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Foreword

The contents of this book focus on the recent investigations in molecular biol-
ogy where applications of topology seem to be very stimulating. The volume is
based on the talks and lectures given by participants of the three-month pro-
gram “Topology in Condensed Matter”, which was held in the Max Planck In-
stitut fur Physik komplexer Systeme, Dresden, Germany, 8 May–31 July 2002,
under the scientific direction of Professors M. Kléman, S. Novikov and my-
self. The aim of this program was to discuss recent applications of topology
to several areas in condensed matter physics and molecular biology.

The first volume “Topology in Condensed Matter” is concerned with mod-
ern applications of geometrical and topological techniques to such new and
classic fields of physics like electron theory of metals, theory of nano-crystals,
aperiodic and liquid crystals, quantum computation and so on. This volume
is published simultaneously in “Springer Series in Solid-State Physics”.

The present volume gives an exposition of the role of topology in the
theory of proteins and DNA. The last thirty years affirmed very efficient ap-
plications of modern mathematics, especially topology, in physics. The union
of mathematics and physics was very stimulating for both sides. On the other
hand, the impact of mathematics in biology has been rather limited. How-
ever here also some interesting results were obtained. In particular, there are
applications of knot theory in the theory of circular closed DNA. The re-
cent discoveries in molecular biology indicate future successful applications of
topology. For example, a reconstruction of three-dimensional protein struc-
tures by one-dimensional genomic sequences leads to very interesting and
non-trivial combinatoric problems. There exist two “principa” reflecting the
state of affairs in both fields: physics and biology in the recent past. The first
one is the very popular concept of the famous physicist E. Wigner about “the
unreasonable effectiveness of applications of mathematics in natural sciences
(i.e. physics)”. Otherwise there exists the opposite opinion of the renowned
contemporary mathematician I. Gelfand, who worked for many years in math-
ematical biology. He expressed the “unreasonable non-effectiveness of applica-
tions of mathematics in biology”. It is not to say that there are no applications
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of mathematics to biology, but in Gelfand’s view, no in-depth applications.
May be the future development of both disciplines will disprove this joke. One
indirect proof of this tendency is the contribution of Gelfand himself in this
volume. Beside the biological chapter we add a mini-course of topology for
physicists and biologists. We hope that this mathematical supplement makes
this book self-contained and comprehensible for a more broad audience, in-
cluding graduate and undergraduate students. Our biology chapter contains
accounts of the recent interactions of topology and molecular biology – inter-
actions with indeed much depth.

By the common opinion of participants the seminar was very successful.
The organizers and participants are grateful to the MPIPKS for the generous
sponsorship of the seminar with so unusual spectra of interest. Special thanks
go to the directors of, MPIPKS Professors P. Fulde, J.-M. Rost and F. Julicher,
the head of visitors’ program Dr. S. Flach, the secretaries K. Lantch,
M. Lochar and C. Poenish. We acknowledge our gratitude to the entire
staff of the Institute for their help in organizing the seminar and for mak-
ing sure it ran smoothly. We acknowledge our gratitude to Dr. C. Ascheron,
who suggested publishing these lectures in Springer Verlag, and Sabrina
Gauthamee Khan and K. Venkatasubramanian of SPi, Pondicherry and
Adelheid Duhm who assisted in preparation of these books. The editor es-
pecially thanks Dr. L. Alania for his assistance in preparing this volume. We
hope such programs that converge mathematicians, physicists, and biologists
will continue.

Moscow-Dresden, November 2005. Michael Monastyrsky
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Introduction

M. Monastyrsky

The problems mostly discussed in this volume pertain to the relationship be-
tween 1D and 3D structural date in proteins and DNA. This theme began in
the last decades of the XX century, and is still the focus of numerous biophys-
ical discussions. For years, the main question of how linear genome sequences
predetermine the spatial structure of bipolymer remained very intriguing. The
recent genome sequence analysis has provided new tools for studying DNA and
proteins.

These problems lead, besides new biological questions, to an interesting
mathematics, which is very natural to topology and more precisely to knot
theory. Most of the chapters presented in this volume are concerned with these
topics.

The book begins with a chapter by S.D. Levene, which might be consid-
ered as an introduction to the topological aspects of DNA structures. In the
next chapter “Monte Carlo simulation of DNA Topological properties” Volo-
godskii studies the problem of calculating the main quantity writhing. In the
chapter “Dynamics of DNA supercoiling”. Gabibov et al. are concerned with
the very interesting and recently studied dynamics of supercoiled DNA, with
topological constraints. The authors analyse not only theoretical aspects of
the problem but also the experimental situation.

The following two chapters of Kauffman and Lambropoulu “From Tangle
Fractions to DNA” and Cerf and Stasiak “Linear behavior of the writhe versus
the number of crossings in rational knots and links” are devoted to interesting
topological problems related with recombination properties of DNA. We point
out that it is a rare case where biological questions lead to new mathematical
notions such as the theory of tangle equations.

The next section commerces with the chapter of Kister et al. The au-
thors provide the combinatorical analysis of the above-mentioned problem:
how one-dimensional genomic sequences determine three-dimensional protein
structure. One more special problem is the structure of collagen, which is a
protein with periodic structure. Rivier and Sadoc study the assembly of col-
lagen molecules, the so-called fibrils, long, periodic bundle of finite collagen
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molecules. The appearance of three-dimensional periodic structures leads to
very interesting geometrical questions similar to the problems of classifica-
tion textures and defects in liquid crystals (smectics and discotics), lattices
of defects in superconductors, defects in liquid membranes, dense packing of
spheres and so on.

The book ends with a large mathematical supplement. A short course on
topology is included, assuming that some knowledge of topology presented in
a comprehensive form will be useful for physicists and biologists. The basic
notions in topology already used in biology as a reader can be found in the
biological chapters of the book and some background is given. We guess it
will be useful in future investigations.

The lectures of Buchstaber and Monastyrsky can also be found in this
compendium. The points raised in the lecture of Millionschikov based on the
recent new developments of topology, the theory of multivalued functionals,
have already been applied in physics. It seems that such a good technique
will be useful in future applications in biology. I follow the thought-provoking
motto of John von Neumann: “Modern mathematics can be applied after all.
It is not clear a priori, is it, that could be so”.

The last chapter written by Brooks is based on his colloqium lecture in
the MPIPKS, Dresden, and also on his talk in the Institute d’Henri Poincare,
Paris. He considered some relations between graph theory and spectral prop-
erties of Laplacians on Riemann surfaces.

We publish his lecture for two purposes. First of all it is a very good
mathematic study concerning with two fundamental topics (graph theory and
Riemann surfaces) with very promising applications in biology. The second
one is to acquaint a more general audience with the work of Robert Brooks,
the very deep and original mathematician. He participated very actively in
our seminar. Unfortunately he passed away soon after the end of our program.
We dedicate this volume to his memory.
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Topology in Biology: From DNA Mechanics
to Enzymology

S.D. Levene

Summary. The focus of this contribution is on biological applications of topology
to the study of DNA structure and to understanding protein–DNA interactions that
involve alterations of DNA topology.

We review basic aspects of DNA structure and the tertiary organization of cir-
cular DNA by supercoiling, knotting, and catenation (linking). This is followed by a
review of our current understanding of the topology of chromosomal DNA. Finally,
we discuss some topological and structural aspects of DNA site-specific recombina-
tion by the yeast enzyme FLP.

2.1 Overview

The focus of this contribution is on biological applications of topology to the
study of DNA structure and to understanding protein–DNA interactions that
involve alterations of DNA topology. Control of DNA topology is an essential
aspect of the existence of every living cell because of the extraordinary degree
to which the genomes of free-living organisms are confined. Moreover, changes
in DNA topology accompany a wide range of enzyme-mediated processes on
DNA such as replication, recombination, and repair. In higher organisms the
interconversion of DNA between an inert state contained within chromatin
fibers and an active state characterized by greater, but not necessarily com-
plete, accessibility, provokes many questions about how DNA topology and
its regulation provides both challenges and opportunities to the cell.

We first review basic aspects of DNA structure and the tertiary organiza-
tion of circular DNA by supercoiling, knotting, and catenation (linking). This
is followed by a review of our current understanding of the topology of chro-
mosomal DNA. Finally, we discuss some topological and structural aspects of
DNA site-specific recombination by the yeast enzyme FLP.



4 S.D. Levene

2.1.1 Why Study DNA Topology?

Topological aspects of DNA structure can provide great insight into biochemi-
cal mechanisms of proteins that mediate changes in DNA structure and topol-
ogy. The goal of these studies is generally to understand how the structure of
a DNA-metabolizing enzyme and that of the DNA sequence recognized by the
enzyme interact to participate in a particular chemical reaction. The overall
change in DNA topology that takes place often greatly limits the number of
prospective mechanistic scenarios because any changes in topology must be
consistent with overall changes in DNA geometry.

A limitation of this approach is that although DNA topology and geometry
must be consistent with one another, the latter is rarely uniquely determined.
However, there is at least one important advantage of the topological approach
that outweighs any of its disadvantages: the fact that the topology of a DNA
molecule is fixed and invariant as long as the backbones of both DNA strands
remain unbroken. As long as this constraint is not violated, perturbations
of DNA structure do not affect its global topology. The topological state
of a DNA molecule is independent of temperature, solution conditions, the
presence of particular ions or small DNA-binding molecules, or any other
environmental factors, which offers an enormous experimental advantage.

Finally, an underappreciated aspect of the topological approach is that
topology is extremely useful in ruling out implausible mechanistic scenarios.
One is sometimes faced with the prospect of selecting the most likely mecha-
nism from a long list of candidates. Frequently, the availability of topological
information helps to limit the plausible choices to a small subset or a unique
scheme.

2.1.2 Secondary and Tertiary Structure of DNA

The helical structure of double-stranded DNA is an integral aspect of the
topology of closed DNA molecules. Figure 2.1 shows the three canonical struc-
tures of double-stranded DNA one frequently encounters in textbooks (see [1]
for example). Over the last 20 years it has become clear that local sequence-
dependent variations on these canonical themes exist; therefore, these struc-
tures should be thought of as prototypes of structural families rather than
rigid templates.

The B form of DNA is the structure considered most representative of
DNA molecules in aqueous solution: it is a right-handed double helix with a
period of 10.5 residues (base pairs). Each base pair is nearly perpendicular
to the helix axis and separated from its neighbors by 0.34 nm, giving the
helix a pitch of 3.6 nm. The A-form DNA is a particular structural family
characteristic of DNA molecules under conditions of poor hydration (DNA
fibers at low relative humidity or molecules in solution that contain substantial
amounts of alcohol or other nonaqueous solvents). It is also a right-handed
helical form with a period of 11.0 base pairs and a pitch of 3.2 nm. Unlike the
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Fig. 2.1. Canonical structures of DNA generated according to sequence-averaged
values of helical parameters in the corresponding geometries

B form in which the centers of the base pairs are nearly coincident with the
helix axis, the base pairs in A-form DNA are displaced from the central axis.
This feature, along with the strong inclination of A-form base pairs relative
to the helix axis, imparts radically different geometries to the B and A forms.
The Z form of DNA is a structure that is particular to alternating purine–
pyrimidine sequences such as GC and is present only under conditions of high
ionic strength in vitro or when DNA is negatively supercoiled (underwound).
It is a left-handed helical structure with 12.0 base pairs per turn and a pitch
of 4.5 nm. The biological significance of Z-form DNA has been a matter of
significant controversy [2, 3].

Subtle details of local DNA structure and/or the juxtaposition of these
different structural forms along the same DNA molecule can direct the global
structure of a particular DNA sequence [4, 5]. This is largely because the
thermodynamic stability of DNA structures depends on the favorable stacking
of base pairs in the interior of the double helix and attendant exclusion of water
from the hydrophobic interior of the helical structure. Because individual base
pairs can vary substantially in terms of their inclination relative to the helix
axis, the tendency of base pairs to stack generates local deflections in the
DNA-helix axis. An example of this phenomenon is shown in Fig. 2.2, in which
alternating helical structures generate a series of small bends in the double
helix. When repeated periodically in phase with the helix screw, such patterns
can generate large-scale intrinsic bends in DNA [6].

2.1.3 DNA Flexibility

For DNA molecules in solution (and presumably also in the cell), the in-
fluence of local DNA structure is attenuated by thermal Brownian motion.
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Fig. 2.2. Structure of an intrinsically bent DNA sequence in which alternating tracts
of [dA:dT]5 and random-sequence DNA are arranged in phase with the DNA helical
screw. There are ten [dA:dT]5, which each generate an average intrinsic bend of 18
degrees [45, 46]. Given the near-perfect phasing of these intrinsic bends, the overall
intrinsic bend generated over the entire 105 base-pair sequence is approximately 180
degrees

The polyelectrolyte nature of DNA molecules confers a high degree of bending
rigidity on the double helix; however, double-stranded molecules that are any
larger than about 30 base pairs deviate significantly from rigid-rod behavior.
It is more useful to consider the superposition of modes of thermal flexibility,
which may be isotropic or anisotropic, on the sequence-dependent intrinsic
structure of DNA molecules. The theoretical description of semiflexible poly-
mer chains according to the wormlike-chain model [7] provides a nearly ideal
framework for analyzing DNA tertiary structure.

The wormlike-chain model postulates a resistance to local bending that is
proportional to the angular deviation from the chain’s equilibrium conforma-
tion. The contribution to the total energy of a wormlike chain from a chain
segment i,ui, is given by

ui = αi

(
θi − θ0

i

)2
, (2.1)

where θi is the angular displacement of the ith segment relative to segment
i − 1, θ0

i is the value of θi in the chain’s minimum-energy conformation, and αi

is a bending energy constant for this displacement. This expression is recog-
nizable as a classical Hooke’s law potential for the local deformation of an
elastic rod.
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Intrinsically straight wormlike chains, those whose minimum-energy con-
formations are that of a perfectly straight rod, have tractable closed-form
expressions for the mean-square end-to-end distance, 〈h2〉,

〈
h2

〉
= 〈h · h〉 = 2P

[
L− P

(
1 − e−L/P

)]
, (2.2)

where h is the end-to-end vector of the polymer chain, L is its contour length,
and P is a parameter called the persistence length. P is a quantity with di-
mensions of length that characterizes the bending rigidity of the wormlike
chain model and measures the tendency of an intrinsically straight chain to
propagate in the direction specified by the tangent to the chain at one end.
It is useful to consider the asymptotic behavior of the expression for 〈h2〉 in
the limit of both small and large L, namely

lim
L→0

〈
h2

〉

L2
= 1 and lim

L→∞

〈
h2

〉

L2
=

1
L
. (2.3)

Thus, in the limit of small wormlike chains, the polymer’s end-to-end vector
tracks the contour whereas the displacement of the ends of large chains grows
with an L1/2 dependence, identical to that of a nonself-avoiding random walk.
P is a kind of correlation length for the chain, which can be appreciated from
the formula for the average component of the end-to-end vector in the initial
chain direction, 〈hz〉

〈hz〉 = 〈h · ẑ〉 =
1
X

(
1 − e−X

)
, (2.4)

where X = L/P . For a wormlike chain with L = P (equal to about 50 nm
or 150 base pairs for DNA under physiological conditions), the component of
the end-to-end vector in the chain’s initial direction is only 63% of the overall
contour length. The fact that chains of this length do not behave as rigid rods
is shown in Fig. 2.3, which shows the extent of conformational space occupied
by several Boltzmann-sampled chain conformations propagating initially in
the same (z−) direction.

The concept of persistence length as a measure of intrinsic bending flex-
ibility makes sense only for wormlike chains whose minimum-elastic-energy
conformation is that of a straight rod. Wormlike chains that have distorted
elastic minima deviate from a rodlike structure even in the absence of thermal
fluctuations and thus have a structural or static component to the persistence
length. Thermal fluctuations, the magnitude of which depend on the local
bending modulus of the chain and the absolute temperature, are superposed
on this minimum-energy shape. The value of the bending energy constant in
(2.1), αi, can be related to the persistence length of an intrinsically straight
molecule with the same flexural elasticity, the so-called dynamic persistence
length, Pd

αi = α = 2kBTPd/�, (2.5)
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Fig. 2.3. Several conformations of an intrinsically straight wormlike chain with
contour length, L, equal to the persistence length, P . Conformations were simulated
by a Monte Carlo computer algorithm; each chain consisted of 150 rigid segments
connected to its neighbors by a semiflexible joint. Chains were fixed at a common
origin and assigned identical initial directions of propagation

where P is the physical length of a segment in the wormlike chain model, T is
the absolute temperature, and kB is Boltzmann’s constant. We assume here
that Pd is independent of the DNA sequence and that bending flexibility is
isotropic; however, more sophisticated treatments that relax these conditions
are sometimes warranted.

Many techniques have been used to measure the persistence length of
DNA and other nucleic-acid structures, including rotational and translational
diffusion [8, 9], ligase ring-closure kinetics [10, 11], and electron and atomic-
force microscopy [12, 13]. Discussion of these methods is beyond the scope
of this contribution; the reader may wish to consult a recent review [14] or
any of the above citations for details. Despite disagreements on the value of
P in the early literature, recent measurements have converged on a value
of about 50 nm at moderate ionic strength. As discussed above, this value
superposes the effects of intrinsic flexibility, as manifested in the dynamic
persistence length, and nonuniformity of DNA structure, characterized by the
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static value of the persistence length, Ps. For DNA fragments that represent
a random assortment of DNA sequence elements, Schellman and Harvey [15]
derived an expression that relates the measured value P to its component
dynamic and static contributions

1
P

=
1
Pd

+
1
Ps

. (2.6)

2.1.4 Topology of Circular DNA Molecules

The topological organization of double-stranded DNA is intimately connected
with the biology of the molecule. Most bacterial cells have circular genomes
consisting of a covalently closed double-stranded chromosome. Because the
two DNA strands are linked, scission of at least one, but usually both, of
the strands is essential for segregation of daughter chromosomes during cell
division. In addition, many aspects of DNA metabolism such as DNA synthe-
sis, transcription, and recombination generate torsional stress that leads to
underwinding or overwinding of the double helix. This torsional stress parti-
tions into local changes in the twist number of DNA (number of base pairs
per helix turn) and also global winding of the DNA helix axis, termed writhe.
Although the genomes of eukaryotic cells consist of linear DNA molecules,
similar topological constraints apply due to the binding of architectural pro-
teins that maintain a scaffold structure within chromosomes (see below). In
eukaryotic genomes overall organization is highly complex with multiple lev-
els of DNA winding mediated by histone proteins, nucleosomal association,
and chromatin condensation. However, with approximately one gene located
in every 50,000 base pairs in the human genome [16], it is not unreasonable
to expect that activating accessibility of genes to the cell’s transcriptosome,
which involves remodeling of chromatin structure, would require maintaining
topologically independent domains every 50,000 base pairs, on average.

The topology of a covalently closed DNA molecule is described in terms
of a mathematical quantity called the linking number , Lk. Formally, Lk is
one-half the sum of signed crossings of the DNA single strands (see Fig. 2.4).
Lk is a topological invariant; no distortion of DNA structure short of breaking
one or both DNA strands alters Lk. Based on the work of Calugareanu [17],
White [18] and Pohl [19] showed that Lk is related to the local and global
geometry of a pair of linked space curves through the formula

Lk = Tw + Wr, (2.7)

where Tw is the total twist of the space curves about the central axis and
Wr is the self-linking number or writhe of the central axis. Because Lk is a
topological invariant, thermal fluctuations in Tw and Wr occur subject to
the constraint in (2.7). Relations between the geometry of a particular DNA
conformation and Tw and Wr, the latter in terms of the famous Gauss integral,
can be found in [20].
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Fig. 2.4. Topology of closed circular DNA. (a) Sign convention for DNA crossings
in closed-circular DNA. The convention corresponds to the normal right-hand rule
in chemistry and physics: a left-handed crossing is counted as negative whereas a
right-handed crossing is counted as positive. (b) Conversion of relaxed DNA into
negatively and positively supercoiled DNA. The descriptor of supercoiling, the link-
ing number, can be computed from one-half the sum of signed crossings of the black
and red strands. In the case of relaxed DNA there is no writhe and the linking num-
ber, Lk, is equal to the twist number, Tw. In negatively supercoiled DNA, reduction
of Lk below Tw gives rise to right-handed interwound supercoils, or negative writhe.
Conversely, incrementing Lk above Tw generates left-handed interwound supercoils
and positive writhe

Almost all DNA in the cells of terrestrial organisms is underwound or
negatively supercoiled, which means that the Lk of DNA molecules is reduced
below the value that pertains to the same DNA in the absence of torsional
stress, designated Lk0. Exceptions to this rule are found among archeabacteria
that require positively supercoiled genomes in order to survive in extreme
conditions of temperature and pressure near geothermal vents at the ocean
floor. The distortion of DNA structure generated by negative (deficits in Lk
relative to Lk0, ∆Lk < 0) or positive (surpluses in Lk relative to Lk0, ∆Lk >
0) supercoiling manifests itself in the formation of branched, interwound DNA
superhelices (Fig. 2.5). A detailed analysis of the properties of supercoiled
DNA based on Monte Carlo simulations of closed wormlike chains has been
presented previously [21]. This model depends on only three parameters: P ,
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Fig. 2.5. Interconversion of idealized branched and unbranched plectonemic super-
helices. (a) An unbranched plectonemic superhelix is in dynamic equilibrium with
branched forms, a process that is largely entropy driven. (b) Conformation of a neg-
atively supercoiled 4,600 base-pair plasmid simulated by the algorithm described
in [21]. The structure of the plasmid is clearly plectonemic and branched; the ability
of the algorithm to reproduce this property accounts for its strong predictive value
in computing equilibrium properties of random-sequence plasmids

the torsional rigidity, and an effective excluded-volume diameter for the double
helix. The Monte Carlo simulation has been extremely successful in accounting
for the bulk of available experimental data on superhelical DNA.

In addition to supercoiling, knotting, and catenation are other biologically
important topological states of circular DNA. DNA molecules can become
knotted or catenated through the action of topoisomerases and recombinases
(reviewed in [22]) and catenated DNAs are obligate intermediates in the repli-
cation of circular genomes. A major question in DNA enzymology is therefore
how cellular systems acting at the local DNA level sense the topological state
of DNA molecules, a global property, and use this information to resolve unfa-
vorable entanglements. Both knotting and catenation of a genome are serious
obstacles to normal biological function and fatal to the cell. Hence, all self-
knotting and linkage between individual genomes must be completely elimi-
nated. Even a distribution of topological states centered about the unlinked
state cannot be tolerated if a species is to be successfully propagated.

Knots and catenanes are characterized by their number and arrangement
of minimal or irreducible crossings. For knots, the number of irreducible cross-
ings is denoted Kn and for catenanes the corresponding quantity is Ca. In a
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Fig. 2.6. (a) The set of all prime topologies containing up to nine irreducible knot
crossings and dimeric catenanes with up to eight irreducible crossings generated
using the program Knot Plot. Each structure is labeled above and to the left ac-
cording to Alexander and Briggs notation in the case of knots and Rolfsen notation
in the case of catenanes. (b) Some knots and catenanes of biological importance,
left side (from top to bottom): +3 trefoil knot, 4-noded knot, +5-noded torus knot,
2-catenane (or Hopf link), 4-noded torus catenane, 6-noded torus catenane. Right
side: 5-noded twist knot, +7-noded torus knot, 7-noded twist knot, 8-noded torus
catenane, trimeric (three-component) singly linked catenane

computational analysis, the more than one million possible knots containing
up to 16 irreducible crossings have been cataloged [23]. A gallery of all knots
with up to nine irreducible crossings and all dimeric catenanes with up to
eight crossings is shown in Fig. 2.6 along with several biologically important
examples. These species are readily separated by gel electrophoresis (Fig. 2.7).

Only a limited subset of DNA knots and catenanes have been encoun-
tered in biological contexts, implying that these topological forms do not
result from random linking and unlinking of DNA. Instead, knots and cate-
nanes are generated via pathways that reflect the specific mechanisms of pro-
teins involved in DNA metabolism. The power of DNA topology therefore
resides in its ability to illuminate the mechanism of a particular biological
process via analysis of the topological forms that these processes generate.
The high topological specificity of DNA knotting and linking greatly limits
the number of possible mechanistic scenarios and very effectively eliminates
implausible ones.



2 Topology in Biology: From DNA Mechanics to Enzymology 13

kb
-la

dder

kb
-la

dder

su
perco

lle
d plasm

id

su
perco

lle
d plasm

id

kn
otte

d plasm
id

lin
ear p

lasm
id

kn
otte

d plasm
id

unknotted
'

nicked plasmid

3-noded knot

5-noded knot

7-noded knot

9-noded knot

sc plasmid

unresolved
knots

linear plasmid

4-kb linear

3-kb linear

Well

Fig. 2.7. Knotted products generated by phage λ integrative site-specific recombi-
nation. A 4,600-bp plasmid bearing λ-att recombination sites was incubated with
λ integrase in the presence of IHF protein, nicked with DNase I to remove residual
supercoiling, and subjected to electrophoresis on a 1% agarose gel in TBE buffer.
Products were made visible by staining with ethidium bromide and the gel image
captured using a Peltier-cooled CCD camera. Knotted products appear as bands
that are separated by intervals of two nodes; this is consistent with the exclusive
formation of knots that belong to the torus family

2.1.5 Flexibility and Topology of DNA, and Their Relation
to Genome Organization

In the genomes of prokaryotic and eukaryotic organisms DNA is present in
condensed nucleoprotein complexes rather than naked, extended molecules.
Moreover, in the nucleii of eukaryotic cells genomes are partitioned among
multiple, distinct chromosomes. These aspects of genome organization facili-
tate the 106-fold compaction required to store an enormous amount of genetic
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information in a cell nucleus that is of order 5–10 µm in diameter. In the case
of the human genome, there is about 2 m of DNA per nucleus if the single
molecules that comprise each of the 46 chromosomes in a diploid human cell
are stretched to their length and placed end to end. Storing a molecule that
is 2 m in length and 2 nm in width in a nucleus that is 10 µm in diameter is
comparable to storing a string about 60 km long and of cross section 50 µm
in an object the size of a basketball. This enormous level of compaction,
which is achieved in such a way as to preserve accessibility of the genome for
transcription, replication, recombination, and repair, is one of the supremely
remarkable feats of biology.

The basic structural unit of organization in eukaryotic chromosomes is the
nucleosomal core particle. This is a complex consisting of 147 base pairs of
DNA wrapped 1.7 times around a protein core that contains two copies each
of the core histone proteins H2A, H2B, H3, and H4 [24, 25]. Nucleosomes
are strung together along the DNA, like beads on a string, separated by in-
tervals of 10–80 base pairs of unwrapped DNA. In a chromosome, thousands
of these nucleosomes are arranged in a continuous helical array to generate
a fiber that is 30 nm in cross section; this 30-nm fiber is in turn folded to
generate the higher-level structures that comprise the so-called chromonema
fiber. Interactions that mediate the association of 30-nm fibers are thought
to involve solvent-exposed domains of the core nucleosomes as well as other
histone proteins that are associated with nucleosomal arrays, such as H1 and
H5 [26, 27].

One critical, but often overlooked, factor that facilitates this compaction is
the role played by negative DNA supercoiling. Interwound superhelices, which
exemplify the form of superhelical winding that takes place free in solution, are
in equilibrium with toroidally wound superhelices generated during wrapping
of DNA on the surface of histone proteins in the case of eukaryotic chromatin
(Fig. 2.8). In prokaryotic cells, histone-like architectural proteins play similar
roles in genome organization [28]. The particular biological advantage achieved
by such high levels of organization must have been accompanied by the parallel
evolution of mechanisms needed to reorganize local regions of chromatin as
required by the cell.

The mechanisms involved in chromatin reorganization have begun to re-
veal themselves at the molecular level, although many details remain to be
worked out. Known as chromatin remodeling, the repositioning of histone oc-
tamers on DNA involves interactions with complexes of specific proteins that
facilitate the transfer of histones to other available binding sites along the
same DNA molecule (in cis) [29]. All known chromatin-remodeling activities
appear to require ATP as a source of free energy. These protein complexes
often work in concert with enzymes that carry out covalent modifications of
histone proteins such as histone transacetylase. This suggests that at least
these two activities, and possibly others, are coordinated to make naked DNA
available to other cellular factors. There is evidence that acetylation of his-
tones destabilizes histone–histone interactions among individual 30-nm fibers;
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Fig. 2.8. Equilibrium between interwound (plectonemic) and toroidal superhelical
structures. The free energy difference between the interwound structure, that found
in free solution, and toroidal forms, such as that present in nucleosomes, is mod-
est, which suggests that the structure of negatively supercoiled DNA is dynamic.
This equilibrium could easily be perturbed by local motions of nucleosomes on a
negatively supercoiled template

these interactions may be responsible for the higher levels of organization in
the chromonema fiber [30, 31]. The modifications seem to have negligible
effects on the stability of the nucleosome, or on the 30-nm fiber alone. In
contrast, chromatin-remodeling complexes appear to act on a local level by
forming intermediate complexes with core histones, dissociating the histones
from core-particle DNA, and transferring these complexes to available binding
sites on naked DNA. The picture that therefore emerges, albeit an oversimpli-
fied one, is one in which different cellular factors operate reversibly on specific
levels of chromatin organization.

2.1.6 DNA Topology and Enzymology: Flp Site-Specific
Recombination

Site-specific recombination is a process that is functionally (but not mecha-
nistically) equivalent to a combination of restriction endonuclease and DNA
ligase activities. The recombinases that mediate these recombination events
recognize specific DNA sequences and the recombinase-bound sites interact
in a nucleoprotein intermediate called the synaptic complex. The synaptic
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complex is responsible for carrying out specific cleavage, strand exchange,
and ligation steps that result in the inversion, deletion, or fusion of DNA seg-
ments. This biologically essential mode of DNA recombination is involved
in gene amplification and copy-number control [32], viral and phage host
specificity [33], the generation of antibodies [34, 35], and the transposition
of drug-resistance genes [36, 37]. There are also many emerging DNA-delivery
applications of site-specific recombination systems in biotechnology such as
therapeutic gene targeting, generation of chromosomal translocations, large
deletions, and tissue-specific or conditional knockouts as well as site-specific
integration, and the precise removal of selectable markers [38, 39].

Flp is a eukaryotic site-specific recombinase from budding yeast
(Saccharomyces cerevisiae), which is believed to play a role in maintaining
the 2-µm circle, a yeast plasmid, at high levels independent of chromosomal
copy-number control. This enzyme is responsible for a reaction that causes in-
version of a DNA segment near the origin of replication on the 2-µm circle to
generate a quasirolling-circle replication intermediate. This intermediate form
can lead to the production of many tandem copies of the 2-µm genome, which
are subsequently split into individual monomeric circles via a deletion reaction
also carried out by the recombinase. Much of our understanding of the mecha-
nism of Flp recombination comes from in vitro studies employing naked DNA
and the purified protein. However, as a eukaryotic recombinase, Flp must con-
tend with the presence of nucleosomes and higher order chromatin structure
in vivo. Although as yet incompletely understood, some efforts to characterize
the in vivo behavior of this system have been reported (see below).

The Flp system is a member of the Int superfamily of site-specific recom-
binases, so called because of their mechanistic similarities to the integrative
recombination system of bacteriophage λ. The phage λ system, which con-
sists of several proteins, is responsible for integration of the bacteriophage
genome at a specific location in the E. coli chromosome and its subsequent
excision at the onset of the lytic stage of the phage life cycle. Some com-
mon features of the recombinases in the Int superfamily are the formation
of torus knots and catenanes and mechanisms that proceed via an obligate
four-stranded DNA structure during recombination, termed a Holliday junc-
tion (Fig. 2.9). Holliday junctions are key intermediates in a number of other
DNA-recombination events, including homologous or general recombination,
which, unlike site-specific recombination, can occur at essentially arbitrary
locations throughout a genome.

Torus knots and catenanes are so called because these particular forms can
be drawn on the surface of a torus. The fact that only products of this topology
are formed suggests that the juxtaposition of recombination sites takes place
through a “random-collision” mechanism that traps a variable number of su-
perhelical turns between the sites (Fig. 2.10). However, with relaxed circular
DNA a bias in the distribution of recombination-product topology indicates
that asymmetry exists within the synaptic complex, a feature that is likely to
be related to the structure of the Holliday-junction intermediate [40].
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Fig. 2.9. Two representations of the structure of a DNA Holliday junction. (a)
Diagram showing the alignment of DNA sequences within an immobile Holliday-
junction analog. The absence of symmetry abolishes the ability of this junction
to undergo branch migration, which would permit relocation of the branch point
along the DNA sequence. (b) Composite three-dimensional structure of the immobile
junction shown in (a) based on detailed biophysical studies from several laboratories.
The junction assumes a roughly fourfold symmetric structure in which the non-
exchanging DNA strands are oriented in an antiparallel fashion

Because of its importance as a recombination intermediate, substantial ef-
fort has been focused on elucidating the structure of Holliday junctions. Hol-
liday junctions that are generated by recombination normally have at least
twofold DNA-sequence symmetry and thus can undergo isomerization via a
process called branch migration [41]. Most available data on the structure of
four-way DNA junctions has been derived from studies of immobile junctions,
which lack the symmetry required for branch migration. Nevertheless, the pic-
ture that has emerged from these efforts has been extremely informative and
provided a framework for addressing the more complex problem of Holliday-
junction intermediates bound to recombination and other junction-recognizing
proteins.

One question that we have investigated in our laboratory is that of the
geometry of duplex DNA segments in the Flp synaptic intermediate [42]. In
particular, we have sought to determine the average relative alignment of
duplex recombination sites in the intermediate Flp-DNA complex because
biases in relative orientation influence the overall topology of circular Flp-
recombination products and the interpretation of topology in terms of re-
combination mechanism. This is a question that is best addressed by directly
imaging intermediate complexes, which we have done by using transmission
electron microscopy.
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Fig. 2.10. Topology of products generated by recombination of circular DNA mole-
cules mediated by the λ-int superfamily of site-specific recombinases. Diagrams show
planar projections of negatively supercoiled DNA substrates undergoing intramolec-
ular recombination. Recombination sites, indicated by arrows, divide the DNA con-
tour into two domains, shown as black and outlined gray curves. Random Brownian
motion of recombination sites (left column) leads to site synapsis in DNA conforma-
tions that involve varying numbers of interdomainal supercoils (supercoils involving
separate DNA domains). Only interdomainal supercoils are trapped in the form of
knot or catenane crossings by strand-exchange steps in recombination (middle col-
umn). The resulting topologies are shown in the form of diagrams (right column)
that depict only the number and topological sign of irreducible crossings in each
knotted or catenated product, which are given to the right below each figure. These
diagrams correspond to actual products in which extraneous supercoils have been
removed by nicking of one DNA strand. (a) Inversely oriented sites. Inversion gen-
erates knotted products that are separated by intervals of +2 knot crossings; these
knots belong to the so-called “torus” class because of the property that these knots
can all be inscribed on the surface of a torus. Only three examples of knotted prod-
ucts are shown. (b) Directly oriented sites. In addition to unlinked circles, deletion
reactions generate (−) torus catenanes that also differ by steps of two crossings.
Only two examples of catenated products are shown
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Fig. 2.11. (a) Linear DNA recombination substrates consisting of minimal FRT
sites present in a specific orientation and in the indicated location. In the presence
of Flp these molecules can synapse to form either parallel or antiparallel intermediate
complexes. (b) Synaptic complexes formed on 1048 bp FRT1-L fragments visualized
by electron microscopy and corresponding digital tracings of DNA contours in the
micrographs. The arrow indicates the position of the FLP synaptosome. Both com-
plexes were scored as parallel. The distribution of parallel and antiparallel complexes
is also shown, based on an analysis of 146 synaptic complexes. For details, see [42]

There are two distinct scenarios for DNA duplex juxtaposition in the Flp
synaptic intermediate. As shown in Fig. 2.11, synapsis of two DNA segments
in which the target site is located close to one end of the molecule could align
so that identical pairs of short and long DNA segments that flank the target
site are present on either side of the complex. This structure would imply that
the global alignment of target sites is roughly parallel. Alternatively, pairing
of segments that are dissimilar in size implies the formation of a globally
antiparallel synapse. Analysis of over 100 synaptic complexes shows a strong
preference for globally parallel alignment of the recombination sites, as shown
in the examples in Fig. 2.10.

The observed preference for globally parallel alignment of recombination
sites stands in contrast to the expected antiparallel alignment of sites based
on the geometry of immobile Holliday-junction analogs. It is possible that
this difference is due to dramatic differences in the geometry of the four-
way junction intermediate in the bound-Flp state; alternatively, there may
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be significant bending of the DNA arms that emerge from the junction. In
the latter case at least 90 degrees of DNA bending would be needed per
recombination site to account for the observed discrepancy. Such strong bends
are not uncommon among the class of characterized DNA-bending proteins.

2.1.7 Chromatin and Recombination – Wrapping It All Up

As a footnote to the above discussion of the Flp recombination system, it
is worth asking how well this recombination system acts on DNA present as
chromatin in vivo. Studies by Stewart and colleagues show that Flp acts quite
efficiently on chromatin, generating a distribution of recombination products
that are consistent with a significant reduction in apparent DNA persistence
length [43]. The effect on apparent persistence length is expected because
of the approximately random bends induced in DNA by binding of histone
octamers. What is more surprising is that the system works at all, which
suggests that chromatin in vivo is a highly dynamic entity.

A mere 50 years have elapsed since the structure of the DNA double
helix was first elucidated [44]. It is probably fair to speculate that our un-
derstanding of DNA structure and dynamics far outstrips what Crick and
Watson might have imagined in 1953. Rather than being an inert repository
of genetic information, the DNA molecule is capable of taking on a wide range
of sequence-dependent structures, some of which exert profound effects on the
molecule’s accessibility and its participation in activities such as transcription,
replication, recombination, and repair. The genomic DNA of eukaryotes is a
particularly dynamic entity in vivo whose structure is subject to continual
modification through the displacement of nucleosomes and interactions with
chromatin-remodeling complexes. Since the 30,000 or so genes in the human
genome account for only a small fraction of the genome’s information content,
it is likely that there is much that remains to be learned about the structure
and function of the bulk of human DNA.
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Monte Carlo Simulation of DNA
Topological Properties

A. Vologodskii

Summary. In the scale of hundreds and thousands of base pairs, DNA double helix
is a very flexible polymer chain that adopts many different conformations in solution.
The properties of such molecules have to be analyzed in terms of statistical mechan-
ics. Now these properties can be simulated with very good accuracy. Here we review
this simulation technique, with emphasis on topological properties of circular DNA.
We describe the basic concepts related with DNA topological properties and illus-
trate, by comparing simulation results with the experimental data, how accurately
these properties can be computed. We consider DNA model used in the simulation,
methods of sampling of the statistical ensemble, simulation of DNA supercoiling,
and different problems, related with knots and links in circular DNA. To analyze
topological state of closed chain one needs to calculate a topological invariant. We
describe the algorithms that allow one to compute one of such invariants, Alexan-
der’s polynomial, which is especially suitable for the Monte Carlo simulation. At the
end, we consider special methods of sampling for rare DNA conformations.

3.1 Introduction

It became clear in the last few years that large-scale conformational properties
of DNA can be simulated with very good accuracy. These simulations repro-
duce experimental data on hydrodynamic properties of DNA molecules [1–3],
DNA cyclization [4–7], equilibrium distributions of topological states [8–13],
elasticity of the single molecules [14, 15] and light and neutron scattering data
on supercoiled DNA [16–19]. The simulations are based on the statistical–
mechanical treatment of a well-established model of the double helix. All
parameters of the model have been reliably determined for various solution
conditions. Thus, the simulations are capable of providing reliable quantita-
tive information on many DNA properties that are hardly measurable exper-
imentally. They became an important instrument in the studies of different
protein systems that interact simultaneously with two or more DNA sites. On
the other hand, DNA molecules represent an ideal object for polymer physics,
and especially for studying topological properties of polymer chains. They



24 A. Vologodskii

are homogeneous, thin, and long. They can be easy converted from linear
to circular form. Circular DNA molecules in different topological states can
be separated by gel electrophoresis and, thus, the distributions of topological
states can be studied experimentally. The methods of experimental manip-
ulation with DNA molecules, developed in the last few decades, allows one
to easily perform many things that are beyond the imagination of traditional
polymer chemistry and physics. These features of DNA molecules can be used
to study general properties of polymer chains, and our ability to simulate
these properties with high accuracy helps greatly in such studies. The compu-
tational methods, which allow one to simulate large-scale statistical properties
of DNA, are a subject of this review. Major attention is paid to the simula-
tions to topological properties of circular DNA. Therefore we begin the review
with a brief description of the basic concepts related to DNA topology. Then
we illustrate, by comparison with the experimental data, how well conforma-
tional properties of circular DNA can be computed. Detailed description of
the computational methods will follow the analysis of the basic DNA model.
The review is restricted by Monte Carlo simulation of the equilibrium DNA
properties, which has a wider use than the dynamic simulation based on the
Brownian dynamics method [20–23], for example).

3.2 Circular DNA and Supercoiling

The circular form of DNA is widespread in nature. In this form each of the two
strands that make up the DNA molecule is closed in on itself. A diagrammatic
view of closed circular DNA is presented in Fig. 3.1.

The two strands of the double helix in closed circular DNA are linked. In
topological terms, the links between the strands of the double helix belong to

Fig. 3.1. Diagram of closed circular DNA. Two strands of the double helix are
shown together with the base pairs which are perpendicular to the helix axis. The
linking number of the complementary strands, Lk, equals 20
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the torus class. The quantitative description of such links is called the link-
ing number (Lk), which may be determined in the following way. One of the
strands defines the edge of an imaginary surface (any such surface gives the
same result). The Lk is the algebraic (i.e., sign-dependent) number of inter-
sections between the other strand and this spanning surface. By convention,
the Lk of a closed circular DNA formed by a right-handed double helix is
positive. Lk depends only on the topological state of the strands and hence is
maintained through all conformational changes that occur in the absence of
strand breakage. Its value is always integral. Lk can be also defined through
the Gauss integral:

Lk =
∮

C1

∮

C2

(dr1 × dr2)r12

r3
12

, (3.1)

where r1 and r2 are vectors whose ends run, upon integration, over the first
and second contours, C1 and C2, respectively, r12 = r2 − r1.

Quantitatively, the linking number of the complementary strands is close to
N/γ, where N is the number of base pairs in the molecule and γ is the number
of base pairs per double-helix turn in linear DNA under given conditions.
However, these values are not exactly equal one to another. The difference
between r12 = r2 − r1 and N/γ, the linking number difference, ∆Lk, defines
most of the properties of closed circular DNA:

∆Lk = Lk −N/γ. (3.2)

The value of ∆Lk is not a topological invariant. It depends on the solution
conditions that determine γ. Even though γ itself changes very slightly with
changing ambient conditions, these changes may substantially alter ∆Lk, as
the right-hand part of (3.2) is the difference between two large quantities that
are close in value.

It often proves more convenient to use the value of superhelix density,
∆Lk, which is ∆Lk normalized for the average number of helical turns in
nicked circular DNA, N/γ:

σ = ∆Lk · γ/N. (3.3)

Whenever ∆Lk �= 0, closed circular DNA is said to be supercoiled. The entire
double helix is stressed in this case. This stress can either lead to a change in
the actual number of base pairs per helix turn in closed circular DNA or cause
regular spatial deformation of the helix axis. The axis of the double helix then
forms a helix of a higher order, superhelix (Fig. 3.2).

It is this deformation of the helix axis in closed circular DNA that gave rise
to the term superhelicity or supercoiling [24]. Circular DNA extracted from
cells turns out to be always (or nearly always) negatively supercoiled and has
a ∆Lk �= 0 between −0.03 and −0.09, but typically near the middle of this
range [25].
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Fig. 3.2. A typical conformation of supercoiled DNA. The double helix is presented
here by the flexible rod. The picture obtained by computer simulation of super-
coiled molecule 3,500 base pairs in length, ∆Lk �= 0 = −0.06, for physiological ionic
conditions

Supercoiling can be structurally realized in two ways: by deforming the
molecular axis and by altering the twist of the double helix. Quantitatively it
can be expressed by White’s theorem:

∆Lk = ∆Tw + Wr, (3.4)

where ∆Tw is the difference between actual twist of DNA and the average
value of twist in nicked form of the same DNA, and Wr is writhe of the double
helix. The value of Wr is defined by the spatial course of DNA axis only, it
is the property of simple closed curve. Wr can be thought as a measure of
a curve’s net right-handed or left-handed asymmetry, i.e., its chirality, and
is therefore zero for a planar curve. The value of Wr is equal to the Gauss
integral (3.1), in which integration is performed both times along the same
contour – the DNA axis. Thus, Wr can be represented as a sum of two values
that corresponds to the available degrees of freedom: the torsional deformation
of the double helix and deformation of DNA axis. Detailed description of Wr
properties can be found in references [26–29].

If circular DNA has a single-stranded nick, any torsional stress of the
double helix disappears quickly. Although such DNA molecules cannot be
supercoiled, they can form different knot and links. The Topology of the nicked
molecule is completely specified by conformation of its axis.

3.3 Testing the DNA Model

In the middle of 1990s we knew a lot about large-scale conformational proper-
ties of DNA. There were convincing data that indicated that the equilibrium
conformations of linear and nicked circular DNA could be described quan-
titatively in terms of the wormlike chain model, that also accounts for the
electrostatic interaction between DNA segments [9, 10, 13]. However, it was
not clear until that time how well the model could describe the conformational
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Fig. 3.3. Probing conformational properties of supercoiled DNA by formation of
topological links [11]. The diagram shows formation of links between supercoiled
and cyclizing linear molecules. The cyclization occurred via long cohesive ends and
resulted in nicked circular molecules. The simplest links shown here comprised at
least 90% of all links formed

properties of supercoiled DNAs, a form that is characterized by frequent close
approaches between distal DNA segments. Because these close approaches are
rare in linear and open circular DNA molecules, the accurate description of
intersegment interaction is not so crucial for the prediction of most of their
properties. Thus, it was important to test how well the model can describe
conformational properties of supercoiled DNA. We completed this task by
comparing computed and measured equilibrium linkage between supercoiled
DNA and cyclizing linear molecules as illustrated in Fig. 3.3.

The probability P that a given open circular DNA will be linked with
supercoiled molecules of concentration Wr can be expressed as

P =
∫ ∞

0

p(R)4πr2c
NA

M
dr, (3.5)

where Wr is the probability of linking of these two molecules if their centers
of mass are separated by distance R, NA is Avogadro’s number, and M is the
molecular weight of DNA. The equation has a simple interpretation because
the term Wr is the probability of finding a supercoiled molecule in the vol-
ume element Wr. Equation (3.5) assumes that the concentration Wr is small
enough so that we can ignore the formation of three or more linked molecules.
The probability Wr must be averaged over all possible conformations and ori-
entations of the two chains. We used the Monte Carlo method, described in
detail below, to calculate Wr. Figure 3.4 shows Wr computed for two circular
DNA molecules.

For a comparison with experimental data, it is convenient to introduce the
constant B:

B =
NA

M

∫ ∞

0

p(R)4πr2 dr. (3.6)

This allows us to express P as

P = Bc. (3.7)
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Fig. 3.4. Probability of linkage between two relaxed DNA molecules 7,000 and
10,000 base pairs in length as a function of the distance between the chains centers
of mass, R. The function strongly depends on solution ionic conditions. p(R) shown
in the figure corresponds to near physiological ionic conditions. For each value of
R a fraction of conformations of two chains is forbidden because of overlap of one
chain with the other. Since this fraction increases sharply as R diminishes, there is
a decrease of p(R) at small values of R

Fig. 3.5. Measured and simulated probabilities of catenation as a function of su-
percoiling [11]. The experimental values of B (open symbols) are shown together
with calculated results (filled symbols) for NaCl concentrations of 0.02 M (Ü, P),
0.2 M (E, J). The large changes of conformational properties of supercoiled DNA
with ionic conditions result, in good approximation, from the change of interseg-
ment electrostatic interactions, specified by the variation DNA effective diameter
(see below)

The value of B does not depend on DNA concentration and reflects only
the properties of a particular circular DNA. It depends on the lengths of both
DNAs, the superhelix density, and on the ionic conditions, which change the
conformational properties of supercoiled DNA.

Figure 3.5 presents the measured and simulated values of B for solutions of
two different concentrations of NaCl (0.02 M, 0.2 M) as a function of the DNA
superhelical density [11]. Note that the simulated and measured values of B
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agree extremely well over the whole range of σ and NaCl concentrations stud-
ied, even though the range of B values exceeds two orders of magnitude. The
data make it clear that conformations of supercoiled DNA vary greatly over
this range of sodium ion concentrations. This work convincingly proved that
the simulation is capable of accurately predicing conformational properties of
both relaxed and supercoiled DNA molecules.

3.4 DNA Model

The DNA model represents a discrete analog of the wormlike chain that also
accounts for DNA torsional rigidity, excluded volume, and intersegment elec-
trostatic interaction [8, 30–32]. A DNA molecule composed of n Kuhn statis-
tical lengths is modeled as a closed chain consisting of n rigid segments that
are cylinders of equal length where k is a computational parameter of our
choice (Fig. 3.6).

The bending elastic energy of the chain, n, is computed as

Eb = kBTg

kn∑

i=1

θ2
i , (3.8)

where the summation extends over all the joints between the elementary seg-
ments,

Eb =
g

2

kn∑

i=1

θ2
i

is the angular displacement of segment

Eb =
g

2

kn∑

i=1

θ2
i

relative to segment

Eb =
g

2

kn∑

i=1

θ2
i ,

Fig. 3.6. The model of double-stranded DNA. The length of the cylinders can vary,
although it usually equals 30 base pairs of the double helix (1/5 of the persistence
length)



30 A. Vologodskii

and

Eb =
g

2

kn∑

i=1

θ2
i

is the bending rigidity constant, kBT is the Boltzmann temperature factor.
The bending constant kBT is defined so that the Kuhn statistical length cor-
responds to kBT rigid segments [30]:

k =
1 + 〈cos θ〉
1 − 〈cos θ〉 , (3.9)

where

〈cos θ〉 =

∫ π

0
cos θ sin θ exp(−gθ2)dθ
∫ π

0
sin θ exp(−gθ2)dθ

. (3.10)

The value

〈cos θ〉 =

∫ π

0
cos θ sin θ exp(−gθ2)dθ
∫ π

0
sin θ exp(−gθ2)dθ

can be found as by numerical solution of (3.10).
Replacement of the continuous wormlike chain with a discrete chain con-

sisting of

〈cos θ〉 =

∫ π

0
cos θ sin θ exp(−gθ2)dθ
∫ π

0
sin θ exp(−gθ2)dθ

hinged rigid segments is an approximation that improves as

〈cos θ〉 =

∫ π

0
cos θ sin θ exp(−gθ2)dθ
∫ π

0
sin θ exp(−gθ2)dθ

increases. The computer time needed for a simulation increases approximately
as

(

〈cos θ〉 =

∫ π

0
cos θ sin θ exp(−gθ2)dθ
∫ π

0
sin θ exp(−gθ2)dθ

)2

.
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It is therefore necessary to choose a value of

〈cos θ〉 =

∫ π

0
cos θ sin θ exp(−gθ2)dθ
∫ π

0
sin θ exp(−gθ2)dθ

that is large enough to ensure reliable results but small enough to keep the
computational time reasonable. The minimal value of k, which provides the
limiting properties of the wormlike chain, depends on a property of interest.
Figure 3.7a shows dependence of the average 〈Wr〉 /∆Lk for highly supercoil-
ing DNA as a function of k. Clearly, the results for k ≥ 10 are nearly inde-
pendent of k. So, k = 10 can be used for modeling DNA supercoiling. In this
case one straight segment of the model chain corresponds to ≈30 bp (Kuhn
statistical length of the double helix corresponds to ≈300 bp). For this value
of k the bending rigidity, 〈Wr〉 /∆Lk, equals 2.403. For another property of
circular chains, equilibrium probability of trefoil knots, the results for k = 1
and k = 10 are hardly distinguishable (Fig. 3.7b). There are some properties,
however, which require much larger values of k [14].

The excluded volume effect and electrostatic interactions between DNA
segments are taken into account in the model via the concept of effective
diameter, 〈Wr〉 /∆Lk. This is the diameter of impenetrable uncharged cylin-
drical segments of the model chain. The quantitative definition of 〈Wr〉 /∆Lk
is based on the concept of the second virial coefficient [33]. It was shown
that approximation of the electrostatic interaction by this hard core potential

Fig. 3.7. Simulation results as function of k, the number of straight segments
per Kuhn length of the model chain. (a) Calculated value of 〈Wr〉 /∆Lk for highly
supercoiled DNA (3,500 base pairs in length, superhelix density of –0.05, effective
diameter of the chain equals 5 nm). (b) Probability of trefoil calculated for freely
jointed chain, k = 1, (♦) and k = 10 (©)
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and by the corresponding Debye–Hückel potential gives very similar results in
Monte Carlo simulations of DNA equilibrium properties, with a certain excep-
tion for conformations of supercoiled DNA at low concentration of monovalent
ions (≤0.02M) [31].

The model’s features specified above are sufficient to simulate large-scale
DNA conformational properties, both for linear DNA and circular DNA with
a single-stranded nick (nicked DNA), because in these cases the conformations
of the DNA axis do not depend on the DNA twist, ≤0.02M (if the DNA is
intrinsically straight). However, dependence on ≤0.02M is crucial for prop-
erties of closed circular DNA. To use the model in this case one can express
the displacement of chain twist from its equilibrium value, ≤0.02M, by the
equation:

∆Tw = ∆Lk − Wr, (3.11)

where writhe, Wr, is a property of the chain axis alone [27], and ≤0.02M is
the linking number difference of the simulated DNA. The value of ≤0.02M
should be considered as a parameter at each simulation [32]. Hence, in this
model, the torsional energy, ≤0.02M, is defined by the conformation of the
DNA axis and may be expressed as

Et = (2π2C/L)(Lk − Wr)2, (3.12)

where ≤0.02M is the torsional rigidity constant, and L is the DNA length.
There are three parameters of the model that specify equilibrium proper-

ties of the double helix; each of these has been determined from independent
studies. The first parameter, the Kuhn statistical length (which defines the
bending rigidity ≤0.02M), is close to 100 nm for solutions containing more
than 0.01 M monovalent ions or more than 1 mM multivalent ions [7, 34].
The second parameter is the DNA torsional rigidity, ≤0.02M. The value
of 3 × 10−19 erg cm for ≤0.02M seems to be the most reliable for this
range of ionic conditions [9, 35]. The third parameter, the DNA effective
diameter, ≤0.02M, depends strongly on ionic conditions. Accurate values of
≤0.02M have been determined in the experimental and theoretical studies
(Fig. 3.8) [10, 12, 33, 36, 37].

The model described above is the simplest one that can provide a quan-
titative description for the large number of DNA conformational properties
considered in this proposal. It can be easily extended to cases in which a group
of the chain segments forms a specific conformation induced by binding a pro-
tein. However a more elaborate model that explicitly accounts for torsional
orientation of each segment is required for the analysis of DNA molecules
with two or more groups of bent segments distributed along the chain con-
tour. Such a model and the corresponding simulation procedures have been
developed [38, 39].
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Fig. 3.8. Effective diameter of the model chain as a function of ionic conditions

3.5 Analysis of Topological State for a Particular
Conformation

3.5.1 Knots

In many cases we have to determine the topology of particular chain confor-
mations, which can be unknotted or form a particular type of knot, or be
linked with other molecules. We need this to keep a topological state of the
chain(s) unchanged during a simulation run. Since segments are allowed to
pass through each other during the Metropolis procedure (see below), it is
necessary to check that the topology of a trial conformation is the same as
the current one. Thus, the topology of each trial conformation is calculated
and the conformation is rejected if its topology is different from that of the
current conformation. We need to determine the topology when we calculate
the distribution of topological states, equilibrium or resulting from simulated
reactions, catalyzed by enzymes. To determine the topology of a particular
conformation of an isolated closed chain, one can calculate the Alexander
polynomial, ≤0.02M [40]. The Alexander polynomial is a topological invari-
ant that describes the knot type of a closed curve (see [41], for example). It
has the same value for all topologically equivalent curves, and any two curves
with a different value of ≤0.02M have different topology (Fig. 3.9).

The value 2t2−3t+2 for a particular chain conformation can be calculated
by the following way . . . [40]. First, one projects the knot on a plane along
an arbitrarily chosen axis, while drawing breaks at the crossing points in the
part of the curve that lies below the other part (Fig. 3.10).

The projection of the knot amounts to the set of curves, which are called
the generators. Let us arbitrarily choose the direction of passage of the
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Fig. 3.9. The simplest knots and their Alexander polynomials, ∆(t). All four knots
that can be drawn with less than six intersections are shown. For an unknotted
contour ∆(t) = 1

Fig. 3.10. On the calculation of an Alexander polynomial for knots. Here x1, x2, x3,
and x4 are the generators, and 1, 2, 3, and 4 are the crossing points in the projection
of the knot

Fig. 3.11. The two types of crossings

generators and renumber them, having selected arbitrarily the first generator.
The crossing that separates the kth and (k+1)th generators will be called the
kth crossing. The crossings are of two types (Fig. 3.11). Thus each crossing
is characterized by its number, by its type (I or II), and by the number of
generator passing over it.

Now the knot can be correlated with a square Alexander matrix, in which
the kth row corresponds to the kth crossing and which consists of N elements
(N is the total number of crossings in the projection of the knot). Here all
the elements except akk, akk+1 and aki (i is the number of the overpassing
generators) are zero. The nonzero elements of the kth row are determined as
follows:
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(1) When i = k or i = k + 1, then ak,k = −1 and ak,k+1 = 1, independent of
the type of crossings

(2) When i �= k and i �= k + 1, then
akk = 1, ak,k+1 = −t and akk = t− 1 for a type I crossing,
akk = −t, ak,k+1 = 1 and akk = t− 1 for a type II crossing.

These relationships hold under condition that for k = N one makes the
substitution k + 1 → 1.

To discriminate closed chains into two categories, knotted versus unknot-
ted, it is sufficient, in the most cases, to calculate ∆(t) at one point t = −1.
The values of t = −1 and t = −1 distinguish the great majority of all 166
knots that can be drawn with less than 11 intersections on their projection [42],
However, there are topologically different knots that have the same Alexan-
der polynomials. In particular, t = −1 of a knot and its mirror image are
identical, although very often such knots are topologically different. Thus,
other methods are required if we want to distinguish among such knots. The
problem can be solved by calculations of more powerful invariants, like the
Jones polynomial [43], although this requires much more computer time [44].
In some cases calculation of Wr helps to distinguish between a knot and its
mirror image [45].

3.5.2 Links

To define the topology of two chains, one can calculate the Alexander poly-
nomial for two curves, Wr . . . [46]. The Alexander matrix for two chains is
constructed similar to the matrix for one chain. Two contours are projected
on an arbitrary chosen plane (see Fig. 3.12).

Renumbering of the generators, xk, and the corresponding crossings starts
in one contour and continues in the other. We denote the number of crossings
on the first contour by M . Renumbering of the generators and crossings in
the second contour starts from M + 1 and ends at N . Thus, the overpassing
generator xi for crossing k belongs to the first contour if i ≤ M and to the

Fig. 3.12. Calculation of an Alexander polynomial for links. The projection is shown
with all generators and crossing points
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second contour if i > M . All elements of the Alexander matrix except akk,
akk+1 and aki are zero. The nonzero elements of the kth row are defined as
follows:

(1) k ≤ M, M > 1
(a) For i = k or i = k + 1

akk = −1, akk+1 = 1 independent of the type of crossing;
(b) For i �= k, i �= k + 1, i ≤ M

akk = 1, akk+1 = −s; aki = s− 1 for type I crossing,
akk = −s, akk+1 = 1; aki = s− 1 for type II crossing;

(c) For i > M
akk = 1, akk+1 = −t; aki = s− 1 for type I crossing,
akk = −t, akk+1 = 1; aki = s− 1 for type II crossing;

(2) k = M = 1; i > M
akk = 1 − t, aki = s− 1 independent of the type of crossing;

(3) k > M ; N > M + 1
(a) For i = k or i = k+1

akk = −1, akk+1 = 1 independent of the type of underpass;
(b) For i �= k, i �= k + 1, i > M

akk = 1, akk+1 = −t; aki = t− 1 for type I crossing,
akk = −t, akk+1 = 1; aki = t− 1 for type II crossing;

(c) For i ≤ M
akk = 1, akk+1 = −s; aki = t− 1 for type I crossing,
akk = −s, akk+1 = 1; aki = t− 1 for type II crossing.

(4) k = N ; N = M+1, i ≤ M
akk = 1 − s, aki = t− 1 independent of the type of crossing.

These relationships hold under conditions that for k = M one makes the
substitution (k + 1) → 1 and for k = N the substitution (k + 1) → M + 1. It
is also assumed that there is at least one crossing in each contour formed by
generators from different contours – in other case the contours are certainly
unlinked.

Then one has to calculate a minor Akj of order N − 1 of the Alexander
matrix and divide it by (s − 1) if j ≤ M and by (t − 1) if j > M . The
resultant expression is multiplied by (±t−ms−n) (m and n are integers), so
that the polynomial so obtained has no negative powers, and the positive
powers are minimal, and the term with the largest total exponent must be
positive. The polynomial ∆(s, t) defined in this manner is called the Alexander
polynomial for the link of two contours. It is an invariant – it is rigorously
proved in the knot theory that the Alexander polynomials ∆(s, t) coincide for
equivalent links. For unlinked contours ∆(s, t) = 0.

It is usually sufficient to calculate ∆(s, t) = 0 for the majority of problems
related with circular DNA molecules. The analysis shows that ∆(s, t) = 0 is
a more powerful topological invariant than the Gauss integral (which equals
∆(s, t) = 0) [26]. It has different values for the simplest links and for unlinked
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Fig. 3.13. The simplest links and their Alexander polynomials, g∆(s,t). All links
that can be drawn with less than six intersections and one of three links with six
intersections are shown. For an unlinked contour ∆(s,t) = 0

curves (for unlinked curves ∆(s, t) = 0 equals 0) . . . [42]. In the most cases
calculation of ∆(s, t) = 0 also takes less computer time than that of the
Gauss integral. Four simplest links and the corresponding ∆(s, t) are shown
in Fig. 3.13. Complete table of links with less than 11 crossings can be found
in [42].

Checking topology of a circular chain may be the most time-consuming
part of the whole calculation. Therefore this part of the computer program
deserves maximum attention in terms of its rationality. In this connection a
procedure of reducing the order of the Alexander matrix before calculating it,
by eliminating trivial intersections, is very useful (for details, see [26, 47, 48].

3.6 Calculation of Writhe

For many problems related with circular DNA one needs to calculate writhe,
Wr, of a closed chain. It can be done by using definition of Wr through the
Gauss integral (see [49], for example). For straight segments this integral may
be presented in the form of a double sum of simple terms [50]. The method
allows natural extension to the case of linear chains where the integral can
serve as a measure of the chain chirality [32]. However, there are more conve-
nient and efficient methods to calculate Wr [48, 50]. In the method suggested
by Le Bret the total writhing value is presented in the form of two contribu-
tions, one of which is the directional writhing number, which can be calculated
simultaneously with calculating the Alexander polynomial, virtually without
additional computations. The directional writhing number in the z direction
is the sum of +1 or −1 over all crossings. The sign of each term is determined
by the type of crossing (Fig. 3.11). The second contribution is a sum over all
elementary segments rm of the chain:

∑

m

{arcsin[sin ξm sin(ϕm+1 − χm)] − arcsin[sin ξm sin(ϕm − χm)]}/2π,
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where ϕm is the angle of the projection of rm on the x, y plane with the x
axis. The perpendicular to the plane formed by vectors rm and rm+1 makes
the angle ξm(0 ≤ ξm ≤ π/2) with the z axis, and its projection on the x, y
plane makes the angle χm with the x axis.

3.7 Simulation Procedure

3.7.1 General Approach

The Metropolis–Monte Carlo procedure [51] is usually used for statistical sam-
pling of the chain conformations. The procedure consists of consecutive steps
that include displacements of certain parts of the chain. One may use different
displacements in the procedure. Usually the displacement consists of the ro-
tation of an arbitrary number of adjacent segments by a random angle within
the interval (−ϕ0,+ϕ0) around the straight line connecting two randomly
chosen vertices, m1 and m2 (Fig. 3.14) [30].

The ϕ0 value is adjusted during the simulation in such a way that about
one-half of the steps would be successful. The rate of exchange between differ-
ent conformations of a supercoiled chain can be further increased if ϕ0 depends
on the distance between vertices m1 and m2. To increase the rate of sampling
in the simulation of supercoiled DNA we also introduced more complex type
of motion, the so-called reptation motion [32]. Additional type of motion must
be introduced for linear chains [14]. In general, one can introduce any type of
motion to increase the rate of sampling as long as it does not interrupt the
principle of microscopic equilibrium [51].

Whether the new conformation is accepted is determined by applying the
rules of the procedure: (a) If the energy of the new conformation Enew is lower
than the energy of the previous conformation, Eold, the new conformation is
accepted, (b) If the energy of the new conformation is greater than the energy
of the previous conformation, then the new conformation is accepted with the
probability p = exp[(Eold −Enew)/kBT ]. The starting conformation is chosen
arbitrarily.

Fig. 3.14. The major type of displacement in the course of the Metropolis procedure
described in the text
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3.7.2 Simulation of DNA Conformations with Low Probability
of Appearance

The Chain of Conditional Probabilities

Although modern computers allow one to perform up to 109 moves for a model
chain corresponding to DNA molecule a few kb in length, this may not be suf-
ficient to evaluate probabilities of some rare conformations with a reasonable
statistical error. This can be the case for juxtapositions of specific sites or
DNA ends, for example. Two methods have been developed to overcome this
problem.

The first method enables one to calculate values of j-factors for short DNA
fragments, about 200 base pairs, when these values are less than 10−8 M and
direct Monte Carlo simulation is inefficient. Suppose we want to estimate
P (r0), the probability of the conformations with end-to-end distance, r, less
than a small value r0. We choose a sequence of distances r0 < r1 < · · · < rn,
where rn is larger or equal to the chain contour length. Let P (ri) be the
probability of conformations with r < ri. We can also define the conditional
probabilities, P (ri|ri+1), of conformations with r < ri in the subset of confor-
mations with r < ri+1. Since P (ri) = P (ri|ri+1)P (ri+1) and P (rn) = 1, the
value of P (r0) can be found as

P (r0) =
n−1∏

i=0

P (ri|ri+1). (3.13)

The sequence of distances r0 < r1 < · · · < rn can be chosen so that
all P (ri|ri+1) values are relatively large. This can be always achieved since
P (ri|ri+1) approaches 1 when ri+1 approaches ri. The large values of P (ri|ri+1)
can be efficiently and accurately calculated by the Metropolis procedure. Each
P (ri|ri+1) is calculated as the fraction of the conformations with r < ri in the
subset of equilibrium conformations with r < ri+1. These subsets are gener-
ated in the Monte Carlo procedure by rejecting any trial conformation with
r > ri+1. The values P (ri|ri+1) are calculated sequentially from P (r0|r1) to
P (rn−1|rn). The starting conformation for each subset is the last conforma-
tion from the previous subset. The calculation of P (r0|r1) is started from a
conformation with r = 0. The estimation shows that the best efficiency in
estimating P (r0) is achieved when the values of P (ri|ri+1) are close to 0.2.
Using this approach, one can speed up the computations by a few orders of
magnitude compared to the direct Monte Carlo procedure [39, 52].

Umbrella Method

The umbrella method [53] addresses calculation of conformational distribu-
tions under the condition that specific sites are juxtaposed in a proper ori-
entation. It is based on introducing an artificial potential, U(x), where x
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refers to the coordinates that define the mutual geometry of the specific sites.
Although U(x) can greatly increase the probability of the site juxtaposition,
it does not disturb the conditional distribution since U(x) has the same value
for all conformations where the sites are juxtaposed (x = x0). Indeed, the
statistical weights of all conformations with the juxtaposed sites will be mul-
tiplied by the same factor, exp(−U(x0)/kT ). The efficiency of the approach,
which is called Umbrella method, depends on proper choice of the potential
U(x). The method was recently applied for the simulation of the juxtaposition
of specific sites in supercoiled DNA [54].
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Dynamics of DNA Supercoiling

A. Gabibov, E. Yakubovskaya, M. Lukin, P. Favorov, A. Reshetnyak,
and M. Monastyrsky

Summary. A catalytic turnover of supercoiled DNA (scDNA) transformation me-
diated by topoisomerases leads to the changes of the linking number (Lk) of the
polymeric substrate by 1 or 2. While a substrate of the topoisomerisation reaction is
chemically identical to its product, even single catalytic event results in the quantum
leap in the scDNA topology. A continuous non-disturbing assay for measurement of
kinetics of the scDNA topoisomerisation was lacking. The intrinsic connections of
DNA topology, its hydrodynamics and optical anisotropy, studied in this chapter
allowed the use of flow linear dichroism technique (FLD) for continuous monitoring
of scDNA topoisomerisation reaction. This approach permits studying the kinetics
of DNA transformation catalysed by eukaryotic topoisomerases I and II, mechanistic
properties of these enzymes and their interactions with anti-cancer drugs.

Keywords: scDNA transformations, DNA hydrodynamics, linking number
(Lk), topoisomerases, flow linear dichroism, anti-cancer drugs

4.1 Introduction

The dynamics of scDNA transformations is a key point for understanding the
numerous processes that take place in the living cell [1]. Changes of DNA
topology are vital during replication, transcription, recombination, chromo-
some condensation and segregation. From the topological point of view DNA
can be represented by a closed ribbon [2, 3]. Studies of the dynamical aspects
of DNA topology are closely connected with the design of the adequate math-
ematical description of DNA polymeric molecule as well as the methods of
monitoring of its properties [4, 5]. The main topological changes of scDNA in
the cells are catalysed by DNA-specific enzymes, topoisomerases, types I and
II, which induce single and double nicks in DNA strains. This leads to changes
of the linking number (Lk) of the polymer substrate by 1 or 2. The edges of
“closed ribbon” cannot be regarded as “intact” during the catalytic reaction
and DNA molecule can be preferably represented by a “ladder” instead of
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“closed ribbon”. Here by the term ladder we assume the lattice surface where
the points (nucleotides) are located on the boundary curves and connected
by edges (phosphodiester bonds). These edges may be disrupted. From the
chemical point of view, the substrates and products during the DNA topoi-
somerisation are identical and the catalytic events result in small topological
changes. The product from the previous single turnover will play the role of
the substrate in the next stage. So the ensemble of topoisomers exists at each
step of the reaction. Even a single catalytic event results in the quantum leap
in the scDNA topology. This allows study of most of biocatalytic problems of
DNA supercoiling within the frame of the problems of DNA topology, DNA
hydrodynamics and statistics of biopolymers. The general scheme of enzyme-
mediated topological transformations of DNA is displayed in Fig. 4.1.

DNA molecule runs a whole sequence of the states, from a supercoiled one
to the relaxed one. Moreover, either of those steps could be reversible.

In this connection, to describe kinetics of DNA relaxation correctly it is
necessary:

(a) To possess information about the instant concentrations of either of the
topoisomers involved in the reaction.

(b) To identify integral index as a function of these concentrations and
reflecting the reaction turnover.

Fig. 4.1. Mechanisms of enzyme-mediated DNA relaxation. (a) Topoisomerase I-3′.
(b) Topoisomerase II. Two possible ways of topoisomerase action, distributive and
processive kinetic schemes (see text for details)
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Topoisomerases are much smaller than the polymeric substrates in vivo and
their interaction with DNA is restricted within a small area (1–2 turns of
DNA helix). The enzyme cannot recognise a conformation of a whole DNA
molecule and proceeds only with a short segment of double helix (or with
single crossover formed by the helix itself).

The Gibbs energy function describing conformational transitions of scDNA
depends on the superhelical density and determines the direction of topological
transformation and its rate [6]:

∆∆G = BRTσ, (4.1)

where σ is the superhelical density (σ = ∆Lk/k0) and B is the rigidity index
and Lkfin, Lkinit are the final and initial linking numbers. For topoisomerases
I and II Lk changes by 1 and 2 correspondingly, during every step of topoiso-
merisation (Fig. 4.1). ∆∆G becomes proportional to σ, which is independent
of DNA length.

The above-mentioned statements mean that the parameter reflecting a
degree of DNA conversion should be a parameter that has no relation to the
concentration of either of the topoisomers averaged to the topological state of
DNA under the study 〈σ〉.

The introduction of 〈σ〉 function provides DNA topoisomerisation stud-
ies with additional opportunities of quantitative estimations. The intrinsic
links between 〈σ〉 and physical property of the DNA molecule, namely linear
dichroism (LD), may provide a serious experimental basis for the field.

4.2 Theory

A continuous method of statistical mechanics of biopolymers was successfully
applied to the theoretical description of the processes of DNA supercoiling
[7, 8]. For the DNA described by the “closed ribbon” model the Calugareanu–
Fuller–White formula can be written:

Lk = Tw + Wr, (4.2)

where Lk is the Gauss linking number, Tw is the twist and Wr is the writhing
number [3, 9–11]. All definitions in (4.2) are well known topologically. Let us
regard γ as a closed smooth curve embedded in R3 (Euclidean space). Then
υ is a normal vector field on γ. Let us assume that the magnitude of a vector
υ(t) is so small that υ(t) intersects γ only at one point. The endpoint of υ
sweeps a curve γυ, which inherits the orientation of γ, while υ itself inherits
a strip embedded in R3. Then the twist of υ can be defined as follows:

Tw =
1
2π

∫

γ

υ⊥dυ, (4.3)
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where vector υ⊥ is in the frame (t, υg υ⊥), a right-hand system, and t is the
unit tangent vector to the curve γ. The twist of the curve is a continuous
quantity. The writhing number is the integral:

Wr =
1
4π

∫

γ

∫

γ

([dr1dr2], r1 − r2)
(r1 − r2)3

, (4.4)

Wr is determined directly by the curve γ and is merely evaluated in the
experiment. It is also a continuous quantity.

The left side of formula (4.1) is the Gauss linking number:

Lk =
1
4π

∫ ∫

γγv

([dr1dr2], r1 − r2)
(r1 − r2)3

, (4.5)

where r is the radius vector of the curve’s point, and [ ] and ( ) are the vector
and scalar products, respectively. The two main questions to be considered
when the real-time kinetics of scDNA biocatalytic conversion is studied are:
(1) how the equations, suitable for the “closed ribbon” DNA model, could
be applied to the more realistic “ladder” model and (2) how to estimate the
changes of the ensemble of topoisomers during the reaction time course.

Let us assume that the process of removal of supercoils takes place exclu-
sively by cutting the edges of the DNA ribbon, twisting and sewing the band.
In this case, formula (4.2) can be rearranged as:

(Lk − q) = T̃w + W̃r. (4.6)

Here q is the number of cutting–twisting–sewing events, and Tw and Wr are
modified parameters of formula (4.2).

As (4.4) is purely topological, it is also valid for the ladder DNA model, and
all parameters can be described in terms of simplicial divisions [12]. Obviously,
we deal with the ensemble of cuts and sews, which requires the averaging over
all states:

〈(Lk−q)〉 =
〈
T̃w

〉
+

〈
(W̃r

〉
. (4.7)

Finally this explains the applicability of topological approach for the real-
time course of the scDNA relaxation, caused by enzymatic activity of topo-
isomerases. It can be shown that intrinsic hydrodynamic behaviour of DNA
is closely related with this process. In fact the tensor parameter of order,
biaxial in general, can be reduced for the free-rotating DNA to the uniaxial
one. Then, the parameter of order as in the case of nematic liquid crystal [13]
can be described as follows:

Aik = A0(nink − 1/3δik), (4.8)

where n = (n1, n2, n3) is the unit vector, and δik is the Kronecker delta func-
tion. Topological characteristics of DNA are connected with hydrodynamic
equations and this equation can be presented as:
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∂n

∂t
= {H,n}, (4.9)

where H is the Hamiltonian of the system determined as the functional of
the energy density n = ∫E d3r, where E depends on the states of the system
and {H,n} is the Poisson brackets. On the other hand, vector n in the case
of appropriate boundary conditions can be connected with the topological
invariant Lk

Lk(γ, γv) =
∫

(n, curln)dV. (4.10)

Here dV is the volume element of the ball, embracing the band (γ, γν).
The combination of formulas (4.5) and (4.7) gives the final equation

〈∫
(n, curln)dV − q

〉
=

〈
T̃w

〉
+

〈
W̃r

〉
. (4.11)

All these facts display the interrelation between the intrinsic properties of
DNA molecule, i.e. optical anisotropy, hydrodynamics and topology. This con-
clusion allows us to study the changes of DNA topology by monitoring the
optical properties of oriented DNA molecules.

4.2.1 Flow Linear Dichroism and Dynamics of DNA Supercoiling

The time-dependent topological transformations of supercoiled DNA can be
visualised using electrophoretic analysis of reaction mixture at different stages
of the process. However, this technique cannot provide instant and non-
disturbing quantitative kinetic analysis of reaction. A recently published pre-
cise approach based on the immobilisation of a single DNA molecule [14]
has demanded a state-of-the-art technique and cannot be utilised as a rou-
tine quantitative monitoring technique. Previously, we had first applied the
FLD method for the kinetic analysis of different nuclease reactions, using
flow-oriented supercoiled DNA molecule as a substrate [15–19]. This method
is based on the fact that oriented DNA possesses the property of optical
anisotropy [20, 21]. When the polymer molecule changes its topology, by low-
molecular weight effectors (as benzpyrene) [22] or biocatalysts [16, 23] this in-
stantly affects its hydrodynamics. This has an influence on the orientation O
and optic factors S of DNA molecule, and leads to the alteration of the of
linear dichroism value. The principle of the method is displayed in Fig. 4.2.

The value of linear dichroism ρ is defined as the ratio between ∆A, dif-
ference in light absorption polarised parallel and perpendicular to the DNA
orientation axis, and A, optical density of a sample in non-polarised light [21].
For any sample containing optically anisotropic molecule, ρ is a product of
orientation O and optic factors S:

ρ = SO, (4.12)

where the first one is the degree of alignment of the molecule along the ori-
entation axis, and the second one is the intrinsic optical anisotropy of the
molecules.
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Fig. 4.2. Principle of the flow linear dichroism (FLD) method. Experimental condi-
tions: DNA polymers are oriented in reversible flow of reaction mixture. Combined
vector of orientation of chromophoric groups of DNA is then different from zero, its
value and sign depending on topological state of molecules and their orientation abil-
ity. Measured value is the ratio between the difference of the optical densities of the
oriented sample for two perpendicularly polarised rays and the optical density for
non-polarised light (∆A/A). Absolute values of reduced linear dichroism (ρ) were
measured by using a JASCO J500C spectropolarimeter equipped with an achro-
matic quarter-wavelength prism at 260 nm. Plasmid DNA was oriented by the flow
gradient provided by pumping the solution through the flow cell using the reciprocal
pump, designed and constructed by V.L. Makarov (Engelhardt Institute of Molecu-
lar Biology, Russian Academy of Sciences) [24]. The cell volume was 200 µl; optical
path length was 2 mm; the frequency of reciprocal pump was 100 rpm; an average
flow gradient in the cell was 3,000 s−1

An scDNA can be relatively adequate rendered as a rigid rod formed by a
double helix winded into the superhelix, which could further form superhelices
of higher order. For such molecules ρ is defined as

ρ = 1/2(3〈cos2 Θ〉 − 1)(1/2(3〈cos2 βi〉 − 1)), (4.13)

where Θ is the angle between the main axis of DNA molecule and axis of
orientation of the molecules. The first coefficient is thus an orientation factor,
which under the condition of shear flow is determined by hydrodynamic prop-
erties of the molecule, and is dependent on the form of DNA molecule and
its rigidity. The rest of coefficients describes the intrinsic optical anisotropy
of scDNA. Parameter βi = tg−1(2πRi/Pi), where Ri and Pi are radius and
pitch of the ith order superhelix [21].

It seems to be clear that all variables (Θ, Ri and Pi) in this equation
are strongly dependent on 〈σ〉. As an example, sc circular DNA can be
better oriented than the relaxed circles of the same counter length. However,
formation of the supercoiled DNA is accompanied by shortening the radius
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and increasing the superhelix density (Ri is reduced and Pi is increased),
which causes a decrease of the optic anisotropy of the molecule. Thus the
dependence of optic anisotropy of circular DNA and its topology should prob-
ably have a bell-shaped form with a maximum in a point corresponding to
the completely relaxed DNA. It should reach the minimum at moderate |σ|
and then should rise again.

This assumption was confirmed by titration experiments (circular DNA by
intercalators, proflavine, ethidium bromide, etc.), displaying the bell-shaped
dependence of ρ(σ) [22, 25]. Figrue 4.3 illustrates typical results of ethidium
bromide titration of the negatively supercoiled plasmids. All the curves are
characterised by the maximum corresponding to the fully relaxed state (point
A). The presence of positive (σ > 0) or negative supercoils results in decrease
of ρ (AD and AB segments of the curves). Further increase of |σ| results in
increasing of ρ again (segment BC). The latter probably is a consequence
of the rising alignment ability of the DNA (in agreement with the previous
theoretical prediction).

Fig. 4.3. The dependence of the FLD signal (ρ260) on the density of supercoiling
for plasmids pTM 18 and BlueScript. Linear dichroism of the sample is measured
as relative value ρsg that is equal to zero for the blank (reaction buffer) and to 1
for the relaxed plasmid sample. The FLD measurements were performed in 200 µl
of buffer (20 mM Tris–HCl (pH 7.5), 100 mM NaCl, 0.5 mM EDTA) containing
5 µg pTM 18 or 5 µg BlueScript at increasing concentration of ethidium bromide
(1-µl aliquots of 6 × 10−5 M were added). The value of the superhelix density (σ)
was calculated taking the unwinding angle value for ethidium bromide as 26◦ per
intercalated ethidium ion [25]. The starting value of σ appeared to be −0.036 and
−0.055 for BlueScript and pTM 18, respectively
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Generally, the shape of ρ(σ) curves is similar for a number of tested plas-
mids. However, quantitatively, the parameters describing each curve revealed
a significant dependence upon specific character of the plasmids under study.
The two plasmids illustrating the alternative FLD signal dependencies have
been chosen. A pTM plasmid, while possessing very short BC segment,
revealed the highest amplitude of the LD signal in the course of the transi-
tion from a supercoiled state to the relaxed one. BlueScript plasmid titration
curve, on the contrary, contains a substantial BC segment. We observed the
similar LD values for both supercoiled and relaxed states of this plasmid, but
LD values for the transient topoisomers were much lower. Both the plasmids
were applied as a tool for the topoisomerase I studies.

4.2.2 Mechanisms of Biocatalytic DNA Relaxation

For modelling enzyme-mediated DNA topoisomerisation the following assump-
tions were made:

At any time, ti, the reaction mixture contains unbound enzyme and plas-
mid in different topological states Sn (where n is the number of superturns).
The enzyme and either of the DNA topoisomers can be bound to each other
in an equilibrium way, to form a non-covalent complex ESn, where both the
DNA strands have no nicks. This complex is not capable of proceeding to
topoisomerisation. The biocatalytic productivity requires the transfer of ESn

complex into the covalent complex (ESn). Here one of the DNA strains is
nicked and the enzyme is covalently bound to the 3′-end. The ESn complex is
capable of chaning its topology (the driving force of this process is the tension
of supercoiled DNA molecule) to form ESn+1 or ESn−1. The reaction is fully
reversible and (ESn) may take part in the back reaction. This mechanism is
displayed in:

Scheme 4.1

This mechanistic representation allows to make quantitative estimations.
For the calculations, we need to get values of the appropriate kinetic constants.
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However a full set of the constants regarding human topoisomerases is not
available. In this connection, as regarding the values of kinetic constant
derived from (4.1) the following assumption have been made:

1. Since in the given reaction the driving force of the topoisomerisation
depends on the tension of DNA that is proportional to the square of
DNA density of superhelix [6], the dependence of the constants of topoi-
somerisation ∼kn and kn over the density of the superturns looks as:

kn = kr exp((Bn + 0.5)/RT ), (4.14)
∼kn = kr exp((−Bn + 0.5)/RT ). (4.15)

2. It is clear that kr = ∼k(0) = k(0), i.e. that kr is the topoisomerisation
rate constant of the covalent complex of the fully relaxed DNA with a
topoisomerase. In accordance with the preceding evaluations, kr value is
rather high, so when calculated some of the kr values ranging between 3
and 60 s−1 were applied.

3. The cleavage and ligation rate constants were taken as equal to 0.1 and
1 min−1, respectively. These values were estimated for the vaccine virus
topoisomerase using shot oligonucleotide substrates. Taking into account
the low rigidity of DNA, it seems to be plausible that those constants
reveal independence of the DNA topology [26].

4. The value of the association rate constant kass, was equal to 1, 000 s−1,
which had to be higher than kdiss, k1, kc1.

5. The value of the dissociation rate constant was taken either as independent
of the topological state of DNA or it grew along with the increase of |σ|.

For modelling a reaction of topoisomerase II running in accordance with a
“cleavage-changing linking number by 2-ligation” the following kinetic scheme
was proposed:

Scheme 4.2
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This scheme reflects the most probable mechanism of top II action [27, 28].
Free enzyme associates with the first segment of DNA containing n superturns.
As it will serve as a Gate segment at the next step of reaction we denote it as
Gn. The formation and the dissociation of the gnE complex are described with
association and dissociation constants (kn

a and kn
d , respectively), which, in

general, could depend on σ. Then the second segment of DNA, the T-segment,
binds to the gnE complex giving two types of ternary complexes, TgnE∼ and
∼TgnE (Fig. 4.4a). Since T- and G-segments practically coincide after the
formation of these complexes, effective change of the DNA linking number (by
approximately ±1) takes place. These complexes have different constants of

Fig. 4.4. Analysis of the complexes of scDNA with topoisomerase II. (a) Schematic
representation of complexes formed by topoisomerase II with G and T DNA seg-
ments. A sign of the linking number depends on the superhelix symmetry of the
complex. (b) Topological transformations of scDNA catalysed by topoisomerase II.
Changes of the type of ternary complex effect on the linking number (approximately
by ±1). The Gibbs energy change is characterised by factor 4Bn/RT. The kinetic
constants reflecting the transformations between (n + 2) and (n − 2) topoisomers
are described by exp(−4Bn/RT ) function



4 Dynamics of DNA Supercoiling 53

formation ( k∼
n = k0 exp((2Bn+1)/RT ) and ∼kn = k0 exp(−(2Bn+1)/RT ))

(Fig. 4.4b). After formation of TgnE∼ and ∼TgnE, followed by reversible
cleavage of the gate segment, the direction of topoisomerisation (i.e. sign of
the linking number change) is strictly defined by the symmetry of complex
formed. The latter process uses ATP hydrolysis as an external source of energy.
The rate of this step is assumed to be topologically independent (the kt value
is proportional to the DNA-induced ATP hydrolysis constant).

A system of differential equations that describes concentration change of
either the reaction mixture components can be written for both cases. Al-
though it could not be solved analytically, the numerical solution is available.
Then the 〈σ〉 and 〈ρ〉 values at any time can be calculated according to the
formula:

〈σ〉 = ΣgσgTn/ΣTn, (4.16)

and
〈ρ〉 = Σ(gρoσn)Tn, (4.17)

where ρ(σ) – as an empiric function calculated using the dependencies shown
in Fig. 4.3 and Tn denotes the concentration of DNA with n superturns.

The two ultimate cases of ρ(t) during DNA relaxation mediated by topo-
isomerases were obtained in the couarse of the numerical simulation of the
relaxation process. This evaluation is dependent on the enzyme type and
reaction conditions:

1. After binding of the enzyme to supercoiled DNA, a fast and virtually
complete relaxation of DNA takes place. Dissociation of resulting enzyme
– relaxed DNA complex occurs. This process possibly takes place in the
case of eukaryotic topoisomerase I [29] and topoisomerases II under opti-
mal conditions. If excess DNA is present in reaction mixture, only initial
(supercoiled) and final (relaxed) topoisomers exist during the reaction
course (Fig. 4.5), and (4.13) can be rearranged in (4.14):

ρ(t) = (1 − λ(t))ρinit + λ(t)ρlot, (4.18)

where λ(t) is the level of completion of the reaction.
2. For enzymes that reversibly nick DNA and change the ∆Lk strictly by

2 (for euckaryotic topoisomerases II, Scheme 2) the ligation of the gap
formed occurs in the next step. Significant amounts of intermediate topoi-
somers could be registered at some conditions, and the distribution func-
tion is bell shaped with a maximum drifting to zero during reaction course
(Fig. 4.6).

In both cases the ρ value correlates to 〈σ〉 and unequivocally reflects the
topoisomer distribution in the reaction mixture, so FLD technique could be
used for monitoring the topoisomerisation process.
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〈 〉

Fig. 4.5. Kinetic analysis of the scDNA transformations catalysed by topoisomerase
I. (a) Computer simulations of the distribution of topoisomers of pTM plasmid
induced by topoisomerase I. The following parameters were taken. kcl = 0.06s−1,
kl = 0.6 s−1, kr = 1s−1, kd = 10−6. DNA Hooks constant B = 1, 100RT . (b) 〈σ〉 vs
time dependence calculated according to formula (4.16). (c) ρ vs time dependence
calculated according to formula (4.17)

4.2.3 Interaction of scDNA with Eukaryotic DNA Topoisomerases

It is expedient to consider what kinds of LD signal shifts were observed in
the process of pTM and BlueScript plasmid relaxation catalysed by human
topoisomerase I. Some curves typical for the experiments are seen in Fig. 4.7.
It is evident that the interaction between topoisomerase I and either of the
plasmids results in two different pictures. In experiments with a pTM plasmid
the linear dichroism of the reaction mixture rose fast. The evidence was also
furnished by electrophoresis assay proofs showing that the signal shift was
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〈σ〉

Fig. 4.6. Kinetic analysis of the scDNA transformations catalysed by topoisomerase
II. (a) Computer simulations of the distribution of topoisomers of pTM plasmid
induced by topoisomerase II. The following parameters were taken: kdis = 1 s−1,
kass = 1, 000 s−1, kt = 5 s−1. DNA Hooks constant B = 1, 150RT . (b) 〈σ〉 vs
time dependence calculated according to formula (4.16). (c) ρ vs time dependence
calculated according to formula (4.17)

actually caused by DNA relaxation. During the reaction, the amplitude of σ
shifts exactly corresponded to the difference between LD of the relaxed and
supercoiled plasmids. In serial experiments (under sodium chloride concentra-
tions exceeding 100 mM), the signal growth obeys the first-order kinetics. In
contrast to the case of pTM, in the experiments with the BlueScript plasmid
no change of LD signal was detected during the reaction course, although in
accordance with the electrophoresis assay data the plasmid actually changes
its linking number during the enzyme-mediated reaction. Actually, under any
experimental conditions (e.g. under different enzyme-substrate ratio and dif-
ferent ionic strength), the BlueScript plasmid relaxation cannot be detected
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Fig. 4.7. FLD and gel electrophoresis analysis of scDNA relaxation catalysed by
human topoisomerase 1–3′. (a) The typical FLD kinetic curves of pTM 18 and Blue-
Script plasmids relaxation. (b) The semi-logarithmic plot ρt − ρ∞ vs time for pTM
18 plasmid. (c). The agarose gel electrophoresis of the BlueScript plasmid relaxation.
Experimental conditions: The FLD kinetic study of sc plasmid DNA relaxation catal-
ysed by topoisomerase I was performed in 200 µl of the reaction mixture containing
20 mM Tris–HCl (pH 7.5), 0.5 mM EDTA, 75 µg µl15 µg (µl)−1 BSA and 5–10 of sc
plasmid DNA. Without special indications the experiments were performed in 100
mM NaCl. The reactions were initiated by the addition of 0.45 µg of topoisomerase
I. Ten microlitres samples of the reaction mixture with BlueScript plasmid were
used for electrophoresis analysis of the reaction. The enzyme kinetics was stopped
by the addition of 1 µl of 10% SDS in the reaction media. Samples were analysed by
1% agarose gel electrophoresis. Gels were stained with ethidium bromide solution
(1 µg ml) ml−1 and visualised under uv light. The experiment was performed at 25◦C
under the following electrophoresis conditions: TAE buffer, voltage: 5V cm−1
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by FLD technique (data not shown). One can explain the latter observa-
tion taking into account that for the reaction, catalysed by topoisomerase
I, calculations predict considerable amounts of highly supercoiled or relaxed
DNA (and small traces of intermediate topoisomers) during entire the reaction
course.

The fact that the LD changes during a topoisomerase I-catalysed reaction
obeys the first-order kinetics needs an explanation. It is possible that for
this reaction the Ks value does not depend on the DNA topology. To check
this, we studied the relaxation of plasmid pTM 18 in the presence of sc (s)
and relaxed (r) forms of BlueScript. As sc BlueScript in such experiment is
virtually “invisible”, both sc and relaxed BlueScript could not effect an FLD
signal, so we are able to monitor the pTM 18 relaxation alone.

In both series of experiments with pTM 18, when topoisomerisation
was carried out in the presence of different concentrations of relaxed or sc
BlueScript, k′ decreased with an increase in the mass ratio of A = [Blue-
Script]/[pTM 18] (Fig. 4.8). Both for relaxed and supercooled BlueScript plas-
mids the IC50 values were found to be about equal, which implies equal,
affinity of the enzyme to DNA of any topology.

The insensitivity of topoisomerase I towards the DNA topology was pro-
posed earlier based on the data of DNA relaxation kinetics in experiments
with the chicken erythrocyte topoisomerase I [30]. However, latter publications
contradicted this standpoint. For instance, a human topoisomerase I mutant
incapable of cleaving and therefore relaxing supercoiled DNA was found to
bind scDNA more than ten times more effectively as compared to the relaxed

Fig. 4.8. Determination of binding parameters of topoisomerase with sc and re-
laxed DNA. The plasmid pTM 18 relaxation kinetics was studied in the presence of
BlueScript plasmid in different concentrations taken in relaxed or sc forms. Reaction
mixture contained 20 mM of Tris–HCl (pH 7.5), 0.5 mM of EDTA, 75 µg µl µl−1 of
BSA, 5 µg of sc plasmid pTM 18 and different concentrations of relaxed or sc forms
of BlueScript



58 A. Gabibov et al.

form. Experiments with the native enzyme demonstrated that topoisomerase
I more actively forms covalent complexes with scDNA, and more frequency
produces camptothecin-induced nicks in scDNA as compared to the relaxed
one [27]. These facts are considered to be sufficient proof for the suggestion
that the dissociation constant of the topoisomerase I – scDNA complex is
significantly lower than of the topoisomerase I-relaxed DNA one, and that
catalytic activity of this enzyme is greater when DNA is highly supercoiled.

This conclusion was also supported by structural data. According to
X-ray diffraction data, the contact region between the human topoisomerase
I molecule and its DNA substrate is as long as one helix turn [29].

Precise calculations of the topoisomerase I – DNA contact region using
Voronoi polyhedra approach using TOPOS [30] program package reveal 20
dense contact sites between protein molecule and DNA. As seen from Fig. 4.9a,
b, these contact sites span more than 30 Ångstrom region on both strands of
DNA helix. Therefore, the hypothesis that the enzyme could be sensitive to
the tiny conformational changes affected by topological strain in DNA could
not be ruled out.

At first glance, our kinetic data contradict the facts listed above. To resolve
the contradiction, we made a series of calculations of the topoisomerase I
reaction under the condition when the values of the dissociation constants of
non-covalent enzyme substrate complex were dependent on the DNA topology
state. Since the dissociation rate is fast and, probably diffusion limited, in the
calculations kass was assumed to be topologically independent and equal to
1, 000 min−1 . The kn

diss decreased gradually when |σ| increases, so for σ = 0.05
the kdiss value was 10, 100, and 1,000 times lower than for the relaxed one.

Calculations made with above-mentioned sets of constants gave identical
results. No difference in kinetic curve shapes was observed. Actually, it means
that the process of dissociation of a topoisomerase I – highly scDNA complex
had no effect on the pattern observed. The possible explanation of this state-
ment may be presented. Topoisomerisation of Esn into Esn−1 and ligation
(EsnESn) are processes in parallel. The driving force of topoisomerisation is a
tension energy of scDNA and the values of −kn and kn constants obey (4.13)
and (4.14) in a broad range of n values, but the ligation rate slightly depends
only on DNA topology. So, for scDNA, kn 
 k1, but for the relaxed one–the
situation is quite opposite. Competition of topoisomerisation and ligation re-
sults in relaxing of the covalent enzyme–substrate complex till the degree of
DNA superhelicity drops to the level close to the equilibrium. During this, the
relaxing catalyst is covalently bound to DNA and is not able to dissociate. On
the contrary, topoisomerase I bound to relaxed DNA exists predominantly as
a non-covalent complex capable of dissociation.

In other words, there are two principally distinct mechanisms involved in
the conversion of the enzyme-substrate complex, which differed in the case of
scDNA and in the case of the relaxed one. For scDNA, the Briggs–Haldane
mechanism works and the enzyme–substrate dissociation constant value is
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(a)

(b)

Fig. 4.9. DNA-topoisomerase interface calculated using advanced Voronoi tessel-
lation. (a) Distribution of voids on the DNA-enzyme interface calculated using ad-
vanced Voronoi procedure as implemented in TOPOS [31] program package. Voids
are drawn as semi-transparent polyhedra, DNA is yellow ; (b) Dense DNA-protein
contacts are shown as red balls. All DNA atoms in contact with protein are phosphate
oxygen
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simply not relevant for the description of the kinetics. In contrast, the in-
teraction of relaxed DNA and topoisomerase I obeys the Michaelis–Menten
kinetics.

As a result, relaxing scDNA exists mainly in the form of the covalent com-
plex with an enzyme, and the relaxed one – in a non-covalent enzyme-DNA
complex. In this connection the addition of the inhibitors, e.g. campthotecine,
during a process of topoisomerisation would produce significantly more irre-
versible nicks in the DNA chains than the addition of the same reagent at
a point when the process is over. Similar explanation can also be given to
earlier experiments by stopping the topoisomerisation reaction by detergents,
to the studies of the processivity of this reaction, as well as to a competitive
inhibition with DNA of different topology, etc.

The fact that the topoisomerisation reaction is described by the first-
order kinetics must mean that the reaction is limited by some monomolec-
ular reaction whose rate constant does not change through the whole course
of the experiment (and, hence, is the same for either of the topoisomers). In
low processivity conditions (high salt, µ > 0.2), most likely, the rate of the
phosphodiester bond cleavage is a limiting step for topoisomerisation. In this
connection k′ = kc1 E/S, and hence, if E = S, then k′ = kc1. We performed
k′ measurements in a series of experiments with increasing DNA-enzyme ratio
(Fig. 4.10). The extrapolation of the dependency obtained towards to a value
of E/S = 1 gave a value of kc1 = 0.08, which in turn, was close to a value of
the similar constant calculated for the vaccine topoisomerase using oligonu-
cleotide as a model substrate [26].

The dissociation of the enzyme-product complex could also be a rate-
limiting step (e.g. low salt conditions). However, this process plays a sub-
stantial role only in the case when a large portion of DNA has been already

Fig. 4.10. Dependence of the effective constant of pTM relaxation catalysed by
topoisomerase I on different enzyme/DNA ratio at 100 µm NaCl
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relaxed. On the other hand, the mixture composition is crucial for the velocity
of the process, in particular, ionic strength of the mixture. A series of exper-
iments, in which pTM plasmid relaxation runs in media with different ionic
strength has shown that the kinetic curve is split into two parts along with
dropping of the ionic strength. An initial (fast) part corresponds to relaxation
of the enzyme-bound DNA in a moment when the enzyme is added to the
mixture. At this stage the reaction rate is only slightly dependent on the ionic
strength of the buffer (Fig. 4.11a), which is actually, clear for understanding
since the limiting stage at this point the shows phosphodiester bond cleavage.
The second part of the curve represents a stage at which all total DNA bound
with the enzyme at the fast stage, is actually fully relaxed, and the velocity
of the rest of DNA is determined by a process of dissociation of enzyme from
the complex with relaxed DNA (Fig. 4.11b).

(b)

Fig. 4.11. Dependence of the effective constant of pTM relaxation catalysed by
topoisomerase I. Initial (a) or final (b) part of kinetic curves on different concentra-
tions of NaCl
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Summarising these statements one can conclude that all aspects of
topoisomerase I kinetics could be described within the frame of “dumb” topoi-
somerase acting as a reversible DNA swivel with constant friction. Our calcu-
lations reproduce all experimental kinetics curves correctly even in the case
when all the kinetics constants of the equation (excluding kn

b and kn
f ) do not

depend on DNA topology.
We succeeded in a direct manner, using a non-disturbing technique to

show the absence of the intermediate topoisomers in a reaction mixture dur-
ing DNA topoisomerisation, catalysed by human topoisomerase I. Utilising an
advanced mathematical model, we demonstrated that such topoisomers could
not be detected in the mixture in the case when the reaction mechanism
corresponds to Scheme 4.1. In turn, for topoisomerase II-induced relaxation
of scDNA, significant amounts of intermediate topoisomers were registered
(Fig. 4.12). A good coincidence takes place between experimentally observed
kinetic curves and those calculated using rather simple kinetic Schemes 4.1
and 4.2. In our calculations, all kinetic constants (except two per one topoi-
somerisation step) were assumed to be independent of the DNA topology, so
only a DNA steric strain (which obeys Hook’s law) was a driving force in de-
termining a topoisomerisation direction. So no special hypothesis describing
a possible mechanism of recognition of DNA topology by topoisomerases I
and II is necessary in the case of highly supercoiled DNA in contrast to those
having near-to-equilibrium topology [32].

Fig. 4.12. The full-length kinetic curve of scDNA relaxation catalysed by topoiso-
merase II. Experimental conditions: FLD monitoring of kinetics of topoisomerisation
pTM (8 µg) plasmid DNA catalysed by human topoisomerase II (4 u.) in reaction
buffer (0.05 M Tris–HCl pH 8.0, 120 mM KCl, 10 mM MgCl2, 0.5 mM ATP, 0.5
mM DTT, 30 µg ml−1 BSA). Inset: the results of electrophoretic analysis of pTM
DNA in the probes of reaction mixtures corresponding to the kinetic curves taken
at specified moments
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4.2.4 Dynamics of Drug Targeting

The FLD technique can prove very useful in studies of the interactions of en-
zymes of topoisomerisation with various inhibitors and poisons [33, 34]. Such
effectors are of great interest because of their high anti-tumour activity [35]. As
an example, we have chosen a number of relatively well-studied compounds,
some of them are already applied as anti-cancer drugs. For topoisomerase
I, camptothecin (CPT) and two of its analogues, MCPT-10,11 and SN-38
(see Fig. 4.13) were taken, which are known to inhibit the process on the stage

Fig. 4.13. Inhibition of topoisomerase I by specific effectors studied by FLD tech-
nique. Experimental conditions: Effect of increasing concentrations of several camp-
tothecine analogues on the kinetics of topoisomerisation of pTM DNA (8 µg) by
topoisomerase I (0.45 µg): (a) 0, 0.25, 0.5, 0.75, 1.25, 12.5 µM CPT; (b) 0, 0.05,
0.075, 0.125, 0.25 µM MCPT-10,11; (c) 0, 0.075, 0.15, 0.2, 0.25 µM SN-38. Insets:
enlarged initial parts of the curves
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of re-ligation of nicked DNA chain (see Scheme 4.1a) [36, 37]. As shown in
Fig. 4.13, in the presence of the increasing concentrations of CPT and MCPT-
10,11, kinetic curves retain their exponential character, while k′ diminishes.
I50 for these compounds can be estimated as 1 and 0.1 mM, respectively. On
the contrary, SN-38 (Fig. 4.13) does not affect the rate of the reaction on the
initial stage of the process, while effectively inhibiting it afterwards (I50 for
the second portion is 0.2 mM). We attribute this difference to the fact that
by FLD technique it becomes possible to distinguish between mechanisms of
action of these closely related compounds. In our opinion, all three inhibitors
hinder the re-ligation of DNA, but CPT and MCPT-10,11 impede the initial
enzyme–DNA interactions as well, while SN-38 lacks this additional activity
(see Scheme 4.1).

For topoisomerase II, we have chosen two compounds with totally different
modes of action – etoposide [38] and adenosine-5′-phosphate-b,g-iminodiphos-
phate (AMPPNP). The first one, etoposide, now a widely used chemother-
apeutic drug, is a classic topoisomerase II poison, acting by binding with
single-stranded DNA ends, inhibiting the re-ligation of hydrolysed DNA seg-
ment (see Scheme 4.2) [39]. This inhibitor does not change the general view
of kinetic curve, only slowing the whole process and making the local mini-
mum of rotp less expressed (Fig. 4.14). The latter observation suggests that
the process gets less coordinated in the presence of etoposide. Using the initial
rates, we estimate I50 for this compound as 10 mM. Another topoisomerase
II effector, AMPPNP, is the non-hydrolyzable analogue of ATP [32, 40]. Its
action is based on the necessity of hydrolysis of phosphodiester bond of ATP
for the completion of enzyme turnover. Thus, if AMPPNP molecule binds to
one or both topoisomerase II subunits, the enzyme stays in the conforma-
tion of “closed clamp”, topologically bound to the closed DNA molecule, and,
therefore, is kinetically irreversibly inactivated. If both ATP and AMPPNP
are present in the reaction mixture, only a certain portion of enzyme mole-
cules is inactivated at each catalytic step. Reaction under these conditions
does not proceed up to the equilibrium state, and kinetic curves reach the
plateau at values of FLD signal corresponding to s < 0.

4.3 Conclusions

The discussed intrinsic connection between DNA topology, hydrodynamics
and optical properties eneablse us to study experimentally dynamics of DNA
relaxation. The fundamental functional dependency of FLD signal from the
DNA topology provides us with the unique possibility of performing the con-
tinuous analysis of DNA topoisomerisation. We proved the mechanistic pe-
culiarities of topoisomerase I, studied by traditional methods and for the
first time studied the real-time kinetics for topoisomerase II. In our point
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Fig. 4.14. Inhibition of topoisomerase II activity measured by FLD technique.
Experimental conditions: Comparison of the kinetics of inhibition of reaction of
8 µg of pTM DNA with 4 u. of topoisomerase II by etoposide and AMPPNP. (a)
0 µM (curve 1), 5 µM (2), 10 µM (1), 25 µM (2), 50 µM (3) of etoposide; (b) ratio
[AMPPNP]/([ATP]+[AMPPNP])=0 (curve 1), 0.005 (2), 0.01 (1), 0.02 (2)

of view the most prominent application of the developed approach is focused
on the dynamics of drug targeting, which can open up various biomedical
applications.
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5

From Tangle Fractions to DNA

L.H. Kauffman and S. Lambropoulou

Summary. This chapter draws a line from the elements of tangle fractions to the
tangle model of DNA recombination. In the process, we sketch the classification of
rational tangles, unoriented and oriented rational knots and the application of these
subjects to DNA recombination.

5.1 Introduction

Rational knots and links are a class of alternating links of one or two unknotted
components, and they are the easiest knots to make (also for Nature!). The
first 25 knots, except for 85, are rational. Furthermore all knots and links up
to ten crossings are either rational or are obtained from rational knots by
insertion operations on certain simple graphs. Rational knots are also known
in the literature as four-plats, Viergeflechte and twobridge knots. The lens
spaces arise as twofold branched coverings along rational knots.

A rational tangle is the result of consecutive twists on neighbouring end-
points of two trivial arcs, see Definition 1. Rational knots are obtained by
taking numerator closures of rational tangles (see Fig. 5.19), which form a
basis for their classification. Rational knots and rational tangles are of funda-
mental importance in the study of DNA recombination. Rational knots and
links were first considered in [1] and [2]. Treatments of various aspects of ra-
tional knots and rational tangles can be found in [3–11]. A rational tangle is
associated in a canonical manner with a unique, reduced rational number or
∞, called the fraction of the tangle. Rational tangles are classified by their
fractions by means of the following theorem:

Theorem 1. (Conway, 1970). Two rational tangles are isotopic if and only
if they have the same fraction.

John H. Conway [4] introduced the notion of tangle and defined the frac-
tion of a rational tangle using the continued fraction form of the tangle and the
Alexander polynomial of knots. Via the Alexander polynomial, the fraction is
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defined for the larger class of all 2-tangles. In this study we are interested in
different definitions of the fraction, and we give a self-contained exposition of
the construction of the invariant fraction for arbitrary two-tangles from the
bracket polynomial [12]. The tangle fraction is a key ingredient in both the
classification of rational knots and in the applications of knot theory to DNA.
Proofs of Theorem 1 can be found in [2], [6] p. 196 and [8, 13].

More than one rational tangle can yield the same or isotopic rational knots
and the equivalence relation between the rational tangles is reflected in an
arithmetic equivalence of their corresponding fractions. This is marked by a
theorem due originally to Schubert [14] and reformulated by Conway [4] in
terms of rational tangles.

Theorem 2. (Schubert, 1956). Suppose that rational tangles with fractions
p/q and p′/q′ are given (p and q are relatively prime; similarly for p′ and q′).
If K(p/q) and K(p′/q′) denote the corresponding rational knots obtained by
taking numerator closures of these tangles, then K(p/q) and K(p′/q′) are
topologically equivalent if and only if

1. p = p′ and
2. Either q ≡ q′(mod p) or qq′ ≡ 1(mod p).

This classic theorem [14] was originally proved by using an observation
of Seifert that the twofold branched covering spaces of S3 along K(p/q) and
K(p′/q′) are lens spaces, and invoking the results of Reidemeister [15] on the
classification of lens spaces. Another proof using covering spaces has been
given by Burde in [16]. Schubert also extended this theorem to the case of
oriented rational knots and links described as two-bridge links.

Theorem 3. (Schubert, 1956). Suppose that orientation-compatible ratio-
nal tangles with fractions p/q and p′/q′ are given with q and q′ odd (p and q
are relatively prime; similarly for p′ and q′) If K(p/q) and K(p′/q′) denote the
corresponding rational knots obtained by taking numerator closures of these
tangles, then K(p/q) and K(p′/q′) are topologically equivalent if and only if

1. p = p′ and
2. Either q ≡ q′(mod 2p) or qq′ ≡ 1(mod 2p).

In [17] we give the first combinatorial proofs of Theorems 2 and 3. In this
chapter we sketch the proofs in [13] and [17] of the above three theorems and
we give the key examples that are behind all of our proofs. We also give some
applications of Theorems 2 and 3 using our methods.

The study is organized as follows. In Sect. 5.2 we introduce two-tangles
and rational tangles, Reideimeister moves, isotopies and operations. We give
the definition of flyping, and state the (now-proved) Tait flyping conjecture.
The Tait conjecture is used implicitly in our classification work. In Sect. 5.3
we introduce the continued fraction expression for rational tangles and its
properties. We use the continued fraction expression for rational tangles to
define their fractions. Then rational tangle diagrams are shown to be isotopic
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to alternating diagrams. The alternating form is used to obtain a canonical
form for rational tangles, and we obtain a proof of Theorem 1.

Section 5.4 discusses alternate definitions of the tangle fraction. We begin
with a self-contained exposition of the bracket polynomial for knots, links and
tangles. Using the bracket polynomial we define a fraction F (T ) for arbitrary
two-tangles and show that it has a list of properties that are sufficient to prove
that for T rational, F (T ) is identical to the continued fraction value of T , as
defined in Sect. 5.3. The next part of Sect. 5.4 gives a different definition of the
fraction of a rational tangle, based on colouring the tangle arcs with integers.
This definition is restricted to rational tangles and those tangles that are
obtained from them by tangle-arithmetic operations, but it is truly elementary,
depending just on a little algebra and the properties of the Reidemeister
moves. Finally, we sketch yet another definition of the fraction for two-tangles
that shows it to be the value of the conductance of an electrical network
associated with the tangle.

Sect. 5.5 contains a description of our approach to the proof of Theorem 2,
the classification of unoriented rational knots and links. The key to this ap-
proach is enumerating the different rational tangles whose numerator closure is
a given unoriented rational knot or link, and confirming that the corresponding
fractions of these tangles satisfy the arithmetic relations of the Theorem. Sec-
tion 5.6 sketches the classification of rational knots and links that are isotopic
to their mirror images. Such links are all closures of palindromic continued
fraction forms of even length. Section 5.7 describes our proof of Theorem 3,
the classification of oriented rational knots. The statement of Theorem 3 dif-
fers from the statement of Theorem 2 in the use of integers modulo 2p rather
than p. We see how this difference arises in relation to matching orientations
on tangles. This section also includes an explanation of the fact that fractions
with even numerators correspond to rational links of two components, while
fractions with odd numerators correspond to single component rational knots
(the denominators are odd in both cases). Section 5.8 discusses strongly in-
vertible rational knots and links. These correspond to palindromic continued
fractions of odd length.

Section 5.9 is an introduction to the tangle model for DNA recombination.
The classification of the rational knots and links, and the use of the tangle frac-
tions is the basic topology behind the tangle model for DNA recombination.
We indicate how problems in this model are reduced to properties of rational
knots, links and tangles, and we show how a finite number of observations
of successive DNA recombination can pinpoint the recombiation mechanism.
We have included references [42–50] for the reader who is interested in delving
into the background on a number of the topics that we touch in this paper.

5.2 Two-Tangles and Rational Tangles

Throughout this chapter we work with two-tangles. The theory of tangles was
invented by John Conway [4] in his work on enumerating and classifying knots.
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A two-tangle is an embedding of two arcs (homeomorphic to the interval [0,1])
and circles into a three-dimensional ball B3 standardly embedded in Euclidean
three-space S3, such that the endpoints of the arcs go to a specific set of
four points on the surface of the ball, so that the circles and the interiors
of the arcs are embedded in the interior of the ball. The left-hand side of
Fig. 5.1 illustrates a two-tangle. Finally, a two-tangle is oriented if we assign
orientations to each arc and each circle. Without loss of generality, the four
endpoints of a two-tangle can be arranged on a great circle on the boundary
of the ball. One can then define a diagram of a two-tangle to be a regular
projection of the tangle on the plane of this great circle. In illustrations we
may replace this circle by a box.

The simplest possible two-tangles comprise two unlinked arcs, either hor-
izontal or vertical. These are the trivial tangles, denoted [0] and [∞] tangles,
respectively, see Fig. 5.2.

Definition 1 A two-tangle is rational if it can be obtained by applying a
finite number of consecutive twists of neighbouring endpoints to the elemen-
tary tangles [0] or [∞].

The simplest rational tangles are the [0], the [∞], the [+1] and the [−1]
tangles, as illustrated in Fig. 5.3, while the next simplest ones are:

(i) The integer tangles, denoted by [n], made of n horizontal twists, n ∈ Z.
(ii) The vertical tangles, denoted by 1/[n], made of n vertical twists, n ∈ Z.

These are the inverses of the integer tangles, see Fig. 5.3. This terminology
will be clear soon.

3

-2

2

,

Fig. 5.1. A two-tangle and a rational tangle

[     ][0]

,

Fig. 5.2. The trivial tangles [0] and [∞]
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_11
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Fig. 5.3. The elementary rational tangles

Fig. 5.4. The Reidemeister moves

Examples of rational tangles are illustrated in the right-hand side of
Fig. 5.1 as well as in Figs. 5.8 and 5.17 below.

We study tangles up to isotopy. Two two-tangles, T, S, in B3 are said to be
isotopic, denoted by T ∼ S, if they have identical configurations of their four
endpoints in the boundary S2 of the three-ball, and there is an ambient isotopy
of (B3, T ) to (B3, S) that is the identity on the boundary (S2, ∂T ) = (S2, ∂S).
An ambient isotopy can be imagined as a continuous deformation of B3 fixing
the four endpoints on the boundary sphere, and bringing one tangle to the
other without causing any self-intersections.

In terms of diagrams, Reidemeister [18] proved that the local moves on
diagrams illustrated in Fig. 5.4 capture combinatorially the notion of ambient
isotopy of knots, links and tangles in three-dimensional space. That is, if
two diagrams represent knots, links or tangles that are isotopic, then the one
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Fig. 5.5. The flype moves

diagram can be obtained from the other by a sequence of Reidemeister moves.
In the case of tangles the endpoints of the tangle remain fixed and all the moves
occur inside the tangle box.

Two oriented two-tangles are said to be oriented isotopic if there is an
isotopy between them that preserves the orientations of the corresponding
arcs and the corresponding circles. The diagrams of two oriented isotopic
tangles differ by a sequence of oriented Reidemeister moves, i.e. Reidemeister
moves with orientations on the little arcs that remain consistent during the
moves.

From now on we will be thinking in terms of tangle diagrams. Also, we
will be referring to both knots and links whenever we say “knots”.

A flype is an isotopy move applied on a two-subtangle of a larger tangle or
knot as shown in Fig. 5.5. A flype preserves the alternating structure of a di-
agram. Even more, flypes are the only isotopy moves needed in the statement
of the celebrated Tait conjecture for alternating knots, stating that two alter-
nating knots are isotopic if and only if any two corresponding diagrams on S2

are related by a finite sequence of flypes. This was posed by P.G. Tait [19] in
1898 and proved by W. Menasco and M. Thistlethwaite, [20] in 1993.

The class of two-tangles is closed under the operations of addition (+)
and multiplication (∗) as illustrated in Fig. 5.6. Addition is accomplished by
placing the tangles side-by-side and attaching the NE strand of the left tangle
to the NW strand of the right tangle, while attaching the SE strand of the
left tangle to the SW strand of the right tangle. The product is accomplished
by placing one tangle underneath the other and attaching the upper strands
of the lower tangle to the lower strands of the upper tangle.

The mirror image of a tangle T is denoted by −T and it is obtained by
switching all the crossings in T. Another operation is rotation accomplished
by turning the tangle counter-clockwise by 90◦ in the plane. The rotation of
T is denoted by T r. The inverse of a tangle T , denoted by 1/T, is defined to
be −T r (See Fig. 5.6). In general, the inversion or rotation of a two-tangle is
an order 4 operation. Remarkably, for rational tangles the inversion (rotation)
is an order 2 operation. It is for this reason that we denote the inverse of a
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Fig. 5.6. Addition, product and inversion of two-tangles
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Fig. 5.7. The horizontal and the vertical flips

two-tangle T by 1/T or T−1, and hence the rotation of the tangle T can be
denoted by −1/T = −T−1.

We now describe another operation applied on two-tangles, which turns
out to be an isotopy on rational tangles. We state that Rhflip is the horizontal
flip of the tangle R if Rhflip is obtained from R by a 180◦ rotation around a
horizontal axis on the plane of R. Moreover, Rvflip is the vertical flip of the
two-tangle R if Rvflip is obtained from R by a 180◦ rotation around a vertical
axis on the plane of R (see Fig. 5.7 for illustrations). Note that a flip switches
the endpoints of the tangle and, in general, a flipped tangle is not isotopic
to the original one. It is a property of rational tangles that T ∼ Thflip and
T ∼ T vflip for any rational tangle T. This is obvious for the tangles [n] and
1/[n]. The general proof crucially uses flypes, see [13].

The above isotopies composed consecutively yield T ∼ (T−1)−1 = (T r)r

for any rational tangle T. This shows that inversion (rotation) is an operation
of order 2 for rational tangles, so we can rotate the mirror image of T by 90◦

either counter-clockwise or clockwise to obtain T−1.
Note that the twists generating the rational tangles could take place be-

tween the right, left, top or bottom endpoints of a previously created rational
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Fig. 5.8. Creating new rational tangles
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Fig. 5.9. The numerator and denominator of a two-tangle

tangle. Using flypes and flips inductively on subtangles one can always bring
the twists to the right or bottom of the rational tangle. We shall then say
that the rational tangle is in standard form. Thus a rational tangle in stan-
dard form is created by consecutive additions of the tangles [±1] only on
the right and multiplications by the tangles [±1] only at the bottom, start-
ing from the tangles [0] or [∞]. For example, Fig. 5.1 illustrates the tangle
(([3] ∗ 1/[−2])+ [2]), while Fig. 5.17 illustrates the tangle (([3] ∗ 1/[2])+ [2]) in
standard form. Figure 5.8 illustrates addition on the right and multiplication
on the bottom by elementary tangles.

We also have the following closing operations, which yield two different
knots: the Numerator of a two-tangle T , denoted by N(T ), obtained by joining
with simple arcs the two upper endpoints and the two lower endpoints of T,
and the Denominator of a two-tangle T , obtained by joining with simple arcs
each pair of the corresponding top and bottom endpoints of T , denoted by
D(T ) (Fig. 5.9). We have N(T ) = D(T r) and D(T ) = N(T r). We note that
every knot or link can be regarded as the numerator closure of a two-tangle.

We obtain D(T ) from N(T ) by a [0]–[∞] interchange, as shown in Fig. 5.10.
This “transmutation” of the numerator to the denominator is a precursor to
the tangle model of a recombination event in DNA, see Sect. 5.9. The [0]–[∞]
interchange can be described algebraically by the equations:



5 From Tangle Fractions to DNA 77

D(T)
interchange

N(T) =

[     ][0]

=T T

Fig. 5.10. The [0]–[∞] interchange

N(T ) = N(T + [0]) −→ N(T + [∞]) = D(T ).

We will concentrate on the class of rational knots and links arising from
closing the rational tangles. Even though the sum/product of rational tan-
gles is in general not rational, the numerator (denominator) closure of the
sum/product of two rational tangles is still a rational knot. It may happen
that two rational tangles are not isotopic but have isotopic numerators. This
is the basic idea behind the classification of rational knots, see Sect. 5.5.

5.3 Continued Fractions and the Classification
of Rational Tangles

In this section we assign a fraction to a rational tangle, and we explore the
analogy between rational tangles and continued fractions. This analogy culmi-
nates in a common canonical form, which is used to deduce the classification
of rational tangles.

We first observe that multiplication of a rational tangle T by 1/[n] may
be obtained as the addition of [n] to the inverse 1/T followed by inversion.
Indeed, we have:

Lemma 1. The following tangle equation holds for any rational tangle T .

T ∗ 1
[n]

=
1

[n] + 1
T

.

Thus any rational tangle can be built by a series of the following operations:
Addition of [±1] and Inversion.

Proof. Observe that a 90◦ clockwise rotation of T ∗1/[n] produces −[n]−1/T .
Hence, from the above (T ∗ 1/[n])r = −[n] − 1/T , and thus (T ∗ 1/[n])−1 =
[n]+1/T . So, taking inversions on both sides yields the tangle equation of the
statement.
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Definition 2 A continued fraction in integer tangles is an algebraic descrip-
tion of a rational tangle via a continued fraction built from the tangles [a1],
[a2], . . ., [an] with all numerators equal to 1, namely an expression of the type:

[[a1], [a2], . . . , [an]] := [a1] +
1

[a2] + · · · + 1
[an−1]+

1
[an]

for a2, . . . , an ∈ Z − {0} and n even or odd. We allow that the term a1 may
be zero, and in this case the tangle [0] may be omitted. A rational tangle
described via a continued fraction in integer tangles is said to be in continued
fraction form. The length of the continued fraction is arbitrary – in the pre-
vious formula illustrated with length n – whether the first summand is the
tangle [0] or not.

It follows from Lemma 3.2 that inductively every rational tangle can be
written in continued fraction form. Lemma 3.2 makes it easy to write out the
continued fraction form of a given rational tangle, since horizontal twists are
integer additions, and multiplications by vertical twists are the reciprocals of
integer additions. For example, Fig. 5.17 illustrates the rational tangle

[2] +
1

[−2] + 1
[3]

,

Fig. 5.17 illustrates the rational tangle

[2] +
1

[2] + 1
[3]

.

Note that (
[c] ∗ 1

[b]

)
+ [a]

has the continued fraction form

[a] +
1

[b] + 1
[c]

= [[a], [b], [c]].

For T = [[a1], [a2], . . . , [an]] the following statements are now straightforward.

1. T + [±1] = [[a1 ± 1], [a2], . . . , [an]],

2. 1
T = [[0], [a1], [a2], . . . , [an]],

3. −T = [[−a1], [−a2], . . . , [−an]].

We now recall some facts about continued fractions. (See for example
[21–24]). In this chapter we shall only consider continued fractions of the
type

[a1, a2, . . . , an] := a1 +
1

a2 + · · · + 1
an−1+

1
an
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for a1 ∈ Z, a2, . . . , an ∈ Z−{0} and n even or odd. The length of the contin-
ued fraction is the number n whether a1 is zero or not. Note that if for i > 1
all terms are positive or all terms are negative and a1 �= 0 (a1 = 0) then the
absolute value of the continued fraction is greater (smaller) than one. Clearly,
the two simple algebraic operations addition of +1 or −1 and inversion gen-
erate inductively the whole class of continued fractions starting from zero. For
any rational number p/q the following statements are straightforward.

1.There are a1 ∈ Z, a2, . . . , an ∈ Z − {0} such that p/q = [a1, a2, . . . , an],
2. p/q ± 1 = [a1 ± 1, a2, . . . , an],

3. q/p = [0, a1, a2, . . . , an],

4. −p/q = [−a1,−a2, . . . ,−an].

We can now define the fraction of a rational tangle.

Definition 3 Let T be a rational tangle isotopic to the continued fraction
form [[a1], [a2], . . . , [an]]. We define the fraction F (T ) of T to be the numerical
value of the continued fraction obtained by substituting integers for the integer
tangles in the expression for T , i.e.

F (T ) := a1 +
1

a2 + · · · + 1
an−1+

1
an

= [a1, a2, . . . , an],

if T �= [∞], and F ([∞]) := ∞ = 1/0, as a formal expression.

Remark 1 This definition is good in the sense that one can show that iso-
topic rational tangles always differ by flypes, and that the fraction is un-
changed by flypes [13].

Clearly the tangle fraction has the following properties.

1. F (T + [±1]) = F (T ) ± 1,

2. F ( 1
T ) = 1

F (T ) ,

3. F (−T ) = −F (T ).

The main result about rational tangles (Theorem 1) is that two rational
tangles are isotopic if and only if they have the same fraction. We will show
that every rational tangle is isotopic to a unique alternating continued fraction
form, and that this alternating form can be deduced from the fraction of the
tangle. The theorem then follows from this observation.

Lemma 2. Every rational tangle is isotopic to an alternating rational tangle.

Proof. Indeed, if T has a non-alternating continued fraction form then the
following configuration, shown in the left of Fig. 5.11, must occur somewhere
in T , corresponding to a change of sign from one term to an adjacent term
in the tangle continued fraction. This configuration is isotopic to a simpler
isotopic configuration as shown in that figure.

Therefore, it follows by induction on the number of crossings in the tangle
that T is isotopic to an alternating rational tangle.
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Fig. 5.11. Reducing to the alternating form

Recall that a tangle is alternating if and only if it has crossings all of the
same type. Thus, a rational tangle T = [[a1], [a2], . . . , [an]] is alternating if
the ai’s are all positive or all negative. For example, the tangle of Fig. 5.17 is
alternating.

A rational tangle T = [[a1], [a2], . . . , [an]] is said to be in canonical form if
T is alternating and n is odd. The tangle of Fig. 5.17 is in canonical form. We
note that if T is alternating and n even, then we can bring T to canonical form
by breaking an by a unit, e.g. [[a1], [a2], . . . , [an]] = [[a1], [a2], . . . , [an − 1], [1]],
if an > 0.

The last key observation is the following well-known fact about continued
fractions.

Lemma 3. Every continued fraction [a1, a2, . . . , an] can be transformed to a
unique canonical form [β1, β2, . . . , βm], where all βi’s are positive or all nega-
tive integers and m is odd.

Proof. It follows immediately from Euclid’s algorithm. We evaluate first
[a1, a2, . . . , an] = p/q, and using Euclid’s algorithm we rewrite p/q in the de-
sired form. We illustrate the proof with an example. Suppose that p/q = 11/7.
Then

11
7

= 1 +
4
7

= 1 +
1
7
4

= 1 +
1

1 + 3
4

= 1 +
1

1 + 1
4
3

= 1 +
1

1 + 1
1+ 1

3

= [1, 1, 1, 3] = 1 +
1

1 + 1
1+ 1

2+ 1
1

= [1, 1, 1, 2, 1].

This completes the proof.

Note that if T = [[a1], [a2], . . . , [an]] and S = [[b1], [b2], . . . , [bm]] are ra-
tional tangles in canonical form with the same fraction, then it follows from
this lemma that [a1, a2, . . . , an] and [b1, b2, . . . , bm] are canonical continued
fraction forms for the same rational number, and hence are equal term by
term. Thus the uniqueness of canonical forms for continued fractions im-
plies the uniqueness of canonical forms for rational tangles. For example, let
T = [[2], [−3], [5]]. Then F (T ) = [2,−3, 5] = 23/14. But 23/14 = [1, 1, 1, 1, 4],
thus T ∼ [[1], [1], [1], [1], [4]], and this last tangle is the canonical form of T.
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Proof (of Theorem 1). We have now assembled all the ingredients for the
proof of Theorem 1. In one direction, suppose that rational tangles T and
S are isotopic. Then each is isotopic to its canonical form T ′ and S′ by a
sequence of flypes. Hence the alternating tangles T ′ and S′ are isotopic to
one another. By the Tait conjecture, there is a sequence of flypes from T ′

to S′. Hence there is a sequence of flypes from T to S. One verifies that the
fraction as we defined it is invariant under flypes. Hence T and S have the
same fraction. In the other direction, suppose that T and S have the same
fraction. Then, by the remark above, they have identical canonical forms to
which they are isotopic, and therefore they are isotopic to each other. This
completes the proof of the theorem.

5.4 Alternate Definitions of the Tangle Fraction

In the last section and in [13] the fraction of a rational tangle is defined directly
from its combinatorial structure, and we verify the topological invariance of
the fraction using the Tait conjecture.

In [13] we give yet another definition of the fraction for rational tangles by
using colouring of the tangle arcs. There are definitions that associate a frac-
tion F (T ) (including 0/1 and 1/0) to any two-tangle T irrespective of whether
or not it is rational. The first definition is due to John Conway in [4] using
the Alexander polynomial of the knots N(T ) and D(T ). In [8] an alternate
definition is given that uses the bracket polynomial of the knots N(T ) and
D(T ), and in [25] the fraction of a tangle is related to the conductance of an
associated electrical network. In all these definitions the fraction is by defini-
tion an isotopy invariant of tangles. Below we discuss the bracket polynomial
and colouring definitions of the fraction.

5.4.1 F (T ) Through the Bracket Polynomial

In this section we discuss the structure of the bracket state model for the Jones
polynomial [12, 26] and how to construct the tangle fraction by using this
technique. We first construct the bracket polynomial (state summation), which
is a regular isotopy invariant (invariance under all but the Reidemeister move
I). The bracket polynomial can be normalized to produce an invariant of all the
Reidemeister moves. This invariant is known as the Jones polynomial [27, 28].
The Jones polynomial was originally discovered by a different method.

The bracket polynomial, 〈K〉 = 〈K〉(A), assigns to each unoriented link
diagram K a Laurent polynomial in the variable A, such that

1. If K and K ′ are regularly isotopic diagrams, then 〈K〉 = 〈K ′〉.
2. If K � O denotes the disjoint union of K with an extra unknotted and

unlinked component O (also called “loop” or “simple closed curve” or
“Jordan curve”), then

〈K �O〉 = δ〈K〉,
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where
δ = −A2 −A−2.

3. 〈K〉 satisfies the following formulas

〈χ〉 = A <�> +A−1〈)(〉

〈χ〉 = A−1 <�> +A〈)(〉,

where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the
letter chi, χ, denotes a crossing where the curved line is crossing over the
straight segment. The barred letter denotes the switch of this crossing, where
the curved line is undercrossing the straight segment. The above formulas can
be summarized by the single equation

〈K〉 = A〈SLK〉 + A−1〈SRK〉.
In this text formula we have used the notations SLK and SRK to indicate

the two new diagrams created by the two smoothings of a single crossing in
the diagram K. That is, K, SLK and SRK differ at the site of one crossing
in the diagram K. These smoothings are described as follows. Label the four
regions locally incident to a crossing by the letters L and R, with L labelling
the region to the left of the undercrossing arc for a traveller who approaches
the overcrossing on a route along the undercrossing arc. There are two such
routes, one on each side of the overcrossing line. This labels two regions with
L. The remaining two are labelled R. A smoothing is of type L if it connects
the regions labelled L, and it is of type R if it connects the regions labelled
R, see Fig. 5.12.

It is easy to see that Properties 2 and 3 define the calculation of the bracket
on arbitrary link diagrams. The choices of coefficients (A and A−1) and the
value of δ make the bracket invariant under the Reidemeister moves II and
III (see [12]). Thus Property 1 is a consequence of the other two properties.

In order to obtain a closed formula for the bracket, we now describe it as
a state summation. Let K be any unoriented link diagram. Define a state, S,
of K to be a choice of smoothing for each crossing of K. There are two choices
for smoothing a given crossing, and thus there are 2N states of a diagram with
N crossings. In a state we label each smoothing with A or A−1 according to
the left–right convention discussed in Property 3 (see Fig. 5.12). The label
is called a vertex weight of the state. There are two evaluations related to a
state. The first one is the product of the vertex weights, denoted

〈K|S〉.

The second evaluation is the number of loops in the state S, denoted

||S||.
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Fig. 5.12. Bracket smoothings

Define the state summation, 〈K〉, by the formula

〈K〉 =
∑

S

〈K|S〉 δ||S||−1.

It follows from this definition that 〈K〉 satisfies the equations

〈χ〉 = A <�> +A−1 <)(>,

〈K �O〉 = δ 〈K〉,
〈O〉 = 1.

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with an
A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equations are clear from the formula defining the
state summation. Hence this state summation produces the bracket polyno-
mial as we have described it at the beginning of the section.

In computing the bracket, one finds the following behaviour under Reide-
meister move I:

〈γ〉 = −A3 <�>

and
〈γ〉 = −A−3 <�>,

where γ denotes a curl of positive type as indicated in Fig. 5.13, and γ indicates
a curl of negative type, as also seen in this figure. The type of a curl is the sign
of the crossing when we orient it locally. Our convention of signs is also given
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Fig. 5.13. Crossing signs and curls

in Fig. 5.13. Note that the type of a curl does not depend on the orientation
we choose. The small arcs on the right-hand side of these formulas indicate
the removal of the curl from the corresponding diagram.

The bracket is invariant under regular isotopy and can be normalized to
an invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K)〈K〉(A),

where we chose an orientation for K, and where w(K) is the sum of the
crossing signs of the oriented link K. w(K) is called the writhe of K. The
convention for crossing signs is shown in Fig. 5.13.

By a change of variables one obtains the original Jones polynomial, VK(t),
for oriented knots and links from the normalized bracket:

VK(t) = fK(t−1/4).

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute fK(A) for the trefoil knot T and determine that fT (A)
is not equal to fT (A−1) = f−T (A). This shows that the trefoil is not ambient
isotopic to its mirror image, a fact that is quite tricky to prove by classical
methods.

For two-tangles, we do smoothings on the tangle diagram until there are
no crossings left. As a result, a state of a two-tangle consists in a collection
of loops in the tangle box, plus simple arcs that connect the tangle ends. The
loops evaluate to powers of δ, and what is left is either the tangle [0] or the
tangle [∞], since [0] and [∞] are the only ways to connect the tangle inputs
and outputs without introducing any crossings in the diagram. In analogy to
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knots and links, we can find a state summation formula for the bracket of the
tangle, denoted 〈T 〉, by summing over the states obtained by smoothing each
crossing in the tangle. For this we define the remainder of a state, denoted
RS , to be either the tangle [0] or the tangle [∞]. Then the evaluation of 〈T 〉
is given by

〈T 〉 =
∑

S

< T |S > δ||S||〈RS〉,

where 〈T |S〉 is the product of the vertex weights (A or A−1) of the state S
of T . The above formula is consistent with the formula for knots obtained by
taking the closure N(T ) or D(T ). In fact, we have the following formula:

〈N(T )〉 =
∑

S

〈T |S〉δ||S||〈N(RS)〉.

Note that 〈N([0])〉 = δ and 〈N([∞])〉 = 1. A similar formula holds for 〈D(T )〉.
Thus, 〈T 〉 appears as a linear combination with Laurent polynomial coeffi-
cients of 〈[0]〉 and 〈[∞]〉, i.e. 〈T 〉 takes values in the free module over Z[A,A−1]
with basis {〈[0]〉, 〈[∞]〉}. Notice that two elements in this module are equal
iff the corresponding coefficients of the basis elements coincide. Note also that
〈T 〉 is an invariant of regular isotopy with values in this module. We have just
proved the following:

Lemma 4. Let T be any two-tangle and let 〈T 〉 be the formal expansion of
the bracket on this tangle. Then there exist elements nT (A) and dT (A) in
Z[A,A−1], such that

〈T 〉 = dT (A)〈[0]〉 + nT (A)〈[∞]〉,
and nT (A) and dT (A) are regular isotopy invariants of the tangle T .

In order to evaluate 〈N(T )〉 in the formula above we need only apply the
closure N to [0] and [∞]. More precisely, we have:

Lemma 5. 〈N(T )〉 = dT δ + nT and 〈D(T )〉 = dT + nT δ.

Proof. Since the smoothings of crossings do not interfere with the closure
(N or D), the closure will carry through linearly to the whole sum of 〈T 〉.
Thus,

〈N(T )〉 = dT (A)〈N([0])〉 + nT (A)〈N([∞])〉 = dT (A)δ + nT (A),

〈D(T )〉 = dT (A)〈D([0])〉 + nT (A)〈D([∞])〉 = dT (A) + nT (A)δ.

We define now the polynomial fraction, fracT (A), of the two-tangle T to
be the ratio

fracT (A) =
nT (A)
dT (A)

in the ring of fractions of Z[A,A−1] with a formal symbol ∞ adjoined.
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Lemma 6. fracT (A) is an invariant of ambient isotopy for two-tangles.

Proof. Since dT and nT are regular isotopy invariants of T , it follows that
fracT (A) is also a regular isotopy invariant of T . Suppose now Tγ is T with
a curl added. Then 〈Tγ〉 = (−A3)〈T 〉 (same remark for γ̄). So, nTγ(A) =
−A3nT (A) and dTγ(A) = −A3dT (A). Thus, nTγ/dTγ = nT /dT . This shows
that fracT is also invariant under the Reidemeister move I, and hence an
ambient isotopy invariant.

Lemma 7. Let T and S be two two-tangles. Then, we have the following for-
mula for the bracket of the sum of the tangles.

〈T + S〉 = dT dS〈[0]〉 + (dTnS + nT dS + nSδ)〈[∞]〉.

Thus
fracT+S = fracT + fracS +

nSδ

dT dS
.

Proof. We do first the smoothings in T leaving S intact, and then in S:

< T + S > = dT 〈[0] + S〉 + nT 〈[∞] + S〉
= dT 〈S〉 + nT 〈[∞] + S〉
= dT (dS〈[0]〉 + nS〈[∞]〉)

+nT (dS〈[∞] + [0]〉 + nS〈[∞] + [∞]〉)
= dT (dS〈[0]〉 + nS〈[∞]〉)+nT (dS〈[∞]〉 + nSδ〈[∞]〉)
= dT dS〈[0]〉 + (dTnS + nT dS + nSδ)〈[∞]〉.

Thus, nT+S = (dTnS +nT dS +nSδ) and dT+S = dT dS . A straightforward
calculation gives now fracT+S .

As we see from Lemma 4, fracT (A) will be additive on tangles if

δ = −A2 −A−2 = 0.

Moreover, from Lemma 2 we have for δ = 0, 〈N(T )〉 = nT , 〈D(T )〉 = dT .
This nice situation will be our main object of study in the rest of this section.
Now, if we set A =

√
i where i2 = −1, then it is

δ = −A2 −A−2 = −i− i−1 = −i + i = 0.

For this reason, we shall henceforth assume that A takes the value
√

i. So
〈K〉 will denote 〈K〉(

√
i) for any knot or link K.

We now define the two-tangle fraction F (T ) by the following formula:

F (T ) = i
nT (

√
i)

dT (
√

i)
.
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We will let n(T ) = nT (
√

i) and d(T ) = dT (
√

i), so that

F (T ) = i
n(T )
d(T )

.

Lemma 8. The two-tangle fraction has the following properties.

1. F (T ) = i 〈N(T )〉/〈D(T )〉, and it is a real number or ∞,
2. F (T + S) = F (T ) + F (S),
3. F ([0]) = 0

1 ,
4. F ([1]) = 1

1 ,
5. F ([∞]) = 1

0 ,
6. F (−T ) = −F (T ), in particular F ([−1]) = − 1

1 ,
7. F (1/T ) = 1/F (T ),
8. F (T r) = −1/F (T ).

As a result we conclude that for a tangle obtained by arithmetic operations
from integer tangles [n], the fraction of that tangle is the same as the fraction
obtained by doing the same operations to the corresponding integers. (This
will be studied in detail in the next section.)

Proof. The formula F (T ) = i 〈N(T )〉/〈D(T )〉 and Statement 2 follow from
the observations above about δ = 0. In order to show that F (T ) is a real
number or ∞ we first consider 〈K〉: = 〈K〉(

√
i), for K a knot or link, as in the

hypotheses prior to the lemma. Then we apply this information to the ratio
i 〈N(T )〉/〈D(T )〉.

Let K be any knot or link. We claim that then 〈K〉 = ωp, where ω is a
power of

√
i and p is an integer. In fact, we will show that each non-trivial state

of K contributes ±ω to 〈K〉. In order to show this, we examine how to get from
one non-trivial state to another. It is a fact that, for any two states, we can get
from one to the other by resmoothing a subset of crossings. It is possible to get
from any single loop state (and only single loop states of K contribute to 〈K〉,
since δ = 0) to any other single loop state by a series of double resmoothings.
In a double resmoothing we resmooth two crossings, such that one of the
resmoothings disconnects the state and the other reconnects it. (See Fig. 5.14
for an illustration.) Now consider the effect of a double resmoothing on the
evaluation of one state. Two crossings change. If one is labelled A and the
other A−1, then there is no net change in the evaluation of the state. If both
are A, then we go from A2P (P is the rest of the product of state labels) to
A−2P. But A2 = i and A−2 = −i. Thus if one state contributes ω = ip, then
the other state contributes −ω = −ip. These remarks prove the claim.

Now, a state that contributes non-trivially to N(T ) must have the form
of the tangle [∞]. We will show that if S is a state of T contributing non-
trivially to 〈N(T )〉 and S′ a state of T contributing non-trivially to 〈D(T )〉,
then 〈S〉/〈S′〉 = ±i. Here 〈S〉 denotes the product of the vertex weights for S,
and < S′ > is the product of the vertex weights for S′. If this ratio is verified
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S

double

resmoothing

S `

Fig. 5.14. A double resmoothing

[0]  -  [     ]  interchange

S `S

contribute to N contribute to D

A
A

-1

Fig. 5.15. Non-trivial states

for some pair of states S, S′, then it follows from the first claim that it is
true for all pairs of states, and that 〈N(T )〉 = ωp, 〈D(T )〉 = ω′q, p, q ∈ Z

and ω/ω′ = 〈S〉/〈S′〉 = ±i. Hence 〈N(T )〉/〈D(T )〉 = ±i p/q, where p/q is a
rational number (or q = 0). This will complete the proof that F (T ) is real or
∞.

To see this second claim we consider specific pairs of states as in Fig. 5.15.
We have illustrated representative states S and S′ of the tangle T . We obtain
S′ from S by resmoothing at one site that changes S from an [∞] tangle to
the [0] tangle underlying S′. Then 〈S〉/〈S′〉 = A±2 = ±i. If there is no such
resmoothing site available, then it follows that D(T ) is a disjoint union of
two diagrams, and hence 〈D(T )〉 = 0 and F (T ) = ∞. This does complete the
proof of Statement 1.
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At δ = 0 we also have:

〈N([0]〉 = 0, 〈D([0])〉 = 1, 〈N([∞])〉 = 1, 〈D([∞])〉 = 0, and so, the
evaluations 3–5 are easy. For example, note that

〈[1]〉 = A〈[0]〉 + A−1〈[∞]〉,

hence

F ([1]) = i
A−1

A
= i A−2 = i (i−1) = 1.

To have the fraction value 1 for the tangle [1] is the reason that in the
definition of F (T ) we normalized by i. Statement 6 follows from the fact that
the bracket of the mirror image of a knot K is the same as the bracket of
K, but with A and A−1 switched. For proving 7 we observe first that for any
2-tangle T , d(1/T ) = n(T ) and n(1/T ) = d(T ), where the overline denotes
the complex conjugate. Complex conjugates occur because A−1 = A when
A =

√
i. Now, since F (T ) is real, we have

F ( 1
T ) = i d(T )/n(T ) = −i d(T )/n(T ) = 1/(i n(T )/d(T )) = 1/F (T ) =

1/F (T ).

Statement 8 follows immediately from 6 and 7. This completes the proof.

For a related approach to the well definedness of the two-tangle frac-
tion, the reader should consult [29]. The double resmoothing idea originates
from [30].

Remark 2 For any knot or link K we define the determinant of K by the
formula

Det(K) := |〈K〉(
√

i)|,

where |z| denotes the modulus of the complex number z. Thus we have the
formula

|F (T )| =
Det(N(T ))
Det(D(T ))

for any two-tangle T .
In other approaches to the theory of knots, the determinant of the knot is

actually the determinant of a certain matrix associated either to the diagram
for the knot or to a surface whose boundary is the knot. (See [7, 24] for
more information on these connections). Conway’s original definition of the
fraction [4] is ∆N(T )(−1)/∆D(T )(−1) where ∆K(−1) denotes the evaluation
of the Alexander polynomial of a knot K at the value −1. In fact, |∆K(−1)| =
Det(K), and with appropriate attention to signs, the Conway definition and
our definition using the bracket polynomial coincide for all two-tangles.
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5.4.2 The Fraction Through Colouring

We conclude this section by giving an alternate definition of the fraction
that uses the concept of colouring of knots and tangles. We colour the arcs
of the knot/tangle with integers, using the basic colouring rule that if two
undercrossing arcs coloured α and γ meet at an overcrossing arc coloured β,
then α + γ = 2β. We often think of one of the undercrossing arc colours as
determined by the other two colours. Then one writes γ = 2β − α.

It is easy to verify that this colouring method is invariant under the Rei-
demeister moves in the following sense: Given a choice of colouring for the
tangle/knot, there is a way to re-colour it each time a Reidemeister move is
performed, so that no change occurs to the colours on the external strands of
the tangle (so that we still have a valid colouring). This means that a colour-
ing potentially contains topological information about a knot or a tangle. In
colouring a knot (and also many non-rational tangles) it is usually necessary
to restrict the colours to the set of integers modulo N for some modulus N .
For example, in Fig. 5.16 it is clear that the colour set Z/3Z = {0, 1, 2} is
forced for colouring a trefoil knot. When there exists a colouring of a tangle
by integers, so that it is not necessary to reduce the colours over some modulus
we shall say that the tangle is integrally colourable.

It turns out that every rational tangle is integrally colourable: To see this
choose two “colours” for the initial strands (e.g. the colours 0 and 1) and
colour the rational tangle as you create it by successive twisting. We call
the colours on the initial strands the starting colours. (see Fig. 5.17 for an
example). It is important that we start colouring from the initial strands,
because then the colouring propagates automatically and uniquely. If one
starts from somewhere else, one might get into an edge with an undetermined
colour. The resulting coloured tangle now has colours assigned to its external
strands at the northwest, northeast, southwest and southeast positions. Let
NW (T ), NE(T ), SW (T ) and SE(T ) denote these respective colours of the
coloured tangle T and define the colour matrix of T , M(T ), by the equation

M(T ) =
[
NW (T ) NE(T )
SW (T ) SE(T )

]
.

0

1 2 3 4

0

1 2 3

0 = 3

α

β
2β − α

4

1 = 4

Fig. 5.16. The colouring rule, integral and modular colouring
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or
00

0

0

1 1

1

1

1

1-1

1

0

0

0

2

0

1
2 3 4

3

-3

-6
11

18

T = [2] + 1/([2] + 1/[3])

F(T) = 17/7 = f(T)

Fig. 5.17. Colouring rational tangles

Definition 4 To a rational tangle T with colour matrix M(T ) =
[
a b
c d

]
we

associate the number
f(T ) :=

b− a

b− d
∈ Q ∪∞.

It turns out that the entries a, b, c, d of a colour matrix of a rational tangle
satisfy the “diagonal sum rule”: a + d = b + c.

Proposition 1 The number f(T ) is a topological invariant associated with
the tangle T . In fact, f(T ) has the following properties:

1. f(T + [±1]) = f(T ) ± 1,

2. f(− 1
T ) = − 1

f(T ) ,

3. f(−T ) = −f(T ),

4. f( 1
T ) = 1

f(T ) ,

5. f(T ) = F (T ).

Thus the colouring fraction is identical to the arithmetical fraction defined
earlier.

It is easy to see that f([0]) = 0
1 , f([∞]) = 1

0 , f([±1]) = ±1. Hence State-
ment 5 follows by induction. For proofs of all statements above as well as for
a more general set-up we refer the reader to our study [13]. This definition is
quite elementary, but applies only to rational tangles and tangles generated
from them by the algebraic operations of “+” and “∗”.

In Fig. 5.17 we have illustrated a colouring over the integers for the tangle
[[2], [2], [3]] such that every edge is labelled by a different integer. This is al-
ways the case for an alternating rational tangle diagram T. For the numerator
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closure N(T ) one obtains a colouring in a modular number system. For exam-
ple in Fig. 5.17 the colouring of N(T ) will be in Z/17 Z, and it is easy to check
that the labels remain distinct in this example. For rational tangles, this is
always the case when N(T ) has a prime determinant, see [13] and [31]. It is
part of a more general conjecture about alternating knots and links [32, 33].

5.4.3 The Fraction Through Conductance

Conductance is a quantity defined in electrical networks as the inverse of
resistance. For pure resistances, conductance is a positive quantity. Negative
conductance corresponds to amplification, and is commonly included in the
physical formalism. One defines the conductance between two vertices in a
graph (with positive or negative conductance weights on the edges of the
graph) as a sum of weighted trees in the graph divided by a sum of weighted
trees of the same graph, but with the two vertices identified. This definition
allows negative values for conductance and it agrees with the classical one.
Conductance satisfies familiar laws of parallel and series connection as well as
a star-triangle relation.

By associating to a given knot or link diagram the corresponding signed
checkerboard graph (see [13, 25] for a definition of this well-known association
of graph to link diagram), one can define [25] the conductance of a knot or
link between any two regions that receive the same colour in the checkerboard
graph. The conductance of the link between these two regions is an isotopy
invariant of the link (with motion restricted to Reidemeister moves that do
not pass across the selected regions). This invariance follows from properties
of series/parallel connection and the star-triangle relation. These circuit laws
turn out to be images of the Reidemeister moves under the translation from
knot or link diagram to checkerboard graph! For a two-tangle we take the
conductance to be the conductance of the numerator of the tangle, between
the two bounded regions adjacent to the closures at the top and bottom of
the tangle.

The conductance of a two-tangle turns out to be the same as the fraction
of the tangle. This provides yet another way to define and verify the isotopy
invariance of the tangle fraction for any two-tangle.

5.5 The Classification of Unoriented Rational Knots

By taking their numerators or denominators rational tangles give rise to a
special class of knots, the rational knots. We have seen so far that rational
tangles are directly related to finite continued fractions. We carry this insight
further into the classification of rational knots (Schubert’s theorems). In this
section we consider unoriented knots, and by Remark 3.1 we will be using
the three-strand-braid representation for rational tangles with odd number of
terms. Also, by Lemma 2, we may assume all rational knots to be alternating.
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Note that we only need to take numerator closures, since the denominator
closure of a tangle is simply the numerator closure of its rotate.

As already mentioned in the introduction, it may happen that two rational
tangles are non-isotopic but have isotopic numerators. The simplest instance of
this phenomenon is adding n twists at the bottom of a tangle T , see Fig. 5.18.
This operation does not change the knot N(T ), i.e. N(T ∗1/[n]) ∼ N(T ), but
it does change the tangle, since F (T ∗ 1/[n]) = F (1/([n] + 1/T )) = 1/(n +
1/F (T )); so, if F (T ) = p/q, then F (T ∗ 1/[n]) = p/(np + q). Hence, if we set
np + q = q′ we have q ≡ q′(mod p), just as Theorem 2 dictates. Note that
reducing all possible bottom twists implies |p| > |q|.

Another key example of the arithmetic relationship of the classification of
rational knots is illustrated in Fig. 5.19. Here we see that the “palindromic”
tangles

T = [[2], [3], [4]] = [2] +
1

[3] + 1
[4]

TT

*N(T) ~ N(T       ) 
[n]
_1

[n]
_1

~

Fig. 5.18. Twisting the bottom of a tangle

 T = [2] + 1/( [3] + 1/[4] ) S = [4] + 1/( [3] + 1/[2] )

~

N(T) = N(S)

Fig. 5.19. An instance of the palindrome equivalence
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and
S = [[4], [3], [2]] = [4] +

1
[3] + 1

[2]

both close to the same rational knot, shown at the bottom of the figure. The
two tangles are different, since they have different corresponding fractions:

F (T ) = 2 +
1

3 + 1
4

=
30
13

and F (S) = 4 +
1

3 + 1
2

=
30
7

.

Note that the product of 7 and 13 is congruent to 1 modulo 30.

More generally, consider the following two fractions:

F = [a, b, c] = a +
1

b + 1
c

and G = [c, b, a] = c +
1

b + 1
a

.

We find that

F = a + c
1

cb + 1
=

abc + a + c

bc + 1
=

P

Q
,

while

G = c + a
1

ab + 1
=

abc + c + a

ab + 1
=

P

Q′ .

Thus we found that F = P/Q and G = P/Q′, where

QQ′ = (bc + 1)(ab + 1) = ab2c + ab + bc + 1 = bP + 1.

Assuming that a, b and c are integers, we conclude that

QQ′ ≡ 1 (modP ).

This pattern generalizes to arbitrary continued fractions and their palin-
dromes (obtained by reversing the order of the terms), i.e. If {a1, a2, . . . , an} is
a collection of n non-zero integers, and if A = [a1, a2, . . . , an] = P/Q and B =
[an, an−1, . . . , a1] = P ′/Q′, then P = P ′ andQQ′ ≡ (−1)n+1(modP ). We will
be referring to this as the palindrome theorem. The palindrome theorem is a
known result about continued fractions. (For example, see [5] and [17]). Note
that we need n to be odd in the previous congruence. This agrees with Re-
mark 3.1 that without loss of generality the terms in the continued fraction
of a rational tangle may be assumed to be odd.

Finally, Fig. 5.20 illustrates another basic example for the unoriented Schu-
bert theorem. The two tangles R = [1]+1/[2] and S = [−3] are non-isotopic by
the Conway theorem, since F (R) = 1 + 1/2 = 3/2 while F (S) = −3 = 3/− 1.
But they have isotopic numerators: N(R) ∼ N(S), the left-handed trefoil.
Now 2 is congruent to −1 modulo 3, confirming Theorem 2.

We now analyse the above example in general. From the analysis of the
bottom twists we can assume without loss of generality that a rational tangle R
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SR += [1] [-3]=
[2]
_1

~

Fig. 5.20. An example of the special cut

T T
open

to obtain
K = N([1] +T) = = [1] +T 

Fig. 5.21. A standard cut

has fraction P/Q, for |P | > |Q|. Thus R can be written in the form R = [1]+T
or R = [−1] + T. We consider the rational knot diagram K = N([1] + T ), see
Fig. 5.21. (We analyse N([−1] + T ) in the same way.) The tangle [1] + T is
said to arise as a standard cut on K.

Notice that the indicated horizontal crossing of N([1] + T ) could also be
seen as a vertical one. So we could also cut the diagram K at the two other
marked points (see Fig. 5.22) and still obtain a rational tangle, since T is
rational. The tangle obtained by cutting K in this second pair of points is said
to arise as a special cut on K. Figure 5.22 demonstrates that the tangle of the
special cut is the tangle [−1]−1/T. So we have N([1]+T ) ∼ N([−1]−1/T ).
Suppose now F (T ) = p/q. Then F ([1] + T ) = 1 + p/q = (p + q)/q, while
F ([−1] − 1/T ) = −1 − q/p = (p + q)/(−p), so the two rational tangles that
give rise to the same knot K are not isotopic. Since −p ≡ q mod(p + q), this
equivalence is another example for Theorem 2. In Fig. 5.22 if we took T = 1/[2]
then [−1] − 1/T = [−3] and we would obtain the example of Fig. 5.20.

The proof of Theorem 2 can now proceed in two stages. First, given a
rational knot diagram we look for all possible places where we could cut and
open it to a rational tangle. The crux of our proof in [17] is the fact that
all possible “rational cuts” on a rational knot fall into one of the basic cases
that we have already discussed, i.e. we have the standard cuts, the palindrome
cuts and the special cuts. In Fig. 5.23 we illustrate on a representative rational
knot, all the cuts that exhibit that knot as a closure of a rational tangle. Each
pair of points is marked with the same number. The arithmetic is similar to
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special cut

~

~ = [-1] - 

open

to obtain

_1
T

T

K = N([1] +T) = T

T

T

Fig. 5.22. A special cut

1
2 3 4 5 4 3 2 1

1
2 3 4 5 4 3 2

1

1 1 2 2 3 3 5 5 6 6 7 7

Standard Cuts Palindrome Cuts

Special Cuts

44

1 1 2 2 3 3 5 5 6 6 7 744

Fig. 5.23. Standard, palindrome and special cuts

the cases that have been already verified. It is convenient to say that reduced
fractions p/q and p′/q′ are arithmetically equivalent, written p/q ∼ p′/q′ if
p = p′ and either qq′ ≡ 1 (mod p) or q ≡ q′ (mod p). In this language,
Schubert’s theorem states that two rational tangles close to form isotopic
knots if and only if their fractions are arithmetically equivalent.

In Fig. 5.24 we illustrate one example of a cut that is not allowed since it
opens the knot to a non-rational tangle.

In the second stage of the proof we want to check the arithmetic equiv-
alence for two different given knot diagrams, numerators of some rational
tangles. By Lemma 2 the two knot diagrams may be assumed alternating, so
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open

Fig. 5.24. A non-rational cut

by the Tait conjecture they will differ by flypes. We analyse all possible flypes
to prove that no new cases for study arise. Hence the proof becomes complete
at that point. We refer the reader to our study [17] for details.

Remark 3 The original proof of the classification of unoriented rational
knots by Schubert [14] proceeded by a different route than the proof we have
just sketched. Schubert used a two-bridge representation of rational knots
(representing the knots and links as diagrams in the plane with two special
overcrossing arcs, called the bridges). From the two-bridge representation,
one could extract a fraction p/q, and Schubert showed by means of a canon-
ical form, that if two such presentations are isotopic, then their fractions are
arithmetically equivalent (in the sense that we have described here). On the
other hand, Seifert [14] observed that the twofold branched covering space
of a two-bridge presentation with fraction p/q is a lens space of type L(p, q).
Lens spaces are a particularly tractable set of three manifolds, and it is known
by work of Reidemeister and Franz [15, 34] that L(p, q) is homeomorphic to
L(p′, q′) if and only if p/q and p′/q′ are arithmetically equivalent. Furthermore,
one knows that if knots K and K ′ are isotopic, then their twofold branched
covering spaces are homeomorphic. Hence it follows that if two rational knots
are isotopic, then their fractions are arithmetically equivalent (via the re-
sult of Reidemeister and Franz classifying lens spaces). In this way Schubert
proved that two rational knots are isotopic if and only if their fractions are
arithmetically equivalent.

5.6 Rational Knots and Their Mirror Images

In this section we give an application of Theorem 2. An unoriented knot or
link K is said to be achiral if it is topologically equivalent to its mirror image
−K. If a link is not equivalent to its mirror image then it is said be chiral.
One then can speak of the chirality of a given knot or link, meaning whether
it is chiral or achiral. Chirality plays an important role in the applications of
knot theory to chemistry and molecular biology. It is interesting to use the
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classification of rational knots and links to determine their chirality. Indeed,
we have the following well-known result (for example see [5] and also page 24,
Exercise 2.1.4 in [9]):

Theorem 4. Let K = N(T ) be an unoriented rational knot or link, presented
as the numerator of a rational tangle T. Suppose that F (T ) = p/q with p and
q relatively prime. Then K is achiral if and only if q2 ≡ −1 (mod p). It follows
that achiral rational knots and links are all numerators of rational tangles of
the form [[a1], [a2], . . . , [ak], [ak], . . . , [a2], [a1]] for any integers a1, . . . , ak.

Note that in this description we are using a representation of the tangle
with an even number of terms. The leftmost twists [a1] are horizontal, thus
the rightmost starting twists [a1] are vertical.

Proof. With −T the mirror image of the tangle T , we have that −K = N(−T )
and F (−T ) = p/(−q). If K is topologically equivalent to −K, then N(T )
and N(−T ) are equivalent, and it follows from the classification theorem for
rational knots that either q(−q) ≡ 1 (mod p) or q ≡ −q (mod p). Without loss
of generality we can assume that 0 < q < p. Hence 2q is not divisible by p
and therefore it is not the case that q ≡ −q (mod p). Hence q2 ≡ −1 (mod p).

Conversely, if q2 ≡ −1 (mod p), then it follows from the palindrome the-
orem (described in the previous section) [17] that the continued fraction ex-
pansion of p/q has to be symmetric with an even number of terms. It is then
easy to see that the corresponding rational knot or link, say K = N(T ), is
equivalent to its mirror image. One rotates K by 180◦ in the plane and swings
an arc, as Fig. 5.25 illustrates. This completes the proof.

In [35] the authors find an explicit formula for the number of achiral
rational knots among all rational knots with n crossings.

180�  rotation

K

swing arc

Fig. 5.25. An achiral rational link
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5.7 The Oriented Case

Oriented rational knots and links arise as numerator closures of oriented ratio-
nal tangles. In order to compare oriented rational knots via rational tangles
we need to examine how rational tangles can be oriented. We orient ratio-
nal tangles by choosing an orientation for each strand of the tangle. Here we
are only interested in orientations that yield consistently oriented knots upon
taking the numerator closure. This means that the two top end arcs have to
be oriented one inward and the other outward. Same for the two bottom end
arcs. We shall say that two oriented rational tangles are isotopic if they are
isotopic as unoriented tangles, by an isotopy that carries the orientation of
one tangle to the orientation of the other. Note that, since the end arcs of
a tangle are fixed during a tangle isotopy, this means that the tangles must
have identical orientations at their four end arcs NW, NE, SW, SE. It follows
that if we change the orientation of one or both strands of an oriented rational
tangle we will always obtain a non-isotopic oriented rational tangle.

Reversing the orientation of one strand of an oriented rational tangle may
or may not give rise to isotopic oriented rational knots. Figure 5.26 illustrates
an example of non-isotopic oriented rational knots, which are isotopic as un-
oriented knots.

Reversing the orientation of both strands of an oriented rational tangle will
always give rise to two isotopic oriented rational knots or links. We can see
this by doing a vertical flip, as Fig. 5.27 demonstrates. Using this observation
we conclude that, as far as the study of oriented rational knots is concerned,
all oriented rational tangles may be assumed to have the same orientation for

~
close close

Fig. 5.26. Non-isotopic oriented rational Links

,

180 o

~

Fig. 5.27. Isotopic oriented rational knots and links
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Type I Type II

Compatible

bottom

twist

Incompatible

Fig. 5.28. Compatible and incompatible orientations

their NW and NE end arcs. We fix this orientation to be downward for the
NW end arc and upward for the NE arc, as in the examples of Fig. 5.26 and
as illustrated in Fig. 5.28. Indeed, if the orientations are opposite of the fixed
ones doing a vertical flip the knot may be considered as the numerator of
the vertical flip of the original tangle. But this is unoriented isotopic to the
original tangle (recall Sect. 5.2, Fig. 5.7), whilst its orientation pattern agrees
with our convention.

Thus we reduce our analysis to two basic types of orientation for the
four end arcs of a rational tangle. We shall call an oriented rational tan-
gle of type I if the SW arc is oriented upwards and the SE arc is ori-
ented downwards, and of type II if the SW arc is oriented downward and
the SE arc is oriented upward, see Fig. 5.28. From the above remarks,
any tangle is of type I or type II. Two tangles are said to be compati-
ble it they are both of type I or both of type II and incompatible if they
are of different types. In order to classify oriented rational knots seen as
numerator closures of oriented rational tangles, we will always compare com-
patible rational angles. Note that if two oriented tangles are incompatible,
adding a single half twist at the bottom of one of them yields a new
pair of compatible tangles, as Fig. 5.28 illustrates. Note also that adding
such a twist, although it changes the tangle, it does not change the iso-
topy type of the numerator closure. Thus, up to bottom twists, we are
always able to compare oriented rational tangles of the same orientation
type.

We now introduce the notion of connectivity and we relate it to orientation
and the fraction of unoriented rational tangles. We say that an unoriented
rational tangle has connectivity type [0] if the NW end arc is connected to
the NE end arc and the SW end arc is connected to the SE end arc. Similarly,
we say that the tangle has connectivity type [+1] or type [∞] if the end arc
connections are the same as in the tangles [+1] and [∞], respectively. The
basic connectivity patterns of rational tangles are exemplified by the tangles
[0], [∞] and [+1]. We can represent them iconically by the symbols shown
below.
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[0] = �
[∞] =><

[+1] = χ.

Note that connectivity type [0] yields two-component rational links, while
type [+1] or [∞] yields one-component rational links. Also, adding a bottom
twist to a rational tangle of connectivity type [0] will not change the connec-
tivity type of the tangle, while adding a bottom twist to a rational tangle of
connectivity type [∞] will switch the connectivity type to [+1] and vice versa.
While the connectivity type of unoriented rational tangles may be [0], [+1]
or [∞], note that an oriented rational tangle of type I will have connectivity
type [0] or [∞] and an oriented rational tangle of type II will have connectivity
type [0] or [+1].

Further, we need to keep an accounting of the connectivity of rational
tangles in relation to the parity of the numerators and denominators of their
fractions. We refer the reader to our Study [17] for a full account.

We adopt the following notation: e stands for even and o stands for odd.
The parity of a fraction p/q is defined to be the ratio of the parities (e or o)
of its numerator and denominator p and q. Thus the fraction 2/3 is of parity
e/o. The tangle [0] has fraction 0 = 0/1, thus parity e/o; the tangle [∞] has
fraction ∞ = 1/0, thus parity o/e; and the tangle [+1] has fraction 1 = 1/1,
thus parity o/o. We then have the following result.

Theorem 5. A rational tangle T has connectivity type � if and only if its
fraction has parity e/o. T has connectivity type >< if and only if its fraction
has parity o/e. T has connectivity type χ if and only if its fraction has parity
o/o. (Note that the formal fraction of [∞] itself is 1/0.) Thus the link N(T )
has two components if and only if T has fraction F (T ) of parity e/o.

We will now proceed with sketching the proof of Theorem 3. We shall
prove Schubert’s oriented theorem by referring to our previous work on the
unoriented case and then analyzing how orientations and fractions are related.
Our strategy is as follows: Consider an oriented rational knot or link diagram
K in the form N(T ), where T is a rational tangle in continued fraction form.
Then any other rational tangle that closes to this knot N(T ) is available, up
to bottom twists if necessary, as a cut from the given diagram. If two rational
tangles close to give K as an unoriented rational knot or link, then there
are orientations on these tangles, induced from K so that the oriented tangles
close to give K as an oriented knot or link. The two tangles may or may not be
compatible. Thus, we must analyze when, comparing with the standard cut for
the rational knot or link, another cut produces a compatible or incompatible
rational tangle. However, assuming the top orientations are the same, we
can replace one of the two incompatible tangles by the tangle obtained by
adding a twist at the bottom. It is this possible twist difference that gives rise
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to the change from modulus p in the unoriented case to the modulus 2p in
the oriented case. We now perform this analysis. There are many interesting
aspects to this analysis and we refer the reader to our study [17] for these
details. Schubert [14] proved his version of the oriented theorem by using
the two-bridge representation of rational knots and links, see also [6]. We give
a tangle-theoretic combinatorial proof based upon the combinatorics of the
unoriented case.

The simplest instance of the classification of oriented rational knots is
adding an even number of twists at the bottom of an oriented rational tangle
T , see Fig. 5.28. We then obtain a compatible tangle T ∗ 1/[2n], and N(T ∗
1/[2n]) ∼ N(T ). If now F (T ) = p/q, then F (T ∗1/[2n]) = F (1/([2n]+1/T )) =
1/(2n + 1/F (T )) = p/(2np + q). Hence, if we set 2np + q = q′ we have
q ≡ q′(mod 2p), just as the oriented Schubert theorem predicts. Note that
reducing all possible bottom twists implies |p| > |q| for both tangles, if the
two tangles that we compare each time are compatible or for only one, if they
are incompatible.

We then have to compare the special cut and the palindrome cut with
the standard cut. In the oriented case the special cut is easier to see whilst
the palindrome cut requires a more sophisticated analysis. Figure 5.29 illus-
trates the general case of the special cut. In order to understand Fig. 5.29 it
is necessary to also view Fig. 5.22 for the details of this cut.

Recall that if S = [1] + T then the tangle of the special cut on the knot
N([1] + T ) is the tangle S′ = [−1] − 1/T. And if F (T ) = p/q then F ([1] +
T ) = (p + q)/q and F ([−1] − 1/T ) = (p + q)/ − p. Now, the point is that
the orientations of the tangles S and S′ are incompatible. Applying a [+1]
bottom twist to S′ yields S′′ = ([−1]1/T ) ∗ [1], and we find that F (S′′) =
(p+q)/q. Thus, the oriented rational tangles S and S′′ have the same fraction
and by Theorem 1 and their compatibility they are oriented isotopic and the
arithmetics of Theorem 3 is straightforward.

We are left to examine the case of the palindrome cut. For this part of the
proof, we refer the reader to our study [17].

*  

S' = [-1] - 

special

on N(S)

_1
T

TT

S = [1] +T 

bottom

twist

S'' = ([-1] -     )   [+1]  ~  S_1
T

T
cut

Fig. 5.29. The oriented special cut
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5.8 Strongly Invertible Links

An oriented knot or link is invertible if it is oriented isotopic to the link
obtained from it by reversing the orientation of each component. We have
seen (see Fig. 5.27) that rational knots and links are invertible. A link L of
two components is said to be strongly invertible if L is ambient isotopic to
itself with the orientation of only one component reversed. In Fig. 5.30 we
illustrate the link L = N([[2], [1], [2]]). This is a strongly invertible link as is
apparent by a 180◦ vertical rotation. This link is well known as the Whitehead
link, a link with linking number zero. Note that since [[2], [1], [2]] has fraction
equal to 1 + 1/(1 + 1/2) = 8/3 this link is non-trivial via the classification of
rational knots and links. Note also that 3 · 3 = 1 + 1 · 8.

In general we have the following. For our proof, see [17].

Theorem 6. Let L = N(T ) be an oriented rational link with associated tangle
fraction F (T ) = p/q of parity e/o, with p and q relatively prime and |p| >
|q|. Then L is strongly invertible if and only if q2 = 1 + up with u an odd
integer. It follows that strongly invertible links are all numerators of rational
tangles of the form [[a1], [a2], . . . , [ak], [α], [ak], . . . , [a2], [a1]] for any integers
a1, . . . , ak, α.

(See Fig. 5.31 for another example of a strongly invertible link.) In this
case the link is L = N([[3], [1], [1], [1], [3]]) with F (L) = 40/11. Note that
112 = 1 + 3 · 40, fitting the conclusion of Theorem 6.

5.9 Applications to the Topology of DNA

DNA supercoils, replicates and recombines with the help of certain enzymes.
Site-specific recombination is one of the ways nature alters the genetic code
of an organism, either by moving a block of DNA to another position on the

N([[2], [1], [2]]) = W
the Whitehead Link
F(W) = 2+1/(1+1/2) = 8/3
3  3 = 1 + 1  8..

Fig. 5.30. The whitehead link is strongly invertible
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L = N([[3], [1], [1], [1], [3]])

Fig. 5.31. An example of a strongly invertible link

N (      )
[-3]
_1 N (      + [0])

[-3]
_1 N (      + [1])

[-3]
_1

Fig. 5.32. Global picture of recombination

molecule or by integrating a block of alien DNA into a host genome. For a
closed molecule of DNA a global picture of the recombination would be as
shown in Fig. 5.32, where double-stranded DNA is represented by a single
line and the recombination sites are marked with points. This picture can be
interpreted as N(S+[0]) −→ N(S+[1]), for S = 1/[−3] in this example. This
operation can be repeated as in Fig. 5.33. Note that the [0]− [∞] interchange
of Fig. 5.10 can be seen as the first step of the process.

In this depiction of recombination, we have shown a local replacement of
the tangle [0] by the tangle [1] connoting a new cross-connection of the DNA
strands. In general, it is not known without corroborating evidence just what
the topological geometry of the recombination replacement will be. Even in
the case of a single half-twist replacement such as [1], it is certainly not obvious
beforehand that the replacement will always be [+1] and not sometimes the
reverse twist of [−1]. It was at the juncture raised by this question that a
combination of topological methods in biology and a tangle model using knot
theory developed by C. Ernst and D.W. Sumners resolved the issue in some
specific cases. (See [36, 37] and references therein.)

On the biological side, methods of protein coating developed by N. Coz-
zarelli, S.J. Spengler and A. Stasiak et al. in [38] made it possible for the first
time to see knotted DNA in an electron micrograph with sufficient resolution
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K1

K2

K3

K4

Fig. 5.33. Multiple recombinations

to actually identify the topological type of these knots. The protein coating
technique made it possible to design an experiment involving successive DNA
recombinations and to examine the topology of the products. In [38] the knot-
ted DNA produced by such successive recombinations was consistent with the
hypothesis that all recombinations were of the type of a positive half twist as
in [+1]. Then D.W. Sumners and C. Ernst [36] proposed a tangle model for
successive DNA recombinations and showed, in the case of the experiments in
question, that there was no other topological possibility for the recombination
mechanism than the positive half-twist [+1]. This constituted a unique use of
topology as a theoretical underpinning for a problem in molecular biology.

Here is a brief description of the tangle model for DNA recombination. It
is assumed that the initial state of the DNA is described as the numerator
closure N(S) of a substrate tangle S. The local geometry of the recombination
is assumed to be described by the replacement of the tangle [0] with a specific
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tangle R. The results of the successive rounds of recombination are the knots
and links

N(S + R) = K1, N(S + R + R) = K2, N(S + R + R + R) = K3, . . .

Knowing the knots K1,K2,K3, . . . one would like to solve the above system
of equations with the tangles S and R as unknowns.

For such experiments Ernst and Sumners [36] used the classification of ra-
tional knots in the unoriented case, as well as results of Culler, Gordon, Luecke
and Shalen [39] on Dehn surgery to prove that the solutions S + nR must be
rational tangles. These results of Culler, Gordon, Luecke and Shalen show the
topologist under what circumstances a three-manifold with cyclic fundamen-
tal group must be a lens space. By showing when the twofold branched covers
of the DNA knots must be lens spaces, the recombination problems are re-
duced to the consideration of rational knots. This is a deep application of the
three-manifold approach to rational knots and their generalizations.

One can then apply the theorem on the classification of rational knots to
deduce (in these instances) the uniqueness of S and R. Note that, in these
experiments, the substrate tangle S was also pinpointed by the sequence of
knots and links that resulted from the recombination.

Here we solve tangle equations like the above under rationality assump-
tions on all tangles in question. This allows us to use only the mathematical
techniques developed in this chapter. We shall illustrate how a sequence of
rational knots and links

N(S + nR) = Kn, n = 0, 1, 2, 3, . . .

with S and R rational tangles, such that R = [r], F (S) = p/q and p, q, r ∈ Z

(p > 0) determines p/q and r uniquely if we know sufficiently many Kn. We
call this the “DNA knitting machine analysis”.

Theorem 7. Let a sequence Kn of rational knots and links be defined by the
equations Kn = N(S + nR) with specific integers p, q, r (p > 0), where
R = [r], F (S) = p/q. Then p/q and r are uniquely determined if one knows
the topological type of the unoriented links K0,K1, . . . ,KN for any integer
N ≥ |q| − p/qr.

Proof. In this proof we write N(p/q + nr) or N(p + qnr/q) for N(S + nR).
We shall also write K = K ′ to mean that K and K ′ are isotopic links.
Moreover we shall say for a pair of reduced fractions P/q and P/q′ that
q and q′ are arithmetically related relative to P if either q ≡ q′(modP )
or qq′ ≡ 1(modP ). Suppose the integers p, q, r give rise to the sequence of
links K0,K1, . . . Suppose there is some other triple of integers p′, q′, r′ that
give rise to the same sequence of links. We will show uniqueness of p, q, r
under the conditions of the theorem. We shall say “the equality holds for
n” to mean that N((p + qrn)/q) = N((p′ + q′r′n)/q′). We suppose that
Kn = N((p + qrn)/q) as in the hypothesis of the theorem, and suppose that
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there are p′, q′, r′ such that for some n (or a range of values of n to be specified
below) Kn = N((p′ + q′r′n)/q′).

If n = 0 then we have N(p/q) = N(p′/q′). Hence by the classification
theorem we know that p = p′ and that q and q′ are arithmetically related.
Note that the same argument shows that if the equality holds for any two
consecutive values of n, then p = p′. We shall assume henceforth that p = p′.
With this assumption in place, we see that if the equality holds for any n �= 0
then qr = q′r′. Hence we shall assume this as well from now on.

If |p + qrn| is sufficiently large, then the congruences for the arithmetical
relation of q and q′ must be equalities over the integers. Since qq′ = 1 over
the integers can hold only if q = q′ = 1 or −1 we see that it must be the
case that q = q′ if the equality is to hold for sufficiently large n. From this
and the equation qr = q′r′ it follows that r = r′. It remains to determine a
bound on n. In order to be sure that |p + qrn| is sufficiently large, we need
that |qq′| ≤ |p + qrn|. Since q′r′ = qr, we also know that |q′| ≤ |qr|. Hence n
is sufficiently large if |q2r| ≤ |p + qrn|.

If qr > 0 then, since p > 0, we are asking that |q2r| ≤ p + qrn. Hence

n ≥ (|q2r| − p)/(qr) = |q| − (p/qr).

If qr < 0 then for n large we will have |p+ qrn| = −p− qrn. Thus we want
to solve |q2r| ≤ −p− qrn, whence

n ≥ (|q2r| + p)/(−qr) = |q| − (p/qr).

Since these two cases exhaust the range of possibilities, this completes the
proof of the theorem.

Here is a special case of Theorem 7. (See Fig. 5.33.) Suppose that we were
given a sequence of knots and links Kn such that

Kn = N

(
1

[−3]
+ [1] + [1] + . . . + [1]

)
= N

(
1

[−3]
+ n [1]

)
.

We have F (1/[−3] + n [1]) = (3n − 1)/3 and we shall write Kn = N([(3n −
1)/3]). We are told that each of these rational knots is in fact the numerator
closure of a rational tangle denoted

[p/q] + n [r]

for some rational number p/q and some integer r. That is, we are told that
they come from a DNA knitting machine that is using rational tangle patterns.
But we only know the knots and the fact that they are indeed the closures
for p/q = −1/3 and r = 1. By this analysis, the uniqueness is implied by the
knots and links {K1,K2,K3,K4}. This means that a DNA knitting machine
Kn = N(S +nR) that emits the four specific knots Kn = N([(3n− 1)/3]) for
n = 1, 2, 3, 4 must be of the form S = 1/[−3] and R = [1]. It was in this way
(with a finite number of observations) that the structure of recombination in
Tn3 resolvase was determined [37].
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In this version of the tangle model for DNA recombination we have made
a blanket assumption that the substrate tangle S and the recombination tan-
gle R and all the tangles S + nR were rational. Actually, if we assume that
S is rational and that S + R is rational, then it follows that R is an integer
tangle. Thus S and R neccessarily form a DNA knitting machine under these
conditions. It is relatively natural to assume that S is rational on the grounds
of simplicity. On the other hand it is not so obvious that the recombination
tangle should be an integer. The fact that the products of the DNA recom-
bination experiments yield rational knots and links, lends credence to the
hypothesis of rational tangles and hence integral recombination tangles. But
there certainly is a subtlety here, since we know that the numerator closure
of the sum of two rational tangles is always a rational knot or link. In fact, it
is here that some deeper topology shows that certain rational products from
a generalized knitting machine of the form Kn = N(S + nR), where S and R
are arbitrary tangles will force the rationality of the tangles S +nR. We refer
the reader to [36, 40, 41] for details of this approach.
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10. W.B.R. Lickorish, ‘An Introduction to Knot Theory ’, Springer Graduate Texts
in Mathematics 175 (1997)

11. K. Murasugi, ‘Knot Theory and its Applications’, Translated from the 1993
Japanese original by B. Kurpita, Birkhäuser Verlag (1996)
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Linear Behavior of the Writhe Versus
the Number of Crossings in Rational Knots
and Links

C. Cerf and A. Stasiak

Summary. Using the formula introduced in [Proc. Natl Acad. Sci. USA 97, 3795
(2000)], we can predict the 3D writhe of any rational knot or link in its ideal config-
uration, or equivalently, the ensemble average of the 3D writhe of random configura-
tions of it. Here we present a method that allows us to express the writhe as a linear
function of the minimal crossing number within individual Conway families of ratio-
nal knots and links. We discuss the cases of families with slopes ±4/7,±10/7,±1,
and 0. For families with the same slope value, the vertical shift between the corre-
sponding lines can also be computed.

6.1 Introduction

Quantization of writhe in knots is a puzzling phenomenon, which was initially
discussed only among a narrow group of specialists but recently became quite
famous [1]. Let us explain what this concept covers. Writhe (or 3D writhe,
or Wr) is a measure of chirality of oriented closed curves in 3D space. It
corresponds to the average signed number of perceived self-crossings in an
oriented curve when observed from a random direction, where each right-
handed crossing is scored as +1 and each left-handed crossing is scored as −1.
Writhe is usually calculated using a Gauss integral formula [2].

Studies of random walks in a cubic lattice revealed that, while different
realizations of random knots of a given type have stochastically distributed
values of their writhe, the average of writhe over the statistical ensemble
of knots of a given type, like right-handed trefoils for example, reaches a
characteristic value that is independent of the length of the walk [3, 4]. Thus
for example the average writhe of random right-handed trefoils in a cubic
lattice does not change when the number of segments is increased from 34
to 250. The same studies pointed out that there is a constant increase (i.e.,
a quantization) of the average writhe between successive knots belonging to
families of torus knots like 31, 51, 71, 91, etc. or to twist knots like 41, 61, 81, etc.
The specific difference of average writhe between successive knots belonging
to different families depends on the particular family of knots.
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Studies of random knots that are not confined to a lattice also revealed the
same phenomenon. The average writhe over a statistical ensemble of random
walks not confined to a lattice but forming a given knot type was practically
the same as the average writhe of a statistical ensemble of random knots of
the same type in a cubic lattice [2, 4]. The average writhe over a statistical
ensemble of simulated configurations of a given knot closely corresponds to the
time-averaged writhe of a randomly fluctuating long polymeric chain forming
the same knot type. Therefore a freely fluctuating long DNA molecule closed
into a right-handed trefoil, for example, would show the same average writhe as
a freely fluctuating long polyethylene molecule that is also closed into a right-
handed trefoil. The time-averaged values of writhe seem to be independent of
the size of the polymeric chain [2]. In addition the differences of time-averaged
writhe between freely fluctuating successive knots belonging to a given family
seem to be constant [2].

The quantization of writhe observed for statistical ensembles of different
knots is mysteriously reflected by the quantization of writhe for the so-called
ideal knots. Ideal knots are defined as shortest possible paths of cylindrical
tubes with uniform diameter that can still be closed into a given knot type [2].
Numerical simulations revealed that writhe of axial trajectories of unique real-
izations of ideal knots of a given type corresponds to the time-averaged writhe
of freely fluctuating knots of the same type [2]. Therefore unique representa-
tions of ideal knots of a given type “capture” the essential statistical property
of random knots of a given type [5]. To find the average writhe of fluctuating
knots of a given type it becomes therefore much more practical to measure the
writhe of one ideal configuration of this knot instead of simulating thousands
of random configurations of this knot type.

The writhe quantization of knots got even more puzzling when the com-
parison of writhe of ideal knots corresponding to all 85 prime knots with up to
nine crossings revealed that their writhe values occupy only nine well-defined
“levels” [6]. Analyzing writhe of ideal knots in the context of minimal diagrams
of the corresponding knots, it was observed that the 3D writhe was an arith-
metic sum of specific writhe values attributed to right- and left-handed torus
and twist type of crossings in the minimal diagrams of alternating knots [7].
In 2000, we have demonstrated [8] that Wrideal of ideal knots and links (i.e.,
generalization of knots with several closed curves) can be predicted using an
invariant of oriented alternating knots and links, namely the predicted writhe
PWr, which is a linear combination of the nullification writhe wx and the
remaining writhe wy:

PWr =
10
7

wx +
4
7
wy. (6.1)

The nullification writhe wx and the remaining writhe wy are defined as
follows [9]: transform a standard projection by nullifying (or smoothing) suc-
cessive crossings until the unknot is reached, while, at each step, preventing
the diagram from becoming disconnected. Then wx is the sum of the signs
of the nullified crossings and wy is the sum of the signs of the remaining
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crossings. Examples of nullifications are shown in Figs. 6.2–6.4. A discussion
about the coefficients 10/7 and 4/7 can be found in [8] and [5]. Since wx and
wy are topological invariants, so is PWr, i.e., it depends on the topological
type of the knot but not on a particular configuration of it.

The matching between PWr and Wrideal is strikingly good [8, 10]. This
supports the notion that the ideal configuration contains important informa-
tion about knots. Moreover, the fact that the calculation of 3D writhe of ideal
knots can be performed using the minimal planar diagram of the knot greatly
facilitates the calculation of the time-averaged writhe of randomly fluctuat-
ing knotted polymers. Complex simulations of ideal configurations are not
needed but just a simple sort of crossings scoring in any minimal diagram of
the corresponding knot. The method of writhe prediction that we proposed
in [8] can be applied to any minimal diagram of alternating knots and links.

3
2

3

3

2

2

1

0

(3)(2)

(3)(2)(1)

(3)(2)(0)

a

3
2

b

Fig. 6.1. (a) Examples of rational tangles. (b) The closure of a rational tangle gives
rise to a rational link
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If one considers all alternating knots and links, there is no simple function
that can relate the writhe to the minimal crossing number. However, Huang
and Lai [11] used (6.1) to calculate the writhe of ideal knots belonging to
selected families of Conway knots, and observed that within these families the
writhe can be expressed as a linear function of the minimal crossing number.
We show here how to express the writhe as a linear function of the minimal
crossing number in any individual Conway family of rational knots and link
(Fig. 6.1). A related publication has been submitted to the New Journal of
Physics.

6.2 Rational Tangles and Rational Links

Rational tangles and rational links have been introduced by Conway in 1970
[12]. A rational tangle is a region of a knot or link projection composed of a
succession of vertical and horizontal rows of crossings, and is denoted by a
sequence of numbers corresponding to the number of crossings in each row
(see Fig. 6.2a). To avoid confusion, one always has to end with a horizontal
row. If the latter contains no crossing, the sequence will end with (0). All
crossings are done in order for the projection to be alternating (each strand
alternatively goes over and under other strands). Figure 6.2a a shows positive
rational tangles. If each crossing is inversed (i.e., the mirror image is consid-
ered), one gets negative rational tangles that will be denoted by a sequence of
negative numbers. Conway proved that a rational tangle denoted by a mixed
sequence of positive and negative numbers (i.e., a nonalternating projection)
is always topologically equivalent to an alternating projection with all posi-
tive or all negative numbers. We will go on with positive rational tangles only.
Extension to negative rational tangles is obvious.

The closure of a rational tangle is the operation of rejoining the two upper
free ends and the two lower free ends on the projection (see Fig. 6.2b). The
link we obtain is called a rational link (also called two-bridge link or four-
plat). Rational links are completely classified. They all have either one or
two components (let us recall that a one-component link is a knot). Nearly
all knots and links naturally occurring in closed polymer chains are rational
links.

6.3 Writhe of Families of Rational Links

We now examine some families of rational links and calculate their PWr.

6.3.1 Tangles with One Row, Denoted by (a), a Positive Integer

Figure 6.3a shows an example of such a tangle, with a = 5. Since there is only
one row, the minimum crossing number n = a (5 in this case).
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a

a (odd)

+1 crossings

nullification

a (even)

+1 crossings

nullification

a (even)

-1 crossings

nullification

a (even)

a

b c

d e

Fig. 6.2. (a) A rational tangle with one row of a crossings. (b) If a is odd, the
closure of the tangle gives rise to a knot, whose nullification is shown. (c) If a is
even, the closure of the tangle gives rise to a two-component link. Depending on the
orientation chosen for the second component, two different situations occur, shown
in (d) and (e)

a Odd

The rational knot obtained by the closure of such a tangle is the family
containing knots 31, 51, 71, etc. Figure. 6.3b shows the nullification process [9]
applied to those knots. Crossings are successively nullified (or smoothed) until
the unknot is reached, forbidding at each step the apparition of a disconnected
component. The sum of the signs of the nullified crossings is wx, the sum of
the signs of the remaining crossings is wy. In this case, nullifying a−1 positive
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Fig. 6.3. (a) A rational tangle with two rows, containing a and b crossings, re-
spectively. Drawings (b), (c), and (d) show the nullification of the knot obtained
by the closure of the tangle in the cases a odd and b even, a and b even, a even
and b odd, respectively. (e) In the case a and b odd, the closure of the tangle gives
rise to a two-component link. Depending on the orientation chosen for the second
component, two different situations occur, shown in (f) and (g)
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crossings gives rise to the unknot. One cannot nullify the last crossing without
disconnecting the link. So wx = a−1 = n−1 and wy = 1. Using (6.1) we get:

PWr =
10
7

(n− 1) +
4
7

=
10
7

n− 6
7
. (6.2)

a Even

Figure 6.3c shows that the closure of such a tangle gives rise to a two-
component link. There are therefore two possible orientations for the second
component.

(a) Family of links 42
1 + −, 62

1 + +, 82
1 + +, etc. (The symbols + and − refer

to orientation. The convention used can be found in [13].) Figure 6.3d
shows the nullification process applied to those links. Here again, we get
wx = a− 1 = n− 1 and wy = 1. Therefore

PWr =
10
7

(n− 1) +
4
7

=
10
7

n− 6
7
. (6.3)

(b) Family of links 42
1 + +, 62

1 + −, 82
1 + −, etc. Figure 6.3c shows that the

a crossings are now of negative sign and that only one crossing may be
nullified. We already reach the unknot, and any further nullification would
create a disconnected component. Thus wx = −1 and wy = −(a − 1) =
−(n− 1). That is to say, we have nullified one negative crossing and there
remains n− 1 negative crossings. Using (6.1) again, we get:

PWr = −10
7

− 4
7
(n− 1)

= −4
7
n− 6

7
. (6.4)

6.3.2 Tangles with Two Rows, Denoted by (a)(b), a and b Positive
Integers

Now, n = a + b. Figure 6.3a shows an example of such a tangle, with a = 3
and b = 2.
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a Odd, b Even

The closure of this tangle gives rise to a family of knots with n positive cross-
ings: a in the vertical row and b in the horizontal row. Looking at Fig. 6.3b,
we see that we may nullify one positive crossing from the vertical row and
b − 1 positive crossings from the horizontal row. Thus wx = 1 + (b − 1) = b
and wy = (a− 1) + 1 = a. Using (6.1) and the fact that a + b = n, we have:

PWr =
10
7

b +
4
7
a

=
4
7
(a + b) +

6
7
b

=
4
7
n +

6
7
b. (6.5)

Notice that when b = 2, we get the family of odd twist knots (52, 72, 92, . . .)
and in that case

PWr =
4
7
n +

12
7

. (6.6)

a Even, b Even

The closure of this tangle gives rise to a family of knots with a positive cross-
ings in the vertical row and b negative crossings in the horizontal row. Fig-
ure 6.3c shows that we may nullify only one positive crossing from the vertical
row and one negative crossing from the horizontal row. Thus wx = 1 − 1 = 0
and wy = (a− 1) − (b− 1) = a− b. (6.1) gives:

PWr =
4
7
(a− b). (6.7)

Notice thatwhen b = 2,weget the familyof even twistknots (41, 61, 81, . . .).
Inthatcase,a = n− 2and

PWr =
4
7

((n− 2) − 2)

=
4
7
n− 16

7
. (6.8)

a Even, b odd

The closure of this tangle gives rise to a family of knots with n negative cross-
ings: a in the vertical row and b in the horizontal row. Looking at Fig. 6.3d,
we see that we may nullify a− 1 negative crossings from the vertical row and
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1 negative crossing from the horizontal row. Thus wx = −(a − 1) − 1 = −a
and wy = −1− (b−1) = −b. Using (6.1) and the fact that a+ b = n, we have:

PWr = −10
7

a− 4
7
b

= −4
7
(a + b) − 6

7
a

= −4
7
n− 6

7
a. (6.9)

a Odd, b Odd

Figure 6.3e shows that the closure of such a tangle gives rise to a two-
component link. There are therefore two possible orientations for the second
component.

(a) With the first possible orientation we get links with n positive crossings:
a in the vertical row and b in the horizontal row. Looking at Fig. 6.3f, we
see that we may nullify 1 positive crossing from the vertical row and b− 1
positive crossings from the horizontal row, like in the case where a is odd
and b even (case B.1). Thus wx = 1+(b−1) = b and wy = (a−1)+1 = a.
Using (6.1) and the fact that a + b = n, we have, as in case B.1,

PWr =
10
7

b +
4
7
a

=
4
7
(a + b) +

6
7
b

=
4
7
n +

6
7
b. (6.10)

Notice that (6.5) and (6.10) are the same, but the first one (case B.1)
deals with knots while we are now dealing with two-component links.

(b) With the other orientation for the second component, we get links with
n negative crossings: a in the vertical row and b in the horizontal row.
Figure 6.3g shows that we may nullify a − 1 negative crossings from the
vertical row and 1 negative crossing from the horizontal row, like in the
case where a is even and b odd (case B.3). Thus wx = −(a− 1)− 1 = −a
and wy = −1 − (b− 1) = −b. Using (6.1) and the fact that a + b = n, we
have, as in case B.3,

PWr = −10
7

a− 4
7
b

= −4
7
(a + b) − 6

7
a

= −4
7
n− 6

7
a. (6.11)
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The same remark holds, i.e., (6.9) and (6.11) are identical but the first one
(case B.3) refers to knots while the second one refers to two-component
links.

6.3.3 Tangles with Three Rows, Denoted by (a)(b)(c), a, b, and c
Positive Integers

Now, n = a+b+c. Figure 6.4a shows an example of such a tangle, with a = 3,
b = 1 and c = 2. If we let a increase by steps of 2 and we fix b and c to 1
and 2, respectively, the closure of these tangles produces the family of knots
62, 82, 102, etc. There are 23 = 8 cases to study, depending on the parity of a,
b and c. Let us illustrate the process with a odd, b odd, c even. There are a
positive crossings in the first horizontal row, b positive crossings in the vertical
row, and c negative crossings in the last horizontal row. Looking at Fig. 6.4b,
we see that we may nullify a−1 positive crossings from the first row, 1 positive
crossing from the second row, and 1 negative crossing from the last row. Thus
wx = (a−1)+1−1 = a−1 and wy = 1+(b−1)− (c−1) = 1+ b−c. Formula
(6.1) gives:

PWr =
10
7

(a− 1) +
4
7
(1 + b− c). (6.12)

Since n = a + b + c, if b = 1 and c = 2, then a = n− 3 and we get for the
family of knots 62, 82, 102, etc.:

PWr =
10
7

(n− 3 − 1) +
4
7
(1 + 1 − 2)

=
10
7

n− 40
7

. (6.13)

6.3.4 Tangles with r Rows

We can generalize this approach to any family of rational knots or links.
Formula (6.1) will still hold, where each of wx and wy is a sum of the following
form:

wx/y =

⎧
⎪⎪⎨

⎪⎪⎩

a− 1
−(a− 1)

1
−1

+

⎧
⎪⎪⎨

⎪⎪⎩

b− 1
−(b− 1)

1
−1

+

⎧
⎪⎪⎨

⎪⎪⎩

c− 1
−(c− 1)

1
−1

+ · · ·

︸ ︷︷ ︸
r terms

(6.14)
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Fig. 6.4. (a) A rational tangle with three rows, containing a, b, and c crossings
respectively. (b) Nullification of the knot obtained by the closure of the tangle in
the case a odd, b odd, and c even
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6.4 Discussion

6.4.1 When is PWr a Linear Function of n?

The simplest case is a family of rational tangles (a)(b)(c) . . . where all a, b, c, . . .
are fixed except one. The nonfixed number is equal to n minus a constant
since the sum of all a, b, c, . . . is n. Therefore in all those cases PWr is a linear
function of n with slope ±4/7 or ±10/7.

We can then consider families of rational tangles (a)(b)(c) . . . where several
of a, b, c, . . . change in a coordinated fashion, such that PWr is still a linear
function of n. Two interesting cases in this regard are slopes ±1 and 0. Let
us first point out that when link orientation is indicated on rows of crossings,
two situations occur. Either the arrows are antiparallel (crossings are called
of twist type) and only one crossing will be nullified (e.g., row a on Fig. 6.3b),
or the arrows are parallel (crossings are called of torus type) and all but one
crossings will be nullified (e.g., row b on Fig. 6.3b). Each row, in turn, may be
composed of positive or negative crossings. It follows from Formula (6.1) that
a row with x crossings of twist type will contribute

±
(

10
7

+
4
7
(x− 1)

)
= ±

(
1 +

4
7
x

)

to PWr while a row with x crossings of torus type will contribute

±
(

10
7

(x− 1) +
4
7

)
= ±

(
10
7

x− 1
)

to PWr. If we consider a family of rational links where each successive member
has two more positive crossings of twist type in a given row and two more
positive crossings of torus type in another row, the increase in PWr will be
of

4
7
· 2 +

10
7

· 2 = 4

for an increase in n of 4 (four more crossings), leading to a slope of +1. As an
example, the family composed of knots with tangles (3)(2), (5)(4), (7)(6), . . .
have

PWr = 4 +
4
7
, 8 +

4
7
, 12 +

4
7
, . . .

respectively. Similarly, if we consider a family of rational links where each
successive member has two more negative crossings of twist type in a given
row and two more negative crossings of torus type in another row, PWr will
decrease:

−4
7
· 2 − 10

7
· 2 = −4,

while n will increase by 4 (four more crossings), leading to a slope of −1.
Let us now examine a family of rational links where each successive mem-

ber has two more positive crossings of a given type (twist or torus) and two
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more negative crossings of the same type. The predicted writhe is unchanged,
leading to a slope of 0 versus n. An example is given by the family composed of
knots with tangles (3)(1)(2), (3)(3)(4), (3)(5)(6), . . . whose members all have
PWr = 20/7. Notice that we do not examine cases of coordinated changes
in rows by steps of one crossing at a time, because these steps may convert
a row of crossings of twist type into a row of crossings of torus type or vice
versa.

6.4.2 PWr of Achiral Knots

Since the 3D writhe is a measure of chirality of oriented closed curves in 3D
space, it is a good test to see how achiral knots behave when seen as members
of Conway families. The case of 41 is interesting. It belongs to the family of
even twist knots (41, 61, 81, . . .) for which we have seen above (6.8) that PWr
is a linear function of n with slope 4/7:

PWr =
4
7
n− 16

7
.

Let us replace n by 4 and, as by a miracle, PWr becomes zero! Now, let us
consider knot 41 as a member of another Conway family. 41 has rational tangle
(2)(2) and 83, another achiral knot, has rational tangle (4)(4). We should thus
be able to express that they belong to a Conway family with slope 0 versus
n (since both PWr must be equal to zero). Indeed, both considered tangles
have two rows, one with positive crossings of twist type and one with negative
crossings of twist type (see Fig. 6.3c) so adding two crossings to each row gives
a net result of zero. We are in the case of a coordinated change in several rows
leading to a slope of 0 versus n. The same Conway family contains knots with
tangles (6)(6), (8)(8), etc. all of which are achiral.

6.4.3 Shifts Between PWr as Linear Functions of n

Let us consider family (a)(b), n odd, with b even and fixed (thus a = n− b is
odd) so by (6.5):

PWr =
4
7
n +

6
7
b

and compare it to family (a)(b), n even, with b even and fixed to the same
value (thus a = n− b is even) so by (6.7):

PWr =
4
7
(a− b)

=
4
7
(n− b− b)

=
4
7
n− 8

7
b.
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The two linear functions of n are thus shifted by 2b. Since b is an even
integer, the shift is a multiple of 4. To illustrate this, the linear function
corresponding to the family of odd twist knots (52, 72, 92, . . .) with tangle
(n − 2)(2), n odd, and the linear function corresponding to the family of
even twist knots (41, 61, 81, . . .) with tangle (n− 2)(2), n even, are shifted by
2 × 2 = 4. It is worth noticing that the abscissas of the points on both lines
are different: odd n’s for the first line, even n’s for the second line.

We may similarly compute the shift between any two linear functions of n
having the same slope, and this can happen even if the families do not have
the same number of rows in their corresponding tangles. For example, let us
consider the family of torus knots with tangle (a), a = n odd (not fixed), so
by (6.2):

PWr =
10
7

n− 6
7
,

and compare it to family (a)(b)(c), n even, with b odd and fixed, c even and
fixed (thus a = n− b− c is odd) so by (6.12):

PWr =
10
7

(a− 1) +
4
7
(1 + b− c)

=
10
7

(n− b− c− 1) +
4
7
(1 + b− c)

=
10
7

n− 6
7
b− 2c− 6

7
.

The shift is of 6/7b + 2c. To take a specific case, if we compare the family of
torus knots to the family of knots 62, 82, 102, . . . having tangle (n − 3)(1)(2),
(6.13) gives:

PWr =
10
7

n− 40
7

,

and the shift is of 10/7 + 4 = 34/7.

6.4.4 Knots Versus Two-Component Links

As already mentioned, the closure of a rational tangle gives rise either to a
knot or to a two-component link. Actually, this can be directly related to the
parity of the nullification writhe wx (see Prop. 12 of [9]). For a family of knots
wx is even while for a family of two-component links wx is odd.

6.5 Conclusion

Using the formula PWr = 10/7wx + 4/7wy introduced in [8], we can pre-
dict the 3D writhe of any rational knot or link in its ideal configuration,
or equivalently, the ensemble average of the 3D writhe of random configu-
rations of it. For every family of knots or links corresponding to a rational
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tangle (a)(b)(c) . . . (r) having a fixed number of crossings on r− 1 rows, PWr
presents a linear behavior versus n, the minimal crossing number of the knot
or link, with a slope of ±4/7 or ±10/7. One can also consider families of ratio-
nal tangles (a)(b)(c) . . . (r), where several of a, b, c, . . . change in a coordinated
fashion, such that PWr is still a linear function of n. It is also possible to
compute the shift between two lines having the same slope. We thus have
at our disposal a formalism allowing to predict a number of data usually ob-
tained numerically, and which might help to shed some light on the “quantum
mystery of knots” [1].
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Combinatories and Topology of the β-Sandwich
and β-Barrel Proteins

A.E. Kister, M.V. Kleyzit, T.I. Gelfand, and I.M. Gelfand

Summary. One of the main challenges in life science today is to understand how
genomic sequences determine geometric structure of proteins. Knowledge of the
three-dimensional structure provides valuable insights into functional properties of
proteins, since function of proteins is largely determined by their structure. The
ability to classify a genomic or amino acid sequence into its proper protein family,
and thereby to predict, to some degree of approximation, its structure and function
is an essential prerequisite to using genomic information for explaining enzymatic
processes that underlie cell behavior, understanding the molecular basis of disease,
and achieving rational drug design.

7.1 Introduction

With more than fifty complete genomes already sequenced, and at least a
hundred more close to completion [1], the gap between known sequences and
solved structures (collected at the Protein Data Bank [2] and classified in the
SCOP database [3]) is quickly widening. Consequently, the task of structure
prediction from amino acid sequence has taken center stage in the “postge-
nomic” era.

Direct approaches to structure determination include X-ray crystallogra-
phy, and nuclear magnetic resonance, among other techniques. However, such
methods are expensive, time consuming, and not always applicable.

The potential of alternative methods for protein comparison and classifica-
tion is not settled yet, and there is an urgent need for more reliable approaches
for such bioinformatics problems. Alternative approaches based on theoretical
study of the nature of the sequence/structure relationship can be immensely
useful in dealing with a wealth of data on newly sequenced genomic sequences.

Although it is more than 40 years since we know that all information re-
quired for the folding of a protein chain is contained in its amino acid sequence,
we have not yet learned how “to read” this text as to predict the detailed 3D
structure a protein whose sequence is known [4].
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There is both a local and a global point of view regarding the relation-
ship between the linear sequence of amino acids and the resulting three-
dimensional structure of protein. The former viewpoint postulates just a few
critical residues, some 10–20%, of the sequence play the most critical role in
determining the characteristics of a fold, while the latter considers all residues
in the sequence as crucial [5, 6].

The most commonly used methods of the global sequence comparison
(BLAST and FASTA [7–9]) match new sequences (queries) against all the
sequences in a database (target) and report each query-target pair that repre-
sents a statistically significant match. At present, some of the most powerful
approaches for protein classification are based on hidden Markov model [4–6].
However, it was shown that, as the sequence identities of related proteins
go below 30% identity, the chance of their relationship being detected these
methods becomes increasingly small. Thus, there is no doubt that the methods
described above have been very successful for protein classification; however
on the other hand, they all become less reliable as more distant, less homolo-
gous proteins are considered.

The local model received considerable support when Chothia and Lesk
showed, that rather different amino acids sequences share the same fold, i.e.,
same major secondary structure in the same arrangement and with same
chain topology [10]. In our recent study with Chothia and Lesk, we discussed
why structure changes slower than sequence in protein evolution [11]. For
related proteins, structure similarities arise in the course of their evolution
from a common ancestor, while for proteins with very low homology fold
similarity may be owed to physical and chemical factors. That favor certain
arrangements for secondary structure units and chain topology.

The considerable step ahead in our understanding of how the amino acid
sequence of proteins dictates its three-dimensional structure is a division of
amino acids in the sequence into hydrophobic interior and a surface of a
protein that is sufficiently hydrophilic. In our work we showed that residues
of the hydrophobic interior make the major contribution to the stability of
a protein [12]. Following George Orwell (Animal Farm), it can be concluded
that not all residues are equally significant in how they contribute to the
protein folding. Thus, the search of the key, conserved residue, i.e., residues
that are “more equal” than other residues in a protein, is the essential step in
solving the problem of the relationship between an amino acid sequence and
a geometric structure of proteins.

In this work, we suggest a new method of protein classification based on the
ideas of the local model. The main novelty of the method is in the identifica-
tion of the key residues or sequence determinants. The sequence determinants
serve as a basis for development of computer algorithms for protein classifica-
tion and structure/function prediction of genomic and amino acid sequences.
A direct corollary of the approach is that the complexity of protein sequence
search algorithms and 3D structure predictions can be dramatically reduced.
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The search is carried out with predefined sets of several (8–12) sequence
determinants, instead of analysis of a whole protein sequences.

We focus in this work on the analysis of two large groups of the β-proteins
sandwich-like and the barrel-like proteins. The goal of this research is to define
the structural and sequence features, which these very different proteins have
in common. Our first task is to analyze the supersecondary substructure of
proteins to determine whether they have features that are invariant. Another
aspect of our research involves finding conserved positions in sequences that
are occupied by similar residues in all proteins.

Analysis of the supersecondary structure is based on the information about
hydrogen bonds contacts between the main chain atoms of residues. It presents
as a list of number of residues, which are connected by the hydrogen bonds
between the main chain atoms of residues. It turned out that examination
of only the list of the numbers of the hydrogen bonded residues was suffi-
cient to determine: (a) a secondary structure; (b) an arrangement of strands
(a supersecondary structure); (c) a protein fold (structural classification of the
protein); (d) a set of the rules that governs the arrangement of the strands
in the barrel and sandwich structures; (e) the supersecondary patterns: two
pairs of strands, whose location in the structure is common in all barrel and
sandwich proteins. This analysis discovered that despite a seemingly unlimited
number of arrangements of strands there exists a rigorously defined constraint
on supersecondary structures.

Another aspect of our research involves finding positions in sequences that
are occupied by similar residues. The problem of the discovery of conserved
positions is not easy for highly various groups of proteins as sandwich and
barrel proteins. A comparison of the amino acid sequences in various super-
families showed that the sequences are so diverse that even the most powerful
approaches such as PSI-BLAST and hidden Markov model cannot find any
sequence homology. However, the delineation of the invariant supersecondary,
substructure, common for different superfamilies and protein folds, makes pos-
sible a secondary structure-based multialignment. It results in the set of the
key conserved positions, whose residues share both structural and chemical
properties and have a decisive role in geometry of the beta proteins.

Thus putting the information about amino acid sequences and hydrogen
bond contacts together we give in account the principal relations between
sequence and structure in the beta proteins.

7.2 Overview of the Structures

All β-proteins can be divided into several groups in relation to their “struc-
tural design” like β-sandwiches, β-barrels, β-propellers, and others [13]. Each
of these architectural designs encompasses a large number of protein fami-
lies, superfamilies, and folds within the structural hierarchical classification
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adopted in the SCOP and CATH databases [3, 14]. Proteins grouped together
based on their common architectural properties often do not have share any
functional homology or significant sequence homology.

Systematic theoretical analysis has revealed certain structural features
common for the β-sheet as for example, Greek key and jellyrolls patterns
and specific characteristics of the edge strands [15, 16]. In many works the
geometric parameters of the β-proteins such as distance or angle matrices
between strands, the number of strands and shear number of proteins and the
analysis of bifurcation of β-sheets, and the spatial organizations of secondary
structures [17–27] are investigated.

Analysis of arrangement of strands of the sandwich and barrel proteins re-
vealed that only a limited number of possible strand arrangements are realized
in existing structures. We found that each fold structural classification of the
barrel and the sandwich structures can be described by a unique arrangement
of strands. This finding has implications for protein classification. Since strand
arrangement of a protein can be deduced from its matrix of hydrogen bonds,
it follows that one can in most cases assign a query protein to its proper fold
given sufficient information about its hydrogen bonds.

7.3 Common Features in Structures and Sequences
of Sandwich-Like Proteins

7.3.1 General Features of the Sandwich-Like Proteins

Proteins of 69 superfamilies in 38 protein folds have been described as
“sandwich-like proteins” (SPs) (see folds 1.2.1 – 1.2.38 in SCOP (3), release
1.59). Spatial structures of SPs are composed of β-strands, which form two
main β-sheets that pack face to face. Although the general architecture of
SP is relatively uniform, the number of strands and the arrangement of the
strands vary widely [28–30]. Some SPs, in addition to two “main” sandwich
sheets, contain “auxiliary” beta sheets. Comparison of proteins in different
superfamilies does not show either functional homology or significant sequence
homology.

7.3.2 Supersecondary Patterns in the Sandwich-Like Proteins

The determination of H-bonds between the main chain atoms allowed us to
determine the arrangements of the strands and identify those strands that
make up the two main sandwich sheets. Analysis of the arrangements of
strands in all known sandwich-like known protein structures revealed the def-
inite rules that are valid for almost all sandwich proteins.

At first, this rule can be stated as follows: in any given sandwich-like
protein structure there exist two pairs of strands (i, i + 1) and (k, k + 1),
such that: (1) strands of each pair are adjacent to each other in sequence
(Fig. 7.1a); (2) strand i is located in one main sheet and i + 1 – in the other
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Fig. 7.1. The schematic representation of an immunoglobulin variable domain
(sandwich-like family). (a) β-Sheet strands are numbered sequentially as they are
presented in a sequence. The strands 2, 3, 7, and 8 are shown; (b) Chain fold of
immunoglobulin variable domain of heavy chain (PDB code: 1ine). The drawing is
done using the MOLSCRIPT program [31]. β-Sheet strands are shown as ribbons. (c)
Arrangement of the strands in two main β-Sheets. The interlocked pairs of strands
(i, i + 1) and (k, k + 1) correspond to the strands #2, 3 and 7, 8

main sheet; (3) strand k is found in one main sheet and k + 1 – in the other;
(4) strands i and k are located within the same sheet; they are antiparallel
to each other and linked by hydrogen bonds; (5) likewise, strands k + 1 and
i + 1 are located within the other main sheet, are antiparallel to each other,
and H bonded. (Fig. 7.1b, c).

These two interlocked pairs form a sandwich-like substructure within SP.
Usually they are found in the middle of the sheets. The number of strands
interposed between strands i and k varied from 1 to 10, but in 80% of cases
the number of interposed strands was 2 – 4 (see fig. 7.1c and 7.2b; where the
number of strands between the strands i and k is equal to 4 and 2, respec-
tively). Two interlocked pairs were detected in 94% of all analyzed structures.
Thus, this investigation led to the discovery of a central feature of the super-
secondary structure that is invariant in almost all SP.
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7.3.3 Structurally Based Sequence Alignment

The essential element of our method is that it involves alignment not of whole
sequences, but of corresponding strands in their respective proteins. In con-
trast to the analysis of homology proteins in protein family, the determination
of the corresponding strands in a group of strongly varied proteins, such as
a collection of sandwich-like proteins from very diverse superfamilies with a
dissimilar arrangement of strands and variable numbers of strands, could be a
complicated problem. However, the delineation of an invariant supersecondary
substructure made it possible to identify and align the corresponding strands.

It follows from the rule of interlocked pairs of strands that four strands
i, i + 1, k, and k + 1 with similar structural properties were found in all sand-
wich proteins. Thus in our procedure i strands from all structures were aligned
with each other, then all i+ 1 strands and so forth. The alignment of strands
carried out in this way maximizes the number of positions occupied by struc-
turally similar residues. It is important to note that no “gaps” within strands
are allowed, since strands are viewed as indivisible structure units. Adjacent
residues within a strand are always assigned sequential position numbers.
However, gaps between strands are a common occurrence. The advantage of
this structurally based approach is that it makes possible a common system of
numbering for sequences from different superfamilies. It allowed us to compare
nonhomologous SP. Details of the structure-based sequence multialignment
and a list of the conserved positions was presented in our works [32, 33].

7.3.4 Sequence Characteristics of the i, i + 1, k, and k + 1 Strands

Analysis of the structurally aligned sequences revealed 12 positions, which are
occupied by residues with structurally similar properties in their respective SP
structures. We suppose that residues that have the same structural properties
across all SPS are their structural determinants. The structural determinants
lie at the center of the interface between the β-sheets and form the common
geometrical core of SP structures.

Inspection of amino acid frequencies in these 12 positions showed that
eight positions are the conserved hydrophobic positions of SP. Residues at
these eight positions are termed the SP sequence determinants. Eighty percent
of all SP sequence determinants are V, L, I, and F residues.

7.3.5 Structural Features of the Sequence Determinants

Relative positions of the eight sequence determinants in i, i + 1, k, and
k + 1 strands are common in all SP structures that contain interlocked pairs
(Fig. 7.2). The strands i and k are oriented toward each other in such a way
that residues at position 6 in strand i always form main chain hydrogen bonds
with residues at position 8 in strand k, and side chains of both these residues
look inside the hydrophobic interior of SP. Orientation of strands i + 1 and
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Fig. 7.2. Schematic representation of the barrel structure (1bia). The main β-sheet
strands are numbered as they presented in the sequence. The strand 2 is divided
into 2′ and 2′′ parts. The long strand 2 is bent into two parts: 2′ and 2′′. The 2′

part forms H-bonds with strand 1 in one part of the β-sheet, while the 2′′ part has
hydrogen contacts with strand 3 in the second part of the β-sheet. The strands 1,
2′, and 5 form one subsheet and the strands 2′′, 3, and 4 form the second subsheet

k+1 is also fixed: residues at position 6 in i+1 and position 8 in k+1 strands
are located opposite to each other in the sheet, but do not form H-bonds. Side
chains of both residues look inside the hydrophobic interior of SP.

7.3.6 Method of the Sequence Determinants for Identification
of Proteins

Knowledge of sequence determinants of protein groups allows us to develop
a computer algorithm for classification of proteins. A set of sequence deter-
minants is characterized by (1) a number of the sequence determinants for
a given protein group (usually there are 8–12 sequence determinants); (2) a
set of residues that characterize each sequence determinant, and (3) intervals
(a number of residues) between the sequence determinants in sequences. This
data will be used to distinguish all proteins of a particular protein group and
to predict the secondary and tertiary structure.

For the search procedure, we implemented an algorithm based on appro-
priate modification of the dynamic programming [33]. This algorithm matches
one-by-one sequence determinants of a given protein group with residues of
the query sequence. Once a match is found for the sequence determinant clos-
est to the beginning of the sequence, the algorithm starts to look for a match
for the second determinant in the query sequence, and so on. If all sequence
determinants are matched, then the protein is assigned to the group.
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Table 7.1. Identifying four families of sandwich-like proteins within 11 distinct
genomes four protein families are classified as in SCOP database: (1) (PL) – protein
family of lipoxygenase N-terminal domain; (2) (AT) – protein family: Alpha-toxin,
C-terminal domain; (3) (AD) corresponds to 30-kd adipocyte complement-related
protein; (4) (TR) corresponds to TRANCE/RANKL cytokine protein domain. The
first column lists the names of organisms from which the genomes are derived. The
second column contains numbers of proteins sequenced from respective genomes.
The number of sequences belonging to each group of proteins (PL, AT, AD, or
TR) found in the genome using our method of sequence determinants (MSD) is
given in the “MSD” columns. “HMM” columns show the number of sequences of
the respective groups of proteins found using the hidden Markov models

Genomes Proteins HMM MSD HMM MSD HMM MSD HMM MSD

Arabidopsis thaliana 25617 8 11 4 5 0 0 0 0

Clostridium acetobutylicum 3672 0 1 1 2 0 0 0 3

Clostridium perfringens 2660 0 2 1 1 0 0 0 0

Mesorhizobium loti 6752 1 1 0 2 0 0 0 0

Pseudomonas aeruginosa 5567 0 0 1 0 0 0 0 0

Caenorhabditis blegans 20448 5 9 0 0 0 0 0 0

Drosophila melanogaster 14335 2 5 0 0 0 0 1 1

Escherichia coli K12 4289 0 0 0 1 0 0 0 0

Escherichia coli 0157H7 5361 0 1 0 1 0 0 0 0

Bacillus halodurans 4066 0 0 0 0 0 0 0 0

Lactococcus lactis 2266 0 1 0 0 1 1 0 0

The results of applying the search algorithm that uses sequence determi-
nants of 4 protein families in 11 different genomes are presented in Table 7.1.
MSD’ column of the table contains data on how many proteins of the given
family were found in the respective genome through application of our algo-
rithm. For comparison purposes, “HMM” column gives the number of proteins
of the family found using HMM search procedure, considered to be the most
powerful of currently used method [34].

Overall, both methods found approximately the same number of SPs in
the 11 genomes. All sequences founded by HMM were detected by our ap-
proach (except one). However, our method revealed a number of additional
sequences that can be putatively assigned to the four families. For the most
part, these “additional” proteins are labeled as “unrecognized proteins” in
the genome. It is suggested that our approach can identify even those SPs
that are “hidden” from HMM search procedure. Further investigations are
necessary to tell whether these “candidate” sequences indeed qualify to join
the respective SP families. Our approach also provides an independent check
on the accuracy of HMM-based algorithm.
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7.4 Common Structural and Sequence Features
of Barrel-Like Proteins

7.4.1 Search for Sequence and Structural Invariants in Barrel
Proteins: An Outline of the Approach

In this work we analyze two barrel characteristics crucial for sequence/
structure relationship, which are not still consider in detail. They are the
arrangement of strands in the β-sheet and a characteristic of a “place of a
distortion” in the β-sheet, i.e., a place where strands curve to form a bar-
rel structure. These features distinguish “one β-sheet geometry” of the barrel
proteins.

Our approach is based on a comparison of elements of secondary structures
with analogous structural role in their respective barrel proteins. The first step
is to define precisely the strands that make up the main sheet and determine
the arrangements of the strands in space. Special attention is devoted to the
key region of the barrel proteins, the right-angle “turn” in supersecondary
structure. Examination of the strands that make up this crucial region allows
us to identify invariant substructure present in all barrel structures. Analysis
of amino acid sequences of the substructure led to discovery of conserved
positions: sequence invariants of the barrel proteins.

7.4.2 Overview of the β-Barrel Structures

In general, the main β-sheet of the barrel proteins is folded to form a closed
structure. However, some proteins, though structurally very similar to “closed
barrels” and possessing a characteristically bent main sheet, have their edge
strands too far from each other in space to form hydrogen bonds. These pro-
teins are referred to as “partly open barrels” in SCOP database nomenclature
and are grouped together with closed barrels [2]. Each of the strands of the
main β-sheet forms hydrogen bonds with two or three adjacent strands.

McLachlan [9] has shown that the main structural parameters of the barrel
structures are the number of strands that form the β-sheet, n, and the measure
of its stagger, “the shear number,” S [17]. Later it was shown that these
parameters define the geometry of barrel structures ([19, 20], see, as well, [27]).

According to the SCOP database, release 1.61 [2], one or more domains in
2311 protein structures form barrel-like structure. For example, RNA-binding
(SM-like) protein, listed as structure 1i4k in PDB, contains 28 barrel-like do-
mains. Barrel-like structures make up 114 protein families, 66 superfamilies,
and 36 protein folds (##40–75 of “All beta” proteins in the SCOP data-
base). Proteins in different barrel superfamilies do not share either functional
homology or sequence similarity.
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7.4.3 Defining of the β-Strands and Loops

As mentioned above our Structural analysis is based on the information about
H-bonded residues. A pair of β-strands is determined as two fragments of
residues whose residues are connected by H-bonds between the main chain
atoms. The first residue in the segment to form an H-bond is considered to
be the first residue of the strand, while the residues that come before it in a
sequence are not involved in H-bonding and are, therefore, considered to be
part of a loop. Similarly, the last residue of an amino acid segment to form an
H-bond defines the end of the strand. Based on this analysis the strands in
the structure are consequently numbered starting from N-end of sequences.

The segments of residues between the strands are considered as the loops.
We do not consider here the conformation of loops. As known from the analysis
of all beta proteins some loops in the structures were observed in the helical
conformations.

Strands in barrel structures are numbered sequentially starting from the
N-end of the sequence. Barrel structures differ by the number of strands (“n”)
that form the cylinder. In the “All beta” class of SCOP database beta-barrel
structures are made from 4 to 8 strands.

Some strands in the main β-sheet have more than two adjacent strands.
These are termed “bifurcated strands.” More than half of the barrel structures
have at least one such bifurcated strand. As a result, they contain the so-called
“side” β-sheets in addition to the main barrel β-sheet. So far as our goal is to
define what is common to all barrel structures, we eliminate the side β-sheets
from our analysis of supersecondary structures, and retain only the strands
that make up the main β-sheet. The strands in the “edited” barrel structures
are numbered sequentially starting from the N-end of the sequence.

Barrel structures differ by the number of strands (n∗) that form cylinder
structure. In the “All beta” class of SCOP database beta-barrel structures
contain 4–8 such strands.

7.4.4 Arrangement of the Strands in the β-Sheet

The interstrand hydrogen bonds define the strand arrangement of β-sheet.
The H-bonds were calculated for all barrel structures. Figure 7.2 illustrates the
interconnection among strands in the 1bia structure: strand 1 is H-bonded to
strands 2 and 5, while strand 5 is bonded only to strand 1; strand 2 is bound
to strands 1 and 3, and strand 4 – to strand 3. Since strands 4 and 5 are not
connected to each other, 1bia is a partly open barrel. Arrangement of strands
of main β-sheet in the 1bia structure can be represented schematically as: 5-1-
2-3-4. Arrangement of strands in the beta barrels of different folds is presented
in the “Arrangement” column of Table 7.2.

Despite the large number of possible combination of strands in barrel struc-
tures, the number of different arrangements of strands is in reality very lim-
ited. For example, the theoretical number of strand combinations in the barrel
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Table 7.2. The arrangement of the strands in the barrel structure Columns:
F – Protein folds in the SCOP classification; Fm – the numbers of the given fold;
arrangement – arrangement of the strands in the main beta sheet; subsheets –
arrangement of the strands in two subsheets

Fold Str Arrangement Sub-sheets

40 1bia 5 1 2 3 4 B: 2′ 1 5
A: 2′′ 3 4

41 1jh2 4 1 2 3 5 B: 2′ 3 5
A: 2′′ 1 4

42 1pdr 1 5 4 3 2 B: 4′ 3 2
A: 4′′ 5 1

43 1g3p 2 3 4 1 B: 4′′ 3′ 2
A: 3′′ 4′ 1

44 1b34 5 1 2 3 4 B: 2′′ 3′ 4′′

A: 4′ 3′′ 2′ 1 5

45 1h5p 5 1 2 3 4 B: 3 4
A: 2 1 5

46 1whi 1 2 3 4 5 1 B: 2′′ 3′ 4 5
A: 3′′ 2′ 1

47 1sty 1 2 3- -5 4 1 B: 1′′ 2 3 5′

A: 1′ 4 5′′

48 1dxr 1 2 3 4 5 6- -1 B: 2′′ 3′ 4
A: 3′′ 2′ 1 6 5

49 1bfg 1 2 3 4 5 6 1 B: 2 3 4 5
A: 1 6

50 1i8d 1 2 5 4 3 6 1 B: 6′′ 3 4 5 2 1′′

A: 6′ 1′

51 1efc 1 4 3 2 5 6 1 B: 3′ 2 5 6′′ 1′ 4′′

A: 3′′ 4′ 1′′ 6′

52 1flm 2 1 4 5 6 3 B: 6′′ 5′ 4 1 2
A: 5′′ 6′ 3

54 1fmt 1 2 5 4 3 6 B: 2′′ 5′ 4 3 6
A: 5′′ 2′ 1

55 1eax 1 2 3 6 5 4 1 B: 2′ 1 4 5′

A: 2′′ 3 6 5′′

56 1bco 1 4 5 6 3 2 B: 5′ 6 3 2
A: 5′′ 4 1

57 1e79 1 2 5 4 3 6 1 B: 4′ 3 6 1′ 2′′

A: 4′′ 5 2′ 1′′
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Table 7.2. Continued.

Fold Str Arrangement Sub-sheets

58 1k8h 1 6 7 2 5 4 3 B: 5 4 3
A: 2 7 6 1

59 1ile 1 2- -6 3- -5 4 1 B: 1′ 2′′- -6 3- 5′′ 4′

A: 2′ 1′′ 4′′ 5′

60 1gmu 2 1 4 5 3 6 B: 4 5 3 6
A: 1 2

61 2eng 3 4- -1 5 6 2 B: 1′′ 5 6- -2
A: 1′- -4 3

62 1dfu 1- -5 2- -4 3 6- -1 B: 2′- -4 3 6
A: 2′′ 5- -1

63 1h9d 1 3 2- -6 5 4- -1 B: 5′ 4- -1
A: 5′′ 6- -2 3

64 1mai 3 2 1 6 5 4 B: 6′′ 5 4
A: 6’ 1 2 3

65 1ytf 1 2 3 4 5 6 1 B: 6 5 4′′

A: 1 2 3 4′

66 1ieg 1 2 3 B: 1′′ 2′ 3′′

A: 3′ 2′′ 1′

67 1pkm 1 4 3 2- -6 5 7 1 B: 3′ 2- -6 5
A: 3′′ 4 1

68 1ik9 1 7 4 5 6 2 3 1 B: 4 5 6 2
A: 7 1 3

69 1hbq 1 2 3 4 7 6 5 1 B: 1 2 4 3 2 1
A: 7 6 5

70 3 1 2 3 4 5 6 7 8 1 B: 5′′ 4 3 2 1′

A: 5′ 6 7 8 1′′

71 1swu 1 2 3 4 5 6 7 8 1 B: 4′ 3 2 1
A: 4′′ 5 6 7 8

72 2cpl 1 8 1 2 7 5 6 4 3 B: 7′′ 2 1 8
A: 7′ 5 6 4 3

73 1ija 1 2 3 4 8 7 6 5 1 B: 7′ 6 5 1 2
A: 7′′ 8 4 3

74 1c39 1 2 3 4 7 8 6 5 1 B: 6′ 5 1 2 3
A: 6′′ 8 7 4 3′′

75 1f3u 1 2 3 4 5 6 8 7 B: 4′ 3 2 1
A: 4′′ 5 6- -8 7
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structures, which are formed by six strands (n∗ = 6), is equal to 360 (6!/2).
However, only eight variants with different arrangements are found among all
beta-barrel structures in SCOP database. These eight variants can be repre-
sented as follows: (1) 1-2-3-4-5-6-1 (folds ## 48, 49,64, 65); (2) 1-2-5-4-3-6-1
(folds ## 50, 54, 57); (3) 1-4-3-2-5-6-1 ((folds ## 51, 55); (4) 1-2-3-6-5-4-1
(folds ## 52, 56); (5) 1-3-2-6-5-4-1 (fold # 63); (6) 1-2-6-3-5-4-1 (folds ##
59, 60); (7) 1-5-6-2-3-4-1 (fold # 61); (8) 1-5-2-4-3-6-1 (fold # 62).

Thus from our analysis follows that structures from different folds can
have the similar arrangement of the strands (see variants ## 1, 2, 3, 4 and 6
above).

7.4.5 Two Subsheets in the Barrel Structures

The main β-sheet of barrel structures can be divided into two groups of strands
or two subsheets. The strands in each subsheet are approximately parallel to
each other, and make an angle of about 90◦ with the strands of the other
subsheet. This orthogonal beta sheet packing makes possible the formation of
the cylindrical “barrel” structure.

7.4.6 Four Types of Connection Between the Strands
in Two Subsheets

There are four ways whereby strands of two orthogonal subsheets can come
together to form a single β-sheet in the barrel structures (Fig. 7.3):

(a) The edge strands a and k are located in close proximity to each other
allowing for one or two H-bonds to be formed between the two strands
(Fig. 7.3a).

(b) Two orthogonal strands are connected by means of a long, 90◦ bent strand.
Let us denote the two “legs” of the long strand as k′ and k′′ (Fig. 7.3b).
Residues of k′ part form H-bonds with residues from the strand in one
subsheet (strand m), while residues of k′′ part form H-bonds with residues
of the strands in the other subsheet (strand a). We observed that k′′ part
always forms H-bonds only with the edge strand (strand a), as shown in
Fig. 7.3b. This unique conformation of k strand allows for folding of the
β-sheet into barrel structure. This long bent β-strand will be referred to
as the “linking” strand. In the 1bia structure, strand #2 is the linking
strand (Fig. 7.2).

(c) Some structures contain not one, but two neighboring H-bonded long an-
tiparallel “linking strands.” These two 90◦ bent strands cross over from
one part of β-sheet to the other as shown in Fig. 7.2c. Residues in k′ and
a′′ will be found in one subsheet, while k′′ and a′ will be found in the
other one.

(d) Lastly, some barrel structures contain three linking strands. Typical rela-
tive orientation of the three strands in the main β-sheet is shown in
Fig. 7.2d.
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Fig. 7.3. The connection between the strands in two subsheets. (a) Two “short”
edge strands in different subsheets form a hydrogen bond contact. The strands a,
b, and c form one subsheet, while the strands k, m, n form another subsheet. The
strands a and k are the edge strands in these two subsheets. (b) One “long” edge
strand k forms H-bonds with the strands of both subsheets. The part at the begin-
ning of the strand k′ is connected with the strand m of one subsheet and the part
k′′ is connected with the strand a of another subsheet. (c) Two “long” edge strands
k and a form H-bonds with the strands of both subsheets. Residues of the k′ part
of the strand k form H-bond contacts with the strand m, and a” parts of the strand
a. Residues of the k′′ part of the strand k form H-bond contacts with the strand a′.
(d) Three “long edge strands k, m and a form H-bonds with the strands of both
subsheets

7.4.7 Classification of Barrel Based on the Strands Arrangement

The arrangements of the barrel strands in two subsheets of the main β-sheet
are shown in Table 7.2. It illustrates the arrangement of strands in the main
β-sheet of one representative structure of each protein folds. For example,
in the 1bia structure (fold # 40) the first subsheet contains mutually parallel
strands 1, 2′, and 5 (subsheet A), while the other subsheet is made of mutually
parallel strands 2′′, 3, and 4 (subsheet B) (Fig. 7.1).

It was shown that all proteins of a given fold share the same arrangement
of strands in the A and B subsheets. The arrangement of the strands in the
A and B subsheets in a given fold is different from that of other fold. For
example, the proteins in folds ## 48 and 49 have a similar arrangement of
the strands in the β-sheet: 1-2-3-4-5-6; however the “strand compositions” of
“β-subsheets” A and B are different (see Table 7.2).

It is important to mention here that in our research the secondary structure
definition and the arrangement of the strands in the structures are based
mostly on the analysis of the H-bond contacts between the main chain atoms.
It follows that the information about the matrix of H-bond contacts between
residues of a barrel structure is sufficient to formally assign a given barrel
protein to its proper SCOP fold.
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7.4.8 Characterizing the Place of Distortion of Barrel Structures

The place of distortion of the beta sheet is where the two orthogonal subsheets
meet. It is largely defines the characteristic shape of the barrel proteins. It
is reasonable to assume that the essential structural and sequence invariant
features of barrels will be found at or near the place of distortion. We focus
our attention, therefore, on the two “edge strands,” a (or a′) and k (or k′)
that bind the subsheets and their immediate strand neighbors (Fig. 7.3a–c).
In one subsheet, strand a (or a′) is H-bonded with strand b, while in the other
subsheet strand k (or k′) forms H-bonds with strand m. Table 7.2 illustrates
strand arrangements in various barrel folds; the four strands that make up
the place of distortion are referenced by enlarged numerals in bold font.

The definition of the place of distortion as a part of the barrel structure
containing two edge strands and their two neighbors requires a qualification.
When we analyze the four strands of the place of distortion we omit from
consideration the “double prime” portion of the barrel strand(s). It allows us
to make our consideration general for all barrel structures. The strands that
do not bend and the prime part of the link strand are the conserved elements
of the barrel structures, while double prime portions of the link strands were
found in the part of the barrel proteins.

7.4.9 The Rule of the Arrangement of the “Edge Strands”
in the Barrel Structures

In 15 protein folds, the pair of strands in each subsheet that makes up the
part of the distortion region are labeled by consecutive indices, such as the
strands 2 and 3 in one subsheet and the strands 3 and 4 in the other in the
structure 1bia (Fig. 7.2). Table 7.2 shows these constraints for the structures
of the folds ## 40, 44, 45, 46, 48, 54, 65, 66, 52, 54, 55, 56, 59, 60, 69, 70, 71,
74, and 75 (see the enlarged in bold numbers of the strands).

In all other barrel folds one of the two subsheets contains a pair of se-
quentially numbered strands at the point of distortion (see subsheet B in
Table 7.2). The exceptions of this rule are found only in structures of folds
## 55–57, where two subsheets are connected by three linking strands.

7.4.10 Arrangement of the Barrel and Sandwich Structures
is Different

As shown above we found a strict constraint for the arrangement of the strands
in the sandwich-like proteins. In almost all sandwich-like proteins there exists
the definite rule of two interlocked pairs of strands, which are located in
two β-subsheets. It is important to test this rule in the two subsheets of the
barrel structure. The analysis of the arrangement of the strands in A and
B β-sheets showed that interlocked arrangement does not exist in the barrel
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protein structures (the single exception was found in the proteins described
in the protein fold # 57, “Domain of alpha and beta subunits of F1 ATP
synthase-like” in SCOP database). It follows that the rule of two interlocked
pairs of strands can serve to distinguish of the sandwich and barrel structures.

7.4.11 Invariant Substructure at the Place of Distortion:
A Hydrophobic Tetrahedral

Analysis of residue content of the place of distortion revealed four conserved
positions in each subsheet. The residues at each such position across the wide
spectrum of barrel proteins all share certain sequence and structural proper-
ties. The four conserved positions of each subsheet can be said to represent
the invariant substructure of their respective subsheet. A specific chemical
characteristic of these positions is that at least three of the four conserved
positions in each subsheet are occupied exclusively by hydrophobic residues.

If we take the four conserved positions in either subsheet to be the ver-
tices of a closed geometrical figure then each subsheet will be seen to contain
an imaginary tetrahedral. Interestingly, the invariant substructures of the two
subsheets are essentially identical. The characteristic appearance of the invari-
ant substructure is a consequence of the fact that the pairs of residues in the
two strands that form the two opposite “faces” of the tetrahedral are located
one reside away from each other. Figure 7.4 illustrates the invariant tetrahe-
dral of each subsheet. Note that residues at the positions s in one strand and
t in the other always share a hydrogen bond; the two upstream positions s+2
and t + 2 complete the figure. A similar situation is obtained in the other
subsheet, where the four tetrahedral positions are p and p + 2, r and r + 2,
with an H-bond between residues at the p and r positions. Since at least three
of the four positions of each tetrahedral are always hydrophobic, the invariant
structures of the subsheets were termed “hydrophobic tetrahedras.”

Fig. 7.4. Two tetrahedrals form “tetralock” in the barrel structures
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7.4.12 The Two Hydrophobic Tetrahedrals Present the Structural
Invariant of Barrel Proteins

The relative positions of the hydrophobic tetrahedral in the two subsheets can
be described by two parameters: angle (φ) between the hydrogen bonds that
connect the residues at positions S and T in one tetrahedral and positions
P and R in the other, and distance between the “centers of gravity” of the
two tetrahedrals (Fig. 7.4). The pair of tetrahedral makes up the invariant
substructure of the barrel proteins. Each barrel protein contains at least one
pair of tetrahedral, but some contain several such pairs with approximately
same distances between centers of gravity and angles.

7.5 Conclusion

The investigation carried out thus far allowed us to find the invariant sequence
and structural invariants in the vast diversity of beta structures. Analysis of
the supersecondary structures revealed the constraints in the arrangements of
the strands. It supports the conclusion that proteins which grouped together
on the basis of common architecture like sandwich-like or barrel-like proteins
have commonality on the level of supersecondary structure.

In both groups of proteins – sandwich and barrel structures the arrange-
ment of strands gives two invariants substructure – hydrophobic tetrahedrals.
In fact, the tetrahedral, that make up of residues of neighboring strands in
the beta sheet can be considered as the structural unit of the beta structures.

In the sandwich-like structure two tetrahedrals form interlock. The residues
of the interlock lie at the center of the interface between the beta sheets and
form the common geometrical core of sandwich proteins.

In the barrel structure two tetrahedrals form another geometrical figure –
tetrahedral. Residues of the tetralock lie at the edge of two subsheets. We can
suggest that these residues are responsible for the distortion of the β-sheet in
the barrel-like structure, which results in the formation of two subsheets and
leads to the closed structure. The tetralock can be considered as the common
geometrical core of the barrel proteins.

Analysis of a broad groups of proteins, such as sets of superfamilies, yields
a set of sequence determinants of a group of nonhomologous proteins. These
sequence determinants form the basis of computer algorithm for classification
of novel proteins.

A direct corollary of our approach is that complexity of protein sequence
search algorithms and 3D structure predictions can be dramatically reduced:
instead of carrying out searches with whole protein sequences, we may now
carry out searches with predefined sets of several key residues. This is analo-
gous to searching for a suspect by his fingerprints, rather than by a long list
of nonunique descriptors. Our data on sandwich-like proteins shows that the
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proposed search algorithm compares favorably with the powerful and widely
used techniques based on hidden Markov Models.

Another advantage of carrying out a structure-based analysis is that it
often allows one not only to predict the affiliation of a particular protein and
outline its secondary and 3D structure, but also to make “educated guesses”
about functional role of various portions of the sequence. It is evident that
an ability to pinpoint parts of protein sequence that is likely to take part in
protein binding, for example, can prove invaluable for planning mutagenesis
experiments or rational drug design.
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The Structure of Collagen

N. Rivier and J.-F. Sadoc

Summary. We study the assembly of collagen molecules of the so-called fib-
rils, long, periodic bundle of finite collagen molecules. The appearance of three-
dimensional periodic structures leads to very interesting geometrical questions
similar to the problems of classification textures and defects in liquid crystals
(smectics and discotics), lattices of defects in superconductors, defects in liquid
membranes, dense packing of spheres, and so on.

8.1 Collagen: Chain, Molecule, Fibril

Collagen is the principal constituent of extracellular, connective tissue. It is
made of fibrils, which are close-packed bundles of long molecules. Each mole-
cule consists of three intertwined polypeptide chains, forming a right-handed
helix (Fig. 8.1b, c). The chain is a nearly periodic sequence of amino acids
(a.a) .. . .− [Gly−X−Y ]− . . ., where the a.a X and Y are predominantly Pro
or HPro. Collagen is a protein, but with a periodic (period 3 in Gly) primary
structure, and a helix that is altogether its sole secondary structure and its
ternary structure (Fig. 8.1a). The helix has 2. 73 a.a per turn, in contrast with
the 3.6 of the pervasive alpha helix. Thus, collagen is a protein that is only
a material, and this chapter is not an attempt to inject some mathematics or
physics into biology, but a recognition that some biological constituents are
simply material science.

The collagen molecules assemble into fibrils. Longitudinally, the molecules
are separated by gaps, and the fibril is a periodic alternance of overlap and gap
regions, as indicated in Fig. 8.1d. The transverse structure is, in both regions,
a topological Archimedean square–triangle lattice 32.4.3.4, also known as the
main skeleton of the Frank–Kasper sigma phase, and observed by Okuyama
et al. [1] in [Gly−Pro−Pro]10. The three-dimensional structure is a rotating
stack of successive overlap–gap–overlap. . ., separated by boundaries of twist
dislocations. The stack is periodic, as is observed.
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Fig. 8.1. Structure of collagen at various scales. (a) Single chain Gly−X−Y form-
ing a left-handed helix, with a curved axis. Dots indicate the positions of successive
amino acids. Their side groups are pointing outwards; every third one is a glycine
(gly) located in the concave side of the axis. (b) A collagen molecule is a right-handed
triple helix of three intertwined polypeptide chains, each one being left-handed as in
(a). The core of the triple helix consists of the side groups of the glycines, a tightly
packed helix of H atoms. (c) A simpler representation of the right-handed triple
helix, represented more simply. Its width is 1 nm, its length 300 nm. (d) The colla-
gen molecule is often represented by an arrow of length 300 nm. (e) The molecules are
stacked on top of each other, with a gap of 35 nm, and regularly spaced on a lattice
(transverse scale dilated relative to longitudinal scale). The longitudinal coordinates
of molecules u and u′ are the same. One distinguishes gap and overlap levels, g and
o, respectively, so that to each five molecules in o correspond only four in g (the ex-
tremities of the molecule lie at gap–overlap interfaces). There is a regular stagger of
molecules by a length D = g + o = 67 nm. (f) A crude representation of the lattice as
a cylinder (by identifying u and u′). This is only schematic as the collagen fibril is a
lattice, showing the 67-nm stagger, but with a unit cell that accommodates gap and
overlap levels. Notice the right-handed chirality of the Gly core (see also Fig. 8.2 and
Fig. 8.4b) and of the triple-helix collagen molecule, opposite to the left-handed chi-
rality of the single collagen chain (polyproline II: PPII; see also Fig. 8.3). In Fig. 8.6
of [4], the PPII helix is wrongly drawn as right handed. We regret this oversight:
The figure, obtained from some public domain file, was added at the proof stage

The essential physical and geometrical features to be included in the struc-
ture of the collagen fibril are:

(a) Close packing of amino acids in a bundle of periodic, polypeptide chains
(b) Flexibility of the fibril, compatible with close packing
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(c) Fibrils of arbitrary length
(d) Intertwining of the chains within the molecule at a constant rate; this rate

of intertwining does not decrease as the molecule gets longer

Points (c) and (d) suggest a pattern of molecules along the fibril, and of
amino acids within the collagen molecule, that is either periodic or inflationary
(quasicrystalline).

Diffraction, especially that of crystalline [Gly − Pro − Pro]10, indicates
that the pattern is periodic [1–3], but a chain of amino acids packs naturally
as a Boedijk–Coxeter helix, that contains several approximants of 1 +

√
3 [4]

(see Sect. 8.2). These observations are not incompatible. The (longitudinal
and transverse) structure of collagen is ultimately periodic, but its unit cell
exhibits many successive approximants.

8.2 The Boerdijk–Coxeter Helix and its Approximants

Helices and densely packed spherical objects are two closely related geomet-
rical problems. The simplest means of packing tightly a chain of connected
spheres (representing amino acids) of arbitrary length is the Boerdijk–Coxeter
(B–C) helix, represented in Fig. 8.2. It is a stacking along one direction of reg-
ular tetrahedra, the elementary unit of four close-packed spheres. Figure 8.1c
represents the helix as a two-dimensional graph on triangular lattice covering

Fig. 8.2. Boerdijk–Coxeter helix (left-handed) obtained from a necklace of tetrahe-
dra (a) or as a packing of spheres (b). In (c), a right-handed B–C helix is represented
on a flat strip tiled with equilateral triangles, that constitutes a cylinder with the
vertical grey lines identified. This is a 30/11 helix (30 vertices for 11 turns, a con-
vergent of 1 +

√
3). Note that the axis of the helix (vertical grey line) is not exactly

perpendicular to its base (horizontal grey line). When the horizontal grey lines are
also identified, one obtains one of the four tori that make up the Hopf fibration of
polytope {3, 3, 5}, a discrete representation of the hypersphere S3. There are three
fibres–the steepest lines of ten neighbouring vertices, great circles in S3 winding 1:1
around the torus
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a cylinder. The cylinder is cut and flattened. This elegant geometric construc-
tion cannot be considered as a material unit for two reasons:

(a) The regular tetrahedron is not a three-dimensional space filler. Indeed, its
dihedral angle is 2π/(5.1), and that is geometrically frustrated because the
.1 leaves empty space, and the fivefold symmetry is not crystallographic.
Indeed, the perfect, close packing of spheres exists in the positively
curved space S3; it is polytope {3, 3, 5}, containing 120 spheres and 600
tetrahedra.

(b) As a one-dimensional structure, it is not periodic, not even quasi-periodic,
that is extensible from a small finite nucleus by substitution rules or
by cut-and-projection through a sequence of approximants. The num-
ber of edges or of spheres per turn of the helix1 is 2π/ cos−1(−2/3) =
[2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 7, 6, . . .] ≈ 2.7312, that is neither a rational number,
describing a periodic structure, nor a quadratic irrational, necessary con-
dition for context-free inflation–deflation symmetry.2

It is possible to resolve the difficulty (b). One can construct a quasicrys-
talline Coxeter helix with a number of spheres per turn equal to 1 +

√
3 =

[2, 1] = 2.73205, with exactly the same rational convergents through the
first 112 amino acids and 41 turns. Notably, the periodic helices 30/11 =
[2, 1, 2, 1, 2] = 2.7272 . . . of Fig. 8.2c), and 41/15 = [2, 1, 2, 1, 2, 1] = 2.733 . . .
are rational convergents of the B–C and quasicrystalline Coxeter helices.
Neither have axis perpendicular to the base of the cylinder; as befits
successive rational convergents, it lies on either side of the axis of the qua-
sicrystalline Coxeter helix, which has an irrational slope in the underlying
triangular lattice. There exists a third helix, with its axis exactly perpendic-
ular to the base of the cylinder. It has 14 amino acids for 5 turns exactly, i.e.
42/15 = 14/5 = [2, 1, 4] = 2.8 that has the same convergents (principal and
intermediate) through the first 11 amino acids and 4 turns.3 This is the basic
helix of collagen.
1 Three types of helical chains of spheres in contact, with different pitch and chi-

rality, can be distinguished in the B–C helix. We refer here to the flattest, right-
handed helix, called Coxeter chain. Each one of the three polypeptide chains
constituting the collagen molecule, is a left-handed helix of intermediate pitch
(Fig. 8.3), also constructible on the B–C helix. The Gly sit on the steepest, right-
handed helix, that is also a fibre in the Hopf fibration of polytope {3, 3, 5}.

2 A number is represented by its continuous fraction, as q0 + 1

q1+ 1
q2+...

=

[q0, q1, q2, . . . ]. A quadratic irrational has a periodic continuous fraction expan-
sion, with the period underlined, e.g.

√
3 = 1 + 1

1+ 1
2+ 1

1+...

= [1, 1, 2]. Rational

approximants are given by truncation of the sequence [5].
3 In the collagen chain (Fig. 8.3), the axis goes through Gly(0), X(7), Y (14) and

Gly(21). The (left-handed) helix with an axis perpendicular to the base is 21/6,
or 7/2 for identical vertices. It has been identified by Okuyama et al. [1].
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The geometrical frustration (a) is resolved in (positively) curved space [6].
Hopf’s fibration of S3 extends to its discrete scaffolding, polytope {3, 3, 5} [7].
There are 12 fibres of ten vertices each. They can be divided into four co-axial
tori of three intertwined fibres. All fibres are identical, by definition, and also
equidistant (parallel in curved space). One torus flattened in Euclidean space
is represented in Fig. 8.2c. It is covered by helix 30/11. One notices the three
fibres, the steepest helices winding 1:1 around the torus. Note that edges of
the triangular network are only equal in curved space. In Euclidean space,
there is a slight distortion of the distance between different fibres. The base
space is the icosahedron 35 (Fig. 8.4). Each vertex is the representative (a
projective map) of one fibre.4

Incidentally, the torus covered by helix 42/15 can also be represented by
a cylinder, with its axis perpendicular to the base. The three fibres winding
1:1 around the torus are longer: They have 14 vertices each. These fibres are
identical to the four fibres in the torus covered by a disclinated Coxeter helix
1 + 41/15, based on a square rather than on a triangle [4]. This enables us
to extend the Hopf fibration of polytope {3, 3, 5} to a decurved (flattened)
polytope of 24 × 14 = 336 vertices, with fibres of 14 vertices instead of ten.
And then, without any further lengthening of the fibres, to the Euclidean
honeycomb with the sigma phase honeycomb 32.4.3.4 as base space.

8.3 The Collagen Molecule

The collagen molecule, with its three, intertwined polypeptide chains, can be
represented in curved space on the Hopf fibration of polytope {3, 3, 5}. The
base space is an icosahedron.

A single collagen chain (polyproline PPII helix structure) forms a left-
handed helix [Gly − X − Y ]5, (15/4), drawn in Fig. 8.3 on a torus of the
fibration, i.e. on the right-handed B–C helix 30/11, with twice the vertical
spacing between vertices. Half of the vertices on the torus, constituting a
second left-handed helix parallel to the first, are empty. The fibres (of the
original Hopf fibration, with all vertices identified) are the three, steepest
right-handed helices. One contains five Gly separated by five empty vertices.
The other two, five amino acids X or Y , respectively, separated by five empty
vertices. The torus is mapped on the base space as a triangle (shaded in
Fig. 8.4b).

The collagen molecule is represented as a hexagon on base space, with a
triangular core of Gly inside (Fig. 8.4b). Within the triangular core, the two
hydrogen side groups of Gly form a close-packed Coxeter helix 30/11 (with
the 30 H attached to the 3× 5 Gly from the three chains). The projection of
the horizontal, interchain, hydrogen bonds are represented as double lines in
Fig. 8.4b.
4 We have to distinguish between base space of a non-trivial fibration and base of

a cylinder (a circle).
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Fig. 8.3. The single collagen chain PPII (Gly − X − Y ) is a left-handed helix,
that can be drawn on a right-handed B–C helix with half the vertical spacing. The
helix is represented on a flat, rectangular strip by identification of the two long
sides of the rectangle. In the Hopf fibration of polytope {3, 3, 5}, five amino acids
Gly, (or X, or Y , resp.) lie on a fibre that is a great circle with ten vertices. Note
that the axis Gly − X of helix 7/2 is orthogonal to the base, so that a stack of
three segments 7/2 gives one period of the collagen chain in Euclidean space, the
left-handed helix 21/6, with a fibre of seven Gly winding around once. The winding
number of the underlying right-handed B–C helix is 41/15, the next convergent,
after 30/11 (Fig. 8.2c), of 1 +

√
3. There are 14 vertices in the fibre. The collagen

chain is periodic and the embedding space is completely decurved

8.4 Decurving

The structure of collagen in Euclidean space is obtained by decurving space,
i.e. by iteratively increasing the radius of the polytope, in a way that keeps con-
stant the rate of intertwining of the chains, and the connectivity and symmetry
of the base space. Decurving increases the radius and area of the base space
and lengthens the fibres. In a fibration, the base must remain an Archimedean
polyhedron or honeycomb, a tiling of triangles and squares (decurved trian-
gles) with vertex connectivity z = 5.5 This suggests a decurving of the base

5 If the individual helices are represented by triangles in base space, as in Fig. 8.4b,
decurving must not involve any physical distance. The triangle that changed into
a square is neither the core of three Gly, nor the triangle Gly−X−Y representing
one polypeptide chain, nor even the triangle Gly− (Gly−X), because it involves
the horizontal hydrogen bond between the Gly of one chain and the X of another.
It can only be the triangle (Y − Gly) = X, with the distance between the X of
one chain and the Y of the other stretched to become the diagonal of the square.
The snub cube contains then the projection of two complete molecules. If the
triangle representing the polypeptide chain was changed into a square, one would
have obtained an alpha helix [4].
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Fig. 8.4. The base space of the Hopf fibration of polytope {3, 3, 5} is an icosahedron
(a). Each vertex of the icosahedron is only the representative of one fibre. Physically,
the fibre is either a collagen molecule (a triple helix), or (b) the representative of the
amino acids Gly (or X, or Y , resp.) of a single PPII chain. Then, a shaded triangular
face of the icosahedron represents a PPII chain, and the triple helix collagen molecule
is represented by the decorated hexagon in (b). Hydrogen bonds (double lines) are
horizontal bridges between the Gly of one helix and the X of another. Notice the
right-handed chirality of the Gly core and of the triple collagen molecule, opposed
to the left-handed chirality of the PPII helices

in two stages, icosahedron 35 to snub cube 34.4, to sigma phase honeycomb
32.4.3.4.

Alternatively, one can represent an entire molecule as a vertex in the base
space. This alternative representation is used hereafter (Fig. 8.5–8.9).

The first step decurves the base space of {3, 3, 5}, an icosahedron 35 into a
snub cube 34.4. The snub cube can be decurved one step further, by replacing
a second triangle by a square. One obtains the square–triangle, Archimedean,
z = 5 honeycomb 32.4.3.4 (major skeleton of the sigma phase of intermetallic
compounds, a Frank–Kasper phase).6 Decurving is complete, because the base
space is now flat and infinite, and the fibres are periodic B–C helices 42/15.

6 The alternative honeycomb 33.42, in which the two squares are neighbours, forfeits
the isotropy of the original polytope {3, 3, 5}.
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Fig. 8.5. Bouligand’s overlap–gap transformation between two Archimedean lat-
tices. Unit cells in grey. (a) A square lattice decorated as a topological square–
triangle lattice 32.4.3.4 (overlap, z = 5). (b) By removing one vertex out of five
from the square lattice, one obtains a topological square–triangle lattice 32.4.3.4
(gap, z = 5). The square unit cell has area

√
5×

√
5 = 5. The vertices removed from

the original lattice are noted as o, and are replaced by a diamond square. (c) The
other Archimedean, z = 5 alternative is 33.42, but it is much less isotropic. The unit
cell is not square, with an area

√
2 × (

√
2 + 1/

√
2) = 3, and one vertex out of three

has been removed. (d) The only Archimedean alternative is between square lattices
(z = 4). The square unit cell has area

√
2×

√
2 = 2 (one vertex out of two has been

removed)
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Fig. 8.6. (a) The unit cell of the square–triangle 32.4.3.4 gap structure, drawn
on a triangular lattice. All edges have equal length, but the “square” is in fact a
rhombus. A vertex is the representative of a collagen molecule. (b) The unit cell
of the square–triangle 32.4.3.4 overlap structure, drawn on a triangular lattice. The
“square” is slightly rectangular, and there are two types of equilateral triangles, of
sizes in the ratio 2

√
3/3 = 2/

√
3. (c) A smaller 32.4.3.4 overlap structure, with the

square of the gap structure as unit cell, drawn on a triangular lattice, rotated by
π/2. It is similar to the original overlap structure (b). The factor of similarity is
1/

√
3. Also drawn (grey) is the associated Voronoi tiling

Moreover, the axis of the helix is perpendicular to its basis, and the projection
is orthogonal. The structure remains a fibration at all stages.

The identical fibres are helices winding 1:1 around the tori represented
by the triangles and squares of the base space. They have ten vertices in the
original {3, 3, 5} polytope (with the tori covered by the Coxeter helix 30/11,
Fig. 8.2c). At the next two stages, the fibres are longer (14 vertices) but they
still wind 1:1 around the longer tori: The torus represented as a triangle in
base space is covered by the Coxeter helix 42/15. Torus and helix are periodic
in Euclidean space (the axis of the strip making up the torus with opposite
sides identified, is perpendicular to the base).
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Fig. 8.7. The overlap structure 32.4.3.4. The main grid is that of the unit cell (a
square with a slight rhombohedral distortion). The secondary grid is made of the
mirror planes m and m′, bisecting the triangles. It has a rectangular unit cell with
half the area. There are two other strong alignments, on the directions (2,−1) and
(−1, 2) of the main grid, that include one diagonal of one of the two squares and
the intersection between two mirror lines bisecting the larger triangles. The aligned
points are equidistant. The transformation from one alignment to the other is a
rotation of �27◦ = (3/2)(π/10). The overlap structure has many symmetries (unlike
the gap), responsible for the periodic, twist grain boundary stacking of sections of
intertwined collagen molecules that constitute the fibril of collagen

Fig. 8.8. The twist grain boundary between two overlap structures at successive
heights, rotated by �27◦. Note the periodic coincidence site lattice between equidis-
tant, aligned points
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Fig. 8.9. Two successive twist grain boundaries overlap–gap–overlap. This illus-
trates the 5/4 ratio between the areas of the overlap and gap unit cells. The
structure of a collagen fibril is thus a periodic stacking of twist grain boundaries
[overlap − gap]10

8.5 Transverse Structures (gap, overlap) on Two
Orthogonal Triangular Lattices

Since the collagen helix is represented on a cylinder covered by a triangular
lattice (Fig. 8.2c and 8.3), and since it is inflated by 1 +

√
3, the transverse

structure of the collagen fibril should be based on an underlying triangular
lattice.

The transverse structure is, topologically, a square–triangle pattern
32.4.3.4, with vertex coordination z = 5. This pattern accommodates the flex-
ibility of tightly packed individual molecules through gaps in their stacking
(Fig. 8.1d). Accordingly, the transverse structure at the “gap” level is topolog-
ically the same as at the “overlap” level, but with density reduced by 4/5, and
overall rotation (see Fig. 8.5b).7 The transition overlap–gap–overlap is a twist
grain boundary (TGB). In general, the one-dimensional stacking of TGB is
periodic [9], but, in collagen, this periodicity, and the square–triangle trans-
verse structure, are necessary consequence of close packing of amino acids,
that is of steric repulsion.

The mechanism of the transition from overlap to gap is illustrated in
Fig. 8.5 [10], showing how an interruption in one out of every five molecules
leaves the square–triangle lattice invariant. The topological rotation is by
tan−1(1/2). Figure 8.5 also shows that the square–triangle (z = 5) and square
(z = 4) patterns are the only topological lattices invariant through regularly
spaced gaps. Each vertex has a label 1, 2, 3, 4, 5 (mod.5) that indicates the gap
level at which its representative molecule is interrupted. The numbers increase
by 3 (mod.5) horizontally, and by 1 vertically, in the positive sense (by 2 and
by 4 in the negative sense). The interrupted molecule in the gap region has
four neighbours with labels all different. Every vertex in the gap region has
five neighbours, with labels different from its own and from that of the gap.
7 The fact that out of the five molecules in the overlap, only four extend into the

gap has been established by Hodge and Petruska [8]. See [3, 10].
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Let us now obtain the metric of the two structures. The inflation multiplier
1 +

√
3 must be present both in the longitudinal and in the transverse struc-

tures, which is expected to exhibit several rational approximants of
√

3. This
suggests constructing the transverse structure on two orthogonal triangular
lattices. The superposition pattern exhibits “wheels” at rational approximants
of 1+

√
3, located on (two) square–triangle pattern(s). The wheels are centred

on two copies of the gap structure, which is the main coincidence pattern of
the two perpendicular, triangular lattices.

8.6 The Gap Structure

The gap structure is shown in Fig. 8.6a. All edges are equal. But the “square”
has a slight rhombic distortion, and the unit cell (4 vertices, 4 triangles, 2
squares, with an area of 112 elementary triangles) is slightly rectangular. The
distortion is equal to 4

√
3/7 = 1.010. (see Table 8.1). The gap structure

is metrically regular, but it has no mirror symmetry, and no alignments of
points.

8.7 The Overlap Structure

The overlap structure is shown in Fig. 8.6b. It is built on rectangular “squares”
with orthogonal sides on the 12 symmetry directions of the underlying tri-
angular lattice, and with 5/4 the vertex density of the gap structure. The
arithmetic construction of the gap and overlap structures is detailed in the
next section.

Table 8.1. The table below lists the geometric manifestations of the various ap-
proximants Cj/Aj to

√
3 in the overlap and gap structures. A rectangular structure

is denoted as [. . .]; it has one approximant . Without bracket, it refers to an equila-
teral rhombus, with two approximants (a) and (b). The unit cell of the small overlap
structure is the square of the gap structure. The first column gives the value of j. The
last column gives the (orthorhombic or triclinic) distortion, sup(

√
3/app., app./

√
3)

For reference:
j = 4

√
3 ≈ 19/11 in B.C. helix.

j = 5
√

3 ≈ 41/15 in inflated B.C. helix.

j
√

3 overlap small lap over-gap distortion

1 2/1 [square] [square] unit cell(a)
unit cell(a) unit cell(a) square(a) 1.155

2 5/3 [mirror unit cell] [mirror unit cell] 1.04
3 7/4 unit cell(b) unit cell(b) square(b) 1.01

[unit cell]
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The overlap structure is much more symmetrical than the gap. It has:

(a) Orthogonal mirror axes that coincide with the diagonals of the rhombi.
(b) Many points are aligned and regularly spaced, on the direction of the

diagonal of the square, which is also direction (2, −1) in the unit cell grid.
(c) It has two unit cells, a rhombus-shaped unit cell (with four vertices and

an area of 90 elementary triangles)8, and a smaller, rectangular unit cell
made of mirror planes (two vertices).

(d) It exists at two different scales (Fig. 8.6b, c) with the same convergents.

One can constitute a “square” cell in the overlap structure, of sides (2,−1)
and (−1,−2), containing 20 points (or 5 unit cells, arranged as in Fig. 8.7). A
square of 2×2 unit cells of the gap structure contains 16 points. The two cells
fit almost exactly (side length:

√
196 and

√
192 (gap);

√
189 (overlap)). The

rotation tan−1(
√

3/6) + tan−1(
√

3/9) = tan−1(5
√

3/17) = 26.996◦ = 3π/20
is the metric equivalent of the topological rotation of tan−1(1/2) of Bouli-
gand. The small orthorhombic distortions are different in the gap and in the
overlap. This is why one can observe two superposed, different X-ray diffrac-
tions patterns, corresponding to gap and overlap distances. Experimentally,
the distortion is 2% on average [1].

8.8 Transverse Structure; Coincidence Lattice of Two
Orthogonal, Triangular Lattices; Approximants of

√
3

The inflation multiplier for the collagen molecule is 1 +
√

3 = [2, 1]. It is
expected to dominate also the transverse structure of collagen, that should
be based on the coincidence points of two perpendicular triangular lattices,
with coordinates corresponding to rational convergents of

√
3. The superposed

triangular lattices have a non-crystallographic, 12-fold rotation symmetry. The
resulting lattice of near-coincidence points is, topologically, (two copies of) the
Archimedean lattice 32.4.3.4. It is the gap structure, with unit cell shown in
Fig. 8.6a. It has nearly square symmetry, with a slight orthorhombic distortion
of 1.01.9

A triangular lattice is the set of points (1/2)ai + (
√

3/2)bj, with a, b in-
tegers, both odd or even, where i and j are orthogonal unit vectors. The 12
axes of symmetry are given by a = ± b or by a = 0 or b = 0, and permutation
of i and j. If the origin is one coincidence point, another lies:

8 The areas of the primitive cells match: overlap: (5/4)90 = 112.5, gap: 112 ele-
mentary triangles.

9 Two triangular lattices, rotated by θ and superposed, give moiré patterns in
general, except for θ = π/3 (exact superposition) and θ = π/2 (mod.π/3) (two
Archimedean lattices 32.4.3.4).
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(1) On an axis of 12-fold symmetry. It is given by the lattice vectors n i ≈
p
√

3 i in the two, orthogonal triangular lattices. Thus,
√

3 ≈ n/p = Cj/Aj ,
where Cj = BjAj and Bj/Aj are successive convergents of 1 +

√
3,

obtained by truncation of its continued fraction.10 The Aj are given by
recursion, Aj = qjAj−1 + Aj−2, with A0 = 1, A−1 = 0, and similarly for
Bj and Cj , with B0 = q0 = 2, B−1 = 1. On a single triangular lattice,
the two vectors are orthogonal, with nearly the same length. They form
a square with a slight orthorhombic distortion. In the overlap, one recog-
nizes the “square” with approximant of

√
3 ≈ 2/1, the unit cell made of

orthogonal mirror planes with
√

3 ≈ 5/3. In the gap structure, there is
the unit cell with

√
3 ≈ 7/4.

(2) Other coincidence points do not lie on a symmetry axis. They are rep-
resented on a single triangular lattice by the two lattice vectors b1 =
(1/2)pi + (

√
3/2)qj and b2 = (1/2)mi − (

√
3/2)nj, with p and q, resp.

m and n, integers of same parity. The two vectors have the same length
|b1| = |b2|, and are nearly orthogonal. They form a rhombus that is almost
a square. Its diagonals b1 + b2 and b2 − b1 lie on me axes of symmetry of
the triangular lattice, thus

p−m = q + n, (8.1)

3(n− q) = p + m. (8.2)

Moreover,

b1 · b2 = (3q2 −m2)/2. (8.3)

Note that m > n, since m = n would imply q = 0. (The two vectors form
also an equilateral triangle, so that α+β = π/6, where α and β are the angles
between the b’s and the symmetry axes. For example, tanβ = m/(n

√
3), so

that m < n.)
This yields two approximants for

√
3, p/n and m/q, with q < m < n < p.

The solution of (8.1) and (8.2) is,11

10 1 +
√

3 = [2, 1] = [q0, q1, q2, q3, . . . ], where qj = 2 for j even, qj = 1 for j odd (see
footnote 2).

11 Proof (by induction): (p − m) − (n + q) = qj+2Bj+1 − 2Aj+2 = qj+2[qj+1Bj −
2Aj+1]+[qj+2Bj−1−2Aj ], with qj+2 = qj for

√
3. The two [. . .] = 0 by induction,

thus qj+2Bj+1 = 2Aj+2. Similarly for (8.2): 3(n − q) − (p + m) = 3qj+2Aj+1 −
2Cj+2+qj+2Cj+1 = 2qj+2Aj+1−2Cj+2 +qj+Bj+1= 2qj+2Aj+1−2(Cj+2−Aj+2),
using the result in the proof of (8.1). Then, qj+2Aj+1 − (Cj+2 − Aj+2) =
qj+2[qj+1Aj − (Cj+1 − Aj+1)] + [qj+2Aj − (Cj+1 − Aj+1)], with qj+2 = qj for√

3. Once again, the two [. . .] vanish by induction. Note that we have only used
the fact that qj+2 = qj , i.e. a continuous fraction expansion of period 2.
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q = Aj , m = Cj , n = Aj+2, p = Cj+2. (8.4)

The smallest solution (j = 1) is q = 1, m = 2, n = 4, p = 7. It corresponds
to the square of the gap structure. The intermediate convergent q = 2, m = 3,
n = 7, p = 12, which corresponds to the unit cell of overlap structure, yields
the same approximants for

√
3.

With q = Aj , m = Cj , the two vectors are nearly orthogonal. The scalar
product −2b1 · b2 = (m2 − 3q2) = 1 for j odd, = −2 for j even, regardless of
the length of the vectors. Indeed, m2−3q2 = 1 is known as Pell’s equation [5].
Pell’s equation has infinitely many solutions Cj/Aj (j odd). For intermediate
convergents (defined, for j even, as A

(1)
j = Aj−1+Aj−2, Aj = 2Aj−1+Aj−2 =

A
(1)
j + Aj−1), Pell’s equation is m2 − 3q2 = −3, i.e. q2 − 3(m/3)2 = 1, and

q = A
(1)
j = Cj−1, m = C

(1)
j = 3Aj−1, yielding the same approximant for√

3 ≈ Cj−1/Aj−1 = 3Aj−1/Cj−1 , thus
√

3 ≈ Cj−1/Aj−1 as that for j − 1
odd.

Okuyama et al. [1] mention an average distortion of 1.019 in their crystal
of [Gly − Pro− Pro]10, which is consistent with these figures.

It is possible to represent the cross-section of the collagen molecule (triple
helix) as a trefoil of three, close-packed hexagons drawn on the underlying
triangular lattice [3, 10]. Contact between trefoils is through an edge of the
triangular lattice in the overlap, and through a vertex in the gap structure.
The trefoil rotates as it goes along the molecule. In the overlap, the smaller
rhombi have four trefoils filling space without any vacant space. The larger
rhombi have a hexagonal hole between the four trefoils, as do the “squares”.
The distances between trefoil centres are 3 and 2

√
3 edges of the underlying

triangular lattice. When the trefoils rotate, they push each other apart to
reach a single maximum distance in the gap. With one out of every five trefoils
missing, the area occupied remains constant. Further rotation of the trefoils
leads to an overlap structure, rotated from the first, with the smaller rhombi
replaced by larger ones, and vice versa.

8.9 Twist Grain Boundary Overlap–(Gap)–Overlap

Figures 8.8 and 8.9 show how the periodic stack overlap–gap–overlap–. . . can
be constructed, and that the boundaries between gap and overlap structures
are twist grain boundaries, associated with a coincidence site lattice.

The precise value of the rotation angle θ′ at the twist grain bound-
ary between two overlap structures (separated by a gap) is twice θ′ =
tan−1(

√
3/6)+ tan−1(

√
3/9) or θ′ = tan−1(5

√
3/17) whose numerical value is

26.996◦ �27◦. Namely the rotation is 3π/10. The tenfold symmetry is visible
in the diffraction pattern of a single overlap structure. It corresponds to a true
coincidence site lattice.

In practice, we place the vertex at the origin of the rotated structure
anywhere within the Voronoi cell of one of the five vertices of the unit cell of
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the overlap structure. The gap structure, rotated around one of its vertices
by 27◦, has vertices in four out of five Voronoi cells of the original overlap
structure (as indicated schematically in Fig. 8.5b). The next overlap, rotated
by a further 27◦, has its vertices inside all five Voronoi cells of the original
structure. The vertex superposition is only topological; the molecule at the
origin of the structures is only approximatively straight.

The operation is repeated, starting now with the rotated overlap structure.
The primitive cell is translated to have its basis in the same orientation. But
the position of the smaller and larger rhombi is now exchanged, as was sug-
gested in the trefoil model of Bouligand. This is another effect of the rhombic
distortion of the perfect square–triangle structure. Accordingly, the rotation
angle of the TGB is now twice tan−1(

√
3/7)+tan−1(

√
3/5) = tan−1(3

√
3/8) ≈

33◦ = π/3−3π/20, the complementary – to 2π/3 – of 3π/10. Hence, the appar-
ent tenfold rotation, superposed on the sixfold triangular symmetry, noticeable
in the diffraction patterns. The apparent contradiction between microfibrils
with pentagonal cross-section [11] and quasi-hexagonal alignment of triple
helices [12] is hereby resolved: the collagen fibril exhibits both rotations sym-
metries (Figs. 8.6, 8.8 and 8.9), enforced by the orthorhombic distortion of the
square–triangle pattern on a triangular lattice.
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Euler Characteristic, Dehn–Sommerville
Characteristics, and Their Applications

V.M. Buchstaber

Summary. In this chapter we present several classical results centring on the no-
tion of Euler characteristic of simplicial complexes and manifolds. We also consider
some results that are not discussed in the textbooks of topology. These results are
concerned with construction of certain combinatorial invariants of manifold trian-
gulations, which we call the Dehn–Sommerville characteristics.

9.1 Introduction

In May 2002 the author read a mini-course of lectures in algebraic topology
at the Max Planck Institute, Dresden. As the audience consisted mostly of
physicists and biologists, the course aimed at introducing several fundamental
concepts, requiring only basic mathematical knowledge. The notes from the
lecture course have grown up into this text.

We give several classical results centring on the notion of Euler character-
istic of simplicial complexes and manifolds. The chapter also contains some
results that have not yet found their way into algebraic topology textbooks,
but are of considerable interest due to their applications in several fields,
including discrete mathematical physics. These results are connected with
construction and applications of certain combinatorial invariants of manifold
triangulations, which we call the Dehn–Sommerville characteristics.

All the key properties are illustrated on the triangulations of two-
dimensional surfaces. Detailed proofs and further developments for most of
the results of this study can be found in [1, 2].

9.2 Simplicial Complexes and Maps

Denote R
n as an n-dim Eucledian space. An n-dim simplex σn is the convex

hull in R
n of any (n + 1) points α0, . . . , αn not contained in an (n − 1)-dim

hyperplane.
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α0 α0 α1

0-dim 1-dim

Fig. 9.1. Simplex

A point x ∈ σn can be written in barycentric coordinates as

x =
n∑

j=0

xjαj ,

n∑

j=0

xj = 1, xj ≥ 0.

A face of σn is the simplex determined by a subset of vertices α0, . . . , αn.
The empty subset of vertices determined the empty face.

Example 1. A face of dim (n− 1) is given by σn−1
j = (α0, . . . , α̂j , . . . , αn).

A finite simplicial complex K is a finite collection of simplices satisfying
the following two properties:

1. Each face of a simplex from the collection belongs to the collection
2. The intersection of any two simplices from the collection is a face of each

Example 2. The boundary of an n-dim simplex σn is the union ∪jσ
n−1
j of

its (n − 1)-dim facets, together with all their faces. This is an (n − 1)-dim
simplicial complex, the standard simplicial subdivision of the sphere Sn−1.

A map of simplices σn
1 → σm

2 is a map from the vertices of σn
1 to the

vertices of σm
2 extended linear to the whole of σn

1 . A simplicial map f : K1 →
K2 of complexes is a map whose restriction to each simplex is a map of
simplices. Therefore, a simplicial map is determined by the images f(αj) = βk,
where {αj} and {βk} are the sets of vertices of K1 and K2.

Example 3. Let K be any simplicial complex on the vertex set {v0, . . . , vm−1},
and σm−1 the standard simplex on the vertices {α0, . . . , αm−1}. Then there
exists a canonical simplicial map (inclusion)

f : K ↪→ σm−1

determined by f(vj) = αj .

Given two simplicial complexes K1 and K2, we say that K2 is a subdivision
of K1 if each simplex of K1 is a union of finitely many simplices of K2 and
the simplices of K2 are contained linearly in the simplices of K1.

The barycentric subdivision K ′ provides a standard way to subdivide any
simplicial complex K.

The barycentric subdivision may be defined inductively: To subdivide an
n-simplex σn we first barycentrically subdivide the faces of σn, then introduce
yet another vertex α ∈ σn in the centre of σn, and add new simplices of the
form (β0, . . . , βk, α).
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Fig. 9.2. Barycentric subdivision

Example 4. Let K be an (n − 1)-dim simplicial complex on the vertex set
{v0, . . . , vm−1}, and σn−1 the standard simplex on the vertices {α0, . . . , αn−1}.
Then there exists a canonical simplicial map

ϕ : K ′ ↪→ σn−1

determined by ϕ(ω) = αk, 1 ≤ k ≤ n, where ω = (vi1 , . . . , vik
) is a simplex

of K.

The map ϕ from the previous example belongs to a very special class of
simplicial maps, the so-called branched combinatorial coverings.

A map p : K1 → K2 between simplicial complexes K1 and K2 is called a
branched combinatorial covering if:

1. For any relatively open simplex
◦
τ ∈ K2 the preimage p−1(

◦
τ) is a finite

non-empty disjoint union of relatively open simplices
◦
ωi(τ);

2. The map p :
◦
ωi(τ) → ◦

τ is a homeomorphism for all i.

Two simplicial complexes K1 and K2 are said to be combinatorially equiv-
alent if there exists a simplicial complex K isomorphic to a subdivision of
each of them. The combinatorial neighbourhood of a simplex τ ∈ K is the
subcomplex consisting of all simplices, together with their boundaries having
the simplex τ as a face. A simplicial complex K is called an n-dim piecewise
linear (PL-) manifold if after application of a sequence of barycentric subdi-
visions the combinatorial neighbourhood of each simplex becomes a complex
combinatorially equivalent to σn.

9.3 Euler Characteristic and Dehn–Sommerville
Characteristics

The f -vector of an (n− 1)-dim simplicial complex K is given by

f (K) = (f0, f1, . . . , fn−1),

where fi is the number of i-dim simplices of Kn−1.
The Euler characteristic of Kn−1 is

χ(Kn−1) = f0 − f1 + · · · + (−1)n−1fn−1.
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For example, χ(σn) = 1 and χ(Sn−1) = 1 + (−1)n−1.
Put f(t) = tn + f0t

n−1 + · · · + fn−1 and h(t) = h0t
n + h1t

n−1 + · · · + hn.
The h-vector h(K) = (h0, . . . , hn) of an (n − 1)-dim simplicial complex K is
defined by the identity h(t) = f(t− 1). Note that h0 = 1.

Define the Dehn–Sommerville characteristics of a simplicial complex K by
the formula:

DSi(K) = (−1)n−1(hn−i − hi), i = 0, . . . , n.

The numbers DSi are obviously combinatorial invariants of a simplicial com-
plex K. We have

DS0(K) = χ(K) − χ(Sn−1).

Two maps f1, f2 : X → Y are called homotopic if there is a continuous
map F : X × I −→ Y (here I is the interval [0, 1]) such that F (x, 0) = f1(x)
and F (x, 1) = f2(x) for all x ∈ X.

Fix a basepoint pt ∈ X. Homotopy classes of maps ϕ : I → X such that
ϕ(0) = ϕ(1) = pt form a group called the fundamental group of X and denoted
π1(X).

A continuous map f : X → Y is called a homotopy equivalence if there is a
map g : Y → X such that the two composites g◦f : X → X and f ◦g : Y → Y
are homotopic to the identity maps idX and idY , respectively.

A characteristic a(X) of a space X is called a homotopy invariant if a(X) =
a(Y ) whenever there is a homotopy equivalence f : X → Y .

The Euler characteristic χ(X) is a homotopy invariant, and therefore so
is DS0(K).

For i > 0 the characteristic DSi(K) is not homotopy invariant in general.
Remarkably, it becomes a homotopy invariant if we restrict to triangulated
manifolds. More precisely, for any triangulated manifold Kn−1 the following
generalised Dehn–Sommerville relations hold:

DSi(K) = (−1)i
(
χ(Kn−1) − χ(Sn−1)

)
(
n

i

)
, i = 0, 1, . . . , n.

If K is a simplicial subdivision of the sphere Sn−1 we obtain

DSi(K) = 0.

The Dehn–Sommerville relations are the most general linear equations satis-
fied by the f -vectors of triangulated spheres.

Example 5. Let K be a simplicial subdivision of the sphere S2. Then it follows
from the Dehn–Sommerville relations that

f (K) =
(
f0, 3(f0 − 2), 2(f0 − 2)

)
.
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9.4 Homology Groups and Characteristic Classes

Given a simplicial complex K, we fix an order of its vertices α0, α1, . . . , αm.
Then an r-dim simplex of K can be written as [αi0 , αi1 , . . . , αir

], i0 < · · · < ir.
This fixes a canonical orientation on it.

Suppose that we are also given an abelian group G with operation “+”. A
k-dimensional chain of K with coefficients in G is a finite linear combination
of distinct k-simplices of K of the form

ck =
∑

i

giσi, gi ∈ G.

Chains of K of dimension k form an abelian group Ck(K) with the sum of
two chains ck and c′k =

∑
i g

′
iσi given by

ck + c′k =
∑

i

(gi + g′i)σi.

The boundary of an n-simplex σn = [α0, . . . , αn] is the (n− 1)-chain

∂σn = ∂[α0, . . . , αn] :=
n∑

i=0

(−1)iσn−1
(i) ,

where σn−1
(i) := [α0, . . . , α̂i, . . . , αn]. For example,

∂[α0] = 0,
∂[α0, α1] = [α1] − [α0],

∂[α0, α1, α2] = [α1α2] − [α0α2] + [α0α1].

For any n-dim simplex we have

∂∂[α0 . . . αn] =
n∑

i=0

(−1)i∂σn−1
(i) = 0.

+

+ +

-
-

-
a

a

a

0
1

2

Fig. 9.3. Boundary
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The boundary of an arbitrary k-chain ck =
∑

i giσi is then given by

∂ck :=
∑

i

gi∂σi.

Again, we have ∂∂ck = 0.
The k-cycles of K are those k-chains ck satisfying ∂ck = 0. They form a

subgroup denoted Zk.
The boundary k-cycles are those that are “homologous to zero”, i.e. are of

the form ∂ck+1 for some (k + 1)-chain ck+1. The subgroup they comprise is
denoted by Bk.

We say that two chains c′k and c′′k are homologous if

c′k = c′′k + ∂ck+1

for some (k+1)-chain ck+1 of K. The k-dim homology group Hk(K;G) is the
quotient of Zk/Bk.

The fundamental group is not commutative in general, and its abelianisa-
tion is the first homology group:

H1(K; Z) ∼= π1(K)
/[

π1(K), π1(K)
]
,

where [π1(K), π1(K)] is the commutator subgroup of the fundamental group.
When G = R is the group of real numbers, the group Hk(K;G) is a real

vector space. By definition, the kth Betti number bk of M is dimHk(K; R).
A theorem of Poincaré states that

χ(K) =
∑

i≥0

(−1)ifi =
∑

i≥0

(−1)ibi.

If Mn is a closed and connected manifold admitting a finite triangulation,
then

Hn(Mn; Z2) = Z2,

where Z2 is the 2-element group of residues modulo 2. The generator of
Hn(Mn; Z2) is given by the homology class of the chain

∑
i σ

n
i , where the sum

is taken over all simplices of K. This generator is called the Z2-fundamental
class of Mn.

A closed connected triangulated manifold Mn is called orientable if there
is a choice of signs εi = ±1 such that the n-chain

∑
i εiσi is a cycle. This

choice of signs is called an orientation of Mn, and the homology class of the
cycle

∑
i εiσi in Hn(Mn; Z) is called the fundamental class of the oriented

manifold Mn. It generates the group Hn(Mn; Z). The property of orientability
does not depend on a choice of triangulation, and there are two different
orientations in total. The corresponding fundamental classes differ by a sign.

For every closed connected orientable triangulated manifold Mn we have
Hn(Mn;G) = G for all G. If Mn is non-orientable then
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Hn(Mn; Z) = 0, Hn(Mn; Z2) = Z2.

A simplicial map f : K1 → K2 induces group homomorphisms

f∗ : Hk(K1;G) → Hk(K2;G), k = 0, 1, . . . .

In particular, for a simplicial map f : Mn
1 → Mn

2 between two oriented man-
ifolds we have f∗[Mn

1 ] = m[Mn
2 ], where m is called the degree of f (the same

is true for non-orientable manifolds if we work with Z2-homology).
Consider the barycentric subdivision M ′ of a manifold M = Mn and define

wk =
∑

i

ωk
i ,

where the sum is taken over all k-dim simplices ωk
i of M ′. It is remarkable

that for any k the chain wk is a cycle with coefficients Z2. The homology class
[wk] is a homotopy invariant of Mn, called its kth homology Stiefel–Whitney
class. In particular, [wn] = [Mn] and w0 = χ(Mn) mod 2.

9.5 Classification of 2-Manifolds

Any closed orientable surface is homeomorphic to a sphere with g handles.
The integer g is called the genus. A model of a closed orientable surface of
genus g is given by a non-singular hyperelliptic curve:

V = {(x, y) ∈ C
2 : y2 = F(x)},

where
F(x) = 4x2g+1 + λ2gx

2g + · · · + λ1x + λ0

is a polynomial with all distinct roots.
A closed orientable surface M2

g of genus g can be obtained by a suitable
identification of edges in a 4g-gon.

The fundamental group π1(M2
g ) has 2g generators a1, . . . , ag, b1, . . . , bg

with a single defining relation

a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g = 1,

coming from the identification of edges.
A closed non-orientable surface can be obtained by a suitable identification

of edges in a 4g- or (4g + 2)-gon. Therefore, there are two families of non-
orientable closed surfaces, N2

g,1 and N2
g,2.

The corresponding relations in the fundamental group are:

N2
g,1 :

(∏g−1
i=1 aibia

−1
i b−1

i

)
agbga

−1
g bg = 1,

N2
g,2 :

(∏g
i=1 aibia

−1
i b−1

i

)
c2 = 1.
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Fig. 9.4. Sphere with g handles
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Fig. 9.5. M2
g : 4g edges

An orientable closed surface M2
g (a sphere with g handles) can be smoothly

embedded in R
3 as the boundary of a 3-dim body.

A model of the 3-body with boundary M2
g can be obtained by taking the

small closed smooth neighbourhood of the wedge of g circles in R
3.

Any non-orientable closed surface can be obtained as follows. Take a sphere
S2, remove µ disjoint open disks D2, and identify the diametrically opposite
points on the boundary of each hole. This is equivalent to filling all the µ
holes by Möbius bands (crosscaps). Denote the resulting surfaces by M2

µ,
µ = 1, 2, . . . .

The diffeomorphism classes of connected closed manifolds M2 form a com-
mutative semigroup with respect to the connected sum operation #. This
semigroup has two generators a (the torus T 2) and b (the projective plane
RP 2) with a single defining relation

a#b = b#b#b.

Every connected closed smooth manifold M2 admits a finite triangulation,
i.e. can be subdivided by means of smooth curves into finitely many smooth
triangles in such a way that any two triangles either do not intersect, have a
single common vertex (0-face), or share a single common edge (1-dim face).



9 Euler, Dehn–Sommerville Characteristics, and Their Applications 171

g=1

g=0

g=2

g=1

a a

a a

aa

a

a

b

b

b

b

b

b

b

b

c

c

cc

1

1

1

1

2

2

2

2

N

N

2

2

g,1

g,2

Fig. 9.6. N2
g,1 and N2

g,2
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g=2
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Fig. 9.7. 3-Dim body

The first homology of 2-dim surfaces is given by

H1(M2
g ; Z) = Z ⊕ · · · ⊕ Z︸ ︷︷ ︸

2g

;

H1(M2
µ; Z) = Z ⊕ · · · ⊕ Z︸ ︷︷ ︸

µ−1

⊕Z2.

It follows that
χ(M2

g ) = 2 − 2g, χ(M2
µ) = 2 − µ.

Any closed non-orientable surface M2
µ can be obtained from the orientable

surface M2
g with g = µ− 1 by taking the orbit space of a certain involution.
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Fig. 9.8. M2
µ=1: real projective plane RP 2

Fig. 9.9. M2
µ=2: Klein bottle K

2

M1 M2#

Fig. 9.10. Connected sum

9.6 Minimal and Neighbourly Triangulations

A triangulation T∗ of a manifold Mn is called minimal if f0(T∗) � f0(T ) for
any triangulation T of Mn, where f0 denotes the number of vertices.

Now assume that M2 is a 2-dim triangulated manifold with m vertices.
Let χ = χ(M2) be its Euler characteristic. Then using the Dehn–Sommerville
equation we obtain

f (M2) =
(
m, 3(m− χ), 2(m− χ)

)
.

For any simplicial complex K on m vertices there exists a simplicial inclu-
sion K ↪→ σm−1 (see Example 2). Therefore,
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f1(K) ≤
(
m

2

)
.

For 2-dim triangulations we obtain:

6(m− χ) ≤ m(m− 1).

This leads to the following lower bounds for the number of vertices f0 = m in
triangulations of particular 2-dim manifolds, e.g.

2-dim torus T 2 : χ(T 2) = 0 and m ≥ 7;

Projective plane RP 2 : χ(RP 2) = 1 and m ≥ 6.

A triangulation T of a manifold M2 is called neighbourly if its 1-skeleton
is a complete graph (i.e. any two vertices are joined by an edge).

Theorem 1. Let T be a minimal triangulation of a closed manifold M2. Then
T is neighbourly if and only if

6(m− χ) = m(m− 1),

where m = f0(M2) and χ = χ(M2). In this case:

(a) If M2 is orientable of genus g, then

g ∈ {(3q−1)(4q−1), (3q+1)(4q+1), q(12q−1), q(12q+1), q = 0, 1, . . .}.

(b) If M2 is non-orientable with µ crosscaps, then

µ ∈ {(2q−1)(3q−2), (2q−1)(3q−1), q(6q−1), q(6q+1), q = 0, 1, . . .}.

Example 6. For q = 0 the possible values of g are 1, 0, and the possible values
of µ are 2, 1, 0. For q = 1 we get g ∈ {6, 20, 11, 13} and µ ∈ {1, 2, 5, 7}.

Minimal neighbourly triangulations exist for the sphere S2 (g = 0,m = 4),
torus T 2 (g = 1,m = 7), and real projective plane RP 2 (µ = 1,m = 6).
However for most values of χ there is no minimal neighbourly triangulation
(see the previous theorem). For example, minimal triangulations of orientable
surfaces of genus 2 to 5 are not neighbourly, and minimal triangulations of
non-orientable surfaces with µ crosscaps are not neighbourly for µ = 3, 4.

9.7 Smooth Manifolds

A smooth n-manifold Mn is covered by open subsets Uα:

Mn = ∪αUα.
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For each Uα there is fixed a homeomorphism ϕα : Uα → R
n providing the local

coordinates x1
α, . . . , xn

α in Uα. Therefore, there are two sets of coordinates on
each intersection Uα ∩ Uβ , namely, for every x ∈ Uα ∩ Uβ we have

ϕα(x) = (x1
α, . . . , xn

α) and ϕβ(x) = (x1
β , . . . , x

n
β).

The coordinate transformation is given by the set of smooth functions:

xj
α = f j

α(x1
β , . . . , x

n
β), j = 1, . . . , n;

xk
β = gk

β(x1
α, . . . , xn

α), k = 1, . . . , n,

where the composition f ◦ g is the identity transformation of R
n. A smooth

map F : M → N between two manifolds is given by smooth functions in any
local coordinate system.

Suppose we are given a curve segment x = x(τ) ∈ M , a ≤ τ ≤ b, on
a manifold M . The part of the curve belonging to a coordinate region Uα is
described by the set of parametric equations

xj
α = xj

α(τ), j = 1, . . . , n.

The velocity (or tangent) vector at a point x = x(τ) is given by

ẋ = (ẋ1
α, . . . , ẋn

α).

In the intersection Uα ∩Uβ we can write the parametric equations xα(τ) and
xβ(τ) in the two coordinate systems. Using the coordinate transformation
formulae we obtain

xj
α(τ) = f j

α

(
x1

β(τ), . . . , xn
β(τ)

)
.

Therefore,

ẋj
α =

∑

k

(
∂f j

α

∂xk
β

)

ẋk
β .

An n-dim manifold Mn is called orientable if there is a coordinate covering
Mn = ∪αUα such that the coordinate transformations satisfy

det

(
∂f j

α

∂xk
β

)

> 0

for all x ∈ Uα ∩ Uβ .
A smooth manifold Mn that can be smoothly embedded in R

n+1 is
orientable. It follows that a 2-dim manifold is embeddable in R

3 if and only
if it is orientable.

A tangent vector to an n-dim manifold Mn is by definition the velocity
vector of some smooth curve. In any system of local coordinates xj

α the tangent
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vector at a point x ∈ M can be written as an n-tuple (ξj
α). The two n-tuples

corresponding to different coordinate systems are connected by the formula:

ξj
α =

n∑

k=1

(
∂f j

α

∂xk
β

)

ξk
β .

The set of all tangent vectors to M at a point x forms an n-dim linear space
Tx = TxM , called the tangent space to M at x. A smooth map F : M → N
induces a linear map

F∗ : Tx → TF (x)

at any x ∈ M .
Denote by TM the tangent bundle of M . It consists of pairs (x, η), where

x ∈ M and η is a tangent vector to M at x. A (tangent) vector field on M
is a smooth map ξ : M → TM such that ξ(x) ∈ TxM . It follows that ξ is an
embedding; we denote its image by M(ξ). We identify the manifold M with
its image M(0) ⊂ TM under zero vector field. Note that dimTM = 2n if
dimM = n.

A vector field ξ on M is said to be of general position if M(ξ) and M =
M(0) intersect transversally, that is, in a finite number of points. These points
are called singular. All singular points xj of a general positioned vector field
on an oriented manifold M are non-degenerate in the sense that

(
det

∂ξk

∂xj

)

xj

�= 0.

The index of a singular point xj is
(
det ∂ξk

∂xj

)

xj

.

Theorem 2 (Hopf–Poincaré). The Euler characteristic of a closed oriented
manifold Mn equals the sum of indices of singular points of any general posi-
tioned vector field ξ. In particular, the latter sum does not depend on a vector
field.

An important case of vector fields arises from a smooth function f on M
with only non-degenerate critical points xj . (A point x ∈ M is called critical
if (df)x = 0; a critical point is non-degenerate if det(d2f)x �= 0.) Denote by
i(x) the number of negative squares in the canonical representation of the
quadratic form (d2f)x. Then the sum

m∑

j=1

(−1)i(xj),

over the critical points x1, . . . , xm of f equals χ(M); in particular, it is inde-
pendent of f .
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An (autonomous) dynamic system on a manifold M is a smooth vector field
ξ on M . In terms of the local coordinates {xj

α} on M , a dynamical system ξ
gives rise to the system of (autonomous) ordinary differential equations

ẋj
α = ξj(x1

α, . . . , xn
α).

The solutions of this system are called the integral curves or integral trajecto-
ries of the dynamical system. Therefore, an integral trajectory is a curve γ(t)
on M whose velocity vector γ̇(t) coincides with ξ(γ(t)) for all t.

Theorem 3. A closed connected smooth manifold M admits a non-vanishing
tangent vector field ξ if and only if its Euler characteristic equals zero.

Corollary 1.
(a) The torus T 2 is the only orientable surface admitting a non-vanishing
tangent vector field.
(b) The Klein bottle K

2 is the only non-orientable surface with a non-vanishing
vector field.
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10

Hopf Fibration and Its Applications

M. Monastyrsky

Summary. In this chapter we deal with Hopf fibration – one of the key exam-
ples in the topology of manifolds – and vividly illustrate the power and diversity of
applications of topology. We especially point out less familiar applications of Hopf
fibrations. For the sake of volume limit we omit the proofs and refer to the appro-
priate literature.

10.1 Classical Hopf Fibration

Hopf in his celebrated paper “über die Abbildungen der 3-Sphare auf die
Kugelfleche,” Math. Ann. 104, 637–665, (1931) studied the space of homo-
topically nontrivial mappings of spheres:

S3 → S2. (10.1)

In modern language it is a group π3(S2).
Later, more general mappings

S2n−1 → Sn (10.2)

came to be called general Hopf fibrations.

10.1.1 Constructing the Hopf Fibrations

We first show that

π3(S2) = Z. (10.3)

The proof follows immediately from the exactness of the sequence of
homotopy groups

πi(S1) → πi(S3) → πi(S2) → πi−1(S1). (10.4)
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For i ≥ 3 we have
0 → πi(S3) → πi(S2) → 0.

In particular π3(S2) = Z.
The homotopy classes of maps S3 → S2 are characterized by the group of

integers Z. What is their geometrical meaning?
Let us consider a special map p : S3 → S2, which is called Hopf fibration

(Fig. 10.1). We represent S3 as a pair of complex numbers (z1, z2) with the
point z1/z2 = w (w is a point in the complex plane C). The map (z1, z2) �→ w
is extended to the completion of C with the point z2 = 0 at infinity. We thus
obtained a map S3 → S2

∼ C = C ∪ ∞ = CP(1) – Riemann sphere. It is
obvious that under this map the points (exp(iϕ)z1, exp(iϕ)z2) are sent into
the same point w. Therefore the fiber of the bundle S3 → S2 is the set of
points λ = exp(iϕ) ∼ S1. We obtained a fiber map p : S3 → S2 with the
fiber S1. It is easy to see that p is not trivial, i.e., not equivalent to the direct
product

S3 �= S2 × S1.

The simplest way to see this is to calculate the homotopy groups (e.g., π1

or π2) of both sides, namely,

(a)π2(S3) = 0, π2(S2 × S1) = Z, (b)π1(S3) = 0, π1(S2 × S1) = Z.

The geometrical meaning of that any circle in S3 can be contracted to a
point but not in S1 × S2.

It is possible to prove the following proposition:

Proposition 1. The set of classes of homotopy maps S3 → S2 is the compo-
sition of homotopy maps f : S3 → S3 and the Hopf fibration p : S3 → S2.

Fig. 10.1. Hopf fibration
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(See the proof in [1] or [2].)
We now investigate different properties of Hopf fibrations.

10.1.2 Linking Numbers

Let f be a smooth map S3 → S2, y0, y1 two regular points in S2 and M0 and
M1 the preimages of Y0 and y1 equal to f−1(y0), f−1(y1), respectively. We
define H(f) = {M0,M1} to be the linking number for the inverse images. It
follows from the definition of regularity that f−1(yI) ∼ S1.

Definition 1. The linking number (or coefficient) of two disjoint curves
γi(t) i = 1, 2 lying in the Euclidean space R

3 (γi(t) = ri(t)) (0 ≥ t ≥ 2π, r is
the radius-vector of a point in R

3) is the number

{γ1, γ2} =
1
4π

∫

γ1

∫

γ2

〈[dr1,dr2], r1 − r2〉
|r1 − r2|3

. (10.5)

Here 〈 〉 and [ ] denote scalar and vector product, respectively. It is possible to
determine linking number coefficient in terms of homology. It will be followed
from the equivalent definition the integer-valued of {γi, γj} in (10.5).

Let us remind one important definition. We require several facts from the
intersection theory, which we determine in more general setting.

10.1.3 Intersection Number

Let P r and Qs be two closed submanifolds of Mn of dimensions r and s,
respectively. By the classical theorem of Whitney we can always regard M as
an Euclidean space of a sufficiently large dimension.

P r is said to intersect transversally to Qs (or to be in general position) if
at any point x ∈ P r ∩ Qs, the tangent spaces TxP

r and TxQ
s generate the

tangent space of Mn.
In particular, it follows that in general position the intersection P r ∩ Q3

is a smooth (r + s− n)-dimensional submanifold.
Example 1. A straight line P 1 and the plane Q2 in M3 intersect transver-

sally if P 1 does not meet Q2 at the zero angle, i.e., is not in Q2. If
dimP r +dimQs = dimMn then in general position the manifolds P r and Qs

at one or more points. If Mn, P r, and Qs are oriented, then each intersection
point xi is given a sign by the following rule: let τ r

j be the oriented tangent
frame to P r at the point xj and τs

j oriented frame to Qs at xj . The point xj

is assigned a plus sign if the union frame (τ r
j , τ

s
j is orientating for Mn at xj .

Otherwise, a minus sign is given. The sign is denoted by sgnxj
(P ◦Q).

Definition 2. The intersection number of two manifolds, P r and Qs, is the
integer

Ind(P ◦Q) =
m∑

j=1

sgnxj
(P ◦Q), (10.6)

where m is the number of intersection points.



180 M. Monastyrsky

In the nonorientable case Ind(P ◦Q) is defined as the residue module 2 of
the number of intersection points.

Proposition 2. Let f be a map of two-dimensional disk D2 → R
3 that co-

incides with γ1 on the boundary ∂D2 = S1 and is in general position on γ2.
Then Ind(f(D2) ∩ γ2) is equal to {γ1, γ2}.

Outline of the proof. The closed curves γ1(t) and γ2(t) define a two-
dimensional oriented surface γ1 × γ − 2 : (t1, t2) = (r1(t1), r2(t2)) in R

6.
Let γ1 and γ2 be disjoint. Then the map (the so-called Gauss map)

ϕ(t1, t2) =
r1(t1) − r2(t2)
|r1(t1) − r2(t2)|

is defined, with the degree given by integral (10.5). Therefore degϕ is an in-
teger. degϕ remaining unaltered under nonintersecting deformation of curves
γ1 and γ2, i.e., the linking coefficient {γ1, γ2} is invariant under homotopies
of γi. Since the intersection number in (10.6) depends linearly on points xi it
is suffices to calculate Ind (10.6) in two cases (a) γ1 and γ2 are unlinked and
(b) γ1 and γ2 are two orthogonally linked circles (γ1 is in the (x, y) plane and
γ2 in the (y, z) plane).

10.2 Hopf Invariant

10.2.1 Definition of Hopf Invariant

Let f : S3 → S2 be a Hopf fibration. Consider two regular points a and b
on the sphere S2 and take their preimages l1a = f−1(a) and l1b = f−1(b). The
manifolds l1a and l1b are two closed curves in S3. Consider the linking number
{l1a, l1b}.

Definition 3. The Hopf invariant h(f) is the linking number {l1a, l1b}.

Proposition 3. h(f) is the homotopic invariant of f and is independent of
the choice of points a and b.

Proposition 3 is valid in a considerably more general situation of 2n −
1-dimensional Hopf fibration S2n−1 → S2. The Hopf invariant h(f) is de-
fined for a 2n − 1-dimensional Hopf fibration similar to the fiber bundle
S3 → S2. It should only be noticed that inverse of preimages of two points
in 2n − 1-dimensional sphere are (n − 1)-dimensional closed submanifolds
Mn−1

1 and Mn−1
2 . Outline of proof of Proposition 3.1. We show that h(f)

is unaltered under a homotopy of f . Let f0 and f1 be mutually homo-
topic maps S2n−1 → Sn and f − t the connecting homotopy. To prove that
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h(f0) = h(f1) it suffices to show that the deformation ft : S2n−1 × I →
Sn connecting f0 to f1 and not passing through the points a and b can
be constructed. Then the submanifolds f−1

t (a) and f−1
t (b) do not non-

intersect under the homotopy; therefore the linking number is unaltered.
2. The independence of h(f) from the choice of regular values a and b in
Sn is proved quite simply. Let a1 and b1 two other points in Sn. There exists
a map γ : Sn → Sn the sphere onto itself, homotopic to the identity (since
π1(Sn) = 0) and such γ(a) = a1, γ(b) = b1. Then the maps f and γf are
homotopic. Therefore h(f) = h(γf).

10.2.2 Integral Representation of the Hopf Invariant

The Hopf invariant h(f) admits a remarkable integral representation
due to Whitehead [3]. This result has important applications in magneto-
hydrodynamics, field theory, condensed matter. The Hopf invariant act as the
topological conversation law.

First we formulate the Whitehead result for the classical Hopf fibration.

Proposition 4. Let w2 be a normalized 2-form on S2, i.e.,
∫

S2 w2 = 1 and
f : S3 → S2 is a smooth map. Consider the 2-form Ω2 = f∗(w2) = dξ1, where
ξ1 is a 1-form. Then ∫

S3
f∗(w2) ∧ ξ1 = h(f). (10.7)

The multidimensional generalization of the Whitehead formula for the Hopf
fibration S2n−1 → Sn is the following:

Proposition 5. Let ωn be a normed n-form on Sn, i.e.,
∫

Sn ωn = 1. Then
exists the n-form f∗ω

n on S2n−1 induced by f and exact, i.e., f∗ω
n = dξn−1,

where ξn−1 is a n− 1 – form on S2n−1. Then
∫

f∗(ωn) ∧ ξn−1 = h(f). (10.8)

The proof of (10.7) and (10.8) can be found in [4]. (See also [2].)

10.3 Applications of Hopf Invariant

Two definitions of Hopf invariants via linking coefficients and integral formula
(10.7) intimately linked among themselves and admit different generalizations
and applications in many mathematical and physical problems. I discuss some
examples that find or that could find some applications in biology. (See also
the other chapters of this book.)
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10.3.1 Generalized Linking Number

Consider the following problem: What kind of topological invariants would
make it possible whether one can decouple (using motions in R

3) a system of
linked closed curves (loops). A classical invariant of this type is the Gauss-
linking coefficient (10.5) of two loops. But knowing this coefficient is not
enough to solve the problem of decoupling. Well-known examples such as the
Whitehead link and Borromean rings (Fig. 10.2a, b) show that the condition
kG(l1, l2) = 0 gives only a necessary condition for decoupling the two curves.
Such invariants are the high-order linking coefficients, which generalize the
Gauss coefficients and as constructed in [5]. We show what the high-order
linking coefficients look like in the simplest case of curves l = (l1, l2, l3) em-
bedded in S3. Let us begin with the coefficient k(l1, l2) for two curves l1 and l2.
As follows from section I the coefficient k can by defined by the two equivalent
definitions:

1. As the intersection number Ind(z, l2) of two-dimensional circle z (z is a
film spanned on the curve l1) with l2 or

2. In the integral form (10.5)

The linking coefficient k(l1, l2) defined in (10.5) can be calculated via dif-
ferential forms u1, u2 defined on the curves l1 and l2. Forms ui are defined
by means of Alexander duality, which we determine in the special case one-
dimensional sets embedded in S3.

Proposition 6 (Alexander duality). Let K be a one-dimensional compact
set, K ⊂ S3. There exists the isomorfphism f

H1(S3\K) = H1(K).

Let us apply the Alexander duality in the case k = l = (l1, l2). The dif-
ferential Alexander-dual 1-forms ui is defined in the complement to li, closed
and characterized by

∫
c
ui = k(c, li) for any closed curve from the complement

of li in S3. The cohomoly class of ui is determined uniquely.
Now let Bi (i = 1, 2) be the boundary of tubular neighborhood of li not

meeting another curve. Then

Fig. 10.2. (a) Whitehead link, (b) Borromean rings
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∫

B1

u1 ∧ u2 = −
∫

B2

u2 ∧ u1 = k(l1, l2). (10.9)

Let us write the linking coefficient k(l1, l2) using the first definition via
intersection number. In fact it is contained in the Whitehead theorem (Propo-
sition 4). We associate li with a closed 2-form vi with support outside li. The
form vi is determined by the equality

∫

z

vi = Ind(z, li).

Here z is an arbitrary 2-cycle in the complement to li.
3-forms u1 ∧ v2 and v1 ∧ u2 are defined on the whole sphere S3 and

∫

S3
u1 ∧ v2 =

∫

S3
k(l1, l2). (10.10)

The proof of (10.10) is actually equivalent to the proof of (10.7).
The tuple of k(li, lj) is one of the numerical characteristics of the link

l = l1, . . . , ln. It is also natural to introduce the linking number for the whole
of l by the formula

k̄(l) = max
1≤i<j≤n

|k(li, lj)|.

If l is isotopically unlinked, then k̄(l) = 0. However for the links in
Fig. 10.2a Whitehead link and 10.2b Borromean rings k̄(l) = 0, but they re-
main linked. So we should introduce high-order linking numbers. If k̄(l) = 0,
where l = (l1, l2), then there exists a 1-form u12 on the complement to l- and
2-forms v12, v′12 with compact support on S3 such that

du12 = u1 ∧ u2, dv12 = v1 ∧ u2, dv′12 = u1 ∧ v2.

Assume that k̄(l) = 0 for l = (l1, l2, l3). In the addition to the above,
we define 1-forms u3 and u23 and 2-forms with compact support v3, v23, v

′
23

and verify by differentiation that the 2-form ũ123 = u12 ∧ u3 + u1 ∧ u23 is
closed. ũ123 is defined on the complement of l = (l1, l2, l3). We also check by
differentiation that the 3-forms

ṽ123 = v12 ∧ u3 + v1 ∧ u23, ũ′
123 = u12 ∧ v1 + u1 ∧ v23

are closed. v12 and v23 can be picked so that the latter 3-forms are defined on
the whole sphere S3.

The cohomology classes in H2(S3\l) and H3(S3) determined by ũ123, ṽ123,
and ṽ′123 are called the Massey products of cohomology classes u1, u2, u3, v1, u2,
u3, u1, u2, v3, denoted by 〈clu1, clu2, clu3〉, . . . , respectively. They do not de-
pend on the choice of ui, vj , in clui, clvi.
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Proposition 7. The integrals
∫

B1

ũ123 = −
∫

B2

ũ123 =
∫

S3
ṽ′123 = k2(l) (10.11)

have integer values and do not depend on the choice of u12, u23, v12, v23 in the
corresponding cohomology class.

Let us consider sublinks of three curves lijk = (li, lj , lk) for 1 ≤ i < j ≤ n of a
link l = (l1, . . . , ln) with n ≥ 3. We introduce the second linking number for l

k̄2(l) = max
1≤i<j<k≤n

|k2(lijk)|.

Example 1. For Borromean rings k2(l) = 1. If l is homotopically unlinked, e.g.,
Whitehead link, then the number k̄2(l) is zero. But there exist the links with
k̄(l) = 0, but homotopically unlinked. To characterize such links it is possible
to define a linking number of order three ([2, 5]).

10.3.2 Formula Cǎlugǎreanu and Supercoiled DNA

Let γ be a closed smooth curve in R
3 and v a normal vector field on γ. v is a

one-parameter family of oriented line segments, one end of each which lies on
γ, so that v forms a ribbon. We choose the length of γ to be so small that the
line segment meets the curve γ only at its initial point, so that the ribbon is
embedded. The curve of the endpoints of v γv inherits the orientation of the
curve γ. Let k(γ, γv) be the Gauss linking number of γ and γv. We define also
the total twist of v

tw =
1
2π

∫
v⊥dv

in a standard way, where the vector v⊥ is in the right-handed frame (t̂, v, v⊥), t̂
is the unit tangent vector to the curve γ. The twist of the curve is a continuous
quantity, the linking number is integer, therefore k �= tw. It is remarkable that
another quantity can be introduced, viz., k− tw = Wr (the so-called writhing
number) such that

k = tw + Wr.

Wr only depends on γ and its definition is based on the following. We con-
struct the Gauss map for γ × γ, i.e., we define

ϕ : γ × γ → S2, ϕ(s, y) =
y − x

|y − x|
for ordered pairs (x, y). Let ds be the element of area on S2. Then the form
ϕ∗(ds) is induced by ϕ.

Definition 4. The writhing number is the integral

Wr =
1
4π

∫

γ

∫

γ

ϕ∗(ds). (10.12)

Wr is a continuous quantity.
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Proposition 8 (Formula Cǎlugǎreanu).

k(γ, γv) = tw + Wr. (10.13)

It is useful to compare the formula (10.5) for linking number and the
formula (10.12) for writhing. The formal difference is that in the first case we
integrate untegrand (10.5) over the space γ × γv and in the second one over
the space γ × γ. So the writhing number characterizes the single curve γ.

Remark 1. Wr is a very important quantity since in experiments with DNA
molecule Wr can be measured directly, while k and tw cannot be [22]. Different
applications of formula (10.13) will be discussed in several chapters of our
book. These applications and the modern proof of formula Cǎlugǎreanu can
be found in the book [6]

Remark 2. Sometimes formula (10.13) is called formula Cǎlugǎreanu-White,
or simply White formula. White proved in 1968 the multidimensional gener-
alization of formula (10.13). In the article [23] he very clearly explained the
relation between his result and Cǎlugǎreanu’s [7]. But lately, in modern lit-
erature, the name of Cǎlugǎreanu gradually disappeared. (In this connection
see the paper [8]).

Remark 3. The Cǎlugǎreanu formula implies that a ribbon swept by v forms
a simple knot, i.e., the linking number k(γ, γv) is the only topological invari-
ant. It would be interesting to modify formula Cǎlugǎreanu in the case when
the first linking number is zero and there exists next nontrivial second-order
coefficient.

The question arises as to whether there are similar formulas for a linking
ensemble l = (l1, l2, . . . , ln).

10.3.3 Hopf Fibration and Membranes

One more example where Hopf fibration appears in physics and biology is the
problem of phase transition in liquid membranes. We remind the mathematical
essence of this problem. Applications in biological and physical systems can
be found in [9, 10]. Let M2 be a compact surface embedded in R

3 and F the
functional

F =
∫

M2
H2dA, (10.14)

where H is the mean curvature.

Problem 1. To determine all compact surfaces of fixed genus g that minimize
the functional (10.14)

δF = 0 (10.15)
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For arbitrary genus it is extremely difficult and remains an unsolved prob-
lem. There exist some partial results and interesting hypotheses. However for
surfaces of genus g = 0 and g = 1 we have more complete results.

The following results due to Blaschke and Thomsen [11] are important.

Proposition 9. Let M̃2 be a minimal surface in S3 and γ a stereographic
projection S3 → R

3. Then

γ(M̃2) = M2 and F (M2) = γ(M̃2),

where δ(M̃2) is the area of minimal surface.

Unfortunately, membranes are in general not exhausted by the projection of
minimal surfaces. For example, there exists an infinite set of torical membranes
that are not equivalent to minimal tori in S3. These examples were constructed
by Pinkal and used Hopf fibrations [12]. We called them Pinkal Hopf tori.

10.3.4 Construction of Hopf tori

We identify S3 with the set of unit quaternions {a ∈ H, qq̄ = 1} and S2 with
the unit sphere in the subspace of H, spanned by 1, j, k but sends i to −i.
Define

π : S3 → H by π(q) = q̃q.

Then π has the following properties:

(a) π(S3) = S2

(b) π(eiϕq) = π(q) for all q ∈ S3, ϕ ∈ R

(c) the group S3 acts isometrically on S3 by right multiplication and on
S2 via

q �→ r̃qr, r ∈ S3

π intertwines these two actions, i.e., for all q, r ∈ S3 we have

π(qr) = r̃π(q)r.

Let ρ : [a, b] → S2 be an immersed curve. Choose η : [a, b] → S3 such that
π ◦ η = ρ. Let us consider an immersion χ of the cylinder [a, b] × S1 into S3

by
χ(t, ϕ) = eiϕη(t). (10.16)

If ρ is a closed curve, i.e., ρ(t + L) = ρ(t), equation (10.16) determined a
torus in S3. This torus will be called the Hopf torus corresponding to ρ.

The main curvature H̃ of a Hopf torus coincides with the curvature k of
the curve ρ.

The functional F is reduced to the integral

π

∫ L

0

(1 + k2(s))ds.
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The article [13] has shown that there are infinitely many simple closed curves
on S2 that are critical points for F . Therefore there are many embedded Hopf
tori in R

3 that are not a minimal torius in S3.

Problem 2. Is it possible to construct “critical” surface M̃2 of genus g (so-
lutions of (10.15)) gluing of Hopf tori.

Conclusion

An appearance of topological invariants like the Hopf invariant in such dif-
ferent problems of mathematics, physics, and even biology is far from being
occasional. It reflects that the background of many modern constructions is
based on the common topological ideas.

We have no opportunity to deeper in the relevant theories. We shall give
only a short list of the topics with some references where a reader will be able
to find both applications and generalizations of Hopf theory and a theme for
the investigations:

1. The theory of multivalued functionals [14, 15] and the chapter by Million-
schikov in this book.

2. Topological field theory [16, 24].
3. Fractional Statistics and quantum Hall effect [17, 18].
4. Topological invariants in magnetohydrodynamics [19, 20].
5. Knotlike configurations in relativistic field theory [21].
6. Quantum computations [25].
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Multi-Valued Functionals, One-Forms
and Deformed de Rham Complex∗

D.V. Millionschikov

Summary. We discuss some applications of the Morse–Novikov theory to some
problems in modern physics, which appears as a non-exact closed 1-form ω (multi-
valued functional). We focus our attention mainly on the cohomology H∗

λω(Mn, R)
of the de Rham complex Λ∗(Mn) of a compact manifold Mn with a deformed
differential dω = d + λω. Using Witten’s approach to the Morse theory one can
estimate the number of critical points of ω in terms of H∗

λω(Mn, R) with sufficiently
large values of λ (torsion-free Novikov’s inequalities).

We show that for an interesting class of solvmanifolds G/Γ the cohomology
H∗

λω(G/Γ, R) can be computed as the cohomology H∗
λω(g) of the corresponding

Lie algebra g associated with the one-dimensional representation ρλω. Moreover
H∗

λω(G/Γ, R) is almost always trivial except a finite number of classes [λω] in
H1(G/Γ, R).

11.1 Introduction

In the beginning of the 1980s Novikov constructed [1, 2] an analogue of the
Morse theory for smooth multi-valued functions, i.e. smooth closed 1-forms on
a compact smooth manifold M . In particular he introduced the Morse-type
inequalities (Novikov’s inequalities) for numbers mp(ω) of zeros of index p of
a Morse 1-form ω.

In [3, 4] a method of obtaining the torsion-free Novikov inequalities in
terms of the de Rham complex of manifold was proposed. This method was
based on Witten’s approach [5] to the Morse theory. Pazhitnov generalized
Witten’s deformation d + tdf (f is a Morse function on M) of the standard
differential d in Λ∗(M) by replacing df by an arbitrary Morse 1-form on M .
For sufficiently large real values t one has the following estimate (torsion-free
Novikov inequality [4, 6]):

mp(ω) ≥ dimHp
tω(M,R),

∗ Partially supported by the Russian Foundation for Fundamental Research, grant
no. 99-01-00090 and PAI-RUSSIE, dossier no. 04495UL
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where by Hp
tω(M,R) we denote the p-th cohomology group of the de Rham

complex (Λ∗(M),d+ tω) with respect to the new deformed differential d+ tω.
Taking a complex parameter λ one can identify H∗

λω(M,C) with the co-
homology H∗

ρλω
(Mn,C) with coefficients in the local system ρλω of groups C,

where
ρλω(γ) = exp

∫

γ

λω, γ ∈ π1(M).

Alania in [7] studied H∗
ρλω

(Mn,C) of a class of nilmanifolds Mn. He proved
that H∗

ρλω
(Mn,C) is trivial if λω �= 0. The proof was based on the Nomizu

theorem [8] that reduces the problem in the computation in terms of the
corresponding nilpotent Lie algebra. It was remarked in [9, 10] that triviality of
H∗

ρλω
(G/Γ,R), with λω �= 0 follows from Dixmier’s theorem [11], namely: for

a nilmanifold G/Γ the cohomology H∗
ω(G/Γ,R) coincides with the cohomology

H∗
ω(g) associated with the one-dimensional representation of the Lie algebra

ρω : g → R, ρω(ξ) = ω(ξ) and hence H∗
ω(G/Γ,R) = H∗

ω(g) = 0.
Applying Hattori’s theorem [12] one can observe that the isomorphism

H∗
ω(G/Γ,R) ∼= H∗

ω(g)

still holds on for compact solvmanifolds G/Γ with completely solvable Lie
group G. The calculations show that the cohomology H∗

ω(G/Γ,R) can be
non-trivial for certain values [ω] ∈ H1(G/Γ,R). However there exist only a
finite number of such values.

Let us consider a finite subset ΩG/Γ in H1(G/Γ,R) ∼= H1(g):

ΩG/Γ = {αi1+ · · ·+αis
| 1 ≤ i1< · · ·<is ≤ n, s = 1, . . ., n} ,

where the set {α1, . . . , αn} of closed 1-forms is in fact the set of the weights of
completely reducible representation associated to the adjoint representation
of g. It was proved in [9]: if −[ω] /∈ ΩG/Γ , then the cohomology H∗

ω(G/Γ,R)
is trivial.

11.2 Dirac Monopole, Multi-Valued Actions
and Feynman Quantum Amplitude

The notion of multi-valued functional originates from topological study of the
quantization process of the motion of a charged particle in the field of a Dirac
monopole [13]. The Kirchhoff–Thomson equations for free motion of solids
in a perfect noncompressible liquid also can be reduced to the theory of a
charged particle on the sphere S2 with some metric gαβ in a potential field U
and in an effective magnetic field F = F12 with a non-zero flux 4πs through
S2. Locally (in some domain Uα) on the sphere we have the following formula
for the action Sα(γ):
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Sα(γ) =
∫

γ

(
1
2
gij ẋ

iẋj − U + eAα
k ẋk

)
dt, (11.1)

where

x1 = θ, x2 = ϕ, F12dθ ∧ dϕ = d(Aα
k dxk),

∫ ∫

S2
F12dθ ∧ dϕ = 4πs �= 0.

(11.2)

One can consider Feynman’s paths integral approach to the quantization
of the problem considered above. Recall that in the standard situation of
single-valued action S, we consider the amplitude

exp {2πiS(γ)}, γ ∈ Ω(x, x′)

and the propagator

K(x, x′) =
∫

Ω(x,x′)

exp {2πiS(γ)}Dγ.

For the Dirac monopole one can consider the set {S1, S2} of local actions
where U1 = S2\PN and U2 = S2\PS, by PN, PS we denote the poles of the
sphere S2. Taking the equator γ with the positive orientation, one can easily
test the ambiguity of the action:

S1(γ) − S2(γ) = e

∫

γ

(A1
kdxk −A2

kdxk) = e

∫ ∫

S2
F12dθ ∧ dϕ = 4πse �= 0.

(11.3)
The monopole is quantized if and only if the amplitude exp {2πiSα(γ)} is a
single-valued functional, i.e. for an arbitrary closed γ ∈ U1 ∩ U2 we have

exp {2πiS1(γ)} = exp {2πiS2(γ)}.

The last condition is equivalent to the following one:

4πse = k, k ∈ Z. (11.4)

Generalizing the situation with the Dirac monopole Novikov [2] considered
an n-dimensional manifold Mn, n > 1 with a metric gij , with a scalar potential
U and with a two-form F of magnetic field not necessarily exact. In these
settings one can consider a set of open Uα ⊂ Mn, such that F = Fijdxi ∧ dxj

is exact on Uα and Mn ⊂ ∪αUα. A 1-form ωα = Aα
k dxk, dωα = Fijdxi ∧ dxj

is determined up to some closed 1-form and we can consider the set of local
actions:

Sα(γ) =
∫

γ

(
1
2
gij ẋ

iẋj − U + eAα
k ẋk

)
dt, (11.5)
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Let us consider a path γ ⊂ Uα ∩ Uβ . The values Sα(γ) and Sβ(γ) do
not coincide generally speaking. Hence the set {Sα} of local actions defines a
multi-valued functional S. As ωα − ωβ is closed on Uα ∩ Uβ the integral

Sα(γλ) − Sβ(γλ) =
∫

γλ

(ωα − ωβ)

is invariant under any deformation γλ ⊂ Uα∩Uβ of γ in the class: (a) periodic
curves; (b) the curves with the same end points.

The crucial Novikov’s observation was: the infinite-dimensional 1-form δS
is well defined and closed for the following function spaces:

(a) Ω+ of the oriented closed contours γ, such that ∃α, γ ⊂ Uα;
(b) Ω(x, x′) of the paths γ(x, x′) joining points x, x′, such that ∃α, γ(x, x′)

⊂ Uα.
The set {Sα} of local actions determines also a multi-valued (in general)

functional exp {2πiS} on Ω(x, x′). The local variational system {Sα} is quan-
tized if and only if the Feynman quantum amplitude exp {2πiS} is a single-
valued functional on Ω+. Or, in other words, for all γ ∈ Uα ∩ Uβ we have

∫

γ

(ωα − ωβ) = k, k ∈ Z. (11.6)

If Uα and Uβ are simply connected domains in Mn it is possible to consider
a map f : S2 → M such that γ is the image of the equator of the sphere S2

and the images of two half-spheres of S2 lie in Uα and Uβ , respectively. Then
condition (11.6) can be rewritten as

∫

f(S2)

Fijdxi ∧ dxj = k, k ∈ Z. (11.7)

Hence we can propose the following sufficient condition of the quantization: a
local variational system {Sα} on Mn that corresponds to some magnetic field
F = Fijdxi ∧ dxj is quantized if F has integer-valued fluxes through all basic
cycles of H2(Mn,Z).

One can remark that the last condition is in fact excessive: it is sufficient
to require integer-valued integrals of F over spheric cycles that lie in the image
of the Hurewicz map H : π2(Mn) → H2(Mn,Z).

11.3 Aharonov–Bohm Field and Equivalent Quantum
Systems

Another interesting example comes from Aharonov–Bohm experiment [14–17].
We consider the electron moves outside the ideal endless solenoid, i.e. the
configuration space is M = (R2\Dε)×R = {(x, y, z) ∈ R

3, x2+y2>ε2}, where
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Dε is two-dimensional disk of radius ε → 0. The magnetic field F = Fijdxi ∧
dxj vanishes outside solenoid, i.e. F ≡ 0 on M , hence

Sωα
(γ) =

∫

γ

mẋ2

2
dt + ωα, (11.8)

where ωα = eAkdxk is an arbitrary closed 1-form on M . The cohomology
space

H1(M,R) = H1(R2\Dε,R) = H1(S1,R) = R

is one dimensional and hence

ωα =
eΦα

2π
xdy − ydx
x2 + y2

+ dfα,

for some constant Φα and function fα on M .
Taking the circle γ0 = ∂Dε = {(ε cosϕ, ε sinϕ, 0), 0 ≤ ϕ < 2π} we have

∫

γ0

Aα
k dxk =

1
e

∫

γ0

ωα = Φα =
∫

Dε

F12dx ∧ dy.

Hence the constant Φα is equal to the flux of the magnetic field F through
the orthogonal section Dε of our solenoid.

The form ωα determines a representation ρωα
of the fundamental group of

M :

ρωα
: π1(M) → C

∗, ρωα
(γ) = exp

{
2πi

∫

γ

ωα

}
, γ ∈ π1(M).

Let Sω1 and Sω2 be two actions for our system. They are quantum-
mechanically equivalent if and only if

exp {2πiSω1(γ)} = c(x, x′) exp {2πiSω2(γ)},

with a phase factor c(x, x′) depending only on end points x, x′ of γ and
|c(x, x′)| = 1, i.e. c(x, x′) is physically unobservable. It is easy to show that
the actions Sω1 and Sω2 are quantum-mechanically equivalent if and only if
for any loop γ ∈ π1(M) the value of the integral

∫
γ
(ω1 − ω2) is integer or, in

other words, the form (ω1 − ω2) has integer-valued integrals over basic cycles
of H1(M,Z).

In our case H1(M,Z) = Z and the last condition is equivalent to the
following one ∫

γ0

(ω1 − ω2) = e(Φ1 − Φ2) = k, k ∈ Z. (11.9)

Hence (one of the important observations in the Aharonov–Bohm experiment)
the fields with fluxes Φ1 and Φ2, such that Φ1 − Φ2 = k/e, k ∈ Z cannot be
distinguished by any interference effect.
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Fig. 11.1. A height-function f(q) = z for T
2

Now let us consider the case when Mn is not simply connected and the
two-form F is globally exact on Mn (like in the Aharonov–Bohm experiment).
Two solutions ω1, ω2 of the equation dω = Fijdxi ∧ dxj that correspond to
two different actions S1(γ) and S2(γ) are determined up to a differential df
by their integrals

∫
γk

ωi over the basic cycles γk of H1(Mn,Z). These integrals
can be interpreted as the fluxes of the continuation of F (with possible singu-
larities) to some large manifold M̃n. Two variational systems S1(γ) and S2(γ)
are quantum-mechanically equivalent if and only if all integrals

∫
γk

(ω1 − ω2)
over basic cycles γk of H1(Mn,Z) are integer valued.

The form ω12 = ω1 − ω2 is a closed 1-form on Mn and it determines a
representation ρω12 of the fundamental group π1(Mn):

ρω12 : π1(Mn) → C
∗, ρω12(γ) = exp

{
2πi

∫

γ

ω12

}
, γ ∈ π1(Mn).

Let M be a finite-dimensional (or infinite-dimensional) manifold and S :
M → R a function (functional) on it.

What are the relations between the set of the stationary points dS = 0
(δS = 0) and the topology of the manifold M?

If S is a Morse function (generic situation), i.e. d2S is non-degenerate at
critical points, then one can define the Morse index ind(P) of a critical point
P of S as the number of negative squares of the quadratic form d2S(P ) (if it
is finite in the infinite-dimensional case) (Fig. 11.1) [22].

Under some natural hypotheses the following inequality can be established:

mp(S) ≥ bp(M) = dimHp(M).

11.4 Semi-Classical Motion of Electron and Critical
Points of 1-Form

The semi-classical model of electron motion is an important tool for investi-
gating conductivity in crystals under the action of a magnetic field [18, 19].
At the same time it is one of the most important examples of applications of
topological methods in the modern physics.
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Let us consider the corresponding quantum system defined for some crystal
lattice L = Z

3. Its eigenstates are the Bloch functions ψp. The particle quasi-
momentum p is defined up to a vector of the dual lattice L∗ = Z

3. Hence
one can regard the space of quasi-momenta as a 3-dimensional torus T

3 =
R

3/Z
3. The state energy ε(p) is thus a function on T

3, i.e. a 3-periodical func-
tion in R

3.
An external homogeneous constant magnetic field is a constant vector

H = (H1,H2,H3) or in other words it is a 1-form ω = H1dp1+H2dp2+H3dp3

with constant coefficients.
The semi-classical trajectories projected to the space of quasi-momenta

are connected components of the intersection of the planes (p,H) = const.
with constant energy surfaces ε(p) = const.

The constant energy surfaces ε(p) = εF that correspond to the Fermi
energies εF are called the Fermi surfaces. There are non-closed trajectories
on the Fermi surfaces with asymptotic directions and this topological fact
explains an essential anisotropy of the metal conductivity at low temperatures.

One can study the intersections

(p,H) = c0, ε(p) = ε0

as the level surfaces of the 1-form

ωε0 = (H1dp1 + H2dp2 + H3dp3)|M̂ε0
,

where 2-dimensional manifold

M̂ε0 = {p ∈ R
3|ε(p) = ε0}

is the universal covering of the compact Fermi surface ε(p) = ε0 in T
3. The

last one is denoted also by Mε0 . We can treat the 3-periodic form ωε0 as a
1-form on the compact manifold Mε0 (we keep the same notation for it).

The information about critical points of ωε0 is very important in the prob-
lem considered earlier. A generic 1-form ωε0 is a Morse form and has finitely
many critical points on Mε0 .

11.5 Witten’s Deformation of de Rham Complex
and Morse–Novikov Theory

In 1982 Witten proposed a new beautiful proof of the Morse inequalities us-
ing some analogies with supersymmetry quantum mechanics [5]. Taking an
arbitrary smooth real-valued function f on a Riemannian manifold Mn he
considered a new deformed differential dt in the de Rham complex Λ∗(Mn)
(t is a real parameter):

dt = e−ftdeft = d + tdf∧,

dt(ξ) = dξ + tdf ∧ ξ, ξ ∈ Λ∗(Mn),
(11.10)
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where d is the standard differential in Λ∗(Mn):

d : Λp(Mn) → Λp+1(Mn),

ξ =
∑

i1<···<ip

ξi1...ip
dxi1 ∧ · · · ∧ dxip ∈ Λp(Mn),

dξ =
∑

i1<···<ip

∑

q

∂ξi1...ip

∂xq
dxq ∧ dxi1 ∧ · · · ∧ dxip ∈ Λp+1(Mn).

(11.11)

Taking arbitrary smooth vector fields X1, . . . , Xp+1 on Mn we have also the
following formula:

dξ(X1, . . .,Xp+1) =
∑

1≤i<j≤p+1

(−1)i+jξ([Xi,Xj ],X1, . . ., X̂i, . . ., X̂j , . . .,Xq+1)

+
∑

i

(−1)i+1Xiξ(X1, . . ., X̂i, . . .,Xp+1).

(11.12)

We recall that a differential p-form ξ is called closed if dξ = 0 and it is called
exact if ξ = dξ′ for some (p−1)-form ξ′. As d2 = 0 the space of exact forms
is a subspace of the space of closed ones and the p-th de Rham cohomology
group Hp(Mn,R) of the manifold Mn is defined as a quotient space of closed
p-forms modulo exact ones. In the same manner the cohomology H∗

t (Mn,R)
of the de Rham complex with respect to the deformed differential dt can be
defined.

The operators dt and d are conjugated by the invertible operator eft and
therefore the cohomology groups H∗(Mn,R) (the standard de Rham coho-
mology) and H∗

t (Mn,R) (the new ones) are isomorphic to each other. On the
level of the forms this isomorphism is given by the gauge transformation

ξ → eftξ.

One can define the adjoint operator d∗
t = eftd∗e−ft with respect to the

scalar product of differential forms

(α, β) =
∫

Mn

(α, β)xdV,

where (α, β)x is a scalar product in the bundle Λ∗(T ∗
x (Mn)) evaluated with

respect to the Riemannian metric gij of Mn and dV is the corresponding
volume form.

One can also consider the deformed Laplacian Ht = dtd∗
t +d∗

t dt acting on
forms. An arbitrary element ω from Hp

t (Mn,R) can be uniquely represented
as an eigenvector with zero eigenvalue of the Hamiltonian Ht = dtd∗

t + d∗
t dt.

Hence one can compute the Betti number bp(Mn) = dimHp(Mn,R) as the
number of zero eigenvalues of Ht acting on p-forms.
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It can be calculated that

Ht = dtd∗
t + d∗

t dt = dd∗ + d∗d + t2(df)2 + t
∑

i,j

∇2
(i,j)(f)[ãi, ãj∗], (11.13)

where (df)2 = (df,df)x = gij ∂f
∂xi

∂f
∂xj and

ãi(ξ) = dxi ∧ ξ, ∇2
(i,j) = ∇i∇j − Γ k

ij∇k.

As the “potential energy” t2(df)2 of the Hamiltonian Ht becomes very
large for t → +∞ the eigenfunctions of Ht are concentrated near the critical
points df = 0 and the low-lying eigenvalues of Ht can be calculated by ex-
panding about the critical points. Taking the Morse coordinates xi in some
neighbourhood W of a critical point P

f(x) =
1
2

∑
λi(xi)2, λ1= · · ·=λq=−1, λq+1= · · ·=λn=1,

where q is the index of the critical point P , and introducing a Riemmanian
metric gij on Mn such that xi are Euclidean coordinates for gij in W one can
locally evaluate the Hamiltonian Ht:

Ht =
∑

i

(
− ∂2

∂xi2
+ t2xi2 + tλi[ãi, ãi∗]

)
. (11.14)

The operator

Hi = − ∂2

∂xi2
+ t2xi2

is the Hamiltonian of the simple harmonic oscillator and it has the following
set of eigenvalues

t(1 + 2Ni), Ni = 0, 1, 2, . . .

with simple multiplicities. The operator Hi commutes with [ãi, ãi∗] and the
eigenvalues of the last operator are equal to ±1:

[ãi, ãi∗](ψ(x)dxi1∧ . . .∧dxip) =
{

ψ(x)dxi1∧ · · · ∧dxip , i ∈ (i1, . . . , ip),
−ψ(x)dxi1∧ · · · ∧dxip , i /∈ (i1, . . . , ip).

Hence the eigenvalues of the restriction Ht|W are equal to

t
∑

i

(1 + 2Ni + λili), Ni = 0, 1, 2, . . . , li = ±1. (11.15)

The corresponding eigenfunctions Ψt = ψ(x, t)dxi1∧ · · · ∧dxip are defined
in W and not on the whole manifold Mn. Using the partition of unit one can
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define a new smooth q-form Ψ̃t on Mn such that Ψ̃t coincides with Ψt in some
W̃ ⊂ W and Ψ̃t ≡ 0 outside of W . The q-form Ψ̃t is called a quasi-mode:

HtΨ̃t = t

(
∑

i

(1 + 2Ni + λili) +
B

t
+

C

t2
+ · · ·

)

Ψ̃t, t → +∞. (11.16)

The numbers t
∑

i

(1 + 2Ni + λili) are called asymptotic eigenvalues and their

minimal value Eas
0 approximates the minimal eigenvalue of Ht as t → +∞.

In order to find Eas
0 , we must set Ni = 0 for all i. The sum

q∑

i=1

(1 − li) +
n∑

i=q+1

(1 + li).

is non-negative and it is equal to zero if and only if

l1 = · · · = lq = 1, lq+1 = · · · = ln = −1.

This means that Ht has precisely one zero asymptotic eigenvalue for each
critical point of index q. Hence we have precisely mq(f) asymptotic zero eigen-
values (for q-forms). Vanishing of the first term of the asymptotical expansion
(11.16) for a minimal eigenvalue of Ht is only a necessary condition to have
zero energy level; hence the number bq(Mn) of zero eigenvalues does not exceed
the number of zero asymptotic eigenvalues. In other words we have established
the Morse inequalities

mq(f) ≥ bq(Mn).

It was Pajitnov who remarked that it is possible to apply Witten’s ap-
proach to the Morse–Novikov theory [4]. Let ω be a closed 1-form on Mn

and t a real parameter. As in the construction earlier one can define a new
deformed differential dtω in Λ∗(M)

dtω = d + tω∧, dtω(ξ) = da + tω ∧ ξ.

If the 1-form ω is not exact, the cohomology H∗
tω(M,R) of the de Rham com-

plex with the deformed differential dtω generally speaking is not isomorphic
to the standard one H∗(M,R). But H∗

tω(M,R) depends only on the cohomol-
ogy class of ω: for any pair ω, ω′ of 1-forms such that ω − ω′ = dφ, where
φ is a smooth function on Mn; the cohomology H∗

tω(M,R) and H∗
tω′(M,R)

is isomorphic to each other. This isomorphism can be given by the gauge
transformation

ξ → etφξ; d → etφde−tφ = d + tdφ ∧ .

It is convenient also to consider a complex parameter λ instead of t. It was
remarked in [3, 4] that the cohomology H∗

λω(M,C) of Λ∗(M) with respect
to the deformed differential dλω coincides with the cohomology H∗

ρλω
(M,C)
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with coefficients in the representation ρλω : π1(M) → C
∗ of fundamental

group defined by the formula

ρλω([γ]) = exp
∫

γ

λω, [γ] ∈ π1(M),

We denote corresponding Betti numbers by bp(λ, ω), bp(λ, ω) = dimH∗
ρλω

(M,C).
There is another interpretation of H∗

ρλω
(M,C: the representation ρλω :

π1(M) → C
∗ defines a local system of groups C

∗ on the manifold M . The coho-
mology of M with coefficients in this local system coincides with H∗

ρλω
(M,C).

Now we can assume that ω is a Morse 1-form, i.e. in a neighbourhood of
any point ω = df , where f is a Morse function. In other words ω gives a
multi-valued Morse function. The zeros of ω are isolated, and one can define
the index of each zero. The number of zeros of ω of index p is denoted by
mp(ω).

Following Witten’s scheme Pazhitnov showed in [4] that for sufficiently
large real numbers λ

mp(ω) ≥ bp(λ, ω).

11.6 Solvmanifolds and Left-Invariant Forms

A solvmanifold (nilmanifold) M is a compact homogeneous space of the form
G/Γ, where G is a simply connected solvable (nilpotent) Lie group and Γ is
a lattice in G [23].

Let us consider some examples of solvmanifolds (the first two of them are
nilmanifolds):

1. An n-dimensional torus Tn = R
n/Z

n.
2. The Heisenberg manifold M3 = H3/Γ3, where H3 is the group of all

matrices of the form ⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ , x, y, z ∈ R,

and a lattice Γ3 is a subgroup of matrices with integer entries x, y, z ∈ Z.

e1 =

⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ , e2 =

⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , e3 =

⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ ,

and the only one non-trivial structure relation: [e1, e2] = e3. The left invariant
1-forms on H3

e1 = dx, e2 = dy, e3 = dz − xdy (11.17)

are dual to e1, e2, e3 and

de1 = 0, de2 = 0, de3 = d(dz − xdy) = −dx ∧ dy = −e1 ∧ e2. (11.18)
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Now we are going to consider examples of solvmanifolds that are not nilman-
ifolds.

3. Let G1 be a solvable Lie group of matrices
⎛

⎜
⎜
⎝

ekz 0 0 x
0 e−kz 0 y
0 0 1 z
0 0 0 1

⎞

⎟
⎟
⎠ , (11.19)

where ek + e−k = n ∈ N, k �= 0.
G1 can be regarded as a semi-direct product G1 = R � R

2, where R acts
on R

2 (with coordinates x, y) via

z → φ(z) =
(

ekz 0
0 e−kz

)
.

A lattice Γ1 in G1 is generated by the following matrices:
⎛

⎜
⎜
⎝

ek 0 0 0
0 e−k 0 0
0 0 1 1
0 0 0 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 u1

0 1 0 v1

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 u2

0 1 0 v2

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

where
∣
∣
∣
∣
u1 v1

u2 v2

∣
∣
∣
∣ �= 0.

The corresponding Lie algebra g1 has the following basis:

e1 =

⎛

⎜
⎜
⎝

k 0 0 0
0 −k 0 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ , e2 =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , e3 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

and the following structure relations:

[e1, e2] = ke2, [e1, e3] = −ke3, [e2, e3] = 0.

The left-invariant 1-forms

e1 = dz, e2 = e−kzdx, e3 = ekzdy (11.20)

are the dual basis to e1, e2, e3 and

de1 = 0, de2 = −ke−kzdz ∧ dx = −ke1 ∧ e2, de3 = ke1 ∧ e3. (11.21)

As the solvable Lie group G is simply connected the fundamental group
π1(G/Γ ) is naturally isomorphic to the lattice Γ : π1(G/Γ ) ∼= Γ .

The Lie algebra g1 of G1 considered earlier is an example of completely
solvable Lie algebra. A Lie algebra g is called completely solvable if ∀X ∈ g

operator ad(X) has only real eigenvalues.
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Let G/Γ be a solvmanifold. One can identify its de Rham complex
Λ∗(G/Γ ) with the subcomplex in Λ∗(G)

Λ∗
Γ inv(G) ⊂ Λ∗(G)

of left-invariant forms on G with respect to the action of the lattice Γ .
The sub-complex Λ∗

Γ inv(G) contains in its turn the subcomplex Λ∗
Γ inv(G)

of left-invariant forms with respect to the action of G.
Taking left-invariant vector fields X1, . . .,Xp+1 and a left-invariant p-form

ξ ∈ Λ∗
Ginv(G) in the formula (11.12) we have:

dξ(X1, . . .,Xp+1)=
∑

1≤i<j≤p+1

(−1)i+jξ([Xi,Xj ],X1, . . ., X̂i, . . ., X̂j , . . .,Xp+1).

(11.22)
The Lie algebra of left-invariant vector fields on G is naturally isomorphic to
the tangent Lie algebra g. Hence one can identify the space Λp

Ginv(G) with
the space Λp(g∗) of skew-symmetric polylinear functions on g.

The differential d defined by (11.22) provides us with the cochain complex
of the Lie algebra g:

R
d0=0−−−−→ g∗

d−−−−→ Λ2(g∗) d−−−−→ Λ3(g∗) d−−−−→ · · · (11.23)

The dual of the Lie bracket [, ] : Λ2(g) → g gives a linear mapping

δ : g∗ → Λ2(g∗).

Consider a basis e1, . . . , en of g and its dual basis e1, . . . , en. Then we have
the following relation:

dek = −δek = −
∑

i<j

Ck
ijdei ∧ dej , (11.24)

where [ei, ej ] =
∑

Ck
ijek. The differential d is completely determined by

(11.24) and the following property:

d(ξ1 ∧ ξ2) = dξ1 ∧ ξ2 + (−1)degξ1ξ1 ∧ dξ2, ∀ξ1, ξ2 ∈ Λ∗(g∗).

Cohomology of the complex (Λ∗(g∗), δ) is called the cohomology (with trivial
coefficients) of the Lie algebra g and is denoted by H∗(g).

Let us consider the inclusion

ψ : Λ∗(g) → Λ∗(G/Γ ).

Let G/Γ be a compact solvmanifold, where G is a completely solvable Lie
group, then ψ : Λ∗(g) → Λ∗(G/Γ ) induces the isomorphism ψ∗ : H∗(g) →
H∗(G/Γ,R) in cohomology (Hattori’s theorem [12], Nomizu’s theorem for
nilmanifolds [8]).
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Let us return to our examples:

1. The cohomology classes H∗(Tn,R) are represented by invariant forms

dxi1 ∧ · · · ∧ dxiq , 1 ≤ i1 < · · · < iq ≤ n, q = 1, . . . , n.

2. H∗(H3/Γ3,R) is spanned by the cohomology classes of the following left-
invariant forms:

dx, dy, dy ∧ dz, dx ∧ (dz − xdy), dx ∧ dy ∧ dz.

3. H∗(G1/Γ1,R) is spanned by the cohomology classes of:

e1 = dz, e2 ∧ e3 = dx ∧ dy, e1 ∧ e2 ∧ e3 = dx ∧ dy ∧ dz.

11.7 Deformed Differential and Lie Algebra Cohomology

From the definition of Lie algebra cohomology it follows that H1(g) is the
dual space to g/[g, g]:

1. b1(g) = dimH1(g) ≥ 2 for a nilpotent Lie algebra g (Dixmier’s theorem
[15]);

2. b1(g) ≥ 1 for a solvable Lie algebra g;
3. b1(g) = 0 for a semi-simple Lie algebra g.

Consider a Lie algebra g with a non-trivial H1(g). Let ω ∈ g∗,dω = 0.
One can define:

1. A new deformed differential dω in Λ∗(g∗) by the formula

dω(a) = da + ω ∧ a.

2. A one-dimensional representation

ρω : g → K, ρω(ξ) = ω(ξ), ξ ∈ g.

Now we recall the definition of Lie algebra cohomology associated with a
representation. Let g be a Lie algebra and ρ : g → gl(V ) its linear representa-
tion. We denote by Cq(g, V ) the space of q-linear alternating mappings of g

into V . Then one can consider an algebraic complex:

V = C0(g, V ) d−−−−→ C1(g, V ) d−−−−→ C2(g, V ) d−−−−→ C3(g, V ) d−−−−→ · · ·

where the differential d is defined by:

(df)(X1, . . . , Xq+1) =
q+1∑

i=1

(−1)i+1ρ(Xi)(f(X1, . . . , X̂i, . . . , Xq+1))

+
∑

1≤i<j≤q+1

(−1)i+j−1f([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . , Xq+1). (11.25)
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The cohomology of the complex (C∗(g, V ),d) is called the cohomology of the
Lie algebra g associated to the representation ρ : g → gl(V ).

Let g be a Lie algebra and ω ∈ g∗ is a closed 1-form. Then the complex
(Λ∗(g∗),dω) coincides with the cochain complex of the Lie algebra g associated
with the one-dimensional representation ρω : g → K, where ρω(ξ) = ω(ξ),
ξ ∈ g.

The proof follows from the formula:

(ω ∧ a)(X1, . . . , Xq+1) =
q+1∑

i=1

(−1)i+1ω(Xi)(a(X1, . . . , X̂i, . . . , Xq+1)).

The cohomology H∗
ω(g) coincides with the Lie algebra cohomology with

trivial coefficients if ω = 0. If ω �= 0 the deformed differential dω is not
compatible with the exterior product ∧ in Λ∗(g)

dω(a ∧ b) = d(a ∧ b) + ω ∧ a ∧ b �= dω(a) ∧ b + (−1)degaa ∧ dω(b)

and the cohomology H∗
ω(g) has no natural multiplicative structure.

Let G/Γ be a compact solvmanifold, where G is a completely solvable
Lie group and ω̃ is a closed 1-form on G/Γ . From the previous sections it
follows that the cohomology H∗

ω̃(G/Γ,C) is isomorphic to the Lie algebra
cohomology H∗

ω(g) where ω ∈ g∗ is the left-invariant 1-form that represents
the class [ω̃] ∈ H1(G/Γ,R).

One can define by means of ω a one-dimensional representation ρω : G →
C

∗:

ρω(g) = exp
∫

γ(e,g)

ω,

where γ(e, g) is a path connecting the identity e with g ∈ G (let us recall that
G is a simply connected). As ω is the left invariant 1-form then

∫

γ(e,g1g2)

ω =
∫

γ(e,g1)

ω +
∫

γ(g1,g1g2)

ω =
∫

γ(e,g1)

ω +
∫

g−1
1 γ(e,g2)

ω

holds on and ρω(g1g2) = ρω(g1)ρω(g2).
The representation ρω induces the representation of corresponding Lie al-

gebra g (we denote it by the same symbol): ρω(X) = ω(X).
Let g be an n-dimensional real completely solvable Lie algebra (or complex

solvable) and b1(g) = dimH1(g) = k ≥ 1. Then exists a basis e1, . . . , en in g∗

such that

de1 = · · · = dek = 0,

dek+s = αk+s ∧ ek+s + Pk+s(e1, . . . , ek+s−1), s = 1, . . . , n− k,
(11.26)
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where

αk+s = αs;1e
1 + αs;2e

2 + · · · + αs;ke
k,

Pk+s(e1, . . . , ek+s−1) =
∑

1≤i<j≤k+s−1

Ps;i,je
i ∧ ej . (11.27)

It is convenient to define αi = 0, i = 1, . . . , k. The set {α1, . . . , αn} of closed
1-forms is in fact the set of the weights of completely reducible representation
associated to the adjoint representation X → ad(X).

For the proof we apply Lie’s theorem to the adjoint representation ad
restricted to the commutant [g, g]:

X∈g → ad(X) : [g, g] → [g, g].

Namely we can choose a basis ek+1, . . . , en in [g, g] such that the subspaces
Vi, i = k+1, . . ., n spanned by ei, . . . , en are invariant with respect to the
representation ad. Then we add e1, . . . , ek in order to get a basis of the whole
g. For the forms of the dual basis e1, . . . , en in g∗ we have formulas (11.26).

Let us consider a new canonical basis of g∗:

ẽ1 = e1, . . . , ẽk = ek,

ẽk+s = t2(s−1)ek+s, s = 1, . . . , n− k,
(11.28)

where t > 0 is a real parameter.
Then for the differential dω in the complex Λ∗(ẽ1, . . . , ẽn) we have:

dω = d0 + ω ∧ +td1 + t2d2 + · · · , d0ẽ
i = αi ∧ ẽi.

In particular

(d0 + ω∧)(ẽi1 ∧ · · · ∧ ẽiq ) = (αi1 + · · · + αiq
+ ω) ∧ ẽi1 ∧ · · · ∧ ẽiq .

Now one can define the scalar product in Λq(ẽ1, . . . , ẽn) declaring the set
{ei1 ∧ · · · ∧ eiq} of basic q-forms as an orthonormal basis of Λq(ẽ1, . . . , ẽn).
Then

d∗
ωdω + dωd∗

ω = R0 + tR1 + t2R2 + · · · ,
R0(ẽi1 ∧ · · · ∧ ẽiq ) = ‖αi1 + · · · + αiq

+ ω‖2ẽi1 ∧ · · · ∧ ẽiq .
(11.29)

As t → 0 the minimal eigenvalue of d∗
ωdω +dωd∗

ω converges to the minimal
eigenvalue of R0. Thus if

αi1 + · · · + αiq
+ ω �= 0, 1 ≤ i1 < i2 < · · · < iq ≤ n

then Hq
ω(g) = 0 (Fig. 11.2).

Recall that α1 = · · · = αk = 0 and let us introduce the finite subset
Ωg ⊂ H1(g) such that:
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Fig. 11.2. The finite subset Ωg ⊂ H1(g)

Ωg = {αi1+ · · ·+αis
|1 ≤ i1< · · ·<is ≤ n, s = 1, . . ., n} . (11.30)

It follows that if
−ω /∈ Ωg

then the total cohomology H∗
ω(g) is trivial: H∗

ω(g) ≡ 0.
One can easily remark that the subset Ωg is well defined and does not

depend on the ordering of weights αi.
Let G/Γ be a compact solvmanifold, where G is a completely solvable Lie

group. Then the left-invariant closed 1-forms from Ωg define a finite subset
in H1(G/Γ,R). We denote this subset by ΩG/Γ . Let ω be a closed 1-form on
G/Γ . If the cohomology class

−[ω] /∈ ΩG/Γ

then the total cohomology H∗
ω(G/Γ,R) is trivial: H∗

ω(G/Γ,R) ≡ 0. The subset
ΩG/Γ is well defined in terms of the corresponding Lie algebra g. The corre-
sponding Lie algebra g must to be unimodular, i.e. the left-invariant n-form
e1 ∧ · · · ∧ en determines non-exact volume form on G/Γ and hence

α1 + α2 + · · · + αn = 0.

If G/Γ is a compact nilmanifold then all the weights αi, i = 1, . . . , n are
trivial and therefore ΩG/Γ = {0}. Hence the cohomology H∗

ω(G/Γ,R) of a
nilmanifold G/Γ is trivial if and only if the form ω is non-exact.

Let us consider a 3-dimensional solvmanifold G1/Γ1 defined in Sect. 11.6.
We recall that the corresponding Lie algebra g1 is defined by its basis e1, e2, e3

and the following non-trivial brackets:

[e1, e2] = ke2, [e1, e3] = −ke3.

For the dual basis of left-invariant 1-forms e1 = dz, e2 = e−kzdx, e3 = ekzdy
we had

de1 = 0, de2 = −ke1 ∧ e2, de3 = ke1 ∧ e3.

Hence α1 = 0, α2 = −ke1, α3 = ke1 and α2 + α3 = 0 (Fig. 11.3).
So it is easy to see that

ΩG1/Γ1 = { ± k[e1]}
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	 � �� � �
−k[e1] 0 k[e1] H1(G1/Γ1, R) = R

Fig. 11.3. The finite subset ΩG1/Γ1

and therefore the cohomology H∗
ω(G1/Γ1,R) is trivial if [ω] �= 0,±k[e1].

(a) H∗
k[e1](G1/Γ1,R) is spanned by two classes:

e2 = e−kzdx, e1 ∧ e2 = dz ∧ e−kzdx.

(b) H∗
−k[e1](G1/Γ1,R) is spanned by two classes:

e3 = ekzdy, e1 ∧ e3 = dz ∧ ekzdy.

Hence we have the following Betti numbers bp
ω = dimHp

ω(G1/Γ1,R) of the
solvmanifold G1/Γ1:

1. b0±ke1 = 0, b1±ke1 = b2±ke1 = 1, b3±ke1 = 0.

2. b00 = b10 = b20 = b30 = 1.
(11.31)

It was proved by Mostow in [20] that any compact solvmanifold G/Γ is
a bundle with toroid as base space and nilmanifold as fibre, in particular a
solvmanifold G/Γ is fibred over the circle π : G/Γ → S1. Hence the 1-form
π∗(dϕ) on G/Γ has no critical points: mp(π∗(dϕ)) = 0, ∀p. It follows from
Pajitnov’s theorem [4] that for λ sufficiently large we have Hp

λπ∗(dϕ)(G/Γ,R) =
0, ∀p.

Now we are going to introduce an example of solvmanifold G/Γ with non-
completely solvable Lie group G (see [21]). Let G2 be a solvable Lie group of
matrices ⎛

⎜
⎜
⎝

cos 2πz sin 2πz 0 x
− sin 2πz cos 2πz 0 y

0 0 1 z
0 0 0 1

⎞

⎟
⎟
⎠ . (11.32)

A lattice Γ2 in G2 is generated by the following matrices:
⎛

⎜
⎜
⎝

cos 2πn
p sin 2πn

p 0 0
− sin 2πn

p cos 2πn
p 0 0

0 0 1 n
p

0 0 0 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 u1

0 1 0 v1

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 u2

0 1 0 v2

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

where n is an integer, p = 2, 3, 4, 6 and
∣
∣
∣
∣
u1 v1

u2 v2

∣
∣
∣
∣ �= 0, or another type: Γ̃2 is

generated by the following matrices:
⎛

⎜
⎜
⎝

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 u
0 1 0 v
0 0 1 n
0 0 0 1

⎞

⎟
⎟
⎠ ,
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where n is an integer. The corresponding Lie algebra g2 has the following
basis:

e1 =

⎛

⎜
⎜
⎝

0 2π 0 0
−2π 0 0 0

0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ , e2 =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , e3 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

and the following structure relations:

[e1, e2] = −2πe3, [e1, e3] = 2πe2, [e2, e3] = 0.

As the eigenvalues of ad(e1) are equal to 0,±2πi the Lie group G2 is not
completely solvable.

The left-invariant 1-forms

e1 = dz, e2 = cos 2πzdx−sin 2πzdy, e3 = sin 2πzdx+cos 2πzdy (11.33)

are the dual basis to e1, e2, e3 and

de1 = 0, de2 = −2πe1 ∧ e3, de3 = 2πe1 ∧ e2. (11.34)

The cohomology H∗(g2) is spanned by the cohomology classes of:

e1, e2 ∧ e3, e1 ∧ e2 ∧ e3.

But
dimH1(g2) = 1 �= dimH1(G2/Γ2,R) = 3.

This example shows that, generally speaking, Hattori’s theorem does not
hold for non-completely solvable Lie groups G, but the inclusion of left-
invariant differential forms ψ : Λ∗(g∗) → Λ∗(G/Γ ) always induces the in-
jection ψ∗ in cohomology.
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The Spectral Geometry of Riemann Surfaces

R. Brooks

Summary. This chapter is spread out over a number of papers and also builds on
my earlier work on the relationship between the spectral geometry of manifolds and
the spectral geometry of graphs. It seemed to be a reasonable idea to put together
these ideas in one overall framework, which will be accessible to someone at the
graduate level.

The material naturally breaks up into a number of areas, each one having connec-
tions to basic graduate material, but putting these different pieces together demands
a fair amount of breadth. We hope to supply this breadth in the chapters.

12.1 Introduction

These are notes to accompany my lectures at the Institut Henri Poincaré. The
idea of these lectures is to present the approach of myself and Eran Makover
toward understanding the spectral geometry of a typical Riemann surface.

This work is spread out over a number of papers and also builds on my
earlier work on the relationship between the spectral geometry of manifolds
and the spectral geometry of graphs. It seemed to be a reasonable idea to
put together these ideas in one overall framework, which will be accessible to
someone at the graduate level.

Unfortunately, this is not the approach that we will take in these notes.
The material naturally breaks up into a number of areas, each one having
connections to basic graduate material, but putting these different pieces to-
gether demands a fair amount of breadth. We hope to supply this breadth in
the lectures.

Our hope in these notes is somewhat more modest. Each section of the
notes will be devoted to a section of the material. Our plan is to make each
section pretty much independent, so that someone can pick up a particular
topic. The task of knitting the different pieces together to get a coherent
overall picture will have to wait, perhaps for a long time. In the meantime, it
is hoped that the various sections will appear in a manner that will allow the
students to keep up with the lectures.
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Our expectation is that the background of the students in complex analysis
and Riemann surfaces is perhaps the weakest point. For that purpose, the
primary purpose of the notes will be to supply the reader with the necessary
background in this area. Another area that we expect the students to be
relatively weak is in probability theory. As this was the part of the material
that came least naturally to us, we will also try to be fairly explicit here. Our
plan is to post these notes on our web site as well as on the web site of the
IHP, in a timely manner as the notes are written. We encourage the reader to
check for updates and additions.

It is a pleasure to thank Thierry Coulhon and the organizers of the special
trimester “Noyaux de Chaleur” for the invitation to participate in the special
semester and to deliver these lectures.

12.2 An Opening Question

It has long been an interest of mine to pass between graphs and manifolds.
The standard picture is in some sense quite clear and elegant. Nonetheless, it
seems to me that there is much that can be added to the standard picture.

To give you an idea of the problem, let us consider a family of graphs Xp,q

considered by Lubotsky, Phillips, and Sarnak. They are indexed by two prime
number p and q, and are p+1-regular graphs that are Cayley graphs (with re-
spect to some nice choice of generators) of either PSL(2,Z/q) or PGL(2,Z/q),
depending on certain properties of p and q. They have the property that
their first eigenvalue is as large as possible, and for that reason were called
Ramanujan graphs by L-P-S.

Fig. 12.1. The graph X23 according to Sarnak
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Fig. 12.2. The graph X2,3 according to Brooks and Zuk

The simplest of them is the graph X23 (Fig. 12.1). Here is a picture of X2,3

taken from the book of Sarnak:
I think that you will agree that it is hard to say anything intelligent about

this graph from the picture. Indeed, Sarnak seems to have overlooked the fact
that the graph as he drew it was not even three-regular. We have supplied the
edge that Sarnak missed by writing it as a dotted line. While playing around
with some of the ideas which will follow, Andrzej Zuk and I noticed that one
can rearrange the graph in a way that is easier to understand. It is shown
below (Fig. 12.2).

In fact, all of the Ramanujan graphs have a nice structure that makes them
come out nice – not, perhaps, so nice as in this example, but still one that
suggests a reasonable geometric picture. The question is: what, if anything, is
this picture trying to tell us? Can we make good use of this extra structure?
Does it suggest a more general picture where there is more to the geometry of
graphs than meets the eye? While the investigations below came from other
sources, I think that a good way to understand where we are going is by
considering these questions in light of the example of the two ways of writing
the same graph.

12.3 The Noncompact Case

In this section, we want to extend our theorem on the behavior of λ1 under
coverings to the case where the base manifold S is a Riemann surface of finite
area:
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x= 0 x=1

y= y

y=y
1

0

Fig. 12.3. What a cusp looks like

Theorem 1. Let S be a Riemann surface of finite area, and let {Si} be a
family of coverings of S given by graphs {Γi}.

Then λi(Si) → 0 as i → ∞ if and only if h(Γi) → 0 as i → ∞
The basic idea of the proof is a following: if C is a cusp of S, then C looks

as follows:
Let Syj

be S ∩ {y : y ≤ yj}, where we have chosen some yj for each cusp
(Fig. 12.3). Syj

is of course compact with boundary. Given our coverings Si,
we may lift Syj

to Si to get a family of coverings Si,yj
of Syj

.
We may now apply our proof in the compact case to this setting, where we

replace λ1 with λN
1 , the first eigenvalue with Neumann boundary conditions,

and replace the Cheeger constant h(S) with the Cheeger constant hN (Si,yj
)

with Neumann boundary conditions. We now have enough compactness to see
that the original argument goes through. The only point at which we have to
be careful is passing from λ1(Si) to λN

1 (Si,yj
).

In general, if S∗ has boundary, we have

λ1(S∗) = inf∫
S∗ fd area=0

∫
S∗ ‖ grad(f) ‖2

∫
S∗ f2

.

Now let f be an eigenvalue of ∆ on Si with eigenvalue

λ1 = 1/4 − s2.

(If λ1 is bigger than 1/4, there is nothing to prove.) We need to compare
the Rayleigh quotient of f on Si with the Rayleigh quotient of f on S(i,yj).
Clearly, the numerator is less, since we are integrating the same over a small
area, but the denominator is also less, for the same reason. We want to show
that the denominator is not too much less.

We must also worry about the fact that
∫

Si,yj
f need no longer be equal

to zero. We can modify this by subtracting a constant from f , which does not
change grad(f), but we must worry that this constant is not too large.
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Both worries will be taken care of by showing that “not much is happening
far out in the cusps,” by comparing what happens there to what happens closer
in. What we will show is:

Theorem 2. Let Cyj
be the part of the cusp where y > yj.

Let f be an L2 function on C with eigenvalue λ = 1/4 − s2, and y1 > y0.
Then

∫

Cy1

f2 ≤
(

y0

y1

)2s ∫

Cy0

f2.

The idea of the proof is the following: we may fix coordinates (x, y) in C,
where 0 ≤ x ≤ 1 and y sufficiently large. The Laplacian of f is then given by

∆(f) = −y2

(
∂2

∂x2
f +

∂2

∂y2
f

)
.

Since f is periodic in x, we may write out its Fourier series in x as a
function of y:

f(x, y) =
∑

n

an(y) cos(2πnx) + bn(y) sin(nx).

The equation
∆(f) = λf

then translates to the differential equations

a
′′

n(y) =
(

4π2n2 − λ

y2

)
an,

where differentiation is understood with respect to y, similarly for bn.
Putting aside the nuisance that these functions are of length 1/2 and not

1, we have that
∫

Cyi

f2 =
∫ ∞

y=yi

∑
n a2

n(y) + b2n(y)
y2

dy.

Let us first examine the case n = 0. We are then looking at the equation

a
′′

0 =
−λ

y2
a0.

This has solutions

a0 = c1y
(1/2)−s + c2y

(1/2)+s.

In order for this term to be L2, we must have c2 = 0. Thus, we must have

a0 = c1y
(1/2)−s,
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and it is easily seen that
∫ ∞

y1

a2
0

1
y2

dy = (const)(y1)−2s.

Hence ∫ ∞

y1

a2
0

1
y2

dy =
(

y0

y1

)∫ ∞

y0

a2
0

1
y2

dy.

We would like to supply a similar analysis to the other terms. The treat-
ment of the an’s and bn’s is exactly the same, so we will focus on the an’s.
The idea is to apply the standard techniques of Sturm–Liouville comparison
to study the behavior of the solutions of the equations. We will do this in
several ways.

First of all, as y gets large, the term −λ/y becomes negligible in comparison
to the terms 4π2n2. Thus, the differential equation for an has two solutions,
one decaying like e−2πny and the other blowing up like e2πny, for y large.
In order to preserve L2-ness, the second term cannot appear. Thus, there is
a unique solution (up to constants) Fn of this equation, which decays like
e−2πny for y large. We may normalize Fn by insisting, say, that Fn(y0) = 1.

We then compare Fn to F0 = y(1/2) − s. we find first of all that Fn is
positive for all values, and second that Fn/F0 is a decreasing function of y.

It follows that
∫∞

y=y1
F 2

ny−2 dy
∫∞

y=y1
F 2

0 y−2 dy
≤

∫∞
y=y0

F 2
ny−2 dy

∫∞
y=y0

F 2
0 y−2 dy

.

Rewriting this as
∫∞

y=y1
F 2

ny−2 dy
∫∞

y=y0
F 2

ny−2 dy
≤

∫∞
y=y1

F 2
0 y−2 dy

∫∞
y=y0

F 2
0 y−2 dy

.

and recalling that we have already evaluated the last term, gives

∫ ∞

y=y1

a2
ny

−2 dy ≤
(

y0

y1

)2s ∫ ∞

y=y0

a2
ny

−2 dy.

Summing over the an’s and bn’s now gives us the theorem.

12.4 Belyi Surfaces

We begin with the following

Definition 1. A compact Riemann surface S is called a Belyi surface if it
admits a holomorphic function f : S → S2 such that f has at most three
critical values.
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After a Möbius transformation, we may assume that the three points are 0,
1, and ∞. If we set

SO = S − f−1{0, 1,∞},
we may characterize Belyi surfaces in the following way:

Theorem 3. S is a Belyi surface if and only if there is a finite set of points
{z1, . . . , zn} on S such that any one of the following conditions is fulfilled on
SO = S − {z1, . . . , zn}:
1. SO = H

2/Γ,Γ a finite index subgroup of PSL(2,Z).
2. There is a graph G and an orientation O on G such that

SO = SO(G,O).

3. SO carries a horocycle packing – that is, a system of closed horocycles
{Ci} about the cusps {zi} such that the Ci’s have disjoint interiors, and
the region exterior to all the horocycles consist of triangular regions.

We note that neither the Belyi function f nor the oriented graph (G,O)
are determined by S. If f is such a function, then composing f with z �→ zn

produces another Belyi function, which gives rise to a new graph (G,O). Proof
of Theorem 3:

Let us first show that (1) holds if and only if S is a Belyi surface. If S is
Belyi, then S − f−1({0, 1,∞}) is a covering space of S2 − {0, 1,∞}. But

S2 − {0, 1,∞} = H/Γ2,

where

Γ2 =
{(

a b
c d

)}
≡ ±

(
1 0
0 1

)
(mod 2)

Conversely, suppose that there is a finite set {z1, . . . , z2} in S such that
S − {z1, . . . , z2} = H

2/Γ for some Γ ⊂ PSL(2,Z).
We recall the well-known fundamental domain F0 for PSL(2,Z) acting on

H
2 acting H

2 – it is traditionally written as

F0 = {z ∈ H : −1/2 ≤ R(z) ≤ 1/2, |z| ≥ 1}

but we will find it more convenient to use the fundamental domain

F0 = {z ∈ H : 0 ≤ R(z) ≤ 1, |z| ≥ 1 |z − 1| ≥ 1}.

This fundamental domain is shown in Fig. 12.4. It is given by cutting the
fundamental domain F0 along the line R(z) = 0 and regluing the left-hand
piece to the right-hand side.

If on F we now glue the left-hand side to the right-hand side, we obtain a
surface S0, which is topologically a once-punctured sphere, with two orbifold
points of orders 2 and 3, respectively, corresponding to the point i ∼ i+1 and
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2π/3

Fig. 12.4. The fundamental domain for PSL(2, Z)

(1 + i
√

3)/2, respectively. Removing the inverse images of these two points
from S, we now get a covering

g : S − f−1

(

i,
1 + i

√
3

2

)

→ S2 − {3.points}

The points we remove from S are clearly removable singularities of g, so by
filing them in, we get a branched cover g̃ : S → S2 branched only over three
points.

It is easy to see that (1) is equivalent to (2). Indeed, the oriented graph
(G,O) exhibits SO as an orbifold covering of H

2/PSL(2,Z). To see that (1)
implies (3), we may lift the horocycle on F joining i to i + 1 to SO. The
corresponding system of horocycles has the desired properties. Conversely,
suppose that SO has the desired system of horocycles. Joining two horocycles
of SO by geodesics if the corresponding horocycles are tangent, we obtain a
decomposition of SO into ideal triangles. Each ideal triangle has three horo-
cycles perpendicular to the edges and pairwise tangent. The only way this can
happen is if the points of tangency are at the points i, i+ 1, and (i+ 1)/2. It
follows that SO = SO(G,O) for some (G,O).

We will now show:

Theorem 4 (Belyi). Let S be a closed Riemann surface. Suppose there exists
a number field K and a holomorphic function

f : S → S2

whose critical values lie in K ∪ {∞}.
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Then S is a Belyi surface.

Our proof is based on the proof in [4]. The converse to this theorem is also
true, and proved by Belyi, but we will not need it.

Proof. : Let φ : S2 → S2 be a rational function. If f is a holomorphic function
from S to S2 , then the critical values of φ(f) are the image under φ of the
critical values of f , together with the critical values of φ.

Suppose that z1, . . . , z
n are n points on S2 lying in K ∪{∞}, and let k be

the maximal degree of the zi’s, which we may assume is z1. Then there is a
polynomial P of degree k with integer coeffcients such that P (z1) = 0.

P does not raise the degree of any of the points zi, and sends z1 to some-
thing of degree 1, namely the point 0. Furthermore, P introduces critical
points of degree ≤ k − 1, namely the solutions of P ′(z) = 0. Hence the num-
ber of critical points of degree ≥ n reduces by at least one.

Arguing inductively, we may reduce to the case where all the zi’s have
degree 1, that is they are rational numbers. After adding and multiplying by
rational constants, we may assume that the critical values include 0, 1,∞, and
at least one value between 0 and 1, which we may then write as α/(α + β).

We now consider the map

P (z)zα(1 − z)β .

It sends 0 and 1 to 0, ∞ to ∞, and has critical points at (at most) 0, 1, and
α/(α + β). So the total number of critical values decreases by at least one.
This concludes the proof.

As a simple consequence, we have

Corollary 1. Let S be a Riemann surface. Then for every ε, there exists a
surface Sε within ε of S, such that

Sε = SC(G,O)

for some (G,O).

Proof. According to Riemann–Roch, for any Riemann surface S there is a
holoporphic function

f : S → S2.

We do not specify what metric we use to measure ε, because they are all
equivalent. We could use any of the standard notions of distance in moduli
space in the proof.

Take a small diffeomorphism of S2 taking the critical points of f to points
lying in some number field K, for instance the field Q[i], which is already
dense in S2. Then lift this conformal structure to S to obtain Sε.
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12.5 The Basic Construction

Let Γ be a three-regular graph. An orientation O on Γ is an assignment, for
each vertex v of Γ, of a cyclic ordering of the edges coming out of each vertex.
There is no “compatibility” requirement, so that a graph on n vertices will
have in general 2n orientation.

To the pair (Γ,O), will assign a Riemann surface. Actually, we will assign
two Riemann surfaces, SO(Γ,O) and SC(Γ,O). The surface SO(Γ,O) will be a
finite area Riemann surface, while the surface SC(Γ,O) will be the conformal
compactification of SO(Γ,O) obtained by filling in each cusp with a point.

We begin by considering the ideal hyperbolic triangle T (Fig. 12.5), which
is the unique triangle with verticles at 0, 1,∞. We will mark some points on
T – we will marks at the points i, i + 1, and (i + 1)/2, which can be thought
of as the midpoints of the sides. We then join these points by horocycles. We
then consider the point (1+ i

√
3)/2, and draw the geodesics joining this point

to the three midpoints. To finish things up, we will draw a “traffic pattern”
on T , showing the cyclic ordering corresponding to always turning left.

Here is what it looks like:
To the pair (Γ,O) we construct the surface SO(Γ,O) in the following way:

at each vertex, we place a copy of T , so that the traffic pattern on T matches
up with the orientation at the vertex. Whenever two vertices are joined by
an edge, we glue the corresponding triangles together so that the tick marks
are glued together and the orientations match up (Fig. 12.6). This describes
a unique gluing procedure.

We remark that the horocycle pieces on each T glue together to give closed
horocycles about a cusp. Indeed, each cusp on the surface SO(Γ,O) corre-
sponds to a path on the graph such that each time you arrive at a vertex, you
turn left. We will call such paths left-hand-turn paths, or LHT paths for short.

It is easy to see that each surface SC(Γ,O) is a Belyi surface, and con-
versely, each Belyi surface arises this way. The oriented graph (Γ,O) describes

Fig. 12.5. The marked-up ideal triangle T
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Fig. 12.6. The graph on two vertices

SO(Γ,O) as a covering space of H
2/PSL(2,Z), with the vertex being an orbi-

fold point of order 3.
We remark that the surface so constructed depends in a very heavy way

on the orientation. The easiest way to see this is by seeing on the genus.
According to Gauss–Bonnet, the genus of SC(Γ,O) can be computed by

genus (SC(Γ,O)) = 1 +
n− 2LHT

4
.

This gives us as an amusing sidelight that the number of LHT paths must
have the same parity. Let us take some simple examples of this construction.

We first take the simplest graph, the three-regular graph on two vertices
with no loops or double edges. It has two possible orientations.

Let us now build the surface SC(Γ,O). We begin by gluing two triangles
together, as shown below:

In order to glue the remaining two pairs of sides, we need to use the
orientation. With the first orientation, the left-hand side is glued to the top,
while the right-hand side is glued to the bottom. The resulting surface is a
sphere with three punctures, so its compactification must be the sphere.

With the second orientation, the left-hand side is glued to the right-hand
side, while the top is glued to the bottom. We obtain in this way a torus with
one cusp.

Which torus is it? The compactification process tells us that there is a
unique way of assigning angles to the corners, so that first of all the angle
sum around a cusp is 2π, and second so that the tick marks continue to be
glued to tick marks. It is easy to see that assigning an angle of π/3 to each
corner fulfills this requirement, because in an equilateral triangle the conformal
midpoint is also the geometric midpoint.

Thus the surface SC(Γ,O) equilateral torus, obtained by gluing opposite
sides of a parallelogram, is obtained by gluing two equilateral tori together.

Now let us consider the complete graph on four vertices, also known as
the tetrahedron (Fig. 12.7). It has three essentially distinct orientations — you
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Fig. 12.7. Building on the tetrahedron

Fig. 12.8. The tetrahedron with one orientation reversed

may take the standard orientation and then reverse the orientation on zero,
one, or two vertices (Fig. 12.8).

We begin by drawing four triangles glued together, with one in the center,
as shown:

The usual orientation then tells us to glue each side to the side adjoining
it so that it does not lie on the same triangle. As before, it is easy to see that
one obtains in this way a sphere, this time with four singular points.

Now let us reverse the orientation on the center triangle, or what amounts
to the same thing, keep the orientation on the center triangle, and reverse it
in the other three.

Now we have that each side is glued to the opposite side. It is clear that
there are now two cusps rather than four, so the surface is a torus.

One way to compute which torus it is, is as follows: from symmetry con-
siderations, the central triangle must be an equilateral triangle. If we choose
the remaining triangles to be isosceles, then the condition on the midpoints
matching up is realized. This is because the conformal center of the base is
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again the geometric center, and, while it is not the case that the conformal
center of the sides is the geometric center, it is the same for all sides, so what-
ever point it is, the points match up. In order to get the angle sums of the
cusps to match up, the correct choice is 2π/3 for the top angle, and π/6 for
the bottom angles. When this is done, the picture looks as follows, and we
have a regular hexagon with opposite sides glued together:

It is a nice exercise to cut and paste this shape together to see that it
represents the equilateral torus. A faster way of seeing this is to notice the
obvious order 3 symmetry (also clear for the graph) and observe that the
equilateral torus is the only torus with an order 3 symmetry.

Now we consider the case where we reverse the orientation at two vertice
(Fig. 12.9). Here there are two LHT paths, one passing through all four vertices
and the other passing through all four vertices twice.

It is convenient to rearrange this picture with the four vertices from the
four different triangles meeting at the central point, and with opposite sides
identified. Using the argument with isosceles triangles we gave above, it is
clear that the correct choice is for each triangle to be a (π/4, π/4, π/2) isoseles
triangle. From this it is easy to identify which torus this is – it is the square
torus. This can also be seen directly from symmetry considerations.

As a final exercise, which we will not work out completely, the reader
is invited to take the three-regular graph, which is the skeleton of a cube
(Fig. 12.10). When one takes the usual orientation, then one again has a
sphere, this time with six punctures. In Fig. 12.10, we have written down a
number of possible ways of reversing orientations, which we denote by putting
a circle around the corresponding vertex. Which surfaces do these represent?

In the first two examples, it is clear that the resulting surface is a torus,
because there are four LHT paths – all of length 6 in the first example, and
of lengths 4, 4, 6, and 10 in the second. In the third and fourth examples, we

Fig. 12.9. The tetrahedron with two orientations reversed
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Fig. 12.10. Various options for orientations on the cube

got surfaces of genus two, because there are two LHT paths (two of length 12
in the third example, one of length 20 and one of length 4 in the fourth).

It is difficult to decide which surfaces are represented by the last two
orientations, mostly because it is difficult to find names for surfaces of genus
two.

12.6 The Ahlfors–Schwarz Lemma

The Ahlfors–Schwarz lemma should be familiar to students of complex analy-
sis. Denoting by D the unit disk

D = {z ∈ C : |z| < 1},

it states

Lemma 1 (Schwarz). Let f : D → D be a holomorphic map, which takes 0
to 0.

Then
|f ′(z)| ≤ 1

and
|f(z)| ≤ |z|, z �= 0,

with equality in either of the two inequalities at any point if and only if

f(z) = eiθ

for some θ.
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Proof. Consider the function

g(z) =
{

f(z)
z , z �= 0

f ′(0), z = 0.

On |z| = r < 1, we have

|g(z)| =
|f(z)|
|z| ≤ 1

r
.

Hence |g(z)| ≤ 1/r for all |z| ≤ r. Letting r → 1 complete the proof.

It was observed by Pick that the Schwarz lemma admits a geometric in-
terpretation: if ds2

H
denotes the hyperbolic metric on D,

ds2 =
4(dx2 + dy2)
(1 − |z|2)2 ,

then any holomorphic map D → D is distance nonincreasing, with the distance
between two points preserved if and only if f is an isometry, that is to say a
Möbius transformation preserving D.

The proof follows from what we have already done by first observing that
the Möbius transformations preserving the disk are isometries of the metric
ds2

H
, and secondly by composing f with such a Möbius transformation so that

it sends 0 to 0.
Ahlfors observed that the argument could be made even more geometric

by introducing the Gauss curvature κ of a metric. If the metric ds2 is given
in conformal coordinates by ds

ds2 = λ2(z)[dx2 + dy2],

then

κ(ds2) =
−∆(log(λ))

λ2
,

where, since we are currently in “analyst’s mode,”

∆(f) = fxx + fyy.

The proof is an elementary calculation using Christoffel symbols.
We will give a number of different versions of the Ahlfors–Schwarz lemma.

The first is due to Scott Wolpert:

Lemma 2. Let S1 and S2 be two compact Riemann surfaces, with metrics ds2
1

and ds2
2 respectively, and

f : S1 → S2

a holomorphic map.
Suppose that κ2(f(z)) < κ1(z) < 0. Then f is distance decreasing.
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Proof. : Let us write the “pullback metric” of ds2
2 by

f∗ds2
2 = g2(z)ds2

1,

where g(z) is a real function, which will be zero at the critical points of f .
The fact that f is a holomorphic function is expressed here by the fact that
f∗(ds2

2) is conformal to ds2
1. f will be distance decreasing provided that g < 1.

The idea of the proof is as follows: let z0 be a point at which g attains
its maximum value. Such a point has to exist, since S1 is compact. If z0 is
a branch point, then g(z) ≡ 0, and f is a constant (clearly distance decreas-
ing). Otherwise, we may choose local coordinates about z0, and use the same
coordinates about f(z0).

Writing in these coordinates

ds2
1 = λ2

1(z)|dz|2

and
ds2

2 = λ2(z)|dz|2,
we clearly have that

g(z) =
λ2

λ1
,

while

κ1 = −∆(log(λ1))
λ2

1

,

κ2 = −∆(log(λ2))
λ2

2

,

At z0, we have
∆(log(g)) ≤ 0.

hence,

∆(log(g)) = ∆(log(λ2)) −∆(log(λ1)) = −κ2λ
2
2 + κ1λ

2
1 ≤ 0

or

g2 =
λ2

2

λ2
1

≤ (−κ1)
(−κ2)

< 1

Hence g < 1, and the proof is complete.

Here is Alfors original version

Lemma 3. Let ds2
1 = ds2

H
and ds2 be two conformally equivalent metrics on

D, with κ2 ≤ −1 = κ1. Then any map f : D → D is distance nonincreasing
from ds1 to ds2.
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The proof will be a combination of the two arguments above. We again look
at the function g(z), and at an interior maximum z0 it is clear that g(z0) ≤ 1,
by the same curvature calculation as before. But how do we produce an interior
maximum?

The idea is to look at the family of functions

fr(z) = f(rz)

for r < 1, and the corresponding functions gr. We may take the disk {z : |z| <
r} as coordinates to see that gr goes to 0 at the boundary. This is because in
this coordinate, clearly λ1(z) → ∞ as |z| → r, while λ2 remains finite.

Hence, if gr(z) is not identically 0, it must have an interior maximum, so
gr(z) ≤ 1 everywhere. But clearly gr(z) → g(z) as r → 1, so we conclude that
g(z) ≤ 1 everywhere. This gives the lemma.

Here is the version we will be using.

Theorem 5. Let f : S1 → S2 be a holomorphic map between two (not neces-
sarily compact) Riemann surfaces S1 and S2, and let ds1 and ds2 be metrics
on S1 and S2 respectively.

Suppose that the metric ds1 is complete, and that

sup
z∈S2

κ2(z) < inf
z∈S1

κ1(z) ≤ sup
z∈S1

κ2(z) < 0.

Then f is distance nonincreasing.

Proof. After passing to the universal coverings, we may assume that S1 and
S2 are both D.

We now write fr(z) = f(rz) as before. The argument is exactly the same
as in Ahlfors’ argument, except at one small point. As before, the function
gr must go to zero at the boundary, from completeness of ds1. The only
difference is that instead of using the pointwise estimate κ2 ≤ −1, we have
to make do with comparisons of curvature at different points. Thus we must
replace pointwise curvature estimates with sup and inf estimates.

This concludes the proof.

We note at this point that the map f no longer plays much of a role.
There is no loss in assuming that instead of two Riemann surfaces and a
map between them, we deal with one Riemann surface and two conformally
equivalent metrics on it. The role of the function can be replaced by allowing
the second metric to degenerate at some points. Here is our final version of the
Ahlfors–Schwarz lemma. We present it as a corollary to the previous version.
We would like to think of this as the “geometer’s version” of Ahlfors–Schwarz,
because it gives a nice, clean geometric statement, but from the analyst’s point
of view it may miss a lot that is covered by the lemma.

Corollary 2. Let S be a Riemann surface with two complete metrics ds1 and
ds2, which are conformally equivalent.
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Suppose that there exist constants C1 and C2 such that

C1 sup(κ1) inf(κ2) ≤ sup(κ2) ≤ C2 inf(κ1) ≤ C2 sup(κ1) < 0.

Then
C2ds2

2 ≤ ds2
1 ≤ C1ds2

2

Proof. After multiplying ds1 by constants, we may apply the previous lemma.
It is clear that after choosing the constants appropriately, we may change the
role of ds1 and ds2. This completes the argument.

We like to paraphrase the corollary in the following way: “curvature close
and negative implies metric close.”

12.7 Large Cusps

In this section, we consider the following problem: let SO be a noncompact
finite-area Riemann surface, and let SC be its conformal compactification. To
what extent are the hyperbolic metrics on SO and SC related?

It is not too diffcult to see that there need be no relationship in general.
For instance, if SC is a sphere or a torus, and SO is SC with several points
removed, then SO will carry a hyperbolic metric, while SC will not. Even
if both SO and SC carry hyperbolic metrics, they will look quite different –
SC is compact, while SO is not. However, one gets the feeling that for many
geometric quantities arising in spectral geometry, the geometry does not really
see things that take place far away on small regions. In particular, it should
not make much difference to the body of the surface if a cusp is filled in or
not.

In this section, we see how to realize this feeling. The key notion is the
notion of large cusps:

Definition 2. 1. A cusp on SO is of length ≥ L if there is a closed horocycle
about the cusp whose length is at least L.

2. The surface SO has cusps of length ≥ L if there is a collection of horocycles
with disjoint interiors, one enclosing each cusp, such that each horocycle
has length at least L.

The main result of this section is then:

Theorem 6. For every ε, there exists L = L(ε) such that, if SO is a finite-
area hyperbolic Riemann surface with cusps of length ≥ L, then outside stan-
dard cusp neighborhood on SO and SC , the hyperbolic metrics ds2

O and ds2
C

satisfy
1

1 + ε
ds2

0 ≥ ds2
C ≥ (1 + ε)ds2

0.
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Fig. 12.11. A simple example

We remark that part of the statement of the theorem is that, in the pres-
ence of large cusps, SC has a hyperbolic metric. One can see from Gauss–
Bonnet that this will be the case if L > 2π. In effect, filling in a cusp takes
away 2π from the Gauss–Bonnet integrand. A horocycle of length L binds
a region of area L. So if all the horocycles have length ≥ L > 2π, there is
enough area left over so that SC has a negative Euler characteristic, and hence
a hyperbolic metric.

This argument is reasonably sharp. Let (G,O) be the graph given in
Fig. 12.11. Then, as we have seen in Sect. 12.5, S0(G,O) is the equilateral
torus with one puncture, and the standard horocycle on SO(G,O) has length
6, which is just a little bit less than 2π. But SC(G,O) is a torus, and hence
doesn’t carry a hyperbolic metric.

Theorem 6.1 has a converse:

Theorem 7. For every ε, there exists R = R(ε) with the following property:
Let SC be a compact hyperbolic surface, and z1, . . . , zk points on SC such

that the injectivity radii about the zi’s are at least R, and such that the balls
B(zi, R) are disjoint.

Let O = SC − {z1, . . . , zk}, with its hyperbolic metric.
Then So has cusps of length ≥ sinh (1/(1 + ε)R), and outside of cusp

neighborhoods, we have

1
1 + ε

ds20 ≥ ds2C ≥ (1 + ε)ds20.

The strategy of the proof of Theorem 6.1 is as follows: we will consider two
conformally equivalent metrics on SC . The first metric will be the hyperbolic
metric ds2

C on SC . The second metric will be of the form

d̃s2
O = f2(z)ds2O,
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where f will be a function that is equal to one outside of cusp neighborhoods.
We will want to choose f so that:

1. The metric d̃s2
O extends to be a smooth metric across the cusps;

2. The curvature κ(d̃s2
O) lies between the −1/1 + ε and −(1 + ε).

The Alfors–Schwarz lemma, in the Wolpert version, will then guarantee
that the metrics ds2C and d̃s2O are close. This will then establish the theorem.

To prove Theorem 6.2, we will proceed in the same way, reversing the roles
of SO and SC . For this, we will need the noncompact version of the Ahlfors–
Schwarz theorem. We must choose f so that it gives us a complete metric near
the points zi, in addition to the curvature estimates.

To set up the basic calculation, let D denote the disk, and let ds2
D

be the
hyperbolic metric on D

ds2
D

=
4

(1 − |z|2)2 [dx2 + dy2].

We will also consider the hyperbolic metric ds2
H on D − 0. It is given by

the formula

ds2
H =

(
1

−|z| log(|z|)

)2

[dx2 + dy2].

Note that the ratio

h2 =
ds2

H

ds2
D

is given by

h =
1

−|z| log(|z|)
2

1−|z|2
.

It will be convenient to take geometric coordinates. Let r(z) be the distance
from 0 in the metric ds2

D. Then

r(z) =
∫ |z|

0

2
1 − x2

dx =
∫ |z|

0

[
1

1 + x
+

1
1 − x

]
dx = log

(
1 + |z|
1 − |z|

)
,

which gives the inverse map as

|z| = tanh
(r

2

)
.

Writing
dx2 + dy2 = [d(|z|)2 + |z|2dθ2],

we have

4
(1 − |z|2)2 [dx2 + dy2] =

[
4

(1 − tanh2(r/2))2

]

×
[(

1
2 cosh2(r/2)

)2

dr2 + tanh2(r/2)dθ2

]

.
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The coefficient of d/theta2 is
[(

2
1 − tanh2(r/2)

(tanh(r/2))
)]2

=
[

2 sinh(r/2) cosh(r/2)
cosh2(r/2) − sinh2(r/2)

]2

=sinh2(r/2)

while the coefficient of dr2 is
2

1 − tanh2(r/2)
1

2 cosh2(r/2)
= 1,

so the metric reduces to

ds2
D

= dr2 + sinh2(r)dθ2.

The function h may then be written as

h(r) =
1

sinh(r) log(coth(r/2))
,

so that the metric ds2
H

is

ds2
H

= h(r)
[
dr2 + sinh(r)dθ2

]
.

It will be convenient to have the formula for the curvature κg of a metric
of the form g2

[
dr2 + (sinh2(r))dθ2

]
. It is given by

κg = −
[(

g′

g

)′
+ 1 +

(
g′

g

)
coth(r)

]

.

Of course, it is in general difficult to decide what is really important in
all these formulas. The main point of the curvature formula is that it involves
two derivatives in g, and is close to −1 provided that g is close to 1 and its
first and second derivatives are close to 0.

The main point about h is that it is a function for which, as r → ∞, we
have that h(r) is close to 1, while h′ and h′′ are close to 0. This can be seen
by some simple uses of L’Hospital’s rule.

The idea of the proof of the theorem is now to find a function g, which is
equal to 1 for small values of r, which is equal to h for large values of r, and
for which the values of κg stay close to −1. It is easy that one can do this,
provided that g(r) agrees with 1 for large enough values of r so that h(r) is
close to 1 and the first two derivatives of h are close to 0. This then establishes
Theorem 6.1. The proof of Theorem 6.2 goes exactly the same way, reversing
the roles of ds2

H
and ds2

D
.

12.8 The Spaghetti Model

We have seen how the Bollobas theory gives us a good picture of the spectral
behavior of a general Riemann surface. A reasonable question to ask is whether
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there are other features of the geometry of Riemann surfaces which can be
read off from this picture.

The key point here is to take seriously the additional structure afforded by
the orientation of a graph. As we have seen, the orientation does not have a
strong effect on the behavior of λ1 (and indeed has no effect on the behavior
of λ1 of a graph), but it does have a very strong effect on the geometry of the
surface.

Indeed, what is the difference between the two pictures of the Ramanujan
graph X2,3 given in the introduction? The point is that since X2,3 is a homo-
geneous graph, it carries a natural orientation. It was the orientation that was
responsible for unraveling the chaos of the first picture to obtain the order of
the second picture.

In this section, we will describe the following two results:

Theorem 8. Let (Γ,O) be chosen randomly among oriented 3-regular graphs
on n vertices. Then the expected value E(genus(SC(Γ,O)) satisfies

(const) + (n/4) − (3/4) log(n) ≤ E(genus) ≤ (const) + (n/4) − (1/2) log(n)

Theorem 9. If S is a Riemann surface, denote by Emb(S) the area of the
largest embedded ball in S. Then the expected value of Emb(SC(Γ,O)) satisfies

E(Emb(SC(Γ,O)) ≥ (1/π)area(S).

Of course, the first theorem tells us more about our method of picking
Riemann surfaces then it is about the surfaces themselves, but the second
theorem tells us a fascinating fact about Riemann surfaces – the general Rie-
mann surface has its geometry dominated by one very large embedded ball.

The idea of the proofs of these theorems is to translate them into what
they are stating about LHT paths. According to our formula for the genus,
the first theorem shows that the expected value of the number of LHT paths
grows logarithmically in n. A reasonable question to ask is what one expects
about the associated lengths of the left-hand turn paths. We claim that the
second theorem shows us about the expected length of the longest LHT path:

Lemma 4. Let (Γ,O) be an oriented graph. For given LHT path C, let LC be
the length of this path. If SO(Γ,O) obeys the large cusp condition, then about
the image of the corresponding cusp of SO(Γ,O) in SC(Γ,O), there exists an
embedded ball of area ∼ LC .

The proof is to apply the Ahlfors–Schwarz lemma. The horocycle neigh-
borhood of C in SO(Γ,O) has area equal to the length of C, and this horocycle
neighborhood goes over to an embedded ball in the compactification.

Before discussing the proofs of these theorems, we will say a few words
concerning where they come from. If we pick an element σ = σn randomly
from the symmetric group S(n) on n elements, we may ask to give the cycle
decomposition of σ. This will of course determine σ up to conjugacy. We then
have:
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Theorem 10. The cycle decomposition of a randomly picked element of S(n)
has the following properties:

1. The expected number of cycles is ∼ log(n).
2. There is a constant c such that the expected length of the longest cycle is

at least c · n.

I do not know to whom to attribute these results, but they have been actively
studied and generalized in recent years. The precise value of c has been com-
puted, and is something like .62 . . . , but we will present a simple argument
showing that c ≥ 1/2. The reason for doing this is that the simple argument
will generalize to the setting of three-regular graphs, once we clarify what the
right translation to this setting is. As a result, the constant 1/π appearing in
Theorem 7.2 is certainly not sharp, and our belief is that it should probably
be about twice as big, but already the simple estimate gives us a striking
geometric fact.

We would like to leave the correct estimate of the constant on the hands
of experts.

Theorem 7.3 can be seen easily from what has become known as the
spaghetti model. Imagine n pieces of spaghetti, labeled from 1 to n, lined
up so that each piece lies vertically. At each step of the process, one ties the
bottom of one piece of spaghetti, chosen randomly, to the top of another piece
of spaghetti, again chosen randomly. In this way, one creates an element of
the symmetric group, and the number of components of spaghetti and their
corresponding lengths correspond to the number of cycles and their respective
lengths.

At the kth step of the process, the probability of forming a closed loop is
exactly 1/(n − k + 1), as is easily seen. Thus the expected number of closed
loops at the end will be

1/n + 1/(n− 1) + · · · + 1 ∼ log(n).

Now let us modify the process in the following way: at the first step, the
bottom piece of spaghetti is chosen to be the first one. At the kth step, we pick
as the bottom piece the piece whose top piece was chosen at the (k−1)th step.
We continue in this way until a closed loop is formed. What is the expected
length of this loop?

Well, the probability of its length 1 is 1/n. The probability of its length 2
is

[(n− 1)/n][1/(n − 1)] = (n + 1)/2 ∼ n/2.

In general, it is not hard to see that the probability of the process stopping
at exactly k steps is exactly 1/n. So the expected value is easily computed to
be

(1/n)[1 + · · · + n] = (n + 1)/2 ∼ n/2.

We remark that one could do a similar computation where one modifies
the process by picking at random a free end, disregarding whether it is a top
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or a bottom, and joining it to another end, again disregarding whether it is
a top or a bottom. One gets ∼ (1/2) log(n) for the number of components,
as before, but the expected length rises to 2n/3, rather than n/2. A rather
unexpected (at least to me) cancellation of terms arises, similar to the fact
that we always got 1/n, which makes this calculation elementary.

Note that in either case, we have not calculated the expected length of
the longest loop, but rather the expected length of a loop starting from some
given point. While we expect that this point will tend to lie on a longer rather
than a shorter loop, the expected value of the longest path will be greater.
This gives the improvement from 1/2 to .62 . . ., but we prefer the ease of
computation to the sharp constant.

We now consider how to translate this to the estimation of left-hand turn
paths on three-regular oriented graphs. The starting point is to modify the
spaghetti model in the following way: instead of putting down n pieces of
spaghetti, we put down n pieces each of which is a vertex with three half-edge
(Fig. 12.12):

We will find it convenient to draw on these pieces the corresponding pieces
of LHT paths.

The process of picking up an end and gluing it to another end is exactly the
Bollobas model, modified by labeling the balls so as to get a cyclic ordering.

We now want to make the same calculation we did before. When we pick
up an end, what are the probabilities of forming a closed LHT path when we
pick another end?

We may make the same calculation as before: look at the end we have
picked up, and follow the two LHT path segments leading from it, until you
arrive at two endpoints (which may be the same point). It would therefore
appear that the expected value of the number of closed LHT paths produced
would be 2 divided by the number of remaining edges, which in turn would
give an estimate of ∼ log(n) for the expected number of LHT paths.

The problem with this argument arises in the following picture:
If one LHT path starting at an end wraps around and finishes at the same

end, then we call this end a bottleneck (Fig. 12.13). If two bottlenecks are
joined together, then a closed LHT path is formed. Thus, the probability of
forming a closed
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Fig. 12.12. Modified spaghetti
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Fig. 12.13. Bottlenecks

Fig. 12.14. An additional complication

LHT path is affected by how many bottlenecks are present, invalidating
the previous argument.

We resolve this issue in the following way: when a bottleneck is formed,
we count it as half an LHT path. We then only count closed LHT paths that
are formed by gluing together two ends that are not bottlenecks. In this way,
the previous argument providing a logarithmic bound remains intact, at the
expense of raising the constant from 1 to 3/2. This is clearly an overestimate,
since a bottleneck may be destroyed before it is joined to another bottleneck.

This establishes Theorem 7.1.
The argument to establish Theorem 7.2 is similar, but more complicated

(Fig. 12.14). Again the problem is that we have to worry about the creation
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of bottle necks. There are also some more problems we have to worry about
as well, as evidenced in the following picture:

But the heart of the idea is to use the result of Theorem 7.1 to see that
these problems only arise late in the game, when the (logarithmically many)
bottlenecks may be large compared to the number of remaining edges. But if
we have gotten to that late in the game, then the LHT path is already quite
long.

The constant 1/π should be thought of as (1/3) · (3π) , where the second
term arises because each fundamental domain has area π/3. The term 1/3
should be thought of as the 2/3 arising in the spaghetti model argument,
divided by 2 since each edge has two adjoining LHT segments.

The constant is not sharp for a variety of reasons: first of all, because
we are measuring the expected length starting from a given LHT segment,
rather than the expected length of the longest LHT path. Second, when we
are counting the length of the LHT path we are building, we assume that at
each step the length increases by one this is what happens in the spaghetti
model. But in fact, at each step we increase the length not just of the LHT
path we are measuring, but also another LHT path. So as a point of fact the
length of the LHT path we are building is really increasing much faster than
we are counting.

This completes the sketch of the proof of Theorem 7.2.

12.9 An Annotated Bibliography

As mentioned in the introduction, the work discussed in these notes is spread
out over a large number of papers. This happened because my thinking about
this topic underwent a rather long development, during which different facets
of the picture emerged. In what follows, I give an annotated guide to the
papers I have written on the subject, together with coauthors. I have decided
not to give a comprehensive bibliography on the subject here. All of these
papers are available at my website, http://www.math.technion.ac.il/ rbrooks,
except when they are old.

• [1]. contains an announcement of the results contained in [2], [3], and early
versions of [4].

• [5]. This paper gives the theorem connecting the bottom of the spectrum
of a covering and the Cheeger constant of the corresponding graph.

• [6]. This paper gives the compactification techniques using the Ahlfors–
Schwarz lemma. It also gives a presentation of the Platonic graphs and
their corresponding surfaces.

• [4]. This paper studies the process of building a surface at random by
choosing a three-regular graph at random. This paper has gone through a
number of different versions, the latest version includes results concerning
the expected genus and the expected largest embedded ball of a randomly
chosen Riemann surface.
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• [2]. This paper shows how to construct Riemann surface with large first
eigenvalue of arbitrary genus. It also contains growth estimates for eigen-
values in cusps as well as other generally useful techniques involving com-
pactification and the behavior of eigenvalues.

• [7]. Contains a number of versions of the Ahlfors–Schwarz lemma, includ-
ing the version needed in [2].

• [3]. Features graph-theoretic techniques for building Belyi surfaces with
various nice properties.

• [8]. This contains the theorem relating Cheeger constants of graphs to the
behavior of the first eigenvalue under coverings. (Too old to be available
at my web site.)

• [9]. A survey article discussing the construction of building surfaces from
three-regular graphs.

In addition to these papers, I would like to mention the M.Sc. thesis of
my student Dan Mangoubi, “Riemann Surfaces and three-Regular Graphs,”
available from my web site. In addition to giving a good overview of the sub-
ject, it contains interesting quantitative results elaborating on the qualitative
theory of [6]. There are also two papers in preparation: my paper with An-
drzej Zuk on Cheeger constants of graphs and surfaces, and my paper with
Mikhail Monastyrsky, which generalizes the theory from three-regular graphs
to k-regular graphs.
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