
Proteome Informatics

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

01



New Developments in Mass Spectrometry

Editor-in-Chief:
Professor Simon J. Gaskell, Queen Mary University of London, UK

Series Editors:
Professor Ron M. A. Heeren, Maastricht University, The Netherlands
Professor Robert C. Murphy, University of Colorado, Denver, USA
Professor Mitsutoshi Setou, Hamamatsu University School of Medicine, Japan

Titles in the Series:
1: Quantitative Proteomics
2: Ambient Ionization Mass Spectrometry
3: Sector Field Mass Spectrometry for Elemental and Isotopic Analysis
4:  Tandem Mass Spectrometry of Lipids: Molecular Analysis of Complex 

Lipids
5: Proteome Informatics

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring 
delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, 
Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247
Email: booksales@rsc.org
Visit our website at www.rsc.org/books

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782626732-fp001


Proteome Informatics

Edited by

Conrad Bessant
Queen Mary University of London , UK
Email: c.bessant@qmul.ac.uk

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782626732-fp001


New Developments in Mass Spectrometry No. 5

Print ISBN: 978-1-78262-428-8
PDF eISBN: 978-1-78262-673-2
EPUB eISBN: 978-1-78262-957-3
ISSN: 2044-253X

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2017

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for 
private study, criticism or review, as permitted under the Copyright, Designs and Patents 
Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may 
not be reproduced, stored or transmitted, in any form or by any means, without the prior 
permission in writing of The Royal Society of Chemistry or the copyright owner, or in 
the case of reproduction in accordance with the terms of licences issued by the Copyright 
Licensing Agency in the UK, or in accordance with the terms of the licences issued by the 
appropriate Reproduction Rights Organization outside the UK. Enquiries concerning 
reproduction outside the terms stated here should be sent to The Royal Society of  
Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

The authors have sought to locate owners of all reproduced material not in their 
own possession and trust that no copyrights have been inadvertently infringed.

Published by The Royal Society of Chemistry,
Thomas Graham House, Science Park, Milton Road,
Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Printed in the United Kingdom by CPI Group (UK) Ltd, Croydon, CR0 4YY, UK

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782626732-fp001


v

New Developments in Mass Spectrometry No. 5
Proteome Informatics
Edited by Conrad Bessant
© The Royal Society of Chemistry 2017
Published by the Royal Society of Chemistry, www.rsc.org

Acknowledgements

I am indebted to all the academics who have taken time out from their busy 
schedules to contribute to this book – many thanks to you all. Thanks also 
to Simon Gaskell for inviting me to put this book together, and to the team 
at the Royal Society of Chemistry for being so supportive and professional 
throughout the commissioning and publication process. I am also grateful 
to Ryan Smith, who provided a valuable student’s eye view of many of the 
chapters prior to final editing.

I would also like to take this opportunity to thank Dan Crowther and 
Ian Shadforth for getting me started in the fascinating field of proteome  
informatics, all those years ago.

Last but not least, thanks to Nieves for her tireless patience and support.

Conrad Bessant
London 

Pu
bl

is
he

d 
on

 1
5 

N
ov

em
be

r 
20

16
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/9
78

17
82

62
67

32
-F

P0
05



vii

New Developments in Mass Spectrometry No. 5
Proteome Informatics
Edited by Conrad Bessant
© The Royal Society of Chemistry 2017
Published by the Royal Society of Chemistry, www.rsc.org

Contents

Chapter 1  Introduction to Proteome Informatics  1
Conrad Bessant

	 1.1	 	Introduction		 1
	 1.2	 	Principles	of	LC-MS/MS	Proteomics		 3
	 1.2.1	 	Protein	Fundamentals		 3
	 1.2.2	 	Shotgun	Proteomics		 5
	 1.2.3	 	Separation	of	Peptides	by	Chromatography		 6
	 1.2.4	 	Mass	Spectrometry		 6
	 1.3	 	Identification	of	Peptides	and	Proteins		 8
	 1.4	 	Protein	Quantitation		 9
	 1.5	 	Applications	and	Downstream	Analysis		 9
	 1.6	 	Proteomics	Software		 10
	 1.6.1	 	Proteomics	Data	Standards	and	Databases		 11
	 1.7	 	Conclusions		 12
	 	Acknowledgements		 12
	 	References		 12

Section I: Protein Identification

Chapter 2  De novo Peptide Sequencing  17
Bin Ma

	 2.1	 	Introduction		 17
	 2.2	 	Manual	De novo	Sequencing		 18
	 2.3	 	Computer	Algorithms		 20

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07



Contentsviii

	 2.3.1	 	Search	Tree	Pruning		 20
	 2.3.2	 	Spectrum	Graph		 21
	 2.3.3	 	PEAKS	Algorithm		 24
	 2.4	 	Scoring	Function		 26
	 2.4.1	 	Likelihood	Ratio		 27
	 2.4.2	 	Utilization	of	Many	Ion	Types		 28
	 2.4.3	 	Combined	Use	of	Different	Fragmentations		 28
	 2.4.4	 	Machine	Learning		 29
	 2.4.5	 	Amino	Acid	Score		 30
	 2.5	 	Computer	Software		 31
	 2.5.1	 	Lutefisk		 31
	 2.5.2	 	Sherenga		 31
	 2.5.3	 	PEAKS		 31
	 2.5.4	 	PepNovo		 32
	 2.5.5	 	DACSIM		 32
	 2.5.6	 	NovoHMM		 32
	 2.5.7	 	MSNovo		 32
	 2.5.8	 	PILOT		 32
	 2.5.9	 	pNovo		 33
	 2.5.10	 	Novor		 33
	 2.6	 	Conclusion:	Applications	and	Limitations	of		

De novo	Sequencing		 33
	 2.6.1	 	Sequencing	Novel	Peptides	and	Detecting	

Mutated	Peptides		 33
	 2.6.2	 	Assisting	Database	Search		 34
	 2.6.3	 	De novo	Protein	Sequencing		 34
	 2.6.4	 	Unspecified	PTM	Characterization		 34
	 2.6.5	 	Limitations		 35
	 	Acknowledgements		 35
	 	References		 36

Chapter 3  Peptide Spectrum Matching via Database Search and  
Spectral Library Search  39
Brian Netzel and Surendra Dasari

	 3.1	 	Introduction		 39
	 3.2	 	Protein	Sequence	Databases		 41
	 3.3	 	Overview	of	Shotgun	Proteomics	Method		 43
	 3.4	 	Collision	Induced	Dissociation	Fragments		

Peptides	in	Predictable	Ways		 44
	 3.5	 	Overview	of	Database	Searching		 45
	 3.6	 	MyriMatch	Database	Search	Engine		 47
	 3.6.1	 	Spectrum	Preparation		 48
	 3.6.2	 	Peptide	Harvesting	from	Database		 49
	 3.6.3	 	Comparing	Experimental	MS/MS	with		

Candidate	Peptide	Sequences		 49

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


ixContents

	 3.7	 	Accounting	for	Post-Translational	Modifications		
During	Database	Search		 52

	 3.8	 	Reporting	of	Database	Search	Peptide		
Identifications		 53

	 3.9	 	Spectral	Library	Search	Concept		 55
	 3.10	 	Peptide	Spectral	Libraries		 56
	 3.11	 	Overview	of	Spectral	Library	Searching		 58
	 3.12	 	Pepitome	Spectral	Library	Search	Engine		 59
	 3.12.1	 	Experimental	MS2	Spectrum	Preparation		 60
	 3.12.2	 	Library	Spectrum	Harvesting	and		

Spectrum–Spectrum	Matching		 60
	 3.12.3	 	Results	Reporting		 62
	 3.13	 	Search	Results	Vary	Between	Various	Database		

Search	Engines	and	Different	Peptide		
Identification	Search	Strategies		 62

	 3.14	 	Conclusion		 63
	 	References		 64

Chapter 4  PSM Scoring and Validation  69
James C. Wright and Jyoti S. Choudhary

	 4.1	 	Introduction		 69
	 4.2	 	Statistical	Scores	and	What	They	Mean		 71
	 4.2.1	 	Statistical	Probability	p-Values	and	Multiple		

Testing		 72
	 4.2.2	 	Expectation	Scores		 72
	 4.2.3	 	False	Discovery	Rates		 73
	 4.2.4	 	q-Values		 74
	 4.2.5	 	Posterior	Error	Probability		 75
	 4.2.6	 	Which	Statistical	Measure	to	Use	and	When		 75
	 4.2.7	 	Target	Decoy	Approaches	for	FDR	Assessment		 77
	 4.3	 	Post-Search	Validation	Tools	and	Methods		 80
	 4.3.1	 	Qvality		 80
	 4.3.2	 	PeptideProphet		 81
	 4.3.3	 	Percolator		 81
	 4.3.4	 	Mass	Spectrometry	Generating	Function		 82
	 4.3.5	 	Nokoi		 83
	 4.3.6	 	PepDistiller		 83
	 4.3.7	 	Integrated	Workflow	and	Pipeline	Analysis		

Tools		 83
	 4.3.8	 	Developer	Libraries		 84
	 4.4	 	Common	Pitfalls	and	Problems	in	Statistical		

Analysis	of	Proteomics	Data		 84
	 4.4.1	 	Target-Decoy	Peptide	Assumptions		 84
	 4.4.2	 	Peptide	Modifications		 85
	 4.4.3	 	Search	Space	Size		 86

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


Contentsx

	 4.4.4	 	Distinct	Peptides	and	Proteins		 87
	 4.5	 	Conclusion	and	Future	Trends		 88
	 	References		 88

Chapter 5  Protein Inference and Grouping  93
Andrew R. Jones

	 5.1	 	Background		 93
	 5.1.1	 	Assignment	of	Peptides	to	Proteins		 95
	 5.1.2	 	Protein	Groups	and	Families		 97
	 5.2	 	Theoretical	Solutions	and	Protein	Scoring		 100
	 5.2.1	 	Protein	Grouping	Based	on	Sets	of		

Peptides		 100
	 5.2.2	 	Spectral-Focussed	Inference		

Approaches		 102
	 5.2.3	 	Considerations	of	Protein	Length		 104
	 5.2.4	 	Handling	Sub-Set	and	Same-Set	Proteins		

within	Groups		 105
	 5.2.5	 	Assignment	of	Representative	or	Group		

Leader	Proteins		 108
	 5.2.6	 	Importance	of	Peptide	Classification	to	

Quantitative	Approaches		 108
	 5.2.7	 	Scoring	or	Probability	Assignment	at	the		

Protein-Level		 109
	 5.2.8	 	Handling	“One	Hit	Wonders”		 111
	 5.3	 	Support	for	Protein	Grouping	in	Data		

Standards		 112
	 5.4	 	Conclusions		 113
	 	Acknowledgements		 114
	 	References		 114

Chapter 6  Identification and Localization of Post-Translational 
Modifications by High-Resolution Mass  
Spectrometry  116
Rune Matthiesen and Ana Sofia Carvalho

	 6.1	 	Introduction		 116
	 6.2	 	Sample	Preparation	Challenges		 118
	 6.3	 	Identification	and	Localization	of	Post-Translational	

Modifications		 120
	 6.3.1	 	Computational	Challenges		 120
	 6.3.2	 	Annotation	of	Modifications		 122
	 6.3.3	 	Common	Post-Translational	Modifications	

Identified	by	Mass	Spectrometry		 123
	 6.3.4	 	Validation	of	Results		 124
	 6.4	 	Conclusion		 129
	 	Acknowledgements		 129
	 	References		 129

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


xiContents

Section II: Protein Quantitation

Chapter 7  Algorithms for MS1-Based Quantitation  135
Hanqing Liao, Alexander Phillips, Andris Jankevics  
and Andrew W. Dowsey

	 7.1	 	Introduction		 135
	 7.2	 	Feature	Detection	and	Quantitation		 137
	 7.2.1	 	Conventional	Feature	Detection		 138
	 7.2.2	 	Recent	Approaches	Based	on	Sparsity		

and	Mixture	Modelling		 140
	 7.3	 	Chromatogram	Alignment		 142
	 7.3.1	 	Feature-Based	Pattern	Matching		 143
	 7.3.2	 	Raw	Profile	Alignment		 143
	 7.4	 	Abundance	Normalisation		 146
	 7.5	 	Protein-Level	Differential	Quantification		 147
	 7.5.1	 	Statistical	Methods		 148
	 7.5.2	 	Statistical	Models	Accounting	for	Shared		

Peptides		 151
	 7.6	 	Discussion		 151
	 	Acknowledgements		 152
	 	References		 152

Chapter 8  MS2-Based Quantitation  155
Marc Vaudel

	 8.1	 	MS2-Based	Quantification	of	Proteins		 155
	 8.2	 	Spectral	Counting		 156
	 8.2.1	 	Implementations		 158
	 8.2.2	 	Conclusion	on	Spectrum	Counting		 158
	 8.3	 	Reporter	Ion-Based	Quantification		 161
	 8.3.1	 	Identification		 164
	 8.3.2	 	Reporter	Ion	Intensities,	Interferences	and	

Deisotoping		 165
	 8.3.3	 	Ratio	Estimation	and	Normalization		 168
	 8.3.4	 	Implementation		 169
	 8.3.5	 	Conclusion	on	Reporter	Ion-Based		

Quantification		 173
	 	Acknowledgements		 175
	 	References		 175

Chapter 9  Informatics Solutions for Selected Reaction Monitoring  178
Birgit Schilling, Brendan Maclean, Jason M. Held and  
Bradford W. Gibson

	 9.1	 	Introduction		 178
	 9.1.1	 	SRM	–	General	Concept	and	Specific		

Bioinformatic	Challenges		 178

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


Contentsxii

	 9.1.2	 	SRM-Specific	Bioinformatics	Tools		 180
	 9.2	 	SRM	Assay	Development		 182
	 9.2.1	 	Target	and	Transition	Selection,	Proteotypic		

and	Quantotypic	Peptides		 182
	 9.2.2	 	Spikes	of	Isotopically	Labeled	Peptides	and		

Protein	Standards	and	Additional	Assay	
Development	Steps		 183

	 9.2.3	 	Retention	Time	Regressions	and	Retention		
Time	Scheduling		 184

	 9.2.4	 	Method	Generation	for	MS	Acquisitions		 186
	 9.3	 	System	Suitability	Assessments		 188
	 9.4	 	Post-Acquisition	Processing	and	Data	Analysis		 188
	 9.4.1	 	mProphet	False	Discovery	Analysis,	Peak		

Detection	and	Peak	Picking		 188
	 9.4.2	 	Data	Viewing	and	Data	Management:		

Custom	Annotation,	Results	and	Document		
Grids,	Group	Comparisons		 191

	 9.4.3	 	Data	Reports,	LOD–LOQ	Calculations	and	
Statistical	Processing,	Use	of	Skyline		
External	Tools		 191

	 9.4.4	 	Group	Comparisons	and	Peptide	&	Protein	
Quantification		 192

	 9.4.5	 	Easy	Data	Sharing	and	SRM		
Resources	–	Panorama		 193

	 9.5	 	Post-Translational	Modifications	and	Protein		
Isoforms	or	Proteoforms		 193

	 9.6	 	Conclusion	and	Future	Outlook		 195
	 	Acknowledgements		 196
	 	References		 196

Chapter 10  Data Analysis for Data Independent Acquisition  200
Pedro Navarro, Marco Trevisan-Herraz and Hannes L. Röst

	 10.1	 	Analytical	Methods		 200
	 10.1.1	 	Motivation		 200
	 10.1.2	 	Background:	Other	MS	Methods		 201
	 10.1.3	 	DIA	Concept		 202
	 10.1.4	 	Theoretical	Considerations		 204
	 10.1.5	 	Main	DIA	Methods		 207
	 10.1.6	 	Analyte	Separation	Methods		 210
	 10.2	 	Data	Analysis	Methods		 212
	 10.2.1	 	DIA	Data	Analysis		 212
	 10.2.2	 	Untargeted	Analysis,	Spectrum-Centric		 213
	 10.2.3	 	Targeted	Analysis,	Chromatogram-Centric		 215
	 10.2.4	 	FDR		 220
	 10.2.5	 	Results	and	Formats		 222

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


xiiiContents

	 10.3	 	Challenges		 223
	 	References		 224

Section III: Open Source Software Environments for  
Proteome Informatics

Chapter 11  Data Formats of the Proteomics Standards Initiative  231
Juan Antonio Vizcaíno, Simon Perkins, Andrew R. Jones  
and Eric W. Deutsch

	 11.1	 	Introduction		 231
	 11.2	 	mzML		 233
	 11.2.1	 	Data	Format		 233
	 11.2.2	 	Software	Implementations		 235
	 11.2.3	 	Current	Work		 237
	 11.2.4	 	Variations	of	mzML		 237
	 11.3	 	mzIdentML		 238
	 11.3.1	 	Data	Format		 238
	 11.3.2	 	Software	Implementations		 241
	 11.3.3	 	Current	Work		 242
	 11.4	 	mzQuantML		 242
	 11.4.1	 	Data	Format		 242
	 11.4.2	 	Software	Implementations		 245
	 11.4.3	 	Current	Work		 245
	 11.5	 	mzTab		 246
	 11.5.1	 	Data	Format		 246
	 11.5.2	 	Software	Implementations		 248
	 11.5.3	 	Current	Work		 249
	 11.6	 	TraML		 249
	 11.6.1	 	Data	Format		 249
	 11.6.2	 	Software	Implementations		 251
	 11.7	 	Other	Data	Standard	Formats	Produced	by	the	PSI		 251
	 11.8	 	Conclusions		 252
	 	Abbreviations		 252
	 	Acknowledgements		 253
	 	References		 253

Chapter 12  OpenMS: A Modular, Open-Source Workflow System  
for the Analysis of Quantitative Proteomics Data  259
Lars Nilse

	 12.1	 	Introduction		 259
	 12.2	 	Peptide	Identification		 262
	 12.3	 	iTRAQ	Labeling		 266
	 12.4	 	Dimethyl	Labeling		 270

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


Contentsxiv

	 12.5	 	Label-Free	Quantification		 275
	 12.6	 	Conclusion		 279
	 	Acknowledgements		 282
	 	References		 282

Chapter 13  Using Galaxy for Proteomics  289
Candace R. Guerrero, Pratik D. Jagtap, James E. Johnson and 
Timothy J. Griffin

	 13.1	 	Introduction		 289
	 13.2	 	The	Galaxy	Framework	as	a	Solution	for	MS-Based	

Proteomic	Informatics		 291
	 13.2.1	 	The	Web-Based	User	Interface		 291
	 13.2.2	 	Galaxy	Histories		 293
	 13.2.3	 	Galaxy	Workflows		 293
	 13.2.4	 	Sharing	Histories	and	Workflows	in	Galaxy		 296
	 13.3	 	Extending	Galaxy	for	New	Data	Analysis		

Applications		 296
	 13.3.1	 	Deploying	Software	as	a	Galaxy	Tool		 296
	 13.3.2	 	Galaxy	Plugins	and	Visualization		 299
	 13.4	 	Publishing	Galaxy	Extensions		 300
	 13.5	 	Scaling	Galaxy	for	Operation	on	High		

Performance	Systems		 300
	 13.6	 	Windows-Only	Applications	in	a	Linux	World		 301
	 13.7	 	MS-Based	Proteomic	Applications	in	Galaxy		 302
	 13.7.1	 	Raw	Data	Conversion	and	Pre-Processing		 302
	 13.7.2	 	Generation	of	a	Reference	Protein		

Sequence	Database		 304
	 13.7.3	 	Sequence	Database	Searching		 304
	 13.7.4	 	Results	Filtering	and	Visualization		 305
	 13.8	 	Integrating	the	‘-omic’	Domains:	Multi-Omic	

Applications	in	Galaxy		 306
	 13.8.1	 	Building	Proteogenomic	Workflows	in		

Galaxy		 309
	 13.8.2	 	Metaproteomics	Applications	in	Galaxy		 313
	 13.9	 	Concluding	Thoughts	and	Future	Directions		 315
	 	Acknowledgements		 317
	 	References		 317

Chapter 14  R for Proteomics  321
Lisa M. Breckels, Sebastian Gibb, Vladislav Petyuk  
and Laurent Gatto

	 14.1	 	Introduction		 321
	 14.2	 	Accessing	Data		 323
	 14.2.1	 	Data	Packages		 323

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


xvContents

	 14.2.2	 	Data	from	the	ProteomeXchange	Repository		 324
	 14.2.3	 	Cloud	Infrastructure		 325
	 14.3	 	Reading	and	Handling	Mass	Spectrometry	and	

Proteomics	Data		 326
	 14.3.1	 	Raw	Data		 326
	 14.3.2	 	Identification	Data		 327
	 14.3.3	 	Quantitative	Data		 329
	 14.3.4	 	Imaging	Data		 330
	 14.3.5	 	Conclusion		 330
	 14.4	 	MSMS	Identifications		 330
	 14.4.1	 	Introduction		 330
	 14.4.2	 	The	MSGFplus	Package		 331
	 14.4.3	 	The	MSGFgui	Package		 332
	 14.4.4	 	The	rTANDEM	Package		 334
	 14.4.5	 	The	MSnID	Package		 335
	 14.4.6	 	Example		 338
	 14.5	 	Analysis	of	Spectral	Counting	Data		 339
	 14.5.1	 	Introduction		 339
	 14.5.2	 	Exploratory	Data	Analysis	with	msmsEDA		 339
	 14.5.3	 	Statistical	Analyses	with	msmsTests		 341
	 14.5.4	 	Example		 342
	 14.6	 	MALDI	and	Mass	Spectrometry	Imaging		 342
	 14.6.1	 	Introduction		 342
	 14.6.2	 	MALDI	Pre-Processing	Using	MALDIquant		 343
	 14.6.3	 	Mass	Spectrometry	Imaging		 348
	 14.7	 	Isobaric	Tagging	and	Quantitative	Data	Processing		 350
	 14.7.1	 	Quantification	of	Isobaric	Data	Experiments		 351
	 14.7.2	 	Processing	Quantitative	Proteomics	Data		 351
	 14.8	 	Machine	Learning,	Statistics	and	Applications		 352
	 14.8.1	 	Introduction		 352
	 14.8.2	 	Statistics		 352
	 14.8.3	 	Machine	Learning		 354
	 14.8.4	 	Conclusion		 358
	 14.9	 	Conclusions		 359
	 	References		 359

Section IV: Integration of Proteomics and Other Data

Chapter 15  Proteogenomics: Proteomics for Genome Annotation  367
Fawaz Ghali and Andrew R. Jones

	 15.1	 	Introduction		 367
	 15.2	 	Theoretical	Underpinning		 370
	 15.2.1	 	Gene	Prediction		 371
	 15.2.2	 	Protein	and	Peptide	Identification		 372

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


Contentsxvi

	 15.2.3	 	Design	of	Protein	Sequence	Databases		 372
	 15.2.4	 	Output	of	Proteogenomics	Pipelines		 375
	 15.3	 	Proteogenomics	Platforms		 377
	 15.3.1	 	Gene	Prediction	Pipelines		 377
	 15.3.2	 	Proteogenomics	Pipelines		 378
	 15.3.3	 	Proteomics	Data	Repositories	for		

Proteogenomics		 378
	 15.3.4	 	Visualisation		 379
	 15.3.5	 	Data	Formats	and	Standards		 380
	 15.4	 	Challenges	and	Future	Research		 381
	 15.5	 	Summary		 381
	 	References		 382

Chapter 16  Proteomics Informed by Transcriptomics  385
Shyamasree Saha, David Matthews and Conrad Bessant

	 16.1	 	Introduction	to	PIT		 385
	 16.2	 	Creation	of	Protein	Database	from	RNA-Seq	Data		 388
	 16.2.1	 	Introduction	to	RNA-Seq		 388
	 16.2.2	 	Sequence	Assembly		 391
	 16.2.3	 	ORF	Finding		 392
	 16.2.4	 	Finalising	Protein	Sequence	Data	for		

PIT	Search		 393
	 16.3	 	Interpretation	of	Identified	ORFs		 393
	 16.3.1	 	Identification	of	Proteins	in	the	Absence	of		

a	Reference	Genome		 394
	 16.3.2	 	Identification	of	Individual	Sequence		

Variation		 394
	 16.3.3	 	Monitoring	Isoform	Switching		 397
	 16.3.4	 	Genome	Annotation	and	Discovery	of	Novel	

Translated	Genomic	Elements		 400
	 16.4	 	Reporting	and	Storing	PIT	Results		 400
	 16.5	 	Applications	of	PIT		 401
	 16.6	 	Conclusions		 402
	 	Acknowledgements		 402
	 	References		 402

Subject Index  406

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-F
P0

07
View Online

http://dx.doi.org/10.1039/9781782626732-fp007


1

New Developments in Mass Spectrometry No. 5
Proteome Informatics
Edited by Conrad Bessant
© The Royal Society of Chemistry 2017
Published by the Royal Society of Chemistry, www.rsc.org

Chapter 1

Introduction to Proteome 
Informatics
Conrad Bessant a

aschool of Biological and Chemical sciences, Queen Mary University of  
London, e1 4ns, UK
*e-mail: c.bessant@qmul.ac.uk

 

1.1   Introduction
In an era of biology dominated by genomics, and next generation sequencing 
(nGs) in particular, it is easy to forget that proteins are the real workhorses 
of biology. among other tasks, proteins give organisms their structure, they 
transport molecules, and they take care of cell signalling. proteins are even 
responsible for creating proteins when and where they are needed and dis-
assembling them when they are no longer required. Monitoring proteins is 
therefore essential to understanding any biological system, and proteomics 
is the discipline tasked with achieving this.

since the ground-breaking development of soft ionisation technologies 
by Masamichi Yamashita and John Fenn in 1984,1 liquid chromatography 
coupled with tandem mass spectrometry (LC-Ms/Ms, introduced in the next 
section) has emerged as the most effective method for high throughput  
identification and quantification of proteins in complex biological  
mixtures.2 recent years have seen a succession of new and improved instru-
ments bringing higher throughput, accuracy and sensitivity. alongside these 
instrumental improvements, researchers have developed an extensive range 
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Chapter 12

of protocols which optimally utilise the available instrumentation to answer 
a wide range of biological questions. some protocols are concerned only with 
protein identification, whereas others seek to quantify the proteins as well. 
depending on the particular biological study, a protocol may be selected 
because it provides the widest possible coverage of proteins present in a sam-
ple, whereas another protocol may be selected to target individual proteins 
of interest. protocols have also been developed for specific applications, for 
example to study post-translational modification of proteins, e.g.,3 to localise 
proteins to their particular subcellular location, e.g.,4 and to study particular 
classes of protein, e.g.5

a common feature of all LC-Ms/Ms-based proteomics protocols is that 
they generate a large quantity of data. at the time of writing, a raw data file 
from a single LC-Ms/Ms run on a modern instrument is over a gigabyte (GB) 
in size, containing thousands of individual high resolution mass spectra. 
Because of their complexity, biological samples are often fractionated prior 
to analysis and ten individual LC-Ms/Ms runs per sample is not unusual, so a 
single sample can yield 10–20 GB of data. Given that most proteomics studies 
are intended to answer questions about protein dynamics, e.g. differences in 
protein expression between populations or at different time points, an exper-
iment is likely to include many individual samples. technical and biological 
replicates are always recommended, at least doubling the number of runs 
and volume of data collected. hundreds of gigabytes of data per experiment 
is therefore not unusual.

such data volumes are impossible to interpret without computational 
assistance. the volume of data per experiment is actually relatively mod-
est compared to other fields, such as next generation sequencing or parti-
cle physics, but proteomics poses some very specific challenges due to the 
complexity of the samples involved, the many different proteins that exist, 
and the particularities of mass spectrometry. the path from spectral peaks 
to confident protein identification and quantitation is complex, and must 
be optimised according to the particular laboratory protocol used and the 
specific biological question being asked. as laboratory proteomics continues 
to evolve, so do the computational methods that go with it. It is a fast moving 
field, which has grown into a discipline in its own right. proteome informat-
ics is the term that we have given this discipline for this book, but many 
alternative terms are in use. the aim of the book is to provide a snapshot 
of current thinking in the field, and to impart the fundamental knowledge 
needed to use, assess and develop the proteomics algorithms and software 
that are now essential in biological research.

proteomics is a truly interdisciplinary endeavour. Biological knowledge 
is required to appreciate the motivations of proteomics, understand the 
research questions being asked, and interpret results. analytical science 
expertise is essential – despite instrument vendors’ best efforts at making 
instruments reliable and easy to use, highly skilled analysts are needed to 
operate such instruments and develop the protocols needed for a given 
study. at least a basic knowledge of chemistry, biochemistry and physics is 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
00

01
View Online

http://dx.doi.org/10.1039/9781782626732-00001


3Introduction to Proteome Informatics

required to understand the series of processes that happen between a sam-
ple being delivered to a proteomics lab and data being produced. Finally, spe-
cialised computational expertise is needed to handle the acquired data, and 
it is this expertise that this book seeks to impart. the computational skills 
cover a wide range of specialities, ranging from algorithm design to identify 
peptides (Chapters 2 and 3), statistics to score and validate identifications 
(Chapter 4), infer the presence of proteins (Chapter 5) and perform down-
stream analysis (Chapter 14), through signal processing to quantify proteins 
from acquired mass spectrometry peaks (Chapters 7 and 8) and software 
skills needed to devise and utilise data standards (Chapter 11) and analysis 
frameworks (Chapters 12–14), and integrate proteomics data with nGs data 
(Chapters 15 and 16).

1.2   Principles of LC-MS/MS Proteomics
the wide range of disciplines that overlap with proteome informatics draws 
in a great diversity of people including biologists, biochemists, computer 
scientists, physicists, statisticians, mathematicians and analytical chemists. 
this poses a challenge when writing a book on the subject as a core set of 
prior knowledge cannot be assumed. to mitigate this, this section provides 
a brief overview of the main concepts underlying proteomics, from a data- 
centric perspective, together with citations to sources of further detail.

1.2.1   Protein Fundamentals
a protein is a relatively large (median molecular weight around 40 000 
daltons) molecule that has evolved to perform a specific role within a biolog-
ical organism. the role of a protein is determined by its chemical composi-
tion and 3d structure. In 1949 Frederick sanger provided conclusive proof6 
that proteins consist of a polymer chain of amino acids (the 20 amino acids 
that occur naturally in proteins are listed in table 1.1). proteins are synthe-
sised within cells by assembling amino acids in a sequence dictated by a gene 
– a specific region of dna within the organism’s genome. as it is produced, 
physical interactions between the amino acids causes the string of amino 
acids to fold up into the 3d structure of the finished protein. Because the 
folding process is deterministic (albeit difficult to model) it is convenient to 
assume a one-to-one relationship between amino acid sequence and struc-
ture so a protein is often represented by the sequence of letters corresponding  
to its amino acid sequence. these letters are said to represent residues, 
rather than amino acids, as two hydrogens and an oxygen are lost from an 
amino acid when it is incorporated into a protein so the letters cannot strictly 
be said to represent amino acid molecules.

organisms typically have thousands of genes, e.g. around 20 000 in 
humans. the human body is therefore capable of producing over 20 000 dis-
tinct proteins, which illustrates one of the major challenges for proteomics – 
the large number of distinct proteins that may be present in a given sample 
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Chapter 14

(referred to as the so-called search space when seeking to identify proteins). 
the situation is further complicated by alternative splicing,7 where different 
combinations of segments of a gene are used to create different versions of 
the protein sequence, called protein isoforms. Because of alternative splicing 
each human gene can produce on average around five distinct protein iso-
forms per gene. so, our search space expands to ∼100 000 distinct proteins. If 
we are working with samples from a population of different individuals, the 
search space expands still further as some individual genome variations will 
translate into variations in protein sequence, some of which have transfor-
mative effects on protein structure and function.

however, the situation is yet more complex because, after synthesis, a 
protein may be modified by covalent addition (and possibly later removal) 
of a chemical entity at one or more amino acids within the protein sequence. 
phosphorylation is a very common example, known to be important in reg-
ulating the activity of many proteins. phosphorylation involves the addi-
tion of a phosphoryl group, typically (but not exclusively) to an s, t or Y. 
such post-translational modifications (ptMs) change the mass of proteins, 
and often their function. Because each protein contains many sites at 

Table 1.1    the 20 amino acids that are the building blocks of peptides and proteins. 
throughout this book we generally refer to amino acids by their single 
letter code. Isotopes and the concept of monoisotopic mass are explained 
in Chapter 7. residue masses are ∼18.01 da lower than the equivalent 
amino acid mass because one oxygen and two hydrogens are lost from 
an amino acid when it is incorporated into a protein. post-translational 
modifications add further chemical diversity to the amino acids listed 
here, and increase their mass, as explained in Chapter 6.

amino acid abbreviation single letter code
Monoisotopic 
residue mass

alanine ala a 71.037114
Cysteine Cys C 103.009185
aspartic acid asp d 115.026943
Glutamic acid Glu e 129.042593
phenylalanine phe F 147.068414
Glycine Gly G 57.021464
histidine his h 137.058912
Isoleucine Ile I 113.084064
Lysine Lys K 128.094963
Leucine Leu L 113.084064
Methionine Met M 131.040485
asparagine asn n 114.042927
proline pro p 97.052764
Glutamine Gln Q 128.058578
arginine arg r 156.101111
serine ser s 87.032028
threonine thr t 101.047679
Valine Val V 99.068414
tryptophan trp W 186.079313
tyrosine tyr Y 163.06333
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5Introduction to Proteome Informatics

which ptMs may occur, there is a large number of distinct combinations of 
ptMs that may be seen on a given protein. this increases the search space  
massively, and it is not an exaggeration to state that the number of distinct 
proteins that could be produced by a human cell exceeds one million. We 
will never find a million proteins in a single cell – a few thousand is more 
typical – but the fact that these few thousand must be identified from a 
potential list of over a million represents one of the biggest challenges in 
proteomics.

1.2.2   Shotgun Proteomics
the obvious way to identify proteins from a complex sample would be to  
separate them from each other, then analyse each protein one by one to 
determine what it is. although conceptually simple, practical challenges of 
this so-called top-down method8 have led the majority of labs to adopt the 
alternative bottom-up methodology, often called shotgun proteomics. this 

Figure 1.1    schematic overview of a typical shotgun proteomics workflow. anal-
ysis starts with a biological sample containing many hundreds or  
thousands of proteins. these proteins are digested into peptides by 
adding a proteolytic enzyme to the sample. peptides are then partially 
separated using hpLC, prior to a first stage of Ms (Ms1). peptides from 
this first stage of Ms are selected for fragmentation, leading to the 
generation of fragmentation spectra in a second stage of Ms. this is 
the starting point for computational analysis – fragmentation spectra 
can be used to infer which peptides are in the sample, and peak areas 
(typically from Ms1, depending on the protocol) can be used to infer 
their abundance. often a sample will be separated into several (e.g. 10) 
fractions prior to analysis to reduce complexity – each fraction is then 
analysed separately and results combined at the end.
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Chapter 16

book therefore deals almost exclusively with the analysis of data acquired 
using this methodology, which is shown schematically in Figure 1.1.

In shotgun proteomics, proteins are broken down into peptides – amino 
acid chains that are much shorter than the average protein. these peptides 
are then separated, identified and used to infer which proteins were in the 
sample. the cleavage of proteins to peptides is achieved using a proteolytic 
enzyme which is known to cleave the protein into peptides at specific points. 
trypsin, a popular choice for this task, generally cuts proteins after K and 
r, unless these residues are followed by p. the majority of the peptides pro-
duced by trypsin have a length of between 4–26 amino acids, equivalent to 
a mass range of approximately 450–3000 da, which is well suited to analysis 
by mass spectrometry. Given the sequence of a protein, it is computation-
ally trivial to determine the set of peptides that will be produced by tryptic 
digestion. however, digestion is not always 100% efficient so any data analy-
sis must also consider longer peptides that result from one or more missed 
cleavage sites.

1.2.3   Separation of Peptides by Chromatography
adding an enzyme such as trypsin to a complex mixture of proteins results in an 
even more complex mixture of peptides. the next step in shotgun proteomics  
is therefore to separate these peptides. to achieve high throughput this is 
typically performed using high performance liquid chromatography (hpLC). 
explanations of hpLC can be found in analytical chemistry textbooks, e.g.,9 
but in simple terms it works by dissolving the sample in a liquid, known as 
the mobile phase, and passing this under pressure through a column packed 
with a solid material called the solid phase. the solid phase is specifically 
selected such that it interacts with, and therefore retards, some compounds 
more than others based on their physical properties. this phenomenon is 
used to separate different compounds as they are retained in the column for 
different amounts of time (their individual retention time, rt) and therefore 
emerge from the column (elute) separately. In shotgun proteomics, the solid 
phase is usually chosen to separate peptides based on their hydrophobicity. 
protocols vary, but a typical proteomics chromatography run takes 30–240 
minutes depending on expected sample complexity and, after sample prepa-
ration, is the primary pace factor in most proteomic analyses.

While hpLC provides some form of peptide separation, the complexity of 
biological samples is such that many peptides co-elute, so further separation 
is needed. this is done in the subsequent mass spectrometry step, which also 
leads to peptide identification.

1.2.4   Mass Spectrometry
In the very simplest terms, mass spectrometry (Ms) is a method for sorting 
molecules according to their mass. In shotgun proteomics, Ms is used to sep-
arate co-eluting peptides after hpLC and to determine their mass. a detailed 
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7Introduction to Proteome Informatics

explanation of mass spectrometry is beyond the scope of this chapter. the 
basic principles can be found in analytical chemistry textbooks, e.g.,10 and an 
in-depth introduction to peptide Ms can be found in ref. 11, but a key detail 
is that a molecule must be carrying a charge if it is to be detected. peptides 
in the liquid phase must be ionised and transferred to the gas phase prior 
to entering the mass spectrometer. the so-called soft ionisation methods of 
electrospray ionisation (esI)1,12 and matrix assisted laser desorption–ionisa-
tion (MaLdI)13,14 are popular for this because they bestow charge on peptides 
without fragmenting them. In these methods a positive charge is endowed 
by transferring one or more protons to the peptide, a process called proton-
ation. If a single proton is added, the peptides become a singly charged (1+) 
ion but higher charge states are also possible (typically 2+ or 3+) as more than 
one proton may be added. the mass of a peptide correspondingly increases 
by one proton (∼1.007 da) for each charge state. not every copy of every pep-
tide gets ionised (this depends on the ionisation efficiency of the instrument) 
and it is worth noting that many peptides are very difficult to ionise, making 
them essentially undetectable in Ms – this has a significant impact on how 
proteomics data are analysed as we will see in later chapters.

the charge state is denoted by z (e.g. z = 2 for a doubly charged ion) and 
the mass of a peptide by m. Mass spectrometers measure the mass to charge 
ratio of ions, so always report m/z, from which mass can be calculated if z 
can be determined. In a typical shotgun proteomics analysis, the mass spec-
trometer is programmed to perform a survey scan – a sweep across its whole 
m/z range – at regular intervals as peptides elute from the chromatography 
column. this results in a mass spectrum consisting of a series of peaks rep-
resenting peptides whose horizontal position is indicative of their m/z (there 
are invariably additional peaks due to contaminants or other noise.). this set 
of peaks is often referred to as an Ms1 spectrum, and thousands are usually 
acquired during one hpLC run, each at a specific retention time.

the current generation of mass spectrometers, such as those based on 
orbitrap technology15 can provide a mass accuracy exceeding 1 ppm so, for 
example, the mass of a singly charged peptide with m/z of 400 can be deter-
mined to an accuracy of 0.0004 da. determining the mass of a peptide with 
this accuracy provides a useful indication of the composition of a peptide, but 
does not reveal its amino acid sequence because many different sequences 
can share the exact same mass.

to discover the sequence of a peptide we must break it apart and anal-
yse the fragments generated. typically, a data dependent acquisition (dda) 
approach is used, where ions are selected in real time at each retention time 
by considering the Ms1 spectrum, with the most abundant peptides (inferred 
from peak height) being passed to a collision chamber for fragmentation. 
peptides are passed one at a time, providing a final step of separation, based 
on mass. a second stage of mass spectrometry is performed to produce a 
spectrum of the fragment ions (also called product ions) emerging from the 
peptide fragmentation – this is often called an Ms2 spectrum (or Ms/Ms 
spectrum). numerous methods have been developed to fragment peptides, 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
00

01
View Online

http://dx.doi.org/10.1039/9781782626732-00001


Chapter 18

including electron transfer dissociation (etd,16) and collision induced dis-
sociation (CId,17). the crucial feature of these methods is that they predom-
inantly break the peptide along its backbone, rather than at random bonds. 
this phenomenon, shown graphically in Figure 1.2, produces fragment ions 
whose masses can be used to determine the peptide’s sequence.

the dda approach has two notable limitations: it is biased towards pep-
tides of high abundance, and there is no guarantee that a given peptide will 
be selected in different runs, making it difficult to combine data from mul-
tiple samples into a single dataset. despite this, dda remains popular at the 
time of writing, but two alternative methods are gaining ground. selected 
reaction monitoring (srM) aims to overcome dda’s limitations by a priori 
selection of peptides to monitor (see Chapter 9) at the expense of breadth of 
coverage, whereas data independent acquisition (dIa) simply aims to frag-
ment every peptide (see Chapter 10).

1.3   Identification of Peptides and Proteins
determining the peptide sequence represented by an acquired Ms2 spec-
trum is the first major computational challenge dealt with in this book. 
the purest and least biased method is arguably de novo sequencing (Chap-
ter 2) in which the sequence is determined purely from the mass difference 

Figure 1.2    Generic four aa peptide, showing its chemical structure with vertical 
dotted lines indicating typical CId fragmentation points and, below, 
corresponding calculation of b- and y-ion masses. peptides used to infer 
protein information are typically longer than this (∼8–26 aas), but the 
concept is the same. In the mass calculations, mn represents the mass 
of residue n, [h] and [o] the mass of hydrogen and oxygen respectively, 
and z is the fragment’s charge state. differences between the number 
of hydrogen atoms shown in the figure and the number included in the 
calculation are due to the fragmentation process.11
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9Introduction to Proteome Informatics

between adjacent fragment ions. In practice, identifying peptides with the 
help of information from protein sequence databases such as Uniprot18 is 
generally considered more reliable and an array of competing algorithms 
have emerged for performing this task (Chapter 3). these algorithms require 
access to a representative proteome, which may not be available for non-
model organisms and some other complex samples. In these cases, a sam-
ple specific database may be created from rna-seq transcriptomics collected 
from the same sample (Chapter 16). spectral library searching (also covered 
in Chapter 3) offers a further alternative, if a suitable library of peptide Ms2 
spectra exists for the sample under study.

none of the available algorithms gives a totally definitive peptide match for 
a given spectrum, but provide scores indicating the likelihood that the match 
is correct. historically, each algorithm provided its own proprietary score but 
great strides have been made in recent years in developing statistical meth-
ods for objectively scoring and validating peptide spectrum matches inde-
pendently of the identification algorithm used (see Chapter 4). Confidently 
identified peptides can then be used to infer which proteins are present in 
the sample. there are a number of challenges here, including the aforemen-
tioned problem of undetectable peptides, and the fact that many peptides 
map to multiple proteins. these issues, and current solutions to them, are 
covered in Chapter 5.

as mentioned earlier, the phenomenon of post-translational modification 
complicates protein identification considerably by massively increasing the 
search space. Chapter 6 discusses this issue and summarises current think-
ing on how best to deal with ptM identification and localisation.

1.4   Protein Quantitation
In most biological studies it is important to augment protein identifications 
with information about the abundance of those proteins. Laboratory proto-
cols for quantitative proteomics are numerous and diverse, indeed there is 
a whole book in this series dedicated to the topic.19 each protocol requires 
different data processing, leading to a vast range of quantitative proteomics 
algorithms and workflows. For the purposes of this book we have made a 
distinction between methods that extract the quantitative information from 
Ms1 spectra (covered in Chapter 7) and those that use Ms2 spectra (Chap-
ter 8). despite the diversity of quantitation methods, the vast majority infer 
protein abundance from peptide-level features so there is much in common 
between the algorithms used.

1.5   Applications and Downstream Analysis
as we have seen, identifying and quantifying proteins is a complex process but 
is one that has matured enough to be widely applied in biological research. 
Most researchers now expect that a list of proteins and their abundances can 
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Chapter 110

be extracted for a given biological sample. of course, any serious research 
project is unlikely to conclude with a simple list of identified proteins and 
their abundance. Further analysis will be needed to interpret the results 
obtained to answer the biological question posed, from biomarker discovery 
through to systems biology studies.

downstream analysis is not generally covered in this book, partly because 
there are too many potential workflows to cover, but mainly because many 
of the methods used are not specific to proteomics. For example, statistical 
approaches used for determining which proteins are differentially expressed 
between two populations are often similar to those used for finding dif-
ferentially expressed genes – typically a significance test followed by some 
multiple testing correction.20 similarly, the pathway analysis performed with 
proteomics data is not dissimilar to that carried out with gene expression 
data.21

however, caution is needed when applying transcriptomics methods to 
proteomics data, as there are many subtle differences. Incomplete sequence 
coverage due to undetectable peptides is one important difference between 
proteomics and rna-seq, and confidence of protein identification and 
quantification is also something that should be considered. For example, 
proteins identified based on a single peptide observation (so called “one 
hit wonders”) should be avoided in any quantitative analysis as abundance 
accuracy is likely to be poor (see Chapter 5). ptMs are another important 
consideration, as they have the potential to affect a protein’s role in pathway 
analysis. one area of downstream analysis that we have chosen to cover is 
genome annotation using proteomics data (proteogenomics, Chapter 15), as 
this is an excellent and very specific example of proteomics being combined 
with genomics, and sometimes also transcriptomics, to better understand 
an organism.

1.6   Proteomics Software
as the proteomics community has grown, so has the available software for 
handling proteomics data. It is not possible to cover all available software 
within a book of this size, and nor is it sensible as the situation is in con-
stant flux, with new software being released, existing software updated and 
old software having support withdrawn (but rarely disappearing completely). 
For this reason, most of the chapters in this book avoid focussing on specific 
software packages, instead discussing more generic concepts and algorithms 
that are implemented across multiple packages. however, for the benefit of 
readers new to the field, it is worth briefly surveying the current proteomics 
software landscape.

at the time of writing, proteomics is dominated by a relatively small 
number of generally monolithic Windows-based desktop software pack-
ages. these include commercial offerings such as proteome discoverer 
from thermo and progenesis QI from Waters, and freely available software 
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11Introduction to Proteome Informatics

such a MaxQuant22 and skyline.22,23 some of these packages support the 
whole data analysis workflow, from raw data through protein identifica-
tion and quantitation and on to statistical analysis of the results. reliance 
on Windows is unusual in the scientific research community, but perhaps  
explained by the fact that most mass spectrometer control software  
is Windows-based and some raw Ms data formats can only be accessed 
using Windows-based software libraries.24 From a bioinformatics perspective 
there are clear disadvantages of the status quo, including a lack of flexi-
bility, lack of transparency due to closed source code in some cases, and 
doubts about whether desktop-based Windows software can scale to cope 
with growing datasets. however, bench scientists appreciate the quality 
and usability of these packages and they are likely to remain popular for 
the foreseeable future.

the aforementioned packages are complemented by a vast array of other 
software tools, most of which have been developed by academic groups and 
are freely available. typically, these packages are reference implementations 
of a published algorithm designed to perform a specific task (e.g. peptide  
identification), or support a particular protocol (e.g. quantitation with  
specific labels). assembling such tools into a pipeline can be challenging, 
but can be the best way of implementing a specialised workflow. to ease the 
process of integrating disparate tools, developers are increasingly making 
their software available within common open frameworks such as openMs 
(Chapter 12), Galaxy (Chapter 13), BioConductor (Chapter 14) and as a set of 
psI-centric libraries (see Chapter 11). these frameworks are mainly differen-
tiated by their user interfaces and the programming languages that underpin 
them (C++ for openMs, r for BioConductor and Java for the psI libraries). 
Galaxy is largely language agnostic, although much of its internals are writ-
ten in python.

1.6.1   Proteomics Data Standards and Databases
as in other data rich fields of biological research, the proteomics commu-
nity has established databases to share data from proteomics experiments, 
and to enable interoperability between different pieces of software. this has 
proven difficult due to the wide range of proteomics protocols in use and dif-
ferent opinions about the most appropriate way to represent the results of a 
proteomics experiment, e.g. should raw data be stored or is a list of identified 
proteins sufficient? Questions like these have been tackled by the human 
proteome organisation proteomics standards Initiative (hUpo–psI), who 
have drawn up guidelines for reporting minimum information about a pro-
teomics experiment (MIape) and data formats that capture the necessary 
information in a consistent way (see Chapter 11).

progress in community standards for reporting results has paved the way 
for public repositories of proteomics databases. arguably prIde25 is fore-
most among these as it is long established and at the time of writing is the 
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only proteomics database backed by a dedicated bioinformatics institution 
(the european Bioinformatics Institute). several leading journals request, or 
require, deposition of data to prIde to support any paper that involves pro-
teomics. other well established databases include peptideatlas,26 GpMdB27 
and passeL28 (specifically for srM data) but there are many more. a recent 
review article29 provides an extensive overview of the current state of pro-
teomic repositories.

1.7   Conclusions
at the time of writing, much crucial groundwork in proteome informat-
ics is already in place, but many interesting challenges remain and new  
challenges continue to appear as new laboratory protocols and biological 
applications emerge and evolve. proteome informatics is therefore an active 
area of research, and it is now easier to get into thanks to an abundance of 
excellent freely available software tools and large collections of high quality 
data in public repositories.
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Protein Identification
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2.1  Introduction
De novo peptide sequencing is one of the few computational methods used 
to sequence a peptide purely  from its MS/MS spectrum. the method does 
not require a given sequence database or spectrum library. instead, it derives 
the peptide sequence solely based on the spectrum. this fact makes de novo 
sequencing  more  useful  than  other  methods  in  certain  applications,  but 
meanwhile makes it a much harder computational problem.

in earlier days of mass spectrometry based proteomics, a mass spectrometry  
experiment  usually  produced  only  a  small  number  of  MS/MS  spectra. 
these  spectra  were  often  manually  de novo  sequenced  to  identify  the  
peptides. automated de novo sequencing software tools were also developed, 
but  these  earlier  tools  were  not  widely  adopted  because  of  a  number  of  
reasons. First, the accuracy of those tools were not nearly as good as manual 
de novo sequencing. Secondly, after the publication of the SeQUeSt program 
in 1995,1 the popularization of the database search method provides a viable 
alternative for peptide and protein identification with MS/MS datasets.

however, de novo sequencing has continuously attracted attention in the 
algorithm  research  community.  Dozens  of  software  tools  have  been  devel-
oped and gained different popularities at different periods. Some more nota-
ble tools include Lutefisk,2 peaKS,3 and pepnovo.4 a more complete review 
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of these tools can be found in the computer software section of this chap-
ter. Due to the research and development efforts from both the public and 
private sectors, the accuracy of automated de novo sequencing has continu-
ously improved. Some of the latest developments (e.g. the novor software5) 
started to employ large scale machine learning to learn sophisticated peptide 
fragmentation  rules,  and  use  these  rules  to  assist  the  de novo  sequencing 
algorithm. this has allowed the algorithm to make use of many rules that a 
human would use in manual de novo sequencing, resulting in significantly 
improved accuracy.

at  the  same  time,  both  the  mass  spectrometer's  throughput  and  mass 
accuracy have improved dramatically in the past two decades. While the high 
throughput  prohibits  manual  de novo  sequencing  practice,  the  improved 
mass  accuracy  contributes  to  the  accuracy  of  automated  de novo  sequenc-
ing.  Consequently,  automated  de novo  sequencing  becomes  both  practical 
and indispensable for scientists to identify novel peptides from today's large 
mass spectrometry data.

the  applications  of  de novo  sequencing  are  no  longer  limited  to  the 
sequencing of novel peptides. First, some recent studies (e.g. ref. 6) showed 
that  in a typical proteomics mass spectrometry dataset, a  large number of 
high quality spectra are not assigned by the database search method. these 
spectra are potentially from mutated, modified, or novel peptides. De novo 
sequencing  would  be  a  perfect  method  to  identify  confident  sequence 
tags from these spectra. Secondly, even if a spectrum can be assigned by a  
database peptide, it has been shown that one can use de novo sequencing to 
confirm the database peptide.7 this leads to a higher identification rate at 
the same or reduced false discovery rate (FDr). thirdly, in the identification 
of modified or mutated peptides, the confident de novo sequencing tags can 
be used to filter the sequence database for potential matches. the filtration 
significantly speeds up the database search in several software tools.7–9

historically de novo sequencing and database search are regarded as two 
independent  methods  used  in  different  applications.  these  recent  devel-
opments  suggest  that  both  methods  should  be used  in parallel  to  analyze 
proteomics mass spectrometry data, even if a protein sequence database is 
available.5,10,11

2.2  Manual De novo Sequencing
although today's de novo sequencing is mostly carried out with automated 
software, it is possible, and sometimes necessary, for an experienced person 
to manually de novo sequence a peptide from its MS/MS spectrum. the basic 
principle of manual de novo sequencing is to use the highly abundant y-ion 
ladders to determine the amino acid sequence. in this section, the manual 
de novo  sequencing  process  is  illustrated  with  an  example.  examining  the 
manual  process  will  help  understand  the  computer  algorithms  used  for 
automated de novo sequencing, as well as the challenges of developing such 
algorithms.
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19De novo Peptide Sequencing

Figure 2.1(a) illustrates the fragmentation at different sites of the peptide 
LeDFLer. each possible fragmentation corresponds to a pair of complemen-
tary  b  and  y-ions.  the  subscript  of  each  ion  type  indicates  the  number  of 
residues  in  the  fragment. the mass of a  singly charged y-ion  is calculated 
as the total residue mass plus a constant mass shift (≈19.02 Da). For b-ions, 
this mass shift is approximately 1 Da. therefore, it is fairly straightforward to 
compute the b and y-ion m/z values and annotate the peaks in the spectrum 
by  matching  the  mass.  Figure  2.1(b)  shows  the  annotated  CiD  (Collision 
induced Dissociation) MS/MS spectrum for the peptide LeDFLer. Other ion 
types  (such  as  the  y-h2O  ion)  are  also  possible.  But  the  b  and  y-ions  (and  
particularly the y-ions) are the most abundant ions in a CiD spectrum.

if the spectrum is annotated as in Figure 2.1(b),  the sequencing is fairly 
straightforward. this is because the mass difference between two adjacent 
singly  charged  y-ions  is  equal  to  the  mass  of  a  single  residue.  thus,  the 
sequence can be determined by examining the mass difference of every adja-
cent pair of y-ions in the spectrum. however, the annotation is unavailable 
before the peptide is sequenced. For an unannotated spectrum, the follow-
ing procedure can be used for manual de novo sequencing:
   
  1.   Observe a clear ladder of highly abundant peaks.
  2.   Choose  a  highly  abundant  peak  in  the  ladder  as  an  “anchor”,  and 

assume it is a y-ion. For example, the peak at 679.33 in Figure 2.1(b) is 
chosen as the anchor.

  3.   Choose the next peak to the left (or right)  in the ladder. Check if  the 
mass difference is equal to an amino acid residue's mass. For example, 

Figure 2.1   (a) the fragmentation at the peptide backbone produces b and y-ions 
in a CiD spectrum. (b) the annotated MS/MS spectrum for the peptide.
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if the peak at 564.32 is chosen, the mass difference is equal to 679.33 
− 564.32 = 115.01. this is approximately equal to the residue mass of 
aspartic acid (D). So we have figured out one residue on the sequence. 
the peak at 564.32 is then chosen as the new anchor.

  4.   repeat  step  3  in  both  directions  to  figure  out  the  remaining  amino 
acids of the peptide sequence.

  5.   the  n-terminal  residue’s  mass  is  derived  by  the  y1-ion  mass  minus 
19.02 Da.

  6.   the C-terminal residue’s mass is derived by the precursor mass minus 
the mass of the largest y-ion.

   
Keep  in  mind  that  the  spectrum  in  Figure  2.1  is  among  the  highest  

quality in a high-throughput proteomics experiment. When the quality is not 
as good, this procedure is usually carried out in a trial-and-error fashion, due 
to the following complications.

First, there may be more than one choice for the next y-ion peak in step 3. 
Sometimes the most abundant peak may not be the right choice. One may 
need to try each of the choices to check which one provides the longest exten-
sion. in certain situations, a confident disambiguation may not be possible.

Secondly, the y-ion ladder may be incomplete and the extension in steps 
3 and 4 may stop in the middle of the spectrum. this leads to only a partial 
sequence ladder. Sometimes the problem caused by a y-ion missing can be 
rescued by checking the complementing b-ion, as well as other neutral loss 
ions (e.g. y-h2O and y-nh3). But these are not always possible. additionally, 
considering those weaker ion types will meanwhile increase the chance of a 
false-positive peak assignment.

another way to deal with the missing ion problem is to faithfully record 
the mass gap in the output. For example, a sequence tag LDV[168.09]er indi-
cates that there is not enough evidence to confidently tell the sequence for 
the mass gap 168.09. it is not hard to check that 168.09 is equal to the total 
mass of residues a and p. But since the fragment ion is missing, one cannot 
confidently tell whether it is ap or pa for that mass gap.

an experienced human may be able to use the domain knowledge about 
peptide fragmentation to deal with the missing ion problem. For example, it 
has been reported that the amino acid p causes an enhanced fragmentation 
at its n-terminal side and a reduced fragmentation at its C-terminal side.12 
therefore, not seeing a  fragment  ion within the mass gap 168.09 suggests 
that the dipeptide is more likely to be pa instead of ap.

2.3  Computer Algorithms
2.3.1  Search Tree Pruning
algorithms in earlier days (e.g. ref. 2, 13–15) for de novo sequencing tried to 
emulate the manual de novo sequencing procedure. When there are ambigu-
ities in a peak assignment, the algorithm has to search for all possibilities. 
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21De novo Peptide Sequencing

this creates a branching node in the search tree (Figure 2.2). Following each 
possibility, the search tree may need to branch repeatedly to accommodate 
new ambiguities. the search tree size grows exponentially with respect to the 
number of branches on each search path.

to speed up, such search algorithms can use heuristics to prune the search 
tree. For example, if a partial search path already results in more than two 
missing y-ions, one may stop the search immediately and move to a differ-
ent path. While the pruning generally speeds up the algorithm, there is no 
guarantee  that  the  speed-up  is  enough  to  make  the  search  algorithm  effi-
cient. additionally, there is a chance that the path for the correct solution is 
pruned  prematurely.  the  dilemma  between  search  efficiency  (that  desires 
more aggressive pruning) and efficacy (that desires less aggressive pruning) 
is hard to solve.

in  1999,  Dancik  et al.16  first  used  dynamic  programming  to  solve  the  
de novo sequencing problem. Dynamic programming is a standard algorithm 
design technique. instead of exhaustively searching every feasible solution in 
the solution space, a dynamic programming algorithm exploits the structure 
of the search space, and constructs the optimal solution in polynomial time. 
this both ensures  the algorithm's efficiency and  the solution's optimality. 
however, dynamic programming only works when the solution space is well 
structured and satisfies some special properties. For this reason, choosing 
the  right  combinatorial  model  is  crucial  for  the  use  of  dynamic  program-
ming. in the next two sections, two different models commonly used in the 
literature are examined.

2.3.2  Spectrum Graph
Bartels  described  a  “sequence  spectrum”  approach  in  1990.13  a  cluster 
of fragment ions with different types are converted to a mass site on the 
peptide  sequence.  then  the  algorithm  walks  on  the  sequence  spectrum 
to connect sites with mass difference equal to a residue mass. this model 
was later used by authors of ref. 2 and ref. 14, and fully developed to the 
spectrum  graph  model  by  Dancik  et al.  in  ref.  16.  Let  us  first  examine  a 
simplified version of  the spectrum graph model by only considering the 
y-ions.

Figure 2.2   an illustration of the search tree to exhaustively search for the de novo 
sequence candidates.
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Chapter 222

Figure  2.3  illustrates  the  construction  of  a  spectrum  graph  from  a  
spectrum. the procedure is outlined in the following:
   
  1.   each peak in the spectrum corresponds to a vertex (the hollow circles) 

in the graph.
  2.   two special vertices (the black dots) are added to the graph, represent-

ing  the  C-terminus  and  n-terminus  of  the  peptide,  respectively.  the 
C-terminal and n-terminal vertices correspond to two imaginary peaks 
at  19.02  Da  and  the  precursor  mass,  respectively.  note  that  because 
y-ions are concerned, the C-terminus vertex is at the left (low mass) end 
of the graph.

  3.   an edge is added to connect two vertices whenever their corresponding 
peaks’ m/z values differ by the mass of a single amino acid residue. the 
edge is labeled with the residue name.

  4.   assign a proper score for each edge.
   

With  such  a  construction,  finding  the  y-ion  ladders  in  the  spectrum  is 
equivalent to finding a path in the graph that connects the C-terminal and 
n-terminal vertices. the edge labels on the path provide a candidate de novo 
sequence.  notice  that  there  may  be  multiple  paths  that  connect  the  two 
termini. the edge score comes  into play here. With properly defined edge 
scores, the correct candidate should correspond to a path with the highest 
total edge score.

if the C-terminal and n-terminal vertices are connected in the spectrum 
graph, the optimal path can be computed with a simple dynamic program-
ming algorithm. Suppose u0, u1, …, un are the n vertices in the graph from left 
to right. here u0 and un are the C-terminal and n-terminal vertices, respec-
tively. Let P[i] denote the optimal partial path that connects u0 with ui. Let S[i] 
be the total edge score of this optimal partial path. Moreover, let (uj,ui) be the 
last edge on P[i]. then P[i] must consist of the optimal partial path P[j] from 
u0 to uj, plus the edge (uj,ui). Figure 2.4 illustrates the situation.

Figure 2.3   an example spectrum and its corresponding spectrum graph.
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23De novo Peptide Sequencing

therefore, S[i] = S[j] + score(uj,ui). to find out which uj precedes ui, one only 
needs to try all possible j and select the one that maximizes S[j] + score(uj,ui). 
therefore,  the  following  algorithm  will  compute  the  maximum  weighted 
path.

algorithm Spectrum Graph

1. initialize S[i] = −∞.
2. Let P[0] be an empty path and S[0] = 0.
3. For i from 1 to n.

a.  among all uj that has an edge pointing to ui, find the j that maximizes 
S[j] + score(uj,ui)

b. Let S[i] = S[j] + score(uj,ui) and P[i] = P[j] + (uj,ui).
4. Output P[n] as the reversed peptide sequence.

it  is  noteworthy  that  the  algorithm  is  presented  in  a  way  that  is  easier 
understood by readers who are less familiar with dynamic programming. in 
a more canonical use of dynamic programming, one only needs to compute 
S[i] but not the P[i]. the optimal path can be constructed by a standard back-
tracking procedure after all S[i] has been computed.

the previously-shown simplified model only uses the y-ions of a peptide, 
which is often insufficient to provide the complete sequence information. it 
would be beneficial if b-ions could also be used. in the model proposed by 
Dancik et al.,16 each peak produces two vertices in the graph, corresponding 
to  the  two  different  interpretations  of  the  peak  (either  a  b-ion  or  a  y-ion). 
edges  are  added  to  connect  two  vertices  if  they  have  the  same  type  and 
their mass values differ by a single residue. With this construction, a correct 
peptide corresponds to a pair of paths  in  the graph. One of  the  two paths 
uses only the b-ion vertices, and the other uses only the y-ion vertices. Since 
it  is  unlikely  that  one  peak  is  both  a  b-ion  and  a  y-ion,  the  model  further 
requires that at most one of the two vertices for the same peak can be used 
in the two paths. this is called the antisymmetric path problem.16 the paper 
claimed that there is a polynomial time algorithm for the problem. Later on, 
Chen et al.17 published a polynomial time algorithm for the same problem 
independently.

Clearly,  if  there  is a  fragmentation site of which both b- and y-ions are 
missing, the path will be broken in the model, and the algorithm will fail. 
to  address  this  problem,  one  can  add  edges  between  vertices  with  mass 

Figure 2.4   the optimal path from u0 to ui consists of an optimal path from u0 to uj, 
followed by the edge (uj,ui).
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Chapter 224

difference  equivalent  to  two  amino  acids.2  With  these  additional  edges, 
the paths are  reconnected. Similarly, one can add edges  to connect a gap 
of  three  or  more  residues.  But  these  practices  start  to  complicate  the  
spectrum graph model, and introduce other problems including increased 
false positives.

another important consideration of the spectrum graph model is how to 
score  the edges  (or  the vertices). even when  the correct path  is connected 
in the graph, an inferior scoring function may assign the highest score to a 
wrong path. the optimization of the scoring function will be examined in the 
“Scoring Function” section later in this chapter.

2.3.3  PEAKS Algorithm
although  the  spectrum  graph  model  is  conceptually  intuitive,  the  way 
it  deals  with  missing  ions  greatly  complicates  the  model.  Ma  et al.18  dealt 
with the missing ions problem with a different approach and developed the 
peaKS software.3 in the peaKS model, a spectrum is thought to have a peak 
at every mass. if no peak is present at a given mass, it is equivalent to having a 
0-intensity peak. this small change completely avoids the missing ion prob-
lem. Since a proper scoring function usually favors the high abundant peaks, 
the algorithm will still try to use the real peaks with positive intensities first. 
But if such a solution is not possible, the algorithm has the freedom to use 
the 0-intensity peaks.

the original algorithm (called Sandwich algorithm) for the peaKS model18 
is rather complicated. here we examine a much simplified algorithm. the 
simplified algorithm has been previously presented at multiple conferences 
and workshops (such as the Symposium of Combinatorial pattern Matching 
2003) as a simpler case of the Sandwich algorithm.

to implement the peaKS model, mass values are first discretized by mul-
tiplying a factor (e.g. 1000) and rounded to the nearest integer. to make the 
algorithm easier to understand, one can simply think that the nominal mass 
is used in all computation.

Suppose the peptide has a total residue mass M. the precursor ion of pos-

itive charge z would have m/z equal to 
 2mass H O

mass(proton)
M

z


 . Con-

versely, one can compute M from the precursor m/z and charge. therefore, 
hereafter we assume M is known.

For a peptide sequence a1a2…aiai+1…an, the fragmentation between ai and 
ai+1  produces  a  prefix  a1a2…ai  and  a  suffix  ai+1ai+2…an.  Let  m(a)  denote  the 

mass of an amino acid residue a. then the prefix mass   
1

i

i j
j

m m a


  . Figure 
2.5(a) illustrates an example peptide.

each prefix mass m can be used to compute both the b-ion and y-ion mass 
values as illustrated in Figure 2.5(b). if peaks are found at the correspond-
ing  locations  in  the  spectrum,  a  positive  reward  should  be  added  to  the 
score. Otherwise, a negative penalty should be added. Let f(m) denote such a 
reward/penalty scheme. notice that the definition of f(m) only requires M and 
the spectrum, but not the actual peptide sequence.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
00

15
View Online

http://dx.doi.org/10.1039/9781782626732-00015


25De novo Peptide Sequencing

Once the  fragmentation score  f(m)  is defined,  the score of a peptide P = 

a1a2…an is defined as     
1

1

score
n

i
i

P f m




  . here each   
1

i

i j
j

m m a


   is a prefix 

mass of the peptide. thus, the task of de novo peptide sequencing becomes 
the finding of such a peptide P that maximizes score(P).

intuitively,  the optimal peptide defines a path  that connects  the mass 0 
and M on the  f(m) score array  (Figure 2.6). each step of  the path connects 
two cells with mass difference equivalent to a residue. the score of the path 
is the sum of the scores of the cells that the path visits. the score of a partial 
path from 0 to m can also be defined the same way. Let P[m] be the partial 
path from 0 to m with the maximum score. Let S[m] be the score of this opti-
mal partial path. Suppose the last residue on P[m] is a. it is easy to see that 
removing the last residue a from P[m] gives an optimal partial path from 0 to 
m − m(a). therefore, P[m] = (P[m − m(a)], a), and S[m] = S[m − m(a)] + f(m). to 
find out the identity of a, one only needs to enumerate all possible residues 
and select the one that maximizes S[m − m(a)]. thus, the optimal path can be 
computed with the following dynamic programming algorithm.

algorithm
Massarray

1. initialize S[i] = −∞.
2. Let P[0] be an empty path and S[0] = 0.
3. For m from 1 to M.

a. Find the residue a that maximizes S[m − m(a)].
b. Let S[m] = S[m − a] + f(m) and P[m] = (P[m − m(a)], a).

4. Output P[M] as the reversed peptide sequence.

Figure 2.5   (a) an example peptide. each prefix mass mi defines a  fragmentation 
site. (b) in general, a fragmentation at prefix mass m produces a b-ion 
with mass m + 1 and a y-ion with mass M − m + 19.

Figure 2.6   a peptide defines a path that connects mass 0 and M on the fragment 
score array.
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Chapter 226

this algorithm shares much similarity with the simplified spectrum graph 
model.  however,  unlike  the  spectrum  graph  model,  the  missing  of  a  frag-
ment ion is now only penalized through f(m), but does not forbid the algo-
rithm from finding a path that connects 0 and M.

the algorithm does not put any constraint to the actual definition of the 
fragmentation score f(m). this leaves great flexibilities for a software imple-
mentation to optimize the scoring function. Such optimization will be dis-
cussed in the “Scoring Function” section later in this chapter.

there is a hidden problem if the Massarray algorithm is implemented in 
a straightforward way. the algorithm has a tendency to report a peptide that 
matches a highly abundant peak twice: once with a b-ion and the other time 
with  a  y-ion.  By  doing  so,  the  peak  contributes  to  the  total  fragmentation 
score twice at two different prefix mass values. in real-life peptides, the over-
lap of a pair of b- and y-ions is infrequent. however, since the algorithm is 
searching in all amino acid sequences (not just a database of real proteins), 
there is a great chance that the highest scoring peptide indeed double counts 
the highest abundant peaks.

For this reason, the earliest version of the peaKS software used the more 
sophisticated  “Sandwich  algorithm”.18  instead  of  dynamic  programming 
with a single prefix mass m, the Sandwich algorithm used a pair of prefix mass 
m and suffix mass m′ simultaneously. During the dynamic programming, the 
fragment ions at the two mass values are examined for possible overlap. a 
peak that is matched by more than one fragment ion is only counted once. 
the  Sandwich  algorithm  solved  the  double-count  problem.  however,  the 
complexity of that algorithm is significantly higher than with the algorithm 
Massarray described previously.

For  computing  efficiency,  the  algorithm  used  in  later  versions  of  the 
peaKS software is based on the Massarray algorithm with many unpublished 
improvements.  Other  software  tools  that  make  use  of  the  Massarray  algo-
rithm or a variation of  the algorithm include the MSnovo,19 DenovoptM,20 
and novor.5 Most of these tools use heuristic strategies to solve the double- 
count  problem.  First,  the  Massarray  algorithm  is  called.  if  the  resulting  
peptide annotates one or more major peaks with both b- and y-ions, the tool 
will then try different combinations of the annotation, and call the Massarray 
algorithm again with each of the combinations. With the extra rounds of com-
putation, this practice is very effective in reducing the double-count effect.

2.4  Scoring Function
in  a  de novo  sequencing  program,  the  scoring  function  is  the  optimiza-
tion goal of the algorithm. if the scoring function cannot score the correct 
sequence with the highest score, then it does not matter how fast the algo-
rithm is. in this section we examine some techniques used by existing soft-
ware to construct a good de novo sequencing scoring function.

For  developing  a  scoring  function  for  automated  de novo  sequencing, 
it  is  useful  to  examine  the  criteria  that  a  human  uses  in  manual  de novo 
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27De novo Peptide Sequencing

sequencing. in general, a human often judges the correctness of a peptide by 
the following two facts:
   
  1.   Most  of  the  major  fragment  ions  of  the  peptide  are  observed  in  the 

spectrum.
  2.   Most of  the highly abundant peaks in the spectrum are explained by 

some fragment ions.
   

in certain cases, the correlation between the fragmentation patterns and 
some special amino acid combinations can also be used to disambiguate the 
multiple explanations of the same spectrum. this has been illustrated in the 
manual de novo sequencing section, where the enhanced fragmentation at 
the n-terminal side of a proline is used to tell whether a dipeptide mass gap 
is [Xp] or [pX].

however, there are a few technical difficulties to convert the human knowl-
edge into a scoring function used by a computer algorithm. First, the human 
knowledge  is  usually  qualitative.  it  is  nontrivial  to  convert  the  qualitative 
knowledge into precise numeric values. For example, although the scoring 
function generally prefers abundant peaks,  it  is unclear how to convert an 
intensity  value  to  a  numeric  score.  Consider  two  peptide  candidates  that 
match two sets of peaks a and B, respectively. if a has one peak of intensity 
300 that is not in B, and B has three peaks of intensity 100 that are not in a, 
should the scoring function rank a or B higher?

Secondly, the human knowledge is often ad hoc. Depending on different 
situations, the same person may apply different rules to judge the quality of 
the peptide spectrum matching. it is hard to have a complete list of all rules 
that a human expert would use. even if such a complete list exists, there may 
be multiple rules that can apply to the same situation. Some of these rules 
may enhance or conflict each other. how to weigh the importance of each 
rule quantitatively becomes another nontrivial problem.

2.4.1  Likelihood Ratio
Likelihood ratio is a common way used in bioinformatics to define scoring 
functions.  Likelihood  ratio  is  first  introduced  into  de novo  sequencing  by 
Dancik et al.16 today it serves the basis of the scoring functions in many dif-
ferent de novo sequencing tools.

Let S be a spectrum and P be a peptide. Consider a y-ion of P. Whether a 
peak corresponding to the y-ion appears in the spectrum is a random event, 
and the probability depends on whether P is the true peptide for S. Let 

p = pr(y-ion peak appears|P is a correct peptide), and
q = pr(y-ion peak appears|P is a random peptide).

then, in calculating the peptide spectrum matching score, the contribu-

tion made by each y-ion match is equal to  log
p
q

. Similarly, the contribution 
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made by each unmatched y-ion is equal to 
1

log
1

p
q




. Since normally p > q, the 

contribution is positive for a y-ion match and negative for a missing y-ion.
the values p and q can be easily determined from statistics using a large set 

of annotated spectra. the peptide spectrum matching score is then defined 
as the total of the scores of all y-ions of the peptide.

to also account for the b-ions, one can apply the same statistics to the b-ions, 
and add the b-ion scores to the scoring function. When P is the real peptide, 
the probability that a b-ion is matched is lower than the probability that a y-ion 
is matched. But when P is a random peptide, the two probabilities are similar. 
therefore, it is easy to see that the log likelihood ratio of a b-ion match is lower 
than a y-ion match. this example shows that the scoring definition previously 
mentioned can automatically adjust the weights of different ion types.

instead of only distinguishing match and mismatch, one can also account 
for peak intensities using the likelihood ratio idea. in ref. 4 and 21, the inten-
sity is divided into a few intervals such as high, low, and absent. then the 
score  contribution  of  a  y-ion  matching  a  peak  with  intensity  interval  i  is 
defined as:

 
 
 

Pr y-ion peak's intensity in interval |  is a correct peptide
log

Pr y-ion peak's intensity in interval |  is a random peptide
i P
i P

2.4.2  Utilization of Many Ion Types
although the algorithms in the previous section are presented using b- and 
y-ions, a practical software tool usually considers many more ion types in its 
scoring function. For example, the novor software considers nine ion types: 
y, b, a, y(2+), b(2+), b-18, b-17, y-18, and y-17. the consideration of more ion 
types does not usually increase the algorithm’s complexity very much. how-
ever, in terms of the accuracy, the use of many ion types has a major impact. 
On one hand, more signal peaks may be matched by the additional ion types 
in consideration. On the other hand, an increasing number of false positive 
peak assignments may happen. thus, a practical system will have to balance 
between the two effects, and use testing datasets from different data sources 
to determine the best subset of ion types to use.

2.4.3  Combined Use of Different Fragmentations
nowadays,  the  most  commonly  used  fragmentation  methods  for  MS/MS 
include CiD (Collision induced Dissociation), hCD (high-energy Collision 
Dissociation), and etD (electron transfer Dissociation). these methods may 
produce different spectra for the same peptide. the difference between etD 
and the other two methods is particularly significant. While CiD produces 
mostly y- and b-ions, the etD method produces mostly c, z, and z + 1 ions. 
additionally, they may preferably fragment different fragmentation sites of 
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29De novo Peptide Sequencing

the peptide. as a result, the combined use of these spectra for the same pep-
tide may increase the de novo sequencing accuracy. this approach has been 
implemented in different tools such as those presented in ref. 22–25.

2.4.4  Machine Learning
the collective efforts of  the proteomics community have produced a huge 
amount  of  publicly  available  mass  spectrometry  data.  there  are  also  well- 
annotated spectrum libraries. the availability of well annotated public data-
sets opened the possibility of using machine learning to automatically learn 
a scoring function. With certain off-the-shelf algorithms, machine learning 
can learn very sophisticated rules from the data. this fits our purpose per-
fectly: we know that there are a lot of rules that determine the fragmentation 
of a peptide and the formation of the peaks in the spectrum; however, we do 
not have a complete list of these rules and do not know how to quantitatively 
combine all the rules together. thus, we rely on the machine learning algo-
rithm to learn those rules from the data.

in ref. 5, Ma demonstrated the power of this approach with the develop-
ment  of  the  novor  software.  With  over  300 000  annotated  MS/MS  spectra 
from  the  niSt  (national  institute  of  Standards  and  technology)  peptide 
spectral  library,  the  machine  learning  algorithm  automatically  learned  a 
decision  tree  with  over  14 000  branching  nodes.  the  decision  tree  is  used 
to compute the confidence (probability of being correct) of each amino acid 
residue in a de novo sequence candidate. a peptide’s score is then defined as 
the weighted average of  its amino acids’ confidence. to balance the heavy 
and light amino acids, the mass of each amino acid is used as the weight in 
computing the weighted average.

Figure 2.7 uses a trivial example to illustrate how the decision tree is used 
to determine the confidence of a residue. the algorithm starts the compu-
tation at the root of the tree, and keeps moving upward. at each branching 
node,  it  answers  the  yes  or  no  question  and  moves  up  to  one  of  its  child 
nodes. Once a leaf node is reached, the value stored there is retrieved and 
returned as  the confidence score of  the  residue. a decision  tree used by a 
computer  algorithm  can  be  exceedingly  large.  however,  the  length  of  the 
path from the root to a leaf is usually short. this makes the score computa-
tion very efficient.

Meanwhile, any kind of ‘yes-or-no’ questions can be asked at each branch-
ing node. this allows us to use many different scoring features, such as dif-
ferent ion types, the intensities, the rank of peaks, the mass error, the charge 
state of the peptide, and the distance of the amino acid toward the n-termi-
nus and C-terminus. novor algorithm uses a  total of 9  fragment  ion  types 
and 169 scoring features. the combined use of many scoring features signifi-
cantly boosted the accuracy of the software. With the help of machine learn-
ing, novor achieved a de novo sequencing speed of 300 spectra per second on 
a laptop computer, at a better accuracy than the state of the art.5
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Chapter 230

Decision tree is not the only machine learning model that can be used. in 
fact, other models such as logistic regression and SVM are popularly used in 
defining scoring functions in both de novo sequencing and database search. 
in de novo sequencing, novor is the first to apply machine learning on this 
scale of data size.

2.4.5  Amino Acid Score
an important fact about a de novo sequence is that not all amino acids have 
the  same  confidence.  the  highly  confident  amino  acids  are  supported  by 
strong b- and y-ions; whereas the least confident ones do not have any frag-
ment ion support, and are computed merely as a filler to fill in a large mass 
gap. there are two ways in practical software to deal with the lower-confident 
amino acids. the first  is  to convert  those amino acids  to a mass gap  (Fig-
ure 2.8(a)). Most software tools use this way. however, some software tools, 
including peaKS3 and novor,5 output an amino acid score  for each amino 
acid in the de novo sequence (Figure 2.8(b)).

the  second  way  is  more  flexible  since  a  user  can  choose  different  score 
thresholds  to  do  the  mass  gap  conversion  in  different  applications.  how-
ever, the definition of an accurate amino acid score function often involves 

Figure 2.7   a trivial decision tree to determine the confidence of the amino acid p 
in the peptide sequence. (Figure with permission adapted from ref. 5.)

Figure 2.8   two  ways  to  deal  with  low  confident  amino  acids:  (a)  mass  gap;  (b) 
amino acid score.
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31De novo Peptide Sequencing

additional  work  on  top  of  defining  the  peptide  scoring  function.  peaKS’ 
amino  acid  score  function  is  unpublished.  novor’s  amino  acid  score  is 
directly  computed  from  the  decision  tree.  a  third  software  tool,  pepnovo4 
does not have a built-in amino acid score. But in a separate work, Frank et al.8  
discussed an amino acid scoring function to filter the results of pepnovo.

2.5  Computer Software
in this section we review a list of better known de novo sequencing software 
tools in chronological order. Most of these tools are free, or free for academic 
use,  with  the  exception  of  peaKS  and  Sherenga  that  are  commercial.  the 
main  purpose  of  this  list  is  to  review  the  novel  techniques  introduced  by 
these tools, instead of the software itself. in fact, many of these software tools 
are no longer actively maintained.

2.5.1  Lutefisk
taylor and Johnson published the Lutefisk software for de novo sequencing 
in 1997.2 although Lutefisk  is not  the first de novo  sequencing software,  it 
is likely the first to reach a fairly broad acceptance in the de novo sequenc-
ing community.10 it employs an exhaustive search algorithm with many heu-
ristic  improvements,  including  the  search  tree  pruning  outlined  earlier  in 
this chapter. Further, if the number of partial solutions exceeds a predefined 
threshold  during  the  search,  Lutefisk  will  discard  the  lower  scoring  ones. 
Lutefisk has always been a free tool and is now released under GnU General 
public License.

2.5.2  Sherenga
Dancik et al. published the Sherenga algorithm in 1999.16 in their paper, the 
spectrum  graph  and  antisymmetric  path  model  were  formally  proposed. 
Without  giving  the  details,  their  paper  claimed  that  a  dynamic  program-
ming  algorithm  would  solve  the  antisymmetric  path  problem.  the  paper 
also proposed the use of the log likelihood ratio score in de novo sequencing. 
Sherenga was later incorporated in the commercial software Spectrum Mill 
as its de novo sequencing module.

2.5.3  PEAKS
Ma et al. released the peaKS software as a commercial tool in 2002 at aSMS 
(american Society of Mass Spectrometry) annual conference. the software 
was published in ref. 3 and the algorithm was published in ref. 18. Unlike 
the spectrum graph model, peaKS performs dynamic programming on the 
mass array.  it also  introduced a  two  round search scheme:  the first  round 
generates a large number of candidates with a simpler scoring function, and 
the second round re-scores the candidates with a more sophisticated scoring 
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function.  peaKS  soon  became  the  de facto  standard  software  for  de novo 
sequencing in this field. it is actively developed at Bioinformatics Solutions 
inc. since its release.

2.5.4  PepNovo
Frank and pevzner published the pepnovo software as a free tool in 2005.4 
pepnovo  uses  the  spectrum  graph  model.  noticing  that  the  intensities  of 
different  ion  types  are  correlated,  pepnovo  uses  a  Bayesian  network  in  its 
scoring function to capture the correlation. this is more accurate than treat-
ing  the different  ion  types as  independent  factors  (as done  in many other 
software tools). pepnovo is still widely used as a free de novo sequencing tool.

2.5.5  DACSIM
Zhongqi  Zhang  developed  a  spectrum  simulation  method  to  predict  the 
experimental spectrum for a given peptide in ref. 26. in a separate work, he 
employed  the  spectrum  simulation  for  de novo  peptide  sequencing.27  his 
DaCSiM algorithm uses the similarity between a predicted spectrum and the 
real spectrum as the scoring function to measure a peptide candidate; and 
uses a divide-and-conquer algorithm to search for the best de novo sequence. 
this  is  the  first  tool  that  utilizes  the  predicted  spectrum  in  the  scoring 
function.

2.5.6  NovoHMM
Fischer et al. published novohMM in 2005.28 the most notable feature of the 
novohMM program is that it uses a hidden Markov Model (hMM) to formu-
late the de novo sequencing problem. this is different from both the spec-
trum graph and the mass array model. With hMM, the correlations between 
adjacent  fragmentation  peaks  can  be  considered  in  the  scoring  function. 
this helped improve the accuracy of the de novo sequencing result.

2.5.7  MSNovo
Mo et al. published MSnovo in 2007.19 it uses the mass array based dynamic 
programming. the paper includes many technical details on improving the 
scoring  function and  the algorithm’s efficiency. Some advantages of using 
mass array over spectrum graph were reviewed in their paper.

2.5.8  PILOT
DiMaggo  and  Floudas  published  the  piLOt  software  in  2007.29  piLOt  is 
unique  for  the  integer  linear programming  (iLp) algorithm it uses. the de 
novo sequencing problem is formulated as an iLp problem. Once formulated, 
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33De novo Peptide Sequencing

there  are  standard  solvers  to  solve  the  iLp.  Multiple  candidates  were  pro-
duced by solving the iLp, and then a post-processing is used to compare each 
candidate with the spectrum and pick the best.

2.5.9  pNovo
Chi  et al.  published  the  pnovo  program  in  2010.30  it  uses  the  spectrum 
graph approach and an empirical scoring function. the earlier version was 
designed to work on MS/MS spectrum produced by hCD (high-energy Col-
lision  Dissociation),  but  later  versions  also  work  on  other  fragmentation 
methods.  the  accuracy  of  the  program  was  also  improved  periodically  in 
these later versions.

2.5.10  Novor
Ma  published  the  novor  program  in  2015.5  the  main  novelty  of  novor  is 
the use of a large scale machine learning approach to build its scoring func-
tion.  the  decision  tree  was  used  as  the  base  model  for  machine  learning.  
novor’s basic algorithm is the mass array based dynamic programming, with 
an  additional  refinement  step  to  improve  the  result  of  dynamic  program-
ming. novor is the most notable for its de novo sequencing speed of over 300 
spectra per second on a laptop computer.

2.6  Conclusion: Applications and Limitations of  
De novo Sequencing

2.6.1  Sequencing Novel Peptides and Detecting Mutated 
Peptides

De novo peptide sequencing is the only viable choice if the organism in study 
does not have a protein sequence database. this makes it a useful method 
for studying the organisms whose genomes are not sequenced yet, although 
generation of protein databases from rna sequencing data now provides a 
powerful alternative (see Chapter 16). De novo sequencing has also been used 
when the available protein database is incomplete and does not include the 
peptides of  interest. For example,  it has been used to study the neuropep-
tides31 and peptides in venoms.32,33

even for a well-characterized organism such as a human, the commonly 
used  protein  sequence  databases  do  not  include  all  the  single  amino  acid 
polymorphisms  (Saps).  De novo  sequencing  is useful  for  the  identification 
of those mutated peptides that are different from the ones in the database. 
Special sequence search algorithms have been developed to utilize both the 
de novo sequencing results and the sequence database to detect those muta-
tions. a more thorough review of this direction can be found in the review 
article.10
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2.6.2  Assisting Database Search
De novo sequencing has also been used to assist the database search method 
to identify peptides in the database. De novo sequencing improves a database 
search method in both its speed and accuracy.

to improve the speed, the de novo sequence tags can be used to filter the 
sequence database, and only the approximately matching peptides are com-
pared with the spectrum. this can significantly speed up the database search. 
With the availability of the super-fast de novo sequencing engine, novor,5 this 
advantage becomes very realistic.

to improve accuracy, the same spectrum is used for both de novo sequenc-
ing and database search. the agreement (or partial agreement) between the 
two results  improve  the confidence about  the database search result. this 
has been used in the peaKS DB algorithm to obtain a more accurate scoring 
function that better separates the true and false peptide identifications.7 as 
a result, a higher number of true peptide-spectrum matches can be obtained 
at a lower false discovery rate.

2.6.3  De novo Protein Sequencing
De novo  sequencing  is  mostly  used  for  sequencing  short  peptides  (usually 
shorter than 50 amino acids). however, in certain applications one may be 
interested in de novo sequencing a long protein. this can be achieved with a 
number of approaches.

the most common approach is to digest the protein with multiple enzymes 
to  produce  overlapping  peptides.  then  each  peptide  is  de novo  sequenced 
from its MS/MS spectrum. By utilizing the overlaps, one can assemble the 
peptides  and  reconstruct  the  original  protein  sequence.  a  number  of  suc-
cessful applications and variants of this approach have been reported in the 
literature (e.g. ref. 36–38).

another approach is to use top-down proteomics, where an intact protein 
is measured with MS/MS directly. there have been some pioneer works in this 
direction.  however,  the  top-down  mass  spectrometry  experiments  are  not 
fully developed yet, and the de novo sequencing software with top-down mass 
spectrometry data is very rudimentary. a review of the latest developments 
in top-down proteomics can be found in ref. 34. an algorithm for sequencing 
short sequence tags from top-down MS/MS spectrum was reported in ref. 35.

the  third  approach  is  to  combine  the  top-down  and  bottom-up  data 
together. the bottom-up data are used to de novo sequence the peptides, and 
the top-down data is used to guide the peptide assembly. Liu et al. presented 
an algorithm using this approach.39

2.6.4  Unspecified PTM Characterization
normally a protein sequence database does not contain information about 
post-translational modifications (ptM). thus, to identify peptides that have 
variable ptMs on them, a database search engine will have to try multiple 
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versions of the same sequence, with different ptMs turned on and off. this 
expands the search space exponentially with an increasing number of vari-
able  ptMs  considered.  as  such,  the  database  search  algorithms  can  only 
allow the specification of very few variable ptMs for the search. the spectra 
for the peptides with unspecified ptMs are therefore left unassigned.

De novo  sequencing  may  be  used  to  obtain  partial  sequences  for  those 
unassigned spectra. then the partial sequences are used to select peptides 
from the database, and the mass difference between the theoretical peptide 
mass and the observed peptide mass can be used to characterize the unspec-
ified ptM. Such application of de novo sequencing in ptM characterization 
has been described in a number of publications including the peaKS ptM 
algorithm40 and inspect algorithm.9

2.6.5  Limitations
When the MS/MS spectrum does not include a complete ladder of fragment 
ion peaks  (which  is usually  the case), de novo  sequencing may not be able 
to sequence the whole peptide correctly. this is the single largest limitation 
of de novo peptide sequencing. this limitation has been gradually lessened 
in the past two decades, due to the continuous improvements in both com-
puter  algorithms  and  mass  spectrometry  instruments  that  are  outlined  in 
the following.

the availability of the amino acid score in certain de novo sequencing tools 
can help improve the result accuracy by filtering out the low confident amino 
acids.  But  this  does  not  help  with  the  sequence  coverage  and  still  leaves 
portions  of  the  peptides  un-sequenced.  the  correlation  between  certain 
sequence patterns and the peak missing events have been used to help iden-
tify  the  sequence  when  the  peak  ladder  is  incomplete.5  the  improvement 
of mass spectrometers’ mass accuracy and signal to noise level has greatly 
improved  the de novo  sequencing accuracy and coverage. additionally,  the 
combined  use of  different  fragmentation  methods  (such  as  CiD and  etD) 
as described in Section 2.4 can help further improve both the accuracy and 
coverage. there have also been efforts to improve the quality of the ladder 
peaks by changing the mass spectrometry experiments, such as by labeling 
one terminus of the peptide,41 and by using new fragmentation methods.42,43 
Finally, even if only a portion of each peptide can be confidently sequenced, 
one may still de novo sequence the whole protein by utilizing many overlap-
ping peptides, each contributing a different segment of the protein.

With  these  continuous  improvements  in  both  the  de novo  sequencing 
software  and  the  mass  spectrometer  hardware,  the  author  speculates  that  
de novo sequencing’s use in proteomics will be greatly broadened in the com-
ing years, to the extent that most applications in proteomics can benefit from 
the integration of de novo sequencing in their data analysis pipelines.
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3.1   Introduction
peptide and protein identification via mass spectrometry (MS) is the main-
stay of the entire field of proteomics. this peptide-based mass spectrome-
try analysis is referred to as bottom-up proteomics or shotgun proteomics. 
Chronologically, the shotgun proteomics can be further subdivided into two 
major categories: peptide mass fingerprinting (pMF) and tandem mass spec-
trometry analysis (MS/MS). in 1993, various groups independently proposed 
the pMF method as a rapid method for peptide and protein identification.1–5 
this method starts by digesting the proteins present in the sample into 
peptides using a proteolytic enzyme (trypsin is the most popular enzyme 
of choice.). a mass spectrometer is employed to measure the masses of 
the resulting peptides. the measured masses are compared to a protein 
sequence database using algorithms like MOWSe.5 these algorithms start by 
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Chapter 340

cutting the protein sequences in the database into peptide sequences using 
the experimental proteolytic enzyme. the theoretical masses of the resulting 
peptide sequences are computed and compared to the experimentally mea-
sured peptide masses. the results are subjected to statistical analysis to find 
the best set of peptide and protein matches for the set of experimental pep-
tide masses. While this method is capable of rapidly identifying peptides and 
proteins from simple mixtures (of ≤2 proteins), the method is confounded 
by more complex protein mixtures. this is mainly because the pMF method 
assumes that peptide masses observed in a single experiment uniquely map 
to a set of peptides that come from one protein. Most pMF algorithms are 
confounded when this covenant is broken in a complex peptide digest where 
a peptide mass can match to multiple peptide sequences, which in turn can 
map to multiple protein sequences.

tandem mass spectrometry (MS/MS) was developed to resolve ties 
observed in pMF experiments. When an experimental peptide mass matches 
to multiple different peptide sequences in a database, additional informa-
tion is needed to break the tie. this is often accomplished by configuring the 
mass spectrometer to isolate the peptide ion of interest, fragment it via col-
lision induced dissociation (Cid), measure the masses of the resulting pep-
tide fragment ions, and record their masses and intensities in a new mass 
spectrum. this mass spectrum of fragment ions is called a tandem mass 
spectrum (MS/MS) or MS2 spectrum. an MS2 spectrum contains all of the 
information necessary to identify the peptide that produced the spectrum.

there are two main methods for matching a peptide to an MS2 spectrum. 
in 1994, eng et al., reported in a seminal publication, a computer algorithm 
to match the peptide MS2 spectrum to protein amino acid sequences present 
in a database.6 this method, known as database searching, is the most often 
used algorithmic method in the field of shotgun proteomics. independently, 
once a peptide-spectrum match has been confidently made, it can be stored 
in a spectral library and used for rapid identification of MS2 spectra that 
are produced by the same peptide in many different samples.7 this spectral 
library searching concept has recently emerged as an alternative to the tradi-
tional protein sequence database search method. the spectral library search 
concept significantly differs from database searching in two ways: (a) the 
method does not rely on the presence of a protein amino acid sequence data-
base, and (b) the method is several orders of magnitude faster at identifying 
experimental MS/MS when compared to a traditional database search. in this 
chapter we will introduce the basic concept of peptide-spectrum matching 
(pSM) using the MyriMatch database search engine8 as an example.

the importance of pSM algorithms to the field of shotgun proteomics 
is unarguable. the use of pMF method has largely been discontinued by 
the proteomics community as we collectively moved into the post-genome 
high-throughput sequencing era. this is mainly because the pMF method 
requires isolation of pure proteins from the biological matrix, which is a very 
time consuming task. hence, proteomics researchers have adopted auto-
mated MS/MS-based shotgun proteomics methods for routine analysis. For 
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example, in 2011, nagarjuna et al. reported the detection of ∼160 K unique 
peptides belonging to ∼10 K distinct human proteins in a cell lysate when 
using MS/MS-based shotgun proteomics.9 this type of deep proteomic anal-
ysis has become the method of choice for characterizing both simple and 
complex biological matrices. this is often accomplished using modern, fast 
scanning, high resolution, mass spectrometers that have unprecedented 
sampling speed and they often produce thousands to millions of MS2 spec-
tra per data set. Manually interrogating these spectra for peptide identifica-
tion is impossible and proper peptide-spectrum matching is the first key step 
towards a successful proteomic analysis.

3.2   Protein Sequence Databases
all database search algorithms function by matching the MS2 spectra to 
protein amino acid sequences present in a database. One of the most basic 
requirements to obtain a correct peptide sequence match to an MS2 spec-
trum is, that the sequence of the peptide that generated the experimental 
spectrum must be in the protein sequence database. For example, consider 
the peptide fragmentation spectrum match shown in Figure 3.1. if the pep-
tide sequence “GeMFileKGeYpr” that produced the MS2 spectrum shown 
in Figure 3.1 is not present in the database, the database search algorithms 
will either fail to match the MS/MS or produce an inferior (and incorrect) 
match to another homologous peptide sequence. hence, completeness of 
the protein sequence database is paramount to the success of peptide-spec-
trum matching and therefore to the production of accurate peptide identifi-
cation search results.

there are a wide variety of protein sequence databases that are freely 
available over the internet. these databases are generally divided into two 
distinct categories: repositories or curated. table 3.1 presents some of the 
well-used sequence repositories for proteomics research. repository-style 
databases are typically derived by in silico translation of an organism’s refer-
ence genome (or transcriptome) into the corresponding proteome.10 a major 
portion of the sequence predictions contained in these databases have not 
been verified to be present in a living system. Genpept is a good example of 
a pure sequence repository-style database as it is a conglomerate of genomic 
sequence translations obtained from multiple institutions.11 the sequence 
redundancy present in Genpept type databases unnecessarily increases the 
computational time of the search algorithms and also produces redundant 
protein identifications. to remedy this, some of the repository-style data-
bases like refSeq provide a non-redundant collection of sequences for a 
limited number of species. however, these non-redundant, repository-style, 
sequence databases still contain vast numbers of unverified entries.

Curated protein sequence databases are derived from the repository-style 
databases by consolidating and compiling multiple reports for any given 
protein into a single entry, thereby vastly reducing the sequence redundancy 
in the database. next, a team of curation experts comb through the entries 
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and cull any protein sequences that do not have prior evidence in the liter-
ature. these experts also synthesize the biological and pathological signifi-
cance of each protein sequence and annotate the corresponding entry, which 
increases the quality and reliability of the database.12 the protein informa-
tion resource database (pir-pSd), created in 1984, is the oldest example of 

Table 3.1    list of protein Sequence databases. the listed databases are available, 
over the internet, free-of-charge.

database name Website

ensembl http://useast.ensembl.org/index.html
Genpept http://www.ncbi.nlm.nih.gov/protein
proteininformation resource (pir) http://pir.georgetown.edu
reference Sequence (refSeq) http://www.ncbi.nlm.nih.gov/refseq
Swissprot http://web.expasy.org/docs/swiss-prot_ 

guideline.html
uniprotKB/treMBl http://web.expasy.org/docs/swiss-prot_ 

guideline.html

Figure 3.1    an idealized Cid spectrum. Collision induced dissociation (Cid) of  
peptide with sequence “GeMFileKGeYpr” results in breaking of the 
peptide between amide bonds. each cleavage produces a pair of frag-
ment ions (called b-ion and y-ion) that are recorded in the mass spec-
trum. Complete dissociation of peptide will produce fragment ions 
from the entire backbone.
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a curated database, and focuses on classification via protein families with 
annotations including genetic, functional and structural data. Swissprot 
is widely regarded as an excellent curated protein sequence database con-
taining hundreds of thousands of non-redundant entries, which are anno-
tated with evidence of experimental confirmation of structure, function, and 
post-translational modifications.13

in certain situations, like initial exploration of a sample’s proteome, both 
the completeness of the repository-style databases and the accuracy of curated 
databases are desired. as such, uniprotKB sequence database provides the 
best of both worlds for a large number of organisms. For any organism, this 
database contains the corresponding Swissprot entries (curated) and treMBl 
entries (translated). Further efforts were made to reduce the redundancy of 
uniprotKB by combining homologous sequences and sub-fragments into a 
separate uniref database. the uniprotKB and uniref databases are recom-
mended as the best choices to maximize the protein identifications gleamed 
during the initial explorations of a sample set’s proteome.

establishing a reference protein sequence database is always the first, 
and deterministic, step of any proteomics experiment. hence, the desired 
end result of the experiment must always be considered when establishing 
an experiment’s reference database. For example, if a researcher wishes to 
analyze cancer proteomics data to identify oncogenic mutations, fusions, or 
alternate protein isoforms, none of the existing public reference databases 
would suffice. this is because an organism’s protein sequence database is 
derived from a reference genome, which in turn is built using only a handful 
of representative subjects. hence, the resulting reference protein sequence 
database will not represent the sequence diversity that exists in individuals 
or populations or various pathological conditions (like cancer). For these 
experiments where a standard proteome does not suffice, a database of sam-
ple-specific protein sequences from rna-seq transcriptomic data is collected 
from the same sample. this approach is explained in Chapter 16.

3.3   Overview of Shotgun Proteomics Method
the MS2 spectra that are generated from peptides are the basic, low-level, 
data in a shotgun proteomics experiment. however, native proteins assume 
higher order structures (tertiary and quaternary) and these intact proteins are 
not readily amenable for mass spectrometric analysis. hence, the first step of 
proteomic analysis via MS/MS starts by denaturing the proteins. a variety of 
physiochemical methods exist for protein denaturation and all of them leave 
the protein backbone intact while disrupting the higher order structures. 
denatured proteins are highly cross-linked because of intact cysteine–cyste-
ine disulfide bridges. these bridges are reduced and alkylated, resulting in 
unfurling of the protein to its primary structure. at this juncture, a protein 
can contains hundreds to thousands of amino acids that are linearly arranged 
like pearls on a string. these primary protein sequences contain anywhere 
between tens of amino acids (like proinsulin) to a few thousand amino acids 
(like thyroglobulin or titin). the proteins are enzymatically digested, with 
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proteolytic enzymes like trypsin, chymotrypsin, or endoproteinase GluC, to 
produce smaller and predictable peptides. trypsin is universally preferred 
because it cleaves very specifically after the arginine and lysine amino acids, 
leaving the cleaved peptide with at least two proton accepting sites, one at 
each terminus. this makes the tryptic peptides more amenable for fragmen-
tation analysis with a mass spectrometer.

a peptide analysis via tandem mass spectrometry moves through three 
stages. First, peptides need to be ionized in order for the mass spectrometer 
to analyze them. there are two widely used methods for ionizing biological 
macromolecules like peptides. the matrix assisted laser desorption ioniza-
tion (Maldi) method mixes the peptide with a proton donor solid matrix, 
which is excited using a laser, resulting in the charging of the peptides. the 
electrospray ionization (eSi) method encapsulates peptides in liquid droplets 
and ionizes them by applying ultra-high-voltage, which results in columbic 
explosion-mediated charge transfer to the peptides. next, charged peptides 
are introduced in to the mass spectrometer and the mass to charge (m/z) ratio 
of each peptide ion and its intensity are measured in a mass spectrum (MS). 
a variety of mass spectrometers have been developed for this purpose and 
their discussion is out of scope for this chapter. Finally, each peptide ion is 
selected by the mass spectrometer and fragmented using a variety of dissoci-
ation methods. the resulting “product ions” are analyzed by the mass spec-
trometer and their m/z ratios and intensities are recorded as a tandem mass 
spectrum (MS2 spectrum). each MS2 spectrum contains all of the informa-
tion that is needed to successfully identify the peptide.

3.4   Collision Induced Dissociation Fragments 
Peptides in Predictable Ways

it is not possible to understand the concept of peptide identification with-
out understanding the concept of peptide fragmentation. Collision induced 
dissociation (Cid) is one of the most basic and popular methods employed 
by the mass spectrometers in order to obtain fragment level information 
on the peptides. this method accelerates a peptide ion with a constant 
energy and impacts it against a wall of inert gas. during this collision, the 
kinetic energy of the peptide is converted into internal energy. this internal 
energy quickly localizes to the amide bonds that bind the amino acids of 
the peptide together and breaks them. this results in the generation of a 
pair of fragment ions that are recorded in the MS2 spectrum. For example, 
consider the peptide “GeMFileKGeYpr” shown in Figure 3.1. a single Cid 
event can break the bond between the first two amino acids and generate 
two fragments (b1 and y12) (Figure 3.1). B-ions are formed when protons 
transfer to the n-terminal side of the cleavage; y-ions are formed when the 
proton migrates to the C-terminal side of the cleavage. thus, the b1 frag-
ment will have the amino acid glycine and the y12 fragment will have the rest 
of amino acids eMFileKGeYpr. Both of these ions will be analyzed by the 
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mass spectrometer and their m/z ratios and intensities will be recorded in 
the MS2 spectrum. likewise, another Cid event can break the bond between 
4th and 5th amino acids (from n-terminal). this will generate a b4 and y9 
ion pair (Figure 3.1). Because a peptide often has multiple copies and each 
copy can break at any of the amide bonds, the Cid process generates a series 
of b- and y-masses for each peptide (Figure 3.1). these mass ladders have all 
the information that is necessary for identifying the peptide that produced 
the MS2 spectrum. For example, if we subtract the masses of b2 and b1 ions, 
we obtain the mass of glutamic acid (e), which is the second amino acid in 
the peptide (from n-terminal). likewise, subtracting the mass of b5 from 
b4 mass would result in the mass of isoleucine (i), which is the 5th amino 
acid in the peptide backbone (from n-terminal). hence, it is conceivable to 
de novo sequence the peptide from the MS2 spectrum given an amino acid 
mass table and a calculator, as described in the previous chapter. however, 
real life MS2 spectra are far more complex than the idealized spectra shown 
in Figure 3.1. real life spectra often has noise peaks and missing fragment 
ions. the b-ions and y-ions can lose ammonia and water, which introduces 
mass shifts. amino acids in peptides may also have expected and unexpected 
post-translational modifications that alter the fragmentation patterns and 
mass ladders. Finally, several alternative dissociation strategies like electron 
transfer dissociation (etd), electron capture dissociation (eCd), and infra-
red multiphoton dissociation (irMd). each of these dissociation modalities 
produces different types of fragment ions. hence, any peptide identification 
method must be aware of the fragmentation method type used.

3.5   Overview of Database Searching
the primary goal of the database search is to generate a list of most likely 
peptide matches given a tandem mass spectrum. Before the inception of 
high-throughput shotgun proteomics, peptide identification was a cumber-
some manual process.14 Mass spectrometrists would use de novo sequencing 
methods to derive a list of potential sequences for the peptide that would 
have generated the MS2 spectrum. these sequences were searched against 
the known proteome using BlaSt.15 the results must be thoroughly scru-
tinized to pick the most likely candidate. this type of manual analysis was 
error prone, time consuming, and not scalable. With the advent of modern, 
fast scanning, mass spectrometers, a typical shotgun proteomics data set 
can contain anywhere between thousands of MS2 spectra to millions, which 
rules out manual peptide identification and necessitates computerized  
peptide identification.

there are several database search software tools that facilitate the auto-
mated peptide identification. table 3.2 lists some commercial and open-
source database search engines that were available at the time of writing. 
Figure 3.2 shows the general inputs and the main steps of any database search 
engine. all search engines start with two main inputs: MS2 spectrum and list 
of protein sequences (Figure 3.2). the algorithm starts by deriving peptides 
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from the protein sequence database by following the specificity rules of the 
experimental protease that was used to digest the proteins. the list of pep-
tides is filtered using the measured precursor mass of the peptide that gen-
erated the query spectrum. the resulting candidates contain the sequence of 
the peptide that generated the spectrum. theoretical fragmentation spectra 

Table 3.2    list of database search software. the listed software were separated into 
commercial and open-source categories in alphabetical order.

Commercial software

Search engine Company

Byonic™ protein metrics
Mascot®* Matrix science
peaKS dB®* Bioinformatics solutions
phenyx™ GeneBio
proteinpilot™ applied biosystems
SeQueSt® thermo-fisher scientific
SpeCtruM Mill™ agilent

Open source software

Search engine Website

andromeda http://medusa.biochem.mpg.de/maxquant_doku/
Comet http://comet-ms.sourceforge.net/
Compass http://coon.chem.wisc.edu/content/software
Greylag http://greylag.org/
MS amanda http://ms.imp.ac.at/?goto=msamanda
MS-GFdB http://proteomics.ucsd.edu/Software/MSGFdB/
MyriMatch http://proteowizard.sourceforge.net/
pFind http://pfind.ict.ac.cn/
X!tandem http://www.thegpm.org/tandem/

Figure 3.2    General steps of database search. the peptide that produces the best 
match between the predicted and experimental MS/MS is reported as 
the match.
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are generated for each peptide by following the dissociation-specific frag-
mentation rules. For example, if Cid was utilized to generate the MS spec-
trum, a list of b-ions and y-ions are generated for each candidate peptide by 
following the rules described in Section 3.4. the predicted peak list of each 
candidate is compared to the observed peak list of the experimental spec-
trum and a match score is computed. the match score captures the degree 
of similarity between the predicted and observed spectrum. Candidates are 
ranked and sorted based on their scores, and the best scoring candidate pep-
tide is assigned to the spectrum.

the database search tools are highly automated and they require very min-
imal user intervention. a user need only spend a few minutes configuring the 
software with required inputs and search parameters. the software performs 
all computations with no additional user input and produces an output file 
containing the peptide matches for each input MS2 spectra and their respec-
tive match scores.

3.6   MyriMatch Database Search Engine
the database search workflow shown in Figure 3.2 is highly simplified and 
almost all traditional database search algorithms follow this workflow for 
peptide identification. however, there are several nuances in the peptide 
identification process and each database search software implements the 
workflow in a different fashion. We will describe this “peptide identifica-
tion via database searching” process using the MyriMatch8 database search 
engine as an example. the MyriMatch software requires three types of inputs: 
the raw MS/MS data, a protein sequence database, and a configuration file 
defining the parameter settings (Figure 3.3).

Figure 3.3    inputs and output of MyriMatch software. the software uses text-based 
open source and binary-based native formats for reading raw MS/MS 
and writing protein identification results. the .cfg file is a text-based 
file to configure various parameters (like enzyme, precursor mass tol-
erance, etc.).
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the software accepts the raw data in a variety of native file formats like 
raW (produced by thermo and Waters mass spectrometers), Yep, BaF, WiFF, 
Fid, and .d (produced by agilent and Bruker mass spectrometers). these 
instrument-specific file formats are binary in nature and the MS/MS data 
contained in these files are accessible only through special application pro-
gram interfaces (apis) supplied by the instrument manufacturers. this is 
problematic when sharing data across laboratories. to compensate for this, 
MyriMatch also accepts the MS/MS data in a variety of open source file for-
mats like mzMl16 (see Chapter 11 for more information about this and other 
pSi standards), mzXMl,17 MGF (Matrix Science, uK), mz5,18 and MS2.19 these 
formats are text-based and they were developed to facilitate free exchange of 
data between laboratories. users can utilize the msConvert20,21 software of 
the proteoWizard20,21 library to convert the native raw data files into open 
source formats by following the protocol listed in ref. 22.

MyriMatch accepts the protein sequences in FaSta formatted files (Fig-
ure 3.3). For convenience, all configuration parameters are accepted in a sin-
gle plain text formatted file. MyriMatch reads all the input files and starts 
by preprocessing the experimental MS2 spectra in order to prepare them 
for peptide-spectrum matching. processed MS/MS are matched to peptide 
sequences derived from the protein sequence database. MyriMatch writes 
the resulting raw peptide identifications to either a pepXMl23 formatted file 
or an mzidentMl24 formatted file.

3.6.1   Spectrum Preparation
real life MS2 spectra always contain noise peaks mixed with fragment ion 
peaks that arise due to the peptide dissociation. these noise peaks are sto-
chastic in nature and they interfere when the algorithm is matching the 
experimental spectrum with a predicted spectrum. this often results in pro-
ducing spurious matches between fragments, which results in the produc-
tion of false-positive peptide-spectrum matches (pSMs). hence, the noise 
peaks must be removed from spectra prior to any peak matching. however, 
noise removal must be carried out with great caution because indiscriminate 
removal of peaks would get rid of true fragment ion peaks along with noise 
peaks, which decreases peptide identification sensitivity. at the same time, 
a relaxed approach to noise removal will retain noise peaks behind, which 
compromises the peptide spectrum match scoring. MyriMatch software uses 
a tunable total ion current (tiC) filter for noise filtering. the software takes 
an MS2 spectrum and computes its tiC. the user instructs the software to 
retain a proportion of the computed tiC (default is 98%). the software then 
sorts the peaks in decreasing order of their intensity and retains the mini-
mum number of peaks that are required to meet the user specific tiC thresh-
old. this tunable tiC filter is very different from that of X!tandem (retains 
top 50 most intense peaks) or SeQueSt® (retains top 200 most intense 
peaks) and it was designed to scale with the number of peaks observed in a 
spectrum.
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3.6.2   Peptide Harvesting from Database
MyriMatch software uses two key pieces of information when selecting pep-
tides to compare against the experimental MS2 spectrum: digestion enzyme 
and peptide precursor mass. if trypsin was used for digestion, the software 
will only harvest tryptic peptides, which have an arginine or lysine residue 
at the C-terminus and an arginine or lysine residue immediately preceding 
its n-terminus. Knowledge has been built into the software to interpret the 
specificity of over 15 different enzymes used in proteomics studies and use 
that information to derive peptides from the protein sequence database. 
MyriMatch software can also be configured to ignore enzyme specificity and 
derive all possible peptides from the FaSta database. MyriMatch can also be 
instructed to clip the n-terminal methionine of the protein or ignore cleav-
age events on the n-terminal side of proline residues.

after the peptides are generated from the database, MyriMatch filters 
them to retain candidates whose calculated precursor masses match to that 
of the precursor mass that produced the MS2 spectrum, while accounting 
for the error in the measured precursor mass. the degree of the precursor 
mass tolerance (pMt) depends on the mass resolution of the mass spectrom-
eter that was used to measure the peptide precursor masses and acquire the 
spectrum. low resolution instruments like linear ion traps can accurately 
measure masses with an error of one part per thousand or higher. hence, the 
pMt is often set to either 2 or 3 daltons for these instruments. Medium res-
olution instruments like time-of-flight can measure masses with an error of 
one part per hundred thousand and the pMt for these types of instruments 
is often set to either 1 or 2 daltons. Fourier transform-based mass spectrom-
eters have the highest resolving power and these often can measure the pre-
cursor masses with an accuracy of one or sub-one part per million (ppm). 
the pMt for these instruments is typically set to 10 ppm. Setting the proper 
pMt is very important for generating accurate peptide spectrum matches. 
if the pMt is set too low for the experimental spectrum at hand, the correct 
peptide sequence derived from the database may not be compared to the 
experimental spectrum because its calculated mass does not match the mea-
sured precursor mass. On the other hand, if the pMt is set too wide, imma-
terial peptides get compared to the experimental spectrum, which increases 
the likelihood of matching the wrong peptide to the spectrum. Both of these 
scenarios will produce spurious peptide identifications, resulting in a higher 
false-positive rate and lower sensitivity and specificity of the peptide identi-
fication process.

3.6.3   Comparing Experimental MS/MS with Candidate 
Peptide Sequences

the peptide spectrum matching process has two main steps. First, the can-
didate peptide sequence derived from the FaSta database is converted into 
a theoretical spectrum, which is comprised of a list of m/z locations where 
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we would expect to see fragment ions in an experimental MS2 spectrum pro-
duced by the candidate peptide. next, peaks in the theoretical and exper-
imental spectrum are compared (allowing for a certain amount of mass 
error). Finally, a peptide spectrum match score is computed to quantify the 
degree of similarity between the predicted peaks and experimental peaks.

Over the years, many methods have been developed to generate predicted 
spectra from a peptide sequence. MyriMatch uses the most basic fragmen-
tation prediction model. if the software was configured to assume that the 
experimental spectra were produced with Cid fragmentation, MyriMatch 
software generates a list of b-ions and y-ions that would be produced by the 
given peptide sequence (as described in Section 3.4). if the experimental 
spectrum was generated by fragmenting either a singly charged or doubly 
charged peptide, the software will only predict singly charged fragments. if 
the experimental spectrum was generated from a higher charged peptide 
(≥3+), the software will predict multiple charge fragments. For instance, if 
the peptide was of 3+ charge state, the software will determine which side of 
the candidate sequence is more likely to take on the additional charge and 
leave the other side with single charge. One should note that the software 
does not predict the intensity of the theoretical fragment ions. this basic 
fragmentation model is used by almost all contemporary search engines, like 
X!tandem, SeQueSt®, and Mascot®. it should be noted that more sophisti-
cated fragmentation spectra predictors that can predict very accurate spectra, 
which mimic their experimental counterparts, do exist. For instance, meth-
ods encoded in the Mass analyzer25 software use a “mobile proton” kinetic 
model to generate predicted spectra that often mimic experimental MS2 
spectra,26 including the intensity of the fragments as well as not predicting 
fragments that are not likely to be observed. however, these sophisticated 
fragmentation models are very computationally intensive, which prevents 
them from being employed for routine use.

Once a predicted MS2 spectrum is generated for a candidate peptide 
sequence, it needs to be matched to the experimental spectrum and scored 
for its fit. numerous scoring algorithms have been developed over the 
years for this purpose. the most rudimentary method is known as “shared 
peak count” (SpC), which enumerates the number of matches between the 
experimental and predicted spectra. this number can be normalized to the 
total number of predicted peaks to generate a “percent peaks matched” 
metric. however, this method fails to account for experimental peaks that 
do not match as well as the intensity of the matched and non-matched 
experimental peaks. MyriMatch uses a tiered intensity-based scoring sys-
tem when matching experimental and predicted spectra. this method 
starts by segregating the filtered peaks in the experimental spectra into 
three intensity classes (high, medium, and low). these intensity classes dif-
fer in the number of peaks they contain such that the high intensity class 
holds the fewest and the medium and low intensity classes each hold dou-
ble the number of peaks in the next most intense class. this tiered-class sys-
tem allows rewarding peak matches based on their experimental intensity. 
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MyriMatch assumes that matching a peak from the high intense class is 
better than matching a peak from the low intense class and hence a high 
intense peak match should contribute more to the peptide score than a low 
intense peak match. Given a set of predicted peaks, the software marches 
through each predicted peak, computes whether the peak has been 
observed in the experimental spectrum, and if so, it records the intensity 
class of the matching experimental peak. a peptide spectrum match score 
is computed as the probability of observing the distribution of matched 
peaks’ intensity classes by random chance. the software uses a multivari-
ate hypergeometric (MVh) distribution to compute the score and reports 
the negative logarithm of the probability as match score.8 this scoring 
method produces high scores for candidate peptides that predominantly 
match the most intense peaks when compared to candidate peptides that 
match low intensity peaks. MyriMatch stores, sorts (by decreasing order of 
the match score), and reports the top five scoring candidate sequences for 
each experimental spectrum.

the fragment ion mass tolerance (FMt) has a large effect on the accuracy 
of the peptide match scoring. the FMt parameter defines the maximum 
distance (in m/z units) a predicted peak may be from its m/z location in the 
experimental spectrum. Similar to pMt, if the FMt was set to a narrow win-
dow, many of the predicted peaks might not match the experimental peaks. 
if this parameter is set too wide, random peaks in the experimental spectrum 
will match to the predicted peaks. Both of these scenarios would generate 
spurious matches between the predicted and experimental spectra, result-
ing in false positive peptide spectrum matches. Similar to that of pMt, the 
range of the FMt depends on the resolving power of the mass spectrometer 
that was employed to record the experimental spectrum. FMt is typically 
set to 0.5 m/z units for low-resolution mass spectrometers, 50–75 ppm for 
medium resolution mass spectrometers, and 10 ppm for high-resolution 
mass spectrometers.

unlike most database search engines, MyriMatch software computes an 
“mzFidelity” score that measures how well the predicted fragment ions 
match the experimental peaks in m/z space.8 this scoring metric assumes 
that the fragment mass errors (i.e. m/z difference between matched predicted 
and experimental peaks) are normally distributed with µ = 0 and σ = (FMt/2). 
the m/z error space between 0 and ±2 × σ is divided into three “mzFidelity” 
classes: narrow, medium, and wide. the m/z width of the narrow mzFidelity 
class is half that of the medium mzFidelity class, which is half that of the wide 
mzFidelity class. the ratio of class size to the total size of all classes is com-
puted and assigned as the probability of obtaining a random mass error of 
a particular mzFidelity class. this probability is 1/7 for the narrow class, 2/7 
for the medium class, and 4/7 for the wide class. next, MyriMatch attempts 
to find the closest matching experimental peak for each predicted peak. the 
mass errors between all matching peak pairs are computed and classified 
into the previously mentioned three mzFidelity classes. predicted peaks that 
fail to match any experimental peaks (within the FMt) are classified into a 
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separate mzFidelity class X. the probability to obtain a mismatch (i.e. class X 
match) by random chance is computed by dividing the total m/z peak space 
of the spectrum with the FMt window. the software uses a multinomial dis-
tribution to compute the probability that the distribution of mass errors and 
peak mismatches observed during the peak matching step may have occurred 
by random chance.8 the mzFidelity score rewards peptides whose predicted 
peaks match the experimental peaks with narrow mass error. the mzFidelity 
score of a peptide is also high if a majority of the predicted peaks for a can-
didate peptide sequence can be found in the experimental spectrum. Myri-
Match software reports the negative logarithm of the resulting probability as 
the “mzFidelity” score of the peptide spectrum match.

different search engines use different scoring methods as their primary 
scorers. the intensity-based MVh score is the primary scoring metric for 
MyriMatch. For SeQueSt®,6 cross-correlation score (XCorr) is the primary 
scoring metric. For X!tandem, the dot product-based hyperscore is the pri-
mary scoring metric.27,28 if we set aside the idiosyncrasies of these different 
scoring systems, all of them attempt to better estimate the quality of a pep-
tide spectrum match. hence, the principal scoring systems employed by the 
search engines is their most distinguishing feature.

in summary, the MyriMatch database search algorithm contains the fol-
lowing principal steps: the software generates candidate peptide sequences 
from a protein sequence database using the enzyme employed for diges-
tion and the precursor mass of the peptide that produced the experimen-
tal MS2 spectrum. next, the software predicts the fragmentation spectrum 
for each peptide and compares it with the experimental spectrum. peptide 
match scores are computed for each match, which evaluate the intensity of 
the matched peaks, fragment mass errors of peak matches, and the number 
of missed peak matches. peptide matches of the experimental spectrum are 
ranked from best to worst using the decreasing order of the principal scoring 
metric.

3.7   Accounting for Post-Translational Modifications 
During Database Search

protein post-translational modifications (ptMs) occur very commonly in bio-
logical samples. these ptMs are associated with several biological functions 
of the protein like folding, enzymatic activity, and protein degradation. ptMs 
introduce mass shifts in amino acids that host them. if a database search 
engine is not made aware of potential ptMs in the sample, the algorithm will 
use unmodified amino acid masses when calculating the predicted peaks of 
candidate peptides. this will produce predicted spectra whose peaks do not 
match that of experimental spectrum even though the correct candidate pep-
tide sequence was used to generate the predicted peak list. hence, database 
search engines must be instructed a priori about potential ptMs that may be 
present in the biological matrix.
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53Peptide Spectrum Matching via Database Search and Spectral Library Search

like most other database search tools, MyriMatch supports two types of 
ptMs: static and dynamic. a static modification is used to instruct the soft-
ware that a particular amino acid is always modified with a certain ptM (i.e. 
the amino acid is not present in the sample in unmodified form). Carbami-
domethylation of cysteine is an example static modification. this modification 
is a byproduct of the reduction and alkylation process of the cysteine–cyste-
ine disulfide bridges. this ptM introduces a mass shift of +57 daltons in all 
cysteine residues that are present in any protein, which increases the residue 
mass from 103 daltons to 160 daltons. When instructed properly, the Myri-
Match software would use the modified mass of 160 daltons for all cysteine 
residues that are encountered in the peptide spectrum matching process. if 
this ptM is present in the sample and MyriMatch was not made aware of this 
ptM, the software would generate incorrect predicted spectra for all cysteine 
containing peptides, which prevents their identification.

in contrast to static ptMs, dynamic ptMs are considered by the Myri-
Match software as potential modifications to the database residues (i.e. the 
residue may be present in the biological matrix in either modified or unmod-
ified form). When an amino acid with a dynamic modification is present in 
the sequence, MyriMatch software will match all possible combination of the 
modified and unmodified peptide forms against the experimental spectra. 
identification of phosphorylation is a textbook example of a dynamic ptM 
search. protein phosphorylation adds a hpO3 moiety (mass shift of ∼80 dal-
tons) to serine, threonine, and tyrosine residues. this ptM is only present on 
residues located in key catalytic sites of the protein. hence, phosphorylation 
has to be specified as a dynamic modification of ∼80 daltons, occurring on 
the aforementioned amino acids. it should be noted that the dynamic ptMs 
exponentially increase the search space and search times. this is because, 
unlike static ptMs, MyriMatch needs to search multiple forms of a peptide 
that can harbor a dynamic ptM. even though the dynamic ptMs can cause 
exponential increase in search times, MyriMatch algorithm doesn’t impose 
upper limits on the number and variety of dynamic ptMs that are consid-
ered during the database search, which is in contrast to other search engines 
like SeQueSt®. in other search engines, static and dynamic ptMs are often 
referred to as fixed and variable modifications, respectively. More detailed 
information about dealing with ptMs can be found in Chapter 6.

3.8   Reporting of Database Search Peptide 
Identifications

Modern high-throughput shotgun proteomics methods can generate tens 
of thousands of MS2 spectra for each lC-MS/MS experiment. MyriMatch 
database search software searches all of these spectra in one run and stores, 
in memory, the top five best matching peptides for each spectrum. these 
peptide spectrum matches must be written to an output in machine read-
able format. this enables downstream peptide filtering (see Chapter 4) and 
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protein inference (Chapter 5) based on the MyriMatch search results. 
MyriMatch is capable of producing the peptide identifications of each 
raw file in text-based pepXMl or mzidentMl format. Figure 3.4 shows an 
excerpt of an mzidentMl file from a sample MyriMatch database search. 
a detailed description of mzidentMl format is out of scope here. readers 
interested in understanding the mzidentMl XMl schema are encouraged 
to consult Chapter 11 and the appropriate publication.24 the file starts by 
describing the analysis software used for the peptide spectrum matching 
(XMl element “analysisSoftwarelist” in Figure 3.4). next, the list of protein 
sequences and their corresponding candidate peptides are described using 
the “SequenceCollection” element (Figure 3.4). the “peptideevidence” ele-
ment in the “SequenceCollection” links the generated candidate peptides to 
their corresponding parent protein sequences that are present in the FaSta 
file. after this, the complete configuration parameters of the search engine 
are described using the “analysisCollection” and “analysisprotocolCollec-
tion” elements. next, each peptide spectrum match is described using the 
“Spectrumidentificationitem” element (Figure 3.4). each pSM description 
contains details of the precursor mass of the experimental MS2 spectrum, 
charge state of the precursor, rank of the peptide match, and associated 
scoring metrics (Figure 3.4). the top five ranking pSMs of each spectrum are 

Figure 3.4    Sample mzidentMl output of MyriMatch database search. Complete 
details of the mzidentMl format are listed in ref. 24. excerpts of  
relevant elements from a sample database search are presented here.
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55Peptide Spectrum Matching via Database Search and Spectral Library Search

listed by the decreasing order of their MVh score (Figure 3.4) and grouped 
together using the “Spectrumidentificationresult” element, which contains 
the mass spectrometer assigned native identifier of the MS/MS spectrum 
(Figure 3.4). this mzidentMl results file is used by the downstream process-
ing and reporting of peptide and protein identifications.

3.9   Spectral Library Search Concept
Shotgun proteomics and database searching has been routinely employed 
by hundreds of laboratories across the world for proteome characterization 
studies. this wide-spread use of the technique has identified two critical 
weaknesses. First, repeated identification of the same peptides by protein 
sequence database searches is time consuming. Second, searching for many 
(>2) post-translational modifications by sequence database searching is 
impractical due to the exponential relationship between the search space 
and the number of ptMs in the search query. this has led to the develop-
ment of peptide spectral library searching as a viable alternative to protein 
sequence database searching. this method starts by collating the existing 
peptide spectrum matches into a searchable peptide spectral library. peptide 
MS2 spectra from a new experiment are identified by matching them against 
the MS2 spectra present in the library. this method has two key advantages. 
First, it efficiently identifies an experimental MS2 spectrum that has a rep-
resentative MS2 spectrum in the library because it bypasses the time con-
suming process of harvesting candidate peptides from a protein sequence 
database and generating predicted MS2 spectra for correlating against the 
experimental MS2 spectrum. this improved efficiency has led to develop-
ment of spectral libraries that are specialized for identifying ptMs.29–31 
Second, the library MS2 spectra are more representative of the experimen-
tal MS2 spectrum, when compared to the predicted MS2 spectra generated 
by the sequence database search for match scoring. For example, spectral 
library MS2 spectra reflect the actual fragmentation pattern observed for 
each peptide (including neutral losses and internal fragmentation) and their 
corresponding actual fragment ion intensities. in contrast, theoretical spec-
tra predicted by the protein sequence database searches are often limited to 
b-ions and y-ions at fixed intensities. this allows the match scorers to use the 
fragment ion intensity information when evaluating the goodness of match 
between an experimental MS2 spectrum and a library MS2 spectrum. the 
additional intensity information increases the accuracy of the match scor-
ers, decreases the false discovery rates, and increases the peptide identifica-
tion sensitivity.32,33 despite these tremendous advantages of spectral library 
searching, the method suffers from a significant achilles heel. For a spectral 
library search to successfully identify an MS2 spectrum, it needs a represen-
tative MS2 spectrum in the library. hence, experimental peptides and their 
ptMs that are not represented by the spectral library will go unidentified. 
this shortcoming has held back the wide spread application of the spectral 
library search as a frontline tool in proteomics.
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3.10   Peptide Spectral Libraries
the choice of spectral library is a more important step for a spectral library 
search when compared to the choice of protein sequence database to the 
database search. this is because all major protein sequence databases 
(shown in table 3.1) are fairly complete and choosing any of them would 
still result in identification of a majority of peptides present in the sample. 
in contrast, peptide spectral libraries are relatively young, first suggested in 
the literature in 1998,7 and not curated on a large scale until 2006.32 Spectral 
library searching found its origins in analytical chemistry labs focused on 
small molecules,34–36 with the earliest publication on computer searching of 
mass spectral data published in 1971.37 however, not until the onset of more 
refined liquid chromatography systems and fast scanning mass spectrome-
ters, could spectral library searching be considered possible for proteomics 
data. another hurdle to the success of spectral libraries was the accrual and 
compilation of large numbers of high quality MS2 spectra to create a useful 
library. the recent explosion of proteomic data being generated and fed into 
public repositories coupled to the standardization of—and the capability to 
interconvert data—formats have now made useful and functional spectral 
libraries a reality.38

a proteomics experiment has a wide variety of parameters that deter-
mine the types of peptides and MS2 spectra observed. For instance, utiliz-
ing chymotrypsin as a proteolytic enzyme, instead of trypsin, would result 
in observing a different set of peptides. Blocking the reduced cysteine amino 
acid residues with iodoacetic acid, instead of iodoacetamide, would result 
in observing a different mass shift in cysteine-containing peptides. employ-
ing etd to fragment the peptides, instead of Cid, would result in obtain-
ing different types of fragment ions in the resulting MS2 spectra. even when 
using Cid fragmentation, employing different energies to fragment peptides 
will result in observing slightly different fragmentation patterns and ions 
in the resulting MS2 spectra. Because of this complex nature of proteomics 
experiments, it is very important that the spectral libraries contain MS2 spec-
tra obtained from multiple sources, including sample preparation, instru-
mentation, and data acquisition. a thorough description of spectral library 
construction is out of scope for this chapter. however, an avid reader could 
consult the following references to understand the details of constructing a 
comprehensive peptide MS2 spectral library.30,38–40

in general, the process of spectral library building starts with a large col-
lection of high quality peptide-spectrum matches that have been obtained 
by a protein sequence database search. these pSMs are imported into a raw 
spectral library, which is processed to denoise the MS2 spectra of the pSMs 
and merge redundant pSMs into a single entry. a “consensus MS2 spectrum” 
is generated for each non-redundant pSM entry by merging its replicate MS2 
spectra. this MS2 spectral merging process amplifies the signal of the actual 
fragment ion peaks while suppressing the intensity of random noise peaks. 
this results in a high signal-to-noise ratio for the fragment ion peaks that 
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57Peptide Spectrum Matching via Database Search and Spectral Library Search

are present in the consensus MS2 spectrum for the pSM entry in the library. 
Spectral library search engines match these consensus MS2 spectra to the 
experimental MS2 spectra in order to identify the peptides present in the 
sample.

in contrast to protein sequence databases, there are very few compre-
hensive, publicly available, peptide MS2 spectral libraries (table 3.3). the 
national institute of Standards and technology (niSt) issued a comprehen-
sive peptide MS2 spectral library for a variety of organisms, including Homo 
sapiens. this library contains MS2 spectra derived from a variety of mass 
spectrometers (ion trap-based Cid fragmentation and quadrupole-based 
hCd fragmentation). niSt provides these libraries in both aSCii text format 
(MSp file) and niSt MS Search binary format. it also includes peptides with a 
variety of sample handling and in vivo post-translational modifications (like 
carbamidomethylation of cysteine, oxidation of methionine, phosphoryla-
tion of serine, threonine, and tyrosine residues, etc.). the Global proteome 
Machine (GpM) issues a number of spectral libraries covering a large number  
of organisms (table 3.3). the GpM provides the annotated spectrum librar-
ies (aSls) in two different formats: text-based Mascot Generic Format (MGF) 
and binary-based X!hunter41 library Format (hlF). the GpM libraries were 
created by using high confident pSMs (expectation values < 0.0001) derived 
from the X!tandem28 search engine configured to process a variety of public 
data sets obtained from the following sources: proteomeXchange,42 MaS-
SiVe, peptideatlas,43 proteomicsdB,44 and the Chorus project. datasets that 
are made available from large proteome characterization projects, like the 
Clinical proteomic tumor analysis Consortium (CptaC) and the human 
proteome atlas, are also processed and included in the spectral library. One 
of the key differences between the GpM and niSt MS2 spectral libraries is 
that the GpM libraries store only the top 20 most intense fragment ion peaks 
for a particular MS2 spectrum. however, the niSt library attempts to capture 
all relevant fragment ions when representing the peptide with a consensus 
MS2 library spectrum. Both niSt and GpM libraries include MS2 spectra of 
both tryptic and non-tryptic peptides. however, it must be noted that trypsin 

Table 3.3    publicly available peptide MS2 Spectral libraries. Most comprehensive 
MS2 spectral libraries are listed.

Spectral 
library Website

# of 
organisms human?

# of human 
peptides

# of human 
MS2 spectra

niSt peptide 
spectral 
library

http://chemdata.
nist.gov/ 
dokuwiki/ 
doku.php?id= 
peptidew:start

10 Yes 718 720 2 144 310

Global  
proteome 
machine

ftp://ftp.thegpm.
org/projects/
xhunter/libs/

145 Yes 270 345 1 002 326
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is the most frequently used enzyme in all proteomics experiments. hence, 
a majority of the peptides that are present in both niSt and GpM spectral 
library are tryptic in nature. a spectral library search is not recommended 
when the proteomics experiment at hand is using a non-traditional enzyme 
for obtaining peptides.

3.11   Overview of Spectral Library Searching
the primary goal of spectral library searching is rapid identification of pep-
tides given a set of tandem mass spectra. there are several open-source spec-
tral library search software tools that facilitate rapid and automated peptide 
identification. table 3.4 shows a list of open-source spectral library search 
engines that were available at the time of writing this chapter. Figure 3.5 
shows the general inputs and the main steps of any spectral library search 
engine. all spectral library search engines start with two main inputs: MS2 
spectrum and a peptide MS2 spectral library. the algorithm starts with an 
optional step of deriving potential peptide spectrum matches from the MS2 
library by using the specificity rules of the experimental protease that was 
used to digest the proteins (Figure 3.5). the list of the library peptide spec-
trum matches are filtered using the measured precursor mass of the peptide 
that generated the experimental MS2 spectrum. the library MS2 spectra of 
the candidate peptides are correlated with the experimental MS2 spectrum. 
a match score is computed that captures the similarity between the frag-
ment ions peaks present in the library MS2 spectrum and the experimen-
tal MS2 spectrum. Candidates are ranked and sorted based on their scores, 
and the best scoring candidate peptide (from the library) is assigned to the 
spectrum.

all spectral library search tools are highly automated and they require very 
minimal user intervention, as do database search engines. a user would con-
figure the software with required inputs and search parameters. the soft-
ware performs all computations and produces an output file containing the 
peptide spectrum matches for each input MS2 spectrum and their respective 
match scores.

Table 3.4    list of spectral library search software in alphabetical order.

Search engine Website

BiblioSpec https://skyline.gs.washington.edu/labkey/project/home/ 
software/BiblioSpec/begin.view?

niSta MSpepSearch http://chemdata.nist.gov/dokuwiki/doku.
php?id=peptidew:mspepsearch

pepitome http://proteowizard.sourceforge.net/
SpectraSt http://www.peptideatlas.org/spectrast/
tremolo http://proteomics.ucsd.edu/Software/tremolo/
X!hunter http://thegpm.org/hunter/index.html

a niSt stands for the national institutes of Standards and technology.
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3.12   Pepitome Spectral Library Search Engine
the general spectral library search schema shown in Figure 3.5 has been over-
simplified for didactic purposes. each spectral library search engine shown 
in table 3.4 uses different heuristics to filter the spectral library in order to 
obtain the candidate pSMs for comparison. each search engine also imple-
ments spectrum–spectrum match scoring systems somewhat differently. We 
will describe the “peptide identification via spectral library” process using 
the pepitome45 spectral library search engine as an example. the pepitome 
software requires four types of inputs: raw MS/MS data, a curated peptide 
MS2 spectral library, a protein sequence database that contains the peptide 
represented by the library, and a configuration file defining the parameter 
settings (Figure 3.6).

like MyriMatch database search software, pepitome spectral library 
search software accepts the raw MS2 data in a variety of binary-based native 
and text-based open source file formats (see second paragraph of Section 
3.6 for details). the software accepts the spectral libraries in niSt’s MSp 
format or SpectraSt’s .SptXt format. Both of these formats are text-based 
and they contain all the information (like peptide sequence, potential 
ptMs, precursor mass, precursor charge, and fragment ion peak list) that 
is needed to successfully perform spectrum–spectrum matching. the soft-
ware also needs a list of protein sequences, in FaSta format, whose pep-
tides are represented by the spectral library. pepitome software reads all 
the input files and starts preprocessing the experimental MS2 spectra in 
order to prepare them for spectrum–spectrum matching. processed MS2 
spectra are matched to the peptide spectra present in the library. pepitome 
writes the resulting raw peptide identifications to a pepXMl23 formatted 
file.

Figure 3.5    General steps of spectral library search. the peptide whose library MS2 
spectrum best matches the experimental MS2 spectrum is reported as 
the match. digestion enzyme filtering step is optional.
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3.12.1   Experimental MS2 Spectrum Preparation
experimental MS2 spectra contain noise peaks mixed with true fragment 
ion peaks. these noise peaks are stochastic in nature and they are not rep-
resented in the library spectra (filtered during the “consensus MS2 spec-
trum” creation process). hence, the noise peaks must be removed from the 
experimental spectrum in order to avoid spurious matches between experi-
mental fragments and library fragments, which results in the production of 
false-positive spectrum–spectrum matches (SSMs). pepitome uses either an 
adjustable tiC-based filter or a rigid peak count filter to remove noise peaks 
from experimental MS2 spectra. the tiC-based filter is described in the spec-
trum preparation subsection in Section 3.6. in contrast to the tiC-based filter, 
the peak count filter accepts only the n (user specified) most intense ions 
from the experimental MS2 spectrum. after preprocessing, the intensities 
of the remaining fragment ions in the spectrum are replaced by their ranks, 
where the most intense ion receives the lowest rank and the least intense ion 
receives the highest rank.

3.12.2   Library Spectrum Harvesting and Spectrum–Spectrum 
Matching

For each experimental MS2 spectrum, pepitome loads into memory all 
library peptides that match the experimental precursor mass within a 
user-defined pMt window. the software applies identical MS2 spectrum pre-
processing steps to the library spectra. next, peak m/z positions in the library 
spectrum are matched to the peak m/z locations in the experimental MS/MS 
using a user-defined FMt window. if multiple library peaks match a single 

Figure 3.6    input and output of pepitome software. the software can read exper-
imental MS/MS from either text-based open source formats or bina-
ry-based native formats. the FaSta file contains protein sequences 
whose peptides are in the spectral library. the .cfg is a text-based file 
to configure various search parameters (like enzyme, precursor mass 
tolerance, fragment mass tolerance, etc.).
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experimental peak or vice versa, the peak pair with the lowest m/z error is 
considered as a match.

pepitome computes three orthogonal scores to estimate the quality of a 
spectrum–spectrum match (SSM): a hypergeometric test (hGt), a Kendall τ 
statistic, and an evaluation of m/z fidelity. Given a pair of library and exper-
imental MS2 spectra, the hGt score estimates the probability of obtaining 
more than the observed number of peak matches by random chance, which 
follows a hypergeometric distribution.45 the Kendall τ score measures the 
correlation between the intensity ranks of matched peaks between the spec-
tra. the raw Kendall τ score ranges from −1 (inverse correlation) to 1 (direct 
correlation) and it is converted into a probability of obtaining better than the 
observed intensity correlation by random chance, which is approximated45 
using a normal distribution. like MyriMatch sequence database search 
engine, pepitome uses the mzFidelity46 score to estimate random probabil-
ity of obtaining the observed mass errors between the m/z locations of the 
matched peaks. the software combines the hGt and Kendall τ scores, using 
Fisher’s Method, into a single ranking score. all scores are transformed into 
negative logarithmic domain, and the combined score is used as a primary 
metric for sorting the library matches, with mzFidelity acting as a tie-breaker.

different spectral library search engines use different scoring methods 
as their primary scorers. X!hunter41 produces expectation values from dot 
product scores, between experimental and library MS2 spectra, to infer sta-
tistical significance of the match. SpectraSt derives a discriminant function 
that fuses the dot product, delta dot, and dot bias. delta dot score attempts 
to quantify the significance of the top ranking match by computing the dif-
ference of the dot products of first and second best library match. a small 
delta dot score indicates that the experimental MS2 spectrum did not have 
enough information content to produce a distinguished library match. this 
could be due to either too few peaks, or too many noise peaks, or multiple 
peptides that are capable of producing similar MS2 spectra, like that of sin-
gly phosphorylated peptides with multiple sites next to each other. in all of 
these cases, the library search failed to detect a single, best, match. the dot 
bias score is a measure of how much of the dot product is “biased” toward 
a few dominating intense peaks.32 SpectraSt uses the discriminant score to 
rank the spectrum–spectrum matches for each experimental MS2 spectrum. 
pepitome sidesteps the problems associated with dot product scoring by 
using rank-based correlation metrics.45

the precursor mass tolerance (pMt) and fragment ion mass tolerance 
(FMt) are the two most important tunable parameters for pepitome spectral 
library search engine. as in database searching, the degree of pMt depends 
on the mass resolution of the mass spectrometer that was utilized to acquire 
the experimental MS2 spectra. Setting a narrow pMt would remove the 
true library pSMs from entering the spectrum–spectrum matching process. 
On the other hand, setting a wider tolerance will increase the number of 
candidate library pSMs that are being compared to the experimental MS2 
spectra. in both of these scenarios this parameter would generate spurious 
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identifications and increase the false discovery rate of the peptide identifi-
cation process. pepitome uses the FMt when matching the peaks between 
experimental and library MS2 spectra. Similar to pMt, if the FMt was set to 
a narrow m/z window, many of the experimental fragment ion peaks will go 
unmatched to the fragment ion peaks in the library MS2 spectrum. if FMt 
was set to a wide m/z, random peaks in the experimental spectrum will match 
to the library peaks. pepitome uses the same pMt and FMt windows as that 
of MyriMatch database search software. the guidelines for setting these 
parameters are described in greater detail in the subsections titled “Peptide 
Harvesting from Database” and “Comparing Experimental MS/MS with Candi-
date Peptide Sequences” in Section 3.6.

3.12.3   Results Reporting
Modern proteomics datasets contain thousands of MS2 spectra in each 
lC-MS/MS experiment. the pepitome spectral library search engine reads 
all experimental MS2 spectra in each raw data file, matches them against the 
library MS2 spectra, and stores the top five best matching library peptides 
for each spectrum. these (library) peptide spectrum matches are written 
to a machine readable, text-based, pepXMl23 formatted file. the pSMs are 
reported as if they are generated by a sequence database search (with peptide 
sequence of each match, protein sequence corresponding to each peptide 
match, search scores of the pSM). this enables the smooth processing of 
the library search results with downstream post-processing algorithms like 
idpicker.47,48

in summary, the pepitome spectral library search algorithm contains 
the following principal steps: the software generates candidate peptide- 
spectrum matches from a MS2 spectral library using the precursor mass of 
the peptide that produced the experimental MS2 spectrum. next, the soft-
ware compares the library MS2 spectra to the experimental MS2 spectrum. 
Spectrum–spectrum match scores are computed for each match, which 
evaluate the intensity of the matched peaks and fragment mass errors 
of peak matches. library peptide matches to the experimental spectrum 
are ranked from best to worst using the decreasing order of the principal  
scoring metric.

3.13   Search Results Vary Between Various Database 
Search Engines and Different Peptide 
Identification Search Strategies

table 3.2 lists a variety of database search engines that are available for use. 
all of these search engines have their own heuristics and approaches to 
peptide spectrum matching. however, a majority of the consequential dif-
ferences between these search engines lay in the following five areas: spec-
trum preprocessing, peptide generation, candidate selection, predicted MS2 
spectrum generation, and peptide spectrum match scoring. Because there is 
no single accepted “best” solution to generating peptide spectrum matches, 
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each software tool produces a slightly different sets of peptide spectrum 
matches even if they all start from the same set of spectra and FaSta protein 
sequence database. For example, in a recent study, only 73% of the reported 
peptide identifications were observed by both Mascot® and SeQueSt®, con-
figured to search the same set of MS/MS spectra against the same protein 
sequence database.49 another comparative study between MyriMatch, X!tan-
dem, and SeQueSt® showed that 13% of peptides were identified with Myri-
Match only, 10% were detected by X!tandem only, 6% were only found by 
SeQueSt®, 21% were detected by at least two of the search engines, and 51% 
were detected by all three search engines.8 this phenomenon of non-over-
lapping sets of peptide identifications between different search engines is 
routine. in fact, post-processing algorithms like Scaffold50 often leverage this 
complementary nature of the database search engines to improve the cover-
age of peptide spectrum matches that can be obtained from a single dataset.

Spectral library and protein sequence database searches are two distinct 
paradigms for protein identification. as such, both of these methods can 
produce complementary peptide and protein identifications when work-
ing from the same input experimental MS2 spectra. For example, a spectral 
library search can identify peptides with unexpected ptMs, which are not 
detectable by a traditional database that requires upfront knowledge of all 
ptMs present in the sample. also, a spectral library search attempts to match 
the experimental MS2 spectra to library MS2 spectra, which are derived using 
real life MS2 spectra. hence, given a peptide sequence, a library MS2 spec-
trum represents the fragment intensities and types of observed fragment 
ions with greater fidelity than a predicted MS2 spectrum generated by a 
database search for the same peptide. this imparts higher peptide identi-
fication sensitivity to the library searches when compared to the database 
searches.33,45 On the flip side, peptides and proteins that are not represented 
by the spectral library are only identifiable by a database search strategy. For 
example, tryptic digests often contain semitryptic peptides and peptides 
derived by in vivo protease activity. these non-traditional peptides are often 
not represented by canonical spectral libraries. a previous study showed 
that, when working from the same raw data file, only 61% of the peptides 
were identified by both database and spectral library search strategies, with 
24% of the peptides identified only by the spectral library search, and 15% of 
the peptides detected only by the database search.45 hence, combining the 
search results of the complementary spectral library and protein sequence 
database searches by using post-processing algorithms like idpicker47,48 will 
yield a more comprehensive coverage of peptide identification than one can 
obtain from a single lC-MS/MS experiment.

3.14   Conclusion
protein and peptide identification has been growing steadily from its 
inception in the early 1980s. a surge of new technological advances in mass 
spectrometry, electronics, and computing power has led to a stark increase 
in the amount of MS2 spectral data generated from each biological exper-
iment. in parallel, proteomic researchers have been increasingly studying 
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a higher number of proteomes (obtained from large clinical trials or dis-
ease characterization cohorts) at a faster rate. this has resulted in an explo-
sion of MS2 spectral data. automated peptide identification pipelines that 
use sequence database searching and peptide spectral library searching 
have become the standard for any proteomics laboratory. For researchers, 
this affords rapid identification of peptides and proteins, while eliminat-
ing the complexity and error-proneness of manual methods of peptide 
identification.

even though the database search method has been matured over more 
than two decades, the method still uses rudimentary predicted spectra while 
making peptide identifications. Spectral libraries have been developed to 
replace these predicted spectra with more realistic MS2 spectra during the 
peptide identification process. however, the spectral library search method 
fails to detect any peptide that is not represented in the library. the next 
step in the peptide identification process is to develop an efficient database 
search method that can predict a MS2 spectrum, from a peptide sequence, 
that looks more like an experimental MS2 spectrum. likewise, the spectral 
library search method needs to keep expanding the peptides that are repre-
sented by a library. a hybrid search engine that would leverage the advan-
tages of both database search engine and spectra library search engine might 
be an ideal goal to reach.
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4.1   Introduction
identification and quantification of peptides and proteins using mass spec-
trometry (ms) is a principal theme of proteomics research. advances in mass 
spectrometry have enabled unprecedented depth and speed in the analysis 
of proteomes, providing qualitative and quantitative measurement of pro-
teins and their modified forms. the current generation of instruments pro-
vide sensitive detection of thousands of peptides from proteolytic digested 
proteins in a single experiment. accurate identification and quantification 
of peptides in a biological sample enable researchers to monitor changes 
in protein expression, interaction and modification as a reaction to disease 
and environmental changes. proteomics is closely linked with other omics 
research areas, and is becoming a common tool for assisting in genome 
annotation and discovery of novel protein coding genes. the computational 
assignment of mass spectra to peptides and proteins is made possible by a 
growing selection of tools and methods. these can be distilled into three 
main approaches for assigning a peptide to spectrum match (psm). the most 
commonly used method is sequence database searching which compares 
spectra to theoretical masses and ion series generated from a sequence data-
base (see Chapter 3). De novo identification methods, covered in Chapter 2, 
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Chapter 470

directly sequence amino acids by examining the delta masses between frag-
ment peaks in the ms2 spectra.1 Finally, spectral library searching identifies 
spectra by comparing an unknown experimental spectrum to a library of 
previously identified and curated known spectra.2 the later method is gain-
ing popularity especially for data independent acquisition (dia) experiments 
like sWath3 and mse (see Chapter 10). there are many different tools imple-
menting each of these approaches, each using different scoring schemes, 
and having their own strengths and weaknesses. it is possible to combine 
multiple methods, such as using the faster spectral library and database 
search methods to quickly identify known peptides and spectra, and then 
applying a de novo approach to any remaining unidentified or low scoring 
spectra.4

the scoring and validation of peptide to spectrum matches (psms) is a per-
sistent topic in proteomics.5–9 in the early days of proteomic mass spectrom-
etry it was common place to set a simple scoring threshold or implement an  
ad hoc filtering criteria as a measure of confidence in psms. sequence data-
base search algorithms implemented e-values and p-values along with psm 
scores that extended filtering of psms using a fixed error probability repre-
senting the validity of individual identifications. the limitations of these 
approaches due to false positives arising from multiple testing became appar-
ent with the high sampling rate of modern mass spectrometry and research-
ers moved towards assessing error in the whole dataset. the implementation 
of strategies based on false discovery rate (Fdr) calculations usually derived 
from a target-decoy10 approach has gained prominence for large-scale pro-
teomics analysis. Building on this target-decoy approach there are now sev-
eral approaches10–15 to find the Fdr in a set of results and a range of different 
statistical metrics, including q-values and posterior error probability (pep)16 
that can be inferred from a sequence database search.

another important consequence of these statistical approaches has been 
the ability to develop standardised scoring metrics that enable sophisticated 
data analysis. most spectral identification algorithms report psm scores cor-
relating with accuracy of the identification, and these scores can be hard to 
interpret and compare, as they are generally not valid statistical measures of 
confidence. development of elaborate spectral identification workflows to 
include multiple identification tools allows results from different programs 
to be merged, taking advantage of their different strengths and minimis-
ing weaknesses.4,17–19 to merge these results a comparable statistical score 
is required and once merged the spectra will need to be assessed for over-
all consensus significance. there are, however, a variety of techniques and 
post-processing utilities that can convert raw psm scores into meaningful 
statistical values and report identification false positive rates at a given score 
threshold. several statistics commonly used in proteomics for assessing the 
significance of a psm from its identification score include p-values, e-values, 
false discovery rate (Fdr), q-values and posterior error probabilities (pep). 
For sequence database searching, most of these statistics are commonly cal-
culated using a target-decoy search methodology,10,11 however, some recent 
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progress has been made using alternative methods to estimate psm error 
such as the generating function.20–22

this chapter encompasses the scoring and assessment of database search 
results giving an overview of common methods and their advantages or dis-
advantages. statistical concepts are presented in an accessible manner allow-
ing researchers to adopt good statistical practice when assessing results of a 
proteomic mass spectrometry experiment. examples of some freely available 
software are also presented to provide the tools needed to quickly obtain the 
required statistics.

4.2   Statistical Scores and What They Mean
the high throughput nature of modern proteomics and requirement for 
consistency places a reliance on identification scores that can be used to 
calculate an estimate of error. such statistical significance measures make 
it possible to unify the interpretation of ms-based proteomic experiments. 
statistical measures are used in all fields of scientific research, however, 
understanding the differences between these values and when to best 
apply them can be unclear. in proteomics, there are a range of approaches 
used, some measuring the confidence in a specific psm identification 
whilst others report the rate or error across a dataset. psm scores obtained 
from spectral identification software normally only represent the quality 
of the match between the theoretical spectra of candidate peptides against 
the query spectrum. this score can be associated with an expected rate 
of error and transformed into a more generic and comparable statistical 
measure. table 4.1 summarises some of the statistical measures used when 
reporting proteomics results. this section will define and discuss the com-
monly used statistics that can be reported by a search algorithm or calcu-
lated from their results either manually or using post-processing software. 
the prominently used statistics in proteomics are defined here. each of 
these statistics can be assessed in terms of their specificity and sensitivity 
(stringency).

Table 4.1    Commonly used statistical measures in proteomics.

statistic abbreviation synonyms specificity stringency

p-Value — — score specific anticonservative
p-Value (Bonfer-

roni corrected)
— — score specific Very conservative

expect value e-Value expectation 
score

score specific Very conservative

False discovery 
rate

Fdr global Fdr set specific optimal

q-Value — — set specific optimal
posterior error 

probability
pep Local Fdr score specific Conservative
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Chapter 472

4.2.1   Statistical Probability p-Values and Multiple Testing
a widely used statistical significance measure is the p-value which represents 
the probability that an observation, or in the context of proteomics a psm, 
could be incorrect. a low p-value therefore indicates that the probability of 
observing an incorrect psm at this score is small. this p-value is directly 
linked to the psm score and is implemented to assess individual identifi-
cations by modelling all possible candidate matching peptides. the p-value 
has a limitation when used for large datasets of psms, as are commonly gen-
erated in a shotgun proteomics experiment. the problem stems from the 
fact that in large datasets, with many psms each with their own p-values, a 
certain proportion of false positive low p-values will be observed simply by 
chance. For example, after searching a set of 50 000 spectra against a search 
database we might observe 10 000 psms each with a score associated with 
a p-value of 0.05 or less, representing the commonly used 95% confidence 
threshold applied to p-values. however, due to the high number of psms 
tested some of these p-values will be significant simply by chance. if the 
number of psms tested is multiplied by the p-value threshold we can esti-
mate that 2500 incorrect false positive psms could be present in the results. 
to address this problem the concept of multiple testing correction can be 
applied. a simple but conservative form of multiple testing correction is 
the Bonferroni correction. the Bonferroni correction suggests that p-values 
should be adjusted by the number of tests performed. in the previous exam-
ple the significance threshold for each psm would need to be adjusted to a 
p-value of 0.000001 (0.05/50 000). Correcting for the number of query spec-
tra and the number of candidate peptide sequences, leads to ultra conserva-
tive scoring thresholds and in practise would produce very few significant 
results at reasonable probability. some search engines, such as mascot™23 
and CruX24 report p-values by default and directly calculate psm scores from 
the log of their p-values. these values are corrected for the number of candi-
date peptides compared to a spectrum but do not correct for the number of 
query spectra.

4.2.2   Expectation Scores
an alternative statistic is the e-value or expectation value, which describes 
the number of hits one could expect to see by chance at a particular score. 
the calculation used to derive an e-value is basically the reverse of the Bon-
ferroni correction, the p-value is multiplied by the number of multiple tests 
performed. Continuing the previous example this would produce an e-value 
of 2500 (0.05 × 50 000). hence if we are aiming for the same significance level 
the e-values will produce the same number of significant results as the Bon-
ferroni corrected p-values. several spectral identification programs, including 
mascot,23 X!tandem25 and omssa26 report e-values for their psms, however, 
these e-values again only take account of the number of candidate peptide 
sequences in the search database, and not the number of query spectra and 
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adjusting the e-value for a large dataset would be very conservative, greatly 
reducing the number of significant results.

4.2.3   False Discovery Rates
to avoid the multiple correction problems of p-values and e-values when 
assessing groups of identifications it has become standard practice in pro-
teomics experiments to report a false discovery rate (Fdr). the Fdr can be 
defined as the expected proportion of incorrect observations in a dataset 
or alternatively the estimated fraction of a dataset that are false positive. in 
the case of proteomics datasets this represents the number of false positive 
psms above a given scoring threshold. Figure 4.1 displays the two different 
distributions of correct and incorrect psms and how they overlap. in a sam-
ple where the peptide make up is known such as a mix of purified proteins 
or synthetically generated peptides we can directly infer these distributions, 

Figure 4.1    model scoring distributions of correct and incorrect psms. the over-
all score distribution of psms in a proteomics experiment (solid curve) 
consists of a mixture of two underlying distributions, one usually mod-
elled as a normal gaussian distribution representing the correct psms 
(dashed curve) and one usually modelled as a gamma distribution rep-
resenting the incorrect psms (dotted curve). above a chosen psm score 
threshold (dashed vertical line), the crosshatched area, a, represents all 
psms that are accepted above that score, whilst the solid red filled area 
B represents the fraction of incorrectly identified psms above the cut-
off. B together with B′ sums up all incorrect psms for the whole dataset. 
the false positive rate (Fpr) and the false discovery rate (Fdr) can be 
calculated from the numbers of psms in B, B′ and a. the posterior error 
probability (pep) can be calculated from the height of the distributions 
at a given score threshold (b/a). the Fdr can also be found from the 
average pep of all psms above the scoring threshold.
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however, the majority of the time this is not the case and the distributions 
have to be modelled, using methods such as a target-decoy search (see sec-
tion 4.2.7). Fdr is calculated by dividing the number of incorrect psms above 
a defined score by the total psms above that same score. an example of this 
would be a set 10 000 psms above a selected scoring threshold where 500 of 
them are determined to be incorrect false positives; the resulting Fdr would 
be 5% (500/10 000). alternatively, we can use the Fdr to find the scoring 
threshold we wish to use as trade-off between sensitivity and error. if every 
spectrum in a proteomic mass spectrometry experiment is matched to a pep-
tide in a sequence database and the psms are then somehow separated into 
a list of correct and incorrect matches the scoring threshold at which a par-
ticular Fdr is observed can be determined. if an Fdr of 1% is set then this 
will give a list of psms where 99% of the matches are true and 1% false. if the 
Fdr threshold is increased we can obtain a longer list of significant psms 
but with a larger proportion of them being incorrect. it should also be noted 
that the Fdr is an estimate rather than an absolute measure. it could be 
assumed that an Fdr of 1% for a set of 100 psms would mean that 99 psms 
are perfect identifications and 1 psm is incorrect. the reality will be that the 
majority of the psms will be good, but not perfect, and a few will be weaker 
matches but not necessarily incorrect. the concept of the false discovery rate 
was originally proposed in 1995 by Benjamini and hochberg,27 and in 2002 
Keller et al.28 brought Fdr estimation to proteomics using an empirical sta-
tistical model. the proposal of the target-decoy search approach by elias and 
gygi in 2007 10 improved Fdr estimation and is now the standard method 
used in the majority of proteomics experiments. this approach uses a set of 
simulated decoy proteins in the spectral identification process to allow esti-
mation of the scoring distribution of random false positive matches.

4.2.4   q-Values
When the Fdr is calculated at each unique score throughout a dataset, it 
can fluctuate to have a situation where a less conservative scoring threshold 
produces a lower Fdr. this demonstrates that the Fdr is not a function of 
the underlying score. to resolve this for the field of genomics, in 2003 sto-
rey et al. developed a q-value statistic,29 which Kall et al., later adapted for 
proteomics in 2008.30 this value can be simply understood as the minimal 
Fdr at which a psm would be considered significant. the q-value statistic 
will transform the Fdr so that increasing the scoring threshold will always 
lead to a lower Fdr. Fdr is a global value for a set of psms, whereas q-value 
is associated with an individual psm. however, it is important to note that 
the q-value is still the same statistic as the Fdr and is dependant of the data-
set as a whole. any changes to the set of identified psms due to changes in 
the initial search or filtering of the psms and spectra in post-processing will 
lead to a change in the q-values. For example after searching a large number 
of spectra against a sequence database and the results are ranked by their 
score, if it is determined that the top 100 psms contain 10 false positives, 
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then the psm at position 100 will have a q-value of 0.1. if the same set of psms 
were searched again against a different sequence database, the original psm 
might now be found in the top 50 psms with only 1 false positive in the 50, 
giving a q-value of 0.02. this psm will have the same score in both searches 
and match the same peptide however; the q-value will have changed from 0.1 
to 0.02. at the time of writing the q-value is now almost ubiquitous across 
proteomics as the main statistic reported for a set of results, having replaced 
standard Fdr in most calculations, although it should be noted that q-values 
are still quite often reported as %Fdr.

4.2.5   Posterior Error Probability
these Fdr and q-value statistics reflect the error rate across a set of psms. 
however, experiments such as proteogenomic genome annotation, bio-
marker discovery, and targeted proteomics experiments, which focus on 
a particular set of proteins or peptides, require confidence at the level of 
individual psm peptide identifications. to facilitate this, a posterior error 
probability (pep) statistic is used to measure the significance of a single 
spectrum assignment with a specific score. the pep represents the prob-
ability of an observed psm being incorrect, thus a psm with a pep of 0.01 
which can also be represented as 1%, means that there is a 99% chance 
that the peptide is present in the biological sample. in a set of results the 
peps will reflect the stronger and weaker confidence in psm assignment. 
the pep measures the probability of the error rate for a single psm with 
a given score. unlike the global Fdr and q-value calculations, the pep sta-
tistic requires knowledge of the underlying psm scoring distributions of 
correct and incorrect identifications, and due to sparse scoring of the psms 
the pep is usually estimated using a model. the height of the correct and 
incorrect psm scoring distributions at any particular given score, are used 
to infer the pep. this is visually demonstrated in Figure 4.1 showing how 
the pep is specific to a psm score and is obtained from the distributions. 
the figure also highlights the relationship to the Fdr and how the sum of 
the peps above a selected score threshold divided by the number of psms 
above that threshold leads back to the overall global Fdr for that set of 
psms. posterior error probability is commonly estimated using machine 
learning approaches available in some of the post-search processing tools 
described in later sections.

4.2.6   Which Statistical Measure to Use and When
after assigning a set of mass spectra using one or more database search pro-
grams, criteria for assessing significance will need to be determined. the 
selection needs to be tailored to the aims of the experiment and any require-
ments of the downstream analysis. all these statistics are complementary 
and useful in different scenarios. granholm et al., provide a good discussion 
on when and where these statistics are best applied.31
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in most experiments the goal is to identify as many psms, peptides and 
proteins as possible at a reasonable level of confidence using a valid sta-
tistical measure. the q-value is increasingly used as the metric of choice in 
proteomics; however, like Fdrs q-values are a measure of error within a col-
lection of results. they are suitable for examining groups of psms such as 
experiments that will go on to look at the enrichment of gene ontology32 
terms or overall changes in biological pathways and processes. however, 
when looking at individual spectra, such as might be done when assessing 
the expression of a specific biomarker protein under different conditions, 
analysing and localising biological post-translational modifications, or 
using psms for proteogenomic genome annotation, an appropriate spectral 
significance score should be chosen, such as the pep. the pep is a useful 
and complementary statistic measuring the probability of error in a single 
peptide to spectrum assignment. additionally the pep values can easily be 
converted into a score which can be used to merge and re-rank psms from 
multiple search programs into a consensus. sometimes, experimental anal-
ysis can make use of both statistics using the Fdr to initially filter a dataset 
and the pep to assess specific peptide identifications of interest arising from 
the global analysis. although the initial filtering may have set a q-value (Fdr) 
threshold of 0.01 (1%) the pep values for psms close to the threshold will 
likely be much larger than 0.01. there are cases where the distribution of pep 
above a 1% q-value threshold is skewed, with a few psms close to the thresh-
old demonstrating very high pep indicating poor quality identifications and 
the remaining being good quality with very low peps. in this case these high 
pep spectra are likely incorrect and should be filtered. to avoid this scenario 
a commonly used combination is to first apply a 0.01 q-value score threshold 
followed by a 0.05 pep cut-off; this makes the final set of results slightly more 
conservative and can result in an Fdr below 1%, however, it does remove the 
most likely incorrect psms from a dataset. By setting significance thresholds 
for both the Fdr and the peps a balance can be found in the sensitivity and 
accuracy trade-off between false positives and false negatives.

the q-value and Fdr describe the overall error in a dataset and can be used 
to assess the quality of the criteria used to filter and determine psm signif-
icance, the pep threshold can then be used to further refine this trade-off. 
the formulas for calculating Fdr, pep and Fpr are as follows. see Figure 4.1 
for a visual representation for the values used in these calculations.

 
 1

PEP
FDR PEP FPR

( )

A
iiB b B

A A a B B

   




where A represents the total number of psms above a chosen score threshold 
and B represents the number of incorrect psms above the same threshold. at 
any chosen score, a represents the height of the total psm distribution and 
b represents the height of the incorrect psm distribution. B′ represents the 
remaining incorrect psms below a chosen scoring threshold.

the use of a pep cut-off is more conservative than applying a q-value 
threshold, and when only concerned with examining the identified sample 
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proteome as a whole as is the case in most high-throughput shotgun mass 
spectrometry experiments then q-values are the best option.

an important benefit of q-values and Fdr is that they are easily calculated 
for pretty much any dataset by using a non-parametric method based on the 
initial fitness scoring and p-values. however, pep scores require additional 
analysis to verify the conditions required to calculate, such as the application 
of sophisticated Bayesian classification methodologies.30,33

4.2.7   Target Decoy Approaches for FDR Assessment
spectral identification tools will always assign matching candidate pep-
tides to a spectrum even if the best match is poor with nothing more than 
a matching precursor mass within the search tolerance. the search space 
used, which includes the initial sequences database searched and peptide 
modifications considered, will rarely be fully comprehensive of all the bio-
logical peptides present in a sample and random spectral assignments are 
inevitable. this can be further complicated by two peptides having similar 
mass and retention times leading to simultaneous fragmentation and mixed 
spectra. the initial score assigned to a psm reflects the quality of the match 
assessing the level of signal to noise in the fragment spectra, the coverage of 
fragment ions present and the accuracy of fragment ion matches. once we 
have a suitable score reported from a search we need to assess at what score 
threshold we consider a psm to be confidently identified and non-random. 
this threshold is usually determined by the amount of error acceptable in 
the experiment which in itself is dependent on the size of the dataset and the 
size of the library or sequence database searched. the most common way of 
assessing the level of error and probability of random spectral identification 
at any given scoring threshold is to implement what is known as a target- 
decoy search.10

this target decoy methodology basically requires that the search space 
includes a proportional number of fabricated decoy peptides that would not 
be present in the protein sample. these decoy proteins and peptides can be 
generated in a variety of ways such as reversing the target protein sequences 
or shuffling the target peptide amino acid. the main principles of the decoy 
database are that the decoy proteins emulate the size and composition of 
the target proteins whilst not matching real proteins in the sample. there 
are two ways in which decoys are searched, either they are concatenated to 
the target database and searched in competition with the target peptides10 or 
separate target and decoy searches are performed.11 Both methods have their 
proponents and currently both are widely used valid methods as long as the 
correct filtering and formula is used to estimate the false positives. Figure 4.2 
demonstrates the differences between concatenated and separated target- 
decoy approaches. When decoy peptides are matched to a spectrum the 
match is considered to be a random spurious result. Comparing the scores of 
these spurious matches to matches in the real or target search space allows 
the level of false positive identification to be determined and the Fdr or 
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q-value to be calculated. regardless of whether the target-decoy search was 
separate or concatenated, decoys must first be filtered to remove any redun-
dancy to the target database – this should include isobaric peptides. isobaric 
peptides have different amino acid sequences but have the same mass and 
fragmentation pattern in the mass spectrometer. an example of this would 
be peptides with leucine and isoleucine substitutions as these two amino 
acids have the same mass and elemental composition. more accurate psm 
Fdrs are possible when the true fraction of incorrect psms matching the 
target database is adjusted to reflect the true ratio of decoy psms to false pos-
itive target psms (π0).34 depending on the approach taken the appropriate 
formula should be applied.

the standard Fdr formula can be applied in the case of separate target 
and decoy searches as described by Kall et al.11 this approach makes the 
assumption that the number of psms above a chosen scoring threshold in 

Figure 4.2    target and decoy psms for separate and concatenated search strategies. 
the way in which the false discovery rate above a score threshold (grey 
dashed line) is calculated depends on the target-decoy search method 
used. the separate target and decoy search method will result in more 
decoy psm identifications because there is no competition against 
the target database. this can cause a bias in the target-decoy model 
towards the decoys. however, this can be corrected using π0 which rep-
resents the ratio of decoys to false positive targets. the concatenated 
search results in less decoy psms identified, however, for every decoy 
identified we must assume that a random match was also made in the 
target database, hence the number of decoys is doubled in the Fdr cal-
culation formula.
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the decoy database search (D) approximates the number of incorrect false 
positive psms above that same threshold in the target database search. this 
is divided by the total target psms above the score threshold (T).

 FDR
D
T



a correction to the standard Fdr calculation improving the accuracy of 
the Fdr calculation adjusts the formula by the fraction of true negatives, 
also known as π0 or percentage incorrect targets (pit).11,34 When applied to 
a separate target-decoy search in proteomics this corrects for the fact that 
although all decoy psms are incorrect by design, not all target psms are cor-
rect and the ratio of decoy psms to false positive target psms is not balanced.

 0FDR π
D
T



an alternative method for estimating the Fdr using separated target-de-
coy searches was proposed by navarro et al.13 this method suggests that 
decoys should not be used to blindly represent false positive target psms and 
that a competitive strategy should be applied to assess if a decoy psm has a 
better match in the target search. this involves calculating the number of 
spectra with only a decoy psm above the scoring threshold (do), the number 
of spectra with both a decoy and target psm above the scoring threshold with 
the decoy psm having a higher score than the target psm (db), the number 
of spectra with both a decoy and target psm above the scoring threshold with 
the target psm having a higher score than the decoy psm (tb), and finally the 
number of spectra that have only a target psm above the score threshold (to).

 
(Do (2 Db))

FDR
(Tb To Db)

 


 
For concatenated target-decoy searches as described by elias and gygi,10 

the competition between spectra either having a target or decoy best match 
changes the dynamic in the reference population. hence, an adapted for-
mula is used which assumes that random matches will equally distribute 
between the target and decoy sequences. the number of decoy psms above 
a chosen threshold (D) is considered to be equal to the number of incorrect 
false positive target psms, therefore the total number of incorrect psms in 
the dataset above a chosen score threshold is double the number of decoys. 
the total number of psms above the score threshold is the sum of target 
psms (T) and decoy psms (D).

 
(2 )

FDR
( )

D
T D





Cerqueira et al.12,35 also proposed an alternative formula for the concate-
nated target-decoy search approach in which the decoys themselves are dis-
regarded from the psm population, so instead of doubling the number of 
decoys to reflect the target false positives, the decoys are removed from the 
total number of significant psms in the dataset.

 FDR
( )

D
T D
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the best method to use when calculating Fdr is still under discussion and 
all these methods incorporate some small bias which can affect sensitivity. 
an alternative more complex and involved method for estimating the Fdr 
from a separate target-decoy search is the mixture-maximum procedure.5

the target-decoy approach is a simple non-parametric method for estimat-
ing the Fdr in a set of psms. it has become commonplace in proteomics to 
adjust filtering criteria to achieve a fixed Fdr. additionally it has been sug-
gested that improved discrimination of correct and incorrect psms can be 
achieved by binning the dataset prior to target-decoy analysis; these bins can 
be psm properties such as the mass accuracy of the identification14 or based 
on their source proteins as in the 2d Fdr method.15 alternative methods 
for Fdr estimation without using decoy peptides in the search have been 
proposed and implemented including the use of Bayesian nonparametric 
models,36 generating functions,20,37 retention time prediction38 or leveraging 
psms that are not the best scoring match for a spectrum.22 it should also be 
noted that the majority of these Fdr estimation methods can also be applied 
to spectrum-to-spectrum matching and spectral library searching.39–41

4.3   Post-Search Validation Tools and Methods
it can be quite intimidating for non-informatician researchers to extract all 
the aforementioned statistics from their datasets, but many of the current 
generation of spectral database search programs and proteomics workflow 
suites provide these statistics directly in the output. there are also many free 
tools and utilities that can process proteomics data and provide statistical 
feedback.

some tools simply estimate the error in a dataset using the previously 
mentioned formulae to allow filtering, other more complex post-process-
ing tools make use of machine learning techniques to learn to discriminate 
correct and incorrect psms, rescoring and ranking psms based on a set of 
training features calculated for the target and decoy psms. this is of course 
dependant on the number of query spectra and the size of the search space 
being large enough to accurately model the correct and incorrect psm distri-
butions. presented here are some useful tools for post-processing proteom-
ics datasets to obtain statistical measures and in many cases improve the 
scoring discrimination between correct and incorrect identifications. We 
have focused mainly on standalone open-source and free to use software 
for calculating psm level statistics, however there are always new tools and 
approaches on the horizon.

4.3.1   Qvality
one easy to use tool for transforming basic psms scores from identification 
software into q-values and peps is Qvality.42 this tool uses non-parametric 
logistic regression from a separate target and decoy database searches to 
estimate the underlying scoring distributions of the correct and incorrect 
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psms. Qvality available from http://noble.gs.washington.edu/proj/qvality/ is 
a small, fully open source and stand-alone command-line application which 
can be readily applied to any set of psm identifications regardless of the 
original program used to make the identifications. running the utility sim-
ply requires two lists of psm scores; one from a target sequence database 
search and another from a decoy sequence database search. since no explicit 
assumptions of the type of the score distributions are made, the method was 
shown to be robust for many scoring systems and hence is not limited to one 
specific database search algorithm. this tool goes beyond the basic Fdr tar-
get-decoy calculations and incorporates π0 adjustments into the estimation.

4.3.2   PeptideProphet
a core part of the Trans-proteomic pipeline (tpp) workflow suite,43 pepti-
deprophet28,44,45 is an open source post-processing utility that uses statistical 
models to estimate the accuracy and to automatically validate psms assigned 
using a sequence database search program such as seQuest.46 this was one of 
the first software tools in proteomic mass spectrometry to report psm probabil-
ities (p) akin to peps. this algorithm implements an expectation maximisation 
method to learn the distribution of correct and incorrect psms using various 
properties including the initial psm score, accuracy of precursor ion mass, 
number of missed cleavages and enzymatic termini. peptideprophet combines 
these multiple psm properties into a fitness score which can be fitted against 
a gaussian distribution for the true identifications and a gamma distribution 
for the false identifications. these fitted distributions allow the program to 
discriminate true and false identifications and compute robust probabilities 
for the likelihood that a psm is correct. these calculated probabilities have 
been shown to provide a much higher sensitivity compared to using straight-
forward target-decoy Fdr estimation. peptideprophet can be downloaded as 
part of the larger tpp software package which incorporates a varied collection 
of useful tools for proteomic data analysis. these tools are available at http://
tools.proteomecenter.org and http://peptideprophet.sourceforge.net/.

4.3.3   Percolator
another widely used and popular post-processing utility is percolator;33,47 
this program makes use of machine learning methods to improve the dis-
crimination of true and false psms based on properties of the target and 
decoy matches and to infer q-values and peps. percolator employs a large 
collection of customizable training features encompassing many psm 
scoring properties. these features can include but are not limited to the 
initial psm score or p-value, precursor mass accuracy, delta score (differ-
ence between the best and second best match for an individual spectrum), 
charge state, number of modifications, coverage of fragment ions, and 
accuracy of fragment ion assignments. the feature set used can be tailored 
to the search software used. however, features should be carefully chosen 
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to avoid introducing bias, and peptide or protein properties such as amino 
acid composition and sequence uniqueness should be avoided. Features 
such as peptide sequence composition or protein specificity, are not factors 
that directly determine the quality of a peptide to spectrum match. using 
features such as these will influence the scoring of peptides in a manner 
which is not modelled by the target-decoy approach and hence will lead to 
bias in the training of the sVms. percolator takes these features from both 
the target and decoy psms in the search results and applies them to itera-
tively train a classifier. initially, the most relevant single discriminating fea-
ture, usually the original psm score, p-value or e-value, is selected and used 
to filter the results to a minimal Fdr. this subset of target psms becomes 
the positive training set, all the identified decoy psms become the negative 
training set. these two sets of psms with their features are further divided 
into multiple cross validation sets and used to train multiple support vector 
machines (sVms), a type of machine learning classifier. the sVm classifiers 
are then presented with all target psms and decoy psms in their entirety; 
the classifiers adjust the scores of the individual psms and the process is 
repeated, starting again by filtering the psms to minimise Fdr. after sev-
eral iterations the system converges resulting in a robust classifier with 
significantly better discrimination between correct and incorrect psms 
compared to the original psm scores. this dynamic training and cross val-
idation methodology allows the software to adapt to the unique properties 
of each dataset, optimising itself to the dataset quality, size, experimental 
setup and instrumentation used. percolator is open source and is available 
from http://per-colator.com/, and various additional tools are bundled with 
the core utility to extract psm feature tables from seQuest, X!tandem48,49 
and ms-gFplus.50,51 a java-based standalone tool mascotpercolator52,53 is 
available for processing mascot searches (http://www.sanger.ac.uk/science/
tools/mascotpercolator). this has also been incorporated into mascot-
server (matrix science) with some differences in the features calculated. 
an omssapercolator54 is also available from https://code.google.com/p/
omssa-percolator/. additionally percolator has been incorporated into the 
popular proteomediscoverer™ (thermoscientific) and openms55 mass 
spectrometry data analysis and workflow platforms.

4.3.4   Mass Spectrometry Generating Function
an alternative method for estimating the psm probabilities with or without 
the use of a target-decoy database search is ms-gF.37 this tool makes use of 
the mathematical concept of the generating function and spectral energy/
probability to discriminate correct and incorrect psms, and offers a powerful 
alternative to other post-processing tools. originally implemented to support 
inspect56 and inspect formatted results, the idea has been developed into a 
standalone search tool ms-gFplus which can be further combined with tar-
get-decoy searching and percolator in a complementary fashion. ms-gF is 
available from https://bix-lab.ucsd.edu/display/CCmstools/ms-gF.
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4.3.5   Nokoi
a recent method for decoy-free separation of correct and incorrect psms is 
nokoi.22 this post-processing tool developed for use with mascot, uses a type 
of supervised machine learning called binary classification. in many search 
tools each spectrum can be assigned multiple candidate peptides reported 
in ranked order of score, usually, only the top rank peptide is used in the 
final results. nokoi leverages these multiple hit ranks, instead of using spec-
tra matching peptides in a decoy database to model false positives, it uses 
the low ranked hits to each spectrum. although the pre-trained model does 
not have the adaptability of percolator the tool is fast and the classification 
model is transferable to different types of dataset without retraining. this 
tool is available as a set of open source scripts from http://genesis.ugent.be/
files/costore/nokoi_utilities.zip.

4.3.6   PepDistiller
pepdistiller57 validates mascot search results assessing their quality 
based on the number of tryptic termini and a refined Fdr calculation 
using pit. this tool works best with semi-tryptic search results. the freely 
available software and binaries are available from http://www.bprc.ac.cn/
pepdistiller/.

4.3.7   Integrated Workflow and Pipeline Analysis Tools
there are several commonly used suites of software which allow research-
ers to build proteomic data analysis pipelines and workflows. these pack-
ages usually include a selection of tools for obtaining statistical metrics 
for reporting significant psm identifications. the tpp as mentioned ear-
lier makes use of the peptideprophet tool for estimating psm probabilities 
and also includes iprophet and proteinprophet for statistical analysis at the 
peptide and protein level. openms55 (http://open-ms.sourceforge.net/) is 
an open source suite of tools and utilities for processing protein mass spec-
trometry data. these tools are easily accessed through the openms pro-
teomics pipeline (topp), which makes available several processing nodes 
for calculating Fdr and estimating pep scores from a mixture model, as 
well as a wrapper for percolator. additionally, the suite is able to build work-
flows that integrate and merge results from multiple spectral identifica-
tion programs and calculate statistical measures such as q-values and pep 
on the merged results.19 a recent platform for analysis of proteomics data 
and targeted towards reanalysis of data using multiple search engines is 
peptideshaker58 available from http://compomics.github.io/projects/pep-
tide-shaker.html. Compass59 is a suite of analysis tools built around the 
omssa search software; this software provides various statistical metrics 
which can be used to filter and process results. this suite is available from 
https://github.com/dbaileychess/Compass. proteinprospector60 available 
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from http://prospector.ucsf.edu/prospector/mshome.htm also provides a 
variety of tools for mining proteomic mass spectrometry data via a web-
based interface.

4.3.8   Developer Libraries
developers wishing to build their own custom tools and software for pro-
teomics analysis will find that there are quite a few libraries and developer 
resources which can be used to easily implement many of the most common 
proteomics statistical metrics. proteostats61 is a software framework of open 
source tools and developer libraries. it offers a selection of statistical mea-
sures and methods for estimating errors in a dataset. it also incorporates 
some visualization utilities to compare and view results such as Venn plots 
and roC curves. this software is available in perl from https://sourceforge.
net/projects/mssuite/files/proteostats/. msstats62 is an r-based package 
integrated into the Bioconductor project (http://www.bioconductor.org/). 
although mainly targeted at protein quantification analysis it makes avail-
able various utilities for the statistical analysis of peptides and proteins.

4.4   Common Pitfalls and Problems in Statistical 
Analysis of Proteomics Data

Choosing a suitable statistical approach and significance filtering approach 
is always a trade-off between selectivity and sensitivity. the accuracy of the 
statistical metrics estimated for a dataset also depends on some assumptions 
and criteria being fulfilled. For all statistical approaches the size of the query 
dataset and the search identification space should be considered. For meth-
ods relying on a target-decoy approach the suitability of the decoys and any 
bias between the targets and decoys needs to be eliminated and may even 
be an unsuitable approach for certain types of experiment. this next section 
will discuss and highlight areas for further consideration when choosing a 
valid statistical approach to processing proteomics data.

4.4.1   Target-Decoy Peptide Assumptions
many of the current tools used to establish statistical metrics in a proteomics 
experiment are dependent on the target-decoy methodology. the creation of 
the decoy database is therefore a key step in obtaining accurate statistics. it 
is difficult to completely rule out any particular peptide sequence not being 
present in the analyte sample; this means that decoys and hence false pos-
itives can quite often be overestimated. a comprehensive target database is 
important in minimising this, and should represent a complete proteome for 
the sample of interest plus any possible contaminants. note that incomplete 
or heavily filtered target sequence databases increase the number of high 
quality spectra without a corresponding target sequence and also increase 
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the chances of false decoys with high scores. although in certain circum-
stances filtering of a very large target database is acceptable and can improve 
sensitivity.63 another noteworthy factor to consider is the redundancy 
between the target and decoy databases, using the standard reversed target 
database method for decoy generation leads to an average peptide redun-
dancy of around 5% between the two databases before considering isobaric 
peptides. although it is easy to filter these out at the point of identification, 
and most tools will do this automatically, it does change the assumed equal 
proportions of target peptides to decoy peptides. hence, it is best to address 
this when creating the decoy database. most of these redundant peptides will 
be short sequences hence increasing the minimum peptide length required 
can also reduce this issue to some extent. isobaric peptides between the tar-
get and decoy databases further increase the redundancy, and are a bit more 
insidious and difficult to avoid. these peptides will have different peptide 
sequences but have the same precursor mass as a target peptide and also 
produce the same or very similar ms/ms fragment ion spectrum. another 
factor increasing error in the target-decoy model are unexpected peptides 
not represented in the target search space, and these can be from amino acid 
substitutions, incorrect sequence annotation in the search database or the 
existence of sequence variants such as those arising from single nucleotide 
polymorphisms in the sample donor(s). these peptides although reported as 
decoys will in fact be real true positive identifications.

4.4.2   Peptide Modifications
the chemical and biological modification of amino acids in peptides greatly 
increases the complexity and size of the search space to be interrogated. 
techniques such as error tolerant or blind modification searches allow spec-
tra to match non-enzyme specific peptides that can be shifted by any known 
and sometimes unknown protein modification or amino acid substitution 
mass. this is quite often done in a two-step approach that reduces the search 
space to proteins identified by spectra matching unmodified peptides in an 
initial search. this approach allows the discovery of unexpected modifica-
tions and sequence variations, however, this also increases the risk of high 
scoring false positive identifications. this is problematic for a standard tar-
get-decoy approach, firstly because of the restricted sequence database used 
(see next section), secondly because decoys will have higher scores due to 
the more tolerant peptide assignments, and thirdly the lack of enzyme spec-
ificity and allowed amino acid substitutions will increase the redundancy 
between target and decoy databases. this also causes problems for decoy 
free approaches as the increased error rate changes the distribution of cor-
rect and incorrect psms. even in a standard database search the numbers 
and types of variable modifications allowed can impact Fdr calculations. 
searching a large number of variable modifications vastly increases the 
search space and comes with the same problems inherent in searching a very 
large sequence database as discussed in the next section. the other problem 
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arising from variable modification is that certain modifications, such as 
methylation,64 generate mass shifts in spectra that are similar to changes in 
the amino acid composition of a peptide (Figure 4.3). this can lead to an 
increased number of isobaric peptides in the target database and increasing 
the ambiguity in the multiple hit ranks of a spectrum. this also increases 
the redundancy between target and decoy search space which leads to less 
accurate Fdr estimations using a target-decoy approach.

4.4.3   Search Space Size
another important factor in the reliability of derived statistical measures in 
a proteomics experiment is both the size of the search space and the number 
of spectra searched. most of the methods for finding Fdr and pep rely on 
fitting or learning the distributions of correct and incorrect identifications, 
which in turn rely on there being enough data points for this model to be 
accurate. a small number of spectra or a very restricted search database will 
lead to poor estimation of the true error due to low numbers of target and 
decoy data points. this effect is also encountered when using tight precur-
sor match tolerances; in this case the tight tolerance reduces the number of 
candidate peptides available to match to a spectrum increasing the p-value of 
poor quality spectra.65 although the mass spectrometry instruments provide 
high resolution spectra the calibration of the detector can fluctuate during 
the course of an experiment. these problems can be somewhat mitigated 
by searching with slightly wider mass tolerances and by combining multiple 
datasets, for example boosting the number of spectra searched by merging 
multiple experiments or combining a small set of target protein sequences 
with a larger proteome sized sequence database. problems also start to arise 
when the search database becomes very large or a large number of differ-
ent experiments are combined; in this case the issues with an inaccurate 
target-decoy model become exaggerated with the possibility of high scoring 
false decoys increasing.

Figure 4.3    modified peptides increases isobaric redundancy in target-decoy 
search. a single or a set of multiple amino acid modifications can alter 
the mass of a peptide by the equivalent of substituting one or more 
amino acids. this can increase redundancy between the target and 
decoy sequence databases and reduce the accuracy of Fdr calculations. 
if the modifications occur at the same site as the equivalent substitu-
tion this leads to the theoretical fragment ions also having the same 
masses, this problem is further compounded by the fact that many 
spectra do not have complete ion series and the modification site is not 
always easily localised.
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4.4.4   Distinct Peptides and Proteins
everything discussed so far has focussed on the error rates associated with 
the identification of spectra as psms. this is usually the initial starting point 
for the analysis and significance filtering of a proteomics data set. the real 
aim in most experiments is to establish the presence of real peptides and 
proteins in a biological sample. however, it should be noted that after apply-
ing thresholds and filters to create a set of psms with a low error rate, such 
as a 1% Fdr, when examining the error rate in terms of distinct peptides in 
the sample the Fdr is amplified as shown in Figure 4.4. due to the variable 
abundances of peptides and their level of detection in the mass spectrome-
ter the number of psms is not linked to the number of distinct peptides in 
the sample, so to maintain the same level of error further statistical analy-
sis is required. at the protein level the calculation of Fdr becomes further 
complicated by the non-random mapping of peptides to proteins and the 
ambiguity of protein inference from shared peptides. although a variety of 
software tools exist66–69 to assist in protein level statistical analysis, several 
publications have highlighted how protein level Fdr can be problematic70–72 
(see also Chapter 5).

Figure 4.4    Fdr increase from psm to peptide and protein level. an Fdr calculated 
at the psm level will significantly increase when the dataset is reduced 
to a set of distinct peptide sequences, and again as these peptides are 
inferred into a set of proteins. hence, Fdr must be recalculated at each 
level of analysis. in this example there is 1 incorrect psm (labelled X) in 
a set of 20 – when this set is collapsed to a set of distinct peptides there 
is still 1 incorrect peptide but due to multiple identification of the same 
peptide sequences this is now in a set of 10 identifications, effectively 
doubling the Fdr. these peptides can then be mapped back to a set of 
proteins, some uniquely and some ambiguously. in this example this 
results in 5 proteins, however, there is still one incorrect identification, 
doubling the Fdr once again.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
00

69
View Online

http://dx.doi.org/10.1039/9781782626732-00069


Chapter 488

4.5   Conclusion and Future Trends
robust statistical analysis of peptide spectral matches in protein mass 
spectrometry experiments is an essential step in data processing, with many 
scientific journals requiring that error rates be reported along with pre-
sented results. the community is moving towards Fdr, q-values and pep 
being reported as standard for any published experiment. to this effect there 
is now a plethora of search programs, post-processing utilities and pipeline 
software that support researchers in calculating and reporting statistical 
metrics for their results. the underlying assumption for any statistical analy-
sis of proteomic mass spectrometry data is that the underlying scoring func-
tion that compares theoretical fragmentation of peptides from a sequence 
database to experimental spectra is good at discriminating good quality 
peptide to spectrum matches. some of the post-processing tools discussed 
here build upon the initial psm score improving the discriminatory power by 
learning, from a set of assignment properties, the differences between real 
correct identifications and random incorrect matches. as mass spectrome-
try technology continues to advance improving resolutions, ion separation 
and depth of analysis, additional parameters in these scoring functions will 
boost identifications and the confidence in correct identifications. Currently 
target-decoy searching remains the most widely used approach to measure 
error in psm assignment, however, recent studies are pushing back against 
the limitations of this method and novel non-decoy algorithms for obtaining 
statistical metrics such as representative p-values without the need for anti-
conservative multiple testing corrections applied to psms are on the rise.73 
the field of proteomic mass spectrometry continues to develop and new 
technologies are continually being made available to researchers. one such 
technology is the use of data independent acquisition (dia) using sWath3 or 
mse approaches and we can expect to see cultivation of tailored tools and sta-
tistical scoring methods leveraging these new approaches. these approaches 
and the increasing abundance of identified spectra are making spectral 
library searching a powerful contender to the dominance of sequence data-
base searching. many of the statistics and Fdr methods used in sequence 
database searching are equally applicable to spectrum–spectrum matching 
with increased sensitivity and selectivity.39,40,74
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5.1   Background
In large-scale proteomics studies employing LC-Ms/Ms, “shotgun studies” 
(see table 5.1 for a summary of terminology used) has become the prevalent 
method, in which proteins are digested into peptides early in the workflow. 
In many such experiments, no separation is performed in protein space, and 
LC is used with a long gradient, say 2 or more hours, to separate and limit the 
number of different peptides arriving at the Ms instrument at the same point 
in time. these approaches are popular due to their technical simplicity, the 
lack of laborious sample handling (e.g. compared with the use of gel-based 
techniques for protein separation), and the fact that modern Ms instruments 
can identify/quantify thousands of proteins in a single LC-Ms run. however, 
one of the consequences of shotgun proteomics is that there is no direct link 
from a given peptide and the protein from which it was derived. as such, 
most proteomic identification software or workflows perform a second step, 
after the identification of peptides, to determine which proteins have been 
identified in a process known as “protein inference”1 or protein grouping.
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Chapter 594

the methods discussed in this chapter are largely concerned with pro-
tein inference following peptide identification following a sequence  
database search (Chapter 3), but also apply to peptide identification follow-
ing a spectral library search from which similar scores and statistical values 
for confidence in peptide identification are produced. approaches for de novo 
sequencing of peptides (Chapter 2) are usually applied where there is no data-
base of proteins available, for example if the sample is derived from a species 
with no sequenced genome. as such, most of the methods described here are 
not directly applicable to de novo sequencing, and specialised approaches are 
needed, for example using BLast-like tools to query full or partial peptide 
sequences against protein databases from other species.

Table 5.1    a summary of terminology and definitions used in the chapter.

term definition

Unique peptide a peptide that can be assigned to only a single database 
protein

shared peptide a peptide that can be assigned to more than one database 
protein

resolved peptide a shared peptide that can be assigned to a group of proteins in 
which there are only same-set or sub-set relationships. such 
peptides may be used with reasonable confidence for  
quantitation in some workflows

Conflicted peptide a shared peptide that cannot easily be assigned to a single 
protein group, and could be assigned to more than one 
group. such peptides are often considered dubious for 
quantitation purposes

razor peptide an assignment of a shared peptide to the database protein 
with the most other supporting evidence

database protein a single protein in the database that was searched, e.g. derived 
from a Fasta file loaded into the search engine

protein group a group of database proteins sharing some evidence in 
common

same-set proteins a set of database proteins with the same set of supporting 
evidence (peptide or spectral depending on the approach 
taken), which are then assumed to be indistinguishable

sub-set protein a protein with a sub-set of evidence (peptide or spectral)  
compared with one or more other proteins, and thus is  
usually considered not to have been identified by most  
protein inference approaches

Multiply subsumed 
protein

a type of sub-set protein, where it is identified based on  
peptide or spectral evidence where all the evidence is also 
contained within more than one protein – each of which 
has more evidence than the multiply subsumed protein

protein cluster 
(family)

a collection of protein groups related via conflicted peptides

representative 
protein

a single protein accession taken to represent a protein group, 
in some cases chosen arbitrarily e.g. from same-set proteins

Group leader 
protein

a single protein accession taken to represent a group, where it 
is assumed (but not always enforced by software), that it has 
more evidence than other group members

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
00

93
View Online

http://dx.doi.org/10.1039/9781782626732-00093


95Protein Inference and Grouping

5.1.1   Assignment of Peptides to Proteins
the first step in most protein inference approaches is to determine which 
peptides have been confidently identified, and then assign these to proteins 
in the searched database, based on the assumed digestion that has taken 
place. For example, if the search was specified with “full trypsin cleavage” 
(cleavage after K or r, not followed by p), then peptide to protein assignment 
would only consider the peptide could be derived from proteins where the 
preceding residue is K, r or the n-terminus of the protein, and the residue 
after the peptide is not p. search engines tend to export a list of all possi-
ble proteins in which a given peptide can be found, given the digestion con-
straints (Figure 5.1).

the assignment of a peptide to a parent protein is a relatively trivial process 
for any peptide that can uniquely be assigned to a single protein in the search 
database (a “unique peptide”). assuming the peptide has been identified with 

Figure 5.1    overview of the different levels involved in protein inference. a data-
base search engine is often used to perform stages 1–3, i.e. identifying 
peptides from spectra, and reporting all possible proteins from which 
they could have been derived. protein inference, grouping and cluster-
ing (stages 4 and 5) are described in this chapter. several key points that 
will be addressed are highlighted: (a) it is common for the same peptide 
to be identified by more than one spectrum, for the purpose of protein 
inference and scoring these entities are often collapsed to a single data 
point; (b) protein 1 has one unique peptide (peptide 1) and one shared 
peptide (peptide 2), and thus forms its own group based on having a 
unique peptide; (c) proteins 2 and 3 have the same-set of peptides and 
thus are reported together in one group; (d) it is common for the search 
engine to report multiple ranked peptides for a given spectrum and 
in some cases a lower ranked peptide can contribute to protein infer-
ence; (e) depending on the protein inference algorithm and scores (not 
shown), protein 4 might be assigned to its own group or be assigned 
to a group with protein 5; (f) a protein cluster can be formed linking 
Groups 1 and 2, due to peptide 2 being a conflicted assignment.
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sufficient confidence, the score or probability value associated with the pep-
tide identification can contribute directly to a score or probability that the 
parent protein has been identified (see section 5.3). however, it is common 
that many peptides identified cannot be uniquely assigned to a single pro-
tein, and can be found within several proteins within the database (a “shared 
peptide” or degenerate peptides in ref. 2).

shared peptides arise for a number of different reasons:
  
 1.  Paralogues: in many species gene families are common, causing paral-

ogous proteins (with similar sequences) to be present in the search 
database. since peptides identified in proteomics tend to be short (say 
6–25 amino acids), it is common that 100% peptide sequence identity 
is sometimes observed between paralogues (Figure 5.2).

 2.  Alternative splicing: some protein databases, such as Uniprot,3 con-
tain different protein sequences resulting from alternative splicing of 
a single gene, causing different protein-level records in the searched 

Figure 5.2    a multiple sequence alignment of three human paralogues (elongation 
factor 1-alpha) with high sequence similarity. any peptides mapping to 
the shaded regions of the proteins would be mapped to all three pro-
teins. three peptides have been identified. the shaded peptide can be 
found in all three proteins. the unshaded peptides can only be found in 
proteins 1 and 3. as such, a same-set group of protein 1 and 3 would be 
formed, with protein 2 as a sub-set protein. protein 1 has been selected 
as a group representative.
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database. such protein records have shared peptides covering the 
exons shared between different predicted splice products.

 3.  Alleles: search databases can contain additional protein variants derived 
from the same gene, such as those caused by different alleles identified 
within individuals, in some cases differing by only a single amino acid 
polymorphism, in which cases multiple protein records can have all 
but one peptide in common.

 4.  Redundant database merges: in some studies, the search engine uses a 
database merged from different sources, such as different sets of pre-
dicted gene models (e.g. in “proteogenomics” approaches – see Chapter 
15), to increase coverage and in efforts to find supporting evidence for 
particular gene models. often such approaches lead to considerable 
levels of peptide-level sequence identity between different records in 
the searched database.

 5.  Orthologues: in studies on more than one organism, for example 
host-parasite proteomics, it is common to search a database merged 
from source databases from the different species. In these cases, it 
is possible for orthologous proteins to have peptide sequences in 
common.

 6.  Chance matches: it is possible for different proteins with no functional 
relationship or shared evolutionary origin to have short peptides in 
common by chance, although this rarely occurs for peptides ∼>7 amino 
acids or so.

  
any shared peptide thus cannot straightforwardly be assigned to a sin-

gle “database protein”, and has to be treated as providing evidence towards 
the identification of any or all of the proteins from which it could have been 
derived.

5.1.2   Protein Groups and Families
In the early days of shotgun proteomics, there was a tendency for studies to 
report all proteins for which there was any peptide-level evidence, includ-
ing the common case of multiple proteins with the same-set of shared 
peptides. these approaches led to inflated protein lists being reported, 
especially for species containing extensive gene families (which give rise 
to paralogous protein sequences), or if databases containing protein vari-
ants were used in the search. this is a problem for several reasons. First, 
this could introduce biases in downstream data analysis, such as pathway 
mapping or functional enrichment. any pathway or functional grouping 
in which there is a higher than average number of paralogues, alternative 
splicing or genetic variants in the search database would artificially appear 
“enriched” leading to incorrect biological conclusions, not supported by 
the data. second, when examining evidence at the level of individual pro-
teins, for example, following quantitative approaches for differential expres-
sion analysis or biomarker identification, it is crucial to know the actual 
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strength of evidence for a given protein’s identification. In cases, where all 
of the peptides assigned to a protein X can also be assigned to a different 
protein Y with stronger evidence (more peptides), it is important to know 
that there is no independent evidence for protein X’s identification, and it 
is quite possible it was not present in the sample at all. third, there can be 
a tendency for labs to engage in competition over the number of proteins 
identifiable from a given sample or protocol. without intelligent protein 
inference, a longer protein list can be produced simply by increasing the 
level of redundancy in the search database, which is evidently not an opti-
mal scientific outcome.

In more recent years, it has been common to employ some rules of par-
simony and report only the list of protein entities for which there is inde-
pendent evidence supporting identification. studies that report all possible 
protein identifications from a given peptide set would not generally pass 
peer review. to achieve a parsimonious result set, a variety of algorithmic 
approaches can be employed (as detailed in section 5.3), most of which lead 
to the primary unit reported being the “protein group”. the concept of a pro-
tein group represents the set of database proteins within which none of the 
group members (each database protein) have any independent, substantive 
evidence.

For many algorithms and software, a protein group in practice means 
sets of proteins supported by the same-set of peptides (“same-set proteins”). 
If a protein is supported by a sub-set of peptides, compared with one or 
more proteins in the group, in some approaches these “sub-set proteins” are 
included in the group but flagged in some way that they have probably not 
been identified (Figures 5.2 and 5.3). where there are same-set proteins, 
e.g. proteina and proteinb in a group, the software performing protein infer-
ence usually has no evidence to distinguish whether proteina, proteinb or 
both have been identified. as such, an entity of [proteina, proteinb] will be 
reported, and for the purposes of counting the number of proteins identi-
fied, the group would be counted only once. In some approaches, a single 
protein is selected to act as a “representative protein”, based on some arbi-
trary rule such as alphabetical order (further discussed in section 5.2.6). 
a more intelligent approach for selecting a representative protein is the-
oretically possible, for example an algorithm could give preference to a 
canonical gene model or commonly observed protein over a de novo gene 
prediction, which has never previously been observed. such approaches are 
sometimes used in proteogenomics (Chapter 15), but source information 
on database or protein-level preference is not usually available to the soft-
ware in most protein inference approaches.

the purpose of a representative protein is to simplify downstream data 
analysis, such as functional or pathway-based approaches that cannot usu-
ally handle the concept of protein groups, although with the obvious caveat 
that if proteina and proteinb have different functions or map to different 
pathways, this can introduce a source of error into such analyses.
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In some protein inference approaches, a further concept of a “protein 
cluster” (“protein family” in the Mascot software)4 has been introduced 
(Figure 5.1). a protein cluster represents a wider concept than a protein 
group, capturing a set of protein groups that are linked through having 
peptides in common. such peptides are sometimes called “conflicted  
peptides”, as they cannot easily be assigned as belonging to one group or 
the other. this situation commonly arises when analysing proteome data 
resulting from gene families containing many paralogues with variable 
sequence identity amongst members. the concept of a protein cluster can 
be useful for visualising relationships in the data between protein groups, 
which would otherwise be lost if conflicted peptides are simply discarded 
from the analysis altogether. as shown in Figure 5.1, protein Groups 1 and 
2 share peptide 2 in common, say because the proteins within these two 
groups all belong to a single gene family and are paralogues. once groups 
have been formed, without the concept of a protein cluster, or a visualisa-
tion showing conflicted peptides across groups, a researcher would not 
necessarily be aware that there is any relationship between protein Groups 
1 and 2 in the data.

Figure 5.3    (a) a simple protein grouping scenario where proteins a and B are  
supported by the same-set of peptides, protein C has a sub-set of  
peptides; (b) a more complicated grouping scenario where proteins 
a and B have a single “resolved peptide” and thus form one protein 
group; protein C has a single unique peptide and thus forms another 
group; three peptides are conflicted and cannot straightforwardly be 
assigned to either resulting group.
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5.2   Theoretical Solutions and Protein Scoring
5.2.1   Protein Grouping Based on Sets of Peptides
one of the most commonly applied approaches is to perform protein grouping,  
based on same-set and sub-set peptide relationships amongst proteins. the 
following general steps may be followed (Figure 5.3):
  
 1.  determine the list of peptides that have been confidently identified at 

a given threshold, such as false discovery rate (Fdr) < 0.01, and discard 
all peptides not passing this threshold.  

 a.  note: some software may also choose to discard any peptides that 
while passing the given Fdr threshold are not the top ranking  
candidate for a given spectrum (Figure 5.1d). there is debate in the 
field as to which is the most appropriate action. on the one hand, 
it is plausible for more than one peptide to be correctly identified 
from a single spectrum, due to co-isolation of peptides with similar 
mass/charge. on the other hand, rank = 2 or greater peptides are 
often alternative hypotheses explaining many of the same fragment 
ions as the rank = 1 hypothesis, in which case there is no evidence to 
suggest that both rank = 1 and rank = 2 (or higher ranks) have been 
observed. spectral-based protein inference approaches can handle 
this problem intrinsically.  

 2.  the protein inference software then assigns all peptides (passing 
threshold in step 1) to all proteins in which they can be observed.

 3.  the software then traverses the list of proteins to discover same-set 
and sub-set relationships, by analysing the peptides assigned to each 
protein.

 4.  protein groups can be formed under the following conditions (Figure 
5.3):  

 a.  If a database protein has one or more unique peptides, it will form a 
protein group, acting as the group leader.

 b.  If two or more database proteins share the same-set of peptides, and 
no other proteins exist (with more peptides assigned) to which the 
same peptides can be assigned, then a new group is formed.  

 5.  database proteins with shared peptides but existing in sub-set relation-
ships (i.e. all peptides can also be assigned to another database protein 
with more peptides), are then assigned to the appropriate group and 
flagged as a sub-set protein, or discarded altogether, depending on the 
algorithm.

 6.  Following group formation, peptides can be assigned as resolved (exist-
ing in same-set relationships) or conflicted (potentially assigned to 
more than one group) – Figure 5.3(b).

  
these steps do not cover all possible cases that might occur, which if 

not appropriately handled will lead to some independent evidence for the 
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101Protein Inference and Grouping

observation of additional proteins being wrongly discarded. as shown in Fig-
ure 5.4, a not uncommon scenario is for peptides to be distributed across 
several proteins, but not resulting in straightforward same-set and sub-set 
relationships. In the case shown in Figure 5.4, there are three database  
proteins, supported by three peptides. the evidence points to at least two 
protein entities having been observed i.e. under rules of parsimony, the evi-
dence cannot be explained by only a single protein in the sample. there are 
several possible solutions, in order of perceived validity:
  
 1.  First, assign peptides to proteins based on rank ordering of proteins e.g. 

by protein score, then form groups. In the example, this would result in 
a group being formed from the top scoring protein B, and claiming pep-
tides 2 and 3. a second group would be formed by protein C, claiming 
the remaining peptide 1. protein a could then be assigned a “multiply 
subsumed” member of either or both groups.

 2.  Form two groups and arbitrarily assign group membership.
 3.  report three protein groups (non-parsimonious solution).
 4.  report a single protein group containing a, B and C – under-represent-

ing the evidence.
  

Figure 5.4    an example grouping scenario where three proteins are supported by 
three conflicted peptides. the solution to the grouping problem can 
be solved in some algorithms by taking peptide and protein scores into 
account. peptide scores (italic) go from low to high quality (low = weak 
identification; high = strong identification).
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there are other variations on this concept involving more complex group-
ings and sets of conflicted peptides. the classification algorithm can be 
achieved simply by ordering proteins based on some preference (e.g. most 
peptides, then score, then alphabetical order), and then assigning every 
peptide to the first protein in the list. shared peptides assigned to a single 
protein based on a protein-level preference are sometimes called “razor pep-
tides” (after occam’s razor) – following the terminology in ref. 5. such an 
algorithm will ensure that all evidence is captured, and that stable protein 
groups can be formed, based on same-set, sub-set and multiple subsumed 
relationships. however, as shown in Figure 5.4, caution needs to be taken 
in result interpretation. one implementation of an algorithm might suggest 
that protein a has been multiply subsumed and thus probably not identified. 
however, an alternative explanation of the data might suggest that protein 
a is just as likely to have been identified as proteins B and C. It is important 
that such nuances are well communicated by software and in data formats 
(section 5.4), enabling researchers to at least be aware that caution needs to 
be taken when interpreting results, and more work still needs to be done in 
this space.

5.2.2   Spectral-Focussed Inference Approaches
a spectral-focussed approach differs from a peptide-focussed approach in 
that lower ranked peptides potentially identified from a given spectrum can 
be intrinsically considered (Figure 5.5). From the data presented in Figure 
5.5, a peptide-focussed approach would do one of two things. If only rank = 
1 peptides were allowed, then peptide a would be assigned to protein X as 
a unique peptide, forming one protein group. peptides e, G and I would be 
assigned to protein Y forming a second protein group, no evidence for pro-
tein Z would be considered. If the peptide-focussed approach allowed rank 
≥ 1 to be considered, then peptide J would be assigned to protein Z forming 
a third protein group. a spectral-focussed approach would take a different 
approach. First, all plausible peptide identifications are assigned to proteins, 
including those with rank > 1. those shown in italic with very low scores 
are here discarded, but are included in some implementations (with a very 
low weighting factor). next a protein grouping approach is taken following 
the same algorithm as for peptide-focussed approaches, but instead forming 
same- and sub-set groupings based on spectra rather than peptides. when 
examining proteins X, Y and Z, it is discovered that the data only supports 
the parsimonious identification of a single protein group – in which protein 
Y has most evidence, and proteins X and Z are classified as “spectral sub-set 
proteins”.

It is important to note that based on identical search engine results from only 
four spectra, different apparently “parsimonious” inference algorithms could 
arrive at one, two or three proteins being identified.

spectral-focussed inference approaches have the advantage of intrinsi-
cally weighing the evidence when two or more peptide candidates produce 
very similar or identical scores from one spectrum. Identical scores occur 
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103Protein Inference and Grouping

whenever two peptide candidates contain isoleucine or leucine (indistin-
guishable by traditional LC-Ms workflows), or for example when certain 
modifications are tested for: deamidation of asparagine is chemically iden-
tical to aspartic acid. Furthermore, even with peptide hypotheses that are 
technically distinguishable, identical scores can be achieved when two differ-
ent peptide sequences have considerable sequence identity. Identical scoring 
peptides (both rank = 1 for a given spectrum) are problematic for peptide- 
focussed inference algorithms, since neither possible approach (accept both 
peptides or arbitrarily accept only one) correctly reflects the evidence. In 
terms of similar scoring peptide candidates, spectral-focussed approaches 
are also theoretically superior to peptide-focussed approaches, since they 
handle the case in a sensible manner where two candidates have essentially 
almost identical evidence – as in Figure 5.5 where there is no strong evidence 
that protein X is actually present in the sample.

while there are theoretical advantages to spectral-focussed inference 
approaches, their actual benefits are very challenging to demonstrate in prac-
tice to biological researchers. In many cases, peptide-level or spectral-level 

Figure 5.5    an example demonstrating how a spectral-focussed inference  
algorithm can take into account different ranked identifications from 
the input spectra – forming a spectrum same-set group. peptide scores 
go from low to high quality (low = weak identification; high = strong 
identification). a peptide-focussed algorithm would form two or three 
protein groups depending on how lower ranked peptides are handled.
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inference approaches will produce highly similar lists and counts of identi-
fied proteins. spectral-level approaches can be more conservative, as shown 
in Figure 5.5, producing only a single protein group, where a peptide-focussed 
approach would produce two or three groups depending on the implemen-
tation. as such, an end user applying a spectral-focussed software package 
would potentially observe only that a shorter protein list had been deter-
mined than if processing the data with a peptide-focussed package. In many 
cases, particularly with commercial software, the search engine and protein 
inference algorithm are integrated in a single step. the overall count of pep-
tides and proteins, say at 1% Fdr for both, can be taken as a measure of 
software performance given the same data, where a higher count is typically 
preferred. however, in the case of protein inference, the ability to produce a 
shorter (or more parsimonious) protein group list from a given set of input 
peptide-spectrum matches (psMs) may in fact be a better measure of suc-
cess. Benchmarking protein inference algorithms is a very challenging task 
for this reason. the association for Biomolecular research Facilities (aBrF) 
– proteome Informatics research Group (iprG) generate yearly benchmark-
ing studies in which different labs/groups analyse the same data sets, to 
test software performance. the iprG2008 study investigated this phenom-
enon, designing a complex scenario in which there were extensive shared 
peptides, and where the number of protein groups was known in advance. 
to our knowledge, the full analysis of study results has not been published, 
although it is described in studies that re-used the data including ref. 4 and 6. 
the initial (unpublished) results appeared to indicate that best performance 
(fewest false positive protein groups) was achieved by pro Group from sCIeX, 
an algorithm that is spectral-focussed. It is currently largely unknown how 
much variability in proteomics workflows is introduced in practice through 
the use of different inference algorithms, since in most cases these cannot 
be decoupled from the search engine, although in theory spectral-focussed 
algorithms appear superior.

5.2.3   Considerations of Protein Length
the decision as to whether to exclude low scoring psMs from inference can 
impact on downstream results, and there is some dependence on the pro-
tein length. For example, a naïve approach in which a peptide of any score 
could contribute to inference could have unexpected consequences in the 
case of very large proteins. the largest human protein is titin, with a molecu-
lar weight of 3.8 million daltons (∼30 000 amino acids). By chance, many very 
low scoring peptides could suggest proteins such as titin have been identi-
fied when in fact no single significant psM had been made. as such, an algo-
rithm could have an additional requirement that only proteins with at least 
one significant peptide identification should be considered for inference, 
which would get around this problem to some extent. More generally how-
ever, in any protein inference approach, there is a potential for bias towards 
longer proteins, since they have more chances to be identified than short 
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105Protein Inference and Grouping

proteins. some inference approaches attempt to correct for this e.g. ref. 7. 
however, while comparing unrelated proteins it seems intuitive to correct 
a protein-level score or probability for protein length, this can have unde-
sired consequences for related proteins. For example, where two proteins 
have been identified in a (peptide or spectral) same-set relationship, it does 
not seem intuitive to suggest that the shorter protein is more likely to have 
been identified, as would result if protein scores are normalised by protein 
length. Most protein scoring approaches (table 5.2) do not appear to correct 
for length at the present time.

5.2.4   Handling Sub-Set and Same-Set Proteins within Groups
Under either a spectral or peptide-focussed inference approach it is common 
to identify sub-set proteins i.e. those supported only by evidence (spectra 
or peptides) that can also be assigned to other proteins that have a greater 
amount of evidence. such sub-set proteins can either be assigned to the pro-
tein group with which most evidence is shared, and flagged as sub-set pro-
teins, or discarded altogether. In either case, most researchers would ignore 
these entities in downstream data analysis as probably not being present in 
the sample. however, such an approach could lead to some unintended con-
sequences. Consider a case where the database sequence of protein X has a 
true sub-set of tryptic peptides as protein Y e.g. if X and Y were derived from 
alternative splicing of a single gene (X has exons 1, 2, 4 and Y has exons 1, 
2, 3, 4; and peptides crossing splice junctions are not good tryptic candi-
dates for identification.). In a shotgun approach, if both protein X and Y were 
truly present in the sample, protein X would always be identifiable only as a 
sub-set protein assuming high sequence coverage. even if only protein X was 
present in the sample, it could only ever be identified as a same-set protein, 
unless a normalisation approach is used based on protein length, which is 
not standard practice. at present there is no obvious solution to this prob-
lem, and to our knowledge, few, if any, studies have attempted to measure 
the extent of this potential issue in practice.

with (peptide or spectral) same-set proteins in groups, software either 
report them as a group e.g. [a, B, C] as a single unit or as a representative 
protein [a] with same-set members [B, C]. the distinction can be important 
depending on downstream data analysis that is performed. as for sub-set 
proteins, the same potential problem exists where two or more proteins (e.g. 
protein a and B) have the same-set of identifiable tryptic peptides e.g. due 
to identical or very similar protein sequences. If the protein inference algo-
rithm always favours protein a (say on alphabetical order as a tiebreaker), 
protein B would always be unidentifiable in a given workflow.

the upshot from both same-set and sub-set scenarios is that (a) researchers 
should be aware that manual interpretation of results may still be required 
and (b) developers of software and data formats should endeavour to commu-
nicate the remaining ambiguity in protein grouping in a clear manner. From 
a given protein group, it is possible that all of the members were present in 
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106Table 5.2    a summary of protein scoring and inference approaches used in some popular software. note, this is not an exhaustive list, and 
there are many other packages available, which mostly use a method similar to those described.

software 
package

availability and/
or reference

Inference 
approach protein scoring notes

Mascot Commercial, 
Matrix science

peptide- 
focussed

protein score  
summing  
peptide ion 
scores to give a 
protein score

the original Mascot grouping approaches used simple peptide same- 
and sub-sets. this was later updated to a protein family approach4 
in which hierarchical clustering is performed over shared peptides 
(using distance based on scores from non-shared matches) to 
assist users in visualising structure across protein groups

MaxQuant Free5 peptide- 
focussed

protein-level pep MaxQuant assigns peptides to protein groups using the so-called 
“razor peptide” approach – assigning a shared peptide to the  
protein that has the most evidence, but are reported for all groups 
in which they could occur. protein pep is derived by multiplication 
of peptide-level peps, taking best pep in case of multiple psMs per 
peptide, and using peps from resolved peptides only. Users can 
choose whether to quantify from unique peptides only, unique and 
razor (shared) peptides or all peptides

protein-
prophet

Free2 peptide- 
focussed

protein probability protein probability is calculated directly from peptide probabilities, 
as discussed in the main text following standard probability  
theory for independent events. Conflicted peptides can contribute 
to protein probabilities via a weighting scheme

scaffold Commercial,  
proteome 
software

spectral- 
focussed

protein probability scaffold protein-level scoring (probability calculation) is built upon 
proteinprophet with a slight adaptation to the method so that it 
runs more quickly. protein grouping uses a tripartite graph:  
spectra-peptides-proteins, as described in ref. 16

protein pilot Commercial, 
sCIeX

spectral- 
focussed

“protscore” 
approach

a spectral-focussed algorithm that enables lower ranked peptides to 
contribute to protein-level scoring, but no spectral-level data can 
contribute to different protein groups i.e. spectral same-set and 
sub-set relationships are established
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rouping
peaKs Commercial, 

Bioinformatics 
solutions Inc.

peptide- 
focussed

protein scores, 
derived from 
summing 
−10 log 
(p-values)

peaKs follows a protein grouping approach similar to the algorithm 
described in section 5.2.1. protein scores are formed by summing 
values derived from peptide-level p-values, using −10 log(p-value) 
to transform them to a positive scale. a weighting factor is  
introduced to account for lower ranked peptides from a given 
spectrum, where the weight is 1/rank × −10 log(p-value)

progenesis 
QI for 
proteomics

Commercial, 
waters

peptide- 
focussed

protein  
confidence score

a protein grouping approach similar to that described in section 
5.2.1 is used. resolved peptides are used for quantitation but  
conflicted peptides are not. a protein confidence score is formed 
by summing all peptide-level scores derived from the source 
search engine, and various input search engines with different 
score types are supported

proteome 
discoverer

Commercial, 
thermo

spectral- 
focussed

protein probability a Bayesian statistical inference model has been implemented in  
proteome discoverer 2.0, as described in,17 using a so-called “con-
volution tree” approach. the approach is similar to  
proteinprophet, in that the evidence associated with conflicted 
peptides is shared amongst candidates proteins, iteratively  
updating protein-level probabilities until a stable result is 
obtained
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the sample, or that only one of the members was present. even if a sub-set 
protein appears at first look to have significantly less evidence than other 
group members, this may be due to it being a considerably shorter protein or 
lower abundance (in both cases leading to fewer identifiable peptides).

5.2.5   Assignment of Representative or Group Leader Proteins
Many protein grouping approaches attempt to assign a single protein as rep-
resentative of a given group – sometimes called a representative protein or 
group leader (“anchor protein” in Mascot, Matrix science). this has become 
common since pathway or functional enrichment approaches were gener-
ally designed for gene expression data, and cannot handle the concept of a 
protein group as a single entity. a group leader would often be assumed to 
be the protein within the group that has the most evidence (highest count of 
peptides, highest score). In the case of same-set group, a group leader cannot 
be unambiguously assigned, and thus caution must be taken when interpret-
ing results if the software does not clearly distinguish these two cases. the 
term representative protein is sometimes used instead implying the concept 
that a protein has been chosen as a single accession for the group, but that 
the selection criteria might be arbitrary, such as alphabetical order. an ideal 
classification and software output would make it clear to end users which 
proteins fall into these two groupings, although this is not common.

5.2.6   Importance of Peptide Classification to Quantitative 
Approaches

shared or razor peptides (shared peptides assigned to proteins with most 
evidence) can be further classified into those that participate in same-
set relationships, which could be called “resolved peptides” or those could 
belong to more than one protein “conflicted peptides” (or bridge peptides 
in ref. 8). the distinction between resolved peptides or conflicted peptides 
is actually not necessary in the peptide-centric protein grouping approach 
described, since both types are assigned to the protein with most evidence 
or based on arbitrary preference. however, it becomes important for many 
quantitative software packages that generally use identification data from 
search engines for inferring the protein groups present and quantifiable. 
some quantitative packages choose to quantify using: (1) unique peptides 
only; (2) unique + resolved peptides; (3) all peptides. the downside of using 
unique peptides only is that same-set relationships are exceptionally com-
mon, particularly when searching (for example) a Uniprot proteome for 
human or other animals, which contains protein variants from the same 
gene, as well as paralogues. as such, a large proportion of proteins could 
not be quantified using unique peptides only. a pragmatic approach is thus 
to use category 2 peptides for quantification, since conflicted peptides are 
comparatively rare. Conflicted peptides are potentially highly problematic 
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109Protein Inference and Grouping

for quantification, since the peptide signal observed by LC-Ms will usually 
be derived from a mixture of at least two different source proteins, which 
may well have different abundance profiles across sample conditions. 
In theory, it could also be argued that where same-set relationships exist 
(resolved peptides), the same problem could occur, and potentially all pep-
tide ions give mixed signals from different source proteins. however, for at 
least some resolved peptides, there may indeed only be a single protein in 
the sample (we just do not know which one), and thus reliable quantitation 
values are achievable. For conflicted peptides, we have concrete evidence 
that they are derived from a mixed signal and likely only add noise to the 
analysis.

5.2.7   Scoring or Probability Assignment at the Protein-Level
In all workflows employing protein inference, some form of protein scor-
ing is used (table 5.2), for ordering the final protein list, and in some cases 
for performing global statistics, such as False discovery rate (Fdr) analy-
sis. Most search engines produce a psM or peptide-level score, often as an 
integer or floating point number where usually higher scores are better. 
these are sometimes produced by performing a minus log 10 transforma-
tion on e-values or p-values. Mascot for example creates an “ion score” based 
on: −10 Log(P), where P is the probability that the psM is a random event 
(p-value). Ion scores for reliable psMs thus range from around 45 to >100 for 
commonly observed p-values. In Mascot, a protein score is formed by sum-
ming the ion scores values for all peptides that can be assigned to a protein 
(taking only the best ion score per distinct peptide). depending on the size 
of the input data set (number of spectra), Mascot has two different modes 
– regular scoring and MudpIt scoring. In the former, all possible peptide 
assignments are considered (including low scoring peptides below the pep-
tide significance threshold, and rank > 1 psMs). when the size of the input 
data set becomes large (beyond an internal threshold), “MudpIt scoring” 
is used instead, whereby only peptide identifications above the significance 
threshold contribute to the protein score. such an approach is needed since 
for large scale searches chance low scoring matches can start to accumulate, 
particularly for peptides assigned to high molecular weight proteins. since 
it is log-based, summing the ion scores has the same effect as multiplying 
p-values. performing an inverse operation on the protein score thus equates 
to a protein-level p-value, which is a valid assumption if the peptide identifi-
cations are considered independent events.

a similar approach is taken by proteinprophet,2 which rather than esti-
mating the p-value for a protein (probability that it is a random false pos-
itive with such a score), it instead calculates the probability that a protein 
has been identified. It could be argued that the probability of identifica-
tion is a more intuitive and useful value for researchers than a p-value. the 
input data is the set of peptide-level identification probabilities Ppep(1..n) (i.e. 
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the probability of identification again rather than p-values), calculated by 
peptideprophet.9 Following basic statistical theory, it is straightforward to 
calculate the probability that the protein has not been identified, by multi-
plying together all peptide level values of: (1 − Ppep(1..n)). one minus this value, 
then gives the protein-level probability. this approach is fairly simple in the 
case of unique peptides, but falls down for shared peptides. proteinprophet 
implements an iterative algorithm, which weights assignments of peptides 
to proteins based on protein-level probabilities. In simple terms, if a shared 
peptide a could be assigned to protein X that is well supported by other evi-
dence or protein Y that has little other evidence, a higher weighted probabil-
ity for a will go to X over Y. the process is repeated in iterations until a stable 
result is obtained.

In both Mascot and proteinprophet, peptide-level scores/probabili-
ties are used as input rather than psM-level i.e. by taking the only best 
scoring or most probable psM for each peptide in the (common) case of 
multiple psMs identifying the same peptide. More generally, there is a 
move towards using peptide-level scores, p-values or probabilities for pro-
tein-level scoring, instead of psM-level scores. the rationale is that mul-
tiple psMs for the same peptide do not constitute independent evidence, 
and can lead to systematic error. For example, consider a case where the 
top ranking result for 10 spectra is peptide X with a relatively weak score; 
where in fact all 10 spectra were derived from peptide Y, which was not 
included in the search, but for various reasons produces a similar pat-
tern of fragment ions to peptide X. this phenomenon can occur due to 
a missing or incorrect gene model annotation or if peptide Y contains a 
modification that was not included in the search. without applying such 
a correction, 10 weak scores for peptide X could lead to the parent protein 
incorrectly having a high score or apparent statistically significant result. 
taking only the best score for peptide X from all 10 psMs, avoids this 
potential bias.

Beyond the examples given for Mascot and proteinprophet, protein-level 
scores can be calculated in a variety of mechanisms based on different pep-
tide or psM-level scores, including p-values, q-values or Fdr values, posterior 
error probabilities, Bonferroni corrected p-values and so on (see table 5.2). 
In many approaches, the protein list will be ordered by the resulting pro-
tein-score, and the target-decoy method can be re-applied (see Chapter 4) to 
estimate the Fdr. the target-decoy approach is valid, so long as the search 
and protein inference process has not introduced any biases that would 
favour targets over decoys. approaches that up-weight the scores of pep-
tides, based on protein-level information (as performed by proteinprophet), 
have the potential to break the central assumption of the target-decoy Fdr 
method that targets and decoys are equally likely, which can lead to under-
estimation, at least of peptide or psM-level Fdr (there is some discussion 
of this issue in ref. 10). as such, before a target-decoy approach is applied, 
some understanding of the approach taken for protein inference and scoring 
is needed.
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5.2.8   Handling “One Hit Wonders”
the concept of a protein identification supported by a single peptide (so 
called “one hit wonders”) has been the subject of much debate in the field, 
in terms of whether they are acceptable or not. In any shotgun study, there 
will typically be a large proportion of the potentially identifiable protein 
set, where the proteins are each supported by only a single peptide. this is 
because once proteins are ranked by score or probability, those proteins truly 
in the sample but of lower abundance or containing fewer peptides that ion-
ise well, will have decreasing numbers of peptides identified, and indeed the 
majority of proteins actually in the sample will have zero peptides identified, 
and thus will not be observed. By including one hit wonders, a researcher 
will be able to extend the list of proteins identified, potentially increasing the 
impact of the publication, or the ability to make downstream conclusions. 
on the flip side, however, most false positive identifications are proteins 
identified by a single peptide. as a result, false positives can be almost com-
pletely eliminated by setting a threshold that a protein identification must 
have at least two distinct peptide identifications, so long as sensible thresh-
olding (see Chapter 4) had already been performed on the peptide list.

For the purposes of quantitative studies, it is generally agreed that quan-
tification from a single peptide is not recommended practice, since there is 
no independent evidence that a reliable quantitation has been achieved, and 
beyond the identification stage, various other factors can also go wrong (fea-
ture detection, mapping across replicates, normalisation etc.). For identifica-
tion studies, there is no clear consensus on whether to trust one hit wonders. If 
a sensible protein inference and scoring approach has been taken, from a sta-
tistical point of view, there is no reason to trust a protein (group) with a weaker 
score but two peptides, over one with a higher score but only a single peptide.

Many groups now choose to perform target-decoy Fdr calculation at the 
protein-level, and allow any protein (regardless of the number of peptides) 
passing at 1% Fdr into the final set. while this approach is widespread, it is 
not without its limitations. For example, if there are only ∼100 proteins iden-
tified in a given study, the appearance in the ranked list of the first or second 
decoy protein, will be enough to push the estimated Fdr over the 1% level, 
where the cut-off is made. as such, there is considerable randomness in 
where the cut-off line is ultimately drawn. More generally, this is a limitation 
of protein-level target-decoy approaches, in which the score of a small num-
ber of decoys can have considerable effects on the position of the threshold. 
this issue is less problematic for peptide-level target-decoy, since the overall 
number of peptides is larger, and thus estimates of Fdr are more robust. the 
overall conclusion is that different levels of trust should be placed in those 
proteins supported by large amounts of evidence, and those with weak evi-
dence, which have only just passed the threshold used. Ideally, downstream 
analysis (such as pathway-based analyses) would incorporate the probability 
of protein identification intrinsically into the tools, but we are not aware that 
such tools are generally available.
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5.3   Support for Protein Grouping in Data Standards
as described in Chapter 11, the proteomics standards Initiative (psI) has 
been working since 2002 to improve efforts in data sharing, by developing 
reporting requirements documents, standard data formats, and supporting 
software. the main format for identification data, for example produced as 
output by a search engine, is mzIdentML.11 mzIdentML is an XML-based for-
mat, capturing a detailed trace of the process of peptide identification, includ-
ing input parameters, software used, output scores and statistics. the format 
can also capture the results of protein inference either performed alongside 
peptide identification in a single stage, or by a second stage post-processing 
algorithm or package. at the time of writing, the stable version of mzIdentML 
is version 1.1, as described in ref. 11, which has remained unchanged since 
2012. extensions to the format can be achieved by adding new terminology to 
the psI-Mass spectrometry Controlled Vocabulary (psI-Ms CV), as described 
in ref. 12. a valid mzIdentML file must conform to the XML schema as origi-
nally released, and pass so-called “semantic validation”,6,13 which checks that 
correct and valid CV terms have been used in the correct locations of the file. 
the format can thus remain stable in terms of the core schema, but while 
allowing for new terms to be added, such as new scores or statistics from 
search engines as they are produced. In mzIdentML 1.1, a two-level hierarchy 
of results can be captured in the following file elements: proteinambigui-
tyGroup (paG) and proteindetectionhypothesis (pdh).

within the overall list of protein results, it was intended that each paG 
could contain 1 or more pdh elements, where each pdh element mapped to 
a single database protein that had been identified, and the paG corresponded 
to the concept of protein group as defined in this chapter. a set of CV terms 
was also included in the psI-Ms covering various possible relationships, such 
as peptide same-set, spectral same-set and so on, and the term “anchor pro-
tein” (from Mascot, Matrix science) to describe a representative protein for 
the group. while mzIdentML 1.1 overall has become a widely used and stable 
standard, it has now been acknowledged that the protein grouping aspect 
was not specified sufficiently tightly to ensure that different groups imple-
menting the standard, would always use the core features – paG, pdh and 
CV terms in a consistent way. In addition, mzIdentML 1.1 lacked a clear map-
ping between the count of identified proteins, which an investigator might 
wish to report in a manuscript, and an attribute of a given file e.g. one could 
count pdh or paG elements. In response, an update to mzIdentML is under 
review, as described in ref. 14, from which mzIdentML 1.2 will emerge. the 
new aspects of mzIdentML 1.2 include mandatory terminology being added 
to protein groups, following many of the concepts described in this chapter. 
there is also now a clear expectation that when one wishes to count the num-
ber of identified proteins, this is derived from a count of the protein groups 
(paGs) in mzIdentML. the count of database proteins (pdh) in mzIdentML 
is largely irrelevant and should not usually be reported in a manuscript, 
for the reasons described in section 5.1. For groups wishing to implement 
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mzIdentML now, it is possible to include all of the terminology described in 
ref. 14 in both mzIdentML 1.1 and 1.2 – as this has been done in a backwards 
compatible manner. the extra terminology for protein grouping is enforced 
in mzIdentML 1.2 but not in mzIdentML 1.1, but would be considered best 
practice.

a second standard format from psI is mztab,15 which is a simpler rep-
resentation of either identification or quantification results, in a flat-file 
(tab-separated text) format, suitable for visualisation in a spreadsheet or sta-
tistical software. In mztab support for protein grouping has been included 
to the extent that each row of results (in the protein section of a file), has a 
nominated protein accession – assumed to be the representative protein of 
the group. a second cell of data can be included called “ambiguity members” 
where accessions for same-set proteins can be reported, with the implication 
that the row of data is reported for a group made up of the main accession 
and those ambiguity members together.

5.4   Conclusions
this chapter has summarised current algorithms and implementations for 
inference of protein identification, from peptide identification results in 
LC-Ms/Ms proteomics workflows. It is now accepted that all high quality 
studies should include some form of intelligent (e.g. parsimonious) protein 
grouping, unless extensive pre-separation of proteins has occurred (such 
as the use of two-dimensional gel electrophoresis). proteomics research-
ers should have a reasonable level of awareness of the process performed 
by the main software packages, as this stage does have impact on the final 
list of proteins produced, and thus implications for downstream conclusions 
to be drawn from the data. Unlike the stage of peptide identification where 
straightforward metrics can be used to compare performance between differ-
ent software packages (such as counting peptide identifications at 1% Fdr, 
assuming unbiased calculation), in protein inference comparing the quality 
of different approaches is more difficult. In some situations, for example in 
the case of bacterial proteomics where gene families are less common (and 
there is no alternative splicing), the choice of protein inference approaches 
will make little or no difference on the final results, as long as high-qual-
ity gene models exist. however, in proteome analyses on complex protein 
sets with high sequence redundancy due to extensive alternative splicing 
or paralogues, considerable differences in the results could be introduced 
by the choice of protein inference engine alone, even accounting for the 
same search engine being used in different workflows. while higher counts 
of psMs or peptides at a fixed Fdr gives some indication of search engine 
performance (i.e. higher is probably better), given a fixed count of peptide 
identifications, it should not be assumed that a higher count of protein iden-
tifications is a desirable facet of protein identification software. Bioinformat-
ics groups and proteomics research labs should strive to produce the most 
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parsimonious explanation of a given set of peptide identifications, to avoid 
biasing downstream data analysis or quantitative analysis. From the alterna-
tive approaches for protein inference and grouping presented in this chapter, 
there is no clear optimal solution for all approaches. however, it is a reason-
able assumption that those which handle multiple levels of inference (spec-
tral, peptide, protein, groups) in a true statistical framework are likely to be 
theoretically superior, assuming they have been implemented and parame-
terised optimally.
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6.1   Introduction
Current estimates suggest that there are more than 200 possible in vivo 
post-translational modifications (ptMs).1,2 in addition, an even larger num-
ber of chemical modifications can be introduced either intentionally (e.g. for 
stable isotope based quantitation3,4) or unintentionally during sample prepa-
ration for mass spectrometry (Ms) analysis (e.g. oxidation of methionine, 
deamidation of asparagine and glutamine). Methionine oxidation and deam-
idation constitute chemical modifications which in most cases should be 
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117Identification and Localization of Post-Translational Modifications

taken into account in database dependent searches. More modifications are 
being discovered on a regular basis such as crotonylation,5 succinylation,6 
3-phosphoglyceryl-lysine7 and prokaryotic ubiquitin-like protein (pub).8

ptMs introduce either a negative or a positive mass shift to the canoni-
cal peptide. this leads to a delta mass shift in Ms1 scans. in Ms2 scans the 
fragment ions that still contain the modification will likewise be shifted by a 
delta mass. it is the delta mass shift that makes mass spectrometry a power-
ful methodology for studying ptMs. for example, for the acetylated peptide 
asteveacK all the b-ions (n-terminal fragments) from b1 to b6 will not be 
shifted whereas all the y-ions (C-terminal fragments) and b7 will be shifted by a 
delta mass of 42.0106 m/z. Mass spectrometry analysis is therefore able to site 
localized ptMs in proteins if the ion series (typically a, b and y-ions for higher 
energy collision dissociation (hCd) and collision induced dissociation (Cid) 
data) covers the modification site and ideally the full peptide sequence. note 
that it is not necessary to obtain a full y-ion or b-ion series to determine site 
localization. frequently the combined assignment of the ion series provides 
fairly good sequence coverage. the theoretical delta mass introduced by differ-
ent ptMs is available from several databases (see subsection 6.3.2). a subset 
of ptMs such as phosphorylation are labile in Cid and hCd which means that 
a Cid–hCd Ms2 spectrum of a phosphopeptide often contains a large neu-
tral loss peak at m/z: [M + nh]n+/n − 79.9663 or [M + nh]n+/n − 97.9769, where 
[M + nh]n+/n is the n protonated parent ion mass. the consequence of this 
neutral loss of the phospho-group or phospho-group plus h2o gives a-, b- and 
y-ion series that correspond to the canonical peptide and therefore provide 
no information about the phospho- site localization. acquiring complemen-
tary eCd–etd spectra can resolve the stability related issue but often at the 
cost of lower sensitivity. a site's occupancy or stoichiometry of a modification, 
defined as the fraction of protein molecules that are modified at a specific site 
by a specific modification, ideally requires that both the modified and a num-
ber of unmodified peptides from the specific protein are observed together 
with known concentrations of stable isotope labeled versions of the peptides. 
however, relative changes in ptM occupancy across samples can be detected 
by label-free quantitation by comparing ratios of ion counts from the modified 
peptide versus the canonical peptide from different samples.

ptM patterns change upon external stimuli, development stages, diseases, 
genotype, subcellular localization and even more fluctuate in a spatiotempo-
rally regulated manner in specific subcellular processes (e.g. autophagy and 
proteasome degradation). a subset of ptMs changes occupancy on a short 
time scale upon external stimuli9 (e.g. acetylation, phosphorylation, ubiquiti-
nation, etc.) whereas others change on a longer time frame such as glycosyla-
tion in cancer and some glycosylation patterns that are fixed for life such as 
blood types, which is genotype specific.

Many diseases demonstrate modulation of the occupancy of a large num-
ber of in vivo post-translational modifications,10 e.g. proteolytic cleavages,11 
ubiquitin, acetylation,12–14 methylation,15,16 phosphorylation,17,18 glycosyla-
tion,15,19 redox modifications20,21 and prenylation10 have all been impli-
cated in cancer (see table 6.1). in other words ptMs constitute potential 
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biomarkers and surrogate markers to complement clinical methods which 
strictly only use proteins or biomarkers from genomic platforms. further-
more, a number of pharmaceutical drugs target specific ptMs emphasizing 
the importance of ptMs.

6.2   Sample Preparation Challenges
a plethora of technical challenges is associated with identification and site 
localization of ptMs. these challenges must be taken into consideration 
when performing computational analysis and therefore will be shortly 
reviewed here. table 6.2 provides an overview of some of the challenges 
associated with ptM identification and site localization and suggestions to 
alleviate the problems from an experimental or computational point of view.

it is becoming increasingly clear that Ms-based proteomics challenges the 
original idea of few individually important post-translational modifications 
being key regulators of a biological process such as cell cycle, development 
or detection and response to stimulus (for example, Ms nowadays provides 
thousands of phosphorylation, acetylation and ubiquitylation sites in a sin-
gle study.).1 Clearly, these gear our perspectives toward the importance of 
studying groups of entities rather than key regulators, which consequently 
requires the development of new experimental and computational methods.

n-linked glycosites and glycosylphosphatidylinositol (Gpi) anchors occur at 
high stoichiometries and are typically irreversible. in contrast, reversible ptMs 
such as acetylation,22 phosphorylation,23,24 ubiquitinylation25 and suMoyla-
tion26 are typically reported to display low stoichiometries which is linked to the 

Table 6.1    post-translational modifications and their association with different  
cancer types.

post-translational modification prominent examples

acetylation histone deacetylase inhibitors
Methylation arginine methyltransferases (prMts) and protein 

lysine methyltransferases and demethylases
proteolytic cleavage proteasome inhibitors (e.g. Bortezomib); adaMs 

in drug resistance, cancer stem cells, cell 
migration and invasion

ubiquitin and suMoylation duBs and e3 ligases
phosphorylation Kinase inhibitors (receptor tyrosine kinases/pi 

3-kinase/akt/mtor/ras/raf/MeK/erK, MeKK/
MKK/JnK, and JaK/stat)

Glycosylation Gp73, Cd44, galectins,Ca125, Ca19-9, MuC1, 
MuC4, MuC16, prostate-specific antigen,  
osteopontin, sialyl lewis a and lewis X

redox modification aberrant induction of signaling networks  
triggered by reactive oxygen species in  
e.g. cardiovascular diseases and cancer

prenylation activation of Gtpases such as ras, rho, and 
G-proteins coupled

poly(adp-ribosyl)ation Genotoxic stress, cell division and survival
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119Identification and Localization of Post-Translational Modifications

fact that they play a key regulatory role. the low stoichiometries require spe-
cialized enrichment strategies prior to Ms analysis. enrichment-based strategies 
increase significantly the number of identified sites but have the drawback that 
occupancy is not easily determined and the interplay with other modifications is 
lost. nevertheless, serial enrichment allows integrated enrichment and analysis 
of phosphorylation, ubiquitination and acetylation.27

additional difficulties with ptM identification are caused by complex-
ity and stability of specific modifications. ptMs such as Gpi anchors,28 
poly(adp-ribosyl)ation29 and phosphorylation are labile within the mass 
spectrometer, especially in the fragmentation step impairing modification 
site determination. Combining Cid–hCd and etd can enable site location 
of labile modifications. the use of Gaussian weights in scoring functions 
also improves site location of ptMs and certainty of correct identification.30 
in a similar way, the use of high mass accuracy in both Ms and tandem mass 
spectrometry (Ms/Ms) also improves identification and site location.

proteins can be modified by other proteins e.g. ubiquitylation, suMoyla-
tion and neddylation. recently it has become evident that cross branching 
between ubiquitin and ubiquitin-like proteins is possible and additionally 
ubiquitin and ubiquitin-like proteins can become modified by, for example, 
phosphorylation adding to the complexity of ptM studies.31 Glycosylation 
also forms highly complex structures with heterogeneous compositions of 
glycosylation units and multiple possibilities for branching.32 furthermore, 
the ptM component of the protein can cause the total mass of the peptide 
to be outside the measureable range within the instrument settings used for 

Table 6.2    overview of challenges in Ms-based ptM research. the first column lists 
technical problems and the second column lists technologies that alle-
viate the problem.

Challenge Methods to alleviate problem

near isobaric masses synthetic peptides, Gaussian weight,  
alternative fragmentation methods

substochiometry ptMs enrichment protocols (antibodies tio2,  
lectins, tuBes, etc.)

sample degradation protease inhibitors, tuBes, phosstop™,  
histone deacetylace inhibitors

stability in gas phase especially 
in fragmentation step

Combine Cid–hCd with etd, alternative protein 
digestion methods

artifical modifications Chemical modifications (e.g. cystein modifica-
tions such as iodoacetamide)

detectability enrichment, artificial modifications,  
enzymatic and chemical cleavage

Complexity enzymatic and chemical cleavage of modifications
size enzymatic and chemical cleavage of modifications
peptide solubility Consider buffer properties used for  

enrichment and reverse phase material
site localization Gaussian weight, etd, high mass accuracy and 

resolution in Ms and Ms/Ms
Cross talk between ptMs open or semi-open search combined with label-

free quantitation, serial enrichment
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large scale proteomics. this means that enzymatic removal leaving a small 
residual component of the full modification can be a strategy that allows site 
mapping of such modifications.33 this strategy of cleaving of a major compo-
nent of the modification has been used for glycosylation, Gpi-anchors, ubiq-
uitin and ubiquitin-like modifiers.

different buffers used for cellular lysis and subcellular fractionation can 
also affect the final outcome of enrichment strategies and is worth consid-
ering.34 this can for example be caused by a buffer’s effect on solubility of 
peptides and affinity to C18 resins (e.g. phospho peptides are in general more 
hydrophilic than canonical peptides).

Chemical modifications generated during sample preparation can cause 
ion suppression leading to lower identification rate. in the worst case sce-
nario the spectra from these chemical modifications can be matched to 
incorrect peptides if not considered during the analysis. ptMs that occur 
transiently in the cell such as intermediates in redox reactions can be 
stabilized by chemical reagents, for example, free thiols at cysteine can 
be blocked (e.g. with neM, MMts or iodoacetamide). subsequently s- 
nitrosylation is reduced with ascorbate and the newly exposed thiols 
labeled with a thiol-reactive biotin which can be used for enrichment prior 
to Ms analysis.35,36

enrichment strategies for phosphorylation are in general more developed 
than for other ptMs. for example, antibodies raised against specific phos-
phorylation motifs, reflecting phosphorylation sites from a specific kinase, 
can be used for enrichment.37 however, most studies still report the whole 
phosphoproteome commonly using titanium dioxide (tio2) chromatogra-
phy for selective phosphopeptide enrichment.38

in conclusion, Ms-based study of ptMs still holds major challenges 
making it an interesting research topic. efficient experimental protocols 
and enrichment strategies require development for a large number of 
modifications.

6.3   Identification and Localization of  
Post-Translational Modifications

6.3.1   Computational Challenges
ptM identification faces several challenges from computational and exper-
imental sides. solving these challenges involves iteration between both the 
computational and experimental sides since they are directly linked. the 
diverse experimental methodologies require specific computational meth-
ods optimized for the specific tasks. frequently this is not available and 
adaptation of computational methods optimized under other conditions 
and assumptions are adapted in the best possible way to provide pragmatic 
solutions. furthermore, few reference data sets exist to validate experimen-
tal and computational methods, although, a reference data set of synthetic 
phosphopeptides analyzed by Ms/Ms is available.39
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121Identification and Localization of Post-Translational Modifications

Matching peptides against experimental spectra is an optimization pro-
cess aiming at the best possible solution given predefined constraints. the 
number of peptide sequences to score against a spectrum to identify the 
ptM site in a given peptide sequence can be formulated as:

1

2 i

m
M

i

N


 

where N is the number of peptides and i iterates over possible modifications 
m for the given peptide. Mi is the number of possible positions for the mod-
ification i., e.g. a peptide with one phosphorylation and 10 possible sites 
(typical ser, thr and tyr) results in 210 = 1024 possible peptides to match a 
given spectrum. for a small number of modifications, less than five, the iter-
ation shown is possible but becomes computationally intensive when more 
than five modifications are considered. however, for more modifications the 
combinatorial problem becomes intractable and consequently an Ms-align-
ment-based algorithm for “blind” spectral search has been proposed.40,41 
the central idea of the Ms-alignment algorithm is based on allowing mass 
shifts, corresponding to modifications or mutations, to obtain a best possi-
ble match between experiment and theoretical spectra. these solutions can 
efficiently be found by adapting dynamic programming algorithms used to 
align sequence data. Computational methods based on “semi-blind–open” 
searches have also been proposed.42 the scoring of a peptide to a spectrum 
consists of matching theoretical fragment ions (see section 6.3.4) against 
the observed fragments ions in Ms2 scans using a mass interval in m/z or 
ppm to define matches. Many scoring functions have been proposed and can 
roughly be divided in functions that only consider the observed fragment 
ions matches and functions that both consider matched and unmatched 
peaks.43,44 a simple scoring function is the cross correlation score which basi-
cally counts the number of matched ions, such as the correlation score.45 
More advanced scoring functions include terms that consider the intensity 
patterns,46 the continuation of the ion series,47 Gaussian weights for the accu-
racy of fragment ion matches43 and the isobaric ambiguity of the matched 
masses.43,44 in addition to assigning a score to the peptide spectrum match 
(psM) some software also provide a site location score or probability which 
provides a measure for how likely the correct position of the modification in 
the peptide is based on spectral information.48 Gaussian weights in scoring 
functions also improve the correct assignment of ptMs.30

one challenging problem is to statistically estimate the accuracy of the 
modification site. fdr estimation using reverse, permutated or random 
protein sequence databases is now generally accepted as a way to compare 
different search engine results for peptide and protein identifications49 (see 
Chapter 4). unfortunately this concept does not translate well to site local-
izations of modifications. although some methods have been proposed to 
estimate false localization rate (flr) they have not proved practically useful 
or achieved general acceptance.50,51 the role of peak picking on the accu-
racy of modification site determination has been discussed52 but using raw 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
01

16
View Online

http://dx.doi.org/10.1039/9781782626732-00116


Chapter 6122

data is preferable. providing probability estimates for site localization is dif-
ficult because ion series frequently do not cover the full peptide sequence or 
the part of the sequence containing the potential modification sites. even if 
the ion series covers all the potential modification sites the score difference 
between two potential sites are often minor and can be attributed to assign-
ing a single extra fragment ion which could be noise or a fragment from 
another peptide that was co-fragmented.52 strategies for estimating the reli-
ability of modification site localization can be divided into two main strate-
gies: 1) assess the chance of a given peak that allows site determination to 
have been matched at random53–58 and 2) calculate a search engine score dif-
ference between peptide identifications with different site localizations.50–52

protein ptM databases are useful to compare obtained results from an Ms 
study and can also serve as a way to minimize the search space by restrict-
ing the search of protein residue sites to annotated modifications. although 
computationally simpler it prevents assignment of unknown sites. table 
6.3 provides a list of commonly used databases containing ptMs assigned 
to proteins. dbptM integrates data from 14 different public databases of 
post-translational modifications and is therefore currently the most com-
plete database of ptMs.

the information deposited in ptM databases is confined commonly to the 
modified site in the protein sequence, however a site's occupancy or stoichi-
ometry of a modification, defined as the fraction of protein molecules that 
are modified at a specific site by a specific modification should be provided 
in case this information can be obtained in the study.9,59 Consequently, ptM 
databases should include information on the data source in such cases.

6.3.2   Annotation of Modifications
table 6.4 provides an overview of databases containing annotation of mod-
ifications relevant for Ms identifications. for example, important informa-
tion about delta mass of the modification, diagnostic ions, neutral losses 
and the chemical compositions (useful for calculating isotope distributions) 
are available. additionally, uniMod and psi-Mod60 (see Chapter 11) also pro-
vides information on which amino acid residues a given modification can 
occur on and if the modification is biologically relevant, a chemical artefact 
or intentionally introduced modifications to either stabilize a residue or for 
quantitative purposes.

Table 6.3    overview of databases containing post-translational modifications 
assigned to protein amino acid residue positions. the annotation in 
these databases focus on the biological impact of the modifications.

database Webpage

dbptM http://dbptm.mbc.nctu.edu.tw/
uniprotKB http://www.uniprot.org/
phosphositeplus http://www.phosphosite.org
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123Identification and Localization of Post-Translational Modifications

as explained in Chapter 3, the identification of proteins from Ms/Ms spec-
tra and their associated modifications is usually carried out by matching 
spectra data against a protein sequence database using database-dependent 
search engines. several individual efforts have been made to provide the 
research community with algorithms for searching Ms/Ms data such as Max-
Quant,61 sipros,62 X!tandem63 and mveMs.42 We have been able to success-
fully test the aforementioned programs and we use them on a regular basis to 
search Ms data. this list of software projects is not complete and many more 
programs have been proposed in the literature.64 however, we can state that 
according to our searches this list of software provides similar identification 
given similar search settings and false discovery rate cut off.

6.3.3   Common Post-Translational Modifications Identified by 
Mass Spectrometry

the aim of the analysis described herein was to define a set of common mod-
ifications that typically can be identified in Ms/Ms data sets from instru-
ments using high resolution in Ms and Ms/Ms. the search was performed 
using mveMs, which is under development to be provided to the research 
community.42,65 although the presented results were obtained by analyzing 
unlabeled proteomes that have not been subjected to any type of enrichment 
for post-translational modifications we expect that the obtained result is also 
relevant for other experimental methodologies. for example, the most abun-
dant modifications identified would still be relevant to search for in combi-
nation with phosphorylation in a study where enrichment of phosphorylated 
peptides is performed prior to Ms analysis.

We observed a considerable number of modifications that are considered 
as artefacts from sample preparation such as deamidation, methionine oxida-
tion, carbamoylation and carbamidomethylation (CaM) of methionine, lysine 
and n-terminus (see figure 6.1). some of these artefact modifications are even 
more frequent than methionine oxidation. single amino acid polymorphisms 
were also considered in the analysis and we observe that especially lysine ↔ 
arginine substitutions occur frequently. serine and threonine formylation are 
also among the most frequently occurring. these are also most likely artefacts 

Table 6.4    databases containing mass spectrometry relevant annotation of protein 
modifications. the annotations in these databases focus on technical 
aspects that are necessary to correctly annotate modified peptides to 
spectra.

Modification databases Webpage

uniMod database http://www.unimod.org/
uniprot http://www.uniprot.org/docs/ptmlist
resid http://pir.georgetown.edu/resid/
psi-Mod http://psidev.cvs.sourceforge.net/viewvc/psidev/psi/

mod/data/psi-Mod.obo

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
01

16
View Online

http://dx.doi.org/10.1039/9781782626732-00116


Chapter 6124

however it has recently been suggested that Ms identified lysine formylation 
on histone proteins might not be fully explained as an artefact.66

6.3.4   Validation of Results
the output of a database dependent search is often two matrices with 
quantitative values for all identified peptides across the analyzed samples. 
that is, one for spectral counts and one for extracted ion counts. these 
matrices can conveniently be analyzed in statistical software such as r, 
sass or even Microsoft excel. if a modified peptide is found significantly 
regulated then this might be of interest. however, it is often a good idea 
to validate the quality of a modified peptide’s spectral assignment before 
other types of validation or follow up experiments are carried out, since 
we find that especially modified peptides in the result files outputted from 
database dependent search engines are not always reliable. Chapter 4 dis-
cusses a large number of statistical methods for validating the quality of 
psMs. although statistical methods development is essential most of these 
statistical methods are either functions of the specific psM score or func-
tions of the distribution of the psM scores. this means they correlate with 
the score and therefore multiple statistical models with slightly different 
assumptions provide little additional value in terms of deciding the correct-
ness of a modified peptide assignment to a spectrum. however, for psMs 
representing modified peptides additional statistical models that measure 
the probability that the corrections of the assigned location of the modi-
fications are justified. the binomial function has been proposed for cal-
culating probability of correctness of site location. however, the binomial 

Figure 6.1    relative identification frequencies of post-translational modifications 
and single amino acid mutations obtained by analyzing the cytosol 
fraction of a cancer cell line. a 1% fdr cut-off was applied using the 
peptide score distribution from the correct protein sequences and 
amino acid permutated protein sequences.
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125Identification and Localization of Post-Translational Modifications

function applied on assigned fragment masses will again correlate with 
any other psM score. ideally probabilities for modification sites location 
should be calculated from the score distribution of alternative modifica-
tion sites obtained by scoring the raw spectrum. the gold standard for val-
idating a peptide assigned Ms spectrum is by performing Ms analysis of 
the chemical synthesized peptide including the modification. additionally, 
Bunkenborg et al.2 lists a number of matters that can be considered for val-
idating spectra assignments and we will therefore not discuss this topic in 
detail but highly recommend reading this chapter as well. nevertheless, we 
provide a brief review herein. a quick validation test is to see if the parent 
ion mass of peptide spectra assignments fits with the expected number of 
basic residues (a short peptide with only one basic residue (e.g. one lys or 
arg) is unlikely to be detected as a triple charged parent ion.). plotting the 
raw annotated spectrum is also highly recommended and journals such as 
Molecular and Cellular proteomics often ask authors to provide raw anno-
tated spectra of all spectra assignments (see figure 6.2). theoretical ions 
can be calculated by the following equations (more details and mass tables 
can be found in ref. 2).

Figure 6.2    the peptide adldacKlnidsiiQr containing an acetylated lysine anno-
tated to a raw Ms spectrum (intensity counts versus m/z). the labeling 
of fragment ions assumes single charged fragments unless otherwise 
provided in the labels (e.g. the parent ion is labeled “pion, z = 2” to indi-
cated that this is a doubly charged ion). labels starting with “d” are 
diagnostic ions for either amino acids or amino acid modifications. 
the theoretical masses of the ion series a-, b- and y-ions were matched 
against the observed masses using a threshold of 0.005 m/z as well 
as the correct charge state of the peak was validated automatically to 
define a successful match for a fragment ion. note y-ions are numbered 
from the C-terminal side whereas a- and b-ions are numbered from the 
n-terminal side. this means that y1 corresponds to the ion “r” (see equa-
tion in section 6.3.4 for Cid–hCd fragments).
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the parent ion [M + h]+ is given by the sum

 N C
1

[M H] H
n

i
i

m m m m 



     

where mn (normally hydrogen) and mC (normally hydroxyl group) are the mass 
of the n- and C-terminal group respectively. m(h+) is the mass of the proton 
and mi are the residue masses. the “mass-to-charge ratio” of the monoiso-
topic peak of an n multiple protonated peptide is given by [M + nh]n+/n.

the theoretical fragment ions in Ms/Ms for Ms scans labeled as collision 
induced dissociation (Cid) or high-energy collision dissociation (hCd) can 
be calculated using the following equations:

a-ions (normally K = 26.9864):

   N
1 1

a CO e
n n

i i i
i i

m m m m K m

 

      

b-ions (normally K = 1.007276):

 N
1 1

b e
n n

i i i
i i

m m m K m

 

     

y-ions (normally K = 19.01784):

   C
1 1

y H H
n n

i i i
i i

m m m m K m

 

      

where i iterates over the peptide sequence with length n. note the indexing 
starts from the n-terminal for a- and b-ions and from the C-terminal for 
y-ions. the following equation can be used to calculate the corresponding 
b- or y-ion given the parent ion mass and either one of the other ions.

 b y MH H MH 1.007276i n i m  
    

fragment ions in Ms/Ms scans labeled as electron-capture dissociation 
(eCd) or electron-transfer dissociation (etd) can be calculated using the fol-
lowing equations:

c-ions (normally K = 18.03383):

   N 2
1 1

c H N  H
n n

i i i
i i

m m Km m m

 

      

z + 1 -ions (normally K = 2.99912):

   C
1 1

z 1 H NH
n n

i i i
i i

m m m mKm

 

       

etd–eCd spectra often have charge reduced ions with no further fragmen-
tation.2 for example, [M + 3h]3+/3 can have corresponding charged reduced 
ions at m/z [M + 3h]2+/2 and [M + 3h]+•, the dot indicates that it is an odd 
electron ion.
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in addition to the ion series Ms/Ms spectra of peptides also contain a 
number of diagnostic ions (peaks with labels starting with “d” in figure 6.2, 
e.g. dK_ac at m/z 126.06) which are fragments from specific amino acids and 
modifications. diagnostic ions specific for amino acids can be found in ref. 
2 and diagnostic ions for modifications can be found in databases such as 
uniMod (see table 6.4). uniMod also annotates neutral losses for modifica-
tions e.g. neutral loss from methionine sulfoxide of 63.998 can frequently be 
observed in both Ms and Ms/Ms scans.

especially complex modifications provide complex fragmentation pat-
terns in Ms/Ms that serve as additional validation information. unfortu-
nately computational algorithms are unable to match the quality of a skilled 
expert in mass spectrometry in terms of validating spectra assignments. 
this fact justifies proteomics specialized journals’ request to provide anno-
tated raw spectra. We briefly mentioned that applying Gaussian weights in 
scoring functions improve site location of ptMs and the reliability of the 
assignment.30 to illustrate this we plotted the delta mass between experi-
mental and theoretical fragments from the Ms2 spectrum from figure 6.2 
(see figure 6.3).

linear regression on assigned fragment masses and delta mass from both 
b- and y-ions gives similar regression lines for the b- and y-ions. further-
more, the delta masses are evenly distributed around the regression lines. 
We next assigned the tri-methylated peptide “adldme3KlnidsiiQr” to the 
same raw spectrum in figure 6.2 and repeated the analysis of delta masses 
(see figure 6.4). the mass difference between acetylation and tri-methyla-
tion is 0.03639 (m/z).

Figure 6.3    delta mass versus m/z for assigned ions in Ms/Ms spectrum for the 
assignment provided in figure 6.2. different ion types are depicted 
with different symbols as indicated in the legend. linear regression 
on masses versus delta masses was performed for both b-ion and y-ion 
series.
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We observed that the regression lines for the b- and y-ions are now differ-
ent, and especially, the delta masses for the b-ions have increased (mainly 
the b-ions containing the modification). precisely how the linear regressions 
based on the b- and y-ions are affected depends on the position of the mod-
ifications within the peptide. a similar diagnostic plot is the density of delta 
masses for the two candidate peptide assignments (see figure 6.5).

Figure 6.4    delta masses versus m/z for assigned ions in Ms/Ms spectrum for the 
assignment provided in figure 6.2 but the modification was artificially 
changed in silico to tri-methyl instead of acetylation. different ion types 
are depicted with different symbols as indicated in the legend. linear 
regression was performed for both b-ion and y-ion series.

Figure 6.5    density of delta masses obtained by assigning (a) adldacKlnidsiiQr 
and (B) adldme3KlnidsiiQr to the raw spectrum in figure 6.2.
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129Identification and Localization of Post-Translational Modifications

the delta mass distributions are centered more or less on zero as expected 
for well calibrated data. it is evident that the delta mass distribution based 
on the tri-methylated peptide (figure 6.5(B)) is considerably broader com-
pared to the one based on the acetylated peptide (figure 6.5(a)) which sug-
gests that acetylation is the best solution.

6.4   Conclusion
We foresee that in the future it will become standard to perform database 
dependent searches of Ms/Ms spectra considering large numbers of mod-
ifications. We are currently involved in efforts to provide software appli-
cations able to perform database searches, as described in this chapter, of 
data obtained by high resolution mass spectrometers. the result presented 
clearly indicates that there is a need to consider more modifications in stan-
dard proteomics studies. it is however unclear if all modifications identified 
are assigned correctly to delta masses or if it is a result of other isobaric or 
near isobaric modifications. even if the additional identified modifications 
are of no interest from a biological point of view they are important in terms 
of controlling the level of artefact modifications by specific experimental 
methodologies. furthermore, excluding the most abundant artefact modifi-
cations in the search parameters will increase the risk of assigning the corre-
sponding spectra to erroneous peptides.
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Section II

Protein Quantitation
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Chapter 7

Algorithms for MS1-Based 
Quantitation
hanqing Liaoa, aLexander phiLLipsa, andris 
JankeviCsa and andrew w. dowsey*a

aUniversity of Liverpool, department of electrical engineering and  
electronics, Brownlow hill, Liverpool, L69 3gJ, Uk
*e-mail: andrew.dowsey@liverpool.ac.uk

 

7.1  Introduction
in  LC-Ms/Ms-based  discovery  studies,  many  thousands  of  peptides  can  be 
determined  from  complex  samples,  most  appearing  as  multiple  signal  fea-
tures due to differing numbers of protonation. raw analytical data are signifi-
cantly complex, on the order of gigabytes, with many thousands of Ms1 spectra 
collected across a single liquid chromatogram. each mass spectrum contains 
100–1000s of unique features, with each feature being separated across mul-
tiple mass spectra. the first aim of Ms1 quantitation  is  to directly estimate 
the intensity of each feature by integrating the ion count under its chromato-
graphic peak shape or extracted ion chromatogram (xiC). assuming detector 
linearity, this intensity is proportional to the ion count, which is proportional 
to  peptide  abundance.  since  ionisation  efficiency  varies  between  features, 
only  relative  abundance  changes  across  treatment  groups  can  be  estab-
lished, by inferring ratios of how abundance differs between those samples. 
nevertheless, some level of absolute quantification is possible  if we possess 
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information about peptide 'detectability', either through synthetic standards 
or the machine learning of empirical evidence.1 as well as ion efficiency, it is 
important to mention ion suppression effects. Less volatile compounds can 
change the efficiency of droplet formation or droplet evaporation during ioni-
sation, thus affecting the distribution of ions reaching the detector and hence 
the comparison of peptide abundances across samples.

the  established  approach  to  Ms1-quantitation  is  reductionist,  convert-
ing the raw spectrum data into a mass peak representation at an early stage, 
before assigning each peak to a feature, and in turn each feature to a peptide. 
instrumental drift in relation to retention time (rt) is observed across sam-
ples analysed in single or multiple analytical batches. hence to compare rela-
tive quantification across samples at the feature, peptide or protein level, rt 
alignment and matching of corresponding features across runs is necessary. 
an in-depth assessment of Ms reveals that systematic and random variation 
inherent in Ms data comes from a number of known sources and in a num-
ber of cases these have been characterised.2

   
  (1)   poisson  distributed  uncertainty  due  to  the  limited  number  of  ions 

recorded at  the detector, exhibited as multinomial variation between 
isotope peaks.

  (2)   the  range of  isotopic patterns exhibited by  the  range of compounds 
and their adducts (e.g. post-translational modifications).

  (3)   with  quadrupole  and  time-of-flight  (toF)  instruments,  non-linear 
effects at high intensities appear due to detector saturation. this may 
be mitigated at the loss of some sensitivity by automatic gain control if 
implemented within the instrument.

  (4)   artefact peaks observed with Fourier transform (Ft) instruments.
  (5)   Changes  in  electrical  and  thermal  operating  properties  (e.g.  time-of-

flight expansion and constriction).
  (6)   a  chemical  baseline,  periodic  over ∼1  dalton,  composed  of  contami-

nants, fragmented peptides and numerous coalesced peptides at very 
low abundances.3

  (7)   Biological variation, often approximated by a log-normal distribution 
in proteomics studies.

   
if  your  experiment  involves  analysing  cell  populations  cultivated  in  cell 

culture, more sensitive differential analysis can result by utilising an isoto-
pic labelling workflow such as stable isotope labelling by amino acids in cell 
culture (siLaC).4 here, in one of the populations natural ‘light’ amino acids 
are replaced by ‘heavy’ siLaC versions by incorporation through the growth 
medium e.g. arginines can be replaced with those labelled by six carbon-13 
atoms. Light and heavy samples are then mixed and run together through 
LC-Ms,  with  an  extension  of  the  approach  allowing  three  protein  popula-
tions to be compared simultaneously. in the resulting Ms1 spectra, the pep-
tide features of each sample can be detected and quantified separately, and 
linked together by the mass difference caused by the heavy labelling.
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in brief, there are five components to an Ms1-quantitation pipeline:
   

 ● Feature detection and quantitation – extraction and quantification of pep-
tide features, with the monoisotopic peak and charge state determined 
through deisotoping and decharging respectively.

 ● Peptide and protein-level identification – each peak-picked Ms2 spectrum, 
together with the detected m/z and charge state of  its associated Ms1 
precursor feature,  is submitted for peptide  identification using meth-
ods described in earlier chapters. protein-level grouping and false dis-
covery rate corrections at peptide and protein level are then performed 
on  the  peptide  identifications  as  a  group,  as  described  in  Chapters  4 
and 5.

 ● Chromatogram alignment  –  grouping  corresponding  features  across 
experimental  runs  and  propagating  peptide  identifications  when 
available.  Chromatographic  deformation  can  be  significantly  vari-
able and deteriorates with column age, with complete signal drop-
outs possible.

 ● Abundance normalisation – primarily,  the correction of sample-loading 
differences, and more recently, the correction of ionisation fluctuations 
during runs. these both lead to greatly improved differential quantita-
tion sensitivity.

 ● Protein-level differential analysis – methods to determine protein quan-
titation from constituent peptide measurements, and methods to sta-
tistically determine significant regulation across corresponding protein 
quantifications between multiple treatment groups. recent methodol-
ogy performs both these functions in one step, and can handle special-
ised or complex experimental designs (e.g. repeated measures or mixing 
technical and biological replicates).

   
whether you employ a labelling approach or a label-free workflow, a num-

ber  of  biological  samples  should  be  run  per  condition  so  that  statistical 
inferences  can  be  made  regarding  population-level  differences.  hence  in 
each case, multiple LC-Ms runs are usually acquired and so chromatogram 
alignment and intensity normalisation is invariably a requirement.

in the following three sections we review the state-of-the-art for the four 
components stated. note that not all software pipelines follow the previous 
order shown. Moreover, since the landscape is complex and not conveniently 
modular, in each section we explain the methodology of the established Max-
quant pipeline5 and compare it to competing approaches and cutting edge 
research.

7.2  Feature Detection and Quantitation
For  a  broad  and  detailed  review  of  the  commonly  used  feature  detection 
techniques we refer the reader to ref. 2, 3, 6 and 7. a representative feature 
detection pipeline is illustrated in Figure 7.1a and can be divided into two 
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steps; the first acting to extract peaks from the raw data, and the second to 
group isotopic peaks from the same peptide features together so that monoi-
sotopic peaks and charge states can be established. in the following discus-
sion, we will present conventional approaches and also some new methods 
that detect features from the raw data directly.

7.2.1  Conventional Feature Detection
in the first step, each raw spectrum containing profile mode continuum mea-
surements is converted into a list of (m/z,  intensity) pairs representing the 
salient peak centres. this step is called centroiding or peak picking. in Max-
quant, centroids are detected by locating the local maxima of the intensities 

Figure 7.1   (a)  the  typical  informatics  pipeline  for  Ms1  feature  quantitation. 
noise reduction and baseline subtraction are first performed, before a  
centroiding step performs the conversion from raw data to a symbolic 
peak-based  representation.  isotopic  peaks  are  then  grouped  to  form 
peptide features. at this stage, the masses of the detected features may 
inform a mass re-calibration step. (b) illustration of how Maxquant per-
forms centroiding by establishing the local maximum and boundaries 
of a peak. (c) if there are two overlapping signals, the boundary is set 
to  their mutual  local minimum.  (d) Centroids are  then  linked across 
neighbouring  spectra  to  establish  the  chromatographic  peak,  with 
quantitation performed by integrating under this shape. this figure is 
adapted  from ref. 5 with permission  from Macmillan publishers Ltd. 
Copyright 2008.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
01

33
View Online

http://dx.doi.org/10.1039/9781782626732-00133


139Algorithms for MS1-Based Quantitation

within each Ms spectrum and then extending the m/z values below and above 
this maximum until a minimum is reached (Figure 7.1b, where the middle 
vertical line represents the local maximum, and the other vertical lines rep-
resent minima). if there are two overlapping signals, the peak boundaries are 
set at their mutual local minimum (Figure 7.1c). subsequently, a gaussian 
peak shape is fitted to the three data points nearest the maximum intensity, 
in order to interpolate the centroid's m/z. the peak is then quantified as the 
sum of the intensities of all the data points within.

Maxquant  is  predominantly  designed  for  thermo  orbitrap®  data,  for 
which they assume no extra pre-processing steps are required prior to max-
ima–minima detection. in general, spectrum de-noising is first performed, 
for which the most common techniques are signal to noise ratio (snr) filter-
ing and smoothing approaches such as gaussian filtering, Lowess and sav-
itzky-golay. in general, snr algorithms either use a predefined threshold or 
noise model to estimate signal noise levels.8 in this approach, signals with a 
local maximum above the estimated snr and within an expected peak width 
are considered as peaks. Baseline subtraction can also be performed at this 
point e.g. median window or top hat filtering.

in  step  two,  centroids  are  assembled  into  two-dimensional  features  by 
constructing a chromatographic peak profile xiC for each across neighbour-
ing spectra, and connecting isotope peaks. Maxquant decomposes this task 
into two, first constructing each xiC by linking centroids from neighbouring 
spectra that lie within a 7 ppm window, as shown in Figure 7.1d. Centroids 
that cannot be matched to any neighbouring spectra are discarded as noise. 
a windowed mean filter is then applied in the rt direction to robustly detect 
any local minima within each xiC, for splitting co-eluting peaks with similar 
m/z (e.g. from isomers). Finally, the mass of each peak is re-estimated as the 
mean of the per-spectrum centroids weighted by their intensity.

to connect isotope peaks, and from that perform deisotoping, it is essential 
to understand how isotopes affect the Ms signal. since Ms measures m/z, on 
high resolution instruments each feature is seen as a set of peaks separated 
by an m/z interval of approximately 1 dalton divided by the feature's number 
of protonations z, i.e. the charge state. the peak composed of only the iso-
topes of greatest natural abundance is termed the monoisotopic peak. with 
proteins,  this  is usually the peak of  lowest mass. the second isotope peak 
(of monoisotopic mass plus one) is actually a compound peak comprised of 
all the possibilities where one atom in the peptide has an extra neutron e.g. 
for a typical peptide comprised of carbon, hydrogen, nitrogen, oxygen and 
sulfur, the second peak is the sum intensity of peptides with a single 13C, 2h, 
15n, 17o or 33s atom. the number of these combinations increases geomet-
rically  as  the  isotope  peaks  increase  in  mass.9  Using  ultra-high  resolution 
Ft-Ms, the mass defect allows some of this isotopic fine detail to be resolved 
into a further number of distinct peaks in their own right.10 the relative sig-
nal  intensity  for each  isotopic variant  (the  ‘isotope distribution’)  follows a 
multinomial distribution with parameters given by the relative (usually nat-
urally occurring) abundances of the elemental isotopes. apart from the fact 
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Chapter 7140

that peaks may overlap or be corrupted by noise, we also in general do not 
know the underlying molecular formula in advance, and as aforementioned, 
multiple  isotopes  coincide  in  the  spectrum.  it  is  therefore  not  possible  to 
perform a simple hypothesis test to assess if a sequence of peaks represents 
a peptide. it is also infeasible to find the goodness of fit between the peak 
set and the expected isotope distribution of every possible peptide that lies 
within the calibration error of the instrument. rather, the generally adopted 
method is to fit a representative isotope distribution such as the averagine11 
to the peak set, allowing for some error. in Maxquant, extracted 2d peaks are 
clustered into features by constructing an undirected graph with the peaks 
as the nodes and connecting those together that could represent neighbour-
ing isotopes. the graph is then decomposed into connected sub-graphs each 
representing a single candidate peptide, which is then filtered by correlating 
the isotope distribution to the averagine.

7.2.2  Recent Approaches Based on Sparsity and Mixture 
Modelling

sparse approaches rely on the ability to decompose a signal parsimoniously 
into a linear combination of elementary signals, or  ‘atoms’, from a ‘dictio-
nary’  of  such  signals.  since  noise  cannot  be  decomposed  parsimoniously, 
a very successful strategy is to design a data transformation that represents 
Ms signal sparsely. after transformation, the interesting Ms signal is concen-
trated within a few data points, whilst noise is spread across all data points. 
hence, thresholding the transformed data will remove most of the noise but 
alter the signal only very slightly. as in many fields, a popular transformation 
is the wavelet transform, which converts the data into components related 
to both position and size (‘scale’ i.e. coarse to fine detail). in Ms, so called 
‘wavelet denoising’ techniques are typically used in combination with snr 
peak detection,12 with adaptive thresholding used to compensate for depen-
dencies between neighbouring scales.13,14

in contrast to these denoising approaches based on conventional centroid-
ing, where peak shape is more or less ignored, other approaches have attained 
greater detection sensitivity and specificity by defining a specialised wavelet 
that represents the shape of a peak or even whole peptide feature. here, the 
continuous wavelet transform (Cwt) is employed, to directly extract candi-
date peaks from the data while being robust to a low frequency baseline. a 
successful wavelet choice has been  the gaussian 2nd derivative  (popularly 
called  the  Mexican  hat),  whose  response  is  proportional  to  the  height  of 
gaussian-shaped  peaks  of  a  particular  width.15  an  interesting  approach  is 
offered  by  the  openMs  isotope  wavelet,16  which  was  designed  to  respond 
directly to the full averagine peptide isotope distribution in m/z space, hence 
detecting features directly from the raw data.

in comparison to snr techniques, Cwt-based algorithms are reported to 
perform better on data sets with variable noise levels, yet still fail to detect 
distorted  or  overlapping  peaks.3  in  the  Cwt,  a  linear  convolution  filter  is 
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used to approximate the solution of an inverse problem. while optimal for 
detecting  a  peak  among  additive  white  noise,  the  optimality  assumptions 
do not hold when multiple peak signals overlap, resulting in spurious peaks 
and other artefacts. these can be reduced if the analysis is restricted to only 
a  single  filter  that  transforms  the  known  peak  shape  function  into  a  nar-
rower  version  of  itself,  or  if  a  geometric  mean  of  multiple  linear  filters  is 
used to better approximate a non-linear filter.17 nevertheless, in most cases 
an  involved  post-processing  step  is  required  to  remove  false-positives.  For 
example,  it  has  been  shown  that  detecting  zero-crossings  of  the  gaussian 
1st derivative wavelet transform, with peak height and width estimated with 
the  zero-crossings  of  the  gaussian  2nd  derivative,  provides  a  more  robust 
solution.15  Methods  to  select  the  set  of  analysis  scales  from  the  data  have 
been reported,18 as have methods that utilise the resulting patterns observed 
across scales, which include zero-crossings, ridges and valleys.19

Mixture  modelling  is  an  alternative  or  complementary  technique  that 
can be used to improve feature detection specificity. here, parametric peak 
models are arranged on a set of previously detected peaks and fitted to the 
data  by  optimising  their  coefficients  with  a  non-linear  iterative  technique 
such as expectation-Maximisation20 or graph-based integer linear program-
ming.21 with this approach, the adducts and charge states for each peptide 
can be modelled together, thus adding constraints that allow poorly resolved 
or coincident  features  to be detected and quantified reliably by borrowing 
strength from their relations in other parts of the spectrum. Mixture mod-
elling can also be performed via stochastic methods such as Markov Chain 
Monte Carlo (MCMC), which adds robustness against converging to sub-op-
timal  solutions.22  notably,  these  techniques  sample  the  range  of  possible 
outcomes  and  therefore  also  output  uncertainty  information.  however, 
MCMC techniques are computationally expensive, so remain tractable only 
if the number of unknowns is kept small.

a class of methods based on sparse regression are emerging, which con-
sist of elements from both wavelet and mixture modelling approaches. Like 
Cwt  approaches,  peak  or  feature  templates  are  compared  to  the  data  at 
regular  small  intervals  in  the  spectrum.  however,  like  mixture  modelling, 
iterative nonlinear estimation is employed, though in this case it is used to 
fit a weighted sum of  these templates to the data. sparsity  is  the key goal, 
so that only the subset of templates representing true peaks or features are 
assigned nonzero weights, i.e. are ‘active’. an established statistical approach 
for computing sparse solutions is the least absolute shrinkage and selection 
operator (Lasso),23 which was first applied to Ms for assigning isotope dis-
tributions across multiple charge states to a set of detected peaks.24 a pop-
ular means to estimate the Lasso trace (the set of solutions from when all 
templates are active, to when only one template is active) is with least angle 
regression  stagewise  (Lars).  Lars  iteratively  adds  the  template  with  max-
imal correlation to the residual  to the active set. the weighting coefficient 
for each template in the active set is updated at each iteration to fit the data, 
whilst maintaining equiangular correlation with the residual. the nitpiCk 
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Chapter 7142

method  for  Ms1  feature  detection  and  quantitation  extended  Lars  with 
non-negativity constraints on the weights and employed Bayesian informa-
tion Criterion (BiC) model selection to terminate when the optimum num-
ber of active templates is reached i.e. before over-fitting.25 nitpiCk works on 
the raw data by pre-convolving the isotope distribution templates with the 
known instrument peak shape. More recently, an analogous approach based 
on mixture modelling has also been proposed.26

7.3  Chromatogram Alignment
in modern Ms, m/z measurements are precise and reproducible, but chro-
matogram  rt  is  known  to  be  variable  across  different  runs  due  to  many 
factors including variations in temperature, flow rate, and properties of the 
column such as  the gradient of  the mobile phase. since  the same peptide 
feature will be found at different rts in each run, this hinders the establish-
ment of feature correspondences across runs, resulting in problems such as 
missing or incorrect linkage in a subset of runs. this has significant impact 
both on quantification and on the propagation of peptide identifications to 
unidentified  features  in  other  runs.  the  key  goal  of  chromatogram  align-
ment is to adjust all the runs to a common rt coordinate system such that 
corresponding features will have highly similar rt. neighbourhood match-
ing schemes are then employed to link the same features across runs to cre-
ate ‘consensus’ features. each resulting consensus feature rt may then be 
adjusted to some robust average of the original feature rts in order to pro-
vide a calibrated estimate that can be compared with the predicted rts of 
peptides stored in a database. this can provide an extra level of discrimina-
tory power in the identification phase. these predicted rts are learnt from 
prior experiments by regression or kernel  learning from the set of reliable 
identifications and sequence information.27,28

Broadly, there are two main methodological categories of alignment algo-
rithm. in feature-based approaches, corresponding features are brought into 
alignment  by  comparing  the  spatial  pattern  exhibited  by  each  run.  in  the 
raw  profile  alignment  approach,  the  raw  data  for  each  run  is  summarised 
into  either  a  total  ion  chromatogram  or  base  peak  chromatogram  (tiC  or 
BpC), or image representation, and directly warped to align corresponding 
signals. some techniques, such as the commercial progenesis qi® package 
(waters inc.) perform chromatogram alignment in this fashion before a sin-
gle consensus feature detection on the stacked set of aligned runs. whether 
a feature-based or raw profile alignment is employed, there are further com-
monalities. a model needs to be chosen to translate the rt alignment prob-
lem into a mathematical criterion, often including a mechanism to warp the 
rt  dimension,  e.g.  a  global  or  piecewise  linear  shift,  cubic-spline  or  thin-
plate spline shift, or non-linear smoothing. after that, a practical optimisa-
tion strategy is employed to derive the warp for an optimal alignment.

two points can be made comparing feature-based with raw profile align-
ment. Firstly, there is a loss of information by only utilising features in the 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
01

33
View Online

http://dx.doi.org/10.1039/9781782626732-00133


143Algorithms for MS1-Based Quantitation

alignment stage, rather than the full Ms signal, and moreover, feature-based 
strategies  need  to  be  robust  to  erroneous  features.  nevertheless,  this  may 
be  balanced  out  by  the  higher  quality  information  contained  within  true 
features,  as  specialised  biochemical  knowledge  is  utilised  during  feature 
extraction. Feature-based approaches also have reduced computational com-
plexity, enabling them to scale to consider large numbers of runs in an unbi-
ased way. the following discussion is far from an exhaustive list of methods, 
rather, descriptions are given to the evolution of each main branch of algo-
rithm. For those readers who are interested in exploring more into this topic, 
two review papers are recommended.2,29

7.3.1  Feature-Based Pattern Matching
Feature-based alignment methods utilise retention times, m/z ratios, charge 
states, etc. of either peaks or whole features extracted by the feature detec-
tion stage. a typical approach is to attempt to establish candidate correspon-
dences  between  features  across  runs  based  on  mass  and/or  identification 
information and then use curve fitting on rt differences between these to 
estimate the deformation. in more involved techniques, after correcting for 
this deformation by warping feature rts, the correspondence estimation is 
renewed and the process iterates until convergence.

reference mapping algorithms, as the name suggests, require an LC-Ms 
run to be selected as reference. Corresponding features from the rest of the 
runs  are  mapped  to  this  reference.  For  example,  pose  clustering  has  been 
employed  for  robust  pair-wise  alignment.30  through  an  affine  transforma-
tion, each pair of features in a run is mapped to every pair of features in the 
reference within a realistic range. an overall affine transformation for each 
run is then computed through a voting scheme.

with  group-wise  mappings,  the  reference  may  be  updated  during  pro-
cessing, up to a full pair-wise strategy that maps each run to every other. in 
this  way  reliance  on  a  single  reference  is  avoided,  so  features  not  present 
in the reference run can still be matched. in Maxquant's label-free quanti-
fication  component  MaxLFq,31  runs  are  organised  into  a  hierarchical  tree 
structure. the alignment begins by establishing pair-wise correspondences 
between the most similar runs, then moves on to align less similar runs with 
the runs already aligned, with the path of grouping runs forming a hierar-
chical tree. For each pair-wise alignment, a non-linear warp is computed by 
gaussian kernel smoothing on the scatterplot containing the difference in 
rts between features with similar mass in the two runs.

7.3.2  Raw Profile Alignment
dynamic time warping (dtw)32 and correlation optimised warping (Cow)33 
are the earliest raw profile alignment algorithms applied to LC-Ms data. a 
dissimilarity criterion is defined that quantitatively assesses how close two 
runs  match  at  particular  points  in  their  rt  profile,  with  zero  meaning  a 
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Chapter 7144

perfect match. due to computational complexity, the first approaches com-
pared only tiCs or BpCs. however, dtw and Cow based solely on tiCs or 
BpCs often fail to align regions with significant differential expression, and 
so a complementary component detection algorithm (Coda) has been devel-
oped that uses only xiCs reproducible across runs.34 other work utilises spec-
tral details or detected features.35 in the case of dtw, a similarity matrix is 
established with rows representing the spectra of one run and columns rep-
resenting the spectra of the other run, while the cells contain the respective 
pair-wise similarities of those spectra. as illustrated in Figure 7.2, the optimal 
warp is defined as the ‘shortest’ path from the first row–column to the last 

Figure 7.2   schematic  of  the  dynamic  time  warping  approach  for  aligning  two 
chromatograms. a  dissimilarity  matrix  is generated, with  rows  repre-
senting  the spectra of one chromatogram, and columns representing 
the spectra of the other chromatogram (For clarity, each chromatogram 
here has only 10 spectra.). each cell in the matrix is computed as the 
dissimilarity between the two corresponding spectra. the dissimilarity  
measure  could  just  be  the  difference  between  the  respective  tiCs  or 
BpCs at that point, or some measure of the peak pattern dissimilarity 
between them. dynamic programming is then employed to efficiently 
find the shortest path from the first to last spectra (highlighted in bold), 
which represents the rough discretised warp that will realise the best 
alignment.
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145Algorithms for MS1-Based Quantitation

row–column i.e. the path with minimum dissimilarity, computed by dynamic 
programming. dtw has been progressively developed and is widely used for 
rt alignment. since dtw solutions do not produce smooth warps, interpo-
lation can be used to derive a bijective warp that can be applied to either of 
the two chromatograms to get a smooth rt warp function.35 Cow utilises 
a  correlation  criterion  with  a  similar  dynamic  programming  solution,  but 
breaks down the chromatograms into sections. one chromatogram is used 
as reference and the other is warped by section-wise linear transformations.

stochastic  models  have  also  been  applied  to  rt  profile  alignment.  the 
continuous  profile  model  (CpM)  enables  group-wise  alignment  of  mul-
tiple tiCs  through a reformulation of dtw using a hidden Markov model 
(hMM).36  it  models  discrete  shifts  in  alignment  and  changes  in  intensity 
between  observed  and  consensus  tiCs  as  Markov  processes,  the  consen-
sus tiC profile as hidden states, and utilises the expectation-maximisation 
(eM) algorithm to probabilistically determine the most likely state changes 
and hence alignments. in a later study, they extended the model to use spec-
tral information discretised into four mass bins, reporting improved align-
ment performance but at a significant computational cost.37 More recently, 
a related strategy was presented using a Bayesian MCMC approach. in this, 
the authors were able to explicitly define alignment and intensity changes as 
piece-wise linear (with the number of pieces inferred from the data), the con-
sensus tiC as a piece-wise B-spline curve, and provide uncertainty estimates 
for the alignments. a follow-up paper enabled retention time standards to 
be incorporated as prior information, and provided a way to determine and 
utilise multiple reliable xiCs.38

Finally,  we  finish  this  section  by  mentioning  the  image  registration 
approach,  which  was  originally  developed  for  the  alignment  of  medical 
images,  but  has  come  to  LC-Ms  via  its  use  in  2d  gel  electrophoresis  e.g. 
progenesis  qi®  (waters  inc.).  as  in  other  raw  profile  approaches,  image 
registration utilises a dissimilarity criterion, but  in  image registration it  is 
defined as the similarity between the runs given a specific alignment. Unlike 
dtw,  Cow  and  CpM,  a  continuous  and  smoothly  realistic  warping  trans-
formation can be used for the alignment (e.g. B-spline or thin plate spline 
curve),  with  its  parameters  optimised  until  similarity  is  maximised.  this 
scheme  is more computationally efficient  than dtw, but  in  its basic  form 
only features that have some overlap will be brought into correspondence. 
to mitigate this  limitation, multi-resolution schemes are employed, where 
approximate alignment is first performed on heavily blurred images contain-
ing only gross spatial details, and then iteratively refined to account for finer 
and  finer  signal  structure.  Complementary  feature-based  information  can 
also be incorporated into the dissimilarity criterion, and the technique scales 
efficiently to truly group-wise alignment strategies. in one recent example, a 
hybrid feature and raw profile alignment approach using robust M-estima-
tion and a non-euclidean similarity metric in a multi-resolution framework 
was demonstrated.39 robustness to reference image selection was achieved 
by registration to an evolving consensus image.
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7.4  Abundance Normalisation
after  features  have  been  detected  and  quantified  on  each  run,  and  corre-
sponding features matched between runs, the remainder of the pipeline is 
concerned with their relative quantification across runs. however, the sam-
ple volume injected into the LC-Ms instrument is not stable across runs, and 
electrospray performance and transmission efficiency fluctuate during each 
run.  with  siLaC,  the  mixing  proportions  of  light  and  heavy  samples  may 
also not be perfect. these phenomena must be retrospectively corrected by 
abundance normalisation.

Firstly, an arbitrary sample  is selected as reference, and then a different 
per-sample  scaling  factor  is  applied  to  the  feature  quantifications  in  the 
other  samples.  this  can  be  achieved  by  spiking  an  internal  standard  of 
known  quantity  into  each  LC-Ms  sample.  Upon  identifying  these  internal 
standard  features,  they  can  be  used  to  derive  the  normalising  factors  that 
equalise the quantification of these features in each sample with respect to 
the reference sample, and scaling all the other features accordingly. the dis-
advantage is that any systematic bias in the spike-in feature quantifications 
is propagated to the rest of the experiment. to mitigate this, the normalisa-
tion can be based on features assumed to be unchanged in the experiment, 
either explicitly through “housekeeping” proteins, or implicitly by assuming 
that  the majority of proteins remain unregulated between samples.  in  the 
latter case, the simplest technique in widespread use is to calculate the ratio 
of intensities between the reference sample and the other samples, and from 
these  compute  the  per-sample  normalisation  factors  as  the  median  ratio 
across all features.40 For example, in Maxquant the peptide ratios between 
light–heavy siLaC pairs are normalised so that the median peptide ratio is 
1 : 1 in each run.

we must note that special treatment is required when samples have been 
pre-fractionated  before  acquisition  in  multiple  LC-Ms  runs.  this  case  is 
trivial in siLaC as the intensity ratios between light and heavy samples are 
uncorrupted as they are fractionated together. however, in label-free acquisi-
tion, establishing which peptides do not change relies on prior knowledge of 
the per-fraction normalisation factors, and vice-versa. Maxquant's MaxLFq 
modules addresses this by a ‘delayed normalisation’ approach that analyses 
quantifications  across  all  fractions  simultaneously.  here,  an  optimisation 
technique is employed to determine the normalisation factors that minimise 
the  pair-wise  intensity  ratios  between  samples  for  all  peptides  across  the 
experiment.31

when effects such as ion suppression, detector saturation or instrumental 
drift occur, the LC-Ms signal  intensity  is no longer in a linear relationship 
with  peptide  abundance.  in  order  to  address  these  issues,  non-linear  nor-
malisation techniques developed for microarray analysis have been applied, 
such as quantile normalisation.41 More complex statistical models have also 
been investigated. karpievich et al. adapted the surrogate variable analysis 
technique of Leek and storey, performing a singular value decomposition 
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on the residuals of the fitted differential analysis model to determine if any 
significant systematic biases exist  (e.g. batch effects)  that have not already 
been specified in the differential analysis model.42 ranjbar et al. propose a 
Bayesian  MCMC  approach  that  determines  and  corrects  for  instrumental 
drift effects that cause smoothly changing systematic fluctuations in inten-
sity related to acquisition time order.43 Crucially, it was recently reported that 
these fluctuations are also highly noticeable during each run, contributing to 
significant differences in the intensity ratios between peptides of the same 
protein that elute at differing points in time.44 the authors propose to apply 
median  normalisation  within  an  rt  sliding  window  to  better  account  for 
these time-varying effects in LC-Ms signal intensity.

7.5  Protein-Level Differential Quantification
at this final stage in the pipeline we have a list of identified consensus pep-
tide features, each with a separate (possibly missing) quantification per-sam-
ple. through protein grouping (Chapter 5), each feature will also either be 
annotated as a subsequence of one protein, or as a ‘shared’ peptide that is a 
subsequence of more than one protein (Figure 7.3). we now wish to infer the 
relative abundance ratios of  the parent proteins between those same sam-
ples, and either from these or directly, the higher-level experimental effects 
e.g. differences between treatment groups. while there are simple methods 
for  deriving  protein-level  ratios  between  pairs  of  samples,  more  advanced 
statistical  methods  intrinsically  incorporate  protein-level  quantitation  as 
part of statistical differential expression analysis models that use the feature 
quantifications  across  all  samples  simultaneously.  in  this  chapter,  we  will 
cover these methods predominantly to illustrate their merits for protein-level 
quantitation.  due  to  variations  in  the  stochasticity  of  peptide  cleavage,  in 
general  a  protein-level  quantitation  is  more  accurate  when  many  peptide 
quantifications support it.45 statistical methods hold a key advantage here, 
in  that  they can additionally utilise  information on peptide quantification 
variability across samples.

Maxquant calculates protein ratios as the median of all ratios of peptides 
belonging  to  that  protein.5  this  reduces  the  effect  of  any  outlying  peptide 
ratios that could be corrupted by interferences or digestion issues, but fails 

Figure 7.3   peptides B and C, which are sub-sequences of more than one protein, 
are referred to as shared or degenerate peptides. shared peptides are 
often discarded as their quantification pattern represents a mixture of 
the quantification patterns of their parent proteins.
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to use all the available information. Under the assertion that ion count mea-
surements  in  Ms  follow  poissonian  statistics,  Carrillo  et al.  investigated  a 
number of similar schemes including averaging the peptide ratios, comput-
ing the ratio after summing the peptide quantifications in each sample, and 
using linear regression to compute the slope of the line fitting one sample's 
peptide quantifications to the other.46 they note the effectiveness of using 
the ratio after summing peptide quantifications, and a modified ‘total least 
squares’  regression  that  minimises  the  orthogonal  distance  between  the 
peptide ratios and line of best fit, which accounts for error in both samples' 
peptide quantifications. these methods are effective because errors  in  the 
relative fold–change decrease as intensity increases (as would be expected in 
poissionian statistics), hence summing peptide quantifications before ratio 
calculation leads to proportional weighting of the more intense features. the 
regression approach adds a form of outlier rejection, in that intensity values 
are down-weighted according to their distance from the line of best fit, and 
therefore errors in the fold-change estimate are further reduced. the authors 
noted that the sum of peptide quantifications method performed marginally 
better, however, with the added benefit of being significantly less computa-
tionally expensive than the total least squares method.

For  these  simpler  methods,  an  additional  stage  is  needed  to  determine 
whether  relative  changes  in  protein  abundance  across  treatment  groups 
can be deemed significant.47 since biological variation is regularly assumed 
to  be  log-normally  distributed  in  proteomics  studies,  normalised  quanti-
fications  or  quantification  ratios  are  often  log-transformed  for  statistical 
analysis. however, some studies have argued for the use of alternative variance- 
stabilising transformations that account for an additional additive compo-
nent approximating instrument and ion counting noise.48 For case-control 
experimental design, typically student's t-test is then used to determine the 
statistical significance of the difference in abundances. note that for clinical 
studies,  welch's  t-test  should  be considered,  since  we  cannot  assume  that 
cases and controls have the same population variance. in either case, we are 
then  left with a p-value  for each protein,  the probability  that  the observed 
data or more extreme data would occur if the null hypothesis (no difference 
in  abundance)  were  true.  since  we  are  testing  multiple  proteins  (multiple 
hypotheses), it is essential that the p-values are then adjusted to control the 
False discovery rate (Fdr), which is the expected proportion of false posi-
tives in the set that we declare to be significant. among other approaches, 
the  Benjamini-hochberg  procedure  is  often  employed.49  For  further  infor-
mation,  discussion  of  appropriate  experimental  designs  and  an  expanded 
treatment of statistical testing methodology, we refer the reader to ref. 47.

7.5.1  Statistical Methods
Fitting  statistical  models  to  all  the  feature-level  data  has  the  potential 
for  more  accurate  quantification  through  joint  inference  of  peptide  reli-
ability  and  differential  quantitation.50  this  comes  at  a  cost  of  being  more 
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computationally  intensive. these statistical models attempt to account for 
the  inherent  variability  in  the observed  log-transformed  intensities  due  to 
random experimental variation, with protein digestion being a major com-
ponent. the most popular modelling framework underpinning these tools is 
the mixed-effect model, which generalises a large cross-section of statistical 
models including the t-test, linear regression and multi-way anova. in this 
framework, predictors are termed ‘fixed effects’. a fixed effect is one which 
we consider to be systematic e.g.  the effect of a particular protein, peptide 
or condition on the fold change of a feature, or a batch effect between two 
batches. Unlike simpler models, mixed-effect models also support ‘random 
effects’. random effects represent stochastic fluctuations that occur within 
larger  populations  and  are  represented  as  log-normal  distributions  with 
unknown variance e.g. biological variation causing per-sample random devi-
ations from the population mean, or batch deviations across many batches. 
when protein-level quantifications have already been derived, the resulting 
test  for assessing differential expression (e.g. t-test) models biological vari-
ation  as  a  log-normally  distributed  residual.  in  protein-level  quantitation 
performed by a mixed-effects model,  the  log-normally distributed residual 
models technical variation at the feature level instead, so it is crucial to also 
fit a random effect to model protein-level biological variation.

tools  such  as  Msstats51  fit  the  mixed-effects  model  on  a  per-protein 
basis,  employing  standard  methods  for  fitting  based  on  restricted  Maxi-
mum Likelihood (reML). as illustrated in Figure 7.4, each log-transformed 
feature is modelled as a linear combination of peptide feature, condition 
and  sample  effects,  with  feature  and  condition  assigned  as  fixed  effects 

Figure 7.4   protein-level quantitation based on the  linear or mixed-effects model 
decomposes the log intensity of each feature quantification (horizontal  
bars)  into  per-feature,  per-condition  and  per-sample  contributions. 
here,  the residuals  for  feature 1 are greater  than feature 2, hence for 
models that infer per-feature residual variances, peptide 2 will influence  
the protein-level quantifications to a greater extent.
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and  sample  as  a  random  effect  (if  the  sample  size  is  adequate).  Msstats 
also includes an optional interaction effect between feature and condition 
which models feature-specific signal interferences that only appear in one 
condition.52 a popular approach is to estimate a separate residual variance 
for  each  feature,  which  has  the  effect  of  weighting  each  feature's  contri-
bution  to  the  protein-level  quantitation  by  the  reciprocal  of  its  inferred 
residual variance.53 however, the authors of Msstats advise that reML will 
over-fit  such  a  model,  advocating  that  a  non-linear  relationship  between 
a  feature's abundance and  its variance should be enforced  to avoid over- 
fitting.52 this is achieved by reML fitting of a single residual variance to all 
features, but with the variance weighted on a per-feature basis. through a 
technique called iterative reweighted least squares, the weights are initially 
set to unity and are then iteratively refined by rounds of Loess curve fitting 
to  the  model  residuals  against  predicted  feature  abundance  followed  by 
reML model refitting.

goeminne  et al.  recently  presented  three  improvements  to  increase  the 
robustness  of  the  mixed-effects  model  approach:54  (i)  ‘ridge  regression’  is 
adopted to reduce over-fitting by penalising the feature effect. this is achieved 
by  assuming  peptide  features  from  the  same  protein  have  log-normally  
distributed fluctuations in fold change within each sample. since estimating  
this  variance  can  only  be  achieved  with  significant  uncertainty  when  a 
protein  is  supported  by  only  a  few  quantified  peptides,  statistical  testing 
becomes  more  conservative  in  these  cases.  (ii)  rather  than  estimate  per- 
feature residual variances, an M-estimation approach with huber weights is 
used to down-weight individual outlier quantifications. (iii) through empir-
ical Bayes, the residual variance estimates of proteins with few observations 
are made more reliable by borrowing strength from the variance estimates of 
other proteins in the experiment.

we conclude this section by discussing the missing data  issue. the pro-
teome informatics pipeline will result  is many consensus features missing 
quantifications for one or more samples. there are two main mechanisms 
for  this  missingness:  (i)  low  intensity  features  are  much  more  likely  to  be 
missed due to insensitivity in the feature detection method i.e. these quanti-
fications are ‘censored’. (ii) Features can be missed at random, due to a com-
bination  of  technical  (e.g.  ion-suppression  effects)  and  informatics  issues 
(e.g.  failure  to  deconvolute  co-eluting  interferences).  ignoring  all  missing 
data will reduce the sensitivity of differential expression analysis, as protein 
quantifications will be over-estimated in conditions with greater numbers of 
censored values. Conversely, setting all missing data to zero will both over-es-
timate differential expression and bias quantitation where the missingness 
is  completely  at  random.  karpievitch  et al.  have  presented  a  mixed-effects 
model that can compensate for these missingness mechanisms, and option-
ally impute the missing data.53 given a study-wide heuristic estimate of the 
probability  a  missing  quantification  is  at  random,  their  model  estimates  
feature-specific censoring thresholds and hence the distribution of intensity 
values each missing quantification could have represented.
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7.5.2  Statistical Models Accounting for Shared Peptides
a peptide may be present in, and therefore represent more than one protein. 
these are referred to as shared or degenerate peptides. in most cases these 
are discarded as being uninformative. however, Figure 7.3 considers the case 
where proteins 1 and 2 are represented in results by peptides a, B and C, and 
B, C and d respectively. ignoring shared peptides B and C we can infer the 
presence of both proteins 1 and 2 by the presence of peptides a and d. then 
suppose that protein 3 is typified by peptides B and C only; ignoring shared 
peptides would mean that protein 3 is undetected. shared peptides are often 
discarded since using the relative abundance of a constituent peptide as the 
relative abundance of the parent protein is only viable in the case where that 
peptide  is unique  to  that protein.45 however,  in a  typical protein database 
shared peptides can account for as much as 50% of the peptides in the data-
base;55 we are effectively discarding half of the information that we might use 
to identify and quantify those proteins. in the cases where a protein has no 
unique peptide, we would be totally unable to infer its presence or quantifi-
cation. Models which account for shared peptides in some way include that 
proposed by Blein-nicolas et al.56 a non-linear model is proposed where the 
measured  log  transformed quantification of a peptide  is equal  to  the sum 
of:  the  log-sum of  the quantifications of  the proteins  it  is a part of, a pep-
tide random effect, random error due to biological variation, random error 
due to technical variation, and the residual error. Crucially, as this model is 
evaluated across all proteins at once, and uses all the available information 
to calculate  the protein quantifications,  the authors demonstrate  that  this 
improves the accuracy of the estimations of parameters compared to a model 
quantifying one protein at a time. this comes at significant computational 
expense, however, as Bayesian MCMC is utilised for inference.

7.6  Discussion
the final result of the presented Ms1 quantitation pipeline is a list of pro-
teins  which  we  have  identified  as  being  differentially  expressed  according 
to our experimental design, along with a measure of our confidence in this 
assertion,  the  Fdr,  and  a  measure  of  how  much  we  believe  them  to  have 
changed i.e. their ratios or fold changes. these results could then be used to 
present a set of proteins for further analysis, whether by pathway analysis or 
as candidates for developing a biomarker prediction panel. other biological 
applications may call for different downstream analysis, but the core quanti-
tation algorithms are typically the same.

one of the key limitations of current strategies for Ms1 quantitation is 
that they make deterministic decisions at each stage of the workflow. since 
no algorithm has been presented that is 100% reliable and sensitive, errone-
ous decisions are inevitable, leading both to incorrect knowledge extraction 
(false positives) and missed knowledge extraction (false negatives). Most stages 
of  the  pipeline  attempt  to  be  robust  to  false  positives  in  their  input,  but 
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again are not 100% successful. hence in many cases errors accumulate as 
they  flow  through  the  pipeline.  the  use  of  rigorous  stochastic  sampling 
(e.g.  MCMC)  or  more  computationally  efficient  optimisation  approaches 
(e.g. approximate Bayesian Computation)57 that capture uncertainty in the 
results and propagating this information downstream is an area of signifi-
cant future promise. nevertheless, this methodology will not directly influ-
ence the false negative rate. the key to greater sensitivity is to utilise prior 
information  earlier  in  the  pipeline  before  the  raw  data  is  discarded  (e.g. 
the  nitpiCk  sparse  regression  approaches  that  perform  deisotoping  on 
the raw data), or on the other side of the same coin, preserve the raw data 
throughout the pipeline. as a proof of concept, Liao et al. recently proposed 
a  pipeline  of  image  denoising,  registration  and  functional  mixed-effects 
modelling that performs differential analysis directly on the denoised and 
aligned raw data.39 with this approach, they discovered a number of differ-
entially expressed peptide features that were missed by waters progenesis® 
at the feature detection stage.
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8.1   MS2-Based Quantification of Proteins
In gel-free proteomics, mass spectrometry signals specific to proteins are 
used to infer their abundance.1 this can be achieved in a targeted or untar-
geted manner. In the latter, so-called shotgun proteomics, scientists aim 
at the quantification of entire proteomes.2 as outlined in Chapter 1, due 
to the analytical challenges posed by the analysis of intact proteins, such 
approaches rely in their vast majority on the identification and quantifica-
tion of proteins via their peptides, obtained after proteolytic digestion. In 
tandem mass spectrometry, the mass over charge ratios [m/z] of peptides are 
recorded, as well as the [m/z] of their fragment ions, obtained by fragmenta-
tion. the fragmentation can target specific peptides, so-called data depen-
dent acquisition (dda), or fragment all the peptides ionized at a given time 
point in a mass window, so-called data Independent acquisition (dIa).

From the intensity of the signal recorded, it is possible to infer the abun-
dance of ions measured, the abundance of peptides from MS spectra in 
MS1-based quantification, and the abundance of fragment ions from MS/
MS spectra in MS2-based quantification. Specialist software tools were thus 
designed to extract protein specific intensities from mass spectra, allowing the 
estimation of protein abundances for entire proteomes. these quantification 
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approaches can be used to compare protein levels between samples (relative 
quantification), or to estimate the actual protein abundance in a given sam-
ple (absolute quantification). More details on protein quantification can be 
found in Chapter 7 and in specialist reviews.2–5

In this chapter, we focus on the case of dda shotgun quantification based 
on MS/MS spectra. the two most encountered quantification methods rely-
ing mainly on MS2 spectra are spectrum counting techniques, where the 
number of spectra or peptides recorded for a given protein is used as a proxy 
to estimate its abundance, and reporter ion techniques, where peptides are 
labeled with an isobaric reagent releasing specific ions upon fragmentation, 
allowing the relative quantification of a peptide between multiple samples 
from a single spectrum. For each of these, we detail the rationale of the 
approach, identify the main pitfalls, and demonstrate its application using 
user-friendly open source software. Note that the concepts and techniques 
introduced in this chapter are generic, and can be transposed to other meth-
ods and software tools.

With this chapter, we aim at providing the reader with understanding 
needed to conduct sound MS2-based protein quantification and critically 
interpret the results. the feasibility and reliability of peptide quantification 
inferred from MS2 signals are critically discussed throughout the text. Finally, 
we provide elements to guide the decision between MS1 or MS2 quantifica-
tion during experimental design.

8.2   Spectral Counting
as illustrated in Figure 8.1, spectral counting relies on the rationale that high 
intensity peptides have a higher probability to be selected for fragmenta-
tion, and therefore a higher chance of generating peptide spectrum matches 
(pSMs). assuming that the intensity of a peptide is proportional to its abun-
dance, and in turn to the original protein abundance, such methods use the 
number of pSMs for a given protein as a proxy to estimate its abundance. 
Various spectrum counting indexes are available, and can be categorized by 
the way spectra are counted: (1) all spectra are counted for a given protein, as 
in the NSaF index,6 or (2) only one spectrum is counted per peptide, as in the 
empaI index.7 Because longer proteins are likely to produce more peptides, 
and thus more pSMs, the NSaF index further normalizes the spectral count 
assigned to a protein Nspectra to the protein length in amino acids, lprotein:
  
 spectra

protein

NSAF
N
l

  (8.1)
  

Similarly, for empaI, the number of peptides observed, Nobserved, is normal-
ized to the number of theoretically observable peptides, Nobservable, prior to 
exponential transformation:
  

 
observed

observableemPAI 10 1
N
N   (8.2)
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Nobservable is computed in silico from the protein sequence and search param-
eters. the detectability of a peptide depends on multiple factors, includ-
ing its length, enzymatic cleavage status, amino acid composition, carried 
post-translational modifications, etc. While solutions have emerged to refine 
the predictability of the detection of peptides,8,9 they remain challenging to 
integrate in desktop bioinformatic applications. Consequently, simpler esti-
mators are used to compute Nobservable from the in silico digestion of the pro-
tein sequence, returning the number of fully tryptic non-modified peptides 
within a given size range, typically 6 to 30 amino acids.

Figure 8.1    Spectrum counting quantification approaches rely on peptide or pep-
tide-to-spectrum matches (pSM) counts to derive abundance indexes 
of proteins. (a) these methods do not require any additional sample 
preparation procedure; samples undergo the canonical proteomic 
workflow where proteins are proteolytically digested into peptides and 
analyzed by tandem mass spectrometry coupled to liquid chromatog-
raphy, lC-MS/MS. (B) upon identification of the fragment ion spectra 
acquired, a list of peptides and pSMs are available for every protein, as 
illustrated here with three proteins r, B, G, supported by the identifica-
tion of 1, 4, and 3 peptides respectively. Multiple spectra supported the 
identification of the peptides r1, B2, B4, and G1, 3, 2, 3, and 2 spectra, 
respectively. Consequently, the proteins r, B, and G have 3, 7, and 4 
pSMs, respectively. (C) as detailed in the text, the spectrum counting 

indexes NSaF and empaI are defined by the formulas 
spectra

protein

NSAF
N
l

  

and 
observed

observableemPAI 10 1
N
N  . In this example, the proteins r, B, and G 

are of length 252, 422, and 123, respectively, and their in silico estimated 
number of observable peptides is 20, 37, and 8, respectively. replac-
ing the values in the formulas gives the protein abundance indexes for 
these proteins in this experiment.
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8.2.1   Implementations
Spectrum counting indexes are readily implemented in most proteomic plat-
forms, and are also directly embedded in some identification search engines, as 
for example the empaI index in Mascot10 (Matrix Science, www.matrixscience.
com). Note that the freedom left in the implementation of spectrum counting 
indexes makes these poorly comparable between bioinformatic tools. this is 
especially the case with empaI, where the definition of a peptide and its condi-
tions of observability are left to the interpretation of the developer.

In this chapter, we illustrate the simple estimation of spectrum counting 
indexes using the freely available peptideShaker11 software package. peptide-
Shaker supports various proteomic search engines, notably via SearchGuI12 
which allows the user friendly harnessing of eight search engines at time 
of writing: X!tandem,13 MyriMatch,14 MS amanda,15 MS-GF+,16 OMSSa,17 
Comet,18,19 tide,20 and andromeda.21 For detailed instructions on how to 
operate these tools, please refer to the CompOmics proteomics Bioinformat-
ics tutorials22 (compomics.com/bioinformatics-for-proteomics). upon cre-
ation of a project, the spectrum counting index is displayed and visualized 
using a sparkline23 for every protein in the protein table of the Overview tab 
as illustrated in Figure 8.2.

In the peptideShaker implementation, since peptides can be shared between 
proteins, and appear multiple times in a single protein, the count of spectra 
for a peptide is weighted by its multiplicity among proteins and in protein 
sequences. also, since large parts of the sequence of some proteins cannot be 
observed, mostly due to the dynamic range of the measurement and the com-
plexity of spectra obtained from peptides with high charges, the normalization 
of the NSaF index is based on the observable length of the protein instead of 
the total length. the observable length is estimated based on the number of 
amino acids likely to be observed given the distance between two consecutive 
cleavage sites. the spectrum counting value for every protein in the result set 
is subsequently normalized to an absolute abundance using a reference total 
amount of proteins set by the user, or to a relative abundance in percent or ppm.

the user can select between the empaI and NSaF techniques, and set pref-
erences via the Edit → Project Settings menu. the spectrum counting indexes 
can be exported in text or Microsoft excel .xls formats via the Export → Iden-
tification Features menu. there, the user can select preformatted reports, or 
design his or her own, choosing the inclusion of raw and normalized empaI 
or NSaF indexes for every protein. these reports can readily be exported 
from the command line, and can thus be generated in batches. the inclusion 
of peptideShaker in Galaxy24,25 (see Chapter 13) and in the distributed com-
puting platform pladipus26 allows the design of high throughput workflows.

8.2.2   Conclusion on Spectrum Counting
due to differences in digestion, separation, ionization, and fragmentation 
efficiency of proteins and peptides, it can be anticipated that the number 
of spectra recorded for a protein will strongly depend on its physical and 
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Figure 8.2    the Overview tab of peptideShaker displays identification results in a top-down view listing identified proteins at the top, 
peptides and pSMs of the selected protein and peptide, respectively, to the left, the annotated spectrum of the selected pSM 
to the right, and at the bottom the identified peptides annotated on the protein sequence. In the protein table at the top, the 
MS2 Quant. column, here highlighted with dashes, displays the spectrum counting index for every protein. For improved 
readability, the index is displayed using a sparkline (note the log scale).
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chemical properties, and not only on its abundance. Consequently, inaccu-
racies in spectrum counting indexes are expected. Figure 8.3, plots the NSaF 
indexes obtained previously against the iBaQ values obtained by MS1 fea-
ture-based quantification using MaxQuant27 (see Chapter 7). One can see 
that the iBaQ values span a much wider range than the NSaF; 95% of the 
data being comprised within 3.4 orders of magnitude for iBaQ against 1.7 for 
NSaF. the spectrum counting indexes thus have a narrower dynamic range 
than the intensity-based quantification.

While both indexes correlate linearly, the NSaF values vary by a ratio of 
2.5 : 1 compared to the iBaQ values, for 50% of the values, and by a ratio of 
15 : 1 for 95% of the values, illustrating the low precision of spectrum count-
ing approaches. these are thus generally used to estimate the order of mag-
nitude of the abundance and not for accurate quantification.

the quantification of low abundant proteins, and proteins yielding few 
peptides, relies on low counts of peptides and spectra, up to the extreme 
case of quantification based on a single spectrum. In such situations where 
the identification of an additional spectrum practically doubles the spectral 
count, the spectrum counting indexes also lack accuracy and robustness. to 
optimize the performance of spectrum counting quantification, the scien-
tist needs to avoid the presence of false positive hits, while maximizing the 
number of spectra identified. this is achieved by tuning the stringency of 
the validation, which can be done in peptideShaker in the Validation tab by 

Figure 8.3    the NSaF indexes obtained from peptideShaker are plotted against 
the iBaQ values obtained when processing the same dataset with Max-
Quant. Only proteins common to both approaches are considered. Note 
that axes are in base 10 logarithmic scale.
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balancing between the false positive and negative rates, respectively termed 
Fdr and FNr.

the simplicity of the computation of spectrum counting indexes, and the 
fact that they do not generate additional costs, make them ideal candidates 
for rapid and simple evaluation of protein abundances. however, results 
should be interpreted in light of the performance. Consequently, spectrum 
counting indexes are mainly used to evaluate the order of magnitude of 
protein abundances. With the current instrumentation, whenever accurate 
absolute quantification is needed, the use of spiked-in standards and inten-
sity-based quantification is required.

8.3   Reporter Ion-Based Quantification
as illustrated in Figure 8.4, in reporter ion-based quantification, chemical 
tags are used to label peptides from different samples, and multiplex them 
after digestion. as illustrated in Figure 8.5, the tags consist of three parts: 
the reporter group, the mass balancer group, and the reactive group. during 
labeling, the balancer and reporter groups are bound to peptides. Interest-
ingly, as detailed in tables 8.1–8.5, the mass of the reporter group is specific 
to every reagent, whereas the balancer counterpart ensures that the different 
reagents are isobaric.

as listed in tables 8.1–8.5, at the time of writing, two reporter ion-based 
quantification techniques are available: itraQ® allows the multiplexing of 
four or eight samples,28 and tMt the multiplexing of two, six, or ten sam-
ples.29 Importantly, 6-plex and 10-plex tMt kits consist of the combination 
of two series of 3 and 5 reagents, respectively, where the mass difference is 
encoded using a 13C or a 15N. these so-called C and N series of ions are dis-
tinguishable by a mass difference corresponding to the difference in mass 
defect between C and N, 6.32 mda:30

  
 (13C − 12C) − (15N − 14N) = 6.32 mda (8.3)
  

Multiple samples are hence subjected to the same workflow, thereby reduc-
ing experimental variability between samples. the different samples remain 
indistinguishable until data interpretation, where comparing the relative 
intensities of the fragmented reporter groups, so-called reporter ions (sample 
specific fragment ions in MS2 spectra) allows the relative quantification of the 
peptide in the different multiplexed samples. By aggregating the relative inten-
sities of reporter ions of all the spectra recorded for one protein, bioinformatic 
tools provide relative abundances for the proteins identified in a dataset.

Most proteomics bioinformatic platforms propose solutions for reporter 
ion-based quantification. here again, the data processing only relies on iden-
tified spectra, and is thus conducted after identification of the dataset. We 
will illustrate the processing of such data using reporter (http://compom-
ics.github.io/projects/reporter.html), a user friendly interface to perform 
reporter ion-based quantification of data processed using peptideShaker.
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Figure 8.4    In reporter ion-based quantification, different samples are digested 
in parallel, and the peptides obtained are labeled using isobaric tags, 
as illustrated here with four samples. after labeling, the peptides are 
pooled and undergo the same experimental workflow. upon acquisi-
tion by tandem mass spectrometry coupled to liquid chromatography, 
lC-MS/MS, the MS2 spectra acquired after isolation and fragmentation 
of a peptide present sample specific reporter ions in their low mass 
region. as illustrated in the table at the bottom, the intensity of these 
peaks is used to estimate the abundance of the peptide in the different 
samples while the other peaks are used to infer the peptide sequence.
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Figure 8.5    as exemplified here with a tandem Mass tag™ (tMt), see main text 
for details, the chemical tags used for peptide labeling consist of three 
parts: the reporter group to the left, the balancer group in the center, 
and the reactive group to the right. as detailed in tables 8.1–8.5, the 
mass of the reporter groups varies between reagents through the incor-
poration of isotopes, but the respective balancer groups compensate 
the mass differences ensuring that all tags are isobaric.

Table 8.1    the itraQ 4-plex labeling kit allows the multiplexing of up to four differ-
ent samples. the adduct mass is used as modification during the search, 
while the reporter ion masses are used to find the quantitative informa-
tion in spectra. Note that the actual composition of the itraQ labels is 
not publicly available. the values given here are the ones used by default 
in the compomics-utilities package52 for identification and quantifica-
tion of itraQ datasets and are given without guarantee.

label
Composition  
(reporter + balancer) adduct mass (da)

protonated 
reporter m/z

itraQ 4-plex 114 C5
13Ch12N2 + 13C18O 144.10592 114.11068

itraQ 4-plex 115 C5
13Ch12N15N + C18O 144.09960 115.10771

itraQ 4-plex 116 C4
13C2h12N15N + 13CO 144.10206 116.11107

itraQ 4-plex 117 C3
13C3h12N15N + CO 144.10206 117.11442

Table 8.2    the itraQ 8-plex labeling kit allows the multiplexing of up to eight 
different samples. the adduct mass is used as modification during the 
search, while the reporter ion masses are used to find the quantitative 
information in spectra. Note that the actual composition of the itraQ 
labels is not publicly available. the values given here are the ones used 
by default in the compomics-utilities package52 for identification and 
quantification of itraQ datasets and are given without guarantee.

label Composition (reporter + balancer)
adduct mass 
(da)

protonated 
reporter m/z

itraQ 8-plex 113 C6h12N2 + C2
13C6h12

15N2O3

304.19904

113.10732
itraQ 8-plex 114 C5

13Ch12N2 + C3
13C5h12

15N2O3 114.11068
itraQ 8-plex 115 C5

13Ch12N15N + C3
13C5h12N15NO3 115.10771

itraQ 8-plex 116 C4
13C2h12N15N + C4

13C4h12N15NO3 116.11107
itraQ 8-plex 117 C3

13C3h12N15N + C5
13C3h12N15NO3 117.11442

itraQ 8-plex 118 C3
13C3h12

15N2 + C5
13C3h12N2O3 118.11146

itraQ 8-plex 119 C2
13C4h12

15N2 + C6
13C2h12N2O3 119.11481

itraQ 8-plex 121 13C6h12
15N2 + C8h12N2O3 121.12152
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8.3.1   Identification
prior to quantification, itraQ or tMt spectral datasets undergo identifi-
cation similarly as other proteomic datasets, producing a set of pSMs that 
are grouped to proteins. the only difference is the setting of modifications, 
which should account for the presence of the isobaric tags: a modification 
of +144.1 da or +304.19904 da on peptide N-termini (fixed), lys (fixed), and 
tyr (variable) for itraQ 4-plex and 8-plex, respectively, and of +225.158 da 
or +229.1629 da on peptide N-termini and lys (both fixed) for tMt 2-plex 

Table 8.3    the tMt0 labeling kit is for method development and targeted quantifi-
cation. the adduct mass is used as modification during the search, while 
the reporter ion masses are used to find the quantitative information in 
spectra.

label
Composition  
(reporter + balancer) adduct mass (da)

protonated 
reporter m/z

tMt0 126 C8h15N + C4h5NO2 224.15248 126.12773

Table 8.4    the tMt2 labeling kit is for the multiplexing of two samples. the adduct 
mass is used as modification during the search, while the reporter ion 
masses are used to find the quantitative information in spectra.

label
Composition  
(reporter + balancer) adduct mass (da)

protonated 
reporter m/z

tMt2 126 C8h15N + C3
13Ch5NO2 225.15583

126.12773
tMt2 127 C7

13Ch15N + C4h5NO2 127.13108

Table 8.5    the tMt6 and tMt10 labeling kits are for the multiplexing of six and ten 
samples, respectively. the adduct mass is used as modification during 
the search, while the reporter ion masses are used to find the quantita-
tive information in spectra.

label Composition (reporter + balancer)
adduct mass 
(da)

protonated 
reporter m/z

tMt6/10 126 C8h15N + 13C4h5
15NO2

229.16293

126.12773
tMt6/10 127N C8h15

15N + 13C4h5NO2 127.12476
tMt10 127C C7

13Ch15N + C13C3h5
15NO2 127.13108

tMt10 128N C7
13Ch15

15N + C13C3h5NO2 128.12812
tMt6/10 128C C6

13C2h15N + C2
13C2h5

15NO2 128.13444
tMt6/10 129N C6

13C2h15
15N + C2

13C2h5NO2 129.13147
tMt10 129C C5

13C3h15N + C3
13Ch5

15NO2 129.13779
tMt10 130N C5

13C3h15
15N + C3

13Ch5NO2 130.13483
tMt6/10 130C C4

13C4h15N + C4h5
15NO2 130.14115

tMt6/10 131 C4
13C4h15

15N + C4h5NO2 131.13818
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and 6 or 10-plex, respectively. Note that itraQ 4-plex tags are not completely 
isobaric, and a consensus mass is used for the search, either based on the 
average mass or by selecting one of the reagent masses.31 this notably does 
not make itraQ particularly suited for high resolution mass spectrometry. 
Conversely, tMt requires a resolution of >50 000 at 150 m/z to resolve the C- 
and N-ion series of tMt 10-plex kits, and it is advised to use the same resolu-
tion to resolve the isotopic patterns of the C- and N-ion series of tMt 6-plex 
kits. at such high resolutions, most search engines will provide enhanced 
identification rates when using a stringent MS2 m/z tolerance (≤0.01 da or  
10 ppm); it is thus recommended to optimize this search setting and not 
reuse search parameters designed for lower resolution.32 upon identifica-
tion, the reporter ion peaks are visible in the low m/z range of the spectrum, 
as illustrated in Figure 8.6.

8.3.2   Reporter Ion Intensities, Interferences and Deisotoping
the first step of the quantification procedure is to extract sample specific 
reporter ion intensities from spectra. Spectra result from the measurement 
of compound intensities over the entire mass range of the instrument where 
peaks are represented as a bell-shape curve resulting from technical variabil-
ity in the mass detection. this profile needs to be centroided (integrated and 
transformed into a single peak) prior to processing using a search engine, 
resulting in peak lists, easier to handle by identification algorithms and 
more compact in terms of memory. the quality of the m/z centroiding will 
mainly affect identification efficiency, while the quality of the intensity inte-
gration will affect the accuracy of the quantification.33 this so-called peak 
picking step can be conducted by the instrument signal processing module, 
or using third party software.33,34

due to the presence of isotopes in reagents, mostly 13C, the reporter ions 
from a sample distribute on multiple masses. the software thus needs to 
deconvolute the intensities present over the different masses to infer the 
contribution of every sample. For this, it is necessary to account for the coef-
ficients of purity provided by the manufacturer with the kit as illustrated in 
Figure 8.7 with tMt 10-plex reagents. Note that for the sake of reproducibil-
ity, it is recommended to provide this information along with the data when 
publishing the results.

When isolating a peptide for fragmentation, the mass spectrometer 
might also include co-eluting peptides.35 While these are barely noticeable 
in the identified spectra, because less abundant, their contribution in the 
reporter ion masses will introduce a background intensity and thus impair 
the quality of the quantification. this effect is called precursor ion interfer-
ence in the literature and results in a compression of relative abundances 
towards a 1 : 1 ratio,36–39 0 in logarithmic scale. Several experimental proce-
dures exist to alleviate this problem,40–43 the simplest being to reduce MS1 
complexity by fractionation.44,45 additionally, several tools including the 
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Figure 8.6    the fragment ion spectra of isobaric tag labeled peptides consist of peptide fragment ions with reporter ions in the low m/z 
range as illustrated here with a spectrum recorded during a tMt 10-plex experiment. the b- and y-ions obtained from the 
fragmentation of the spectrum are annotated. the tMt reporter ions are visible in the 126–131 m/z range. a zoom on this 
region displayed on the upper right corner shows the N and C reporter ion series with different intensities. these intensities 
are used to estimate the abundance of the peptide in the multiplexed samples.
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Figure 8.7    example of product sheet for tMt 10-plex reagents. the table in the 
centre displays purity coefficients for the different reagents. these coef-
ficients need to be provided to the analysis software that will proceed to 
an isotopic correction of the measured reporter ion intensities.
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widely used MaxQuant software,27 allow filtering peptides presenting risks 
of ion interference based on the signal to noise level in the isolation win-
dow of the precursor ion.

8.3.3   Ratio Estimation and Normalization
In order to convey the quantitative information to the protein level, reporter 
ion data interpretation tools aggregate the intensities recorded in all spectra 
of all peptides ascribed to a given protein. Spectral intensities are, however, 
not directly comparable from one spectrum to another due to the differences 
in peptide ionization, isolation and fragmentation. a ratio of the different 
deisotoped peak intensities to a reference is then established for every spec-
trum, as illustrated in eqn (8.4) with rSpectrumk the ratio of a reagent k between 
the respective deisotoped intensity I0k and IrefSpectrum, the reference intensity for 
this spectrum.
  
 

Spectrum

0
Spectrum

ref

k

k

I
r

I
  (8.4)

  
the reference intensity Iref can be one peak’s intensity, a combination of 

different peak intensities, or any reference intensity in the spectrum. In the 
latter case, a noise level can be selected as reference, and the ratio will be 
equivalent to a signal-to-noise ratio as implemented in the latest versions of 
proteome discoverer™ (thermo Scientific™). the choice of this reference 
will have a direct impact on the final calculation as variability on this refer-
ence will propagate to the downstream processing.46

It is important to note that ratios do not distribute normally; as a result, 
most statistical estimators designed for normally distributed populations, 
are not suitable to work on ratios. a simple approach to alleviate this prob-
lem is to perform a logarithmic transformation before working on ratios, as 
reviewed in ref. 47. throughout the chapter, ratios thus implicitly refer to the 
logarithmically transformed ratios.

as illustrated in eqn (8.5) and (8.6), for every reagent k, the spectrum level 
ratios, rSpectrum, are subsequently aggregated by the software to estimate pep-
tide level ratios, rpeptide, and in turn, protein level ratios, rprotein. an estimator 
f is used to draw a representative peptide level ratio from the distribution 
of n spectrum level ratios obtained from the pSMs ascribed to this peptide. 
Similarly, it is used to draw a representative protein level ratio from the dis-
tribution of the p peptide level ratios ascribed to this protein.
  

  
1Peptide Spectrum Spectrum, ,

k k kn
r f r r   (8.5)

  1Protein Peptide Peptide= ,...,
k k kp

r f r r  (8.6)
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Several estimators exist to combine spectrum and peptide level ratios into 
peptide and protein level ratios, respectively, with different levels of accu-
racy and robustness toward outliers. the most encountered are median – 
robust but not accurate; mean – accurate but not robust; or other statistical 
functions like maximum likelihood estimators which offer a good balance 
between accuracy and robustness.37

additionally, it is possible to remove outliers in order to reduce their influ-
ence on the final ratio. Specific spectra can also be excluded from the peptide 
ratio calculation, or their contribution can be weighted, depending on spec-
trum quality metrics like intensity levels or a signal to noise ratio. Spectra can 
also be excluded from peptide ratio estimation based on the presence of other 
peaks surrounding the precursor in the MS1 spectrum, hinting at possible pep-
tide interference. Similarly, it is possible to exclude peptides from protein ratio 
calculation based on their modification or cleavage statuses. Since their ratio is 
the result of the contribution of multiple proteins, peptides shared between dif-
ferent proteins also induce ratio distortion.48 It is therefore preferable to rely on 
peptides unique to a protein or a protein ambiguity group. Conversely, relying 
on fewer peptides can reduce the robustness of the ratio estimation procedure.

ultimately, the software provides such ratios for every peptide and protein. 
despite sample equalization prior to labeling, due to difference in the han-
dling of samples, offsets can be observed on a given channel, resulting in the 
distribution of ratios not being centred around 1 : 1, 0 in logarithmic scale. 
these are typically dilution effects prior to labeling or errors in peptide or 
protein total amount measurement, and can be corrected by normalization 
on all the ratios of a channel. the normalization can be done both at the 
protein and peptide level, in order to correct for biases introduced before 
and after digestion. It needs to be adapted to a hypothesis of stability: if the 
majority of proteins are presumed to be stable, the median of ratios should 
correspond to a 1 : 1 ratio, on the other hand if specific proteins are known 
to be stable and the background to vary, like after immunoprecipitation or 
when working with some biofluids,49 then these stable proteins should be 
used as reference, and the median of all ratios will vary between channels. 
Good examples of proteins that are typically not stable between samples and 
should be excluded prior to normalization are contaminants.

8.3.4   Implementation
In this chapter, we demonstrate the estimation of peptide and protein ratios 
from isobaric tags using reporter (http://compomics.github.io/projects/
reporter.html). reporter operates directly on peptideShaker projects saved 
as .cpsx files. For details on how to create a peptideShaker project, please 
refer to the CompOmics proteomics Bioinformatics tutorials22 (compomics.
com/bioinformatics-for-proteomics). after starting reporter by double-click-
ing the .jar file in the reporter folder, click on New Project. the dialog of  
Figure 8.8 allows the creation of a project.
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In the Files Selection panel at the top of the dialog, the peptideShaker proj-
ect file can be selected. the Sample Assignment panel in the centre allows 
selecting the quantification method, assigning samples to labels, and select-
ing references. the reference intensities are used to normalize spectral 
intensities, and if none is selected, a median of all non-null intensities will be 
used. Clicking the cogwheel next to the method selection drop down menu 
allows setting the isotope coefficients of the kit used for the experiment as 
displayed in Figure 8.9.

Figure 8.8    the New Project dialog of reporter makes it possible to set up the quan-
tification procedure of a peptideShaker project. at the top, the Files 
Selection panel allows selecting the peptideShaker project as .cpsx file 
as well as the spectrum and protein database files. In the Sample Assign-
ment panel, the user can select the quantification method in the drop 
down menu and set the purity coefficients (see Figure 8.7) after click-
ing on the cogwheel. the table allows assigning samples to labels, and 
selecting reference samples for reporter intensities normalization (see 
main text). Quantification and processing settings can be edited in the 
Advanced Settings panel. Once the project is set, clicking the Start Quan-
tifying! button launches the quantification process.
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Finally, the Advanced Settings panel at the bottom allows setting quantifica-
tion and processing settings. the quantification settings are separated into 
three categories, as displayed in Figure 8.10(a): (1) Reporter Ions settings, (2) 
Ratio Estimation settings, and (3) Normalization settings. as illustrated in Fig-
ure 8.10(B), the reporter ions settings allow the specification of an m/z toler-
ance for the matching of reporter ions, and the setting of a precursor m/z and 
retention time window in case the reporter ions are not recorded in the spec-
trum used for identification.50 as illustrated in Figure 8.10(C), the ratio esti-
mation settings allow selecting proteins, peptides, and pSMs according to 
their identification validation status in order to retain only high scoring hits. 
It is furthermore possible to parametrize the maximum likelihood estimator 
used to aggregate ratios at the peptide and protein level, and exclude modified 
or miscleaved peptides as detailed in ref. 37. as illustrated in Figure 8.10(d),  
the normalization settings allow selecting the statistical estimator to use for 
channel normalization at the pSM, peptide, and protein level. It is also possi-
ble to provide lists of stable proteins and contaminants in the FaSta format. 
Note that the common repository of adventitious proteins, crap, from the 
Global proteome Machine51 (thegpm.org/crap) is selected as the default list 
of contaminants.

after clicking the Start Quantifying! button, reporter will estimate ratios 
according to the specified settings, and display the protein ratios clus-
tered using k-means clustering as implemented in the compomics-utilities 

Figure 8.9    When setting up a new project (see Figure 8.8 and main text), it is 
important to provide the purity coefficients of the kit used to label the 
samples. the coefficients can be set in the table and saved in a file.
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Figure 8.10    the quantification settings can be categorized into (1) Reporter Ions 
settings, (2) Ratio Estimation settings, and (3) Normalization settings. 
(a) the Quantification Settings can be edited via the Quantification 
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package.52 as illustrated in Figure 8.11, it is possible to navigate the clusters 
and visualize the protein profiles. Finally, pSM, peptide, and protein level 
ratios can be exported via the Export → Quantification Features menu.

8.3.5   Conclusion on Reporter Ion-Based Quantification
as mentioned, one of the main shortcomings of reporter ion quantifica-
tion is the inaccuracy of the obtained ratios, notably due to the problem 
of ion interference during co-isolation of peptides. another critical prob-
lem is the reduced identification rate observed in reporter ion-labeled sam-
ples in comparison to label-free experiments. this can be attributed to the 
increased MS1 complexity due to sample multiplexing, to altered fragmen-
tation of peptides due to the label, and to the increased precursor charge.53 
If the experiment allows it, when high accuracy quantification or high sam-
ple coverage are needed, it is thus recommended to proceed to targeted 
quantification with spiked labeled peptides or to label free intensity-based 
quantification.

Nevertheless, the ability to multiplex samples, the simplicity of the pro-
tocol, and the straightforward data interpretation make reporter ion quan-
tification methods extremely competitive. they are notably of high interest 
whenever the sample preparation procedure includes steps that could 
introduce variability between samples. this is, for example, the case in 
post-translational modification analyses, where the low reproducibility of 
the enrichment procedures for modified peptides can impair the label free 
comparison of peptide intensities. the ability to multiplex up to ten samples 
makes reporter ion-based quantification attractive for large scale discovery 
proteomic studies. By combining multiple kits using a common reference 
as done in super-SIlaC approaches,54 it is possible to drastically reduce the 
sample preparation and acquisition time.

Advanced Settings dialog available when creating a new project  
(see Figure 8.8 and main text.). Clicking each category opens the 
respective dialogs displayed in B, C, and d. (B) It is possible to set the 
m/z tolerance to use when selecting the reporter ions as well as an 
m/z and retention time window in case the reporter ions are not in 
the same spectrum as the peptide. (C) the ratio estimation settings 
allow filtering proteins, peptides, and pSMs based on the quality of 
their identification using the three drop down menus to the left of 
the Ratio Estimation panel. It is possible to parametrize the maximum 
likelihood estimator to use for peptide and protein ratio estimation, 
and notably set its resolution and window width. It is “also possible 
to exclude missing intensities from the ratio calculation. the peptide 
Selection panel allows excluding peptides based on their modifica-
tion and cleavage statuses. (d) the normalization for each sample 
can be done at the pSM, peptide, and protein level and selected in 
the Matches Normalization panel. lists of proteins to consider stable or 
contaminants can be provided in the Special Proteins panel.
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Figure 8.11    after loading of the project, the protein profiles appear after clustering in the top panel of the main interface. after clicking 
on a specific cluster, the list of proteins in this cluster is displayed at the bottom. Selecting a protein of interest will highlight 
it in red in the cluster as displayed here with the bold line in the second cluster of the bottom row. at the top right of the 
cluster panel, it is possible to change the parameters of the clustering algorithm.
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9.1   Introduction
9.1.1   SRM – General Concept and Specific Bioinformatic 

Challenges
Quantitative mass spectrometry-based proteomics plays an important role 
in many aspects of biological science from basic research to clinical analysis.  
Selected reaction monitoring (SrM) is a type of mass spectrometric data 
acquisition in which specific analytes are targeted for quantification in a 
triple quadrupole mass spectrometer. in contrast to data-dependent acqui-
sition (dda) used for unbiased discovery experiments that chose detected 
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179Informatics Solutions for Selected Reaction Monitoring

ions for fragmentation and analysis, SrM is data-independent and targets 
specific peptide analytes that are pre-defined prior to data acquisition. SrM 
acquisition on triple quadrupole instruments utilizes the first quadrupole, 
Q1, for peptide precursor ion (p) selection, typically using a mass selection 
window width of 0.7 m/z. Subsequently, the isolated precursor ion is frag-
mented in the collision cell, Q2, followed by specific fragment ion (f) selec-
tion in the third quadrupole, Q3, also using a mass selection window width 
of 0.7 m/z. these precursor–fragment ion pairs are called Q1/Q3 transitions, 
and are monitored either during the entire chromatographic gradient or 
at pre-determined, scheduled retention time windows (scheduled SrM).  
typically, 3–5 transitions are monitored per peptide precursor ion and two or 
more peptides per protein are monitored for robust quantification of protein 
expression. each Q1/Q3 transition is selected for a specific ‘dwell time’, the 
length of time each transition is acquired, typically in the range of 10–100 
milliseconds. the time needed to monitor all assay transitions at a specific 
retention time (rt) is referred to as cycle time. the number of selected tran-
sitions, the assigned dwell time, whether an acquisition is rt-scheduled or 
not, related rt window size, and chromatographic resolution all influence 
the sensitivity and robustness of an SrM assay. parameter selection typically 
requires trade-offs, with optimization required to maximize dwell times for 
maximum sensitivity, shorter cycle times to measure more data points across 
a chromatographic peak to increase quantitative accuracy, and increase of the 
number of transitions to maximize multiplexing. decisions regarding these 
parameters during assay development and appropriate experimental design 
are crucial for reliable, highly sensitive, and highly accurate quantification.

Since SrM mass spectrometry was first applied for peptides and protein 
expression analysis1 it has become increasingly popular. today, SrM is con-
sidered the gold standard for mass spectrometric quantitation and was 
declared ‘Method of the Year 2012’ by nature Methods.2 the increased MS 
scan speed and sensitivity of modern triple quadrupole instrumentation has 
enabled highly multiplexed SrM studies3,4 in complex biological matrices, 
such as plasma and tissue lysates. for this reason, targeted SrM techniques 
and their associated workflows have gained considerable popularity in bio-
medical applications, as well as for systems biology and translational medi-
cine (as recently reviewed5–7). recent studies have demonstrated that limits 
of quantification (loQs) can be achieved in the ng ml−1 to low µg ml−1 range 
while maintaining high assay reproducibility and low coefficients of varia-
tion (CVs) < 20%, demonstrating that SrM assays can be applied in verifica-
tion studies in the context of clinical or biological experiments.3,4,8–10

SrM has been adopted for a wide range of experimental goals that have 
varying requirements for assay accuracy, repeatability, sensitivity and robust-
ness. a prior report by Carr et al.11 outlines three different tiers describing 
experimental design and assay characteristics for targeted assays, such as 
SrM assays, and the corresponding requirements for publication. this 
report also details the appropriate presentation of data quality, performance 
metrics, and data transparency. given these developments, it is essential 
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to choose reliable and multi-functional software capable of addressing the 
diverse requirements necessary for successful implementation and data 
analysis of targeted SrM assays.

SrM assays pose several specific bioinformatics challenges including 
assay development (choosing transitions and collision energies), generating 
acquisition methods (determining dwell times and retention time schedul-
ing), and data processing (peak integration). these requirements are very dif-
ferent from typical software solutions used for data-dependent acquisitions, 
such as discovery or shotgun proteomics and will be discussed in more detail. 
furthermore, SrM is often coupled to experimental designs using stable 
isotope dilution SrM mass spectrometry workflows (Sid-SrM-MS) that uti-
lize one or more stable isotope versions of the analyte as internal standards. 
Sid-SrM-MS requires the ‘light’ and ‘heavy’ forms of the peptide analytes to 
be analyzed in a uniform way to determine peak areas. ideal SrM software 
would also be able to accommodate label-free SrM assays. in addition, the 
software used for SrM experiments should be able to facilitate assay devel-
opment and optimization steps, including refining peptide and transition 
selection, retention time scheduling for high multiplexing and high through-
put, collision energy optimization etc. at the same time visual software tools 
should be available to review the acquired data or to potentially manually 
adjust incorrect peak picking. an SrM software algorithm also needs to pro-
vide tools that assess false discovery rates for peak picking and provide con-
fidence metrics that a certain analyte peak group was selected correctly in 
the chromatograms, for example using a tool matching SrM peak groups 
back to original MS/MS spectral libraries of the same analyte to identify it. 
lastly, it may be advantageous to have a software algorithm that performs 
SrM system suitability testing ‘on the fly’, especially when assays are reten-
tion-time scheduled, and when rt starts to drift, so that the software can 
immediately and automatically correct the instrument acquisition method, 
e.g., rt re-scheduling.

9.1.2   SRM-Specific Bioinformatics Tools
instrument vendors are one source of SrM software, providing an array 
of commercial products including pinpoint™ (thermo), MultiQuant™ 
(SCieX), Masshunter™ (agilent) and Masslynx™/targetlynx™ (Waters). 
in addition, other sources have contributed software tools for the design 
and analysis of large scale SrM proteomic datasets.12,13 of these alternative 
sources, Skyline,14 an open-source software suite of tools for SrM analysis, 
has emerged as the most widely used platform (http://proteome.gs.wash-
ington.edu/software/skyline) and will be the focus of this chapter. Skyline 
is a freely available, comprehensive tool with high versatility for SrM assay 
development and subsequent processing of data acquired on the triple 
quadrupole mass spectrometers from agilent, SCieX, Shimadzu, thermo 
and Waters. Skyline can be used for peptide and transition selection, assay 
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optimization, SrM instrument method export, peak detection and inte-
gration, signal processing, and integration with statistical external tools 
and algorithms to generate quantitative results for peptides and proteins 
(figure 9.1). a number of recent, large-scale multi-laboratory studies have 
processed their SrM data using Skyline.3,4,8,15 to highlight some of the Sky-
line SrM functionalities, we describe features including important visual 
displays and statistical tools, Skyline’s support in accomplishing large 
multi-laboratory studies involving different sites and instruments, and its 
use in generating custom results reports for data sharing. We will discuss 
the integration of various, ‘external tools’ into the Skyline user interface 
for additional data processing that can be downloaded from the Skyline 
tool Store (http://skytools.maccosslab.org) and that install automatically 
onto the Skyline tools menu.16 finally, an easy, point-and-click strategy is 
presented that supports dissemination of SrM data processed in Skyline 
to the panorama web data repositories.17 Most of the Skyline features dis-
cussed in this chapter have existing tutorials, for step-by-step instructions, 
that are published on the Skyline website along with recorded webinars pre-
senting key Skyline functionalities.

Figure 9.1    Skyline as integral part of a targeted SrM assay and subsequent data 
analysis. a typical SrM workflow is shown starting with target selec-
tion from spectral libraries or other resources, SrM assay development 
and optimization, and SrM assay multiplexing. instrument SrM assay 
acquisition methods are directly exported from Skyline, and acquired 
data are imported into Skyline for data processing, including the use of 
the mprophet algorithm to perform false discovery rate (fdr) analysis  
for correct peak detection. Many graphical and visual features in  
Skyline allow for fast assessments of data quality and initial data results 
reports inside Skyline. for further statistical analysis custom reports 
can be generated and processed post-Skyline analysis, or data can be 
processed using Skyline’s integrated external tools available under the 
Skyline tool options, i.e., MSstats, QuaSar. all data processed through 
Skyline can be directly uploaded from Skyline using a ‘point-and-click’ 
feature to panorama, a web-based data repository containing spectral 
and chromatogram libraries and quantitative data sets.
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9.2   SRM Assay Development
9.2.1   Target and Transition Selection, Proteotypic and 

Quantotypic Peptides
the Skyline software supports a variety of strategies to select peptide tar-
gets and MS/MS fragment ions, also known as a SrM ‘transitions’. for SrM 
quantification, researchers typically select ‘proteotypic’ peptides as analytes 
and targets. proteotypic peptides are defined as peptides that uniquely iden-
tify each protein and are consistently observed when a sample mixture is 
interrogated by a mass spectrometer. in addition, high peptide MS response 
factor and good ionization is preferable to make an assay as sensitive as pos-
sible. While proteotypic peptides can be predicted computationally18 (for  
additional details see), selection of optimal peptides for targeted SrM assays 
is often based on empirical mass spectrometric data. indeed, the most com-
mon approach used is to select target peptides and transitions from previ-
ously generated data obtained by data-dependent acquisitions (dda) and 
corresponding MS/MS spectral libraries, or from existing SrM chromato-
gram libraries. MS/MS spectral libraries can be easily built within Skyline 
from dda data by importing the corresponding database search engine out-
puts,19 and Skyline supports the majority (∼20) of common MS/MS search 
algorithms. Vast amounts of proteomic data are now uploaded to public data 
repositories providing valuable data resources. MS2 data can be downloaded 
and added to Skyline as described, or SrM chromatogram libraries from pan-
orama can be added to Skyline directly via an ‘edit library’ form. essentially 
any data or library format can be added independent of what type of triple 
quadrupole instrument is used to generate the SrM assays. repositories 
of proteomic data are provided by the proteomeXchange consortium such 
as pride20 for tandem MS/MS data, and paSSel–peptide atlas21,22 and SrM 
atlas (www.srmatlas.org),23 as an interface for selection of SrM transitions. 
in addition, other major resources include MassiVe (http://massive.ucsd.
edu), gpMdb,24 niSt libraries (http://peptide.niSt.gov), panorama,17 and the 
CptaC assay portal, the latter provides a repository of targeted proteomic 
assays (http://assays.cancer.gov).25

in addition to selecting proteotypic peptides, ideal peptides chosen for 
analysis are also quantotypic. the latter comprises aspects such as choosing 
peptides that are stable during workup and assay acquisitions, selecting pep-
tides that were generated with ‘complete proteolysis’, e.g. avoiding peptides 
with missed cleavages or semi-tryptic peptides, avoiding peptides ending in 
KK, rr, Kr or rr, avoiding n-terminal proline cleavage, e.g., Kp, rp. peptides 
are also often not selected when they are prone to chemical, artificial modi-
fications, such as methionine oxidation, or deamidation of asn or gln resi-
dues, which are particularly prone to deamidation when followed by gly, e.g., 
ng or Qg. potential n-terminal cyclization of gln and glu residues should 
also be considered. lastly, peptides containing known ptM motifs, such as 
the n-X-S/t glycosylation motif are often avoided when performing regular 
protein quantification.
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once spectral–SrM libraries are in Skyline, and the Skyline target tree is 
populated with analyte peptides, SrM transitions can be selected automat-
ically. this is typically prioritized based on the library intensity ranking of 
the transitions. Skyline transition Settings allow flexibility in defining ‘tran-
sition Selection filters’, e.g., choosing the top 5, highest ranked y-ions, or y- 
and also b-ions based on the library information available per target peptide. 
the Skyline peptide target tree is subsequently and automatically populated 
with peptides and transitions as first steps of the SrM assay development 
and general workflow (see figure 9.1).

the vendor neutrality of Skyline facilitates the use of public spectral or SrM 
libraries which are often acquired on instruments across a range of vendors 
and proprietary data acquisition software. this is also advantageous when 
performing large multi-laboratory studies where participants often employ 
different instrument platforms. in addition to data analysis, Skyline also 
facilitates generation of SrM data acquisition methods. Specifically, Skyline 
template files pre-populated with target peptides and transitions can be dis-
tributed to the different study sites, and, if necessary, the templates and assay 
transitions can be further refined at the individual study sites depending on 
SrM instrument platform. transition lists or native instrument acquisition 
methods can also be exported from Skyline for the SrM assays, as recently 
demonstrated by a large-scale, nCi-CptaC sponsored study measuring can-
cer-relevant proteins in plasma8 and a large, international study configuring 
and validating 645 novel multiplexed MrM assays representing 319 proteins 
expressed in human breast cancer.4

at times, no peptides from a target protein of interest are found in dda 
analysis or public spectral and SrM libraries. in these cases, other strategies 
can be chosen for peptide selection, such as software algorithms that predict 
proteotypic peptides (ptps) unique to the target proteins of interest.18,26,27 
Caution is urged, however, in using these tools trained on dda data, based 
on recent results in developing the Skyline external tool ‘peptide response 
predictor’ named prego, which can also be incorporated directly into Sky-
line.28 prego is a software tool, trained on targeted and data-independent 
acquisition (dia) MS/MS data, that predicts high responding peptides for 
SrM experiments, followed by convenient population of the Skyline target 
tree with the predicted assay target peptides. alternatively, a less frequently 
used approach referred to as empirical transition refinement is based on the-
oretical prediction of peptides and transitions,29 which then can be refined 
by data acquisition from study samples,29 or recombinant expressed proteins 
in water,30 followed by further processing in Skyline.

9.2.2   Spikes of Isotopically Labeled Peptides and Protein 
Standards and Additional Assay Development Steps

When SrM assays are conducted in complex matrix backgrounds,31 
such as plasma or urine, targeted SrM assays often apply stable isotope  
dilution strategies, Sid-SrM-MS, to improve dynamic range and selectivity.32 
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in these settings, it is essential that the SrM data analysis software tool 
supports flexible stable isotope peptide setup, both for assay development 
and data analysis and further processing. an nCi sponsored workshop  
published fit-for-purpose guidelines addressing design of targeted SrM 
studies and proposed a three-tier system for different study types.11 the most 
stringent quantitative SrM assay requirements are given for clinical or diag-
nostic assays, which should be designed with (i) ‘labeled internal standards’ 
(spiked heavy-labeled peptides for each analyte peptide), and (ii) ‘reference 
standards’ (standards very similar to native protein targets, i.e., heavy labeled 
proteins undergoing all processing steps). Skyline software fully supports 
these types of Sid-SrM-MS assays, and was used in a recent nCi-CptaC veri-
fication group study that successfully monitored 27 cancer-relevant proteins 
across 11 laboratories and 14 triple quadrupole instruments from 4 different 
instrument manufacturers.8 as shown in figure 9.2, 27 fully (and uniformly) 
labeled 15n proteins were spiked into the plasma samples at the beginning 
of sample processing, while the 125 heavy labeled synthetic peptides con-
taining 13C–15n labeled amino residues were spiked in pre- or post-desalting 
after sample processing and digestion. Skyline analysis using this multiple 
isotope labeling strategy can be set up in the peptide Settings by defining 
‘isotope label types’ and ‘isotope modifications’ and by choosing ‘internal 
standard types’. after the import of raw data, extracted ion chromatograms 
will show peptide groups of corresponding light and heavy peptide counter-
parts (figure 9.2).

additional assay development steps performed in Skyline include features 
to test for auto-interferences that ensure that y- and b-ions for any given tar-
get peptide do not contain any m/z overlap in their various isotopic forms. 
if necessary, collision energies (Ce) can be optimized using a Skyline algo-
rithm to further increase Q1/Q3 transition responses and assay sensitivity.33 
a key assay development step for high throughput, highly multiplexed SrM 
assays typically consists of generating time-schedule acquisition methods, 
monitoring target peptides only during a time window in which they elute 
from the hplC.10,34 as discussed in the following section, this retention time 
(rt) scheduling method enables increasing the number of SrM transitions 
that can be monitored in a single lC-MS run and is now becoming more rou-
tine3,4,8 (figure 9.2).

9.2.3   Retention Time Regressions and Retention Time 
Scheduling

the faster scan speeds, improved sensitivity and dynamic range and more 
flexible instrument acquisition software of modern triple quadrupole instru-
ments has enabled a dramatic increase in the number of targeted SrM ana-
lytes that can be multiplexed in a single experiment. for example, retention 
time scheduling of SrM transitions with defined acquisition time windows 
around known or predicted analyte retention times has become widely 
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adopted.10,34 Skyline has implemented algorithms that can estimate how 
many concurrent SrM transitions can be grouped into an SrM assay for each 
scheduling time window. the time windows are constructed to maximize MS/
MS accumulation time per scan yet obtain >10 measurement points across 
an eluting targeted peptide for optimal ion statistics.

to set up scheduled SrM analysis, the retention time of each peptide must 
be determined. to do this, the user typically imports several non-scheduled  
SrM acquisitions into the Skyline assay document in which each run  
monitored a fraction of the analytes during the entire lC-MS run. Subse-
quently, Skyline generates a combined, single rt scheduled instrument 
method measuring all transitions in a single acquisition. a well-documented 
example of such an application was recently demonstrated by abbatiello et al. 
where precise details were provided in the supplemental Sops.8 alternatively 

Figure 9.2    Schematic of the experimental design for CptaC Sid-SrM-MS study. 
the CptaC Study phase iii introduced unlabeled (light) and uniformly 
15n-labeled proteins into the workflow, which were spiked into depleted 
plasma to generate a nine-point response curve. Samples were further 
processed at the individual sites to denature, reduce, alkylate, desalt, 
and reconstitute the samples with 13C and 15n peptide standards for 
lC-MrM-MS analysis, resulting in a total of 1095 transitions for each 
method. Skyline was integral from phase i through phase iii for  
transition selection, method building, retention time scheduling, and 
data integration across the different vendor platforms. (this research 
was originally published in Molecular Cellular proteomics. abbatiello, 
S. e.; Schilling, B. et al. large-Scale interlaboratory Study to develop, 
analytically Validate and apply highly Multiplexed, Quantitative pep-
tide assays to Measure Cancer-relevant proteins in plasma. Molecular 
Cellular Proteomics. 2015; 14: 2357–2374. © the american Society for 
Biochemistry and Molecular Biology).
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or in addition, the user can take advantage of Skyline’s indexed retention 
time (irt) features,35 that can use previously generated SrM acquisitions, 
such as those from a different laboratory or when using a different gradient, 
to re-calibrate for the current chromatographic conditions. the irt strategy 
requires a common set of (irt) peptides, e.g., 10–20 standard peptides, that 
are analyzed on both systems in a single acquisition, and that are processed 
using the irt calculator. ideally, the irt peptides elute across the full range 
of the lC gradient. an 11 peptide mix (available from Biognosys, pierce and 
Sigma aldrich) is commonly used to calibrate chromatographic retention 
times for reversed phase, C18 columns (figure 9.3(a)). once the targeted 
peptides are analyzed on a given system or gradient they can be added to the 
irt regression (figure 9.3(B)). a different laboratory (or the same laboratory 
with a changed chromatographic setup) can now use these irt regressions 
by first acquiring data just for the 11 irt standard peptides on their own 
lC-SrM-MS system. these data are then used to predict scheduled retention 
times for all peptide analytes and to export a single rt-scheduled acquisi-
tion method, initially using a wider (∼5 min) scheduled rt window (figure 
9.3(C)). the latter acquisition can be used to refine the irt regression includ-
ing all analyte peptides, and based on the newly measured rts using the new 
gradient–system, acquisition methods can subsequently be designed with 
tighter scheduled rt windows, i.e., ∼1–2 min or less, depending on the chro-
matographic conditions.

in summary, the irt technique allows for previously measured peptide 
retention times to be stored for reuse across multiple runs, laboratories, 
instruments and even gradient changes. only a single calibration run is 
required to estimate analyte retention times that can greatly simplify the 
generation of rt scheduled methods for use in higher multiplexed targeted 
experiments. recent work by parker et al.36 demonstrated the use of peptides 
endogenous to the sample matrix to be used for indexed rt regressions. 
Specifically, peptide sequences were chosen that are conserved across most 
eukaryotic species, termed Common internal Retention Time standards 
(Cirt). in addition, Skyline has incorporated features that allow fast ‘rt 
re-scheduling’ in cases where operators may experience a chromatographic 
shift, such as in assays conducted over several weeks or when introducing a 
new column.

9.2.4   Method Generation for MS Acquisitions
downstream of the assay development and optimization, Skyline pro-
vides options to generate (multiplexed) methods for SrM-MS acquisitions. 
the user can either export an SrM transition list in a format appropriate 
for the selected triple quadrupole instrument platform–vendor, which can 
be imported by the vendor acquisition software. alternatively, Skyline can 
directly generate a native instrument method on the MS instrument com-
puter that can be immediately used. interfacing of the mass spectrometer 
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acquisition software directly with Skyline can be very convenient, particu-
larly for high throughput studies. a related algorithm, Skylinerunner.exe, is 
a command line interface that automates many processes such as import of 
acquired SrM data into Skyline and peak processing steps. assay workflows 
can be highly automated using these Skyline capabilities including the final 
result reports.

Figure 9.3    retention time regressions and time-scheduled acquisitions. (a) reten-
tion time regressions are based on an irt calculator using an eleven 
peptide mixture (Biognosys) eluting across a given lC-SrM-MS gradi-
ent. Measured retention times for peptides are displayed on the y-axis 
while the x-axis shows a calibrated indexed retention time (irt–C18) 
scale. (B) peptides measured during SrM assays can be added to the 
irt regression itself. Using the irt calculator, the 147 human peptide  
analytes have obtained calibrated indexed retention time values (irt–
C18 values, x-axis). the irt regression now contains values from the 
original 11 irt standard peptides and the calibrated 147 SrM peptide 
analytes. (C) irt regressions enable quick adjustment of the SrM assay 
to new gradients or a different chromatographic system, and only a  
simple acquisition of just the 11 irt standard peptides using the new 
gradient or system is necessary. the irt calculator will predict rts for 
all peptide analytes/SrM transitions present in the Skyline document 
that can subsequently employ rt scheduling using an appropriate 
scheduling window according to the estimated concurrent transitions 
as shown in (C). here the 5 min scheduling window is initially chosen. 
(d) example for a light and heavy peptide pair showing the measured 
elution profile and the predicted rt.
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9.3   System Suitability Assessments
one important component of any quantitative SrM study for the instrument 
operator is to ensure system suitability for both the chromatographic and 
mass spectrometric systems. a system suitability study by abbatiello et al. 
has established a set of performance metrics for multi-site studies, including 
the use of Skyline to monitor data quality during an ongoing SrM study.37 
graphical displays in the Skyline environment allow the user to quickly 
assess performance visually and be alerted for any deviation or metrics vari-
ance. Some examples of suboptimal SrM performance are shown in figure 
9.4, in which a system suitability standard sample was acquired before, and 
during the SrM target assays.8,37 Common performance issues include the 
loss of signal intensity for late eluting peptides, typically a problem with 
the lC system, and increased peak area coefficient of variation (CV), which 
indicates decreased repeatability. figure 9.4 demonstrates how system suit-
ability can uncover performance issues, and system suitability metrics plots 
are shown before (top) and after (bottom) troubleshooting and repairing an 
hplC problem.

Bereman et al. have further refined system suitability monitoring through 
process controls with their ‘external tool’ called Statistical process Con-
trol in proteomics, SproCop.38 this program can be downloaded from the  
Skyline tool store for installation directly into Skyline and used to monitor 
system performance. additional system performance monitoring has also 
been developed by the Skyline team in collaboration with labKey Software, 
that automates assessment of data quality and system performance using 
Skyline and the web interface panorama (unpublished results – http://
skyline.gs.washington.edu/labkey/webinar11.url).

9.4   Post-Acquisition Processing and Data Analysis
9.4.1   mProphet False Discovery Analysis, Peak Detection and 

Peak Picking
Subsequent to data acquisition, raw mass spectrometric files can be directly 
imported into the same Skyline document that was used for SrM assay devel-
opment and previous method exports. Skyline has continually improved SrM 
peak detection and peak picking algorithms which are crucial for reliable 
quantification of peptides. algorithms are available that attempt to accurately 
choose peaks for peptide SrM data and that assign statistical metrics for the 
confidence that assigned peaks differ significantly from those produced by 
random chance. one such algorithm that has been recently implemented in 
Skyline, mprophet,39 evaluates peaks based on training a linear combination 
of scores related to co-elution, peak shape, ion intensity, spectral library rel-
ative product ion abundance correlation, predicted retention time, isotopic 
standards, and several other factors. Confident and advanced peak picking is 
especially important when handling very large and highly multiplexed data 
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sets where visual inspection of all target peptides is challenging. figure 9.5(a) 
shows how Skyline uses decoy peptides with reversed peptide sequences to 
assess the false discovery rate. alternatively, training of the model can also be 
performed using ‘second best peaks’. as shown in figure 9.5(B), individual 
feature scores are used with the given weight and contribution assigned for 
the specific model, and subsequently composite scores are calculated similar  
to the mprophet reports as described by reiter et al.39 finally, each target 

Figure 9.4    Before and after plots of System Suitability data from individual Sites 
with System performance problems. (a) Before and after view of the 
peak area view in Skyline for Site 4. the last 5 peptides of the system 
suitability sample showed very low signal as compared with the other 
sites involved in the study. When Site 4 re-calibrated the flow meter on 
their organic solvent pump, the peak areas for the later eluting peptides 
increased and were observed to be more similar to the other sites. (B) 
the same before and after data set from Site 4 but using the peak area 
CV view in Skyline. the later eluting peptides all have elevated CV val-
ues for peak area in the “before” case. When the system was fixed, all 
CVs improved, but the effect was largest on the later eluting peptides. 
(this research was originally published in Molecular Cellular proteom-
ics. abbatiello, S. e.; Mani, d. r.; Schilling, B. et al. design, implemen-
tation and multisite evaluation of a system suitability protocol for the 
quantitative assessment of instrument performance in liquid chroma-
tography–multiple reaction monitoring-MS (lC-MrM-MS). Molecular 
Cellular Proteomics. 2013; 12: 2623–2639. © the american Society for 
Biochemistry and Molecular Biology.)
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peptide is assigned a statistical p value that reflects the confidence in peak 
detection per each replicate acquisition. these p values are then adjusted to 
q values reflecting expected false-discovery rates (figure 9.3(C)). researchers 
can subsequently apply a q value cutoff threshold, to only provide quantita-
tive data for confidently measured target peptides, and thus improve study 
results and conclusions.

the Skyline target tree provides access to several additional parameters 
that are displayed for easy assessment of data processed in Skyline. for each 
peptide target within each replicate acquisition, the dot product (dotp) com-
pares the extracted SrM signal and transition distribution to the original MS/
MS spectral library; transition ranking is displayed, as well as light to heavy 
ratios per transition when stable isotope standards are present. overall, 
data imported into Skyline is automatically processed with statistically solid 
peak detection algorithms, and extracted ion chromatograms are visualized 

Figure 9.5    mprophet feature in Skyline for SrM peak detection and target fdr 
analysis. (a) Skyline target tree showing target and decoy peptides. 
decoy peptides show reversed sequences, however, the K or r residue is 
kept constant at the C-terminus. all precursor m/z values shift by ‘+10 
m/z’, while fragment ions are held constant in position (e.g., y11 remains 
y11) but usually changes in product m/z according to the reversed decoy 
sequence. (B) training the mprophet peak Scoring model for the SrM 
data set using decoy peptides. (C) Skyline mprophet model for correct 
peak detection and peak integration showing statistical q value distri-
bution for target peptides.
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in informative displays. however, Skyline also allows the user to manually 
adjust peak picking if necessary.

9.4.2   Data Viewing and Data Management: Custom 
Annotation, Results and Document Grids, Group 
Comparisons

handling and organizing big data sets can be challenging. this is especially 
true for studies with multiple laboratories from different institutes, or when 
multiple instruments across different platforms and vendors are used. one 
Skyline feature, referred to as ‘Custom annotation’, has facilitated down-
stream statistical analysis of large data sets. Custom annotations allow 
instrument operators to annotate and document observations. Common 
annotations include indicating interferences for transitions, weak signal, 
peptide signal that was cut off or drifted out of time-scheduled acquisition 
windows, etc. the controlled vocabulary that is provided in Skyline can be 
tailored for each study, allowing statisticians to account for irregularities and 
to potentially exclude certain data points from being used. in addition, uni-
form data reports can be exported across all study sites in the same format 
to expedite further post-Skyline statistical data processing.8 Custom annota-
tions are also possible on the transition level, peptide level or data replicate 
level, and can be included into all custom data reports.

during data processing, users can display Skyline results grids that list 
target peptide peak areas and many other measured parameters in real time. 
recently, additional fields have been introduced into the Skyline document 
Settings that allow users to enter detailed sample information, i.e., ‘disease’ 
or ‘control’ type samples, sample annotation for ‘condition a’ or ‘condition 
B’, etc. these annotations can also be displayed, sorted and filtered ‘on the 
fly’ in Skyline’s document grid during Skyline data processing and visualiza-
tions. a new Skyline feature called group Comparisons enables the user to 
define groups of different sample subsets; i.e., a control group and a group 
compared against the control. the Skyline document grid can then display 
calculated fold-change and statistical inference comparing the two sample 
subsets. Sample annotation can be used to link sample origin and biologi-
cal information, a feature that is especially critical to organizing data during 
large-scale studies and in facilitating downstream processing with additional 
statistical tools.

9.4.3   Data Reports, LOD–LOQ Calculations and Statistical 
Processing, Use of Skyline External Tools

as outlined in figure 9.1, Skyline can generate comprehensive custom  
reports of processed data files. relevant data fields, such as sample  
replicate information, transition m/z values, peak areas, annotations and a 
multitude of other parameters can be selected for data export using specific 
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report templates tailored for each dataset. these defined data reports can be 
used for post-Skyline statistical data processing, such as ‘automated detec-
tion of inaccurate and imprecise transitions’ (audit) that identifies poten-
tially inaccurate SrM transition data based on the presence of interfering 
signal or inconsistent recovery among replicate samples.40 QuaSar (http://
genepattern.broadinstitute.org) is another algorithm that can be used to 
plot peptide response–calibration curves and to calculate limits of detection 
(lod) and limits of quantitation (loQ) for Sid-SrM-MS data sets.8,41

to make interfacing with external statistical programs even more con-
venient for users, Skyline provides a uniform interface to format so-called 
external tools for installation directly into Skyline.16 tool developers can 
widely share their tools with proteomics researchers using Skyline and users 
obtain point-and-click access directly from the Skyline tools menu for addi-
tional statistical analysis. the Skyline tool Store (http://skytools.maccosslab.
org) contains several programs applicable for downstream SrM statistical 
data processing, including QuaSar, and MSstats,42 but also other external 
tools helpful during assay development (prego,28 Biodiversityplugin) or for 
quality control (SproCop38).

9.4.4   Group Comparisons and Peptide & Protein 
Quantification

as mentioned, the Skyline environment allows for some initial quantitative 
group comparisons. for example, after annotation and grouping of sample 
types via the document grid, one can obtain (limited) statistical ratios for 
a rapid assessment of changes between conditions. Subsequently, a more 
in-depth statistical analysis of SrM data can be performed using the Skyline 
external tool MSstats 2.0 42 for peptide and protein quantification, and to 
ultimately detect differentially abundant proteins or peptides. MSstats also 
includes user options to automatically filter out interferences or ‘poor qual-
ity features’. details how to use MSstats in conjunction with Skyline docu-
ments are provided in tutorials and webinars on the Skyline website.

new features in Skyline have addressed common requests for protein/pep-
tide quantitation using SrM assays, specifically for Sid-SrM-MS assays. in 
the Skyline peptide Settings under the Quantification tab, certain parameters 
will be defined including regression curve fit and regression weighting that 
will be applied to the new calibration curve calculations. in the document 
grid acquisition, replicate samples can be defined as ‘Standard’ (samples 
that are points of the calibration curve), ‘Blank’, ‘Quality Control’ (typi-
cally some light or heavy peptide mixtures at defined concentrations), and 
‘Unknown’ representing unknown study samples that are investigated, and 
for which concentrations will be calculated as part of this new peptide quan-
titation process. the user can also enter ‘multiplication factors’ that reflect 
dilution steps performed for the unknown samples during processing, so 
that in the end concentrations for the unknown samples can be provided as 
measured ‘on-column’ concentrations, as well as concentrations reflecting 
the original sample. Skyline first calculates, and now can also graphically 
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display, the calibration curves. for example, for the mentioned nCi CptaC 
plasma study (phase ii)8 calibration curves were acquired in 4 replicates for 
125 peptides ranging from 1 amol µl−1 to 100 fmol µl−1, and blinded sam-
ples, or unknown samples, were also acquired. peptide concentrations for 
the different blinded samples were spiked at 72.0, 19.4, 1.75, and 0.105 fmol 
µl−1, respectively; however those levels were unknown to the user. Skyline 
generates calibration curves for each peptide analyte according to the spiked 
calibration curve standards, generates slope, intercepts, and r2-values for the 
weighted linear regression lines for each peptide target; and subsequently 
can determine concentrations of the unknown samples. Unknown samples 
are marked with ‘x’ in the calibration curve graphics indicating concentra-
tion measurements for the blinded samples (http://skyline.gs.washington.
edu/labkey/webinar13.url). Curve graphics displayed in Skyline are interac-
tive and clicking on any concentration point (calibration curve standard sam-
ple or unknown sample) will show the extracted chromatograms or peak area 
views in the typical Skyline visualizations. Skyline quantification features 
and calculations are implemented currently for Sid SrM-MS assays, and will 
still be further refined for more complicated normalization strategies and 
more variable heavy peptide spike level matrices.

9.4.5   Easy Data Sharing and SRM Resources – Panorama
Skyline algorithms are closely interfaced with panorama,17 a freely-available, 
open-source repository server application for targeted proteomics assays 
that integrates into the Skyline proteomics workflow. Security settings are 
implemented that allow for flexibility in data sharing pre- and post-publica-
tion of proteomic and SrM studies. figure 9.6(a) demonstrates the simple 
one-click feature that enables the upload of Skyline documents, i.e., SrM 
studies directly into a user project folder on panorama, which then popu-
lates a web-interface, as shown here for a system suitability example (figure 
9.6(B–d)), with assay peptide and transition information, extracted chro-
matogram displays, peak area views and more. More details of these features 
are described by Sharma et al.,17 as well as in tutorials on the panorama 
website (www.panoramaweb.org).

panorama provides interesting applications, not only as repository and 
resource for other laboratories but it also allows for interactive, large scale 
multi-site data management. Users can view data on panorama through the 
web interface or also download the underlying Skyline files and spectral/
chromatogram libraries.

9.5   Post-Translational Modifications and Protein 
Isoforms or Proteoforms

processing SrM data for peptides containing post-translational modifica-
tions or for peptides derived from protein isoforms or proteoforms pose their 
own challenges for a bioinformatics algorithm. While challenging, ptM-re-
lated signaling pathways and ptM crosstalk, are often particularly interesting 
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and relevant in diseases. Several studies have reported targeted SrM work 
for a variety of post-translational modifications (ptMs), for example, the use 
of SrM for phosphorylation,43–47 for monitoring glycosylation sites34 or even 
providing an N-glycoprotein SrM atlas which can serve as a resource of mass 
spectrometric assays for N-glycosites and multiplexed protein quantification 
for clinical applications.48 in addition, SrM has also been used for acylation 
analysis,49 or for ptMs on histone, which can become particularly compli-
cated due to the many different modifications and sites possible.50

as mentioned, challenges for ptM SrM work for a software algorithm are 
different than for general protein quantification where one can choose from 
many proteolytic peptides and find the best proteotypic and quantotypic 
peptides. for ptM analysis one is typically limited to a specific peptide that 
contains the ptM site. the scenario becomes even more complicated when 
a monitored proteolytic peptide contains more than one ptM site, which 
often occurs for phosphorylation but also for acylation and other modifi-
cations. the flexibility of Skyline, however, allows one to overcome most of 
the bioinformatics difficulties that some other software packages encounter 
when designing ptM SrM assays and processing acquired ptM data files. 
for example, Skyline enables simulation of neutral loss for phosphopep-
tides, loss of h3po4, that often occurs when fragmenting a phosphopep-
tide.51 another challenge is just to simulate different variations of ptM 

Figure 9.6    panorama – repository software for targeted proteomics assays from 
Skyline. (a) targeted SrM data processed in Skyline was uploaded to 
panorama using a ‘one-click’ feature in the Skyline menu bar. (B) the 
web-based panorama interface allows for easy navigation of SrM data 
results within a given project, here from a system suitability study.37 
(C) Chromatogram views of all uploaded replicate acquisitions are  
available, as well as (d) peak area replicate views (ten QC replicate 
acquisitions r1–r10 and three blank acquisitions B1-–B3). the dotted 
line indicates the average of the peak area across the 10 QC replicates. 
Views in panorama are very similar to those in Skyline.
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containing peptides, particularly when they contain more than one ptM 
site. however, Skyline can import any peptide sequence with any modifi-
cation at one of multiple sites either from a peptide list or directly from 
the dda search engine results and generated spectral libraries. ptM’s can 
be predefined in Skyline under peptide settings, modifications, structural 
modifications, and Skyline either offers UniMod naming nomenclature or 
also accepts custom naming from the user. as part of the peptide target tree 
in Skyline the ‘edit Modification table’ allows for very easy adjustments to 
the modifications in Skyline. once set up in Skyline, SrM assays for ptM 
peptides are handled the same as for any other peptides. it is interesting 
to mention that particularly for ptM analysis some recent reports have 
emerged by Jaffe et al.52,53 that take advantage of a targeted assay, referred 
to as parallel reaction monitoring (prM) and subsequent processing in Sky-
line. prM is similar to SrM, however prM acquires full scan MS/MS data for 
the targeted precursor ions and it is typically acquired on high resolution 
mass spectrometers, allowing for higher multiplexing and monitoring of all 
fragment ions per peptide.

one additional challenge in quantitative targeted mass spectrometry is to 
assess different proteoforms or protein isoforms. a large variety of proteo-
forms can be generated resulting in post-translationally modified proteins as 
discussed, but also protein isoforms with highly similar protein sequences, 
proteins from alternatively spliced rna transcripts (splice variants) or pro-
teins from dna that featured single nucleotide polymorphisms (Snps). the 
application of SrM assays regarding some of these aspects were recently 
reviewed.54 for example Costenoble et al. developed SrM assays to moni-
tor abundance differences of more than 200 proteins, including a family of 
isoenzymes with highly similar amino acid sequences as part of a study in 
S. cerevisiae investigating central carbon metabolism.55 peptides had to be 
selected for the SrM assays that are unique to the specific protein isoform. 
While challenging, SrM assays can begin to assess and quantify proteoforms 
as shown in a recent study that used SrM to quantify multiple proteoforms 
of a single protein allowing the quantification of allelic expression of a par-
ticular sequence polymorphism.56 in addition, a study by Vegvari et al. iden-
tified a novel proteoform of prostate specific antigen (Snp-l132i) in clinical 
samples by multiple reaction monitoring.57 in any proteoform SrM project 
Skyline can assist the operator particularly when generating the SrM assay. 
Skyline features such as ‘remove duplicate peptides’ will ensure that only 
peptides are used that are specific for a particular protein isoform to be used 
for final quantification.

9.6   Conclusion and Future Outlook
for targeted SrM assays, Skyline provides a complete software solution or 
toolbox that enables a complete workflow to be set up, acquired and pro-
cessed. Skyline allows relatively easy interfacing with other resources, such 
as spectral or chromatogram libraries as well as a full suite of additional 
statistical external tools. SrM assays using Skyline can connect to other 
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workflows, such as dia/SWath that can also be processed in Skyline. Sky-
line’s vendor neutral algorithm allows for easy study logistics and for uni-
form data formats, thus providing a major advantage for Skyline users 
when performing multi-laboratory studies. Skyline software fully complies 
with journal requirements for SrM targeted MS assay workflows and quan-
tification, allowing for rapid deposition of properly formatted data sets for 
publications.
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10.1   Analytical Methods
10.1.1   Motivation
as is apparent from the other chapters in this book, the most popular work-
flow in proteomics is the so-called shotgun proteomics approach where pro-
teins are enzymatically cleaved to produce a mixture of peptides that are then 
separated by online liquid chromatography (LC) coupled to tandem mass 
spectrometry (Ms/Ms). Within this workflow, data independent acquisition 
(dia) and its counterpart data dependent acquisition (dda) are included.

† these authors contributed equally.
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201Data Analysis for Data Independent Acquisition

since the development of mass spectrometry-based proteomics, a great 
research effort was made to improve spectrometers and technology towards 
better and faster ways to identify the proteins present in a sample. Between 
2000 and 2010 the main techniques were focused on taking advantage of the 
available data. this led to the development of high throughput proteomics 
and different flavours of dda. during the same decade dia arose,1 but the 
germinal dia workflows were not competitive with dda at that moment. 
the introduction of better instruments, as well as the development of bio-
informatics, gave way to an explosion in the amount of data produced, 
which allowed dia to come into the proteomics arena with competitive 
approaches.

these new methods arose as an innovative way to address the main draw-
backs of dda or selected reaction monitoring (srM, see previous chapter), 
for both targeted and shotgun proteomics, allowing the characterisation of 
practically all proteins in complex samples without discrimination.

10.1.2   Background: Other MS Methods
in dda, in an effort to subject as many peptide precursors as possible to 
sequencing, the mass spectrometer first performs an Ms1 survey scan, 
which is used to select the most abundant precursor ions for fragmenta-
tion. the selected precursor ion then undergoes fragmentation and the 
resulting fragments are recorded in an Ms2 fragment ion scan which pro-
vides extensive amino acid composition information for the selected pre-
cursor at a specific time point. this is repeated for other precursor ions 
for a determined number of candidates, then a new Ms1 survey scan is 
performed and the process is repeated.2 the number of candidates isolated 
on each duty cycle depends on the acquisition frequency at which the mass 
spectrometer can acquire a fragment spectrum with sufficient quality to 
characterise the peptide sequence.

this strategy, known as data dependent acquisition (dda), is a highly effi-
cient method to obtain fragment ion information since it samples precursor 
ions at positions with high Ms1 intensity and thus increased likelihood of 
obtaining a high-quality fragment ion spectrum. When applied to whole cell 
lysates, shotgun proteomics provides fast enumeration of the most abundant 
peptide species present in the sample which allows for exploratory data anal-
ysis and achieves identification of previously unknown proteins. however, 
while dda allows discovery-driven research and offers high throughput, its 
sensitivity may be limited by undersampling issues in complex samples and 
it suffers from ambiguity in spectra assignments to peptides and inconsis-
tent identification reproducibility across samples due to the on-the-fly pre-
cursor selection by the data dependent algorithm.

in order to address these issues, alternative data acquisition strategies were 
developed, aiming for higher reproducibility. Most prominent among these 
methods is srM (see Chapter 9), a targeted method that uses sensitive mass 
spectrometric assays to selectively monitor a set of pre-selected peptides.3–6

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
02

00
View Online

http://dx.doi.org/10.1039/9781782626732-00200


Chapter 10202

in srM, data is recorded repeatedly across the LC-time dimension at 
predefined precursor and fragment ion mass-over-charge (m/z) pair values 
(so-called transitions) and identification specificity is usually achieved by 
assessing the co-elution of the time-resolved traces of multiple transitions of 
the same peptide.7,8 this strategy exploits the capacity of triple quadrupole 
mass spectrometers to selectively isolate specific precursor ions, fragment 
them and monitor their fragment's intensities across chromatographic time. 
While srM offers high reproducibility, dynamic range, sensitivity and good 
signal-to-noise ratio, it comes at the cost of significantly lower throughput 
and requires time-consuming assay development which pre-determines and 
limits the number of hypotheses that can be tested in an experiment.6,9,10 
Compared to shotgun proteomics, the sampling procedure employed in 
srM is significantly less efficient. in order to ensure that a signal is recorded 
reproducibly, the mass analyser has to monitor a set of transitions repeat-
edly for several minutes, only to finally record a signal of an LC-elution span 
of several seconds in length. therefore, most of the measurement time is 
lost recording data at positions in the Ms1–Ms2 space where no signal is 
present.

With the choice between shotgun and targeted proteomics methods, the 
proteomics researcher is thus faced with a decision between obtaining snap-
shots of extensive fragment ion data of a population of peptides sampled 
from the pool of available peptides (shotgun) or obtaining time-resolved 
fragment ion intensities for a lower number of predetermined peptides (tar-
geted).4 in terms of scanning efficiency, it may be argued that shotgun is “too 
efficient” to the point of irreproducibility whereas srM is “too conservative” 
to the point where most of the measurement time is spent recording noise in 
order not to miss any signal.

10.1.3   DIA Concept
as an alternative to data dependent shotgun proteomics and targeted 
srM, researchers have been studying data independent acquisition (dia) 
as a method for high throughput proteomic analysis.11–23 in dia mode, the 
instrument fragments all precursors generated from a sample that are within 
a predetermined m/z and retention time range, regardless of the presence of 
precursors in that region (hence the terminology “data independent”). Usu-
ally, the instrument cycles through the precursor ion m/z range in segments 
of specified width.

thus, dia does not explicitly target single precursors but rather fragments 
whole bands of the precursor ion range simultaneously. Generally, a set of 
n mass isolation ranges are chosen to cover most doubly and triply charged 
peptide precursors (for example, mass isolation ranges of 25 m/z width cov-
ering the mass range of 400–1200 m/z in 32 steps) which gives the researcher 
large flexibility in data analysis. in practice, the instrument will usually gen-
erate an Ms1 scan at the beginning of each cycle. Next, however, instead of 
isolating specific precursors from the survey scan as in shotgun, it will isolate 
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all precursors in a specific precursor isolation window, subject them to frag-
mentation and acquire a complete (high resolution) fragment ion spectrum. 
the instrument then proceeds to the next precursor mass range (also called 
swath) and repeats the process, thus stepping through a set of isolation win-
dows. in the example mentioned, the instrument would initially co-fragment 
all precursors between 400 and 425 m/z and perform a high resolution frag-
ment ion scan in the first cycle, then proceed to the 425 to 450 m/z window 
etc., until the end of the cycle is reached. after reaching the last window, a 
new cycle is started with another Ms1 and a set of fragment ion scans, gener-
ated in the same order as the previous cycle. Note that if the number of win-
dows and time per scan is constant (as it usually is), the scheme will produce 
a set of n fragment ion scans of exactly the same precursor isolation window 
every few seconds (for example, every 3.3 seconds for 32 windows with 100 
ms acquisition time per scan).

Multiple variations of the dia theme have been described with different 
instrument types and setups, duty cycles and window widths. Methods like 
Mse fragment all precursors (basically implementing a single, very large 
isolation window and the duty cycle consists of alternating Ms1 and Ms2 
scans)13 while others such as paciFiC use precursor selection windows as 
small as 2.5 m/z. (see Law et al.24 and Chapman et al.25 for recent reviews of 
different dia approaches.)

however, common to all dia approaches is that they use a fixed, determin-
istic acquisition scheme and that they acquire full (usually high resolution) 
fragment ion spectra. as in the case of srM, the deterministic acquisition 
strategy makes dia highly reproducible and therefore repeat injections of 
the same sample will produce highly similar data. the acquisition of full 
fragment ion data provides additional information compared to srM, espe-
cially if high resolution scans are acquired. Compared to shotgun approaches 
which only provide single snapshot fragment ion spectra, dia additionally 
provides information about the elution profile of each fragment ion. When 
all scans from the same isolation window are aggregated, a dia-map (signal 
intensities coming from one isolation window, represented along m/z and 
retention time axes) is generated that is continuous in time and fragment 
ion intensity, and can be analysed in both dimensions. these maps contain 
the full fragment ion signal for a specific isolation window sampled at reg-
ular intervals and can thus be considered a complete digital representation 
of a proteomic sample. every fragment ion signal above the limit of detec-
tion will be recorded in the corresponding map, given that the sampling 
frequency is dense enough and that the precursor falls into one of the prede-
termined isolation windows. it is thus always possible to re-examine any dia 
measurement for evidence of a specific peptide precursor and its fragment 
ions as new hypotheses are generated. it can thus be argued that dia meth-
ods attempt to find a compromise in scanning efficiency between shotgun 
and targeted proteomics. the highly efficient shotgun scheme of producing 
fragment ion data only when a promising precursor is detected is replaced 
with a strategy of frequent fragment ion acquisition but with a large enough 
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precursor isolation window to ensure capture of one or more precursor ions. 
at the same time, the precursor isolation window is not as small as in srM 
where many Ms cycles are spent isolating and fragmenting an area of the 
precursor space where no precursor is eluting and only a small portion of all 
precursors can be covered, limiting throughput.

10.1.4   Theoretical Considerations
one way to understand the strength and challenges of the different methods 
discussed is with regard to the structure of the output data. in most quan-
titative proteomic studies, the goal is to measure protein concentrations 
across multiple samples (experimental conditions, time series, patient sam-
ples etc.). especially for systems biology studies, obtaining quantitative mea-
surements of the analyte concentrations is crucial as it allows researchers to 
understand the systems' behaviour on a molecular level. in these studies, the 
measurement output is generally a two-dimensional data matrix containing 
quantitative measurement values of specific analytes (first dimension) across 
multiple samples (second dimension). For successful downstream data anal-
ysis, the comprehensiveness and accuracy of the data matrix in both dimen-
sions is equally important.

the data produced by shotgun proteomics poses significant challenges 
with regard to the proteomic data matrix. While shotgun allows measure-
ments to be performed with high throughput and coverage, the data gen-
erally has low comprehensiveness. in the resulting data matrices, the data 
is often only complete for the most intense peptides of high abundance 
proteins but contains missing values for proteins of lower abundance.26 in 
addition, the more samples are analysed and the more biologically diverse 
the samples are, the lower the number of complete rows; due to the inten-
sity-dependence of the sampling and undersampling issues for complex 
samples, the missing values will generally not be missing completely at 
random.27

on the other hand, data matrices generated by srM are much more com-
plete than those produced by shotgun proteomics, but generally contain 
one to two orders of magnitude fewer proteins.28 since the proteins to be 
measured have to be pre-selected, the measurements tend to be biased by 
prior hypotheses and may not cover all biologically relevant cellular pro-
cesses and pathways.29 therefore, srM has been mostly used in studies 
where large sample numbers are required and only few proteins were under 
investigation.

however, dia has the potential to address both dimensions of the data 
matrix at the same time and thus allows true systems analysis on protein 
measurements. When analysed using a targeted extraction strategy, as in 
sWath-Ms (a dia method based on sequential windowed acquisition of all 
theoretical fragments), the approach combines the strength of srM (high 
reproducibility and quantitative accuracy) with the high throughput of shot-
gun proteomics, thus focusing on both analyte and sample dimension of the 
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data matrix at the same time. the targeted analysis approach to dia data pro-
duces multiple highly reproducible fragment ion chromatograms for each 
peptide in each measured sample, which are conceptually similar to srM 
traces. however, unlike srM, the number of extractable analytes in dia is not 
constrained by instrument speed and thus substantially higher throughput 
can be achieved. it is not uncommon to extract several tens of thousands of 
peptide chromatograms from a single injection, and the technique is able 
to achieve comparable proteome coverage as shotgun. thus, dia is able to 
produce data matrices that are quantitatively accurate and qualitatively com-
plete, allowing researchers to track protein quantities across many samples 
in high throughput.

another way to conceptualise the differences between the three acquisi-
tion methods in LC-Ms/Ms-based proteomics can be understood in terms of 
sampling efficiency. the problem to be solved can be posed as how to sample 
best from a two-dimensional Ms1-rt space if only a limited amount of sam-
ples can be taken due to instrument speed.

in shotgun proteomics, small sampling windows are used (small arrows of 
width 1-2 m/z displayed in top and middle panels of Figure 10.1) but sampled 
at positions of highest signal density with the hope of capturing signal with 
high information content – using small sampling windows facilitates sub-
sequent data analysis and establishes a clear relationship between precur-
sor ion and fragment ions. targeted proteomics methods such as srM opt 
to sample only a very limited part of the Ms1-rt space (and even do not 
acquire full fragment ion spectra; not shown in the figure). the determinis-
tic sampling scheme of srM makes the method highly reproducible across 
repeated measurements (Figure 10.2). if a peptide precursor with a given 
mass elutes during the experiment, it will be fragmented and measured in 
every measurement even if its intensity is low compared to other analytes 
in the sample (whereas in shotgun proteomics, depending on the number 
of co-eluting species, it might get selected for fragmentation in some mea-
surement runs but not in others). this “guarantee” of detection and quan-
tification in srM (given the analyte is present in sufficient amount) makes 
the method very attractive to replace antibody-based methods for protein 
quantification, such as western blotting, in the laboratory and in the clinics. 
Unfortunately, srM does not easily lend itself for systems biology analysis 
since only a small portion of the system can be observed in a single measure-
ment run. sWath-Ms now extends targeted proteomics methods by imple-
menting a deterministic acquisition scheme but covering the whole Ms1-rt 
space, thus implementing a high throughput targeted proteomics method. 
the method allows the extension of the targeted proteomics approach and 
generation of chromatographic signals for peptide analytes in silico; in the-
ory it is thus able to investigate the presence of fragment ion signals for any 
analyte even after acquisition of the data. sWath-Ms data therefore con-
stitute a complete digital record of all fragment ions produced from a bio-
logical sample capturing the complete analyte fragmentation information 
obtainable from such a sample in one single experiment.
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Figure 10.1    schematic representation of the main acquisition modes in a mass 
spectrometer. displayed are (i) shotgun acquisition or dda (data 
dependent acquisition), (ii) targeted proteomics or srM acquisition 
and (iii) sWath-Ms or dia (data independent acquisition). the two 
axes represent precursor ion m/z space and chromatography retention 
time in an LC-Ms/Ms experiment. arrows depict precursor isolation 
windows selected for fragmentation. Note how (i) and (ii) cannot cover 
the whole space while sWath-Ms fragments every single possible 
precursor at the expense of larger isolation windows. only srM and 
sWath-Ms are deterministic methods while shotgun is data depen-
dent, fragmenting preferably at positions of high ion density.
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10.1.5   Main DIA Methods

10.1.5.1  PRM
see a summary of dia methods in table 10.1. parallel reaction monitoring30 
(prM) is a targeted proteomics method which substitutes the third quadru-
pole in a typical QQQ setup with a high resolution mass analyser (for exam-
ple an orbitrap™). this allows prM to obtain a complete recording of all 
fragment ions produced by a specific precursor (instead of a pre-selected 
number as in srM). in addition, the high mass resolution (parts per million 
compared to 0.2–1 m/z) in conjunction with the ability to monitor a virtu-
ally unlimited number of fragment ions allows for higher specificity in prM 
compared to traditional srM. specialised software is then used to extract 
individual fragment ions from all high resolution Ms2 spectra associated 
with a given precursor in order to reconstruct fragment ion traces. Note that 
while the fragment ion traces produced by prM look similar to srM traces, 
prM records substantially more data and allows computational re-analysis, 
for example using a different set of transitions if an interference is detected 
in the initial set of transitions. Compared to srM, prM allows for reduced 
assay development time and may produce accurate quantification over a 
larger dynamic range than srM.30 however, the limits in throughput (num-
ber of peptides that can be measured per run) are not substantially different 
than in srM, making prM a low-throughput dia method.

Figure 10.2    representation of a theoretical data matrix in a proteomics experi-
ment, and how dda and srM record this matrix using circles to indi-
cate protein quantity. (i) the ideal data matrix contains quantitative 
values for analytes measured across multiple samples, achieving high 
throughput (large number of quantified analytes) consistently across 
many samples (experimental conditions, perturbations, or patient 
samples). (ii) sample-centric workflows (such as discovery proteom-
ics or shotgun proteomics) use data dependent acquisition to achieve 
high number of identifications per sample. however, they sacrifice 
sampling consistency and usually not all analytes can be quantified in 
every single sample. (iii) analyte-centric workflows (such as srM and 
other low-throughput targeted proteomics techniques), on the other 
hand, achieve highly consistent quantification across many samples. 
however, these techniques only cover a few, carefully selected analytes.
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Table 10.1    Comparison of several commonly used dia methods. the table compares six current dia methods based on duty cycle, ana-
lytical separation as well as data analysis strategy. the table illustrates the tradeoffs available when running dia in terms of 
duty cycle, acquisition time and isolation window.

prM Mse/aiF hdMse paciFiC sWath-Ms MsX

analyte separation 
methods

hpLC +, mass 
isolation 
+++

UhpLC ++ UhpLC ++, 
ion  
mobility +

hpLC +, mass isolation 
+++

hpLC +, mass isolation 
++

hpLC +, mass isolation 
++

duty cycle ∼3 s ∼1 s ∼1 s ∼2.5–3.5 s ∼3 s ∼2 s
isolation window 

size
1.0–2.0 m/z No isolation No isolation 2.5 m/z, with 1.0 m/z 

overlap
Medium–big (8 m/z–30 

m/z)
20 m/z, computationally 

reduced to 4 m/z
acquisition time – 

number of  
samples needed

>1 day (>10 
injections)

2–3 hours (1 
injection)

2–3 hours (1 
injection)

>1 day (>10 injections) 2–3 hours (1 injection) 2–3 hours (1 injection)

identification 
strategy

targeted Untargeted Untargeted Untargeted Both targeted

Quantification Both Ms1 Ms1 Ms1 Ms2 Ms2
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10.1.5.2  MSE/HDMSE/AIF
Mse is a data acquisition method performed in a quadrupole–toF mass spec-
trometer that alternates two different collision energy modes (low-energy 
and elevated-energy) in order to acquire — practically — continuous data of 
precursor ions entering the mass spectrometer and the fragment ions pro-
duced by those precursors. the absence of any isolation process (except for a 
low mass filter, typically of about 350 m/z) yields a fast analytical process with 
little sample loss.31 peptide characterisation performance relies on a great 
chromatography separation (typically based on columns filled with sub 2 µm 
particles, and that therefore needs ultra high performance liquid chroma-
tography, UhpLC). When an ion mobility separation is used in combination 
with Mse, the method is called high definition Mse (hdMse).19 the separa-
tion provided by ion mobility allows the number of characterised peptides 
to rise from the order of hundreds (Mse) to several thousands (hdMse).32 
ion mobility can be also coordinated with the collision energy utilised at the 
elevated-energy spectra to improve the fragmentation efficiency.32

a very similar acquisition scheme can also be applied to high resolution 
trap-based systems like orbitrap™,23 where the acquisition of fragments with 
no fragment ion isolation is called all-ion Fragmentation (aiF). orbitrap™ 
can offer a better mass resolution than time-of-flight instruments (100 000 
compared with 10 000 resolving power),23 and though the analyser is slower 
than time-of-flight, the simultaneous use of several traps (like the C-trap and 
the analyser orbitrap™) and cells (like the collision cell) ensures a good sam-
ple preservation.

in practice, these methods provide two retention time–mass maps (or 2d 
data arrays), that correspond to the locations of the precursors and frag-
ments. Features found in these two maps can be related by their similarity in 
retention time and eventually in ion mobility.

10.1.5.3  PAcIFIC
precursor acquisition independent from ion Count (paciFiC) is an acquisi-
tion method based on isolation and fragmentation of contiguous narrow m/z 
intervals (as in panchaud et al.,14 2.5 m/z isolation widths with 1.0 m/z over-
laps). the narrow isolation windows used in paciFiC determine the peptide 
precursor mass without further signal alignment with precursor spectra, and 
therefore generated spectra can be matched to peptide sequences by using 
conventional (from data dependent acquisition) database search engines. 
acquisition of this practically monoplexed fragment spectra is time consum-
ing, and thus the different isolation windows that should be acquired are 
usually distributed in several injections of the same sample. the number of 
injections needed per sample depends on the total m/z range the researcher 
desires to cover (this range varies typically from 400 m/z to 1200–1400 m/z 
in a proteomics experiment), and the sampling frequency of the mass spec-
trometer. panchaud et al. reported results by using cycles of 10 consecutive 
isolation windows of 1.5 m/z effective coverage each, requiring 167 injections 
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to aim for a total acquisition range of 400–1400 m/z.14 the larger number of 
samples required is the biggest limitation of the method. one interesting 
computational challenge of this approach is the optimisation of the different 
m/z range widths and spectra acquisition cycles (i.e. the number of isolations 
per cycle) in order to reduce the acquisition time and the number of samples 
required, as the paciFiC authors successfully showed in a subsequent publi-
cation.15 in this regard, the continuous development of mass spectrometers 
in terms of sampling rate will further facilitate in the future the reduction of 
the number of injections needed to cover a full m/z range.

10.1.5.4  SWATH-MS
sWath-Ms uses the high mass resolution of recent instruments in a simi-
lar fashion as prM but additionally employs multiplexing to achieve higher 
throughput.33 in prM, a single targeted peptide precursor ion is selected, 
fragmented and its fragment ions recorded in a high resolution Ms2 scan. 
sWath-Ms does not explicitly target single precursors but rather fragments 
whole bands (swathes) of the precursor ion range simultaneously and then 
uses downstream software to computationally create ion traces, in a simi-
lar fashion to prM. after acquisition, researchers can decide which peptides 
and which transitions to extract from the dataset and are not limited to the 
set of recorded precursor–fragment ion pairs (as in srM) or to a restricted set 
of recorded precursors (as in prM). For example, if a researcher would like 
to analyse a peptide with a precursor mass of 410 m/z and two fragment ions 
at 500 and 600 m/z, the analysis software would collect all high-resolution 
fragment ion spectra from the swath 400–425 m/z. in those spectra, the anal-
ysis software would then extract the signal at the m/z of the two requested 
fragment ions at 500 and 600 m/z.

10.1.5.5  MSX
MsX is a targeted proteomics strategy that works similarly to sWath-Ms but 
includes a de-multiplexing strategy for the highly multiplexed fragment ion 
spectra produced in dia. in MsX, multiple precursors from non-consecutive 
isolation windows (five, for example) are co-fragmented in each cycle and 
co-fragmenting different precursors in each cycle together allows for decon-
volution of the different isolation window during post-processing. in this 
manner a 20 m/z isolation window can be deconvoluted into five “virtual” 
isolation windows that have an effective width of only 4 m/z, allowing for 
much higher specificity. in this manner, the MsX approach has the potential 
to combine the throughput of sWath-Ms with the specificity of prM.34

10.1.6   Analyte Separation Methods
proteomics and mass spectrometry fall into the field of analytical chemis-
try, the art of classifying analytes by separating them. in mass spectrometry, 
several separation methods are simultaneously applied to each regular Ms 
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acquisition: mass to charge separation (in two variants: through precursor 
ion isolation, and through ion detection), elution in liquid chromatography 
separation, and ion mobility separation are the most used. We will discuss 
now their ability to separate the analytes and their independency (or orthog-
onality) among them.

the most obvious analyte separation in mass spectrometry happens in the 
mass (to charge) dimension. Mass spectrometers classify the ions according 
to their mass to charge ratio. this separation occurs in two stages: a first, 
optional stage of ion isolation (and subsequent fragmentation of these pre-
cursor ions), and secondly at the ion detector. the precision in the mass 
to charge dimension in these two stages is uneven: isolation is generally 
resolved by quadrupole mass filter that are very fast in selection, but less 
precise than mass to charge detectors. at the time of writing, high precision 
detectors are prevalently used in dia, allowing a precision of less than 10–15 
parts per million. in peptide characterization, a higher precision does not 
typically separate analytes better due to the reduced number of elements (20 
amino acids) that contribute to the building block structure of peptides.

the separation in elution time (chromatography) depends on several phys-
ical parameters. the most important are: analysis column length, column 
material (especially the particle size), solvents composition, and gradient 
applied to the solvent mixing. all of them affect the precision and sensitivity 
of the chromatography, and should be taken into account for quality bench-
marking. it is of special interest as a computational challenge the fact that 
peptide elution order depends on the column material, making harder to col-
lect libraries of peptide elution times that can be used to limit the retention 
time range in which a peptide should be found. there exist predictive models 
of peptide elution for several column materials,35 but mass spectrometrists 
tend towards the use of libraries of measured elution times. a typical preci-
sion obtained by high performance Liquid Chromatography (hpLC) and its 
improved Ultra-performance Liquid Chromatography (UpLC) is about 30 s 
and 5–10 s respectively in gradients of 2 hours. Chromatographic separation 
has some correlation with peptide mass, and thus is not absolutely orthogo-
nal to precursor isolation separation.

the last separation method we discuss, ion mobility (iM), consists of a 
gas-phase separation based on the collision cross-section of the analytes.34,36 
ion mobility can be coupled to a time of flight analyser, making it compat-
ible with mass spectrometry. ions are separated by their interaction with a 
buffer gas through a collision cell (also called mobility cell), and can then be 
examined in the mass analyser. this essentially adds one more dimension 
to the analysis which can be used to deconvolute the resulting multiplexed 
fragment ion spectra. similarly to peptide liquid chromatography, ion mobil-
ity shares a strong correlation with mass, but it has an interesting advantage 
compared to liquid chromatography: since spectra can be deconvoluted by 
collision cross-sections, it allows the separation of ions by charge state, since 
ions with similar m/z value but different mass (and thus also different charge 
state) will show very different collision cross-section values. Classification 
of ions by charge state can help to peptide characterization in two ways: it 
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reduces the search space among the different peptide candidates, and it also 
diminishes spectral noise by removing singly charged ions, since most of 
peptides generated in regular shotgun experiments (using trypsin as diges-
tion enzyme) are doubly or triply charged.

identification in dda analyses relies on parent ion isolation of the pep-
tides subjected to be identified. this isolation is performed in a narrow m/z 
range that grants the central assumption of most dda analysis pipelines: the 
subsequent fragment ions spectrum is a consequence of an individual com-
pound, and therefore ions above the noise level can be assigned to a single 
peptide. although some fractions of dda Ms fragment spectra are chimeric 
(i.e. contain fragment ions from multiple peptide analytes), parent ion iso-
lation remains a powerful source of analyte separation. dia methodologies, 
on the other hand, cover wide m/z ranges in the aim of collecting data from 
all precursors in a sample, and most of these methods (with the omission of 
paciFiC) do not rely on individual isolation of precursor ions. instead, in dia 
the other analyte separation methods assume a more decisive role, and mass 
spectrometrists generally agree that dia requires a higher effort in achieving 
good chromatography than dda.

10.2   Data Analysis Methods
10.2.1   DIA Data Analysis
the obvious advantage of dia methods is that they create a highly reproduc-
ible record of the fragment ion signal of all precursors in a sample, therefore 
combining the high throughput of shotgun proteomics with the high repro-
ducibility of srM. the resulting data are continuous in time and fragment 
ion intensity, thus increasing the dimensionality of shotgun proteomics data 
where fragment ion intensities are recorded only at selected time points or 
srM data where continuous time profiles are acquired but only for a few 
selected fragment ions. however, to limit analysis time (i.e. number of LC 
injections) and sample amount, larger precursor isolation windows than in 
shotgun proteomics or srM are typically used. this leads to highly complex, 
composite fragment ion spectra from multiple precursors and thus to a loss 
of the direct relationship between a precursor and its fragment ions, making 
subsequent data analysis non-trivial.

to analyse these highly complex data, two main strategies have emerged. 
in the first approach, the spectrum-centric approach, the multiplexed spec-
tra from dia data are searched using traditional shotgun Ms search engines 
either directly12 or after computation of pseudo-spectra containing fragments 
assigned to a precursor based on their co-elution profiles.16,17,19–21 however, 
the spectrum-centric approach suffers from the high complexity of the data 
and the fact that errors in the generation of pseudo-spectra will propagate 
through the analysis workflow. in the second approach, the chromato-
gram-centric approach, the data are first reduced in complexity by extracting 
fragment ion chromatograms (XiCs) of the most abundant fragment ions for 
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each peptide of interest. these XiCs are then scored and analysed similar 
to srM data using multiple fragment ion traces (“transitions”) per peptide. 
this approach has proved to be very successful in high throughput settings, 
however it relies heavily on a priori knowledge in the form of spectral librar-
ies which contain the fragment ion coordinates for each peptide and require 
considerable effort to generate.

10.2.2   Untargeted Analysis, Spectrum-Centric
Untargeted analysis in dia is referred to approaches that do not initially filter 
Ms acquired data by using a prior knowledge derived from a set of peptides 
that we try to identify in the sample. in other words, the paradigm of dia 
untargeted analysis is to process, organise, and clean dia data with no exter-
nal information influence, and to use this processed data to compare to a 
knowledge previously acquired. this knowledge in the case of proteomics is 
a set of proteins, and from these proteins we might know only their amino 
acid sequences, or we might also have prior spectral information. the funda-
mental difference among dia targeted and untargeted analyses is the order 
in which we try to relate acquired data from a sample (ion signals) to infor-
mation about its content (proteins or peptides) (Figure 10.3).

10.2.2.1  Signal Clustering
in dia untargeted analyses it is common to use a “pseudo-spectrum” 
approach. the main task of this procedure consists of resolving the chime-
ricity of the sample, deconvoluting it by separating the signals according to 
their peptide precedence. this signal deconvolution yields a set of Ms ion 
fragment “pseudo” or “in silico” spectra (where a Ms spectrum is a set of 
paired m/z and intensity values), which are also related to a parent ion if Ms1 

Figure 10.3    data analysis logics of targeted and untargeted approaches. the fun-
damental difference between targeted and untargeted approaches is 
highlighted by the fact that a targeted approach generally needs highly 
specific prior knowledge about the samples to be analysed whereas 
untargeted approaches use the raw data directly to identify signal pat-
terns likely corresponding to peptide analytes.
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spectra have been acquired. signal deconvolution is achieved through signal 
clustering. Fragment ion m/z–intensity pairs are grouped by using correla-
tion in values of any analyte separation method used (with the obvious excep-
tion of the detected mass, which is a nominal part of the m/z–intensity pairs 
we want to group).

precursor ion isolation (like in paciFiC or sWath-Ms) can be used as a 
simple data classification into n different datasets for n given different pre-
cursor ion isolation ranges. this also facilitates the parallelization of the 
entire analysis process. since precision of precursor ion isolation is lower 
than ion m/z detection, it is common to program the isolations with some 
overlap between isolation ranges. in the case of untargeted analysis, we 
should take this into account when relating a set of fragment ion m/z–inten-
sity pairs to isolation ranges.

peptide elution time and ion mobility (both together, or just one of them) 
are used for the final ion grouping. since fragmentation occurs after peptide 
elution and ion mobility separations, all ions product of the same precursor 
should have the same elution time and ion mobility profiles, and they can be 
clustered by profile correlation, after an intensity normalisation. the clus-
tered sets of fragment ion m/z–intensity pairs can as well be related to one 
precursor ion by using these profiles (or several, if more than one candidate 
seems to correlate), but in the case of ion mobility it is important to consider 
that for fragmenting, ions are accelerated, causing a slight shift in ion mobil-
ity values to faster values of the ion mobility drift times. due to the extreme 
complexity of proteome samples, it is very likely that several unrelated ions 
are added to clustered pseudo-spectra, impairing peptide identification. 
some ways to increase the cluster selectivity are: implementing an intensity 
threshold, and using theoretical models of fragmentation, which estimate an 
approximate number of ions generated by fragmentation of a precursor of a 
certain mass (or number of amino acids).

10.2.2.2  Pseudo-Spectra Identification
the set of pseudo-spectra produced in the preceding step can be searched 
in conventional dda database search engines, producing very good results 
in cases of lower complexity samples and excellent analyte separation. how-
ever, when the sample complexity is high, pseudo-spectra have an increased 
chimericity, and additional strategies should be taken into consideration to 
improve peptide identification. there are several proposed algorithms based 
on iterative database searching of the fragment ions set, which are able to 
identify multiple co-fragmenting peptides in one (pseudo) spectrum.37 these 
algorithms subtract the fragments ions identified in previous iterations for 
further searches. another strategy to improve identification is to select a sub-
set of the clustered ions based on known peptide physical properties. some 
of these properties are evident: for example, fragment ion masses cannot 
be bigger than the assigned precursor mass. in this case, we can discard a 
precursor mass candidate (if more than one is related to a cluster), or discard 
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those fragments. We can also use the correlation between peptide mass and 
peptide elution time to discard those clusters (or precursor candidates) with 
non-correspondent mass and elution time values. it is also known that pep-
tide precursors produce fewer fragments at the m/z range over the precursor 
m/z value. in most dia methods, the high number of co-fragmenting pre-
cursors makes the m/z region below 350 m/z not useful in practice, due to 
the huge number of small fragments — of three amino acids or less — of 
very similar (or exactly equal) mass. it is also interesting to observe that the 
intensity of the precursor should be related to the sum of intensities of the 
fragment ions, and you can apply simple linear models to all the clusters of 
an experiment in order to determine this relationship, and filter clusters that 
do not match the model.

these filtering steps may be applied before identification, or used as addi-
tional scores to improve selectivity of the identification of peptide-spectrum 
matches (after the database search of the clusters in a conventional search 
engine), as some current software tools do.20

Complete annotation of all peptide precursors present in an Ms injection 
is a challenging task, and still today a great proportion of detectable peptide 
precursors in LC-Ms/Ms runs are not annotated.10 one way to increase the 
rate of identified features in dia runs is to complement the dia identifica-
tion workflow with dda runs conveniently aligned with the dia runs. dda 
identifications show some orthogonality with dia identifications at the pep-
tide level, and good similitude at the protein level,38 therefore its combina-
tion increases protein sequence coverage, and such a pipeline is already part 
of current software tools like dia-Umpire.38

10.2.2.3  Peptide and Protein Quantification
You can estimate the peptide quantity in the sample using either precursor 
or fragment ion signals, both quantities correlate well. in the matter of dia 
methods that use mass filter separation, like sWath-Ms or paciFiC, it could 
be more desirable to use fragment ion signals, as they are supposed to be 
“cleaner” after mass isolation. if fragment ion signals are used, due to prob-
able chimericity it looks logical to use only annotated fragment ions and 
to limit the number of them in order to reduce the risk of adding intensity 
values of different species. also, fragment selection is important in order to 
make consistent comparisons between different runs, and we should ensure 
that the chosen quantitation model does not introduce biased data. in that 
instance, you can select an N number of most intense fragment ions from the 
total pool of annotated fragment ions among all runs containing the peptide.

10.2.3   Targeted Analysis, Chromatogram-Centric
the chromatogram-centric approach to analyse dia proteomic data has been 
proposed in 2004 by venable et al.,12 and put successfully into practice using 
sWath-Ms in 2012 by Gillet et al.33 the approach (also known as the targeted 
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approach) is based on computational strategies commonly employed in tar-
geted proteomics. here, the dia data are viewed as a large-scale targeted 
proteomics experiment where individual chromatographic traces are not 
produced at acquisition time but can be extracted from the data at analy-
sis time. thus, once the data are acquired, the chromatographic extraction 
can be repeated multiple times for different sets of target peptides. how-
ever, compared to srM, in dia much larger precursor isolation windows are 
used and many more peptides are analysed than in typical srM experiments. 
therefore, automated tools that implement appropriate statistical scoring 
and error rate estimation are crucial for data analysis. With OpenSWATH, 
röst et al.39 described the first such automated algorithm in the literature, 
but since then multiple alternative software tools have been created or exist-
ing srM tools have been adopted to perform targeted analysis of dia data.

even though dia targeted methods record high resolution fragment ion 
data to achieve high specificity, a fragment ion trace (or transition) may not 
be specific for a particular peptide, especially in a complex sample. other 
peptides with similar precursor and fragment masses may produce inter-
fering, non-specific signals. these peptides might either produce identical 
fragment ions due to (partial) sequence similarity or simply by chance. since 
relatively large precursor isolation windows are usually employed, like in 
sWath-Ms, the fragment ion space is highly crowded and a fragment ion 
m/z does not usually map uniquely to a single peptide.8 in addition, non- 
canonical protein isoforms, post-translational modifications and the natural 
isotope distribution increase the likelihood of such interferences occurring. 
Without automated, unbiased evaluation and scoring, such signals can easily 
be mistaken for the true signal, which could lead to the quantification of the 
wrong signal (e.g. signal unrelated to the analyte) which would greatly impact 
the accuracy of the quantitative data matrix.

a typical chromatogram-centric analysis workflow may be organised in five 
distinct steps, which will be discussed here in greater detail: (i) retention time 
normalisation, (ii) chromatogram extraction, (iii) peak group scoring, (iv) 
error rate estimation and (v) optional cross-run alignment. as in any targeted 
workflow, the analysis relies on highly specific assay coordinates (fragment 
ion intensity and m/z as well as retention times for each peptide analyte).  
a discussion on generating such assay libraries would be beyond the scope 
of this chapter but can be found for example in schubert et al. (Figure 10.4).40

10.2.3.1  Retention Time Normalisation
during retention time (rt) normalisation, a (linear) function is computed 
to transform the retention time space of an individual run into normalised 
retention time. For this, a set of anchor points (normalisation peptides) 
are chosen so that coordinates are known in both spaces, usually a stan-
dardised set of spiked-in or endogenous peptides is used for this step.41,42 
First, the dataset is investigated for the normalisation peptides by extract-
ing the traces for these peptides and identifying the best overall peak 
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group. (Note that the coordinates in the normalised space are given.) it is 
thus assumed that the peptides used for the rt normalisation are easy to 
spot for the algorithm (since they have to be searched over the whole reten-
tion time space). Using noise-prone transitions or low-intensity transitions 
is thus not advisable for the retention time normalisation peptides. Next, 
an outlier detection algorithm, such as raNsaC or Chauvenet's criterion 
may be used to remove outliers.42 then, a (linear) function is computed to 
transform the experimental retention time into the normalised retention 
time space of the assay library, making the library retention times applica-
ble to the current run.41

10.2.3.2  Chromatogram Extraction
after rt normalisation, the assay coordinates containing the fragment 
ion m/z and retention times for each peptide are used to extract fragment 
ion chromatograms from the raw data. For each peptide, the appropriate 

Figure 10.4    analysis steps in a dia targeted workflow. Generally speaking, a tar-
geted workflow uses a priori data (assay library) and raw data together 
to extract chromatogram traces at the fragment m/z and retention 
time space where the analyte is most likely to elute. the workflow 
may include a (linear) retention time normalisation step (1), chro-
matogram extraction (2) and subsequent peak group scoring (3) which 
automatically reports peak groups above a given score cut-off followed 
by quantification (4). 
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sWath-map is chosen for extraction (e.g. the map with the corresponding 
precursor m/z of the peptide). Usually, a tolerance window in m/z and rt is 
applied (for example 50 ppm and 10 minutes) and extraction is performed by 
applying a convolution function to each spectrum in the rt window. Gener-
ally, the convolution function is a top-hat function centred at the fragment 
ion m/z, which has the effect of simply adding up all signal within a square 
window. the result of the transformation is recorded at each chromato-
graphic time point, leading to an extracted ion chromatogram (XiC) in the 
fragment ion domain. Note that generally each peptide precursor has multi-
ple fragment chromatograms, one for each fragment ion present in the assay 
library.33

10.2.3.3  Peak Group Scoring
peak group scoring is the next step in the analysis where chromatographic 
peaks are identified, grouped together by precursor and scored.39 the pur-
pose of this step is to identify potential points of elution for each peptide 
in the chromatograms extracted in the previous step and provide informa-
tion about the quality of each potential elution point (peak). this step is per-
formed in two distinct steps:

10.2.3.3.1  Peak Picking.  the aim of peak picking is to identify potential 
peak candidates (points of elution) for each peptide in the fragment XiCs. 
this can be done in multiple ways, the simplest one is to first identify peaks 
in each fragment ion chromatogram independently and then group the indi-
vidual peaks at the peptide level to obtain peptide peaks spanning multiple 
chromatograms (termed “peak groups” from here on). peak picking on the 
one-dimensional XiC data may be performed by initial smoothing and iden-
tification of maxima in the smoothed data. alternatively, the XiCs may be 
aggregated first using an appropriate function (such as a correlation score 
with the expected intensities) and peak picking may be performed on the 
aggregated trace.43 in either case, the result of this step is a single list of peak 
candidates consisting of a retention time and potentially a start and end 
point of the peak.39

10.2.3.3.2  Peak Scoring.  the algorithm next operates on the peak group 
candidates found in the previous step and computes a set of scores for each 
candidate. While no software tool uses the same set of scores, the commonly 
used scores can be classified in three groups: (i) chromatogram-based scores 
which operate on the XiCs alone, mostly taking cross-correlation and shape 
of the traces into account, (ii) library-based scores which compute the agree-
ment of the peak candidate with the assay library in terms of retention time 
and fragment ion intensity and (iii) spectrum-based scores which rely on the 
full high resolution fragment ion spectrum recorded at the peak apex, com-
puting m/z deviation and agreement with the expected isotopic pattern.39 
additional scores based on the Ms1 signal within the peak boundaries and 
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scoring schemes relying on statistical models have recently been proposed 
as well.44,45 in srM, usually an additional score is generated which computes 
the signal correspondence to an isotopically-labelled spike-in standard.46 
however, in sWath-Ms often no spiked-in standard is available and there-
fore this score may only be available for certain datasets.

10.2.3.4  Peak Quantification
at this point, the peak candidates are also quantified. this is usually done 
by integrating the area under the chromatographic signal, but other metrics 
such as apex intensities may alternatively be reported.39 More sophisticated 
quantification methods may also attempt to remove background signal or 
interferences (noise signals that co-elute with the target signal). For example, 
teleman et al.44 and Keller et al.45 both suggested using the relative fragment 
ion intensities from the assay library to identify and remove interfering sig-
nal and report a corrected quantification value.

10.2.3.5  Error Rate Estimation
in this step, the previously computed individual scores for each peak group 
are combined into a single discriminant score and a global error rate esti-
mation is performed on the result. several statistical and machine-learning 
techniques are employed to determine how to combine the individual scores 
in an optimal fashion such that all high-quality peaks obtain a high score 
while low-quality peaks are assigned a low score. Generally, a set of “decoy 
assays” is generated and added to the assay library at the beginning of the 
analysis. decoys are generated by perturbing the input assays (for example, 
shuffling the peptide sequence or moving fragment m/z by a random num-
ber).46,47 the score distribution of these decoy assays can then be used to 
perform semi-supervised learning and obtain a final discriminant score as 
first suggested by Käll et al.48 for shotgun proteomics data, and implemented 
for targeted proteomics data by reiter et al.46 a Bayesian approach similar to 
the one employed in peptideprophet49 for shotgun proteomics data can then 
be used for posterior error probability (pep) estimation and computation 
of q-values50 (see also Chapter 4, and section 2.4). specifically, the mProphet 
algorithm first allowed such automated analysis of targeted proteomics 
data employing linear discriminant analysis (Lda) to separate true and false 
peaks.46 since then, the algorithm has also been implemented in other pro-
gramming languages and software tools.44,51 additional information about 
these concepts can be found in section 10.2.4.

10.2.3.6  Alignment
Most currently published algorithms for analysis of targeted proteomics 
data or for targeted analysis of dia data operate on a single dataset at a time 
and do not take information from multiple runs into account. however, 
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performing a post-analysis integration and consolidation step is crucial in 
order to obtain consistent and accurate proteomic data matrices. otherwise, 
the quantified protein values may be inconsistent across multiple Ms runs or 
may result in missing values in certain experimental conditions. this makes 
any downstream analysis where dozens to hundreds of protein samples have 
to be meaningfully compared, such as case-control studies (e.g. biomarker 
studies, perturbation experiments or affinity purifications) or time-course 
series highly challenging.

there are multiple advantages of an experiment-wide approach to identi-
fication and error control. it could boost identification confidence if other, 
related peak groups could be compared to the peak group at hand to decide 
whether it represents a true signal or a noise signal. this is based on the fact 
that it is much less likely to observe a noise signal consistently across many 
different samples than a true signal belonging to the target peptide.

such a strategy could also help to resolve ambiguous identifications as in 
some cases, two or more suitable peak group candidates emerge from the 
scoring previously described and it is unclear which corresponds to the tar-
get peptide. this may be due to some co-elution of interference signal in one 
of the runs or increased noise which may not be present in other runs. the 
signal in other runs with different noise profiles could be used to resolve 
these ambiguous cases and select the appropriate peak group. additionally, 
such an approach may also help to remove wrong identifications, as certain 
configurations are highly implausible (e.g. a peak that is substantially differ-
ent in one run compared to the rest of the experiment). Finally, using cross-
run alignment methods may help to increase the completeness of the data 
matrix as peaks with lower confidence could now be “rescued” if they are 
consistent with more confident peaks in other runs.

so far, no multi-level integration algorithm specific for targeted proteomics 
has been described in the literature. in addition, multiple statistical methods 
have been applied to large datasets which perform experiment-wide analysis. 
the mProphet algorithm, for example, can be run on the complete dataset 
instead of running it on a sample-by-sample basis. also, more recently the 
original iProphet algorithm52 has been modified by Keller et al.,45 to also sup-
port sWath-Ms data, which allows integrative analysis on a statistical level.

10.2.4   FDR
Currently, the Fdr, or false discovery rate, is the tool of choice to ensure the 
trustworthiness of a dataset. its extensive use makes it a good parameter to 
compare results across research groups. a significant amount of research in 
statistics deals with measuring the certainty of scientific statements, as has 
already been discussed in Chapter 4. in the following discussion, we will thus 
focus on questions related to statistical evaluation of dia data. in dia data 
analysis, we can consider each assignment of mass spectrometric signal to a 
specific peptide is associated with a certain error and in the following, we will 
discuss how this error can be estimated in dia and the total number of false 
positives reported in the result (the Fdr) can be controlled.
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the dominant approach for statistical evaluation in dia consists of cal-
culating the probability that a given signal found in the data was generated 
by random chance and not by the analyte in question. this is usually done 
by comparing the signal to so-called “decoy” signals which define the null 
hypothesis of the experiment, and which need to be chosen with great care. 
there are several questions we can try to answer by interrogating the Ms data 
matrix generated in a dia experiment: is this group of signals we are looking 
at the product of a fortuitous event? is it a peptide signal? or, more specif-
ically, does this group of signals indicate the presence of a definite peptide 
(a defined sequence)? how these decoys are defined is going to define which 
of these questions can be answered. starting from the most ambiguous of 
these questions, we can generate decoys by extracting signals from the data 
matrix in shifted or randomly chosen coordinates (compared to the target 
signals). it is important to notice that this decoy definition does not include 
any factor related to a peptide sequence, and thus it does not answer if signal 
groups rejecting the null hypothesis defined by these decoys are peptides or 
any other kind of analyte. the third question, (“does this group of signals 
indicate the presence of a defined sequence?”) may be answered by including 
particular characteristics of the sequence in decoys, like m/z coordinate com-
binations that may only be attributed to a particular sequence.

the case of untargeted analyses of dia data can be treated similarly to dda 
analysis, since pseudo-spectra generated can be searched in conventional dda 
experiments, and therefore decoys are usually defined as reversed, pseudo- 
reversed or scrambled sequences of protein sequences. the strengths and 
weaknesses of these decoy generation methods have been largely discussed 
in the literature.53,54 on the other hand, dia targeted analyses are very simi-
lar to srM experiments and related statistical methods as in srM data anal-
ysis can be used.46 identification inference can be seen as a two step process: 
first, the interrogated coordinates (defined at the assay library) should define 
univocally the sequences we aim to identify. this defines that such signal 
combination can only come from a defined peptide sequence. second, we 
want to ensure that the signal is not just a random event caused by noise 
signals. then we may use random combinations of m/z and retention time 
coordinates searched across the data matrix, taking into consideration the 
number of elements of each combination, which should be equivalent to the 
target peptides in our library, i.e. one is less likely to find by chance six ran-
domly chosen m/z coordinates at the same retention time than only two.

Comparing untargeted dia vs. dda experiments, and considering the dif-
ferent ways to calculate the Fdr, it is interesting to note that one critical issue 
for calculating the Fdr in dda is usually the size of the precursor window 
used, as narrow windows lead to a small number of sequence candidates.54 
Using large m/z precursor windows for searching, in the order of 800 ppm 
or wider, solves the problem of obtaining a reasonable number of sequence 
candidates, and the resulting false positives with a precursor mass far from 
the experimental mass can be filtered out in a second step;55 while wide pre-
cursor windows are not commonly used in dda, for dia experiments these 
(and larger) sizes are the norm, hence the number of sequence candidates is 
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also large enough to provide reliable statistics. Consequently, as the number 
of sequence candidates is not a substantial issue in dia experiments, the 
decision about how the Fdr should be calculated is limited to other criteria, 
such as the Fdr formula, decoy database generation and concatenated ver-
sus separated search.56 there are still issues about the scoring functions, as 
some search engines use biased scores (for example, seQUest's XCorr tends 
to be higher for longer peptides) requiring a score normalisation.57 a good 
normalisation for these cases consists of using probabilistic scores, such as 
p-values.

the different approaches used to calculate the Fdr exposes the uncer-
tainty of a parameter that is used, in turn, to calculate the uncertainty of 
other results. sometimes the researchers hesitate about using quantities as 
different as 1% or 2% to present their results. in fact, taking into account 
the big picture, p-values and q-values are themselves random variables, and 
spending time looking for high precision may distract from the main goal, 
which is having an approximate figure to be able to compare the different 
data obtained. an alternative to setting specific Fdr thresholds could use a 
local Fdr strategy, computing the number of true positives and false posi-
tives at each score threshold and selecting an appropriate cutoff, for example 
when the number of true positives outnumber the false positives.

10.2.5   Results and Formats
proteomics mass spectrometry acquisitions, and particularly data indepen-
dent acquisitions, produce massive output files. a dia raw file typically occu-
pies several gigabytes of disk space (typically triple the space needed for an 
equivalent dda analysis). these massive files cause important challenges in 
the field: file format accessibility, file storage, and file input–output condi-
tion most of the current analysis pipelines. as explained in Chapter 11, the 
hUpo–psi initiative58,59 continuously works on the development of open file 
formats for the information exchange among the proteomics community. 
the vast majority of these formats are based on extensible markup language 
(XML), a human readable file format that permits tree data organisation. 
however, XML does not favour good input–output pipelines. it is size inef-
ficient, and its tree organisation is counterproductive for some tasks. in the 
case of dia, it is relevant to have an adequate method to access m/z values 
across retention time. there are several ways to circumvent this problem. 
You can improve the accession to raw files in standard XML formats by mix-
ing conveniently the use of random and sequential access, as some libraries 
already do.60 in a different approach, you can develop your own intermediary 
format, ensuring read–write efficiency. this also has its own obstacles: you 
need to write apis able to convert from most of proprietary vendors formats, 
or force users to perform multiple format conversions. Currently there are 
also some other file format alternatives for raw files, which are more efficient 
in storage size and in read–write access. one of the most promising is mz5,61 
an Ms raw file format based on hdF5. hdF5 files offer several advantages 
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over XML files that are relevant to computational proteomics. its internal 
file structure integrates multidimensional array datasets that can be inter-
rogated as matrices. the best example in the case of dia is that Ms data can 
be organised in a three-dimensional array dataset with the following dimen-
sions: m/z, retention time, and intensity. this arrangement allows a fast read 
access of the intensity values that correspond to an m/z value range across 
the retention time axis. in practice the task of monitoring the intensities of 
a fragment ion mass of e.g. 500 m/z with a given m/z tolerance of e.g. 5 parts 
per million across a predicted retention time range of e.g. 25 to 28 minutes is 
performed by slicing in two dimensions (m/z and retention time) a three-di-
mensional array. this extraction process in slices is even more effective when 
raw data is previously normalised across dimensions. specifically, the frag-
ment ion monitoring of the previous example would be performed faster if 
the m/z value of the fragment ion of interest is constant across the retention 
time axis.

the best format for results in many cases depends strongly on the needs of 
the researcher and their context. Not just in dia, but for proteomics in gen-
eral, there is not an established best format, the main reason being the fact 
that the typical file size and the standard information needed for an experi-
ment is still increasing year by year. this is a situation that could change in 
the next few years, with further implementation of standard formats in mass 
spectrometry laboratories. developing of efficient standard formats, which 
fit to the many Ms acquisition flavours is yet a major work field in compu-
tational proteomics, as formats are subjected to continuous improvement.

10.3   Challenges
For dia data analysis, and specifically for targeted analysis, many compu-
tational challenges remain. the methods in the field are just emerging and 
there are many opportunities for improvement of the existing tools in terms 
of performance and usability. each of the steps described for the targeted 
analysis of dia data provides room for improvement and presents several 
unsolved questions.

specifically, retention time normalisation is performed on a linear scale in 
most algorithms even though it has been shown that considering non-linear 
effects is important in LC-Ms/Ms-based proteomics.62 improving the reten-
tion time normalisation step could help to narrow the search window for can-
didate peak groups and thus improve algorithm performance. additionally, 
current software tools do not take into account the theoretical order of the 
peptides eluting, which might be used for discarding—or penalising—pep-
tide detections, which violate the expected elution order. similarly, a normal-
isation step for the m/z domain (mass calibration) as sometimes performed 
for shotgun proteomics could help to improve specificity.

selection of the fragment masses from the library is a critical task in tar-
geted analyses. it is common to use the top n most intense transitions of 
the library (where n may vary from 3 to ∼10). in many cases, these top n 
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transitions do not ensure a univocal characterisation of a peptide, or in a 
peak group where one of the transitions is not detected may cause an ambi-
guity. the use of all available transitions is computationally expensive, but 
may provide increases in specificity especially if several, closely related ana-
lytes are present in the biological sample (as is often the case with modified 
proteins).

Currently, most tools extract chromatograms using a simple top-hat 
filter where all signal within a square window is summed up. however, 
using more sophisticated methods that model peaks in m/z dimension 
and attempt peak deconvolution may increase specificity and may be able 
to distinguish fragment ions that are close in m/z but are not completely 
baseline-separated.

the peak group scoring is currently at the heart of most targeted analy-
sis workflows and multiple, orthogonal scores have been proposed for this 
step.44–46 however, so far no unbiased investigation has evaluated the contri-
bution of the different scores or attempted to create a synthesis of multiple 
scoring approaches in order to improve peak picking performance. simi-
larly, improvements in peak group quantification removing noise, interfer-
ences and background could lead to more precise measurements and thus 
improvements in the biological conclusions.

however, in both main analysis approaches (targeted and untargeted), 
some of the main challenges lie in the currently under-explored areas of error 
rate computation and cross-run alignment. Most currently available tools in 
these areas were either developed for low-throughput targeted proteomics 
or for shotgun proteomics. thus, in most cases the algorithms need to be 
adapted to the needs of high throughput technologies.
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11.1  Introduction
there  is a huge variety  of  academic  and  commercial  software  that  is  rou-
tinely used for the analysis, visualisation, and storage of proteomics data. 
mass spectrometers routinely output the mass spectrometry (mS) raw data 
in  vendor-specific  proprietary  binary  formats.  in  addition,  every  analy-
sis  tool  or  data  analysis  pipeline  produces  their  own  output  data  formats 
for reporting the identification and quantification results. thus, there is a 
wide variety of data formats, each of them inherently complex, with its own 
peculiarities.  this  can  hinder  the  further  development  of  the  field  due  to 
the effort that must be invested in supporting multiple heterogeneous data 
formats  –  particularly  computational  groups  developing  new  analysis  or 
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statistical packages or databases. See elsewhere1 for a high-level review of all 
formats used in conjunction with mS-based proteomics.

indeed,  it  is  broadly  recognised  that  common  data  standards  are  a  cru-
cial element of advancing a research field.2,3 among the many existing bene-
fits, they can enhance interoperability between software tools, and increase 
usability of tools across different instrument vendors and computer operat-
ing systems. additionally, the formats can also increase the ease of sharing, 
reusing data produced by others, and depositing data in public data repos-
itories.4 Furthermore,  the adoption of standard data  formats can facilitate 
the validation, reproducibility and comparability of the experimental results 
produced  by  different  groups,  potentially  using  different  instrument  and 
software  platforms.  Finally,  the  existence  of  broadly  used  data  standards 
allows programmer resources to be concentrated on algorithm development 
rather than infrastructure to support a fleet of different data formats.

the  hupo  (human  proteome  organisation)  pSi  (proteomics  Standards 
initiative,  http://www.psidev.info)  was  formed  in  2002  to  coordinate  the 
efforts of developing data standards in the field of proteomics. the pSi, with 
broad  participation  by  academics  and  representatives  from  industry  and 
journals, was originally tasked with developing open and common data stan-
dards which could be used in the different stages of the typical proteomics 
analysis workflow. See deutsch et al.,3 for a high-level overview of the history, 
activities, and products of the pSi. in addition to the standard data formats 
themselves, the pSi develops and maintains two other types of products:
   
  (i)   Controlled vocabularies (CVs), which are needed for providing values 

or descriptions within the standard formats. a CV is essentially a list 
of standardly agreed terms, accompanied by a definition, and some-
times a data type and unit which may accompany the term. the main 
pSi CVs5 are the pSi-mS6 (for mS and proteomics informatics related 
information), pSi-mod (for protein modifications)7 and pSi-mi  (for 
molecular  interaction  information).  these  CVs  are  available  in  the 
widely  used  oBo  format  (http://www.geneontology.org/Go.format.
shtml) and are usually updated whenever new terms are needed.

  (ii)   minimum information guidelines, called miape (minimum informa-
tion about a proteomics experiment) documents.8 these guidelines 
aim to show the information that needs to be reported by researchers 
to enable critical analysis or even reproduction of a given experiment. 
the  main  existing  miape  guidelines  are  miape-mS9  (for  mS  data), 
miape mSi (for peptide/protein identifications), miape-Quant10 (for 
quantification experiments) and mimix11  (for molecular  interaction 
data),  although  there  are  others  (See  http://www.psidev.info/miape 
for more information.).

   
it  is  important  to  highlight  that  every  data  format  or  miape  guidelines 

document produced by the pSi undergoes a thorough review process, called 
the pSi document process,12 which  is analogous  to  the  typical manuscript 
review  in  scientific  journals.  at  the  end  of  the  process,  usually  after  a  few 
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iterations involving the authors, reviewers, and the editor, the specification 
is approved and it becomes an official standard of the pSi. in addition, every 
time there is a substantial update in the documents, the standards need to 
go through the same process.

proteomics repositories heavily rely on the existence of data standards. the 
proteomeXchange  Consortium,13  comprising  some  of  the  main  resources 
in the field, was set up to overcome the existing challenges in mS proteom-
ics public data sharing and dissemination by  implementing standard sub-
mission  and  dissemination  pipelines.  at  present  the  consortium  includes 
the proteomics identifications (pride) database,14 peptideatlas15 and the 
related resource peptideatlas Srm experiment Library  (paSSeL), and mas-
siVe  (http://massive.ucsd.edu/).  all  proteomeXchange  resources  promote 
the use and implementation of pSi standards.16

in this chapter, we focus on the pSi data standards related to mS, namely 
mzmL, mzidentmL, mzQuantmL, mztab and tramL (For a summary over-
view, see table 11.1.). most of  them are based in XmL (extensible markup 
Language) schemas. only mztab was designed as a tab-delimited file. we will 
here outline the main characteristics of each format, the current implemen-
tations, and describe any current efforts to update each standard in order to 
support new use cases.  in addition, we will also mention some additional 
data formats that, although not formal pSi data standards, were inspired by 
pSi standards and have become popular in a particular area. Finally, we will 
briefly outline other non-mS related pSi data standards.

11.2  mzML
11.2.1  Data Format
mzmL  is  an  XmL-based  format  used  for  storing  mS  data  (and  associated 
metadata), which constitute the output from the mass spectrometers.17 the 
current  version  (1.1.0)  was  released  in  2009  (http://www.psidev.info/mzml) 
and  retains  the  best  attributes  of  two  previously  developed  formats  called 
mzdata (XmL format developed also by the pSi in its early days) and mzXmL18 
developed by the institute for Systems Biology (Seattle, uSa). at the time, it 
was agreed that having two different formats was not beneficial for the field 
and therefore, the unified mzmL format was developed.

mzmL was originally designed as a flexible format able to cope with a vari-
ety of cases and adapt to new scenarios. this flexibility, like in the other pSi 
formats,  is achieved mainly  through  the use of CVs  (in  this concrete case, 
mostly the pSi-mS CV). if new pieces of information need to be included in 
the format,  the XmL schema does not need to be changed to support new 
attributes. this was one of the main limitations of mzXmL. instead, new CV 
terms  can  be  used  to  encode  any  novel  information  required.  however,  to 
avoid the formats becoming too flexible (the main issue of mzdata), it was 
necessary to develop a “semantic validator”, a software tool for checking for-
mal usage of CV terms in a correct location in the file. the same semantic 
validator principles are used  in the other XmL-based pSi data standards.19 
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Table 11.1   main characteristics of the mass spectrometry related hupo pSi data standards.

mzmL17 mzidentmL27 mzQuantmL36 mztab38 tramL42

types of 
information

mass spectra and 
chromatograms

peptide and protein 
identification data

peptide, protein and 
small molecule 
quantification data

peptide, protein and 
small molecule 
identification and 
quantification data

transition lists for 
Srm, and inclusion 
lists for targeted 
mS/mS

Current stable 
version (march 
2016)

1.1.0 1.1.1 1.0.1 1.0 1.0

type of file XmL XmL XmL tab-delimited XmL
reference for the 

specific miape 
guidelines

miape mS miape mSi miape Quant not applicable not developed yet

CV mainly used pSi-mS pSi-mS pSi-mS pSi-mS pSi-mS
pSi-mod/unimod pSi-mod/unimod pSi-mod/unimod pSi-mod/unimod

urL http://www.psidev.
info/mzml

http://www.psidev.
info/mzidentml

http://www.psidev.info/
mzquantml

https://github.com/
hupo-pSi/mztab

http://www.psidev.
info/traml
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therefore, each XmL format has, in addition to its XmL schema, a set of asso-
ciated semantic rules.

the mzmL format is designed to contain one mS run per file,  including 
metadata  about  the  spectra  plus  all  the  spectra  themselves,  either  in  cen-
troided (peak list) or profile mode. optionally, the file can also contain the 
corresponding chromatograms. at the top of the XmL schema, there is space 
for some basic metadata: first the <cvList> element (< > denotes an element 
in an XmL file), a common element in many pSi standards, contains infor-
mation about all the CVs referenced in the file. then, the <filedescription> 
element contains information about the type of spectra. the following two 
elements  are  optional.  First  of  all,  the  <referenceableparamGroupList>  
element contains a  list of  the groups of CV terms that are used frequently 
and may simply be defined once and referenced  in  the file  thereafter. the 
<sampleList> element contains  information about samples,  that are again 
referenced throughout the file.

next, the <instrumentConfiguration> element contains information about 
the instrument used in the mS run (in more than one configuration in the 
case  of  hybrid  instruments).  the  <softwareList>  and  <dataprocessingList> 
elements provide the information related to data processing that may have 
occurred  since  the  acquisition  of  the  raw  data.  Finally  in  this  section,  an 
optional <acquisitionSettingsList> element can hold special  input parame-
ters to mass spectrometers such as inclusion lists.

these  elements  are  followed  in  the  schema  by  the  actual  spectra  and 
optionally the chromatograms. Both spectra and chromatograms are repre-
sented  in binary  format encoded into base64 strings. Figure 11.1 contains 
an  example  of  a  tandem  mS  spectrum  encoded  in  an  mzmL  file.  Finally, 
it should be noted that mzmL was designed such that the main part of an 
mzmL document does not contain an index, but that the document may be 
enclosed in a wrapper schema that includes an index. in this context an index 
is a lookup table of spectrum identifiers and scan numbers pointing to spe-
cific offsets within the file, enabling software to seek directly  to a  location 
within  a  file.  this  was  designed  in  this  manner  to  enable  fast  retrieval  of 
individual spectra.

11.2.2  Software Implementations
mzmL is now widely used and its adoption keeps growing. there are mul-
tiple  implementations,  including  a  number  of  libraries,  analysis  and  visu-
alisation  tools. a comprehensive  list  is available at http://www.psidev.info/
mzml. a widely used set of tools are those implemented by the proteowiz-
ard project.20 proteowizard is the reference implementation, written in C++, 
enabling the access and conversion of the raw proprietary formats coming 
from the main vendors into open formats such as mzmL. due to the fact that 
the  vendor  software  libraries  are  developed  for  running  in  microsoft  win-
dows®,  the main  limitation  is  that  the proteowizard msconvert  tool must 
run  on  windows  to  support  vendor  file  format  conversions,  or  potentially 
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Figure 11.1   tandem mS spectrum encoded in mzmL. the list of fragment m/z values and their respective abundances (a) are encoded 
in mzmL in separate  ‘Binarydataarray’ elements. the binary nature of  these values  is encoded using the base64 encod-
ing scheme. optionally the values may be compressed using one of the recommended data compression schemes (in this 
example the data have been compressed with the zlib library before base64 encoding.). other aspects of a spectrum may be 
encoded. For example, as it can be seen in (b) the precursor (peptide) of the spectrum is also encoded in mzmL.
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windows  emulators  (although  these  may  not  function  in  all  scenarios  as 
intended,  see  http://tools.proteomecenter.org/wiki/index.php?title=mscon-
vert_wine). however, if conversion to mzmL is performed, then only the con-
version must happen on the windows-based computer, but all downstream 
processing may occur under other operating systems.

in  addition,  most  of  the  search  engines  and  post-processing  software 
support mzmL as  the  input  format  for  the search  (e.g. X!tandem, mascot, 
myrimatch, openmS,  the trans-proteomic pipeline, and many others). For 
software developers, there are open source libraries available in different pro-
gramming languages such as Java ( jmzml,21 https://github.com/pride-util-
ities/jmzml),  r  (mzr  package  in  BioConductor,  http://bioconductor.org/
packages/release/bioc/html/mzr.html,  see  Chapters  15  or  16)  and  python 
(pymzmL22).  Finally,  it  should  be  noted  that  most  proteomics  repositories 
including all the members of proteomeXchange support submission of mS 
data in the mzmL format.

11.2.3  Current Work
Similarly to mS proteomics, the mS-based metabolomics field is also advanc-
ing  fast.  in  parallel  with  the  continuous  development  of  the  instrumenta-
tion and analysis approaches, it has also been acknowledged that there is the 
need to formalise data standards in the field. in this context, mzmL is being 
logically adopted as  the  format of choice  for  the output of  the mass spec-
trometers.  again,  due  to  the  flexible  design  of  mzmL,  no  schema  changes 
were necessary to accommodate this extension, as it could be achieved using 
CV terms instead.

one  of  the  known  issues  of  the  mzmL  format  is  that  files  can  become 
very large, for instance when compared with the data proprietary “raw” files 
produced by the different instrument vendors, mainly due to the verbosity 
introduced by the use of XmL tags. this issue is becoming more and more 
important since modern instruments produce increasingly larger files. For 
instance, the largest mzmL files are produced at present by the waters ion 
mobility instruments where each mS run can have an average size of around 
20 GB. Consequently, different attempts have now started to produce smaller 
mzmL  files  by  compressing  the  mS  information.  one  of  such  attempts  is 
the  development  of  a  family  of  numerical  compression  algorithms  called 
MS-Numpress.23  it  is expected that  the next  iteration of  the format, version 
1.2, will also support  this set of algorithms for encoding the mass spectra 
in binary format, in addition to the already supported ones. otherwise, no 
schema changes are expected.

11.2.4  Variations of mzML
also in recent years, some variations of the mzmL format have been devel-
oped outside the pSi umbrella. these formats have been driven to address 
specific  use  cases,  mainly  due  to  the  limitations  of  storing  and  accessing 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
02

29
View Online

http://dx.doi.org/10.1039/9781782626732-00229


Chapter 11238

large  amounts  of  data  in  mzmL  files  (as  in  any  XmL  format).  First  of  all, 
the mS imaging field developed a format called imzmL (http://www.imzml.
org/).24 the data are split in two files linked by a universally unique identi-
fier. the experimental details are stored in an XmL file based on the mzmL 
schema, whereas the spectra are stored in a binary file in order to allow an 
efficient storage.

the  format  mz5 25  was  designed  to  achieve  smaller  files  and  faster  ran-
dom access via  reimplementation of mzmL based on the hdF5 binary file 
format  system,  which  is  optimised  for  storage  of  complex  numerical  data 
– heavily used in astrophysics and related fields. Finally, the mzdB format,26 
based on an SQLite  format, has been recently developed to enable an effi-
cient extraction of the signals used to identify specific target peptides in the 
case of large datasets coming from mS/mS workflows and from the data inde-
pendent acquisition (dia) Swath-mS approach. the pSi regularly evaluates 
potential alternatives to the XmL-based formats, taking into account perfor-
mance versus the need for a universal access to data. there are no short term 
plans to move away from an XmL-based mzmL, but alternatives will be con-
sidered on a longer time scale, as mS data volumes continue to grow, and the 
scalability of a pure XmL format is unclear.

11.3  mzIdentML
11.3.1  Data Format
mzidentmL  is  an  XmL  format  developed  for  reporting  the  search  parame-
ters  and  results  of  peptide  and  protein  identification  data,  derived  from 
spectrum identification algorithms (e.g. search engines) (http://www.psidev.
info/mzidentml).27 one of the main aims of the format is to support the full 
trace  of  evidence  in  a  typical  shot-gun  proteomics  experiment,  including 
scores or statistics associated with peptide-spectrum matches (pSms), pro-
teins inferred from those pSms, and protein groups – due to ambiguity in the 
unique assignment of some peptides to proteins. the current version (1.1) 
was released in 2011.

mzidentmL  does  not  support  the  reporting  of  quantitative  information, 
which  can  be  provided  in  other  formats  such  as  mzQuantmL  and  mztab 
(see  next  sections).  in  addition,  mzidentmL  does  not  contain  the  original 
spectra  identified.  instead,  the  file  contains  references  to  mass  spectra  in 
external files. this  is  the same approach used  in mzQuantmL and mztab, 
using an established mechanism that depends on the file format in which 
the  searched  mass  spectra  are  stored  (e.g.  ideally  mzmL,  but  there  is  also 
support for other formats such as mzXmL, raw proprietary formats, or peak 
list spectra files such as mgf, dta, dta, pkl or apl). the design decision was 
made  to  avoid  redundant  storage  of  information  across  different  pSi  for-
mats (since mzmL can fully handle peak lists), but requires some extra effort 
from  mzidentmL  implementers,  as  full  support  requires  code  for  reading 
mzidentmL,  as  well  as  peak  lists  in  alternative  formats.  as  in  the  case  of 
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mzmL, mzidentmL makes heavy use of the pSi-mS CV. additionally, for the 
reporting  of  protein  modifications  (natural  and  artifactual),  both  the  pSi-
mod and unimod (http://www.unimod.org/) CVs are supported. analogously 
to mzmL, mzidentmL was originally designed to include the search results 
coming from one mS run (but see Section 11.3.3 for planned changes to this).

it is acknowledged that the mzidentmL XmL schema is complex and can 
be  challenging  to  implement  since  it  includes  many  internal  cross-refer-
ences, to avoid redundantly storing the same information multiple times in 
each file (such as peptide or protein sequences). each file must contain one 
or  more  instances  of  the  <SpectrumidentificationList>  element  (the  set  of 
pSms) and must contain zero or one <proteindetectionList> elements (the 
set of protein identifications inferred from the pSms). this means it is valid 
to create mzidentmL files containing only pSms without including the pro-
tein identifications, but not vice versa.

at the top of the file schema, general metadata can be reported. First, the 
<cvList> element, as in the case of mzmL and other formats, contains infor-
mation about all the CVs referenced in the file. then <analysisSoftwareList> 
includes the software used (e.g. the search engine that generated the file) and 
the optional element <analysisSampleCollection> can provide information 
about the biological samples used. the following highlighted element in the 
schema, <SequenceCollection> includes all the peptide (<peptide> elements) 
and protein sequences from the search database (<dBSequence> elements) 
reported (and crucially, the correspondence between peptides and proteins). 
next, the element <analysisCollection> includes the list of inputs and out-
puts  of  the  analysis,  where  the  protocols  are  applied.  the  <analysisproto-
colCollection> contains all the parameters used in the analysis, both for the 
spectra identification (<Spectrumidentificationprotocol>) and protein detec-
tion (<proteindetectionprotocol>).

the  last  element  in  the  schema  is  <dataCollection>,  which  first  lists 
the database, spectra searched and the  input file converted to mzidentmL 
(within  the  element  <inputs>).  then,  it  contains  a  second  element  called 
<analysisdata>, by far the most data-rich section of mzidentmL files. within 
<analysisdata> there are again two elements. the first one is called <Spec-
trumidentificationList>.  the  core  element  in  the  list  is  <Spectrumidenti-
ficationresult>  –  representing  all  the  pSms  found  from  a  single  spectrum 
searched.  each  <Spectrumidentificationresult>  references  the  spectrum 
from  which  identifications  have  been  made  in  an  external  file.  each  pSm 
within the <Spectrumidentificationresult> is captured in an ordered list of 
elements called <Spectrumidentificationitem> (Figure 11.2). Scores or sta-
tistical values for the pSm are described by CV terms, specific to each search 
engine, as well as (optionally) more general terms such as local or global false 
discovery rate, or posterior error probability (pep).

while  most  implementations  of  mzidentmL  contain  the  results  of 
sequence  database-based  searches,  it  is  straightforward  to  include  the 
results  of  spectral  library  searches  as  well.  all  spectral  library  algorithms 
export scores and/or statistical values for peptide identifications, which can 
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be included under <Spectrumidentificationitem>. any metadata associated 
with the library entry can be added to the referenced <peptide> element as 
additional <cvparam> or <userparam> elements.

For the reporting of protein identifications (which is optional), again the 
schema enables that the ambiguity derived from the protein inference is com-
municated. namely, also within <analysisdata>, the protein identifications 
are stored under <proteindetectionList>, where each <proteindetectionhy-
pothesis> element represents a putative identification of one protein acces-
sion from the search database (Figure 11.2). a <proteinambiguityGroup> sits 
above in the hierarchy, acting as a way to group related <proteindetection-
hypothesis>,  for  example  where  the  peptide  sequences  identified  provide 

Figure 11.2   excerpts from an mzidentmL file generated from mascot. (a) the pSm 
itself is in the black box, and the parent proteins can be seen for con-
text.  the  match  between  a  given  spectrum  and  a  candidate  peptide 
(i.e. a pSm) can be encoded in a ‘Spectrumidentificationitem’ element 
(b), which can describe the quality of the match. the ‘Spectrumiden-
tificationitem’  element  references  a  reusable  ‘peptide’  (c)  element 
containing  the  peptide  sequence  and  modifications.  a  ‘peptideev-
idence’  (d) element describes  the  relationship between a given pep-
tide sequence and the parent protein(s) in which it can be found. the 
‘dBSequence’  element  (e)  represents  a  protein  sequence  within  the 
searched database and can be referenced from various places in the 
file. the ‘proteinambiguityGroup’ element (f) groups together candi-
date  protein  identifications  (‘proteindetectionhypothesis’)  in  which 
there are shared peptides/spectra in common. Various scores can be 
added at the level of the group or each individual protein (here a mas-
cot score is shown for a single protein.).
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supporting evidence for more than one protein identification. there is fur-
ther discussion around the issue of protein grouping, and the implementa-
tion within mzidentmL within Chapter 5.

in addition to including instructions about how to encode the typical pro-
tein sequence database-based analysis search, the mzidentmL format spec-
ification  (at  http://www.psidev.info/mzidentml)  includes  how  to  encode 
a  few  specific  cases  such  as  spectral  library-based  searches  (see  previous 
text), de novo searches, the use of nucleotide sequence databases, and how 
to report the use of multiple search engines in the same analysis. For encod-
ing de novo sequencing results, the requirement to reference the database 
proteins from which a peptide was derived, via the <peptideevidence> ele-
ment, will be removed for the next version of the standard mzidentmL 1.2, 
when the file is flagged as being derived from de novo sequencing only (see 
Section  11.3.3).  this  means  that  an  identification  must  only  state  which 
peptide sequence has been found, and the associated scores or statistical 
values.

11.3.2  Software Implementations
although  the  format  is  still  relatively  young,  the  adoption  of  mzidentmL 
is  growing  steadily.  at  the  moment  of  writing,  mzidentmL  is  exported  by 
many of  the most popular proteomics search engines and post-processing 
tools, including the open source tools X!tandem (from piLedriVer version, 
04/2015),  mS-GF+,  myrimatch,  the  commercial  software  mascot  (from  ver-
sion  2.4),  proteinpilot,  peakS,  Scaffold,  and  the  stand-alone  open-source 
peptideShaker post-processing tool,28 which integrates different open source 
search  engines  such  as  X!tandem,  mS  amanda,  omSSa,  tide  and  Comet. 
Furthermore, it is becoming more common that analysis pipelines produce 
mzidentmL files as the final file output. one of such examples is proteoan-
notator29 (http://www.proteoannotator.org/), covered in Chapter 16. For soft-
ware developers, there are also some open source reader libraries such as the 
Java-based  jmzidentmL30  (reference  implementation,  https://github.com/
pride-utilities/jmzidentmL)  and  the  mzidLibrary.31  there  are  also  some 
libraries in other languages such as the previously mentioned mzr package 
in BioConductor.

the  proteomeXchange  resources  pride  and  massiVe  fully  support 
mzidentmL  as  data  submission  format  to  enable  the  full  integration  and 
visualisation of  the data  in these resources  (the so-called “Complete” sub-
missions).32 For the visualisation of the files (ideally together with the exter-
nal  referenced mS files),  the open source and free  to use pride inspector 
stand-alone tool33 (https://github.com/pride-toolsuite/pride-inspector) was 
recently  updated34  to  support  the  format.  it  also  supports  mzmL  and  the 
rest of the open peak list spectra files (e.g. mzXmL, mgf, pkl, ms2, dta, apl). 
a  comprehensive  list  of  the  mzidentmL  implementations  can  be  found  at 
http://www.psidev.info/tools-implementing-mzidentml.
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Chapter 11242

11.3.3  Current Work
at  the  moment  of  writing,  the  next  iteration  of  the  format  (version  1.2)  is 
work in progress. Some of the novel features that will be supported are the 
improvement  in  the  reporting  of  protein  inference  related  information,  at 
the protein level35 (see Chapter 5), the possibility of including results from 
different mS runs in the same file, support for peptide-level scores (as groups 
of  pSms  with  the  same  sequence),  ambiguity  in  the  protein  modification 
position, and reporting of cross-linking experiments. the expected schema 
changes (compared to version 1.1) are expected to be minimal. however, new 
ways of encoding this novel information will need to be taken into account 
by implementers, making the format potentially more challenging for those 
developing mzidentmL reading software.

11.4  mzQuantML
11.4.1  Data Format
mzQuantmL is an XmL format developed for reporting the search parame-
ters and results of a quantitative analysis at the peptide and protein level.36 
Version  1.0  of  the  format  was  released  in  2013  (http://www.psidev.info/
mzquantml). mzQuantmL  is designed around a common core  that can be 
extended to support particular quantitative techniques through different sets 
of semantic rules that are tailored for the different experimental approaches. 
originally, mzQuantmL supported quantitative techniques including: inten-
sity-based mS1 label-free, spectral counting, mS1 label-based (such as SiLaC, 
Chapter 7) and mS2 tag-based (such as itraQ or tmt, Chapter 8). in the lat-
est  version  of  the  format  (1.0.1),  support  for  selected  reaction  monitoring 
(Srm) approaches has also been added.37

the  format  supports  the  reporting  at  two  levels:  (i)  the  final  quantifica-
tion results  (at  the peptide and/or protein  level) without detailed  informa-
tion about all the features taken into account for the data processing, or (ii) 
including all the fine-grained information at the feature level that can enable 
the  full  recreation of  the results.  in addition, mzQuantmL enables a quite 
detailed description of the experimental design, an essential piece of infor-
mation in quantitative studies. Like  in the case of mzidentmL and mzmL, 
mzQuantmL makes heavy use of the pSi-mS CV. in addition, for the reporting 
of the protein modifications, both the pSi-mod and unimod CVs are allowed.

the top part of the mzQuantmL XmL schema is devoted, as in other for-
mats, to general metadata information. First, the file captures the CVs used 
in the element <CvList> (common to other formats), and optionally the pro-
vider of the document (<provider>) and their contact details (<auditCollec-
tion>).  Very  importantly,  a  semantically  valid  file  must  contain  particular 
CV terms included within the <analysisSummary> element, describing the 
type  of  data  represented  in  the  file  (either  intensity-based  mS1  label-free, 
spectral counting, mS1 label-based, mS2 tag-based or Srm techniques) and 
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whether the software is reporting values for features, peptides, proteins and/
or protein groups (used to represent the ambiguity coming from the protein 
inference).

the  <inputFiles>  element  captures  references  to  the  data  files  used  for 
analysis,  including  raw  mS  data  files  (e.g.  in  mzmL  format),  identification 
data (e.g. in mzidentmL format), the sequence database (or spectral library) 
from which peptides/proteins have been identified (this is not required for 
identification by de novo sequencing) and the configuration or methods files 
required for the analysis. there is no dependency on any particular input for-
mat, so long as they can be externally referenced by a uri (uniform resource 
identifier). next, similarly to other formats, mzQuantmL captures a descrip-
tion  of  the  software  and  version  used  in  <SoftwareList>,  and  the  analysis 
steps performed in the <dataprocessingList> element.

as mentioned, the experimental design is well modelled in mzQuantmL. 
an <assay> element typically represents the analysis of a single sample by 
mS (one mS run). additional replicate analyses of the same sample are mod-
elled as extra <assay> elements within an <assayList>. For quantitative tech-
niques in which multiple samples have been compared within a single mS 
run, multiple <assay> elements are defined which all refer to the same raw 
mS data file(s)  (included within <inputFiles>, as explained). For  label-free 
techniques, there is typically a one-to-one mapping from an <assay> to a raw 
file. in label or tag-based techniques, the <assay> must also capture the label 
or  tag  used  (e.g.  the  itraQ  or  SiLaC  reagents  used).  in  any  case,  <Study-
Variable>  elements  are  used  to  apply  logical  groupings  to  sets  of  <assay> 
elements,  for  which  quantitative  values  may  be  reported  (Figure  11.3).  a 
typical example of a study variable could be a set of biological or technical 
replicates, for which the software has calculated average quantitative values 
across <assay> elements, then representing replicate analyses of the same 
sample.  <StudyVariable>  elements  are  grouped  under  <StudyVariableList> 
(Figure 11.3).

one of the key elements of the mzQuantmL schema is a matrix-based ele-
ment called <QuantLayer>, which is designed to be very flexible to accom-
modate  many  different  scenarios  and  be  economical  in  storage  space.  a 
<QuantLayer>  holds  a  two-dimensional  matrix  of  data  values.  there  are 
various  sub-types  of  <QuantLayer>  elements,  which  are  named  according 
to  the part of  the experimental design  for which data values are  included 
(assays,  study  variables,  ratios,  global  values  among  others),  which  form 
the  columns  of  the  data  matrix.  in  addition,  the  location  of  the  <Quant-
Layer> within the mzQuantmL file defines the type of <QuantLayer> object 
for which data are reported (protein groups, proteins, peptides or features), 
which form the rows of the data matrix (Figure 11.3). as a concrete example, 
an <assayQuantLayer> within the <proteinList> element contains a <data-
matrix> where the columns reference <assay> elements and the rows refer-
ence <protein> elements. there are multiple combinations possible taking 
into account the experimental design and the location of the element within 
the file (Figure 11.3).
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For each analysis of a given raw file (or group of raw files), a <FeatureList> 
can  optionally  be  available.  a  <FeatureList>  contains  a  list  of  positions  in 
the 2d LC-mS space that have been quantified, called <Feature> elements. a 
minimal <Feature> definition includes the m/z value, the predicted charge, 
the  retention  time  (if  applicable)  and  a  unique  identifier  within  the  file. 

Figure 11.3   excerpts from an mzQuantmL file, generated from progenesis Qi data. 
the progenesis data  in  tabular  form (a) are shown for context here. 
the ‘StudyVariableList’ (b) contains a logical grouping of assays which 
can be used  to make sense of  the data. proteins quantified  (e.g.  see 
(c)) can be grouped together into ‘proteinGroup’ elements (d), these 
protein groups can be the basis for quantification and related statis-
tical metrics. a ‘GlobalQuantLayer’ (e) can be used to describe statis-
tical metrics for a particular protein group, and an ‘assayQuantLayer’ 
(g) can be used  to store normalised or  raw quantification values  for 
the protein groups previously described. as the quantification values 
are ordered by assay as described in the ‘Columnindex’, this element 
together with the previously described ‘StudyVariableList’ can be used 
to calculate statistical metrics as well as basic fold change values. the 
format  can  also  contain  a  list  of  ‘peptideConsensus’  elements  (f), 
which can be used to list the peptides quantified in each protein and 
describe the original feature evidence from which these peptides were 
identified/quantified.
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Final quantitative results can be reported as <proteinGroup> (within a <pro-
teinGroupList>), <protein> (within a <proteinList>) or <peptideConsensus> 
elements (within a <peptideConsensusList>). the <peptideConsensus> con-
tains the peptide sequences (Figure 11.3).

For implementers of the formats, as mentioned before, it is important to 
take into account that mass spectra available in external files can be refer-
enced (as raw files or in other formats, analogously to mzidentmL), and that 
protein/peptide identification information can also be referenced in external 
files (e.g. mzidentmL files). therefore, potentially, to have all the information 
needed in a given quantitative experiment (mass spectra, identification and 
quantification),  it may be necessary to handle three types of files together, 
something that can be quite challenging.

the  mzQuantmL  format  specification  includes  detailed  information 
about how to encode the different quantification techniques in the file for-
mat. apart from the specification document, there is a “20-minute guide to 
mzQuantmL” document aimed to facilitate the work of implementers (http://
www.psidev.info/mzquantml).

11.4.2  Software Implementations
Since  the  format  is  still  relatively  new,  not  many  implementations  are  yet 
available. For software developers, there are open source reader libraries such 
as the Java-based jmzQuantmL (reference implementation) and the recently 
developed mzqLibrary and mzqViewer libraries.31 the mzqLibrary contains 
several  converters,  including  converters  to  the  format  from  openmS,  pro-
genesis LC-mS and maxQuant, and exporters from mzQuantmL to other file 
formats  such  as  mztab.  the  open  source  proteoSuite  toolkit  (http://www.
proteosuite.org/), also written in Java, can output and as a key functionality, 
it is the only tool at present that can visualise mzQuantmL files.

proteomeXchange resources support submission of the format as a quan-
tification output file (tagged as ‘Quant’ in the submission process). the files 
are  made  available  to  download  but  no  web  visualisation  of  the  results  is 
enabled at present.

11.4.3  Current Work
Support for other quantification approaches is ongoing through the exten-
sion of the existing semantic rules and the addition of new CV terms to the 
pSi-mS CV, and current work is focused on providing more implementations 
of the format. it is also important to highlight that the mzQuantmL schema 
formally includes support for the reporting of small molecules coming from 
mS metabolomics experiments (<Smallmolecule> elements within a <Small-
moleculeList>). however, this functionality has not been used in practise so 
far since the metabolomics community working in the development of data 
standards has decided to give priority to the extension of the mztab format 
first (see next section).
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11.5  mzTab
11.5.1  Data Format
mztab is the latest pSi data standard developed. Version 1.0 was formalised 
in 2014.38 as opposed to the other main data formats covered in this chap-
ter, mztab is a tab-delimited text file (https://github.com/hupo-pSi/mztab). 
during the development of mzidentmL and mzQuantmL the focus was put 
on storing a comprehensive representation of the data. this resulted in rela-
tively complex XmL file schemas, which could potentially make it difficult for 
data consumers to access the information. many “end user” data consumers 
are only concerned about having access to the results of a study in an eas-
ily accessible format that is compatible with tools such as microsoft excel® 
or the r programming language, among others. For this reason, mztab was 
aimed at making mS proteomics and metabolomics results available to the 
wider biological community, beyond the field of mS. the microarray com-
munity is one example of a similar solution where the format maGe-taB39 is 
widely used, since it can cover the main use cases, and for the sake of simplic-
ity, is often preferred to the corresponding previously developed XmL stan-
dard format called maGe-mL.40

the main principle behind the development of mztab was then to provide 
a  flexible  tab-delimited  file  format,  to  report  proteomics  and  metabolom-
ics results derived from mS experiments, including both identification and 
quantification data. in fact, mztab enables the reporting of results at differ-
ent levels, ranging from a simple summary or subset of the complete infor-
mation (they could be labelled as the final results) up to fairly comprehensive 
representation of the results including a detailed experimental design.

an mztab file can have up  to five different sections: metadata, protein, 
peptide,  psm  and  small molecule  (Figure  11.4).  while  the  protein,  peptide, 
PSM and small molecule  sections are classical  table-based structures con-
taining  a  header  line,  the  metadata  section  contains  one  tab-separated 
key-value pair per row. it is important to highlight that only the metadata 
section is strictly mandatory, since there are some metadata related fields 
that always need to be present in the file such as “mztab-version”, “mztab-
mode”  and  “mztab-type”  and  “description”.  the  other  four  sections  are 
then optional.

there are two types (mzTab-type) of files: “identification” (including pep-
tide,  protein,  and/or  small  molecule  identifications)  and  “Quantification” 
(containing quantification results, but it may contain identification results 
as well). in addition, there are two supported levels of details (mzTab-mode) 
for  reporting:  “Summary”  and  “Complete”.  the  “Summary”  mode  can  be 
used to report the final results of a study, for example reporting data averaged 
from different  replicates. the “Complete” mode  is used  if detailed experi-
mental  information coming  from each  individual assay and/or  replicate  is 
provided. therefore,  there are  four different flavours of mztab files, when 
combining the different mztab types and modes.
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every line in a given file starts with a three letter code indicating the type 
of information captured: “mtd” (metadata section), “prh” (protein section 
header), “prt” (proteins), “peh” (peptide section header), “pep” (peptides), 
“pSh” (the pSm section header), “pSm” (peptide spectrum matches), “Smh” 
(small molecule section header), “SmL” (small molecules), and “Com” (for 
comment type lines).

For a detailed list of all the fields included in the different sections, please 
see the specification document (http://www.psidev.info/mztab). apart from 
the fields included in each of the sections, it is always possible to add cus-
tomised extra columns using CV terms. First of all, the metadata section was 
deliberately kept flexible and the majority of fields are optional. therefore, it 
is possible to report different levels of experimental annotation depending 
on the interest of the producer of the files: ranging from basic annotations 
up to the complete metadata defined in the miape guidelines. protein and 

Figure 11.4   high-level overview of the data model for mztab. Figure is reused with 
permission from this publication.38
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peptide identifications are reported in the Protein and PSM sections, respec-
tively.  the  Peptide  section  is  only  used  to  report  aggregated  quantification 
data based on groups of pSms containing the sequence. its use is therefore 
not recommended in ‘identification’ files.

to simplify the format, it was decided to change the modelling of protein 
inference in mztab when compared to mzidentmL, excluding detailed data 
on how the ambiguity was actually resolved. protein entries in mztab files 
contain the column “ambiguity_members”. the protein accessions listed in 
this field should identify proteins that were also identified through the same 
set of peptides or spectra, but without providing extra information. Finally, 
metabolomics  results  are  reported  in  the  small molecule  section.  different 
identifiers are supported for small molecules including identifiers in differ-
ent resources, Simplified molecular-input Line-entry System (SmiLeS), and/
or iupaC international Chemical identifier (inChi) identifiers.

as in the case of mzidentmL and mzQuantmL, in mztab it is possible to 
reference  the  corresponding  mass  spectra  in  external  files  and  other  files 
containing  the  original  identification  and/or  quantification  results  (e.g. 
mzidentmL files). the experimental design related information (optional in 
the metadata section) is modelled in a similar way to mzQuantmL, includ-
ing the elements “study_variable”, “assay”, “ms_run”, and “sample”. Like in 
the previously mentioned formats the pSi-mS, pSi-mod and unimod CVs are 
used in mztab.

Some specific use cases are explained in detail in the specification docu-
ment. additionally, there is a “20-minute guide to mztab” document aimed 
to  facilitate  the  work  of  implementers  at  https://github.com/hupo-pSi/
mztab.

11.5.2  Software Implementations
the format is quite new so only a few implementations exist at present. the 
search engine mascot can export the format from version 2.5. in addition, 
the already mentioned new version of the pride inspector tool can be used 
to  visualise  the  files  (both  identification  and  quantification  information, 
together with the referenced mass spectra). other proteomics and metabolo-
mics tools (e.g. openmS) have implemented an initial export to mztab that 
still  needs  to  be  refined.  For  software  developers,  there  is  an  open  source 
library  called  jmztab41  (reference  implementation,  https://github.com/
pride-utilities/jmztab), written in Java.

among  the  proteomeXchange  resources,  massiVe  currently  supports 
mztab as a submission format. the pride team plans to support it in the 
near future. all processed results files submitted to pride archive included 
in  “Complete”  submissions  (both  identification  and  quantification,  e.g. 
mzidentmL and mzQuantmL files) are now converted to mztab and will be 
provided in this format to the users (as well as the originally submitted files). 
in addition, mztab is already used heavily by pride archive as  the model 
used for its backend storage.
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11.5.3  Current Work
as already mentioned, there is interest in the metabolomics community of 
extending mztab for improving the reporting of small molecule identifica-
tion and quantification results. it is expected that the current small molecule 
section devoted to small molecules is extended to two or three different sec-
tions. in addition, there has also been recent interest in mztab coming from 
the glycomics community. Quite likely, this will result in the near future in 
the existence of a core part of the format and different extensions available 
for the different data types (proteomics, metabolomics, glycomics and poten-
tially others, each of them containing specific sections apart from the generic 
metadata section). metabolomics and glycomics repositories are expected to 
formally support the format as well in the future. one of such resources is the 
metaboLights database (http://www.ebi.ac.uk/metabolights/).

11.6  TraML
11.6.1  Data Format
the last pSi data standard covered in detail in this chapter is tramL, an XmL-
based format for encoding transition lists (and associated metadata), used in 
targeted proteomics approaches such as Srm (see Chapter 9).42 the current 
version (1.0) was released at the end of 2011 (http://www.psidev.info/traml).

a  high-level  overview  of  the  tramL  XmL  schema  is  included  in  Figure 
11.5, organised into ten highlighted top-level sets of information. the first 
elements in the file are, as usual, related to metadata information. the first 
one, called <SourceFileList>, is optional and enables the listing of the data 
files  from  which  the  transitions  contained  in  the  tramL  file  are  derived. 
next, <CvList> is again a required element containing the list of the CVs ref-
erenced in the file. the following elements are optional: first <ContactList>, 
provides a  list of  the people  involved  in  the generation, validation, and/or 
optimisation of the transitions. the element <publicationList> contains the 
publications from which the transitions are derived. next, <instrumentList> 
contains one or more instruments that can be referenced in the context of 
the validation and optimisation information for the transitions. and finally 
in this part of the schema the element <SoftwareList>, like in other formats, 
describes the software programs that were used to predict, validate, and/or 
optimise the transitions.

Following these initial metadata containers is the seventh element called 
<proteinList>, an optional list of protein identifiers that may be referenced by 
the peptide entries. Following this is the <CompoundList>, which may con-
tain any number of peptide or compound entries. as in mzmL, mzQuantmL 
and mztab, tramL was designed to support encoding of metabolomics data 
as well. in fact, a compound is used in the format to represent not only pep-
tides, but also chemical compounds and metabolites. these peptide or com-
pound elements are then referenced in the subsequent transition or target 
lists.
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the <transitionList> is the next element and constitutes the main core of 
the schema. each <transition> contained in this element must at minimum 
contain the information about the precursor and product m/z value, but may 
also contain information about interpretations, predictions, and instrument 
configurations on which the transition has been tested or optimised. Finally, 
the last (optional) element is the general <targetList>, which may contain an 
inclusion list and/or an exclusion list. each of  these  lists contains  individ-
ual targets with at minimum a precursor m/z, but optionally also retention 
times and other attributes. this final component was added to manage and 
exchange ordinary inclusion or exclusion precursor m/z lists. Like in the pre-
viously mentioned formats,  the pSi-mS, pSi-mod and unimod CVs can be 
used by tramL.

Figure 11.5   high-level  overview  of  the  XmL  elements  included  in  the  tramL 
schema.  each  box  represents  an  XmL  element,  nested  within  other 
elements  as  shown.  Figure  reused  with  permission  from  this 
publication.42
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11.6.2  Software Implementations
For software developers, there is an open source reader library written in Java 
called jtramL43 (reference implementation, https://github.com/compomics/
jtraml), as well as a C++ implementation in openmS. the jtramL package is 
not just a library, but also includes a converter tool that can convert tramL to 
several of the vendor-specific tab-delimited input formats and vice versa. the 
anubis software44 also supports tramL. the widely used Skyline tool45 does 
not yet support tramL, but this would be a great benefit.

in the context of proteomics data repositories, paSSeL (maintained by the 
peptideatlas team) is the proteomeXchange resource devoted to the storage 
of Srm/mrm data. as such, tramL is supported as one of  the submission 
formats. at the moment of writing, tramL is considered to be stable, and at 
least at present, there is no ongoing work to extend or update the format.

11.7  Other Data Standard Formats Produced by the 
PSI

the pSi has also developed data standards that are widely used in the molec-
ular interactions field (e.g. protein–protein interactions), such as the pSi-mi 
format.46  it  is an XmL-based  format  that enables  the representation of mi 
(molecular interactions) between different types of molecules, like for exam-
ple proteins, nucleic acids and chemical compounds. pSi-mi (current version 
is 2.5, released in 2006, although version 3.0 is well under development at 
present) enables the description of highly detailed molecular interaction data 
and facilitates the data exchange between existing protein interaction data-
bases from the imeX (international molecular eXchange) Consortium (http://
www.imex.org),47 led by the intact database (http://www.ebi.ac.uk/intact/). in 
addition, there is also a simpler, tab-delimited format called mi-taB (there 
are different versions available at present, 2.5, 2.6 and 2.7), built  for those 
users who require less detailed information and simpler parsing, following 
the  same  reasoning  explained  before  for  maGe-taB  and  mztab.  multiple 
implementations of these molecular interaction standards are available. For 
an updated list, see http://www.psidev.info/groups/molecular-interactions.

the  peFF  (pSi  extended  Fasta  Format)  format  (http://www.psidev.info/
peff) is based on the widely used FaSta format, but enforces a flexible yet 
cleanly parsable header for each entry, in which extra information that can 
potentially be used for analysis software, such as post-translational modifica-
tions (ptms) and sequence variants, can be encoded and used. the develop-
ment of the format initially started in 2007, but its development was stalled 
due to the lack of agreement between the authors and the reviewers during 
the pSi document process. however, resources such as neXtprot (http://www.
nextprot.org/)  have  provided  protein  sequence  data  using  the  preliminary 
version of the format and some visualisation software supporting peFF has 
also been developed. in 2015, efforts have been restarted to finalise and for-
malise the format.
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11.8  Conclusions
the development and maintenance of a data standard is a collaborative and 
generally  quite  resource-intensive  task.  in  fact,  the  actual  development  rep-
resents only the very first step, since wide adoption usually takes a long time, if 
it happens at all. the existence of easy-to-use and preferably free-to-use software 
is essential to enable the adoption of the formats. For this reason, the pSi has 
also  spent  considerable  efforts  in  developing  different  application  program-
ming interfaces (apis) that implement the different standard data formats.

however,  the  continuous  evolution  and  inherent  complexity  of  the 
proteomics  analysis  data  workflows,  together  with  the  developments  in 
instrumentation  demand  that  the  current  data  standards  and  related 
software are in continual evolution. Clearly the right balance needs to be 
found since it is well-known that a data format needs to be stable for quite 
some time before it will be widely implemented and adopted, especially in 
commercial software, which often has a long lead time and requires docu-
mented justification for adding features. this is the reason why the latest 
developments in a given field can take some time to get incorporated into 
the standards.

in the coming years, it is expected that collaboration between the pSi and 
the mS metabolomics community will continue in order to leverage existing 
products and experiences and encourage greater interoperability among soft-
ware tools used in these two fields. Currently it seems likely that mzmL will 
be widely adopted in both fields, and the extension of the mztab format for 
encoding mS metabolomics identification and quantification results will be 
completed. another future topic of interest will be the extension of existing 
data standards for the increasingly used dia approaches such as Swath-mS 
and mSe. in this context but also in others, data compression will be an active 
field of research and of possible interest to the pSi.

Finally, proteogenomics is a fast-growing field still in need of suitable data 
standards and reporting guidelines, so it is expected that some future efforts 
will  also  be  devoted  to  this  task.  in  any  case,  new  contributors  to  the  pSi 
activities are always welcome. if you are willing to contribute, the best way to 
start would be to join the pSi mailing lists and participate in the annual pSi 
Spring meetings (http://www.psidev.info/).
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12.1   Introduction
Mass-spectrometry-based proteomics has greatly evolved over the past 
decade, and is now an integral part of many biological and clinical studies. 
New techniques have emerged. New mass spectrometry hardware allows for 
ever-increasing throughput and accuracy. in the same way, the bioinformat-
ics tools for the analysis of mass spectrometry data have become more sen-
sitive, reliable and easier to use. researchers can now choose from a wide 
range of software solutions, either academic or commercial. their choice can 
have a major impact on the final results and conclusions of their studies.1

OpenMs is one of these software solutions. it allows for the flexible and 
transparent analysis of both proteomics and metabolomics data. the under-
lying library is implemented in C++ but can also be accessed via a python 
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interface.2 the code is openly accessible at Github https://github.com/
OpenMs and described by an extensive documentation http://openms.de/
documentation. Many external software solutions such as common search 
engines and protein inference algorithms can be integrated by the provided 
wrappers. an important distinguishing feature is its modularity. OpenMs is 
not a single, monolithic program but rather a collection of over 100 individ-
ual tools. these tools can be combined to simple or increasingly complex 
analysis workflows. a small subset of roughly 30 tools is sufficient to con-
struct most standard workflows, tables 12.1–12.3. in this chapter, we will 
present four example workflows and in the process discuss various aspects 
of OpenMs. We will start with a simple peptide identification workflow in 
12.2, and explain how to integrate external search engines into OpenMs 
workflows. Next, we will have a closer look at a complete itraQ protein 
quantification workflow in 12.3. We will discuss how proteins are inferred 
from peptide sequence information, and which of these proteins are then 
quantified. in the following section 12.4, we will focus on the quantification 
of dimethyl-labeled samples. in this workflow, the protein quantification 
relies on the correct detection of peptide features at Ms1 spectrum level. as 
a final example, we will discuss a label-free quantification workflow in 12.5.  
peptide sequence identification and peptide feature detection are performed 
as in the previously discussed workflows. the challenge of this analysis is 
the correct alignment and linking of corresponding peptide features in the 
independently measured mass spectrometry runs.

OpenMs installers for all major operating systems can be downloaded at 
http://openms.de/download. the four workflows described in detail in this 
chapter are available from the OpenMs workflow repository at http://openms.
de/workflows. the repository contains a collection of standard workflows, 
which are already optimized for specific mass spectrometry machines. the 

Table 12.1    tools for identification in OpenMs.

tool Description section

DecoyDatabase appends decoy sequences to a target database 12.2
Mascotadapter,  

Xtandemadapter, 
MsGFplusadapter, …

search engine adapters. enables the integration  
of external search engines such as Mascot,  
X!tandem and Ms-GF+

12.2

peptideindexer adds target-decoy annotation and protein  
references for all peptides

12.2

FalseDiscoveryrate Calculates false discovery rates for target-decoy 
searches on peptide and protein level

12.2

iDposteriorerror-
probability

Calculates posterior error probabilities 12.3

ConsensusiD Combines multiple search results and determines 
the best psM for each Ms2 spectrum

12.4

highresprecursor-
MassCorrector

Corrects precursor positions to the nearest peptide 
feature or the nearest centroided Ms1 peak

12.4

Fidoadapter adapter for the protein inference engine Fido28 12.3
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Table 12.2    tools for quantification in OpenMs.

tool Description section

peakpickerhires, 
peakpickerWavelet

Detects peaks in high- and low-resolution 
profile mass spectrometry data

12.4

FeatureFinderMultiplex, 
FeatureFinderCentroided

Detects peptide features in profile or  
centroided LC-Ms data

12.4

spectraMerger averages or merges neighboring spectra. 
averaging results in smoothing and  
noise reduction in rt direction

12.4

NoiseFiltersGolay, 
NoiseFilterGaussian

savitzky-Golay and Gaussian smoothing  
and noise reduction of individual  
spectra i.e. in m/z direction

12.4

itraQanalyzer extracts and normalizes itraQ reporter  
ion intensities

12.3

iDMapper assigns sequences to peptide features 12.3
iDConflictresolver resolves ambiguous feature annotations.  

if multiple sequences are assigned to  
the same feature, only the sequence  
with the highest score is retained

12.3

MapalignerposeClustering Corrects relative retention time shifts 
between mass spectrometry runs

12.5

Maprttransformer applies retention time transformations  
to a mass spectrometry run

12.5

FeatureLinkerUnlabeledQt Links corresponding peptide features in  
different mass spectrometry runs

12.5

proteinQuantifier Determines protein abundances from  
peptide level abundances and protein  
inference information

12.3

Table 12.3    tools for file handling in OpenMs.

tool Description section

FileConverter Converts files between different formats. For example, 
mzML to mgf

12.2

FileMerger Merges several files. For example, peptide features  
from multiple fractions

12.3

FileFilter extracts subsets from raw files or quantitative results 12.4
iDFileConverter Converts peptide and protein identifications between  

different file formats. For example, pepXML to mzid
12.2

iDMerger Merges several peptide and protein identification 
results into one file. For example, identifications  
from multiple search engine runs

12.3

iDFilter extracts subsets from search results. For example, all 
peptides from a specific protein

12.2

Mztabexporter exports peptide and protein level results to mztab 12.2
Fileinfo summary for mzML, featureXML and consensusXML 

files
12.2
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combination of OpenMs and its workflow repository allows for a speedy and 
optimal analysis of the experimental data.

12.2   Peptide Identification
in a typical OpenMs data analysis, the user works with two different pro-
grams: the workflow editor tOppas3,4 for design and execution of workflows, 
and the data viewer tOppView for the inspection of experimental data and 
intermediate results, Figures 12.1 and 12.2. Before any analysis workflow can 
be run, two preparatory steps are necessary: the conversion of the experi-
mental LC-Ms/Ms data to an open non-proprietary file format, and the  
construction of a target-decoy protein database.

OpenMs requires the experimental mass spectrometry data in an open file 
format such as mzML5,6 or one of the legacy formats mzXML and mzData. if 
the vendor acquisition software does not support export to an open format, 
we recommend proteoWizard’s msConvert tool7,8 for the conversion from 
the proprietary formats to mzML. the proteoWizard toolkit ships with con-
tinuously updated, vendor-provided libraries from sciex, thermo Fisher 
scientific, agilent, Bruker and Waters. this single converter therefore 
bridges the vendor-specific formats and open community standards, and 
allows OpenMs to analyze data from all major mass spectrometry vendors. 

Figure 12.1    Workflow editor tOppas. the left panel contains the list of all individ-
ual tools. the central space contains tabs for multiple workflows. the 
right panel is reserved for a description and notes.
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the conversion to mzML can lead to a significant increase in file size and 
read–write time. this fact can be alleviated by using Ms-Numpress com-
pression of mzML9 which is supported by both proteoWizard and OpenMs. 
recent improvements in parsing speeds and support for indexed mzML 
have further decreased the mzML file access times.10

For the peptide identification workflow we require an appropriate target- 
decoy database as input (see Chapter 4). Using the DecoyDatabase tool 
we can easily construct one, Figure 12.3(a). as input we specify a fasta file  
containing all possible target protein sequences for the search. the tool 
either shuffles or reverses these sequences and appends them to the input 
file. the resulting output file now contains both target and randomized decoy 
sequences, with decoys denoted by a specific prefix or suffix in their name.

in the peptide identification workflow, we can now specify both required 
inputs, the mass spectrometry data in mzML format and a target-decoy fasta 
database, and start the workflow, Figure 12.3(B). the data are first sent to 
an external search engine, in this case X!tandem. the Xtandemadapter 
tool is a simple wrapper and provides access to all parameter settings of 
the search engine. the tool returns a number of peptide-spectrum-matches 
(psM) and their corresponding scores for each submitted Ms2 level spec-
trum. at this stage, the sequences in the output are not matched to their 
corresponding protein(s). Neither is it clear whether the sequence stems 

Figure 12.2    Data viewer tOppView. the main part visualizes experimental data  
in the m/z-rt plane. the right panel contains the list of opened 
raw data files (mzML) and results (idXML, featureXML and consen-
susXML) as well as a list of all spectra.
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from a target or decoy entry. the following peptideindexer tool adds this 
information by referencing the sequences against the original search data-
base. in the next step, the FalseDiscoveryrate tool can calculate the score 
distributions for target and decoy hits, and determine the false discovery 
rates (FDr) at both peptide and protein level. Finally, the psMs can be fil-
tered for specific peptide and protein FDr cut-offs in the iDFilter tool. the 
results of the workflow are stored in the OpenMs idXML format, table 12.4. 
alternatively, the final peptide identifications can be converted to the open 
standard mzidentML11,12 using the iDFileConverter tool, table 12.5. in this 
format, the results can be validated in tools such as priDe inspector13 and 

Figure 12.3    (a) Workflow for the construction of a target-decoy protein data-
base (B) Workflow for peptide sequence identification and export to 
mzidentML (mzid) and mztab.
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then uploaded to public repositories such as the proteomics identifications 
(priDe) database14,15 and other projects in the proteomeXchange Consor-
tium.16 For further post-processing of the sequences a simple text-based for-
mat is the better choice. the Mztabexporter tool can write the sequence 
information to the open mztab standard.17,18 this file can be viewed in any 
text editor and further analyzed in tools such as r or Windows excel®. Often 
a quick overview instead of the complete results is sufficient. the Fileinfo 
tool can generate a short summary with the main statistics of an analysis 
(number of psMs, number of unique sequences etc.). the tool can gener-
ate summaries not only for identifications but any of the first four primary 
OpenMs file formats listed in table 12.4.

the described workflow can easily be modified. For example, we can 
replace X!tandem with another search engine, by simply replacing the 

Table 12.4    primary file formats supported by OpenMs.

Format Description

mzML raw mass spectrometry data.5 Numpress compression9 and 
indexed mzML10 supported ((hUpO–psi format))

idXML peptide and protein level identifications (OpenMs specific format)
featureXML individual peptide features (OpenMs specific format)
consensusXML Groups of quantified peptide features. For example, siLaC peptide 

pairs or groups of corresponding peptides in label-free quantifi-
cations (OpenMs specific format)

trafoXML retention time transformations (OpenMs specific format)
fasta protein sequence databases
toppas OpenMs workflows and parameter settings (OpenMs specific 

format)

Table 12.5    Further supported file formats in OpenMs.

Format Description

mzXML, mzData Legacy formats for raw mass spectrometry data67,68

mgf Mascot generic format, raw mass spectrometry data
mztab text format for mass-spectrometry-based proteomics and 

metabolomics results17,18 (hUpO–psi format)
mzidentML XML format for identification results of mass-spectrome-

try-based proteomics studies.11,12 Used for priDe submis-
sions (hUpO–psi format)

mzQuantML XML format for quantitative results of mass-spectrometry-based 
proteomics studies69 (hUpO–psi format)

qcML XML format for quality control metrics from mass-spectrometry 
experiments59 (hUpO–psi standard format)

traML XML format for selected reaction Monitoring (srM) transition 
lists70 (hUpO–psi standard)

pepXML XML format for peptide level results of mass-spectrometry-based 
proteomics studies71,72 (trans-proteomic pipeline format)

protXML XML format for protein level results of mass-spectrometry-based 
proteomics studies71,72 (trans-proteomic pipeline format)
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search engine adapter. OpenMs provides adapters for Mascot,19 Ms-GF+,20,21 
OMssa,22 MyriMatch23 and inspect.24 the remaining workflow does not 
need to be changed. as we will see later on in the chapter, often we can re-use  
complete and well-tested modules in other workflows and projects, and 
therefore speed up the development time of bioinformatics solutions.

the modular workflow design provides us not only with great flexibility, 
but transparency. each intermediate step of an analysis can be inspected and 
therefore easily optimized. each protein identification, each reported fold 
change in the final result can be traced back to the specific set of spectra they 
originate from. For example, after opening the mzML spectral data and the 
idXML identification result in tOppView, we can link each precursor frag-
mentation to the corresponding peptide sequence in the result, Figures 12.4 
and 12.5.

12.3   iTRAQ Labeling
after the simple peptide identification example in the last section, we now 
turn to a complete proteome comparison workflow and re-analyze a previ-
ously published quantitative proteomics dataset. in a recent study,25 subban-
nayya et al. used 4-plex itraQ labeling26 (see Chapter 8) for the identification 
of gastric adenocarcinoma biomarkers in blood serum. serum samples from 
ten patients and ten controls were pooled and subsequently trypsin digested. 
the control and carcinoma samples were labeled with itraQ reagents 
(114, 115) and (116, 117) respectively. after strong cation exchange (sCX) 
fractionation, the samples were measured on an LtQ Orbitrap Velos mass 

Figure 12.4    experimental data (mzML) and peptide identifications (idXML) in 
tOppView. Note that three of the peptides were fragmented multiple 
times leading to the same peptide sequence.
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spectrometer (thermo scientific). the mass spectrometry data are available 
via the priDe14,15 archive under identifier pXD001265.

the authors analyzed the data with proteome Discoverer® (thermo sci-
entific, version 1.3.0.339) in combination with the two search engines Mas-
cot (version 2.2) and sequest-ht®.27 a 1% FDr cut-off at peptide level was 
applied. the analysis resulted in 643 quantified proteins, 48 of them up-reg-
ulated (fold change, fc > 1) and 11 of them down-regulated (fc < −1). among 
the up-regulated proteins, the authors identified seven biomarkers of partic-
ular interest: itih4, MBL2, shBG, saa1, OrM1, sOD3 and iGFBp2.

the re-analysis of the data combines OpenMs components with the  
external search engine Ms-GF+20,21 and the protein inference algorithm 
Fido,28,29 Figure 12.6. the OpenMs workflow quantifies 722 proteins. Forty 
of them show an up-regulation (fc > 1) and 8 of them a down-regulation (fc < 
−1). six out of the seven up-regulated biomarkers in ref. 25 are corroborated 
by the new analysis, Figure 12.7a. the protein iGFBp2 was not quantified. in 
conclusion, the re-analysis quantifies +12% additional proteins with a more 
conservative fold change distribution.

the OpenMs workflow comprises of tools for identification, numbered (3) 
to (12), and quantification, numbered (13) to (18), Figure 12.6. the peptide 
identification module, (3) to (6), is nearly identical to the previously discussed 
workflow. Merely the search engine was interchanged. in steps (7) to (12), 
we will now determine the complete set of identified proteins in the sam-
ple. in preparation for the protein inference algorithm, we first calculate the  
posterior error probabilities30 for both good and bad psMs. Different fractions 
are then combined and sent via an adapter to the external protein inference 
algorithm Fido. its performance is similar or better than the performance of 
the well-established proteinprophet tool.29,31 For a more detailed discussion, 
let us consider the simple example in Figure 12.7B. From a set of identified 

Figure 12.5    the same experimental data as in Figure 12.4 in 3D view in tOppView.
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peptide sequences 1 to 8, the algorithm infers the presence of proteins a to e 
in the sample. solid and dotted lines link peptides and their corresponding 
proteins. peptides 1, 2, 4, 6 and 7 are proteotypic i.e. their sequence appears 
in only one of the five proteins. two proteins are members of the same  
protein group if they share one or more peptide sequences. in our example, 
this results in two groups [a, B, C] and [D, e] of identified proteins.

Figure 12.6    Workflow for the relative protein quantification of itraQ labeled  
samples. it combines tools for peptide and protein identification 
(3–12) and tools for quantification (13–18).
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the identification of these proteins does not automatically imply that 
all of the proteins are also quantified. here the user can choose from three  
different options: all, greedy and proteotypic. in the first case, all proteins  
are quantified based on the quantitative information from all correspond-
ing peptides. For example, protein a is quantified based on abundances of  
peptides 1, 3, 4 and 5, and C based on 3 and 5. all five proteins are quantified. 
But this approach has a downside. Many protein quantifications will be unre-
liable due to shared peptides such as sequence 3.

On the other hand, the proteotypic option is very reliable. in this case, 
only proteotypic peptides are used for quantification. For example, protein 
a is quantified based on peptides 1 and 4, B based on 2, and D based on 6 
and 7. proteins C and e are not quantified. a clear disadvantage is the lower  
number of proteins quantified. Many of the peptides, such as sequence 3, 
will not contribute to the protein quantification at all, although they might 
have been reliably identified and quantified.

the second option strikes a good compromise between these two cases. in 
the greedy method, each of the peptides is used exactly once; see solid lines 
in Figure 12.7B. Let proteins a to e be ranked by their protein score, i.e. a is 
the most and e the least reliable of the protein identifications. starting with 
a, each protein uses as many peptide quantifications as are still available. 
For example, peptide 5 is used for the quantification of a, but not C, since 
we are more confident that a is present in the sample than C. in this way, 
the entire set of peptides is used but not all of the identified proteins are 
also quantified. this greedy approach was adopted for our re-analysis of the 
adenocarcinoma dataset.25

Both the protein inference via Fido and the greedy post-processing of the 
resulting protein list are performed in step (10) of the workflow. after FDr fil-
tering at protein level in (11) and (12), the proteins and their corresponding 

Figure 12.7    (a) protein fold changes vs. protein intensities. (B) protein inference 
and quantification.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
02

59
View Online

http://dx.doi.org/10.1039/9781782626732-00259


Chapter 12270

peptide evidences are handed over to the proteinQuantifier tool. the protein 
quantification tool requires a second input: the peptide quantifications from 
steps (13) to (17). the itraQanalyzer detects the reporter ions at 114, 115, 116 
and 117 th† in all Ms2 level spectra, and adjusts their intensities using a cor-
rection matrix provided by sciex. in step (14), the iDMapper tool then maps 
the reporter ion intensities to the corresponding peptide identifications from 
the same Ms2 spectra. after combining all fractions, the peptide sequences 
and abundances are then passed to the proteinQuantifier tool. Finally, we have 
all necessary information and compile a list of quantified proteins.

the described itraQ workflow is optimized for data from LtQ Orbitrap 
Velos mass spectrometers and available for download from the repository 
http://openms.de/workflows. it can easily be adjusted for data from other 
machines by changing the parameter settings in the search engine adapter. 
alternatively, it can be turned into a tandem Mass tag (tMt)32 workflow by 
replacing the itraQanalyzer by the tMtanalyzer tool. the workflows in the 
repository should be considered as templates, which users can easily adapt 
for their specific projects and needs.

12.4   Dimethyl Labeling
in the two workflows discussed so far, both identifications and quantifica-
tions were based on Ms/Ms spectral data. We will now focus on Ms-based 
quantification techniques with stable isotope labeling. here we have  
chosen dimethyl labeling,33 but with minimal changes this workflow will 
work equally well for siLaC (stable isotope labeling by amino acids in cell 
culture)34 and iCpL (isotope-coded protein label) data.35,36

Our test dataset is simple. We used formaldehyde-based dimethylation of 
primary amines, i.e. peptide N-termini and lysine side chains, for the light 
(+28 Da) and heavy (+34 Da) labeling of a human embryonic kidney (heK) 
cell lysate. the two differently labeled samples were mixed with a fixed 
ratio of heavy : light = 1 : 4, i.e. a fold change, fc = −2. Without prior fraction-
ation, the sample was analyzed on a Q exactive Orbitrap mass spectrome-
ter (thermo scientific). as in the previously discussed itraQ workflow, we 
use the Ms-GF+ search engine20 and the Fido protein inference algorithm,28  
Figure 12.8. the analysis results in 532 protein quantifications with fold 
changes clustering around the expected value of fc = −2, Figure 12.9.

siLaC, iCpL and dimethyl labeling are widely used techniques for quan-
titative discovery proteomics studies.37,38 the shotgun approach provides 
a good coverage of the entire proteome, Ms1-based quantifications yield 
reliable protein fold changes which are often confirmed by multi-reaction- 
monitoring (MrM) follow-ups. Key, in these experiments, is the sensitive and 
accurate detection of peptide features in the mass spectrometry data.39 in the 
previous discussion of section 12.2, we already encountered peptide features. 
Figures 12.4 and 12.5 show three clear features, each eluting for between 20 and 

† [m/z] = th = Da/e, see https://en.wikipedia.org/wiki/thomson_(unit).
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30 seconds and with three to five peaks in their isotopic patterns. We focused 
on their Ms2 fragment spectra and corresponding amino acid sequences, and 
for the analysis in this section we will also detect them at Ms1 level. their 
abundances will form the basis of the final protein quantifications.

the peptide features in our test dataset appear in pairs, due to the light 
and heavy dimethyl labeling. the tOppView screenshot in Figure 12.10 
shows two clear peptide feature pairs with amino acid sequences VLQatV-
VaVGsGsK and YsQVLaNGLDNK. in both cases, the N-termini and lysines 
are tagged with either light or heavy dimethyl modifications. since both  
peptides are doubly charged, this results in a relative m/z shift of (6.031 Da 
+ 6.031 Da)/2 C = 6.031 th. the heavy partners show a lower intensity than 
their light counterparts, due to the fixed mixing ratio of 1 : 4. the tOppView 
screenshot shows three different layers: the original spectral data (mzML), 
the FDr-filtered peptide sequences (idXML output of step (13)) as well as the 

Figure 12.8    Workflow for the quantification of dimethyl labeled samples.
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Figure 12.9    protein fold changes vs. protein intensities dimethyl labeled heK cell 
lysate sample with fixed ration of fc = −2. One and two sigma devia-
tions in the fold change are shaded in dark and light grey respectively.

Figure 12.10    two peptide feature pairs with relative m/z shifts of 6 th. the tOp-
pView screenshot shows the raw spectral data (mzML), FDr fil-
tered peptide sequences (idXML) and the detected peptide features 
(featureXML).
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detected features (featureXML output of step (4)). We will start our discus-
sion of the workflow with the feature detection and return to the sequence 
identification later on.

the spectraMerger tool in step (3) prepares the spectral data for the sub-
sequent feature detection step. the tool averages neighboring Ms1 spectra 
within a specified retention time (rt) range. signals from true peptides reap-
pear in neighboring spectra and are amplified, while background noise fluc-
tuates and is suppressed. the moving average increases the signal-to-noise 
ratio and results in smoother peptide elution profiles in rt direction. For 
the feature detection, OpenMs provides a number of different algorithms. 
here we have chosen the FeatureFinderMultiplex tool.39–41 it can detect sin-
gle peptides, but also peptide pairs, triplets etc. in the spectral data (hence 
multiplex). searching directly for pairs of peptides instead of single peptides 
has an advantage. two isotopic peak patterns with a fixed relative shift pro-
vide a clearer search pattern than a peak pattern from a single peptide. False 
positive detection from the background noise is therefore less likely and the 
search more sensitive. in step (18), the peptide features are then annotated 
with peptide sequences from the identification part of the workflow. the 
following steps resemble the ones in the itraQ workflow. Features with-
out sequence annotation are removed, and multiple sequence annotations 
resolved. the remaining peptide feature pairs, each now annotated with a 
single sequence, are then passed to the protein quantification. Note that 
the workflow contains no FileMerger tool. the sample was not fractionated 
and consequently the merging of multiple mass spectrometry runs is not 
necessary.

the identification branch of the workflow begins with a pre-processing 
step. in shotgun experiments, the most intense peaks of each Ms1 spectrum, 
typically 10, are fragmented resulting in Ms2 spectra from which the pep-
tide sequences are deduced. the isolation window around the precursor ion 
positions is relatively large, about ± 2 th.42 small errors in the precursor posi-
tion are therefore not crucial. the mono-isotopic peak of a peptide will be 
fragmented and its fragments part of the Ms2 spectrum. On the other hand, 
many search engines assume the precursor mass to be identical with the 
mono-isotopic parent mass. Deviations between the two can lead to miss-
ing identifications or incorrect scoring. some search engines therefore pro-
vide correction parameters in order to account for this possible discrepancy. 
in our analysis workflow, we can correct any mistaken precursor positions 
before the search. From the feature detection we already know the position 
of all peptides and their mono-isotopic masses. the highresprecursorMass-
Corrector tool in step (5) simply shifts any incorrect precursors to the true 
mono-isotopic peak positions.

the search strategy we follow in this workflow differs slightly from what 
we have encountered in the previous two analyses. We already know that 
each peptide in our sample is modified. the N-termini and lysines are either 
lightly or heavily dimethylated. One possible option is to run a single search 
and specify light and heavy dimethylation as variable modifications. But this 
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approach is not ideal since it also allows for entirely unmodified peptide 
sequences in the result. instead, we run two separate searches with different  
modifications: one with a fixed light dimethylation and one with a fixed 
heavy dimethylation. an additional benefit is the decrease in processing 
time, since fixed searches are significantly faster than variable ones. the two 
search results are then combined in steps (8) to (10). in case both searches 
report a peptide hit for the same Ms2 spectrum, the ConsensusiD tool43 
assigns the psM with the better score to that spectrum.

But the tool is even more versatile. in our analysis, we merged two different  
searches from the same Ms-GF+ search engine. ConsensusiD is also able 
to combine search results from entirely different search algorithms. Using 
sequence similarity scoring mechanism, the algorithm estimates scores for 
sequences that are not reported in one of the results. From this complete 
score matrix it can then construct a carefully weighted consensus score for 
each of the reported peptide sequences. Combining results from multiple 
search algorithms in this way can further increase the number of peptide and 
protein identifications. the basic concept behind ConsensusiD is similar to 
that of iprophet, Msblender or peparML.44–47 the remainder of the workflow 
is identical to what we have encountered and discussed in the previous two 
examples. in steps (11) to (13), the peptide sequences are FDr-filtered and 
subsequently mapped to the detected peptide feature pairs. apart from the 
minor precursor correction, the peptide identification and quantification are 
performed independently from each other. Unlike in other approaches, the 
feature detection is not based on any sequence information. the mapping 
in step (18) serves as an important cross-check. Only peptides, for which 
identifications and quantifications conform, Figure 12.10, are passed on to 
the protein quantification. Finally in steps (14) to (17), a protein list is con-
structed, again FDr-filtered and then provided to the protein quantification. 
as we have shown, the reported protein fold changes reflect the fixed mixing 
ratio of our test sample, Figure 12.9.

the depicted workflow in Figure 12.9 contains a single output node in (22). 
Note that we can add further outputs at any step of the workflow and thereby 
check the intermediate results. For example, the result of node (13) can be 
piped to an additional output or exported to mztab and mzidentML, as done 
in our first discussed workflow, Figure 12.3(a). in this way, the FDr-filtered 
peptide identifications can be inspected in tOppView (idXML) or any text 
editor (mztab). similarly, we can have a closer look at the peptide level quan-
tifications. the output of node (20) contains all peptide feature pairs that will 
contribute to the protein quantification (consensusXML). Often the user is 
interested in not all but one specific protein. We can further filter the output 
of node (20) using the simple workflow in Figure 12.11. the FileFilter tool 
is very versatile and contains among other parameters a protein accession 
whitelist. Only peptides that occur in the sequence of one of these whitelist 
proteins will pass the filter. the evidence for each individual reported protein 
fold change can therefore be conveniently checked and traced back to the 
original spectral data.
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12.5   Label-Free Quantification
in our final protein quantification workflow, we dispense with labels alto-
gether. in the label-free approach, multiple samples are measured in indepen-
dent mass spectrometry runs. the technique relies on the fact that identical 
peptides will elute at the same or similar times in each of the runs. in the 
subsequent data analysis, corresponding peptide features are matched, and 
their abundances in the different runs can be compared. the approach has 
several advantages over the previously discussed techniques: a less complex 
sample preparation, an increased number of samples that can be compared 
simultaneously, and a more complete coverage of the proteome.37,48 a pep-
tide needs to be fragmented and reliably identified in only one of the shot-
gun runs in order to contribute to the protein quantification. On the other 
hand, the data processing is more challenging and can have a major impact 
on the final results.1 the alignment and correct matching of corresponding 
peptide features,49 and the subsequent normalization of the feature intensi-
ties are two crucial steps in the analysis.50,51 We will focus on these two points 
in the following discussion of the OpenMs workflow, Figure 12.12.

as proof of concept, we re-analyze a previously published spike-in data-
set.52 the authors prepared two whole cell lysates: one from a bacterial cell 
line (Streptococcus pyogenes, strain sF370) and one from a human cell line 
(fetal lung fibroblasts, hFL-1). the two samples were mixed in six different 
ratios, table 12.6, with increasing concentration of the bacterial sample 
and decreasing concentration of the human sample. the six mixtures were 
then measured on an LtQ Orbitrap XL instrument (thermo scientific) with 
a 75 min gradient. the OpenMs analysis results in a total of 496 quantified  
proteins. they display the expected linear correlation between sample con-
centration and reported protein intensities. two examples with medium pro-
tein abundance and good correlations R > 0.96 are shown in Figure 12.13(a). 
the correlation and average protein abundances are plotted in Figure 
12.13(B). as expected, the detection of the linear behaviour becomes more 
difficult as the protein intensities decrease.

the label-free quantification workflow is the most complex of the four 
workflows we present in this chapter, Figure 12.12. Fortunately, it is also the 
easiest one to explain since most of its components were already discussed 
previously. the analysis starts with a database search using the Ms-GF+ search 
engine and a target-decoy database containing both human and bacterial 

Figure 12.11    Workflow for the filtering of peptide level quantifications. Only  
peptides belonging to specified whitelist proteins can pass the filter.
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Figure 12.12    Workflow for label-free protein quantification.
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proteome. a correction of precursor positions is not necessary for LtQ Orib-
itrap data. FDr-filtered peptide identifications are generated in steps (5) to 
(8). in steps (9) to (14), the unfiltered psMs from the six runs are first com-
bined and then a set of proteins inferred and FDr-filtered. the quantitative 
part of the workflow starts again with the smoothing of the Ms1 spectra in 
retention time direction using a simple moving average. the peptide features 
are then detected and annotated with the sequence information. after step 
(15), we have six sets of peptide features (featureXML), one for each sample.

We now face the challenging task of matching corresponding peptide fea-
tures between the six different runs. some of the peptide features will have a 
sequence annotation, but many of them will not. this is because their Ms2 
fragment spectra are too sparse for a reliable identification, or the features 
were not fragmented in the first place. hence, we cannot make use of the 
peptide sequence annotation to find corresponding features. instead we 
will rely entirely on the retention time (rt) and mass-to-charge ratio (m/z) 
of each peptide feature. Modern high-resolution instruments can measure 
m/z positions very precisely. the deviation between mass spectrometry runs 
is minute. On the other hand, the time at which a peptide elutes from the 
column can vary significantly from run to run. We need to correct for these 
rt shifts by first aligning the six mass spectrometry runs. For this task only 
high-intensity features, which are repeatedly detected in all six runs, hold 
valuable information. We filter for these high-intensity peptides in step (16) 
and thereby simplify the alignment problem. a much clearer feature pattern 
is now repeated in each of the six feature sets. these sets are then collectively 
passed to the alignment algorithm that determines the relative rt shifts 
between the runs (trafoXML). these transformations are then applied to the 
entire, unfiltered feature sets in step (20). Corresponding peptide features 
now have the same m/z-rt position in each of the six runs. Matching features 
are then linked to so-called consensus groups (consensusXML). each group 
contains between one and six features. some features in a group are anno-
tated with a sequence, others are not. if both alignment and linking worked 
perfectly, the consensus groups contain no conflicting sequence annota-
tions. any remaining conflicts are resolved in step (23) by retaining only the 
highest-scoring identification in each group.

Table 12.6    Label-free test dataset. relative concentrations 
of the bacterial and human samples in the six 
mixtures.

streptococcus pyogenes (%) human (%)

0 100
20 80
40 60
60 40
80 20
100 0
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Figure 12.13    (a) protein abundance vs. relative spike-in concentration % (Strep-
tococcus pyogenes) for proteins p02751 and Q99YL0, see table 12.6. 
(B) average protein abundance vs. correlation (concentration/protein 
abundance) for all quantified proteins.
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Unlike in labeled quantification techniques, the peptide features within a 
consensus group originate from different mass spectrometry runs. Changes 
in the liquid chromatography and spray instabilities can easily result in 
additional peptide intensity variations, which do not reflect the peptide 
abundances in the samples. the normalization of the peptide intensities is 
therefore an important part of any label-free data analysis. Various approaches 
have been proposed and implemented.50,51,53 the ConsensusMap Normalizer 
tool offers three different options: median correction, robust regression and 
quantile normalization. Median correction is the most simple and conserva-
tive of the three. the algorithm first determines the median intensity for the 
run with the most features. the intensities in the remaining runs are then 
scaled to the same median intensity. in robust regression, the feature inten-
sities are normalized pair-wise relative to the run with the most features. 
Given two runs, features are classified as outliers and non-outliers. From the 
non-outliers an average fold change is calculated and used for normaliza-
tion. the final quantile normalization is identical to the approach used in 
many microarray data analyses.54 in step (24) of our workflow, we apply a 
simple median correction to all peptide feature intensities. Finally, the pro-
tein quantification step combines the quantitative information at peptide 
level and the inferred protein list. the final output is a list of 496 proteins 
and their abundances. as we have seen in Figure 12.13(B), these abundances 
show the clear linearity that we expect from our spike-in test dataset.

12.6   Conclusion
in this chapter, we described in detail four typical data analyses using the 
OpenMs workflow system. Our discussion focused on the flexibility and mod-
ularity of the analysis workflows. We hope the four use cases help new users 
to understand the basic principles such that they are then able to design 
new workflows on their own. On the other hand, all of the complexity can be 
readily ignored when using OpenMs workflows as each workflow is simply a 
black box with typically two inputs, the spectral data and a database, and one 
output, the list of quantified proteins. the repository at http://openms.de/
workflows provides a range of already optimized workflows for specific tasks 
and specific mass spectrometry machines for download. For example, the 
previously discussed workflow in Figure 12.6 is optimized for 4-plex itraQ 
analyses of LtQ Orbitrap Velos data.

the workflow repository is continuously extended and updated by the 
OpenMs community. as new mass spectrometry machines and experimental 
techniques become available, new workflows will be uploaded to the repos-
itory. Often only minor changes are necessary to adapt an existing workflow 
for a different use. For example, the workflow in Figure 12.6 can be used 
for the analyses of itraQ data from an entirely different machine by simply 
adjusting the search parameters in the Ms-GF+ adapter in step (3). similarly, 
replacing the node (13) by a tMtanalyzer tool turns the same workflow into 
a tMt analysis pipeline. in many other cases, merely changing the workflow 
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parameters is not sufficient. For example in the workflow of Figure 12.8, 
we added the two additional nodes (3) and (5). the smoothing of the Ms1 
spectra and the correction of the precursors are not necessary, but these 
two pre-processing steps clearly improve the analysis of the Q exactive data. 
as a second example, consider the search strategy in steps (6) to (10) of the 
same workflow. We could have simply performed a single search with the 
dimethyl labels as variable modifications. instead, we run two separate fixed 
modification searches and subsequently combine the results. in this way, we 
can ensure that the search result does not include any unmodified peptide 
sequences. even in the context of well-established experimental techniques, 
a modular workflow system is of great advantage. some components early 
on in the workflow can be fine-tuned in order to work optimally for a specific 
LC-Ms, while later modules can be re-used in many other situations.

the benefits become even more apparent when we turn to novel experi-
mental techniques. as an example let us consider a recent study55 in which 
the authors identify binding sites in rNa–protein complexes using a combi-
nation of photo-cross-linking and high-resolution mass spectrometry. the 
mass spectrometry data were analyzed with an OpenMs workflow together 
with the search engine OMssa.22 Key, in the data analysis, was the genera-
tion of a list of precursor mass variants. the masses of all possible nucleo-
tides were subtracted from the experimentally observed precursor masses. 
a subsequent database search of all Ms2 spectra using all precursor mass 
variants would have required enormous processing power. instead the Ms2 
spectra were carefully pre-filtered in order to reduce processing time. For 
a detailed discussion we refer to the manuscript.55 here we simply want to 
point out that many components in this workflow are identical to the ones 
we have previously discussed in this chapter. examples are peptide feature 
detection, retention time alignment or sequence identifications. By re-using 
established and well-tested modules, the developers were able to focus on 
the novel aspects of their analysis pipeline.

in this chapter, we have presented only a small fraction of the over 100 tools 
in OpenMs. For example, the previously mentioned rNa–protein cross-link-
ing workflow includes a number of important tools that we have not dis-
cussed. in what follows, we want to give a very brief overview of the tools 
that are not covered in this introductory chapter. they fall broadly into three 
major areas of application: sWath data analyses, metabolomics and quality 
control reports. in all four of the discussed workflows, we analyzed data from 
typical shotgun LC-Ms experiments. in this so-called data-dependent acqui-
sition (DDa) approach, only high-intensity molecules are fragmented and 
subsequently identified. the data-independent acquisition (Dia) method56 
(see Chapter 10) is fundamentally different in that it fragments all ionized 
molecules in a sample. it is also known as sequential Windowed acquisition 
of all theoretical Fragment ion Mass spectra (sWath Ms). the approach 
allows for an improved coverage of the analyte, but also increases the com-
plexity of the data analysis. OpensWath57 is a set of OpenMs tools for the 
automated analysis of Dia mass spectrometry data.
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Liquid chromatography coupled to high-resolution mass spectrometry 
is not restricted to the field of proteomics. the technology is increasingly 
applied in metabolomics studies and the study of other small molecules. 
OpenMs provides a set of specialized tools for the detection of metabolite 
features in LC-Ms data.58 these tools can be readily combined with the label-
free quantification modules discussed in detail in section 12.5. the result-
ing workflows are well-suited for the fully-automated analysis of large-scale  
clinical metabolomics studies.

Finally, OpenMs offers a set of tools for the generation of modular quality 
reports. these reports can list the basic statistics of a dataset, and a wide 
range of different quality control metrics. For example, they can include 
total ion chromatograms (tiC), injection times, mass accuracy distribu-
tions, charge state distributions and nominal vs. fractional mass plots. the  
complete information of metadata, tables and plots can be exported to the 
qcML file format59 and conveniently viewed in any web browser.

With this set of over 100 different tools, OpenMs provides a lot of func-
tionality but anyone can contribute new tools and algorithms to the project 
if needed. OpenMs is an open-source software project hosted on the soft-
ware repository Github https://github.com/OpenMs. the OpenMs library  
contains over 1300 C++ classes with extensive documentation. stringent 
code review, continuous integration and a multitude of functional and unit 
tests ensure the robustness and continued support of the code. all data 
structures and algorithms of the library are also accessible over an interac-
tive python interface, pyOpenMs.2 this interface provides users with basic 
programming skills, further flexibility beyond the workflow system, and is 
particularly suited for fast prototyping. OpenMs is covered by the permissive 
BsD license, and can therefore be used in both academic and commercial 
projects.

Not all steps of a data analysis need to be processed within the OpenMs 
framework itself. OpenMs collaborates and is integrated with many other 
software projects. as discussed in section 12.2, OpenMs relies entirely on 
the proteoWizard project to bridge between the proprietary vendor formats 
and the open mzML standard. For peptide identification, OpenMs relies on 
proven external search engines rather than a single internal solution. alter-
natively, identifications can be directly imported from any academic or com-
mercial software package that supports the pepXML, protXML or mzidentML 
file standards. in the same way, the support of open file format standards 
facilitates the downstream statistical analysis of the OpenMs results. 
Users can choose from a range of tools such as r packages (see Chapter 15)  
Msnbase,60 Msstats61 and aLFQ,62 or skyline.63 at no stage of the data analy-
sis is the user locked in.

throughout this chapter, we used the tOppas application for the design 
and execution of the analysis workflows, Figure 12.1. tOppas is a so-called 
workflow engine. it is independent of the individual OpenMs tools, and 
merely ensures their correct order of execution within a workflow. that 
means tOppas can be replaced by other workflow engines without altering 
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the workflows themselves. One possible alternative is the Konstanz infor-
mation Miner (KNiMe).64 OpenMs is fully integrated with KNiMe via com-
munity nodes. the KNiMe project provides further nodes for statistical 
data analysis, visualization, machine learning and various scripting lan-
guages such as r. that enables users to combine OpenMs analyses and 
statistical post-processing steps in a single, fully automated workflow.65 
a second alternative is the Galaxy workflow engine.66 as in tOppas and 
Knime, the OpenMs tools are represented by individual nodes and can 
be combined to complex workflows. the Galaxy project was initially con-
ceived as a platform for the analysis of genomics data but is gradually 
being extended to proteomics (see Chapter 14). With the addition of pro-
teomics tools such as OpenMs, it is now an ideal framework for the data 
analysis of complex multiomics studies. in summary, OpenMs solutions 
can be deployed on a variety of different platforms. an OpenMs workflow 
designed on a small laptop computer can also be executed on a big KNiMe 
server or a powerful Galaxy computing cluster. this scalability makes 
OpenMs solutions ideally suited for academic, clinical as well as pharma-
cological applications.

Modularity has been a reoccurring theme in this chapter. it underlies 
many characteristics of the OpenMs software framework. Data analyses 
become transparent, because intermediate steps can be inspected and opti-
mized. Complete modules of tools can be re-used in different projects, and 
thereby reduce development times. external software solutions can be easily 
integrated. the software modules can be automatically tested, and therefore 
much better supported in the long run. Finally, the modularity can also be 
ignored, and workflows from the repository readily be used for standard data 
analyses. OpenMs provides a good platform for the analysis of today’s pro-
teomics and metabolomics data, and is flexible enough to adapt to changing 
requirements in the future.
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13.1   Introduction
Computation has become an essential component to the current era of 
biomedical research, distinguished by its large-scale and system-wide 
approaches as exemplified by the 1000 Genomes project,1 the growth of  
personalized molecular medicine, and systems biology. key to this new era 
of research is the use of high-throughput technologies enabling genome-, 
proteome- or metabolome-wide studies. Common to all these technologies 
is the generation of large datasets requiring informatics solutions, includ-
ing software for complex analyses and other computational resources for 
capturing, processing, annotating and disseminating data and experimental 
procedures.
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as it has in other ‘-omic’ fields, the reliance on computation and informat-
ics has created a bottleneck in mass spectrometry (ms)-based proteomics.2 
despite much improvement over the last decade and an increased atten-
tion to design, researchers still face many challenges in this area. although 
many software applications exist, these often remain difficult for research-
ers to access and implement, especially for investigators with limited  
computational expertise seeking to conduct large-scale studies. addition-
ally, ensuring that complex analyses using multiple software programs are  
documented and communicated in a manner adhering to scientific stan-
dards, and done with process transparency to enable reproducibility by oth-
ers is a challenge rarely met. Consequently, the richness of results obtained 
by researchers using high throughput technologies suffers, hindering the 
translation of information into knowledge and limiting new discoveries of 
critical importance to biology.

inherent to ms-based proteomics informatics, specifically those used for 
“bottom-up” proteomics approaches based on tandem mass spectrometry 
(ms/ms) and sequence database searching,3 are stepwise analytical work-
flows, wherein each step many times requires accessing a single-standing 
software program. these software programs are targeted at the numerous 
levels of information that biomedical researchers seek from proteomics 
studies, such as protein identification, characterization of post-translational 
modification (ptms), and quantification of protein abundance. numerous 
effective, single standing software programs exist to meet these needs, both 
commercial and open-source. unfortunately, although proteomics research-
ers can intuitively envision how these could be assembled into analytical 
pipelines of workflows, many do not have the necessary skill sets or training 
to do so. thus, researchers are forced to partner with computer experts, or, 
more often, resigned to operating these on their own, one software at a time 
in a non-integrated fashion.

in response to these limitations in ms-based proteomic informatics, some 
groups have developed customized “pipelines” that link together a number 
of software programs. the trans proteomic pipeline (tpp)4 and searchGui–
peptideshaker5,6 are some notable examples. however, despite the effective-
ness of some of these integrated pipelines they have significant constraints. 
for one, these pipelines can be limited in the choices of software programs 
they offer. thus while facing many requests from the community for new 
functionality, the responsibility for the framework and analytical applica-
tion maintenance and development rests with the small group of developers 
alone. Consequently, framework integration of powerful new software can 
be lagging. furthermore, none of these provide an environment that facil-
itates complete sharing of workflows, including experimental information 
and exact parameters used for each software program within the workflow. 
this limits the ability of others to reproduce results employing sophisticated 
procedures for analysis of large-scale ms-based proteomics data – contributing  
to the recognized issue of lacking reproducibility in the field.7

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
02

89
View Online

http://dx.doi.org/10.1039/9781782626732-00289


291Using Galaxy for Proteomics

13.2   The Galaxy Framework as a Solution for  
MS-Based Proteomic Informatics

With a focus on flexibility, usability, process transparency and reproducibility,  
Galaxy is a freely-available, open, web-based bioinformatics platform or work-
bench.8 Galaxy was initiated as a solution for the genomics research com-
munity, which over the years has encountered many of the same informatics 
challenges as described previously for ms-based proteomics. Via the internet 
and through a consistent and simple interface, users have at their fingertips 
access to a series of analytical programs and on demand tutorials guiding 
them through the process of multiple computational analyses and bioinfor-
matics processing tasks (http://main.g2.bx.psu.edu/). using data provenance 
information and user activity tracking within the Galaxy space, history logs 
are recorded in stepwise increments that can be saved for future reference 
and shared with any or all Galaxy users or exported for publications. utilizing 
a sniffer function and XmL configuration files for tracking software input 
file format requirements and compatibility, Galaxy also works as an invisi-
ble guide to users on what next steps are possible in an analytical process 
or pipeline. Galaxy also acts as an enterprise solution, providing centralized 
coordination of resources such as the creation of reference genome indexes 
or proteomics reference libraries or other shared data libraries, in addition 
to data analysis software tools. Lastly, Galaxy is built with scalability in mind, 
amenable to deployment on high performance computing infrastructure8 to 
aid in handling large data volumes.

the Galaxy framework benefits from a wide user community, as well as a 
dedicated team of developers who work to maintain the core platform and 
make it usable by the broader biological research community. as the frame-
work has matured over the last decade, so have the accessible resources for 
training new users in its operation. the core Galaxy team has developed 
“Galaxy 101” which helps to introduce new users to the framework (found 
at https://wiki.galaxyproject.org/Learn#Galaxy_101). this site contains basic 
information on user operations in Galaxy, as well as more targeted tutorials  
focusing mostly on use of the software for analysis of next Generation 
sequencing data for genomic and transcriptomic characterization. here we 
describe some of the basic operations in Galaxy that are important for its use 
in proteomic data analysis.

13.2.1   The Web-Based User Interface
Galaxy is web-based, such that the user interface operates through any web 
browser. figure 13.1 shows a snapshot of the user interface. this shows the 
basic view as seen by the users, which includes a tool menu, the main viewing  
window and the active history. the tool menu provides a listing of available 
software that can be utilized to process data of interest. the structure of this 
menu can be customized to any given Galaxy instance. the main viewing 
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Figure 13.1    the web-based user interface to Galaxy.
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293Using Galaxy for Proteomics

window enables a number of different user operations. parameters are set 
here when selecting software from the tool menu and building a workflow; 
it also serves as the canvas for editing a workflow and the window for view-
ing results using Galaxy-based visualization tools. the history section shows 
the operations and their status when running an analysis. histories are  
discussed in more detail in the following section. the history also provides 
access to results generated at any point along the way when using a workflow 
containing multiple processing steps.

13.2.2   Galaxy Histories
When a user uploads data, executes software tools for its analysis, and  
creates processed data outputs, Galaxy creates a record of all these steps. 
this record is archived and called a history. in addition to all input, inter-
mediate and final outputted datasets, the history also records all parameters 
and settings used for every software tool across the entire process. as such, a 
history is a complete archive of any data analysis carried out in Galaxy.

figure 13.2 shows an example history that represents a relatively simple 
ms-based proteomics workflow. here, there are multiple inputs, such as a 
raw ms data file (step 1), the processed raw data in the form of a peaklist 
for database searching (step 2 and 3) and a protein sequence database used 
to match peptide sequences to ms/ms data (step 4). the software tool for 
analysis of the input data is then selected, in this case the sequence database 
search software searchGui5 deployed as a Galaxy tool (step 5), which works 
on the peaklist from step 3 and the database from step 4. after the analysis is 
complete, in this case matching ms/ms to peptide sequences, an output file 
is created that becomes part of the history. Galaxy helps guide users through 
the building of the history, as it will only allow for selection of compatible 
data types from prior steps in a history when selecting a new software tool to 
perform a data analysis. Compatible tools for visualization of results also can 
be selected when clicking on a results file in the history.

histories provide users with flexibility in viewing outputted data and  
adding further analysis steps. the history contains not only the input data 
and final output data, but any intermediate datasets that were generated or 
utilized in a multi-step data analysis process. the user can access, view and/
or download any of the datasets contained in the history. also, steps can be 
added to the history and saved either as the same history file, or copied and 
renamed as a new file. for example, if the user wanted to further analyze the 
results from the sequence database search shown in the history (figure 13.2 
(step 5)), he or she could select another software tool from the tool menu 
and add an additional step for processing the data.

13.2.3   Galaxy Workflows
Workflows are related to histories, with some important differences. a Work-
flow consists of analysis and processing steps run in a particular sequence 
that are used in a history, but it does not contain any specific datasets 
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(inputs or outputs) like those found in a history. thus, a Workflow contains 
all the data analysis steps, including software settings and parameters for 
each subsequent step, but no data to serve as an input. the Workflow can be 
published and shared and appropriate data inputted by other users to create 
a new history.

Workflows can be created and modified in a number of ways. once a  
history has been created, a Workflow can be created simply by using the 
“extract Workflow” command. here, the analysis steps along with all rele-
vant parameters and settings, with their ordering preserved, are extracted 
from the history and saved to a Workflow. Galaxy also contains a Workflow 
editing function, which can be used to modify an existing Workflow or even 
build one from scratch. figure 13.3 shows a snapshot of the Workflow canvas. 
here, compatible software tools and processing steps can be linked together 
via a graphical interface to build a multi-step Workflow. as with the creation 
of histories, Galaxy helps guide users through the creation of Workflows by 
only allowing the linkage of software tools that produce data compatible with 
analysis by the next software tool selected. as such, the intelligent structure 
of Galaxy helps users avoid generating Workflows that will contain incom-
patible tools and steps that would need to be corrected later.

Figure 13.2    an example of a Galaxy history for protein identification from ms/ms 
data via sequence database searching. the history contains the raw 
data uploaded (step 1), the processed peak list(s) (steps 2 and 3), the 
protein sequence database used (step 4) and the sequence database 
search software used with settings (step 5).
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Figure 13.3    the Workflow editing canvas in Galaxy. the graphical interface enables building of multi-step workflows, guiding users 
through the use of compatible tools for specific input and output data.
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13.2.4   Sharing Histories and Workflows in Galaxy
arguably the most powerful and unique feature of the Galaxy framework is 
the ability to share not only software tools, but also complete histories and 
Workflows between users. this sharing functionality offers several powerful  
features: dissemination of even complex workflows and easy use by others, as 
all software settings and parameters critical to optimal operation are shared 
in the Workflow or history, obviating the need for re-creating these analytical 
workflows from scratch; reproducibility between different laboratories, an 
issue that has been difficult to master in the ms-based proteomics commu-
nity where each laboratory uses its own software and settings; establishment 
of optimized standards in data analysis that can be shared between laborato-
ries and used on a variety of different data sets.

sharing is accomplished in a number of ways. figure 13.4 shows a screen-
shot of how these are used via the user interface. first, Workflows or histories 
can simply be made public to all users of the Galaxy instance via choosing 
a simple “publish history” option. the Workflow or history is then listed 
with all others that have been published, and are now accessible by other 
users. second, rather than publishing as a publically available Workflow or  
history, the user can choose to create a urL link, which, when clicked, will 
open the process via the locally installed Galaxy instance, making it immedi-
ately usable within another user’s account. the user can choose to share with 
only selected other researchers, by sending a link via email. Lastly, in the case 
of Workflows, these can be saved as a Galaxy-formatted file (.ga file type). 
this can be imported by other users to make use of the analytical process.

13.3   Extending Galaxy for New Data Analysis 
Applications

13.3.1   Deploying Software as a Galaxy Tool
a core mission in the original conception of Galaxy was to make a platform 
that was flexible and extensible, amenable to integration of a wide variety of 
software tools for different analysis applications. Galaxy can be extended to 
a new area of analysis by adding tools, datatypes, workflows, and interactive 
plugins such as a visualizations.

a Galaxy tool is a configuration file that the Galaxy server can transform 
into a web form and that specifies a command line that can be executed 
by a Galaxy job runner. thus, any software program that can be run on a  
command line without requiring interaction by a user can be incorporated 
into Galaxy as a tool. Galaxy presents a tool to the user via the web-based 
interface as a web form, in which the user can select any inputs and options 
required by the tool to generate its command line. Clicking the ‘execute’ but-
ton in the web form submits the tool to Galaxy to be queued for execution 
as a job. a tool job produces one or more output files that are recorded as 
datasets in the active history.
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Figure 13.4    a screenshot of the functionality for sharing a history in Galaxy. here, a urL for the history can be created for sharing with 
other users, or, optionally, the urL can be emailed to a single, selected user.
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every dataset in Galaxy is assigned a datatype, which informs Galaxy about 
the format of the file. Galaxy datatypes represent a hierarchical class system 
for file formats. for example, a gene feature file, Gff or Gtf, is a tabular file 
with a specific number of columns, each with a particular meaning. a tabular 
file is a text file in which each field in a line is separated by a taB character.  
Correctly specifying the input and output datatypes associated with any 
given Galaxy tool prevents users from providing inappropriate input files to 
an application. for example, the “select first lines” tool in Galaxy can operate 
on any text file with lines including tabular and Gtf formats, whereas the 
“Cut columns” tool requires lines of a file to be separated into fields by the 
taB character. specifying the input to the “Cut columns” tool as a tabular 
datatype prevents a user from providing it an input dataset that does not 
contain taB-separated fields. these are examples of how Galaxy helps guide 
users through the process of workflow generation, helping them avoid tool 
combinations that are not compatible with each other.

a new tool is added to Galaxy by providing a tool configuration file. this 
XmL-based file specifies the options to present to the user in a web form, a 
template for generating the command line, and the output datasets that are 
produced. the following example is the configuration file for a simple tool 
that retains the beginning of a file and removes the remaining lines:

<tool id = "Show beginning1” name = "Select first" version = 
"1.0.0">
<description>lines from a dataset</description>
<command interpreter = "perl">headWrapper.pl $input $lineNum 
$out_file1</command>
<inputs>

<param name = "lineNum" size = "5” type = "integer" 
value = "10” label = "Select first" help = "lines"/>
<param format = "txt" name = "input" type = "data" 
label = "from"/>

</inputs>
<outputs>

<data format = "input" name = "out_file1” metadata_
source = "input"/>

</outputs>
</tool>

the id and version attributes in the tool tag provide a unique identifier 
that Galaxy uses for tracking data provenance and providing reproducibility. 
the inputs tag contains options to present to the user in the web form. in 
this example, the “input” parameter will allow the user to select any textual 
dataset in the active history (the “format” parameter limits the selection of 
datasets to those that derive from datatype “txt”.). the “linenum" parameter 
lets the user enter the number of lines of the input file to copy to the out-
put. the command tag contains a template for the command line to execute. 
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the command template contains variable names, denoted with the ‘$’ prefix, 
that refer to the inputs and outputs. Galaxy generates the command line by  
substituting the values of the named parameters for the variable names in 
the command template. finally, the outputs tag specifies any output files gen-
erated by the command line that should be retained as datasets in the Galaxy 
history.

While the preceding example demonstrates the essential aspects of a 
tool configuration file, many software programs require more sophisticated  
configurations. fortunately, Galaxy provides documentation that can help. 
the tool configuration specification (https://wiki.galaxyproject.org/admin/
tools/toolConfigsyntax) provides a rich set of tags from which to define a tool. 
some software applications require a configuration file for settings rather than 
options that can be expressed on the command line. Just as the command tag 
contains a template for generating a command line, configfile tags can specify 
templates for generating temporary files with parameter value substitution. 
the tool configuration syntax provides the means for conditionally including 
parameter options. By carefully constructing the tool configuration, the tool 
developer can limit the selection of options for a software program to elimi-
nate combinations that would cause the program to fail.

as discussed, a Galaxy Workflow is a network of tools in which the output 
dataset of a tool may be connected as an input dataset for a tool operating in 
the next step of the Workflow. When a Workflow is executed, Galaxy manages 
the execution of each individual tool specified in the sequence of analysis 
steps. a tool in the Workflow is queued as a job as soon as all of its input 
datasets are available.

13.3.2   Galaxy Plugins and Visualization
While tools and Workflows are designed to run without user intervention, 
interactive plugins provide the means for users to interactively explore the 
datasets in a Galaxy history. for example, the scatterplot visualization plugin 
allows the user to generate and manipulate scatterplots for any tabular file in 
the history, enabling the user to view the correspondence of any two numer-
ical columns. numerous visualization plugins tailored toward more viewing 
of more specific datatypes (e.g. assembled dna or rna sequences) have also 
been developed for use in Galaxy.9

developing a visualization plugin for Galaxy requires three elements:
  
 1.  a configuration file that specifies which datasets the plugin will operate 

on.
 2.  a template for a webpage that will be generated for the visualization. 

the template can contain variables that reference Galaxy elements, 
such as the active history and dataset that are to be viewed.

 3.  a set of Javascript code that the web browser will use to provide the user 
interaction and provide the connectivity to the Galaxy server for retriev-
ing more data or initiating jobs.
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13.4   Publishing Galaxy Extensions
an advantage of using Galaxy for analysis is the large and growing set of 
available tools, which are available in Galaxy tool sheds. administrators of 
a Galaxy server can browse or search Galaxy tool sheds for tools and even  
constructed Workflows to extend their server. When the administrator selects 
a tool to install, the Galaxy server downloads the tool from the tool shed and 
adds it to the tool panel making it available to users. although many groups 
maintain their own tool shed, the core Galaxy project operates the popu-
lar “main” tool shed at https://toolshed.g2.bx.psu.edu/. When installing a  
Galaxy server, its default configuration includes this main tool shed as a 
source of tools.

a Galaxy tool shed is a web server that administers a source code  
control system. to make a tool publicly available, a tool developer creates 
a tool repository in a tool shed and uploads the tool files to that reposi-
tory. the developer can provide updates to the tool as needed. the tool shed 
assigns a new version to each tool update, while maintaining a copy of the 
previous versions. this enables Galaxy users to select exact version of tools 
enabling them to replicate experiments.

a Galaxy tool shed can manage software dependencies. tool shed reposito-
ries may contain a tool_dependencies.xml file that can specify other tool shed 
repositories that need to be installed in order to run a Galaxy tool and can 
include the installation recipe for a piece of software. When a tool is installed 
on Galaxy, the server also installs all of the tool dependencies and it records 
those tool dependencies. it uses those tool dependency records to construct 
the execution environment with specific software versions when a tool is run.

the Galaxy project provides a command line application, planemo (https://
github.com/galaxyproject/planemo), to aid the development of Galaxy tools. 
the planemo application can initialize a tool configuration form, evaluate 
the tool as it is being developed, and publish the tool to any Galaxy tool shed.

Given the open-source and collaborative nature of the Galaxy project, 
many tool developers choose to host their tool development on Github. this 
provides a forum for discussing issues with tools and suggesting changes. 
the major Github sites for Galaxy tool development are: https://github.com/
galaxyproject and https://github.com/galaxyproteomics/tools-galaxyp.

13.5   Scaling Galaxy for Operation on High 
Performance Systems

there are many venues for accessing and using a Galaxy server. a number 
of publicly accessible Galaxy servers are available for general use, including 
https://usegalaxy.org/ operated by the Galaxy project. however, these public 
servers usually offer a restricted set of tools and resources. they generally 
lack the infrastructure needed for users with large volumes of data. thus, 
many users turn to operating their own Galaxy server, installed on hard-
ware infrastructure that can support their data volumes. a local server also 
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provides the ability to customize the platform, adding new tools and capabil-
ities specific to required data analyses.

one of the easier ways to access a personalized Galaxy server is to use a 
Galaxy project Cloudman image (described at https://wiki.galaxyproject.org/
Cloud). the Cloudman image can be operated in the cloud via amazon Web 
services (aWs). using a Cloudman image, the user has administrative privi-
leges to add tools to Galaxy and to scale up the compute resources as needed. 
of course, aWs is a commercial service, so fees must be paid that scale with 
the amount of compute resources used.

Galaxy is also installable on one’s own, local hardware resources. the 
default Galaxy download can be installed and immediately run on a unix-like 
system, such as Linux or mac os X. many tool developers will run a Galaxy 
server on their laptop computer for testing during development.

the default Galaxy configuration is sufficient for single user environment, 
but multi-user, enterprise installations (also called production servers) will 
need to be enhanced in order to provide the best performance. in these cases, 
Galaxy is usually run on a distributed, high performance computing infra-
structure. the Galaxy project provides a set of incremental enhancements 
and configuration changes for production servers https://wiki.galaxyproject.
org/admin/Config/performance/productionserver (https://wiki.galaxyproj-
ect.org/admin/Config/performance/productionserver) which includes these 
steps:
  

 ● use a front end apache or nginx proxy webserver to manage user 
authentication and to serve static data page requests.

 ● delegate the relational database to another server such as postgresQL. 
this is accomplished by providing a connection urL in the galaxy.ini 
configuration file.

 ● Configure Galaxy to run tool jobs on remote, heterogeneous com-
pute nodes. this is particularly important in a field like proteomics 
in which some required applications are only available for the Win-
dows operating system. the instructions for configuring Galaxy to use 
cluster resources are at https://wiki.galaxyproject.org/admin/Config/
performance/Cluster.  

13.6   Windows-Only Applications in a Linux World
unlike the genomics field, many ms-based proteomics software applications, 
particularly from equipment vendors, are only available for the microsoft 
Windows operating system. a Windows-only application can still be offered 
as a tool within Galaxy if the application can be executed as a batch script. 
there are two options for deploying such applications: they can either be 
run on Linux within a Windows emulation program such as Wine or mono, 
or the tool job can be routed to a Windows server to be executed using the  
pulsar job runner, a distributed job execution runner made for Galaxy 
(https://github.com/galaxyproject/pulsar).
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pulsar is a python web server application that allows a Galaxy server 
to run jobs on remote systems (including Windows) without requiring a 
shared, mounted file system. input files, scripts, and config files are trans-
ferred to the remote system, the job is executed, and the results are  
transferred back to the Galaxy server (ref: https://wiki.galaxyproject.org/
admin/Config/pulsar). there are some caveats to executing Windows jobs 
through Galaxy, one being that a tool that is intended to run on a remote 
Windows server needs to avoid any absolute file paths that would be unde-
fined on that server.

13.7   MS-Based Proteomic Applications in Galaxy
as mentioned previously, Galaxy offers many features beneficial to ms-based 
proteomics analyses. Large-scale proteome characterization using ms can 
require multiple single-standing software programs for the numerous steps 
necessary – from data pre-processing, to sequence database searching to 
results filtering and visualization. some experienced labs with computa-
tional proteomics expertise have developed platforms for data analysis.4–6 
despite their usefulness, these platforms do not generally offer the flexibility 
that many users require, namely workflows that can be designed to fit their 
analysis needs from start to finish. the flexibility of Galaxy for integration 
of disparate tools, as well as scalability to handle large data volumes, has 
many researchers turning toward the platform as a solution for ms-based 
informatics.

the main Galaxy tool shed offers a variety of tools for ms-based pro-
teomics from a number of groups from around the world (see https://tool-
shed.g2.bx.psu.edu/ under the section “proteomics”.). these tools cover the 
basic four modules that make up the current paradigm for most ms-based  
proteomic data analysis workflows. these modules include: (1) raw data 
conversion and pre-processing; (2) protein sequence database generation; 
(3) sequence database searching; and (4) results filtering and visualiza-
tion. in this section, we will discuss examples of Galaxy-based tools within 
each of these modules, and their role in the overall proteomic data analysis 
workflow.

13.7.1   Raw Data Conversion and Pre-Processing
typical ms-based proteomic data outputted from a mass spectrometer are in 
the form of vendor-specific, Windows-based raw files. traditionally, accessing 
the information encoded in these files was dependent upon vendor-produced 
software, which usually created processed results that were compatible with 
downstream, vendor-specific software applications. fortunately, the research 
community was able to develop tools for converting these vendor-specific 
results files into a generic format compatible with downstream tools, using 
programs such as msConvert10 and mGf formatter.11 since raw data from 
all mass spectrometers utilize Windows-based dynamic link libraries (dLLs), 
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their processing requires Windows programs to convert the initial raw data 
into a generic format for downstream applications.

the msConvert tool operates on Windows systems, processing the raw 
file information into an mzmL file format, the psi standard spectral file for-
mat used by the ms research community12 (see Chapter 11). this conversion  
process entails multiple steps such as peak detection and intensity mea-
surement, noise removal, baseline correction, monoisotopic peaks correc-
tion (for high resolution data), charge state determination, etc. the resulting 
mzmL files are many times referred to as “peaklists”, which the subsequent 
search algorithms will use as input files.

some sequence database search algorithms directly read mzmL as inputs; 
however a number of other programs use the mascot Generic format (mGf) 
format.11 mGf is a generic format that encodes multiple experimental ms/
ms spectra in a single file with mass-to-charge (m/z) values and associated 
intensities separated by headers. the header corresponding to each scan col-
lected by the instrument generating an ms/ms spectrum also has informa-
tion about the peptide mass, charge state, scan number, etc.

the main Galaxy tool shed has both msConvert and mGf formatter 
tools available as base tools for raw data conversion. one caveat with 
msConvert is that it must run on a Windows operating system to convert 
raw data, due to the Windows-based dLLs that are associated with the raw 
files specific to any type of commercially available mass spectrometers. 
thus, the pulsar job runner is needed to set up these Windows jobs from 
a Galaxy instance.

one characteristic unique to ms-based proteomic data as compared to 
other ‘-omic’ datatypes is the “one-to-many” relationship of a sample to raw 
data produced in proteomics. this is a result of the common experimental 
practice when analyzing complex protein digest mixtures of fractionating 
the sample prior to LC-ms analysis.3 this means a single starting sample 
produces tens of individual raw files (one per fraction), which need to be ana-
lyzed as a batch. the results from each raw file (peptide sequences matched 
to ms/ms spectra) then need to be combined together on the backend to 
obtain an overall result of identified proteins for the starting sample. this 
creates potential complications when using Galaxy, which was originally 
designed for analysis of a single data file generated for a single sample. one 
could set up multiple histories, one per raw file, and run these separately, 
although this would be very inefficient and also cause difficulties in combin-
ing results. fortunately the core Galaxy team has provided a solution. Galaxy 
utilizes a function called “dataset collections” wherein multiple files of the 
same type can be defined as a collection, and processed together through-
out the proteomic data analysis workflow. this capability simplifies the 
analysis process as the search engine processes the individual peak list files 
during the sequence database search and then groups the results together 
as one output. typically, a dataset Collection is defined on processed results 
(mzmL or mgf files) after raw file conversion using msConvert and/or mGf 
formatter.
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13.7.2   Generation of a Reference Protein Sequence Database
sequence database searching is a core approach for “bottom-up” proteom-
ics, in which ms/ms spectra are matched with peptide sequences contained 
in the database.3 typically, sequence database searches are performed using 
databases generated from known protein sequences, such as uniprot’s refer-
ence proteomes. in section 13.8.1, we will discuss the generation of protein 
databases using genomic–transcriptomic data for proteogenomic assess-
ments. to accurately match peptides and subsequently infer identities of 
proteins within the sample, a database must be as comprehensive as possi-
ble to maximize the peptide matches to ms/ms spectra. the database is also 
selected to specifically match the organism being studied.

Galaxy offers a custom tool, protein database downloader, that utilizes 
the uniprot knowledgebase (www.uniprot.org) containing numerous refer-
ence proteome sequences for an assortment of organisms. proteins within  
uniprot have been manually curated and annotated to minimize redundan-
cies and provide a rich menu of information on each protein (e.g. structural, 
biological function etc.) for researchers. a reference proteome of your selec-
tion can be chosen within the tool and it directly loads the desired database 
(in fasta format) into the current history. using the database downloader 
tool, sequence databases can be selected from a pre-defined list of organ-
isms, or a urL pointing to the location of the database at the uniprot site 
can be inserted for organisms not in the list. the tool downloads the most 
updated version of the database imported into the history from the uniprot 
site. earlier versions of databases can be stored locally or accessed remotely 
if a urL is available.

one of Galaxy’s strengths is the manipulation of text files, such as the 
fasta formatted sequence databases used for proteomics. tools exist for 
merging different fasta files into a single file, or even creating a decoy data-
base13 (made up of reversed or scrambled sequences), that allows for esti-
mations of false discovery rate (fdr) of putatively identified peptides and 
proteins.

13.7.3   Sequence Database Searching
as explained in Chapter 3, in order to infer the proteins present in a  
complex mixture of enzymatically cleaved peptides, a sequence database 
searching program is typically employed as a means to match ms/ms spectra 
to peptide sequences contained within a sequence database. although there 
are similarities in many cases, each search program uses a slightly different 
algorithm to obtain peptide sequence matches (psms) for each ms/ms spec-
trum. each of these programs then uses a scoring function to assess the con-
fidence of the psm. scores are calculated on such parameters as number of 
ions matched to expected peptide sequence fragments, mass accuracy of the 
m/z values recorded for intact peptides and fragments detected in ms/ms, as 
well as a plethora of other parameters. there is not one perfect solution for 
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sequence database searching, and it is well-established that different search 
engines usually provide at least slightly different results in proteins identi-
fied.14 Galaxy is able to capitalize on this reality, by deploying many different 
search programs and providing users a choice to use one or many of these in 
their workflows. We describe some of these options here, focusing on both 
open and free software as well as commercial choices.

Galaxy currently offers several open source, non-commercial options 
for sequence database searching. the standalone tool X!tandem15 is 
one of the most widely used programs, and was the first deployed in Gal-
axy. more recently, the searchGui5 platform has been deployed in Galaxy. 
searchGui capitalizes on the distinct and complementary algorithms used 
by different search programs enabling users to analyze their ms/ms data 
using a suite of different open source software (currently X!tandem, myri-
match, ms-amanda, ms-Gf+, omssa, Comet, and tide). the output from 
all these search programs can then be tied together and viewed via the  
companion peptideshaker program6 described in the next section. although 
both searchGui and peptideshaker can be installed as a stand-alone desktop 
application, their implementation in Galaxy provides scalability for larger 
datasets as well as linkage to other Galaxy functionalities, such as workflow 
sharing and integration with other pre- and post-processing tools.

Galaxy is also compatible with commercial software for protein database 
searching. although costly, these options can be good solutions as contin-
uous support and maintenance of the software comes with the price. the 
search program proteinpilot16 sold by sCieX has been used extensively in  
Galaxy by our group.17–19 proteinpilot utilizes a well-developed search algo-
rithm, which provides options for ptm analysis and quantitative proteomics 
using isobaric tags (itraQ) or other isotopic labeling methods such as siLaC. 
it is a Windows-based program, thus jobs are run through the pulsar func-
tions in Galaxy. the ability to run these jobs is also dependent on the software 
being installed on a Windows server with all appropriate commercial licenses 
to enable operation of the software. Because of this, commercial software is 
limited to local Galaxy servers for groups who have purchased the licenses, 
and cannot be used in public servers without permission of vendors.

13.7.4   Results Filtering and Visualization
a final, critical part of the ms-based proteomic workflow is filtering the data 
to ensure quality and confidence, including the inference of protein identi-
ties from psms, as well as visualization of results.

Galaxy houses peptideshaker, which provides a means for organizing and 
filtering outputted psm data from searchGui, inferring protein identities 
and providing a means for visualization. With peptideshaker, a user can  
stipulate specific parameters for combining the individual database searches 
performed by searchGui and build customized reports (outputted as  
tabular text files) reporting on psms, inferred proteins, fdr levels etc. pep-
tideshaker makes use of the complementary database search programs used 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
02

89
View Online

http://dx.doi.org/10.1039/9781782626732-00289


Chapter 13306

in searchGui, assigning increased confidence to the psms that were identi-
fied by multiple programs. in its current implementation in Galaxy, a zipped 
file containing all related files for the database search can also be outputted 
for visualization of spectra, protein sequence coverage, and other features 
using the stand-alone peptideshaker viewer program. peptideshaker also 
outputs the data in the community standard mzidentmL format, which can 
be utilized by other Galaxy tools (such as the psme tool described in the fol-
lowing section).

somewhat analogous to peptideshaker, output from the commercial  
proteinpilot software, in the form of a .group file, can be viewed in the stand-
alone proteinpilot viewer program. this is a sophisticated viewing program 
that provides many assessments of fdr levels, grouping of results by inferred 
proteins as well as quantitative analysis for different methods, such as itraQ 
isobaric peptide labeling. proteinpilot also generates a proteinpilot descrip-
tive statistics template (pdst) that offers quality control metrics about sam-
ple preparation, mass spectrometry and identification statistics.

our group has also focused on developing Galaxy-based tools for visual-
izing and filtering outputted results. the peptide spectrum match evalua-
tor (psme)18,19 is a Galaxy tool that allows the user to view and evaluate ms/
ms spectra matched to peptide sequences and confirm quality of the psm 
(figure 13.5). the psme tool also allows users to filter psms using different 
quality metrics, which provides a means for extended, stringent filtering of 
results that goes beyond the scores assigned by the database search engine.

to summarize, Galaxy offers tools that fall into the four main modules 
central to bottom-up ms-based proteomics data analysis. Galaxy’s inherent 
features allow for modular Workflows to be developed, with each module 
being a Workflow on its own, or a complete Workflow that combines tools 
across the modules. as we described at the outset, these Workflows contain 
a complete record of all parameters used across every tool, making it easier 
for sharing and reproducing any results derived from their use. this inherent 
quality of Galaxy becomes even more important for more highly complex 
workflows, such as those described in the following section, for multi-omic 
applications.

13.8   Integrating the ‘-omic’ Domains: Multi-Omic 
Applications in Galaxy

technological advancements have enabled generations of molecular pro-
files at the genomic, transcriptomic, proteomic and metabolic levels. tradi-
tionally, the technologies and resulting insights from generated data were 
restricted to each respective domain. for example, rna-seq20 has made 
identification and quantification of novel gene transcript rearrangements 
and variants possible. for proteomics, high-resolution and accurate mass 
instruments21 have made it possible to identify and quantify proteins and 
peptides across nearly the entire dynamic range of abundance. the ability of 
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Figure 13.5    the peptide sequence match evaluator (psme) tool for visualizing and filtering psms outputted from Galaxy proteomic 
workflows.18 the tool provides user-input fields to select for different, expected fragment ion types from ms/ms spectra 
matched to peptides. ions are annotated based on expected masses of various fragment ion types.
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researchers to generate “multi-omic” information has opened up opportuni-
ties wherein outputs from one domain can be used to complement and inform 
findings from another. meanwhile, methodological advances continue to be 
explored in each field to increase the depth and accuracy of results – which 
in turn confers better comparisons between profiles of gene structures, rna  
transcripts, proteins or metabolites. for example, quantitative transcrip-
tome profiles can now be more thoroughly compared to quantitative pro-
teome profiles in the same sample, gaining insights into post-transcriptional 
regulation pathways.22

there are multiple challenges presented by multi-omic data analysis. for 
one, as previously mentioned, most bioinformatic tools have been developed 
for use within each ‘omic domain, targeting users with expertise in analyz-
ing domain-specific data. moreover each ‘omic field has a set of tools that 
work optimally in a particular environment along with its dependencies. for 
example, for the conversion of proteomic data acquired by mass spectrome-
try, data analysis software generally requires Windows-based software along 
with vendor-specific library dependencies. Conversely rna-seq software 
tools usually work in Linux environments, with their own specific dependen-
cies. the lack of a common interface to access these disparate tools creates a 
major hindrance to analysis in the field of multi-omic analysis.

the Galaxy framework turns out to be an ideal platform for multi-omic 
data analysis. as it was initially developed for genomic and transcriptomic 
analysis, the main Galaxy tool shed offers abundant software tools for 
sequence analysis, variant analysis, genome assembly, fasta manipulation, 
metagenomics, transcriptomics analysis etc. thus, it already houses the  
software needed for genomic and transcriptomic applications, two of the 
pillars of multi-omic applications. in the last few years, the tool shed has 
expanded into proteomics, as we have already described, and metabolom-
ics (see https://toolshed.g2.bx.psu.edu/ under the section “metabolomics”). 
therefore, the framework stands poised to integrate once disparate data 
analysis tools between the different ‘omic domains. notably, the intuitive 
interface and ability to weave different tools into analytical workflows pro-
motes usage by wet-bench researchers. moreover, these workflows can be 
creatively modified according to customized needs and can be shared along 
with the history (as in figure 13.4).

despite Galaxy being well poised for multi-omics, development of work-
flows for these applications still requires careful thought to the design and 
knowledge of software. in particular, selection and packaging of the appro-
priate tool from a plethora of choices can require extensive planning and 
communication between the developers and end users. next, it is important 
to define the expected end results for analysis and come up with a blueprint 
for the analysis. Lastly, if the goal is to develop a robust workflow – test-
ing, refinement and segmenting of the workflow into workable modules is  
beneficial. development of modules allows an end user to perform analysis 
as well as monitor the progress of the workflow by assessing the quality of 
results during intermediate steps. once developed, a robust workflow has 
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many benefits – allowing for sharing and immediate use by others, and use 
in high-throughput settings where replicate datasets may need analysis.19

in the next few sections, we describe the development and use of analytical 
workflows for two important multi-omic applications – proteogenomics and 
metaproteomics. proteogenomics (discussed in more detail in Chapter 15) 
has emerged as an approach that integrates genomic or transcriptomic data 
with proteomic data, for improved protein identification and genome anno-
tation. Genomic sequencing reveals gene rearrangements or variants that 
may not be represented in current annotations of genomes or proteomes. 
as a result, matching of ms-based proteomics ms/ms data to standard 
sequence databases misses variant peptide sequences, derived from novel 
proteoforms,23 and emanating from gene variations. the ability to translate 
in-silico potential protein sequences derived from genomic sequences,24–28 
cdna sequences18,29–32 or rna-seq data19,33–35 has made it possible to  
generate sample-specific fasta protein sequence databases. matching ms/
ms data to these databases offers the ability to identify peptides correspond-
ing to novel proteoforms. a caveat to this analysis is that greater scrutiny 
needs to be applied to these sequences, as they are generally resulting from a 
single psm which increases potential for false positives.36

metaproteomics is the study of identification and functional characteriza-
tion of the complement of proteins expressed as a collection of organisms, 
usually populations of microbes, within a single sample.37,38 metaproteom-
ics benefits from the metagenomic or genomic annotations of organisms 
under study. in particular, metaproteomic analysis relies on using the pro-
tein sequence fasta database comprised of proteins expressed by the organ-
isms present in the sample, usually determined by metagenomic analysis. 
metaproteomics expands information that can be gleaned from metage-
nomic analysis, in that it offers a snapshot of the proteins expressed by the 
community, giving direct insight into the biochemical functional state of the 
system, in addition to taxonomical analysis of the sample.39

13.8.1   Building Proteogenomic Workflows in Galaxy
proteogenomics, as described earlier, integrates genomic or transcriptomic 
data with ms-based proteomics data, to identify variant sequences belonging 
to novel proteoforms and better annotate coding regions within genomes. 
figure 13.6 provides a blueprint of the modules required for proteogenom-
ics, when starting with assembled rna-seq or genomic sequences and ms/
ms data.

the database generation in a proteogenomics workflow involves conver-
sion of a nucleic-acid-based sequence database into a protein database. some 
of the nucleic acid sequencing data used for these applications is publically 
available. for example complementary dna (cdna) databases (derived from 
rna sequences in public databases) are stored at ensemBL (the latest ver-
sion of human cdna database can be found at: ftp://ftp.ensembl.org/pub/
release-82/fasta/homo_sapiens/cdna/). the Galaxy-wrapped tool getorf 
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Chapter 13310

from the emBoss software suite converts the cdna database into a protein 
database.

for rna-seq databases, we have developed sophisticated workflows in Gal-
axy that generate three types of proteomic databases.40 these workflows use 
assembly tools such as tophat and other software implemented in Galaxy 
to analyze assembled rna sequences. the rna sequences are filtered for  
specific types of transcript variants, and used as a template to create protein 
sequence databases via in-silico translation. the different types of protein 
sequence databases generated (figure 13.7) include: (a) peptide sequences 
with novel single amino acid polymorphisms (saps); (b) peptide sequences 
with novel splice junction sequences; (c) peptide sequences derived from 
high confidence rna sequences expressed above a quantitative threshold. 
these databases can be used for matching to ms/ms data.

figure 13.8 provides an expanded view of the steps involved in a proteog-
enomics workflow, once appropriate protein sequence databases have been 
generated. for processing the raw data, creating peaklists and conducting 
sequence database searches, the software described in the previous section 
for proteomics applications are used for proteogenomics as well (e.g. msCon-
vert for data conversion and searchGui/peptideshaker for sequence data-
base searching).

proteogenomics presents some unique requirements and challenges that 
necessitate utilization of additional tools. many times the protein sequence 

Figure 13.6    steps involved in a proteogenomic workflow.
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databases used for proteogenomics are significantly larger than those used 
in normal proteomics studies. for example, the rna-seq derived transcript 
sequences or cdna sequences may be translated in three coding frames to 
account for all possible encoded proteins, which quickly create a very large 
number of protein sequences. Large database searches generally result in a 
low sensitivity of peptide identifications due to increased potential for false 
positive identifications.41,42 Galaxy workflows that use various text process-
ing tools (such as cut, sort, join, etc.) can be used to generate smaller, cus-
tomized databases that maximize psm identifications.17,18 in our studies, we 
have also incorporated the “minnesota two-step” method which improves 
sensitivity in peptide spectrum matches.42 Galaxy’s text manipulation tools 
for merging and creating new fasta databases are well-suited for automat-
ing such methods within workflows. Galaxy should also be well-suited for 
other emerging methods to improve proteogenomic results, such as the two-
stage method43 or the multi-stage search method.44

for database searches, the nucleic acid-derived databases may be appended 
with the annotated uniprot proteome database. this ensures that the ms/
ms data are searched against the standard, known protein sequences from 
the organism as well as novel sequences derived from the genomic or tran-
scriptomic data. once the database search is performed, outputted psms are 
further processed using Galaxy tools. text processing tools parse out psms 

Figure 13.7    Workflows in Galaxy for generating protein sequences databases 
for identifying novel peptide sequence variants via proteogenomics. 
these are described in detail in ref. 40.
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corresponding to novel peptide variant sequences carrying scores that are 
above acceptable fdr thresholds. in order to ascertain that the peptides iden-
tified from the translated nucleic databases do indeed correspond to novel 
sequences, we utilized an elaborate BLast-p search workflow.18,19 Briefly, this 
workflow searches peptides against the latest version of nCBi non-redundant 
(nr) protein database looking for matches to known sequences. sequences 
with gaps or mismatches against the known proteins are selected as puta-
tively novel peptide sequences corresponding to novel proteoforms worthy 
of further analysis.

in order to further ensure that the quality of peptide spectral matches is 
of acceptable quality, the psme tool described is used. Via this tool, users 
can select novel peptide sequences of interest and generate a tabular form 
of metrics associated with the psm. these metrics can be used to filter and 
select for psms of highest quality. the psm tool can also be used to launch 
the protVis application (https://bitbucket.org/andrew_Brock/proteomics- 

Figure 13.8    a detailed view of a modular proteogenomic Workflow in Galaxy, 
numbered in order. (1) Genomic or transcriptomic data are trans-
lated in-silico to generate a protein sequence database; (2) raw 
mass spectrometry data are converted to peak lists; (3) ms/ms 
peak lists are matched against the protein database; (4) results are 
processed and possible novel sequence variants identified; (5) pep-
tide sequences of interest are filtered to verify novelty; (6) quality 
of psms of interest are assessed and visualized; (7) verified novel 
peptide sequences are mapped to reference genomic sequences and 
visualized. these workflows are discussed in detail in ref. 18.
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visualise) which enables visualization of annotated psms and their ms/ms 
spectra for confirmation of the match.

the last step in the proteogenomics workflow is to map the identified pep-
tides onto the coding location in the genome of the organism under study. 
this enables researchers to understand the nature of potentially novel pep-
tide sequences identified in their study (e.g. splice isoforms, saps, frame-
shifts etc.). in Galaxy, the peptides to Gff tool generates a Gff file that can 
be used to upload onto the integrative Genomics Viewer45 (iGV, https://www.
broadinstitute.org/igv/). the browser can be used to visualize genomic coding  
localization for any given peptide sequence of interest (see figure 13.9).

the modules comprising the blueprint workflow for proteogenomics 
analysis shown in figure 13.8 have been successfully used for multiple stud-
ies by our group.18,19 however, improvements can always be made, and our 
group, along with others, is continuing to develop new Galaxy-based tools 
for these applications. for example, we are working on a Galaxy plugin for 
improved, interactive viewing of proteomic and multi-omic data. enhance-
ments such as automated launch of the iGV tool from the Galaxy workflow 
could also provide a more user-friendly platform. proteogenomics continues 
to emerge, with many groups working on software that is either amenable 
to Galaxy implementation, or already implemented. some examples here 
include the Chromosome-assembled human proteome browser,46 tools 
for coupling polysome rna-seq (riboseq) data and proteomics47 and for  
proteomics informed by transcriptomics described by the Bessant group 
and implemented in Galaxy.48

13.8.2   Metaproteomics Applications in Galaxy
metaproteomic data analysis has many similarities to proteogenomics, with 
some important distinctions. With the addition of some tools, the workflow 
modules generated for proteogenomics can be modified to accommodate 
metaproteomics analysis (see figure 13.10 showing a detailed workflow.). 
tools for steps such as peaklist conversion and sequence database searching 
remain the same across all these applications.

Figure 13.9    a snapshot of the integrative Genome Viewer (iGV) used for mapping 
peptide sequences to their coding region in a reference genome.
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one aspect unique to metaproteomics is the generation and selection of 
a protein sequence database for matching to ms/ms data. metaproteom-
ics relies on a protein database, which is generated by merging the protein 
sequences from many organisms (e.g. bacterial species), usually totaling 
into the hundreds or thousands. the selection of organisms is many times 
based on metagenomic data which identifies the bacteria present in the 
sample. in some cases, metagenomic analysis has already been carried out, 
creating a reference of all species present in the sample being studied. for 
example, in metaproteomic studies of the oral microbiome by our group, 
we have used the established human oral microbiome database (homd, 
http://www.homd.org),17,42,49,50 translating the genomic sequences from the 
microbes in this database into expected protein products to create a protein 
sequence database. in other cases, metagenomics must be performed on the 
sample of interest to identify organisms present and create the appropriate 
database.

Figure 13.10    a detailed view of a modular metaproteomic Workflow in Galaxy, 
numbered in order. (1) metagenomic data are translated in-sil-
ico to generate a protein sequence database; (2) raw mass spec-
trometry data are converted to peak lists; (3) ms/ms peak lists are 
matched against the protein database; (4) results are processed 
and microbial peptides selected; (5) peptide sequences of interest 
are assigned to taxonomies and verified; (6) verified peptides are 
optionally analyzed using tools such as meGan, providing taxo-
nomic information as well as functional annotation. these work-
flows are discussed in detail in ref. 17.
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regardless of how the database is generated, a distinguishing feature of 
most metaproteomic sequence databases is their large size – an order of 
magnitude or more greater than most conventional databases.51 as with 
proteogenomics, these large databases present the challenge of maximizing 
sensitivity for psms while minimizing false positives. to meet this challenge, 
we have also utilized the two-step method within our Galaxy workflows to 
generate a reduced database that results in increased peptide identifications 
for metaproteomics.17,42,49,50

some metaproteomics studies, such as those from human samples, require 
a database that also contains the protein sequences of the host organism, in 
addition to the community of non-host organisms. in these sample types, the 
metaproteomic database (e.g. the sequences derived from the homd data) 
is appended with the uniprot database of the host proteome (e.g. human). 
once the sequence database search is performed, important processing 
steps of the results must be carried out. text processing tools are used in  
Galaxy to parse out psms that score above thresholds to ensure an acceptable, 
estimated fdr level. Because identified peptides are not from only one 
organism, identified peptides must be analyzed via taxonomic software. for 
example, microbial peptides can be submitted to the web-based unipept52,53 
for phylogenetic analysis. unipept performs taxonomic assignments of tryp-
tic peptides by using the lowest common ancestor approach. unipept has 
now been incorporated into Galaxy thus making it easier for users to submit 
the peptide inputs and generate outputs as part of a workflow.17

While unipept offers taxonomic analysis of metaproteomics samples, we 
have found that use of other external bioinformatic tools such as meGan5 
(http://ab.inf.uni-tuebingen.de/software/megan5/) can also be used for addi-
tional functional analysis.17,49 for this, several text manipulation tools and 
a powerful BLast-p workflow in Galaxy is used to generate a text-formatted 
output compatible with meGan analysis. We have submitted as many as 
60 000 microbial peptide sequences for processing the downstream meGan 
analysis in a single batch using these workflows.50

our group has successfully used the metaproteomics workflows 
described, however enhancements can be made to improve these work-
flows. for example, a suite of tools named metaproteome analyzer (mpa),54 
which can perform psm annotation, functional annotation (at the pro-
tein level) and taxonomic assignment has been recently described. inte-
gration of this tool suite into Galaxy would provide even more powerful 
resources for researchers seeking to pursue studies in this emerging area 
of metaproteomics.

13.9   Concluding Thoughts and Future Directions
it is clear that Galaxy has a number of advantages to offer the world of 
ms-based proteomic informatics. Work by our group and others from 
around the world47,48,55,56 has demonstrated the potential for Galaxy not only 
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for proteomic applications, but also for emerging multi-omic data analysis. 
Coupling the already rich selection of tools for genomic and transcriptomic 
applications with the growing options for ms-based proteomics makes  
Galaxy a very attractive option for multi-omic studies integrating analysis of 
these different datatypes. metabolomics is also an area of growth in Galaxy,57 
with tools for LC-ms analysis of metabolites growing in the tool shed. these 
tools will add another layer to the possibilities of multi-omic data analysis in 
Galaxy.

although proteomic informatics in Galaxy is maturing, there are still 
a number of enhancements that can be made in this area. one area of 
importance is tools for visualization and interpretation of outputted data. 
although some basic visualization tools are in place, as we describe, there is 
much room for expansion of their functionality. for example, development 
of fast-responding, interactive functions within visualization tools could  
provide users more informative ways to view their data outputs. We are 
exploring new ways to generate output datatypes that can be read by visu-
alization tools with quick response times, offering users interactive options 
for “Google maps-like” viewing of results and filtering. We also envision the 
visualization tools automatically opening other tools for visualization, such 
as the iGV interface for viewing and mapping peptide sequences onto ref-
erence genomes, or querying web-services of appropriate knowledge bases  
(e.g. uniprot) to view known information on proteins of interest. such tools 
would put powerful resources for interpreting results from Galaxy workflows 
at the fingertips of users, allowing them to better generate hypotheses from 
their data for further testing.

new technologies in ms-based proteomics also continue to emerge that 
offer new opportunities for Galaxy-based data analysis. targeted proteom-
ics,58 using either selected reaction monitoring (srm) ms approaches or the 
data-independent acquisition (dia) approaches require customized software 
that could benefit from Galaxy deployment. in the case of dia, the software 
available is still maturing and seems well-suited for implementation in  
Galaxy. for example, opensWath59 and diaumpire60 are platforms that tie 
together a number of different software tools and modules (see Chapter 10). 
these different tools are used to make ion libraries from annotated ms/ms 
spectra matched to peptides in a sample, and then search the dia data to 
these libraries in order to extract information on peptides of interest from 
a complex sample. other tools are then used for quantifying the amount of  
signal for peptides of interest in the sample and conducting statistical anal-
ysis when comparing results across different samples. the multi-faceted 
nature of dia data analysis using disparate software tools makes this appli-
cation an ideal candidate for deployment in Galaxy, where these tools could 
be easily weaved together into workflows. Galaxy’s scalability is also well-
suited for the large datasets produced in dia.

one last area of continued development is providing easier access to 
Galaxy instances for the broader research community. traditionally, to 
install a local Galaxy server on scalable hardware has taken a fair amount 
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of technical expertise, limiting the access of some labs to this software. 
the emergence of new technologies such as docker (www.docker.com) 
has provided a solution. docker provides a “container” in which all soft-
ware and dependencies are contained in a lightweight package that runs 
on the existing infrastructure’s operating system. a docker container 
is easily installed on scalable infrastructure, including cloud-based  
environments, with advantages over more traditionally used virtual 
machine images. using the docker technology, a customized Galaxy 
server, containing all tools necessary for proteomics data analysis or 
other multi-omics applications, can be installed on local infrastructure 
in a much easier fashion. alternatively, a docker container can be eas-
ily deployed in cloud infrastructure, such as on amazon Web services, 
allowing for scalable deployment of these tools. these new informatics 
technologies should provide access for more researchers to the powerful 
ms-based proteomic data analysis tools being developed in Galaxy – in 
turn helping to increase the biological discoveries made from the analysis 
of proteomic and other ‘-omic’ data.
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14.1   Introduction
r1 is an open source environment and programming language for statisti-
cal computing. these features make it particularly well suited to address 
data intensive problems such as high-throughput biology. the Bioconductor 
project2,3 is focused on the analysis and comprehension of high-throughput 
omics data; it provides over 1100 r packages and an active user and devel-
oper community of wet-lab biologists, computer scientists, computational 
biologists and statisticians. Mass spectrometry and proteomics are heavily 
dependent on the exploitation of advanced computing, visualisation and 
statistical technologies, and the Bioconductor project has, in recent years, 
benefited from numerous contributions from the mass spectrometry and 
proteomics community.4
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the philosophy of flexible and robust data analysis is that the analyst 
controls all the steps of data processing and verifies their relevance to make 
informed decisions as to whether the final results can be trusted. When 
these multiple data analysis decisions have been tested and validated,5 they 
can then be abstracted into a trusted monolithic pipeline that implements 
appropriate checks and visualisations to summarise key parameters. r and 
other similar environments enable opening up of the analysis and gives 
users control over their data, the crucial parameters of the data analysis and, 
ultimately, trust in the results. this flexibility also offers an invaluable envi-
ronment to develop new tools and optimise pipelines for specific use cases 
by re-using and improving existing functionality.

in this chapter, we present an overview of some use cases and pipelines 
that are readily available to users and developers. our aim is that the chapter 
should be accessible by general proteomics practitioners, although a basic 
understanding of r is expected to be able to make use of the featured pack-
ages (for example https://cran.r-project.org/doc/manuals/r-release/r-intro.
html).

interested readers might also want to consult previous introductory mate-
rial,6,7 that presents overviews of data processing and visualisation of mass 
spectrometry and proteomics data in r. the rforproteomics package, in par-
ticular, is an important reference. While we have included numerous code 
examples in this chapter, illustrating real-life executable application of the 
r language, rforproteomics provides general introductory material, infor-
mation on how and where to find help and the complete, detailed and exe-
cutable code to reproduce the examples described in this chapter as well as 
reproducible and colour versions of all the illustrations. in the following 
example, we load the rforproteomics package; its startup message provides 
links and commands to useful references:

library("RforProteomics")
##
## This is the 'RforProteomics' version 1.9.3.
##
##  To get started, visit
##   http://lgatto.github.com/RforProteomics/
##
##  or, in R, open package vignettes by typing
##  RforProteomics() # R/Bioc for proteomics overview
##  RProtVis()      # R/Bioc for proteomics visualisation
##
## For a full list of available documents:
##  vignette(package = 'RforProteomics')

Finally, every Bioconductor package provides dynamically compiled over-
view vignettes. these can be consulted online on the Bioconductor package 
pages or directly in r by calling the vignette function with the vignette's name.
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14.2   Accessing Data
there are currently three different ways to access mass spectrometry and 
proteomics data directly from r. in the next section, we will describe how 
to read and handle these data; here, we want to focus on how to obtain such 
data programmatically, using existing r/Bioconductor infrastructure.

14.2.1   Data Packages
the Bioconductor project offers dedicated experiment–data packages (tech-
nically denoted experimentdata packages) to disseminate specific datasets 
of interest. these data are typically associated with one or multiple publi-
cations or are used to demonstrate a data processing and analysis pipeline. 
they are typically relatively small or distributed in a processed form. one 
noteworthy example is the prolocdata package, which accompanies the  
proloc software package, for the analysis and visualisation of spatial proteom-
ics data using machine learning (see the section on statistics and machine 
learning for details). this data package distributes tens of published spatial 
proteomics and protein complexes datasets. these real-life data are used by 
the package developers to demonstrate their algorithm in the package docu-
mentation, and to systematically test existing and new algorithms on a wide 
range of diverse data. users can easily obtain these data, including the results 
of the original publications, and compare these with their own data and anal-
ysis results. We demonstrate how to access the quantitative proteomics data-
set from Christoforou et al.8 as an Msnset, a convenient and efficient data 
structure described in more details in the next section.

library("pRolocdata")
data(hyperLOPIT2015)
hyperLOPIT2015
## MSnSet (storageMode: lockedEnvironment)
## assayData: 5032 features, 20 samples
##  element names: exprs
## protocolData: none
## phenoData
##  sampleNames: X126.rep1 X127N.rep1 ... X131.rep2 (20 total)
##  varLabels: Replicate TMT.Reagent ... Fraction.No. (6 total)
##  varMetadata: labelDescription
## featureData
##  featureNames: Q9JHU4 Q9QXS1-3 ... Q9Z2R6 (5032 total)
##  fvarLabels: entry.name protein.description ...
##   cell.surface.proteins (24 total)
##  fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
## - - - Processing information - - -
## Loaded on Thu Nov 5 2015.
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## Normalised to sum of intensities.
##  MSnbase version: 1.19.3

14.2.2   Data from the ProteomeXchange Repository
specific datasets from the proteomeXchange repository9 can be queried and 
downloaded using the rpx package.10 With a specific identifier (for example, 
in the code example shown, we use experiment pXd000001), it is possible  
to query an experiment for, among others, a citation reference, the data’s  
proteomeXchange urL, and the list of available files, which can be down-
loaded locally.

library("rpx")
px <- PXDataset("PXD000001")
strwrap(pxref(px)) ## reference

## [1] "Gatto L, Christoforou A. Using R and Bioconductor for 
proteomics"
## [2] "data analysis. Biochim Biophys Acta. 2014 Jan;1844(1 
Pt A):42–51."
## [3] "Review"

pxfiles(px) ## available files

## [1] "F063721.dat"
## [2] "F063721.dat-mztab.txt"
## [3] "PRIDE_Exp_Complete_Ac_22134.xml.gz"
## [4] "PRIDE_Exp_mzData_Ac_22134.xml.gz"
## [5] "PXD000001_mztab.txt"
## [6] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_ 
01-20141210.mzML"
## [7] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01- 
20141210.mzXML"
## [8] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.
mzXML"
## [9] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.
raw"
## [10] "erwinia_carotovora.fasta"

We can choose to download individual files, or all available files.

pxget(px, "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_ 
01-20141210.mzML")
pxget(px, "all")

programmatically downloading files is important when many files need to 
be processed. Furthermore, downloading files using scripts, as opposed to 
manually, is an efficient and reproducible way to assure provenance of the 
data. after running the downloading function pxget, the files are available on 
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the user’s file system, but not in the r environment yet. Fortunately, numer-
ous developers have contributed infrastructure to import these data. the 
importing process, described in the next section, creates dedicated compu-
tational data structures, or objects, enabling the user to manipulate, process 
and analyse.

14.2.3   Cloud Infrastructure
Finally, some datasets are available through the Bioconductor annotation-
hub cloud infrastructure.11 the advantages of this system are that it sup-
ports caching (i.e. that if a resource has already been accessed previously and 
is available locally, it will not be downloaded again), gives access to many 
different omics data (in addition to mass spectrometry and proteomics data) 
and provides users with appropriate data structures in r directly (rather than 
first downloading and then importing).

in the following example, we load the package, initialise the resource and 
query for the same experiment as in the rpx previous example. the raw data 
object (not the raw data file) is then downloaded and made directly available 
to the user.

library("AnnotationHub")
ah <- AnnotationHub()
query(ah, "PXD000001")

## AnnotationHub with 4 records
## # snapshotDate(): 2015-11-19
## # $dataprovider: PRIDE
## # $species: Erwinia carotovora
## # $rdataclass: AAStringSet, MSnSet, mzRident, mzRpwiz
## # additional mcols(): taxonomyid, genome, description, tags,
## #  sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH49006"]]'
##
##       title
##  AH49006 | PXD000001: Erwinia carotovora and spiked-in  

protein fasta file
## AH49007 | PXD000001: Peptide-level quantitation data
## AH49008 | PXD000001: raw mass spectrometry data
## AH49009 | PXD000001: MS-GF+ identiciation data

rw <- ah[["AH49008"]]
rw

## Mass Spectrometry file handle.
## Filename: 55314
## Number of scans: 7534

the drawback of the annotationhub infrastructure is that not all data 
are available, and need to be prepared and added individually. For more 
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details on the mass spectrometry and proteomics annotationhub infra-
structure, and how to contribute data, see the proteomicsannotation-
hubdata vignette.12

14.3   Reading and Handling Mass Spectrometry and 
Proteomics Data

as mentioned in the previous section, there exist dedicated data structures–
computational objects, enabling the efficient manipulation and processing 
of mass spectrometry and proteomics data in r. r provides standard struc-
tures such as vectors (of characters or numbers), matrices or data frames 
(spreadsheet-like tables); based on these, developers have defined more com-
plex domain-specific data structures, which model omics data. table 14.1 
summarises some important data structures for mass spectrometry and pro-
teomics, and gives the corresponding data they model and the r/Bioconduc-
tor packages they are defined in. several of the supported file formats are psi 
standards (see Chapter 11).

14.3.1   Raw Data
raw mass spectrometry data, which comes as mzML13 or mzXML14 files 
(netCdF and mzdata15 are also supported) can be interrogated with the 
openMsfile function from the mzr package.16 the import function openMs-
file produces a data object of class mzrpwiz (using the proteoWizard16 back-
end) or mzrramp (when using the older ramp back-end, also part of the 
proteoWizard code). the unique feature of this object is that it confers fast 
on disk access to the raw data, and enables to efficiently access Ms1 and 
Ms2 spectra and their corresponding annotation. this feature is relied on by 
many third-party packages in proteomics and metabolomics.

the following code chunk demonstrates how to import the data after down-
loading the files using the rpx package, as shown in the previous section.

Table 14.1    Mass spectrometry and proteomics data structure in r/Bioconductor.

data type File format data structure package

raw mzXML or mzML mzrpwiz or mzrramp mzr
raw mzXML or mzML List of Massspectrum 

objects
MaLdiquant-

Foreign
raw mzXML or mzML Msnexp Msnbase
identification mzidentML mzrident mzr
identification mzidentML mzid mzid
Quantitative mztab Msnset Msnbase
peak lists Mgf Msnexp Msnbase
imaging imzML or analyze 7.5 Msimageset Cardinal
imaging imzML or analyze 7.5 List of Massspectrum 

objects
MaLdiquant-

Foreign
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f <- "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01- 
20141210.mzML"
rw <- openMSfile(f)
rw

## Mass Spectrometry file handle.
## Filename: TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_ 
01-20141210.mzML
## Number of scans: 7534

the rforproteomics and mzr vignettes further detail how to access the 
data (with the peaks function) and metadata (with the header function) of 
raw data object.

14.3.2   Identification Data
identification data in the mzidentML format17 can be parsed using the openid-
file or mzid functions from the mzid18 and mzr packages. the former, which 
was the first package supporting the mzidentML format, parses the XML file 
using the generic XML r package,19 while the other uses the proteoWizard16 
code base for fast on-disk access, which is particularly useful when many files 
need to be accessed and analysed. each alternative offers annotation and iden-
tification result accessors, briefly illustrated as follows. More details are avail-
able in the respective package and in the rforproteomics vignettes.

idfile <-"http://psi–pi.googlecode.com/svn/trunk/examples/1_ 
1examples/55merge_tandem.mzid"
library("mzID")
id1 <- mzID(idfile)

## reading 55merge_tandem.mzid... DONE!

id1
## An mzID object
##
## Software used: X\!Tandem (version: x! tandem CYCLONE 
(2010.06.01.5))
##
## Rawfile: D:/TestSpace/NeoTestMarch2011/55merge.mgf
##
## Database: D:/Software/Databases/Neospora_3rndTryp/Neo_
rndTryp_3times.fasta.pro
##
## Number of scans: 169
## Number of PSM's: 170

parameters(id1)

## $searchType
## [1] "ms–ms search"
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##
## $threshold
##       name
## 1 no threshold
##
## $`parent mass type mono`
## [1] TRUE
##
## $`fragment mass type mono`
## [1] TRUE
##
## $enzymes
##      name
## 1 Trypsin
##
## $ParentTolerance
##  accession  cvRef unitCvRef unitName unitAccession value
## 1 MS:1001412 PSI-MS   UO   dalton   UO:0000221   1.5
## 2 MS:1001413 PSI-MS   UO   dalton   UO:0000221   1.5
##              name
## 1 search tolerance plus value
## 2 search tolerance minus value
##
## $FragmentTolerance
##  accession  cvRef unitCvRef unitName unitAccession value
## 1 MS:1001412 PSI-MS   UO   dalton   UO:0000221   0.8
## 2 MS:1001413 PSI-MS   UO   dalton   UO:0000221   0.8
##              name
## 1 search tolerance plus value
## 2 search tolerance minus value
##
## $ModificationRules
##  residues massDelta fixedMod name      Specificity
## 1    M 15.99492  FALSE  Oxidation     any
## 2    C 57.02147  TRUE  Carbamidomethyl    any

When using mzr, we first need to download the identification file and 
then open and query it.

download.file(idfile, basename(idfile))
id2 <- openIDfile(basename(idfile))
id2

## Identification file handle.
## Filename: 55merge_tandem.mzid
## Number of psms: 171

softwareInfo(id2)
## [1] "xtandem x! tandem CYCLONE (2010.06.01.5) "
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## [2] "ProteoWizard MzIdentML 3.0.6239 ProteoWizard"

enzymes(id2)

## name nTermGain cTermGain minDistance missedCleavages
## 1 Trypsin H OH 0 1

14.3.3   Quantitative Data
the Msnset class, defined in the Msnbase20 package, is used to store quanti-
tative data as well as feature and sample annotation in one coherent object. 
Figure 14.1 illustrates a simplified view of the Msnset structure. the quan-
titative expression data are stored as a matrix of size n features along the 
rows (spectra, peptides of proteins) times m samples along the columns, and 
features and samples are annotated in their respective metadata tables. the 
features in the expression matrix and the feature metadata match exactly, 
and every row-wise re-ordering or sub-setting is automatically applied on 
the expression and metadata tables. the feature metadata can however be 
expanded along its columns (by addition of a new feature annotation, such 
as, for example, a p-value reflecting the difference of expression of the asso-
ciated expression data, or the result of a classification analysis – see section 
14.8 Machine Learning, Statistics and Applications) without requiring any mod-
ification of the expression data. Conversely, sample metadata is stored in its 
own table, whose dimensions must match the number of columns in the 
expression data. Msnset objects are used in a wide range of packages and use 
cases, ranging from spectral counting (see section 14.5 Analysis of Spectral 
Counting Data), isobaric tagging (see section 14.7 Isobaric tagging and quan-
titative data processing), general statistical analysis (for example Msstats21) 
and machine learning (see section 14.8 Machine Learning, Statistics and 
Applications).

such Msnset objects can be created from mztab files,22 or any text-based 
spreadsheet files (such as comma- or tab-separated files) stemming from 

Figure 14.1    simplified representation of the Msnset data structure (reproduced 
with permission from the Msnbase vignette).
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popular third-party applications such as, for example, MaxQuant23 or thermo 
scientific's proteome discoverer. mztab files can be read in with the readMz-
tabdata function, while data in arbitrary spreadsheets can be imported with 
readMsnset, or the more simple readMsnset2.

the Msnbase package offers a class for raw data called Msnexp, that can 
be created from mzML or mzXML files (relying on mzr) or mgf peak lists. as 
opposed to the data structure provided by mzr, Msnexp are more flexible, 
but are created in-memory, making them only usable for small data or Ms2 
data only (see section 14.7 Isobaric tagging and quantitative data processing).

14.3.4   Imaging Data
Cardinal and MaLdiquantForeign support the import of imaging data 
in imzML or the analyse 7.5 format. similar to the methods provided by 
Msnbase, Cardinal has a readMsidata function that reads these files into 
an Msimageset object. in addition to the imaging data the MaLdiquant-
Foreign package can import a lot of free and vendor-specific data formats, 
e.g. text-based spreadsheet files (such as comma- or tab-separated files), 
mzML, mzXML or Bruker daltonics *flex format into MaLdiquant specific 
Massspectrum or Masspeaks objects. Mass spectrometry imaging is intro-
duced and discussed in section 14.6.3.

14.3.5   Conclusion
every package that offers a specific data processing and visualisation func-
tionality will rely on dedicated data structures, either by implementing their 
own or by depending on those provided by other packages. a strength of 
the open and collaborative development of the Bioconductor project is that 
different packages share some of these data structures to build more sophis-
ticated data analysis pipelines, as will be demonstrated in following sections.

14.4   MSMS Identifications
14.4.1   Introduction
identification of Ms/Ms spectra is traditionally done with highly specialised 
software tools like seQuest,24 X!tandem,25 Mascot26 and Ms-GF+27 to name 
a few (see Chapter 4). typically it is a very computationally intensive pro-
cess that is better handled by tools implemented in compiled languages such 
as C++ or Java. however, at the same time, the Ms/Ms identification is just 
a step in a more elaborate data analysis pipeline. it is tied with numerous 
downstream tasks such as tuning up filtering parameters, visualisation of 
the results at the level of spectra or protein sequences, proteogenomic infer-
ences and quantitative analysis. r provides a versatile scripting environment 
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for stitching multiple steps in the pipeline all the way down to final infer-
ences using a number of custom proteomics-related packages, Bioconduc-
tor's biological data analysis packages and general statistical data analysis 
packages. in this section we will specifically review proteomics-related pack-
ages covering Ms/Ms data searching (MsGFplus, MsGFgui and rtandeM 
packages) and follow-up handling of identifications (Msnid package).

14.4.2   The MSGFplus Package
the automatic identification of peptides from LC-Ms/Ms experiments has 
become a widely used technique since the introduction of the seQuest 
algorithm in 1994,24 but the process has constantly been refined and 
improved. Currently there exists a range of different algorithms for per-
forming the identification task, all with strengths and weaknesses, and 
Ms-GF+27 is one of the latest, but an increasingly popular alternative. the 
MsGFplus package28 makes it possible to set up Ms/Ms searches in r by 
defining and passing the parameters directly to the Ms-GF+ executable fol-
lowed by parsing of the results. setting up parameters can be done using 
the msgfpar function and details about the parameters can be found on the 
Ms-GF+ website.†

library("MSGFplus")
parameters <- msgfPar(
database = system.file(package = 'MSGFplus', 'extdata', 

'milk-proteins.fasta'),
tolerance = '20 ppm',
isotopeError = c(0, 2),
enzyme = 'Trypsin',
ntt = 0)

show(parameters)

## An msgfPar object
##
## Database: /home/lg390/R/x86_64-pc-linux-gnu-library/3.3/
MSGFplus/extdata/milk-proteins.fasta
## Tolerance:        20 ppm
## Isotope error range:   0–2
## Enzyme:           1: Trypsin
## No. tolerable termini: 0

all parameters, including expected post-translational modifications, 
can be accessed and modified using relevant setter and getter methods, as 
detailed in the MsGFplus and rforproteomics vignettes.

† http://proteomics.ucsd.edu/software-tools/ms-gf/
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another method is to read parameter data from a result file generated by 
Ms-GF+. this makes it easy to quickly replicate the parameter used for a cer-
tain search in order to compare results.

parameters <- msgfParFromID('/path/to/results/file.mzid')
parameters can also be set through a Gui interface using the gWidgets29 

package.

require(gWidgets)
parameters <- msgfParGUI()

Finally once the parameters are set appropriately, the Ms-GF+ can be called 
by the runMsGF method. if multiple files are provided, these will be run in 
succession. By default result files are written besides the original raw files 
with an *.mzid extension instead of their original extension (silently overrid-
ing existing files). alternatively a list of filenames, of the same length as the 
number of input raw files, can be provided to use as output file names.

idres <- runMSGF(par, 'your_rawfile.mzML')

the results are automatically re-imported into r as either an mzid or 
mzidCollection object (see section 14.3 Reading and handling mass spectrom-
etry and proteomics data), depending on the number of raw files.

14.4.3   The MSGFgui Package
the MsGFgui package30 is a graphical user interface for its sister package 
MsGFplus. it provides a Gui overlay, shown on Figure 14.2, for setting up 
Ms/Ms search parameters and a set of visualisations coded in Javascript 
using d3.js.

library(MSGFgui)
MSGFgui()

the searches can be set-up through the interface or loaded directly in the 
form of mzidentML files. the Ms/Ms identification results can be easily 
explored using visual tools along the sample → protein → peptide → Ms/
Ms spectrum axis (Figure 14.3). after filtering the data using custom crite-
ria, false discovery rate (Fdr) calculations rely on the q-values calculated 
by Ms-GF+. this means, however, that it is not updated after applying addi-
tional filters available through the Gui. options are available to trim down 
the scans, either by only looking at specific samples, retention times, m/z 
values or charges. it is possible to choose only to look at peptides related to a 
subset of proteins or of a certain length, as well as having specific modifica-
tions. once a filter is set, it is applied when another tab is selected.

it should be noted that the filtering is provided with the purpose of mak-
ing it easier to find the information of interest. For instance if one is mostly 
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ics

Figure 14.2    Main panel of MsGFgui showing the files and analysis parameters (left) and an overview of the search results.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

21

View Online

http://dx.doi.org/10.1039/9781782626732-00321


Chapter 14334

interested in looking at proteins with phosphorylation sites, selecting phos-
phorylation in the modification list will mean that only those proteins where 
phosphorylated peptides have been identified are visible. on the other hand 
it is not meant as a way to improve the quality of the results. the Msnid 
package, described in the next section, would be a better option for this task. 
the latter point also means that the filtering is not applied when exporting 
the results.

Further details on using MsGFgui are available in the package vignette.

14.4.4   The rTANDEM Package
X!tandem is another popular Ms/Ms search engine25 that is covered in Bio-
conductor with the rtandeM package.31 the rtandeM implementation 
takes advantage of the r/C++ interface provided by the rcpp package:32 the 
X!tandem C++ code is compiled during package installation and accessible 
from r. in rtandeM, unlike in the MsGFplus implementation, the code of 
the Ms/Ms search engine is called directly by r as opposed to through the 
operating system utilities. rtandeM's main tandem function takes as an 

Figure 14.3    MsGFgui panels showing (a) filters, (B) protein, (C) peptide and (d) 
spectrum selection steps.
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argument the path to an X!tandem parameter file and returns the path to an 
X!tandem output file. the package also offers functions to transform param-
eters or result files into r objects and vice versa, and to examine the results. 
see the rtandeM and rforproteomics vignettes for a more detailed example.

library("rTANDEM")
## Setting parameters
taxonomy <- rTTaxo(taxon = "yeast",

format = "peptide",
URL = system.file("extdata/fasta/scd.fasta.

pro", package = "rTANDEM"))
## Running X!Tandem
param <- rTParam()
## Parsing results
result.path <- tandem(param)
results <- GetResultsFromXML(result.path)
proteins <- GetProteins(results, log.expect = −1.3, min.pep-
tides = 2)
peptides <- GetPeptides(protein.uid = "576", results)

as of rtandeM version 1.10.0, X!tandem yields results in its own orig-
inal XML format. however, since the piLedriVer (2015.04.01) version of 
X!tandem, it is possible to produce results in mzidentML format by setting 
the "output, mzid" parameter to "yes". as soon as this option will become 
available in the rtandeM package, it will be trivial to parse the results in 
mzidentML format using the mzid or mzr packages, as described in section 
14.3 Reading and handling mass spectrometry and proteomics data.

14.4.5   The MSnID Package
the Msnid package33 was developed with the idea of effective manipulation 
and filtering of the Ms/Ms identifications using r statistical and graphical 
capabilities. the core of the package is the Msnid data structure (same name 
as the package). the package provides utilities for constructing the object 
either by parsing a collection of mzidentML or by providing the Ms/Ms iden-
tification results directly in a flat format (a data.frame). after collating the 
search results from multiple datasets, it assesses their identification qual-
ity and optimises filtering criteria to achieve the maximum number of iden-
tifications while not exceeding a specified Fdr. the package also contains 
a number of utilities to explore the Ms/Ms results and assess missed and 
irregular enzymatic cleavages, mass measurement accuracy, etc. the follow-
ing brief example outlines the key features of the package. More details can 
be found in the Msnid vignette.

the analysis starts with setting up a Msnid object by providing a path 
to the project directory. the main point of having a project directory is to 
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cache results (as provided by the r.cache package)34 and avoid replicated 
operations.

library("MSnID")
msnid <- MSnID(workDir = ".")

Ms/Ms results are acquired by reading mzidentML files (.mzid or .mzid.gz 
extensions). the read_mzids function uses the mzid package facilities. the 
example file c_elegans.mzid.gz, was produced by the Ms-GF+ search engine.

msnid <- read_mzIDs(msnid, system.file("extdata", "c_elegans.
mzid.gz", package = "MSnID"))

printing the Msnid object returns some basic information such as the 
working directory, the number of spectrum files used to generate the 
data, the number of peptide spectrum matches and corresponding Fdr, 
the number of unique peptide sequences and corresponding Fdr and the 
number of unique proteins or amino acid sequence accessions and corre-
sponding Fdr.

the Fdr is defined here as the ratio of decoy accessions hits to the non- 
decoy (normal) accessions; in terms of forward and reverse protein 
sequences, this equates to the ratio of #reverse : #forward. While comput-
ing Fdrs of psMs and unique peptide sequences is trivial, the calculation 
of protein (accession) Fdr is a subject of discussion in the field of proteom-
ics. here, protein (accession)-level Fdr is computed the same way as in 
the idpicker software35 and simply constitutes a ratio of unique accessions 
from decoy component to non-decoy component of the sequence database.

show(msnid)

## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 19055 at 29% FDR
## #peptides: 9489 at 44% FDR
## #accessions: 7414 at 76% FDR

particular properties of peptide sequences we are interested in are (1) irreg-
ular cleavages at the termini of the peptides and (2) missing cleavage sites 
within the peptide sequences. the rforproteomics vignette demonstrates 
how to apply and visualise these properties using the msnid object created 
previously in great detail.

the apply_filter function is used to filter the data. the second argument 
can be either (i) a string representing an expression that will be evaluated in 
the context of the Ms/Ms results or (ii) n dedicated MsnFilter object.

in this example we are going to retain only fully tryptic peptides (i.e. no 
irregular cleavage is allowed) and without any cleavages. note, the reduction 
in Fdr of psM, peptide and protein identification.
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msnid <- assess_termini(msnid, validCleavagePattern = "[KR]\\.
[^P]")
msnid <- assess_missed_cleavages(msnid, missedCleavagePattern 
= "[KR](? = [^P$])")
msnid <- apply_filter(msnid, "numIrregCleavages = = 0")
msnid <- apply_filter(msnid, "numMissCleavages = = 0")
show(msnid)

## MSnID object
## Working directory: "."
## #Spectrum Files: 1
## #PSMs: 7573 at 8.1% FDR
## #peptides: 2978 at 15% FDR
## #accessions: 1996 at 33% FDR

perhaps the key feature of the Msnid package is the flexibility for optimis-
ation of the filtering criteria. users can create specialised MsnidFilter objects 
that can be used for storing, handling and optimisation filtering criteria. the 
object is initialised by a constructor function that takes an Msnid object as an 
argument so that the filter object is aware of all the parameters present in the 
data. therefore all the criteria a user wishes to apply for data filtering (partition-
ing) must be present in the data. in practical terms this means that the param-
eters (e.g. mass measurement accuracy and scores) must be pre-transformed to 
the form that will be used in filter specification. For example, in the code chunk 
that follows, we create new score and ppm variables by taking −log 10 of the 
MsGF+ e-value and the absolute value of the mass measurement error.

msnid$score <- −log10(msnid$`MS-GF:SpecEValue`)
msnid$ppm <- abs(mass_measurement_error(msnid))

now we can initialise, specify, evaluate and, eventually, apply the filter 
object.

fltr <- MSnIDFilter(msnid)
fltr$score <- list(comparison = ">", threshold = 5.0)
fltr$ppm <- list(comparison = "<", threshold = 20.0)
show(fltr)

## MSnIDFilter object
## (score > 5) & (ppm < 20)

evaluate_filter(msnid, fltr)

## fdr n
## PSM 0.03236296 6667
## peptide 0.06622807 2431
## accession 0.16824034 1361

Filter parameters can be optimised using multiple methods. the objec-
tive of optimisations is to reach the maximum number of identifications 
while not exceeding an Fdr at a specified level (psM, peptide or accession). 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

21
View Online

http://dx.doi.org/10.1039/9781782626732-00321


Chapter 14338

primarily they fall into two categories. the first is brute-force search (method 
= "Grid") of the combinations of the thresholds for all the parameters speci-
fied in the filter object.

fltr.grid <- optimize_filter(fltr, msnid, fdr.max = 0.01,
method = "Grid", level = "peptide",
n.iter = 1000)

a second category is based on nelder-Mead (method = "nelder-Mead") and 
simulated annealing (method = "sann", as shown) approaches that need a 
starting value that will be optimised in terms of number of identifications.

fltr.sann <- optimize_filter(fltr, msnid, fdr.max = 0.01,
method = "SANN", level = "peptide",
n.iter = 1000)

show(fltr.sann)

## MSnIDFilter object
## (score > 7.6) & (ppm < 21)

evaluate_filter(msnid, fltr.sann)

## fdr n
## PSM      0.004363880 5984
## peptide   0.009694619 2083
## accession 0.024727992 1036

after applying data filters, the data can be accessed by psms, peptides, 
accessions or proteins methods depending on the follow-up step. in the case 
of spectral counting quantitative analysis the Msnid object can be converted 
to an Msnset object (see section 14.3 Reading and handling mass spectrometry 
and proteomics data). spectral counting data can be explored and tested with 
the msmseda and msmstests packages, reviewed in the next section.

msnid <- apply_filter(msnid, fltr.sann)
msnset <- as(msnid, "MSnSet")

Further details on package functionality and examples can be found at 
Msnid vignette.

14.4.6   Example
in the rforproteomics vignette, we provide a comprehensive example that 
ties some of these packages together. it demonstrates a real-world example, 
studying the effects of the daf-2 mutation, dietary restriction and age on the 
C. elegans proteome.36,37 We start by downloading the raw data and Fasta 
files from proteomeXchange using the rpx package (experiment pXd002161), 
proceed with peptide and protein identification using X!tandem and rtan-
deM and filter the Ms/Ms data with Msnid.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

21
View Online

http://dx.doi.org/10.1039/9781782626732-00321


339R for Proteomics

14.5   Analysis of Spectral Counting Data
14.5.1   Introduction
spectral counting (see Chapter 8) is one the early quantitative methods 
used in bottom-up proteomics. Conceptually, it is similar to next-genera-
tion sequencing (nGs) read-counting methods such as rna-seq, Chip-seq, 
etc. the major distinction of LC-Ms/Ms proteomic spectral count data from 
nGs read count is the sampling rate or depth of the counts. a two order 
of magnitude lower (spectral) counts put some restrictions on the type of 
approaches that can be used for data analysis. a variety of statistical tech-
niques have been tested and reviewed elsewhere.38 in this section we will 
briefly review two related packages, namely msmseda39 and msmstests,40 
for exploratory data analysis and significance testing of spectral counting 
data.

14.5.2   Exploratory Data Analysis with msmsEDA
exploratory data analysis (eda) is used to identify the major components or 
factors explaining the variance in the data. such factors may have real bio-
logical origins or could simply be nuisance-confounding factors artificially 
introduced during sample analysis. in eda there is no preconceived notion 
about the origin of those factors. the package provides easy access to eda 
methods such as pCa (Figure 14.4), hierarchical clustering (Figure 14.5) and 

Figure 14.4    demonstration of built-in pCa plot capability, illustrating the sepa-
ration of the sample based on treatment (u2 vs. u6) and batch (2502 
and 0302).
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heatmap visualisation (Figure 14.6). to take advantage of the package, the 
data have to be pre-formatted into an Msnset object, which is the central 
object type for quantitative proteomics-related packages in Bioconductor. 
Besides eda tools the package has utility functions for generating summa-
ries of spectral count statistics per sample.

library("msmsEDA")
data(msms.dataset) ## a test data
res <- counts.pca(msms.dataset,

facs = pData(msms.dataset)[,"batch",drop = FALSE],
snms = sampleNames(msms.dataset))

print(res$pc.vars[,1 : 4])

             PC1    PC2    PC3    PC4
Standard deviation   163.82082 46.11839 32.27014 22.75523
Proportion of Variance 0.84135  0.06668  0.03265  0.01623
Cumulative Proportion  0.84135  0.90802  0.94067  0.95690

hcl <- counts.hc(msms.dataset, facs = pData(msms.dataset)
[,"batch",drop = FALSE])

msms.dataset <- pp.msms.data(msms.dataset)
counts.heatmap(msms.dataset, fac = pData(msms.dataset)[,"batch"])

Figure 14.5    Visualisation of dendrograms is another capability of the msmseda 
package.
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14.5.3   Statistical Analyses with msmsTests
the msmstests package contains a collection of statistical tests for label-
free LC-Ms/Ms data by spectral counts, for the discovery of differentially 
expressed proteins between two biological conditions. the test is encoded 
with two models, one full model corresponding to the alternative hypothesis 
and the other, nested model, corresponding to the null hypothesis. Batch 
effects and other confounding factors can be conveniently accounted for in 
the model definitions. three key tests are poisson generalised linear models 
(GLM) regression, quasi-likelihood GLM regression and the negative bino-
mial of the edger package, available through the msms.glm.pois, msms.glm.
qlll and msms.edger functions.

Figure 14.6    pseudocoloring of relative protein abundances using heatmap capa-
bility. a coloured version of the figure is available in the proteomics 
vignette.
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ql.res <- msms.glm.qlll(msms.dataset,
form1 = "y ∼ treat + batch",
form0 = "y ∼ batch",
div = colSums(exprs(msms.dataset)))

ql.res$p.adj <- p.adjust(ql.res$p.value, method = "fdr")
sum(ql.res$p.adj < 0.05)

[1] 59

14.5.4   Example
in the rforproteomics vignette, we further explore and analyse the C. elegans 
data using the msmseda and msmstests packages to identify statistically 
differentially expressed proteins. the heatmap in Figure 14.7 summarises 
the results for the proteins that have a fold change (up or down) of more than 
2-fold and pass the 0.05 threshold for adjusted p-value.

14.6   MALDI and Mass Spectrometry Imaging
14.6.1   Introduction
the Matrix-assisted laser desorption–ionisation (MaLdi) mass spectrometry 
is a soft ionisation technique resulting in mostly single or low-charged ions. 
as a result, it is widely used for the analysis of a wide range of biological 

Figure 14.7    heatmap of protein abundance changes for top-significant pro-
teins. a coloured version of the figure is available in the proteomics 
vignette.
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molecules and tissues and is very popular in microbiology and medicine to 
identify/classify bacterial species (fingerprinting), biomarkers or tissue com-
position (pattern recognition). since it is an Ms1-only technology, it is not 
suitable for peptide identification, and is generally followed by additional 
validation using eLisa or LC-Ms/Ms.

there are two main r packages designed for working with MaLdi, data 
namely MaLdiquant41 and Cardinal.42 While the first is a framework for  
the processing and analysis of MaLdi-toF and other 2d Ms1-level data, the 
latter was written with mass spectrometry imaging (Msi) in mind.

in subsequent sections we will describe the preprocessing of MaLdi spec-
tra using MaLdiquant and afterwards the analysis of Msi data with MaLdi-
quant and Cardinal respectively.

14.6.2   MALDI Pre-Processing Using MALDIquant
MaLdiquant provides a complete workflow for converting the raw Ms1-level 
data into a matrix of feature intensities required for high-level analysis. the 
typical workflow is summarised on Figure 14.8 and some steps are detailed 
on Figure 14.9.

each analysis with MaLdiquant combines all or some of the following steps. 
First, we have to import the raw Ms data into the r environment. MaLdiquant-
Foreign, an additional package to MaLdiquant, offers multiple import func-
tions for many vendor-specific and open file formats. subsequently, the data 
are transformed for variance stabilisation and smoothed to remove high fre-
quency noise. next, a baseline correction is performed to remove the chemical 
background noise that is typical for MaLdi data. subsequently an intensity 
calibration step is necessary to allow comparison of intensity values across 
different spectra. then, a peak detection algorithm is used to identify potential 
features and also to reduce the amount of data. as mass-to-charge ratios (m/z) 
differ across different spectra due to experimental settings, a peak alignment 
procedure is applied to adjust these differences accordingly. Finally, after peak 
binning, we obtain an intensity matrix that can be used as input for further 
statistical analysis, e.g. for variable selection or classification. in the following 
sections we will discuss each step in more detail.

14.6.2.1  Import Raw Data
the mass spectrometry community has to face a diverse list of vendor-spe-
cific and open file formats. MaLdiquantForeign provides an easy way to 
import many raw Ms data into MaLdiquant objects (e.g. Bruker daltonics 

Figure 14.8    typical MaLdi workflow.
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Figure 14.9    illustration of the MaLdiquant pipeline: raw MaLdi spectrum (a); variance-stabilised, smoothed, baseline-corrected spec-
trum with detected peaks (B); fitted warping function for peak alignment (C); four unaligned peaks (d); four aligned peaks 
(e); merged spectrum with discovered and labelled peaks (F).
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*flex series files; see also section 14.3 Reading and handling mass spectrometry 
and proteomics data for more information about the mzr16 package). among 
other features MaLdiquantForeign reads whole directory trees and remote 
resources.

after importing the data, it is important to first run a quality control. MaL-
diquant provides functions to ensure all data have the same mass range, the 
same length, etc., and offers multiple plotting functions to support visual 
quality checks.

library("MALDIquant")
library("MALDIquantForeign")

## load example data
data(fiedler2009subset)

## basic quality control
all(lengths(fiedler2009subset) = = length(fiedler2009subset[[1]]))
all(sapply(fiedler2009subset, isRegular))
plot(fiedler2009subset[[14]]) # Figure 14.9(A)

14.6.2.2  Intensity Transformation and Smoothing
it is assumed that the intensity of MaLdi mass spectrometry data follow 
approximately a poisson distribution,43 for which the variance depends on 
the mean. however, many statistical tests require a constant variance that 
is independent of the mean. hence, we apply a square root transformation 
for variance-stabilisation and for an easier graphical visualisation. other 
authors prefer stronger transformations, such as the logarithmic transfor-
mation,44 which is also supported by MaLdiquant.

to reduce small and high frequency variations, Ms spectra need to be 
smoothed. MaLdiquant offers the popular moving-average-smoother and 
the savitzky-Golay-filter45 methods. We favour the latter because it is based 
on polynomial regressions and, in contrast to the moving-average, it pre-
serves the shape of the peaks.

spectra <- transformIntensity(fiedler2009subset, method = "sqrt")
spectra <- smoothIntensity(spectra, method = "SavitzkyGolay",
halfWindowSize = 10)

14.6.2.3  Baseline Correction
a typical MaLdi spectrum is elevated by chemical noise such as matrix- 
effects and pollution. this so-called baseline influences the quantification 
of peak intensities and needs to be corrected. in recent years a lot of algo-
rithms were developed for this but we focus on algorithms that preserve the 
peak shape and result in non-negative peak intensity values. MaLdiquant 
provides three baseline correction methods:
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 1.  the convex hull algorithm46 doesn't require any tuning parameter but 
can't be applied to concave baselines that are often seen in MaLdi 
spectra.

 2.  the TopHat algorithm is a combination of two morphological filters, 
namely moving-minimum and moving-maximum (erosion and dila-
ton)47 steps. it has an additional parameter, the window size, con-
trolling smoothness and accuracy of the baseline.

 3.  the SNIP48 algorithm is the default baseline estimation algorithm in 
MaLdiquant. it replaces the intensities in a window by the mean of 
the surrounding intensities, if the mean is smaller than the current 
intensity. the window size is decreasing iteratively starting from a user- 
defined limit.49

  
spectra <- removeBaseline(spectra, method = "SNIP", iterations 
= 150)
plot(spectra[[14]]) # Figure 14.9(B)

While the algorithms shown are chosen for their favourable properties, 
MaLdiquant implements the moving-median algorithm as well. it is com-
monly used in the community and the literature but may yield negative 
intensity values after the baseline correction.

14.6.2.4  Intensity Calibration
the intensity values in a MaLdi mass spectrum are just a rough indicator of 
analyte abundance. often the intensities are highly influenced by pre-analyt-
ical, analytical and environmental factors like sample collection, room tem-
perature, crystallisation, operator, etc.50 Because the systematic error could 
be stronger than the real biological effects it is important to minimise the 
former at the stage of data acquisition. however, it generally remains neces-
sary to further calibrate the intensity values (often called normalisation) to 
compare them across different spectra.

MaLdiquant provides two local and one global method for intensity cal-
ibration. the local methods, Total Ion Current (tiC) and median calibration, 
are applied to each spectrum individually. the third one, the Probabilistic 
Quotient Normalization (pQn),51 is a global method that takes the informa-
tion of all spectra into account. First all spectra are calibrated using the tiC 
calibration. subsequently, a median reference spectrum is created and the 
intensities in all spectra are divided by the reference spectrum and a median 
calibration factor is calculated for each individual spectrum. this calibration 
factor is used to rescale the corresponding spectra.

as stated, the systematic errors are too strong to overcome by a simple 
recalibration of the intensities. nevertheless it has been shown that applying 
intensity calibration is an essential step and that the TIC calibration is often 
the best choice.52

spectra <- calibrateIntensity(spectra, method = "TIC")
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14.6.2.5  Peak Detection
the peak detection is used for two purposes. First it identifies relevant features 
and secondly it reduces the amount of data to be handled in further analysis 
steps. MaLdiquant provides one of the most commonly used peak detection 
methods, based on local maxima.53 a window is moved along the spectrum and 
local maxima are detected. if the local maxima are above the noise estimated 
by the Median-absolute-deviation (Mad) or Friedman's supersmoother,55 
they are considered as peaks. all maxima below the noise are discarded. other 
authors prefer to use wavelet-based peak detection methods, which are already 
available in other r packages, namely MassspecWavelet56 and xcms.54

peaks <- detectPeaks(spectra, method = "MAD", SNR = 5, half-
WindowSize = 20)
plot(spectra[[14]])
points(peaks[[14]], pch = 4) # Figure 14.9(B)

14.6.2.6  Peak Alignment
Because of systematic errors like those described in the Intensity Calibration 
section, not only do the intensity values differ across spectra, but the m/z 
values do as well. to correct and equalise the m/z values in all spectra a recal-
ibration, so-called alignment or warping, of all spectra is necessary.

MaLdiquant uses a method that is known as peak-based parametric time 
warping.57,58 it starts its alignment procedure by looking for stable peaks 
across all spectra, which are used as reference peak lists. subsequently, MaL-
diquant looks for a locally weighted scatterplot smoothing (LOWESS) or 
polynomial-based function to warp the peaks of each spectrum against the 
reference peaks.

warpingFunctions <- determineWarpingFunctions(peaks)
peaks <- warpMassPeaks(peaks, warpingFunctions)
# Figure 14.9(C–E)

14.6.2.7  Peak Binning
after performing the warping, the peak positions are very similar but are not 
numerically identical yet, and are thus grouped into bins. MaLdiquant sorts 
all m/z values in an ascending order and splits this list recursively at the largest 
gap until all m/z values in a bin are from different samples and their individ-
ual m/z values are in a small user-defined tolerance range around their mean. 
the latter becomes the new m/z value for all corresponding peaks in the bin. 
Finally MaLdiquant generates an intensity matrix that can be used as input 
for further statistical analysis, e.g. for variable selection or classification.

peaks <- binPeaks(peaks)
intMatrix < - intensityMatrix(peaks)
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14.6.2.8  Conclusion
MaLdiquant is a versatile r package that provides a flexible analysis pipe-
line for MaLdi-toF and other 2d mass spectrometry data. We invite readers 
to consult the package web page‡ to find more features, examples and addi-
tional, detailed workflows.

14.6.3   Mass Spectrometry Imaging
Mass spectrometry imaging (Msi) combines mass spectra with their spatial 
information. a sample is divided in a coordinate grid and a mass spectrum 
is recorded for each point (x, y) enabling the visualisation and analysis of the 
spatial distribution of chemical compounds.

in general the preprocessing of each spectrum is very similar to the tradi-
tional mass spectrometry preprocessing described in the MALDI preprocess-
ing using MALDIquant section. the spatial information is only used in the 
statistical analysis that follows the preprocessing.

14.6.3.1  Cardinal
Cardinal42 is an r/Bioconductor package specifically designed for the anal-
ysis of Msi data. it offers a user-friendly interface to preprocessing and sta-
tistical methods for Msi. the following example is taken from the vignette 
"Unsupervised analysis of MS images using Cardinal".59

library("CardinalWorkflows")
data(pig206, pig206_analyses)
image(pig206, mz = 256, col.regions = gradient.colors(100, 
"black", "white")) ## Figure 14.10

the methods for baseline correction, peak detection and peak alignment 
implemented in Cardinal are different from those in MaLdiquant. neverthe-
less the workflow is similar. it starts with a TIC intensity calibration, followed 
by peak detection, peak alignment and a data reduction step:

pig206.norm <- normalize(pig206, method = "tic")
pig206.peaklist <- peakPick(pig206.norm, method = "simple", 
SNR = 6)
pig206.peaklist <- peakAlign(pig206.peaklist, ref = pig206.
norm,
method = "diff", units = "ppm", diff.max = 200)
pig206.peaks <- reduceDimension(pig206.norm, ref = pig206.
peaklist, type = "height")

subsequently one can investigate the spatial information using, for 
example, an unsupervised clustering method like spatial-aware k-means60 
(Figure 14.11):

‡ http://strimmerlab.org/software/maldiquant/
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pig206.skmg <- spatialKMeans(pig206.peaks, r = c(1, 2),
k = c(5, 10), method = "gaussian")

image(pig206.skmg, layout = c(2, 2),
col = gradient.colors(10, "black", "white"))

Cardinal supports imzML61 and the analyze 7.5 format as input data. Beside 
the functions demonstrated, Cardinal implements further methods for unsu-
pervised analysis such as principal component analysis, spatially-aware (sa) 
and spatially-aware structurally-adaptive (sasa) segmentation.60 in addition 

Figure 14.11    segmental images for spatial-aware k-means using different smooth-
ing radii (r = c(1, 2)) and number of segements (k = c(5, 10)). a coloured 
version is available in the rforproteomics vignette.

Figure 14.10    ion image of a pig fetus at m/z 256 da. a coloured version of the fig-
ure is available in the rforproteomics vignette.
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Cardinal comes with supervised algorithms like partial least squares discrim-
inant analysis and orthogonal projections to latent structures discriminant 
analysis62 and spatial shrunken centroids.63 the package also has numerous 
plotting and visualisation functions. interested readers are recommended to 
read the vignettes and workflows that are distributed with the package.

14.6.3.2  MALDIquant
While the focus of MaLdiquant is on traditional mass spectrometry data 
analysis it also supports Msi: it can handle coordinates and divide the data 
into m/z slices to produce spatial visualisations.

## installed via biocLite(“sgibb/MALDIquantExamples")
library(“MALDIquantExamples")
spectra <- import(getPathNyakas2013())

spectra <- transformIntensity(spectra, method = "sqrt")
spectra <- smoothIntensity(spectra, method = "SavitzkyGolay", 
halfWindowSize = 10)
spectra <- removeBaseline(spectra, method = "SNIP", iterations 
= 10)
spectra <- calibrateIntensity(spectra, method = "TIC")

plotMsiSlice(spectra, center = 3364.079, tolerance = 0.5,
colRamp = colorRamp(c("black", "white")))

in contrast to Cardinal, MaLdiquant lacks in more sophisticated spatial 
analysis methods.

14.6.3.3  Conclusion
Cardinal provides a powerful and user-friendly analysis pipeline for iMs data. 
Because it was carefully written and geared to r/Bioconductor programming 
philosophy it is easily extensible. More details and workflows can be found 
on the corresponding web page.§

14.7   Isobaric Tagging and Quantitative Data 
Processing

as explained in Chapter 8, isobaric tagging using itraQ64 and tMt65 isobaric 
tags is an efficient and widely used quantitative proteomics technique. it is 
well supported within the Bioconductor project. two packages in particular 
can be used for such data. isobar66 offers specific statistical modelling and 
can import processed data from csv spreadsheets and mgf files. Msnbase 
supports raw data quantitation and integration of identification data, relying 

§ http://cardinalmsi.org
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on the infrastructure described in section 14.3 Reading and handling mass 
spectrometry and proteomics data. here, we describe different steps of a typi-
cal isobaric tagging experiment and quantitative proteomics data processing.

14.7.1   Quantification of Isobaric Data Experiments
the very first step consists of reading the raw data in mzML or mzXML files to 
create an Msnexp object (mx), which contains the Ms2 spectra and their anno-
tation. at this stage (step 2), individual or multiple spectra can be extracted 
and plotted. it is then possible to annotate each spectrum with the corre-
sponding peptide-spectrum matches that have been generated from any third-
party search engine and saved as an mzidentML file (step 3). note that this 
step could also be applied later in the pipeline, such as after quantitation of the 
isobaric tags. Quantitation (step 4) is performed by defining the m/z values of 
the ions of interest. the standard itraQ and tMt ions are predefined and are 
readily available, but users can define their own reporterions (a data structure 
that defines specific peaks of interest) that will be quantified. Quantification of 
the Msnexp object produces an Msnset object, that we name qnt as follows.
  
 1.  Creation of a raw data Msnexp object containing all MsMs spectra:

mx <- readMSdata("rawData.mzXML")
 2.  extraction and plotting of a single spectrum:

plot(mx[[100]], reporters = TMT10)
 3.  addition of identification data:

mx <- addIdentificationData(mx, "identData.mzid")
 4.  Quantification of tMt 10-plex reporter ions and creation of an Msnset 

object:
qnt <- quantify(mx, reporters = TMT10)

  
note that as we have the flexibility to quantify any peaks of interest, we 

can quantify peaks that are characteristic of undissociated isobaric tags, to 
quantitatively measure incomplete dissociation and assess its impact on the 
quantitation accuracy. an example is provided in the Msnbase-demo vignette 
(available using vignette(“Msnbase-demo”)), which uses the itraQ5 repor-
terions to quantify the usual 114.1, 115.1, 115.1 and 117.1 peaks, as well as 
the undissociated 145.1 peak.

14.7.2   Processing Quantitative Proteomics Data
proteomics datasets from data dependent analysis (dda) workflows always 
contain a certain, sometimes substantial, proportion of missing values. 
depending on the severity and nature of missing data, several options can 
be considered. in steps 5 and 6, we respectively filter out spectra that have 
more than 50% of missing values and impute the remainder missing values 
using nearest neighbour imputation. Missing data filtering and imputation 
are data dependent and require careful considerations, such as interesting 
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missing data patterns that could reflect protein presence or absence between 
experimental groups and the nature (random or non-random) of missing 
data. Finally, in steps 7 and 8, we combine spectra into protein (group) inten-
sities using the iPQF method67 and normalise the protein intensities using 
quantile normalisation.68

  
 5.  removal of spectra containing more than 50% of missing values:

qnt <- filterNA(qnt, p = 0.5)
 6.  Missing value imputation using nearest neighbours:

qnt <- impute(qnt, method = "knn")
 7.  Quantitative data aggregation:

qprot <- combineFeatures(qnt, groupBy = "ProteinAccession",  
fun = "iPQF")

 8.  normalising protein-level quantitative data:
qprot <- normalise(qrot, method = "quantiles")

  
all steps summarised in this section are thoroughly described and demon-

strated in the Msnbase-demo vignette and the respective manual pages.

14.8   Machine Learning, Statistics and Applications
14.8.1   Introduction
r/Bioconductor provides an ideal environment for statistical computing, mul-
tivariate data analysis and machine learning. there is generic support for basic 
statistics, directly applicable to proteomics, but there also exists state-of-the-
art biological data analysis packages designed specifically for the analysis of 
proteomics data, and many packages originally developed for genomics data 
analysis that can be directly applied to the field of proteomics. in this section 
we will discuss some of these current tools and packages in the frame of pro-
teomics data analysis, including worked examples and use cases.

14.8.2   Statistics
to make confident inferences about biology, proteomics approaches must 
incorporate appropriate statistical measures of quantitative data. over the 
last decade r has evolved to contain virtually every statistical method that 
the modern scientist would need. in the frame of statistical modelling and 
proteomics data analysis, Bioconductor offers a wide range of packages 
for the statistical analysis of biological data. Many of these packages are 
designed for the analysis of genomics data, and although there are many 
differences between the fields of genomics and proteomics, they also share 
many common statistical challenges and similar experimental designs. it 
is thus natural for one to use the sophisticated techniques that already are 
widely available in genomics and apply them in the field of proteomics to 
draw robust biological conclusions.
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Quantitative proteomics experiments can be used to identify proteins that 
differ in abundance between treated and untreated cell populations, changes 
in disease state, etc. Labelling approaches such as stable isotope labelling 
by amino acids in cell culture (siLaC)69 and 14n : 15n are popular and can 
be used to compare the ratios of observed peptides in two proteomes in 
a single LC-Ms/Ms) run. the evaluation of observed fold changes to draw 
conclusions about the underlying biological effects being measured can 
be challenging due to small sample sizes, complex experimental designs, 
normalisation issues, appropriate statistical analysis, and requirement for 
multiple testing adjustments. these issues are not unique to proteomics, in 
fact, many are common to the analysis of differential expression data from 
microarray experiments, and the limma (linear models for microarray data) 
package70 that is widely used in genomics, provides functionality to address 
these problems. For normalisation there is lowess and quantile normalisa-
tion procedures, among others, and ratio vs. average plots (commonly called 
Ma plots since their use became ubiquitous in microarray data analysis) can 
be useful for initially checking the distribution of ratios (see in particular 
Visualization of proteomics data using R and Bioconductor7 for details about 
Ma plots). limma provides a number of linear models that can accommo-
date more complex experimental designs. to statistically analyse relative 
abundance there is the empirical Bayes moderated t-test and other shrink-
age methods appropriate for small sample sizes. several packages such as 
limma, multtest71 and qvalue72 provide functionality for p-value adjustment 
to address the multiple-testing problem, including methods such as Bonfer-
roni, storey–tibshirani and Benjamini–hochberg.

For the analysis of spectral counting data, packages designed originally 
for count data from high-throughput sequencing assays contain analysis 
pipelines that are directly applicable. For example, deseq,73 deseq274 and 
edger,75 are all well documented packages where the poisson and the neg-
ative binomial distributions, or the quasi-likelihood are considered. the 
msmstests package (see section 14.5 Analysis of Spectral Counting Data), 
which is based on edger provides functionality and protocols for analysing 
and statistically quantifying differential expression between two biological 
conditions. the tests available in msmstests are based on a GLM model with 
offsets as normalising factors.

other dedicated packages include Msstats,21 applicable to a variety of 
proteomics workflows including label-free, siLaC and many types of frac-
tionation, and also for a variety of data acquisition strategies e.g. LC-Ms in 
data-dependent acquisition (dda, or shotgun) mode, targeted selected reac-
tion monitoring (srM) and data-independent acquisition (dia, or sequen-
tial Windowed data independent acquisition of the total high-resolution 
Mass spectra (sWath-Ms)). the package contains a wealth of statistical 
tools and approaches for the relative quantification of proteins and pep-
tides. the Msstats pipeline consists of three mains steps: (1) data process-
ing, including normalisation, visualisation and quality control, (2) statistical 
modelling and inference, including fitting an appropriate linear model, and 
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(3) statistical experimental design. input data may also be in the form of an 
Msnset, and therefore is interoperable with other packages that are specific 
to the analysis of proteomics data, such as Msnbase.20 For isobaric tagging, 
such as itraQ and tMt, the isobar66 package provides dedicated statistics 
for preprocessing, normalisation, and report generation. it also features a 
module for integrating and validating ptM-centric datasets (isobar-ptM). 
there is also the aLFQ76 package in the Cran repository for estimating abso-
lute protein quantities from label-free LC-Ms/Ms.

14.8.3   Machine Learning
the field of machine learning (ML) is concerned with the design, develop-
ment and application of data-driven algorithms that can learn and improve 
automatically through experience. to date, ML methods have been applied 
to address a broad range of areas within quantitative proteomics. algorithms 
applied generally fall into the following broad categories: supervised, unsu-
pervised and semi-supervised learning. all methods are concerned with the 
analysis of datasets containing multivariate observations. supervised ML 
methods, also termed classification algorithms, aim to train classifiers to 
learn a mapping between a set of observed instances and a set of associated 
external attributes–class labels (this set of instances and labels is usually 
termed the training data.). the trained classifier can then be used to pre-
dict the class labels on data with unlabelled attributes. unsupervised ML, 
also known as clustering, attempts to learn patterns and associations from a 
set of instances where there are no known class labels, and semi-supervised 
methods are algorithms that use a combination of both labelled and unla-
belled instances.

there is a plethora of ML packages in r, and associated algorithms. We 
refer the reader to the CRAN Task View: Machine Learning and Statistical Learn-
ing¶ for a curated list and simple guide to all current packages and functions 
for ML in Cran. packages that are particularly relevant are meta-packages, 
for example MLinterfaces77 in Bioconductor, and the mlr,78 and caret79 pack-
ages in Cran, which provide direct, simple, unified interfaces to a breadth 
of ML methods. these meta-packages provide important ML infrastructure 
including functionality to re-sample your models, optimise hyperparam-
eters, select features, cope with pre- and post-processing of your data and 
allow one to compare models in a statistically meaningful way.

in addition, there also exist specific packages, dedicated to the analysis of 
proteomics data using ML, namely the proloc package80 and MLinterfaces. 
proloc was originally designed for the analysis of quantitative Ms-based 
spatial proteomics data, however the algorithms that feature in the package 
can be applied to a wide range of ML problems, across a range of different 
proteomics pipelines. Both packages support the analysis of data stored in 

¶ https://cran.r-project.org/web/views/MachineLearning.html.
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an Msnset (see section 14.3 Reading and handling mass spectrometry and pro-
teomics data). they provide a complete infrastructure for unsupervised and 
supervised machine learning and data visualisation. proloc features a ded-
icated semi-supervised novelty detection algorithm for the identification of 
new clusters81 and a transfer learning method for integrating data from het-
erogeneous sources.82

14.8.3.1  Supervised Machine Learning
using the proloc pipeline for supervised ML, in the code chunk that follows, 
we demonstrate a typical classification analysis. any supervised ML task 
can be broken down into a series of basic manageable steps; (i) acquiring 
data labels, (ii) training a model, (iii) evaluating model performance, and (iv) 
deploying your model for its intended task. in the examples that follow, we 
load data from a spatial proteomics experiment that was generated using the 
hyperLopit technology8 on pluripotent mouse embryonic stem cells, and 
classify proteins with an unassigned spatial location to one of tens of sub-cel-
lular niches, as described in detail in ref. 8. Briefly, cellular compartments, 
including organelles, vesicles and macromolecular complexes are separated 
along a continuous density gradient. a set of discrete fractions along the 
gradient is then sampled and their protein content identified and quanti-
fied. the protein quantitative profiles along the gradient reflect their origi-
nal sub-cellular location. Given a set of sub-cellular markers, i.e. well-known 
residents, proteins of unknown or uncertain location can be matched to a 
sub-cellular niche based on the similarity of their profile to that of markers.

step (i), acquiring class labels, requires one to find training examples. in 
the frame of predicting localisation using data generated from quantitative 
Ms experiments (i.e. normalised ion intensities along a set of fractions for 
a set of proteins), class labels would be a set of known sub-cellular local-
isations for proteins in the data, i.e. well-known residents, termed marker 
proteins. an important factor to consider in one’s choice of training exam-
ples, is how well they represent the multivariate data space over which the 
system performance will be measured, and a classifier will be learnt. pro-
loc provides a convenience function, addMarkers, to directly add markers 
to an Msnset object. these markers stem from a simple vector in r, a user- 
defined spreadsheet or, in case of sub-cellular localisations of proteins, a 
set of markers from previously published studies. Before one can generate 
a model on the training data and classify unknown residents, one has to 
take care of properly training the model parameters i.e. step (ii). it is widely 
known that wrongly-set parameters can have adverse effects on the classifi-
cation performance and success of the learner to the same degree as using 
inappropriate training examples.

parameter optimisation is fundamental to any ML application, not just a 
supervised schema, and can be conducted in a number of ways. a common 
approach is to optimise ones parameters using the convention of a train-
ing set (to model) and a testing set (to predict) which are subsets extracted 
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from the labelled training data. using this schema, observed and expected 
classification results can be compared, and then used to assess how well a 
given model works by getting an estimate of the classifiers ability to achieve 
a good generalisation. a commonly used measure of classifier performance 

is the macro F1 score, 
precision recall

1 2
precision recall

F





, which is the harmonic 

mean of 
tp

precision =
tp fp

 and 
tp

recall =
tp fn

, such that tp = true posi-

tives and tn = true negatives. using this protocol a grid search is often used 
to test a range of possible model parameters, and the best performing set of 
parameters is then used to construct a classifier using all labelled exam-
ples, which can be deployed to predict unlabelled instances. estimation of 
the algorithmic performance, step (iii), can be assessed in many ways, such 
as via cross-validation. all packages mentioned previously provide func-
tionality for cross-validation, in the example shown, the proloc package, 
is used to estimate algorithmic performance using stratified 20–80 parti-
tioning, in conjunction with 5-fold cross-validation in order to optimise the 
free parameters of an support Vector Machine (sVM) via a grid search. this 
procedure is usually repeated 100 times and then the best parameter(s) are 
selected upon investigation of associated macro F1 scores. a high macro 
F1 score indicates that the labelled instances i.e. the marker proteins, in 
the test dataset, are consistently correctly assigned by the algorithm. often 
more than one parameter or set of parameters gives rise to the best gen-
eralisation accuracy (see Figure 14.12). as such, it is always important to 
investigate the model parameters and critically assess the best choice. the 
best choice may not be as simple as the parameter set that gives rise to the 
highest macro F1 score and one must be careful to avoid over-fitting and 
to choose parameters wisely. once the best parameters have been selected 
they can then be used to build a classifier from the training data of organ-
elle markers.

in the following example, we apply a weighted sVM classifier for pro-
tein classification. the labelled training data (Figure 14.12, left) were con-
structed from a manually curated marker set by experts in the field. using 
the proloc package we employ a weighted sVM with a Gaussian kernel to 
learn a non-linear decision function on the training data to map proteins 
of unknown localisation to one of the known organelle classes. Class spe-
cific weights were used when creating the sVM model, which were set to be 
inversely proportional to the class frequencies to account for class imbal-
ance. on the training data the two free sVM parameters, cost and sigma, 
were optimised over 100 rounds of stratified 5-fold cross-validation via a 
grid search and the best pair of parameters for the classifier were chosen 
from evaluation of the macro F1 scores (Figure 14.12, middle). the opti-
mised sVM classifier was then used to predict protein localisation on the 
unlabelled data (Figure 14.12, right). the size of the points reflects the  
classification probabilities.
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Figure 14.12    application of a support Vector Machine classifier (sVM) on hyperLopit data on mouse embryonic stem cells. Left: prin-
cipal components analysis plot displaying the labelled input training data, one point represents one protein. Middle: grid 
search for the sVM parameters cost and sigma, highlighting optimal pairs of parameters. right: application of a weighted 
sVM classifier. the size of the points reflects the classification probabilities.
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library('pRoloc')
library('pRolocdata')

## (i) data, inlusing labelled and unlabelled instances
data("hyperLOPIT2015")

## class weights
w <- table(fData(hyperLOPIT2015)[, "markers"])
w <- 1/w[names(w) ! = "unknown"]
## (ii) training the SVM
params <- svmOptimisation(hyperLOPIT2015, fcol = "markers",

times = 100, xval = 5,
class.weights = w)

## (iii) evaluation of model parameters
levelPlot(params)
## (iv) classification
res <- svmClassification(hyperLOPIT2015, params)
## visualising classification results
ptsze <- exp(fData(res)$svm.scores) − 1
plot2D(res, fcol = "svm", cex = ptsze)
addLegend(res, where = "bottomleft", cex = .5, bty = "n")

14.8.3.2  Unsupervised Machine Learning
unsupervised machine learning usually refers to clustering, i.e. finding struc-
ture in a quantitative, generally multi-dimensional dataset of unlabelled 
data. the prerequisites to performing unsupervised machine learning are (1) 
a dataset to cluster or a sub-selection of interesting features to cluster, (2) a 
choice of similarity metric for the comparison of samples, and (3) the choice 
of an algorithm to use. as mentioned, there are many clustering algorithms 
available in r/Bioconductor, and popular choices include the k-means, hier-
archical and kernalised methods. More information can be found on the 
CRAN Task View: Cluster Analysis & Finite Mixture Models page∥ and the respec-
tive package vignette.

14.8.4   Conclusion
r/Bioconductor provides several dedicated packages for the analysis of pro-
teomics data, and a plethora of packages dedicated to the analysis of genomics 
data that are directly applicable to the field of proteomics in general. however, 
between and within different packages, algorithms and computational meth-
ods, the underlying theory and statistics are generally the same. Furthermore, 
one should remember that the choice of algorithm is not the most import-
ant consideration—the success of the learner is dependent on good data and 
appropriate training of your model is vital to obtaining robust results.

∥ https://cran.r-project.org/web/views/Cluster.html.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

21
View Online

http://dx.doi.org/10.1039/9781782626732-00321


359R for Proteomics

14.9   Conclusions
in this chapter, we have presented some mature r and Bioconductor infra-
structure for the analysis of mass spectrometry-based proteomics. there 
are however many topics that we have not addressed. We invite interested 
users to explore available software by browsing relevant categories (termed 
biocViews) using either the proteomicspackages and massspectrometrypack-
ages functions from the rforproteomics package, or by directly browsing 
these categories on the Bioconductor software page**. there, readers will 
discover, among many others, packages such as proteoQC83 and qcmetrics84 
for the quality control and assessment of mass spectrometry and proteomics 
data, synapter85 for the analysis of MsE data, paa86 for the analysis of pro-
tein arrays, specL87 and sWath2stats88 for targeted and sWath-Ms data, 
tpp89 for the analysis. of thermal proteome profiling experiments, various 
dedicated annotation packages such as rols,90 an interface to the ontology 
look-up service, hpar,91 to access data from the human protein atlas92 and 
generic pathway and Gene ontology annotations or the analysis of mass 
spectrometry-based metabolomics data. Visualisation, including interactive 
visualisation, are other strengths of the r environment that we have not spe-
cifically addressed here but are reviewed in Gatto et al.7 and in rforproteom-
ics's Visualisation of proteomics data using R and Bioconductor vignette.

the wealth of software packages available from Bioconductor and other 
r repositories, the flexibility of the environment, the expressiveness of the 
programming language and r's well established infrastructure for reproduc-
ible research have made it a major player in data driven biology. While at 
times intimidating, r and Bioconductor benefit from a very active and help-
ful community, well crafted documentation, innumerable tutorials and ref-
erence material, as well as support forums and mailing lists to help new and 
seasoned users; all these resources are accessible from the Bioconductor web 
page†† and detailed in the rforproteomics vignette.

the r and Bioconductor ecosystem is of course far from providing a com-
plete solution to every imaginable computational pipeline or question in 
mass spectrometry and proteomics. the goal of this community effort is 
of course not to replace some of the high quality software that are already 
available. the strengths of r and Bioconductor enable the community to 
build upon existing infrastructure and develop new software to address spe-
cific questions and do better data-driven and reproducible computational 
research and data analysis.
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15.1  Introduction
the recent advances in sequencing technology, through the development of 
next-generation sequencing (nGs) platforms, have enabled the generation of 
genomes for a multitude of species. the volumes of data that can be gener-
ated by nGs technologies also allow for the generation of genome sequences 
for individuals within populations, rather than solely a single representative 
genome for the whole species. From these genomes, the generation of gene 
models, and the downstream protein sequence databases produced, under-
pin a vast array of biological and biomedical investigations, including most 
areas of the life sciences. as such, a critical step in genome biology is the 
generation of accurate gene models, understanding of gene splicing (includ-
ing alternative splicing) and discovery of single nucleotide polymorphisms 
(snps) within individuals or populations.

the process of defining gene models: finding the start codon, stop codon, 
5′ and 3′ untranslated regions (Utrs) and exon-intron boundaries, is often 
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called “genome annotation”. the term genome annotation can also be used 
to describe the assignment of functions to genes, although in this chapter, 
we restrict our usage of the terminology to the former, narrower definition. 
in most genome annotation pipelines, bioinformatics software is run to pre-
dict genes, taking into account a variety of evidence. evidence can include (i) 
the intrinsic structure of the genome itself,  including GC content of exons 
versus non-coding dna, motifs for promoters and Utrs and so on; (ii) com-
parative genomic data – using the predicted gene model structure or protein 
sequences from related species; (iii) experimental data, including sequenc-
ing of the mrna pool by nGs methods (or expressed sequence tags (ests)) 
in  older  methods.  there  is  a  growing  appreciation  that  large  scale  lC-Ms 
proteomics data sets can play an important role in genome annotation in so 
called proteogenomics approaches, which are the subject of this chapter.

proteogenomics can be defined as the use of proteomics data from lC-Ms 
to enhance genome annotation by providing supporting evidence for some 
or all of the following concepts, depending on the workflow:1 (i) that a pre-
dicted gene model  is  transcribed and  translated  into protein sequence  i.e. 
moving it from the level of “predicted transcript” to having confirmed pro-
tein-level evidence; (ii) that a predicted splice event occurs biologically, for 
example  through  the  confident  identification  of  peptides  that  map  to  the 
different exons that have been predicted to be spliced together; (iii) for the 
discovery of new genes, by mapping mass spectra directly against proteins 
that are not part of the official gene models, for example predicted by de novo 
gene prediction directly from the genome or by searching a six frame transla-
tion; (iv) for supporting the existence of alleles (different copies of the same 
gene within individuals or a sub-population), for example derived from snps, 
through the confirmation or discovery of a protein sequence with a changed 
amino acid content to the reference allele (and protein); (v) for the confirma-
tion of the start codon of genes through the confident identification of the 
n-terminal peptide within the protein.

proteogenomics  techniques  do  not  generally  have  the  level  of  sensitiv-
ity  of  rna  sequencing  (rna-seq),  which  is  now  used  very  commonly  in 
genome  annotation  pipelines.  rna-seq  techniques  are  able  to  provide 
mrna evidence for all expressed genes, down to a few copies per cell. the 
data  from rna-seq comprises a  large pool of sequencing reads of  length 
∼30–300 base pairs, depending on the platform and protocol. the mrna 
reads  can  be  mapped  (aligned)  back  onto  the  genome,  including  using 
tools  that  are  able  to  account  for  gaps  in  the  alignment  due  to  splicing, 
enabling de novo discovery of the exon-intron splicing that occurred in the 
cell.  these  techniques  are  undoubtedly  powerful  but  they  have  not  com-
pletely solved the annotation problem. First, rna-seq data tends to include 
the Utrs and so does not solve the problem of the identification of a start 
codon, since atG (the typical start codon) can appear both upstream of the 
actual start codon or internal to the coding region. the correct stop codon 
is usually more straightforward to identify, as long as exons have been cor-
rectly predicted, since stop codons do not also code for amino acids. sec-
ond, rna-seq protocols can also extract non-coding rna  (rna  that does 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

65
View Online

http://dx.doi.org/10.1039/9781782626732-00365


369Proteogenomics: Proteomics for Genome Annotation

not code for protein), and thus not all the data gives evidence that a gene 
is protein-coding, and in some cases could be misleading. third, rna-seq 
data sets emerging appear to suggest that alternative splicing of genes may 
be far more common than previously expected, and mrna can be mapped 
to many regions of the genome and combinations of exons not previously 
suspected  to  be  protein-coding.  it  is  currently  unknown  whether  such 
extensive splicing is actually producing mrnas that are translated into pro-
teins or whether many of these entities are in fact some form of regulatory 
feedback loop. the inclusion of proteomics data into a genome annotation 
pipeline  provide  the  ability  to  demonstrate  that  events  predicted,  based 
solely  on  in silico  methods,  or  from  rna-seq  data,  are  indeed  producing 
protein in the cell.

however,  proteogenomics  techniques  are  challenging  to  perform  from 
an  informatics  point  of  view  for  some  of  the  following  reasons.  First,  as 
discussed  in  Chapter  3,  the  most  popular  method  for  identification  is  the 
sequence database search, using  tandem Ms (lC-Ms/Ms data),  to produce 
sets  of  peptide-spectrum  matches  (psMs).  the  search  engine  requires  a 
protein sequence database, which in most cases is derived directly or indi-
rectly from a set of “official gene models”. depending on the species being 
analysed, the official gene models are updated and released at intervals, in 
some cases yearly or more frequently. as such, proteogenomics techniques 
must  be  dynamic,  as  the  “gold  standard”  (i.e.  the  considered  best  set  of 
gene models at one point in time), is regularly changing. it is not straight-
forward to map proteomics data between different releases of gene models 
without repeating searches, which can be computationally intensive. second,  
statistical approaches for validating peptide identifications (Chapter 4) and 
protein identifications (Chapter 5) have generally been designed under the 
assumption that the sequence databases searched do not include extensive 
redundancy, and that sequences shared between different database entries 
(proteins)  are  due  to  biological  events  (e.g.  gene  families  giving  rise  to  
paralogues with shared sequences). in proteogenomics approaches, as will 
be described in this chapter, it is common to merge different possible sets of 
protein sequences, in some cases producing databases orders of magnitude 
larger than the official protein set for a given species. it is an open question 
as to whether standard methods for statistical significance, such as the use 
of target-decoy searches, are entirely appropriate and statistically sound in  
proteogenomics.  third,  since  proteogenomics  approaches  tend  to  require 
considerably  larger  search  databases  than  regular  proteomics  studies, 
increased computing power and parallelisation is needed to process large vol-
umes of input spectra. Fourth, it is common for rna-seq data sets (and other 
data types supporting genome annotation, such as orthologous sequences 
from other species) to be visualised in the context of a genome, for example 
via genome browser software. the file formats and visualisations have thus 
not generally been designed with proteomics data, and associated complex-
ity (for example, around protein groups – see Chapter 5) in mind. Fifth, it can 
be a challenge relating protein sequence databases (and accessions or identi-
fiers for proteins), back to gene model databases. Genome databases such as 
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ensembl have a formal mapping between predicted proteins and transcripts, 
but such a process is not completely straightforward when linking external 
well-curated protein databases such as Uniprot back to source genomes for 
different species.

this chapter first introduces the main methods used in proteogenomics 
from  a  theoretical  point  of  view.  we  next  discuss  some  software  pipelines 
specifically  designed  for  proteogenomics,  and  some  options  for  visualisa-
tion of results. we briefly describe file formats and standards that support 
proteogenomics results, and end with a discussion of open challenges and 
future directions of research in this area.

15.2  Theoretical Underpinning
in this section we discuss the theoretical aspects of proteogenomics. the key 
aspect of all pipelines is to identify peptide sequences from tandem Ms spec-
tra, and demonstrate the position or positions in the genome from where the 
parent proteins of those peptides were likely transcribed and translated. as 
discussed in previous chapters there are several informatics methods avail-
able for identifying peptide sequences from fragment spectra. in theory, de 
novo sequencing strategies have a particular advantage for proteogenomics, 
in  that  these  approaches  do  not  rely  on  well  annotated  gene  models  (giv-
ing protein sequences to search against), and thus could be used for finding  
previously  unannotated  coding  regions.  however,  in  practice  de novo 
sequencing algorithms are exploring a vast search space (all possible peptide 
sequences),  and  thus  rarely  have  the  sensitivity  and  accuracy  of  sequence 
database search methods. spectral library searching is not generally consid-
ered an appropriate method for large-scale proteogenomics, as these meth-
ods rely upon having previously annotated library entries (spectra) with the 
identity of peptides, and thus they are not ideally suited for finding novel pep-
tide sequences – necessary for improving gene annotations. hybrid search 
methods that first employ a partial de novo sequencing stage to produce short 
sequence tags (tag search methods), followed by filtering a database of pos-
sible peptides to reduce the search space also present an option for proteog-
enomics, although tag-based search algorithms have generally not matched 
the  popularity  of  standard  sequence  database  search  algorithms.  as  such, 
in most proteogenomics approaches, the sequence database search method 
is used, and  thus  the pipelines  require a well-designed database  to search 
against. the database used often contains not only the protein set derived 
from the official gene models, but is usually enriched with alternatives pos-
sibilities, for example produced by running gene finding software de novo or 
by obtaining sets of different gene predictions from those genome databases 
(e.g. ensembl) that release both “official gene models” and “putative or pre-
dicted gene models” – considered currently to be lacking in evidence to be 
promoted  to  the official  set. one of  the key challenges  in proteogenomics 
approaches is achieving the optimal database design, enabling the discovery 
of novel peptides where they exist in the sample, while also controlling the 
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database size. a larger database leads to lower statistical power and increased 
chance of finding false positives.

15.2.1  Gene Prediction
a common step in many proteogenomics approaches is to run gene finding  
software de novo, or to use predicted sets of gene finders generated by external 
groups or resources, such as providers of genome databases. Gene structure 
prediction by “gene finding” software is typically the first step of a genome 
annotation pipeline. this is can be done either by using mathematical tech-
niques that use intrinsic evidence in the dna sequences to find a gene struc-
ture or by using external evidence of various types to enhance the accuracy of 
gene prediction. in the following sections we discuss these two techniques: 
ab initio gene prediction and evidence-based gene prediction.

15.2.1.1  ab initio Gene Prediction
Ab initio  gene  prediction  methods  use  mathematical/computational  tech-
niques  based  on  intrinsic  evidence  in  the  dna  sequences  rather  than 
external  evidence  to  find  a  gene  and  its  intron-exon  structure.  in  ab initio 
prediction  techniques,  the  genomic  dna  sequence  is  searched  for  certain 
signals that are commonly observed in protein-coding genes but not in inter-
genic regions. examples include the GC content, which tends to be higher in 
genes than intergenic regions, sequences motifs for splicing, motifs for start 
codons, Utrs and so on. one of the advantages of ab initio gene prediction is 
that it does not require external evidence to identify a gene and to determine 
the  intron-exon  structure.  however  ab initio  gene  predictors  generally  can 
at best output a ranked list of possible gene structures at a given locus (for 
eukaryotic genomes containing introns as the challenge is easier in prokary-
otes lacking introns), and struggle to identify alternatively spliced isoforms 
with confidence.

Ab initio methods can have high sensitivity in that they are able to detect 
the presence of most genuine genes, but with a cost in terms of specificity,  
dependent  upon  the  quality  of  training  data.2  it  would  be  expected  that  
correct prediction of intron-exon structure does not generally exceed 60–70% 
accuracy.

15.2.1.2  Evidence-Based Gene Prediction
in  evidence-based  gene  prediction,  external  experimental  evidence  from 
expressed sequence tags (ests) sequencing (historically), or more recently, 
direct  messenger  rna  (mrna)  sequencing  (rna-seq)  data  are  used  to 
enhance the accuracy of gene prediction. rna-seq data can be mapped back 
against  the genome, using a variety of bioinformatics applications,3 which 
can account for gaps in the alignment due to splicing, thus allowing de novo 
discovery  of  introns.  evidence-based  gene  predictions  are  generally  more 
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accurate than ab initio gene predictions, but require additional cost in terms 
of data collection.

Moreover, it is also possible to combine and integrate ab initio gene pre-
diction with evidence-based gene prediction to improve the accuracy of gene 
prediction,  such  as  performed  by  integrative  gene  prediction  (ipred)4  or 
Maker.5

15.2.2  Protein and Peptide Identification
here  we  discuss  how  protein  and  peptide  identification  approaches  can 
be  applied  in  the  proteogenomics  context.  Usually  peptides  are  identified 
by  either:  (1)  using  search  engines  against  a  protein  sequence  database, 
where the Ms/Ms spectra are compared against theoretical spectra for each  
peptide in a sequence database (see Chapter 3), or using (2) de novo sequenc-
ing methods (Chapter 2), where the peptide sequence (or partial sequence) 
can  be  extracted  from  the  Ms/Ms  spectra  directly  without  using  a  protein 
sequence database, the extracted sequence can be used to search against a 
sequence  database  to  identify  the  exact  peptide,  or  by  using  (3)  tag-based 
identification, where short sequence tags are extracted and used to search 
against a database, where the peptide list is limited to only ones that contain 
the extracted sequence tags.

when  using  the  popular  sequence  database  search  method,  or  tag-
based  method,  most  approaches  first  design  the  search  database  to  allow 
new  events  to  be  discovered,  as  well  as  attempting  to  maintain  statistical 
power in the common identification of peptides matching the “official gene  
models” – discussed in the following sub-section.

15.2.3  Design of Protein Sequence Databases
the most common approach in proteogenomics is to create a sequence data-
base to be searched, via combining and concatenating different input data-
bases. typically,  the first database  is  the protein set  from the official gene 
models (i.e. the current best set from the leading genome database for the 
species being analysed). next, additional databases are added e.g. new sets of 
possible gene models from de novo running of gene finding software, possible 
transcripts from de novo assembly of rnaseq data (as described in Chapter  
16),  from a six frame translation of the genome (to give all possible “open 
reading frames”) or “exon graphs”. exon graphs contain peptides that would 
be derived from all possible combinations of splicing events at a given locus 
i.e. connecting all predicted exons to all other predicted exons, and finding 
the sequences of all peptides that would overlap such regions.

there  are  various  pros  and  cons  to  the  selection  and  inclusion  of  these 
different types of databases. First, ab initio gene finders have variable quality,  
depending  on  the  quality  of  training  data  available,  and  their  suitability 
for  the  species  being  studied.  Most  gene  finders  will  produce  ranked  lists 
of  possible  gene  structures  at  each  given  locus,  and  thus  a  wide  panel  of 
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possibilities can be included. such an approach can be advantageous if the 
gene finder is functioning well (i.e. well trained for the species in hand), but 
if it is poorly trained, this database type can add a lot of noise to the system. 
improvements would usually be made if a gene finder is used that can incor-
porate evidence from other sources, such as other well annotated species.

second, rna-seq data can be turned into a protein sequence database via 
several methods (Chapter 16). this approach would usually be advantageous 
over the native output of gene finding software, since it should contain only 
sequences that are actually  transcribed. noise will often be added though, 
since six frame translations may still have to be performed since the reading 
frame (and strand) often may not be deduced automatically.

third,  in  “six  frame  translation”  approaches,  the  chromosomal  (or  
contigs if the genome is incompletely assembled) dna sequences are trans-
lated into all possible protein sequences (three possible frames × two possi-
ble orientations/strands). the resulting sequences are turned into possible 
“open reading frames” (orFs) by finding protein sequences in between each 
stop codon. these databases can be very large, and so in some cases the data-
base may be filtered by including only protein sequences above a certain size, 
say  50  amino  acids.  six  frame  translations  have  two  major  disadvantages:  
(i) the databases are generally much larger than other options (reducing sta-
tistical power) and (ii) they cannot find evidence for exon-intron structure; 
any peptides crossing splice junctions cannot be identified. six frame trans-
lations of the genome can be a useful first step in a genome annotation pro-
cess, if good quality gene annotations have not already been produced, but 
in annotation pipelines where moderate to good gene annotations exist, and 
rna-seq data are available, they are not commonly used.

Fourth,  exon  graph  approaches  create  a  specialised  database  intended 
to  find  “splice  junction”  peptides  (Figure  15.1),  by  including  the  putative 
peptide sequences that would arise  if any given splice event had occurred. 
the end result is in fact rather similar to using the output of a gene finding 
software set to produce a large number of ranked hits at a given locus. the 
advantage of a splice junction approach is that all possible combinations are 
considered, with only a moderate increase in the overall database size.

the result of the database design stage is typically a sequence database much 
larger than a database containing only the official protein set – potentially  
a few times larger, up to a database orders of magnitude larger (if using six 
frame translations and many different options for potential splice junctions). 
however,  the  overall  file  size  of  the  search  database  can  be  misleading  in 
terms of database search size. if the same peptide sequence is included many 
times over,  for example across protein records containing different possible  
combinations  of  exons  at  a  given  locus,  the  search  space  is  not  actually 
increased. the search engine only searches against each peptide sequence 
in the database once, regardless of how many protein records it is contained 
within. More important in terms of search performance is the total size of 
the  peptide database  to  be  search  against,  and  this  is  the  critical  measure 
for a proteogenomics database designer. For example, when producing a six 
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frame translation,  the vast majority of  the peptide database  to be searched  
contains  impossible  or  implausible  sequences  from  a  biological  point  of 
view. this can have a great impact on sensitivity of identification, compared 
with searching the same spectra against a database containing only moder-
ate to well annotated sequences.6

in proteogenomics, one solution to improve the sensitivity of peptide iden-
tification  is  to use a multistage data analysis.  in  this strategy,  the analysis  
uses a comparatively small protein sequence database (for example only the 
current  set of official  gene models)  in  stage  one,  and  then  another  search 
with a much larger database in stage two.7 the results from the first stage are 
used to refine the customised search in the second stage, where only those 

Figure 15.1   a schematic showing the different possible mechanism by which pro-
teogenomics search databases can be assembled, and their relationship  
to chromosomal positions.
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spectra  for  which  a  confident  identification  cannot  be  made  progress  to 
being searched against a larger database. the advantage of such an approach 
is that (so long as reasonably good quality gene models exist), most “regular”  
peptides can be easily identified with maximum sensitivity in stage 1. in stage 
2, a wider search space can be explored to find additional “novel peptides” 
of various types, depending on the design of the database. such an approach 
has  been  implemented  in  proteoannotator,8  which  combines  multiple 
search  databases  generated  by  gene  finding  software  or  derived  by  assem-
bly  from rna-seq data,  to be compared versus  the official gene set.  in  the 
latest release of proteoannotator, only the official gene models are searched 
in stage 1, and peptides are identified with strict Fdr control. any spectra 
for which a confident identification cannot be made progress to stage 2, and 
a second search is performed against rna-seq assemblies and large panels 
of  possible  gene  models  and  sequence  isoforms  resulting  from  different  
alleles etc., again controlled by Fdr. the results of  the  two stage searches 
are combined in such a way to ensure that the resulting Fdr is < 1% at the 
peptide and protein group level. there is still debate in the field as to whether 
the multi-stage search approach is statistically valid, given that two chances 
are given to some spectra to find an identification. as such, conservative Fdr 
profiling should be applied on the results to ensure that only loci with strong 
evidence are further incorporated into the re-annotation processes.

15.2.4  Output of Proteogenomics Pipelines
it is possible to apply a classification to different types of peptides identified 
in proteogenomics, in terms of the role they can play in genome annotation. 
in the first category, are peptides that play a confirmatory role, when mapped 
against  the  gene  model  (Figure  15.2).  such  peptides  include  those  giving  
evidence  towards  the  presence  of  a  predicted  exon  (mapping  uniquely  to 
such  an  exon).  peptides  can  also  give  evidence  towards  the  correctly  pre-
dicted start codon, if a peptide is discovered where the preceding residue is 
not a site of digestion. in the case of trypsin, this means that the preceding 
residue is not K or r. however, there are four codons for r and two for K, and 
as  such  around  6/64  genuine  start  codons  (assuming  no  biases  in  codons 
in the 5′ Utr), will be preceded by three bases (in the genuine 5′ Utr) that 
appear to be codons for r or K. some groups have developed enrichment pro-
tocols for n-terminal peptides e.g. ref. 9, which can further assist in discovery 
of true start codons (Figure 15.3).

in a similar way, some peptides can give evidence towards the discovery 
of the correct C-terminal exon (and stop codon), if they are mapped imme-
diately  preceding  a  stop  codon,  and  the  final  amino  acid  of  (an  assumed 
tryptic) peptide is not r or K. however, it is also possible (though rarely) for 
there to be further exons spliced downstream that could explain the same 
amino acids.

Given a suitable database design, it is also possible to discover evidence 
for  improving  gene  models,  through  finding  “novel  peptides”.  these  can  
provide evidence for the discovery of completely novel exons, or refinements 
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at a given locus. at a given locus, novel peptides can be classified depend-
ing on the type of event, including peptides mapping to Utrs, introns, new 
splice junctions and so on.

15.2.4.1  Statistics and False Discovery Rate Calculation
Chapter  4  covered  the  topic  of  peptide-spectrum-matching  scoring  and  
validation and explained the statistical methods to rank and validate peptide 
spectrum  matches  (psMs)  such  as  false  discovery  rate  (Fdr)  and  q-values 

Figure 15.2   peptides (black filled rectangles) mapped against exons from “official 
gene models” in large grid pattern, confirming start and stop codons, 
confirming splice junction or mapping to an exon; 5ʹ and 3ʹ Utrs are 
shown in zig zag pattern.

Figure 15.3   some “novel peptide” types that can be discovered in proteogenomics 
applications. peptides are shown in black filled rectangles; “alterna-
tive” predicted transcripts or reading frames against which peptides 
have been matched are shown in white filled rectangles; exons from 
the  “official  gene  model”  are  shown  in  large  grid  pattern;  5ʹ  and  3ʹ 
Utrs are shown in zig zag pattern.
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calculations.  in this section, we focus on the statistics and the calculation 
of false discovery rate in proteogenomics context. as discussed in the previ-
ous section, the multistage strategies provide one solution for increasing the  
sensitivity  of  peptide  identifications.  to  estimate  the  false  discovery  rate 
(Fdr) at each stage, an equal number of decoys should be appended to the 
protein sequence database.

Various groups have observed that the target-decoy approach for estimating 
Fdr is accurate only so long as the decoys represent an appropriate model of 
what false positives look like within the target database. when querying very 
large databases containing mainly biologically implausible peptides, as in a six 
frame translation, biases in Fdr estimates may be introduced.10 More widely, 
nesvizhskii has been advocating use of a “class specific” false discovery rate 
(Fdr) calculations where the Fdr computed separately for different types of 
novel peptides.1 in practice, this means creating a specific decoy database for 
each type of novel peptide searched for – including splice junction peptides, 
peptides for confirming amino acid polymorphisms and so on.

a multi-stage search in which a different type of database is searched in 
each round, goes some way towards ensuring class-specific Fdr, so long as 
Fdr is estimated independently on each search. however  there  is another 
problem  that  target-decoy  strategies  do  not  accurately  capture  error  rates 
for novel peptides that are highly homologous to reference peptides, for  
example they differ by 1–2 amino acids from the reference sequence.

15.3  Proteogenomics Platforms
in this section, we describe software packages available for different aspects 
of a proteogenomics workflow.

15.3.1  Gene Prediction Pipelines
aUGUstUs11  is  a  software  package  that  can  be  used  to  predict  genes  in 
genomic  sequences.  it  can  predict  the  5′Utr,  3′Utr  and  intron  structure 
of  genes.  aUGUstUs  also  has  a  protein  profile  extension  that  examines  
membership within protein families to improve predictions of exon–intron 
structure.  another  gene  prediction  tool  is  mGene,12  which  uses  machine 
learning  and  discriminative  training  techniques,  such  as  support  vector 
machines  (sVMs) as well as hidden semi-Markov support vector machines 
(hsMsVMs). other tools include ab initio gene finders such as Geneid13 and 
sCanner (altsCan).14 a different type of tool is Maker,5 which can annotate 
genomes and create genome databases, functioning first as to generate ab ini-
tio gene predictions, but it can also incorporate rna-seq data and proteomes 
from other species to improve the prediction. Maker is also trainable, allow-
ing outputs  from initial  runs  to be used to  train  the gene prediction algo-
rithm and thus generate higher quality gene models. trinity15  is a method 
that can be used for full-length transcriptome assembly from rna-seq data 
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without  a  reference  genome.  trinity  also  reconstructs  alternatively  spliced 
isoforms and transcripts from duplicated genes, as discussed in Chapter 16.

15.3.2  Proteogenomics Pipelines
the research community has developed various pipelines for proteogenom-
ics.  Gapp16  was  an  automated  software  for  the  identification  of  human  
peptides from tandem mass spectra using the open source X!tandem search 
engine  to  query  against  particular  genome  builds  from  a  relational  data-
base. another software tool is peppy17 which generates a peptide sequence 
database  from  a  genome,  tracks  peptide  loci,  matches  peptides  to  Ms/Ms 
spectra and performs false discovery rate (Fdr) analysis. a recent automated  
proteogenomics  pipeline  is  integrated  transcriptomic-proteomic  (itp)18 
which can be used for integrative analysis of transcriptomics and proteomics 
data. the  itp has  two components;  the first component uses open-source 
algorithms  for  a  reference-based  transcriptome  assembly  from  rna-seq 
reads. the second component is euGenosuite, which is used for proteomic 
data analysis against this assembled transcriptome.

ppline19  is a proteogenomics pipeline written in python, which provides 
an automated single amino acid polymorphism (sap) and alternative spliced 
variants  discovery  based  on  raw  transcriptome  and  exome  sequence  data. 
nucleotide  eXon-graph  transcriptome  search  (nextsearch)20  is  a  proteog-
enomics pipeline, based on a nucleotide exon graph. it consists of building a 
compact nucleotide exon graph, which includes novel splice variations and a 
search tool that identifies peptides by directly searching the nucleotide exon 
graph against tandem mass spectra. searching for peptide identifications is 
performed against this nucleotide exon graph, without converting it into a 
protein sequence in Fasta format, resulting in a reduction in the size of the 
sequence database storage. the results of nextsearch are stored in a general 
feature format (GFF) file.

proteoannotator8  is  an  automated  open-source  proteogenomics  annota-
tion tool, developed by the authors and colleagues. it is built on the top of the 
mzidentMl21 standard and the mzidentMl library,22 where a set of routines 
are used for pre-processing and post-processing, and fully embeds multiple 
search engines via the searchGUi interface.23 it can export the results to vari-
ous file formats such as mzidentMl, GFF3, proBed and proBaM (see section 
15.3.5 data formats and standards), CsV which makes it easier to visualise 
the results. proteoannotator can be run in two modes, a graphical user inter-
face (GUi) mode or a command line mode. proteoannotator was used in a 
large-scale proteogenomics study of apicomplexan pathogens.24

15.3.3  Proteomics Data Repositories for Proteogenomics
here we discuss how to use proteomics data that are available publicly from 
proteomics data repositories. it is possible to reprocess proteomics datasets 
to  improve  genome  annotation.  Mining  proteomics  data  repositories  has 
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been  discussed  in  ref.  25,  where  four  different  types  of  usage  are  defined: 
use, reuse, reprocess, and repurpose.

one  of  the  benefits  of  proteomics  data  repositories  is  that  they  can  be 
used  to  enhance  genome  annotations.  For  example,  peptideatlas26  and 
pride  (proteomics  identifications)27  databases  include  large  numbers  of 
protein  and  peptide  identifications  and  post-translational  modifications, 
from a variety of species. these repositories can be mined directly, or serve 
as sources for data re-processing approaches to support genome annotation. 
in ref. 28 39 000 exons and 11 000 introns were validated at the level of trans-
lation—translation-level evidence was presented for novel or extended exons 
in 16 genes, 224 hypothetical proteins were confirmed, over 40 alternative 
splicing events were discovered or confirmed, and improved automated gene 
prediction by adding 800 correct exons. this study was done by searching 
18.5 million tandem mass spectra from human proteomic samples. the data 
was downloaded from peptideatlas data repository, which consisted of spec-
tra from the erythroleukemia K526 cell line, in addition to the data from the 
hUpo plasma proteome project. in total, 1.8 million spectra in 621 Ms runs 
were searched in this study. in another study29 they have mapped peptides to 
over 35% of human proteins, including 150 genes expressed multiple alter-
native protein isoforms. they used proteomics data available from two large 
publicly available mass spectrometry repositories, peptideatlas with a data-
set of 52 019 mzXMl spectra files and the Global proteome Machine (GpM)30 
with a dataset of 5809 mzXMl spectra files.

15.3.4  Visualisation
the pG nexus software31 allows users to visualise peptides in the context of 
genomes,  which  is  done  in  the  integrated  Genome  Viewer.  pG  nexus  tool 
is  also  integrated  into  the  Galaxy  cloud  environment.32  the  samifier  tool 
is used to convert the results from Ms/Ms searches into a .saM file format 
that  can  be  visualised  in  the  integrative  Genomics  Viewer.  the  ipiG  tool33  
integrates  peptides  from  Ms/Ms  spectra  searches  into  existing  genome 
browser visualisations. it also supports the mzidentMl standard as an input 
for the identified peptides. however, the tool does not perform post-process-
ing, it relies on prior Fdr estimation methods.

Visual evaluation and statistics to promote annotation (Vespa)34 is another 
visualisation tool for proteogenomics, it is a Java-based desktop application 
that integrates proteomics data and transcriptomics into genomic context. 
the data are evaluated by using visual analysis on multiple levels of genomic 
resolution.

another software is pGtools35 which is an open source tool for analysing 
and visualising of proteogenomics data. it has an interactive htMl report 
after  each  run  that  summarises  the  main  results  of  the  run.  pGtools  can  
produce  Venn  diagrams  to  display  unique  and  overlapping  peptides,  an 
interactive tree-map to show protein groups, and a chromosome distribution 
plot is used to show proteogenomics peptides based on genome coordinates. 
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proBed (see the next section: 15.3.5 data Formats and standards) is a file for-
mat that can be used to visualise proteomics data at ensembl.

15.3.5  Data Formats and Standards
Chapter 11 explained the topic of data formats and standards and covered 
the proteomics standards initiative standards. here we discuss how genome 
coordinates can be captured in the mzidentMl data format. Furthermore we 
discuss  the  developing  adaptations  to  Browser  extensible  data  (Bed)  and 
binary saM (BaM) formats, as well as possible methods for annotating pep-
tide data into General Feature Format (GFF).

the mzidentMl standard can capture psMs and identified proteins (and 
groups of proteins with shared evidence), as well as the listing database pep-
tides and database proteins. in mzidentMl 1.1 (stable version, see Chapter 
11),  from  a  sequence  database  search,  each  psM  is  linked  to  all  database 
proteins (DBSequence element in mzidentMl file) in which it can be located, 
via a mapping element called PeptideEvidence. PeptideEvidence contains the 
information on the position (start and end position) of the peptide within 
the  parent  protein.  if  the  genome  coordinates  of  the  gene  encoding  the  
protein are known, the values in the start and end attributes can be used to 
map the peptide onto the genome. however,  for some peptide types, such 
as those mapping across splice junctions, the start and end coordinates are 
not sufficient for genome visualisation and further analysis. instead, data are 
needed demonstrating which parts of the peptide mapped to which exons. in 
mzidentMl 1.1 this can be achieved by adding extra parameters (userParam 
elements)  with  the  exact  chromosomal  coordinates  of  each  block  of  exon 
from which a peptide was derived. such a formal encoding is planned to be 
added into the next major release version of mzidentMl (1.2).

a new framework, proBaMsuite,36 was recently developed in which a new 
file format protein BaM (proBaM) was created for organising peptide spec-
trum matches in the context of the genome. proBaM is based on sequence 
alignment Map (saM) and binary saM (BaM) formats which are designed 
for encoding alignment information of sequencing reads to a genome. BaM 
has been extended for proteomics in proBaM to include specific data such as 
psM score, charge state and peptide level modifications. psMs can be simply 
re-annotated using gene annotation schemes and assembled into both pro-
tein and gene  identifications,  thus providing the data  integration between 
proteomics and proteogenomics. also it is possible to visualise proBaM files 
in genome browsers, which has the advantage of bringing proteomics data 
analysis to the genomics community.

proBed is another file format that is currently being developed which also 
works  on  integrating  peptide  and  protein  identifications  from  Ms-based 
experiments within the genome. proBed is built on top of Bed file format 
that is used to describe genome coordinates. the Bed file format contain 12 
fields which have been extended with a further 11 fields in proBed to include 
information  about  peptide  spectrum  matches,  such  as  protein  accession, 
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peptide sequence, psM score, Fdr, peptide modification, charge and psM 
rank.  Both  proBaM  and  proBed  will  be  developed  under  the  human  
proteome  organisation  (hUpo)  proteomics  standards  initiative  (psi) 
umbrella for wider use.

15.4  Challenges and Future Research
while the field of proteogenomics made progress in the recent years, many 
challenges  still  need  to  be  addressed  and  solved.  there  are  technical  and 
practical challenges in proteogenomics, due to the lack of compatibility and 
interoperability  between  different  file  formats  used  in  different  software 
tools. this brings extra work for scientists to convert the file format between 
different output files and to find software packages that fully  integrate the 
range of different genomics and proteomics data types that exist.

another  challenge  is  calculating  the  false  discover  rate  (Fdr)  in  pro-
teogenomics.  while  the  procedure  to  calculate  the  false  discovery  rate  in  
proteomics  is  straightforward,  it  is  challenging  in  proteogenomics,  espe-
cially when running a multi-stage search. statistical research is still on-going 
to understand the behaviour of target-decoy methods in the proteogenomics 
context, and/or to develop alternative approaches that can calculate accurate 
statistics for novel peptides – giving evidence towards improvements to gene 
annotations.

Ms-based proteomics can play an important role for post-genomic inves-
tigations.  however  as  both  proteomics  and  genomics  datasets  continue 
to  evolve  independently,  dynamic  software  for  integration  is  needed.  such 
efficient  and  up-to-date  integration  between  proteomics  and  genomics 
information  in  public  resources  has  only  occurred  to  a  limited  extent  so 
far. a solution to this challenge would be automatically re-mapping data or 
re-running searches as gene annotations change allowing dynamic linkages 
between proteomics and genomics.

15.5  Summary
Ms-based proteomics methods allow the identification and characterisation 
of proteins, peptides, and post-translational protein modifications (ptMs), 
providing  information  about  protein  expression  and  functional  states. 
these findings are not directly accessible with genomic sequencing meth-
ods.  in  proteogenomics,  proteomic  observations  of  specific  peptides  con-
tribute to the definition of correct gene structures, alternative splicing, and 
discovery of new/support for previously weakly supported gene annotations. 
an effective integration of proteomics and genomics data is very challenging 
since there is usually a disconnect between the results of a proteomics anal-
ysis and the most recent version of the genome of the same organism. this 
occurs since search engines use a particular version of a protein sequence 
database, derived from a concrete genome build. Many research groups do 
not regularly update their local protein sequence databases and results are 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

65
View Online

http://dx.doi.org/10.1039/9781782626732-00365


Chapter 15382

only fully comparable when the same version of the same protein database 
is used. a dynamic integration between the current genome annotation and 
proteomics tools is important to ensure that results generated in the past, 
can still be interpreted as genomes, annotations and external software (such 
as  pathway/network  mapping)  continue  to  evolve.  additionally,  proteom-
ics data can be improved from regular re-analysis in the context of updated 
genome  and  protein  sequence  databases,  potentially  increasing  the  num-
bers of proteins identified/quantified, and overall data quality as gene mod-
els improve.
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16.1   Introduction to PIT
Searching mS/mS spectra against a database of proteins that could be pres-
ent in the sample, using the methods described in Chapter 3, remains the 
pre-eminent method for identifying proteins in liquid chromatography tan-
dem mass spectrometry (LC-mS/mS) shotgun proteomics. the relevance 
and quality of this protein database clearly has a significant impact on the 
outcome of a proteomics study, because only proteins present in the data-
base can be detected and increasing the database size reduces the num-
ber of significant protein identifications.1 For well-studied species such as 
human it is tempting to assume suitable protein databases are available, 
and indeed a high quality complete proteome can be downloaded from 
Uniprot2 for human, and many other model organisms. however, even for 
these well-studied model organisms the true set of proteins that might be 
present is debatable and the proteome is not definitive. For example, large 
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scale human proteome mapping projects have recently suggested that  
commonly used human protein databases include protein sequences that 
may never be expressed while simultaneously omitting proteins for which 
there is mass spectrometry evidence.3,4 these studies have also confirmed 
that the expression of many proteins is tissue specific, suggesting that fil-
tering a proteome prior to performing a database search could be a logical 
way of reducing search space if dealing with a sample from a specific tissue. 
however, this relies totally on the annotations of the proteins being correct. 
alternative splicing5 further complicates the situation. protein isoforms 
derived from genome annotation are included in some protein databases, 
but the existence of every isoform may not have been confirmed by experi-
mental evidence and including all possible isoforms increases search space, 
making peptide spectrum matching and protein grouping more difficult and 
resulting in fewer significant protein identifications.

For lesser studied organisms the situation is worse still, as available protein 
databases rely more on computational gene prediction, and in some species 
even this is not possible as a reference genome has not yet been assem-
bled. this is a significant problem in fields such as virology, where some 
important disease vectors (e.g. lice, ticks, birds and bats) have poorly anno-
tated genomes or no genome data at all. Similar challenges can be found in 
metaproteomics,6 where individual samples contain proteins from multiple 
organisms, some of which may be unidentified or not previously sequenced.

to overcome these problems, a relatively new methodology called pro-
teomics informed by transcriptomics (pit)7 has been developed, in which 
a sample-specific protein database is generated from transcripts that have 
been identified in the sample using rna-seq.8 the fundamental concept 
underpinning this approach (shown schematically in Figure 16.1) is that  
proteins are translated from mrna, hence the majority of proteins present in 
a sample should be represented in the same sample by their corresponding 
transcripts. rna-seq and LC-mS/mS proteomics are performed on extracts of 
the same sample. the transcripts can be assembled from raw rna-seq data 
either by mapping to a genome or entirely de novo (e.g. if no suitable genome 
exists). these are then translated into a list of amino acid sequences by 
finding open reading frames (orFs). this list is then used as a protein data-
base for a standard database search, resulting in a typical list of identified  
polypeptides together with their scores and corresponding peptide evidence. 
at this point the identified polypeptides are characterised only by their 
amino acid sequences, lacking names or other annotation so further pro-
cessing is needed to add biological meaning to these results—exactly how 
this is done depends on the experiment being undertaken and is covered 
later in the chapter.

Combining protein identifications derived from peptide mass spectra 
with transcriptomic data to annotate genomes has already been mentioned 
in the previous chapter, in the context of proteogenomics. indeed, pit can 
be used for genome annotation and this aspect of its functionality can  
certainly be considered within the realm of proteogenomics. however, pit 
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Figure 16.1    Schematic of pit workflow. LC-mS/mS proteomics and rna-seq transcriptomics analyses are carried out on the same  
sample. transcripts are assembled from the rna-seq data, and used to generate open reading frames (orFs). there, orFs 
are then used to create a protein database for traditional peptide spectrum matching. this results in a list of orFs that have 
been identified as being present in the sample. Further application-specific downstream processing is needed to extract 
useful information from this list of orFs.
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goes beyond this, allowing proteomic analysis in the absence of a reference 
genome, as well as sensitive detection of sequence variation, and moni-
toring of dynamic processes such as isoform switching. the key facilitator 
of these additional capabilities is that, in pit, rna-seq data are collected 
from the same sample as the mS data—this is not necessarily the case in 
proteogenomics.

although pit can conceptually provide valuable new insights into the 
systems being studied, there are a number of technical and practical diffi-
culties in integrating the rna-seq and proteomic mS/mS data. as is evident 
from previous chapters, extracting protein identifications and abundances 
from mS data is a complex multi-step process which is time consuming 
because datasets are large. analysis of rna-seq transcriptomic data holds 
its own challenges, and data volumes are typically an order of magni-
tude greater than in proteomics. Combining data from proteomics and  
transcriptomics together is clearly more complicated than dealing with 
either one, and knowledge of tools and best practice from the two distinct 
communities is required as well as new approaches. the bulk of this chap-
ter explains how each step in the pit workflow can be tackled, starting with 
rna-seq.

16.2   Creation of Protein Database from RNA-Seq 
Data

16.2.1   Introduction to RNA-Seq
rna sequencing (rna-seq) has revolutionised the study of transcriptomes, 
largely taking over from Dna microarrays in this field. rna-seq uses next 
generation sequencing (nGS) to reveal the presence of transcripts and their 
quantity in a sample at a given time. rna-seq is commonly used to investi-
gate differential gene expression, infer gene interaction networks, monitor 
expression as a function of time and study biological events such as alter-
native gene splicing, gene fusion and post-transcriptional modification.8 
Unlike microarray technology, where specific probes are used to monitor 
specific genes, rna-seq is an open technique, capable of sequencing almost 
any mrna in the sample, thereby allowing the discovery of new transcripts. 
importantly, rna-seq (followed by appropriate sequence assembly) is able 
to generate full length transcripts, in contrast to shotgun proteomics where 
gaps in sequence are common due to undetectable peptides.

a detailed explanation of nGS is beyond the scope of this chapter, but 
a brief overview is needed to appreciate its capabilities and limitations, 
and the impact these have on pit. various nGS technologies are available 
but we focus here on illumina sequencing as that has been most exten-
sively applied in pit experiments to date. the sequencing process starts 
with the preparation of a library, a collection of Dna from the sample (in 
the case of rna-seq, the Dna is reverse transcribed from rna.). Dna is 
cleaved into smaller fragments by sonication or enzyme digestion. Small 
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Dna sequences called adaptors are ligated to the ends of the fragments, to 
help with the amplification and sequencing of the fragments. the ligated 
fragments are size fractioned (often 200 to 300 bp is selected) and used 
as a template in a polymerase chain reaction (pCr). illumina sequenc-
ing uses bridge pCr9 to amplify the library by washing these ligated frag-
ments across flow-cell channels covered in primers. the flow-cell is where 
the sequencing takes place. Before attachment to the flow cell, the ligated  
fragments are denatured, producing single-stranded copies of the frag-
ments for sequencing. the adaptor constructs have two flow-cell bind-
ing sites, p5 and p7. the p5 and p7 binding sites of the single stranded 
fragments anneal to the complementary primers on the flow cell. the 
unattached flow cell oligonucleotides act as a primer and a strand comple-
mentary to the library fragment is synthesised by adding unlabelled nucle-
otides. the original fragments are washed away leaving the fragment copy 
bonded to the flow cell primers. at this stage the fragment makes a bridge 
shape before it is copied, hence the name bridge pCr. thousands of copies 
of each fragment are generated and these create clusters of complementary 
fragments of the original sequence of interest. the flow-cell is then flooded 
with nucleotides and they get added to the fragments one base at a time 
at each cycle. the addition of each nucleotide releases a light or fluores-
cence.10 these changes are detected and software used to determine the 
base added using a process commonly known as base calling.11 one or both 
sides of the fragment might be sequenced, producing single or paired-end 
reads. paired-end reads are the sequences of two ends of the same Dna 
molecule with a physical distance between two reads. one end of the mol-
ecule is sequenced and it is turned around to sequence the other end in 
paired-end sequencing.

as with most analytical techniques, nGS does not produce 100% error-
free data. Sequencing errors can be introduced during sample handling 
and in the data acquisition process. Sample handling errors may happen 
at the sample preparation or at the amplification (pCr) step, and mutation 
artefacts have been reported due to oxidative Dna damage during sample 
preparation.12 pCr should produce an exact copy of the library fragment 
and fragment number should double after each cycle, but in practice some 
artificial molecules are produced besides the original fragment molecule. 
mutations or unwanted reactions between the template molecules result 
in these artificial molecules. in addition, amplification contracts during 
pCr due to reduction of repeat units.13 although, the amplification rate 
does not decrease equally for the entire library creating read coverage gap. 
another explanation for the coverage variation is the formation of secondary  
structures (hairpins) in single-stranded Dna (ssDna).14 at-rich repetitive 
sequence is also reported to have lower sequence coverage.15 Besides these 
error causing factors, there are other biases due to imperfect chemistry, 
sensors and imaging technology such as phasing (where a strand fails to 
incorporate a nucleotide in a cycle) or pre-phasing (multiple bases get-
ting incorporated in one cycle) causing erroneous fluorescence emission. 
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Fluorophore cross talk can also result in misinterpretation of signal. addi-
tionally, strong correlation of a and C as well as G and t intensities because 
of similar emission spectra of the fluorescence introduce data acquisition 
errors.

error rates of illumina sequencing machines are reported to be of the order 
of 0.1–1 × 10−2, varying according to sequence.16 the accuracy of the sequence 
can be improved by increasing read coverage, essentially sequencing the 
same Dna multiple times, increasing the sequencing cost.11 Sequencing 
errors and read coverage variation can be misinterpreted as polymorphisms, 
mutations, or copy number variations. when using rna-seq data to generate 
a sequence database for peptide spectrum matching there is a clear danger 
that some of the rna-level errors will translate into peptide-level errors, pre-
venting a peptide from being identified. on the other hand, it is possible to 
envisage a strategy where proteomic data could be used to identify potential 
errors in the transcriptomic data.

Sequencing platforms typically produce sequencing data in a file format 
called FaStQ, which is often referred to as raw data in the sequencing com-
munity. the sequencer may produce tens of billions of bases, hence the data 
are often compressed. FaStQ is a text-based file format containing both 
the sequence of the reads and the sequencing quality. Figure 16.2 shows an 
example of the format. Four lines represent each read. the first line starts 
with @, usually followed by the title or the identifier of the sequence. the 
second line is the actual read sequence. the third line, beginning with +, is 
an optional line often containing the sequence title or identifier. the final 
line is the phreD quality score of each base of the sequence encoded as 
aSCii printable characters (aSCii 33-126). phreD score Q is a measure of 
the quality of the identification of bases during base calling which is loga-
rithmically related to the sequencing error probability P, and calculated as 
follows:

Q = −10 log10P

Sequencers commonly store paired-end sequences in two FaStQ files, 
one for the left side bases and the other for the right side bases. Depending 
on the sample preparation protocol, rna sequencing is either stranded or 
un-stranded. Some of the rna-seq assemblers or aligners require the library 
type information. there are four library types for stranded sequencing, as 
shown in Figure 16.3.

Figure 16.2    FaStQ is a text file format to represent sequencing reads. each read is  
represented as four lines, where first line is the iD of the sequence,  
second is the sequence. third line is optional, beginning with +. the 
last line is the base quality of the read sequence.
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16.2.2   Sequence Assembly
rna-seq data analysis starts by assembling these reads into full-length  
transcripts. two different methods, genome guided and de novo, are avail-
able for this purpose (Figure 16.4). the genome guided methods align the 
short raw reads to a reference genome and an assembler assembles the reads 
in order to reconstruct the original sequence. Bowtie,17 tophat,18 Bwa19 are 

Figure 16.3    orientation of single and paired-end reads. F and r represent the 
sense (forward) and antisense (reverse) orientation of single end 
respectively. whereas Fr means that, the first read of fragment pair is 
sequenced as sense and the second read as antisense. rF means the 
opposite of Fr, i.e. the first read is anti-sense and the second as sense.

Figure 16.4    there are two ways of assembling rna-seq data, (i) genome guided and 
(ii) de novo assembly. Short rna-seq reads are mapped to a genome 
and mapped reads are assembled based on their genomic location. De 
novo assembly does not require a reference genome to assemble the 
short reads into a transcript.
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examples among many specialised rna-seq aligners. Genome-guided assem-
blers such as Cufflinks and Scripture build a transcript from the aligned 
reads. on the other hand, de novo transcriptome assemblers do not rely on a 
reference genome to reconstruct the transcript sequence. trinity,20 velvet,21 
oases22 and Trans-aBySS23 are commonly used de novo assemblers. it is the 
ability to assemble transcripts from short reads de novo that makes it possi-
ble to use pit to perform proteomics on non-model organisms. the genome 
guided and the de novo assembled transcripts can be merged based on con-
sensus using program to assemble Spliced alignments (paSa)24 to achieve 
better transcript coverage.

though the instrument vendors do filter bad quality reads and correct 
errors at the base calling step, reads still tend to have low quality bases at the 
beginning and towards the end. Low phreD scores suggest low reliability, 
and low quality reads will assemble into a low quality transcript. erroneous 
bases can make their way through the assembly process, resulting in errone-
ous transcripts that can have a significant impact on the pit analysis. aside 
from obvious impact of non-synonymous errors on the amino acid sequence, 
an erroneous nucleotide call may result in early termination of an orF, or 
a missing stop codon may extend the coding region. additionally, low read  
coverage may result in a gap, i.e. an apparent deletion, which will cause 
incomplete and wrong transcript assembly leading to missed or erroneous 
protein identifications. hence, prior to assembly, it is good practice to per-
form quality control to clean or trim reads using tools such as FaStQC,25 
FaStX (http://hannonlab.cshl.edu/fastx_toolkit/), picard (http://broadinsti-
tute.github.io/picard), htSeq-Qa,26 nGS QC toolkit.27

Following assembly, the raw reads are mapped back to the assembled tran-
scripts to calculate the read coverage. often transcripts with low read cover-
age are filtered out due to insufficient read evidence. Fragments per kilobase 
of transcript per million mapped reads (FpKm) and reads per kilobase of 
transcript per million mapped reads (rpKm) are often used as a proxy for 
gene expression level, isoform abundance and transcript assembly reliability. 
in pit experiments, these can be compared with the expression levels of the 
associated proteins if a quantitative proteomics protocol has been employed.

Short read alignment software outputs the mapping results in Sequence 
alignment/map format (Sam) or binary Sam (Bam) format to reduce the size 
of the alignment file. Sam is a tab delimited text file with eleven mandatory 
fields.28 each line represents an alignment, with an optional header section 
prior to the alignment section in which every line starts with @. the assem-
bled short reads reconstruct the transcripts, which can be described in a 
standard FaSta file.

16.2.3   ORF Finding
By this point, we have a FaSta file of rna transcripts from the sample 
but for peptide spectrum matching we need to generate a FaSta file of  
corresponding amino acid sequences. this is achieved by predicting open 

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

85
View Online

http://dx.doi.org/10.1039/9781782626732-00385


393Proteomics Informed by Transcriptomics

reading frames (orFs) from the assembled transcripts, a task for which 
several software tools are available. all of these tools allow six frame trans-
lation. the getorF tool from emBoSS29 is one such tool where orFs are 
defined by a region between two stop codons or between a start and a stop 
codon with a minimum length. Start and stop codons can be selected from 
a genetic code table suitable for the species. transdecoder30 is another 
option for orF prediction which predicts coding regions within a tran-
script sequence. this tool predicts orFs based on the minimum length of 
orFs, computes log likelihood score in a similar way to the GeneiD31 soft-
ware and orFs from the first frame shift are given a higher score than the 
other five frame shifts. it outputs the gene structure in GFF3 32 and BeD33 
file formats. all of these orF prediction tools output the predicted orFs 
in FaSta format, providing a rudimentary search database for peptide  
spectrum matching.

16.2.4   Finalising Protein Sequence Data for PIT Search
a core assumption of the pit approach is that proteins present in a sample 
are accompanied by the rna transcripts from which they were produced.  
however, one can envisage many proteins for which this is not the case. 
Firstly, the sample may contain contaminant proteins that are not endog-
enous to the sample under study. to account for these proteins the search 
database can be augmented with a list of common contaminants, such as 
the common repository of adventitious proteins from the Gpm.34 proteins 
with long half-lives constitute the second class of proteins for which a cor-
responding transcript may not be present, as the rna precursors of such 
proteins may have degraded prior to the sample being analysed. to cover this 
eventuality, the rna-seq database can be merged with a canonical proteome, 
although the optimal way to do this is an open question. a variation of this 
approach is to perform an initial search against the standard proteome 
and then use the database of orFs in an attempt to identify unassigned  
spectra in a secondary search.35 this approach carries a risk of wrongly iden-
tifying Saps as ptms. researchers have used standard proteomes merged 
with amino acid sequences representing disease related Snps and splice 
junction peptides to identify disease specific mutations and isoforms.36,37 
Finally, the transcript read coverage can be used to filter out orFs based on 
low-quality transcripts to reduce erroneous peptide identification.

16.3   Interpretation of Identified ORFs
while the peptide and protein identification step is achieved using a  
standard database search, the results are not immediately useful as they 
consist only of a list of orFs for which peptide evidence has been found. 
extensive data analysis is needed to extract biologically useful information 
from these results, and exactly how this is done depends on the biological 
question being asked.
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16.3.1   Identification of Proteins in the Absence of a 
Reference Genome

although whole genome sequencing costs have plummeted and throughput 
vastly increased, there remains a large number of species for which a genome 
sequence is not currently available, or if a genome is available it is not well 
annotated (i.e. the protein coding regions are not well characterised, so a pro-
teome is not available). at the time of writing, many important species fall into 
this category, including a number of disease vectors and food crops. tradition-
ally, proteins in such species have been identified by searching against the pro-
teome of a closely related organism, but this is far from ideal as it biases results 
towards what is already known and limits the potential for new discoveries.

a published Galaxy workflow38 supporting a pit analysis to identify pro-
teins in the absence of a reference genome is shown in Figure 16.5. the first 
step of the workflow produces a protein database comprising the longest 
open reading frames (orFs) found within all six reading frames of each tran-
script. this database is then used in the peptide spectrum matching step, 
followed by post-processing to score pSms (see Chapter 4) and group pep-
tides to orFs (see Chapter 5). in the final part of the workflow, all identified 
orFs are BLaSted to find homologous proteins in selected species. the final 
result of the workflow is therefore a tabular file containing a list of orFs for 
which peptide evidence has been found, together with an indication of the 
closest homologous protein in the selected species. this allows for the analy-
sis of a sample from a species for which a reference genome is not available, 
by post-identification comparison with proteins in a closely related species. 
it also facilitates metaproteomics where proteins from two or more species 
(some of which may be unidentified) are present in the sample.

Figure 16.6 shows peptide and protein identifications from a pit anal-
ysis compared with those from a similar search against Uniprot using data 
from heLa cells infected with adenovirus.7 there is clearly a very significant  
overlap, with 87% of all identified protein groups being common to both anal-
yses. the fact that only 247 Uniprot proteins were missed by the pit approach 
is very reassuring, particularly because the pit database was purely derived 
from the rna-seq data without any augmentation with canonical proteins. 
the majority of missed proteins either had no corresponding transcripts in 
the sample or were variants. of the 158 proteins that were only found by pit, 
the majority only had a single peptide hit in the Uniprot search.38 note that, in 
this case, a BLaSt e-value below 1 × 10−30 was used as the threshold for protein 
homology, so many of the pit proteins matched to Uniprot were in fact vari-
ants. Stricter sequence comparison allows detailed characterisation of individ-
ual sample-specific variation, as discussed in the next section.

16.3.2   Identification of Individual Sequence Variation
protein level sequence variations, often called single amino acid polymor-
phisms (Saps) or single amino acid variations (Saavs), resulting from  
single nucleotide polymorphisms (Snps) should clearly be identifiable in 
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Figure 16.5    Galaxy workflow for conducting protein identification in the absence of a reference genome. the inputs to the workflow are 
a file containing raw spectral data and a list of transcripts assembled from rna-seq data (de novo assembled in a separate 
workflow). Figure taken from ref. 38. © american Society of Biochemistry and molecular Biology.

 
Pu

bl
is

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

67
32

-0
03

85

View Online

http://dx.doi.org/10.1039/9781782626732-00385


Chapter 16396

proteomics mass spectra. previously proteomics researchers have consid-
ered such variations by incorporating known variations from existing varia-
tion databases39 or by identifying non-synonymous variations at the rna-seq 
level by employing variant calling tools7 and introducing additional protein 
sequences with the variations along with the standard proteome.36 in both 
cases, sequence variation identification is limited to model organisms which 
have a reference genome against which variations have been well character-
ised. Because it uses a sample-specific database, pit provides a generically 
applicable alternative to these approaches, which is able to capture Saps as 
well as insertions, deletions, and multiple amino acid alterations.37

to achieve this, after the identified orF sequences are BLaSted against a 
proteome a variation identification algorithm can detect the variations from 
the BLaSt mapping. one way of reporting these variations at the protein 
level would be to use a proteomic variant of the popular variant Call Format 
(vCF) to report the peptide(s) supporting the variations. vCF is a text-based 
file format designed to describe genomic locations at which variations occur, 
and the nature of those variations. a vCF file contains metadata lines that 
start with ## and a header line (starting with #) followed by the data lines. 
the data lines have eight fixed fields. these fields are chromosome, posi-
tion, iD, reference base, alternative base, phreD scaled quality value, filter 
and information. we have proposed a provCF format, based on the vCF file 
format but with the intention of describing protein variations. it also has all 
eight fields, but the position (poS) field gives position within a protein rather 
than a genomic location. the inFo column is designed to contain additional 
proteomics data. there are five fields in this column, separated by semico-
lons: subject id, query id and alignment from the BLaSt result and type of 

Figure 16.6    Comparison of peptides and protein groups identified by a standard 
protein identification workflow in which mass spectra were searched 
against Uniprot and a pit workflow without reference genome, for 
heLa cells infected with adenovirus. Figure taken from ref. 38. © 
american Society of Biochemistry and molecular Biology.
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the variation (type) and the position in respect to the orF sequence (QpoS). 
these fields have a ‘key = value’ format. the alignment field is further divided 
into six categories, which includes query length (i.e. orF length), query start 
(alignment start position in an orF), query end (alignment end position 
in an orF), subject length (reference protein length), subject start and end 
(i.e. alignment start and location in the reference protein). the QUaL (qual-
ity) field gives an average score of peptide identification q-value instead of 
phreD scaled quality score, or a negative score if no peptide was found for 
the variation. an example of an early draft of the provCF format is shown 
in Figure 16.7. peptide evidence is identified for all variations by finding 
peptides that overlap with the variation boundary. insertions, deletions and 
alterations may have partial peptide evidence, and this information too can 
be captured in the provCF file. more work is needed to finalise the format, 
in particular to make it compatible with existing vCF tools, but the way in 
which such a format could be useful is evident.

16.3.3   Monitoring Isoform Switching
protein isoforms are known to have a diverse range of functionalities40 and 
isoform switching has been implicated in human diseases (e.g. cancer41).  
previous research shows that a large portion of the disease causing muta-
tions in human affect splicing rather than directly altering the coding 
sequence.42 isoforms can interact differently with other proteins, modify-
ing their behaviour in pathways. isoform usage is therefore an active area of 
study, but identification of protein isoforms is challenging due to the usual 
problem of finding a suitable search database. For model organisms, data-
bases of protein isoform sequences derived from gene structure are avail-
able, but including these in a database search substantially increase search 
space. Furthermore, there is no guarantee that every isoform present in the 
database is actually seen in nature, or that the sample does not contain a 
novel isoform resulting from, for example, somatic mutation.

Figure 16.7    an example of the draft provCF format for reporting protein varia-
tions identified by pit. the format is a tab delimited text file with eight  
columns. the last column (inFo) is multicomponent string where 
each field has ‘key = value’ structure providing more information 
about the variation. in this figure the content of the inFo column had 
to be wrapped around to the following line.
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the search space can be reduced significantly by using rna-seq data 
instead of the genome, which also allows capture of alternative splicing 
events without requiring a genome annotation. a common approach to 
confirm alternative splicing events at the protein level is by identifying 
splice junction peptides,43 or by identifying other peptides that uniquely 
map to the isoforms. however, these methods rely on high quality gene 
structure annotation from databases like ensembl, restricting this tech-
nique to all but the most well annotated model organisms. in another 
isoform detection study,44 an existing database has also been used to com-
plete incomplete assemblies.

at the time of writing Swiss-prot has 20 195 reviewed canonical proteins 
sequences and 42 156 sequences including isoforms in the human proteome, 
so including reviewed isoforms in a proteomics experiment doubles the 
search space. alternative splicing of the protein-coding regions results from 
several splicing events, of which there are five basic types41,45 and two addi-
tional types. these are listed here and shown graphically in Figure 16.8.
  
 (a)  exon skipping/retention: exon skipping/retention is the most com-

mon splicing event where mrnas may contain an exon under certain 
conditions or in particular tissue and not in others.

Figure 16.8    alternative splicing events commonly observed. (a) example of a 
skipped or retained exon. (b) mutually exclusive exons are part of a 
group of exons where only one member can appear at a time in the 
mrna. (c) an alternative donor site can lengthen or shorten exons 
and changes the 3-prime end of exons. (d) an alternative receiver is 
the opposite of alternative donor. it changes the 5-prime end of exons. 
(e) mrna incorporates an intron when the splicing machinery fails 
to cleave the intron. (f) multiple promoter regions can switch the 
5-prime end of the mrna and create isoforms with different starting 
exons. (g) multiple polyadenylation sites switch the 3-prime ends of 
mrna creating isoforms with different terminating exons.
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 (b)  mutually exclusive exon: mutually exclusive exons occur when only 
one exon from a group of exons is included at a time in the mrna.

 (c)  alternative donor sites: exons can lengthen or shorten due to alterna-
tive 5-prime splice sites. a single base mutation can change normal 
splicing sites and force into a longer exon. alternative donor sites 
change the 3-prime boundary of exons.

 (d)  alternative receiver sites: an alternative receiver site is similar to an alter-
native donor site, except it changes the 5-prime boundary of an exon.

 (e)  intron retention: introns are removed during or shortly after transcrip-
tion. a donor site (5-prime end of introns), branch site and an acceptor 
site (3-prime end of introns) are required for intron splicing.46,47 mrna 
incorporates an intron when the rna splicing fails to splice both the 
members of the donor-acceptor altogether.

 (f)  alternative promoters: multiple promoter regions change the 5-prime 
end of mrnas resulting in alternative star exons.

 (g)  alternative polyadenylation: alternative polyadenylation sites create 
mrna isoform with different terminating exons.

  
in addition to these alternative splicing events, there are two other mecha-

nisms by which multiple mrnas may be produced from same gene. multiple 
promoter and polyadenylation sites switch five prime and three prime ends 
of mrnas.

according to Zhou et al. 8% of protein variants are generated from mrna 
alternative splicing or Snps, the remainder being mostly due to ptms.48 
research is ongoing to identify alternative splicing events by combining 
rna-seq and LC-mS/mS proteomics. protein level evidence for splice junc-
tions have been identified using both public44 and sample-specific rna-seq 
data. So far, confirmation of isoforms at protein level has relied on either 
splice junction peptides or peptides uniquely mapping to an isoform. pit 
allows a different approach to identify protein and mrna isoforms, in which 
we identify protein isoforms based on orF sequence and then find the cause 
from the rna-seq data. orFs are BLaSted against a standard protein data-
base and isoforms are classified based on the BLaSt alignment. we use 
multiple layers of filtering of alignments to separate novel proteins from the  
isoforms. if an orF sequence is significantly smaller than the target sequence, 
or the alignment of below certain quality, the match is discarded. transde-
coder assigns a type to each predicted orFs. if start, stop, or both codons 
are missing, the orFs are labelled as five prime partial, three prime partial 
and internal respectively. Unlike previous approaches our method does not 
use an existing database such as ensembl in an attempt to complete these 
incomplete orFs or to identify translation frame. the orF will be consid-
ered to be an isoform considering a combination of its length, completeness, 
transcript structure and peptide evidence. in contrast, an mrna isoform is 
confirmed by identifying peptides from lengthened exons, or retained intron 
region. incompleteness of orFs is also recorded for further study. identified 
orFs with any of the splicing events are annotated accordingly and reported. 
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Crucially, unlike proteogenomics approaches covered in the previous chapter,  
this novel approach is able to identify and characterise isoforms without 
access to a well annotated reference genome.

16.3.4   Genome Annotation and Discovery of Novel Translated 
Genomic Elements

thus far in this chapter we have concentrated on identification of proteins 
and their variants, as this is the focus of proteomics. however, studies have 
reported mass spectral evidence of peptides that map to the genome but are 
not considered to belong to what would normally be considered a protein. 
these include short orFs (sorFs) typically coded for by genome sequences 
near protein coding genes, and peptides from various forms of so-called 
non-coding rna (ncrna). the veracity and function of these entities is the 
subject of much study, and disease relevance has been postulated in the 
literature.49

various strategies can be used to seek proteomic evidence for these exotic 
products of the genome, the simplest being to add their sequences to a canon-
ical protein database and use the combined database for peptide spectrum 
matching. this is possible, as repositories of short orFs and ncrnas do exist 
for several species, and these features might feasibly be computationally pre-
dicted from the genomes of others. however, pit offers the opportunity to 
find such features from LC-mS/mS data regardless of whether they have been 
seen, or predicted, previously. there are, however, a number of open chal-
lenges here, particularly for sorFs that are, by definition, short and may only 
be supported by a single peptide identification. in these cases, diligent scor-
ing of peptide spectrum matches, and experimental validation of findings, 
become even more important than in standard proteomics experiments.

16.4   Reporting and Storing PIT Results
Determining how best to share, report and store the results of a proteom-
ics experiment has required a great deal of time invested by the proteomics 
Standards initiative and the developers of the various proteomics databases. 
the transcriptomics community has undertaken similar efforts for rna-seq. 
Since pit subsumes both these fields the reporting of results requires an 
understanding of practices in both communities, and a mechanism for their 
linkage.

at the very least, when reporting the results of a pit experiment the rna- 
derived sample-specific sequence database used should be provided along-
side any protein–peptide identification results, with the same identifiers used 
in both. the most basic technical solution to achieve this is to provide the 
necessary sequences as a FaSta file, but a more elegant solution is inclusion 
of the sequences together with the identifications in a single mzidentmL file 
using the <DBSequence> tag (see Chapter 11). this would be compatible with 
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a full submission to public databases via proteomeXchange.50 this solution 
does not, however, capture the underlying transcriptomic data and associ-
ated information such as sequence quality. For that, it would be necessary to 
store the rna-seq data, which could be in the form of a FaSta file of assem-
bled transcripts or could also include the original FaStQ raw sequencing 
files, to facilitate full reanalysis. ideally, in future it should be possible to 
make a joint submission in which, for example, proteomics data is submitted 
to priDe51 and the associated rna-seq data to arrayexpress.52

aside from simple deposition and sharing of data, it is also worth consid-
ering how pit results could best be represented logically, e.g. in a relational 
database. the great majority of traditional proteomics experiments and data-
bases are protein-centric, so databases are designed around protein identifi-
cations with additional information about the supporting peptide evidence. 
pit differs in that it is capable of identifying a range of protein variants and 
other polypeptides that may not fit into the generally accepted definition of a 
protein. For pit data we have developed an alternative database called pitDB  
(www.pitdb.org) designed around the more general concept of translated 
genomics element (tGes). each tGe is an entity from the search database 
that has been identified, and is assigned to a class determined by analysis 
of the tGe’s amino acid sequence. For example, if it has been found to have 
very close homology to a known protein it would be classed as a known pro-
tein, but other analysis may reveal it to be a protein variant, or another type 
of tGe such as a sorF or translated ncrna. each tGe must be supported in 
the database by one or more tGe observations, which is similar in concept 
to a protein identification except that evidence underpinning a tGe observa-
tion consists of both peptide spectrum matches and the transcript evidence 
used to generate the tGe’s amino acid sequence. each type of evidence has 
its own associated confidence score. Using this approach, it is possible to 
build up a body of evidence for the existence of each individual tGe over the 
course of multiple experiments, with ready access to the information needed 
to judge the level of confidence in the existence of the tGe and any sequence 
variations within it.

16.5   Applications of PIT
researchers have addressed a wide range of biological questions through the 
combination of rna-seq and proteomics. publicly available rna data have 
previously been used with proteomics to help reduce database search space 
significantly.53 however, that approach is unable to capture sample specific 
mutations, isoforms, and novel polypeptides. moreover, publicly available 
rna-seq data for non-model organisms are sparsely available making it 
unsuitable for non-model organisms. Use of sample specific transcriptome 
data in pit and similar methods have allowed researchers to identify single 
nucleotide polymorphisms (Snps) or single amino acid polymorphism (Saps) 
in cancer.54 the method has shown promising results for genome annota-
tion of non-model organisms, e.g.55 and to improve existing annotation.56 pit 
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has also identified novel human isoforms.43 pit and similar methods36 have 
also been used to identify disease biomarkers,57–59 and helped reveal how  
different hosts react differently to a common virus.60

16.6   Conclusions
of all the methodologies covered in this book, pit is the least mature so 
much remains to be done in terms of optimising workflows and reporting 
results. however, significant progress is being made and pit has already 
helped to answer previously intractable biological questions. although 
challenging, such integration of different omics techniques is crucial to the 
future of biological research, as it becomes clear that only a system-wide view 
can provide us with a full understanding of crucial biological phenomena. 
proteomics is obviously an integral part of this future, and understanding 
the computational steps needed to convert mass spectrometry data into  
biologically important information is essential to ensuring high quality results 
and valid conclusions.
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