence w of two strings s and
t is thus a feasible assignment of positions in s to positions in t, such that the
symbols at the positions in s, t, and w are all the same. We may also describe
this mapping by its position pairs, leading to the following representation:

ϕ = {〈x, y〉 | ϕ(x) = y, x ∈ {1, . . . , n}, y ∈ {1, . . . ,m}}.

We use 〈〉 to better distinguish between elements from ϕ and the arc sets P
of the arc-annotated strings.

For the common subsequence w from Example 13.3, a consistent mapping
ϕ is given by

ϕ = {〈1, 3〉, 〈5, 5〉, 〈6, 6〉, 〈9, 8〉, 〈10, 9〉, 〈11, 11〉, 〈12, 12〉}.

The mapping consistent with a subsequence is not necessarily unique. So,
for instance, also the mapping

ϕ′ = {〈1, 4〉, 〈5, 5〉, 〈6, 6〉, 〈9, 8〉, 〈10, 9〉, 〈11, 11〉, 〈12, 12〉}

is consistent with the common subsequence w from Example 13.3. The map-
ping ϕ′ thus corresponds to an alignment of string s and t in the following
way:

− − − a b c d a b c d a b − c d
d c a a − − − a b a − a b d c d

But independently from this, in general the length of a common subse-
quence w is identical to the number of position pairs in each of its consistent
mappings ϕ.

Focussing on the length, we can, instead of considering the string repre-
sentation of a common subsequence, deal with its consistent mapping. In the
following, we consider in each case the type of description that appears to be
most suitable to illustrate the issue.

After having considered the LCS in more detail, we extend this problem
to measure the similarity of structures (instead of strings) which are provided
in terms of arc-annotated strings. To do so, we first define what we want to
understand as an arc-preserving common subsequence.
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Definition 13.12. Let S = (s1s2 . . . sn, Ps) and T = (t1t2 . . . tm, Pt) be
two arc-annotated strings over an alphabet Σ. A string w is called an arc-
preserving common subsequence of S and T if there exists a mapping ϕ con-
sistent with w such that

(i) si = tj , for all elements 〈i, j〉 from ϕ, and
(ii) for all pairs of elements (〈i1, j1〉, 〈i2, j2〉) from ϕ

(i1, i2) ∈ Ps ⇐⇒ (j1, j2) ∈ Pt.

An arc-preserving common subsequence is thus a string, which is a sub-
sequence of both arc-annotated strings and which contains all existing arcs.
In particular, property (ii) in the above definition implies that, if both ends of
an arc in S are assigned to positions in T by ϕ, then between these assigned
positions in T there has to be an arc as well.

Definition 13.13. The longest arc-preserving common subsequence problem,
LAPCS for short, is the following optimization problem.

Input: Two arc-annotated strings S = (s1 . . . sn, Ps) and T = (t1 . . . tm, Pt)
over an alphabet Σ.

Feasible solutions: Each arc-preserving common subsequence w ∈ Σ∗ of S and
T .

Cost: The length of subsequence w, cost(w) = |w|, i.e., the number of position
pairs in a mapping ϕ consistent to w, cost(w) = cost(ϕ) = |ϕ|.

Optimization goal: Maximization.

We can easily imagine that the structure of arcs within the arc-annotated
strings influences the complexity of the LAPCS problem presented above. Yet,
we did not put any structural requirements onto the set of arcs; but now we
introduce a classification of arc-annotated strings according to certain criteria.

Let P denote the arc set of an arc-annotated string S = (s1 . . . sn, P ). We
distinguish the following four properties of P .

(R.1) No two arcs in P share a common endpoint: For any two arbitrary arcs
(i1, j1), (i2, j2) ∈ P , we have

i1 6= j2, j1 6= i2 and i1 = i2 ⇐⇒ j1 = j2.

(R.2) No two arcs in P cross each other: For any two arbitrary arcs (i1, j1),
(i2, j2) ∈ P , we have

i2 < i1 < j2 ⇐⇒ i2 < j1 < j2.

(R.3) No two arcs in P are nested: For any two arbitrary arcs (i1, j1), (i2, j2) ∈
P , we have

i1 < i2 ⇐⇒ j1 < j2.

(R.4) The arc set P contains no arcs: P = ∅.
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Fig. 13.11. Representatives from the different classes of arc-annotated strings. The
?-symbol is a wildcard for arbitrary characters

According to these restrictions we may now classify arc-annotated strings
into the following classes.

Definition 13.14. We specify the following classes of arc-annotated strings.

• Unlimited={S = (s, P ) | S is an arc-annotated string}
• Crossing={S = (s, P ) | S ∈ Unlimited and P satisfies (R.1)}.
• Nested={S = (s, P ) |S ∈ Unlimited and P satisfies (R.1) and (R.2)}.
• Chain={S = (s, P ) | S ∈ Unlimited and P satisfies (R.1) to (R.3)}.
• Plain={S = (s, P ) | S ∈ Unlimited and P satisfies (R.4)}.

With respect to this definition we thus obtain the following inclusions:

Plain ( Chain ( Nested ( Crossing ( Unlimited .

Characteristic examples for each of these classes are shown in Figure 13.11.
Recalling our original motivation to study arc-annotated strings, we can relate
the classes to corresponding RNA secondary structures as follows. The class
Crossing includes all secondary structures of RNA as we considered them
in Section 13.1. The only restriction is that for RNA secondary structures we
allow a base only to pair with at most one other base. In particular, we can
represent a pseudoknot in Crossing (see for instance Figure 13.12, where the
pseudoknot from Figure 13.4 is shown in terms of an arc-annotated string). If
we restrict ourselves to structures without pseudoknots, this yields structures
belonging to the class Nested. With nested arcs we can describe all sub-
structures of secondary structure as considered in Section 13.1, such as stems,
hairpin loops, and bulges (see Figure 13.10). The class Chain only contains
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Fig. 13.12. Representation of the pseudoknot from Figure 13.4 as an arc-annotated
string

strings with a highly restricted arc structure and thus can be considered an
intermediate class of Nested and Plain that encloses strings without an arc
annotation, that is, where we focus on similarities between primary structures
of RNA only.

In the following, we study the LAPCS problem in more detail. It is helpful
to refine the problem setting by regarding the classes of arc-annotated strings
defined above.

Definition 13.15. By LAPCS(Level1,Level2) we denote the optimization
problem LAPCS for arc-annotated strings S = (s1 . . . sn, Ps) and T =
(t1 . . . tm, Pt), where S ∈ Level1 and T ∈ Level2. Level1 and Level2 re-
fer to one of the classes described in Definition 13.14, i.e., Level1, Level2

∈ {Unlimited, Crossing, Nested, Chain, Plain}.

Since the order of the arc-annotated strings S and T in the problem in-
stance plays no role, we agree upon writing the classes of LAPCS introduced
in Definition 13.15 in such a way that always Level2 ⊆ Level1, i.e., we write
LAPCS(Crossing,Chain) instead of LAPCS(Chain,Crossing).

It is beyond the scope of this textbook to present solutions or complexity
results for all the different classes of LAPCS from Definition 13.15. Hence,
we focus on only some of the classes and refer the reader to the literature
referenced in Section 13.5 for more comprehensive surveys.

The class LAPCS(Plain,Plain) corresponds to finding the longest com-
mon subsequence, since there are no arcs added to the strings. This problem,
as mentioned at the beginning of this chapter, resembles the global alignment
problem for two strings with a specific evaluation function, and is thus solvable
in polynomial time.

If, on the other hand, we consider the class LAPCS(Crossing,Crossing),
we can show this optimization problem to be NP-hard. To give the reduction,
we first introduce the clique problem, known to be an NP-complete decision
problem [79, 116].

Definition 13.16. Let G = (V,E) be an undirected graph. A subset V ′ of V
is called a clique, if every two vertices vi, vj ∈ V ′, where vi 6= vj , are connected
by an edge in G, i.e., {vi, vj} ∈ E.

So, a clique is simply a complete (sub)graph.

Definition 13.17. The clique problem is the following decision problem.
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Input: An undirected graph G = (V,E) and a positive integer k.
Output: Yes if G contains a clique V ′ of size k (i.e., where |V ′| = k). No

otherwise.

Starting from the NP-completeness of the clique problem, we now prove
that LAPCS(Crossing,Crossing) is an NP-hard optimization problem.

Theorem 13.1. LAPCS(Crossing,Crossing) is an NP-hard optimization
problem.

Proof. For the proof of this claim we consider the decision version DecLAPCS
(Crossing, Crossing) of LAPCS(Crossing,Crossing), which, in addition
to the arc-annotated strings S and T from the class Crossing, gets a natural
number l as input, and gives the answer Yes if there exists an arc-preserving
common subsequence of S and T of length l, and the answer No otherwise.

Let G = (V,E), together with a number k ∈ � , be an input for the clique
problem, where V = {v1, . . . , vn}. From this we construct an input (S, T, l)
for DecLAPCS(Crossing, Crossing) as follows (see also Figure 13.13):

• The arc-annotated string S = (s, Ps) is intended to encode the graph G,
including its edges. Therefore we use a representation that reminds us of
an adjacency matrix of a graph. Each vertex is transformed into a block
of a’s of length n framed by two b’s, i.e., banb. To encode an edge {vi, vj},
we now introduce an arc from the jth a in the block representing the ith
vertex to the ith a in the block representing the jth vertex. Moreover, each
block representing a vertex is covered by an arc linking the corresponding
b’s. Formally, we have

s = (banb)n,

Ps = {((i− 1)(n+ 2) + j + 1, (j − 1)(n+ 2) + i+ 1) | {vi, vj} ∈ E}

∪ {((i− 1)(n+ 2) + 1, i(n+ 2)) | i ∈ {1, . . . , n}}.

• The second arc-annotated string T = (t, Pt) should now serve to represent
the clique of size k we are searching for. We proceed as in coding the
graph G above. For each vertex, we construct a block of a’s framed by a b
at each end. Since we only want to encode a clique of size k, we accordingly
need only k blocks containing only k symbols a each. Because a clique is
a complete graph, we have to represent all possible edges in it of size k
by introducing arcs in the same way as in S. Furthermore, each block is
covered by an arc over the corresponding b’s as well. Formally, this gives

t = (bakb)k,

Pt = {((i− 1)(k + 2) + j + 1, (j − 1)(k + 2) + i+ 1) |

i, j ∈ {1, . . . , k}, i 6= j}

∪ {((i− 1)(k + 2) + 1, i(k + 2)) | i ∈ {1, . . . , k}}.
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• Now, since our goal is to check whether graph G contains a clique of size
k, we have to ask whether the arc-annotated string T is a subsequence
of S, because T represents a clique of size k and S represents the graph
G. Accordingly, we ask for an arc-preserving common subsequence of S
and T that has the same length as T itself. Our input parameter l for
DecLAPCS(Crossing,Crossing) thus is

l = |T | = k · (k + 2).

In this way, we have constructed arc-annotated strings, that on the one hand
have a quadratic length in the number of vertices in V and in k, and whose
arcs are on the other hand directly derived from the edges of the original
graph and the edges of a clique. Hence, the construction of (S, T, l) from
(G, k) can be performed in polynomial time. This reduction from a particular
input instance (G, k) of the clique problem into an input instance (S, T, l) for
DecLAPCS(Crossing,Crossing) is illustrated in Figure 13.13.

It remains for us to show that the existence of a clique of size k in G
implies the existence of an arc-preserving common subsequence of S and T of
length l, and vice versa.

1. Let {vi1 , . . . , vik
} be a clique of size k in G. Then, we are able to align the

symbols from T with respect to S such that k blocks of T are assigned to
the blocks i1, . . . , ik in S. In each block of T , the k symbols a are again
assigned to the symbols a at positions i1, . . . , ik in the block of S. Since
this assignment only maps a’s to a’s and b’s to b’s and moreover also
preserves the order of characters in both strings s and t, it remains for
us to show that the arcs are also mapped to arcs. Arcs spanning two b’s
framing a block are preserved because we always map complete blocks in
T to complete blocks in S. Since vi1 , . . . , vik

are vertices of a clique in G,
the vertices are pairwise connected to each other and all corresponding a’s
in S are spanned by arcs. Since T represents a clique, i.e., it contains all
possible edges, the arcs are preserved. Thus, the arc-preserving common
subsequence corresponds to T and hence is of length l.

2. If we now consider the converse case where we have an assignment of length
l, then we can argue as follows. Due to the arcs over the b’s framing a block,
only blocks can be mapped to blocks. Since the arc-annotated string T
represents a clique of size k, and edges/arcs are constructed by the same
rules as in S, only an assignment of the type described above is possible.
Let i1, . . . , ik be the blocks in S that are assigned to blocks in T ; then,
{vi1 , . . . , vik

} is a clique of size k in G. ut

We have proved that LAPCS(Crossing,Crossing) is an NP-hard opti-
mization problem. Moreover, we can also infer NP-hardness for all classes
above (Crossing,Crossing). For instance, it is clear that LAPCS (Un-
limited, Unlimited) is also NP-hard. The proof of Theorem 13.1 also yields
that the decision problem to decide whether one arc-annotated string is an
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Fig. 13.13. An input (G, k) for the clique problem and the corresponding input
instance of the DecLAPCS(Crossing,Crossing, l) problem. In (a) the graph G is
shown for which we ask for a clique of size k = 3. The arc-annotated string S in (b)
represents the graph G, where arcs corresponding to edges in the graph are drawn
bold. In (c) the representation of a clique {vi1 , vi2 , vi3} of size 3 of G is shown
in terms of an arc-annotated string T . We are now looking for an arc-preserving
subsequence of length 15. An assignment ϕ, corresponding to such a subsequence
and representing the clique {v1, v3, v4} in G, is given in (d)
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arc-preserving subsequence of another arc-annotated string is NP-hard for the
class (Crossing,Crossing).

To come back to our biological motivation of comparing RNA secondary
structures, Theorem 13.1 also says that it is in general hard to compare struc-
tures containing pseudoknots to each other, since they belong to the class
Crossing.

Because of this hardness result, we relax our requirement to compute the
longest arc-preserving common subsequence, and instead search for good ap-
proximation algorithms for the LAPCS(Crossing,Crossing) problem. The
algorithms do not necessarily yield the longest subsequence, but one for which
we are able to prove that it is at most a constant fraction shorter than the
optimal one. In the following, we present an algorithm that computes an arc-
preserving subsequence that is at least half as long as the optimal one.

Let S = (s, Ps) and T = (t, Pt) be two arc-annotated strings. First, we
compute the longest common subsequence w from s and t, this can be per-
formed in polynomial time using the same method as that for determining an
optimal alignment between two strings as presented in Chapter 5. That is, we
completely ignore the arcs in the first step. Let us now consider a mapping ϕ
consistent with w and construct the following graph Gϕ = (V,E) from it:

• V = {〈i, j〉 | 〈i, j〉 ∈ ϕ}.
Thus, position pairs in ϕ correspond to vertices in the graph.

• E = {{〈i1, j1〉, 〈i2, j2〉} | either (i1, i2) ∈ Ps or (j1, j2) ∈ Pt}.
Two position pairs are connected by an edge if either Ps contains an arc
between the respective positions while the corresponding arc does not ex-
ist in Pt, or vice versa. These edges shall thus represent which position
pairs violate the arc-preserving property in the current subsequence w. If
a particular arc occurs in both arc-sets Ps and Pt, then there exists no
edge, since the arc was preserved, and there is hence no conflict with the
arc-preserving property.

So, the graph Gϕ describes which position pairs are not arc-preserving. To
change the mapping ϕ to become arc-preserving, we now remove position
pairs/vertices such that there are finally no edges left in the graph. Therefore,
we first observe that each vertex in graph Gϕ has at most degree 2 (at most
one arc for the position in S and at most one for the position in T ). If we now
consider the connected components (recall Definition 12.15 for the definition
of a connected component) of Gϕ, these are either isolated vertices, paths, or
cycles. In the case of isolated vertices there is nothing left to do. For a path
or cycle, we may delete every second vertex, including its incident edges, and
in this way obtain separated vertices only.

The graph resulting from this procedure describes position pairs of a map-
ping ϕ′ that corresponds to an arc-preserving common subsequence of S and
T . The steps of this algorithm are summarized in Algorithm 13.6.

We now investigate the running time and approximation ratio of the algo-
rithm.
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Algorithm 13.6 Approximation of LAPCS(Crossing,Crossing)

Input: Two arc-annotated strings S = (s, Ps) and T = (t, Pt) with S, T ∈ Crossing,
and s = s1 . . . sn and t = t1 . . . tm.

1. Determine a longest common subsequence w of s and t. Let ϕ be a mapping
consistent to w.

2. Construct the graph Gϕ from ϕ as described above.
3. For each connected component in Gϕ that consists of more than a single vertex,

delete every second vertex, including its incident edges from Gϕ.
4. Let Gϕ′ be the resulting graph and ϕ′ the set of position pairs that correspond

to the vertices in Gϕ′ .
5. From ϕ′, construct the corresponding string w′.

Output: The arc-preserving common subsequence w′.

Theorem 13.2. Algorithm 13.6 computes a feasible solution for the LAPCS
(Crossing, Crossing) problem and requires a running time in O(n · m),
where n and m denote the lengths of the input strings.

Proof. We first show that the string computed by Algorithm 13.6 is an arc-
preserving common subsequence.

The string w′ results from removing some symbols in w, namely, the sym-
bols that correspond to a position pair deleted when transferring Gϕ into
Gϕ′ . Moreover, w is the longest common subsequence from s and t, which
also implies that w′ is a subsequence of s and t. Furthermore, the mapping ϕ′

corresponding to string w′ is arc-preserving. This follows from the fact that,
in the graph Gϕ, vertices/position pairs violate the arc-preserving property if
and only if they are connected by an edge. In step 3 of the algorithm, a set of
vertices/position pairs is deleted, such that the remaining graph Gϕ′ contains
no edges anymore, and thus the mapping ϕ′ representing these position pairs
does not violate the arc-preserving property.

The running time of Algorithm 13.6 can now be determined as follows. By
using the method for computing a global alignment presented in Chapter 5,
we can perform step 1 in time O(n ·m). From this alignment, we obtain the
position pairs included in the mapping ϕ by one run from left to right.

To construct the graph Gϕ in step 2, and, in particular, to determine the
edges, we have to check for each two position pairs 〈i1, j1〉, 〈i2, j2〉 in ϕ whether
(i1, i2) ∈ Ps and (j1, j2) ∈ Pt. Since ϕ contains at most min(n,m) position
pairs, this step requires a running time in O(min(n,m)2) ⊆ O(n ·m).

For traversing Gϕ and performing the vertex removal in step 3, we inves-
tigate for each vertex v in Gϕ, whether it is an isolated vertex, or whether v
occurs in a path or cycle. Let us recall that each vertex in Gϕ has at most
degree 2, since S, T ∈ Crossing, and we thus allow for at most one arc at
each symbol in s and t. Hence, we can traverse the edges starting from v
in at most two directions, and finally determine whether v lies on a path
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or a cycle. Since each vertex has at most degree 2, Gϕ contains at most
2·min(n,m)

2 = min(n,m) edges. Therefore, the above procedure requires time
in O(min(n,m) ·min(n,m)) ⊆ O(n ·m). If v is an isolated vertex, nothing has
to be done. If v is part of a path, we can remove each second vertex of this
path, starting with one of its end vertices. If v occurs in a cycle, we can start
the deletion process with v itself, and remove every second vertex together
with its incident edges from the graph. Using the same reasoning as above,
this can be done in time O(n · m), indicating that the entire step 3 can be
performed in time O(n ·m).

From the remaining position pairs in Gϕ′ , we can now compute the string
w′ in time O(min(n,m)). Summing up, Algorithm 13.6 requires a running
time in O(n ·m). ut

Theorem 13.3. Algorithm 13.6 is a 2-approximation algorithm for the
LAPCS(Crossing,Crossing) problem.

Proof. Let S = (s, Ps) and T = (t, Pt) be two arc-annotated strings. Let wopt

be a longest arc-preserving common subsequence of S and T , and let w′ be the
output of Algorithm 13.6. Then, each arc-preserving common subsequence of
S and T is at most as long as a common subsequence of s and t. Let w be the
longest common subsequence of s and t computed in step 1 of the algorithm.
Then,

|w| > |wopt|. (13.10)

Since in step 3 of the algorithm we removed only every second vertex from
each path or cycle in Gϕ we deleted at most half the number of vertices. Thus,
we have

2 · |w′| > |w|. (13.11)

Combining (13.10) and (13.11) we obtain the claimed result. ut

We now consider, as in Section 13.1, structures without pseudoknots, i.e.,
we deal with the LAPCS(Nested,Nested) problem. For this problem the
following result was shown [139].

Theorem 13.4. LAPCS(Nested,Nested) is an NP-hard optimization prob-
lem. ut

In this case we can again apply Algorithm 13.6, which will provide a
2-approximation. In general, the proof of Theorem 13.3 is solely based on
the restriction of the vertex degree in Gϕ and the fact that the length of
a longest common subsequence always establishes an upper bound on the
length of a longest arc-preserving common subsequence. Therefore, Algo-
rithm 13.6 is a 2-approximation algorithm for all problem classes contained in
LAPCS(Crossing,Crossing), and, in particular, also for LAPCS(Nested,
Nested).

The concept of structure-based comparison of molecules (or structure
alignment) may clearly be applied also to other chain-like molecules besides
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RNA. Arcs between characters may therefore refer to atoms that are only a
small distance apart in the spatial formation of the molecule. The resulting
arc-annotated string is often called a contact map. Moreover, this approach
may serve as an intermediate step for actually predicting the spatial struc-
tures of molecules by comparing hypothetical structures to known structures
stored in a database. We present an approach following this idea in the next
section.

13.3 Protein Structure Prediction

Proteins are essential for a variety of important tasks in every organism; in
particular, they catalytically enhance many vital processes as enzymes, serve
as molecular building blocks of hairs and nails, take over signaling and de-
fence functions, act as transport devices, e.g., hemoglobin is the carrier for
oxygen in the blood, and more. To accomplish their tasks, their spatial struc-
ture is crucial, since it essentially determines their function. The knowledge
of their spatial structure is therefore required to gain a deeper understand-
ing of the complex processes in which proteins are involved and to be able
to influence them, for instance, by means of drugs. One way to derive this
structure is based on X-ray crystallography or nuclear magnetic resonance
(NMR). However, the techniques are extremely time consuming and expen-
sive. Consequently, computer-based approaches may be favored. Determining
the primary structures of proteins, namely, their amino acid sequences, al-
ready constitutes a complex task. However, we do not further discuss this
issue, but instead focus on the prediction of the spatial structures of proteins
based on the knowledge of their primary structures. At a higher level, one
may distinguish two different approaches.

De novo protein structure prediction: Given only the amino acid sequence of
a protein, the goal is to derive its three-dimensional structure.

Knowledge based protein structure prediction: Here, the idea is to utilize the
observation that, although the number of different proteins is very high,
the number of different three-dimensional shapes seems to be relatively re-
stricted. Given the known structures from a database, the goal is to match
the primary structure of the studied protein to them, and to eventually
derive insights on the protein’s structural components.

Before we present two approaches to exemplarily discuss the two problems
in more detail, we first give some basic facts on protein structure.

The formation of a spatial structure by proteins is referred to as folding.
It is known that the folding behavior of proteins essentially depends on their
primary structure. This is at least the case for a large and important class
of proteins. However, there are also some enzymes (called chaperones) that
enhance the folding process, but do not influence it. Changes in the spatial
structure may also naturally occur due to chemical connections of the protein
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with other molecules, or the surrounding media may play a certain role, but we
will not discuss these issues here. For the computation of the spatial structure
from the primary structure of a protein, the dependence of the folding on the
primary structure clearly is crucial.

Let us now study the different structural levels of proteins in more detail.
To do so, we first take a closer look at the composition of proteins.

Let us first recall the description of proteins given in Section 2.1. According
to this, the basic building blocks of proteins are amino acids. By linking the
carboxyl group and the amino group of the amino acids by peptide bonds,
a polypeptide chain is formed. The bonds between the amino groups and
carboxyl groups constitute the backbone of the chain. The side chains of the
single amino acids are not involved here (see Figure 2.2). The number of amino
acids along the polypeptide chain may vary from hundreds to thousands, and
its sequence is denoted as the primary structure of the protein.

According to the side chains, the amino acids have different chemical prop-
erties. One distinguishes between hydrophobic, polar (sometimes also referred
to as hydrophilic), acidic, and basic amino acids. We will not further study
these characteristics here, but we mention that it has been observed that hy-
drophobic amino acids often occur inside the molecule and form hydrophobic
cores there by hydrophobic interactions, while polar amino acids often appear
at the border of the molecule where they take part in interactions with the
surrounding polar medium, such as water.

Let us now discuss the structural hierachy of proteins. The higher-dimen-
sional structures, resulting from interactions in the backbone of the polypep-
tide chain, are called secondary structures. At this level, interactions between
side chains are ignored. One essentially distinguishes between two types of
secondary structures, the helices and the sheets, often also referred to as α-
helices and β-sheets. A helix consists of a screw-like twisting of the backbone,
where the side chains are directed toward the outside of the helix. Bonds be-
tween the single atoms of the backbone in the windings provide stability to
the structure (see Figure 13.14 (a)). On the other hand, β-sheets consist of
parallel alignments of different regions of the polypeptide chain, whose back-
bone atoms interact as well. The side chains here point to the outside of the
sheet (see Figure 13.14 (b)). In more detail, one distinguishes between parallel
and antiparallel sheet structures, according to the direction of the particular
parts of the chain. The direction is defined to be oriented from the end with
the free amino group to the end with the free carboxyl group. Typically, sheet
structures are depicted using broad arrows, indicating the direction of the
chains, and helices are depicted by cylinders or helices. According to their
chemical properties, amino acids may exhibit a disposition to occur in either
helices or sheets. The regions of the backbone participating in neither a helix
nor a sheet structure, called loops. Hence, loops are essentially links between
helices and sheets in the secondary structure.

The tertiary structure of a protein refers to the spatial arrangement of the
single atoms in the polypeptide chain. Here, one typically groups together
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Fig. 13.14. Different types of protein secondary structures: (a) a helix; (b) a sheet.
Stabilizing bonds between units in the backbone of the molecules are indicated by
dashed lines

certain series of secondary structure elements into so-called motifs. A possible
motif may be, for instance, the following series of secondary structures

sheet — loop — helix — loop — sheet — loop — helix — loop — sheet

as depicted in Figure 13.15. Larger units are called domains. They have a
certain function and often form the “active center” of the protein, to which
substrates may bind to or where other actions take place.

Fig. 13.15. A motif consisting of the following series of secondary structure ele-
ments: sheet — loop — helix — loop — sheet — loop — helix — loop — sheet

Eventually, some proteins consist of more than a single polypeptide chain,
and may even include other molecular parts. With respect to this, the single
polypeptide chains are called subunits of the protein molecule. The arrange-
ment of the subunits with each other is referred to as the quaternary structure
of the protein. A well-known example is the red blood cell, mainly consisting
of the protein hemoglobin, whose main task is the transport of oxygen within
the blood. This molecule consists of four subunits, each supplemented by an
additional molecular part, called the hem (including an iron atom), which is
responsible for the red color.
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Summing up, we can describe the protein structure according to the fol-
lowing hierarchy.

Definition 13.18. With regard to the spatial structure of proteins, four dif-
ferent levels are distinguished.

Primary structure: The primary structure is the sequence of amino acids along
the polypeptide chain.

Secondary structure: The secondary structure describes the interactions be-
tween atoms on the backbone of the polypeptide chain, forming substruc-
tures like α-helices, β-sheets, and loops.

Tertiary structure: The tertiary structure refers to the spatial arrangement of
all atoms within the polypeptide chain. Secondary structure elements are
grouped together as motifs and functional units called domains.

Quaternary structure: Finally, the quaternary structure describes the compo-
sition of the whole protein from polypeptide subunits and potentially other
molecular parts.

As mentioned above, there are numerous approaches and models to de-
termine the spatial structures of proteins from their primary structures. In
general, one may again try to compute all possible structures and evaluate
them according to their free energy, searching for the one with the lowest
free energy. But this approach is not practical in this case for two reasons.
First, it is impossible to handle all possible spatial structures because of their
huge number, and second, there is yet no complete model of how to actually
compute the free energy of a structure. Thus, we have to abstract from this
general approach and restrict ourselves to simpler methods. In the following,
we present one such method.

13.3.1 De Novo Structure Prediction — The HP Model

A three-dimensional model of a protein implies fixing in space the positions
of the single atoms and, thus, also the windings, angles, and the lengths of
bonds within the molecule. To evaluate such a spatial structure, we usually
refer to its free energy. As stated above, a structure with minimal free energy
is desired. So, our goal is to determine a three-dimensional structure with low
free energy. The many unknown parameters constitute the main problem of
such a model. For this purpose, we introduce several simplifications to achieve
an abstract model of the problem.

First, we consider an abstraction of a protein structure in space. Instead of
referring to single atoms of the protein, we restrict our focus to a higher level
by considering amino acids as single units of identical size. We furthermore
approximate the spatial structure by means of grid lattices of two or three
dimensions, i.e., we consider a region in � d, d ∈ {2, 3}.
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Definition 13.19. The d-dimensional grid lattice is the infinite graph Ld =
(V,E) with vertex set V = � d and edge set E = {{x, x′} | x, x′ ∈ � d,
‖x− x′‖2 = 1}, where ‖ · ‖2 denotes the Euclidean norm.

It remains for us to define how a valid spatial folding of a protein in this
setting may look.

Definition 13.20. Let s = s1 . . . sn be a string corresponding to a primary
structure of a protein. A mapping ξ : {1, . . . , n} → Ld is called an embedding8

of s into the grid Ld if ξ satisfies the following properties:

(i) All symbols that are neighbors in s are also adjacent in the grid, i.e., for
all i, 1 6 i < n,

‖ξ(i)− ξ(i+ 1)‖ = 1,

where ‖ · ‖ denotes the Euclidean norm.
(ii) No two positions in s are assigned to the same vertex in the grid, i.e., for

all i, j, i 6= j,
ξ(i) 6= ξ(j).

Thus, amino acids can be placed on the vertices in the grid structure, and
those in neighboring positions in the sequence must be placed onto adjacent
vertices in the grid. As a result, angles between consecutive amino acids along
the polypeptide chain are restricted to multiples of 90◦, and, accordingly, the
lengths of the bonds correspond to the edge lengths in the grid. Such an
embedding of a protein into a grid can also be considered a self-avoiding walk.

Having described our simplified structural model, we can now propose an
estimation of the free energy for it. As mentioned in the previous section,
we can classify amino acids according to certain chemical properties of their
side chains. In particular, we may distinguish between hydrophobic and polar
(hydrophilic) amino acids (see Table 2.1). Experimental studies have led to
the conjecture that hydrophobic interactions are the essential driving force
in the folding process of the molecule, where hydrophobic amino acids form
inner cores of the molecule, while hydrophilic amino acids shield cores from
the surrounding medium. Hydrophobic interactions inside the hydrophobic
core thus essentially contribute to the stability of the molecule. Therefore, we
measure the free energy of our model in terms of hydrophobic-hydrophobic
interactions. We assume that two hydrophobic amino acids are interacting if
they are embedded into adjacent positions of the grid, but not in neighboring
positions in the primary structure. We will call such an interaction a contact
edge in our grid model. Instead of “minimizing” this free energy, we search for
a structure maximizing the overall number of the contact edges.

Since we restrict ourselves to the consideration of hydrophobic interactions
in this model, we can treat the primary structure as a string s ∈ {H,P}∗,

8 In graph theory, embedding has a more general meaning, but we will not elaborate
on this here.
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where H represents hydrophobic and P represents polar amino acids.9 For
this reason, the model is also called HP model. We will further simplify our
notion and replace characters H and P by 1 and 0, respectively. With respect
to Definition 13.20, an embedding thus assigns 0s and 1s to certain vertices
of a grid.

Usually, we use grids of dimension d = 3 or d = 2 in our structural model.
An example of the embedding of the string s = 0110101001000001001 into a
two-dimensional grid is illustrated in Figure 13.16.

Fig. 13.16. Embedding of the string s = 0110101001000001001 into the two-
dimensional grid L2. Grid vertices labeled 0 are drawn as circles and those labeled
1 are drawn as squares

For the symbols of a string, embedded into a grid, we distingish two types
of adjacency.

Definition 13.21. Let s = s1 . . . sn be a string over the alphabet {0, 1} and
let ξ be an embedding of s into a grid Ld. We denote two positions i and j,
1 6 i, j 6 n as connected neighbors if |i − j| = 1, i.e., if they are neighbors
in s.

On the other hand, we denote two positions i and j, 1 6 i, j 6 n, as
topological neighbors if they are not connected neighbors but satisfy

‖ξ(i)− ξ(j)‖ = 1.

Hence, topological neighbors are the non-neighboring positions in the string
that become adjacent when embedded into the grid according to ξ.

By ones(s) = {i | si = 1} we denote the set of 1-positions in s. Similarly,
we denote by zeros(s) = {i | si = 0} the set of 0-positions in s.

A pair {i, j} of 1-positions, i, j ∈ ones(s), i 6= j, forms a contact edge
according to ξ if ξ(i) and ξ(j) are topological neighbors. For a single position
i in s, we use the term contact to refer to its incident contact edges.

9 We also abstract from the fact that there are other characteristics of amino acids,
and refer only to the degree of hydrophobicity.
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Fig. 13.17. (a) All pairs of topological neighbors for the embedding of s =
0110101001000001001 into a two-dimensional grid from Figure 13.16; (b) all con-
tact edges

See Figure 13.17 for an illustration of the notions introduced in Definition
13.21. Note that the number of contacts for an embedding ξ is exactly twice
the number of contact edges, since each contact edge contributes exactly one
contact at each of its two endpoints.

As discussed above, the number of contact edges (or, equivalently, the
number of contacts) will be used to measure the free energy of the spatial
structure of the protein. This leads to the following optimization problem.

Definition 13.22. Given a grid lattice Ld of dimension d, the HP(d) problem
is defined as follows:

Input: A string s = s1 . . . sn over the alphabet {0, 1}.
Feasible solutions: Each embedding ξ of s into Ld.
Cost: For each feasible solution ξ, the cost is the number of contact edges

induced by ξ, i.e.,

cost(ξ) = |{{i, j} ∈ E(L2) | {i, j} is a contact edge}|.

Optimization goal: Maximization.

For this problem, it is simply a question of convenience whether we refer
to the number of contacts or the number of contact edges. We typically refer
to contact edges, while sometimes counting the number of contacts, especially
in the context of algorithms, appears to be favorable.

In what follows, we essentially consider the problem of predicting a protein
structure for the two-dimensional case, i.e., for the HP(2) problem. Clearly,
this is a strong restriction with respect to our original intention to predict
the spatial structure of proteins, but it also has some advantages. First, it
provides a good starting point to introduce some basic concepts for solving
the problem, which may later be applied for the three-dimensional case as
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well. So, it often appears to be a good heuristic10 to stack solutions for the
two-dimensional case on top of each other to finally obtain a solution for the
three-dimensional case (see Figure 13.18).
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Fig. 13.18. Stacking feasible solutions for the HP(2) problem on top of each other
yields a feasible solution for the HP(3) problem

Second, results for the two-dimensional case may reveal important insights
about the molecule’s structure that may be useful in pratice.

The following result concerning the complexity of the HP problem was
shown by Berger and Leighton [27], and Crescenzi et al. [52].

Theorem 13.5. The HP(d) problem is NP-hard for d = 2, 3. ut

We do not elaborate on this result here, but instead present an approxi-
mation algorithm for the problem.

Approximation Algorithm for the HP(2) Problem

Before we start with the description of the concrete algorithm, let us first re-
mark on the general design of approximation algorithms useful in our context.
In principle, an approximation algorithm may depend on any algorithmic con-
cept or method, but to actually prove a good performance, i.e., to determine
its approximation ratio, we have to compare the computed output to an op-
timal solution. Since we are usually unable to compute an optimal solution
due to the hardness of the problem and hence have no idea of its cost, there
is a need to bound the cost of the optimal solution. Moreover, this bound,
or the structure this bound depends on, is often used in the approximation
algorithm itself as a first step for the computation. As an illustration, let us
consider the approximation algorithm for the metric TSP presented in Section
3.3. Here, the basic idea was that a minimum spanning tree is a lower bound

10 At least with respect to the achieved approximation ratio.
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on the optimal cost of our requested Hamiltonian tour. (If you delete one edge
from such a tour, you directly obtain a spanning tree; hence, the minimum
spanning tree is a bound on the cost of the Hamiltonian tour, since we only
have positive edge weights.) Moreover, as also sketched above, the minimum
spanning tree serves as the basic structure in our approximation algorithm
from which we eventually derive a Hamiltonian tour with good performance,
providing in this case an approximation ratio of 2.

Thus, our first goal is to find an upper bound on the cost of an optimal
solution for our HP(2) problem. For this purpose, the following observations
are helpful.

Lemma 13.1. Let s = s1 . . . sn be a string over the alphabet {0, 1} and let ξ
be an embedding of s into L2. Then,

(i) each position i, 2 6 i 6 n−1, may have at most two contacts, and positions
i = 1 and i = n may have at most three contacts in the embedding.
Moreover,

(ii) for each contact edge {i, j}, the parities of i and j are different.

Proof. Claim (i) is clear from the fact that each vertex in a two-dimensional
grid is adjacent to exactly four other vertices, and that exactly two of them are
occupied by neighoring positions in the string (connected neighbors) for all
inner positions i, 2 6 i 6 n− 1, in the string. Thus, at most two connections
remain free to establish contact edges. For the end positions i = 1 and i = n
of s the same argument holds, except that we have only one (instead of two)
connected neighbors.

To prove claim (ii), we use the fact that L2 is bipartite.11 To illustrate this,
we refer to a coloring argument (different colors indicate the two partitions). If
we color each vertex in the grid by exactly one of two colors, such that adjacent
vertices have different colors, we obtain an assignment that resembles a chess
board. Let us consider a contact edge {i, j} and its corresponding vertices
in the grid ξ(i) = (x1, y1) and ξ(j) = (x2, y2). Since adjacent vertices in
the grid have different colors, along any path from (x1, y1) to (x2, y2) the
colors alternate. Since (x1, y1) and (x2, y2) form a contact edge and are thus
topological neighbors, they have different colors. As a consequence, each path
from (x1, y1) to (x2, y2) must start with one color and end with the other
color. Hence, each path from (x1, y1) to (x2, y2), in particular the one induced
by embedding ξ, has an odd number of edges, which implies that i is even if
and only if j is odd. ut

Essentially, the same result holds for the three-dimensional case as well.
There, the number of possible contacts for each position is bounded by 4 and
the parity constraint in (ii) holds as well.

11 A graph is bipartite if its vertex set can be partitioned into two sets V1 and V2,
such that edges only exist between vertices from V1 and V2, but not inside V1 or
V2.
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Next, we utilize the parity constraint given by Lemma 13.1 (ii), together
with the immediate observation in Lemma 13.1 (i), to establish an upper
bound on the maximal number of contacts that can be achieved for an input
to the HP(2) problem. We first introduce some additional notation.

Definition 13.23. For a string s = s1 . . . sn over the alphabet {0, 1}, we can
partition the set ones(s) into the sets odds(s) and evens(s), referring to the
set of odd and even 1-positions in s, respectively. (Note that we only partition
the set of 1-positions according its parity and completely disregard the set of
0-positions.)

For position sets α, β ∈ {odds(s), evens(s)}, α 6= β, we define α � β if

• either |α| < |β|,
• or |α| = |β|, and β contains at least as many end positions from s as α.

Without loss of generality, we usually assume odds(s) � evens(s). We are
now ready to prove the following result.

Theorem 13.6. Let s = s1 . . . sn be a string over the alphabet {0, 1}. Let
Opt(s) be an optimal solution for the HP(2) problem, let odds(s) � evens(s),
and let t ∈ {0, 1, 2} denote the number of end positions in ones(s); then,

cost(Opt(s)) 6 2 · | odds(s)|+ t,

where cost(·) refers to the number of contact edges.

Proof. The theorem is a direct consequence of the observations given in
Lemma 13.1. As odds(s) � evens(s), the number of possible contact edges
is restricted to those established by positions in odds(s). Since each inner po-
sition may have at most two incident contact edges, and only end positions
can contribute an additional third one, we obtain the desired result. ut

We have now established an upper bound on the cost of an optimal solution
for our problem. Next, we present an approximation algorithm for the HP(2)
problem based on the computation of a folding point.

First, we can fix two adjacent columns of the grid and denote them by
cl and cr. The idea is to determine an appropriate position fp in the input
string s, and to fold the part of s on its left-hand side into the left-hand part
of the grid bordered on the right by column cl, and to fold the part of s on
its right-hand side into the right-hand part of the grid bordered on the left
by column cr. The folding point fp thus indicates the position in s where the
border between cl and cr is crossed. To establish as many contact edges as
possible, 1s on the left-hand side of fp are arranged at column cl if possible.
Similarly, 1s on the right-hand side of fp are arranged at column cr if possible.
The idea is to align the 1s on cl and cr in such a way as to yield a high number
of contact edges.

As only 1s at odd positions may pair with 1s at even positions, in our
concrete scenario it seems to be useful to arrange 1s in odds(s) on column
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cl and 1s in evens(s) on column cr. Clearly, as 1s at odd and even positions
are potentially interweaved, we cannot hope to find a folding point that in
fact separates them. The idea is to look for such a position that guarantees
a considerable number of odd 1s in one and even 1s in the other column. We
will formalize this idea in the following definition.

Definition 13.24. Let s = s1 . . . sn be a string over {0, 1} and let odds(s) �
evens(s). For a position x, we set

• odds|6x(s) = {i ∈ odds(s) | i 6 x} and odds|>x(s) = {i ∈ odds(s) | i > x},
• evens|6x(s) = {i ∈ evens(s) | i 6 x} and evens|>x(s) = {i ∈ evens(s) | i >

x}.

A position fp ∈ {1, . . . , n} in s is called a folding point of s if either

(i) | odds|6fp(s)| > | odds(s)|
2 and | evens|>fp | >

| odds(s)|
2 , or

(ii) | evens|6fp(s)| > | odds(2)|
2 and | odds|>x(s)| > | odds(s)|

2 .

Let us assume, without loss of generality, that Condition (i) holds in Defi-

nition 13.24. Then, we denote by
←−−
odds(s) an arbitrary subset of odds|6fp(s) of

size | odds(s)|
2 , and by −−−→evens(s) an arbitrary subset of evens|>fp of size | odds(s)|

2 .

Positions in
←−−
odds(s) thus lie on the left-hand side of the folding point fp ,

while positions in −−−→evens(s) lie on its right-hand side, and both contain exactly
| odds(s)|

2 elements. For the case where condition (ii) holds, we refer to the sets
←−−−
evens(s) and

−−→
odds(s), with their obvious meanings.

Now, we arrange the positions in
←−−
odds(s) and −−−→evens(s) in two adjacent

columns cl and cr, such that each position in
←−−
odds(s) is aligned to a posi-

tion in −−−→evens(s). Since there is always an odd number of positions between

two arbitrary positions in
←−−
odds(s) [−−−→evens(s)], particularly between consecutive

positions, we can arrange the positions such that the elements are vertically

spaced by exactly one grid vertex. If between consecutive positions in
←−−
odds(s)

[−−−→evens(s)] more than one position in s exists, we can arrange them in horizontal
U-shaped side arms.

Let us illustrate this procedure with an example.

Example 13.4. We consider the following string s of length 36:

001001001101101001100001110110010111.

There are eight 1-positions with odd index in s,

00 1 00100 1 101 1 0 1 001 1 00001 1 101 1 00101 1 1,

and ten 1-positions with even index,

00100 1 001 1 0 1 10100 1 10000 1 1 1 0 1 100 1 0 1 1 1 .
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We thus obtain the sets

odds(s) = {3, 9, 13, 15, 19, 25, 29, 35},

and
evens(s) = {6, 10, 12, 18, 24, 26, 28, 32, 34, 36}.

A potential folding point for s (according to Definition 13.24) is fp = 16,
yielding the sets

←−−
odds(s) = {3, 9, 13, 15}= odds|6fp(s)

and

−−−→
evens(s) = {18, 24, 32, 36} ⊆ {18, 24, 26, 28, 32, 34, 36}= evens|>fp(s),

i.e.,

00

←−−
odds(s)

︷ ︸︸ ︷

↓
100100

↓
1101
↓
10
↓
1 0 01

↑
100001

↑
11011001

↑
0111
↑

︸ ︷︷ ︸
−−−→
evens(s)

.

We assign these positions in
←−−
odds(s) and −−−→evens(s) to adjacent columns

of the grid, namely, to columns cl and cr, pairwise facing each other (see
Figure 13.19 (a)). In this way, we achieve four contact edges. The remaining
substrings between these positions are folded into horizontal side arms (see
Figure 13.19 (b)). ♦

This exemplary illustration of the proposed embedding should be sufficient
and even more intuitive than an explicit and cumbersome formal index-based
description of the folding. We therefore omit a precise description here and
just summarize the basic steps of our procedure in Algorithm 13.7.

It remains for us to specify the computation of the folding point in step
1 of Algorithm 13.7. Let us again assume that odds(s) � evens(s) (the other
case is analogous).

If the number of elements in odds(s) is even, then we determine position i

in odds(s) where | odds|6i(s)| =
| odds(s)|

2 . Consequently, position fp = i+ 1 is
a valid folding point, since on both sides of fp there are the same number of

elements in odds(s), namely, | odds(s)|
2 , and on one of the two sides are at least

| odds(s)|
2 elements from evens(s), because odds(s) � evens(s).
If the number of elements in | odds(s)| is odd, then we choose the median

position i in odds(s), i.e., i is chosen such that | odds|6i(s)| =
| odds(s)|+1

2 . On

the left-hand side of i, including i, there are thus at least | odds(s)|
2 positions

from odds(s). If there are at least | odds(s)|
2 many positions from evens(s) on the
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Fig. 13.19. An embedding of s = 001001001101101001100001110110010111 from
Example 13.4 using fp = 16 as a folding point. Positions in odds(s) are shown as
white boxes and positions in evens(s) are shown as black boxes

Algorithm 13.7 Approximating the HP(2) problem

Input: A string s = s1 . . . sn over the alphabet {0, 1}. Let w.l.o.g. odds(s) � evens(s).
(The other case is analogous.)

1. Compute a folding point fp of s.
2. Compute position sets γ und δ where

• either γ =
←−−
odds(s) and δ = −−−→evens(s),

• or γ =←−−−evens(s) and δ =
−−→
odds(s).

3. Arrange the positions in γ and δ in two adjacent columns of the grid, such that
each position in γ forms a contact edge with a position in δ.

4. Connect the fixed positions in terms of horizontal U-shaped side arms.

Output: The embedding ξ of s into L2 induced by the above steps.

right-hand side of i, then fp = i is a valid folding point. Otherwise, we choose
fp = i − 1 as a folding point, since on the left-hand side of i − 1, including

i − 1, there have to be at least | odds(s)|
2 positions from evens(s), and on the

right-hand side of i− 1 there are at least | odds(s)|
2 positions from odds(s).

We next analyze the performance guarantee given by Algorithm 13.7.

Theorem 13.7. Let s = s1 . . . sn be an input for the HP(2) problem, and
let α, β ∈ {odds(s), evens(s)}, α 6= β and α � β. Then, Algorithm 13.7 is a
(

4|α|+2tα

|α|−2

)

-approximation algorithm for the HP(2) problem, where tα denotes

the number of end positions of s in α.

Proof. Let Opt(s) be an optimal solution for the HP(2) problem with input s.
Let ξ be the embedding of s into L2 computed by Algorithm 13.7. The idea of
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Algorithm 13.7 is to align |α|2 positions in α to the same number of positions
in β. However, in the worst case, the folding point fp might be chosen in such

a way that fp belongs to ←−α and fp +1 belongs to
−→
β , or vice versa. Then, the

edge between positions fp and fp +1 does not establish a contact edge, since

it connects neighbors. Therefore, we can only guarantee |α|−1
2 contact edges

for the solution computed by Algorithm 13.7.
Let Opt(s) be an optimal solution for the HP(2) problem with input s.

By Theorem 13.6 we know that the number of contact edges in an Opt(s) is
bounded by at most 2|α|+ tα.

For the approximation ratio, this yields

cost(Opt(s))

cost(ξ)
6

2|α|+ tα
|α|/2− 1

=
4|α|+ 2tα
|α| − 2

.

ut

The above analysis also accounts for two borderline effects; the possibility
of the occurrence of connected neighbors around the folding point and the
fact that 1-positions at the ends of the input string might yield more contacts
than inner 1-positions. Figure 13.20 illustrates the influence of 1-positions at
the end of the string. Here, the set odds(s) consists of the end positions 1
and n of a string s that will form three contact edges with each position from
evens(s) in an optimal solution (see Figure 13.20 (a)), while in the solution
computed by Algorithm 13.7 only one contact edge is established (see Figure
13.20 (b)). We thus obtain only a 6-approximation in this case.
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Fig. 13.20. An input indicating that Algorithm 13.7 obtains only a 6-approximation
due to a borderline effect with respect to 1-positions at the ends of the input string.
(a) A possible optimal solution; (b) the solution computed by the algorithm

For input instances with a large number of potential contact edges, the
borderline effects are of limited consequence, and eventually tend to zero if
the number of contact edges tends to infinity.

To analyze the approximability of Algorithm 13.7, ignoring the borderline
effects, which clearly is meaningful in our context, we introduce the notion of
asymptotic approximation.
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Definition 13.25. Let U = (I,M, cost , goal ) be an optimization problem,
let A be a consistent algorithm for U , and let RA(I) denote the approxima-
tion ratio guaranteed by A for instance I (according to Definition 3.17). The
asymptotic approximation ratio of A is defined by

R∞A = inf{δ > 1 | RA(I) 6 δ for all I ∈ I satisfying cost(Opt(I)) > n

for some n ∈ � },

where Opt(I) denotes an optimal solution for I.
For every number δ > 1, we say that A is an asymptotic δ-approximation

algorithm for U if
R∞A 6 δ.

Following our above discussion, we obtain the next result.

Theorem 13.8. Algorithm 13.7 is an asymptotic 4-approximation algorithm
for the HP(2) problem.

Proof. Algorithm 13.7 achieves an approximation ratio of

cost(Opt(s))

cost(ξ)
6

2|α|+ tα
|α|/2− 1

=
4|α|+ 2tα
|α| − 2

,

according to the proof of Theorem 13.7. With respect to asymptotic approxi-
mation, we may let cost(Opt(s)) tend to infinity, and thus constants like 2tα
and −2 can be ignored, eventually yielding our desired result. ut

Additionally, we put much effort in the precise construction of the folding
point in order to obtain the highest number of achievable contact edges for the
folding strategy. On the other hand, a less elaborate procedure would imply
a constant number of additional losses, which do not influence the asympotic
approximation ratio.

Next, we determine the running time of Algorithm 13.7. We have shown
how to compute the folding point using a simple method requiring time in
O(n). After determining the folding point, we again can construct the corre-
sponding embedding ξ in linear time by simply placing the positions in the
input onto the grid according to the “rules” described in Algorithm 13.7. We
achieve the following result.

Theorem 13.9. Algorithm 13.7 requires a running-time in O(n), for a given
string s ∈ {0, 1}n. ut

13.3.2 Protein Threading

Having discussed a model for protein prediction in the previous section, we
next present another approach from the various ideas to solve this task. We
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follow an inverse approach. Instead of computing a tertiary structure from a
given primary structure, we try to derive the tertiary structure by aligning
the primary structure with already known tertiary structures. This idea is
based on the observation that there is a huge number of different primary
structures of proteins, but there is only a considerably smaller number of three-
dimensional shapes of the molecules discovered so far. In particular, certain
regions in the sequence resemble each other in different molecules. To make
this idea precise, we consider a primary structure s′ of a protein (for which
we want to determine its tertiary structure), and a known tertiary structure,
together with its primary structure s (stored in a database, for instance). We
then compute how well we can embed s′ into the tertiary structure of s. This
procedure is performed for a huge number of molecules (for instance, for all
molecules stored in a particular database), and then the tertiary structure
fitting s′ best is used as a reasonable hypothesis for the tertiary structure of
s′. This general concept is called protein threading.

Before we present the single steps of this approach in more detail, we have
to specify the particular parameters. We can represent a primary structure
by a string, as usual. Additionally, we have to agree on the representation of
the known tertiary structure of a protein. Here, we focus on the secondary
structure, i.e., on helices and sheets. We refer to these entities as cores. Since
our model does not distinguish between helices and sheets, but uses the cores
as basic entities, we can also interpret other structures such as motifs and
domains as cores. Using the notion of cores, we next formally introduce a
structural model for tertiary structures of proteins.

Definition 13.26. Let s be a string (representing a protein). A structure
model or core model of s is a 5-tuple M = (m, c, λ, lmin, lmax) with the fol-
lowing properties:

• The structure of s contains m ∈ � core regions C1, . . . , Cm.
• The length of a core region Ci is given by ci, and c = (c1, . . . , cm).
• Core regions Ci and Ci+1 are connected via a loop of length λi, and λ =

(λ0, . . . , λm).
• The minimal length of a loop connecting Ci and Ci+1 is given by lmin

i , and
lmin = (lmin

0 , . . . , lmin
m ).

• The maximal length of a loop connecting Ci and Ci+1 is given by lmax
i ,

and lmax = (lmax
0 , . . . , lmax

m ).

Hence, the following must hold for a structure model:

• |s| = λ0 +
∑m

i=1(ci + λi), and
• lmin

i 6 λi 6 lmax
i for all i with 1 6 i 6 m.

Next, we describe what an embedding of a string s′ into a structure model
looks like. If we assume that in this kind of alignment gaps can only occur
inside loops and not within the actual cores, as this would “destroy” the
structure of the core region, then we can describe an embedding by specifying
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positions ti in s′ where ti is assigned to the beginning of the core Ci. This
leads to the following definition of this special kind of alignment, which we
call threading.

Definition 13.27. Let s be a string, and let M = (m, c, λ, lmin, lmax) be a
structure model of s. Let s′ be a string. A threading T of s′ into M is an
m-tuple

T = (t1, . . . , tm),

where

• 1 + lmin
0 6 t1 6 1 + lmax

0 ,
• for all i, 1 6 i < m: ti + ci + lmin

i 6 ti+1 6 ti + ci + lmax
i , and

• tm + cm + lmin
m 6 |s′|+ 1 6 tm + cm + lmax

m .

To illustrate this definition, a schematic view of a threading is shown in
Figure 13.21.
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Fig. 13.21. Schematic view of protein threading

The requirements for a threading given in Definition 13.27 mirror the
meaning intended by the structure model, namely, that a new core region Ci+1

can only start if at least lmin
i and at most lmax

i positions in s′ are assigned
to a loop between the two cores Ci and Ci+1. These requirements are also
called ordering constraints. On the other hand, we may instead require that
positions ti of a threading, for all 1 6 i 6 m, are contained in the following
interval

1 +
∑

j<i

(cj + lmin
j ) 6 ti 6 |s′|+ 1−

∑

j>i

(cj + lmin
j ).

We may refer to these inequalities as spacing constraints. They represent a
weaker requirement than the ordering constrains from which they can be
deduced.
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How shall we now evaluate such a threading? First of all, it should be clear
that we want to evaluate the quality of the assignment of a substring of s′ to
a certain core Ci given by a threading (t1, . . . , tm). To do so, we use a function
g1(i, ti) that evaluates the assignment of the substring s′[ti, ti + ci − 1] to the
core Ci. Moreover, there might be interactions between several of the core
regions, which should be considered as well. Interactions between at most r
core regions may be modeled using a function gr(i1, i2, . . . , ir, ti1 , ti2 , . . . , tir

).
Clearly, these functions also rely on the particular sequences; nevertheless, we
do not refer to these in the notation explicitly, for the sake of convenience.
The function values themselves are usually derived using experimental data.
Here, we restrict ourselves to interactions between at most two core regions,
and thus we define the protein threading problem as follows.

Definition 13.28. The protein threading problem is the following optimiza-
tion problem.

Input: A structure model M = (m, c, λ, lmin, lmax) of a string s, a string s′, and
two functions g1 : {1, . . . ,m} × {1, . . . , |s′|} →

�
and g2 : {1, . . . ,m}2 ×

{1, . . . , |s′|}2 →
�

.
Feasible solutions: All threadings T = (t1, . . . , tm) of s′ into M .
Cost: For all feasible solutions T = (t1, . . . , tm), the costs are given by

cost(T ) =

m∑

i=1

g1(i, ti) +

m∑

i=1

m∑

j=i+1

g2(i, j, ti, tj).

Optimization goal: Minimization.

Although this version of the problem is restricted to interactions between
at most two cores, it is NP-hard. We prove this result by presenting a reduc-
tion from the DecMaxCut problem to the decision version of the protein
threading problem.

Definition 13.29. The DecMaxCut problem is the following decision prob-
lem.

Input: A graph G = (V,E) and a positive integer k.
Output: Yes if there exists a partition of the vertex set V into two sets X and

X − V such that at least k edges are in the cut, i.e., |E ∩ {{x, y} | x ∈
X, y ∈ V −X}| > k. No otherwise.

This problem was shown to be NP-hard by Garey et al. [80].

Theorem 13.10. The DecMaxCut problem is NP-hard. ut

Next, we show that the protein threading problem is also NP-hard.

Theorem 13.11. The protein threading problem is NP-hard.
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Proof. To prove this theorem, we present a polynomial reduction from the
DecMaxCut problem to the decision version of the protein threading prob-
lem, which, in addition to an input instance (M, s′, g1, g2) for the protein
threading problem, gets an integer h as input and yields Yes if and only if
there exists a threading of cost at most h.

Let (G, k) be an input for the DecMaxCut problem, where G = (V,E).
From this, we construct a structure model M with |V | = n core elements
each of length 1 that are connected to each other by loops of length 0. On
the other hand, the possible length of the loops is arbitrary. We thus obtain
M = (n, c, λ, lmin, lmax), where

• c = (1, . . . , 1),
• λ = (0, . . . , 0),
• lmin = (0, . . . , 0), and
• lmax = (∞, . . . ,∞).

The structure model M hence mirrors the vertices in the graph G. Compared
with this, a threading should represent a cut, i.e., a partition of the vertex
set; we therefore choose s′ as

s′ = (01)n.

In this way, each core is assigned to either a 0 or a 1 in s′ by the threading.
It remains for us to transform the size of the implied cut to the evaluation
of the threading. To do so, we use the function g2 scoring the interaction
between two core regions, since the size of a cut is measured in the number of
edges connecting different parts of the partition. We thus consider the relation
between the core regions only, and hence set g1(i, ti) = 0 for all i and ti. On
the other hand, we score the situation −1 when a pair of cores is assigned to
different values, 0 and 1, by the threading and there exists an edge between
the corresponding vertices in G. Formally, we set g2 to

g2(i, j, ti, tj) =

{
−1 if i < j, {vi, vj} ∈ E, and s′ti

6= s′tj

0 otherwise.

An illustration of this reduction is given in Figure 13.22. Hence, a threading
of s′ into M implies a partition of the vertices in G, and vice versa. The
number of edges between the parts of the partition, i.e., the size of the cut,
corresponds to the absolute value of the cost of the threading, since each such
edge is scored −1 by g2. Finally, there exists a cut of size k in G if and only
if there exists a threading of cost −k for (M, s′, g1, g2). ut

We have used very specific evaluation functions in the proof and have
referred to the worst-case complexity only. In practice, the functions g1 and
g2, as determined experimentally, will not show the property used for the
reduction in the proof.

Let us now consider an algorithm that will solve the protein threading
problem in an exact way, but that may require exponential running time
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Fig. 13.22. Reduction from DecMaxCut to the decision version of protein thread-
ing. The vertices from G are partitioned into the sets X and V −X; vertices in X are
drawn using unfilled circles, and vertices in V −X using filled circles. A threading
of s′ assigns to each vertex in G (core element in M) either the value 0 or the value
1 and induces in this way a partition into X and V −X. Edges in the cut are drawn
as dashed lines

for some unfavorable inputs. However, it is more intelligent than applying a
simple brute force method. The algorithm depends on the branch and bound
method. This idea is often used for solving NP-hard problems exactly, since it
may require exponential running time in the worst case, since in principle it
searches the whole set of possible solutions; but, on the other hand, it is able
to prune solutions that can be foreseen to be unpromising at an early stage.
The general setting is quite similar to the backtracking method we applied to
the partial digest problem in Section 7.1.2.

The general procedure is as follows. First, we find a way to stepwise specify
a solution with partial solutions, which can be successively developed further,
to eventually obtain a complete feasible solution. We thus obtain a partition
of the solution space in terms of partial specifications. A good illustration is
in terms of a rooted tree. The root corresponds to an empty specification,
leaves represent feasible solutions, and inner vertices correspond to partial
specifications inside a subtree. Starting from an inner vertex, or the root itself,
a further specification of the partial solution corresponds to the transition from
a parent vertex to its children, and is called branching step. Next, consider
the situation where we have already found one feasible solution and thus also
know its cost α; in this case, we do not want to branch further into partial
solutions which we know in advance will yield worse (in our case, higher) costs.
If we now know for an inner vertex that all solutions derived from this specific
partial solution, i.e., all solutions inside the subtree rooted at this vertex,
will have at least cost β > α, we may ignore the subtree in the continued
search for an optimal solution. To apply this idea of disregarding unfavorable
branches of the search tree, we need to estimate the cost of feasible solutions
in a subtree in an intelligent way. This is called the bounding step.

Let us consider this procedure for our protein threading problem. Let
M = (m, c, λ , lmin, lmax) be a structure model. According to the ordering
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constraint
ti + ci + lmin

i 6 ti+1 6 ti + ci + lmax
i

for a threading, we can represent the set of feasible threadings T in terms
of an m-tuple of intervals ([b1, e1], [b2, e2], . . . , [bm, em]), where bi 6 ti 6 ei

holds for all 1 6 i 6 m. A branching step may start with choosing one of the
intervals, for instance, [bj , ej ]. This interval may then be divided into three
subintervals [bj , dj − 1],[dj , dj ], and [dj + 1, ej ]. Here, dj is an arbitrary value
inside the original interval [bj , ej ]. This means that in the second interval we
enforce the choice tj = dj for the set of consistent threadings. We denote
the sets of threadings resulting from such a partition of an original set T by
T [bj , dj − 1], T [dj , dj ], and T [dj + 1, ej ].

Let us now consider the bounding step of the algorithm, namely, the spec-
ification of a lower bound on the cost of all threading represented by an
m-tuple of intervals. A simple lower bound is, for instance, the sum of all
minimal values of the functions g1 and g2 in the valid intervals:

lowerbound (([b1, e1], . . . , [bm, em])) =

m∑

i=1








min
bi6x6ei

g1(i, x) +
m∑

j=i+1

min
bi6y6ei

bj6z6ej

g2(i, j, y, z)







.

Having specified the branching as well as the bounding step, we recapitu-
late the procedure in Algorithm 13.8. To traverse the search tree as efficiently
as possible, we first investigate those branches that have the lowest bound
using a priority queue. The commands Enqueue and Dequeue insert a new
element such that the queue remains sorted and return the element with the
lowest value, respectively. Here, the sorting criterion used is clearly the lower
bound for the set of threadings that can be derived from the partial solution
given by the element.

In concluding, we note that the better the lower bound, the larger the
number of branches of the solution space that can be ignored, which results
in better running times. We refer to such improved lower bound functions in
the bibliographic notes in Section 13.5. Moreover, it should be clear that, if
we know a good feasible solution in advance, for instance, one computed by a
suitable heuristic, we can again prune large parts of the solution space. There-
fore, preprocessing to compute such a good solution for use in the algorithm
is meaningful in any case.

13.4 Summary

13.4.1 RNA Secondary Structure Prediction

The spatial structure of RNA molecules is partitioned into three structural
levels: the primary structure, i.e., the sequence of nucleotides along the RNA
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Algorithm 13.8 Protein threading by branch and bound

Input: A structure model M = (m, c, λ, lmin, lmax) of a string s, a string s′, two
functions g1 and g2, and a lower bound function lowerbound .

1. Initialization:

opt :=∞ {Cost of the currently best threading}
thr := not defined {Currently best threading}
T := ([0,∞], . . . , [0,∞]) {Set of all threadings}
lb := lowerbound (T )
Q := Enqueue(Q, (T , lb))

2. Branch and Bound:

while Q 6= NIL do

(Ti, lbi) := Dequeue(Q)
if lbi < opt then

if |Ti| = 1 then

let t be the only valid threading in Ti

if cost(t) < opt then

opt := cost(t)
thr := t

else

Chose j and dj with 1 � j � m and bj < dj < ej for Ti.
Q := Enqueue(Q, (Ti[bj , dj − 1], lowerbound (Ti[bj , dj − 1])))
Q := Enqueue(Q, (Ti[dj , dj ], lowerbound (Ti[dj , dj ])))
Q := Enqueue(Q, (Ti[dj + 1, ej ], lowerbound (Ti[dj + 1, ej ])))

Output: An optimal threading thr with cost opt .

strand; the secondary structure, i.e., the set of base pairs established between
the nucleotides of the strand; and the tertiary structure, i.e., the actual posi-
tion of molecules in three-dimensional space. The function of RNA depends on
its spatial structure. Consequently, knowledge about this structure is desired.
Here, the secondary structure represents a kind of intermediate structure be-
tween the primary and tertiary structures.

Bonds between bases may lead to specific types of substructures that are,
according to their shape, called stem, hairpin loop, bulge, interior loop, or
multiple loop. A special substructure is the pseudoknot, where crossings of
base pairs along the RNA strand yield some kind of knot.

One approach to deriving the secondary structure from the primary struc-
ture is based on the idea of minimizing the free energy of the corresponding
conformation — the lower this energy, the more stable the molecular struc-
ture of the molecule. Nussinov’s algorithm (Algorithm 13.1) tries to approxi-
mate the free energy in terms of maximizing the number of base pairs in the
structure. A refined estimation of free energy tries to incorporate the spe-
cific substructures in the conformation and their special contribution to the
free energy. For this purpose, the algorithm by Zuker and Stiegler (Algorithm
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13.2) accounts not only for the number of base pairs but also for the induced
substructures. Both algorithms use the method of dynamic programming.

A different approach underlies the modeling of the secondary structure in
terms of stochastic context-free grammars. Here, we deal with context-free
grammars, where each production is assigned a specific probability. The ap-
plication of a production S → CBG in a derivation of the string representation
(primary structure) of an RNA is intended to indicate a base pair (C, G). Us-
ing the probabilities of the productions, we can assign probabilities also to
each derivation, and, in particular, also to each derivation tree. Given such
a stochastic context-free grammar and a primary structure of RNA, we can
compute the most probable derivation tree for the primary structure using a
stochastic variant of the CYK algorithm (Algorithm 13.4); and by the produc-
tions used, we gain a hypothesis for the secondary structure of the considered
RNA.

13.4.2 Structure-Based Comparison of Biomolecules

RNA secondary structures can be represented in terms of arc-annotated
strings, which consist of an underlying string and a set of position pairs in
it whose corresponding symbols are connected by an arc. According to the
structure implied by these arcs we can distinguish between different classes of
arc-annotated strings (Unlimited, Crossing, Nested, Chain, Plain).

To compare molecules with respect to more than their primary structure,
we include higher-dimensional structures using arc-annotated strings. This
leads to the problem of computing the longest common subsequence and its
extension to arc-annotated strings, the problem of determining the longest
arc-preserving common subsequence, or LAPCS for short.

According to the classification of arc-annotated strings, we can con-
sider this problem for different classes. The problem LAPCS(Plain,Plain)
here corresponds to the longest common subsequence problem and can be
solved using a simple alignment algorithm in polynomial time. By contrast,
LAPCS(Crossing,Crossing) was shown to be an NP-hard optimization
problem using a reduction from the clique problem. However, there exists a 2-
approximation algorithm, which is clearly also applicable to all subproblems,
in particular, for the biologically interesting case of LAPCS(Nested,Nest-
ed), which can be used to model RNA structures without pseudoknots.

13.4.3 Protein Structure Prediction

The spatial structure of proteins is, similarly to that of RNA, differentiated
in a hierarchical system. We distingiush between the primary structure, i.e.,
the sequence of amino acids, the secondary structure, i.e., helices and sheets,
the tertiary structure, i.e., the interplay of several secondary structures, and
the quaternary structure, i.e., the assembly of proteins from several molecular
subunits.
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It is a tedious and expensive task to determine the spatial structure of
proteins by experiments. As a consequence, one searches for an approach that
allows its computation of from the primary structure of the protein only, which
in principle is possible, since the primary structure completely determines the
folding of the whole molecule (at least for a large class of proteins).

To infer the spatial structure from the primary one, we require an abstract
model of the folding space. One example is a three- or two-dimensional grid
lattice, where we try to embed the primary structure in terms of a self-avoiding
walk. The free energy of such an embedding can be measured by the number
of hydrophobic interactions in the core of the molecule. In the proposed grid
model, this corresponds to the number of hydrophobic amino acids assigned
to adjacent vertices in the grid. Since each vertex in a two-dimensional grid
has at most four neighbors and, moreover, only the vertices connected by a
path of odd length can be adjacent, we can easily establish an upper bound
on the cost of an optimal solution. Based on the same idea, we can design
an approximation algorithm for this problem that asymptotically achieves a
ratio of 4.

Another approach to determine the spatial structure of a protein is based
on the observation that many structures have similar core regions and only
differ in the linkage of these cores. The term core may, for instance, refer to
helices or sheet structures. The idea of protein threading is to align a primary
structure whose spatial structure is desired to a three-dimensional structure
that was resolved before, and that can now be stored in a database. For
this, the known three-dimensional structures are represented in terms of a
structure model and the quality of an assignment of the primary structure
to this structure model is evaluated. The resulting optimization problem was
shown to be NP-hard in its general form. We proposed a suitable branch and
bound approach to compute an exact solution for the problem.

13.5 Bibliographic Notes

13.5.1 RNA Secondary Structure Prediction

Besides chapters in the monographs by Clote and Backofen [49], Durbin et
al. [62], Setubal and Meidanis [180], and Waterman [201], Wang and Zhang
[200] give a very nice overview on the methods utilized in the framework of
RNA secondary structure prediction.

Figure 13.1 originates from a similar picture in the textbook by Karlson
et al. [115] (in German).

Algorithms 13.1 and 13.2 have been proposed in works by Nussinov et
al. [151] and Zuker and Stiegler [212], respectively. The running time of Al-
gorithm 13.2 can be improved using a more clever implementation [202]; in
particular, one can achieve a running time in O(n2) under the assumption
that the free energy for loops can be modeled in terms of linear functions.
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Related approaches are also presented in [201]. Values used in practice for the
free energy of the single substructures can be found in [49].

Approaches to include pseudoknots into structure prediction for RNA are
studied by Akutsu [5], Lyngsø and Pedersen [141], and Rivas and Eddy [166].
Zuker [211] considered methods to compute good suboptimal structures be-
sides structures with minimum free energy. They may be used as good hy-
potheses for the secondary structure and undergo further investigation and
evaluation.

The description of the modelling of RNA secondary structure prediction
by stochastic context-free grammars follows the comprehensive presentation
in [62]. An introduction to this concept can also be found in the book by Baldi
and Brunak [21]. The construction of a stochastic context-free grammar on
the basis of training data can be performed using the inside-outside algorithm
[127]. [127]Another approach for determining such a grammar relies on the
usage of multiple alignments of RNA primary structures [64].

The CYK algorithm for conventional context-free grammars was indepen-
dently proposed by Cocke, Younger [209], and Kasami, and can also be found
in the book by Hopcroft et al. [103].

Another approach for determining RNA secondary structures is based on
considering RNA sequences in closely related organisms. Mutations, in par-
ticular base substitutions, often have no effect on the secondary structure
since they affect both bases forming one base pair in the secondary structure
(therefore, the three-dimensinal shape and, thus, the function of the molecule
are conserved). Hence, one considers pairs of bases in the closely related RNA
sequences that are changed by the transition of one RNA to another and con-
jectures a corresponding pair in the secondary structure. Further observations
on this approach are found in [200].

13.5.2 Structure-Based Comparison of Biomolecules

The concept of arc-annotated strings was considered by Evans in her PhD
thesis in 1999 [67]. In particular, the idea for the NP-hardness proof for
LAPCS(Crossing,Crossing) by a reduction from the Clique problem goes
back to this publication. The NP-hardness of the class LAPCS(Nested,
Nested) has been proven in a work by Lin et al. [139], the 2-approximation
algorithm for the LAPCS(Crossing,Crossing) problem was proposed by
Jiang et al. [110]. These articles moreover contain many more results concern-
ing the complexity and algorithmic aspects of the problem.

A related approach to describing the structural similarity of proteins was
studied by Goldman et al. [83].

In the context of arc-annotated strings, often the concept of parameterized
complexity is considered. The idea of parameterized complexity is to extract
a parameter responsible for the inherent exponential running time of the con-
sidered problem (under the assumption P6=NP), and to eventually propose
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an exact algorithm with running time that is arbitrary (i.e., possibly expo-
nential) in the extracted parameter but only polynomial in the size of the
remaining input. This concept may lead to practical solutions if the param-
eter for real input instances is small, so that an exponential (in this small
parameter) running time does not hurt too much. From this point of view,
one may also try to develop parameterized algorithms for certain parameters
found to be small in practice or at least meaningful in the specific problem
setting. In our case, one such parameter may be the depth of nested arcs or
the number of crossings of arcs in arc-annotated strings. Approaches following
this line of research can be found in the works by Evans [67], and by Alber
et al. [7]. A general introduction to the concept of parameterized complexity
can be found in the books by Downey and Fellows [63] and Niedermeier [150],
who comprehensively study this concept, and also in the book by Hromkovič
[105].

13.5.3 Protein Structure Prediction

Section 13.3 is based in part on descriptions in the books by Clote and Back-
ofen [49] and Setubal and Meidanis [180]. A more comprehensive overview,
together with a multitude of further references, is given in the PhD thesis by
Pedersen [156].

The evidence that the spatial structure of the protein is completely deter-
mined by its primary structure was given by Anfinsen et al. [12].

The grid lattice as a structural model in the context of protein struc-
ture prediction, in particular the HP model, was proposed by Dill [59]. Dill
et al. [60] also claim that most properties of the three-dimensional model are
mirrored by similar properties in the two-dimensional setting. There are many
results known for this model. The NP-hardness of the resulting optimization
problems was shown by Berger and Leighton [27] and Crescenzi et al. [52].
Algorithm 13.7 for the HP(2) problem was originally presented by Hart and
Istrail [101]. They gave a thorough description of the algorithm and also pre-
sented an extension of the underlying ideas to the three-dimensional case,
where they achieve an 8

3 -approximation algorithm. Newman [148] and New-
man and Ruhl [149] improved these results by proposing a 3-approximation
algorithm and an

(
8
3 − ε

)
-approximation algorithm for the two- and the three-

dimensional cases, respectively. With regard to the modeling of the HP prob-
lem as a mathematical program, we refer to the survey by Greenberg et al. [86].
Moreover, other types of lattices have been considered in the literature; we
examplarily refer the reader to the triangular grids studied by Agarwala et
al. [2] and grids with plane diagonals studied by Böckenhauer and Bongartz
[34]. Additionally, various further extensions of the original HP model have
been proposed; we refer the reader to the survey by Chandru et al. [42] for an
overview.

The protein threading problem was proposed by Jones et al. [111]. The ap-
proach was further investigated by Lathrop and Smith. Lathrop [128] showed
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the NP-hardness of the problem. Together with Smith [129], he proposed the
discussed branch and bound approach for solving the problem. The efficient
computation of the lower bound function as well as improved versions of it
may be found in [129] and [49]. Further results concerning the algorithmic
complexity of the problem have been presented by Akutsu and Miyano [6].
The NP-hardness proof presented in this books relies on their work, though
Akutsu and Miyano proved an even harder result, namely, that the protein
threading problem cannot be approximated arbitrarily well, unless P = NP.
Furthermore, they studied approximation algorithms to solve this problem.
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Ω(f(n)) 30
Θ(f(n)) 30
λ see string, empty
2-factor 209

accepted mutation 95
adenine 10
adjacent 25
algorithm 28

consistent 32
alignment 81ff.

compatible 109f.
global 84ff.
local 84, 90
multiple 101ff.
of two strings 82ff.

computation 88
optimal local 90
score 83
semiglobal 91

alignment tree 110
alphabet 23
amino acid 7

hydrophilic 353
hydrophobic 353
polar 353

approximation algorithm 32f.
approximation ratio 32
arc 338
arc set 338
asymptotic approximation 362
autocorrelation 224

polynomial 225
automaton 39

backtracking 135
bad character rule 44

preprocessing 45
base pair

reachable 322
valid 320

Bernoulli string 224

binary tree 28
directed 28
undirected 28

binding site 213

bit score 100
BLAST 99ff.
BLOCKS database 97
BLOSUM matrix 97

Boyer–Moore algorithm 49
branch and bound 368
breakpoint 241
bulge 322

C1F see consecutive ones form
C1P see consecutive ones property
Celera Genomics 120
CG-islands 228, 233

Chain 341
chain termination method 18
character see symbol
character matrix 269

binary 269

child 27
chimeric clone 16, 158, 174
Chomsky normal form 332
chord 26
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chromosome 12
clique problem 342
clone 144
clone library 144
cloning 15
CNF see Chomsky normal form
column distance graph 161
CompactAddTree problem 266
companion see companion column
companion column 293
companion graph 298
companion pair

equated 293
negated 293

companion row 293
complete pair matrix 290
component graph 303
compression 177
computing problem 28
concatenation 24
connected component 299, 346
consecutive ones form 146
consecutive ones property 146

testing for 156
consensus 102, 173

ε-consensus 199
distance to 102

consensus string approximation 215
consensus string problem 214
contact 354

edge 353f.
contig 198
cost function 29
cost measure 54

logarithmic 54
uniform 54, 69

coverage 172
incomplete 174

Crossing 341
cycle 26

simple 26
cycle cover 190
cycle cover superstring algorithm 191
CYK algorithm 335, 373

stochastic 335
cytosine 10

database search 97ff.
DDP 127

de novo protein structure prediction
352ff.

Dec(0,1)ShortestSuperseq problem
105

DecDDP 128
decision problem 28

corresponding 32
DecLAPCS 343
DecMaxCut problem 366
DecMultSPAlign problem 105
DecSCS 182
deletion 19, 83
denaturation 15
deoxyribonucleic acid see DNA
derivation 329

rule see production
tree 333

diagonal run 98
digest 124
diploid 287
disjoint DDP 131
distance 179
distance graph

for SCS 179
for the CompactAddTree problem

266
distance set 127
divide and conquer 219
DNA 10
DNA array see DNA chip
DNA chip 19
DNA contamination problem 63
DNA fingerprinting 217
DNA sequencing 119ff.
domain 351
double digest approach 124ff.
double digest problem see DDP
dynamic programming 84, 104, 231,

314, 324

edge 25
directed 27

edge labeling 28
edit distance 84
edit graph 88
embedding 353
emission probability 228
Eulerian cycle 26, 202

computing an 205
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Eulerian path 26, 202
ExPerfPhyl problem 270

false negative 20, 145
false positive 20, 145
FASTA 98f.
feasible solution 29
fingerprint 143
fingerprinting 143
fission 249f.
Fitch algorithm 277f.
folding point 359
forcing pattern 294
forcing component 299
forcing graph 298
forcing pair 294
fragment assembly problem 172
fragment conflict 306
fragment conflict graph 306
frequency analysis 224
full digest 125
function

polynomially bounded 30
function computing problem 29
fusion 249f.

gap 82
gap scoring 94
gap symbol 82
gel electrophoresis 16
gene 12
genome 13
genome rearrangements 237ff.
genotype 287f.
genotype matrix 289

regular 293
genotypical characters 268
global alignment problem 84
GMinP 159
good suffix rule 44

preprocessing 49
grammar

context-free 329
stochastic context-free 329, 331

graph 25ff.
bipartite 26
complete 25
connected 26
directed 27

edge-weighted 28
Eulerian 203

greedy method 182
greedy superstring algorithm 183
grid lattice 353
guanine 11

hairpin loop 322
Hamiltonian cycle 26
Hamiltonian cycle problem 28, 31
Hamming distance 162, 214, 277
haplotype 287f.
haplotype matrix 289
haplotyping 287ff.
helix 350
heterozygous 288
hidden Markov model 228ff.
high scoring pair 100
hit 100
HMM see hidden Markov model
HMM decoding problem 231
homologous genes 239
homology 13
homomorphism 25
homozygous 288
host 15
hot spot 98
HP model 352ff.
HP(d) problem 355
HSP see high scoring pair
Human Genome Project 120
hybridization 11, 15
hybridization data 143
hybridization matrix 144

incident 25
indicator function 296

feasible 296
insert 15
insertion 19, 83
inside-outside algorithm 373
interchromosomal transformations 238
interior loop 323
interval graph 169
intrachromosomal transformations

238
inversion see reversal

Landau symbols 30
LAPCS 340
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lattice 353
layout 173
lce 217
LCS 338
leaf 27
left-diverse 67
left-symbol 67
letter see symbol
Levenshtein distance see edit distance
lexicographical order 69
link 199

weakest 199
local alignment problem 90
local search 281
longest arc-preserving common subse-

quence problem see LAPCS
longest common extension 217
longest common extension problem

217
longest common subsequence problem

see LCS
longest common substring problem 61
loop 323, 350
lowest common ancestor 218

magic word 214
majority voting 103, 174
mapping

by hybridization 143ff.
optical 168
restriction site- 141, 143
with non-unique probes 165f.
with unique probes 146ff.

marker 120, 123
match 83
mate pair 120
maximum compression common

superstring problem see MCCS
MaxQuartettConsist problem 282
MbH see mapping, by hybridization
MCCS 177
median string 214
merge 25
metric 251, 258
MFR problem 309
minimum fragment removal problem

see MFR problem
minimum SNP removal problem see

MSR problem

minimum vertex bipartizer problem
310

MinOSR problem 248
MinParTop problem 280
MinSR problem 240

approximation 245
MinSynteny problem 251

approximation 254
mismatch 83
motif 351
MSR problem 309
MultConsensusAlign problem 103
multicontig model 198
multicontig problem 199
multiple loop 323
MultSPAlign problem 104

neighbors
connected 354
topological 354

Nested 341
non-terminal 329
nondeterminism 31
NP 31
NP-complete 31
NP-hard 31f.
nucleic acid 9ff.
nucleotide 10
Nussinov algorithm 324f.

O(f(n)) 30
optimization goal 83
optimization problem 29
ordering constraints 365
orientation

unknown 174
ov 25
overlap 25, 173

approximate 92f.
computation 93

computation 29, 64
empty 25
generalized 41

overlap graph 179
overlap-layout-consensus scheme 172

P 31
PAM distance 95
PAM matrix 95
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PAM unit 95
parameterized complexity 373
parent 27
parsimony principle 275ff.
parsimony problem 276
parsimony score 277
partial digest 131
partial digest approach 131ff.

ideal data 131
partial digest problem see PDP

atomic distances 134
backtracking algorithm 136
level 134

path 26
directed 27
in a Hidden Markov Model 228
simple 26

pathlabel 54
pattern 37
PDP 133
perfect phylogeny haplotyping problem

see PPH problem
PerfPhyl problem 270
permutation 239

directed 239, 247
extended representation 241
signed 239
undirected 239

phenotypical characters 268
phylogenetic tree 257ff.

perfect 269, 289
construction 272
existence 275

undirected perfect 290
unrooted 276

phylogeny see phylogenetic tree
physical map 120, 123
physical mapping 123ff.
Plain 341
point set 133
polynomial-time approximation scheme

see PTAS
polynomial-time reduction 32
polypeptide chain 9
Pos 54
position set 126
PPH problem 290
PQ-tree 147

consistent permutation 149

empty 149
empty vertex 151
equivalent 149
front 148
full vertex 151
legal operation 148
partial vertex 151
pattern 150
pertinent subtree 151
pertinent vertex 151
reduction 149
substitute 150
universal 149

Pref 25
pref 25
prefix 24
preprocessing 39
primary structure

of proteins 350
of RNA 320

primer 16
probe 20, 144
production 329
protein 7ff.

core model 364
de novo structure prediction 352ff.
folding 349
HP model 352ff.
primary structure 9, 350
quaternary structure 351
secondary structure 350
structure model 364
structure prediction 349ff.
tertiary structure 350

protein threading 363ff.
branch and bound 370

protein threading problem 366
pseudoknot 323
PTAS 217

quartet 281
consistent 281
optimal 281

quartet method 281ff.
quartet puzzling 282f.
quaternary structure

of proteins 351

read 18
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reciprocal translocation 238
reconstruction model 197
reconstruction problem 197
relation computing problem 29
repeat 66, 174

approximate 66
exact 66
maximal exact 66

compact representation 68
repeat search problem 66
resolving pair 288
restriction enzymes 15, 123
restriction site 15, 123
restriction site mapping 123ff.
reversal 238

for directed permutation 248
for undirected permutation 239

reverse complement 11
ribonucleic acid see RNA
RNA 10

primary structure 320
secondary structure 320
substructure 322
tertiary structure 321

RNA substructure
size of 323

root 27

SbH see sequencing, by hybridization
SbH reconstruction problem 202
scoring function 83

good 112
scoring matrix 94f.
SCS 176
secondary structure

of proteins 350
of RNA 320ff.

self-avoiding walk 353
sequence 23
sequencing see DNA sequencing

by hybridization 171, 201ff.
shotgun 171ff.

sequencing errors 18
set partition problem 128
sheet 350
shortest common superstring problem

176
decision version 182
with compression measure 178

with length measure 178
shortest covering string problem 165
shotgun method 120
shotgun sequencing see sequencing,

shotgun
signals 213ff.
similarity 83

computation 87
similarity matrix 84
simulated annealing 281
single nucleotide polymorphism see

SNP
skew algorithm 72f.
SNP 288ff.
SNP conflict 311
SNP matrix 306

gapless 311
reduced 311
weight 313

SNP site 288
sorting

counting sort 71
radix sort 72

SP-score 103
spacing constraints 365
spanning tree algorithm 33
spectrum 201
spectrum graph 202
stack 135
stacked pair 322
star alignment 110f.
state 40

accepting 40
initial 40

stem 322
string 23ff.

arc-annotated 337f.
compatible 201
empty 23
length 23
reverse complementary 11
simply compatible 201

string depth 54
string homomorphism see homomor-

phism
string matching 37ff.

approximate 91
Boyer–Moore algorithm 44ff.
naive approach 38
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with automata 39ff.
with suffix trees 57

string matching automaton 40f.
construction 42

string matching problem 38
naive approach 38

strip 242
ascending 242
descending 242

STS probes 146
subgraph 26

induced 26
subsequence 24

arc-preserving common 339
consistent mapping 339
longest arc-preserving common 340
longest common 338

substitution 19, 83
substring 24

frequent 223
infrequent 223
longest common 61

substring edit distance 197
substring free 177
substring problem 58
Suff 25
suff 25
suffix 24
suffix array 68ff.

inverse 73
suffix similarity 46
suffix tree 50ff., 218

compact 53
construction 55

generalized 59
simple 50

construction 51
sum of pairs see SP-score
supersequence 105

shortest common 105
superstring

induced 181
shortest common 176
trivial 177

symbol 23
syntenic distance 249f.
syntenic operations 250
synteny graph 253
synteny problem 251

T-contig 199
tandem repeat 217

approximate 217
computation 222

tandem repeat problem 219
tandem repeats 217ff.
taxa 257
taxon see taxa
terminal 329
tertiary structure

of proteins 350
of RNA 321

text 37
threading 365
three point condition 259
threshold problem 32
thymine 11
Time 30
transition function 40
transition probability 228
translocation 248ff.
transposition 238
traveling salesman problem see TSP
tree 27

additive 265ff.
compact additive 266

computation 267
directed 27
ordered 27
rooted 27
spanning 27
ultrametric 259

distance 259
tree compatible 271
triangle inequality 33, 112, 164, 259
trie see suffix tree, simple
tRNA 321
TSP 29, 164

metric 33
turnpike reconstruction problem 168

ultrametric 259
Unlimited 341
UPGMA algorithm 261, 263
uracil 11

variance 224
vertex 25
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balanced 204
degree 25
indegree 27
inner 27
outdegree 27
semi-balanced 204

vertex labeling 28

vertical run 313
Viterbi algorithm 232

Watson–Crick complement 11
whole genome shotgun approach 120

Zuker algorithm 326f.
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